]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched/fair: Reduce long-tail newly idle balance cost
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
765cc3a4 61#endif
f00b45c1 62
b82d9fdd
PZ
63/*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
fa85ae24 69/*
d1ccc66d 70 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
71 * default: 1s
72 */
9f0c1e56 73unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 74
029632fb 75__read_mostly int scheduler_running;
6892b75e 76
9f0c1e56
PZ
77/*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81int sysctl_sched_rt_runtime = 950000;
fa85ae24 82
58877d34
PZ
83
84/*
85 * Serialization rules:
86 *
87 * Lock order:
88 *
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92 *
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
95 *
96 * Regular state:
97 *
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 100 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
101 * to run next.
102 *
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
107 *
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
110 *
111 * Special state:
112 *
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
116 *
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
127 *
128 * p->state <- TASK_*:
129 *
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
134 *
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 *
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 *
142 * p->on_cpu <- { 0, 1 }:
143 *
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 *
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
150 *
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 *
153 * - Don't call set_task_cpu() on a blocked task:
154 *
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
157 *
158 * - for try_to_wake_up(), called under p->pi_lock:
159 *
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 *
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 *
165 * o move_queued_task()
166 * o detach_task()
167 *
168 * - for migration called under double_rq_lock():
169 *
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
174 *
175 */
176
3e71a462
PZ
177/*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
eb580751 180struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
181 __acquires(rq->lock)
182{
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 191 rq_pin_lock(rq, rf);
3e71a462
PZ
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199}
200
201/*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
eb580751 204struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207{
208 struct rq *rq;
209
210 for (;;) {
eb580751 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
c546951d 224 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
225 * the old rq->lock will fully serialize against the stores.
226 *
c546951d
AP
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
230 */
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 232 rq_pin_lock(rq, rf);
3e71a462
PZ
233 return rq;
234 }
235 raw_spin_unlock(&rq->lock);
eb580751 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
237
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
240 }
241}
242
535b9552
IM
243/*
244 * RQ-clock updating methods:
245 */
246
247static void update_rq_clock_task(struct rq *rq, s64 delta)
248{
249/*
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
252 */
11d4afd4
VG
253 s64 __maybe_unused steal = 0, irq_delta = 0;
254
535b9552
IM
255#ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257
258 /*
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
262 *
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
267 *
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
272 */
273 if (irq_delta > delta)
274 irq_delta = delta;
275
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278#endif
279#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((&paravirt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
283
284 if (unlikely(steal > delta))
285 steal = delta;
286
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
289 }
290#endif
291
292 rq->clock_task += delta;
293
11d4afd4 294#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 296 update_irq_load_avg(rq, irq_delta + steal);
535b9552 297#endif
23127296 298 update_rq_clock_pelt(rq, delta);
535b9552
IM
299}
300
301void update_rq_clock(struct rq *rq)
302{
303 s64 delta;
304
305 lockdep_assert_held(&rq->lock);
306
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
309
310#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
313 rq->clock_update_flags |= RQCF_UPDATED;
314#endif
26ae58d2 315
535b9552
IM
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
321}
322
8f4d37ec
PZ
323#ifdef CONFIG_SCHED_HRTICK
324/*
325 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 326 */
8f4d37ec 327
8f4d37ec
PZ
328static void hrtick_clear(struct rq *rq)
329{
330 if (hrtimer_active(&rq->hrtick_timer))
331 hrtimer_cancel(&rq->hrtick_timer);
332}
333
8f4d37ec
PZ
334/*
335 * High-resolution timer tick.
336 * Runs from hardirq context with interrupts disabled.
337 */
338static enum hrtimer_restart hrtick(struct hrtimer *timer)
339{
340 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 341 struct rq_flags rf;
8f4d37ec
PZ
342
343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344
8a8c69c3 345 rq_lock(rq, &rf);
3e51f33f 346 update_rq_clock(rq);
8f4d37ec 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 348 rq_unlock(rq, &rf);
8f4d37ec
PZ
349
350 return HRTIMER_NORESTART;
351}
352
95e904c7 353#ifdef CONFIG_SMP
971ee28c 354
4961b6e1 355static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
356{
357 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 358 ktime_t time = rq->hrtick_time;
971ee28c 359
156ec6f4 360 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
361}
362
31656519
PZ
363/*
364 * called from hardirq (IPI) context
365 */
366static void __hrtick_start(void *arg)
b328ca18 367{
31656519 368 struct rq *rq = arg;
8a8c69c3 369 struct rq_flags rf;
b328ca18 370
8a8c69c3 371 rq_lock(rq, &rf);
971ee28c 372 __hrtick_restart(rq);
8a8c69c3 373 rq_unlock(rq, &rf);
b328ca18
PZ
374}
375
31656519
PZ
376/*
377 * Called to set the hrtick timer state.
378 *
379 * called with rq->lock held and irqs disabled
380 */
029632fb 381void hrtick_start(struct rq *rq, u64 delay)
b328ca18 382{
31656519 383 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 384 s64 delta;
385
386 /*
387 * Don't schedule slices shorter than 10000ns, that just
388 * doesn't make sense and can cause timer DoS.
389 */
390 delta = max_t(s64, delay, 10000LL);
156ec6f4 391 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 392
fd3eafda 393 if (rq == this_rq())
971ee28c 394 __hrtick_restart(rq);
fd3eafda 395 else
c46fff2a 396 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
397}
398
31656519
PZ
399#else
400/*
401 * Called to set the hrtick timer state.
402 *
403 * called with rq->lock held and irqs disabled
404 */
029632fb 405void hrtick_start(struct rq *rq, u64 delay)
31656519 406{
86893335
WL
407 /*
408 * Don't schedule slices shorter than 10000ns, that just
409 * doesn't make sense. Rely on vruntime for fairness.
410 */
411 delay = max_t(u64, delay, 10000LL);
4961b6e1 412 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 413 HRTIMER_MODE_REL_PINNED_HARD);
31656519 414}
90b5363a 415
31656519 416#endif /* CONFIG_SMP */
8f4d37ec 417
77a021be 418static void hrtick_rq_init(struct rq *rq)
8f4d37ec 419{
31656519 420#ifdef CONFIG_SMP
545b8c8d 421 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 422#endif
d5096aa6 423 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 424 rq->hrtick_timer.function = hrtick;
8f4d37ec 425}
006c75f1 426#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
427static inline void hrtick_clear(struct rq *rq)
428{
429}
430
77a021be 431static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
432{
433}
006c75f1 434#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 435
5529578a
FW
436/*
437 * cmpxchg based fetch_or, macro so it works for different integer types
438 */
439#define fetch_or(ptr, mask) \
440 ({ \
441 typeof(ptr) _ptr = (ptr); \
442 typeof(mask) _mask = (mask); \
443 typeof(*_ptr) _old, _val = *_ptr; \
444 \
445 for (;;) { \
446 _old = cmpxchg(_ptr, _val, _val | _mask); \
447 if (_old == _val) \
448 break; \
449 _val = _old; \
450 } \
451 _old; \
452})
453
e3baac47 454#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
455/*
456 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
457 * this avoids any races wrt polling state changes and thereby avoids
458 * spurious IPIs.
459 */
460static bool set_nr_and_not_polling(struct task_struct *p)
461{
462 struct thread_info *ti = task_thread_info(p);
463 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
464}
e3baac47
PZ
465
466/*
467 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
468 *
469 * If this returns true, then the idle task promises to call
470 * sched_ttwu_pending() and reschedule soon.
471 */
472static bool set_nr_if_polling(struct task_struct *p)
473{
474 struct thread_info *ti = task_thread_info(p);
316c1608 475 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
476
477 for (;;) {
478 if (!(val & _TIF_POLLING_NRFLAG))
479 return false;
480 if (val & _TIF_NEED_RESCHED)
481 return true;
482 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
483 if (old == val)
484 break;
485 val = old;
486 }
487 return true;
488}
489
fd99f91a
PZ
490#else
491static bool set_nr_and_not_polling(struct task_struct *p)
492{
493 set_tsk_need_resched(p);
494 return true;
495}
e3baac47
PZ
496
497#ifdef CONFIG_SMP
498static bool set_nr_if_polling(struct task_struct *p)
499{
500 return false;
501}
502#endif
fd99f91a
PZ
503#endif
504
07879c6a 505static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
506{
507 struct wake_q_node *node = &task->wake_q;
508
509 /*
510 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 511 * it's already queued (either by us or someone else) and will get the
76751049
PZ
512 * wakeup due to that.
513 *
4c4e3731
PZ
514 * In order to ensure that a pending wakeup will observe our pending
515 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 516 */
4c4e3731 517 smp_mb__before_atomic();
87ff19cb 518 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 519 return false;
76751049
PZ
520
521 /*
522 * The head is context local, there can be no concurrency.
523 */
524 *head->lastp = node;
525 head->lastp = &node->next;
07879c6a
DB
526 return true;
527}
528
529/**
530 * wake_q_add() - queue a wakeup for 'later' waking.
531 * @head: the wake_q_head to add @task to
532 * @task: the task to queue for 'later' wakeup
533 *
534 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
535 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
536 * instantly.
537 *
538 * This function must be used as-if it were wake_up_process(); IOW the task
539 * must be ready to be woken at this location.
540 */
541void wake_q_add(struct wake_q_head *head, struct task_struct *task)
542{
543 if (__wake_q_add(head, task))
544 get_task_struct(task);
545}
546
547/**
548 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
549 * @head: the wake_q_head to add @task to
550 * @task: the task to queue for 'later' wakeup
551 *
552 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
553 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
554 * instantly.
555 *
556 * This function must be used as-if it were wake_up_process(); IOW the task
557 * must be ready to be woken at this location.
558 *
559 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
560 * that already hold reference to @task can call the 'safe' version and trust
561 * wake_q to do the right thing depending whether or not the @task is already
562 * queued for wakeup.
563 */
564void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
565{
566 if (!__wake_q_add(head, task))
567 put_task_struct(task);
76751049
PZ
568}
569
570void wake_up_q(struct wake_q_head *head)
571{
572 struct wake_q_node *node = head->first;
573
574 while (node != WAKE_Q_TAIL) {
575 struct task_struct *task;
576
577 task = container_of(node, struct task_struct, wake_q);
578 BUG_ON(!task);
d1ccc66d 579 /* Task can safely be re-inserted now: */
76751049
PZ
580 node = node->next;
581 task->wake_q.next = NULL;
582
583 /*
7696f991
AP
584 * wake_up_process() executes a full barrier, which pairs with
585 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
586 */
587 wake_up_process(task);
588 put_task_struct(task);
589 }
590}
591
c24d20db 592/*
8875125e 593 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
594 *
595 * On UP this means the setting of the need_resched flag, on SMP it
596 * might also involve a cross-CPU call to trigger the scheduler on
597 * the target CPU.
598 */
8875125e 599void resched_curr(struct rq *rq)
c24d20db 600{
8875125e 601 struct task_struct *curr = rq->curr;
c24d20db
IM
602 int cpu;
603
8875125e 604 lockdep_assert_held(&rq->lock);
c24d20db 605
8875125e 606 if (test_tsk_need_resched(curr))
c24d20db
IM
607 return;
608
8875125e 609 cpu = cpu_of(rq);
fd99f91a 610
f27dde8d 611 if (cpu == smp_processor_id()) {
8875125e 612 set_tsk_need_resched(curr);
f27dde8d 613 set_preempt_need_resched();
c24d20db 614 return;
f27dde8d 615 }
c24d20db 616
8875125e 617 if (set_nr_and_not_polling(curr))
c24d20db 618 smp_send_reschedule(cpu);
dfc68f29
AL
619 else
620 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
621}
622
029632fb 623void resched_cpu(int cpu)
c24d20db
IM
624{
625 struct rq *rq = cpu_rq(cpu);
626 unsigned long flags;
627
7c2102e5 628 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
629 if (cpu_online(cpu) || cpu == smp_processor_id())
630 resched_curr(rq);
05fa785c 631 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 632}
06d8308c 633
b021fe3e 634#ifdef CONFIG_SMP
3451d024 635#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 636/*
d1ccc66d
IM
637 * In the semi idle case, use the nearest busy CPU for migrating timers
638 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
639 *
640 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
641 * selecting an idle CPU will add more delays to the timers than intended
642 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 643 */
bc7a34b8 644int get_nohz_timer_target(void)
83cd4fe2 645{
e938b9c9 646 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
647 struct sched_domain *sd;
648
e938b9c9
WL
649 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
650 if (!idle_cpu(cpu))
651 return cpu;
652 default_cpu = cpu;
653 }
6201b4d6 654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
e938b9c9
WL
657 for_each_cpu_and(i, sched_domain_span(sd),
658 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
659 if (cpu == i)
660 continue;
661
e938b9c9 662 if (!idle_cpu(i)) {
057f3fad
PZ
663 cpu = i;
664 goto unlock;
665 }
666 }
83cd4fe2 667 }
9642d18e 668
e938b9c9
WL
669 if (default_cpu == -1)
670 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
671 cpu = default_cpu;
057f3fad
PZ
672unlock:
673 rcu_read_unlock();
83cd4fe2
VP
674 return cpu;
675}
d1ccc66d 676
06d8308c
TG
677/*
678 * When add_timer_on() enqueues a timer into the timer wheel of an
679 * idle CPU then this timer might expire before the next timer event
680 * which is scheduled to wake up that CPU. In case of a completely
681 * idle system the next event might even be infinite time into the
682 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
683 * leaves the inner idle loop so the newly added timer is taken into
684 * account when the CPU goes back to idle and evaluates the timer
685 * wheel for the next timer event.
