]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched/rt: Make update_curr_rt() more accurate
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
004172bd 8#include <linux/sched.h>
e6017571 9#include <linux/sched/clock.h>
ae7e81c0 10#include <uapi/linux/sched/types.h>
4f17722c 11#include <linux/sched/loadavg.h>
ef8bd77f 12#include <linux/sched/hotplug.h>
5822a454 13#include <linux/wait_bit.h>
1da177e4 14#include <linux/cpuset.h>
0ff92245 15#include <linux/delayacct.h>
f1c6f1a7 16#include <linux/init_task.h>
91d1aa43 17#include <linux/context_tracking.h>
f9411ebe 18#include <linux/rcupdate_wait.h>
abca5fc5 19#include <linux/compat.h>
004172bd
IM
20
21#include <linux/blkdev.h>
22#include <linux/kprobes.h>
23#include <linux/mmu_context.h>
24#include <linux/module.h>
25#include <linux/nmi.h>
6075620b 26#include <linux/prefetch.h>
004172bd
IM
27#include <linux/profile.h>
28#include <linux/security.h>
29#include <linux/syscalls.h>
78634061 30#include <linux/sched/isolation.h>
1da177e4 31
96f951ed 32#include <asm/switch_to.h>
5517d86b 33#include <asm/tlb.h>
fd4a61e0
MB
34#ifdef CONFIG_PARAVIRT
35#include <asm/paravirt.h>
36#endif
1da177e4 37
029632fb 38#include "sched.h"
ea138446 39#include "../workqueue_internal.h"
29d5e047 40#include "../smpboot.h"
6e0534f2 41
a8d154b0 42#define CREATE_TRACE_POINTS
ad8d75ff 43#include <trace/events/sched.h>
a8d154b0 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
765cc3a4 47#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
765cc3a4 61#endif
f00b45c1 62
b82d9fdd
PZ
63/*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
e9e9250b
PZ
69/*
70 * period over which we average the RT time consumption, measured
71 * in ms.
72 *
73 * default: 1s
74 */
75const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
76
fa85ae24 77/*
d1ccc66d 78 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
79 * default: 1s
80 */
9f0c1e56 81unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 82
029632fb 83__read_mostly int scheduler_running;
6892b75e 84
9f0c1e56
PZ
85/*
86 * part of the period that we allow rt tasks to run in us.
87 * default: 0.95s
88 */
89int sysctl_sched_rt_runtime = 950000;
fa85ae24 90
3e71a462
PZ
91/*
92 * __task_rq_lock - lock the rq @p resides on.
93 */
eb580751 94struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
95 __acquires(rq->lock)
96{
97 struct rq *rq;
98
99 lockdep_assert_held(&p->pi_lock);
100
101 for (;;) {
102 rq = task_rq(p);
103 raw_spin_lock(&rq->lock);
104 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 105 rq_pin_lock(rq, rf);
3e71a462
PZ
106 return rq;
107 }
108 raw_spin_unlock(&rq->lock);
109
110 while (unlikely(task_on_rq_migrating(p)))
111 cpu_relax();
112 }
113}
114
115/*
116 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
117 */
eb580751 118struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
119 __acquires(p->pi_lock)
120 __acquires(rq->lock)
121{
122 struct rq *rq;
123
124 for (;;) {
eb580751 125 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
126 rq = task_rq(p);
127 raw_spin_lock(&rq->lock);
128 /*
129 * move_queued_task() task_rq_lock()
130 *
131 * ACQUIRE (rq->lock)
132 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
133 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
134 * [S] ->cpu = new_cpu [L] task_rq()
135 * [L] ->on_rq
136 * RELEASE (rq->lock)
137 *
138 * If we observe the old cpu in task_rq_lock, the acquire of
139 * the old rq->lock will fully serialize against the stores.
140 *
d1ccc66d 141 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
142 * pair with the WMB to ensure we must then also see migrating.
143 */
144 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 145 rq_pin_lock(rq, rf);
3e71a462
PZ
146 return rq;
147 }
148 raw_spin_unlock(&rq->lock);
eb580751 149 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
150
151 while (unlikely(task_on_rq_migrating(p)))
152 cpu_relax();
153 }
154}
155
535b9552
IM
156/*
157 * RQ-clock updating methods:
158 */
159
160static void update_rq_clock_task(struct rq *rq, s64 delta)
161{
162/*
163 * In theory, the compile should just see 0 here, and optimize out the call
164 * to sched_rt_avg_update. But I don't trust it...
165 */
166#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
167 s64 steal = 0, irq_delta = 0;
168#endif
169#ifdef CONFIG_IRQ_TIME_ACCOUNTING
170 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
171
172 /*
173 * Since irq_time is only updated on {soft,}irq_exit, we might run into
174 * this case when a previous update_rq_clock() happened inside a
175 * {soft,}irq region.
176 *
177 * When this happens, we stop ->clock_task and only update the
178 * prev_irq_time stamp to account for the part that fit, so that a next
179 * update will consume the rest. This ensures ->clock_task is
180 * monotonic.
181 *
182 * It does however cause some slight miss-attribution of {soft,}irq
183 * time, a more accurate solution would be to update the irq_time using
184 * the current rq->clock timestamp, except that would require using
185 * atomic ops.
186 */
187 if (irq_delta > delta)
188 irq_delta = delta;
189
190 rq->prev_irq_time += irq_delta;
191 delta -= irq_delta;
192#endif
193#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
194 if (static_key_false((&paravirt_steal_rq_enabled))) {
195 steal = paravirt_steal_clock(cpu_of(rq));
196 steal -= rq->prev_steal_time_rq;
197
198 if (unlikely(steal > delta))
199 steal = delta;
200
201 rq->prev_steal_time_rq += steal;
202 delta -= steal;
203 }
204#endif
205
206 rq->clock_task += delta;
207
208#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
209 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
210 sched_rt_avg_update(rq, irq_delta + steal);
211#endif
212}
213
214void update_rq_clock(struct rq *rq)
215{
216 s64 delta;
217
218 lockdep_assert_held(&rq->lock);
219
220 if (rq->clock_update_flags & RQCF_ACT_SKIP)
221 return;
222
223#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
224 if (sched_feat(WARN_DOUBLE_CLOCK))
225 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
226 rq->clock_update_flags |= RQCF_UPDATED;
227#endif
26ae58d2 228
535b9552
IM
229 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
230 if (delta < 0)
231 return;
232 rq->clock += delta;
233 update_rq_clock_task(rq, delta);
234}
235
236
8f4d37ec
PZ
237#ifdef CONFIG_SCHED_HRTICK
238/*
239 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 240 */
8f4d37ec 241
8f4d37ec
PZ
242static void hrtick_clear(struct rq *rq)
243{
244 if (hrtimer_active(&rq->hrtick_timer))
245 hrtimer_cancel(&rq->hrtick_timer);
246}
247
8f4d37ec
PZ
248/*
249 * High-resolution timer tick.
250 * Runs from hardirq context with interrupts disabled.
251 */
252static enum hrtimer_restart hrtick(struct hrtimer *timer)
253{
254 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 255 struct rq_flags rf;
8f4d37ec
PZ
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
8a8c69c3 259 rq_lock(rq, &rf);
3e51f33f 260 update_rq_clock(rq);
8f4d37ec 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 262 rq_unlock(rq, &rf);
8f4d37ec
PZ
263
264 return HRTIMER_NORESTART;
265}
266
95e904c7 267#ifdef CONFIG_SMP
971ee28c 268
4961b6e1 269static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
270{
271 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 272
4961b6e1 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
274}
275
31656519
PZ
276/*
277 * called from hardirq (IPI) context
278 */
279static void __hrtick_start(void *arg)
b328ca18 280{
31656519 281 struct rq *rq = arg;
8a8c69c3 282 struct rq_flags rf;
b328ca18 283
8a8c69c3 284 rq_lock(rq, &rf);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
8a8c69c3 287 rq_unlock(rq, &rf);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
d1ccc66d 461 /* Task can safely be re-inserted now: */
76751049
PZ
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
7c2102e5 510 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
511 if (cpu_online(cpu) || cpu == smp_processor_id())
512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 518/*
d1ccc66d
IM
519 * In the semi idle case, use the nearest busy CPU for migrating timers
520 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
521 *
522 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
523 * selecting an idle CPU will add more delays to the timers than intended
524 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
de201559 531 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
de201559 540 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e 546
de201559
FW
547 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
548 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
d1ccc66d 553
06d8308c
TG
554/*
555 * When add_timer_on() enqueues a timer into the timer wheel of an
556 * idle CPU then this timer might expire before the next timer event
557 * which is scheduled to wake up that CPU. In case of a completely
558 * idle system the next event might even be infinite time into the
559 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
560 * leaves the inner idle loop so the newly added timer is taken into
561 * account when the CPU goes back to idle and evaluates the timer
562 * wheel for the next timer event.
563 */
1c20091e 564static void wake_up_idle_cpu(int cpu)
06d8308c
TG
565{
566 struct rq *rq = cpu_rq(cpu);
567
568 if (cpu == smp_processor_id())
569 return;
570
67b9ca70 571 if (set_nr_and_not_polling(rq->idle))
06d8308c 572 smp_send_reschedule(cpu);
dfc68f29
AL
573 else
574 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
575}
576
c5bfece2 577static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 578{
53c5fa16
FW
579 /*
580 * We just need the target to call irq_exit() and re-evaluate
581 * the next tick. The nohz full kick at least implies that.
582 * If needed we can still optimize that later with an
583 * empty IRQ.
584 */
379d9ecb
PM
585 if (cpu_is_offline(cpu))
586 return true; /* Don't try to wake offline CPUs. */
c5bfece2 587 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
588 if (cpu != smp_processor_id() ||
589 tick_nohz_tick_stopped())
53c5fa16 590 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
591 return true;
592 }
593
594 return false;
595}
596
379d9ecb
PM
597/*
598 * Wake up the specified CPU. If the CPU is going offline, it is the
599 * caller's responsibility to deal with the lost wakeup, for example,
600 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
601 */
1c20091e
FW
602void wake_up_nohz_cpu(int cpu)
603{
c5bfece2 604 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
605 wake_up_idle_cpu(cpu);
606}
607
ca38062e 608static inline bool got_nohz_idle_kick(void)
45bf76df 609{
1c792db7 610 int cpu = smp_processor_id();
873b4c65
VG
611
612 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
613 return false;
614
615 if (idle_cpu(cpu) && !need_resched())
616 return true;
617
618 /*
619 * We can't run Idle Load Balance on this CPU for this time so we
620 * cancel it and clear NOHZ_BALANCE_KICK
621 */
622 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
623 return false;
45bf76df
IM
624}
625
3451d024 626#else /* CONFIG_NO_HZ_COMMON */
45bf76df 627
ca38062e 628static inline bool got_nohz_idle_kick(void)
2069dd75 629{
ca38062e 630 return false;
2069dd75
PZ
631}
632
3451d024 633#endif /* CONFIG_NO_HZ_COMMON */
d842de87 634
ce831b38 635#ifdef CONFIG_NO_HZ_FULL
76d92ac3 636bool sched_can_stop_tick(struct rq *rq)
ce831b38 637{
76d92ac3
FW
638 int fifo_nr_running;
639
640 /* Deadline tasks, even if single, need the tick */
641 if (rq->dl.dl_nr_running)
642 return false;
643
1e78cdbd 644 /*
2548d546
PZ
645 * If there are more than one RR tasks, we need the tick to effect the
646 * actual RR behaviour.
1e78cdbd 647 */
76d92ac3
FW
648 if (rq->rt.rr_nr_running) {
649 if (rq->rt.rr_nr_running == 1)
650 return true;
651 else
652 return false;
1e78cdbd
RR
653 }
654
2548d546
PZ
655 /*
656 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
657 * forced preemption between FIFO tasks.
658 */
659 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
660 if (fifo_nr_running)
661 return true;
662
663 /*
664 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
665 * if there's more than one we need the tick for involuntary
666 * preemption.
667 */
668 if (rq->nr_running > 1)
541b8264 669 return false;
ce831b38 670
541b8264 671 return true;
ce831b38
FW
672}
673#endif /* CONFIG_NO_HZ_FULL */
d842de87 674
029632fb 675void sched_avg_update(struct rq *rq)
18d95a28 676{
e9e9250b
PZ
677 s64 period = sched_avg_period();
678
78becc27 679 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
680 /*
681 * Inline assembly required to prevent the compiler
682 * optimising this loop into a divmod call.
683 * See __iter_div_u64_rem() for another example of this.
684 */
685 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
686 rq->age_stamp += period;
687 rq->rt_avg /= 2;
688 }
18d95a28
PZ
689}
690
6d6bc0ad 691#endif /* CONFIG_SMP */
18d95a28 692
a790de99
PT
693#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
694 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 695/*
8277434e
PT
696 * Iterate task_group tree rooted at *from, calling @down when first entering a
697 * node and @up when leaving it for the final time.
698 *
699 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 700 */
029632fb 701int walk_tg_tree_from(struct task_group *from,
8277434e 702 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
703{
704 struct task_group *parent, *child;
eb755805 705 int ret;
c09595f6 706
8277434e
PT
707 parent = from;
708
c09595f6 709down:
eb755805
PZ
710 ret = (*down)(parent, data);
711 if (ret)
8277434e 712 goto out;
c09595f6
PZ
713 list_for_each_entry_rcu(child, &parent->children, siblings) {
714 parent = child;
715 goto down;
716
717up:
718 continue;
719 }
eb755805 720 ret = (*up)(parent, data);
8277434e
PT
721 if (ret || parent == from)
722 goto out;
c09595f6
PZ
723
724 child = parent;
725 parent = parent->parent;
726 if (parent)
727 goto up;
8277434e 728out:
eb755805 729 return ret;
c09595f6
PZ
730}
731
029632fb 732int tg_nop(struct task_group *tg, void *data)
eb755805 733{
e2b245f8 734 return 0;
eb755805 735}
18d95a28
PZ
736#endif
737
9059393e 738static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 739{
f05998d4
NR
740 int prio = p->static_prio - MAX_RT_PRIO;
741 struct load_weight *load = &p->se.load;
742
dd41f596
IM
743 /*
744 * SCHED_IDLE tasks get minimal weight:
745 */
20f9cd2a 746 if (idle_policy(p->policy)) {
c8b28116 747 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 748 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
749 return;
750 }
71f8bd46 751
9059393e
VG
752 /*
753 * SCHED_OTHER tasks have to update their load when changing their
754 * weight
755 */
756 if (update_load && p->sched_class == &fair_sched_class) {
757 reweight_task(p, prio);
758 } else {
759 load->weight = scale_load(sched_prio_to_weight[prio]);
760 load->inv_weight = sched_prio_to_wmult[prio];
761 }
71f8bd46
IM
762}
763
1de64443 764static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 765{
0a67d1ee
PZ
766 if (!(flags & ENQUEUE_NOCLOCK))
767 update_rq_clock(rq);
768
1de64443
PZ
769 if (!(flags & ENQUEUE_RESTORE))
770 sched_info_queued(rq, p);
0a67d1ee 771
371fd7e7 772 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
773}
774
1de64443 775static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 776{
0a67d1ee
PZ
777 if (!(flags & DEQUEUE_NOCLOCK))
778 update_rq_clock(rq);
779
1de64443
PZ
780 if (!(flags & DEQUEUE_SAVE))
781 sched_info_dequeued(rq, p);
0a67d1ee 782
371fd7e7 783 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
784}
785
029632fb 786void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
787{
788 if (task_contributes_to_load(p))
789 rq->nr_uninterruptible--;
790
371fd7e7 791 enqueue_task(rq, p, flags);
1e3c88bd
PZ
792}
793
029632fb 794void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
795{
796 if (task_contributes_to_load(p))
797 rq->nr_uninterruptible++;
798
371fd7e7 799 dequeue_task(rq, p, flags);
1e3c88bd
PZ
800}
801
14531189 802/*
dd41f596 803 * __normal_prio - return the priority that is based on the static prio
14531189 804 */
14531189
IM
805static inline int __normal_prio(struct task_struct *p)
806{
dd41f596 807 return p->static_prio;
14531189
IM
808}
809
b29739f9
IM
810/*
811 * Calculate the expected normal priority: i.e. priority
812 * without taking RT-inheritance into account. Might be
813 * boosted by interactivity modifiers. Changes upon fork,
814 * setprio syscalls, and whenever the interactivity
815 * estimator recalculates.
816 */
36c8b586 817static inline int normal_prio(struct task_struct *p)
b29739f9
IM
818{
819 int prio;
820
aab03e05
DF
821 if (task_has_dl_policy(p))
822 prio = MAX_DL_PRIO-1;
823 else if (task_has_rt_policy(p))
b29739f9
IM
824 prio = MAX_RT_PRIO-1 - p->rt_priority;
825 else
826 prio = __normal_prio(p);
827 return prio;
828}
829
830/*
831 * Calculate the current priority, i.e. the priority
832 * taken into account by the scheduler. This value might
833 * be boosted by RT tasks, or might be boosted by
834 * interactivity modifiers. Will be RT if the task got
835 * RT-boosted. If not then it returns p->normal_prio.
836 */
36c8b586 837static int effective_prio(struct task_struct *p)
b29739f9
IM
838{
839 p->normal_prio = normal_prio(p);
840 /*
841 * If we are RT tasks or we were boosted to RT priority,
842 * keep the priority unchanged. Otherwise, update priority
843 * to the normal priority:
844 */
845 if (!rt_prio(p->prio))
846 return p->normal_prio;
847 return p->prio;
848}
849
1da177e4
LT
850/**
851 * task_curr - is this task currently executing on a CPU?
852 * @p: the task in question.
e69f6186
YB
853 *
854 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 855 */
36c8b586 856inline int task_curr(const struct task_struct *p)
1da177e4
LT
857{
858 return cpu_curr(task_cpu(p)) == p;
859}
860
67dfa1b7 861/*
4c9a4bc8
PZ
862 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
863 * use the balance_callback list if you want balancing.
864 *
865 * this means any call to check_class_changed() must be followed by a call to
866 * balance_callback().
67dfa1b7 867 */
cb469845
SR
868static inline void check_class_changed(struct rq *rq, struct task_struct *p,
869 const struct sched_class *prev_class,
da7a735e 870 int oldprio)
cb469845
SR
871{
872 if (prev_class != p->sched_class) {
873 if (prev_class->switched_from)
da7a735e 874 prev_class->switched_from(rq, p);
4c9a4bc8 875
da7a735e 876 p->sched_class->switched_to(rq, p);
2d3d891d 877 } else if (oldprio != p->prio || dl_task(p))
da7a735e 878 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
879}
880
029632fb 881void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
882{
883 const struct sched_class *class;
884
885 if (p->sched_class == rq->curr->sched_class) {
886 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
887 } else {
888 for_each_class(class) {
889 if (class == rq->curr->sched_class)
890 break;
891 if (class == p->sched_class) {
8875125e 892 resched_curr(rq);
1e5a7405
PZ
893 break;
894 }
895 }
896 }
897
898 /*
899 * A queue event has occurred, and we're going to schedule. In
900 * this case, we can save a useless back to back clock update.
901 */
da0c1e65 902 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 903 rq_clock_skip_update(rq, true);
1e5a7405
PZ
904}
905
1da177e4 906#ifdef CONFIG_SMP
5cc389bc
PZ
907/*
908 * This is how migration works:
909 *
910 * 1) we invoke migration_cpu_stop() on the target CPU using
911 * stop_one_cpu().
912 * 2) stopper starts to run (implicitly forcing the migrated thread
913 * off the CPU)
914 * 3) it checks whether the migrated task is still in the wrong runqueue.
915 * 4) if it's in the wrong runqueue then the migration thread removes
916 * it and puts it into the right queue.
917 * 5) stopper completes and stop_one_cpu() returns and the migration
918 * is done.
919 */
920
921/*
922 * move_queued_task - move a queued task to new rq.
923 *
924 * Returns (locked) new rq. Old rq's lock is released.
925 */
8a8c69c3
PZ
926static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
927 struct task_struct *p, int new_cpu)
5cc389bc 928{
5cc389bc
PZ
929 lockdep_assert_held(&rq->lock);
930
5cc389bc 931 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 932 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 933 set_task_cpu(p, new_cpu);
8a8c69c3 934 rq_unlock(rq, rf);
5cc389bc
PZ
935
936 rq = cpu_rq(new_cpu);
937
8a8c69c3 938 rq_lock(rq, rf);
5cc389bc 939 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 940 enqueue_task(rq, p, 0);
3ea94de1 941 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
942 check_preempt_curr(rq, p, 0);
943
944 return rq;
945}
946
947struct migration_arg {
948 struct task_struct *task;
949 int dest_cpu;
950};
951
952/*
d1ccc66d 953 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
954 * this because either it can't run here any more (set_cpus_allowed()
955 * away from this CPU, or CPU going down), or because we're
956 * attempting to rebalance this task on exec (sched_exec).
957 *
958 * So we race with normal scheduler movements, but that's OK, as long
959 * as the task is no longer on this CPU.
5cc389bc 960 */
8a8c69c3
PZ
961static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
962 struct task_struct *p, int dest_cpu)
5cc389bc 963{
955dbdf4
TH
964 if (p->flags & PF_KTHREAD) {
965 if (unlikely(!cpu_online(dest_cpu)))
966 return rq;
967 } else {
968 if (unlikely(!cpu_active(dest_cpu)))
969 return rq;
970 }
5cc389bc
PZ
971
972 /* Affinity changed (again). */
0c98d344 973 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 974 return rq;
5cc389bc 975
15ff991e 976 update_rq_clock(rq);
8a8c69c3 977 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
978
979 return rq;
5cc389bc
PZ
980}
981
982/*
983 * migration_cpu_stop - this will be executed by a highprio stopper thread
984 * and performs thread migration by bumping thread off CPU then
985 * 'pushing' onto another runqueue.
986 */
987static int migration_cpu_stop(void *data)
988{
989 struct migration_arg *arg = data;
5e16bbc2
PZ
990 struct task_struct *p = arg->task;
991 struct rq *rq = this_rq();
8a8c69c3 992 struct rq_flags rf;
5cc389bc
PZ
993
994 /*
d1ccc66d
IM
995 * The original target CPU might have gone down and we might
996 * be on another CPU but it doesn't matter.
5cc389bc
PZ
997 */
998 local_irq_disable();
999 /*
1000 * We need to explicitly wake pending tasks before running
1001 * __migrate_task() such that we will not miss enforcing cpus_allowed
1002 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1003 */
1004 sched_ttwu_pending();
5e16bbc2
PZ
1005
1006 raw_spin_lock(&p->pi_lock);
8a8c69c3 1007 rq_lock(rq, &rf);
5e16bbc2
PZ
1008 /*
1009 * If task_rq(p) != rq, it cannot be migrated here, because we're
1010 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1011 * we're holding p->pi_lock.
1012 */
bf89a304
CC
1013 if (task_rq(p) == rq) {
1014 if (task_on_rq_queued(p))
8a8c69c3 1015 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1016 else
1017 p->wake_cpu = arg->dest_cpu;
1018 }
8a8c69c3 1019 rq_unlock(rq, &rf);
5e16bbc2
PZ
1020 raw_spin_unlock(&p->pi_lock);
1021
5cc389bc
PZ
1022 local_irq_enable();
1023 return 0;
1024}
1025
c5b28038
PZ
1026/*
1027 * sched_class::set_cpus_allowed must do the below, but is not required to
1028 * actually call this function.
1029 */
1030void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1031{
5cc389bc
PZ
1032 cpumask_copy(&p->cpus_allowed, new_mask);
1033 p->nr_cpus_allowed = cpumask_weight(new_mask);
1034}
1035
c5b28038
PZ
1036void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1037{
6c37067e
PZ
1038 struct rq *rq = task_rq(p);
1039 bool queued, running;
1040
c5b28038 1041 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1042
1043 queued = task_on_rq_queued(p);
1044 running = task_current(rq, p);
1045
1046 if (queued) {
1047 /*
1048 * Because __kthread_bind() calls this on blocked tasks without
1049 * holding rq->lock.
1050 */
1051 lockdep_assert_held(&rq->lock);
7a57f32a 1052 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1053 }
1054 if (running)
1055 put_prev_task(rq, p);
1056
c5b28038 1057 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1058
6c37067e 1059 if (queued)
7134b3e9 1060 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1061 if (running)
b2bf6c31 1062 set_curr_task(rq, p);
c5b28038
PZ
1063}
1064
5cc389bc
PZ
1065/*
1066 * Change a given task's CPU affinity. Migrate the thread to a
1067 * proper CPU and schedule it away if the CPU it's executing on
1068 * is removed from the allowed bitmask.
1069 *
1070 * NOTE: the caller must have a valid reference to the task, the
1071 * task must not exit() & deallocate itself prematurely. The
1072 * call is not atomic; no spinlocks may be held.
1073 */
25834c73
PZ
1074static int __set_cpus_allowed_ptr(struct task_struct *p,
1075 const struct cpumask *new_mask, bool check)
5cc389bc 1076{
e9d867a6 1077 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1078 unsigned int dest_cpu;
eb580751
PZ
1079 struct rq_flags rf;
1080 struct rq *rq;
5cc389bc
PZ
1081 int ret = 0;
1082
eb580751 1083 rq = task_rq_lock(p, &rf);
a499c3ea 1084 update_rq_clock(rq);
5cc389bc 1085
e9d867a6
PZI
1086 if (p->flags & PF_KTHREAD) {
1087 /*
1088 * Kernel threads are allowed on online && !active CPUs
1089 */
1090 cpu_valid_mask = cpu_online_mask;
1091 }
1092
25834c73
PZ
1093 /*
1094 * Must re-check here, to close a race against __kthread_bind(),
1095 * sched_setaffinity() is not guaranteed to observe the flag.
1096 */
1097 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1098 ret = -EINVAL;
1099 goto out;
1100 }
1101
5cc389bc
PZ
1102 if (cpumask_equal(&p->cpus_allowed, new_mask))
1103 goto out;
1104
e9d867a6 1105 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1106 ret = -EINVAL;
1107 goto out;
1108 }
1109
1110 do_set_cpus_allowed(p, new_mask);
1111
e9d867a6
PZI
1112 if (p->flags & PF_KTHREAD) {
1113 /*
1114 * For kernel threads that do indeed end up on online &&
d1ccc66d 1115 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1116 */
1117 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1118 !cpumask_intersects(new_mask, cpu_active_mask) &&
1119 p->nr_cpus_allowed != 1);
1120 }
1121
5cc389bc
PZ
1122 /* Can the task run on the task's current CPU? If so, we're done */
1123 if (cpumask_test_cpu(task_cpu(p), new_mask))
1124 goto out;
1125
e9d867a6 1126 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1127 if (task_running(rq, p) || p->state == TASK_WAKING) {
1128 struct migration_arg arg = { p, dest_cpu };
1129 /* Need help from migration thread: drop lock and wait. */
eb580751 1130 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1131 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1132 tlb_migrate_finish(p->mm);
1133 return 0;
cbce1a68
PZ
1134 } else if (task_on_rq_queued(p)) {
1135 /*
1136 * OK, since we're going to drop the lock immediately
1137 * afterwards anyway.
