]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched/uclamp: Reset uclamp values on RESET_ON_FORK
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
29d5e047 19#include "../smpboot.h"
6e0534f2 20
91c27493
VG
21#include "pelt.h"
22
a8d154b0 23#define CREATE_TRACE_POINTS
ad8d75ff 24#include <trace/events/sched.h>
a8d154b0 25
a056a5be
QY
26/*
27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
28 * associated with them) to allow external modules to probe them.
29 */
30EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36
029632fb 37DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 38
e9666d10 39#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
40/*
41 * Debugging: various feature bits
765cc3a4
PB
42 *
43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
45 * at compile time and compiler optimization based on features default.
bf5c91ba 46 */
f00b45c1
PZ
47#define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 49const_debug unsigned int sysctl_sched_features =
391e43da 50#include "features.h"
f00b45c1 51 0;
f00b45c1 52#undef SCHED_FEAT
765cc3a4 53#endif
f00b45c1 54
b82d9fdd
PZ
55/*
56 * Number of tasks to iterate in a single balance run.
57 * Limited because this is done with IRQs disabled.
58 */
59const_debug unsigned int sysctl_sched_nr_migrate = 32;
60
fa85ae24 61/*
d1ccc66d 62 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
63 * default: 1s
64 */
9f0c1e56 65unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 66
029632fb 67__read_mostly int scheduler_running;
6892b75e 68
9f0c1e56
PZ
69/*
70 * part of the period that we allow rt tasks to run in us.
71 * default: 0.95s
72 */
73int sysctl_sched_rt_runtime = 950000;
fa85ae24 74
3e71a462
PZ
75/*
76 * __task_rq_lock - lock the rq @p resides on.
77 */
eb580751 78struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
79 __acquires(rq->lock)
80{
81 struct rq *rq;
82
83 lockdep_assert_held(&p->pi_lock);
84
85 for (;;) {
86 rq = task_rq(p);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 89 rq_pin_lock(rq, rf);
3e71a462
PZ
90 return rq;
91 }
92 raw_spin_unlock(&rq->lock);
93
94 while (unlikely(task_on_rq_migrating(p)))
95 cpu_relax();
96 }
97}
98
99/*
100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101 */
eb580751 102struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
103 __acquires(p->pi_lock)
104 __acquires(rq->lock)
105{
106 struct rq *rq;
107
108 for (;;) {
eb580751 109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112 /*
113 * move_queued_task() task_rq_lock()
114 *
115 * ACQUIRE (rq->lock)
116 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
118 * [S] ->cpu = new_cpu [L] task_rq()
119 * [L] ->on_rq
120 * RELEASE (rq->lock)
121 *
c546951d 122 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
123 * the old rq->lock will fully serialize against the stores.
124 *
c546951d
AP
125 * If we observe the new CPU in task_rq_lock(), the address
126 * dependency headed by '[L] rq = task_rq()' and the acquire
127 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
128 */
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 130 rq_pin_lock(rq, rf);
3e71a462
PZ
131 return rq;
132 }
133 raw_spin_unlock(&rq->lock);
eb580751 134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
135
136 while (unlikely(task_on_rq_migrating(p)))
137 cpu_relax();
138 }
139}
140
535b9552
IM
141/*
142 * RQ-clock updating methods:
143 */
144
145static void update_rq_clock_task(struct rq *rq, s64 delta)
146{
147/*
148 * In theory, the compile should just see 0 here, and optimize out the call
149 * to sched_rt_avg_update. But I don't trust it...
150 */
11d4afd4
VG
151 s64 __maybe_unused steal = 0, irq_delta = 0;
152
535b9552
IM
153#ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155
156 /*
157 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 * this case when a previous update_rq_clock() happened inside a
159 * {soft,}irq region.
160 *
161 * When this happens, we stop ->clock_task and only update the
162 * prev_irq_time stamp to account for the part that fit, so that a next
163 * update will consume the rest. This ensures ->clock_task is
164 * monotonic.
165 *
166 * It does however cause some slight miss-attribution of {soft,}irq
167 * time, a more accurate solution would be to update the irq_time using
168 * the current rq->clock timestamp, except that would require using
169 * atomic ops.
170 */
171 if (irq_delta > delta)
172 irq_delta = delta;
173
174 rq->prev_irq_time += irq_delta;
175 delta -= irq_delta;
176#endif
177#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((&paravirt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
181
182 if (unlikely(steal > delta))
183 steal = delta;
184
185 rq->prev_steal_time_rq += steal;
186 delta -= steal;
187 }
188#endif
189
190 rq->clock_task += delta;
191
11d4afd4 192#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 194 update_irq_load_avg(rq, irq_delta + steal);
535b9552 195#endif
23127296 196 update_rq_clock_pelt(rq, delta);
535b9552
IM
197}
198
199void update_rq_clock(struct rq *rq)
200{
201 s64 delta;
202
203 lockdep_assert_held(&rq->lock);
204
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 return;
207
208#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
211 rq->clock_update_flags |= RQCF_UPDATED;
212#endif
26ae58d2 213
535b9552
IM
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 if (delta < 0)
216 return;
217 rq->clock += delta;
218 update_rq_clock_task(rq, delta);
219}
220
221
8f4d37ec
PZ
222#ifdef CONFIG_SCHED_HRTICK
223/*
224 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 225 */
8f4d37ec 226
8f4d37ec
PZ
227static void hrtick_clear(struct rq *rq)
228{
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
231}
232
8f4d37ec
PZ
233/*
234 * High-resolution timer tick.
235 * Runs from hardirq context with interrupts disabled.
236 */
237static enum hrtimer_restart hrtick(struct hrtimer *timer)
238{
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 240 struct rq_flags rf;
8f4d37ec
PZ
241
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243
8a8c69c3 244 rq_lock(rq, &rf);
3e51f33f 245 update_rq_clock(rq);
8f4d37ec 246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 247 rq_unlock(rq, &rf);
8f4d37ec
PZ
248
249 return HRTIMER_NORESTART;
250}
251
95e904c7 252#ifdef CONFIG_SMP
971ee28c 253
4961b6e1 254static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
255{
256 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 257
4961b6e1 258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
259}
260
31656519
PZ
261/*
262 * called from hardirq (IPI) context
263 */
264static void __hrtick_start(void *arg)
b328ca18 265{
31656519 266 struct rq *rq = arg;
8a8c69c3 267 struct rq_flags rf;
b328ca18 268
8a8c69c3 269 rq_lock(rq, &rf);
971ee28c 270 __hrtick_restart(rq);
31656519 271 rq->hrtick_csd_pending = 0;
8a8c69c3 272 rq_unlock(rq, &rf);
b328ca18
PZ
273}
274
31656519
PZ
275/*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
029632fb 280void hrtick_start(struct rq *rq, u64 delay)
b328ca18 281{
31656519 282 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 292
cc584b21 293 hrtimer_set_expires(timer, time);
31656519
PZ
294
295 if (rq == this_rq()) {
971ee28c 296 __hrtick_restart(rq);
31656519 297 } else if (!rq->hrtick_csd_pending) {
c46fff2a 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
299 rq->hrtick_csd_pending = 1;
300 }
b328ca18
PZ
301}
302
31656519
PZ
303#else
304/*
305 * Called to set the hrtick timer state.
306 *
307 * called with rq->lock held and irqs disabled
308 */
029632fb 309void hrtick_start(struct rq *rq, u64 delay)
31656519 310{
86893335
WL
311 /*
312 * Don't schedule slices shorter than 10000ns, that just
313 * doesn't make sense. Rely on vruntime for fairness.
314 */
315 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED);
31656519 318}
31656519 319#endif /* CONFIG_SMP */
8f4d37ec 320
77a021be 321static void hrtick_rq_init(struct rq *rq)
8f4d37ec 322{
31656519
PZ
323#ifdef CONFIG_SMP
324 rq->hrtick_csd_pending = 0;
8f4d37ec 325
31656519
PZ
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
329#endif
8f4d37ec 330
31656519
PZ
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
332 rq->hrtick_timer.function = hrtick;
8f4d37ec 333}
006c75f1 334#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
335static inline void hrtick_clear(struct rq *rq)
336{
337}
338
77a021be 339static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
340{
341}
006c75f1 342#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 343
5529578a
FW
344/*
345 * cmpxchg based fetch_or, macro so it works for different integer types
346 */
347#define fetch_or(ptr, mask) \
348 ({ \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
352 \
353 for (;;) { \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
355 if (_old == _val) \
356 break; \
357 _val = _old; \
358 } \
359 _old; \
360})
361
e3baac47 362#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
363/*
364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365 * this avoids any races wrt polling state changes and thereby avoids
366 * spurious IPIs.
367 */
368static bool set_nr_and_not_polling(struct task_struct *p)
369{
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372}
e3baac47
PZ
373
374/*
375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376 *
377 * If this returns true, then the idle task promises to call
378 * sched_ttwu_pending() and reschedule soon.
379 */
380static bool set_nr_if_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
316c1608 383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
384
385 for (;;) {
386 if (!(val & _TIF_POLLING_NRFLAG))
387 return false;
388 if (val & _TIF_NEED_RESCHED)
389 return true;
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 if (old == val)
392 break;
393 val = old;
394 }
395 return true;
396}
397
fd99f91a
PZ
398#else
399static bool set_nr_and_not_polling(struct task_struct *p)
400{
401 set_tsk_need_resched(p);
402 return true;
403}
e3baac47
PZ
404
405#ifdef CONFIG_SMP
406static bool set_nr_if_polling(struct task_struct *p)
407{
408 return false;
409}
410#endif
fd99f91a
PZ
411#endif
412
07879c6a 413static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
414{
415 struct wake_q_node *node = &task->wake_q;
416
417 /*
418 * Atomically grab the task, if ->wake_q is !nil already it means
419 * its already queued (either by us or someone else) and will get the
420 * wakeup due to that.
421 *
4c4e3731
PZ
422 * In order to ensure that a pending wakeup will observe our pending
423 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 424 */
4c4e3731 425 smp_mb__before_atomic();
87ff19cb 426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 427 return false;
76751049
PZ
428
429 /*
430 * The head is context local, there can be no concurrency.
431 */
432 *head->lastp = node;
433 head->lastp = &node->next;
07879c6a
DB
434 return true;
435}
436
437/**
438 * wake_q_add() - queue a wakeup for 'later' waking.
439 * @head: the wake_q_head to add @task to
440 * @task: the task to queue for 'later' wakeup
441 *
442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444 * instantly.
445 *
446 * This function must be used as-if it were wake_up_process(); IOW the task
447 * must be ready to be woken at this location.
448 */
449void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450{
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
453}
454
455/**
456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457 * @head: the wake_q_head to add @task to
458 * @task: the task to queue for 'later' wakeup
459 *
460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462 * instantly.
463 *
464 * This function must be used as-if it were wake_up_process(); IOW the task
465 * must be ready to be woken at this location.
466 *
467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468 * that already hold reference to @task can call the 'safe' version and trust
469 * wake_q to do the right thing depending whether or not the @task is already
470 * queued for wakeup.
471 */
472void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473{
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
76751049
PZ
476}
477
478void wake_up_q(struct wake_q_head *head)
479{
480 struct wake_q_node *node = head->first;
481
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
484
485 task = container_of(node, struct task_struct, wake_q);
486 BUG_ON(!task);
d1ccc66d 487 /* Task can safely be re-inserted now: */
76751049
PZ
488 node = node->next;
489 task->wake_q.next = NULL;
490
491 /*
7696f991
AP
492 * wake_up_process() executes a full barrier, which pairs with
493 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
494 */
495 wake_up_process(task);
496 put_task_struct(task);
497 }
498}
499
c24d20db 500/*
8875125e 501 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
502 *
503 * On UP this means the setting of the need_resched flag, on SMP it
504 * might also involve a cross-CPU call to trigger the scheduler on
505 * the target CPU.
506 */
8875125e 507void resched_curr(struct rq *rq)
c24d20db 508{
8875125e 509 struct task_struct *curr = rq->curr;
c24d20db
IM
510 int cpu;
511
8875125e 512 lockdep_assert_held(&rq->lock);
c24d20db 513
8875125e 514 if (test_tsk_need_resched(curr))
c24d20db
IM
515 return;
516
8875125e 517 cpu = cpu_of(rq);
fd99f91a 518
f27dde8d 519 if (cpu == smp_processor_id()) {
8875125e 520 set_tsk_need_resched(curr);
f27dde8d 521 set_preempt_need_resched();
c24d20db 522 return;
f27dde8d 523 }
c24d20db 524
8875125e 525 if (set_nr_and_not_polling(curr))
c24d20db 526 smp_send_reschedule(cpu);
dfc68f29
AL
527 else
528 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
529}
530
029632fb 531void resched_cpu(int cpu)
c24d20db
IM
532{
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
7c2102e5 536 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
537 if (cpu_online(cpu) || cpu == smp_processor_id())
538 resched_curr(rq);
05fa785c 539 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 540}
06d8308c 541
b021fe3e 542#ifdef CONFIG_SMP
3451d024 543#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 544/*
d1ccc66d
IM
545 * In the semi idle case, use the nearest busy CPU for migrating timers
546 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
547 *
548 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
549 * selecting an idle CPU will add more delays to the timers than intended
550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 551 */
bc7a34b8 552int get_nohz_timer_target(void)
83cd4fe2 553{
bc7a34b8 554 int i, cpu = smp_processor_id();
83cd4fe2
VP
555 struct sched_domain *sd;
556
de201559 557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
558 return cpu;
559
057f3fad 560 rcu_read_lock();
83cd4fe2 561 for_each_domain(cpu, sd) {
057f3fad 562 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
563 if (cpu == i)
564 continue;
565
de201559 566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
567 cpu = i;
568 goto unlock;
569 }
570 }
83cd4fe2 571 }
9642d18e 572
de201559
FW
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
d1ccc66d 579
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
1c20091e 590static void wake_up_idle_cpu(int cpu)
06d8308c
TG
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
67b9ca70 597 if (set_nr_and_not_polling(rq->idle))
06d8308c 598 smp_send_reschedule(cpu);
dfc68f29
AL
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
601}
602
c5bfece2 603static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 604{
53c5fa16
FW
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
379d9ecb
PM
611 if (cpu_is_offline(cpu))
612 return true; /* Don't try to wake offline CPUs. */
c5bfece2 613 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
53c5fa16 616 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
617 return true;
618 }
619
620 return false;
621}
622
379d9ecb
PM
623/*
624 * Wake up the specified CPU. If the CPU is going offline, it is the
625 * caller's responsibility to deal with the lost wakeup, for example,
626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627 */
1c20091e
FW
628void wake_up_nohz_cpu(int cpu)
629{
c5bfece2 630 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
631 wake_up_idle_cpu(cpu);
632}
633
ca38062e 634static inline bool got_nohz_idle_kick(void)
45bf76df 635{
1c792db7 636 int cpu = smp_processor_id();
873b4c65 637
b7031a02 638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
639 return false;
640
641 if (idle_cpu(cpu) && !need_resched())
642 return true;
643
644 /*
645 * We can't run Idle Load Balance on this CPU for this time so we
646 * cancel it and clear NOHZ_BALANCE_KICK
647 */
b7031a02 648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 649 return false;
45bf76df
IM
650}
651
3451d024 652#else /* CONFIG_NO_HZ_COMMON */
45bf76df 653
ca38062e 654static inline bool got_nohz_idle_kick(void)
2069dd75 655{
ca38062e 656 return false;
2069dd75
PZ
657}
658
3451d024 659#endif /* CONFIG_NO_HZ_COMMON */
d842de87 660
ce831b38 661#ifdef CONFIG_NO_HZ_FULL
76d92ac3 662bool sched_can_stop_tick(struct rq *rq)
ce831b38 663{
76d92ac3
FW
664 int fifo_nr_running;
665
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
668 return false;
669
1e78cdbd 670 /*
2548d546
PZ
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
1e78cdbd 673 */
76d92ac3
FW
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
1e78cdbd
RR
679 }
680
2548d546
PZ
681 /*
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
684 */
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689 /*
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
692 * preemption.
693 */
694 if (rq->nr_running > 1)
541b8264 695 return false;
ce831b38 696
541b8264 697 return true;
ce831b38
FW
698}
699#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 700#endif /* CONFIG_SMP */
18d95a28 701
a790de99
PT
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 704/*
8277434e
PT
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 709 */
029632fb 710int walk_tg_tree_from(struct task_group *from,
8277434e 711 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
712{
713 struct task_group *parent, *child;
eb755805 714 int ret;
c09595f6 715
8277434e
PT
716 parent = from;
717
c09595f6 718down:
eb755805
PZ
719 ret = (*down)(parent, data);
720 if (ret)
8277434e 721 goto out;
c09595f6
PZ
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
eb755805 729 ret = (*up)(parent, data);
8277434e
PT
730 if (ret || parent == from)
731 goto out;
c09595f6
PZ
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
8277434e 737out:
eb755805 738 return ret;
c09595f6
PZ
739}
740
029632fb 741int tg_nop(struct task_group *tg, void *data)
eb755805 742{
e2b245f8 743 return 0;
eb755805 744}
18d95a28
PZ
745#endif
746
9059393e 747static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 748{
f05998d4
NR
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
dd41f596
IM
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
1da1843f 755 if (task_has_idle_policy(p)) {
c8b28116 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 757 load->inv_weight = WMULT_IDLEPRIO;
4a465e3e 758 p->se.runnable_weight = load->weight;
dd41f596
IM
759 return;
760 }
71f8bd46 761
9059393e
VG
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
4a465e3e 771 p->se.runnable_weight = load->weight;
9059393e 772 }
71f8bd46
IM
773}
774
69842cba 775#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
776/* Max allowed minimum utilization */
777unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
778
779/* Max allowed maximum utilization */
780unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
781
782/* All clamps are required to be less or equal than these values */
783static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba
PB
784
785/* Integer rounded range for each bucket */
786#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
787
788#define for_each_clamp_id(clamp_id) \
789 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
790
791static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
792{
793 return clamp_value / UCLAMP_BUCKET_DELTA;
794}
795
60daf9c1
PB
796static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
797{
798 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
799}
800
69842cba
PB
801static inline unsigned int uclamp_none(int clamp_id)
802{
803 if (clamp_id == UCLAMP_MIN)
804 return 0;
805 return SCHED_CAPACITY_SCALE;
806}
807
a509a7cd
PB
808static inline void uclamp_se_set(struct uclamp_se *uc_se,
809 unsigned int value, bool user_defined)
69842cba
PB
810{
811 uc_se->value = value;
812 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 813 uc_se->user_defined = user_defined;
69842cba
PB
814}
815
e496187d
PB
816static inline unsigned int
817uclamp_idle_value(struct rq *rq, unsigned int clamp_id,
818 unsigned int clamp_value)
819{
820 /*
821 * Avoid blocked utilization pushing up the frequency when we go
822 * idle (which drops the max-clamp) by retaining the last known
823 * max-clamp.
824 */
825 if (clamp_id == UCLAMP_MAX) {
826 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
827 return clamp_value;
828 }
829
830 return uclamp_none(UCLAMP_MIN);
831}
832
833static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id,
834 unsigned int clamp_value)
835{
836 /* Reset max-clamp retention only on idle exit */
837 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
838 return;
839
840 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
841}
842
69842cba 843static inline
e496187d
PB
844unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id,
845 unsigned int clamp_value)
69842cba
PB
846{
847 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
848 int bucket_id = UCLAMP_BUCKETS - 1;
849
850 /*
851 * Since both min and max clamps are max aggregated, find the
852 * top most bucket with tasks in.
853 */
854 for ( ; bucket_id >= 0; bucket_id--) {
855 if (!bucket[bucket_id].tasks)
856 continue;
857 return bucket[bucket_id].value;
858 }
859
860 /* No tasks -- default clamp values */
e496187d 861 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
862}
863
e8f14172
PB
864/*
865 * The effective clamp bucket index of a task depends on, by increasing
866 * priority:
867 * - the task specific clamp value, when explicitly requested from userspace
868 * - the system default clamp value, defined by the sysadmin
869 */
870static inline struct uclamp_se
871uclamp_eff_get(struct task_struct *p, unsigned int clamp_id)
872{
873 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
874 struct uclamp_se uc_max = uclamp_default[clamp_id];
875
876 /* System default restrictions always apply */
877 if (unlikely(uc_req.value > uc_max.value))
878 return uc_max;
879
880 return uc_req;
881}
882
69842cba
PB
883/*
884 * When a task is enqueued on a rq, the clamp bucket currently defined by the
885 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
886 * updates the rq's clamp value if required.
60daf9c1
PB
887 *
888 * Tasks can have a task-specific value requested from user-space, track
889 * within each bucket the maximum value for tasks refcounted in it.
890 * This "local max aggregation" allows to track the exact "requested" value
891 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
892 */
893static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
894 unsigned int clamp_id)
895{
896 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
897 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
898 struct uclamp_bucket *bucket;
899
900 lockdep_assert_held(&rq->lock);
901
e8f14172
PB
902 /* Update task effective clamp */
903 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
904
69842cba
PB
905 bucket = &uc_rq->bucket[uc_se->bucket_id];
906 bucket->tasks++;
e8f14172 907 uc_se->active = true;
69842cba 908
e496187d
PB
909 uclamp_idle_reset(rq, clamp_id, uc_se->value);
910
60daf9c1
PB
911 /*
912 * Local max aggregation: rq buckets always track the max
913 * "requested" clamp value of its RUNNABLE tasks.
914 */
915 if (bucket->tasks == 1 || uc_se->value > bucket->value)
916 bucket->value = uc_se->value;
917
69842cba 918 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 919 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
920}
921
922/*
923 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
924 * is released. If this is the last task reference counting the rq's max
925 * active clamp value, then the rq's clamp value is updated.
926 *
927 * Both refcounted tasks and rq's cached clamp values are expected to be
928 * always valid. If it's detected they are not, as defensive programming,
929 * enforce the expected state and warn.
930 */
931static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
932 unsigned int clamp_id)
933{
934 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
935 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
936 struct uclamp_bucket *bucket;
e496187d 937 unsigned int bkt_clamp;
69842cba
PB
938 unsigned int rq_clamp;
939
940 lockdep_assert_held(&rq->lock);
941
942 bucket = &uc_rq->bucket[uc_se->bucket_id];
943 SCHED_WARN_ON(!bucket->tasks);
944 if (likely(bucket->tasks))
945 bucket->tasks--;
e8f14172 946 uc_se->active = false;
69842cba 947
60daf9c1
PB
948 /*
949 * Keep "local max aggregation" simple and accept to (possibly)
950 * overboost some RUNNABLE tasks in the same bucket.
951 * The rq clamp bucket value is reset to its base value whenever
952 * there are no more RUNNABLE tasks refcounting it.
953 */
69842cba
PB
954 if (likely(bucket->tasks))
955 return;
956
957 rq_clamp = READ_ONCE(uc_rq->value);
958 /*
959 * Defensive programming: this should never happen. If it happens,
960 * e.g. due to future modification, warn and fixup the expected value.
961 */
962 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
963 if (bucket->value >= rq_clamp) {
964 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
965 WRITE_ONCE(uc_rq->value, bkt_clamp);
966 }
69842cba
PB
967}
968
969static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
970{
971 unsigned int clamp_id;
972
973 if (unlikely(!p->sched_class->uclamp_enabled))
974 return;
975
976 for_each_clamp_id(clamp_id)
977 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
978
979 /* Reset clamp idle holding when there is one RUNNABLE task */
980 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
981 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
982}
983
984static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
985{
986 unsigned int clamp_id;
987
988 if (unlikely(!p->sched_class->uclamp_enabled))
989 return;
990
991 for_each_clamp_id(clamp_id)
992 uclamp_rq_dec_id(rq, p, clamp_id);
993}
994
e8f14172
PB
995int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
996 void __user *buffer, size_t *lenp,
997 loff_t *ppos)
998{
999 int old_min, old_max;
1000 static DEFINE_MUTEX(mutex);
1001 int result;
1002
1003 mutex_lock(&mutex);
1004 old_min = sysctl_sched_uclamp_util_min;
1005 old_max = sysctl_sched_uclamp_util_max;
1006
1007 result = proc_dointvec(table, write, buffer, lenp, ppos);
1008 if (result)
1009 goto undo;
1010 if (!write)
1011 goto done;
1012
1013 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1014 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1015 result = -EINVAL;
1016 goto undo;
1017 }
1018
1019 if (old_min != sysctl_sched_uclamp_util_min) {
1020 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1021 sysctl_sched_uclamp_util_min, false);
e8f14172
PB
1022 }
1023 if (old_max != sysctl_sched_uclamp_util_max) {
1024 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1025 sysctl_sched_uclamp_util_max, false);
e8f14172
PB
1026 }
1027
1028 /*
1029 * Updating all the RUNNABLE task is expensive, keep it simple and do
1030 * just a lazy update at each next enqueue time.
1031 */
1032 goto done;
1033
1034undo:
1035 sysctl_sched_uclamp_util_min = old_min;
1036 sysctl_sched_uclamp_util_max = old_max;
1037done:
1038 mutex_unlock(&mutex);
1039
1040 return result;
1041}
1042
a509a7cd
PB
1043static int uclamp_validate(struct task_struct *p,
1044 const struct sched_attr *attr)
1045{
1046 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1047 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1048
1049 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1050 lower_bound = attr->sched_util_min;
1051 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1052 upper_bound = attr->sched_util_max;
1053
1054 if (lower_bound > upper_bound)
1055 return -EINVAL;
1056 if (upper_bound > SCHED_CAPACITY_SCALE)
1057 return -EINVAL;
1058
1059 return 0;
1060}
1061
1062static void __setscheduler_uclamp(struct task_struct *p,
1063 const struct sched_attr *attr)
1064{
1065 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1066 return;
1067
1068 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1069 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1070 attr->sched_util_min, true);
1071 }
1072
1073 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1074 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1075 attr->sched_util_max, true);
1076 }
1077}
1078
e8f14172
PB
1079static void uclamp_fork(struct task_struct *p)
1080{
1081 unsigned int clamp_id;
1082
1083 for_each_clamp_id(clamp_id)
1084 p->uclamp[clamp_id].active = false;
a87498ac
PB
1085
1086 if (likely(!p->sched_reset_on_fork))
1087 return;
1088
1089 for_each_clamp_id(clamp_id) {
1090 uclamp_se_set(&p->uclamp_req[clamp_id],
1091 uclamp_none(clamp_id), false);
1092 }
e8f14172
PB
1093}
1094
69842cba
PB
1095static void __init init_uclamp(void)
1096{
e8f14172 1097 struct uclamp_se uc_max = {};
69842cba
PB
1098 unsigned int clamp_id;
1099 int cpu;
1100
e496187d 1101 for_each_possible_cpu(cpu) {
69842cba 1102 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
e496187d
PB
1103 cpu_rq(cpu)->uclamp_flags = 0;
1104 }
69842cba 1105
69842cba 1106 for_each_clamp_id(clamp_id) {
e8f14172 1107 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1108 uclamp_none(clamp_id), false);
69842cba 1109 }
e8f14172
PB
1110
1111 /* System defaults allow max clamp values for both indexes */
a509a7cd 1112 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
e8f14172
PB
1113 for_each_clamp_id(clamp_id)
1114 uclamp_default[clamp_id] = uc_max;
69842cba
PB
1115}
1116
1117#else /* CONFIG_UCLAMP_TASK */
1118static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1119static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1120static inline int uclamp_validate(struct task_struct *p,
1121 const struct sched_attr *attr)
1122{
1123 return -EOPNOTSUPP;
1124}
1125static void __setscheduler_uclamp(struct task_struct *p,
1126 const struct sched_attr *attr) { }
e8f14172 1127static inline void uclamp_fork(struct task_struct *p) { }
69842cba
PB
1128static inline void init_uclamp(void) { }
1129#endif /* CONFIG_UCLAMP_TASK */
1130
1de64443 1131static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1132{
0a67d1ee
PZ
1133 if (!(flags & ENQUEUE_NOCLOCK))
1134 update_rq_clock(rq);
1135
eb414681 1136 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1137 sched_info_queued(rq, p);
eb414681
JW
1138 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1139 }
0a67d1ee 1140
69842cba 1141 uclamp_rq_inc(rq, p);
371fd7e7 1142 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1143}
1144
1de64443 1145static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1146{
0a67d1ee
PZ
1147 if (!(flags & DEQUEUE_NOCLOCK))
1148 update_rq_clock(rq);
1149
eb414681 1150 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1151 sched_info_dequeued(rq, p);
eb414681
JW
1152 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1153 }
0a67d1ee 1154
69842cba 1155 uclamp_rq_dec(rq, p);
371fd7e7 1156 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1157}
1158
029632fb 1159void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1160{
1161 if (task_contributes_to_load(p))
1162 rq->nr_uninterruptible--;
1163
371fd7e7 1164 enqueue_task(rq, p, flags);
7dd77884
PZ
1165
1166 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1167}
1168
029632fb 1169void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1170{
7dd77884
PZ
1171 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1172
1e3c88bd
PZ
1173 if (task_contributes_to_load(p))
1174 rq->nr_uninterruptible++;
1175
371fd7e7 1176 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1177}
1178
14531189 1179/*
dd41f596 1180 * __normal_prio - return the priority that is based on the static prio
14531189 1181 */
14531189
IM
1182static inline int __normal_prio(struct task_struct *p)
1183{
dd41f596 1184 return p->static_prio;
14531189
IM
1185}
1186
b29739f9
IM
1187/*
1188 * Calculate the expected normal priority: i.e. priority
1189 * without taking RT-inheritance into account. Might be
1190 * boosted by interactivity modifiers. Changes upon fork,
1191 * setprio syscalls, and whenever the interactivity
1192 * estimator recalculates.