686 */
1c20091e 687static void wake_up_idle_cpu(int cpu)
06d8308c
TG
688{
689 struct rq *rq = cpu_rq(cpu);
690
691 if (cpu == smp_processor_id())
692 return;
693
67b9ca70 694 if (set_nr_and_not_polling(rq->idle))
06d8308c 695 smp_send_reschedule(cpu);
dfc68f29
AL
696 else
697 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
698}
699
c5bfece2 700static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 701{
53c5fa16
FW
702 /*
703 * We just need the target to call irq_exit() and re-evaluate
704 * the next tick. The nohz full kick at least implies that.
705 * If needed we can still optimize that later with an
706 * empty IRQ.
707 */
379d9ecb
PM
708 if (cpu_is_offline(cpu))
709 return true; /* Don't try to wake offline CPUs. */
c5bfece2 710 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
711 if (cpu != smp_processor_id() ||
712 tick_nohz_tick_stopped())
53c5fa16 713 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
714 return true;
715 }
716
717 return false;
718}
719
379d9ecb
PM
720/*
721 * Wake up the specified CPU. If the CPU is going offline, it is the
722 * caller's responsibility to deal with the lost wakeup, for example,
723 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
724 */
1c20091e
FW
725void wake_up_nohz_cpu(int cpu)
726{
c5bfece2 727 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
728 wake_up_idle_cpu(cpu);
729}
730
19a1f5ec 731static void nohz_csd_func(void *info)
45bf76df 732{
19a1f5ec
PZ
733 struct rq *rq = info;
734 int cpu = cpu_of(rq);
735 unsigned int flags;
873b4c65
VG
736
737 /*
19a1f5ec 738 * Release the rq::nohz_csd.
873b4c65 739 */
c6f88654 740 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 741 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 742
19a1f5ec
PZ
743 rq->idle_balance = idle_cpu(cpu);
744 if (rq->idle_balance && !need_resched()) {
745 rq->nohz_idle_balance = flags;
90b5363a
PZI
746 raise_softirq_irqoff(SCHED_SOFTIRQ);
747 }
2069dd75
PZ
748}
749
3451d024 750#endif /* CONFIG_NO_HZ_COMMON */
d842de87 751
ce831b38 752#ifdef CONFIG_NO_HZ_FULL
76d92ac3 753bool sched_can_stop_tick(struct rq *rq)
ce831b38 754{
76d92ac3
FW
755 int fifo_nr_running;
756
757 /* Deadline tasks, even if single, need the tick */
758 if (rq->dl.dl_nr_running)
759 return false;
760
1e78cdbd 761 /*
b19a888c 762 * If there are more than one RR tasks, we need the tick to affect the
2548d546 763 * actual RR behaviour.
1e78cdbd 764 */
76d92ac3
FW
765 if (rq->rt.rr_nr_running) {
766 if (rq->rt.rr_nr_running == 1)
767 return true;
768 else
769 return false;
1e78cdbd
RR
770 }
771
2548d546
PZ
772 /*
773 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
774 * forced preemption between FIFO tasks.
775 */
776 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
777 if (fifo_nr_running)
778 return true;
779
780 /*
781 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
782 * if there's more than one we need the tick for involuntary
783 * preemption.
784 */
785 if (rq->nr_running > 1)
541b8264 786 return false;
ce831b38 787
541b8264 788 return true;
ce831b38
FW
789}
790#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 791#endif /* CONFIG_SMP */
18d95a28 792
a790de99
PT
793#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
794 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 795/*
8277434e
PT
796 * Iterate task_group tree rooted at *from, calling @down when first entering a
797 * node and @up when leaving it for the final time.
798 *
799 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 800 */
029632fb 801int walk_tg_tree_from(struct task_group *from,
8277434e 802 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
803{
804 struct task_group *parent, *child;
eb755805 805 int ret;
c09595f6 806
8277434e
PT
807 parent = from;
808
c09595f6 809down:
eb755805
PZ
810 ret = (*down)(parent, data);
811 if (ret)
8277434e 812 goto out;
c09595f6
PZ
813 list_for_each_entry_rcu(child, &parent->children, siblings) {
814 parent = child;
815 goto down;
816
817up:
818 continue;
819 }
eb755805 820 ret = (*up)(parent, data);
8277434e
PT
821 if (ret || parent == from)
822 goto out;
c09595f6
PZ
823
824 child = parent;
825 parent = parent->parent;
826 if (parent)
827 goto up;
8277434e 828out:
eb755805 829 return ret;
c09595f6
PZ
830}
831
029632fb 832int tg_nop(struct task_group *tg, void *data)
eb755805 833{
e2b245f8 834 return 0;
eb755805 835}
18d95a28
PZ
836#endif
837
9059393e 838static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 839{
f05998d4
NR
840 int prio = p->static_prio - MAX_RT_PRIO;
841 struct load_weight *load = &p->se.load;
842
dd41f596
IM
843 /*
844 * SCHED_IDLE tasks get minimal weight:
845 */
1da1843f 846 if (task_has_idle_policy(p)) {
c8b28116 847 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 848 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
849 return;
850 }
71f8bd46 851
9059393e
VG
852 /*
853 * SCHED_OTHER tasks have to update their load when changing their
854 * weight
855 */
856 if (update_load && p->sched_class == &fair_sched_class) {
857 reweight_task(p, prio);
858 } else {
859 load->weight = scale_load(sched_prio_to_weight[prio]);
860 load->inv_weight = sched_prio_to_wmult[prio];
861 }
71f8bd46
IM
862}
863
69842cba 864#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
865/*
866 * Serializes updates of utilization clamp values
867 *
868 * The (slow-path) user-space triggers utilization clamp value updates which
869 * can require updates on (fast-path) scheduler's data structures used to
870 * support enqueue/dequeue operations.
871 * While the per-CPU rq lock protects fast-path update operations, user-space
872 * requests are serialized using a mutex to reduce the risk of conflicting
873 * updates or API abuses.
874 */
875static DEFINE_MUTEX(uclamp_mutex);
876
e8f14172
PB
877/* Max allowed minimum utilization */
878unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
879
880/* Max allowed maximum utilization */
881unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
882
13685c4a
QY
883/*
884 * By default RT tasks run at the maximum performance point/capacity of the
885 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
886 * SCHED_CAPACITY_SCALE.
887 *
888 * This knob allows admins to change the default behavior when uclamp is being
889 * used. In battery powered devices, particularly, running at the maximum
890 * capacity and frequency will increase energy consumption and shorten the
891 * battery life.
892 *
893 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
894 *
895 * This knob will not override the system default sched_util_clamp_min defined
896 * above.
897 */
898unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
899
e8f14172
PB
900/* All clamps are required to be less or equal than these values */
901static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 902
46609ce2
QY
903/*
904 * This static key is used to reduce the uclamp overhead in the fast path. It
905 * primarily disables the call to uclamp_rq_{inc, dec}() in
906 * enqueue/dequeue_task().
907 *
908 * This allows users to continue to enable uclamp in their kernel config with
909 * minimum uclamp overhead in the fast path.
910 *
911 * As soon as userspace modifies any of the uclamp knobs, the static key is
912 * enabled, since we have an actual users that make use of uclamp
913 * functionality.
914 *
915 * The knobs that would enable this static key are:
916 *
917 * * A task modifying its uclamp value with sched_setattr().
918 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
919 * * An admin modifying the cgroup cpu.uclamp.{min, max}
920 */
921DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
922
69842cba
PB
923/* Integer rounded range for each bucket */
924#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
925
926#define for_each_clamp_id(clamp_id) \
927 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
928
929static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
930{
931 return clamp_value / UCLAMP_BUCKET_DELTA;
932}
933
7763baac 934static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
935{
936 if (clamp_id == UCLAMP_MIN)
937 return 0;
938 return SCHED_CAPACITY_SCALE;
939}
940
a509a7cd
PB
941static inline void uclamp_se_set(struct uclamp_se *uc_se,
942 unsigned int value, bool user_defined)
69842cba
PB
943{
944 uc_se->value = value;
945 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 946 uc_se->user_defined = user_defined;
69842cba
PB
947}
948
e496187d 949static inline unsigned int
0413d7f3 950uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
951 unsigned int clamp_value)
952{
953 /*
954 * Avoid blocked utilization pushing up the frequency when we go
955 * idle (which drops the max-clamp) by retaining the last known
956 * max-clamp.
957 */
958 if (clamp_id == UCLAMP_MAX) {
959 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
960 return clamp_value;
961 }
962
963 return uclamp_none(UCLAMP_MIN);
964}
965
0413d7f3 966static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
967 unsigned int clamp_value)
968{
969 /* Reset max-clamp retention only on idle exit */
970 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
971 return;
972
973 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
974}
975
69842cba 976static inline
7763baac 977unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 978 unsigned int clamp_value)
69842cba
PB
979{
980 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
981 int bucket_id = UCLAMP_BUCKETS - 1;
982
983 /*
984 * Since both min and max clamps are max aggregated, find the
985 * top most bucket with tasks in.
986 */
987 for ( ; bucket_id >= 0; bucket_id--) {
988 if (!bucket[bucket_id].tasks)
989 continue;
990 return bucket[bucket_id].value;
991 }
992
993 /* No tasks -- default clamp values */
e496187d 994 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
995}
996
13685c4a
QY
997static void __uclamp_update_util_min_rt_default(struct task_struct *p)
998{
999 unsigned int default_util_min;
1000 struct uclamp_se *uc_se;
1001
1002 lockdep_assert_held(&p->pi_lock);
1003
1004 uc_se = &p->uclamp_req[UCLAMP_MIN];
1005
1006 /* Only sync if user didn't override the default */
1007 if (uc_se->user_defined)
1008 return;
1009
1010 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1011 uclamp_se_set(uc_se, default_util_min, false);
1012}
1013
1014static void uclamp_update_util_min_rt_default(struct task_struct *p)
1015{
1016 struct rq_flags rf;
1017 struct rq *rq;
1018
1019 if (!rt_task(p))
1020 return;
1021
1022 /* Protect updates to p->uclamp_* */
1023 rq = task_rq_lock(p, &rf);
1024 __uclamp_update_util_min_rt_default(p);
1025 task_rq_unlock(rq, p, &rf);
1026}
1027
1028static void uclamp_sync_util_min_rt_default(void)
1029{
1030 struct task_struct *g, *p;
1031
1032 /*
1033 * copy_process() sysctl_uclamp
1034 * uclamp_min_rt = X;
1035 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1036 * // link thread smp_mb__after_spinlock()
1037 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1038 * sched_post_fork() for_each_process_thread()
1039 * __uclamp_sync_rt() __uclamp_sync_rt()
1040 *
1041 * Ensures that either sched_post_fork() will observe the new
1042 * uclamp_min_rt or for_each_process_thread() will observe the new
1043 * task.
1044 */
1045 read_lock(&tasklist_lock);
1046 smp_mb__after_spinlock();
1047 read_unlock(&tasklist_lock);
1048
1049 rcu_read_lock();
1050 for_each_process_thread(g, p)
1051 uclamp_update_util_min_rt_default(p);
1052 rcu_read_unlock();
1053}
1054
3eac870a 1055static inline struct uclamp_se
0413d7f3 1056uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
1057{
1058 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1059#ifdef CONFIG_UCLAMP_TASK_GROUP
1060 struct uclamp_se uc_max;
1061
1062 /*
1063 * Tasks in autogroups or root task group will be
1064 * restricted by system defaults.