1138 */
8a8c69c3 1139 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1140 }
5cc389bc 1141out:
eb580751 1142 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1143
1144 return ret;
1145}
25834c73
PZ
1146
1147int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1148{
1149 return __set_cpus_allowed_ptr(p, new_mask, false);
1150}
5cc389bc
PZ
1151EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1152
dd41f596 1153void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1154{
e2912009
PZ
1155#ifdef CONFIG_SCHED_DEBUG
1156 /*
1157 * We should never call set_task_cpu() on a blocked task,
1158 * ttwu() will sort out the placement.
1159 */
077614ee 1160 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1161 !p->on_rq);
0122ec5b 1162
3ea94de1
JP
1163 /*
1164 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1165 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1166 * time relying on p->on_rq.
1167 */
1168 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1169 p->sched_class == &fair_sched_class &&
1170 (p->on_rq && !task_on_rq_migrating(p)));
1171
0122ec5b 1172#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1173 /*
1174 * The caller should hold either p->pi_lock or rq->lock, when changing
1175 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1176 *
1177 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1178 * see task_group().
6c6c54e1
PZ
1179 *
1180 * Furthermore, all task_rq users should acquire both locks, see
1181 * task_rq_lock().
1182 */
0122ec5b
PZ
1183 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1184 lockdep_is_held(&task_rq(p)->lock)));
1185#endif
4ff9083b
PZ
1186 /*
1187 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1188 */
1189 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1190#endif
1191
de1d7286 1192 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1193
0c69774e 1194 if (task_cpu(p) != new_cpu) {
0a74bef8 1195 if (p->sched_class->migrate_task_rq)
5a4fd036 1196 p->sched_class->migrate_task_rq(p);
0c69774e 1197 p->se.nr_migrations++;
ff303e66 1198 perf_event_task_migrate(p);
0c69774e 1199 }
dd41f596
IM
1200
1201 __set_task_cpu(p, new_cpu);
c65cc870
IM
1202}
1203
ac66f547
PZ
1204static void __migrate_swap_task(struct task_struct *p, int cpu)
1205{
da0c1e65 1206 if (task_on_rq_queued(p)) {
ac66f547 1207 struct rq *src_rq, *dst_rq;
8a8c69c3 1208 struct rq_flags srf, drf;
ac66f547
PZ
1209
1210 src_rq = task_rq(p);
1211 dst_rq = cpu_rq(cpu);
1212
8a8c69c3
PZ
1213 rq_pin_lock(src_rq, &srf);
1214 rq_pin_lock(dst_rq, &drf);
1215
3ea94de1 1216 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1217 deactivate_task(src_rq, p, 0);
1218 set_task_cpu(p, cpu);
1219 activate_task(dst_rq, p, 0);
3ea94de1 1220 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1221 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1222
1223 rq_unpin_lock(dst_rq, &drf);
1224 rq_unpin_lock(src_rq, &srf);
1225
ac66f547
PZ
1226 } else {
1227 /*
1228 * Task isn't running anymore; make it appear like we migrated
1229 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1230 * previous CPU our target instead of where it really is.
ac66f547
PZ
1231 */
1232 p->wake_cpu = cpu;
1233 }
1234}
1235
1236struct migration_swap_arg {
1237 struct task_struct *src_task, *dst_task;
1238 int src_cpu, dst_cpu;
1239};
1240
1241static int migrate_swap_stop(void *data)
1242{
1243 struct migration_swap_arg *arg = data;
1244 struct rq *src_rq, *dst_rq;
1245 int ret = -EAGAIN;
1246
62694cd5
PZ
1247 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1248 return -EAGAIN;
1249
ac66f547
PZ
1250 src_rq = cpu_rq(arg->src_cpu);
1251 dst_rq = cpu_rq(arg->dst_cpu);
1252
74602315
PZ
1253 double_raw_lock(&arg->src_task->pi_lock,
1254 &arg->dst_task->pi_lock);
ac66f547 1255 double_rq_lock(src_rq, dst_rq);
62694cd5 1256
ac66f547
PZ
1257 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1258 goto unlock;
1259
1260 if (task_cpu(arg->src_task) != arg->src_cpu)
1261 goto unlock;
1262
0c98d344 1263 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1264 goto unlock;
1265
0c98d344 1266 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1267 goto unlock;
1268
1269 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1270 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1271
1272 ret = 0;
1273
1274unlock:
1275 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1276 raw_spin_unlock(&arg->dst_task->pi_lock);
1277 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1278
1279 return ret;
1280}
1281
1282/*
1283 * Cross migrate two tasks
1284 */
1285int migrate_swap(struct task_struct *cur, struct task_struct *p)
1286{
1287 struct migration_swap_arg arg;
1288 int ret = -EINVAL;
1289
ac66f547
PZ
1290 arg = (struct migration_swap_arg){
1291 .src_task = cur,
1292 .src_cpu = task_cpu(cur),
1293 .dst_task = p,
1294 .dst_cpu = task_cpu(p),
1295 };
1296
1297 if (arg.src_cpu == arg.dst_cpu)
1298 goto out;
1299
6acce3ef
PZ
1300 /*
1301 * These three tests are all lockless; this is OK since all of them
1302 * will be re-checked with proper locks held further down the line.
1303 */
ac66f547
PZ
1304 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1305 goto out;
1306
0c98d344 1307 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1308 goto out;
1309
0c98d344 1310 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1311 goto out;
1312
286549dc 1313 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1314 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1315
1316out:
ac66f547
PZ
1317 return ret;
1318}
1319
1da177e4
LT
1320/*
1321 * wait_task_inactive - wait for a thread to unschedule.
1322 *
85ba2d86
RM
1323 * If @match_state is nonzero, it's the @p->state value just checked and
1324 * not expected to change. If it changes, i.e. @p might have woken up,
1325 * then return zero. When we succeed in waiting for @p to be off its CPU,
1326 * we return a positive number (its total switch count). If a second call
1327 * a short while later returns the same number, the caller can be sure that
1328 * @p has remained unscheduled the whole time.
1329 *
1da177e4
LT
1330 * The caller must ensure that the task *will* unschedule sometime soon,
1331 * else this function might spin for a *long* time. This function can't
1332 * be called with interrupts off, or it may introduce deadlock with
1333 * smp_call_function() if an IPI is sent by the same process we are
1334 * waiting to become inactive.
1335 */
85ba2d86 1336unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1337{
da0c1e65 1338 int running, queued;
eb580751 1339 struct rq_flags rf;
85ba2d86 1340 unsigned long ncsw;
70b97a7f 1341 struct rq *rq;
1da177e4 1342
3a5c359a
AK
1343 for (;;) {
1344 /*
1345 * We do the initial early heuristics without holding
1346 * any task-queue locks at all. We'll only try to get
1347 * the runqueue lock when things look like they will
1348 * work out!
1349 */
1350 rq = task_rq(p);
fa490cfd 1351
3a5c359a
AK
1352 /*
1353 * If the task is actively running on another CPU
1354 * still, just relax and busy-wait without holding
1355 * any locks.
1356 *
1357 * NOTE! Since we don't hold any locks, it's not
1358 * even sure that "rq" stays as the right runqueue!
1359 * But we don't care, since "task_running()" will
1360 * return false if the runqueue has changed and p
1361 * is actually now running somewhere else!
1362 */
85ba2d86
RM
1363 while (task_running(rq, p)) {
1364 if (match_state && unlikely(p->state != match_state))
1365 return 0;
3a5c359a 1366 cpu_relax();
85ba2d86 1367 }
fa490cfd 1368
3a5c359a
AK
1369 /*
1370 * Ok, time to look more closely! We need the rq
1371 * lock now, to be *sure*. If we're wrong, we'll
1372 * just go back and repeat.
1373 */
eb580751 1374 rq = task_rq_lock(p, &rf);
27a9da65 1375 trace_sched_wait_task(p);
3a5c359a 1376 running = task_running(rq, p);
da0c1e65 1377 queued = task_on_rq_queued(p);
85ba2d86 1378 ncsw = 0;
f31e11d8 1379 if (!match_state || p->state == match_state)
93dcf55f 1380 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1381 task_rq_unlock(rq, p, &rf);
fa490cfd 1382
85ba2d86
RM
1383 /*
1384 * If it changed from the expected state, bail out now.
1385 */
1386 if (unlikely(!ncsw))
1387 break;
1388
3a5c359a
AK
1389 /*
1390 * Was it really running after all now that we
1391 * checked with the proper locks actually held?
1392 *
1393 * Oops. Go back and try again..
1394 */
1395 if (unlikely(running)) {
1396 cpu_relax();
1397 continue;
1398 }
fa490cfd 1399
3a5c359a
AK
1400 /*
1401 * It's not enough that it's not actively running,
1402 * it must be off the runqueue _entirely_, and not
1403 * preempted!
1404 *
80dd99b3 1405 * So if it was still runnable (but just not actively
3a5c359a
AK
1406 * running right now), it's preempted, and we should
1407 * yield - it could be a while.
1408 */
da0c1e65 1409 if (unlikely(queued)) {
8b0e1953 1410 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1411
1412 set_current_state(TASK_UNINTERRUPTIBLE);
1413 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1414 continue;
1415 }
fa490cfd 1416
3a5c359a
AK
1417 /*
1418 * Ahh, all good. It wasn't running, and it wasn't
1419 * runnable, which means that it will never become
1420 * running in the future either. We're all done!
1421 */
1422 break;
1423 }
85ba2d86
RM
1424
1425 return ncsw;
1da177e4
LT
1426}
1427
1428/***
1429 * kick_process - kick a running thread to enter/exit the kernel
1430 * @p: the to-be-kicked thread
1431 *
1432 * Cause a process which is running on another CPU to enter
1433 * kernel-mode, without any delay. (to get signals handled.)
1434 *
25985edc 1435 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1436 * because all it wants to ensure is that the remote task enters
1437 * the kernel. If the IPI races and the task has been migrated
1438 * to another CPU then no harm is done and the purpose has been
1439 * achieved as well.
1440 */
36c8b586 1441void kick_process(struct task_struct *p)
1da177e4
LT
1442{
1443 int cpu;
1444
1445 preempt_disable();
1446 cpu = task_cpu(p);
1447 if ((cpu != smp_processor_id()) && task_curr(p))
1448 smp_send_reschedule(cpu);
1449 preempt_enable();
1450}
b43e3521 1451EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1452
30da688e 1453/*
013fdb80 1454 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1455 *
1456 * A few notes on cpu_active vs cpu_online:
1457 *
1458 * - cpu_active must be a subset of cpu_online
1459 *
1460 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1461 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1462 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1463 * see it.
1464 *
d1ccc66d 1465 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1466 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1467 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1468 * off.
1469 *
1470 * This means that fallback selection must not select !active CPUs.
1471 * And can assume that any active CPU must be online. Conversely
1472 * select_task_rq() below may allow selection of !active CPUs in order
1473 * to satisfy the above rules.
30da688e 1474 */
5da9a0fb
PZ
1475static int select_fallback_rq(int cpu, struct task_struct *p)
1476{
aa00d89c
TC
1477 int nid = cpu_to_node(cpu);
1478 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1479 enum { cpuset, possible, fail } state = cpuset;
1480 int dest_cpu;
5da9a0fb 1481
aa00d89c 1482 /*
d1ccc66d
IM
1483 * If the node that the CPU is on has been offlined, cpu_to_node()
1484 * will return -1. There is no CPU on the node, and we should
1485 * select the CPU on the other node.
aa00d89c
TC
1486 */
1487 if (nid != -1) {
1488 nodemask = cpumask_of_node(nid);
1489
1490 /* Look for allowed, online CPU in same node. */
1491 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1492 if (!cpu_active(dest_cpu))
1493 continue;
0c98d344 1494 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1495 return dest_cpu;
1496 }
2baab4e9 1497 }
5da9a0fb 1498
2baab4e9
PZ
1499 for (;;) {
1500 /* Any allowed, online CPU? */
0c98d344 1501 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1502 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1503 continue;
1504 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1505 continue;
1506 goto out;
1507 }
5da9a0fb 1508
e73e85f0 1509 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1510 switch (state) {
1511 case cpuset:
e73e85f0
ON
1512 if (IS_ENABLED(CONFIG_CPUSETS)) {
1513 cpuset_cpus_allowed_fallback(p);
1514 state = possible;
1515 break;
1516 }
d1ccc66d 1517 /* Fall-through */
2baab4e9
PZ
1518 case possible:
1519 do_set_cpus_allowed(p, cpu_possible_mask);
1520 state = fail;
1521 break;
1522
1523 case fail:
1524 BUG();
1525 break;
1526 }
1527 }
1528
1529out:
1530 if (state != cpuset) {
1531 /*
1532 * Don't tell them about moving exiting tasks or
1533 * kernel threads (both mm NULL), since they never
1534 * leave kernel.
1535 */
1536 if (p->mm && printk_ratelimit()) {
aac74dc4 1537 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1538 task_pid_nr(p), p->comm, cpu);
1539 }
5da9a0fb
PZ
1540 }
1541
1542 return dest_cpu;
1543}
1544
e2912009 1545/*
013fdb80 1546 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1547 */
970b13ba 1548static inline
ac66f547 1549int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1550{
cbce1a68
PZ
1551 lockdep_assert_held(&p->pi_lock);
1552
4b53a341 1553 if (p->nr_cpus_allowed > 1)
6c1d9410 1554 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1555 else
0c98d344 1556 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1557
1558 /*
1559 * In order not to call set_task_cpu() on a blocking task we need
1560 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1561 * CPU.
e2912009
PZ
1562 *
1563 * Since this is common to all placement strategies, this lives here.
1564 *
1565 * [ this allows ->select_task() to simply return task_cpu(p) and
1566 * not worry about this generic constraint ]
1567 */
0c98d344 1568 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1569 !cpu_online(cpu)))
5da9a0fb 1570 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1571
1572 return cpu;
970b13ba 1573}
09a40af5
MG
1574
1575static void update_avg(u64 *avg, u64 sample)
1576{
1577 s64 diff = sample - *avg;
1578 *avg += diff >> 3;
1579}
25834c73 1580
f5832c19
NP
1581void sched_set_stop_task(int cpu, struct task_struct *stop)
1582{
1583 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1584 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1585
1586 if (stop) {
1587 /*
1588 * Make it appear like a SCHED_FIFO task, its something
1589 * userspace knows about and won't get confused about.
1590 *
1591 * Also, it will make PI more or less work without too
1592 * much confusion -- but then, stop work should not
1593 * rely on PI working anyway.
1594 */
1595 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1596
1597 stop->sched_class = &stop_sched_class;
1598 }
1599
1600 cpu_rq(cpu)->stop = stop;
1601
1602 if (old_stop) {
1603 /*
1604 * Reset it back to a normal scheduling class so that
1605 * it can die in pieces.
1606 */
1607 old_stop->sched_class = &rt_sched_class;
1608 }
1609}
1610
25834c73
PZ
1611#else
1612
1613static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1614 const struct cpumask *new_mask, bool check)
1615{
1616 return set_cpus_allowed_ptr(p, new_mask);
1617}
1618
5cc389bc 1619#endif /* CONFIG_SMP */
970b13ba 1620
d7c01d27 1621static void
b84cb5df 1622ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1623{
4fa8d299 1624 struct rq *rq;
b84cb5df 1625
4fa8d299
JP
1626 if (!schedstat_enabled())
1627 return;
1628
1629 rq = this_rq();
d7c01d27 1630
4fa8d299
JP
1631#ifdef CONFIG_SMP
1632 if (cpu == rq->cpu) {
b85c8b71
PZ
1633 __schedstat_inc(rq->ttwu_local);
1634 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1635 } else {
1636 struct sched_domain *sd;
1637
b85c8b71 1638 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1639 rcu_read_lock();
4fa8d299 1640 for_each_domain(rq->cpu, sd) {
d7c01d27 1641 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1642 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1643 break;
1644 }
1645 }
057f3fad 1646 rcu_read_unlock();
d7c01d27 1647 }
f339b9dc
PZ
1648
1649 if (wake_flags & WF_MIGRATED)
b85c8b71 1650 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1651#endif /* CONFIG_SMP */
1652
b85c8b71
PZ
1653 __schedstat_inc(rq->ttwu_count);
1654 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1655
1656 if (wake_flags & WF_SYNC)
b85c8b71 1657 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1658}
1659
1de64443 1660static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1661{
9ed3811a 1662 activate_task(rq, p, en_flags);
da0c1e65 1663 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1664
d1ccc66d 1665 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1666 if (p->flags & PF_WQ_WORKER)
1667 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1668}
1669
23f41eeb
PZ
1670/*
1671 * Mark the task runnable and perform wakeup-preemption.
1672 */
e7904a28 1673static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1674 struct rq_flags *rf)
9ed3811a 1675{
9ed3811a 1676 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1677 p->state = TASK_RUNNING;
fbd705a0
PZ
1678 trace_sched_wakeup(p);
1679
9ed3811a 1680#ifdef CONFIG_SMP
4c9a4bc8
PZ
1681 if (p->sched_class->task_woken) {
1682 /*
cbce1a68
PZ
1683 * Our task @p is fully woken up and running; so its safe to
1684 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1685 */
d8ac8971 1686 rq_unpin_lock(rq, rf);
9ed3811a 1687 p->sched_class->task_woken(rq, p);
d8ac8971 1688 rq_repin_lock(rq, rf);
4c9a4bc8 1689 }
9ed3811a 1690
e69c6341 1691 if (rq->idle_stamp) {
78becc27 1692 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1693 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1694
abfafa54
JL
1695 update_avg(&rq->avg_idle, delta);
1696
1697 if (rq->avg_idle > max)
9ed3811a 1698 rq->avg_idle = max;
abfafa54 1699
9ed3811a
TH
1700 rq->idle_stamp = 0;
1701 }
1702#endif
1703}
1704
c05fbafb 1705static void
e7904a28 1706ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1707 struct rq_flags *rf)
c05fbafb 1708{
77558e4d 1709 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1710
cbce1a68
PZ
1711 lockdep_assert_held(&rq->lock);
1712
c05fbafb
PZ
1713#ifdef CONFIG_SMP
1714 if (p->sched_contributes_to_load)
1715 rq->nr_uninterruptible--;
b5179ac7 1716
b5179ac7 1717 if (wake_flags & WF_MIGRATED)
59efa0ba 1718 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1719#endif
1720
b5179ac7 1721 ttwu_activate(rq, p, en_flags);
d8ac8971 1722 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1723}
1724
1725/*
1726 * Called in case the task @p isn't fully descheduled from its runqueue,
1727 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1728 * since all we need to do is flip p->state to TASK_RUNNING, since
1729 * the task is still ->on_rq.
1730 */
1731static int ttwu_remote(struct task_struct *p, int wake_flags)
1732{
eb580751 1733 struct rq_flags rf;
c05fbafb
PZ
1734 struct rq *rq;
1735 int ret = 0;
1736
eb580751 1737 rq = __task_rq_lock(p, &rf);
da0c1e65 1738 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1739 /* check_preempt_curr() may use rq clock */
1740 update_rq_clock(rq);
d8ac8971 1741 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1742 ret = 1;
1743 }
eb580751 1744 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1745
1746 return ret;
1747}
1748
317f3941 1749#ifdef CONFIG_SMP
e3baac47 1750void sched_ttwu_pending(void)
317f3941
PZ
1751{
1752 struct rq *rq = this_rq();
fa14ff4a 1753 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1754 struct task_struct *p, *t;
d8ac8971 1755 struct rq_flags rf;
317f3941 1756
e3baac47
PZ
1757 if (!llist)
1758 return;
1759
8a8c69c3 1760 rq_lock_irqsave(rq, &rf);
77558e4d 1761 update_rq_clock(rq);
317f3941 1762
73215849
BP
1763 llist_for_each_entry_safe(p, t, llist, wake_entry)
1764 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1765
8a8c69c3 1766 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1767}
1768
1769void scheduler_ipi(void)
1770{
f27dde8d
PZ
1771 /*
1772 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1773 * TIF_NEED_RESCHED remotely (for the first time) will also send
1774 * this IPI.
1775 */
8cb75e0c 1776 preempt_fold_need_resched();
f27dde8d 1777
fd2ac4f4 1778 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1779 return;
1780
1781 /*
1782 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1783 * traditionally all their work was done from the interrupt return
1784 * path. Now that we actually do some work, we need to make sure
1785 * we do call them.
1786 *
1787 * Some archs already do call them, luckily irq_enter/exit nest
1788 * properly.
1789 *
1790 * Arguably we should visit all archs and update all handlers,
1791 * however a fair share of IPIs are still resched only so this would
1792 * somewhat pessimize the simple resched case.
1793 */
1794 irq_enter();
fa14ff4a 1795 sched_ttwu_pending();
ca38062e
SS
1796
1797 /*
1798 * Check if someone kicked us for doing the nohz idle load balance.
1799 */
873b4c65 1800 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1801 this_rq()->idle_balance = 1;
ca38062e 1802 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1803 }
c5d753a5 1804 irq_exit();
317f3941
PZ
1805}
1806
b7e7ade3 1807static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1808{
e3baac47
PZ
1809 struct rq *rq = cpu_rq(cpu);
1810
b7e7ade3
PZ
1811 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1812
e3baac47
PZ
1813 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1814 if (!set_nr_if_polling(rq->idle))
1815 smp_send_reschedule(cpu);
1816 else
1817 trace_sched_wake_idle_without_ipi(cpu);
1818 }
317f3941 1819}
d6aa8f85 1820
f6be8af1
CL
1821void wake_up_if_idle(int cpu)
1822{
1823 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1824 struct rq_flags rf;
f6be8af1 1825
fd7de1e8
AL
1826 rcu_read_lock();
1827
1828 if (!is_idle_task(rcu_dereference(rq->curr)))
1829 goto out;
f6be8af1
CL
1830
1831 if (set_nr_if_polling(rq->idle)) {
1832 trace_sched_wake_idle_without_ipi(cpu);
1833 } else {
8a8c69c3 1834 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1835 if (is_idle_task(rq->curr))
1836 smp_send_reschedule(cpu);
d1ccc66d 1837 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1838 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1839 }
fd7de1e8
AL
1840
1841out:
1842 rcu_read_unlock();
f6be8af1
CL
1843}
1844
39be3501 1845bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1846{
1847 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1848}
d6aa8f85 1849#endif /* CONFIG_SMP */
317f3941 1850
b5179ac7 1851static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1852{
1853 struct rq *rq = cpu_rq(cpu);
d8ac8971 1854 struct rq_flags rf;
c05fbafb 1855
17d9f311 1856#if defined(CONFIG_SMP)
39be3501 1857 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1858 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1859 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1860 return;
1861 }
1862#endif
1863
8a8c69c3 1864 rq_lock(rq, &rf);
77558e4d 1865 update_rq_clock(rq);
d8ac8971 1866 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1867 rq_unlock(rq, &rf);
9ed3811a
TH
1868}
1869
8643cda5
PZ
1870/*
1871 * Notes on Program-Order guarantees on SMP systems.
1872 *
1873 * MIGRATION
1874 *
1875 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1876 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1877 * execution on its new CPU [c1].
8643cda5
PZ
1878 *
1879 * For migration (of runnable tasks) this is provided by the following means:
1880 *
1881 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1882 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1883 * rq(c1)->lock (if not at the same time, then in that order).
1884 * C) LOCK of the rq(c1)->lock scheduling in task
1885 *
1886 * Transitivity guarantees that B happens after A and C after B.
1887 * Note: we only require RCpc transitivity.
d1ccc66d 1888 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1889 *
1890 * Example:
1891 *
1892 * CPU0 CPU1 CPU2
1893 *
1894 * LOCK rq(0)->lock
1895 * sched-out X
1896 * sched-in Y
1897 * UNLOCK rq(0)->lock
1898 *
1899 * LOCK rq(0)->lock // orders against CPU0
1900 * dequeue X
1901 * UNLOCK rq(0)->lock
1902 *
1903 * LOCK rq(1)->lock
1904 * enqueue X
1905 * UNLOCK rq(1)->lock
1906 *
1907 * LOCK rq(1)->lock // orders against CPU2
1908 * sched-out Z
1909 * sched-in X
1910 * UNLOCK rq(1)->lock
1911 *
1912 *
1913 * BLOCKING -- aka. SLEEP + WAKEUP
1914 *
1915 * For blocking we (obviously) need to provide the same guarantee as for
1916 * migration. However the means are completely different as there is no lock
1917 * chain to provide order. Instead we do:
1918 *
1919 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1920 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1921 *
1922 * Example:
1923 *
1924 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1925 *
1926 * LOCK rq(0)->lock LOCK X->pi_lock
1927 * dequeue X
1928 * sched-out X
1929 * smp_store_release(X->on_cpu, 0);
1930 *
1f03e8d2 1931 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1932 * X->state = WAKING
1933 * set_task_cpu(X,2)
1934 *
1935 * LOCK rq(2)->lock
1936 * enqueue X
1937 * X->state = RUNNING
1938 * UNLOCK rq(2)->lock
1939 *
1940 * LOCK rq(2)->lock // orders against CPU1
1941 * sched-out Z
1942 * sched-in X
1943 * UNLOCK rq(2)->lock
1944 *
1945 * UNLOCK X->pi_lock
1946 * UNLOCK rq(0)->lock
1947 *
1948 *
1949 * However; for wakeups there is a second guarantee we must provide, namely we
1950 * must observe the state that lead to our wakeup. That is, not only must our
1951 * task observe its own prior state, it must also observe the stores prior to
1952 * its wakeup.
1953 *
1954 * This means that any means of doing remote wakeups must order the CPU doing
1955 * the wakeup against the CPU the task is going to end up running on. This,
1956 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1957 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1958 *
1959 */
1960
9ed3811a 1961/**
1da177e4 1962 * try_to_wake_up - wake up a thread
9ed3811a 1963 * @p: the thread to be awakened
1da177e4 1964 * @state: the mask of task states that can be woken
9ed3811a 1965 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1966 *
a2250238 1967 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1968 *
a2250238
PZ
1969 * If the task was not queued/runnable, also place it back on a runqueue.
1970 *
1971 * Atomic against schedule() which would dequeue a task, also see
1972 * set_current_state().
1973 *
1974 * Return: %true if @p->state changes (an actual wakeup was done),
1975 * %false otherwise.
1da177e4 1976 */
e4a52bcb
PZ
1977static int
1978try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1979{
1da177e4 1980 unsigned long flags;
c05fbafb 1981 int cpu, success = 0;
2398f2c6 1982
e0acd0a6
ON
1983 /*
1984 * If we are going to wake up a thread waiting for CONDITION we
1985 * need to ensure that CONDITION=1 done by the caller can not be
1986 * reordered with p->state check below. This pairs with mb() in
1987 * set_current_state() the waiting thread does.
1988 */
013fdb80 1989 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 1990 smp_mb__after_spinlock();
e9c84311 1991 if (!(p->state & state))
1da177e4
LT
1992 goto out;
1993
fbd705a0
PZ
1994 trace_sched_waking(p);
1995
d1ccc66d
IM
1996 /* We're going to change ->state: */
1997 success = 1;
1da177e4 1998 cpu = task_cpu(p);
1da177e4 1999
135e8c92
BS
2000 /*
2001 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2002 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2003 * in smp_cond_load_acquire() below.
2004 *
2005 * sched_ttwu_pending() try_to_wake_up()
2006 * [S] p->on_rq = 1; [L] P->state
2007 * UNLOCK rq->lock -----.