1193 */
36c8b586 1194static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1195{
1196 int prio;
1197
aab03e05
DF
1198 if (task_has_dl_policy(p))
1199 prio = MAX_DL_PRIO-1;
1200 else if (task_has_rt_policy(p))
b29739f9
IM
1201 prio = MAX_RT_PRIO-1 - p->rt_priority;
1202 else
1203 prio = __normal_prio(p);
1204 return prio;
1205}
1206
1207/*
1208 * Calculate the current priority, i.e. the priority
1209 * taken into account by the scheduler. This value might
1210 * be boosted by RT tasks, or might be boosted by
1211 * interactivity modifiers. Will be RT if the task got
1212 * RT-boosted. If not then it returns p->normal_prio.
1213 */
36c8b586 1214static int effective_prio(struct task_struct *p)
b29739f9
IM
1215{
1216 p->normal_prio = normal_prio(p);
1217 /*
1218 * If we are RT tasks or we were boosted to RT priority,
1219 * keep the priority unchanged. Otherwise, update priority
1220 * to the normal priority:
1221 */
1222 if (!rt_prio(p->prio))
1223 return p->normal_prio;
1224 return p->prio;
1225}
1226
1da177e4
LT
1227/**
1228 * task_curr - is this task currently executing on a CPU?
1229 * @p: the task in question.
e69f6186
YB
1230 *
1231 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1232 */
36c8b586 1233inline int task_curr(const struct task_struct *p)
1da177e4
LT
1234{
1235 return cpu_curr(task_cpu(p)) == p;
1236}
1237
67dfa1b7 1238/*
4c9a4bc8
PZ
1239 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1240 * use the balance_callback list if you want balancing.
1241 *
1242 * this means any call to check_class_changed() must be followed by a call to
1243 * balance_callback().
67dfa1b7 1244 */
cb469845
SR
1245static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1246 const struct sched_class *prev_class,
da7a735e 1247 int oldprio)
cb469845
SR
1248{
1249 if (prev_class != p->sched_class) {
1250 if (prev_class->switched_from)
da7a735e 1251 prev_class->switched_from(rq, p);
4c9a4bc8 1252
da7a735e 1253 p->sched_class->switched_to(rq, p);
2d3d891d 1254 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1255 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1256}
1257
029632fb 1258void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1259{
1260 const struct sched_class *class;
1261
1262 if (p->sched_class == rq->curr->sched_class) {
1263 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1264 } else {
1265 for_each_class(class) {
1266 if (class == rq->curr->sched_class)
1267 break;
1268 if (class == p->sched_class) {
8875125e 1269 resched_curr(rq);
1e5a7405
PZ
1270 break;
1271 }
1272 }
1273 }
1274
1275 /*
1276 * A queue event has occurred, and we're going to schedule. In
1277 * this case, we can save a useless back to back clock update.
1278 */
da0c1e65 1279 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1280 rq_clock_skip_update(rq);
1e5a7405
PZ
1281}
1282
1da177e4 1283#ifdef CONFIG_SMP
175f0e25
PZ
1284
1285static inline bool is_per_cpu_kthread(struct task_struct *p)
1286{
1287 if (!(p->flags & PF_KTHREAD))
1288 return false;
1289
1290 if (p->nr_cpus_allowed != 1)
1291 return false;
1292
1293 return true;
1294}
1295
1296/*
bee98539 1297 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1298 * __set_cpus_allowed_ptr() and select_fallback_rq().
1299 */
1300static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1301{
3bd37062 1302 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1303 return false;
1304
1305 if (is_per_cpu_kthread(p))
1306 return cpu_online(cpu);
1307
1308 return cpu_active(cpu);
1309}
1310
5cc389bc
PZ
1311/*
1312 * This is how migration works:
1313 *
1314 * 1) we invoke migration_cpu_stop() on the target CPU using
1315 * stop_one_cpu().
1316 * 2) stopper starts to run (implicitly forcing the migrated thread
1317 * off the CPU)
1318 * 3) it checks whether the migrated task is still in the wrong runqueue.
1319 * 4) if it's in the wrong runqueue then the migration thread removes
1320 * it and puts it into the right queue.
1321 * 5) stopper completes and stop_one_cpu() returns and the migration
1322 * is done.
1323 */
1324
1325/*
1326 * move_queued_task - move a queued task to new rq.
1327 *
1328 * Returns (locked) new rq. Old rq's lock is released.
1329 */
8a8c69c3
PZ
1330static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1331 struct task_struct *p, int new_cpu)
5cc389bc 1332{
5cc389bc
PZ
1333 lockdep_assert_held(&rq->lock);
1334
c546951d 1335 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 1336 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1337 set_task_cpu(p, new_cpu);
8a8c69c3 1338 rq_unlock(rq, rf);
5cc389bc
PZ
1339
1340 rq = cpu_rq(new_cpu);
1341
8a8c69c3 1342 rq_lock(rq, rf);
5cc389bc 1343 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1344 enqueue_task(rq, p, 0);
3ea94de1 1345 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1346 check_preempt_curr(rq, p, 0);
1347
1348 return rq;
1349}
1350
1351struct migration_arg {
1352 struct task_struct *task;
1353 int dest_cpu;
1354};
1355
1356/*
d1ccc66d 1357 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1358 * this because either it can't run here any more (set_cpus_allowed()
1359 * away from this CPU, or CPU going down), or because we're
1360 * attempting to rebalance this task on exec (sched_exec).
1361 *
1362 * So we race with normal scheduler movements, but that's OK, as long
1363 * as the task is no longer on this CPU.
5cc389bc 1364 */
8a8c69c3
PZ
1365static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1366 struct task_struct *p, int dest_cpu)
5cc389bc 1367{
5cc389bc 1368 /* Affinity changed (again). */
175f0e25 1369 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1370 return rq;
5cc389bc 1371
15ff991e 1372 update_rq_clock(rq);
8a8c69c3 1373 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1374
1375 return rq;
5cc389bc
PZ
1376}
1377
1378/*
1379 * migration_cpu_stop - this will be executed by a highprio stopper thread
1380 * and performs thread migration by bumping thread off CPU then
1381 * 'pushing' onto another runqueue.
1382 */
1383static int migration_cpu_stop(void *data)
1384{
1385 struct migration_arg *arg = data;
5e16bbc2
PZ
1386 struct task_struct *p = arg->task;
1387 struct rq *rq = this_rq();
8a8c69c3 1388 struct rq_flags rf;
5cc389bc
PZ
1389
1390 /*
d1ccc66d
IM
1391 * The original target CPU might have gone down and we might
1392 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1393 */
1394 local_irq_disable();
1395 /*
1396 * We need to explicitly wake pending tasks before running
3bd37062 1397 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1398 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1399 */
1400 sched_ttwu_pending();
5e16bbc2
PZ
1401
1402 raw_spin_lock(&p->pi_lock);
8a8c69c3 1403 rq_lock(rq, &rf);
5e16bbc2
PZ
1404 /*
1405 * If task_rq(p) != rq, it cannot be migrated here, because we're
1406 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1407 * we're holding p->pi_lock.
1408 */
bf89a304
CC
1409 if (task_rq(p) == rq) {
1410 if (task_on_rq_queued(p))
8a8c69c3 1411 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1412 else
1413 p->wake_cpu = arg->dest_cpu;
1414 }
8a8c69c3 1415 rq_unlock(rq, &rf);
5e16bbc2
PZ
1416 raw_spin_unlock(&p->pi_lock);
1417
5cc389bc
PZ
1418 local_irq_enable();
1419 return 0;
1420}
1421
c5b28038
PZ
1422/*
1423 * sched_class::set_cpus_allowed must do the below, but is not required to
1424 * actually call this function.
1425 */
1426void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1427{
3bd37062 1428 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1429 p->nr_cpus_allowed = cpumask_weight(new_mask);
1430}
1431
c5b28038
PZ
1432void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1433{
6c37067e
PZ
1434 struct rq *rq = task_rq(p);
1435 bool queued, running;
1436
c5b28038 1437 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1438
1439 queued = task_on_rq_queued(p);
1440 running = task_current(rq, p);
1441
1442 if (queued) {
1443 /*
1444 * Because __kthread_bind() calls this on blocked tasks without
1445 * holding rq->lock.
1446 */
1447 lockdep_assert_held(&rq->lock);
7a57f32a 1448 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1449 }
1450 if (running)
1451 put_prev_task(rq, p);
1452
c5b28038 1453 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1454
6c37067e 1455 if (queued)
7134b3e9 1456 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1457 if (running)
b2bf6c31 1458 set_curr_task(rq, p);
c5b28038
PZ
1459}
1460
5cc389bc
PZ
1461/*
1462 * Change a given task's CPU affinity. Migrate the thread to a
1463 * proper CPU and schedule it away if the CPU it's executing on
1464 * is removed from the allowed bitmask.
1465 *
1466 * NOTE: the caller must have a valid reference to the task, the
1467 * task must not exit() & deallocate itself prematurely. The
1468 * call is not atomic; no spinlocks may be held.
1469 */
25834c73
PZ
1470static int __set_cpus_allowed_ptr(struct task_struct *p,
1471 const struct cpumask *new_mask, bool check)
5cc389bc 1472{
e9d867a6 1473 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1474 unsigned int dest_cpu;
eb580751
PZ
1475 struct rq_flags rf;
1476 struct rq *rq;
5cc389bc
PZ
1477 int ret = 0;
1478
eb580751 1479 rq = task_rq_lock(p, &rf);
a499c3ea 1480 update_rq_clock(rq);
5cc389bc 1481
e9d867a6
PZI
1482 if (p->flags & PF_KTHREAD) {
1483 /*
1484 * Kernel threads are allowed on online && !active CPUs
1485 */
1486 cpu_valid_mask = cpu_online_mask;
1487 }
1488
25834c73
PZ
1489 /*
1490 * Must re-check here, to close a race against __kthread_bind(),
1491 * sched_setaffinity() is not guaranteed to observe the flag.
1492 */
1493 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1494 ret = -EINVAL;
1495 goto out;
1496 }
1497
3bd37062 1498 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1499 goto out;
1500
e9d867a6 1501 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1502 ret = -EINVAL;
1503 goto out;
1504 }
1505
1506 do_set_cpus_allowed(p, new_mask);
1507
e9d867a6
PZI
1508 if (p->flags & PF_KTHREAD) {
1509 /*
1510 * For kernel threads that do indeed end up on online &&
d1ccc66d 1511 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1512 */
1513 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1514 !cpumask_intersects(new_mask, cpu_active_mask) &&
1515 p->nr_cpus_allowed != 1);
1516 }
1517
5cc389bc
PZ
1518 /* Can the task run on the task's current CPU? If so, we're done */
1519 if (cpumask_test_cpu(task_cpu(p), new_mask))
1520 goto out;
1521
e9d867a6 1522 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1523 if (task_running(rq, p) || p->state == TASK_WAKING) {
1524 struct migration_arg arg = { p, dest_cpu };
1525 /* Need help from migration thread: drop lock and wait. */
eb580751 1526 task_rq_unlock(rq, p, &rf);
5cc389bc 1527 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1528 return 0;
cbce1a68
PZ
1529 } else if (task_on_rq_queued(p)) {
1530 /*
1531 * OK, since we're going to drop the lock immediately
1532 * afterwards anyway.
1533 */
8a8c69c3 1534 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1535 }
5cc389bc 1536out:
eb580751 1537 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1538
1539 return ret;
1540}
25834c73
PZ
1541
1542int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1543{
1544 return __set_cpus_allowed_ptr(p, new_mask, false);
1545}
5cc389bc
PZ
1546EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1547
dd41f596 1548void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1549{
e2912009
PZ
1550#ifdef CONFIG_SCHED_DEBUG
1551 /*
1552 * We should never call set_task_cpu() on a blocked task,
1553 * ttwu() will sort out the placement.
1554 */
077614ee 1555 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1556 !p->on_rq);
0122ec5b 1557
3ea94de1
JP
1558 /*
1559 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1560 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1561 * time relying on p->on_rq.
1562 */
1563 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1564 p->sched_class == &fair_sched_class &&
1565 (p->on_rq && !task_on_rq_migrating(p)));
1566
0122ec5b 1567#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1568 /*
1569 * The caller should hold either p->pi_lock or rq->lock, when changing
1570 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1571 *
1572 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1573 * see task_group().
6c6c54e1
PZ
1574 *
1575 * Furthermore, all task_rq users should acquire both locks, see
1576 * task_rq_lock().
1577 */
0122ec5b
PZ
1578 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1579 lockdep_is_held(&task_rq(p)->lock)));
1580#endif
4ff9083b
PZ
1581 /*
1582 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1583 */
1584 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1585#endif
1586
de1d7286 1587 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1588
0c69774e 1589 if (task_cpu(p) != new_cpu) {
0a74bef8 1590 if (p->sched_class->migrate_task_rq)
1327237a 1591 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1592 p->se.nr_migrations++;
d7822b1e 1593 rseq_migrate(p);
ff303e66 1594 perf_event_task_migrate(p);
0c69774e 1595 }
dd41f596
IM
1596
1597 __set_task_cpu(p, new_cpu);
c65cc870
IM
1598}
1599
0ad4e3df 1600#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1601static void __migrate_swap_task(struct task_struct *p, int cpu)
1602{
da0c1e65 1603 if (task_on_rq_queued(p)) {
ac66f547 1604 struct rq *src_rq, *dst_rq;
8a8c69c3 1605 struct rq_flags srf, drf;
ac66f547
PZ
1606
1607 src_rq = task_rq(p);
1608 dst_rq = cpu_rq(cpu);
1609
8a8c69c3
PZ
1610 rq_pin_lock(src_rq, &srf);
1611 rq_pin_lock(dst_rq, &drf);
1612
ac66f547
PZ
1613 deactivate_task(src_rq, p, 0);
1614 set_task_cpu(p, cpu);
1615 activate_task(dst_rq, p, 0);
1616 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1617
1618 rq_unpin_lock(dst_rq, &drf);
1619 rq_unpin_lock(src_rq, &srf);
1620
ac66f547
PZ
1621 } else {
1622 /*
1623 * Task isn't running anymore; make it appear like we migrated
1624 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1625 * previous CPU our target instead of where it really is.
ac66f547
PZ
1626 */
1627 p->wake_cpu = cpu;
1628 }
1629}
1630
1631struct migration_swap_arg {
1632 struct task_struct *src_task, *dst_task;
1633 int src_cpu, dst_cpu;
1634};
1635
1636static int migrate_swap_stop(void *data)
1637{
1638 struct migration_swap_arg *arg = data;
1639 struct rq *src_rq, *dst_rq;
1640 int ret = -EAGAIN;
1641
62694cd5
PZ
1642 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1643 return -EAGAIN;
1644
ac66f547
PZ
1645 src_rq = cpu_rq(arg->src_cpu);
1646 dst_rq = cpu_rq(arg->dst_cpu);
1647
74602315
PZ
1648 double_raw_lock(&arg->src_task->pi_lock,
1649 &arg->dst_task->pi_lock);
ac66f547 1650 double_rq_lock(src_rq, dst_rq);
62694cd5 1651
ac66f547
PZ
1652 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1653 goto unlock;
1654
1655 if (task_cpu(arg->src_task) != arg->src_cpu)
1656 goto unlock;
1657
3bd37062 1658 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1659 goto unlock;
1660
3bd37062 1661 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1662 goto unlock;
1663
1664 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1665 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1666
1667 ret = 0;
1668
1669unlock:
1670 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1671 raw_spin_unlock(&arg->dst_task->pi_lock);
1672 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1673
1674 return ret;
1675}
1676
1677/*
1678 * Cross migrate two tasks
1679 */
0ad4e3df
SD
1680int migrate_swap(struct task_struct *cur, struct task_struct *p,
1681 int target_cpu, int curr_cpu)
ac66f547
PZ
1682{
1683 struct migration_swap_arg arg;
1684 int ret = -EINVAL;
1685
ac66f547
PZ
1686 arg = (struct migration_swap_arg){
1687 .src_task = cur,
0ad4e3df 1688 .src_cpu = curr_cpu,
ac66f547 1689 .dst_task = p,
0ad4e3df 1690 .dst_cpu = target_cpu,
ac66f547
PZ
1691 };
1692
1693 if (arg.src_cpu == arg.dst_cpu)
1694 goto out;
1695
6acce3ef
PZ
1696 /*
1697 * These three tests are all lockless; this is OK since all of them
1698 * will be re-checked with proper locks held further down the line.
1699 */
ac66f547
PZ
1700 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1701 goto out;
1702
3bd37062 1703 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1704 goto out;
1705
3bd37062 1706 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1707 goto out;
1708
286549dc 1709 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1710 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1711
1712out:
ac66f547
PZ
1713 return ret;
1714}
0ad4e3df 1715#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1716
1da177e4
LT
1717/*
1718 * wait_task_inactive - wait for a thread to unschedule.
1719 *
85ba2d86
RM
1720 * If @match_state is nonzero, it's the @p->state value just checked and
1721 * not expected to change. If it changes, i.e. @p might have woken up,
1722 * then return zero. When we succeed in waiting for @p to be off its CPU,
1723 * we return a positive number (its total switch count). If a second call
1724 * a short while later returns the same number, the caller can be sure that
1725 * @p has remained unscheduled the whole time.
1726 *
1da177e4
LT
1727 * The caller must ensure that the task *will* unschedule sometime soon,
1728 * else this function might spin for a *long* time. This function can't
1729 * be called with interrupts off, or it may introduce deadlock with
1730 * smp_call_function() if an IPI is sent by the same process we are
1731 * waiting to become inactive.
1732 */
85ba2d86 1733unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1734{
da0c1e65 1735 int running, queued;
eb580751 1736 struct rq_flags rf;
85ba2d86 1737 unsigned long ncsw;
70b97a7f 1738 struct rq *rq;
1da177e4 1739
3a5c359a
AK
1740 for (;;) {
1741 /*
1742 * We do the initial early heuristics without holding
1743 * any task-queue locks at all. We'll only try to get
1744 * the runqueue lock when things look like they will
1745 * work out!
1746 */
1747 rq = task_rq(p);
fa490cfd 1748
3a5c359a
AK
1749 /*
1750 * If the task is actively running on another CPU
1751 * still, just relax and busy-wait without holding
1752 * any locks.
1753 *
1754 * NOTE! Since we don't hold any locks, it's not
1755 * even sure that "rq" stays as the right runqueue!
1756 * But we don't care, since "task_running()" will
1757 * return false if the runqueue has changed and p
1758 * is actually now running somewhere else!
1759 */
85ba2d86
RM
1760 while (task_running(rq, p)) {
1761 if (match_state && unlikely(p->state != match_state))
1762 return 0;
3a5c359a 1763 cpu_relax();
85ba2d86 1764 }
fa490cfd 1765
3a5c359a
AK
1766 /*
1767 * Ok, time to look more closely! We need the rq
1768 * lock now, to be *sure*. If we're wrong, we'll
1769 * just go back and repeat.
1770 */
eb580751 1771 rq = task_rq_lock(p, &rf);
27a9da65 1772 trace_sched_wait_task(p);
3a5c359a 1773 running = task_running(rq, p);
da0c1e65 1774 queued = task_on_rq_queued(p);
85ba2d86 1775 ncsw = 0;
f31e11d8 1776 if (!match_state || p->state == match_state)
93dcf55f 1777 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1778 task_rq_unlock(rq, p, &rf);
fa490cfd 1779
85ba2d86
RM
1780 /*
1781 * If it changed from the expected state, bail out now.
1782 */
1783 if (unlikely(!ncsw))
1784 break;
1785
3a5c359a
AK
1786 /*
1787 * Was it really running after all now that we
1788 * checked with the proper locks actually held?
1789 *
1790 * Oops. Go back and try again..
1791 */
1792 if (unlikely(running)) {
1793 cpu_relax();
1794 continue;
1795 }
fa490cfd 1796
3a5c359a
AK
1797 /*
1798 * It's not enough that it's not actively running,
1799 * it must be off the runqueue _entirely_, and not
1800 * preempted!
1801 *
80dd99b3 1802 * So if it was still runnable (but just not actively
3a5c359a
AK
1803 * running right now), it's preempted, and we should
1804 * yield - it could be a while.
1805 */
da0c1e65 1806 if (unlikely(queued)) {
8b0e1953 1807 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1808
1809 set_current_state(TASK_UNINTERRUPTIBLE);
1810 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1811 continue;
1812 }
fa490cfd 1813
3a5c359a
AK
1814 /*
1815 * Ahh, all good. It wasn't running, and it wasn't
1816 * runnable, which means that it will never become
1817 * running in the future either. We're all done!
1818 */
1819 break;
1820 }
85ba2d86
RM
1821
1822 return ncsw;
1da177e4
LT
1823}
1824
1825/***
1826 * kick_process - kick a running thread to enter/exit the kernel
1827 * @p: the to-be-kicked thread
1828 *
1829 * Cause a process which is running on another CPU to enter
1830 * kernel-mode, without any delay. (to get signals handled.)
1831 *
25985edc 1832 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1833 * because all it wants to ensure is that the remote task enters
1834 * the kernel. If the IPI races and the task has been migrated
1835 * to another CPU then no harm is done and the purpose has been
1836 * achieved as well.
1837 */
36c8b586 1838void kick_process(struct task_struct *p)
1da177e4
LT
1839{
1840 int cpu;
1841
1842 preempt_disable();
1843 cpu = task_cpu(p);
1844 if ((cpu != smp_processor_id()) && task_curr(p))
1845 smp_send_reschedule(cpu);
1846 preempt_enable();
1847}
b43e3521 1848EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1849
30da688e 1850/*
3bd37062 1851 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1852 *
1853 * A few notes on cpu_active vs cpu_online:
1854 *
1855 * - cpu_active must be a subset of cpu_online
1856 *
97fb7a0a 1857 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1858 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1859 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1860 * see it.
1861 *
d1ccc66d 1862 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1863 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1864 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1865 * off.
1866 *
1867 * This means that fallback selection must not select !active CPUs.
1868 * And can assume that any active CPU must be online. Conversely
1869 * select_task_rq() below may allow selection of !active CPUs in order
1870 * to satisfy the above rules.
30da688e 1871 */
5da9a0fb
PZ
1872static int select_fallback_rq(int cpu, struct task_struct *p)
1873{
aa00d89c
TC
1874 int nid = cpu_to_node(cpu);
1875 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1876 enum { cpuset, possible, fail } state = cpuset;
1877 int dest_cpu;
5da9a0fb 1878
aa00d89c 1879 /*
d1ccc66d
IM
1880 * If the node that the CPU is on has been offlined, cpu_to_node()
1881 * will return -1. There is no CPU on the node, and we should
1882 * select the CPU on the other node.
aa00d89c
TC
1883 */
1884 if (nid != -1) {
1885 nodemask = cpumask_of_node(nid);
1886
1887 /* Look for allowed, online CPU in same node. */
1888 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1889 if (!cpu_active(dest_cpu))
1890 continue;
3bd37062 1891 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
1892 return dest_cpu;
1893 }
2baab4e9 1894 }
5da9a0fb 1895
2baab4e9
PZ
1896 for (;;) {
1897 /* Any allowed, online CPU? */
3bd37062 1898 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 1899 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1900 continue;
175f0e25 1901
2baab4e9
PZ
1902 goto out;
1903 }
5da9a0fb 1904
e73e85f0 1905 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1906 switch (state) {
1907 case cpuset:
e73e85f0
ON
1908 if (IS_ENABLED(CONFIG_CPUSETS)) {
1909 cpuset_cpus_allowed_fallback(p);
1910 state = possible;
1911 break;
1912 }
d1ccc66d 1913 /* Fall-through */
2baab4e9
PZ
1914 case possible:
1915 do_set_cpus_allowed(p, cpu_possible_mask);
1916 state = fail;
1917 break;
1918
1919 case fail:
1920 BUG();
1921 break;
1922 }
1923 }
1924
1925out:
1926 if (state != cpuset) {
1927 /*
1928 * Don't tell them about moving exiting tasks or
1929 * kernel threads (both mm NULL), since they never
1930 * leave kernel.
1931 */
1932 if (p->mm && printk_ratelimit()) {
aac74dc4 1933 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1934 task_pid_nr(p), p->comm, cpu);
1935 }
5da9a0fb
PZ
1936 }
1937
1938 return dest_cpu;
1939}
1940
e2912009 1941/*
3bd37062 1942 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 1943 */
970b13ba 1944static inline
ac66f547 1945int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1946{
cbce1a68
PZ
1947 lockdep_assert_held(&p->pi_lock);
1948
4b53a341 1949 if (p->nr_cpus_allowed > 1)
6c1d9410 1950 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1951 else
3bd37062 1952 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
1953
1954 /*
1955 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 1956 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 1957 * CPU.
e2912009
PZ
1958 *
1959 * Since this is common to all placement strategies, this lives here.
1960 *
1961 * [ this allows ->select_task() to simply return task_cpu(p) and
1962 * not worry about this generic constraint ]
1963 */
7af443ee 1964 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 1965 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1966
1967 return cpu;
970b13ba 1968}
09a40af5
MG
1969
1970static void update_avg(u64 *avg, u64 sample)
1971{
1972 s64 diff = sample - *avg;
1973 *avg += diff >> 3;
1974}
25834c73 1975
f5832c19
NP
1976void sched_set_stop_task(int cpu, struct task_struct *stop)
1977{
1978 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1979 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1980
1981 if (stop) {
1982 /*
1983 * Make it appear like a SCHED_FIFO task, its something
1984 * userspace knows about and won't get confused about.
1985 *
1986 * Also, it will make PI more or less work without too
1987 * much confusion -- but then, stop work should not
1988 * rely on PI working anyway.
1989 */
1990 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1991
1992 stop->sched_class = &stop_sched_class;
1993 }
1994
1995 cpu_rq(cpu)->stop = stop;
1996
1997 if (old_stop) {
1998 /*
1999 * Reset it back to a normal scheduling class so that
2000 * it can die in pieces.
2001 */
2002 old_stop->sched_class = &rt_sched_class;
2003 }
2004}
2005
25834c73
PZ
2006#else
2007
2008static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2009 const struct cpumask *new_mask, bool check)
2010{
2011 return set_cpus_allowed_ptr(p, new_mask);
2012}
2013
5cc389bc 2014#endif /* CONFIG_SMP */
970b13ba 2015
d7c01d27 2016static void
b84cb5df 2017ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2018{
4fa8d299 2019 struct rq *rq;
b84cb5df 2020
4fa8d299
JP
2021 if (!schedstat_enabled())
2022 return;
2023
2024 rq = this_rq();
d7c01d27 2025
4fa8d299
JP
2026#ifdef CONFIG_SMP
2027 if (cpu == rq->cpu) {
b85c8b71
PZ
2028 __schedstat_inc(rq->ttwu_local);
2029 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2030 } else {
2031 struct sched_domain *sd;
2032
b85c8b71 2033 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2034 rcu_read_lock();
4fa8d299 2035 for_each_domain(rq->cpu, sd) {
d7c01d27 2036 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2037 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2038 break;
2039 }
2040 }
057f3fad 2041 rcu_read_unlock();
d7c01d27 2042 }
f339b9dc
PZ
2043
2044 if (wake_flags & WF_MIGRATED)
b85c8b71 2045 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2046#endif /* CONFIG_SMP */
2047
b85c8b71
PZ
2048 __schedstat_inc(rq->ttwu_count);
2049 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2050
2051 if (wake_flags & WF_SYNC)
b85c8b71 2052 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2053}
2054
23f41eeb
PZ
2055/*
2056 * Mark the task runnable and perform wakeup-preemption.
2057 */
e7904a28 2058static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2059 struct rq_flags *rf)
9ed3811a 2060{
9ed3811a 2061 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2062 p->state = TASK_RUNNING;
fbd705a0
PZ
2063 trace_sched_wakeup(p);
2064
9ed3811a 2065#ifdef CONFIG_SMP
4c9a4bc8
PZ
2066 if (p->sched_class->task_woken) {
2067 /*
cbce1a68
PZ
2068 * Our task @p is fully woken up and running; so its safe to
2069 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2070 */
d8ac8971 2071 rq_unpin_lock(rq, rf);
9ed3811a 2072 p->sched_class->task_woken(rq, p);
d8ac8971 2073 rq_repin_lock(rq, rf);
4c9a4bc8 2074 }
9ed3811a 2075
e69c6341 2076 if (rq->idle_stamp) {
78becc27 2077 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2078 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2079
abfafa54
JL
2080 update_avg(&rq->avg_idle, delta);
2081
2082 if (rq->avg_idle > max)
9ed3811a 2083 rq->avg_idle = max;
abfafa54 2084
9ed3811a
TH
2085 rq->idle_stamp = 0;
2086 }
2087#endif
2088}
2089
c05fbafb 2090static void
e7904a28 2091ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2092 struct rq_flags *rf)
c05fbafb 2093{
77558e4d 2094 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2095
cbce1a68
PZ
2096 lockdep_assert_held(&rq->lock);
2097
c05fbafb
PZ
2098#ifdef CONFIG_SMP
2099 if (p->sched_contributes_to_load)
2100 rq->nr_uninterruptible--;
b5179ac7 2101
b5179ac7 2102 if (wake_flags & WF_MIGRATED)
59efa0ba 2103 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2104#endif
2105
1b174a2c 2106 activate_task(rq, p, en_flags);
d8ac8971 2107 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2108}
2109
2110/*
2111 * Called in case the task @p isn't fully descheduled from its runqueue,
2112 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2113 * since all we need to do is flip p->state to TASK_RUNNING, since
2114 * the task is still ->on_rq.