1065 */
1066 if (task_group_is_autogroup(task_group(p)))
1067 return uc_req;
1068 if (task_group(p) == &root_task_group)
1069 return uc_req;
1070
1071 uc_max = task_group(p)->uclamp[clamp_id];
1072 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1073 return uc_max;
1074#endif
1075
1076 return uc_req;
1077}
1078
e8f14172
PB
1079/*
1080 * The effective clamp bucket index of a task depends on, by increasing
1081 * priority:
1082 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1083 * - the task group effective clamp value, for tasks not either in the root
1084 * group or in an autogroup
e8f14172
PB
1085 * - the system default clamp value, defined by the sysadmin
1086 */
1087static inline struct uclamp_se
0413d7f3 1088uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1089{
3eac870a 1090 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1091 struct uclamp_se uc_max = uclamp_default[clamp_id];
1092
1093 /* System default restrictions always apply */
1094 if (unlikely(uc_req.value > uc_max.value))
1095 return uc_max;
1096
1097 return uc_req;
1098}
1099
686516b5 1100unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1101{
1102 struct uclamp_se uc_eff;
1103
1104 /* Task currently refcounted: use back-annotated (effective) value */
1105 if (p->uclamp[clamp_id].active)
686516b5 1106 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1107
1108 uc_eff = uclamp_eff_get(p, clamp_id);
1109
686516b5 1110 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1111}
1112
69842cba
PB
1113/*
1114 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1115 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1116 * updates the rq's clamp value if required.
60daf9c1
PB
1117 *
1118 * Tasks can have a task-specific value requested from user-space, track
1119 * within each bucket the maximum value for tasks refcounted in it.
1120 * This "local max aggregation" allows to track the exact "requested" value
1121 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1122 */
1123static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1124 enum uclamp_id clamp_id)
69842cba
PB
1125{
1126 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1127 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1128 struct uclamp_bucket *bucket;
1129
1130 lockdep_assert_held(&rq->lock);
1131
e8f14172
PB
1132 /* Update task effective clamp */
1133 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1134
69842cba
PB
1135 bucket = &uc_rq->bucket[uc_se->bucket_id];
1136 bucket->tasks++;
e8f14172 1137 uc_se->active = true;
69842cba 1138
e496187d
PB
1139 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1140
60daf9c1
PB
1141 /*
1142 * Local max aggregation: rq buckets always track the max
1143 * "requested" clamp value of its RUNNABLE tasks.
1144 */
1145 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1146 bucket->value = uc_se->value;
1147
69842cba 1148 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1149 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1150}
1151
1152/*
1153 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1154 * is released. If this is the last task reference counting the rq's max
1155 * active clamp value, then the rq's clamp value is updated.
1156 *
1157 * Both refcounted tasks and rq's cached clamp values are expected to be
1158 * always valid. If it's detected they are not, as defensive programming,
1159 * enforce the expected state and warn.
1160 */
1161static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1162 enum uclamp_id clamp_id)
69842cba
PB
1163{
1164 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1165 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1166 struct uclamp_bucket *bucket;
e496187d 1167 unsigned int bkt_clamp;
69842cba
PB
1168 unsigned int rq_clamp;
1169
1170 lockdep_assert_held(&rq->lock);
1171
46609ce2
QY
1172 /*
1173 * If sched_uclamp_used was enabled after task @p was enqueued,
1174 * we could end up with unbalanced call to uclamp_rq_dec_id().
1175 *
1176 * In this case the uc_se->active flag should be false since no uclamp
1177 * accounting was performed at enqueue time and we can just return
1178 * here.
1179 *
b19a888c 1180 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1181 * problem too
1182 *
1183 * enqueue(taskA)
1184 * // sched_uclamp_used gets enabled
1185 * enqueue(taskB)
1186 * dequeue(taskA)
b19a888c 1187 * // Must not decrement bucket->tasks here
46609ce2
QY
1188 * dequeue(taskB)
1189 *
1190 * where we could end up with stale data in uc_se and
1191 * bucket[uc_se->bucket_id].
1192 *
1193 * The following check here eliminates the possibility of such race.
1194 */
1195 if (unlikely(!uc_se->active))
1196 return;
1197
69842cba 1198 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1199
69842cba
PB
1200 SCHED_WARN_ON(!bucket->tasks);
1201 if (likely(bucket->tasks))
1202 bucket->tasks--;
46609ce2 1203
e8f14172 1204 uc_se->active = false;
69842cba 1205
60daf9c1
PB
1206 /*
1207 * Keep "local max aggregation" simple and accept to (possibly)
1208 * overboost some RUNNABLE tasks in the same bucket.
1209 * The rq clamp bucket value is reset to its base value whenever
1210 * there are no more RUNNABLE tasks refcounting it.
1211 */
69842cba
PB
1212 if (likely(bucket->tasks))
1213 return;
1214
1215 rq_clamp = READ_ONCE(uc_rq->value);
1216 /*
1217 * Defensive programming: this should never happen. If it happens,
1218 * e.g. due to future modification, warn and fixup the expected value.
1219 */
1220 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1221 if (bucket->value >= rq_clamp) {
1222 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1223 WRITE_ONCE(uc_rq->value, bkt_clamp);
1224 }
69842cba
PB
1225}
1226
1227static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1228{
0413d7f3 1229 enum uclamp_id clamp_id;
69842cba 1230
46609ce2
QY
1231 /*
1232 * Avoid any overhead until uclamp is actually used by the userspace.
1233 *
1234 * The condition is constructed such that a NOP is generated when
1235 * sched_uclamp_used is disabled.
1236 */
1237 if (!static_branch_unlikely(&sched_uclamp_used))
1238 return;
1239
69842cba
PB
1240 if (unlikely(!p->sched_class->uclamp_enabled))
1241 return;
1242
1243 for_each_clamp_id(clamp_id)
1244 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1245
1246 /* Reset clamp idle holding when there is one RUNNABLE task */
1247 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1248 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1249}
1250
1251static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1252{
0413d7f3 1253 enum uclamp_id clamp_id;
69842cba 1254
46609ce2
QY
1255 /*
1256 * Avoid any overhead until uclamp is actually used by the userspace.
1257 *
1258 * The condition is constructed such that a NOP is generated when
1259 * sched_uclamp_used is disabled.
1260 */
1261 if (!static_branch_unlikely(&sched_uclamp_used))
1262 return;
1263
69842cba
PB
1264 if (unlikely(!p->sched_class->uclamp_enabled))
1265 return;
1266
1267 for_each_clamp_id(clamp_id)
1268 uclamp_rq_dec_id(rq, p, clamp_id);
1269}
1270
babbe170 1271static inline void
0413d7f3 1272uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1273{
1274 struct rq_flags rf;
1275 struct rq *rq;
1276
1277 /*
1278 * Lock the task and the rq where the task is (or was) queued.
1279 *
1280 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1281 * price to pay to safely serialize util_{min,max} updates with
1282 * enqueues, dequeues and migration operations.
1283 * This is the same locking schema used by __set_cpus_allowed_ptr().
1284 */
1285 rq = task_rq_lock(p, &rf);
1286
1287 /*
1288 * Setting the clamp bucket is serialized by task_rq_lock().
1289 * If the task is not yet RUNNABLE and its task_struct is not
1290 * affecting a valid clamp bucket, the next time it's enqueued,
1291 * it will already see the updated clamp bucket value.
1292 */
6e1ff077 1293 if (p->uclamp[clamp_id].active) {
babbe170
PB
1294 uclamp_rq_dec_id(rq, p, clamp_id);
1295 uclamp_rq_inc_id(rq, p, clamp_id);
1296 }
1297
1298 task_rq_unlock(rq, p, &rf);
1299}
1300
e3b8b6a0 1301#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1302static inline void
1303uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1304 unsigned int clamps)
1305{
0413d7f3 1306 enum uclamp_id clamp_id;
babbe170
PB
1307 struct css_task_iter it;
1308 struct task_struct *p;
babbe170
PB
1309
1310 css_task_iter_start(css, 0, &it);
1311 while ((p = css_task_iter_next(&it))) {
1312 for_each_clamp_id(clamp_id) {
1313 if ((0x1 << clamp_id) & clamps)
1314 uclamp_update_active(p, clamp_id);
1315 }
1316 }
1317 css_task_iter_end(&it);
1318}
1319
7274a5c1
PB
1320static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1321static void uclamp_update_root_tg(void)
1322{
1323 struct task_group *tg = &root_task_group;
1324
1325 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1326 sysctl_sched_uclamp_util_min, false);
1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1328 sysctl_sched_uclamp_util_max, false);
1329
1330 rcu_read_lock();
1331 cpu_util_update_eff(&root_task_group.css);
1332 rcu_read_unlock();
1333}
1334#else
1335static void uclamp_update_root_tg(void) { }
1336#endif
1337
e8f14172 1338int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1339 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1340{
7274a5c1 1341 bool update_root_tg = false;
13685c4a 1342 int old_min, old_max, old_min_rt;
e8f14172
PB
1343 int result;
1344
2480c093 1345 mutex_lock(&uclamp_mutex);
e8f14172
PB
1346 old_min = sysctl_sched_uclamp_util_min;
1347 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1348 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1349
1350 result = proc_dointvec(table, write, buffer, lenp, ppos);
1351 if (result)
1352 goto undo;
1353 if (!write)
1354 goto done;
1355
1356 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1357 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1358 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1359
e8f14172
PB
1360 result = -EINVAL;
1361 goto undo;
1362 }
1363
1364 if (old_min != sysctl_sched_uclamp_util_min) {
1365 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1366 sysctl_sched_uclamp_util_min, false);
7274a5c1 1367 update_root_tg = true;
e8f14172
PB
1368 }
1369 if (old_max != sysctl_sched_uclamp_util_max) {
1370 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1371 sysctl_sched_uclamp_util_max, false);
7274a5c1 1372 update_root_tg = true;
e8f14172
PB
1373 }
1374
46609ce2
QY
1375 if (update_root_tg) {
1376 static_branch_enable(&sched_uclamp_used);
7274a5c1 1377 uclamp_update_root_tg();
46609ce2 1378 }
7274a5c1 1379
13685c4a
QY
1380 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1381 static_branch_enable(&sched_uclamp_used);
1382 uclamp_sync_util_min_rt_default();
1383 }
7274a5c1 1384
e8f14172 1385 /*
7274a5c1
PB
1386 * We update all RUNNABLE tasks only when task groups are in use.
1387 * Otherwise, keep it simple and do just a lazy update at each next
1388 * task enqueue time.
e8f14172 1389 */
7274a5c1 1390
e8f14172
PB
1391 goto done;
1392
1393undo:
1394 sysctl_sched_uclamp_util_min = old_min;
1395 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1396 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1397done:
2480c093 1398 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1399
1400 return result;
1401}
1402
a509a7cd
PB
1403static int uclamp_validate(struct task_struct *p,
1404 const struct sched_attr *attr)
1405{
480a6ca2
DE
1406 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1407 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1408
480a6ca2
DE
1409 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1410 util_min = attr->sched_util_min;
a509a7cd 1411
480a6ca2
DE
1412 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1413 return -EINVAL;
1414 }
1415
1416 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1417 util_max = attr->sched_util_max;
1418
1419 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1420 return -EINVAL;
1421 }
1422
1423 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1424 return -EINVAL;
1425
e65855a5
QY
1426 /*
1427 * We have valid uclamp attributes; make sure uclamp is enabled.
1428 *
1429 * We need to do that here, because enabling static branches is a
1430 * blocking operation which obviously cannot be done while holding
1431 * scheduler locks.
1432 */
1433 static_branch_enable(&sched_uclamp_used);
1434
a509a7cd
PB
1435 return 0;
1436}
1437
480a6ca2
DE
1438static bool uclamp_reset(const struct sched_attr *attr,
1439 enum uclamp_id clamp_id,
1440 struct uclamp_se *uc_se)
1441{
1442 /* Reset on sched class change for a non user-defined clamp value. */
1443 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1444 !uc_se->user_defined)
1445 return true;
1446
1447 /* Reset on sched_util_{min,max} == -1. */
1448 if (clamp_id == UCLAMP_MIN &&
1449 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1450 attr->sched_util_min == -1) {
1451 return true;
1452 }
1453
1454 if (clamp_id == UCLAMP_MAX &&
1455 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1456 attr->sched_util_max == -1) {
1457 return true;
1458 }
1459
1460 return false;
1461}
1462
a509a7cd
PB
1463static void __setscheduler_uclamp(struct task_struct *p,
1464 const struct sched_attr *attr)
1465{
0413d7f3 1466 enum uclamp_id clamp_id;
1a00d999 1467
1a00d999
PB
1468 for_each_clamp_id(clamp_id) {
1469 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1470 unsigned int value;
1a00d999 1471
480a6ca2 1472 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1473 continue;
1474
13685c4a
QY
1475 /*
1476 * RT by default have a 100% boost value that could be modified
1477 * at runtime.