2008 * \
2009 * +--- RMB
2010 * schedule() /
2011 * LOCK rq->lock -----'
2012 * UNLOCK rq->lock
2013 *
2014 * [task p]
2015 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2016 *
2017 * Pairs with the UNLOCK+LOCK on rq->lock from the
2018 * last wakeup of our task and the schedule that got our task
2019 * current.
2020 */
2021 smp_rmb();
c05fbafb
PZ
2022 if (p->on_rq && ttwu_remote(p, wake_flags))
2023 goto stat;
1da177e4 2024
1da177e4 2025#ifdef CONFIG_SMP
ecf7d01c
PZ
2026 /*
2027 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2028 * possible to, falsely, observe p->on_cpu == 0.
2029 *
2030 * One must be running (->on_cpu == 1) in order to remove oneself
2031 * from the runqueue.
2032 *
2033 * [S] ->on_cpu = 1; [L] ->on_rq
2034 * UNLOCK rq->lock
2035 * RMB
2036 * LOCK rq->lock
2037 * [S] ->on_rq = 0; [L] ->on_cpu
2038 *
2039 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2040 * from the consecutive calls to schedule(); the first switching to our
2041 * task, the second putting it to sleep.
2042 */
2043 smp_rmb();
2044
e9c84311 2045 /*
d1ccc66d 2046 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2047 * this task as prev, wait until its done referencing the task.
b75a2253 2048 *
31cb1bc0 2049 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2050 *
2051 * This ensures that tasks getting woken will be fully ordered against
2052 * their previous state and preserve Program Order.
0970d299 2053 */
1f03e8d2 2054 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2055
a8e4f2ea 2056 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2057 p->state = TASK_WAKING;
e7693a36 2058
e33a9bba 2059 if (p->in_iowait) {
c96f5471 2060 delayacct_blkio_end(p);
e33a9bba
TH
2061 atomic_dec(&task_rq(p)->nr_iowait);
2062 }
2063
ac66f547 2064 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2065 if (task_cpu(p) != cpu) {
2066 wake_flags |= WF_MIGRATED;
e4a52bcb 2067 set_task_cpu(p, cpu);
f339b9dc 2068 }
e33a9bba
TH
2069
2070#else /* CONFIG_SMP */
2071
2072 if (p->in_iowait) {
c96f5471 2073 delayacct_blkio_end(p);
e33a9bba
TH
2074 atomic_dec(&task_rq(p)->nr_iowait);
2075 }
2076
1da177e4 2077#endif /* CONFIG_SMP */
1da177e4 2078
b5179ac7 2079 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2080stat:
4fa8d299 2081 ttwu_stat(p, cpu, wake_flags);
1da177e4 2082out:
013fdb80 2083 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2084
2085 return success;
2086}
2087
21aa9af0
TH
2088/**
2089 * try_to_wake_up_local - try to wake up a local task with rq lock held
2090 * @p: the thread to be awakened
bf50f0e8 2091 * @rf: request-queue flags for pinning
21aa9af0 2092 *
2acca55e 2093 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2094 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2095 * the current task.
21aa9af0 2096 */
d8ac8971 2097static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2098{
2099 struct rq *rq = task_rq(p);
21aa9af0 2100
383efcd0
TH
2101 if (WARN_ON_ONCE(rq != this_rq()) ||
2102 WARN_ON_ONCE(p == current))
2103 return;
2104
21aa9af0
TH
2105 lockdep_assert_held(&rq->lock);
2106
2acca55e 2107 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2108 /*
2109 * This is OK, because current is on_cpu, which avoids it being
2110 * picked for load-balance and preemption/IRQs are still
2111 * disabled avoiding further scheduler activity on it and we've
2112 * not yet picked a replacement task.
2113 */
8a8c69c3 2114 rq_unlock(rq, rf);
2acca55e 2115 raw_spin_lock(&p->pi_lock);
8a8c69c3 2116 rq_relock(rq, rf);
2acca55e
PZ
2117 }
2118
21aa9af0 2119 if (!(p->state & TASK_NORMAL))
2acca55e 2120 goto out;
21aa9af0 2121
fbd705a0
PZ
2122 trace_sched_waking(p);
2123
e33a9bba
TH
2124 if (!task_on_rq_queued(p)) {
2125 if (p->in_iowait) {
c96f5471 2126 delayacct_blkio_end(p);
e33a9bba
TH
2127 atomic_dec(&rq->nr_iowait);
2128 }
bce4dc80 2129 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2130 }
d7c01d27 2131
d8ac8971 2132 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2133 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2134out:
2135 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2136}
2137
50fa610a
DH
2138/**
2139 * wake_up_process - Wake up a specific process
2140 * @p: The process to be woken up.
2141 *
2142 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2143 * processes.
2144 *
2145 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2146 *
2147 * It may be assumed that this function implies a write memory barrier before
2148 * changing the task state if and only if any tasks are woken up.
2149 */
7ad5b3a5 2150int wake_up_process(struct task_struct *p)
1da177e4 2151{
9067ac85 2152 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2153}
1da177e4
LT
2154EXPORT_SYMBOL(wake_up_process);
2155
7ad5b3a5 2156int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2157{
2158 return try_to_wake_up(p, state, 0);
2159}
2160
1da177e4
LT
2161/*
2162 * Perform scheduler related setup for a newly forked process p.
2163 * p is forked by current.
dd41f596
IM
2164 *
2165 * __sched_fork() is basic setup used by init_idle() too:
2166 */
5e1576ed 2167static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2168{
fd2f4419
PZ
2169 p->on_rq = 0;
2170
2171 p->se.on_rq = 0;
dd41f596
IM
2172 p->se.exec_start = 0;
2173 p->se.sum_exec_runtime = 0;
f6cf891c 2174 p->se.prev_sum_exec_runtime = 0;
6c594c21 2175 p->se.nr_migrations = 0;
da7a735e 2176 p->se.vruntime = 0;
fd2f4419 2177 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2178
ad936d86
BP
2179#ifdef CONFIG_FAIR_GROUP_SCHED
2180 p->se.cfs_rq = NULL;
2181#endif
2182
6cfb0d5d 2183#ifdef CONFIG_SCHEDSTATS
cb251765 2184 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2186#endif
476d139c 2187
aab03e05 2188 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2189 init_dl_task_timer(&p->dl);
209a0cbd 2190 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2191 __dl_clear_params(p);
aab03e05 2192
fa717060 2193 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2194 p->rt.timeout = 0;
2195 p->rt.time_slice = sched_rr_timeslice;
2196 p->rt.on_rq = 0;
2197 p->rt.on_list = 0;
476d139c 2198
e107be36
AK
2199#ifdef CONFIG_PREEMPT_NOTIFIERS
2200 INIT_HLIST_HEAD(&p->preempt_notifiers);
2201#endif
cbee9f88
PZ
2202
2203#ifdef CONFIG_NUMA_BALANCING
2204 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2205 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2206 p->mm->numa_scan_seq = 0;
2207 }
2208
5e1576ed
RR
2209 if (clone_flags & CLONE_VM)
2210 p->numa_preferred_nid = current->numa_preferred_nid;
2211 else
2212 p->numa_preferred_nid = -1;
2213
cbee9f88
PZ
2214 p->node_stamp = 0ULL;
2215 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2216 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2217 p->numa_work.next = &p->numa_work;
44dba3d5 2218 p->numa_faults = NULL;
7e2703e6
RR
2219 p->last_task_numa_placement = 0;
2220 p->last_sum_exec_runtime = 0;
8c8a743c 2221
8c8a743c 2222 p->numa_group = NULL;
cbee9f88 2223#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2224}
2225
2a595721
SD
2226DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2227
1a687c2e 2228#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2229
1a687c2e
MG
2230void set_numabalancing_state(bool enabled)
2231{
2232 if (enabled)
2a595721 2233 static_branch_enable(&sched_numa_balancing);
1a687c2e 2234 else
2a595721 2235 static_branch_disable(&sched_numa_balancing);
1a687c2e 2236}
54a43d54
AK
2237
2238#ifdef CONFIG_PROC_SYSCTL
2239int sysctl_numa_balancing(struct ctl_table *table, int write,
2240 void __user *buffer, size_t *lenp, loff_t *ppos)
2241{
2242 struct ctl_table t;
2243 int err;
2a595721 2244 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2245
2246 if (write && !capable(CAP_SYS_ADMIN))
2247 return -EPERM;
2248
2249 t = *table;
2250 t.data = &state;
2251 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2252 if (err < 0)
2253 return err;
2254 if (write)
2255 set_numabalancing_state(state);
2256 return err;
2257}
2258#endif
2259#endif
dd41f596 2260
4698f88c
JP
2261#ifdef CONFIG_SCHEDSTATS
2262
cb251765 2263DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2264static bool __initdata __sched_schedstats = false;
cb251765 2265
cb251765
MG
2266static void set_schedstats(bool enabled)
2267{
2268 if (enabled)
2269 static_branch_enable(&sched_schedstats);
2270 else
2271 static_branch_disable(&sched_schedstats);
2272}
2273
2274void force_schedstat_enabled(void)
2275{
2276 if (!schedstat_enabled()) {
2277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2278 static_branch_enable(&sched_schedstats);
2279 }
2280}
2281
2282static int __init setup_schedstats(char *str)
2283{
2284 int ret = 0;
2285 if (!str)
2286 goto out;
2287
4698f88c
JP
2288 /*
2289 * This code is called before jump labels have been set up, so we can't
2290 * change the static branch directly just yet. Instead set a temporary
2291 * variable so init_schedstats() can do it later.
2292 */
cb251765 2293 if (!strcmp(str, "enable")) {
4698f88c 2294 __sched_schedstats = true;
cb251765
MG
2295 ret = 1;
2296 } else if (!strcmp(str, "disable")) {
4698f88c 2297 __sched_schedstats = false;
cb251765
MG
2298 ret = 1;
2299 }
2300out:
2301 if (!ret)
2302 pr_warn("Unable to parse schedstats=\n");
2303
2304 return ret;
2305}
2306__setup("schedstats=", setup_schedstats);
2307
4698f88c
JP
2308static void __init init_schedstats(void)
2309{
2310 set_schedstats(__sched_schedstats);
2311}
2312
cb251765
MG
2313#ifdef CONFIG_PROC_SYSCTL
2314int sysctl_schedstats(struct ctl_table *table, int write,
2315 void __user *buffer, size_t *lenp, loff_t *ppos)
2316{
2317 struct ctl_table t;
2318 int err;
2319 int state = static_branch_likely(&sched_schedstats);
2320
2321 if (write && !capable(CAP_SYS_ADMIN))
2322 return -EPERM;
2323
2324 t = *table;
2325 t.data = &state;
2326 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2327 if (err < 0)
2328 return err;
2329 if (write)
2330 set_schedstats(state);
2331 return err;
2332}
4698f88c
JP
2333#endif /* CONFIG_PROC_SYSCTL */
2334#else /* !CONFIG_SCHEDSTATS */
2335static inline void init_schedstats(void) {}
2336#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2337
2338/*
2339 * fork()/clone()-time setup:
2340 */
aab03e05 2341int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2342{
0122ec5b 2343 unsigned long flags;
dd41f596
IM
2344 int cpu = get_cpu();
2345
5e1576ed 2346 __sched_fork(clone_flags, p);
06b83b5f 2347 /*
7dc603c9 2348 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2349 * nobody will actually run it, and a signal or other external
2350 * event cannot wake it up and insert it on the runqueue either.
2351 */
7dc603c9 2352 p->state = TASK_NEW;
dd41f596 2353
c350a04e
MG
2354 /*
2355 * Make sure we do not leak PI boosting priority to the child.
2356 */
2357 p->prio = current->normal_prio;
2358
b9dc29e7
MG
2359 /*
2360 * Revert to default priority/policy on fork if requested.
2361 */
2362 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2363 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2364 p->policy = SCHED_NORMAL;
6c697bdf 2365 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2366 p->rt_priority = 0;
2367 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2368 p->static_prio = NICE_TO_PRIO(0);
2369
2370 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2371 set_load_weight(p, false);
6c697bdf 2372
b9dc29e7
MG
2373 /*
2374 * We don't need the reset flag anymore after the fork. It has
2375 * fulfilled its duty:
2376 */
2377 p->sched_reset_on_fork = 0;
2378 }
ca94c442 2379
aab03e05
DF
2380 if (dl_prio(p->prio)) {
2381 put_cpu();
2382 return -EAGAIN;
2383 } else if (rt_prio(p->prio)) {
2384 p->sched_class = &rt_sched_class;
2385 } else {
2ddbf952 2386 p->sched_class = &fair_sched_class;
aab03e05 2387 }
b29739f9 2388
7dc603c9 2389 init_entity_runnable_average(&p->se);
cd29fe6f 2390
86951599
PZ
2391 /*
2392 * The child is not yet in the pid-hash so no cgroup attach races,
2393 * and the cgroup is pinned to this child due to cgroup_fork()
2394 * is ran before sched_fork().
2395 *
2396 * Silence PROVE_RCU.
2397 */
0122ec5b 2398 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2399 /*
d1ccc66d 2400 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2401 * so use __set_task_cpu().
2402 */
2403 __set_task_cpu(p, cpu);
2404 if (p->sched_class->task_fork)
2405 p->sched_class->task_fork(p);
0122ec5b 2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2407
f6db8347 2408#ifdef CONFIG_SCHED_INFO
dd41f596 2409 if (likely(sched_info_on()))
52f17b6c 2410 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2411#endif
3ca7a440
PZ
2412#if defined(CONFIG_SMP)
2413 p->on_cpu = 0;
4866cde0 2414#endif
01028747 2415 init_task_preempt_count(p);
806c09a7 2416#ifdef CONFIG_SMP
917b627d 2417 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2418 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2419#endif
917b627d 2420
476d139c 2421 put_cpu();
aab03e05 2422 return 0;
1da177e4
LT
2423}
2424
332ac17e
DF
2425unsigned long to_ratio(u64 period, u64 runtime)
2426{
2427 if (runtime == RUNTIME_INF)
c52f14d3 2428 return BW_UNIT;
332ac17e
DF
2429
2430 /*
2431 * Doing this here saves a lot of checks in all
2432 * the calling paths, and returning zero seems
2433 * safe for them anyway.
2434 */
2435 if (period == 0)
2436 return 0;
2437
c52f14d3 2438 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2439}
2440
1da177e4
LT
2441/*
2442 * wake_up_new_task - wake up a newly created task for the first time.
2443 *
2444 * This function will do some initial scheduler statistics housekeeping
2445 * that must be done for every newly created context, then puts the task
2446 * on the runqueue and wakes it.
2447 */
3e51e3ed 2448void wake_up_new_task(struct task_struct *p)
1da177e4 2449{
eb580751 2450 struct rq_flags rf;
dd41f596 2451 struct rq *rq;
fabf318e 2452
eb580751 2453 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2454 p->state = TASK_RUNNING;
fabf318e
PZ
2455#ifdef CONFIG_SMP
2456 /*
2457 * Fork balancing, do it here and not earlier because:
2458 * - cpus_allowed can change in the fork path
d1ccc66d 2459 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2460 *
2461 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2462 * as we're not fully set-up yet.
fabf318e 2463 */
32e839dd 2464 p->recent_used_cpu = task_cpu(p);
e210bffd 2465 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2466#endif
b7fa30c9 2467 rq = __task_rq_lock(p, &rf);
4126bad6 2468 update_rq_clock(rq);
2b8c41da 2469 post_init_entity_util_avg(&p->se);
0017d735 2470
7a57f32a 2471 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2472 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2473 trace_sched_wakeup_new(p);
a7558e01 2474 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2475#ifdef CONFIG_SMP
0aaafaab
PZ
2476 if (p->sched_class->task_woken) {
2477 /*
2478 * Nothing relies on rq->lock after this, so its fine to
2479 * drop it.
2480 */
d8ac8971 2481 rq_unpin_lock(rq, &rf);
efbbd05a 2482 p->sched_class->task_woken(rq, p);
d8ac8971 2483 rq_repin_lock(rq, &rf);
0aaafaab 2484 }
9a897c5a 2485#endif
eb580751 2486 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2487}
2488
e107be36
AK
2489#ifdef CONFIG_PREEMPT_NOTIFIERS
2490
1cde2930
PZ
2491static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2492
2ecd9d29
PZ
2493void preempt_notifier_inc(void)
2494{
2495 static_key_slow_inc(&preempt_notifier_key);
2496}
2497EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2498
2499void preempt_notifier_dec(void)
2500{
2501 static_key_slow_dec(&preempt_notifier_key);
2502}
2503EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2504
e107be36 2505/**
80dd99b3 2506 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2507 * @notifier: notifier struct to register
e107be36
AK
2508 */
2509void preempt_notifier_register(struct preempt_notifier *notifier)
2510{
2ecd9d29
PZ
2511 if (!static_key_false(&preempt_notifier_key))
2512 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2513
e107be36
AK
2514 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2515}
2516EXPORT_SYMBOL_GPL(preempt_notifier_register);
2517
2518/**
2519 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2520 * @notifier: notifier struct to unregister
e107be36 2521 *
d84525a8 2522 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2523 */
2524void preempt_notifier_unregister(struct preempt_notifier *notifier)
2525{
2526 hlist_del(&notifier->link);
2527}
2528EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2529
1cde2930 2530static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2531{
2532 struct preempt_notifier *notifier;
e107be36 2533
b67bfe0d 2534 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2535 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2536}
2537
1cde2930
PZ
2538static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2539{
2540 if (static_key_false(&preempt_notifier_key))
2541 __fire_sched_in_preempt_notifiers(curr);
2542}
2543
e107be36 2544static void
1cde2930
PZ
2545__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2546 struct task_struct *next)
e107be36
AK
2547{
2548 struct preempt_notifier *notifier;
e107be36 2549
b67bfe0d 2550 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2551 notifier->ops->sched_out(notifier, next);
2552}
2553
1cde2930
PZ
2554static __always_inline void
2555fire_sched_out_preempt_notifiers(struct task_struct *curr,
2556 struct task_struct *next)
2557{
2558 if (static_key_false(&preempt_notifier_key))
2559 __fire_sched_out_preempt_notifiers(curr, next);
2560}
2561
6d6bc0ad 2562#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2563
1cde2930 2564static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2565{
2566}
2567
1cde2930 2568static inline void
e107be36
AK
2569fire_sched_out_preempt_notifiers(struct task_struct *curr,
2570 struct task_struct *next)
2571{
2572}
2573
6d6bc0ad 2574#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2575
31cb1bc0 2576static inline void prepare_task(struct task_struct *next)
2577{
2578#ifdef CONFIG_SMP
2579 /*
2580 * Claim the task as running, we do this before switching to it
2581 * such that any running task will have this set.
2582 */
2583 next->on_cpu = 1;
2584#endif
2585}
2586
2587static inline void finish_task(struct task_struct *prev)
2588{
2589#ifdef CONFIG_SMP
2590 /*
2591 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2592 * We must ensure this doesn't happen until the switch is completely
2593 * finished.
2594 *
2595 * In particular, the load of prev->state in finish_task_switch() must
2596 * happen before this.
2597 *
2598 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2599 */
2600 smp_store_release(&prev->on_cpu, 0);
2601#endif
2602}
2603
2604static inline void finish_lock_switch(struct rq *rq)
2605{
2606#ifdef CONFIG_DEBUG_SPINLOCK
2607 /* this is a valid case when another task releases the spinlock */
2608 rq->lock.owner = current;
2609#endif
2610 /*
2611 * If we are tracking spinlock dependencies then we have to
2612 * fix up the runqueue lock - which gets 'carried over' from
2613 * prev into current:
2614 */
2615 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2616
2617 raw_spin_unlock_irq(&rq->lock);
2618}
2619
4866cde0
NP
2620/**
2621 * prepare_task_switch - prepare to switch tasks
2622 * @rq: the runqueue preparing to switch
421cee29 2623 * @prev: the current task that is being switched out
4866cde0
NP
2624 * @next: the task we are going to switch to.
2625 *
2626 * This is called with the rq lock held and interrupts off. It must
2627 * be paired with a subsequent finish_task_switch after the context
2628 * switch.
2629 *
2630 * prepare_task_switch sets up locking and calls architecture specific
2631 * hooks.
2632 */
e107be36
AK
2633static inline void
2634prepare_task_switch(struct rq *rq, struct task_struct *prev,
2635 struct task_struct *next)
4866cde0 2636{
43148951 2637 sched_info_switch(rq, prev, next);
fe4b04fa 2638 perf_event_task_sched_out(prev, next);
e107be36 2639 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2640 prepare_task(next);
4866cde0
NP
2641 prepare_arch_switch(next);
2642}
2643
1da177e4
LT
2644/**
2645 * finish_task_switch - clean up after a task-switch
2646 * @prev: the thread we just switched away from.
2647 *
4866cde0
NP
2648 * finish_task_switch must be called after the context switch, paired
2649 * with a prepare_task_switch call before the context switch.
2650 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2651 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2652 *
2653 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2654 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2655 * with the lock held can cause deadlocks; see schedule() for
2656 * details.)
dfa50b60
ON
2657 *
2658 * The context switch have flipped the stack from under us and restored the
2659 * local variables which were saved when this task called schedule() in the
2660 * past. prev == current is still correct but we need to recalculate this_rq
2661 * because prev may have moved to another CPU.
1da177e4 2662 */
dfa50b60 2663static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2664 __releases(rq->lock)
2665{
dfa50b60 2666 struct rq *rq = this_rq();
1da177e4 2667 struct mm_struct *mm = rq->prev_mm;
55a101f8 2668 long prev_state;
1da177e4 2669
609ca066
PZ
2670 /*
2671 * The previous task will have left us with a preempt_count of 2
2672 * because it left us after:
2673 *
2674 * schedule()
2675 * preempt_disable(); // 1
2676 * __schedule()
2677 * raw_spin_lock_irq(&rq->lock) // 2
2678 *
2679 * Also, see FORK_PREEMPT_COUNT.
2680 */
e2bf1c4b
PZ
2681 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2682 "corrupted preempt_count: %s/%d/0x%x\n",
2683 current->comm, current->pid, preempt_count()))
2684 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2685
1da177e4
LT
2686 rq->prev_mm = NULL;
2687
2688 /*
2689 * A task struct has one reference for the use as "current".
c394cc9f 2690 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2691 * schedule one last time. The schedule call will never return, and
2692 * the scheduled task must drop that reference.
95913d97
PZ
2693 *
2694 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2695 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2696 * running on another CPU and we could rave with its RUNNING -> DEAD
2697 * transition, resulting in a double drop.
1da177e4 2698 */
55a101f8 2699 prev_state = prev->state;
bf9fae9f 2700 vtime_task_switch(prev);
a8d757ef 2701 perf_event_task_sched_in(prev, current);
31cb1bc0 2702 finish_task(prev);
2703 finish_lock_switch(rq);
01f23e16 2704 finish_arch_post_lock_switch();
e8fa1362 2705
e107be36 2706 fire_sched_in_preempt_notifiers(current);
306e0604 2707 /*
70216e18
MD
2708 * When switching through a kernel thread, the loop in
2709 * membarrier_{private,global}_expedited() may have observed that
2710 * kernel thread and not issued an IPI. It is therefore possible to
2711 * schedule between user->kernel->user threads without passing though
2712 * switch_mm(). Membarrier requires a barrier after storing to
2713 * rq->curr, before returning to userspace, so provide them here:
2714 *
2715 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2716 * provided by mmdrop(),
2717 * - a sync_core for SYNC_CORE.
306e0604 2718 */
70216e18
MD
2719 if (mm) {
2720 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2721 mmdrop(mm);
70216e18 2722 }
c394cc9f 2723 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2724 if (prev->sched_class->task_dead)
2725 prev->sched_class->task_dead(prev);
2726
c6fd91f0 2727 /*
2728 * Remove function-return probe instances associated with this
2729 * task and put them back on the free list.
9761eea8 2730 */
c6fd91f0 2731 kprobe_flush_task(prev);
68f24b08
AL
2732
2733 /* Task is done with its stack. */
2734 put_task_stack(prev);
2735
1da177e4 2736 put_task_struct(prev);
c6fd91f0 2737 }
99e5ada9 2738
de734f89 2739 tick_nohz_task_switch();
dfa50b60 2740 return rq;
1da177e4
LT
2741}
2742
3f029d3c
GH
2743#ifdef CONFIG_SMP
2744
3f029d3c 2745/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2746static void __balance_callback(struct rq *rq)
3f029d3c 2747{
e3fca9e7
PZ
2748 struct callback_head *head, *next;
2749 void (*func)(struct rq *rq);
2750 unsigned long flags;
3f029d3c 2751
e3fca9e7
PZ
2752 raw_spin_lock_irqsave(&rq->lock, flags);
2753 head = rq->balance_callback;
2754 rq->balance_callback = NULL;
2755 while (head) {
2756 func = (void (*)(struct rq *))head->func;
2757 next = head->next;
2758 head->next = NULL;
2759 head = next;
3f029d3c 2760
e3fca9e7 2761 func(rq);
3f029d3c 2762 }
e3fca9e7
PZ
2763 raw_spin_unlock_irqrestore(&rq->lock, flags);
2764}
2765
2766static inline void balance_callback(struct rq *rq)
2767{
2768 if (unlikely(rq->balance_callback))
2769 __balance_callback(rq);
3f029d3c
GH
2770}
2771
2772#else
da19ab51 2773
e3fca9e7 2774static inline void balance_callback(struct rq *rq)
3f029d3c 2775{
1da177e4
LT
2776}
2777
3f029d3c
GH
2778#endif
2779
1da177e4
LT
2780/**
2781 * schedule_tail - first thing a freshly forked thread must call.
2782 * @prev: the thread we just switched away from.
2783 */
722a9f92 2784asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2785 __releases(rq->lock)
2786{
1a43a14a 2787 struct rq *rq;
da19ab51 2788
609ca066
PZ
2789 /*
2790 * New tasks start with FORK_PREEMPT_COUNT, see there and
2791 * finish_task_switch() for details.
2792 *
2793 * finish_task_switch() will drop rq->lock() and lower preempt_count
2794 * and the preempt_enable() will end up enabling preemption (on
2795 * PREEMPT_COUNT kernels).
2796 */
2797
dfa50b60 2798 rq = finish_task_switch(prev);
e3fca9e7 2799 balance_callback(rq);
1a43a14a 2800 preempt_enable();
70b97a7f 2801
1da177e4 2802 if (current->set_child_tid)
b488893a 2803 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2804}
2805
2806/*
dfa50b60 2807 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2808 */
04936948 2809static __always_inline struct rq *
70b97a7f 2810context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2811 struct task_struct *next, struct rq_flags *rf)
1da177e4 2812{
dd41f596 2813 struct mm_struct *mm, *oldmm;
1da177e4 2814
e107be36 2815 prepare_task_switch(rq, prev, next);
fe4b04fa 2816
dd41f596
IM
2817 mm = next->mm;
2818 oldmm = prev->active_mm;
9226d125
ZA
2819 /*
2820 * For paravirt, this is coupled with an exit in switch_to to
2821 * combine the page table reload and the switch backend into
2822 * one hypercall.
2823 */
224101ed 2824 arch_start_context_switch(prev);
9226d125 2825
306e0604
MD
2826 /*
2827 * If mm is non-NULL, we pass through switch_mm(). If mm is
2828 * NULL, we will pass through mmdrop() in finish_task_switch().
2829 * Both of these contain the full memory barrier required by
2830 * membarrier after storing to rq->curr, before returning to
2831 * user-space.