2115 */
2116static int ttwu_remote(struct task_struct *p, int wake_flags)
2117{
eb580751 2118 struct rq_flags rf;
c05fbafb
PZ
2119 struct rq *rq;
2120 int ret = 0;
2121
eb580751 2122 rq = __task_rq_lock(p, &rf);
da0c1e65 2123 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2124 /* check_preempt_curr() may use rq clock */
2125 update_rq_clock(rq);
d8ac8971 2126 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2127 ret = 1;
2128 }
eb580751 2129 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2130
2131 return ret;
2132}
2133
317f3941 2134#ifdef CONFIG_SMP
e3baac47 2135void sched_ttwu_pending(void)
317f3941
PZ
2136{
2137 struct rq *rq = this_rq();
fa14ff4a 2138 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 2139 struct task_struct *p, *t;
d8ac8971 2140 struct rq_flags rf;
317f3941 2141
e3baac47
PZ
2142 if (!llist)
2143 return;
2144
8a8c69c3 2145 rq_lock_irqsave(rq, &rf);
77558e4d 2146 update_rq_clock(rq);
317f3941 2147
73215849
BP
2148 llist_for_each_entry_safe(p, t, llist, wake_entry)
2149 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 2150
8a8c69c3 2151 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2152}
2153
2154void scheduler_ipi(void)
2155{
f27dde8d
PZ
2156 /*
2157 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2158 * TIF_NEED_RESCHED remotely (for the first time) will also send
2159 * this IPI.
2160 */
8cb75e0c 2161 preempt_fold_need_resched();
f27dde8d 2162
fd2ac4f4 2163 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2164 return;
2165
2166 /*
2167 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2168 * traditionally all their work was done from the interrupt return
2169 * path. Now that we actually do some work, we need to make sure
2170 * we do call them.
2171 *
2172 * Some archs already do call them, luckily irq_enter/exit nest
2173 * properly.
2174 *
2175 * Arguably we should visit all archs and update all handlers,
2176 * however a fair share of IPIs are still resched only so this would
2177 * somewhat pessimize the simple resched case.
2178 */
2179 irq_enter();
fa14ff4a 2180 sched_ttwu_pending();
ca38062e
SS
2181
2182 /*
2183 * Check if someone kicked us for doing the nohz idle load balance.
2184 */
873b4c65 2185 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 2186 this_rq()->idle_balance = 1;
ca38062e 2187 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2188 }
c5d753a5 2189 irq_exit();
317f3941
PZ
2190}
2191
b7e7ade3 2192static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 2193{
e3baac47
PZ
2194 struct rq *rq = cpu_rq(cpu);
2195
b7e7ade3
PZ
2196 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2197
e3baac47
PZ
2198 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2199 if (!set_nr_if_polling(rq->idle))
2200 smp_send_reschedule(cpu);
2201 else
2202 trace_sched_wake_idle_without_ipi(cpu);
2203 }
317f3941 2204}
d6aa8f85 2205
f6be8af1
CL
2206void wake_up_if_idle(int cpu)
2207{
2208 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2209 struct rq_flags rf;
f6be8af1 2210
fd7de1e8
AL
2211 rcu_read_lock();
2212
2213 if (!is_idle_task(rcu_dereference(rq->curr)))
2214 goto out;
f6be8af1
CL
2215
2216 if (set_nr_if_polling(rq->idle)) {
2217 trace_sched_wake_idle_without_ipi(cpu);
2218 } else {
8a8c69c3 2219 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2220 if (is_idle_task(rq->curr))
2221 smp_send_reschedule(cpu);
d1ccc66d 2222 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2223 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2224 }
fd7de1e8
AL
2225
2226out:
2227 rcu_read_unlock();
f6be8af1
CL
2228}
2229
39be3501 2230bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2231{
2232 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2233}
d6aa8f85 2234#endif /* CONFIG_SMP */
317f3941 2235
b5179ac7 2236static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2237{
2238 struct rq *rq = cpu_rq(cpu);
d8ac8971 2239 struct rq_flags rf;
c05fbafb 2240
17d9f311 2241#if defined(CONFIG_SMP)
39be3501 2242 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 2243 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 2244 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
2245 return;
2246 }
2247#endif
2248
8a8c69c3 2249 rq_lock(rq, &rf);
77558e4d 2250 update_rq_clock(rq);
d8ac8971 2251 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2252 rq_unlock(rq, &rf);
9ed3811a
TH
2253}
2254
8643cda5
PZ
2255/*
2256 * Notes on Program-Order guarantees on SMP systems.
2257 *
2258 * MIGRATION
2259 *
2260 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2261 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2262 * execution on its new CPU [c1].
8643cda5
PZ
2263 *
2264 * For migration (of runnable tasks) this is provided by the following means:
2265 *
2266 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2267 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2268 * rq(c1)->lock (if not at the same time, then in that order).
2269 * C) LOCK of the rq(c1)->lock scheduling in task
2270 *
7696f991 2271 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2272 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2273 *
2274 * Example:
2275 *
2276 * CPU0 CPU1 CPU2
2277 *
2278 * LOCK rq(0)->lock
2279 * sched-out X
2280 * sched-in Y
2281 * UNLOCK rq(0)->lock
2282 *
2283 * LOCK rq(0)->lock // orders against CPU0
2284 * dequeue X
2285 * UNLOCK rq(0)->lock
2286 *
2287 * LOCK rq(1)->lock
2288 * enqueue X
2289 * UNLOCK rq(1)->lock
2290 *
2291 * LOCK rq(1)->lock // orders against CPU2
2292 * sched-out Z
2293 * sched-in X
2294 * UNLOCK rq(1)->lock
2295 *
2296 *
2297 * BLOCKING -- aka. SLEEP + WAKEUP
2298 *
2299 * For blocking we (obviously) need to provide the same guarantee as for
2300 * migration. However the means are completely different as there is no lock
2301 * chain to provide order. Instead we do:
2302 *
2303 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 2304 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
2305 *
2306 * Example:
2307 *
2308 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2309 *
2310 * LOCK rq(0)->lock LOCK X->pi_lock
2311 * dequeue X
2312 * sched-out X
2313 * smp_store_release(X->on_cpu, 0);
2314 *
1f03e8d2 2315 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2316 * X->state = WAKING
2317 * set_task_cpu(X,2)
2318 *
2319 * LOCK rq(2)->lock
2320 * enqueue X
2321 * X->state = RUNNING
2322 * UNLOCK rq(2)->lock
2323 *
2324 * LOCK rq(2)->lock // orders against CPU1
2325 * sched-out Z
2326 * sched-in X
2327 * UNLOCK rq(2)->lock
2328 *
2329 * UNLOCK X->pi_lock
2330 * UNLOCK rq(0)->lock
2331 *
2332 *
7696f991
AP
2333 * However, for wakeups there is a second guarantee we must provide, namely we
2334 * must ensure that CONDITION=1 done by the caller can not be reordered with
2335 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2336 */
2337
9ed3811a 2338/**
1da177e4 2339 * try_to_wake_up - wake up a thread
9ed3811a 2340 * @p: the thread to be awakened
1da177e4 2341 * @state: the mask of task states that can be woken
9ed3811a 2342 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2343 *
a2250238 2344 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2345 *
a2250238
PZ
2346 * If the task was not queued/runnable, also place it back on a runqueue.
2347 *
2348 * Atomic against schedule() which would dequeue a task, also see
2349 * set_current_state().
2350 *
7696f991
AP
2351 * This function executes a full memory barrier before accessing the task
2352 * state; see set_current_state().
2353 *
a2250238
PZ
2354 * Return: %true if @p->state changes (an actual wakeup was done),
2355 * %false otherwise.
1da177e4 2356 */
e4a52bcb
PZ
2357static int
2358try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2359{
1da177e4 2360 unsigned long flags;
c05fbafb 2361 int cpu, success = 0;
2398f2c6 2362
aacedf26
PZ
2363 if (p == current) {
2364 /*
2365 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2366 * == smp_processor_id()'. Together this means we can special
2367 * case the whole 'p->on_rq && ttwu_remote()' case below
2368 * without taking any locks.
2369 *
2370 * In particular:
2371 * - we rely on Program-Order guarantees for all the ordering,
2372 * - we're serialized against set_special_state() by virtue of
2373 * it disabling IRQs (this allows not taking ->pi_lock).
2374 */
2375 if (!(p->state & state))
2376 return false;
2377
2378 success = 1;
2379 cpu = task_cpu(p);
2380 trace_sched_waking(p);
2381 p->state = TASK_RUNNING;
2382 trace_sched_wakeup(p);
2383 goto out;
2384 }
2385
e0acd0a6
ON
2386 /*
2387 * If we are going to wake up a thread waiting for CONDITION we
2388 * need to ensure that CONDITION=1 done by the caller can not be
2389 * reordered with p->state check below. This pairs with mb() in
2390 * set_current_state() the waiting thread does.
2391 */
013fdb80 2392 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2393 smp_mb__after_spinlock();
e9c84311 2394 if (!(p->state & state))
aacedf26 2395 goto unlock;
1da177e4 2396
fbd705a0
PZ
2397 trace_sched_waking(p);
2398
d1ccc66d
IM
2399 /* We're going to change ->state: */
2400 success = 1;
1da177e4 2401 cpu = task_cpu(p);
1da177e4 2402
135e8c92
BS
2403 /*
2404 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2405 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2406 * in smp_cond_load_acquire() below.
2407 *
3d85b270
AP
2408 * sched_ttwu_pending() try_to_wake_up()
2409 * STORE p->on_rq = 1 LOAD p->state
2410 * UNLOCK rq->lock
2411 *
2412 * __schedule() (switch to task 'p')
2413 * LOCK rq->lock smp_rmb();
2414 * smp_mb__after_spinlock();
2415 * UNLOCK rq->lock
135e8c92
BS
2416 *
2417 * [task p]
3d85b270 2418 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2419 *
3d85b270
AP
2420 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2421 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2422 */
2423 smp_rmb();
c05fbafb 2424 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2425 goto unlock;
1da177e4 2426
1da177e4 2427#ifdef CONFIG_SMP
ecf7d01c
PZ
2428 /*
2429 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2430 * possible to, falsely, observe p->on_cpu == 0.
2431 *
2432 * One must be running (->on_cpu == 1) in order to remove oneself
2433 * from the runqueue.
2434 *
3d85b270
AP
2435 * __schedule() (switch to task 'p') try_to_wake_up()
2436 * STORE p->on_cpu = 1 LOAD p->on_rq
2437 * UNLOCK rq->lock
2438 *
2439 * __schedule() (put 'p' to sleep)
2440 * LOCK rq->lock smp_rmb();
2441 * smp_mb__after_spinlock();
2442 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2443 *
3d85b270
AP
2444 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2445 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2446 */
2447 smp_rmb();
2448
e9c84311 2449 /*
d1ccc66d 2450 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2451 * this task as prev, wait until its done referencing the task.
b75a2253 2452 *
31cb1bc0 2453 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2454 *
2455 * This ensures that tasks getting woken will be fully ordered against
2456 * their previous state and preserve Program Order.
0970d299 2457 */
1f03e8d2 2458 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2459
a8e4f2ea 2460 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2461 p->state = TASK_WAKING;
e7693a36 2462
e33a9bba 2463 if (p->in_iowait) {
c96f5471 2464 delayacct_blkio_end(p);
e33a9bba
TH
2465 atomic_dec(&task_rq(p)->nr_iowait);
2466 }
2467
ac66f547 2468 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2469 if (task_cpu(p) != cpu) {
2470 wake_flags |= WF_MIGRATED;
eb414681 2471 psi_ttwu_dequeue(p);
e4a52bcb 2472 set_task_cpu(p, cpu);
f339b9dc 2473 }
e33a9bba
TH
2474
2475#else /* CONFIG_SMP */
2476
2477 if (p->in_iowait) {
c96f5471 2478 delayacct_blkio_end(p);
e33a9bba
TH
2479 atomic_dec(&task_rq(p)->nr_iowait);
2480 }
2481
1da177e4 2482#endif /* CONFIG_SMP */
1da177e4 2483
b5179ac7 2484 ttwu_queue(p, cpu, wake_flags);
aacedf26 2485unlock:
013fdb80 2486 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2487out:
2488 if (success)
2489 ttwu_stat(p, cpu, wake_flags);
1da177e4
LT
2490
2491 return success;
2492}
2493
50fa610a
DH
2494/**
2495 * wake_up_process - Wake up a specific process
2496 * @p: The process to be woken up.
2497 *
2498 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2499 * processes.
2500 *
2501 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2502 *
7696f991 2503 * This function executes a full memory barrier before accessing the task state.
50fa610a 2504 */
7ad5b3a5 2505int wake_up_process(struct task_struct *p)
1da177e4 2506{
9067ac85 2507 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2508}
1da177e4
LT
2509EXPORT_SYMBOL(wake_up_process);
2510
7ad5b3a5 2511int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2512{
2513 return try_to_wake_up(p, state, 0);
2514}
2515
1da177e4
LT
2516/*
2517 * Perform scheduler related setup for a newly forked process p.
2518 * p is forked by current.
dd41f596
IM
2519 *
2520 * __sched_fork() is basic setup used by init_idle() too:
2521 */
5e1576ed 2522static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2523{
fd2f4419
PZ
2524 p->on_rq = 0;
2525
2526 p->se.on_rq = 0;
dd41f596
IM
2527 p->se.exec_start = 0;
2528 p->se.sum_exec_runtime = 0;
f6cf891c 2529 p->se.prev_sum_exec_runtime = 0;
6c594c21 2530 p->se.nr_migrations = 0;
da7a735e 2531 p->se.vruntime = 0;
fd2f4419 2532 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2533
ad936d86
BP
2534#ifdef CONFIG_FAIR_GROUP_SCHED
2535 p->se.cfs_rq = NULL;
2536#endif
2537
6cfb0d5d 2538#ifdef CONFIG_SCHEDSTATS
cb251765 2539 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2540 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2541#endif
476d139c 2542
aab03e05 2543 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2544 init_dl_task_timer(&p->dl);
209a0cbd 2545 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2546 __dl_clear_params(p);
aab03e05 2547
fa717060 2548 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2549 p->rt.timeout = 0;
2550 p->rt.time_slice = sched_rr_timeslice;
2551 p->rt.on_rq = 0;
2552 p->rt.on_list = 0;
476d139c 2553
e107be36
AK
2554#ifdef CONFIG_PREEMPT_NOTIFIERS
2555 INIT_HLIST_HEAD(&p->preempt_notifiers);
2556#endif
cbee9f88 2557
5e1f0f09
MG
2558#ifdef CONFIG_COMPACTION
2559 p->capture_control = NULL;
2560#endif
13784475 2561 init_numa_balancing(clone_flags, p);
dd41f596
IM
2562}
2563
2a595721
SD
2564DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2565
1a687c2e 2566#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2567
1a687c2e
MG
2568void set_numabalancing_state(bool enabled)
2569{
2570 if (enabled)
2a595721 2571 static_branch_enable(&sched_numa_balancing);
1a687c2e 2572 else
2a595721 2573 static_branch_disable(&sched_numa_balancing);
1a687c2e 2574}
54a43d54
AK
2575
2576#ifdef CONFIG_PROC_SYSCTL
2577int sysctl_numa_balancing(struct ctl_table *table, int write,
2578 void __user *buffer, size_t *lenp, loff_t *ppos)
2579{
2580 struct ctl_table t;
2581 int err;
2a595721 2582 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2583
2584 if (write && !capable(CAP_SYS_ADMIN))
2585 return -EPERM;
2586
2587 t = *table;
2588 t.data = &state;
2589 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2590 if (err < 0)
2591 return err;
2592 if (write)
2593 set_numabalancing_state(state);
2594 return err;
2595}
2596#endif
2597#endif
dd41f596 2598
4698f88c
JP
2599#ifdef CONFIG_SCHEDSTATS
2600
cb251765 2601DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2602static bool __initdata __sched_schedstats = false;
cb251765 2603
cb251765
MG
2604static void set_schedstats(bool enabled)
2605{
2606 if (enabled)
2607 static_branch_enable(&sched_schedstats);
2608 else
2609 static_branch_disable(&sched_schedstats);
2610}
2611
2612void force_schedstat_enabled(void)
2613{
2614 if (!schedstat_enabled()) {
2615 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2616 static_branch_enable(&sched_schedstats);
2617 }
2618}
2619
2620static int __init setup_schedstats(char *str)
2621{
2622 int ret = 0;
2623 if (!str)
2624 goto out;
2625
4698f88c
JP
2626 /*
2627 * This code is called before jump labels have been set up, so we can't
2628 * change the static branch directly just yet. Instead set a temporary
2629 * variable so init_schedstats() can do it later.
2630 */
cb251765 2631 if (!strcmp(str, "enable")) {
4698f88c 2632 __sched_schedstats = true;
cb251765
MG
2633 ret = 1;
2634 } else if (!strcmp(str, "disable")) {
4698f88c 2635 __sched_schedstats = false;
cb251765
MG
2636 ret = 1;
2637 }
2638out:
2639 if (!ret)
2640 pr_warn("Unable to parse schedstats=\n");
2641
2642 return ret;
2643}
2644__setup("schedstats=", setup_schedstats);
2645
4698f88c
JP
2646static void __init init_schedstats(void)
2647{
2648 set_schedstats(__sched_schedstats);
2649}
2650
cb251765
MG
2651#ifdef CONFIG_PROC_SYSCTL
2652int sysctl_schedstats(struct ctl_table *table, int write,
2653 void __user *buffer, size_t *lenp, loff_t *ppos)
2654{
2655 struct ctl_table t;
2656 int err;
2657 int state = static_branch_likely(&sched_schedstats);
2658
2659 if (write && !capable(CAP_SYS_ADMIN))
2660 return -EPERM;
2661
2662 t = *table;
2663 t.data = &state;
2664 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2665 if (err < 0)
2666 return err;
2667 if (write)
2668 set_schedstats(state);
2669 return err;
2670}
4698f88c
JP
2671#endif /* CONFIG_PROC_SYSCTL */
2672#else /* !CONFIG_SCHEDSTATS */
2673static inline void init_schedstats(void) {}
2674#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2675
2676/*
2677 * fork()/clone()-time setup:
2678 */
aab03e05 2679int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2680{
0122ec5b 2681 unsigned long flags;
dd41f596 2682
5e1576ed 2683 __sched_fork(clone_flags, p);
06b83b5f 2684 /*
7dc603c9 2685 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2686 * nobody will actually run it, and a signal or other external
2687 * event cannot wake it up and insert it on the runqueue either.
2688 */
7dc603c9 2689 p->state = TASK_NEW;
dd41f596 2690
c350a04e
MG
2691 /*
2692 * Make sure we do not leak PI boosting priority to the child.
2693 */
2694 p->prio = current->normal_prio;
2695
e8f14172
PB
2696 uclamp_fork(p);
2697
b9dc29e7
MG
2698 /*
2699 * Revert to default priority/policy on fork if requested.
2700 */
2701 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2702 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2703 p->policy = SCHED_NORMAL;
6c697bdf 2704 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2705 p->rt_priority = 0;
2706 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2707 p->static_prio = NICE_TO_PRIO(0);
2708
2709 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2710 set_load_weight(p, false);
6c697bdf 2711
b9dc29e7
MG
2712 /*
2713 * We don't need the reset flag anymore after the fork. It has
2714 * fulfilled its duty:
2715 */
2716 p->sched_reset_on_fork = 0;
2717 }
ca94c442 2718
af0fffd9 2719 if (dl_prio(p->prio))
aab03e05 2720 return -EAGAIN;
af0fffd9 2721 else if (rt_prio(p->prio))
aab03e05 2722 p->sched_class = &rt_sched_class;
af0fffd9 2723 else
2ddbf952 2724 p->sched_class = &fair_sched_class;
b29739f9 2725
7dc603c9 2726 init_entity_runnable_average(&p->se);
cd29fe6f 2727
86951599
PZ
2728 /*
2729 * The child is not yet in the pid-hash so no cgroup attach races,
2730 * and the cgroup is pinned to this child due to cgroup_fork()
2731 * is ran before sched_fork().
2732 *
2733 * Silence PROVE_RCU.
2734 */
0122ec5b 2735 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2736 /*
d1ccc66d 2737 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2738 * so use __set_task_cpu().
2739 */
af0fffd9 2740 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2741 if (p->sched_class->task_fork)
2742 p->sched_class->task_fork(p);
0122ec5b 2743 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2744
f6db8347 2745#ifdef CONFIG_SCHED_INFO
dd41f596 2746 if (likely(sched_info_on()))
52f17b6c 2747 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2748#endif
3ca7a440
PZ
2749#if defined(CONFIG_SMP)
2750 p->on_cpu = 0;
4866cde0 2751#endif
01028747 2752 init_task_preempt_count(p);
806c09a7 2753#ifdef CONFIG_SMP
917b627d 2754 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2755 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2756#endif
aab03e05 2757 return 0;
1da177e4
LT
2758}
2759
332ac17e
DF
2760unsigned long to_ratio(u64 period, u64 runtime)
2761{
2762 if (runtime == RUNTIME_INF)
c52f14d3 2763 return BW_UNIT;
332ac17e
DF
2764
2765 /*
2766 * Doing this here saves a lot of checks in all
2767 * the calling paths, and returning zero seems
2768 * safe for them anyway.
2769 */
2770 if (period == 0)
2771 return 0;
2772
c52f14d3 2773 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2774}
2775
1da177e4
LT
2776/*
2777 * wake_up_new_task - wake up a newly created task for the first time.
2778 *
2779 * This function will do some initial scheduler statistics housekeeping
2780 * that must be done for every newly created context, then puts the task
2781 * on the runqueue and wakes it.
2782 */
3e51e3ed 2783void wake_up_new_task(struct task_struct *p)
1da177e4 2784{
eb580751 2785 struct rq_flags rf;
dd41f596 2786 struct rq *rq;
fabf318e 2787
eb580751 2788 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2789 p->state = TASK_RUNNING;
fabf318e
PZ
2790#ifdef CONFIG_SMP
2791 /*
2792 * Fork balancing, do it here and not earlier because:
3bd37062 2793 * - cpus_ptr can change in the fork path
d1ccc66d 2794 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2795 *
2796 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2797 * as we're not fully set-up yet.
fabf318e 2798 */
32e839dd 2799 p->recent_used_cpu = task_cpu(p);
e210bffd 2800 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2801#endif
b7fa30c9 2802 rq = __task_rq_lock(p, &rf);
4126bad6 2803 update_rq_clock(rq);
d0fe0b9c 2804 post_init_entity_util_avg(p);
0017d735 2805
7a57f32a 2806 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2807 trace_sched_wakeup_new(p);
a7558e01 2808 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2809#ifdef CONFIG_SMP
0aaafaab
PZ
2810 if (p->sched_class->task_woken) {
2811 /*
2812 * Nothing relies on rq->lock after this, so its fine to
2813 * drop it.
2814 */
d8ac8971 2815 rq_unpin_lock(rq, &rf);
efbbd05a 2816 p->sched_class->task_woken(rq, p);
d8ac8971 2817 rq_repin_lock(rq, &rf);
0aaafaab 2818 }
9a897c5a 2819#endif
eb580751 2820 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2821}
2822
e107be36
AK
2823#ifdef CONFIG_PREEMPT_NOTIFIERS
2824
b7203428 2825static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2826
2ecd9d29
PZ
2827void preempt_notifier_inc(void)
2828{
b7203428 2829 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2830}
2831EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2832
2833void preempt_notifier_dec(void)
2834{
b7203428 2835 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2836}
2837EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2838
e107be36 2839/**
80dd99b3 2840 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2841 * @notifier: notifier struct to register
e107be36
AK
2842 */
2843void preempt_notifier_register(struct preempt_notifier *notifier)
2844{
b7203428 2845 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2846 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2847
e107be36
AK
2848 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2849}
2850EXPORT_SYMBOL_GPL(preempt_notifier_register);
2851
2852/**
2853 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2854 * @notifier: notifier struct to unregister
e107be36 2855 *
d84525a8 2856 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2857 */
2858void preempt_notifier_unregister(struct preempt_notifier *notifier)
2859{
2860 hlist_del(&notifier->link);
2861}
2862EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2863
1cde2930 2864static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2865{
2866 struct preempt_notifier *notifier;
e107be36 2867
b67bfe0d 2868 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2869 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2870}
2871
1cde2930
PZ
2872static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2873{
b7203428 2874 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2875 __fire_sched_in_preempt_notifiers(curr);
2876}
2877
e107be36 2878static void
1cde2930
PZ
2879__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2880 struct task_struct *next)
e107be36
AK
2881{
2882 struct preempt_notifier *notifier;
e107be36 2883
b67bfe0d 2884 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2885 notifier->ops->sched_out(notifier, next);
2886}
2887
1cde2930
PZ
2888static __always_inline void
2889fire_sched_out_preempt_notifiers(struct task_struct *curr,
2890 struct task_struct *next)
2891{
b7203428 2892 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2893 __fire_sched_out_preempt_notifiers(curr, next);
2894}
2895
6d6bc0ad 2896#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2897
1cde2930 2898static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2899{
2900}
2901
1cde2930 2902static inline void
e107be36
AK
2903fire_sched_out_preempt_notifiers(struct task_struct *curr,
2904 struct task_struct *next)
2905{
2906}
2907
6d6bc0ad 2908#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2909
31cb1bc0 2910static inline void prepare_task(struct task_struct *next)
2911{
2912#ifdef CONFIG_SMP
2913 /*
2914 * Claim the task as running, we do this before switching to it
2915 * such that any running task will have this set.
2916 */
2917 next->on_cpu = 1;
2918#endif
2919}
2920
2921static inline void finish_task(struct task_struct *prev)
2922{
2923#ifdef CONFIG_SMP
2924 /*
2925 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2926 * We must ensure this doesn't happen until the switch is completely
2927 * finished.
2928 *
2929 * In particular, the load of prev->state in finish_task_switch() must
2930 * happen before this.
2931 *
2932 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2933 */
2934 smp_store_release(&prev->on_cpu, 0);
2935#endif
2936}
2937
269d5992
PZ
2938static inline void
2939prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2940{
269d5992
PZ
2941 /*
2942 * Since the runqueue lock will be released by the next
2943 * task (which is an invalid locking op but in the case
2944 * of the scheduler it's an obvious special-case), so we
2945 * do an early lockdep release here:
2946 */
2947 rq_unpin_lock(rq, rf);
2948 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2949#ifdef CONFIG_DEBUG_SPINLOCK
2950 /* this is a valid case when another task releases the spinlock */
269d5992 2951 rq->lock.owner = next;
31cb1bc0 2952#endif
269d5992
PZ
2953}
2954
2955static inline void finish_lock_switch(struct rq *rq)
2956{
31cb1bc0 2957 /*
2958 * If we are tracking spinlock dependencies then we have to
2959 * fix up the runqueue lock - which gets 'carried over' from
2960 * prev into current:
2961 */
2962 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2963 raw_spin_unlock_irq(&rq->lock);
2964}
2965
325ea10c
IM
2966/*
2967 * NOP if the arch has not defined these:
2968 */
2969
2970#ifndef prepare_arch_switch
2971# define prepare_arch_switch(next) do { } while (0)
2972#endif
2973
2974#ifndef finish_arch_post_lock_switch
2975# define finish_arch_post_lock_switch() do { } while (0)
2976#endif
2977
4866cde0
NP
2978/**
2979 * prepare_task_switch - prepare to switch tasks
2980 * @rq: the runqueue preparing to switch
421cee29 2981 * @prev: the current task that is being switched out
4866cde0
NP
2982 * @next: the task we are going to switch to.
2983 *
2984 * This is called with the rq lock held and interrupts off. It must
2985 * be paired with a subsequent finish_task_switch after the context
2986 * switch.
2987 *
2988 * prepare_task_switch sets up locking and calls architecture specific
2989 * hooks.
2990 */
e107be36
AK
2991static inline void
2992prepare_task_switch(struct rq *rq, struct task_struct *prev,
2993 struct task_struct *next)
4866cde0 2994{
0ed557aa 2995 kcov_prepare_switch(prev);
43148951 2996 sched_info_switch(rq, prev, next);
fe4b04fa 2997 perf_event_task_sched_out(prev, next);
d7822b1e 2998 rseq_preempt(prev);
e107be36 2999 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3000 prepare_task(next);
4866cde0
NP
3001 prepare_arch_switch(next);
3002}
3003
1da177e4
LT
3004/**
3005 * finish_task_switch - clean up after a task-switch
3006 * @prev: the thread we just switched away from.
3007 *
4866cde0
NP
3008 * finish_task_switch must be called after the context switch, paired
3009 * with a prepare_task_switch call before the context switch.