1478 */
1a00d999 1479 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1480 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1481 else
480a6ca2
DE
1482 value = uclamp_none(clamp_id);
1483
1484 uclamp_se_set(uc_se, value, false);
1a00d999 1485
1a00d999
PB
1486 }
1487
a509a7cd
PB
1488 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1489 return;
1490
480a6ca2
DE
1491 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1492 attr->sched_util_min != -1) {
a509a7cd
PB
1493 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1494 attr->sched_util_min, true);
1495 }
1496
480a6ca2
DE
1497 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1498 attr->sched_util_max != -1) {
a509a7cd
PB
1499 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1500 attr->sched_util_max, true);
1501 }
1502}
1503
e8f14172
PB
1504static void uclamp_fork(struct task_struct *p)
1505{
0413d7f3 1506 enum uclamp_id clamp_id;
e8f14172 1507
13685c4a
QY
1508 /*
1509 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1510 * as the task is still at its early fork stages.
1511 */
e8f14172
PB
1512 for_each_clamp_id(clamp_id)
1513 p->uclamp[clamp_id].active = false;
a87498ac
PB
1514
1515 if (likely(!p->sched_reset_on_fork))
1516 return;
1517
1518 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1519 uclamp_se_set(&p->uclamp_req[clamp_id],
1520 uclamp_none(clamp_id), false);
a87498ac 1521 }
e8f14172
PB
1522}
1523
13685c4a
QY
1524static void uclamp_post_fork(struct task_struct *p)
1525{
1526 uclamp_update_util_min_rt_default(p);
1527}
1528
d81ae8aa
QY
1529static void __init init_uclamp_rq(struct rq *rq)
1530{
1531 enum uclamp_id clamp_id;
1532 struct uclamp_rq *uc_rq = rq->uclamp;
1533
1534 for_each_clamp_id(clamp_id) {
1535 uc_rq[clamp_id] = (struct uclamp_rq) {
1536 .value = uclamp_none(clamp_id)
1537 };
1538 }
1539
1540 rq->uclamp_flags = 0;
1541}
1542
69842cba
PB
1543static void __init init_uclamp(void)
1544{
e8f14172 1545 struct uclamp_se uc_max = {};
0413d7f3 1546 enum uclamp_id clamp_id;
69842cba
PB
1547 int cpu;
1548
d81ae8aa
QY
1549 for_each_possible_cpu(cpu)
1550 init_uclamp_rq(cpu_rq(cpu));
69842cba 1551
69842cba 1552 for_each_clamp_id(clamp_id) {
e8f14172 1553 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1554 uclamp_none(clamp_id), false);
69842cba 1555 }
e8f14172
PB
1556
1557 /* System defaults allow max clamp values for both indexes */
a509a7cd 1558 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1559 for_each_clamp_id(clamp_id) {
e8f14172 1560 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1561#ifdef CONFIG_UCLAMP_TASK_GROUP
1562 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1563 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1564#endif
1565 }
69842cba
PB
1566}
1567
1568#else /* CONFIG_UCLAMP_TASK */
1569static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1570static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1571static inline int uclamp_validate(struct task_struct *p,
1572 const struct sched_attr *attr)
1573{
1574 return -EOPNOTSUPP;
1575}
1576static void __setscheduler_uclamp(struct task_struct *p,
1577 const struct sched_attr *attr) { }
e8f14172 1578static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1579static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1580static inline void init_uclamp(void) { }
1581#endif /* CONFIG_UCLAMP_TASK */
1582
1de64443 1583static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1584{
0a67d1ee
PZ
1585 if (!(flags & ENQUEUE_NOCLOCK))
1586 update_rq_clock(rq);
1587
eb414681 1588 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1589 sched_info_queued(rq, p);
eb414681
JW
1590 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1591 }
0a67d1ee 1592
69842cba 1593 uclamp_rq_inc(rq, p);
371fd7e7 1594 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1595}
1596
1de64443 1597static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1598{
0a67d1ee
PZ
1599 if (!(flags & DEQUEUE_NOCLOCK))
1600 update_rq_clock(rq);
1601
eb414681 1602 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1603 sched_info_dequeued(rq, p);
eb414681
JW
1604 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1605 }
0a67d1ee 1606
69842cba 1607 uclamp_rq_dec(rq, p);
371fd7e7 1608 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1609}
1610
029632fb 1611void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1612{
371fd7e7 1613 enqueue_task(rq, p, flags);
7dd77884
PZ
1614
1615 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1616}
1617
029632fb 1618void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1619{
7dd77884
PZ
1620 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1621
371fd7e7 1622 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1623}
1624
14531189 1625/*
dd41f596 1626 * __normal_prio - return the priority that is based on the static prio
14531189 1627 */
14531189
IM
1628static inline int __normal_prio(struct task_struct *p)
1629{
dd41f596 1630 return p->static_prio;
14531189
IM
1631}
1632
b29739f9
IM
1633/*
1634 * Calculate the expected normal priority: i.e. priority
1635 * without taking RT-inheritance into account. Might be
1636 * boosted by interactivity modifiers. Changes upon fork,
1637 * setprio syscalls, and whenever the interactivity
1638 * estimator recalculates.
1639 */
36c8b586 1640static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1641{
1642 int prio;
1643
aab03e05
DF
1644 if (task_has_dl_policy(p))
1645 prio = MAX_DL_PRIO-1;
1646 else if (task_has_rt_policy(p))
b29739f9
IM
1647 prio = MAX_RT_PRIO-1 - p->rt_priority;
1648 else
1649 prio = __normal_prio(p);
1650 return prio;
1651}
1652
1653/*
1654 * Calculate the current priority, i.e. the priority
1655 * taken into account by the scheduler. This value might
1656 * be boosted by RT tasks, or might be boosted by
1657 * interactivity modifiers. Will be RT if the task got
1658 * RT-boosted. If not then it returns p->normal_prio.
1659 */
36c8b586 1660static int effective_prio(struct task_struct *p)
b29739f9
IM
1661{
1662 p->normal_prio = normal_prio(p);
1663 /*
1664 * If we are RT tasks or we were boosted to RT priority,
1665 * keep the priority unchanged. Otherwise, update priority
1666 * to the normal priority:
1667 */
1668 if (!rt_prio(p->prio))
1669 return p->normal_prio;
1670 return p->prio;
1671}
1672
1da177e4
LT
1673/**
1674 * task_curr - is this task currently executing on a CPU?
1675 * @p: the task in question.
e69f6186
YB
1676 *
1677 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1678 */
36c8b586 1679inline int task_curr(const struct task_struct *p)
1da177e4
LT
1680{
1681 return cpu_curr(task_cpu(p)) == p;
1682}
1683
67dfa1b7 1684/*
4c9a4bc8
PZ
1685 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1686 * use the balance_callback list if you want balancing.
1687 *
1688 * this means any call to check_class_changed() must be followed by a call to
1689 * balance_callback().
67dfa1b7 1690 */
cb469845
SR
1691static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1692 const struct sched_class *prev_class,
da7a735e 1693 int oldprio)
cb469845
SR
1694{
1695 if (prev_class != p->sched_class) {
1696 if (prev_class->switched_from)
da7a735e 1697 prev_class->switched_from(rq, p);
4c9a4bc8 1698
da7a735e 1699 p->sched_class->switched_to(rq, p);
2d3d891d 1700 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1701 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1702}
1703
029632fb 1704void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 1705{
aa93cd53 1706 if (p->sched_class == rq->curr->sched_class)
1e5a7405 1707 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
1708 else if (p->sched_class > rq->curr->sched_class)
1709 resched_curr(rq);
1e5a7405
PZ
1710
1711 /*
1712 * A queue event has occurred, and we're going to schedule. In
1713 * this case, we can save a useless back to back clock update.
1714 */
da0c1e65 1715 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1716 rq_clock_skip_update(rq);
1e5a7405
PZ
1717}
1718
1da177e4 1719#ifdef CONFIG_SMP
175f0e25 1720
af449901
PZ
1721static void
1722__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1723
1724static int __set_cpus_allowed_ptr(struct task_struct *p,
1725 const struct cpumask *new_mask,
1726 u32 flags);
1727
1728static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1729{
1730 if (likely(!p->migration_disabled))
1731 return;
1732
1733 if (p->cpus_ptr != &p->cpus_mask)
1734 return;
1735
1736 /*
1737 * Violates locking rules! see comment in __do_set_cpus_allowed().
1738 */
1739 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1740}
1741
1742void migrate_disable(void)
1743{
3015ef4b
TG
1744 struct task_struct *p = current;
1745
1746 if (p->migration_disabled) {
1747 p->migration_disabled++;
af449901 1748 return;
3015ef4b 1749 }
af449901 1750
3015ef4b
TG
1751 preempt_disable();
1752 this_rq()->nr_pinned++;
1753 p->migration_disabled = 1;
1754 preempt_enable();
af449901
PZ
1755}
1756EXPORT_SYMBOL_GPL(migrate_disable);
1757
1758void migrate_enable(void)
1759{
1760 struct task_struct *p = current;
1761
6d337eab
PZ
1762 if (p->migration_disabled > 1) {
1763 p->migration_disabled--;
af449901 1764 return;
6d337eab 1765 }
af449901 1766
6d337eab
PZ
1767 /*
1768 * Ensure stop_task runs either before or after this, and that
1769 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1770 */
1771 preempt_disable();
1772 if (p->cpus_ptr != &p->cpus_mask)
1773 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1774 /*
1775 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1776 * regular cpus_mask, otherwise things that race (eg.
1777 * select_fallback_rq) get confused.
1778 */
af449901 1779 barrier();
6d337eab 1780 p->migration_disabled = 0;
3015ef4b 1781 this_rq()->nr_pinned--;
6d337eab 1782 preempt_enable();
af449901
PZ
1783}
1784EXPORT_SYMBOL_GPL(migrate_enable);
1785
3015ef4b
TG
1786static inline bool rq_has_pinned_tasks(struct rq *rq)
1787{
1788 return rq->nr_pinned;
1789}
1790
175f0e25 1791/*
bee98539 1792 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1793 * __set_cpus_allowed_ptr() and select_fallback_rq().
1794 */
1795static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1796{
5ba2ffba 1797 /* When not in the task's cpumask, no point in looking further. */
3bd37062 1798 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1799 return false;
1800
5ba2ffba
PZ
1801 /* migrate_disabled() must be allowed to finish. */
1802 if (is_migration_disabled(p))
175f0e25
PZ
1803 return cpu_online(cpu);
1804
5ba2ffba
PZ
1805 /* Non kernel threads are not allowed during either online or offline. */
1806 if (!(p->flags & PF_KTHREAD))
1807 return cpu_active(cpu);
1808
1809 /* KTHREAD_IS_PER_CPU is always allowed. */
1810 if (kthread_is_per_cpu(p))
1811 return cpu_online(cpu);
1812
1813 /* Regular kernel threads don't get to stay during offline. */
1814 if (cpu_rq(cpu)->balance_push)
1815 return false;
1816
1817 /* But are allowed during online. */
1818 return cpu_online(cpu);
175f0e25
PZ
1819}
1820
5cc389bc
PZ
1821/*
1822 * This is how migration works:
1823 *
1824 * 1) we invoke migration_cpu_stop() on the target CPU using
1825 * stop_one_cpu().
1826 * 2) stopper starts to run (implicitly forcing the migrated thread
1827 * off the CPU)
1828 * 3) it checks whether the migrated task is still in the wrong runqueue.
1829 * 4) if it's in the wrong runqueue then the migration thread removes
1830 * it and puts it into the right queue.
1831 * 5) stopper completes and stop_one_cpu() returns and the migration
1832 * is done.
1833 */
1834
1835/*
1836 * move_queued_task - move a queued task to new rq.
1837 *
1838 * Returns (locked) new rq. Old rq's lock is released.
1839 */
8a8c69c3
PZ
1840static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1841 struct task_struct *p, int new_cpu)
5cc389bc 1842{
5cc389bc
PZ
1843 lockdep_assert_held(&rq->lock);
1844
58877d34 1845 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1846 set_task_cpu(p, new_cpu);
8a8c69c3 1847 rq_unlock(rq, rf);
5cc389bc
PZ
1848
1849 rq = cpu_rq(new_cpu);
1850
8a8c69c3 1851 rq_lock(rq, rf);
5cc389bc 1852 BUG_ON(task_cpu(p) != new_cpu);
58877d34 1853 activate_task(rq, p, 0);
5cc389bc
PZ
1854 check_preempt_curr(rq, p, 0);
1855
1856 return rq;
1857}
1858
1859struct migration_arg {
6d337eab
PZ
1860 struct task_struct *task;
1861 int dest_cpu;
1862 struct set_affinity_pending *pending;
1863};
1864
50caf9c1
PZ
1865/*
1866 * @refs: number of wait_for_completion()
1867 * @stop_pending: is @stop_work in use
1868 */
6d337eab
PZ
1869struct set_affinity_pending {
1870 refcount_t refs;
9e81889c 1871 unsigned int stop_pending;
6d337eab
PZ
1872 struct completion done;
1873 struct cpu_stop_work stop_work;
1874 struct migration_arg arg;
5cc389bc
PZ
1875};
1876
1877/*
d1ccc66d 1878 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1879 * this because either it can't run here any more (set_cpus_allowed()
1880 * away from this CPU, or CPU going down), or because we're
1881 * attempting to rebalance this task on exec (sched_exec).