2832 */
31915ab4 2833 if (!mm) {
1da177e4 2834 next->active_mm = oldmm;
f1f10076 2835 mmgrab(oldmm);
1da177e4
LT
2836 enter_lazy_tlb(oldmm, next);
2837 } else
f98db601 2838 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2839
31915ab4 2840 if (!prev->mm) {
1da177e4 2841 prev->active_mm = NULL;
1da177e4
LT
2842 rq->prev_mm = oldmm;
2843 }
92509b73 2844
cb42c9a3 2845 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2846
3a5f5e48
IM
2847 /*
2848 * Since the runqueue lock will be released by the next
2849 * task (which is an invalid locking op but in the case
2850 * of the scheduler it's an obvious special-case), so we
2851 * do an early lockdep release here:
2852 */
d8ac8971 2853 rq_unpin_lock(rq, rf);
8a25d5de 2854 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2855
2856 /* Here we just switch the register state and the stack. */
2857 switch_to(prev, next, prev);
dd41f596 2858 barrier();
dfa50b60
ON
2859
2860 return finish_task_switch(prev);
1da177e4
LT
2861}
2862
2863/*
1c3e8264 2864 * nr_running and nr_context_switches:
1da177e4
LT
2865 *
2866 * externally visible scheduler statistics: current number of runnable
1c3e8264 2867 * threads, total number of context switches performed since bootup.
1da177e4
LT
2868 */
2869unsigned long nr_running(void)
2870{
2871 unsigned long i, sum = 0;
2872
2873 for_each_online_cpu(i)
2874 sum += cpu_rq(i)->nr_running;
2875
2876 return sum;
f711f609 2877}
1da177e4 2878
2ee507c4 2879/*
d1ccc66d 2880 * Check if only the current task is running on the CPU.
00cc1633
DD
2881 *
2882 * Caution: this function does not check that the caller has disabled
2883 * preemption, thus the result might have a time-of-check-to-time-of-use
2884 * race. The caller is responsible to use it correctly, for example:
2885 *
2886 * - from a non-preemptable section (of course)
2887 *
2888 * - from a thread that is bound to a single CPU
2889 *
2890 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2891 */
2892bool single_task_running(void)
2893{
00cc1633 2894 return raw_rq()->nr_running == 1;
2ee507c4
TC
2895}
2896EXPORT_SYMBOL(single_task_running);
2897
1da177e4 2898unsigned long long nr_context_switches(void)
46cb4b7c 2899{
cc94abfc
SR
2900 int i;
2901 unsigned long long sum = 0;
46cb4b7c 2902
0a945022 2903 for_each_possible_cpu(i)
1da177e4 2904 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2905
1da177e4
LT
2906 return sum;
2907}
483b4ee6 2908
e33a9bba
TH
2909/*
2910 * IO-wait accounting, and how its mostly bollocks (on SMP).
2911 *
2912 * The idea behind IO-wait account is to account the idle time that we could
2913 * have spend running if it were not for IO. That is, if we were to improve the
2914 * storage performance, we'd have a proportional reduction in IO-wait time.
2915 *
2916 * This all works nicely on UP, where, when a task blocks on IO, we account
2917 * idle time as IO-wait, because if the storage were faster, it could've been
2918 * running and we'd not be idle.
2919 *
2920 * This has been extended to SMP, by doing the same for each CPU. This however
2921 * is broken.
2922 *
2923 * Imagine for instance the case where two tasks block on one CPU, only the one
2924 * CPU will have IO-wait accounted, while the other has regular idle. Even
2925 * though, if the storage were faster, both could've ran at the same time,
2926 * utilising both CPUs.
2927 *
2928 * This means, that when looking globally, the current IO-wait accounting on
2929 * SMP is a lower bound, by reason of under accounting.
2930 *
2931 * Worse, since the numbers are provided per CPU, they are sometimes
2932 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2933 * associated with any one particular CPU, it can wake to another CPU than it
2934 * blocked on. This means the per CPU IO-wait number is meaningless.
2935 *
2936 * Task CPU affinities can make all that even more 'interesting'.
2937 */
2938
1da177e4
LT
2939unsigned long nr_iowait(void)
2940{
2941 unsigned long i, sum = 0;
483b4ee6 2942
0a945022 2943 for_each_possible_cpu(i)
1da177e4 2944 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2945
1da177e4
LT
2946 return sum;
2947}
483b4ee6 2948
e33a9bba
TH
2949/*
2950 * Consumers of these two interfaces, like for example the cpufreq menu
2951 * governor are using nonsensical data. Boosting frequency for a CPU that has
2952 * IO-wait which might not even end up running the task when it does become
2953 * runnable.
2954 */
2955
8c215bd3 2956unsigned long nr_iowait_cpu(int cpu)
69d25870 2957{
8c215bd3 2958 struct rq *this = cpu_rq(cpu);
69d25870
AV
2959 return atomic_read(&this->nr_iowait);
2960}
46cb4b7c 2961
372ba8cb
MG
2962void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2963{
3289bdb4
PZ
2964 struct rq *rq = this_rq();
2965 *nr_waiters = atomic_read(&rq->nr_iowait);
2966 *load = rq->load.weight;
372ba8cb
MG
2967}
2968
dd41f596 2969#ifdef CONFIG_SMP
8a0be9ef 2970
46cb4b7c 2971/*
38022906
PZ
2972 * sched_exec - execve() is a valuable balancing opportunity, because at
2973 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2974 */
38022906 2975void sched_exec(void)
46cb4b7c 2976{
38022906 2977 struct task_struct *p = current;
1da177e4 2978 unsigned long flags;
0017d735 2979 int dest_cpu;
46cb4b7c 2980
8f42ced9 2981 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2982 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2983 if (dest_cpu == smp_processor_id())
2984 goto unlock;
38022906 2985
8f42ced9 2986 if (likely(cpu_active(dest_cpu))) {
969c7921 2987 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2988
8f42ced9
PZ
2989 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2990 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2991 return;
2992 }
0017d735 2993unlock:
8f42ced9 2994 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2995}
dd41f596 2996
1da177e4
LT
2997#endif
2998
1da177e4 2999DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3000DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3001
3002EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3003EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3004
6075620b
GG
3005/*
3006 * The function fair_sched_class.update_curr accesses the struct curr
3007 * and its field curr->exec_start; when called from task_sched_runtime(),
3008 * we observe a high rate of cache misses in practice.
3009 * Prefetching this data results in improved performance.
3010 */
3011static inline void prefetch_curr_exec_start(struct task_struct *p)
3012{
3013#ifdef CONFIG_FAIR_GROUP_SCHED
3014 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3015#else
3016 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3017#endif
3018 prefetch(curr);
3019 prefetch(&curr->exec_start);
3020}
3021
c5f8d995
HS
3022/*
3023 * Return accounted runtime for the task.
3024 * In case the task is currently running, return the runtime plus current's
3025 * pending runtime that have not been accounted yet.
3026 */
3027unsigned long long task_sched_runtime(struct task_struct *p)
3028{
eb580751 3029 struct rq_flags rf;
c5f8d995 3030 struct rq *rq;
6e998916 3031 u64 ns;
c5f8d995 3032
911b2898
PZ
3033#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3034 /*
3035 * 64-bit doesn't need locks to atomically read a 64bit value.
3036 * So we have a optimization chance when the task's delta_exec is 0.
3037 * Reading ->on_cpu is racy, but this is ok.
3038 *
d1ccc66d
IM
3039 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3040 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3041 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3042 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3043 * been accounted, so we're correct here as well.
911b2898 3044 */
da0c1e65 3045 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3046 return p->se.sum_exec_runtime;
3047#endif
3048
eb580751 3049 rq = task_rq_lock(p, &rf);
6e998916
SG
3050 /*
3051 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3052 * project cycles that may never be accounted to this
3053 * thread, breaking clock_gettime().
3054 */
3055 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3056 prefetch_curr_exec_start(p);
6e998916
SG
3057 update_rq_clock(rq);
3058 p->sched_class->update_curr(rq);
3059 }
3060 ns = p->se.sum_exec_runtime;
eb580751 3061 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3062
3063 return ns;
3064}
48f24c4d 3065
7835b98b
CL
3066/*
3067 * This function gets called by the timer code, with HZ frequency.
3068 * We call it with interrupts disabled.
7835b98b
CL
3069 */
3070void scheduler_tick(void)
3071{
7835b98b
CL
3072 int cpu = smp_processor_id();
3073 struct rq *rq = cpu_rq(cpu);
dd41f596 3074 struct task_struct *curr = rq->curr;
8a8c69c3 3075 struct rq_flags rf;
3e51f33f
PZ
3076
3077 sched_clock_tick();
dd41f596 3078
8a8c69c3
PZ
3079 rq_lock(rq, &rf);
3080
3e51f33f 3081 update_rq_clock(rq);
fa85ae24 3082 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3083 cpu_load_update_active(rq);
3289bdb4 3084 calc_global_load_tick(rq);
8a8c69c3
PZ
3085
3086 rq_unlock(rq, &rf);
7835b98b 3087
e9d2b064 3088 perf_event_task_tick();
e220d2dc 3089
e418e1c2 3090#ifdef CONFIG_SMP
6eb57e0d 3091 rq->idle_balance = idle_cpu(cpu);
7caff66f 3092 trigger_load_balance(rq);
e418e1c2 3093#endif
265f22a9 3094 rq_last_tick_reset(rq);
1da177e4
LT
3095}
3096
265f22a9
FW
3097#ifdef CONFIG_NO_HZ_FULL
3098/**
3099 * scheduler_tick_max_deferment
3100 *
3101 * Keep at least one tick per second when a single
3102 * active task is running because the scheduler doesn't
3103 * yet completely support full dynticks environment.
3104 *
3105 * This makes sure that uptime, CFS vruntime, load
3106 * balancing, etc... continue to move forward, even
3107 * with a very low granularity.
e69f6186
YB
3108 *
3109 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3110 */
3111u64 scheduler_tick_max_deferment(void)
3112{
3113 struct rq *rq = this_rq();
316c1608 3114 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3115
3116 next = rq->last_sched_tick + HZ;
3117
3118 if (time_before_eq(next, now))
3119 return 0;
3120
8fe8ff09 3121 return jiffies_to_nsecs(next - now);
1da177e4 3122}
265f22a9 3123#endif
1da177e4 3124
7e49fcce
SR
3125#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3126 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3127/*
3128 * If the value passed in is equal to the current preempt count
3129 * then we just disabled preemption. Start timing the latency.
3130 */
3131static inline void preempt_latency_start(int val)
3132{
3133 if (preempt_count() == val) {
3134 unsigned long ip = get_lock_parent_ip();
3135#ifdef CONFIG_DEBUG_PREEMPT
3136 current->preempt_disable_ip = ip;
3137#endif
3138 trace_preempt_off(CALLER_ADDR0, ip);
3139 }
3140}
7e49fcce 3141
edafe3a5 3142void preempt_count_add(int val)
1da177e4 3143{
6cd8a4bb 3144#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3145 /*
3146 * Underflow?
3147 */
9a11b49a
IM
3148 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3149 return;
6cd8a4bb 3150#endif
bdb43806 3151 __preempt_count_add(val);
6cd8a4bb 3152#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3153 /*
3154 * Spinlock count overflowing soon?
3155 */
33859f7f
MOS
3156 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3157 PREEMPT_MASK - 10);
6cd8a4bb 3158#endif
47252cfb 3159 preempt_latency_start(val);
1da177e4 3160}
bdb43806 3161EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3162NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3163
47252cfb
SR
3164/*
3165 * If the value passed in equals to the current preempt count
3166 * then we just enabled preemption. Stop timing the latency.
3167 */
3168static inline void preempt_latency_stop(int val)
3169{
3170 if (preempt_count() == val)
3171 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3172}
3173
edafe3a5 3174void preempt_count_sub(int val)
1da177e4 3175{
6cd8a4bb 3176#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3177 /*
3178 * Underflow?
3179 */
01e3eb82 3180 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3181 return;
1da177e4
LT
3182 /*
3183 * Is the spinlock portion underflowing?
3184 */
9a11b49a
IM
3185 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3186 !(preempt_count() & PREEMPT_MASK)))
3187 return;
6cd8a4bb 3188#endif
9a11b49a 3189
47252cfb 3190 preempt_latency_stop(val);
bdb43806 3191 __preempt_count_sub(val);
1da177e4 3192}
bdb43806 3193EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3194NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3195
47252cfb
SR
3196#else
3197static inline void preempt_latency_start(int val) { }
3198static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3199#endif
3200
59ddbcb2
IM
3201static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3202{
3203#ifdef CONFIG_DEBUG_PREEMPT
3204 return p->preempt_disable_ip;
3205#else
3206 return 0;
3207#endif
3208}
3209
1da177e4 3210/*
dd41f596 3211 * Print scheduling while atomic bug:
1da177e4 3212 */
dd41f596 3213static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3214{
d1c6d149
VN
3215 /* Save this before calling printk(), since that will clobber it */
3216 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3217
664dfa65
DJ
3218 if (oops_in_progress)
3219 return;
3220
3df0fc5b
PZ
3221 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3222 prev->comm, prev->pid, preempt_count());
838225b4 3223
dd41f596 3224 debug_show_held_locks(prev);
e21f5b15 3225 print_modules();
dd41f596
IM
3226 if (irqs_disabled())
3227 print_irqtrace_events(prev);
d1c6d149
VN
3228 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3229 && in_atomic_preempt_off()) {
8f47b187 3230 pr_err("Preemption disabled at:");
d1c6d149 3231 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3232 pr_cont("\n");
3233 }
748c7201
DBO
3234 if (panic_on_warn)
3235 panic("scheduling while atomic\n");
3236
6135fc1e 3237 dump_stack();
373d4d09 3238 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3239}
1da177e4 3240
dd41f596
IM
3241/*
3242 * Various schedule()-time debugging checks and statistics:
3243 */
3244static inline void schedule_debug(struct task_struct *prev)
3245{
0d9e2632 3246#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3247 if (task_stack_end_corrupted(prev))
3248 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3249#endif
b99def8b 3250
1dc0fffc 3251 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3252 __schedule_bug(prev);
1dc0fffc
PZ
3253 preempt_count_set(PREEMPT_DISABLED);
3254 }
b3fbab05 3255 rcu_sleep_check();
dd41f596 3256
1da177e4
LT
3257 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3258
ae92882e 3259 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3260}
3261
3262/*
3263 * Pick up the highest-prio task:
3264 */
3265static inline struct task_struct *
d8ac8971 3266pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3267{
49ee5768 3268 const struct sched_class *class;
dd41f596 3269 struct task_struct *p;
1da177e4
LT
3270
3271 /*
0ba87bb2
PZ
3272 * Optimization: we know that if all tasks are in the fair class we can
3273 * call that function directly, but only if the @prev task wasn't of a
3274 * higher scheduling class, because otherwise those loose the
3275 * opportunity to pull in more work from other CPUs.
1da177e4 3276 */
0ba87bb2
PZ
3277 if (likely((prev->sched_class == &idle_sched_class ||
3278 prev->sched_class == &fair_sched_class) &&
3279 rq->nr_running == rq->cfs.h_nr_running)) {
3280
d8ac8971 3281 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3282 if (unlikely(p == RETRY_TASK))
3283 goto again;
3284
d1ccc66d 3285 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3286 if (unlikely(!p))
d8ac8971 3287 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3288
3289 return p;
1da177e4
LT
3290 }
3291
37e117c0 3292again:
34f971f6 3293 for_each_class(class) {
d8ac8971 3294 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3295 if (p) {
3296 if (unlikely(p == RETRY_TASK))
3297 goto again;
dd41f596 3298 return p;
37e117c0 3299 }
dd41f596 3300 }
34f971f6 3301
d1ccc66d
IM
3302 /* The idle class should always have a runnable task: */
3303 BUG();
dd41f596 3304}
1da177e4 3305
dd41f596 3306/*
c259e01a 3307 * __schedule() is the main scheduler function.
edde96ea
PE
3308 *
3309 * The main means of driving the scheduler and thus entering this function are:
3310 *
3311 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3312 *
3313 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3314 * paths. For example, see arch/x86/entry_64.S.
3315 *
3316 * To drive preemption between tasks, the scheduler sets the flag in timer
3317 * interrupt handler scheduler_tick().
3318 *
3319 * 3. Wakeups don't really cause entry into schedule(). They add a
3320 * task to the run-queue and that's it.
3321 *
3322 * Now, if the new task added to the run-queue preempts the current
3323 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3324 * called on the nearest possible occasion:
3325 *
3326 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3327 *
3328 * - in syscall or exception context, at the next outmost
3329 * preempt_enable(). (this might be as soon as the wake_up()'s
3330 * spin_unlock()!)
3331 *
3332 * - in IRQ context, return from interrupt-handler to
3333 * preemptible context
3334 *
3335 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3336 * then at the next:
3337 *
3338 * - cond_resched() call
3339 * - explicit schedule() call
3340 * - return from syscall or exception to user-space
3341 * - return from interrupt-handler to user-space
bfd9b2b5 3342 *
b30f0e3f 3343 * WARNING: must be called with preemption disabled!
dd41f596 3344 */
499d7955 3345static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3346{
3347 struct task_struct *prev, *next;
67ca7bde 3348 unsigned long *switch_count;
d8ac8971 3349 struct rq_flags rf;
dd41f596 3350 struct rq *rq;
31656519 3351 int cpu;
dd41f596 3352
dd41f596
IM
3353 cpu = smp_processor_id();
3354 rq = cpu_rq(cpu);
dd41f596 3355 prev = rq->curr;
dd41f596 3356
dd41f596 3357 schedule_debug(prev);
1da177e4 3358
31656519 3359 if (sched_feat(HRTICK))
f333fdc9 3360 hrtick_clear(rq);
8f4d37ec 3361
46a5d164 3362 local_irq_disable();
bcbfdd01 3363 rcu_note_context_switch(preempt);
46a5d164 3364
e0acd0a6
ON
3365 /*
3366 * Make sure that signal_pending_state()->signal_pending() below
3367 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3368 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3369 *
3370 * The membarrier system call requires a full memory barrier
3371 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3372 */
8a8c69c3 3373 rq_lock(rq, &rf);
d89e588c 3374 smp_mb__after_spinlock();
1da177e4 3375
d1ccc66d
IM
3376 /* Promote REQ to ACT */
3377 rq->clock_update_flags <<= 1;
bce4dc80 3378 update_rq_clock(rq);
9edfbfed 3379
246d86b5 3380 switch_count = &prev->nivcsw;
fc13aeba 3381 if (!preempt && prev->state) {
21aa9af0 3382 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3383 prev->state = TASK_RUNNING;
21aa9af0 3384 } else {
bce4dc80 3385 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3386 prev->on_rq = 0;
3387
e33a9bba
TH
3388 if (prev->in_iowait) {
3389 atomic_inc(&rq->nr_iowait);
3390 delayacct_blkio_start();
3391 }
3392
21aa9af0 3393 /*
2acca55e
PZ
3394 * If a worker went to sleep, notify and ask workqueue
3395 * whether it wants to wake up a task to maintain
3396 * concurrency.
21aa9af0
TH
3397 */
3398 if (prev->flags & PF_WQ_WORKER) {
3399 struct task_struct *to_wakeup;
3400
9b7f6597 3401 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3402 if (to_wakeup)
d8ac8971 3403 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3404 }
21aa9af0 3405 }
dd41f596 3406 switch_count = &prev->nvcsw;
1da177e4
LT
3407 }
3408
d8ac8971 3409 next = pick_next_task(rq, prev, &rf);
f26f9aff 3410 clear_tsk_need_resched(prev);
f27dde8d 3411 clear_preempt_need_resched();
1da177e4 3412
1da177e4 3413 if (likely(prev != next)) {
1da177e4
LT
3414 rq->nr_switches++;
3415 rq->curr = next;
22e4ebb9
MD
3416 /*
3417 * The membarrier system call requires each architecture
3418 * to have a full memory barrier after updating
306e0604
MD
3419 * rq->curr, before returning to user-space.
3420 *
3421 * Here are the schemes providing that barrier on the
3422 * various architectures:
3423 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3424 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3425 * - finish_lock_switch() for weakly-ordered
3426 * architectures where spin_unlock is a full barrier,
3427 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3428 * is a RELEASE barrier),
22e4ebb9 3429 */
1da177e4
LT
3430 ++*switch_count;
3431
c73464b1 3432 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3433
3434 /* Also unlocks the rq: */
3435 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3436 } else {
cb42c9a3 3437 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3438 rq_unlock_irq(rq, &rf);
cbce1a68 3439 }
1da177e4 3440
e3fca9e7 3441 balance_callback(rq);
1da177e4 3442}
c259e01a 3443
9af6528e
PZ
3444void __noreturn do_task_dead(void)
3445{
3446 /*
3447 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3448 * when the following two conditions become true.
3449 * - There is race condition of mmap_sem (It is acquired by
3450 * exit_mm()), and
3451 * - SMI occurs before setting TASK_RUNINNG.
3452 * (or hypervisor of virtual machine switches to other guest)
3453 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3454 *
3455 * To avoid it, we have to wait for releasing tsk->pi_lock which
3456 * is held by try_to_wake_up()
3457 */
23a9b748
PM
3458 raw_spin_lock_irq(&current->pi_lock);
3459 raw_spin_unlock_irq(&current->pi_lock);
9af6528e 3460
d1ccc66d 3461 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3462 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3463
3464 /* Tell freezer to ignore us: */
3465 current->flags |= PF_NOFREEZE;
3466
9af6528e
PZ
3467 __schedule(false);
3468 BUG();
d1ccc66d
IM
3469
3470 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3471 for (;;)
d1ccc66d 3472 cpu_relax();
9af6528e
PZ
3473}
3474
9c40cef2
TG
3475static inline void sched_submit_work(struct task_struct *tsk)
3476{
3c7d5184 3477 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3478 return;
3479 /*
3480 * If we are going to sleep and we have plugged IO queued,
3481 * make sure to submit it to avoid deadlocks.
3482 */
3483 if (blk_needs_flush_plug(tsk))
3484 blk_schedule_flush_plug(tsk);
3485}
3486
722a9f92 3487asmlinkage __visible void __sched schedule(void)
c259e01a 3488{
9c40cef2
TG
3489 struct task_struct *tsk = current;
3490
3491 sched_submit_work(tsk);
bfd9b2b5 3492 do {
b30f0e3f 3493 preempt_disable();
fc13aeba 3494 __schedule(false);
b30f0e3f 3495 sched_preempt_enable_no_resched();
bfd9b2b5 3496 } while (need_resched());
c259e01a 3497}
1da177e4
LT
3498EXPORT_SYMBOL(schedule);
3499
8663effb
SRV
3500/*
3501 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3502 * state (have scheduled out non-voluntarily) by making sure that all
3503 * tasks have either left the run queue or have gone into user space.
3504 * As idle tasks do not do either, they must not ever be preempted
3505 * (schedule out non-voluntarily).
3506 *
3507 * schedule_idle() is similar to schedule_preempt_disable() except that it
3508 * never enables preemption because it does not call sched_submit_work().
3509 */
3510void __sched schedule_idle(void)
3511{
3512 /*
3513 * As this skips calling sched_submit_work(), which the idle task does
3514 * regardless because that function is a nop when the task is in a
3515 * TASK_RUNNING state, make sure this isn't used someplace that the
3516 * current task can be in any other state. Note, idle is always in the
3517 * TASK_RUNNING state.
3518 */
3519 WARN_ON_ONCE(current->state);
3520 do {
3521 __schedule(false);
3522 } while (need_resched());
3523}
3524
91d1aa43 3525#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3526asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3527{
3528 /*
3529 * If we come here after a random call to set_need_resched(),
3530 * or we have been woken up remotely but the IPI has not yet arrived,
3531 * we haven't yet exited the RCU idle mode. Do it here manually until
3532 * we find a better solution.
7cc78f8f
AL
3533 *
3534 * NB: There are buggy callers of this function. Ideally we
c467ea76 3535 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3536 * too frequently to make sense yet.
20ab65e3 3537 */
7cc78f8f 3538 enum ctx_state prev_state = exception_enter();
20ab65e3 3539 schedule();
7cc78f8f 3540 exception_exit(prev_state);
20ab65e3
FW
3541}
3542#endif
3543
c5491ea7
TG
3544/**
3545 * schedule_preempt_disabled - called with preemption disabled
3546 *
3547 * Returns with preemption disabled. Note: preempt_count must be 1
3548 */
3549void __sched schedule_preempt_disabled(void)
3550{
ba74c144 3551 sched_preempt_enable_no_resched();
c5491ea7
TG
3552 schedule();
3553 preempt_disable();
3554}
3555
06b1f808 3556static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3557{
3558 do {
47252cfb
SR
3559 /*
3560 * Because the function tracer can trace preempt_count_sub()
3561 * and it also uses preempt_enable/disable_notrace(), if
3562 * NEED_RESCHED is set, the preempt_enable_notrace() called
3563 * by the function tracer will call this function again and
3564 * cause infinite recursion.
3565 *
3566 * Preemption must be disabled here before the function
3567 * tracer can trace. Break up preempt_disable() into two
3568 * calls. One to disable preemption without fear of being
3569 * traced. The other to still record the preemption latency,
3570 * which can also be traced by the function tracer.
3571 */
499d7955 3572 preempt_disable_notrace();
47252cfb 3573 preempt_latency_start(1);
fc13aeba 3574 __schedule(true);
47252cfb 3575 preempt_latency_stop(1);
499d7955 3576 preempt_enable_no_resched_notrace();
a18b5d01
FW
3577
3578 /*
3579 * Check again in case we missed a preemption opportunity
3580 * between schedule and now.
3581 */
a18b5d01
FW
3582 } while (need_resched());
3583}
3584
1da177e4
LT
3585#ifdef CONFIG_PREEMPT
3586/*
2ed6e34f 3587 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3588 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3589 * occur there and call schedule directly.
3590 */
722a9f92 3591asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3592{
1da177e4
LT
3593 /*
3594 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3595 * we do not want to preempt the current task. Just return..
1da177e4 3596 */
fbb00b56 3597 if (likely(!preemptible()))
1da177e4
LT
3598 return;
3599
a18b5d01 3600 preempt_schedule_common();
1da177e4 3601}
376e2424 3602NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3603EXPORT_SYMBOL(preempt_schedule);
009f60e2 3604
009f60e2 3605/**
4eaca0a8 3606 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3607 *
3608 * The tracing infrastructure uses preempt_enable_notrace to prevent
3609 * recursion and tracing preempt enabling caused by the tracing
3610 * infrastructure itself. But as tracing can happen in areas coming
3611 * from userspace or just about to enter userspace, a preempt enable
3612 * can occur before user_exit() is called. This will cause the scheduler
3613 * to be called when the system is still in usermode.
3614 *
3615 * To prevent this, the preempt_enable_notrace will use this function
3616 * instead of preempt_schedule() to exit user context if needed before
3617 * calling the scheduler.
3618 */
4eaca0a8 3619asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3620{
3621 enum ctx_state prev_ctx;
3622
3623 if (likely(!preemptible()))
3624 return;
3625
3626 do {
47252cfb
SR
3627 /*
3628 * Because the function tracer can trace preempt_count_sub()
3629 * and it also uses preempt_enable/disable_notrace(), if
3630 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631 * by the function tracer will call this function again and
3632 * cause infinite recursion.