3010 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3011 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3012 *
3013 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3014 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3015 * with the lock held can cause deadlocks; see schedule() for
3016 * details.)
dfa50b60
ON
3017 *
3018 * The context switch have flipped the stack from under us and restored the
3019 * local variables which were saved when this task called schedule() in the
3020 * past. prev == current is still correct but we need to recalculate this_rq
3021 * because prev may have moved to another CPU.
1da177e4 3022 */
dfa50b60 3023static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3024 __releases(rq->lock)
3025{
dfa50b60 3026 struct rq *rq = this_rq();
1da177e4 3027 struct mm_struct *mm = rq->prev_mm;
55a101f8 3028 long prev_state;
1da177e4 3029
609ca066
PZ
3030 /*
3031 * The previous task will have left us with a preempt_count of 2
3032 * because it left us after:
3033 *
3034 * schedule()
3035 * preempt_disable(); // 1
3036 * __schedule()
3037 * raw_spin_lock_irq(&rq->lock) // 2
3038 *
3039 * Also, see FORK_PREEMPT_COUNT.
3040 */
e2bf1c4b
PZ
3041 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3042 "corrupted preempt_count: %s/%d/0x%x\n",
3043 current->comm, current->pid, preempt_count()))
3044 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3045
1da177e4
LT
3046 rq->prev_mm = NULL;
3047
3048 /*
3049 * A task struct has one reference for the use as "current".
c394cc9f 3050 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3051 * schedule one last time. The schedule call will never return, and
3052 * the scheduled task must drop that reference.
95913d97
PZ
3053 *
3054 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3055 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3056 * running on another CPU and we could rave with its RUNNING -> DEAD
3057 * transition, resulting in a double drop.
1da177e4 3058 */
55a101f8 3059 prev_state = prev->state;
bf9fae9f 3060 vtime_task_switch(prev);
a8d757ef 3061 perf_event_task_sched_in(prev, current);
31cb1bc0 3062 finish_task(prev);
3063 finish_lock_switch(rq);
01f23e16 3064 finish_arch_post_lock_switch();
0ed557aa 3065 kcov_finish_switch(current);
e8fa1362 3066
e107be36 3067 fire_sched_in_preempt_notifiers(current);
306e0604 3068 /*
70216e18
MD
3069 * When switching through a kernel thread, the loop in
3070 * membarrier_{private,global}_expedited() may have observed that
3071 * kernel thread and not issued an IPI. It is therefore possible to
3072 * schedule between user->kernel->user threads without passing though
3073 * switch_mm(). Membarrier requires a barrier after storing to
3074 * rq->curr, before returning to userspace, so provide them here:
3075 *
3076 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3077 * provided by mmdrop(),
3078 * - a sync_core for SYNC_CORE.
306e0604 3079 */
70216e18
MD
3080 if (mm) {
3081 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3082 mmdrop(mm);
70216e18 3083 }
1cef1150
PZ
3084 if (unlikely(prev_state == TASK_DEAD)) {
3085 if (prev->sched_class->task_dead)
3086 prev->sched_class->task_dead(prev);
68f24b08 3087
1cef1150
PZ
3088 /*
3089 * Remove function-return probe instances associated with this
3090 * task and put them back on the free list.
3091 */
3092 kprobe_flush_task(prev);
3093
3094 /* Task is done with its stack. */
3095 put_task_stack(prev);
3096
3097 put_task_struct(prev);
c6fd91f0 3098 }
99e5ada9 3099
de734f89 3100 tick_nohz_task_switch();
dfa50b60 3101 return rq;
1da177e4
LT
3102}
3103
3f029d3c
GH
3104#ifdef CONFIG_SMP
3105
3f029d3c 3106/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3107static void __balance_callback(struct rq *rq)
3f029d3c 3108{
e3fca9e7
PZ
3109 struct callback_head *head, *next;
3110 void (*func)(struct rq *rq);
3111 unsigned long flags;
3f029d3c 3112
e3fca9e7
PZ
3113 raw_spin_lock_irqsave(&rq->lock, flags);
3114 head = rq->balance_callback;
3115 rq->balance_callback = NULL;
3116 while (head) {
3117 func = (void (*)(struct rq *))head->func;
3118 next = head->next;
3119 head->next = NULL;
3120 head = next;
3f029d3c 3121
e3fca9e7 3122 func(rq);
3f029d3c 3123 }
e3fca9e7
PZ
3124 raw_spin_unlock_irqrestore(&rq->lock, flags);
3125}
3126
3127static inline void balance_callback(struct rq *rq)
3128{
3129 if (unlikely(rq->balance_callback))
3130 __balance_callback(rq);
3f029d3c
GH
3131}
3132
3133#else
da19ab51 3134
e3fca9e7 3135static inline void balance_callback(struct rq *rq)
3f029d3c 3136{
1da177e4
LT
3137}
3138
3f029d3c
GH
3139#endif
3140
1da177e4
LT
3141/**
3142 * schedule_tail - first thing a freshly forked thread must call.
3143 * @prev: the thread we just switched away from.
3144 */
722a9f92 3145asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3146 __releases(rq->lock)
3147{
1a43a14a 3148 struct rq *rq;
da19ab51 3149
609ca066
PZ
3150 /*
3151 * New tasks start with FORK_PREEMPT_COUNT, see there and
3152 * finish_task_switch() for details.
3153 *
3154 * finish_task_switch() will drop rq->lock() and lower preempt_count
3155 * and the preempt_enable() will end up enabling preemption (on
3156 * PREEMPT_COUNT kernels).
3157 */
3158
dfa50b60 3159 rq = finish_task_switch(prev);
e3fca9e7 3160 balance_callback(rq);
1a43a14a 3161 preempt_enable();
70b97a7f 3162
1da177e4 3163 if (current->set_child_tid)
b488893a 3164 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3165
3166 calculate_sigpending();
1da177e4
LT
3167}
3168
3169/*
dfa50b60 3170 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3171 */
04936948 3172static __always_inline struct rq *
70b97a7f 3173context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3174 struct task_struct *next, struct rq_flags *rf)
1da177e4 3175{
dd41f596 3176 struct mm_struct *mm, *oldmm;
1da177e4 3177
e107be36 3178 prepare_task_switch(rq, prev, next);
fe4b04fa 3179
dd41f596
IM
3180 mm = next->mm;
3181 oldmm = prev->active_mm;
9226d125
ZA
3182 /*
3183 * For paravirt, this is coupled with an exit in switch_to to
3184 * combine the page table reload and the switch backend into
3185 * one hypercall.
3186 */
224101ed 3187 arch_start_context_switch(prev);
9226d125 3188
306e0604
MD
3189 /*
3190 * If mm is non-NULL, we pass through switch_mm(). If mm is
3191 * NULL, we will pass through mmdrop() in finish_task_switch().
3192 * Both of these contain the full memory barrier required by
3193 * membarrier after storing to rq->curr, before returning to
3194 * user-space.
3195 */
31915ab4 3196 if (!mm) {
1da177e4 3197 next->active_mm = oldmm;
f1f10076 3198 mmgrab(oldmm);
1da177e4
LT
3199 enter_lazy_tlb(oldmm, next);
3200 } else
f98db601 3201 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 3202
31915ab4 3203 if (!prev->mm) {
1da177e4 3204 prev->active_mm = NULL;
1da177e4
LT
3205 rq->prev_mm = oldmm;
3206 }
92509b73 3207
cb42c9a3 3208 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3209
269d5992 3210 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3211
3212 /* Here we just switch the register state and the stack. */
3213 switch_to(prev, next, prev);
dd41f596 3214 barrier();
dfa50b60
ON
3215
3216 return finish_task_switch(prev);
1da177e4
LT
3217}
3218
3219/*
1c3e8264 3220 * nr_running and nr_context_switches:
1da177e4
LT
3221 *
3222 * externally visible scheduler statistics: current number of runnable
1c3e8264 3223 * threads, total number of context switches performed since bootup.
1da177e4
LT
3224 */
3225unsigned long nr_running(void)
3226{
3227 unsigned long i, sum = 0;
3228
3229 for_each_online_cpu(i)
3230 sum += cpu_rq(i)->nr_running;
3231
3232 return sum;
f711f609 3233}
1da177e4 3234
2ee507c4 3235/*
d1ccc66d 3236 * Check if only the current task is running on the CPU.
00cc1633
DD
3237 *
3238 * Caution: this function does not check that the caller has disabled
3239 * preemption, thus the result might have a time-of-check-to-time-of-use
3240 * race. The caller is responsible to use it correctly, for example:
3241 *
dfcb245e 3242 * - from a non-preemptible section (of course)
00cc1633
DD
3243 *
3244 * - from a thread that is bound to a single CPU
3245 *
3246 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3247 */
3248bool single_task_running(void)
3249{
00cc1633 3250 return raw_rq()->nr_running == 1;
2ee507c4
TC
3251}
3252EXPORT_SYMBOL(single_task_running);
3253
1da177e4 3254unsigned long long nr_context_switches(void)
46cb4b7c 3255{
cc94abfc
SR
3256 int i;
3257 unsigned long long sum = 0;
46cb4b7c 3258
0a945022 3259 for_each_possible_cpu(i)
1da177e4 3260 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3261
1da177e4
LT
3262 return sum;
3263}
483b4ee6 3264
145d952a
DL
3265/*
3266 * Consumers of these two interfaces, like for example the cpuidle menu
3267 * governor, are using nonsensical data. Preferring shallow idle state selection
3268 * for a CPU that has IO-wait which might not even end up running the task when
3269 * it does become runnable.
3270 */
3271
3272unsigned long nr_iowait_cpu(int cpu)
3273{
3274 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3275}
3276
e33a9bba
TH
3277/*
3278 * IO-wait accounting, and how its mostly bollocks (on SMP).
3279 *
3280 * The idea behind IO-wait account is to account the idle time that we could
3281 * have spend running if it were not for IO. That is, if we were to improve the
3282 * storage performance, we'd have a proportional reduction in IO-wait time.
3283 *
3284 * This all works nicely on UP, where, when a task blocks on IO, we account
3285 * idle time as IO-wait, because if the storage were faster, it could've been
3286 * running and we'd not be idle.
3287 *
3288 * This has been extended to SMP, by doing the same for each CPU. This however
3289 * is broken.
3290 *
3291 * Imagine for instance the case where two tasks block on one CPU, only the one
3292 * CPU will have IO-wait accounted, while the other has regular idle. Even
3293 * though, if the storage were faster, both could've ran at the same time,
3294 * utilising both CPUs.
3295 *
3296 * This means, that when looking globally, the current IO-wait accounting on
3297 * SMP is a lower bound, by reason of under accounting.
3298 *
3299 * Worse, since the numbers are provided per CPU, they are sometimes
3300 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3301 * associated with any one particular CPU, it can wake to another CPU than it
3302 * blocked on. This means the per CPU IO-wait number is meaningless.
3303 *
3304 * Task CPU affinities can make all that even more 'interesting'.
3305 */
3306
1da177e4
LT
3307unsigned long nr_iowait(void)
3308{
3309 unsigned long i, sum = 0;
483b4ee6 3310
0a945022 3311 for_each_possible_cpu(i)
145d952a 3312 sum += nr_iowait_cpu(i);
46cb4b7c 3313
1da177e4
LT
3314 return sum;
3315}
483b4ee6 3316
dd41f596 3317#ifdef CONFIG_SMP
8a0be9ef 3318
46cb4b7c 3319/*
38022906
PZ
3320 * sched_exec - execve() is a valuable balancing opportunity, because at
3321 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3322 */
38022906 3323void sched_exec(void)
46cb4b7c 3324{
38022906 3325 struct task_struct *p = current;
1da177e4 3326 unsigned long flags;
0017d735 3327 int dest_cpu;
46cb4b7c 3328
8f42ced9 3329 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3330 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3331 if (dest_cpu == smp_processor_id())
3332 goto unlock;
38022906 3333
8f42ced9 3334 if (likely(cpu_active(dest_cpu))) {
969c7921 3335 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3336
8f42ced9
PZ
3337 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3338 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3339 return;
3340 }
0017d735 3341unlock:
8f42ced9 3342 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3343}
dd41f596 3344
1da177e4
LT
3345#endif
3346
1da177e4 3347DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3348DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3349
3350EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3351EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3352
6075620b
GG
3353/*
3354 * The function fair_sched_class.update_curr accesses the struct curr
3355 * and its field curr->exec_start; when called from task_sched_runtime(),
3356 * we observe a high rate of cache misses in practice.
3357 * Prefetching this data results in improved performance.
3358 */
3359static inline void prefetch_curr_exec_start(struct task_struct *p)
3360{
3361#ifdef CONFIG_FAIR_GROUP_SCHED
3362 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3363#else
3364 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3365#endif
3366 prefetch(curr);
3367 prefetch(&curr->exec_start);
3368}
3369
c5f8d995
HS
3370/*
3371 * Return accounted runtime for the task.
3372 * In case the task is currently running, return the runtime plus current's
3373 * pending runtime that have not been accounted yet.
3374 */
3375unsigned long long task_sched_runtime(struct task_struct *p)
3376{
eb580751 3377 struct rq_flags rf;
c5f8d995 3378 struct rq *rq;
6e998916 3379 u64 ns;
c5f8d995 3380
911b2898
PZ
3381#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3382 /*
97fb7a0a 3383 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3384 * So we have a optimization chance when the task's delta_exec is 0.
3385 * Reading ->on_cpu is racy, but this is ok.
3386 *
d1ccc66d
IM
3387 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3388 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3389 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3390 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3391 * been accounted, so we're correct here as well.
911b2898 3392 */
da0c1e65 3393 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3394 return p->se.sum_exec_runtime;
3395#endif
3396
eb580751 3397 rq = task_rq_lock(p, &rf);
6e998916
SG
3398 /*
3399 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3400 * project cycles that may never be accounted to this
3401 * thread, breaking clock_gettime().
3402 */
3403 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3404 prefetch_curr_exec_start(p);
6e998916
SG
3405 update_rq_clock(rq);
3406 p->sched_class->update_curr(rq);
3407 }
3408 ns = p->se.sum_exec_runtime;
eb580751 3409 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3410
3411 return ns;
3412}
48f24c4d 3413
7835b98b
CL
3414/*
3415 * This function gets called by the timer code, with HZ frequency.
3416 * We call it with interrupts disabled.
7835b98b
CL
3417 */
3418void scheduler_tick(void)
3419{
7835b98b
CL
3420 int cpu = smp_processor_id();
3421 struct rq *rq = cpu_rq(cpu);
dd41f596 3422 struct task_struct *curr = rq->curr;
8a8c69c3 3423 struct rq_flags rf;
3e51f33f
PZ
3424
3425 sched_clock_tick();
dd41f596 3426
8a8c69c3
PZ
3427 rq_lock(rq, &rf);
3428
3e51f33f 3429 update_rq_clock(rq);
fa85ae24 3430 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3431 calc_global_load_tick(rq);
eb414681 3432 psi_task_tick(rq);
8a8c69c3
PZ
3433
3434 rq_unlock(rq, &rf);
7835b98b 3435
e9d2b064 3436 perf_event_task_tick();
e220d2dc 3437
e418e1c2 3438#ifdef CONFIG_SMP
6eb57e0d 3439 rq->idle_balance = idle_cpu(cpu);
7caff66f 3440 trigger_load_balance(rq);
e418e1c2 3441#endif
1da177e4
LT
3442}
3443
265f22a9 3444#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3445
3446struct tick_work {
3447 int cpu;
3448 struct delayed_work work;
3449};
3450
3451static struct tick_work __percpu *tick_work_cpu;
3452
3453static void sched_tick_remote(struct work_struct *work)
3454{
3455 struct delayed_work *dwork = to_delayed_work(work);
3456 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3457 int cpu = twork->cpu;
3458 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3459 struct task_struct *curr;
d84b3131 3460 struct rq_flags rf;
d9c0ffca 3461 u64 delta;
d84b3131
FW
3462
3463 /*
3464 * Handle the tick only if it appears the remote CPU is running in full
3465 * dynticks mode. The check is racy by nature, but missing a tick or
3466 * having one too much is no big deal because the scheduler tick updates
3467 * statistics and checks timeslices in a time-independent way, regardless
3468 * of when exactly it is running.
3469 */
d9c0ffca
FW
3470 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3471 goto out_requeue;
d84b3131 3472
d9c0ffca
FW
3473 rq_lock_irq(rq, &rf);
3474 curr = rq->curr;
3475 if (is_idle_task(curr))
3476 goto out_unlock;
d84b3131 3477
d9c0ffca
FW
3478 update_rq_clock(rq);
3479 delta = rq_clock_task(rq) - curr->se.exec_start;
3480
3481 /*
3482 * Make sure the next tick runs within a reasonable
3483 * amount of time.
3484 */
3485 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3486 curr->sched_class->task_tick(rq, curr, 0);
3487
3488out_unlock:
3489 rq_unlock_irq(rq, &rf);
d84b3131 3490
d9c0ffca 3491out_requeue:
d84b3131
FW
3492 /*
3493 * Run the remote tick once per second (1Hz). This arbitrary
3494 * frequency is large enough to avoid overload but short enough
3495 * to keep scheduler internal stats reasonably up to date.
3496 */
3497 queue_delayed_work(system_unbound_wq, dwork, HZ);
3498}
3499
3500static void sched_tick_start(int cpu)
3501{
3502 struct tick_work *twork;
3503
3504 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3505 return;
3506
3507 WARN_ON_ONCE(!tick_work_cpu);
3508
3509 twork = per_cpu_ptr(tick_work_cpu, cpu);
3510 twork->cpu = cpu;
3511 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3512 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3513}
3514
3515#ifdef CONFIG_HOTPLUG_CPU
3516static void sched_tick_stop(int cpu)
3517{
3518 struct tick_work *twork;
3519
3520 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3521 return;
3522
3523 WARN_ON_ONCE(!tick_work_cpu);
3524
3525 twork = per_cpu_ptr(tick_work_cpu, cpu);
3526 cancel_delayed_work_sync(&twork->work);
3527}
3528#endif /* CONFIG_HOTPLUG_CPU */
3529
3530int __init sched_tick_offload_init(void)
3531{
3532 tick_work_cpu = alloc_percpu(struct tick_work);
3533 BUG_ON(!tick_work_cpu);
3534
3535 return 0;
3536}
3537
3538#else /* !CONFIG_NO_HZ_FULL */
3539static inline void sched_tick_start(int cpu) { }
3540static inline void sched_tick_stop(int cpu) { }
265f22a9 3541#endif
1da177e4 3542
7e49fcce 3543#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3544 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3545/*
3546 * If the value passed in is equal to the current preempt count
3547 * then we just disabled preemption. Start timing the latency.
3548 */
3549static inline void preempt_latency_start(int val)
3550{
3551 if (preempt_count() == val) {
3552 unsigned long ip = get_lock_parent_ip();
3553#ifdef CONFIG_DEBUG_PREEMPT
3554 current->preempt_disable_ip = ip;
3555#endif
3556 trace_preempt_off(CALLER_ADDR0, ip);
3557 }
3558}
7e49fcce 3559
edafe3a5 3560void preempt_count_add(int val)
1da177e4 3561{
6cd8a4bb 3562#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3563 /*
3564 * Underflow?
3565 */
9a11b49a
IM
3566 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3567 return;
6cd8a4bb 3568#endif
bdb43806 3569 __preempt_count_add(val);
6cd8a4bb 3570#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3571 /*
3572 * Spinlock count overflowing soon?
3573 */
33859f7f
MOS
3574 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3575 PREEMPT_MASK - 10);
6cd8a4bb 3576#endif
47252cfb 3577 preempt_latency_start(val);
1da177e4 3578}
bdb43806 3579EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3580NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3581
47252cfb
SR
3582/*
3583 * If the value passed in equals to the current preempt count
3584 * then we just enabled preemption. Stop timing the latency.
3585 */
3586static inline void preempt_latency_stop(int val)
3587{
3588 if (preempt_count() == val)
3589 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3590}
3591
edafe3a5 3592void preempt_count_sub(int val)
1da177e4 3593{
6cd8a4bb 3594#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3595 /*
3596 * Underflow?
3597 */
01e3eb82 3598 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3599 return;
1da177e4
LT
3600 /*
3601 * Is the spinlock portion underflowing?
3602 */
9a11b49a
IM
3603 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3604 !(preempt_count() & PREEMPT_MASK)))
3605 return;
6cd8a4bb 3606#endif
9a11b49a 3607
47252cfb 3608 preempt_latency_stop(val);
bdb43806 3609 __preempt_count_sub(val);
1da177e4 3610}
bdb43806 3611EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3612NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3613
47252cfb
SR
3614#else
3615static inline void preempt_latency_start(int val) { }
3616static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3617#endif
3618
59ddbcb2
IM
3619static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3620{
3621#ifdef CONFIG_DEBUG_PREEMPT
3622 return p->preempt_disable_ip;
3623#else
3624 return 0;
3625#endif
3626}
3627
1da177e4 3628/*
dd41f596 3629 * Print scheduling while atomic bug:
1da177e4 3630 */
dd41f596 3631static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3632{
d1c6d149
VN
3633 /* Save this before calling printk(), since that will clobber it */
3634 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3635
664dfa65
DJ
3636 if (oops_in_progress)
3637 return;
3638
3df0fc5b
PZ
3639 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3640 prev->comm, prev->pid, preempt_count());
838225b4 3641
dd41f596 3642 debug_show_held_locks(prev);
e21f5b15 3643 print_modules();
dd41f596
IM
3644 if (irqs_disabled())
3645 print_irqtrace_events(prev);
d1c6d149
VN
3646 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3647 && in_atomic_preempt_off()) {
8f47b187 3648 pr_err("Preemption disabled at:");
d1c6d149 3649 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3650 pr_cont("\n");
3651 }
748c7201
DBO
3652 if (panic_on_warn)
3653 panic("scheduling while atomic\n");
3654
6135fc1e 3655 dump_stack();
373d4d09 3656 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3657}
1da177e4 3658
dd41f596
IM
3659/*
3660 * Various schedule()-time debugging checks and statistics:
3661 */
3662static inline void schedule_debug(struct task_struct *prev)
3663{
0d9e2632 3664#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3665 if (task_stack_end_corrupted(prev))
3666 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3667#endif
b99def8b 3668
1dc0fffc 3669 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3670 __schedule_bug(prev);
1dc0fffc
PZ
3671 preempt_count_set(PREEMPT_DISABLED);
3672 }
b3fbab05 3673 rcu_sleep_check();
dd41f596 3674
1da177e4
LT
3675 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3676
ae92882e 3677 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3678}
3679
3680/*
3681 * Pick up the highest-prio task:
3682 */
3683static inline struct task_struct *
d8ac8971 3684pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3685{
49ee5768 3686 const struct sched_class *class;
dd41f596 3687 struct task_struct *p;
1da177e4
LT
3688
3689 /*
0ba87bb2
PZ
3690 * Optimization: we know that if all tasks are in the fair class we can
3691 * call that function directly, but only if the @prev task wasn't of a
3692 * higher scheduling class, because otherwise those loose the
3693 * opportunity to pull in more work from other CPUs.
1da177e4 3694 */
0ba87bb2
PZ
3695 if (likely((prev->sched_class == &idle_sched_class ||
3696 prev->sched_class == &fair_sched_class) &&
3697 rq->nr_running == rq->cfs.h_nr_running)) {
3698
d8ac8971 3699 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3700 if (unlikely(p == RETRY_TASK))
3701 goto again;
3702
d1ccc66d 3703 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3704 if (unlikely(!p))
d8ac8971 3705 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3706
3707 return p;
1da177e4
LT
3708 }
3709
37e117c0 3710again:
34f971f6 3711 for_each_class(class) {
d8ac8971 3712 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3713 if (p) {
3714 if (unlikely(p == RETRY_TASK))
3715 goto again;
dd41f596 3716 return p;
37e117c0 3717 }
dd41f596 3718 }
34f971f6 3719
d1ccc66d
IM
3720 /* The idle class should always have a runnable task: */
3721 BUG();
dd41f596 3722}
1da177e4 3723
dd41f596 3724/*
c259e01a 3725 * __schedule() is the main scheduler function.
edde96ea
PE
3726 *
3727 * The main means of driving the scheduler and thus entering this function are:
3728 *
3729 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3730 *
3731 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3732 * paths. For example, see arch/x86/entry_64.S.
3733 *
3734 * To drive preemption between tasks, the scheduler sets the flag in timer
3735 * interrupt handler scheduler_tick().
3736 *
3737 * 3. Wakeups don't really cause entry into schedule(). They add a
3738 * task to the run-queue and that's it.
3739 *
3740 * Now, if the new task added to the run-queue preempts the current
3741 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3742 * called on the nearest possible occasion:
3743 *
3744 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3745 *
3746 * - in syscall or exception context, at the next outmost
3747 * preempt_enable(). (this might be as soon as the wake_up()'s
3748 * spin_unlock()!)
3749 *
3750 * - in IRQ context, return from interrupt-handler to
3751 * preemptible context
3752 *
3753 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3754 * then at the next:
3755 *
3756 * - cond_resched() call
3757 * - explicit schedule() call
3758 * - return from syscall or exception to user-space
3759 * - return from interrupt-handler to user-space
bfd9b2b5 3760 *
b30f0e3f 3761 * WARNING: must be called with preemption disabled!
dd41f596 3762 */
499d7955 3763static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3764{
3765 struct task_struct *prev, *next;
67ca7bde 3766 unsigned long *switch_count;
d8ac8971 3767 struct rq_flags rf;
dd41f596 3768 struct rq *rq;
31656519 3769 int cpu;
dd41f596 3770
dd41f596
IM
3771 cpu = smp_processor_id();
3772 rq = cpu_rq(cpu);
dd41f596 3773 prev = rq->curr;
dd41f596 3774
dd41f596 3775 schedule_debug(prev);
1da177e4 3776
31656519 3777 if (sched_feat(HRTICK))
f333fdc9 3778 hrtick_clear(rq);
8f4d37ec 3779
46a5d164 3780 local_irq_disable();
bcbfdd01 3781 rcu_note_context_switch(preempt);
46a5d164 3782
e0acd0a6
ON
3783 /*
3784 * Make sure that signal_pending_state()->signal_pending() below
3785 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3786 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3787 *
3788 * The membarrier system call requires a full memory barrier
3789 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3790 */
8a8c69c3 3791 rq_lock(rq, &rf);
d89e588c 3792 smp_mb__after_spinlock();
1da177e4 3793
d1ccc66d
IM
3794 /* Promote REQ to ACT */
3795 rq->clock_update_flags <<= 1;
bce4dc80 3796 update_rq_clock(rq);
9edfbfed 3797
246d86b5 3798 switch_count = &prev->nivcsw;
fc13aeba 3799 if (!preempt && prev->state) {
34ec35ad 3800 if (signal_pending_state(prev->state, prev)) {
1da177e4 3801 prev->state = TASK_RUNNING;
21aa9af0 3802 } else {
bce4dc80 3803 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 3804
e33a9bba
TH
3805 if (prev->in_iowait) {
3806 atomic_inc(&rq->nr_iowait);
3807 delayacct_blkio_start();
3808 }
21aa9af0 3809 }
dd41f596 3810 switch_count = &prev->nvcsw;
1da177e4
LT
3811 }
3812
d8ac8971 3813 next = pick_next_task(rq, prev, &rf);
f26f9aff 3814 clear_tsk_need_resched(prev);
f27dde8d 3815 clear_preempt_need_resched();
1da177e4 3816
1da177e4 3817 if (likely(prev != next)) {
1da177e4
LT
3818 rq->nr_switches++;
3819 rq->curr = next;
22e4ebb9
MD
3820 /*
3821 * The membarrier system call requires each architecture
3822 * to have a full memory barrier after updating
306e0604
MD
3823 * rq->curr, before returning to user-space.
3824 *
3825 * Here are the schemes providing that barrier on the
3826 * various architectures:
3827 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3828 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3829 * - finish_lock_switch() for weakly-ordered
3830 * architectures where spin_unlock is a full barrier,
3831 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3832 * is a RELEASE barrier),
22e4ebb9 3833 */
1da177e4
LT
3834 ++*switch_count;
3835
c73464b1 3836 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3837
3838 /* Also unlocks the rq: */
3839 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3840 } else {
cb42c9a3 3841 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3842 rq_unlock_irq(rq, &rf);
cbce1a68 3843 }
1da177e4 3844
e3fca9e7 3845 balance_callback(rq);
1da177e4 3846}
c259e01a 3847
9af6528e
PZ
3848void __noreturn do_task_dead(void)
3849{
d1ccc66d 3850 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3851 set_special_state(TASK_DEAD);
d1ccc66d
IM
3852
3853 /* Tell freezer to ignore us: */
3854 current->flags |= PF_NOFREEZE;
3855
9af6528e
PZ
3856 __schedule(false);
3857 BUG();
d1ccc66d
IM
3858
3859 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3860 for (;;)
d1ccc66d 3861 cpu_relax();
9af6528e
PZ
3862}
3863
9c40cef2
TG
3864static inline void sched_submit_work(struct task_struct *tsk)
3865{
3c7d5184 3866 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2 3867 return;
6d25be57
TG
3868
3869 /*
3870 * If a worker went to sleep, notify and ask workqueue whether
3871 * it wants to wake up a task to maintain concurrency.
3872 * As this function is called inside the schedule() context,
3873 * we disable preemption to avoid it calling schedule() again
3874 * in the possible wakeup of a kworker.