1882 *
1883 * So we race with normal scheduler movements, but that's OK, as long
1884 * as the task is no longer on this CPU.
5cc389bc 1885 */
8a8c69c3
PZ
1886static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1887 struct task_struct *p, int dest_cpu)
5cc389bc 1888{
5cc389bc 1889 /* Affinity changed (again). */
175f0e25 1890 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1891 return rq;
5cc389bc 1892
15ff991e 1893 update_rq_clock(rq);
8a8c69c3 1894 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1895
1896 return rq;
5cc389bc
PZ
1897}
1898
1899/*
1900 * migration_cpu_stop - this will be executed by a highprio stopper thread
1901 * and performs thread migration by bumping thread off CPU then
1902 * 'pushing' onto another runqueue.
1903 */
1904static int migration_cpu_stop(void *data)
1905{
1906 struct migration_arg *arg = data;
c20cf065 1907 struct set_affinity_pending *pending = arg->pending;
5e16bbc2 1908 struct task_struct *p = arg->task;
6d337eab 1909 int dest_cpu = arg->dest_cpu;
5e16bbc2 1910 struct rq *rq = this_rq();
6d337eab 1911 bool complete = false;
8a8c69c3 1912 struct rq_flags rf;
5cc389bc
PZ
1913
1914 /*
d1ccc66d
IM
1915 * The original target CPU might have gone down and we might
1916 * be on another CPU but it doesn't matter.
5cc389bc 1917 */
6d337eab 1918 local_irq_save(rf.flags);
5cc389bc
PZ
1919 /*
1920 * We need to explicitly wake pending tasks before running
3bd37062 1921 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1922 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1923 */
a1488664 1924 flush_smp_call_function_from_idle();
5e16bbc2
PZ
1925
1926 raw_spin_lock(&p->pi_lock);
8a8c69c3 1927 rq_lock(rq, &rf);
6d337eab 1928
e140749c
VS
1929 /*
1930 * If we were passed a pending, then ->stop_pending was set, thus
1931 * p->migration_pending must have remained stable.
1932 */
1933 WARN_ON_ONCE(pending && pending != p->migration_pending);
1934
5e16bbc2
PZ
1935 /*
1936 * If task_rq(p) != rq, it cannot be migrated here, because we're
1937 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1938 * we're holding p->pi_lock.
1939 */
bf89a304 1940 if (task_rq(p) == rq) {
6d337eab
PZ
1941 if (is_migration_disabled(p))
1942 goto out;
1943
1944 if (pending) {
e140749c 1945 p->migration_pending = NULL;
6d337eab
PZ
1946 complete = true;
1947 }
1948
3f1bc119
PZ
1949 if (dest_cpu < 0) {
1950 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
1951 goto out;
1952
6d337eab 1953 dest_cpu = cpumask_any_distribute(&p->cpus_mask);
3f1bc119 1954 }
6d337eab 1955
bf89a304 1956 if (task_on_rq_queued(p))
6d337eab 1957 rq = __migrate_task(rq, &rf, p, dest_cpu);
bf89a304 1958 else
6d337eab
PZ
1959 p->wake_cpu = dest_cpu;
1960
3f1bc119
PZ
1961 /*
1962 * XXX __migrate_task() can fail, at which point we might end
1963 * up running on a dodgy CPU, AFAICT this can only happen
1964 * during CPU hotplug, at which point we'll get pushed out
1965 * anyway, so it's probably not a big deal.
1966 */
1967
c20cf065 1968 } else if (pending) {
6d337eab
PZ
1969 /*
1970 * This happens when we get migrated between migrate_enable()'s
1971 * preempt_enable() and scheduling the stopper task. At that
1972 * point we're a regular task again and not current anymore.
1973 *
1974 * A !PREEMPT kernel has a giant hole here, which makes it far
1975 * more likely.
1976 */
1977
d707faa6
VS
1978 /*
1979 * The task moved before the stopper got to run. We're holding
1980 * ->pi_lock, so the allowed mask is stable - if it got
1981 * somewhere allowed, we're done.
1982 */
c20cf065 1983 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 1984 p->migration_pending = NULL;
d707faa6
VS
1985 complete = true;
1986 goto out;
1987 }
1988
6d337eab
PZ
1989 /*
1990 * When migrate_enable() hits a rq mis-match we can't reliably
1991 * determine is_migration_disabled() and so have to chase after
1992 * it.
1993 */
9e81889c 1994 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
1995 task_rq_unlock(rq, p, &rf);
1996 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1997 &pending->arg, &pending->stop_work);
1998 return 0;
bf89a304 1999 }
6d337eab 2000out:
9e81889c
PZ
2001 if (pending)
2002 pending->stop_pending = false;
6d337eab
PZ
2003 task_rq_unlock(rq, p, &rf);
2004
2005 if (complete)
2006 complete_all(&pending->done);
2007
5cc389bc
PZ
2008 return 0;
2009}
2010
a7c81556
PZ
2011int push_cpu_stop(void *arg)
2012{
2013 struct rq *lowest_rq = NULL, *rq = this_rq();
2014 struct task_struct *p = arg;
2015
2016 raw_spin_lock_irq(&p->pi_lock);
2017 raw_spin_lock(&rq->lock);
2018
2019 if (task_rq(p) != rq)
2020 goto out_unlock;
2021
2022 if (is_migration_disabled(p)) {
2023 p->migration_flags |= MDF_PUSH;
2024 goto out_unlock;
2025 }
2026
2027 p->migration_flags &= ~MDF_PUSH;
2028
2029 if (p->sched_class->find_lock_rq)
2030 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2031
a7c81556
PZ
2032 if (!lowest_rq)
2033 goto out_unlock;
2034
2035 // XXX validate p is still the highest prio task
2036 if (task_rq(p) == rq) {
2037 deactivate_task(rq, p, 0);
2038 set_task_cpu(p, lowest_rq->cpu);
2039 activate_task(lowest_rq, p, 0);
2040 resched_curr(lowest_rq);
2041 }
2042
2043 double_unlock_balance(rq, lowest_rq);
2044
2045out_unlock:
2046 rq->push_busy = false;
2047 raw_spin_unlock(&rq->lock);
2048 raw_spin_unlock_irq(&p->pi_lock);
2049
2050 put_task_struct(p);
5cc389bc
PZ
2051 return 0;
2052}
2053
c5b28038
PZ
2054/*
2055 * sched_class::set_cpus_allowed must do the below, but is not required to
2056 * actually call this function.
2057 */
9cfc3e18 2058void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2059{
af449901
PZ
2060 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2061 p->cpus_ptr = new_mask;
2062 return;
2063 }
2064
3bd37062 2065 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2066 p->nr_cpus_allowed = cpumask_weight(new_mask);
2067}
2068
9cfc3e18
PZ
2069static void
2070__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2071{
6c37067e
PZ
2072 struct rq *rq = task_rq(p);
2073 bool queued, running;
2074
af449901
PZ
2075 /*
2076 * This here violates the locking rules for affinity, since we're only
2077 * supposed to change these variables while holding both rq->lock and
2078 * p->pi_lock.
2079 *
2080 * HOWEVER, it magically works, because ttwu() is the only code that
2081 * accesses these variables under p->pi_lock and only does so after
2082 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2083 * before finish_task().
2084 *
2085 * XXX do further audits, this smells like something putrid.
2086 */
2087 if (flags & SCA_MIGRATE_DISABLE)
2088 SCHED_WARN_ON(!p->on_cpu);
2089 else
2090 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2091
2092 queued = task_on_rq_queued(p);
2093 running = task_current(rq, p);
2094
2095 if (queued) {
2096 /*
2097 * Because __kthread_bind() calls this on blocked tasks without
2098 * holding rq->lock.
2099 */
2100 lockdep_assert_held(&rq->lock);
7a57f32a 2101 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2102 }
2103 if (running)
2104 put_prev_task(rq, p);
2105
9cfc3e18 2106 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2107
6c37067e 2108 if (queued)
7134b3e9 2109 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2110 if (running)
03b7fad1 2111 set_next_task(rq, p);
c5b28038
PZ
2112}
2113
9cfc3e18
PZ
2114void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2115{
2116 __do_set_cpus_allowed(p, new_mask, 0);
2117}
2118
6d337eab 2119/*
c777d847
VS
2120 * This function is wildly self concurrent; here be dragons.
2121 *
2122 *
2123 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2124 * designated task is enqueued on an allowed CPU. If that task is currently
2125 * running, we have to kick it out using the CPU stopper.
2126 *
2127 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2128 * Consider:
2129 *
2130 * Initial conditions: P0->cpus_mask = [0, 1]
2131 *
2132 * P0@CPU0 P1
2133 *
2134 * migrate_disable();
2135 * <preempted>
2136 * set_cpus_allowed_ptr(P0, [1]);
2137 *
2138 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2139 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2140 * This means we need the following scheme:
2141 *
2142 * P0@CPU0 P1
2143 *
2144 * migrate_disable();
2145 * <preempted>
2146 * set_cpus_allowed_ptr(P0, [1]);
2147 * <blocks>
2148 * <resumes>
2149 * migrate_enable();
2150 * __set_cpus_allowed_ptr();
2151 * <wakes local stopper>
2152 * `--> <woken on migration completion>
2153 *
2154 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2155 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2156 * task p are serialized by p->pi_lock, which we can leverage: the one that
2157 * should come into effect at the end of the Migrate-Disable region is the last
2158 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2159 * but we still need to properly signal those waiting tasks at the appropriate
2160 * moment.
2161 *
2162 * This is implemented using struct set_affinity_pending. The first
2163 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2164 * setup an instance of that struct and install it on the targeted task_struct.
2165 * Any and all further callers will reuse that instance. Those then wait for
2166 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2167 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2168 *
2169 *
2170 * (1) In the cases covered above. There is one more where the completion is
2171 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2172 * occurs after the stopper bailed out due to the targeted task still being
2173 * Migrate-Disable. Consider:
c777d847
VS
2174 *
2175 * Initial conditions: P0->cpus_mask = [0, 1]
2176 *
e140749c
VS
2177 * CPU0 P1 P2
2178 * <P0>
2179 * migrate_disable();
2180 * <preempted>
c777d847
VS
2181 * set_cpus_allowed_ptr(P0, [1]);
2182 * <blocks>
e140749c
VS
2183 * <migration/0>
2184 * migration_cpu_stop()
2185 * is_migration_disabled()
2186 * <bails>
c777d847
VS
2187 * set_cpus_allowed_ptr(P0, [0, 1]);
2188 * <signal completion>
2189 * <awakes>
2190 *
2191 * Note that the above is safe vs a concurrent migrate_enable(), as any
2192 * pending affinity completion is preceded by an uninstallation of
2193 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2194 */
2195static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2196 int dest_cpu, unsigned int flags)
2197{
2198 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2199 bool stop_pending, complete = false;
6d337eab
PZ
2200
2201 /* Can the task run on the task's current CPU? If so, we're done */
2202 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2203 struct task_struct *push_task = NULL;
2204
2205 if ((flags & SCA_MIGRATE_ENABLE) &&
2206 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2207 rq->push_busy = true;
2208 push_task = get_task_struct(p);
2209 }
2210
50caf9c1
PZ
2211 /*
2212 * If there are pending waiters, but no pending stop_work,
2213 * then complete now.
2214 */
6d337eab 2215 pending = p->migration_pending;
50caf9c1 2216 if (pending && !pending->stop_pending) {
6d337eab
PZ
2217 p->migration_pending = NULL;
2218 complete = true;
2219 }
50caf9c1 2220
6d337eab
PZ
2221 task_rq_unlock(rq, p, rf);
2222
a7c81556
PZ
2223 if (push_task) {
2224 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2225 p, &rq->push_work);
2226 }
2227
6d337eab 2228 if (complete)
50caf9c1 2229 complete_all(&pending->done);
6d337eab
PZ
2230
2231 return 0;
2232 }
2233
2234 if (!(flags & SCA_MIGRATE_ENABLE)) {
2235 /* serialized by p->pi_lock */
2236 if (!p->migration_pending) {
c777d847 2237 /* Install the request */
6d337eab
PZ
2238 refcount_set(&my_pending.refs, 1);
2239 init_completion(&my_pending.done);
8a6edb52
PZ
2240 my_pending.arg = (struct migration_arg) {
2241 .task = p,
2242 .dest_cpu = -1, /* any */
2243 .pending = &my_pending,
2244 };
2245
6d337eab
PZ
2246 p->migration_pending = &my_pending;
2247 } else {
2248 pending = p->migration_pending;
2249 refcount_inc(&pending->refs);
2250 }
2251 }
2252 pending = p->migration_pending;
2253 /*
2254 * - !MIGRATE_ENABLE:
2255 * we'll have installed a pending if there wasn't one already.