3633 *
3634 * Preemption must be disabled here before the function
3635 * tracer can trace. Break up preempt_disable() into two
3636 * calls. One to disable preemption without fear of being
3637 * traced. The other to still record the preemption latency,
3638 * which can also be traced by the function tracer.
3639 */
3d8f74dd 3640 preempt_disable_notrace();
47252cfb 3641 preempt_latency_start(1);
009f60e2
ON
3642 /*
3643 * Needs preempt disabled in case user_exit() is traced
3644 * and the tracer calls preempt_enable_notrace() causing
3645 * an infinite recursion.
3646 */
3647 prev_ctx = exception_enter();
fc13aeba 3648 __schedule(true);
009f60e2
ON
3649 exception_exit(prev_ctx);
3650
47252cfb 3651 preempt_latency_stop(1);
3d8f74dd 3652 preempt_enable_no_resched_notrace();
009f60e2
ON
3653 } while (need_resched());
3654}
4eaca0a8 3655EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3656
32e475d7 3657#endif /* CONFIG_PREEMPT */
1da177e4
LT
3658
3659/*
2ed6e34f 3660 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3661 * off of irq context.
3662 * Note, that this is called and return with irqs disabled. This will
3663 * protect us against recursive calling from irq.
3664 */
722a9f92 3665asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3666{
b22366cd 3667 enum ctx_state prev_state;
6478d880 3668
2ed6e34f 3669 /* Catch callers which need to be fixed */
f27dde8d 3670 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3671
b22366cd
FW
3672 prev_state = exception_enter();
3673
3a5c359a 3674 do {
3d8f74dd 3675 preempt_disable();
3a5c359a 3676 local_irq_enable();
fc13aeba 3677 __schedule(true);
3a5c359a 3678 local_irq_disable();
3d8f74dd 3679 sched_preempt_enable_no_resched();
5ed0cec0 3680 } while (need_resched());
b22366cd
FW
3681
3682 exception_exit(prev_state);
1da177e4
LT
3683}
3684
ac6424b9 3685int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3686 void *key)
1da177e4 3687{
63859d4f 3688 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3689}
1da177e4
LT
3690EXPORT_SYMBOL(default_wake_function);
3691
b29739f9
IM
3692#ifdef CONFIG_RT_MUTEXES
3693
acd58620
PZ
3694static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3695{
3696 if (pi_task)
3697 prio = min(prio, pi_task->prio);
3698
3699 return prio;
3700}
3701
3702static inline int rt_effective_prio(struct task_struct *p, int prio)
3703{
3704 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3705
3706 return __rt_effective_prio(pi_task, prio);
3707}
3708
b29739f9
IM
3709/*
3710 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3711 * @p: task to boost
3712 * @pi_task: donor task
b29739f9
IM
3713 *
3714 * This function changes the 'effective' priority of a task. It does
3715 * not touch ->normal_prio like __setscheduler().
3716 *
c365c292
TG
3717 * Used by the rt_mutex code to implement priority inheritance
3718 * logic. Call site only calls if the priority of the task changed.
b29739f9 3719 */
acd58620 3720void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3721{
acd58620 3722 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3723 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3724 const struct sched_class *prev_class;
eb580751
PZ
3725 struct rq_flags rf;
3726 struct rq *rq;
b29739f9 3727
acd58620
PZ
3728 /* XXX used to be waiter->prio, not waiter->task->prio */
3729 prio = __rt_effective_prio(pi_task, p->normal_prio);
3730
3731 /*
3732 * If nothing changed; bail early.
3733 */
3734 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3735 return;
b29739f9 3736
eb580751 3737 rq = __task_rq_lock(p, &rf);
80f5c1b8 3738 update_rq_clock(rq);
acd58620
PZ
3739 /*
3740 * Set under pi_lock && rq->lock, such that the value can be used under
3741 * either lock.
3742 *
3743 * Note that there is loads of tricky to make this pointer cache work
3744 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3745 * ensure a task is de-boosted (pi_task is set to NULL) before the
3746 * task is allowed to run again (and can exit). This ensures the pointer
3747 * points to a blocked task -- which guaratees the task is present.
3748 */
3749 p->pi_top_task = pi_task;
3750
3751 /*
3752 * For FIFO/RR we only need to set prio, if that matches we're done.
3753 */
3754 if (prio == p->prio && !dl_prio(prio))
3755 goto out_unlock;
b29739f9 3756
1c4dd99b
TG
3757 /*
3758 * Idle task boosting is a nono in general. There is one
3759 * exception, when PREEMPT_RT and NOHZ is active:
3760 *
3761 * The idle task calls get_next_timer_interrupt() and holds
3762 * the timer wheel base->lock on the CPU and another CPU wants
3763 * to access the timer (probably to cancel it). We can safely
3764 * ignore the boosting request, as the idle CPU runs this code
3765 * with interrupts disabled and will complete the lock
3766 * protected section without being interrupted. So there is no
3767 * real need to boost.
3768 */
3769 if (unlikely(p == rq->idle)) {
3770 WARN_ON(p != rq->curr);
3771 WARN_ON(p->pi_blocked_on);
3772 goto out_unlock;
3773 }
3774
b91473ff 3775 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3776 oldprio = p->prio;
ff77e468
PZ
3777
3778 if (oldprio == prio)
3779 queue_flag &= ~DEQUEUE_MOVE;
3780
83ab0aa0 3781 prev_class = p->sched_class;
da0c1e65 3782 queued = task_on_rq_queued(p);
051a1d1a 3783 running = task_current(rq, p);
da0c1e65 3784 if (queued)
ff77e468 3785 dequeue_task(rq, p, queue_flag);
0e1f3483 3786 if (running)
f3cd1c4e 3787 put_prev_task(rq, p);
dd41f596 3788
2d3d891d
DF
3789 /*
3790 * Boosting condition are:
3791 * 1. -rt task is running and holds mutex A
3792 * --> -dl task blocks on mutex A
3793 *
3794 * 2. -dl task is running and holds mutex A
3795 * --> -dl task blocks on mutex A and could preempt the
3796 * running task
3797 */
3798 if (dl_prio(prio)) {
466af29b
ON
3799 if (!dl_prio(p->normal_prio) ||
3800 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3801 p->dl.dl_boosted = 1;
ff77e468 3802 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3803 } else
3804 p->dl.dl_boosted = 0;
aab03e05 3805 p->sched_class = &dl_sched_class;
2d3d891d
DF
3806 } else if (rt_prio(prio)) {
3807 if (dl_prio(oldprio))
3808 p->dl.dl_boosted = 0;
3809 if (oldprio < prio)
ff77e468 3810 queue_flag |= ENQUEUE_HEAD;
dd41f596 3811 p->sched_class = &rt_sched_class;
2d3d891d
DF
3812 } else {
3813 if (dl_prio(oldprio))
3814 p->dl.dl_boosted = 0;
746db944
BS
3815 if (rt_prio(oldprio))
3816 p->rt.timeout = 0;
dd41f596 3817 p->sched_class = &fair_sched_class;
2d3d891d 3818 }
dd41f596 3819
b29739f9
IM
3820 p->prio = prio;
3821
da0c1e65 3822 if (queued)
ff77e468 3823 enqueue_task(rq, p, queue_flag);
a399d233 3824 if (running)
b2bf6c31 3825 set_curr_task(rq, p);
cb469845 3826
da7a735e 3827 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3828out_unlock:
d1ccc66d
IM
3829 /* Avoid rq from going away on us: */
3830 preempt_disable();
eb580751 3831 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3832
3833 balance_callback(rq);
3834 preempt_enable();
b29739f9 3835}
acd58620
PZ
3836#else
3837static inline int rt_effective_prio(struct task_struct *p, int prio)
3838{
3839 return prio;
3840}
b29739f9 3841#endif
d50dde5a 3842
36c8b586 3843void set_user_nice(struct task_struct *p, long nice)
1da177e4 3844{
49bd21ef
PZ
3845 bool queued, running;
3846 int old_prio, delta;
eb580751 3847 struct rq_flags rf;
70b97a7f 3848 struct rq *rq;
1da177e4 3849
75e45d51 3850 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3851 return;
3852 /*
3853 * We have to be careful, if called from sys_setpriority(),
3854 * the task might be in the middle of scheduling on another CPU.
3855 */
eb580751 3856 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3857 update_rq_clock(rq);
3858
1da177e4
LT
3859 /*
3860 * The RT priorities are set via sched_setscheduler(), but we still
3861 * allow the 'normal' nice value to be set - but as expected
3862 * it wont have any effect on scheduling until the task is
aab03e05 3863 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3864 */
aab03e05 3865 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3866 p->static_prio = NICE_TO_PRIO(nice);
3867 goto out_unlock;
3868 }
da0c1e65 3869 queued = task_on_rq_queued(p);
49bd21ef 3870 running = task_current(rq, p);
da0c1e65 3871 if (queued)
7a57f32a 3872 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3873 if (running)
3874 put_prev_task(rq, p);
1da177e4 3875
1da177e4 3876 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3877 set_load_weight(p, true);
b29739f9
IM
3878 old_prio = p->prio;
3879 p->prio = effective_prio(p);
3880 delta = p->prio - old_prio;
1da177e4 3881
da0c1e65 3882 if (queued) {
7134b3e9 3883 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3884 /*
d5f9f942
AM
3885 * If the task increased its priority or is running and
3886 * lowered its priority, then reschedule its CPU:
1da177e4 3887 */
d5f9f942 3888 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3889 resched_curr(rq);
1da177e4 3890 }
49bd21ef
PZ
3891 if (running)
3892 set_curr_task(rq, p);
1da177e4 3893out_unlock:
eb580751 3894 task_rq_unlock(rq, p, &rf);
1da177e4 3895}
1da177e4
LT
3896EXPORT_SYMBOL(set_user_nice);
3897
e43379f1
MM
3898/*
3899 * can_nice - check if a task can reduce its nice value
3900 * @p: task
3901 * @nice: nice value
3902 */
36c8b586 3903int can_nice(const struct task_struct *p, const int nice)
e43379f1 3904{
d1ccc66d 3905 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3906 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3907
78d7d407 3908 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3909 capable(CAP_SYS_NICE));
3910}
3911
1da177e4
LT
3912#ifdef __ARCH_WANT_SYS_NICE
3913
3914/*
3915 * sys_nice - change the priority of the current process.
3916 * @increment: priority increment
3917 *
3918 * sys_setpriority is a more generic, but much slower function that
3919 * does similar things.
3920 */
5add95d4 3921SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3922{
48f24c4d 3923 long nice, retval;
1da177e4
LT
3924
3925 /*
3926 * Setpriority might change our priority at the same moment.
3927 * We don't have to worry. Conceptually one call occurs first
3928 * and we have a single winner.
3929 */
a9467fa3 3930 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3931 nice = task_nice(current) + increment;
1da177e4 3932
a9467fa3 3933 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3934 if (increment < 0 && !can_nice(current, nice))
3935 return -EPERM;
3936
1da177e4
LT
3937 retval = security_task_setnice(current, nice);
3938 if (retval)
3939 return retval;
3940
3941 set_user_nice(current, nice);
3942 return 0;
3943}
3944
3945#endif
3946
3947/**
3948 * task_prio - return the priority value of a given task.
3949 * @p: the task in question.
3950 *
e69f6186 3951 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3952 * RT tasks are offset by -200. Normal tasks are centered
3953 * around 0, value goes from -16 to +15.
3954 */
36c8b586 3955int task_prio(const struct task_struct *p)
1da177e4
LT
3956{
3957 return p->prio - MAX_RT_PRIO;
3958}
3959
1da177e4 3960/**
d1ccc66d 3961 * idle_cpu - is a given CPU idle currently?
1da177e4 3962 * @cpu: the processor in question.
e69f6186
YB
3963 *
3964 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3965 */
3966int idle_cpu(int cpu)
3967{
908a3283
TG
3968 struct rq *rq = cpu_rq(cpu);
3969
3970 if (rq->curr != rq->idle)
3971 return 0;
3972
3973 if (rq->nr_running)
3974 return 0;
3975
3976#ifdef CONFIG_SMP
3977 if (!llist_empty(&rq->wake_list))
3978 return 0;
3979#endif
3980
3981 return 1;
1da177e4
LT
3982}
3983
1da177e4 3984/**
d1ccc66d 3985 * idle_task - return the idle task for a given CPU.
1da177e4 3986 * @cpu: the processor in question.
e69f6186 3987 *
d1ccc66d 3988 * Return: The idle task for the CPU @cpu.
1da177e4 3989 */
36c8b586 3990struct task_struct *idle_task(int cpu)
1da177e4
LT
3991{
3992 return cpu_rq(cpu)->idle;
3993}
3994
3995/**
3996 * find_process_by_pid - find a process with a matching PID value.
3997 * @pid: the pid in question.
e69f6186
YB
3998 *
3999 * The task of @pid, if found. %NULL otherwise.
1da177e4 4000 */
a9957449 4001static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4002{
228ebcbe 4003 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4004}
4005
c13db6b1
SR
4006/*
4007 * sched_setparam() passes in -1 for its policy, to let the functions
4008 * it calls know not to change it.
4009 */
4010#define SETPARAM_POLICY -1
4011
c365c292
TG
4012static void __setscheduler_params(struct task_struct *p,
4013 const struct sched_attr *attr)
1da177e4 4014{
d50dde5a
DF
4015 int policy = attr->sched_policy;
4016
c13db6b1 4017 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4018 policy = p->policy;
4019
1da177e4 4020 p->policy = policy;
d50dde5a 4021
aab03e05
DF
4022 if (dl_policy(policy))
4023 __setparam_dl(p, attr);
39fd8fd2 4024 else if (fair_policy(policy))
d50dde5a
DF
4025 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4026
39fd8fd2
PZ
4027 /*
4028 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4029 * !rt_policy. Always setting this ensures that things like
4030 * getparam()/getattr() don't report silly values for !rt tasks.
4031 */
4032 p->rt_priority = attr->sched_priority;
383afd09 4033 p->normal_prio = normal_prio(p);
9059393e 4034 set_load_weight(p, true);
c365c292 4035}
39fd8fd2 4036
c365c292
TG
4037/* Actually do priority change: must hold pi & rq lock. */
4038static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4039 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4040{
4041 __setscheduler_params(p, attr);
d50dde5a 4042
383afd09 4043 /*
0782e63b
TG
4044 * Keep a potential priority boosting if called from
4045 * sched_setscheduler().
383afd09 4046 */
acd58620 4047 p->prio = normal_prio(p);
0782e63b 4048 if (keep_boost)
acd58620 4049 p->prio = rt_effective_prio(p, p->prio);
383afd09 4050
aab03e05
DF
4051 if (dl_prio(p->prio))
4052 p->sched_class = &dl_sched_class;
4053 else if (rt_prio(p->prio))
ffd44db5
PZ
4054 p->sched_class = &rt_sched_class;
4055 else
4056 p->sched_class = &fair_sched_class;
1da177e4 4057}
aab03e05 4058
c69e8d9c 4059/*
d1ccc66d 4060 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4061 */
4062static bool check_same_owner(struct task_struct *p)
4063{
4064 const struct cred *cred = current_cred(), *pcred;
4065 bool match;
4066
4067 rcu_read_lock();
4068 pcred = __task_cred(p);
9c806aa0
EB
4069 match = (uid_eq(cred->euid, pcred->euid) ||
4070 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4071 rcu_read_unlock();
4072 return match;
4073}
4074
d50dde5a
DF
4075static int __sched_setscheduler(struct task_struct *p,
4076 const struct sched_attr *attr,
dbc7f069 4077 bool user, bool pi)
1da177e4 4078{
383afd09
SR
4079 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4080 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4081 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4082 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4083 const struct sched_class *prev_class;
eb580751 4084 struct rq_flags rf;
ca94c442 4085 int reset_on_fork;
7a57f32a 4086 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4087 struct rq *rq;
1da177e4 4088
896bbb25
SRV
4089 /* The pi code expects interrupts enabled */
4090 BUG_ON(pi && in_interrupt());
1da177e4 4091recheck:
d1ccc66d 4092 /* Double check policy once rq lock held: */
ca94c442
LP
4093 if (policy < 0) {
4094 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4095 policy = oldpolicy = p->policy;
ca94c442 4096 } else {
7479f3c9 4097 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4098
20f9cd2a 4099 if (!valid_policy(policy))
ca94c442
LP
4100 return -EINVAL;
4101 }
4102
794a56eb 4103 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4104 return -EINVAL;
4105
1da177e4
LT
4106 /*
4107 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4108 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4109 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4110 */
0bb040a4 4111 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4112 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4113 return -EINVAL;
aab03e05
DF
4114 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4115 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4116 return -EINVAL;
4117
37e4ab3f
OC
4118 /*
4119 * Allow unprivileged RT tasks to decrease priority:
4120 */
961ccddd 4121 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4122 if (fair_policy(policy)) {
d0ea0268 4123 if (attr->sched_nice < task_nice(p) &&
eaad4513 4124 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4125 return -EPERM;
4126 }
4127
e05606d3 4128 if (rt_policy(policy)) {
a44702e8
ON
4129 unsigned long rlim_rtprio =
4130 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4131
d1ccc66d 4132 /* Can't set/change the rt policy: */
8dc3e909
ON
4133 if (policy != p->policy && !rlim_rtprio)
4134 return -EPERM;
4135
d1ccc66d 4136 /* Can't increase priority: */
d50dde5a
DF
4137 if (attr->sched_priority > p->rt_priority &&
4138 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4139 return -EPERM;
4140 }
c02aa73b 4141
d44753b8
JL
4142 /*
4143 * Can't set/change SCHED_DEADLINE policy at all for now
4144 * (safest behavior); in the future we would like to allow
4145 * unprivileged DL tasks to increase their relative deadline
4146 * or reduce their runtime (both ways reducing utilization)
4147 */
4148 if (dl_policy(policy))
4149 return -EPERM;
4150
dd41f596 4151 /*
c02aa73b
DH
4152 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4153 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4154 */
20f9cd2a 4155 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4156 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4157 return -EPERM;
4158 }
5fe1d75f 4159
d1ccc66d 4160 /* Can't change other user's priorities: */
c69e8d9c 4161 if (!check_same_owner(p))
37e4ab3f 4162 return -EPERM;
ca94c442 4163
d1ccc66d 4164 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4165 if (p->sched_reset_on_fork && !reset_on_fork)
4166 return -EPERM;
37e4ab3f 4167 }
1da177e4 4168
725aad24 4169 if (user) {
794a56eb
JL
4170 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4171 return -EINVAL;
4172
b0ae1981 4173 retval = security_task_setscheduler(p);
725aad24
JF
4174 if (retval)
4175 return retval;
4176 }
4177
b29739f9 4178 /*
d1ccc66d 4179 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4180 * changing the priority of the task:
0122ec5b 4181 *
25985edc 4182 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4183 * runqueue lock must be held.
4184 */
eb580751 4185 rq = task_rq_lock(p, &rf);
80f5c1b8 4186 update_rq_clock(rq);
dc61b1d6 4187
34f971f6 4188 /*
d1ccc66d 4189 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4190 */
4191 if (p == rq->stop) {
eb580751 4192 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4193 return -EINVAL;
4194 }
4195
a51e9198 4196 /*
d6b1e911
TG
4197 * If not changing anything there's no need to proceed further,
4198 * but store a possible modification of reset_on_fork.
a51e9198 4199 */
d50dde5a 4200 if (unlikely(policy == p->policy)) {
d0ea0268 4201 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4202 goto change;
4203 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4204 goto change;
75381608 4205 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4206 goto change;
d50dde5a 4207
d6b1e911 4208 p->sched_reset_on_fork = reset_on_fork;
eb580751 4209 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4210 return 0;
4211 }
d50dde5a 4212change:
a51e9198 4213
dc61b1d6 4214 if (user) {
332ac17e 4215#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4216 /*
4217 * Do not allow realtime tasks into groups that have no runtime
4218 * assigned.
4219 */
4220 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4221 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4222 !task_group_is_autogroup(task_group(p))) {
eb580751 4223 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4224 return -EPERM;
4225 }
dc61b1d6 4226#endif
332ac17e 4227#ifdef CONFIG_SMP
794a56eb
JL
4228 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4229 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4230 cpumask_t *span = rq->rd->span;
332ac17e
DF
4231
4232 /*
4233 * Don't allow tasks with an affinity mask smaller than
4234 * the entire root_domain to become SCHED_DEADLINE. We
4235 * will also fail if there's no bandwidth available.
4236 */
e4099a5e
PZ
4237 if (!cpumask_subset(span, &p->cpus_allowed) ||
4238 rq->rd->dl_bw.bw == 0) {
eb580751 4239 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4240 return -EPERM;
4241 }
4242 }
4243#endif
4244 }
dc61b1d6 4245
d1ccc66d 4246 /* Re-check policy now with rq lock held: */
1da177e4
LT
4247 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4248 policy = oldpolicy = -1;
eb580751 4249 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4250 goto recheck;
4251 }
332ac17e
DF
4252
4253 /*
4254 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4255 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4256 * is available.
4257 */
06a76fe0 4258 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4259 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4260 return -EBUSY;
4261 }
4262
c365c292
TG
4263 p->sched_reset_on_fork = reset_on_fork;
4264 oldprio = p->prio;
4265
dbc7f069
PZ
4266 if (pi) {
4267 /*
4268 * Take priority boosted tasks into account. If the new
4269 * effective priority is unchanged, we just store the new
4270 * normal parameters and do not touch the scheduler class and
4271 * the runqueue. This will be done when the task deboost
4272 * itself.
4273 */
acd58620 4274 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4275 if (new_effective_prio == oldprio)
4276 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4277 }
4278
da0c1e65 4279 queued = task_on_rq_queued(p);
051a1d1a 4280 running = task_current(rq, p);
da0c1e65 4281 if (queued)
ff77e468 4282 dequeue_task(rq, p, queue_flags);
0e1f3483 4283 if (running)
f3cd1c4e 4284 put_prev_task(rq, p);
f6b53205 4285
83ab0aa0 4286 prev_class = p->sched_class;
dbc7f069 4287 __setscheduler(rq, p, attr, pi);
f6b53205 4288
da0c1e65 4289 if (queued) {
81a44c54
TG
4290 /*
4291 * We enqueue to tail when the priority of a task is
4292 * increased (user space view).
4293 */
ff77e468
PZ
4294 if (oldprio < p->prio)
4295 queue_flags |= ENQUEUE_HEAD;
1de64443 4296
ff77e468 4297 enqueue_task(rq, p, queue_flags);
81a44c54 4298 }
a399d233 4299 if (running)
b2bf6c31 4300 set_curr_task(rq, p);
cb469845 4301
da7a735e 4302 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4303
4304 /* Avoid rq from going away on us: */
4305 preempt_disable();
eb580751 4306 task_rq_unlock(rq, p, &rf);
b29739f9 4307
dbc7f069
PZ
4308 if (pi)
4309 rt_mutex_adjust_pi(p);
95e02ca9 4310
d1ccc66d 4311 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4312 balance_callback(rq);
4313 preempt_enable();
95e02ca9 4314
1da177e4
LT
4315 return 0;
4316}
961ccddd 4317
7479f3c9
PZ
4318static int _sched_setscheduler(struct task_struct *p, int policy,
4319 const struct sched_param *param, bool check)
4320{
4321 struct sched_attr attr = {
4322 .sched_policy = policy,
4323 .sched_priority = param->sched_priority,
4324 .sched_nice = PRIO_TO_NICE(p->static_prio),
4325 };
4326
c13db6b1
SR
4327 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4328 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4329 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4330 policy &= ~SCHED_RESET_ON_FORK;
4331 attr.sched_policy = policy;
4332 }
4333
dbc7f069 4334 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4335}
961ccddd
RR
4336/**
4337 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4338 * @p: the task in question.
4339 * @policy: new policy.
4340 * @param: structure containing the new RT priority.
4341 *
e69f6186
YB
4342 * Return: 0 on success. An error code otherwise.
4343 *
961ccddd
RR
4344 * NOTE that the task may be already dead.
4345 */
4346int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4347 const struct sched_param *param)
961ccddd 4348{
7479f3c9 4349 return _sched_setscheduler(p, policy, param, true);
961ccddd 4350}
1da177e4
LT
4351EXPORT_SYMBOL_GPL(sched_setscheduler);
4352
d50dde5a
DF
4353int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4354{
dbc7f069 4355 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4356}
4357EXPORT_SYMBOL_GPL(sched_setattr);
4358
794a56eb
JL
4359int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4360{
4361 return __sched_setscheduler(p, attr, false, true);
4362}
4363
961ccddd
RR
4364/**
4365 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4366 * @p: the task in question.
4367 * @policy: new policy.
4368 * @param: structure containing the new RT priority.
4369 *
4370 * Just like sched_setscheduler, only don't bother checking if the
4371 * current context has permission. For example, this is needed in
4372 * stop_machine(): we create temporary high priority worker threads,
4373 * but our caller might not have that capability.
e69f6186
YB
4374 *
4375 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4376 */
4377int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4378 const struct sched_param *param)
961ccddd 4379{
7479f3c9 4380 return _sched_setscheduler(p, policy, param, false);
961ccddd 4381}
84778472 4382EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4383
95cdf3b7
IM
4384static int
4385do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4386{
1da177e4
LT
4387 struct sched_param lparam;
4388 struct task_struct *p;
36c8b586 4389 int retval;
1da177e4
LT
4390
4391 if (!param || pid < 0)
4392 return -EINVAL;
4393 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4394 return -EFAULT;
5fe1d75f
ON
4395
4396 rcu_read_lock();
4397 retval = -ESRCH;
1da177e4 4398 p = find_process_by_pid(pid);
5fe1d75f
ON
4399 if (p != NULL)
4400 retval = sched_setscheduler(p, policy, &lparam);
4401 rcu_read_unlock();
36c8b586 4402
1da177e4
LT
4403 return retval;
4404}
4405
d50dde5a
DF
4406/*
4407 * Mimics kernel/events/core.c perf_copy_attr().
4408 */
d1ccc66d 4409static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4410{
4411 u32 size;
4412 int ret;
4413
4414 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4415 return -EFAULT;
4416
d1ccc66d 4417 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4418 memset(attr, 0, sizeof(*attr));
4419
4420 ret = get_user(size, &uattr->size);
4421 if (ret)
4422 return ret;
4423
d1ccc66d
IM
4424 /* Bail out on silly large: */
4425 if (size > PAGE_SIZE)
d50dde5a
DF
4426 goto err_size;
4427
d1ccc66d
IM
4428 /* ABI compatibility quirk: */
4429 if (!size)
d50dde5a
DF
4430 size = SCHED_ATTR_SIZE_VER0;
4431
4432 if (size < SCHED_ATTR_SIZE_VER0)
4433 goto err_size;
4434
4435 /*
4436 * If we're handed a bigger struct than we know of,
4437 * ensure all the unknown bits are 0 - i.e. new
4438 * user-space does not rely on any kernel feature
4439 * extensions we dont know about yet.