3875 */
3876 if (tsk->flags & PF_WQ_WORKER) {
3877 preempt_disable();
3878 wq_worker_sleeping(tsk);
3879 preempt_enable_no_resched();
3880 }
3881
9c40cef2
TG
3882 /*
3883 * If we are going to sleep and we have plugged IO queued,
3884 * make sure to submit it to avoid deadlocks.
3885 */
3886 if (blk_needs_flush_plug(tsk))
3887 blk_schedule_flush_plug(tsk);
3888}
3889
6d25be57
TG
3890static void sched_update_worker(struct task_struct *tsk)
3891{
3892 if (tsk->flags & PF_WQ_WORKER)
3893 wq_worker_running(tsk);
3894}
3895
722a9f92 3896asmlinkage __visible void __sched schedule(void)
c259e01a 3897{
9c40cef2
TG
3898 struct task_struct *tsk = current;
3899
3900 sched_submit_work(tsk);
bfd9b2b5 3901 do {
b30f0e3f 3902 preempt_disable();
fc13aeba 3903 __schedule(false);
b30f0e3f 3904 sched_preempt_enable_no_resched();
bfd9b2b5 3905 } while (need_resched());
6d25be57 3906 sched_update_worker(tsk);
c259e01a 3907}
1da177e4
LT
3908EXPORT_SYMBOL(schedule);
3909
8663effb
SRV
3910/*
3911 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3912 * state (have scheduled out non-voluntarily) by making sure that all
3913 * tasks have either left the run queue or have gone into user space.
3914 * As idle tasks do not do either, they must not ever be preempted
3915 * (schedule out non-voluntarily).
3916 *
3917 * schedule_idle() is similar to schedule_preempt_disable() except that it
3918 * never enables preemption because it does not call sched_submit_work().
3919 */
3920void __sched schedule_idle(void)
3921{
3922 /*
3923 * As this skips calling sched_submit_work(), which the idle task does
3924 * regardless because that function is a nop when the task is in a
3925 * TASK_RUNNING state, make sure this isn't used someplace that the
3926 * current task can be in any other state. Note, idle is always in the
3927 * TASK_RUNNING state.
3928 */
3929 WARN_ON_ONCE(current->state);
3930 do {
3931 __schedule(false);
3932 } while (need_resched());
3933}
3934
91d1aa43 3935#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3936asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3937{
3938 /*
3939 * If we come here after a random call to set_need_resched(),
3940 * or we have been woken up remotely but the IPI has not yet arrived,
3941 * we haven't yet exited the RCU idle mode. Do it here manually until
3942 * we find a better solution.
7cc78f8f
AL
3943 *
3944 * NB: There are buggy callers of this function. Ideally we
c467ea76 3945 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3946 * too frequently to make sense yet.
20ab65e3 3947 */
7cc78f8f 3948 enum ctx_state prev_state = exception_enter();
20ab65e3 3949 schedule();
7cc78f8f 3950 exception_exit(prev_state);
20ab65e3
FW
3951}
3952#endif
3953
c5491ea7
TG
3954/**
3955 * schedule_preempt_disabled - called with preemption disabled
3956 *
3957 * Returns with preemption disabled. Note: preempt_count must be 1
3958 */
3959void __sched schedule_preempt_disabled(void)
3960{
ba74c144 3961 sched_preempt_enable_no_resched();
c5491ea7
TG
3962 schedule();
3963 preempt_disable();
3964}
3965
06b1f808 3966static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3967{
3968 do {
47252cfb
SR
3969 /*
3970 * Because the function tracer can trace preempt_count_sub()
3971 * and it also uses preempt_enable/disable_notrace(), if
3972 * NEED_RESCHED is set, the preempt_enable_notrace() called
3973 * by the function tracer will call this function again and
3974 * cause infinite recursion.
3975 *
3976 * Preemption must be disabled here before the function
3977 * tracer can trace. Break up preempt_disable() into two
3978 * calls. One to disable preemption without fear of being
3979 * traced. The other to still record the preemption latency,
3980 * which can also be traced by the function tracer.
3981 */
499d7955 3982 preempt_disable_notrace();
47252cfb 3983 preempt_latency_start(1);
fc13aeba 3984 __schedule(true);
47252cfb 3985 preempt_latency_stop(1);
499d7955 3986 preempt_enable_no_resched_notrace();
a18b5d01
FW
3987
3988 /*
3989 * Check again in case we missed a preemption opportunity
3990 * between schedule and now.
3991 */
a18b5d01
FW
3992 } while (need_resched());
3993}
3994
1da177e4
LT
3995#ifdef CONFIG_PREEMPT
3996/*
2ed6e34f 3997 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3998 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3999 * occur there and call schedule directly.
4000 */
722a9f92 4001asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 4002{
1da177e4
LT
4003 /*
4004 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4005 * we do not want to preempt the current task. Just return..
1da177e4 4006 */
fbb00b56 4007 if (likely(!preemptible()))
1da177e4
LT
4008 return;
4009
a18b5d01 4010 preempt_schedule_common();
1da177e4 4011}
376e2424 4012NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4013EXPORT_SYMBOL(preempt_schedule);
009f60e2 4014
009f60e2 4015/**
4eaca0a8 4016 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4017 *
4018 * The tracing infrastructure uses preempt_enable_notrace to prevent
4019 * recursion and tracing preempt enabling caused by the tracing
4020 * infrastructure itself. But as tracing can happen in areas coming
4021 * from userspace or just about to enter userspace, a preempt enable
4022 * can occur before user_exit() is called. This will cause the scheduler
4023 * to be called when the system is still in usermode.
4024 *
4025 * To prevent this, the preempt_enable_notrace will use this function
4026 * instead of preempt_schedule() to exit user context if needed before
4027 * calling the scheduler.
4028 */
4eaca0a8 4029asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4030{
4031 enum ctx_state prev_ctx;
4032
4033 if (likely(!preemptible()))
4034 return;
4035
4036 do {
47252cfb
SR
4037 /*
4038 * Because the function tracer can trace preempt_count_sub()
4039 * and it also uses preempt_enable/disable_notrace(), if
4040 * NEED_RESCHED is set, the preempt_enable_notrace() called
4041 * by the function tracer will call this function again and
4042 * cause infinite recursion.
4043 *
4044 * Preemption must be disabled here before the function
4045 * tracer can trace. Break up preempt_disable() into two
4046 * calls. One to disable preemption without fear of being
4047 * traced. The other to still record the preemption latency,
4048 * which can also be traced by the function tracer.
4049 */
3d8f74dd 4050 preempt_disable_notrace();
47252cfb 4051 preempt_latency_start(1);
009f60e2
ON
4052 /*
4053 * Needs preempt disabled in case user_exit() is traced
4054 * and the tracer calls preempt_enable_notrace() causing
4055 * an infinite recursion.
4056 */
4057 prev_ctx = exception_enter();
fc13aeba 4058 __schedule(true);
009f60e2
ON
4059 exception_exit(prev_ctx);
4060
47252cfb 4061 preempt_latency_stop(1);
3d8f74dd 4062 preempt_enable_no_resched_notrace();
009f60e2
ON
4063 } while (need_resched());
4064}
4eaca0a8 4065EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4066
32e475d7 4067#endif /* CONFIG_PREEMPT */
1da177e4
LT
4068
4069/*
2ed6e34f 4070 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4071 * off of irq context.
4072 * Note, that this is called and return with irqs disabled. This will
4073 * protect us against recursive calling from irq.
4074 */
722a9f92 4075asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4076{
b22366cd 4077 enum ctx_state prev_state;
6478d880 4078
2ed6e34f 4079 /* Catch callers which need to be fixed */
f27dde8d 4080 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4081
b22366cd
FW
4082 prev_state = exception_enter();
4083
3a5c359a 4084 do {
3d8f74dd 4085 preempt_disable();
3a5c359a 4086 local_irq_enable();
fc13aeba 4087 __schedule(true);
3a5c359a 4088 local_irq_disable();
3d8f74dd 4089 sched_preempt_enable_no_resched();
5ed0cec0 4090 } while (need_resched());
b22366cd
FW
4091
4092 exception_exit(prev_state);
1da177e4
LT
4093}
4094
ac6424b9 4095int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4096 void *key)
1da177e4 4097{
63859d4f 4098 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4099}
1da177e4
LT
4100EXPORT_SYMBOL(default_wake_function);
4101
b29739f9
IM
4102#ifdef CONFIG_RT_MUTEXES
4103
acd58620
PZ
4104static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4105{
4106 if (pi_task)
4107 prio = min(prio, pi_task->prio);
4108
4109 return prio;
4110}
4111
4112static inline int rt_effective_prio(struct task_struct *p, int prio)
4113{
4114 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4115
4116 return __rt_effective_prio(pi_task, prio);
4117}
4118
b29739f9
IM
4119/*
4120 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4121 * @p: task to boost
4122 * @pi_task: donor task
b29739f9
IM
4123 *
4124 * This function changes the 'effective' priority of a task. It does
4125 * not touch ->normal_prio like __setscheduler().
4126 *
c365c292
TG
4127 * Used by the rt_mutex code to implement priority inheritance
4128 * logic. Call site only calls if the priority of the task changed.
b29739f9 4129 */
acd58620 4130void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4131{
acd58620 4132 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4133 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4134 const struct sched_class *prev_class;
eb580751
PZ
4135 struct rq_flags rf;
4136 struct rq *rq;
b29739f9 4137
acd58620
PZ
4138 /* XXX used to be waiter->prio, not waiter->task->prio */
4139 prio = __rt_effective_prio(pi_task, p->normal_prio);
4140
4141 /*
4142 * If nothing changed; bail early.
4143 */
4144 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4145 return;
b29739f9 4146
eb580751 4147 rq = __task_rq_lock(p, &rf);
80f5c1b8 4148 update_rq_clock(rq);
acd58620
PZ
4149 /*
4150 * Set under pi_lock && rq->lock, such that the value can be used under
4151 * either lock.
4152 *
4153 * Note that there is loads of tricky to make this pointer cache work
4154 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4155 * ensure a task is de-boosted (pi_task is set to NULL) before the
4156 * task is allowed to run again (and can exit). This ensures the pointer
4157 * points to a blocked task -- which guaratees the task is present.
4158 */
4159 p->pi_top_task = pi_task;
4160
4161 /*
4162 * For FIFO/RR we only need to set prio, if that matches we're done.
4163 */
4164 if (prio == p->prio && !dl_prio(prio))
4165 goto out_unlock;
b29739f9 4166
1c4dd99b
TG
4167 /*
4168 * Idle task boosting is a nono in general. There is one
4169 * exception, when PREEMPT_RT and NOHZ is active:
4170 *
4171 * The idle task calls get_next_timer_interrupt() and holds
4172 * the timer wheel base->lock on the CPU and another CPU wants
4173 * to access the timer (probably to cancel it). We can safely
4174 * ignore the boosting request, as the idle CPU runs this code
4175 * with interrupts disabled and will complete the lock
4176 * protected section without being interrupted. So there is no
4177 * real need to boost.
4178 */
4179 if (unlikely(p == rq->idle)) {
4180 WARN_ON(p != rq->curr);
4181 WARN_ON(p->pi_blocked_on);
4182 goto out_unlock;
4183 }
4184
b91473ff 4185 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4186 oldprio = p->prio;
ff77e468
PZ
4187
4188 if (oldprio == prio)
4189 queue_flag &= ~DEQUEUE_MOVE;
4190
83ab0aa0 4191 prev_class = p->sched_class;
da0c1e65 4192 queued = task_on_rq_queued(p);
051a1d1a 4193 running = task_current(rq, p);
da0c1e65 4194 if (queued)
ff77e468 4195 dequeue_task(rq, p, queue_flag);
0e1f3483 4196 if (running)
f3cd1c4e 4197 put_prev_task(rq, p);
dd41f596 4198
2d3d891d
DF
4199 /*
4200 * Boosting condition are:
4201 * 1. -rt task is running and holds mutex A
4202 * --> -dl task blocks on mutex A
4203 *
4204 * 2. -dl task is running and holds mutex A
4205 * --> -dl task blocks on mutex A and could preempt the
4206 * running task
4207 */
4208 if (dl_prio(prio)) {
466af29b
ON
4209 if (!dl_prio(p->normal_prio) ||
4210 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4211 p->dl.dl_boosted = 1;
ff77e468 4212 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4213 } else
4214 p->dl.dl_boosted = 0;
aab03e05 4215 p->sched_class = &dl_sched_class;
2d3d891d
DF
4216 } else if (rt_prio(prio)) {
4217 if (dl_prio(oldprio))
4218 p->dl.dl_boosted = 0;
4219 if (oldprio < prio)
ff77e468 4220 queue_flag |= ENQUEUE_HEAD;
dd41f596 4221 p->sched_class = &rt_sched_class;
2d3d891d
DF
4222 } else {
4223 if (dl_prio(oldprio))
4224 p->dl.dl_boosted = 0;
746db944
BS
4225 if (rt_prio(oldprio))
4226 p->rt.timeout = 0;
dd41f596 4227 p->sched_class = &fair_sched_class;
2d3d891d 4228 }
dd41f596 4229
b29739f9
IM
4230 p->prio = prio;
4231
da0c1e65 4232 if (queued)
ff77e468 4233 enqueue_task(rq, p, queue_flag);
a399d233 4234 if (running)
b2bf6c31 4235 set_curr_task(rq, p);
cb469845 4236
da7a735e 4237 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4238out_unlock:
d1ccc66d
IM
4239 /* Avoid rq from going away on us: */
4240 preempt_disable();
eb580751 4241 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4242
4243 balance_callback(rq);
4244 preempt_enable();
b29739f9 4245}
acd58620
PZ
4246#else
4247static inline int rt_effective_prio(struct task_struct *p, int prio)
4248{
4249 return prio;
4250}
b29739f9 4251#endif
d50dde5a 4252
36c8b586 4253void set_user_nice(struct task_struct *p, long nice)
1da177e4 4254{
49bd21ef
PZ
4255 bool queued, running;
4256 int old_prio, delta;
eb580751 4257 struct rq_flags rf;
70b97a7f 4258 struct rq *rq;
1da177e4 4259
75e45d51 4260 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4261 return;
4262 /*
4263 * We have to be careful, if called from sys_setpriority(),
4264 * the task might be in the middle of scheduling on another CPU.
4265 */
eb580751 4266 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4267 update_rq_clock(rq);
4268
1da177e4
LT
4269 /*
4270 * The RT priorities are set via sched_setscheduler(), but we still
4271 * allow the 'normal' nice value to be set - but as expected
4272 * it wont have any effect on scheduling until the task is
aab03e05 4273 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4274 */
aab03e05 4275 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4276 p->static_prio = NICE_TO_PRIO(nice);
4277 goto out_unlock;
4278 }
da0c1e65 4279 queued = task_on_rq_queued(p);
49bd21ef 4280 running = task_current(rq, p);
da0c1e65 4281 if (queued)
7a57f32a 4282 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4283 if (running)
4284 put_prev_task(rq, p);
1da177e4 4285
1da177e4 4286 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4287 set_load_weight(p, true);
b29739f9
IM
4288 old_prio = p->prio;
4289 p->prio = effective_prio(p);
4290 delta = p->prio - old_prio;
1da177e4 4291
da0c1e65 4292 if (queued) {
7134b3e9 4293 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 4294 /*
d5f9f942
AM
4295 * If the task increased its priority or is running and
4296 * lowered its priority, then reschedule its CPU:
1da177e4 4297 */
d5f9f942 4298 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 4299 resched_curr(rq);
1da177e4 4300 }
49bd21ef
PZ
4301 if (running)
4302 set_curr_task(rq, p);
1da177e4 4303out_unlock:
eb580751 4304 task_rq_unlock(rq, p, &rf);
1da177e4 4305}
1da177e4
LT
4306EXPORT_SYMBOL(set_user_nice);
4307
e43379f1
MM
4308/*
4309 * can_nice - check if a task can reduce its nice value
4310 * @p: task
4311 * @nice: nice value
4312 */
36c8b586 4313int can_nice(const struct task_struct *p, const int nice)
e43379f1 4314{
d1ccc66d 4315 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 4316 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 4317
78d7d407 4318 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4319 capable(CAP_SYS_NICE));
4320}
4321
1da177e4
LT
4322#ifdef __ARCH_WANT_SYS_NICE
4323
4324/*
4325 * sys_nice - change the priority of the current process.
4326 * @increment: priority increment
4327 *
4328 * sys_setpriority is a more generic, but much slower function that
4329 * does similar things.
4330 */
5add95d4 4331SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4332{
48f24c4d 4333 long nice, retval;
1da177e4
LT
4334
4335 /*
4336 * Setpriority might change our priority at the same moment.
4337 * We don't have to worry. Conceptually one call occurs first
4338 * and we have a single winner.
4339 */
a9467fa3 4340 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 4341 nice = task_nice(current) + increment;
1da177e4 4342
a9467fa3 4343 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
4344 if (increment < 0 && !can_nice(current, nice))
4345 return -EPERM;
4346
1da177e4
LT
4347 retval = security_task_setnice(current, nice);
4348 if (retval)
4349 return retval;
4350
4351 set_user_nice(current, nice);
4352 return 0;
4353}
4354
4355#endif
4356
4357/**
4358 * task_prio - return the priority value of a given task.
4359 * @p: the task in question.
4360 *
e69f6186 4361 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4362 * RT tasks are offset by -200. Normal tasks are centered
4363 * around 0, value goes from -16 to +15.
4364 */
36c8b586 4365int task_prio(const struct task_struct *p)
1da177e4
LT
4366{
4367 return p->prio - MAX_RT_PRIO;
4368}
4369
1da177e4 4370/**
d1ccc66d 4371 * idle_cpu - is a given CPU idle currently?
1da177e4 4372 * @cpu: the processor in question.
e69f6186
YB
4373 *
4374 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4375 */
4376int idle_cpu(int cpu)
4377{
908a3283
TG
4378 struct rq *rq = cpu_rq(cpu);
4379
4380 if (rq->curr != rq->idle)
4381 return 0;
4382
4383 if (rq->nr_running)
4384 return 0;
4385
4386#ifdef CONFIG_SMP
4387 if (!llist_empty(&rq->wake_list))
4388 return 0;
4389#endif
4390
4391 return 1;
1da177e4
LT
4392}
4393
943d355d
RJ
4394/**
4395 * available_idle_cpu - is a given CPU idle for enqueuing work.
4396 * @cpu: the CPU in question.
4397 *
4398 * Return: 1 if the CPU is currently idle. 0 otherwise.
4399 */
4400int available_idle_cpu(int cpu)
4401{
4402 if (!idle_cpu(cpu))
4403 return 0;
4404
247f2f6f
RJ
4405 if (vcpu_is_preempted(cpu))
4406 return 0;
4407
908a3283 4408 return 1;
1da177e4
LT
4409}
4410
1da177e4 4411/**
d1ccc66d 4412 * idle_task - return the idle task for a given CPU.
1da177e4 4413 * @cpu: the processor in question.
e69f6186 4414 *
d1ccc66d 4415 * Return: The idle task for the CPU @cpu.
1da177e4 4416 */
36c8b586 4417struct task_struct *idle_task(int cpu)
1da177e4
LT
4418{
4419 return cpu_rq(cpu)->idle;
4420}
4421
4422/**
4423 * find_process_by_pid - find a process with a matching PID value.
4424 * @pid: the pid in question.
e69f6186
YB
4425 *
4426 * The task of @pid, if found. %NULL otherwise.
1da177e4 4427 */
a9957449 4428static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4429{
228ebcbe 4430 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4431}
4432
c13db6b1
SR
4433/*
4434 * sched_setparam() passes in -1 for its policy, to let the functions
4435 * it calls know not to change it.
4436 */
4437#define SETPARAM_POLICY -1
4438
c365c292
TG
4439static void __setscheduler_params(struct task_struct *p,
4440 const struct sched_attr *attr)
1da177e4 4441{
d50dde5a
DF
4442 int policy = attr->sched_policy;
4443
c13db6b1 4444 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4445 policy = p->policy;
4446
1da177e4 4447 p->policy = policy;
d50dde5a 4448
aab03e05
DF
4449 if (dl_policy(policy))
4450 __setparam_dl(p, attr);
39fd8fd2 4451 else if (fair_policy(policy))
d50dde5a
DF
4452 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4453
39fd8fd2
PZ
4454 /*
4455 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4456 * !rt_policy. Always setting this ensures that things like
4457 * getparam()/getattr() don't report silly values for !rt tasks.
4458 */
4459 p->rt_priority = attr->sched_priority;
383afd09 4460 p->normal_prio = normal_prio(p);
9059393e 4461 set_load_weight(p, true);
c365c292 4462}
39fd8fd2 4463
c365c292
TG
4464/* Actually do priority change: must hold pi & rq lock. */
4465static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4466 const struct sched_attr *attr, bool keep_boost)
c365c292 4467{
a509a7cd
PB
4468 /*
4469 * If params can't change scheduling class changes aren't allowed
4470 * either.
4471 */
4472 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4473 return;
4474
c365c292 4475 __setscheduler_params(p, attr);
d50dde5a 4476
383afd09 4477 /*
0782e63b
TG
4478 * Keep a potential priority boosting if called from
4479 * sched_setscheduler().
383afd09 4480 */
acd58620 4481 p->prio = normal_prio(p);
0782e63b 4482 if (keep_boost)
acd58620 4483 p->prio = rt_effective_prio(p, p->prio);
383afd09 4484
aab03e05
DF
4485 if (dl_prio(p->prio))
4486 p->sched_class = &dl_sched_class;
4487 else if (rt_prio(p->prio))
ffd44db5
PZ
4488 p->sched_class = &rt_sched_class;
4489 else
4490 p->sched_class = &fair_sched_class;
1da177e4 4491}
aab03e05 4492
c69e8d9c 4493/*
d1ccc66d 4494 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4495 */
4496static bool check_same_owner(struct task_struct *p)
4497{
4498 const struct cred *cred = current_cred(), *pcred;
4499 bool match;
4500
4501 rcu_read_lock();
4502 pcred = __task_cred(p);
9c806aa0
EB
4503 match = (uid_eq(cred->euid, pcred->euid) ||
4504 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4505 rcu_read_unlock();
4506 return match;
4507}
4508
d50dde5a
DF
4509static int __sched_setscheduler(struct task_struct *p,
4510 const struct sched_attr *attr,
dbc7f069 4511 bool user, bool pi)
1da177e4 4512{
383afd09
SR
4513 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4514 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4515 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4516 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4517 const struct sched_class *prev_class;
eb580751 4518 struct rq_flags rf;
ca94c442 4519 int reset_on_fork;
7a57f32a 4520 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4521 struct rq *rq;
1da177e4 4522
896bbb25
SRV
4523 /* The pi code expects interrupts enabled */
4524 BUG_ON(pi && in_interrupt());
1da177e4 4525recheck:
d1ccc66d 4526 /* Double check policy once rq lock held: */
ca94c442
LP
4527 if (policy < 0) {
4528 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4529 policy = oldpolicy = p->policy;
ca94c442 4530 } else {
7479f3c9 4531 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4532
20f9cd2a 4533 if (!valid_policy(policy))
ca94c442
LP
4534 return -EINVAL;
4535 }
4536
794a56eb 4537 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4538 return -EINVAL;
4539
1da177e4
LT
4540 /*
4541 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4542 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4543 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4544 */
0bb040a4 4545 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4546 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4547 return -EINVAL;
aab03e05
DF
4548 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4549 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4550 return -EINVAL;
4551
37e4ab3f
OC
4552 /*
4553 * Allow unprivileged RT tasks to decrease priority:
4554 */
961ccddd 4555 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4556 if (fair_policy(policy)) {
d0ea0268 4557 if (attr->sched_nice < task_nice(p) &&
eaad4513 4558 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4559 return -EPERM;
4560 }
4561
e05606d3 4562 if (rt_policy(policy)) {
a44702e8
ON
4563 unsigned long rlim_rtprio =
4564 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4565
d1ccc66d 4566 /* Can't set/change the rt policy: */
8dc3e909
ON
4567 if (policy != p->policy && !rlim_rtprio)
4568 return -EPERM;
4569
d1ccc66d 4570 /* Can't increase priority: */
d50dde5a
DF
4571 if (attr->sched_priority > p->rt_priority &&
4572 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4573 return -EPERM;
4574 }
c02aa73b 4575
d44753b8
JL
4576 /*
4577 * Can't set/change SCHED_DEADLINE policy at all for now
4578 * (safest behavior); in the future we would like to allow
4579 * unprivileged DL tasks to increase their relative deadline
4580 * or reduce their runtime (both ways reducing utilization)
4581 */
4582 if (dl_policy(policy))
4583 return -EPERM;
4584
dd41f596 4585 /*
c02aa73b
DH
4586 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4587 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4588 */
1da1843f 4589 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4590 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4591 return -EPERM;
4592 }
5fe1d75f 4593
d1ccc66d 4594 /* Can't change other user's priorities: */
c69e8d9c 4595 if (!check_same_owner(p))
37e4ab3f 4596 return -EPERM;
ca94c442 4597
d1ccc66d 4598 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4599 if (p->sched_reset_on_fork && !reset_on_fork)
4600 return -EPERM;
37e4ab3f 4601 }
1da177e4 4602
725aad24 4603 if (user) {
794a56eb
JL
4604 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4605 return -EINVAL;
4606
b0ae1981 4607 retval = security_task_setscheduler(p);
725aad24
JF
4608 if (retval)
4609 return retval;
4610 }
4611
a509a7cd
PB
4612 /* Update task specific "requested" clamps */
4613 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4614 retval = uclamp_validate(p, attr);
4615 if (retval)
4616 return retval;
4617 }
4618
b29739f9 4619 /*
d1ccc66d 4620 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4621 * changing the priority of the task:
0122ec5b 4622 *
25985edc 4623 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4624 * runqueue lock must be held.
4625 */
eb580751 4626 rq = task_rq_lock(p, &rf);
80f5c1b8 4627 update_rq_clock(rq);
dc61b1d6 4628
34f971f6 4629 /*
d1ccc66d 4630 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4631 */
4632 if (p == rq->stop) {
eb580751 4633 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4634 return -EINVAL;
4635 }
4636
a51e9198 4637 /*
d6b1e911
TG
4638 * If not changing anything there's no need to proceed further,
4639 * but store a possible modification of reset_on_fork.
a51e9198 4640 */
d50dde5a 4641 if (unlikely(policy == p->policy)) {
d0ea0268 4642 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4643 goto change;
4644 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4645 goto change;
75381608 4646 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4647 goto change;
a509a7cd
PB
4648 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4649 goto change;
d50dde5a 4650
d6b1e911 4651 p->sched_reset_on_fork = reset_on_fork;
eb580751 4652 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4653 return 0;
4654 }
d50dde5a 4655change:
a51e9198 4656
dc61b1d6 4657 if (user) {
332ac17e 4658#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4659 /*
4660 * Do not allow realtime tasks into groups that have no runtime
4661 * assigned.
4662 */
4663 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4664 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4665 !task_group_is_autogroup(task_group(p))) {
eb580751 4666 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4667 return -EPERM;
4668 }
dc61b1d6 4669#endif
332ac17e 4670#ifdef CONFIG_SMP
794a56eb
JL
4671 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4672 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4673 cpumask_t *span = rq->rd->span;
332ac17e
DF
4674
4675 /*
4676 * Don't allow tasks with an affinity mask smaller than
4677 * the entire root_domain to become SCHED_DEADLINE. We
4678 * will also fail if there's no bandwidth available.
4679 */
3bd37062 4680 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4681 rq->rd->dl_bw.bw == 0) {
eb580751 4682 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4683 return -EPERM;
4684 }
4685 }
4686#endif
4687 }
dc61b1d6 4688
d1ccc66d 4689 /* Re-check policy now with rq lock held: */
1da177e4
LT
4690 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4691 policy = oldpolicy = -1;
eb580751 4692 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4693 goto recheck;
4694 }
332ac17e
DF
4695
4696 /*
4697 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4698 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4699 * is available.
4700 */
06a76fe0 4701 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4702 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4703 return -EBUSY;
4704 }
4705
c365c292
TG
4706 p->sched_reset_on_fork = reset_on_fork;
4707 oldprio = p->prio;
4708
dbc7f069
PZ
4709 if (pi) {
4710 /*
4711 * Take priority boosted tasks into account. If the new
4712 * effective priority is unchanged, we just store the new
4713 * normal parameters and do not touch the scheduler class and
4714 * the runqueue. This will be done when the task deboost
4715 * itself.
4716 */
acd58620 4717 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4718 if (new_effective_prio == oldprio)
4719 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4720 }
4721
da0c1e65 4722 queued = task_on_rq_queued(p);
051a1d1a 4723 running = task_current(rq, p);
da0c1e65 4724 if (queued)
ff77e468 4725 dequeue_task(rq, p, queue_flags);
0e1f3483 4726 if (running)
f3cd1c4e 4727 put_prev_task(rq, p);
f6b53205 4728
83ab0aa0 4729 prev_class = p->sched_class;
a509a7cd 4730
dbc7f069 4731 __setscheduler(rq, p, attr, pi);
a509a7cd 4732 __setscheduler_uclamp(p, attr);
f6b53205 4733
da0c1e65 4734 if (queued) {
81a44c54
TG
4735 /*
4736 * We enqueue to tail when the priority of a task is
4737 * increased (user space view).