2256 *
2257 * - MIGRATE_ENABLE:
2258 * we're here because the current CPU isn't matching anymore,
2259 * the only way that can happen is because of a concurrent
2260 * set_cpus_allowed_ptr() call, which should then still be
2261 * pending completion.
2262 *
2263 * Either way, we really should have a @pending here.
2264 */
2265 if (WARN_ON_ONCE(!pending)) {
2266 task_rq_unlock(rq, p, rf);
2267 return -EINVAL;
2268 }
2269
6d337eab 2270 if (task_running(rq, p) || p->state == TASK_WAKING) {
c777d847 2271 /*
58b1a450
PZ
2272 * MIGRATE_ENABLE gets here because 'p == current', but for
2273 * anything else we cannot do is_migration_disabled(), punt
2274 * and have the stopper function handle it all race-free.
c777d847 2275 */
9e81889c
PZ
2276 stop_pending = pending->stop_pending;
2277 if (!stop_pending)
2278 pending->stop_pending = true;
58b1a450 2279
58b1a450
PZ
2280 if (flags & SCA_MIGRATE_ENABLE)
2281 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2282
6d337eab 2283 task_rq_unlock(rq, p, rf);
8a6edb52 2284
9e81889c
PZ
2285 if (!stop_pending) {
2286 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2287 &pending->arg, &pending->stop_work);
2288 }
6d337eab 2289
58b1a450
PZ
2290 if (flags & SCA_MIGRATE_ENABLE)
2291 return 0;
6d337eab
PZ
2292 } else {
2293
2294 if (!is_migration_disabled(p)) {
2295 if (task_on_rq_queued(p))
2296 rq = move_queued_task(rq, rf, p, dest_cpu);
2297
50caf9c1
PZ
2298 if (!pending->stop_pending) {
2299 p->migration_pending = NULL;
2300 complete = true;
2301 }
6d337eab
PZ
2302 }
2303 task_rq_unlock(rq, p, rf);
2304
6d337eab
PZ
2305 if (complete)
2306 complete_all(&pending->done);
2307 }
2308
2309 wait_for_completion(&pending->done);
2310
2311 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2312 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2313
c777d847
VS
2314 /*
2315 * Block the original owner of &pending until all subsequent callers
2316 * have seen the completion and decremented the refcount
2317 */
6d337eab
PZ
2318 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2319
50caf9c1
PZ
2320 /* ARGH */
2321 WARN_ON_ONCE(my_pending.stop_pending);
2322
6d337eab
PZ
2323 return 0;
2324}
2325
5cc389bc
PZ
2326/*
2327 * Change a given task's CPU affinity. Migrate the thread to a
2328 * proper CPU and schedule it away if the CPU it's executing on
2329 * is removed from the allowed bitmask.
2330 *
2331 * NOTE: the caller must have a valid reference to the task, the
2332 * task must not exit() & deallocate itself prematurely. The
2333 * call is not atomic; no spinlocks may be held.
2334 */
25834c73 2335static int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2336 const struct cpumask *new_mask,
2337 u32 flags)
5cc389bc 2338{
e9d867a6 2339 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 2340 unsigned int dest_cpu;
eb580751
PZ
2341 struct rq_flags rf;
2342 struct rq *rq;
5cc389bc
PZ
2343 int ret = 0;
2344
eb580751 2345 rq = task_rq_lock(p, &rf);
a499c3ea 2346 update_rq_clock(rq);
5cc389bc 2347
af449901 2348 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
e9d867a6 2349 /*
741ba80f
PZ
2350 * Kernel threads are allowed on online && !active CPUs,
2351 * however, during cpu-hot-unplug, even these might get pushed
2352 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2353 *
2354 * Specifically, migration_disabled() tasks must not fail the
2355 * cpumask_any_and_distribute() pick below, esp. so on
2356 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2357 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2358 */
2359 cpu_valid_mask = cpu_online_mask;
2360 }
2361
25834c73
PZ
2362 /*
2363 * Must re-check here, to close a race against __kthread_bind(),
2364 * sched_setaffinity() is not guaranteed to observe the flag.
2365 */
9cfc3e18 2366 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2367 ret = -EINVAL;
2368 goto out;
2369 }
2370
885b3ba4
VS
2371 if (!(flags & SCA_MIGRATE_ENABLE)) {
2372 if (cpumask_equal(&p->cpus_mask, new_mask))
2373 goto out;
2374
2375 if (WARN_ON_ONCE(p == current &&
2376 is_migration_disabled(p) &&
2377 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2378 ret = -EBUSY;
2379 goto out;
2380 }
2381 }
5cc389bc 2382
46a87b38
PT
2383 /*
2384 * Picking a ~random cpu helps in cases where we are changing affinity
2385 * for groups of tasks (ie. cpuset), so that load balancing is not
2386 * immediately required to distribute the tasks within their new mask.
2387 */
2388 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2389 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2390 ret = -EINVAL;
2391 goto out;
2392 }
2393
9cfc3e18 2394 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2395
6d337eab 2396 return affine_move_task(rq, p, &rf, dest_cpu, flags);
5cc389bc 2397
5cc389bc 2398out:
eb580751 2399 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
2400
2401 return ret;
2402}
25834c73
PZ
2403
2404int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2405{
9cfc3e18 2406 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2407}
5cc389bc
PZ
2408EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2409
dd41f596 2410void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2411{
e2912009
PZ
2412#ifdef CONFIG_SCHED_DEBUG
2413 /*
2414 * We should never call set_task_cpu() on a blocked task,
2415 * ttwu() will sort out the placement.
2416 */
077614ee 2417 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 2418 !p->on_rq);
0122ec5b 2419
3ea94de1
JP
2420 /*
2421 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2422 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2423 * time relying on p->on_rq.
2424 */
2425 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2426 p->sched_class == &fair_sched_class &&
2427 (p->on_rq && !task_on_rq_migrating(p)));
2428
0122ec5b 2429#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2430 /*
2431 * The caller should hold either p->pi_lock or rq->lock, when changing
2432 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2433 *
2434 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 2435 * see task_group().
6c6c54e1
PZ
2436 *
2437 * Furthermore, all task_rq users should acquire both locks, see
2438 * task_rq_lock().
2439 */
0122ec5b
PZ
2440 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2441 lockdep_is_held(&task_rq(p)->lock)));
2442#endif
4ff9083b
PZ
2443 /*
2444 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2445 */
2446 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
2447
2448 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
2449#endif
2450
de1d7286 2451 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2452
0c69774e 2453 if (task_cpu(p) != new_cpu) {
0a74bef8 2454 if (p->sched_class->migrate_task_rq)
1327237a 2455 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 2456 p->se.nr_migrations++;
d7822b1e 2457 rseq_migrate(p);
ff303e66 2458 perf_event_task_migrate(p);
0c69774e 2459 }
dd41f596
IM
2460
2461 __set_task_cpu(p, new_cpu);
c65cc870
IM
2462}
2463
0ad4e3df 2464#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2465static void __migrate_swap_task(struct task_struct *p, int cpu)
2466{
da0c1e65 2467 if (task_on_rq_queued(p)) {
ac66f547 2468 struct rq *src_rq, *dst_rq;
8a8c69c3 2469 struct rq_flags srf, drf;
ac66f547
PZ
2470
2471 src_rq = task_rq(p);
2472 dst_rq = cpu_rq(cpu);
2473
8a8c69c3
PZ
2474 rq_pin_lock(src_rq, &srf);
2475 rq_pin_lock(dst_rq, &drf);
2476
ac66f547
PZ
2477 deactivate_task(src_rq, p, 0);
2478 set_task_cpu(p, cpu);
2479 activate_task(dst_rq, p, 0);
2480 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2481
2482 rq_unpin_lock(dst_rq, &drf);
2483 rq_unpin_lock(src_rq, &srf);
2484
ac66f547
PZ
2485 } else {
2486 /*
2487 * Task isn't running anymore; make it appear like we migrated
2488 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2489 * previous CPU our target instead of where it really is.
ac66f547
PZ
2490 */
2491 p->wake_cpu = cpu;
2492 }
2493}
2494
2495struct migration_swap_arg {
2496 struct task_struct *src_task, *dst_task;
2497 int src_cpu, dst_cpu;
2498};
2499
2500static int migrate_swap_stop(void *data)
2501{
2502 struct migration_swap_arg *arg = data;
2503 struct rq *src_rq, *dst_rq;
2504 int ret = -EAGAIN;
2505
62694cd5
PZ
2506 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2507 return -EAGAIN;
2508
ac66f547
PZ
2509 src_rq = cpu_rq(arg->src_cpu);
2510 dst_rq = cpu_rq(arg->dst_cpu);
2511
74602315
PZ
2512 double_raw_lock(&arg->src_task->pi_lock,
2513 &arg->dst_task->pi_lock);
ac66f547 2514 double_rq_lock(src_rq, dst_rq);
62694cd5 2515
ac66f547
PZ
2516 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2517 goto unlock;
2518
2519 if (task_cpu(arg->src_task) != arg->src_cpu)
2520 goto unlock;
2521
3bd37062 2522 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2523 goto unlock;
2524
3bd37062 2525 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2526 goto unlock;
2527
2528 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2529 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2530
2531 ret = 0;
2532
2533unlock:
2534 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2535 raw_spin_unlock(&arg->dst_task->pi_lock);
2536 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2537
2538 return ret;
2539}
2540
2541/*
2542 * Cross migrate two tasks
2543 */
0ad4e3df
SD
2544int migrate_swap(struct task_struct *cur, struct task_struct *p,
2545 int target_cpu, int curr_cpu)
ac66f547
PZ
2546{
2547 struct migration_swap_arg arg;
2548 int ret = -EINVAL;
2549
ac66f547
PZ
2550 arg = (struct migration_swap_arg){
2551 .src_task = cur,
0ad4e3df 2552 .src_cpu = curr_cpu,
ac66f547 2553 .dst_task = p,
0ad4e3df 2554 .dst_cpu = target_cpu,
ac66f547
PZ
2555 };
2556
2557 if (arg.src_cpu == arg.dst_cpu)
2558 goto out;
2559
6acce3ef
PZ
2560 /*
2561 * These three tests are all lockless; this is OK since all of them
2562 * will be re-checked with proper locks held further down the line.
2563 */
ac66f547
PZ
2564 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2565 goto out;
2566
3bd37062 2567 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2568 goto out;
2569
3bd37062 2570 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2571 goto out;
2572
286549dc 2573 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2574 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2575
2576out:
ac66f547
PZ
2577 return ret;
2578}
0ad4e3df 2579#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2580
1da177e4
LT
2581/*
2582 * wait_task_inactive - wait for a thread to unschedule.
2583 *
85ba2d86
RM
2584 * If @match_state is nonzero, it's the @p->state value just checked and
2585 * not expected to change. If it changes, i.e. @p might have woken up,
2586 * then return zero. When we succeed in waiting for @p to be off its CPU,
2587 * we return a positive number (its total switch count). If a second call
2588 * a short while later returns the same number, the caller can be sure that
2589 * @p has remained unscheduled the whole time.
2590 *
1da177e4
LT
2591 * The caller must ensure that the task *will* unschedule sometime soon,
2592 * else this function might spin for a *long* time. This function can't
2593 * be called with interrupts off, or it may introduce deadlock with
2594 * smp_call_function() if an IPI is sent by the same process we are
2595 * waiting to become inactive.
2596 */
85ba2d86 2597unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 2598{
da0c1e65 2599 int running, queued;
eb580751 2600 struct rq_flags rf;
85ba2d86 2601 unsigned long ncsw;
70b97a7f 2602 struct rq *rq;
1da177e4 2603
3a5c359a
AK
2604 for (;;) {
2605 /*
2606 * We do the initial early heuristics without holding
2607 * any task-queue locks at all. We'll only try to get
2608 * the runqueue lock when things look like they will
2609 * work out!
2610 */
2611 rq = task_rq(p);
fa490cfd 2612
3a5c359a
AK
2613 /*
2614 * If the task is actively running on another CPU
2615 * still, just relax and busy-wait without holding
2616 * any locks.
2617 *
2618 * NOTE! Since we don't hold any locks, it's not
2619 * even sure that "rq" stays as the right runqueue!
2620 * But we don't care, since "task_running()" will
2621 * return false if the runqueue has changed and p
2622 * is actually now running somewhere else!
2623 */
85ba2d86
RM
2624 while (task_running(rq, p)) {
2625 if (match_state && unlikely(p->state != match_state))
2626 return 0;
3a5c359a 2627 cpu_relax();
85ba2d86 2628 }
fa490cfd 2629
3a5c359a
AK
2630 /*
2631 * Ok, time to look more closely! We need the rq
2632 * lock now, to be *sure*. If we're wrong, we'll
2633 * just go back and repeat.