4440 */
4441 if (size > sizeof(*attr)) {
4442 unsigned char __user *addr;
4443 unsigned char __user *end;
4444 unsigned char val;
4445
4446 addr = (void __user *)uattr + sizeof(*attr);
4447 end = (void __user *)uattr + size;
4448
4449 for (; addr < end; addr++) {
4450 ret = get_user(val, addr);
4451 if (ret)
4452 return ret;
4453 if (val)
4454 goto err_size;
4455 }
4456 size = sizeof(*attr);
4457 }
4458
4459 ret = copy_from_user(attr, uattr, size);
4460 if (ret)
4461 return -EFAULT;
4462
4463 /*
d1ccc66d 4464 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4465 * to be strict and return an error on out-of-bounds values?
4466 */
75e45d51 4467 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4468
e78c7bca 4469 return 0;
d50dde5a
DF
4470
4471err_size:
4472 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4473 return -E2BIG;
d50dde5a
DF
4474}
4475
1da177e4
LT
4476/**
4477 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4478 * @pid: the pid in question.
4479 * @policy: new policy.
4480 * @param: structure containing the new RT priority.
e69f6186
YB
4481 *
4482 * Return: 0 on success. An error code otherwise.
1da177e4 4483 */
d1ccc66d 4484SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4485{
c21761f1
JB
4486 if (policy < 0)
4487 return -EINVAL;
4488
1da177e4
LT
4489 return do_sched_setscheduler(pid, policy, param);
4490}
4491
4492/**
4493 * sys_sched_setparam - set/change the RT priority of a thread
4494 * @pid: the pid in question.
4495 * @param: structure containing the new RT priority.
e69f6186
YB
4496 *
4497 * Return: 0 on success. An error code otherwise.
1da177e4 4498 */
5add95d4 4499SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4500{
c13db6b1 4501 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4502}
4503
d50dde5a
DF
4504/**
4505 * sys_sched_setattr - same as above, but with extended sched_attr
4506 * @pid: the pid in question.
5778fccf 4507 * @uattr: structure containing the extended parameters.
db66d756 4508 * @flags: for future extension.
d50dde5a 4509 */
6d35ab48
PZ
4510SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4511 unsigned int, flags)
d50dde5a
DF
4512{
4513 struct sched_attr attr;
4514 struct task_struct *p;
4515 int retval;
4516
6d35ab48 4517 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4518 return -EINVAL;
4519
143cf23d
MK
4520 retval = sched_copy_attr(uattr, &attr);
4521 if (retval)
4522 return retval;
d50dde5a 4523
b14ed2c2 4524 if ((int)attr.sched_policy < 0)
dbdb2275 4525 return -EINVAL;
d50dde5a
DF
4526
4527 rcu_read_lock();
4528 retval = -ESRCH;
4529 p = find_process_by_pid(pid);
4530 if (p != NULL)
4531 retval = sched_setattr(p, &attr);
4532 rcu_read_unlock();
4533
4534 return retval;
4535}
4536
1da177e4
LT
4537/**
4538 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4539 * @pid: the pid in question.
e69f6186
YB
4540 *
4541 * Return: On success, the policy of the thread. Otherwise, a negative error
4542 * code.
1da177e4 4543 */
5add95d4 4544SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4545{
36c8b586 4546 struct task_struct *p;
3a5c359a 4547 int retval;
1da177e4
LT
4548
4549 if (pid < 0)
3a5c359a 4550 return -EINVAL;
1da177e4
LT
4551
4552 retval = -ESRCH;
5fe85be0 4553 rcu_read_lock();
1da177e4
LT
4554 p = find_process_by_pid(pid);
4555 if (p) {
4556 retval = security_task_getscheduler(p);
4557 if (!retval)
ca94c442
LP
4558 retval = p->policy
4559 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4560 }
5fe85be0 4561 rcu_read_unlock();
1da177e4
LT
4562 return retval;
4563}
4564
4565/**
ca94c442 4566 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4567 * @pid: the pid in question.
4568 * @param: structure containing the RT priority.
e69f6186
YB
4569 *
4570 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4571 * code.
1da177e4 4572 */
5add95d4 4573SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4574{
ce5f7f82 4575 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4576 struct task_struct *p;
3a5c359a 4577 int retval;
1da177e4
LT
4578
4579 if (!param || pid < 0)
3a5c359a 4580 return -EINVAL;
1da177e4 4581
5fe85be0 4582 rcu_read_lock();
1da177e4
LT
4583 p = find_process_by_pid(pid);
4584 retval = -ESRCH;
4585 if (!p)
4586 goto out_unlock;
4587
4588 retval = security_task_getscheduler(p);
4589 if (retval)
4590 goto out_unlock;
4591
ce5f7f82
PZ
4592 if (task_has_rt_policy(p))
4593 lp.sched_priority = p->rt_priority;
5fe85be0 4594 rcu_read_unlock();
1da177e4
LT
4595
4596 /*
4597 * This one might sleep, we cannot do it with a spinlock held ...
4598 */
4599 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4600
1da177e4
LT
4601 return retval;
4602
4603out_unlock:
5fe85be0 4604 rcu_read_unlock();
1da177e4
LT
4605 return retval;
4606}
4607
d50dde5a
DF
4608static int sched_read_attr(struct sched_attr __user *uattr,
4609 struct sched_attr *attr,
4610 unsigned int usize)
4611{
4612 int ret;
4613
4614 if (!access_ok(VERIFY_WRITE, uattr, usize))
4615 return -EFAULT;
4616
4617 /*
4618 * If we're handed a smaller struct than we know of,
4619 * ensure all the unknown bits are 0 - i.e. old
4620 * user-space does not get uncomplete information.
4621 */
4622 if (usize < sizeof(*attr)) {
4623 unsigned char *addr;
4624 unsigned char *end;
4625
4626 addr = (void *)attr + usize;
4627 end = (void *)attr + sizeof(*attr);
4628
4629 for (; addr < end; addr++) {
4630 if (*addr)
22400674 4631 return -EFBIG;
d50dde5a
DF
4632 }
4633
4634 attr->size = usize;
4635 }
4636
4efbc454 4637 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4638 if (ret)
4639 return -EFAULT;
4640
22400674 4641 return 0;
d50dde5a
DF
4642}
4643
4644/**
aab03e05 4645 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4646 * @pid: the pid in question.
5778fccf 4647 * @uattr: structure containing the extended parameters.
d50dde5a 4648 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4649 * @flags: for future extension.
d50dde5a 4650 */
6d35ab48
PZ
4651SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4652 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4653{
4654 struct sched_attr attr = {
4655 .size = sizeof(struct sched_attr),
4656 };
4657 struct task_struct *p;
4658 int retval;
4659
4660 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4661 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4662 return -EINVAL;
4663
4664 rcu_read_lock();
4665 p = find_process_by_pid(pid);
4666 retval = -ESRCH;
4667 if (!p)
4668 goto out_unlock;
4669
4670 retval = security_task_getscheduler(p);
4671 if (retval)
4672 goto out_unlock;
4673
4674 attr.sched_policy = p->policy;
7479f3c9
PZ
4675 if (p->sched_reset_on_fork)
4676 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4677 if (task_has_dl_policy(p))
4678 __getparam_dl(p, &attr);
4679 else if (task_has_rt_policy(p))
d50dde5a
DF
4680 attr.sched_priority = p->rt_priority;
4681 else
d0ea0268 4682 attr.sched_nice = task_nice(p);
d50dde5a
DF
4683
4684 rcu_read_unlock();
4685
4686 retval = sched_read_attr(uattr, &attr, size);
4687 return retval;
4688
4689out_unlock:
4690 rcu_read_unlock();
4691 return retval;
4692}
4693
96f874e2 4694long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4695{
5a16f3d3 4696 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4697 struct task_struct *p;
4698 int retval;
1da177e4 4699
23f5d142 4700 rcu_read_lock();
1da177e4
LT
4701
4702 p = find_process_by_pid(pid);
4703 if (!p) {
23f5d142 4704 rcu_read_unlock();
1da177e4
LT
4705 return -ESRCH;
4706 }
4707
23f5d142 4708 /* Prevent p going away */
1da177e4 4709 get_task_struct(p);
23f5d142 4710 rcu_read_unlock();
1da177e4 4711
14a40ffc
TH
4712 if (p->flags & PF_NO_SETAFFINITY) {
4713 retval = -EINVAL;
4714 goto out_put_task;
4715 }
5a16f3d3
RR
4716 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4717 retval = -ENOMEM;
4718 goto out_put_task;
4719 }
4720 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4721 retval = -ENOMEM;
4722 goto out_free_cpus_allowed;
4723 }
1da177e4 4724 retval = -EPERM;
4c44aaaf
EB
4725 if (!check_same_owner(p)) {
4726 rcu_read_lock();
4727 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4728 rcu_read_unlock();
16303ab2 4729 goto out_free_new_mask;
4c44aaaf
EB
4730 }
4731 rcu_read_unlock();
4732 }
1da177e4 4733
b0ae1981 4734 retval = security_task_setscheduler(p);
e7834f8f 4735 if (retval)
16303ab2 4736 goto out_free_new_mask;
e7834f8f 4737
e4099a5e
PZ
4738
4739 cpuset_cpus_allowed(p, cpus_allowed);
4740 cpumask_and(new_mask, in_mask, cpus_allowed);
4741
332ac17e
DF
4742 /*
4743 * Since bandwidth control happens on root_domain basis,
4744 * if admission test is enabled, we only admit -deadline
4745 * tasks allowed to run on all the CPUs in the task's
4746 * root_domain.
4747 */
4748#ifdef CONFIG_SMP
f1e3a093
KT
4749 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4750 rcu_read_lock();
4751 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4752 retval = -EBUSY;
f1e3a093 4753 rcu_read_unlock();
16303ab2 4754 goto out_free_new_mask;
332ac17e 4755 }
f1e3a093 4756 rcu_read_unlock();
332ac17e
DF
4757 }
4758#endif
49246274 4759again:
25834c73 4760 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4761
8707d8b8 4762 if (!retval) {
5a16f3d3
RR
4763 cpuset_cpus_allowed(p, cpus_allowed);
4764 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4765 /*
4766 * We must have raced with a concurrent cpuset
4767 * update. Just reset the cpus_allowed to the
4768 * cpuset's cpus_allowed
4769 */
5a16f3d3 4770 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4771 goto again;
4772 }
4773 }
16303ab2 4774out_free_new_mask:
5a16f3d3
RR
4775 free_cpumask_var(new_mask);
4776out_free_cpus_allowed:
4777 free_cpumask_var(cpus_allowed);
4778out_put_task:
1da177e4 4779 put_task_struct(p);
1da177e4
LT
4780 return retval;
4781}
4782
4783static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4784 struct cpumask *new_mask)
1da177e4 4785{
96f874e2
RR
4786 if (len < cpumask_size())
4787 cpumask_clear(new_mask);
4788 else if (len > cpumask_size())
4789 len = cpumask_size();
4790
1da177e4
LT
4791 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4792}
4793
4794/**
d1ccc66d 4795 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4796 * @pid: pid of the process
4797 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4798 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4799 *
4800 * Return: 0 on success. An error code otherwise.
1da177e4 4801 */
5add95d4
HC
4802SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4803 unsigned long __user *, user_mask_ptr)
1da177e4 4804{
5a16f3d3 4805 cpumask_var_t new_mask;
1da177e4
LT
4806 int retval;
4807
5a16f3d3
RR
4808 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4809 return -ENOMEM;
1da177e4 4810
5a16f3d3
RR
4811 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4812 if (retval == 0)
4813 retval = sched_setaffinity(pid, new_mask);
4814 free_cpumask_var(new_mask);
4815 return retval;
1da177e4
LT
4816}
4817
96f874e2 4818long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4819{
36c8b586 4820 struct task_struct *p;
31605683 4821 unsigned long flags;
1da177e4 4822 int retval;
1da177e4 4823
23f5d142 4824 rcu_read_lock();
1da177e4
LT
4825
4826 retval = -ESRCH;
4827 p = find_process_by_pid(pid);
4828 if (!p)
4829 goto out_unlock;
4830
e7834f8f
DQ
4831 retval = security_task_getscheduler(p);
4832 if (retval)
4833 goto out_unlock;
4834
013fdb80 4835 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4836 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4837 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4838
4839out_unlock:
23f5d142 4840 rcu_read_unlock();
1da177e4 4841
9531b62f 4842 return retval;
1da177e4
LT
4843}
4844
4845/**
d1ccc66d 4846 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4847 * @pid: pid of the process
4848 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4849 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4850 *
599b4840
ZW
4851 * Return: size of CPU mask copied to user_mask_ptr on success. An
4852 * error code otherwise.
1da177e4 4853 */
5add95d4
HC
4854SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4855 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4856{
4857 int ret;
f17c8607 4858 cpumask_var_t mask;
1da177e4 4859
84fba5ec 4860 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4861 return -EINVAL;
4862 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4863 return -EINVAL;
4864
f17c8607
RR
4865 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4866 return -ENOMEM;
1da177e4 4867
f17c8607
RR
4868 ret = sched_getaffinity(pid, mask);
4869 if (ret == 0) {
4de373a1 4870 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
4871
4872 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4873 ret = -EFAULT;
4874 else
cd3d8031 4875 ret = retlen;
f17c8607
RR
4876 }
4877 free_cpumask_var(mask);
1da177e4 4878
f17c8607 4879 return ret;
1da177e4
LT
4880}
4881
4882/**
4883 * sys_sched_yield - yield the current processor to other threads.
4884 *
dd41f596
IM
4885 * This function yields the current CPU to other tasks. If there are no
4886 * other threads running on this CPU then this function will return.
e69f6186
YB
4887 *
4888 * Return: 0.
1da177e4 4889 */
5add95d4 4890SYSCALL_DEFINE0(sched_yield)
1da177e4 4891{
8a8c69c3
PZ
4892 struct rq_flags rf;
4893 struct rq *rq;
4894
4895 local_irq_disable();
4896 rq = this_rq();
4897 rq_lock(rq, &rf);
1da177e4 4898
ae92882e 4899 schedstat_inc(rq->yld_count);
4530d7ab 4900 current->sched_class->yield_task(rq);
1da177e4
LT
4901
4902 /*
4903 * Since we are going to call schedule() anyway, there's
4904 * no need to preempt or enable interrupts:
4905 */
8a8c69c3
PZ
4906 preempt_disable();
4907 rq_unlock(rq, &rf);
ba74c144 4908 sched_preempt_enable_no_resched();
1da177e4
LT
4909
4910 schedule();
4911
4912 return 0;
4913}
4914
35a773a0 4915#ifndef CONFIG_PREEMPT
02b67cc3 4916int __sched _cond_resched(void)
1da177e4 4917{
fe32d3cd 4918 if (should_resched(0)) {
a18b5d01 4919 preempt_schedule_common();
1da177e4
LT
4920 return 1;
4921 }
f79c3ad6 4922 rcu_all_qs();
1da177e4
LT
4923 return 0;
4924}
02b67cc3 4925EXPORT_SYMBOL(_cond_resched);
35a773a0 4926#endif
1da177e4
LT
4927
4928/*
613afbf8 4929 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4930 * call schedule, and on return reacquire the lock.
4931 *
41a2d6cf 4932 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4933 * operations here to prevent schedule() from being called twice (once via
4934 * spin_unlock(), once by hand).
4935 */
613afbf8 4936int __cond_resched_lock(spinlock_t *lock)
1da177e4 4937{
fe32d3cd 4938 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4939 int ret = 0;
4940
f607c668
PZ
4941 lockdep_assert_held(lock);
4942
4a81e832 4943 if (spin_needbreak(lock) || resched) {
1da177e4 4944 spin_unlock(lock);
d86ee480 4945 if (resched)
a18b5d01 4946 preempt_schedule_common();
95c354fe
NP
4947 else
4948 cpu_relax();
6df3cecb 4949 ret = 1;
1da177e4 4950 spin_lock(lock);
1da177e4 4951 }
6df3cecb 4952 return ret;
1da177e4 4953}
613afbf8 4954EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4955
613afbf8 4956int __sched __cond_resched_softirq(void)
1da177e4
LT
4957{
4958 BUG_ON(!in_softirq());
4959
fe32d3cd 4960 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4961 local_bh_enable();
a18b5d01 4962 preempt_schedule_common();
1da177e4
LT
4963 local_bh_disable();
4964 return 1;
4965 }
4966 return 0;
4967}
613afbf8 4968EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4969
1da177e4
LT
4970/**
4971 * yield - yield the current processor to other threads.
4972 *
8e3fabfd
PZ
4973 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4974 *
4975 * The scheduler is at all times free to pick the calling task as the most
4976 * eligible task to run, if removing the yield() call from your code breaks
4977 * it, its already broken.
4978 *
4979 * Typical broken usage is:
4980 *
4981 * while (!event)
d1ccc66d 4982 * yield();
8e3fabfd
PZ
4983 *
4984 * where one assumes that yield() will let 'the other' process run that will
4985 * make event true. If the current task is a SCHED_FIFO task that will never
4986 * happen. Never use yield() as a progress guarantee!!
4987 *
4988 * If you want to use yield() to wait for something, use wait_event().
4989 * If you want to use yield() to be 'nice' for others, use cond_resched().
4990 * If you still want to use yield(), do not!
1da177e4
LT
4991 */
4992void __sched yield(void)
4993{
4994 set_current_state(TASK_RUNNING);
4995 sys_sched_yield();
4996}
1da177e4
LT
4997EXPORT_SYMBOL(yield);
4998
d95f4122
MG
4999/**
5000 * yield_to - yield the current processor to another thread in
5001 * your thread group, or accelerate that thread toward the
5002 * processor it's on.
16addf95
RD
5003 * @p: target task
5004 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5005 *
5006 * It's the caller's job to ensure that the target task struct
5007 * can't go away on us before we can do any checks.
5008 *
e69f6186 5009 * Return:
7b270f60
PZ
5010 * true (>0) if we indeed boosted the target task.
5011 * false (0) if we failed to boost the target.
5012 * -ESRCH if there's no task to yield to.
d95f4122 5013 */
fa93384f 5014int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5015{
5016 struct task_struct *curr = current;
5017 struct rq *rq, *p_rq;
5018 unsigned long flags;
c3c18640 5019 int yielded = 0;
d95f4122
MG
5020
5021 local_irq_save(flags);
5022 rq = this_rq();
5023
5024again:
5025 p_rq = task_rq(p);
7b270f60
PZ
5026 /*
5027 * If we're the only runnable task on the rq and target rq also
5028 * has only one task, there's absolutely no point in yielding.
5029 */
5030 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5031 yielded = -ESRCH;
5032 goto out_irq;
5033 }
5034
d95f4122 5035 double_rq_lock(rq, p_rq);
39e24d8f 5036 if (task_rq(p) != p_rq) {
d95f4122
MG
5037 double_rq_unlock(rq, p_rq);
5038 goto again;
5039 }
5040
5041 if (!curr->sched_class->yield_to_task)
7b270f60 5042 goto out_unlock;
d95f4122
MG
5043
5044 if (curr->sched_class != p->sched_class)
7b270f60 5045 goto out_unlock;
d95f4122
MG
5046
5047 if (task_running(p_rq, p) || p->state)
7b270f60 5048 goto out_unlock;
d95f4122
MG
5049
5050 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5051 if (yielded) {
ae92882e 5052 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5053 /*
5054 * Make p's CPU reschedule; pick_next_entity takes care of
5055 * fairness.
5056 */
5057 if (preempt && rq != p_rq)
8875125e 5058 resched_curr(p_rq);
6d1cafd8 5059 }
d95f4122 5060
7b270f60 5061out_unlock:
d95f4122 5062 double_rq_unlock(rq, p_rq);
7b270f60 5063out_irq:
d95f4122
MG
5064 local_irq_restore(flags);
5065
7b270f60 5066 if (yielded > 0)
d95f4122
MG
5067 schedule();
5068
5069 return yielded;
5070}
5071EXPORT_SYMBOL_GPL(yield_to);
5072
10ab5643
TH
5073int io_schedule_prepare(void)
5074{
5075 int old_iowait = current->in_iowait;
5076
5077 current->in_iowait = 1;
5078 blk_schedule_flush_plug(current);
5079
5080 return old_iowait;
5081}
5082
5083void io_schedule_finish(int token)
5084{
5085 current->in_iowait = token;
5086}
5087
1da177e4 5088/*
41a2d6cf 5089 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5090 * that process accounting knows that this is a task in IO wait state.
1da177e4 5091 */
1da177e4
LT
5092long __sched io_schedule_timeout(long timeout)
5093{
10ab5643 5094 int token;
1da177e4
LT
5095 long ret;
5096
10ab5643 5097 token = io_schedule_prepare();
1da177e4 5098 ret = schedule_timeout(timeout);
10ab5643 5099 io_schedule_finish(token);
9cff8ade 5100
1da177e4
LT
5101 return ret;
5102}
9cff8ade 5103EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5104
10ab5643
TH
5105void io_schedule(void)
5106{
5107 int token;
5108
5109 token = io_schedule_prepare();
5110 schedule();
5111 io_schedule_finish(token);
5112}
5113EXPORT_SYMBOL(io_schedule);
5114
1da177e4
LT
5115/**
5116 * sys_sched_get_priority_max - return maximum RT priority.
5117 * @policy: scheduling class.
5118 *
e69f6186
YB
5119 * Return: On success, this syscall returns the maximum
5120 * rt_priority that can be used by a given scheduling class.
5121 * On failure, a negative error code is returned.
1da177e4 5122 */
5add95d4 5123SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5124{
5125 int ret = -EINVAL;
5126
5127 switch (policy) {
5128 case SCHED_FIFO:
5129 case SCHED_RR:
5130 ret = MAX_USER_RT_PRIO-1;
5131 break;
aab03e05 5132 case SCHED_DEADLINE:
1da177e4 5133 case SCHED_NORMAL:
b0a9499c 5134 case SCHED_BATCH:
dd41f596 5135 case SCHED_IDLE:
1da177e4
LT
5136 ret = 0;
5137 break;
5138 }
5139 return ret;
5140}
5141
5142/**
5143 * sys_sched_get_priority_min - return minimum RT priority.
5144 * @policy: scheduling class.
5145 *
e69f6186
YB
5146 * Return: On success, this syscall returns the minimum
5147 * rt_priority that can be used by a given scheduling class.
5148 * On failure, a negative error code is returned.
1da177e4 5149 */
5add95d4 5150SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5151{
5152 int ret = -EINVAL;
5153
5154 switch (policy) {
5155 case SCHED_FIFO:
5156 case SCHED_RR:
5157 ret = 1;
5158 break;
aab03e05 5159 case SCHED_DEADLINE:
1da177e4 5160 case SCHED_NORMAL:
b0a9499c 5161 case SCHED_BATCH:
dd41f596 5162 case SCHED_IDLE:
1da177e4
LT
5163 ret = 0;
5164 }
5165 return ret;
5166}
5167
abca5fc5 5168static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5169{
36c8b586 5170 struct task_struct *p;
a4ec24b4 5171 unsigned int time_slice;
eb580751 5172 struct rq_flags rf;
dba091b9 5173 struct rq *rq;
3a5c359a 5174 int retval;
1da177e4
LT
5175
5176 if (pid < 0)
3a5c359a 5177 return -EINVAL;
1da177e4
LT
5178
5179 retval = -ESRCH;
1a551ae7 5180 rcu_read_lock();
1da177e4
LT
5181 p = find_process_by_pid(pid);
5182 if (!p)
5183 goto out_unlock;
5184
5185 retval = security_task_getscheduler(p);
5186 if (retval)
5187 goto out_unlock;
5188
eb580751 5189 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5190 time_slice = 0;
5191 if (p->sched_class->get_rr_interval)
5192 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5193 task_rq_unlock(rq, p, &rf);
a4ec24b4 5194
1a551ae7 5195 rcu_read_unlock();
abca5fc5
AV
5196 jiffies_to_timespec64(time_slice, t);
5197 return 0;
3a5c359a 5198
1da177e4 5199out_unlock:
1a551ae7 5200 rcu_read_unlock();
1da177e4
LT
5201 return retval;
5202}
5203
2064a5ab
RD
5204/**
5205 * sys_sched_rr_get_interval - return the default timeslice of a process.
5206 * @pid: pid of the process.
5207 * @interval: userspace pointer to the timeslice value.
5208 *
5209 * this syscall writes the default timeslice value of a given process
5210 * into the user-space timespec buffer. A value of '0' means infinity.
5211 *
5212 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5213 * an error code.
5214 */
abca5fc5
AV
5215SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5216 struct timespec __user *, interval)
5217{
5218 struct timespec64 t;
5219 int retval = sched_rr_get_interval(pid, &t);
5220
5221 if (retval == 0)
5222 retval = put_timespec64(&t, interval);
5223
5224 return retval;
5225}
5226
5227#ifdef CONFIG_COMPAT
5228COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5229 compat_pid_t, pid,
5230 struct compat_timespec __user *, interval)
5231{
5232 struct timespec64 t;
5233 int retval = sched_rr_get_interval(pid, &t);
5234
5235 if (retval == 0)
5236 retval = compat_put_timespec64(&t, interval);
5237 return retval;
5238}
5239#endif
5240
82a1fcb9 5241void sched_show_task(struct task_struct *p)
1da177e4 5242{
1da177e4 5243 unsigned long free = 0;
4e79752c 5244 int ppid;
c930b2c0 5245
38200502
TH
5246 if (!try_get_task_stack(p))
5247 return;
20435d84
XX
5248
5249 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5250
5251 if (p->state == TASK_RUNNING)
3df0fc5b 5252 printk(KERN_CONT " running task ");
1da177e4 5253#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5254 free = stack_not_used(p);
1da177e4 5255#endif
a90e984c 5256 ppid = 0;
4e79752c 5257 rcu_read_lock();
a90e984c
ON
5258 if (pid_alive(p))
5259 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5260 rcu_read_unlock();
3df0fc5b 5261 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5262 task_pid_nr(p), ppid,
aa47b7e0 5263 (unsigned long)task_thread_info(p)->flags);
1da177e4 5264
3d1cb205 5265 print_worker_info(KERN_INFO, p);
5fb5e6de 5266 show_stack(p, NULL);
38200502 5267 put_task_stack(p);
1da177e4 5268}
0032f4e8 5269EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5270
5d68cc95
PZ
5271static inline bool
5272state_filter_match(unsigned long state_filter, struct task_struct *p)
5273{
5274 /* no filter, everything matches */
5275 if (!state_filter)
5276 return true;
5277
5278 /* filter, but doesn't match */
5279 if (!(p->state & state_filter))
5280 return false;
5281
5282 /*
5283 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5284 * TASK_KILLABLE).
5285 */
5286 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5287 return false;
5288
5289 return true;
5290}
5291
5292
e59e2ae2 5293void show_state_filter(unsigned long state_filter)
1da177e4 5294{
36c8b586 5295 struct task_struct *g, *p;
1da177e4 5296
4bd77321 5297#if BITS_PER_LONG == 32
3df0fc5b
PZ
5298 printk(KERN_INFO
5299 " task PC stack pid father\n");
1da177e4 5300#else
3df0fc5b
PZ
5301 printk(KERN_INFO
5302 " task PC stack pid father\n");
1da177e4 5303#endif
510f5acc 5304 rcu_read_lock();
5d07f420 5305 for_each_process_thread(g, p) {
1da177e4
LT
5306 /*
5307 * reset the NMI-timeout, listing all files on a slow
25985edc 5308 * console might take a lot of time:
57675cb9
AR
5309 * Also, reset softlockup watchdogs on all CPUs, because
5310 * another CPU might be blocked waiting for us to process
5311 * an IPI.