4738 */
ff77e468
PZ
4739 if (oldprio < p->prio)
4740 queue_flags |= ENQUEUE_HEAD;
1de64443 4741
ff77e468 4742 enqueue_task(rq, p, queue_flags);
81a44c54 4743 }
a399d233 4744 if (running)
b2bf6c31 4745 set_curr_task(rq, p);
cb469845 4746
da7a735e 4747 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4748
4749 /* Avoid rq from going away on us: */
4750 preempt_disable();
eb580751 4751 task_rq_unlock(rq, p, &rf);
b29739f9 4752
dbc7f069
PZ
4753 if (pi)
4754 rt_mutex_adjust_pi(p);
95e02ca9 4755
d1ccc66d 4756 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4757 balance_callback(rq);
4758 preempt_enable();
95e02ca9 4759
1da177e4
LT
4760 return 0;
4761}
961ccddd 4762
7479f3c9
PZ
4763static int _sched_setscheduler(struct task_struct *p, int policy,
4764 const struct sched_param *param, bool check)
4765{
4766 struct sched_attr attr = {
4767 .sched_policy = policy,
4768 .sched_priority = param->sched_priority,
4769 .sched_nice = PRIO_TO_NICE(p->static_prio),
4770 };
4771
c13db6b1
SR
4772 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4773 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4774 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4775 policy &= ~SCHED_RESET_ON_FORK;
4776 attr.sched_policy = policy;
4777 }
4778
dbc7f069 4779 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4780}
961ccddd
RR
4781/**
4782 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4783 * @p: the task in question.
4784 * @policy: new policy.
4785 * @param: structure containing the new RT priority.
4786 *
e69f6186
YB
4787 * Return: 0 on success. An error code otherwise.
4788 *
961ccddd
RR
4789 * NOTE that the task may be already dead.
4790 */
4791int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4792 const struct sched_param *param)
961ccddd 4793{
7479f3c9 4794 return _sched_setscheduler(p, policy, param, true);
961ccddd 4795}
1da177e4
LT
4796EXPORT_SYMBOL_GPL(sched_setscheduler);
4797
d50dde5a
DF
4798int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4799{
dbc7f069 4800 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4801}
4802EXPORT_SYMBOL_GPL(sched_setattr);
4803
794a56eb
JL
4804int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4805{
4806 return __sched_setscheduler(p, attr, false, true);
4807}
4808
961ccddd
RR
4809/**
4810 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4811 * @p: the task in question.
4812 * @policy: new policy.
4813 * @param: structure containing the new RT priority.
4814 *
4815 * Just like sched_setscheduler, only don't bother checking if the
4816 * current context has permission. For example, this is needed in
4817 * stop_machine(): we create temporary high priority worker threads,
4818 * but our caller might not have that capability.
e69f6186
YB
4819 *
4820 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4821 */
4822int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4823 const struct sched_param *param)
961ccddd 4824{
7479f3c9 4825 return _sched_setscheduler(p, policy, param, false);
961ccddd 4826}
84778472 4827EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4828
95cdf3b7
IM
4829static int
4830do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4831{
1da177e4
LT
4832 struct sched_param lparam;
4833 struct task_struct *p;
36c8b586 4834 int retval;
1da177e4
LT
4835
4836 if (!param || pid < 0)
4837 return -EINVAL;
4838 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4839 return -EFAULT;
5fe1d75f
ON
4840
4841 rcu_read_lock();
4842 retval = -ESRCH;
1da177e4 4843 p = find_process_by_pid(pid);
5fe1d75f
ON
4844 if (p != NULL)
4845 retval = sched_setscheduler(p, policy, &lparam);
4846 rcu_read_unlock();
36c8b586 4847
1da177e4
LT
4848 return retval;
4849}
4850
d50dde5a
DF
4851/*
4852 * Mimics kernel/events/core.c perf_copy_attr().
4853 */
d1ccc66d 4854static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4855{
4856 u32 size;
4857 int ret;
4858
96d4f267 4859 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
d50dde5a
DF
4860 return -EFAULT;
4861
d1ccc66d 4862 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4863 memset(attr, 0, sizeof(*attr));
4864
4865 ret = get_user(size, &uattr->size);
4866 if (ret)
4867 return ret;
4868
d1ccc66d
IM
4869 /* Bail out on silly large: */
4870 if (size > PAGE_SIZE)
d50dde5a
DF
4871 goto err_size;
4872
d1ccc66d
IM
4873 /* ABI compatibility quirk: */
4874 if (!size)
d50dde5a
DF
4875 size = SCHED_ATTR_SIZE_VER0;
4876
4877 if (size < SCHED_ATTR_SIZE_VER0)
4878 goto err_size;
4879
4880 /*
4881 * If we're handed a bigger struct than we know of,
4882 * ensure all the unknown bits are 0 - i.e. new
4883 * user-space does not rely on any kernel feature
4884 * extensions we dont know about yet.
4885 */
4886 if (size > sizeof(*attr)) {
4887 unsigned char __user *addr;
4888 unsigned char __user *end;
4889 unsigned char val;
4890
4891 addr = (void __user *)uattr + sizeof(*attr);
4892 end = (void __user *)uattr + size;
4893
4894 for (; addr < end; addr++) {
4895 ret = get_user(val, addr);
4896 if (ret)
4897 return ret;
4898 if (val)
4899 goto err_size;
4900 }
4901 size = sizeof(*attr);
4902 }
4903
4904 ret = copy_from_user(attr, uattr, size);
4905 if (ret)
4906 return -EFAULT;
4907
a509a7cd
PB
4908 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
4909 size < SCHED_ATTR_SIZE_VER1)
4910 return -EINVAL;
4911
d50dde5a 4912 /*
d1ccc66d 4913 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4914 * to be strict and return an error on out-of-bounds values?
4915 */
75e45d51 4916 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4917
e78c7bca 4918 return 0;
d50dde5a
DF
4919
4920err_size:
4921 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4922 return -E2BIG;
d50dde5a
DF
4923}
4924
1da177e4
LT
4925/**
4926 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4927 * @pid: the pid in question.
4928 * @policy: new policy.
4929 * @param: structure containing the new RT priority.
e69f6186
YB
4930 *
4931 * Return: 0 on success. An error code otherwise.
1da177e4 4932 */
d1ccc66d 4933SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4934{
c21761f1
JB
4935 if (policy < 0)
4936 return -EINVAL;
4937
1da177e4
LT
4938 return do_sched_setscheduler(pid, policy, param);
4939}
4940
4941/**
4942 * sys_sched_setparam - set/change the RT priority of a thread
4943 * @pid: the pid in question.
4944 * @param: structure containing the new RT priority.
e69f6186
YB
4945 *
4946 * Return: 0 on success. An error code otherwise.
1da177e4 4947 */
5add95d4 4948SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4949{
c13db6b1 4950 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4951}
4952
d50dde5a
DF
4953/**
4954 * sys_sched_setattr - same as above, but with extended sched_attr
4955 * @pid: the pid in question.
5778fccf 4956 * @uattr: structure containing the extended parameters.
db66d756 4957 * @flags: for future extension.
d50dde5a 4958 */
6d35ab48
PZ
4959SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4960 unsigned int, flags)
d50dde5a
DF
4961{
4962 struct sched_attr attr;
4963 struct task_struct *p;
4964 int retval;
4965
6d35ab48 4966 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4967 return -EINVAL;
4968
143cf23d
MK
4969 retval = sched_copy_attr(uattr, &attr);
4970 if (retval)
4971 return retval;
d50dde5a 4972
b14ed2c2 4973 if ((int)attr.sched_policy < 0)
dbdb2275 4974 return -EINVAL;
1d6362fa
PB
4975 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
4976 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
4977
4978 rcu_read_lock();
4979 retval = -ESRCH;
4980 p = find_process_by_pid(pid);
a509a7cd
PB
4981 if (likely(p))
4982 get_task_struct(p);
d50dde5a
DF
4983 rcu_read_unlock();
4984
a509a7cd
PB
4985 if (likely(p)) {
4986 retval = sched_setattr(p, &attr);
4987 put_task_struct(p);
4988 }
4989
d50dde5a
DF
4990 return retval;
4991}
4992
1da177e4
LT
4993/**
4994 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4995 * @pid: the pid in question.
e69f6186
YB
4996 *
4997 * Return: On success, the policy of the thread. Otherwise, a negative error
4998 * code.
1da177e4 4999 */
5add95d4 5000SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5001{
36c8b586 5002 struct task_struct *p;
3a5c359a 5003 int retval;
1da177e4
LT
5004
5005 if (pid < 0)
3a5c359a 5006 return -EINVAL;
1da177e4
LT
5007
5008 retval = -ESRCH;
5fe85be0 5009 rcu_read_lock();
1da177e4
LT
5010 p = find_process_by_pid(pid);
5011 if (p) {
5012 retval = security_task_getscheduler(p);
5013 if (!retval)
ca94c442
LP
5014 retval = p->policy
5015 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5016 }
5fe85be0 5017 rcu_read_unlock();
1da177e4
LT
5018 return retval;
5019}
5020
5021/**
ca94c442 5022 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5023 * @pid: the pid in question.
5024 * @param: structure containing the RT priority.
e69f6186
YB
5025 *
5026 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5027 * code.
1da177e4 5028 */
5add95d4 5029SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5030{
ce5f7f82 5031 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5032 struct task_struct *p;
3a5c359a 5033 int retval;
1da177e4
LT
5034
5035 if (!param || pid < 0)
3a5c359a 5036 return -EINVAL;
1da177e4 5037
5fe85be0 5038 rcu_read_lock();
1da177e4
LT
5039 p = find_process_by_pid(pid);
5040 retval = -ESRCH;
5041 if (!p)
5042 goto out_unlock;
5043
5044 retval = security_task_getscheduler(p);
5045 if (retval)
5046 goto out_unlock;
5047
ce5f7f82
PZ
5048 if (task_has_rt_policy(p))
5049 lp.sched_priority = p->rt_priority;
5fe85be0 5050 rcu_read_unlock();
1da177e4
LT
5051
5052 /*
5053 * This one might sleep, we cannot do it with a spinlock held ...
5054 */
5055 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5056
1da177e4
LT
5057 return retval;
5058
5059out_unlock:
5fe85be0 5060 rcu_read_unlock();
1da177e4
LT
5061 return retval;
5062}
5063
d50dde5a
DF
5064static int sched_read_attr(struct sched_attr __user *uattr,
5065 struct sched_attr *attr,
5066 unsigned int usize)
5067{
5068 int ret;
5069
96d4f267 5070 if (!access_ok(uattr, usize))
d50dde5a
DF
5071 return -EFAULT;
5072
5073 /*
5074 * If we're handed a smaller struct than we know of,
5075 * ensure all the unknown bits are 0 - i.e. old
5076 * user-space does not get uncomplete information.
5077 */
5078 if (usize < sizeof(*attr)) {
5079 unsigned char *addr;
5080 unsigned char *end;
5081
5082 addr = (void *)attr + usize;
5083 end = (void *)attr + sizeof(*attr);
5084
5085 for (; addr < end; addr++) {
5086 if (*addr)
22400674 5087 return -EFBIG;
d50dde5a
DF
5088 }
5089
5090 attr->size = usize;
5091 }
5092
4efbc454 5093 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
5094 if (ret)
5095 return -EFAULT;
5096
22400674 5097 return 0;
d50dde5a
DF
5098}
5099
5100/**
aab03e05 5101 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5102 * @pid: the pid in question.
5778fccf 5103 * @uattr: structure containing the extended parameters.
d50dde5a 5104 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 5105 * @flags: for future extension.
d50dde5a 5106 */
6d35ab48
PZ
5107SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5108 unsigned int, size, unsigned int, flags)
d50dde5a
DF
5109{
5110 struct sched_attr attr = {
5111 .size = sizeof(struct sched_attr),
5112 };
5113 struct task_struct *p;
5114 int retval;
5115
5116 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 5117 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5118 return -EINVAL;
5119
5120 rcu_read_lock();
5121 p = find_process_by_pid(pid);
5122 retval = -ESRCH;
5123 if (!p)
5124 goto out_unlock;
5125
5126 retval = security_task_getscheduler(p);
5127 if (retval)
5128 goto out_unlock;
5129
5130 attr.sched_policy = p->policy;
7479f3c9
PZ
5131 if (p->sched_reset_on_fork)
5132 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
5133 if (task_has_dl_policy(p))
5134 __getparam_dl(p, &attr);
5135 else if (task_has_rt_policy(p))
d50dde5a
DF
5136 attr.sched_priority = p->rt_priority;
5137 else
d0ea0268 5138 attr.sched_nice = task_nice(p);
d50dde5a 5139
a509a7cd
PB
5140#ifdef CONFIG_UCLAMP_TASK
5141 attr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5142 attr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5143#endif
5144
d50dde5a
DF
5145 rcu_read_unlock();
5146
5147 retval = sched_read_attr(uattr, &attr, size);
5148 return retval;
5149
5150out_unlock:
5151 rcu_read_unlock();
5152 return retval;
5153}
5154
96f874e2 5155long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5156{
5a16f3d3 5157 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5158 struct task_struct *p;
5159 int retval;
1da177e4 5160
23f5d142 5161 rcu_read_lock();
1da177e4
LT
5162
5163 p = find_process_by_pid(pid);
5164 if (!p) {
23f5d142 5165 rcu_read_unlock();
1da177e4
LT
5166 return -ESRCH;
5167 }
5168
23f5d142 5169 /* Prevent p going away */
1da177e4 5170 get_task_struct(p);
23f5d142 5171 rcu_read_unlock();
1da177e4 5172
14a40ffc
TH
5173 if (p->flags & PF_NO_SETAFFINITY) {
5174 retval = -EINVAL;
5175 goto out_put_task;
5176 }
5a16f3d3
RR
5177 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5178 retval = -ENOMEM;
5179 goto out_put_task;
5180 }
5181 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5182 retval = -ENOMEM;
5183 goto out_free_cpus_allowed;
5184 }
1da177e4 5185 retval = -EPERM;
4c44aaaf
EB
5186 if (!check_same_owner(p)) {
5187 rcu_read_lock();
5188 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5189 rcu_read_unlock();
16303ab2 5190 goto out_free_new_mask;
4c44aaaf
EB
5191 }
5192 rcu_read_unlock();
5193 }
1da177e4 5194
b0ae1981 5195 retval = security_task_setscheduler(p);
e7834f8f 5196 if (retval)
16303ab2 5197 goto out_free_new_mask;
e7834f8f 5198
e4099a5e
PZ
5199
5200 cpuset_cpus_allowed(p, cpus_allowed);
5201 cpumask_and(new_mask, in_mask, cpus_allowed);
5202
332ac17e
DF
5203 /*
5204 * Since bandwidth control happens on root_domain basis,
5205 * if admission test is enabled, we only admit -deadline
5206 * tasks allowed to run on all the CPUs in the task's
5207 * root_domain.
5208 */
5209#ifdef CONFIG_SMP
f1e3a093
KT
5210 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5211 rcu_read_lock();
5212 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5213 retval = -EBUSY;
f1e3a093 5214 rcu_read_unlock();
16303ab2 5215 goto out_free_new_mask;
332ac17e 5216 }
f1e3a093 5217 rcu_read_unlock();
332ac17e
DF
5218 }
5219#endif
49246274 5220again:
25834c73 5221 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5222
8707d8b8 5223 if (!retval) {
5a16f3d3
RR
5224 cpuset_cpus_allowed(p, cpus_allowed);
5225 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5226 /*
5227 * We must have raced with a concurrent cpuset
5228 * update. Just reset the cpus_allowed to the
5229 * cpuset's cpus_allowed
5230 */
5a16f3d3 5231 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5232 goto again;
5233 }
5234 }
16303ab2 5235out_free_new_mask:
5a16f3d3
RR
5236 free_cpumask_var(new_mask);
5237out_free_cpus_allowed:
5238 free_cpumask_var(cpus_allowed);
5239out_put_task:
1da177e4 5240 put_task_struct(p);
1da177e4
LT
5241 return retval;
5242}
5243
5244static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5245 struct cpumask *new_mask)
1da177e4 5246{
96f874e2
RR
5247 if (len < cpumask_size())
5248 cpumask_clear(new_mask);
5249 else if (len > cpumask_size())
5250 len = cpumask_size();
5251
1da177e4
LT
5252 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5253}
5254
5255/**
d1ccc66d 5256 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5257 * @pid: pid of the process
5258 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5259 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5260 *
5261 * Return: 0 on success. An error code otherwise.
1da177e4 5262 */
5add95d4
HC
5263SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5264 unsigned long __user *, user_mask_ptr)
1da177e4 5265{
5a16f3d3 5266 cpumask_var_t new_mask;
1da177e4
LT
5267 int retval;
5268
5a16f3d3
RR
5269 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5270 return -ENOMEM;
1da177e4 5271
5a16f3d3
RR
5272 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5273 if (retval == 0)
5274 retval = sched_setaffinity(pid, new_mask);
5275 free_cpumask_var(new_mask);
5276 return retval;
1da177e4
LT
5277}
5278
96f874e2 5279long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5280{
36c8b586 5281 struct task_struct *p;
31605683 5282 unsigned long flags;
1da177e4 5283 int retval;
1da177e4 5284
23f5d142 5285 rcu_read_lock();
1da177e4
LT
5286
5287 retval = -ESRCH;
5288 p = find_process_by_pid(pid);
5289 if (!p)
5290 goto out_unlock;
5291
e7834f8f
DQ
5292 retval = security_task_getscheduler(p);
5293 if (retval)
5294 goto out_unlock;
5295
013fdb80 5296 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 5297 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 5298 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5299
5300out_unlock:
23f5d142 5301 rcu_read_unlock();
1da177e4 5302
9531b62f 5303 return retval;
1da177e4
LT
5304}
5305
5306/**
d1ccc66d 5307 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
5308 * @pid: pid of the process
5309 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5310 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 5311 *
599b4840
ZW
5312 * Return: size of CPU mask copied to user_mask_ptr on success. An
5313 * error code otherwise.
1da177e4 5314 */
5add95d4
HC
5315SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5316 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5317{
5318 int ret;
f17c8607 5319 cpumask_var_t mask;
1da177e4 5320
84fba5ec 5321 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5322 return -EINVAL;
5323 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5324 return -EINVAL;
5325
f17c8607
RR
5326 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5327 return -ENOMEM;
1da177e4 5328
f17c8607
RR
5329 ret = sched_getaffinity(pid, mask);
5330 if (ret == 0) {
4de373a1 5331 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
5332
5333 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5334 ret = -EFAULT;
5335 else
cd3d8031 5336 ret = retlen;
f17c8607
RR
5337 }
5338 free_cpumask_var(mask);
1da177e4 5339
f17c8607 5340 return ret;
1da177e4
LT
5341}
5342
5343/**
5344 * sys_sched_yield - yield the current processor to other threads.
5345 *
dd41f596
IM
5346 * This function yields the current CPU to other tasks. If there are no
5347 * other threads running on this CPU then this function will return.
e69f6186
YB
5348 *
5349 * Return: 0.
1da177e4 5350 */
7d4dd4f1 5351static void do_sched_yield(void)
1da177e4 5352{
8a8c69c3
PZ
5353 struct rq_flags rf;
5354 struct rq *rq;
5355
246b3b33 5356 rq = this_rq_lock_irq(&rf);
1da177e4 5357
ae92882e 5358 schedstat_inc(rq->yld_count);
4530d7ab 5359 current->sched_class->yield_task(rq);
1da177e4
LT
5360
5361 /*
5362 * Since we are going to call schedule() anyway, there's
5363 * no need to preempt or enable interrupts:
5364 */
8a8c69c3
PZ
5365 preempt_disable();
5366 rq_unlock(rq, &rf);
ba74c144 5367 sched_preempt_enable_no_resched();
1da177e4
LT
5368
5369 schedule();
7d4dd4f1 5370}
1da177e4 5371
7d4dd4f1
DB
5372SYSCALL_DEFINE0(sched_yield)
5373{
5374 do_sched_yield();
1da177e4
LT
5375 return 0;
5376}
5377
35a773a0 5378#ifndef CONFIG_PREEMPT
02b67cc3 5379int __sched _cond_resched(void)
1da177e4 5380{
fe32d3cd 5381 if (should_resched(0)) {
a18b5d01 5382 preempt_schedule_common();
1da177e4
LT
5383 return 1;
5384 }
f79c3ad6 5385 rcu_all_qs();
1da177e4
LT
5386 return 0;
5387}
02b67cc3 5388EXPORT_SYMBOL(_cond_resched);
35a773a0 5389#endif
1da177e4
LT
5390
5391/*
613afbf8 5392 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5393 * call schedule, and on return reacquire the lock.
5394 *
41a2d6cf 5395 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5396 * operations here to prevent schedule() from being called twice (once via
5397 * spin_unlock(), once by hand).
5398 */
613afbf8 5399int __cond_resched_lock(spinlock_t *lock)
1da177e4 5400{
fe32d3cd 5401 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5402 int ret = 0;
5403
f607c668
PZ
5404 lockdep_assert_held(lock);
5405
4a81e832 5406 if (spin_needbreak(lock) || resched) {
1da177e4 5407 spin_unlock(lock);
d86ee480 5408 if (resched)
a18b5d01 5409 preempt_schedule_common();
95c354fe
NP
5410 else
5411 cpu_relax();
6df3cecb 5412 ret = 1;
1da177e4 5413 spin_lock(lock);
1da177e4 5414 }
6df3cecb 5415 return ret;
1da177e4 5416}
613afbf8 5417EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5418
1da177e4
LT
5419/**
5420 * yield - yield the current processor to other threads.
5421 *
8e3fabfd
PZ
5422 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5423 *
5424 * The scheduler is at all times free to pick the calling task as the most
5425 * eligible task to run, if removing the yield() call from your code breaks
5426 * it, its already broken.
5427 *
5428 * Typical broken usage is:
5429 *
5430 * while (!event)
d1ccc66d 5431 * yield();
8e3fabfd
PZ
5432 *
5433 * where one assumes that yield() will let 'the other' process run that will
5434 * make event true. If the current task is a SCHED_FIFO task that will never
5435 * happen. Never use yield() as a progress guarantee!!
5436 *
5437 * If you want to use yield() to wait for something, use wait_event().
5438 * If you want to use yield() to be 'nice' for others, use cond_resched().
5439 * If you still want to use yield(), do not!
1da177e4
LT
5440 */
5441void __sched yield(void)
5442{
5443 set_current_state(TASK_RUNNING);
7d4dd4f1 5444 do_sched_yield();
1da177e4 5445}
1da177e4
LT
5446EXPORT_SYMBOL(yield);
5447
d95f4122
MG
5448/**
5449 * yield_to - yield the current processor to another thread in
5450 * your thread group, or accelerate that thread toward the
5451 * processor it's on.
16addf95
RD
5452 * @p: target task
5453 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5454 *
5455 * It's the caller's job to ensure that the target task struct
5456 * can't go away on us before we can do any checks.
5457 *
e69f6186 5458 * Return:
7b270f60
PZ
5459 * true (>0) if we indeed boosted the target task.
5460 * false (0) if we failed to boost the target.
5461 * -ESRCH if there's no task to yield to.
d95f4122 5462 */
fa93384f 5463int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5464{
5465 struct task_struct *curr = current;
5466 struct rq *rq, *p_rq;
5467 unsigned long flags;
c3c18640 5468 int yielded = 0;
d95f4122
MG
5469
5470 local_irq_save(flags);
5471 rq = this_rq();
5472
5473again:
5474 p_rq = task_rq(p);
7b270f60
PZ
5475 /*
5476 * If we're the only runnable task on the rq and target rq also
5477 * has only one task, there's absolutely no point in yielding.
5478 */
5479 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5480 yielded = -ESRCH;
5481 goto out_irq;
5482 }
5483
d95f4122 5484 double_rq_lock(rq, p_rq);
39e24d8f 5485 if (task_rq(p) != p_rq) {
d95f4122
MG
5486 double_rq_unlock(rq, p_rq);
5487 goto again;
5488 }
5489
5490 if (!curr->sched_class->yield_to_task)
7b270f60 5491 goto out_unlock;
d95f4122
MG
5492
5493 if (curr->sched_class != p->sched_class)
7b270f60 5494 goto out_unlock;
d95f4122
MG
5495
5496 if (task_running(p_rq, p) || p->state)
7b270f60 5497 goto out_unlock;
d95f4122
MG
5498
5499 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5500 if (yielded) {
ae92882e 5501 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5502 /*
5503 * Make p's CPU reschedule; pick_next_entity takes care of
5504 * fairness.
5505 */
5506 if (preempt && rq != p_rq)
8875125e 5507 resched_curr(p_rq);
6d1cafd8 5508 }
d95f4122 5509
7b270f60 5510out_unlock:
d95f4122 5511 double_rq_unlock(rq, p_rq);
7b270f60 5512out_irq:
d95f4122
MG
5513 local_irq_restore(flags);
5514
7b270f60 5515 if (yielded > 0)
d95f4122
MG
5516 schedule();
5517
5518 return yielded;
5519}
5520EXPORT_SYMBOL_GPL(yield_to);
5521
10ab5643
TH
5522int io_schedule_prepare(void)
5523{
5524 int old_iowait = current->in_iowait;
5525
5526 current->in_iowait = 1;
5527 blk_schedule_flush_plug(current);
5528
5529 return old_iowait;
5530}
5531
5532void io_schedule_finish(int token)
5533{
5534 current->in_iowait = token;
5535}
5536
1da177e4 5537/*
41a2d6cf 5538 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5539 * that process accounting knows that this is a task in IO wait state.
1da177e4 5540 */
1da177e4
LT
5541long __sched io_schedule_timeout(long timeout)
5542{
10ab5643 5543 int token;
1da177e4
LT
5544 long ret;
5545
10ab5643 5546 token = io_schedule_prepare();
1da177e4 5547 ret = schedule_timeout(timeout);
10ab5643 5548 io_schedule_finish(token);
9cff8ade 5549
1da177e4
LT
5550 return ret;
5551}
9cff8ade 5552EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5553
e3b929b0 5554void __sched io_schedule(void)
10ab5643
TH
5555{
5556 int token;
5557
5558 token = io_schedule_prepare();
5559 schedule();
5560 io_schedule_finish(token);
5561}
5562EXPORT_SYMBOL(io_schedule);
5563
1da177e4
LT
5564/**
5565 * sys_sched_get_priority_max - return maximum RT priority.
5566 * @policy: scheduling class.
5567 *
e69f6186
YB
5568 * Return: On success, this syscall returns the maximum
5569 * rt_priority that can be used by a given scheduling class.
5570 * On failure, a negative error code is returned.
1da177e4 5571 */
5add95d4 5572SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5573{
5574 int ret = -EINVAL;
5575
5576 switch (policy) {
5577 case SCHED_FIFO:
5578 case SCHED_RR:
5579 ret = MAX_USER_RT_PRIO-1;
5580 break;
aab03e05 5581 case SCHED_DEADLINE:
1da177e4 5582 case SCHED_NORMAL:
b0a9499c 5583 case SCHED_BATCH:
dd41f596 5584 case SCHED_IDLE:
1da177e4
LT
5585 ret = 0;
5586 break;
5587 }
5588 return ret;
5589}
5590
5591/**
5592 * sys_sched_get_priority_min - return minimum RT priority.
5593 * @policy: scheduling class.
5594 *
e69f6186
YB
5595 * Return: On success, this syscall returns the minimum
5596 * rt_priority that can be used by a given scheduling class.
5597 * On failure, a negative error code is returned.
1da177e4 5598 */
5add95d4 5599SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5600{
5601 int ret = -EINVAL;
5602
5603 switch (policy) {
5604 case SCHED_FIFO:
5605 case SCHED_RR:
5606 ret = 1;
5607 break;
aab03e05 5608 case SCHED_DEADLINE:
1da177e4 5609 case SCHED_NORMAL:
b0a9499c 5610 case SCHED_BATCH:
dd41f596 5611 case SCHED_IDLE:
1da177e4
LT
5612 ret = 0;
5613 }
5614 return ret;
5615}
5616
abca5fc5 5617static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5618{
36c8b586 5619 struct task_struct *p;
a4ec24b4 5620 unsigned int time_slice;
eb580751 5621 struct rq_flags rf;
dba091b9 5622 struct rq *rq;
3a5c359a 5623 int retval;
1da177e4
LT
5624
5625 if (pid < 0)
3a5c359a 5626 return -EINVAL;
1da177e4
LT
5627
5628 retval = -ESRCH;
1a551ae7 5629 rcu_read_lock();
1da177e4
LT
5630 p = find_process_by_pid(pid);
5631 if (!p)
5632 goto out_unlock;
5633
5634 retval = security_task_getscheduler(p);
5635 if (retval)
5636 goto out_unlock;
5637
eb580751 5638 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5639 time_slice = 0;
5640 if (p->sched_class->get_rr_interval)
5641 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5642 task_rq_unlock(rq, p, &rf);
a4ec24b4 5643
1a551ae7 5644 rcu_read_unlock();
abca5fc5
AV
5645 jiffies_to_timespec64(time_slice, t);
5646 return 0;
3a5c359a 5647
1da177e4 5648out_unlock:
1a551ae7 5649 rcu_read_unlock();
1da177e4
LT
5650 return retval;
5651}
5652
2064a5ab
RD
5653/**
5654 * sys_sched_rr_get_interval - return the default timeslice of a process.