2634 */
eb580751 2635 rq = task_rq_lock(p, &rf);
27a9da65 2636 trace_sched_wait_task(p);
3a5c359a 2637 running = task_running(rq, p);
da0c1e65 2638 queued = task_on_rq_queued(p);
85ba2d86 2639 ncsw = 0;
f31e11d8 2640 if (!match_state || p->state == match_state)
93dcf55f 2641 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 2642 task_rq_unlock(rq, p, &rf);
fa490cfd 2643
85ba2d86
RM
2644 /*
2645 * If it changed from the expected state, bail out now.
2646 */
2647 if (unlikely(!ncsw))
2648 break;
2649
3a5c359a
AK
2650 /*
2651 * Was it really running after all now that we
2652 * checked with the proper locks actually held?
2653 *
2654 * Oops. Go back and try again..
2655 */
2656 if (unlikely(running)) {
2657 cpu_relax();
2658 continue;
2659 }
fa490cfd 2660
3a5c359a
AK
2661 /*
2662 * It's not enough that it's not actively running,
2663 * it must be off the runqueue _entirely_, and not
2664 * preempted!
2665 *
80dd99b3 2666 * So if it was still runnable (but just not actively
3a5c359a
AK
2667 * running right now), it's preempted, and we should
2668 * yield - it could be a while.
2669 */
da0c1e65 2670 if (unlikely(queued)) {
8b0e1953 2671 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
2672
2673 set_current_state(TASK_UNINTERRUPTIBLE);
2674 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2675 continue;
2676 }
fa490cfd 2677
3a5c359a
AK
2678 /*
2679 * Ahh, all good. It wasn't running, and it wasn't
2680 * runnable, which means that it will never become
2681 * running in the future either. We're all done!
2682 */
2683 break;
2684 }
85ba2d86
RM
2685
2686 return ncsw;
1da177e4
LT
2687}
2688
2689/***
2690 * kick_process - kick a running thread to enter/exit the kernel
2691 * @p: the to-be-kicked thread
2692 *
2693 * Cause a process which is running on another CPU to enter
2694 * kernel-mode, without any delay. (to get signals handled.)
2695 *
25985edc 2696 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2697 * because all it wants to ensure is that the remote task enters
2698 * the kernel. If the IPI races and the task has been migrated
2699 * to another CPU then no harm is done and the purpose has been
2700 * achieved as well.
2701 */
36c8b586 2702void kick_process(struct task_struct *p)
1da177e4
LT
2703{
2704 int cpu;
2705
2706 preempt_disable();
2707 cpu = task_cpu(p);
2708 if ((cpu != smp_processor_id()) && task_curr(p))
2709 smp_send_reschedule(cpu);
2710 preempt_enable();
2711}
b43e3521 2712EXPORT_SYMBOL_GPL(kick_process);
1da177e4 2713
30da688e 2714/*
3bd37062 2715 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2716 *
2717 * A few notes on cpu_active vs cpu_online:
2718 *
2719 * - cpu_active must be a subset of cpu_online
2720 *
97fb7a0a 2721 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2722 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2723 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2724 * see it.
2725 *
d1ccc66d 2726 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2727 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2728 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2729 * off.
2730 *
2731 * This means that fallback selection must not select !active CPUs.
2732 * And can assume that any active CPU must be online. Conversely
2733 * select_task_rq() below may allow selection of !active CPUs in order
2734 * to satisfy the above rules.
30da688e 2735 */
5da9a0fb
PZ
2736static int select_fallback_rq(int cpu, struct task_struct *p)
2737{
aa00d89c
TC
2738 int nid = cpu_to_node(cpu);
2739 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2740 enum { cpuset, possible, fail } state = cpuset;
2741 int dest_cpu;
5da9a0fb 2742
aa00d89c 2743 /*
d1ccc66d
IM
2744 * If the node that the CPU is on has been offlined, cpu_to_node()
2745 * will return -1. There is no CPU on the node, and we should
2746 * select the CPU on the other node.
aa00d89c
TC
2747 */
2748 if (nid != -1) {
2749 nodemask = cpumask_of_node(nid);
2750
2751 /* Look for allowed, online CPU in same node. */
2752 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2753 if (!cpu_active(dest_cpu))
2754 continue;
3bd37062 2755 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2756 return dest_cpu;
2757 }
2baab4e9 2758 }
5da9a0fb 2759
2baab4e9
PZ
2760 for (;;) {
2761 /* Any allowed, online CPU? */
3bd37062 2762 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2763 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2764 continue;
175f0e25 2765
2baab4e9
PZ
2766 goto out;
2767 }
5da9a0fb 2768
e73e85f0 2769 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2770 switch (state) {
2771 case cpuset:
e73e85f0
ON
2772 if (IS_ENABLED(CONFIG_CPUSETS)) {
2773 cpuset_cpus_allowed_fallback(p);
2774 state = possible;
2775 break;
2776 }
df561f66 2777 fallthrough;
2baab4e9 2778 case possible:
af449901
PZ
2779 /*
2780 * XXX When called from select_task_rq() we only
2781 * hold p->pi_lock and again violate locking order.
2782 *
2783 * More yuck to audit.
2784 */
2baab4e9
PZ
2785 do_set_cpus_allowed(p, cpu_possible_mask);
2786 state = fail;
2787 break;
2788
2789 case fail:
2790 BUG();
2791 break;
2792 }
2793 }
2794
2795out:
2796 if (state != cpuset) {
2797 /*
2798 * Don't tell them about moving exiting tasks or
2799 * kernel threads (both mm NULL), since they never
2800 * leave kernel.
2801 */
2802 if (p->mm && printk_ratelimit()) {
aac74dc4 2803 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2804 task_pid_nr(p), p->comm, cpu);
2805 }
5da9a0fb
PZ
2806 }
2807
2808 return dest_cpu;
2809}
2810
e2912009 2811/*
3bd37062 2812 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2813 */
970b13ba 2814static inline
3aef1551 2815int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 2816{
cbce1a68
PZ
2817 lockdep_assert_held(&p->pi_lock);
2818
af449901 2819 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 2820 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 2821 else
3bd37062 2822 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2823
2824 /*
2825 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2826 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2827 * CPU.
e2912009
PZ
2828 *
2829 * Since this is common to all placement strategies, this lives here.
2830 *
2831 * [ this allows ->select_task() to simply return task_cpu(p) and
2832 * not worry about this generic constraint ]
2833 */
7af443ee 2834 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2835 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2836
2837 return cpu;
970b13ba 2838}
09a40af5 2839
f5832c19
NP
2840void sched_set_stop_task(int cpu, struct task_struct *stop)
2841{
ded467dc 2842 static struct lock_class_key stop_pi_lock;
f5832c19
NP
2843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2845
2846 if (stop) {
2847 /*
2848 * Make it appear like a SCHED_FIFO task, its something
2849 * userspace knows about and won't get confused about.
2850 *
2851 * Also, it will make PI more or less work without too
2852 * much confusion -- but then, stop work should not
2853 * rely on PI working anyway.
2854 */
2855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2856
2857 stop->sched_class = &stop_sched_class;
ded467dc
PZ
2858
2859 /*
2860 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2861 * adjust the effective priority of a task. As a result,
2862 * rt_mutex_setprio() can trigger (RT) balancing operations,
2863 * which can then trigger wakeups of the stop thread to push
2864 * around the current task.
2865 *
2866 * The stop task itself will never be part of the PI-chain, it
2867 * never blocks, therefore that ->pi_lock recursion is safe.
2868 * Tell lockdep about this by placing the stop->pi_lock in its
2869 * own class.
2870 */
2871 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
2872 }
2873
2874 cpu_rq(cpu)->stop = stop;
2875
2876 if (old_stop) {
2877 /*
2878 * Reset it back to a normal scheduling class so that
2879 * it can die in pieces.
2880 */
2881 old_stop->sched_class = &rt_sched_class;
2882 }
2883}
2884
74d862b6 2885#else /* CONFIG_SMP */
25834c73
PZ
2886
2887static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2888 const struct cpumask *new_mask,
2889 u32 flags)
25834c73
PZ
2890{
2891 return set_cpus_allowed_ptr(p, new_mask);
2892}
2893
af449901
PZ
2894static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2895
3015ef4b
TG
2896static inline bool rq_has_pinned_tasks(struct rq *rq)
2897{
2898 return false;
2899}
2900
74d862b6 2901#endif /* !CONFIG_SMP */
970b13ba 2902
d7c01d27 2903static void
b84cb5df 2904ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2905{
4fa8d299 2906 struct rq *rq;
b84cb5df 2907
4fa8d299
JP
2908 if (!schedstat_enabled())
2909 return;
2910
2911 rq = this_rq();
d7c01d27 2912
4fa8d299
JP
2913#ifdef CONFIG_SMP
2914 if (cpu == rq->cpu) {
b85c8b71
PZ
2915 __schedstat_inc(rq->ttwu_local);
2916 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2917 } else {
2918 struct sched_domain *sd;
2919
b85c8b71 2920 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2921 rcu_read_lock();
4fa8d299 2922 for_each_domain(rq->cpu, sd) {
d7c01d27 2923 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2924 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2925 break;
2926 }
2927 }
057f3fad 2928 rcu_read_unlock();
d7c01d27 2929 }
f339b9dc
PZ
2930
2931 if (wake_flags & WF_MIGRATED)
b85c8b71 2932 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2933#endif /* CONFIG_SMP */
2934
b85c8b71
PZ
2935 __schedstat_inc(rq->ttwu_count);
2936 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2937
2938 if (wake_flags & WF_SYNC)
b85c8b71 2939 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2940}
2941
23f41eeb
PZ
2942/*
2943 * Mark the task runnable and perform wakeup-preemption.
2944 */
e7904a28 2945static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2946 struct rq_flags *rf)
9ed3811a 2947{
9ed3811a 2948 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2949 p->state = TASK_RUNNING;
fbd705a0
PZ
2950 trace_sched_wakeup(p);
2951
9ed3811a 2952#ifdef CONFIG_SMP
4c9a4bc8
PZ
2953 if (p->sched_class->task_woken) {
2954 /*
b19a888c 2955 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 2956 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2957 */
d8ac8971 2958 rq_unpin_lock(rq, rf);
9ed3811a 2959 p->sched_class->task_woken(rq, p);
d8ac8971 2960 rq_repin_lock(rq, rf);
4c9a4bc8 2961 }
9ed3811a 2962
e69c6341 2963 if (rq->idle_stamp) {
78becc27 2964 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2965 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2966
abfafa54
JL
2967 update_avg(&rq->avg_idle, delta);
2968
2969 if (rq->avg_idle > max)
9ed3811a 2970 rq->avg_idle = max;
abfafa54 2971
9ed3811a
TH
2972 rq->idle_stamp = 0;
2973 }
2974#endif
2975}
2976
c05fbafb 2977static void
e7904a28 2978ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2979 struct rq_flags *rf)
c05fbafb 2980{
77558e4d 2981 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2982
cbce1a68
PZ
2983 lockdep_assert_held(&rq->lock);
2984
c05fbafb
PZ
2985 if (p->sched_contributes_to_load)
2986 rq->nr_uninterruptible--;
b5179ac7 2987
dbfb089d 2988#ifdef CONFIG_SMP
b5179ac7 2989 if (wake_flags & WF_MIGRATED)
59efa0ba 2990 en_flags |= ENQUEUE_MIGRATED;
ec618b84 2991 else
c05fbafb 2992#endif
ec618b84
PZ
2993 if (p->in_iowait) {
2994 delayacct_blkio_end(p);
2995 atomic_dec(&task_rq(p)->nr_iowait);
2996 }
c05fbafb 2997
1b174a2c 2998 activate_task(rq, p, en_flags);
d8ac8971 2999 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
3000}
3001
3002/*
58877d34
PZ
3003 * Consider @p being inside a wait loop:
3004 *
3005 * for (;;) {
3006 * set_current_state(TASK_UNINTERRUPTIBLE);
3007 *
3008 * if (CONDITION)
3009 * break;
3010 *
3011 * schedule();
3012 * }
3013 * __set_current_state(TASK_RUNNING);
3014 *
3015 * between set_current_state() and schedule(). In this case @p is still
3016 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3017 * an atomic manner.
3018 *
3019 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3020 * then schedule() must still happen and p->state can be changed to
3021 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3022 * need to do a full wakeup with enqueue.