1da177e4
LT
5312 */
5313 touch_nmi_watchdog();
57675cb9 5314 touch_all_softlockup_watchdogs();
5d68cc95 5315 if (state_filter_match(state_filter, p))
82a1fcb9 5316 sched_show_task(p);
5d07f420 5317 }
1da177e4 5318
dd41f596 5319#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5320 if (!state_filter)
5321 sysrq_sched_debug_show();
dd41f596 5322#endif
510f5acc 5323 rcu_read_unlock();
e59e2ae2
IM
5324 /*
5325 * Only show locks if all tasks are dumped:
5326 */
93335a21 5327 if (!state_filter)
e59e2ae2 5328 debug_show_all_locks();
1da177e4
LT
5329}
5330
f340c0d1
IM
5331/**
5332 * init_idle - set up an idle thread for a given CPU
5333 * @idle: task in question
d1ccc66d 5334 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5335 *
5336 * NOTE: this function does not set the idle thread's NEED_RESCHED
5337 * flag, to make booting more robust.
5338 */
0db0628d 5339void init_idle(struct task_struct *idle, int cpu)
1da177e4 5340{
70b97a7f 5341 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5342 unsigned long flags;
5343
25834c73
PZ
5344 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5345 raw_spin_lock(&rq->lock);
5cbd54ef 5346
5e1576ed 5347 __sched_fork(0, idle);
06b83b5f 5348 idle->state = TASK_RUNNING;
dd41f596 5349 idle->se.exec_start = sched_clock();
c1de45ca 5350 idle->flags |= PF_IDLE;
dd41f596 5351
e1b77c92
MR
5352 kasan_unpoison_task_stack(idle);
5353
de9b8f5d
PZ
5354#ifdef CONFIG_SMP
5355 /*
5356 * Its possible that init_idle() gets called multiple times on a task,
5357 * in that case do_set_cpus_allowed() will not do the right thing.
5358 *
5359 * And since this is boot we can forgo the serialization.
5360 */
5361 set_cpus_allowed_common(idle, cpumask_of(cpu));
5362#endif
6506cf6c
PZ
5363 /*
5364 * We're having a chicken and egg problem, even though we are
d1ccc66d 5365 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5366 * lockdep check in task_group() will fail.
5367 *
5368 * Similar case to sched_fork(). / Alternatively we could
5369 * use task_rq_lock() here and obtain the other rq->lock.
5370 *
5371 * Silence PROVE_RCU
5372 */
5373 rcu_read_lock();
dd41f596 5374 __set_task_cpu(idle, cpu);
6506cf6c 5375 rcu_read_unlock();
1da177e4 5376
1da177e4 5377 rq->curr = rq->idle = idle;
da0c1e65 5378 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5379#ifdef CONFIG_SMP
3ca7a440 5380 idle->on_cpu = 1;
4866cde0 5381#endif
25834c73
PZ
5382 raw_spin_unlock(&rq->lock);
5383 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5384
5385 /* Set the preempt count _outside_ the spinlocks! */
01028747 5386 init_idle_preempt_count(idle, cpu);
55cd5340 5387
dd41f596
IM
5388 /*
5389 * The idle tasks have their own, simple scheduling class:
5390 */
5391 idle->sched_class = &idle_sched_class;
868baf07 5392 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5393 vtime_init_idle(idle, cpu);
de9b8f5d 5394#ifdef CONFIG_SMP
f1c6f1a7
CE
5395 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5396#endif
19978ca6
IM
5397}
5398
e1d4eeec
NP
5399#ifdef CONFIG_SMP
5400
f82f8042
JL
5401int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5402 const struct cpumask *trial)
5403{
06a76fe0 5404 int ret = 1;
f82f8042 5405
bb2bc55a
MG
5406 if (!cpumask_weight(cur))
5407 return ret;
5408
06a76fe0 5409 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5410
5411 return ret;
5412}
5413
7f51412a
JL
5414int task_can_attach(struct task_struct *p,
5415 const struct cpumask *cs_cpus_allowed)
5416{
5417 int ret = 0;
5418
5419 /*
5420 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5421 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5422 * affinity and isolating such threads by their set of
5423 * allowed nodes is unnecessary. Thus, cpusets are not
5424 * applicable for such threads. This prevents checking for
5425 * success of set_cpus_allowed_ptr() on all attached tasks
5426 * before cpus_allowed may be changed.
5427 */
5428 if (p->flags & PF_NO_SETAFFINITY) {
5429 ret = -EINVAL;
5430 goto out;
5431 }
5432
7f51412a 5433 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5434 cs_cpus_allowed))
5435 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5436
7f51412a
JL
5437out:
5438 return ret;
5439}
5440
f2cb1360 5441bool sched_smp_initialized __read_mostly;
e26fbffd 5442
e6628d5b
MG
5443#ifdef CONFIG_NUMA_BALANCING
5444/* Migrate current task p to target_cpu */
5445int migrate_task_to(struct task_struct *p, int target_cpu)
5446{
5447 struct migration_arg arg = { p, target_cpu };
5448 int curr_cpu = task_cpu(p);
5449
5450 if (curr_cpu == target_cpu)
5451 return 0;
5452
0c98d344 5453 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5454 return -EINVAL;
5455
5456 /* TODO: This is not properly updating schedstats */
5457
286549dc 5458 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5459 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5460}
0ec8aa00
PZ
5461
5462/*
5463 * Requeue a task on a given node and accurately track the number of NUMA
5464 * tasks on the runqueues
5465 */
5466void sched_setnuma(struct task_struct *p, int nid)
5467{
da0c1e65 5468 bool queued, running;
eb580751
PZ
5469 struct rq_flags rf;
5470 struct rq *rq;
0ec8aa00 5471
eb580751 5472 rq = task_rq_lock(p, &rf);
da0c1e65 5473 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5474 running = task_current(rq, p);
5475
da0c1e65 5476 if (queued)
1de64443 5477 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5478 if (running)
f3cd1c4e 5479 put_prev_task(rq, p);
0ec8aa00
PZ
5480
5481 p->numa_preferred_nid = nid;
0ec8aa00 5482
da0c1e65 5483 if (queued)
7134b3e9 5484 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5485 if (running)
b2bf6c31 5486 set_curr_task(rq, p);
eb580751 5487 task_rq_unlock(rq, p, &rf);
0ec8aa00 5488}
5cc389bc 5489#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5490
1da177e4 5491#ifdef CONFIG_HOTPLUG_CPU
054b9108 5492/*
d1ccc66d 5493 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5494 * offline.
054b9108 5495 */
48c5ccae 5496void idle_task_exit(void)
1da177e4 5497{
48c5ccae 5498 struct mm_struct *mm = current->active_mm;
e76bd8d9 5499
48c5ccae 5500 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5501
a53efe5f 5502 if (mm != &init_mm) {
252d2a41 5503 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5504 finish_arch_post_lock_switch();
5505 }
48c5ccae 5506 mmdrop(mm);
1da177e4
LT
5507}
5508
5509/*
5d180232
PZ
5510 * Since this CPU is going 'away' for a while, fold any nr_active delta
5511 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5512 * nr_active count is stable. We need to take the teardown thread which
5513 * is calling this into account, so we hand in adjust = 1 to the load
5514 * calculation.
5d180232
PZ
5515 *
5516 * Also see the comment "Global load-average calculations".
1da177e4 5517 */
5d180232 5518static void calc_load_migrate(struct rq *rq)
1da177e4 5519{
d60585c5 5520 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5521 if (delta)
5522 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5523}
5524
3f1d2a31
PZ
5525static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5526{
5527}
5528
5529static const struct sched_class fake_sched_class = {
5530 .put_prev_task = put_prev_task_fake,
5531};
5532
5533static struct task_struct fake_task = {
5534 /*
5535 * Avoid pull_{rt,dl}_task()
5536 */
5537 .prio = MAX_PRIO + 1,
5538 .sched_class = &fake_sched_class,
5539};
5540
48f24c4d 5541/*
48c5ccae
PZ
5542 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5543 * try_to_wake_up()->select_task_rq().
5544 *
5545 * Called with rq->lock held even though we'er in stop_machine() and
5546 * there's no concurrency possible, we hold the required locks anyway
5547 * because of lock validation efforts.
1da177e4 5548 */
8a8c69c3 5549static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5550{
5e16bbc2 5551 struct rq *rq = dead_rq;
48c5ccae 5552 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5553 struct rq_flags orf = *rf;
48c5ccae 5554 int dest_cpu;
1da177e4
LT
5555
5556 /*
48c5ccae
PZ
5557 * Fudge the rq selection such that the below task selection loop
5558 * doesn't get stuck on the currently eligible stop task.
5559 *
5560 * We're currently inside stop_machine() and the rq is either stuck
5561 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5562 * either way we should never end up calling schedule() until we're
5563 * done here.
1da177e4 5564 */
48c5ccae 5565 rq->stop = NULL;
48f24c4d 5566
77bd3970
FW
5567 /*
5568 * put_prev_task() and pick_next_task() sched
5569 * class method both need to have an up-to-date
5570 * value of rq->clock[_task]
5571 */
5572 update_rq_clock(rq);
5573
5e16bbc2 5574 for (;;) {
48c5ccae
PZ
5575 /*
5576 * There's this thread running, bail when that's the only
d1ccc66d 5577 * remaining thread:
48c5ccae
PZ
5578 */
5579 if (rq->nr_running == 1)
dd41f596 5580 break;
48c5ccae 5581
cbce1a68 5582 /*
d1ccc66d 5583 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5584 */
8a8c69c3 5585 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5586 BUG_ON(!next);
5b713a3d 5587 put_prev_task(rq, next);
e692ab53 5588
5473e0cc
WL
5589 /*
5590 * Rules for changing task_struct::cpus_allowed are holding
5591 * both pi_lock and rq->lock, such that holding either
5592 * stabilizes the mask.
5593 *
5594 * Drop rq->lock is not quite as disastrous as it usually is
5595 * because !cpu_active at this point, which means load-balance
5596 * will not interfere. Also, stop-machine.
5597 */
8a8c69c3 5598 rq_unlock(rq, rf);
5473e0cc 5599 raw_spin_lock(&next->pi_lock);
8a8c69c3 5600 rq_relock(rq, rf);
5473e0cc
WL
5601
5602 /*
5603 * Since we're inside stop-machine, _nothing_ should have
5604 * changed the task, WARN if weird stuff happened, because in
5605 * that case the above rq->lock drop is a fail too.
5606 */
5607 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5608 raw_spin_unlock(&next->pi_lock);
5609 continue;
5610 }
5611
48c5ccae 5612 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5613 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5614 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5615 if (rq != dead_rq) {
8a8c69c3 5616 rq_unlock(rq, rf);
5e16bbc2 5617 rq = dead_rq;
8a8c69c3
PZ
5618 *rf = orf;
5619 rq_relock(rq, rf);
5e16bbc2 5620 }
5473e0cc 5621 raw_spin_unlock(&next->pi_lock);
1da177e4 5622 }
dce48a84 5623
48c5ccae 5624 rq->stop = stop;
dce48a84 5625}
1da177e4
LT
5626#endif /* CONFIG_HOTPLUG_CPU */
5627
f2cb1360 5628void set_rq_online(struct rq *rq)
1f11eb6a
GH
5629{
5630 if (!rq->online) {
5631 const struct sched_class *class;
5632
c6c4927b 5633 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5634 rq->online = 1;
5635
5636 for_each_class(class) {
5637 if (class->rq_online)
5638 class->rq_online(rq);
5639 }
5640 }
5641}
5642
f2cb1360 5643void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5644{
5645 if (rq->online) {
5646 const struct sched_class *class;
5647
5648 for_each_class(class) {
5649 if (class->rq_offline)
5650 class->rq_offline(rq);
5651 }
5652
c6c4927b 5653 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5654 rq->online = 0;
5655 }
5656}
5657
9cf7243d 5658static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5659{
969c7921 5660 struct rq *rq = cpu_rq(cpu);
1da177e4 5661
a803f026
CM
5662 rq->age_stamp = sched_clock_cpu(cpu);
5663}
5664
d1ccc66d
IM
5665/*
5666 * used to mark begin/end of suspend/resume:
5667 */
5668static int num_cpus_frozen;
d35be8ba 5669
1da177e4 5670/*
3a101d05
TH
5671 * Update cpusets according to cpu_active mask. If cpusets are
5672 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5673 * around partition_sched_domains().
d35be8ba
SB
5674 *
5675 * If we come here as part of a suspend/resume, don't touch cpusets because we
5676 * want to restore it back to its original state upon resume anyway.
1da177e4 5677 */
40190a78 5678static void cpuset_cpu_active(void)
e761b772 5679{
40190a78 5680 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5681 /*
5682 * num_cpus_frozen tracks how many CPUs are involved in suspend
5683 * resume sequence. As long as this is not the last online
5684 * operation in the resume sequence, just build a single sched
5685 * domain, ignoring cpusets.
5686 */
50e76632
PZ
5687 partition_sched_domains(1, NULL, NULL);
5688 if (--num_cpus_frozen)
135fb3e1 5689 return;
d35be8ba
SB
5690 /*
5691 * This is the last CPU online operation. So fall through and
5692 * restore the original sched domains by considering the
5693 * cpuset configurations.
5694 */
50e76632 5695 cpuset_force_rebuild();
3a101d05 5696 }
30e03acd 5697 cpuset_update_active_cpus();
3a101d05 5698}
e761b772 5699
40190a78 5700static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5701{
40190a78 5702 if (!cpuhp_tasks_frozen) {
06a76fe0 5703 if (dl_cpu_busy(cpu))
135fb3e1 5704 return -EBUSY;
30e03acd 5705 cpuset_update_active_cpus();
135fb3e1 5706 } else {
d35be8ba
SB
5707 num_cpus_frozen++;
5708 partition_sched_domains(1, NULL, NULL);
e761b772 5709 }
135fb3e1 5710 return 0;
e761b772 5711}
e761b772 5712
40190a78 5713int sched_cpu_activate(unsigned int cpu)
135fb3e1 5714{
7d976699 5715 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5716 struct rq_flags rf;
7d976699 5717
40190a78 5718 set_cpu_active(cpu, true);
135fb3e1 5719
40190a78 5720 if (sched_smp_initialized) {
135fb3e1 5721 sched_domains_numa_masks_set(cpu);
40190a78 5722 cpuset_cpu_active();
e761b772 5723 }
7d976699
TG
5724
5725 /*
5726 * Put the rq online, if not already. This happens:
5727 *
5728 * 1) In the early boot process, because we build the real domains
d1ccc66d 5729 * after all CPUs have been brought up.
7d976699
TG
5730 *
5731 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5732 * domains.
5733 */
8a8c69c3 5734 rq_lock_irqsave(rq, &rf);
7d976699
TG
5735 if (rq->rd) {
5736 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5737 set_rq_online(rq);
5738 }
8a8c69c3 5739 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5740
5741 update_max_interval();
5742
40190a78 5743 return 0;
135fb3e1
TG
5744}
5745
40190a78 5746int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5747{
135fb3e1
TG
5748 int ret;
5749
40190a78 5750 set_cpu_active(cpu, false);
b2454caa
PZ
5751 /*
5752 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5753 * users of this state to go away such that all new such users will
5754 * observe it.
5755 *
b2454caa
PZ
5756 * Do sync before park smpboot threads to take care the rcu boost case.
5757 */
d7d34d5e 5758 synchronize_rcu_mult(call_rcu, call_rcu_sched);
40190a78
TG
5759
5760 if (!sched_smp_initialized)
5761 return 0;
5762
5763 ret = cpuset_cpu_inactive(cpu);
5764 if (ret) {
5765 set_cpu_active(cpu, true);
5766 return ret;
135fb3e1 5767 }
40190a78
TG
5768 sched_domains_numa_masks_clear(cpu);
5769 return 0;
135fb3e1
TG
5770}
5771
94baf7a5
TG
5772static void sched_rq_cpu_starting(unsigned int cpu)
5773{
5774 struct rq *rq = cpu_rq(cpu);
5775
5776 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5777 update_max_interval();
5778}
5779
135fb3e1
TG
5780int sched_cpu_starting(unsigned int cpu)
5781{
5782 set_cpu_rq_start_time(cpu);
94baf7a5 5783 sched_rq_cpu_starting(cpu);
135fb3e1 5784 return 0;
e761b772 5785}
e761b772 5786
f2785ddb
TG
5787#ifdef CONFIG_HOTPLUG_CPU
5788int sched_cpu_dying(unsigned int cpu)
5789{
5790 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5791 struct rq_flags rf;
f2785ddb
TG
5792
5793 /* Handle pending wakeups and then migrate everything off */
5794 sched_ttwu_pending();
8a8c69c3
PZ
5795
5796 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5797 if (rq->rd) {
5798 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5799 set_rq_offline(rq);
5800 }
8a8c69c3 5801 migrate_tasks(rq, &rf);
f2785ddb 5802 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5803 rq_unlock_irqrestore(rq, &rf);
5804
f2785ddb
TG
5805 calc_load_migrate(rq);
5806 update_max_interval();
20a5c8cc 5807 nohz_balance_exit_idle(cpu);
e5ef27d0 5808 hrtick_clear(rq);
f2785ddb
TG
5809 return 0;
5810}
5811#endif
5812
1b568f0a
PZ
5813#ifdef CONFIG_SCHED_SMT
5814DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5815
5816static void sched_init_smt(void)
5817{
5818 /*
5819 * We've enumerated all CPUs and will assume that if any CPU
5820 * has SMT siblings, CPU0 will too.
5821 */
5822 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5823 static_branch_enable(&sched_smt_present);
5824}
5825#else
5826static inline void sched_init_smt(void) { }
5827#endif
5828
1da177e4
LT
5829void __init sched_init_smp(void)
5830{
cb83b629
PZ
5831 sched_init_numa();
5832
6acce3ef
PZ
5833 /*
5834 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5835 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5836 * happen.
5837 */
712555ee 5838 mutex_lock(&sched_domains_mutex);
8d5dc512 5839 sched_init_domains(cpu_active_mask);
712555ee 5840 mutex_unlock(&sched_domains_mutex);
e761b772 5841
5c1e1767 5842 /* Move init over to a non-isolated CPU */
edb93821 5843 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5844 BUG();
19978ca6 5845 sched_init_granularity();
4212823f 5846
0e3900e6 5847 init_sched_rt_class();
1baca4ce 5848 init_sched_dl_class();
1b568f0a
PZ
5849
5850 sched_init_smt();
5851
e26fbffd 5852 sched_smp_initialized = true;
1da177e4 5853}
e26fbffd
TG
5854
5855static int __init migration_init(void)
5856{
94baf7a5 5857 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5858 return 0;
1da177e4 5859}
e26fbffd
TG
5860early_initcall(migration_init);
5861
1da177e4
LT
5862#else
5863void __init sched_init_smp(void)
5864{
19978ca6 5865 sched_init_granularity();
1da177e4
LT
5866}
5867#endif /* CONFIG_SMP */
5868
5869int in_sched_functions(unsigned long addr)
5870{
1da177e4
LT
5871 return in_lock_functions(addr) ||
5872 (addr >= (unsigned long)__sched_text_start
5873 && addr < (unsigned long)__sched_text_end);
5874}
5875
029632fb 5876#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5877/*
5878 * Default task group.
5879 * Every task in system belongs to this group at bootup.
5880 */
029632fb 5881struct task_group root_task_group;
35cf4e50 5882LIST_HEAD(task_groups);
b0367629
WL
5883
5884/* Cacheline aligned slab cache for task_group */
5885static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5886#endif
6f505b16 5887
e6252c3e 5888DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5889DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5890
1da177e4
LT
5891void __init sched_init(void)
5892{
dd41f596 5893 int i, j;
434d53b0
MT
5894 unsigned long alloc_size = 0, ptr;
5895
9881b024 5896 sched_clock_init();
5822a454 5897 wait_bit_init();
9dcb8b68 5898
434d53b0
MT
5899#ifdef CONFIG_FAIR_GROUP_SCHED
5900 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5901#endif
5902#ifdef CONFIG_RT_GROUP_SCHED
5903 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5904#endif
434d53b0 5905 if (alloc_size) {
36b7b6d4 5906 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5907
5908#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5909 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5910 ptr += nr_cpu_ids * sizeof(void **);
5911
07e06b01 5912 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5913 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5914
6d6bc0ad 5915#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5916#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5917 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5918 ptr += nr_cpu_ids * sizeof(void **);
5919
07e06b01 5920 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5921 ptr += nr_cpu_ids * sizeof(void **);
5922
6d6bc0ad 5923#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5924 }
df7c8e84 5925#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5926 for_each_possible_cpu(i) {
5927 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5928 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5929 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5930 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 5931 }
b74e6278 5932#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 5933
d1ccc66d
IM
5934 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5935 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 5936
57d885fe
GH
5937#ifdef CONFIG_SMP
5938 init_defrootdomain();
5939#endif
5940
d0b27fa7 5941#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5942 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 5943 global_rt_period(), global_rt_runtime());
6d6bc0ad 5944#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 5945
7c941438 5946#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
5947 task_group_cache = KMEM_CACHE(task_group, 0);
5948
07e06b01
YZ
5949 list_add(&root_task_group.list, &task_groups);
5950 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 5951 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 5952 autogroup_init(&init_task);
7c941438 5953#endif /* CONFIG_CGROUP_SCHED */
6f505b16 5954
0a945022 5955 for_each_possible_cpu(i) {
70b97a7f 5956 struct rq *rq;
1da177e4
LT
5957
5958 rq = cpu_rq(i);
05fa785c 5959 raw_spin_lock_init(&rq->lock);
7897986b 5960 rq->nr_running = 0;
dce48a84
TG
5961 rq->calc_load_active = 0;
5962 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 5963 init_cfs_rq(&rq->cfs);
07c54f7a
AV
5964 init_rt_rq(&rq->rt);
5965 init_dl_rq(&rq->dl);
dd41f596 5966#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 5967 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 5968 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 5969 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 5970 /*
d1ccc66d 5971 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
5972 *
5973 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
5974 * gets 100% of the CPU resources in the system. This overall
5975 * system CPU resource is divided among the tasks of
07e06b01 5976 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
5977 * based on each entity's (task or task-group's) weight
5978 * (se->load.weight).
5979 *
07e06b01 5980 * In other words, if root_task_group has 10 tasks of weight
354d60c2 5981 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 5982 * then A0's share of the CPU resource is:
354d60c2 5983 *
0d905bca 5984 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 5985 *
07e06b01
YZ
5986 * We achieve this by letting root_task_group's tasks sit
5987 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 5988 */
ab84d31e 5989 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 5990 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
5991#endif /* CONFIG_FAIR_GROUP_SCHED */
5992
5993 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 5994#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5995 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 5996#endif
1da177e4 5997
dd41f596
IM
5998 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5999 rq->cpu_load[j] = 0;
fdf3e95d 6000
1da177e4 6001#ifdef CONFIG_SMP
41c7ce9a 6002 rq->sd = NULL;
57d885fe 6003 rq->rd = NULL;
ca6d75e6 6004 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6005 rq->balance_callback = NULL;
1da177e4 6006 rq->active_balance = 0;
dd41f596 6007 rq->next_balance = jiffies;
1da177e4 6008 rq->push_cpu = 0;
0a2966b4 6009 rq->cpu = i;
1f11eb6a 6010 rq->online = 0;
eae0c9df
MG
6011 rq->idle_stamp = 0;
6012 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6013 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6014
6015 INIT_LIST_HEAD(&rq->cfs_tasks);
6016
dc938520 6017 rq_attach_root(rq, &def_root_domain);
3451d024 6018#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6019 rq->last_load_update_tick = jiffies;
1c792db7 6020 rq->nohz_flags = 0;
83cd4fe2 6021#endif
265f22a9
FW
6022#ifdef CONFIG_NO_HZ_FULL
6023 rq->last_sched_tick = 0;
6024#endif
9fd81dd5 6025#endif /* CONFIG_SMP */
8f4d37ec 6026 init_rq_hrtick(rq);
1da177e4 6027 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6028 }
6029
9059393e 6030 set_load_weight(&init_task, false);
b50f60ce 6031
1da177e4
LT
6032 /*
6033 * The boot idle thread does lazy MMU switching as well:
6034 */
f1f10076 6035 mmgrab(&init_mm);
1da177e4
LT
6036 enter_lazy_tlb(&init_mm, current);
6037
6038 /*
6039 * Make us the idle thread. Technically, schedule() should not be
6040 * called from this thread, however somewhere below it might be,
6041 * but because we are the idle thread, we just pick up running again
6042 * when this runqueue becomes "idle".
6043 */
6044 init_idle(current, smp_processor_id());
dce48a84
TG
6045
6046 calc_load_update = jiffies + LOAD_FREQ;
6047
bf4d83f6 6048#ifdef CONFIG_SMP
29d5e047 6049 idle_thread_set_boot_cpu();
9cf7243d 6050 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6051#endif
6052 init_sched_fair_class();
6a7b3dc3 6053
4698f88c
JP
6054 init_schedstats();
6055
6892b75e 6056 scheduler_running = 1;
1da177e4
LT
6057}
6058
d902db1e 6059#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6060static inline int preempt_count_equals(int preempt_offset)
6061{
da7142e2 6062 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6063
4ba8216c 6064 return (nested == preempt_offset);
e4aafea2
FW
6065}
6066
d894837f 6067void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6068{
8eb23b9f
PZ
6069 /*
6070 * Blocking primitives will set (and therefore destroy) current->state,
6071 * since we will exit with TASK_RUNNING make sure we enter with it,
6072 * otherwise we will destroy state.