5655 * @pid: pid of the process.
5656 * @interval: userspace pointer to the timeslice value.
5657 *
5658 * this syscall writes the default timeslice value of a given process
5659 * into the user-space timespec buffer. A value of '0' means infinity.
5660 *
5661 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5662 * an error code.
5663 */
abca5fc5 5664SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5665 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5666{
5667 struct timespec64 t;
5668 int retval = sched_rr_get_interval(pid, &t);
5669
5670 if (retval == 0)
5671 retval = put_timespec64(&t, interval);
5672
5673 return retval;
5674}
5675
474b9c77 5676#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5677SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5678 struct old_timespec32 __user *, interval)
abca5fc5
AV
5679{
5680 struct timespec64 t;
5681 int retval = sched_rr_get_interval(pid, &t);
5682
5683 if (retval == 0)
9afc5eee 5684 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5685 return retval;
5686}
5687#endif
5688
82a1fcb9 5689void sched_show_task(struct task_struct *p)
1da177e4 5690{
1da177e4 5691 unsigned long free = 0;
4e79752c 5692 int ppid;
c930b2c0 5693
38200502
TH
5694 if (!try_get_task_stack(p))
5695 return;
20435d84
XX
5696
5697 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5698
5699 if (p->state == TASK_RUNNING)
3df0fc5b 5700 printk(KERN_CONT " running task ");
1da177e4 5701#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5702 free = stack_not_used(p);
1da177e4 5703#endif
a90e984c 5704 ppid = 0;
4e79752c 5705 rcu_read_lock();
a90e984c
ON
5706 if (pid_alive(p))
5707 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5708 rcu_read_unlock();
3df0fc5b 5709 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5710 task_pid_nr(p), ppid,
aa47b7e0 5711 (unsigned long)task_thread_info(p)->flags);
1da177e4 5712
3d1cb205 5713 print_worker_info(KERN_INFO, p);
5fb5e6de 5714 show_stack(p, NULL);
38200502 5715 put_task_stack(p);
1da177e4 5716}
0032f4e8 5717EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5718
5d68cc95
PZ
5719static inline bool
5720state_filter_match(unsigned long state_filter, struct task_struct *p)
5721{
5722 /* no filter, everything matches */
5723 if (!state_filter)
5724 return true;
5725
5726 /* filter, but doesn't match */
5727 if (!(p->state & state_filter))
5728 return false;
5729
5730 /*
5731 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5732 * TASK_KILLABLE).
5733 */
5734 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5735 return false;
5736
5737 return true;
5738}
5739
5740
e59e2ae2 5741void show_state_filter(unsigned long state_filter)
1da177e4 5742{
36c8b586 5743 struct task_struct *g, *p;
1da177e4 5744
4bd77321 5745#if BITS_PER_LONG == 32
3df0fc5b
PZ
5746 printk(KERN_INFO
5747 " task PC stack pid father\n");
1da177e4 5748#else
3df0fc5b
PZ
5749 printk(KERN_INFO
5750 " task PC stack pid father\n");
1da177e4 5751#endif
510f5acc 5752 rcu_read_lock();
5d07f420 5753 for_each_process_thread(g, p) {
1da177e4
LT
5754 /*
5755 * reset the NMI-timeout, listing all files on a slow
25985edc 5756 * console might take a lot of time:
57675cb9
AR
5757 * Also, reset softlockup watchdogs on all CPUs, because
5758 * another CPU might be blocked waiting for us to process
5759 * an IPI.
1da177e4
LT
5760 */
5761 touch_nmi_watchdog();
57675cb9 5762 touch_all_softlockup_watchdogs();
5d68cc95 5763 if (state_filter_match(state_filter, p))
82a1fcb9 5764 sched_show_task(p);
5d07f420 5765 }
1da177e4 5766
dd41f596 5767#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5768 if (!state_filter)
5769 sysrq_sched_debug_show();
dd41f596 5770#endif
510f5acc 5771 rcu_read_unlock();
e59e2ae2
IM
5772 /*
5773 * Only show locks if all tasks are dumped:
5774 */
93335a21 5775 if (!state_filter)
e59e2ae2 5776 debug_show_all_locks();
1da177e4
LT
5777}
5778
f340c0d1
IM
5779/**
5780 * init_idle - set up an idle thread for a given CPU
5781 * @idle: task in question
d1ccc66d 5782 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5783 *
5784 * NOTE: this function does not set the idle thread's NEED_RESCHED
5785 * flag, to make booting more robust.
5786 */
0db0628d 5787void init_idle(struct task_struct *idle, int cpu)
1da177e4 5788{
70b97a7f 5789 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5790 unsigned long flags;
5791
25834c73
PZ
5792 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5793 raw_spin_lock(&rq->lock);
5cbd54ef 5794
5e1576ed 5795 __sched_fork(0, idle);
06b83b5f 5796 idle->state = TASK_RUNNING;
dd41f596 5797 idle->se.exec_start = sched_clock();
c1de45ca 5798 idle->flags |= PF_IDLE;
dd41f596 5799
e1b77c92
MR
5800 kasan_unpoison_task_stack(idle);
5801
de9b8f5d
PZ
5802#ifdef CONFIG_SMP
5803 /*
5804 * Its possible that init_idle() gets called multiple times on a task,
5805 * in that case do_set_cpus_allowed() will not do the right thing.
5806 *
5807 * And since this is boot we can forgo the serialization.
5808 */
5809 set_cpus_allowed_common(idle, cpumask_of(cpu));
5810#endif
6506cf6c
PZ
5811 /*
5812 * We're having a chicken and egg problem, even though we are
d1ccc66d 5813 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5814 * lockdep check in task_group() will fail.
5815 *
5816 * Similar case to sched_fork(). / Alternatively we could
5817 * use task_rq_lock() here and obtain the other rq->lock.
5818 *
5819 * Silence PROVE_RCU
5820 */
5821 rcu_read_lock();
dd41f596 5822 __set_task_cpu(idle, cpu);
6506cf6c 5823 rcu_read_unlock();
1da177e4 5824
1da177e4 5825 rq->curr = rq->idle = idle;
da0c1e65 5826 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5827#ifdef CONFIG_SMP
3ca7a440 5828 idle->on_cpu = 1;
4866cde0 5829#endif
25834c73
PZ
5830 raw_spin_unlock(&rq->lock);
5831 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5832
5833 /* Set the preempt count _outside_ the spinlocks! */
01028747 5834 init_idle_preempt_count(idle, cpu);
55cd5340 5835
dd41f596
IM
5836 /*
5837 * The idle tasks have their own, simple scheduling class:
5838 */
5839 idle->sched_class = &idle_sched_class;
868baf07 5840 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5841 vtime_init_idle(idle, cpu);
de9b8f5d 5842#ifdef CONFIG_SMP
f1c6f1a7
CE
5843 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5844#endif
19978ca6
IM
5845}
5846
e1d4eeec
NP
5847#ifdef CONFIG_SMP
5848
f82f8042
JL
5849int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5850 const struct cpumask *trial)
5851{
06a76fe0 5852 int ret = 1;
f82f8042 5853
bb2bc55a
MG
5854 if (!cpumask_weight(cur))
5855 return ret;
5856
06a76fe0 5857 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5858
5859 return ret;
5860}
5861
7f51412a
JL
5862int task_can_attach(struct task_struct *p,
5863 const struct cpumask *cs_cpus_allowed)
5864{
5865 int ret = 0;
5866
5867 /*
5868 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5869 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5870 * affinity and isolating such threads by their set of
5871 * allowed nodes is unnecessary. Thus, cpusets are not
5872 * applicable for such threads. This prevents checking for
5873 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 5874 * before cpus_mask may be changed.
7f51412a
JL
5875 */
5876 if (p->flags & PF_NO_SETAFFINITY) {
5877 ret = -EINVAL;
5878 goto out;
5879 }
5880
7f51412a 5881 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5882 cs_cpus_allowed))
5883 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5884
7f51412a
JL
5885out:
5886 return ret;
5887}
5888
f2cb1360 5889bool sched_smp_initialized __read_mostly;
e26fbffd 5890
e6628d5b
MG
5891#ifdef CONFIG_NUMA_BALANCING
5892/* Migrate current task p to target_cpu */
5893int migrate_task_to(struct task_struct *p, int target_cpu)
5894{
5895 struct migration_arg arg = { p, target_cpu };
5896 int curr_cpu = task_cpu(p);
5897
5898 if (curr_cpu == target_cpu)
5899 return 0;
5900
3bd37062 5901 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
5902 return -EINVAL;
5903
5904 /* TODO: This is not properly updating schedstats */
5905
286549dc 5906 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5907 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5908}
0ec8aa00
PZ
5909
5910/*
5911 * Requeue a task on a given node and accurately track the number of NUMA
5912 * tasks on the runqueues
5913 */
5914void sched_setnuma(struct task_struct *p, int nid)
5915{
da0c1e65 5916 bool queued, running;
eb580751
PZ
5917 struct rq_flags rf;
5918 struct rq *rq;
0ec8aa00 5919
eb580751 5920 rq = task_rq_lock(p, &rf);
da0c1e65 5921 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5922 running = task_current(rq, p);
5923
da0c1e65 5924 if (queued)
1de64443 5925 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5926 if (running)
f3cd1c4e 5927 put_prev_task(rq, p);
0ec8aa00
PZ
5928
5929 p->numa_preferred_nid = nid;
0ec8aa00 5930
da0c1e65 5931 if (queued)
7134b3e9 5932 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5933 if (running)
b2bf6c31 5934 set_curr_task(rq, p);
eb580751 5935 task_rq_unlock(rq, p, &rf);
0ec8aa00 5936}
5cc389bc 5937#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5938
1da177e4 5939#ifdef CONFIG_HOTPLUG_CPU
054b9108 5940/*
d1ccc66d 5941 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5942 * offline.
054b9108 5943 */
48c5ccae 5944void idle_task_exit(void)
1da177e4 5945{
48c5ccae 5946 struct mm_struct *mm = current->active_mm;
e76bd8d9 5947
48c5ccae 5948 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5949
a53efe5f 5950 if (mm != &init_mm) {
252d2a41 5951 switch_mm(mm, &init_mm, current);
3eda69c9 5952 current->active_mm = &init_mm;
a53efe5f
MS
5953 finish_arch_post_lock_switch();
5954 }
48c5ccae 5955 mmdrop(mm);
1da177e4
LT
5956}
5957
5958/*
5d180232
PZ
5959 * Since this CPU is going 'away' for a while, fold any nr_active delta
5960 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5961 * nr_active count is stable. We need to take the teardown thread which
5962 * is calling this into account, so we hand in adjust = 1 to the load
5963 * calculation.
5d180232
PZ
5964 *
5965 * Also see the comment "Global load-average calculations".
1da177e4 5966 */
5d180232 5967static void calc_load_migrate(struct rq *rq)
1da177e4 5968{
d60585c5 5969 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5970 if (delta)
5971 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5972}
5973
3f1d2a31
PZ
5974static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5975{
5976}
5977
5978static const struct sched_class fake_sched_class = {
5979 .put_prev_task = put_prev_task_fake,
5980};
5981
5982static struct task_struct fake_task = {
5983 /*
5984 * Avoid pull_{rt,dl}_task()
5985 */
5986 .prio = MAX_PRIO + 1,
5987 .sched_class = &fake_sched_class,
5988};
5989
48f24c4d 5990/*
48c5ccae
PZ
5991 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5992 * try_to_wake_up()->select_task_rq().
5993 *
5994 * Called with rq->lock held even though we'er in stop_machine() and
5995 * there's no concurrency possible, we hold the required locks anyway
5996 * because of lock validation efforts.
1da177e4 5997 */
8a8c69c3 5998static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5999{
5e16bbc2 6000 struct rq *rq = dead_rq;
48c5ccae 6001 struct task_struct *next, *stop = rq->stop;
8a8c69c3 6002 struct rq_flags orf = *rf;
48c5ccae 6003 int dest_cpu;
1da177e4
LT
6004
6005 /*
48c5ccae
PZ
6006 * Fudge the rq selection such that the below task selection loop
6007 * doesn't get stuck on the currently eligible stop task.
6008 *
6009 * We're currently inside stop_machine() and the rq is either stuck
6010 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6011 * either way we should never end up calling schedule() until we're
6012 * done here.
1da177e4 6013 */
48c5ccae 6014 rq->stop = NULL;
48f24c4d 6015
77bd3970
FW
6016 /*
6017 * put_prev_task() and pick_next_task() sched
6018 * class method both need to have an up-to-date
6019 * value of rq->clock[_task]
6020 */
6021 update_rq_clock(rq);
6022
5e16bbc2 6023 for (;;) {
48c5ccae
PZ
6024 /*
6025 * There's this thread running, bail when that's the only
d1ccc66d 6026 * remaining thread:
48c5ccae
PZ
6027 */
6028 if (rq->nr_running == 1)
dd41f596 6029 break;
48c5ccae 6030
cbce1a68 6031 /*
d1ccc66d 6032 * pick_next_task() assumes pinned rq->lock:
cbce1a68 6033 */
8a8c69c3 6034 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 6035 BUG_ON(!next);
5b713a3d 6036 put_prev_task(rq, next);
e692ab53 6037
5473e0cc 6038 /*
3bd37062 6039 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
6040 * both pi_lock and rq->lock, such that holding either
6041 * stabilizes the mask.
6042 *
6043 * Drop rq->lock is not quite as disastrous as it usually is
6044 * because !cpu_active at this point, which means load-balance
6045 * will not interfere. Also, stop-machine.
6046 */
8a8c69c3 6047 rq_unlock(rq, rf);
5473e0cc 6048 raw_spin_lock(&next->pi_lock);
8a8c69c3 6049 rq_relock(rq, rf);
5473e0cc
WL
6050
6051 /*
6052 * Since we're inside stop-machine, _nothing_ should have
6053 * changed the task, WARN if weird stuff happened, because in
6054 * that case the above rq->lock drop is a fail too.
6055 */
6056 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6057 raw_spin_unlock(&next->pi_lock);
6058 continue;
6059 }
6060
48c5ccae 6061 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 6062 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 6063 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 6064 if (rq != dead_rq) {
8a8c69c3 6065 rq_unlock(rq, rf);
5e16bbc2 6066 rq = dead_rq;
8a8c69c3
PZ
6067 *rf = orf;
6068 rq_relock(rq, rf);
5e16bbc2 6069 }
5473e0cc 6070 raw_spin_unlock(&next->pi_lock);
1da177e4 6071 }
dce48a84 6072
48c5ccae 6073 rq->stop = stop;
dce48a84 6074}
1da177e4
LT
6075#endif /* CONFIG_HOTPLUG_CPU */
6076
f2cb1360 6077void set_rq_online(struct rq *rq)
1f11eb6a
GH
6078{
6079 if (!rq->online) {
6080 const struct sched_class *class;
6081
c6c4927b 6082 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6083 rq->online = 1;
6084
6085 for_each_class(class) {
6086 if (class->rq_online)
6087 class->rq_online(rq);
6088 }
6089 }
6090}
6091
f2cb1360 6092void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6093{
6094 if (rq->online) {
6095 const struct sched_class *class;
6096
6097 for_each_class(class) {
6098 if (class->rq_offline)
6099 class->rq_offline(rq);
6100 }
6101
c6c4927b 6102 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6103 rq->online = 0;
6104 }
6105}
6106
d1ccc66d
IM
6107/*
6108 * used to mark begin/end of suspend/resume:
6109 */
6110static int num_cpus_frozen;
d35be8ba 6111
1da177e4 6112/*
3a101d05
TH
6113 * Update cpusets according to cpu_active mask. If cpusets are
6114 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6115 * around partition_sched_domains().
d35be8ba
SB
6116 *
6117 * If we come here as part of a suspend/resume, don't touch cpusets because we
6118 * want to restore it back to its original state upon resume anyway.
1da177e4 6119 */
40190a78 6120static void cpuset_cpu_active(void)
e761b772 6121{
40190a78 6122 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6123 /*
6124 * num_cpus_frozen tracks how many CPUs are involved in suspend
6125 * resume sequence. As long as this is not the last online
6126 * operation in the resume sequence, just build a single sched
6127 * domain, ignoring cpusets.
6128 */
50e76632
PZ
6129 partition_sched_domains(1, NULL, NULL);
6130 if (--num_cpus_frozen)
135fb3e1 6131 return;
d35be8ba
SB
6132 /*
6133 * This is the last CPU online operation. So fall through and
6134 * restore the original sched domains by considering the
6135 * cpuset configurations.
6136 */
50e76632 6137 cpuset_force_rebuild();
3a101d05 6138 }
30e03acd 6139 cpuset_update_active_cpus();
3a101d05 6140}
e761b772 6141
40190a78 6142static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6143{
40190a78 6144 if (!cpuhp_tasks_frozen) {
06a76fe0 6145 if (dl_cpu_busy(cpu))
135fb3e1 6146 return -EBUSY;
30e03acd 6147 cpuset_update_active_cpus();
135fb3e1 6148 } else {
d35be8ba
SB
6149 num_cpus_frozen++;
6150 partition_sched_domains(1, NULL, NULL);
e761b772 6151 }
135fb3e1 6152 return 0;
e761b772 6153}
e761b772 6154
40190a78 6155int sched_cpu_activate(unsigned int cpu)
135fb3e1 6156{
7d976699 6157 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6158 struct rq_flags rf;
7d976699 6159
ba2591a5
PZ
6160#ifdef CONFIG_SCHED_SMT
6161 /*
c5511d03 6162 * When going up, increment the number of cores with SMT present.
ba2591a5 6163 */
c5511d03
PZI
6164 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6165 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6166#endif
40190a78 6167 set_cpu_active(cpu, true);
135fb3e1 6168
40190a78 6169 if (sched_smp_initialized) {
135fb3e1 6170 sched_domains_numa_masks_set(cpu);
40190a78 6171 cpuset_cpu_active();
e761b772 6172 }
7d976699
TG
6173
6174 /*
6175 * Put the rq online, if not already. This happens:
6176 *
6177 * 1) In the early boot process, because we build the real domains
d1ccc66d 6178 * after all CPUs have been brought up.
7d976699
TG
6179 *
6180 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6181 * domains.
6182 */
8a8c69c3 6183 rq_lock_irqsave(rq, &rf);
7d976699
TG
6184 if (rq->rd) {
6185 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6186 set_rq_online(rq);
6187 }
8a8c69c3 6188 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
6189
6190 update_max_interval();
6191
40190a78 6192 return 0;
135fb3e1
TG
6193}
6194
40190a78 6195int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6196{
135fb3e1
TG
6197 int ret;
6198
40190a78 6199 set_cpu_active(cpu, false);
b2454caa
PZ
6200 /*
6201 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6202 * users of this state to go away such that all new such users will
6203 * observe it.
6204 *
b2454caa
PZ
6205 * Do sync before park smpboot threads to take care the rcu boost case.
6206 */
309ba859 6207 synchronize_rcu();
40190a78 6208
c5511d03
PZI
6209#ifdef CONFIG_SCHED_SMT
6210 /*
6211 * When going down, decrement the number of cores with SMT present.
6212 */
6213 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6214 static_branch_dec_cpuslocked(&sched_smt_present);
6215#endif
6216
40190a78
TG
6217 if (!sched_smp_initialized)
6218 return 0;
6219
6220 ret = cpuset_cpu_inactive(cpu);
6221 if (ret) {
6222 set_cpu_active(cpu, true);
6223 return ret;
135fb3e1 6224 }
40190a78
TG
6225 sched_domains_numa_masks_clear(cpu);
6226 return 0;
135fb3e1
TG
6227}
6228
94baf7a5
TG
6229static void sched_rq_cpu_starting(unsigned int cpu)
6230{
6231 struct rq *rq = cpu_rq(cpu);
6232
6233 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6234 update_max_interval();
6235}
6236
135fb3e1
TG
6237int sched_cpu_starting(unsigned int cpu)
6238{
94baf7a5 6239 sched_rq_cpu_starting(cpu);
d84b3131 6240 sched_tick_start(cpu);
135fb3e1 6241 return 0;
e761b772 6242}
e761b772 6243
f2785ddb
TG
6244#ifdef CONFIG_HOTPLUG_CPU
6245int sched_cpu_dying(unsigned int cpu)
6246{
6247 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6248 struct rq_flags rf;
f2785ddb
TG
6249
6250 /* Handle pending wakeups and then migrate everything off */
6251 sched_ttwu_pending();
d84b3131 6252 sched_tick_stop(cpu);
8a8c69c3
PZ
6253
6254 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6255 if (rq->rd) {
6256 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6257 set_rq_offline(rq);
6258 }
8a8c69c3 6259 migrate_tasks(rq, &rf);
f2785ddb 6260 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6261 rq_unlock_irqrestore(rq, &rf);
6262
f2785ddb
TG
6263 calc_load_migrate(rq);
6264 update_max_interval();
00357f5e 6265 nohz_balance_exit_idle(rq);
e5ef27d0 6266 hrtick_clear(rq);
f2785ddb
TG
6267 return 0;
6268}
6269#endif
6270
1da177e4
LT
6271void __init sched_init_smp(void)
6272{
cb83b629
PZ
6273 sched_init_numa();
6274
6acce3ef
PZ
6275 /*
6276 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 6277 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 6278 * happen.
6acce3ef 6279 */
712555ee 6280 mutex_lock(&sched_domains_mutex);
8d5dc512 6281 sched_init_domains(cpu_active_mask);
712555ee 6282 mutex_unlock(&sched_domains_mutex);
e761b772 6283
5c1e1767 6284 /* Move init over to a non-isolated CPU */
edb93821 6285 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 6286 BUG();
19978ca6 6287 sched_init_granularity();
4212823f 6288
0e3900e6 6289 init_sched_rt_class();
1baca4ce 6290 init_sched_dl_class();
1b568f0a 6291
e26fbffd 6292 sched_smp_initialized = true;
1da177e4 6293}
e26fbffd
TG
6294
6295static int __init migration_init(void)
6296{
77a5352b 6297 sched_cpu_starting(smp_processor_id());
e26fbffd 6298 return 0;
1da177e4 6299}
e26fbffd
TG
6300early_initcall(migration_init);
6301
1da177e4
LT
6302#else
6303void __init sched_init_smp(void)
6304{
19978ca6 6305 sched_init_granularity();
1da177e4
LT
6306}
6307#endif /* CONFIG_SMP */
6308
6309int in_sched_functions(unsigned long addr)
6310{
1da177e4
LT
6311 return in_lock_functions(addr) ||
6312 (addr >= (unsigned long)__sched_text_start
6313 && addr < (unsigned long)__sched_text_end);
6314}
6315
029632fb 6316#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6317/*
6318 * Default task group.
6319 * Every task in system belongs to this group at bootup.
6320 */
029632fb 6321struct task_group root_task_group;
35cf4e50 6322LIST_HEAD(task_groups);
b0367629
WL
6323
6324/* Cacheline aligned slab cache for task_group */
6325static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6326#endif
6f505b16 6327
e6252c3e 6328DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6329DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6330
1da177e4
LT
6331void __init sched_init(void)
6332{
434d53b0 6333 unsigned long alloc_size = 0, ptr;
55627e3c 6334 int i;
434d53b0 6335
5822a454 6336 wait_bit_init();
9dcb8b68 6337
434d53b0
MT
6338#ifdef CONFIG_FAIR_GROUP_SCHED
6339 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6340#endif
6341#ifdef CONFIG_RT_GROUP_SCHED
6342 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6343#endif
434d53b0 6344 if (alloc_size) {
36b7b6d4 6345 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6346
6347#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6348 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6349 ptr += nr_cpu_ids * sizeof(void **);
6350
07e06b01 6351 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6352 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6353
6d6bc0ad 6354#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6355#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6356 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6357 ptr += nr_cpu_ids * sizeof(void **);
6358
07e06b01 6359 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6360 ptr += nr_cpu_ids * sizeof(void **);
6361
6d6bc0ad 6362#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6363 }
df7c8e84 6364#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6365 for_each_possible_cpu(i) {
6366 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6367 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6368 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6369 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6370 }
b74e6278 6371#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6372
d1ccc66d
IM
6373 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6374 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6375
57d885fe
GH
6376#ifdef CONFIG_SMP
6377 init_defrootdomain();
6378#endif
6379
d0b27fa7 6380#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6381 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6382 global_rt_period(), global_rt_runtime());
6d6bc0ad 6383#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6384
7c941438 6385#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6386 task_group_cache = KMEM_CACHE(task_group, 0);
6387
07e06b01
YZ
6388 list_add(&root_task_group.list, &task_groups);
6389 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6390 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6391 autogroup_init(&init_task);
7c941438 6392#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6393
0a945022 6394 for_each_possible_cpu(i) {
70b97a7f 6395 struct rq *rq;
1da177e4
LT
6396
6397 rq = cpu_rq(i);
05fa785c 6398 raw_spin_lock_init(&rq->lock);
7897986b 6399 rq->nr_running = 0;
dce48a84
TG
6400 rq->calc_load_active = 0;
6401 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6402 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6403 init_rt_rq(&rq->rt);
6404 init_dl_rq(&rq->dl);
dd41f596 6405#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6406 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6407 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6408 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6409 /*
d1ccc66d 6410 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6411 *
6412 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6413 * gets 100% of the CPU resources in the system. This overall
6414 * system CPU resource is divided among the tasks of
07e06b01 6415 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6416 * based on each entity's (task or task-group's) weight
6417 * (se->load.weight).
6418 *
07e06b01 6419 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6420 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6421 * then A0's share of the CPU resource is:
354d60c2 6422 *
0d905bca 6423 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6424 *
07e06b01
YZ
6425 * We achieve this by letting root_task_group's tasks sit
6426 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6427 */
ab84d31e 6428 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6429 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6430#endif /* CONFIG_FAIR_GROUP_SCHED */
6431
6432 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6433#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6434 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6435#endif
1da177e4 6436#ifdef CONFIG_SMP
41c7ce9a 6437 rq->sd = NULL;
57d885fe 6438 rq->rd = NULL;
ca6d75e6 6439 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6440 rq->balance_callback = NULL;
1da177e4 6441 rq->active_balance = 0;
dd41f596 6442 rq->next_balance = jiffies;
1da177e4 6443 rq->push_cpu = 0;
0a2966b4 6444 rq->cpu = i;
1f11eb6a 6445 rq->online = 0;
eae0c9df
MG
6446 rq->idle_stamp = 0;
6447 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6448 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6449
6450 INIT_LIST_HEAD(&rq->cfs_tasks);
6451
dc938520 6452 rq_attach_root(rq, &def_root_domain);
3451d024 6453#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6454 rq->last_load_update_tick = jiffies;
e022e0d3 6455 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6456 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6457#endif
9fd81dd5 6458#endif /* CONFIG_SMP */
77a021be 6459 hrtick_rq_init(rq);
1da177e4 6460 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6461 }
6462
9059393e 6463 set_load_weight(&init_task, false);
b50f60ce 6464
1da177e4
LT
6465 /*
6466 * The boot idle thread does lazy MMU switching as well:
6467 */
f1f10076 6468 mmgrab(&init_mm);
1da177e4
LT
6469 enter_lazy_tlb(&init_mm, current);
6470
6471 /*
6472 * Make us the idle thread. Technically, schedule() should not be
6473 * called from this thread, however somewhere below it might be,
6474 * but because we are the idle thread, we just pick up running again
6475 * when this runqueue becomes "idle".
6476 */
6477 init_idle(current, smp_processor_id());
dce48a84
TG
6478
6479 calc_load_update = jiffies + LOAD_FREQ;
6480
bf4d83f6 6481#ifdef CONFIG_SMP
29d5e047 6482 idle_thread_set_boot_cpu();
029632fb
PZ
6483#endif
6484 init_sched_fair_class();
6a7b3dc3 6485
4698f88c
JP
6486 init_schedstats();
6487
eb414681
JW
6488 psi_init();
6489
69842cba
PB
6490 init_uclamp();
6491
6892b75e 6492 scheduler_running = 1;
1da177e4
LT
6493}
6494
d902db1e 6495#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6496static inline int preempt_count_equals(int preempt_offset)
6497{
da7142e2 6498 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6499
4ba8216c 6500 return (nested == preempt_offset);
e4aafea2
FW
6501}
6502
d894837f 6503void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6504{
8eb23b9f
PZ
6505 /*
6506 * Blocking primitives will set (and therefore destroy) current->state,
6507 * since we will exit with TASK_RUNNING make sure we enter with it,
6508 * otherwise we will destroy state.