6073 */
00845eb9 6074 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6075 "do not call blocking ops when !TASK_RUNNING; "
6076 "state=%lx set at [<%p>] %pS\n",
6077 current->state,
6078 (void *)current->task_state_change,
00845eb9 6079 (void *)current->task_state_change);
8eb23b9f 6080
3427445a
PZ
6081 ___might_sleep(file, line, preempt_offset);
6082}
6083EXPORT_SYMBOL(__might_sleep);
6084
6085void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6086{
d1ccc66d
IM
6087 /* Ratelimiting timestamp: */
6088 static unsigned long prev_jiffy;
6089
d1c6d149 6090 unsigned long preempt_disable_ip;
1da177e4 6091
d1ccc66d
IM
6092 /* WARN_ON_ONCE() by default, no rate limit required: */
6093 rcu_sleep_check();
6094
db273be2
TG
6095 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6096 !is_idle_task(current)) ||
1c3c5eab
TG
6097 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6098 oops_in_progress)
aef745fc 6099 return;
1c3c5eab 6100
aef745fc
IM
6101 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6102 return;
6103 prev_jiffy = jiffies;
6104
d1ccc66d 6105 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6106 preempt_disable_ip = get_preempt_disable_ip(current);
6107
3df0fc5b
PZ
6108 printk(KERN_ERR
6109 "BUG: sleeping function called from invalid context at %s:%d\n",
6110 file, line);
6111 printk(KERN_ERR
6112 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6113 in_atomic(), irqs_disabled(),
6114 current->pid, current->comm);
aef745fc 6115
a8b686b3
ES
6116 if (task_stack_end_corrupted(current))
6117 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6118
aef745fc
IM
6119 debug_show_held_locks(current);
6120 if (irqs_disabled())
6121 print_irqtrace_events(current);
d1c6d149
VN
6122 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6123 && !preempt_count_equals(preempt_offset)) {
8f47b187 6124 pr_err("Preemption disabled at:");
d1c6d149 6125 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6126 pr_cont("\n");
6127 }
aef745fc 6128 dump_stack();
f0b22e39 6129 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6130}
3427445a 6131EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6132#endif
6133
6134#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6135void normalize_rt_tasks(void)
3a5e4dc1 6136{
dbc7f069 6137 struct task_struct *g, *p;
d50dde5a
DF
6138 struct sched_attr attr = {
6139 .sched_policy = SCHED_NORMAL,
6140 };
1da177e4 6141
3472eaa1 6142 read_lock(&tasklist_lock);
5d07f420 6143 for_each_process_thread(g, p) {
178be793
IM
6144 /*
6145 * Only normalize user tasks:
6146 */
3472eaa1 6147 if (p->flags & PF_KTHREAD)
178be793
IM
6148 continue;
6149
4fa8d299
JP
6150 p->se.exec_start = 0;
6151 schedstat_set(p->se.statistics.wait_start, 0);
6152 schedstat_set(p->se.statistics.sleep_start, 0);
6153 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6154
aab03e05 6155 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6156 /*
6157 * Renice negative nice level userspace
6158 * tasks back to 0:
6159 */
3472eaa1 6160 if (task_nice(p) < 0)
dd41f596 6161 set_user_nice(p, 0);
1da177e4 6162 continue;
dd41f596 6163 }
1da177e4 6164
dbc7f069 6165 __sched_setscheduler(p, &attr, false, false);
5d07f420 6166 }
3472eaa1 6167 read_unlock(&tasklist_lock);
1da177e4
LT
6168}
6169
6170#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6171
67fc4e0c 6172#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6173/*
67fc4e0c 6174 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6175 *
6176 * They can only be called when the whole system has been
6177 * stopped - every CPU needs to be quiescent, and no scheduling
6178 * activity can take place. Using them for anything else would
6179 * be a serious bug, and as a result, they aren't even visible
6180 * under any other configuration.
6181 */
6182
6183/**
d1ccc66d 6184 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6185 * @cpu: the processor in question.
6186 *
6187 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6188 *
6189 * Return: The current task for @cpu.
1df5c10a 6190 */
36c8b586 6191struct task_struct *curr_task(int cpu)
1df5c10a
LT
6192{
6193 return cpu_curr(cpu);
6194}
6195
67fc4e0c
JW
6196#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6197
6198#ifdef CONFIG_IA64
1df5c10a 6199/**
d1ccc66d 6200 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6201 * @cpu: the processor in question.
6202 * @p: the task pointer to set.
6203 *
6204 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6205 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6206 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6207 * must be called with all CPU's synchronized, and interrupts disabled, the
6208 * and caller must save the original value of the current task (see
6209 * curr_task() above) and restore that value before reenabling interrupts and
6210 * re-starting the system.
6211 *
6212 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6213 */
a458ae2e 6214void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6215{
6216 cpu_curr(cpu) = p;
6217}
6218
6219#endif
29f59db3 6220
7c941438 6221#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6222/* task_group_lock serializes the addition/removal of task groups */
6223static DEFINE_SPINLOCK(task_group_lock);
6224
2f5177f0 6225static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6226{
6227 free_fair_sched_group(tg);
6228 free_rt_sched_group(tg);
e9aa1dd1 6229 autogroup_free(tg);
b0367629 6230 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6231}
6232
6233/* allocate runqueue etc for a new task group */
ec7dc8ac 6234struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6235{
6236 struct task_group *tg;
bccbe08a 6237
b0367629 6238 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6239 if (!tg)
6240 return ERR_PTR(-ENOMEM);
6241
ec7dc8ac 6242 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6243 goto err;
6244
ec7dc8ac 6245 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6246 goto err;
6247
ace783b9
LZ
6248 return tg;
6249
6250err:
2f5177f0 6251 sched_free_group(tg);
ace783b9
LZ
6252 return ERR_PTR(-ENOMEM);
6253}
6254
6255void sched_online_group(struct task_group *tg, struct task_group *parent)
6256{
6257 unsigned long flags;
6258
8ed36996 6259 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6260 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6261
d1ccc66d
IM
6262 /* Root should already exist: */
6263 WARN_ON(!parent);
f473aa5e
PZ
6264
6265 tg->parent = parent;
f473aa5e 6266 INIT_LIST_HEAD(&tg->children);
09f2724a 6267 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6268 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6269
6270 online_fair_sched_group(tg);
29f59db3
SV
6271}
6272
9b5b7751 6273/* rcu callback to free various structures associated with a task group */
2f5177f0 6274static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6275{
d1ccc66d 6276 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6277 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6278}
6279
4cf86d77 6280void sched_destroy_group(struct task_group *tg)
ace783b9 6281{
d1ccc66d 6282 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6283 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6284}
6285
6286void sched_offline_group(struct task_group *tg)
29f59db3 6287{
8ed36996 6288 unsigned long flags;
29f59db3 6289
d1ccc66d 6290 /* End participation in shares distribution: */
6fe1f348 6291 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6292
6293 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6294 list_del_rcu(&tg->list);
f473aa5e 6295 list_del_rcu(&tg->siblings);
8ed36996 6296 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6297}
6298
ea86cb4b 6299static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6300{
8323f26c 6301 struct task_group *tg;
29f59db3 6302
f7b8a47d
KT
6303 /*
6304 * All callers are synchronized by task_rq_lock(); we do not use RCU
6305 * which is pointless here. Thus, we pass "true" to task_css_check()
6306 * to prevent lockdep warnings.
6307 */
6308 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6309 struct task_group, css);
6310 tg = autogroup_task_group(tsk, tg);
6311 tsk->sched_task_group = tg;
6312
810b3817 6313#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6314 if (tsk->sched_class->task_change_group)
6315 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6316 else
810b3817 6317#endif
b2b5ce02 6318 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6319}
6320
6321/*
6322 * Change task's runqueue when it moves between groups.
6323 *
6324 * The caller of this function should have put the task in its new group by
6325 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6326 * its new group.
6327 */
6328void sched_move_task(struct task_struct *tsk)
6329{
7a57f32a
PZ
6330 int queued, running, queue_flags =
6331 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6332 struct rq_flags rf;
6333 struct rq *rq;
6334
6335 rq = task_rq_lock(tsk, &rf);
1b1d6225 6336 update_rq_clock(rq);
ea86cb4b
VG
6337
6338 running = task_current(rq, tsk);
6339 queued = task_on_rq_queued(tsk);
6340
6341 if (queued)
7a57f32a 6342 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6343 if (running)
ea86cb4b
VG
6344 put_prev_task(rq, tsk);
6345
6346 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6347
da0c1e65 6348 if (queued)
7a57f32a 6349 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6350 if (running)
b2bf6c31 6351 set_curr_task(rq, tsk);
29f59db3 6352
eb580751 6353 task_rq_unlock(rq, tsk, &rf);
29f59db3 6354}
68318b8e 6355
a7c6d554 6356static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6357{
a7c6d554 6358 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6359}
6360
eb95419b
TH
6361static struct cgroup_subsys_state *
6362cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6363{
eb95419b
TH
6364 struct task_group *parent = css_tg(parent_css);
6365 struct task_group *tg;
68318b8e 6366
eb95419b 6367 if (!parent) {
68318b8e 6368 /* This is early initialization for the top cgroup */
07e06b01 6369 return &root_task_group.css;
68318b8e
SV
6370 }
6371
ec7dc8ac 6372 tg = sched_create_group(parent);
68318b8e
SV
6373 if (IS_ERR(tg))
6374 return ERR_PTR(-ENOMEM);
6375
68318b8e
SV
6376 return &tg->css;
6377}
6378
96b77745
KK
6379/* Expose task group only after completing cgroup initialization */
6380static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6381{
6382 struct task_group *tg = css_tg(css);
6383 struct task_group *parent = css_tg(css->parent);
6384
6385 if (parent)
6386 sched_online_group(tg, parent);
6387 return 0;
6388}
6389
2f5177f0 6390static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6391{
eb95419b 6392 struct task_group *tg = css_tg(css);
ace783b9 6393
2f5177f0 6394 sched_offline_group(tg);
ace783b9
LZ
6395}
6396
eb95419b 6397static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6398{
eb95419b 6399 struct task_group *tg = css_tg(css);
68318b8e 6400
2f5177f0
PZ
6401 /*
6402 * Relies on the RCU grace period between css_released() and this.
6403 */
6404 sched_free_group(tg);
ace783b9
LZ
6405}
6406
ea86cb4b
VG
6407/*
6408 * This is called before wake_up_new_task(), therefore we really only
6409 * have to set its group bits, all the other stuff does not apply.
6410 */
b53202e6 6411static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6412{
ea86cb4b
VG
6413 struct rq_flags rf;
6414 struct rq *rq;
6415
6416 rq = task_rq_lock(task, &rf);
6417
80f5c1b8 6418 update_rq_clock(rq);
ea86cb4b
VG
6419 sched_change_group(task, TASK_SET_GROUP);
6420
6421 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6422}
6423
1f7dd3e5 6424static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6425{
bb9d97b6 6426 struct task_struct *task;
1f7dd3e5 6427 struct cgroup_subsys_state *css;
7dc603c9 6428 int ret = 0;
bb9d97b6 6429
1f7dd3e5 6430 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6431#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6432 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6433 return -EINVAL;
b68aa230 6434#else
bb9d97b6
TH
6435 /* We don't support RT-tasks being in separate groups */
6436 if (task->sched_class != &fair_sched_class)
6437 return -EINVAL;
b68aa230 6438#endif
7dc603c9
PZ
6439 /*
6440 * Serialize against wake_up_new_task() such that if its
6441 * running, we're sure to observe its full state.
6442 */
6443 raw_spin_lock_irq(&task->pi_lock);
6444 /*
6445 * Avoid calling sched_move_task() before wake_up_new_task()
6446 * has happened. This would lead to problems with PELT, due to
6447 * move wanting to detach+attach while we're not attached yet.
6448 */
6449 if (task->state == TASK_NEW)
6450 ret = -EINVAL;
6451 raw_spin_unlock_irq(&task->pi_lock);
6452
6453 if (ret)
6454 break;
bb9d97b6 6455 }
7dc603c9 6456 return ret;
be367d09 6457}
68318b8e 6458
1f7dd3e5 6459static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6460{
bb9d97b6 6461 struct task_struct *task;
1f7dd3e5 6462 struct cgroup_subsys_state *css;
bb9d97b6 6463
1f7dd3e5 6464 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6465 sched_move_task(task);
68318b8e
SV
6466}
6467
052f1dc7 6468#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6469static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6470 struct cftype *cftype, u64 shareval)
68318b8e 6471{
182446d0 6472 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6473}
6474
182446d0
TH
6475static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6476 struct cftype *cft)
68318b8e 6477{
182446d0 6478 struct task_group *tg = css_tg(css);
68318b8e 6479
c8b28116 6480 return (u64) scale_load_down(tg->shares);
68318b8e 6481}
ab84d31e
PT
6482
6483#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6484static DEFINE_MUTEX(cfs_constraints_mutex);
6485
ab84d31e
PT
6486const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6487const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6488
a790de99
PT
6489static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6490
ab84d31e
PT
6491static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6492{
56f570e5 6493 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6494 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6495
6496 if (tg == &root_task_group)
6497 return -EINVAL;
6498
6499 /*
6500 * Ensure we have at some amount of bandwidth every period. This is
6501 * to prevent reaching a state of large arrears when throttled via
6502 * entity_tick() resulting in prolonged exit starvation.
6503 */
6504 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6505 return -EINVAL;
6506
6507 /*
6508 * Likewise, bound things on the otherside by preventing insane quota
6509 * periods. This also allows us to normalize in computing quota
6510 * feasibility.
6511 */
6512 if (period > max_cfs_quota_period)
6513 return -EINVAL;
6514
0e59bdae
KT
6515 /*
6516 * Prevent race between setting of cfs_rq->runtime_enabled and
6517 * unthrottle_offline_cfs_rqs().
6518 */
6519 get_online_cpus();
a790de99
PT
6520 mutex_lock(&cfs_constraints_mutex);
6521 ret = __cfs_schedulable(tg, period, quota);
6522 if (ret)
6523 goto out_unlock;
6524
58088ad0 6525 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6526 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6527 /*
6528 * If we need to toggle cfs_bandwidth_used, off->on must occur
6529 * before making related changes, and on->off must occur afterwards
6530 */
6531 if (runtime_enabled && !runtime_was_enabled)
6532 cfs_bandwidth_usage_inc();
ab84d31e
PT
6533 raw_spin_lock_irq(&cfs_b->lock);
6534 cfs_b->period = ns_to_ktime(period);
6535 cfs_b->quota = quota;
58088ad0 6536
a9cf55b2 6537 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6538
6539 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6540 if (runtime_enabled)
6541 start_cfs_bandwidth(cfs_b);
d1ccc66d 6542
ab84d31e
PT
6543 raw_spin_unlock_irq(&cfs_b->lock);
6544
0e59bdae 6545 for_each_online_cpu(i) {
ab84d31e 6546 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6547 struct rq *rq = cfs_rq->rq;
8a8c69c3 6548 struct rq_flags rf;
ab84d31e 6549
8a8c69c3 6550 rq_lock_irq(rq, &rf);
58088ad0 6551 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6552 cfs_rq->runtime_remaining = 0;
671fd9da 6553
029632fb 6554 if (cfs_rq->throttled)
671fd9da 6555 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6556 rq_unlock_irq(rq, &rf);
ab84d31e 6557 }
1ee14e6c
BS
6558 if (runtime_was_enabled && !runtime_enabled)
6559 cfs_bandwidth_usage_dec();
a790de99
PT
6560out_unlock:
6561 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6562 put_online_cpus();
ab84d31e 6563
a790de99 6564 return ret;
ab84d31e
PT
6565}
6566
6567int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6568{
6569 u64 quota, period;
6570
029632fb 6571 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6572 if (cfs_quota_us < 0)
6573 quota = RUNTIME_INF;
6574 else
6575 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6576
6577 return tg_set_cfs_bandwidth(tg, period, quota);
6578}
6579
6580long tg_get_cfs_quota(struct task_group *tg)
6581{
6582 u64 quota_us;
6583
029632fb 6584 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6585 return -1;
6586
029632fb 6587 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6588 do_div(quota_us, NSEC_PER_USEC);
6589
6590 return quota_us;
6591}
6592
6593int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6594{
6595 u64 quota, period;
6596
6597 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6598 quota = tg->cfs_bandwidth.quota;
ab84d31e 6599
ab84d31e
PT
6600 return tg_set_cfs_bandwidth(tg, period, quota);
6601}
6602
6603long tg_get_cfs_period(struct task_group *tg)
6604{
6605 u64 cfs_period_us;
6606
029632fb 6607 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6608 do_div(cfs_period_us, NSEC_PER_USEC);
6609
6610 return cfs_period_us;
6611}
6612
182446d0
TH
6613static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6614 struct cftype *cft)
ab84d31e 6615{
182446d0 6616 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6617}
6618
182446d0
TH
6619static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6620 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6621{
182446d0 6622 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6623}
6624
182446d0
TH
6625static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6626 struct cftype *cft)
ab84d31e 6627{
182446d0 6628 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6629}
6630
182446d0
TH
6631static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6632 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6633{
182446d0 6634 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6635}
6636
a790de99
PT
6637struct cfs_schedulable_data {
6638 struct task_group *tg;
6639 u64 period, quota;
6640};
6641
6642/*
6643 * normalize group quota/period to be quota/max_period
6644 * note: units are usecs
6645 */
6646static u64 normalize_cfs_quota(struct task_group *tg,
6647 struct cfs_schedulable_data *d)
6648{
6649 u64 quota, period;
6650
6651 if (tg == d->tg) {
6652 period = d->period;
6653 quota = d->quota;
6654 } else {
6655 period = tg_get_cfs_period(tg);
6656 quota = tg_get_cfs_quota(tg);
6657 }
6658
6659 /* note: these should typically be equivalent */
6660 if (quota == RUNTIME_INF || quota == -1)
6661 return RUNTIME_INF;
6662
6663 return to_ratio(period, quota);
6664}
6665
6666static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6667{
6668 struct cfs_schedulable_data *d = data;
029632fb 6669 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6670 s64 quota = 0, parent_quota = -1;
6671
6672 if (!tg->parent) {
6673 quota = RUNTIME_INF;
6674 } else {
029632fb 6675 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6676
6677 quota = normalize_cfs_quota(tg, d);
9c58c79a 6678 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6679
6680 /*
d1ccc66d
IM
6681 * Ensure max(child_quota) <= parent_quota, inherit when no
6682 * limit is set:
a790de99
PT
6683 */
6684 if (quota == RUNTIME_INF)
6685 quota = parent_quota;
6686 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6687 return -EINVAL;
6688 }
9c58c79a 6689 cfs_b->hierarchical_quota = quota;
a790de99
PT
6690
6691 return 0;
6692}
6693
6694static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6695{
8277434e 6696 int ret;
a790de99
PT
6697 struct cfs_schedulable_data data = {
6698 .tg = tg,
6699 .period = period,
6700 .quota = quota,
6701 };
6702
6703 if (quota != RUNTIME_INF) {
6704 do_div(data.period, NSEC_PER_USEC);
6705 do_div(data.quota, NSEC_PER_USEC);
6706 }
6707
8277434e
PT
6708 rcu_read_lock();
6709 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6710 rcu_read_unlock();
6711
6712 return ret;
a790de99 6713}
e8da1b18 6714
a1f7164c 6715static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6716{
2da8ca82 6717 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6718 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6719
44ffc75b
TH
6720 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6721 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6722 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
6723
6724 return 0;
6725}
ab84d31e 6726#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6727#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6728
052f1dc7 6729#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6730static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6731 struct cftype *cft, s64 val)
6f505b16 6732{
182446d0 6733 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6734}
6735
182446d0
TH
6736static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6737 struct cftype *cft)
6f505b16 6738{
182446d0 6739 return sched_group_rt_runtime(css_tg(css));
6f505b16 6740}
d0b27fa7 6741
182446d0
TH
6742static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6743 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6744{
182446d0 6745 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6746}
6747
182446d0
TH
6748static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6749 struct cftype *cft)
d0b27fa7 6750{
182446d0 6751 return sched_group_rt_period(css_tg(css));
d0b27fa7 6752}
6d6bc0ad 6753#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6754
a1f7164c 6755static struct cftype cpu_legacy_files[] = {
052f1dc7 6756#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6757 {
6758 .name = "shares",
f4c753b7
PM
6759 .read_u64 = cpu_shares_read_u64,
6760 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6761 },
052f1dc7 6762#endif
ab84d31e
PT
6763#ifdef CONFIG_CFS_BANDWIDTH
6764 {
6765 .name = "cfs_quota_us",
6766 .read_s64 = cpu_cfs_quota_read_s64,
6767 .write_s64 = cpu_cfs_quota_write_s64,
6768 },
6769 {
6770 .name = "cfs_period_us",
6771 .read_u64 = cpu_cfs_period_read_u64,
6772 .write_u64 = cpu_cfs_period_write_u64,
6773 },
e8da1b18
NR
6774 {
6775 .name = "stat",
a1f7164c 6776 .seq_show = cpu_cfs_stat_show,
e8da1b18 6777 },
ab84d31e 6778#endif
052f1dc7 6779#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6780 {
9f0c1e56 6781 .name = "rt_runtime_us",
06ecb27c
PM
6782 .read_s64 = cpu_rt_runtime_read,
6783 .write_s64 = cpu_rt_runtime_write,
6f505b16 6784 },
d0b27fa7
PZ
6785 {
6786 .name = "rt_period_us",
f4c753b7
PM
6787 .read_u64 = cpu_rt_period_read_uint,
6788 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6789 },
052f1dc7 6790#endif
d1ccc66d 6791 { } /* Terminate */
68318b8e
SV
6792};
6793
d41bf8c9
TH
6794static int cpu_extra_stat_show(struct seq_file *sf,
6795 struct cgroup_subsys_state *css)
0d593634 6796{
0d593634
TH
6797#ifdef CONFIG_CFS_BANDWIDTH
6798 {
d41bf8c9 6799 struct task_group *tg = css_tg(css);
0d593634
TH
6800 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6801 u64 throttled_usec;
6802
6803 throttled_usec = cfs_b->throttled_time;
6804 do_div(throttled_usec, NSEC_PER_USEC);
6805
6806 seq_printf(sf, "nr_periods %d\n"
6807 "nr_throttled %d\n"
6808 "throttled_usec %llu\n",
6809 cfs_b->nr_periods, cfs_b->nr_throttled,
6810 throttled_usec);
6811 }
6812#endif
6813 return 0;
6814}
6815
6816#ifdef CONFIG_FAIR_GROUP_SCHED
6817static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6818 struct cftype *cft)
6819{
6820 struct task_group *tg = css_tg(css);
6821 u64 weight = scale_load_down(tg->shares);
6822
6823 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6824}
6825
6826static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6827 struct cftype *cft, u64 weight)
6828{
6829 /*
6830 * cgroup weight knobs should use the common MIN, DFL and MAX
6831 * values which are 1, 100 and 10000 respectively. While it loses
6832 * a bit of range on both ends, it maps pretty well onto the shares
6833 * value used by scheduler and the round-trip conversions preserve
6834 * the original value over the entire range.
6835 */
6836 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6837 return -ERANGE;
6838
6839 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6840
6841 return sched_group_set_shares(css_tg(css), scale_load(weight));
6842}
6843
6844static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6845 struct cftype *cft)
6846{
6847 unsigned long weight = scale_load_down(css_tg(css)->shares);
6848 int last_delta = INT_MAX;
6849 int prio, delta;
6850
6851 /* find the closest nice value to the current weight */
6852 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6853 delta = abs(sched_prio_to_weight[prio] - weight);
6854 if (delta >= last_delta)
6855 break;
6856 last_delta = delta;
6857 }
6858
6859 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6860}
6861
6862static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6863 struct cftype *cft, s64 nice)
6864{
6865 unsigned long weight;
6866
6867 if (nice < MIN_NICE || nice > MAX_NICE)
6868 return -ERANGE;
6869
6870 weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
6871 return sched_group_set_shares(css_tg(css), scale_load(weight));
6872}
6873#endif
6874
6875static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6876 long period, long quota)
6877{
6878 if (quota < 0)
6879 seq_puts(sf, "max");
6880 else
6881 seq_printf(sf, "%ld", quota);
6882
6883 seq_printf(sf, " %ld\n", period);
6884}
6885
6886/* caller should put the current value in *@periodp before calling */
6887static int __maybe_unused cpu_period_quota_parse(char *buf,
6888 u64 *periodp, u64 *quotap)
6889{
6890 char tok[21]; /* U64_MAX */
6891
6892 if (!sscanf(buf, "%s %llu", tok, periodp))
6893 return -EINVAL;
6894
6895 *periodp *= NSEC_PER_USEC;
6896
6897 if (sscanf(tok, "%llu", quotap))
6898 *quotap *= NSEC_PER_USEC;
6899 else if (!strcmp(tok, "max"))
6900 *quotap = RUNTIME_INF;
6901 else
6902 return -EINVAL;
6903
6904 return 0;
6905}
6906
6907#ifdef CONFIG_CFS_BANDWIDTH
6908static int cpu_max_show(struct seq_file *sf, void *v)
6909{
6910 struct task_group *tg = css_tg(seq_css(sf));
6911
6912 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6913 return 0;
6914}
6915
6916static ssize_t cpu_max_write(struct kernfs_open_file *of,
6917 char *buf, size_t nbytes, loff_t off)
6918{
6919 struct task_group *tg = css_tg(of_css(of));
6920 u64 period = tg_get_cfs_period(tg);
6921 u64 quota;
6922 int ret;
6923
6924 ret = cpu_period_quota_parse(buf, &period, &quota);
6925 if (!ret)
6926 ret = tg_set_cfs_bandwidth(tg, period, quota);
6927 return ret ?: nbytes;
6928}
6929#endif
6930
6931static struct cftype cpu_files[] = {
0d593634
TH
6932#ifdef CONFIG_FAIR_GROUP_SCHED
6933 {
6934 .name = "weight",
6935 .flags = CFTYPE_NOT_ON_ROOT,
6936 .read_u64 = cpu_weight_read_u64,
6937 .write_u64 = cpu_weight_write_u64,
6938 },
6939 {
6940 .name = "weight.nice",
6941 .flags = CFTYPE_NOT_ON_ROOT,
6942 .read_s64 = cpu_weight_nice_read_s64,
6943 .write_s64 = cpu_weight_nice_write_s64,
6944 },
6945#endif
6946#ifdef CONFIG_CFS_BANDWIDTH
6947 {
6948 .name = "max",
6949 .flags = CFTYPE_NOT_ON_ROOT,
6950 .seq_show = cpu_max_show,
6951 .write = cpu_max_write,
6952 },
6953#endif
6954 { } /* terminate */
6955};
6956
073219e9 6957struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 6958 .css_alloc = cpu_cgroup_css_alloc,
96b77745 6959 .css_online = cpu_cgroup_css_online,
2f5177f0 6960 .css_released = cpu_cgroup_css_released,
92fb9748 6961 .css_free = cpu_cgroup_css_free,
d41bf8c9 6962 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 6963 .fork = cpu_cgroup_fork,
bb9d97b6
TH
6964 .can_attach = cpu_cgroup_can_attach,
6965 .attach = cpu_cgroup_attach,
a1f7164c 6966 .legacy_cftypes = cpu_legacy_files,
0d593634 6967 .dfl_cftypes = cpu_files,
b38e42e9 6968 .early_init = true,
0d593634 6969 .threaded = true,
68318b8e
SV
6970};
6971
052f1dc7 6972#endif /* CONFIG_CGROUP_SCHED */
d842de87 6973
b637a328
PM
6974void dump_cpu_task(int cpu)
6975{
6976 pr_info("Task dump for CPU %d:\n", cpu);
6977 sched_show_task(cpu_curr(cpu));
6978}
ed82b8a1
AK
6979
6980/*
6981 * Nice levels are multiplicative, with a gentle 10% change for every
6982 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6983 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6984 * that remained on nice 0.
6985 *
6986 * The "10% effect" is relative and cumulative: from _any_ nice level,
6987 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6988 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6989 * If a task goes up by ~10% and another task goes down by ~10% then
6990 * the relative distance between them is ~25%.)
6991 */
6992const int sched_prio_to_weight[40] = {
6993 /* -20 */ 88761, 71755, 56483, 46273, 36291,
6994 /* -15 */ 29154, 23254, 18705, 14949, 11916,
6995 /* -10 */ 9548, 7620, 6100, 4904, 3906,
6996 /* -5 */ 3121, 2501, 1991, 1586, 1277,
6997 /* 0 */ 1024, 820, 655, 526, 423,
6998 /* 5 */ 335, 272, 215, 172, 137,
6999 /* 10 */ 110, 87, 70, 56, 45,
7000 /* 15 */ 36, 29, 23, 18, 15,
7001};
7002
7003/*
7004 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7005 *
7006 * In cases where the weight does not change often, we can use the
7007 * precalculated inverse to speed up arithmetics by turning divisions
7008 * into multiplications:
7009 */
7010const u32 sched_prio_to_wmult[40] = {
7011 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7012 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7013 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7014 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7015 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7016 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7017 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7018 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7019};