6509 */
00845eb9 6510 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6511 "do not call blocking ops when !TASK_RUNNING; "
6512 "state=%lx set at [<%p>] %pS\n",
6513 current->state,
6514 (void *)current->task_state_change,
00845eb9 6515 (void *)current->task_state_change);
8eb23b9f 6516
3427445a
PZ
6517 ___might_sleep(file, line, preempt_offset);
6518}
6519EXPORT_SYMBOL(__might_sleep);
6520
6521void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6522{
d1ccc66d
IM
6523 /* Ratelimiting timestamp: */
6524 static unsigned long prev_jiffy;
6525
d1c6d149 6526 unsigned long preempt_disable_ip;
1da177e4 6527
d1ccc66d
IM
6528 /* WARN_ON_ONCE() by default, no rate limit required: */
6529 rcu_sleep_check();
6530
db273be2
TG
6531 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6532 !is_idle_task(current)) ||
1c3c5eab
TG
6533 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6534 oops_in_progress)
aef745fc 6535 return;
1c3c5eab 6536
aef745fc
IM
6537 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6538 return;
6539 prev_jiffy = jiffies;
6540
d1ccc66d 6541 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6542 preempt_disable_ip = get_preempt_disable_ip(current);
6543
3df0fc5b
PZ
6544 printk(KERN_ERR
6545 "BUG: sleeping function called from invalid context at %s:%d\n",
6546 file, line);
6547 printk(KERN_ERR
6548 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6549 in_atomic(), irqs_disabled(),
6550 current->pid, current->comm);
aef745fc 6551
a8b686b3
ES
6552 if (task_stack_end_corrupted(current))
6553 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6554
aef745fc
IM
6555 debug_show_held_locks(current);
6556 if (irqs_disabled())
6557 print_irqtrace_events(current);
d1c6d149
VN
6558 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6559 && !preempt_count_equals(preempt_offset)) {
8f47b187 6560 pr_err("Preemption disabled at:");
d1c6d149 6561 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6562 pr_cont("\n");
6563 }
aef745fc 6564 dump_stack();
f0b22e39 6565 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6566}
3427445a 6567EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6568
6569void __cant_sleep(const char *file, int line, int preempt_offset)
6570{
6571 static unsigned long prev_jiffy;
6572
6573 if (irqs_disabled())
6574 return;
6575
6576 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6577 return;
6578
6579 if (preempt_count() > preempt_offset)
6580 return;
6581
6582 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6583 return;
6584 prev_jiffy = jiffies;
6585
6586 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6587 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6588 in_atomic(), irqs_disabled(),
6589 current->pid, current->comm);
6590
6591 debug_show_held_locks(current);
6592 dump_stack();
6593 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6594}
6595EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6596#endif
6597
6598#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6599void normalize_rt_tasks(void)
3a5e4dc1 6600{
dbc7f069 6601 struct task_struct *g, *p;
d50dde5a
DF
6602 struct sched_attr attr = {
6603 .sched_policy = SCHED_NORMAL,
6604 };
1da177e4 6605
3472eaa1 6606 read_lock(&tasklist_lock);
5d07f420 6607 for_each_process_thread(g, p) {
178be793
IM
6608 /*
6609 * Only normalize user tasks:
6610 */
3472eaa1 6611 if (p->flags & PF_KTHREAD)
178be793
IM
6612 continue;
6613
4fa8d299
JP
6614 p->se.exec_start = 0;
6615 schedstat_set(p->se.statistics.wait_start, 0);
6616 schedstat_set(p->se.statistics.sleep_start, 0);
6617 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6618
aab03e05 6619 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6620 /*
6621 * Renice negative nice level userspace
6622 * tasks back to 0:
6623 */
3472eaa1 6624 if (task_nice(p) < 0)
dd41f596 6625 set_user_nice(p, 0);
1da177e4 6626 continue;
dd41f596 6627 }
1da177e4 6628
dbc7f069 6629 __sched_setscheduler(p, &attr, false, false);
5d07f420 6630 }
3472eaa1 6631 read_unlock(&tasklist_lock);
1da177e4
LT
6632}
6633
6634#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6635
67fc4e0c 6636#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6637/*
67fc4e0c 6638 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6639 *
6640 * They can only be called when the whole system has been
6641 * stopped - every CPU needs to be quiescent, and no scheduling
6642 * activity can take place. Using them for anything else would
6643 * be a serious bug, and as a result, they aren't even visible
6644 * under any other configuration.
6645 */
6646
6647/**
d1ccc66d 6648 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6649 * @cpu: the processor in question.
6650 *
6651 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6652 *
6653 * Return: The current task for @cpu.
1df5c10a 6654 */
36c8b586 6655struct task_struct *curr_task(int cpu)
1df5c10a
LT
6656{
6657 return cpu_curr(cpu);
6658}
6659
67fc4e0c
JW
6660#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6661
6662#ifdef CONFIG_IA64
1df5c10a 6663/**
d1ccc66d 6664 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6665 * @cpu: the processor in question.
6666 * @p: the task pointer to set.
6667 *
6668 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6669 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6670 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6671 * must be called with all CPU's synchronized, and interrupts disabled, the
6672 * and caller must save the original value of the current task (see
6673 * curr_task() above) and restore that value before reenabling interrupts and
6674 * re-starting the system.
6675 *
6676 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6677 */
a458ae2e 6678void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6679{
6680 cpu_curr(cpu) = p;
6681}
6682
6683#endif
29f59db3 6684
7c941438 6685#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6686/* task_group_lock serializes the addition/removal of task groups */
6687static DEFINE_SPINLOCK(task_group_lock);
6688
2f5177f0 6689static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6690{
6691 free_fair_sched_group(tg);
6692 free_rt_sched_group(tg);
e9aa1dd1 6693 autogroup_free(tg);
b0367629 6694 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6695}
6696
6697/* allocate runqueue etc for a new task group */
ec7dc8ac 6698struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6699{
6700 struct task_group *tg;
bccbe08a 6701
b0367629 6702 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6703 if (!tg)
6704 return ERR_PTR(-ENOMEM);
6705
ec7dc8ac 6706 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6707 goto err;
6708
ec7dc8ac 6709 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6710 goto err;
6711
ace783b9
LZ
6712 return tg;
6713
6714err:
2f5177f0 6715 sched_free_group(tg);
ace783b9
LZ
6716 return ERR_PTR(-ENOMEM);
6717}
6718
6719void sched_online_group(struct task_group *tg, struct task_group *parent)
6720{
6721 unsigned long flags;
6722
8ed36996 6723 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6724 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6725
d1ccc66d
IM
6726 /* Root should already exist: */
6727 WARN_ON(!parent);
f473aa5e
PZ
6728
6729 tg->parent = parent;
f473aa5e 6730 INIT_LIST_HEAD(&tg->children);
09f2724a 6731 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6732 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6733
6734 online_fair_sched_group(tg);
29f59db3
SV
6735}
6736
9b5b7751 6737/* rcu callback to free various structures associated with a task group */
2f5177f0 6738static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6739{
d1ccc66d 6740 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6741 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6742}
6743
4cf86d77 6744void sched_destroy_group(struct task_group *tg)
ace783b9 6745{
d1ccc66d 6746 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6747 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6748}
6749
6750void sched_offline_group(struct task_group *tg)
29f59db3 6751{
8ed36996 6752 unsigned long flags;
29f59db3 6753
d1ccc66d 6754 /* End participation in shares distribution: */
6fe1f348 6755 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6756
6757 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6758 list_del_rcu(&tg->list);
f473aa5e 6759 list_del_rcu(&tg->siblings);
8ed36996 6760 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6761}
6762
ea86cb4b 6763static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6764{
8323f26c 6765 struct task_group *tg;
29f59db3 6766
f7b8a47d
KT
6767 /*
6768 * All callers are synchronized by task_rq_lock(); we do not use RCU
6769 * which is pointless here. Thus, we pass "true" to task_css_check()
6770 * to prevent lockdep warnings.
6771 */
6772 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6773 struct task_group, css);
6774 tg = autogroup_task_group(tsk, tg);
6775 tsk->sched_task_group = tg;
6776
810b3817 6777#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6778 if (tsk->sched_class->task_change_group)
6779 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6780 else
810b3817 6781#endif
b2b5ce02 6782 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6783}
6784
6785/*
6786 * Change task's runqueue when it moves between groups.
6787 *
6788 * The caller of this function should have put the task in its new group by
6789 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6790 * its new group.
6791 */
6792void sched_move_task(struct task_struct *tsk)
6793{
7a57f32a
PZ
6794 int queued, running, queue_flags =
6795 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6796 struct rq_flags rf;
6797 struct rq *rq;
6798
6799 rq = task_rq_lock(tsk, &rf);
1b1d6225 6800 update_rq_clock(rq);
ea86cb4b
VG
6801
6802 running = task_current(rq, tsk);
6803 queued = task_on_rq_queued(tsk);
6804
6805 if (queued)
7a57f32a 6806 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6807 if (running)
ea86cb4b
VG
6808 put_prev_task(rq, tsk);
6809
6810 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6811
da0c1e65 6812 if (queued)
7a57f32a 6813 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6814 if (running)
b2bf6c31 6815 set_curr_task(rq, tsk);
29f59db3 6816
eb580751 6817 task_rq_unlock(rq, tsk, &rf);
29f59db3 6818}
68318b8e 6819
a7c6d554 6820static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6821{
a7c6d554 6822 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6823}
6824
eb95419b
TH
6825static struct cgroup_subsys_state *
6826cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6827{
eb95419b
TH
6828 struct task_group *parent = css_tg(parent_css);
6829 struct task_group *tg;
68318b8e 6830
eb95419b 6831 if (!parent) {
68318b8e 6832 /* This is early initialization for the top cgroup */
07e06b01 6833 return &root_task_group.css;
68318b8e
SV
6834 }
6835
ec7dc8ac 6836 tg = sched_create_group(parent);
68318b8e
SV
6837 if (IS_ERR(tg))
6838 return ERR_PTR(-ENOMEM);
6839
68318b8e
SV
6840 return &tg->css;
6841}
6842
96b77745
KK
6843/* Expose task group only after completing cgroup initialization */
6844static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6845{
6846 struct task_group *tg = css_tg(css);
6847 struct task_group *parent = css_tg(css->parent);
6848
6849 if (parent)
6850 sched_online_group(tg, parent);
6851 return 0;
6852}
6853
2f5177f0 6854static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6855{
eb95419b 6856 struct task_group *tg = css_tg(css);
ace783b9 6857
2f5177f0 6858 sched_offline_group(tg);
ace783b9
LZ
6859}
6860
eb95419b 6861static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6862{
eb95419b 6863 struct task_group *tg = css_tg(css);
68318b8e 6864
2f5177f0
PZ
6865 /*
6866 * Relies on the RCU grace period between css_released() and this.
6867 */
6868 sched_free_group(tg);
ace783b9
LZ
6869}
6870
ea86cb4b
VG
6871/*
6872 * This is called before wake_up_new_task(), therefore we really only
6873 * have to set its group bits, all the other stuff does not apply.
6874 */
b53202e6 6875static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6876{
ea86cb4b
VG
6877 struct rq_flags rf;
6878 struct rq *rq;
6879
6880 rq = task_rq_lock(task, &rf);
6881
80f5c1b8 6882 update_rq_clock(rq);
ea86cb4b
VG
6883 sched_change_group(task, TASK_SET_GROUP);
6884
6885 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6886}
6887
1f7dd3e5 6888static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6889{
bb9d97b6 6890 struct task_struct *task;
1f7dd3e5 6891 struct cgroup_subsys_state *css;
7dc603c9 6892 int ret = 0;
bb9d97b6 6893
1f7dd3e5 6894 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6895#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6896 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6897 return -EINVAL;
b68aa230 6898#else
bb9d97b6
TH
6899 /* We don't support RT-tasks being in separate groups */
6900 if (task->sched_class != &fair_sched_class)
6901 return -EINVAL;
b68aa230 6902#endif
7dc603c9
PZ
6903 /*
6904 * Serialize against wake_up_new_task() such that if its
6905 * running, we're sure to observe its full state.
6906 */
6907 raw_spin_lock_irq(&task->pi_lock);
6908 /*
6909 * Avoid calling sched_move_task() before wake_up_new_task()
6910 * has happened. This would lead to problems with PELT, due to
6911 * move wanting to detach+attach while we're not attached yet.
6912 */
6913 if (task->state == TASK_NEW)
6914 ret = -EINVAL;
6915 raw_spin_unlock_irq(&task->pi_lock);
6916
6917 if (ret)
6918 break;
bb9d97b6 6919 }
7dc603c9 6920 return ret;
be367d09 6921}
68318b8e 6922
1f7dd3e5 6923static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6924{
bb9d97b6 6925 struct task_struct *task;
1f7dd3e5 6926 struct cgroup_subsys_state *css;
bb9d97b6 6927
1f7dd3e5 6928 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6929 sched_move_task(task);
68318b8e
SV
6930}
6931
052f1dc7 6932#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6933static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6934 struct cftype *cftype, u64 shareval)
68318b8e 6935{
5b61d50a
KK
6936 if (shareval > scale_load_down(ULONG_MAX))
6937 shareval = MAX_SHARES;
182446d0 6938 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6939}
6940
182446d0
TH
6941static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6942 struct cftype *cft)
68318b8e 6943{
182446d0 6944 struct task_group *tg = css_tg(css);
68318b8e 6945
c8b28116 6946 return (u64) scale_load_down(tg->shares);
68318b8e 6947}
ab84d31e
PT
6948
6949#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6950static DEFINE_MUTEX(cfs_constraints_mutex);
6951
ab84d31e 6952const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 6953static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
ab84d31e 6954
a790de99
PT
6955static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6956
ab84d31e
PT
6957static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6958{
56f570e5 6959 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6960 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6961
6962 if (tg == &root_task_group)
6963 return -EINVAL;
6964
6965 /*
6966 * Ensure we have at some amount of bandwidth every period. This is
6967 * to prevent reaching a state of large arrears when throttled via
6968 * entity_tick() resulting in prolonged exit starvation.
6969 */
6970 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6971 return -EINVAL;
6972
6973 /*
6974 * Likewise, bound things on the otherside by preventing insane quota
6975 * periods. This also allows us to normalize in computing quota
6976 * feasibility.
6977 */
6978 if (period > max_cfs_quota_period)
6979 return -EINVAL;
6980
0e59bdae
KT
6981 /*
6982 * Prevent race between setting of cfs_rq->runtime_enabled and
6983 * unthrottle_offline_cfs_rqs().
6984 */
6985 get_online_cpus();
a790de99
PT
6986 mutex_lock(&cfs_constraints_mutex);
6987 ret = __cfs_schedulable(tg, period, quota);
6988 if (ret)
6989 goto out_unlock;
6990
58088ad0 6991 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6992 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6993 /*
6994 * If we need to toggle cfs_bandwidth_used, off->on must occur
6995 * before making related changes, and on->off must occur afterwards
6996 */
6997 if (runtime_enabled && !runtime_was_enabled)
6998 cfs_bandwidth_usage_inc();
ab84d31e
PT
6999 raw_spin_lock_irq(&cfs_b->lock);
7000 cfs_b->period = ns_to_ktime(period);
7001 cfs_b->quota = quota;
58088ad0 7002
a9cf55b2 7003 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7004
7005 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7006 if (runtime_enabled)
7007 start_cfs_bandwidth(cfs_b);
d1ccc66d 7008
ab84d31e
PT
7009 raw_spin_unlock_irq(&cfs_b->lock);
7010
0e59bdae 7011 for_each_online_cpu(i) {
ab84d31e 7012 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7013 struct rq *rq = cfs_rq->rq;
8a8c69c3 7014 struct rq_flags rf;
ab84d31e 7015
8a8c69c3 7016 rq_lock_irq(rq, &rf);
58088ad0 7017 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7018 cfs_rq->runtime_remaining = 0;
671fd9da 7019
029632fb 7020 if (cfs_rq->throttled)
671fd9da 7021 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7022 rq_unlock_irq(rq, &rf);
ab84d31e 7023 }
1ee14e6c
BS
7024 if (runtime_was_enabled && !runtime_enabled)
7025 cfs_bandwidth_usage_dec();
a790de99
PT
7026out_unlock:
7027 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7028 put_online_cpus();
ab84d31e 7029
a790de99 7030 return ret;
ab84d31e
PT
7031}
7032
b1546edc 7033static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
7034{
7035 u64 quota, period;
7036
029632fb 7037 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7038 if (cfs_quota_us < 0)
7039 quota = RUNTIME_INF;
1a8b4540 7040 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 7041 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
7042 else
7043 return -EINVAL;
ab84d31e
PT
7044
7045 return tg_set_cfs_bandwidth(tg, period, quota);
7046}
7047
b1546edc 7048static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
7049{
7050 u64 quota_us;
7051
029632fb 7052 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7053 return -1;
7054
029632fb 7055 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7056 do_div(quota_us, NSEC_PER_USEC);
7057
7058 return quota_us;
7059}
7060
b1546edc 7061static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
7062{
7063 u64 quota, period;
7064
1a8b4540
KK
7065 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7066 return -EINVAL;
7067
ab84d31e 7068 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7069 quota = tg->cfs_bandwidth.quota;
ab84d31e 7070
ab84d31e
PT
7071 return tg_set_cfs_bandwidth(tg, period, quota);
7072}
7073
b1546edc 7074static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
7075{
7076 u64 cfs_period_us;
7077
029632fb 7078 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7079 do_div(cfs_period_us, NSEC_PER_USEC);
7080
7081 return cfs_period_us;
7082}
7083
182446d0
TH
7084static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7085 struct cftype *cft)
ab84d31e 7086{
182446d0 7087 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7088}
7089
182446d0
TH
7090static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7091 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7092{
182446d0 7093 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7094}
7095
182446d0
TH
7096static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7097 struct cftype *cft)
ab84d31e 7098{
182446d0 7099 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7100}
7101
182446d0
TH
7102static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7103 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7104{
182446d0 7105 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7106}
7107
a790de99
PT
7108struct cfs_schedulable_data {
7109 struct task_group *tg;
7110 u64 period, quota;
7111};
7112
7113/*
7114 * normalize group quota/period to be quota/max_period
7115 * note: units are usecs
7116 */
7117static u64 normalize_cfs_quota(struct task_group *tg,
7118 struct cfs_schedulable_data *d)
7119{
7120 u64 quota, period;
7121
7122 if (tg == d->tg) {
7123 period = d->period;
7124 quota = d->quota;
7125 } else {
7126 period = tg_get_cfs_period(tg);
7127 quota = tg_get_cfs_quota(tg);
7128 }
7129
7130 /* note: these should typically be equivalent */
7131 if (quota == RUNTIME_INF || quota == -1)
7132 return RUNTIME_INF;
7133
7134 return to_ratio(period, quota);
7135}
7136
7137static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7138{
7139 struct cfs_schedulable_data *d = data;
029632fb 7140 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7141 s64 quota = 0, parent_quota = -1;
7142
7143 if (!tg->parent) {
7144 quota = RUNTIME_INF;
7145 } else {
029632fb 7146 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7147
7148 quota = normalize_cfs_quota(tg, d);
9c58c79a 7149 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7150
7151 /*
c53593e5
TH
7152 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7153 * always take the min. On cgroup1, only inherit when no
d1ccc66d 7154 * limit is set:
a790de99 7155 */
c53593e5
TH
7156 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7157 quota = min(quota, parent_quota);
7158 } else {
7159 if (quota == RUNTIME_INF)
7160 quota = parent_quota;
7161 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7162 return -EINVAL;
7163 }
a790de99 7164 }
9c58c79a 7165 cfs_b->hierarchical_quota = quota;
a790de99
PT
7166
7167 return 0;
7168}
7169
7170static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7171{
8277434e 7172 int ret;
a790de99
PT
7173 struct cfs_schedulable_data data = {
7174 .tg = tg,
7175 .period = period,
7176 .quota = quota,
7177 };
7178
7179 if (quota != RUNTIME_INF) {
7180 do_div(data.period, NSEC_PER_USEC);
7181 do_div(data.quota, NSEC_PER_USEC);
7182 }
7183
8277434e
PT
7184 rcu_read_lock();
7185 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7186 rcu_read_unlock();
7187
7188 return ret;
a790de99 7189}
e8da1b18 7190
a1f7164c 7191static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 7192{
2da8ca82 7193 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7194 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7195
44ffc75b
TH
7196 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7197 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7198 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 7199
3d6c50c2
YW
7200 if (schedstat_enabled() && tg != &root_task_group) {
7201 u64 ws = 0;
7202 int i;
7203
7204 for_each_possible_cpu(i)
7205 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7206
7207 seq_printf(sf, "wait_sum %llu\n", ws);
7208 }
7209
e8da1b18
NR
7210 return 0;
7211}
ab84d31e 7212#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7213#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7214
052f1dc7 7215#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7216static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7217 struct cftype *cft, s64 val)
6f505b16 7218{
182446d0 7219 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7220}
7221
182446d0
TH
7222static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7223 struct cftype *cft)
6f505b16 7224{
182446d0 7225 return sched_group_rt_runtime(css_tg(css));
6f505b16 7226}
d0b27fa7 7227
182446d0
TH
7228static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7229 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7230{
182446d0 7231 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7232}
7233
182446d0
TH
7234static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7235 struct cftype *cft)
d0b27fa7 7236{
182446d0 7237 return sched_group_rt_period(css_tg(css));
d0b27fa7 7238}
6d6bc0ad 7239#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7240
a1f7164c 7241static struct cftype cpu_legacy_files[] = {
052f1dc7 7242#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7243 {
7244 .name = "shares",
f4c753b7
PM
7245 .read_u64 = cpu_shares_read_u64,
7246 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7247 },
052f1dc7 7248#endif
ab84d31e
PT
7249#ifdef CONFIG_CFS_BANDWIDTH
7250 {
7251 .name = "cfs_quota_us",
7252 .read_s64 = cpu_cfs_quota_read_s64,
7253 .write_s64 = cpu_cfs_quota_write_s64,
7254 },
7255 {
7256 .name = "cfs_period_us",
7257 .read_u64 = cpu_cfs_period_read_u64,
7258 .write_u64 = cpu_cfs_period_write_u64,
7259 },
e8da1b18
NR
7260 {
7261 .name = "stat",
a1f7164c 7262 .seq_show = cpu_cfs_stat_show,
e8da1b18 7263 },
ab84d31e 7264#endif
052f1dc7 7265#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7266 {
9f0c1e56 7267 .name = "rt_runtime_us",
06ecb27c
PM
7268 .read_s64 = cpu_rt_runtime_read,
7269 .write_s64 = cpu_rt_runtime_write,
6f505b16 7270 },
d0b27fa7
PZ
7271 {
7272 .name = "rt_period_us",
f4c753b7
PM
7273 .read_u64 = cpu_rt_period_read_uint,
7274 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7275 },
052f1dc7 7276#endif
d1ccc66d 7277 { } /* Terminate */
68318b8e
SV
7278};
7279
d41bf8c9
TH
7280static int cpu_extra_stat_show(struct seq_file *sf,
7281 struct cgroup_subsys_state *css)
0d593634 7282{
0d593634
TH
7283#ifdef CONFIG_CFS_BANDWIDTH
7284 {
d41bf8c9 7285 struct task_group *tg = css_tg(css);
0d593634
TH
7286 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7287 u64 throttled_usec;
7288
7289 throttled_usec = cfs_b->throttled_time;
7290 do_div(throttled_usec, NSEC_PER_USEC);
7291
7292 seq_printf(sf, "nr_periods %d\n"
7293 "nr_throttled %d\n"
7294 "throttled_usec %llu\n",
7295 cfs_b->nr_periods, cfs_b->nr_throttled,
7296 throttled_usec);
7297 }
7298#endif
7299 return 0;
7300}
7301
7302#ifdef CONFIG_FAIR_GROUP_SCHED
7303static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7304 struct cftype *cft)
7305{
7306 struct task_group *tg = css_tg(css);
7307 u64 weight = scale_load_down(tg->shares);
7308
7309 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7310}
7311
7312static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7313 struct cftype *cft, u64 weight)
7314{
7315 /*
7316 * cgroup weight knobs should use the common MIN, DFL and MAX
7317 * values which are 1, 100 and 10000 respectively. While it loses
7318 * a bit of range on both ends, it maps pretty well onto the shares
7319 * value used by scheduler and the round-trip conversions preserve
7320 * the original value over the entire range.
7321 */
7322 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7323 return -ERANGE;
7324
7325 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7326
7327 return sched_group_set_shares(css_tg(css), scale_load(weight));
7328}
7329
7330static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7331 struct cftype *cft)
7332{
7333 unsigned long weight = scale_load_down(css_tg(css)->shares);
7334 int last_delta = INT_MAX;
7335 int prio, delta;
7336
7337 /* find the closest nice value to the current weight */
7338 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7339 delta = abs(sched_prio_to_weight[prio] - weight);
7340 if (delta >= last_delta)
7341 break;
7342 last_delta = delta;
7343 }
7344
7345 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7346}
7347
7348static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7349 struct cftype *cft, s64 nice)
7350{
7351 unsigned long weight;
7281c8de 7352 int idx;
0d593634
TH
7353
7354 if (nice < MIN_NICE || nice > MAX_NICE)
7355 return -ERANGE;
7356
7281c8de
PZ
7357 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7358 idx = array_index_nospec(idx, 40);
7359 weight = sched_prio_to_weight[idx];
7360
0d593634
TH
7361 return sched_group_set_shares(css_tg(css), scale_load(weight));
7362}
7363#endif
7364
7365static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7366 long period, long quota)
7367{
7368 if (quota < 0)
7369 seq_puts(sf, "max");
7370 else
7371 seq_printf(sf, "%ld", quota);
7372
7373 seq_printf(sf, " %ld\n", period);
7374}
7375
7376/* caller should put the current value in *@periodp before calling */
7377static int __maybe_unused cpu_period_quota_parse(char *buf,
7378 u64 *periodp, u64 *quotap)
7379{
7380 char tok[21]; /* U64_MAX */
7381
4c47acd8 7382 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
7383 return -EINVAL;
7384
7385 *periodp *= NSEC_PER_USEC;
7386
7387 if (sscanf(tok, "%llu", quotap))
7388 *quotap *= NSEC_PER_USEC;
7389 else if (!strcmp(tok, "max"))
7390 *quotap = RUNTIME_INF;
7391 else
7392 return -EINVAL;
7393
7394 return 0;
7395}
7396
7397#ifdef CONFIG_CFS_BANDWIDTH
7398static int cpu_max_show(struct seq_file *sf, void *v)
7399{
7400 struct task_group *tg = css_tg(seq_css(sf));
7401
7402 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7403 return 0;
7404}
7405
7406static ssize_t cpu_max_write(struct kernfs_open_file *of,
7407 char *buf, size_t nbytes, loff_t off)
7408{
7409 struct task_group *tg = css_tg(of_css(of));
7410 u64 period = tg_get_cfs_period(tg);
7411 u64 quota;
7412 int ret;
7413
7414 ret = cpu_period_quota_parse(buf, &period, &quota);
7415 if (!ret)
7416 ret = tg_set_cfs_bandwidth(tg, period, quota);
7417 return ret ?: nbytes;
7418}
7419#endif
7420
7421static struct cftype cpu_files[] = {
0d593634
TH
7422#ifdef CONFIG_FAIR_GROUP_SCHED
7423 {
7424 .name = "weight",
7425 .flags = CFTYPE_NOT_ON_ROOT,
7426 .read_u64 = cpu_weight_read_u64,
7427 .write_u64 = cpu_weight_write_u64,
7428 },
7429 {
7430 .name = "weight.nice",
7431 .flags = CFTYPE_NOT_ON_ROOT,
7432 .read_s64 = cpu_weight_nice_read_s64,
7433 .write_s64 = cpu_weight_nice_write_s64,
7434 },
7435#endif
7436#ifdef CONFIG_CFS_BANDWIDTH
7437 {
7438 .name = "max",
7439 .flags = CFTYPE_NOT_ON_ROOT,
7440 .seq_show = cpu_max_show,
7441 .write = cpu_max_write,
7442 },
7443#endif
7444 { } /* terminate */
7445};
7446
073219e9 7447struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7448 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7449 .css_online = cpu_cgroup_css_online,
2f5177f0 7450 .css_released = cpu_cgroup_css_released,
92fb9748 7451 .css_free = cpu_cgroup_css_free,
d41bf8c9 7452 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7453 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7454 .can_attach = cpu_cgroup_can_attach,
7455 .attach = cpu_cgroup_attach,
a1f7164c 7456 .legacy_cftypes = cpu_legacy_files,
0d593634 7457 .dfl_cftypes = cpu_files,
b38e42e9 7458 .early_init = true,
0d593634 7459 .threaded = true,
68318b8e
SV
7460};
7461
052f1dc7 7462#endif /* CONFIG_CGROUP_SCHED */
d842de87 7463
b637a328
PM
7464void dump_cpu_task(int cpu)
7465{
7466 pr_info("Task dump for CPU %d:\n", cpu);
7467 sched_show_task(cpu_curr(cpu));
7468}
ed82b8a1
AK
7469
7470/*
7471 * Nice levels are multiplicative, with a gentle 10% change for every
7472 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7473 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7474 * that remained on nice 0.
7475 *
7476 * The "10% effect" is relative and cumulative: from _any_ nice level,
7477 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7478 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7479 * If a task goes up by ~10% and another task goes down by ~10% then
7480 * the relative distance between them is ~25%.)
7481 */
7482const int sched_prio_to_weight[40] = {
7483 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7484 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7485 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7486 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7487 /* 0 */ 1024, 820, 655, 526, 423,
7488 /* 5 */ 335, 272, 215, 172, 137,
7489 /* 10 */ 110, 87, 70, 56, 45,
7490 /* 15 */ 36, 29, 23, 18, 15,
7491};
7492
7493/*
7494 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7495 *
7496 * In cases where the weight does not change often, we can use the
7497 * precalculated inverse to speed up arithmetics by turning divisions
7498 * into multiplications:
7499 */
7500const u32 sched_prio_to_wmult[40] = {
7501 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7502 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7503 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7504 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7505 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7506 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7507 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7508 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7509};
14a7405b
IM
7510
7511#undef CREATE_TRACE_POINTS