3023 *
3024 * Returns: %true when the wakeup is done,
3025 * %false otherwise.
c05fbafb 3026 */
58877d34 3027static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3028{
eb580751 3029 struct rq_flags rf;
c05fbafb
PZ
3030 struct rq *rq;
3031 int ret = 0;
3032
eb580751 3033 rq = __task_rq_lock(p, &rf);
da0c1e65 3034 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3035 /* check_preempt_curr() may use rq clock */
3036 update_rq_clock(rq);
d8ac8971 3037 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3038 ret = 1;
3039 }
eb580751 3040 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3041
3042 return ret;
3043}
3044
317f3941 3045#ifdef CONFIG_SMP
a1488664 3046void sched_ttwu_pending(void *arg)
317f3941 3047{
a1488664 3048 struct llist_node *llist = arg;
317f3941 3049 struct rq *rq = this_rq();
73215849 3050 struct task_struct *p, *t;
d8ac8971 3051 struct rq_flags rf;
317f3941 3052
e3baac47
PZ
3053 if (!llist)
3054 return;
3055
126c2092
PZ
3056 /*
3057 * rq::ttwu_pending racy indication of out-standing wakeups.
3058 * Races such that false-negatives are possible, since they
3059 * are shorter lived that false-positives would be.
3060 */
3061 WRITE_ONCE(rq->ttwu_pending, 0);
3062
8a8c69c3 3063 rq_lock_irqsave(rq, &rf);
77558e4d 3064 update_rq_clock(rq);
317f3941 3065
8c4890d1 3066 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3067 if (WARN_ON_ONCE(p->on_cpu))
3068 smp_cond_load_acquire(&p->on_cpu, !VAL);
3069
3070 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3071 set_task_cpu(p, cpu_of(rq));
3072
73215849 3073 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3074 }
317f3941 3075
8a8c69c3 3076 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3077}
3078
b2a02fc4 3079void send_call_function_single_ipi(int cpu)
317f3941 3080{
b2a02fc4 3081 struct rq *rq = cpu_rq(cpu);
ca38062e 3082
b2a02fc4
PZ
3083 if (!set_nr_if_polling(rq->idle))
3084 arch_send_call_function_single_ipi(cpu);
3085 else
3086 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3087}
3088
2ebb1771
MG
3089/*
3090 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3091 * necessary. The wakee CPU on receipt of the IPI will queue the task
3092 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3093 * of the wakeup instead of the waker.
3094 */
3095static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3096{
e3baac47
PZ
3097 struct rq *rq = cpu_rq(cpu);
3098
b7e7ade3
PZ
3099 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3100
126c2092 3101 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3102 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3103}
d6aa8f85 3104
f6be8af1
CL
3105void wake_up_if_idle(int cpu)
3106{
3107 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3108 struct rq_flags rf;
f6be8af1 3109
fd7de1e8
AL
3110 rcu_read_lock();
3111
3112 if (!is_idle_task(rcu_dereference(rq->curr)))
3113 goto out;
f6be8af1
CL
3114
3115 if (set_nr_if_polling(rq->idle)) {
3116 trace_sched_wake_idle_without_ipi(cpu);
3117 } else {
8a8c69c3 3118 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
3119 if (is_idle_task(rq->curr))
3120 smp_send_reschedule(cpu);
d1ccc66d 3121 /* Else CPU is not idle, do nothing here: */
8a8c69c3 3122 rq_unlock_irqrestore(rq, &rf);
f6be8af1 3123 }
fd7de1e8
AL
3124
3125out:
3126 rcu_read_unlock();
f6be8af1
CL
3127}
3128
39be3501 3129bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
3130{
3131 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3132}
c6e7bd7a 3133
2ebb1771
MG
3134static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3135{
5ba2ffba
PZ
3136 /*
3137 * Do not complicate things with the async wake_list while the CPU is
3138 * in hotplug state.
3139 */
3140 if (!cpu_active(cpu))
3141 return false;
3142
2ebb1771
MG
3143 /*
3144 * If the CPU does not share cache, then queue the task on the
3145 * remote rqs wakelist to avoid accessing remote data.
3146 */
3147 if (!cpus_share_cache(smp_processor_id(), cpu))
3148 return true;
3149
3150 /*
3151 * If the task is descheduling and the only running task on the
3152 * CPU then use the wakelist to offload the task activation to
3153 * the soon-to-be-idle CPU as the current CPU is likely busy.
3154 * nr_running is checked to avoid unnecessary task stacking.
3155 */
739f70b4 3156 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
3157 return true;
3158
3159 return false;
3160}
3161
3162static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3163{
2ebb1771 3164 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
3165 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3166 return false;
3167
c6e7bd7a 3168 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3169 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3170 return true;
3171 }
3172
3173 return false;
3174}
58877d34
PZ
3175
3176#else /* !CONFIG_SMP */
3177
3178static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3179{
3180 return false;
3181}
3182
d6aa8f85 3183#endif /* CONFIG_SMP */
317f3941 3184
b5179ac7 3185static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3186{
3187 struct rq *rq = cpu_rq(cpu);
d8ac8971 3188 struct rq_flags rf;
c05fbafb 3189
2ebb1771 3190 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3191 return;
317f3941 3192
8a8c69c3 3193 rq_lock(rq, &rf);
77558e4d 3194 update_rq_clock(rq);
d8ac8971 3195 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3196 rq_unlock(rq, &rf);
9ed3811a
TH
3197}
3198
8643cda5
PZ
3199/*
3200 * Notes on Program-Order guarantees on SMP systems.
3201 *
3202 * MIGRATION
3203 *
3204 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3205 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3206 * execution on its new CPU [c1].
8643cda5
PZ
3207 *
3208 * For migration (of runnable tasks) this is provided by the following means:
3209 *
3210 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3211 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3212 * rq(c1)->lock (if not at the same time, then in that order).
3213 * C) LOCK of the rq(c1)->lock scheduling in task
3214 *
7696f991 3215 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3216 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3217 *
3218 * Example:
3219 *
3220 * CPU0 CPU1 CPU2
3221 *
3222 * LOCK rq(0)->lock
3223 * sched-out X
3224 * sched-in Y
3225 * UNLOCK rq(0)->lock
3226 *
3227 * LOCK rq(0)->lock // orders against CPU0
3228 * dequeue X
3229 * UNLOCK rq(0)->lock
3230 *
3231 * LOCK rq(1)->lock
3232 * enqueue X
3233 * UNLOCK rq(1)->lock
3234 *
3235 * LOCK rq(1)->lock // orders against CPU2
3236 * sched-out Z
3237 * sched-in X
3238 * UNLOCK rq(1)->lock
3239 *
3240 *
3241 * BLOCKING -- aka. SLEEP + WAKEUP
3242 *
3243 * For blocking we (obviously) need to provide the same guarantee as for
3244 * migration. However the means are completely different as there is no lock
3245 * chain to provide order. Instead we do:
3246 *
58877d34
PZ
3247 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3248 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3249 *
3250 * Example:
3251 *
3252 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3253 *
3254 * LOCK rq(0)->lock LOCK X->pi_lock
3255 * dequeue X
3256 * sched-out X
3257 * smp_store_release(X->on_cpu, 0);
3258 *
1f03e8d2 3259 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3260 * X->state = WAKING
3261 * set_task_cpu(X,2)
3262 *
3263 * LOCK rq(2)->lock
3264 * enqueue X
3265 * X->state = RUNNING
3266 * UNLOCK rq(2)->lock
3267 *
3268 * LOCK rq(2)->lock // orders against CPU1
3269 * sched-out Z
3270 * sched-in X
3271 * UNLOCK rq(2)->lock
3272 *
3273 * UNLOCK X->pi_lock
3274 * UNLOCK rq(0)->lock
3275 *
3276 *
7696f991
AP
3277 * However, for wakeups there is a second guarantee we must provide, namely we
3278 * must ensure that CONDITION=1 done by the caller can not be reordered with
3279 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3280 */
3281
9ed3811a 3282/**
1da177e4 3283 * try_to_wake_up - wake up a thread
9ed3811a 3284 * @p: the thread to be awakened
1da177e4 3285 * @state: the mask of task states that can be woken
9ed3811a 3286 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3287 *
58877d34
PZ
3288 * Conceptually does:
3289 *
3290 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3291 *
a2250238
PZ
3292 * If the task was not queued/runnable, also place it back on a runqueue.
3293 *
58877d34
PZ
3294 * This function is atomic against schedule() which would dequeue the task.
3295 *
3296 * It issues a full memory barrier before accessing @p->state, see the comment
3297 * with set_current_state().
a2250238 3298 *
58877d34 3299 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3300 *
58877d34
PZ
3301 * Relies on p->pi_lock stabilizing:
3302 * - p->sched_class
3303 * - p->cpus_ptr
3304 * - p->sched_task_group
3305 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3306 *
3307 * Tries really hard to only take one task_rq(p)->lock for performance.
3308 * Takes rq->lock in:
3309 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3310 * - ttwu_queue() -- new rq, for enqueue of the task;
3311 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3312 *
3313 * As a consequence we race really badly with just about everything. See the
3314 * many memory barriers and their comments for details.
7696f991 3315 *
a2250238
PZ
3316 * Return: %true if @p->state changes (an actual wakeup was done),
3317 * %false otherwise.
1da177e4 3318 */
e4a52bcb
PZ
3319static int
3320try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3321{
1da177e4 3322 unsigned long flags;
c05fbafb 3323 int cpu, success = 0;
2398f2c6 3324
e3d85487 3325 preempt_disable();
aacedf26
PZ
3326 if (p == current) {
3327 /*
3328 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3329 * == smp_processor_id()'. Together this means we can special
58877d34 3330 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3331 * without taking any locks.
3332 *
3333 * In particular:
3334 * - we rely on Program-Order guarantees for all the ordering,
3335 * - we're serialized against set_special_state() by virtue of
3336 * it disabling IRQs (this allows not taking ->pi_lock).
3337 */
3338 if (!(p->state & state))
e3d85487 3339 goto out;
aacedf26
PZ
3340
3341 success = 1;
aacedf26
PZ
3342 trace_sched_waking(p);
3343 p->state = TASK_RUNNING;
3344 trace_sched_wakeup(p);
3345 goto out;
3346 }
3347
e0acd0a6
ON
3348 /*
3349 * If we are going to wake up a thread waiting for CONDITION we
3350 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
3351 * reordered with p->state check below. This pairs with smp_store_mb()
3352 * in set_current_state() that the waiting thread does.
e0acd0a6 3353 */
013fdb80 3354 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 3355 smp_mb__after_spinlock();
e9c84311 3356 if (!(p->state & state))
aacedf26 3357 goto unlock;
1da177e4 3358
fbd705a0
PZ
3359 trace_sched_waking(p);
3360
d1ccc66d
IM
3361 /* We're going to change ->state: */
3362 success = 1;
1da177e4 3363
135e8c92
BS
3364 /*
3365 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3366 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3367 * in smp_cond_load_acquire() below.
3368 *
3d85b270
AP
3369 * sched_ttwu_pending() try_to_wake_up()
3370 * STORE p->on_rq = 1 LOAD p->state
3371 * UNLOCK rq->lock
3372 *
3373 * __schedule() (switch to task 'p')
3374 * LOCK rq->lock smp_rmb();
3375 * smp_mb__after_spinlock();
3376 * UNLOCK rq->lock
135e8c92
BS
3377 *
3378 * [task p]
3d85b270 3379 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 3380 *
3d85b270
AP
3381 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3382 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
3383 *
3384 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
3385 */
3386 smp_rmb();
58877d34 3387 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 3388 goto unlock;
1da177e4 3389
1da177e4 3390#ifdef CONFIG_SMP
ecf7d01c
PZ
3391 /*
3392 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3393 * possible to, falsely, observe p->on_cpu == 0.
3394 *
3395 * One must be running (->on_cpu == 1) in order to remove oneself
3396 * from the runqueue.
3397 *
3d85b270
AP
3398 * __schedule() (switch to task 'p') try_to_wake_up()
3399 * STORE p->on_cpu = 1 LOAD p->on_rq
3400 * UNLOCK rq->lock
3401 *
3402 * __schedule() (put 'p' to sleep)
3403 * LOCK rq->lock smp_rmb();
3404 * smp_mb__after_spinlock();
3405 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 3406 *
3d85b270
AP
3407 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3408 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
3409 *
3410 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3411 * schedule()'s deactivate_task() has 'happened' and p will no longer
3412 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 3413 */
dbfb089d
PZ
3414 smp_acquire__after_ctrl_dep();
3415
3416 /*
3417 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3418 * == 0), which means we need to do an enqueue, change p->state to
3419 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3420 * enqueue, such as ttwu_queue_wakelist().
3421 */
3422 p->state = TASK_WAKING;
ecf7d01c 3423
c6e7bd7a
PZ
3424 /*
3425 * If the owning (remote) CPU is still in the middle of schedule() with
3426 * this task as prev, considering queueing p on the remote CPUs wake_list
3427 * which potentially sends an IPI instead of spinning on p->on_cpu to
3428 * let the waker make forward progress. This is safe because IRQs are
3429 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
3430 *
3431 * Ensure we load task_cpu(p) after p->on_cpu:
3432 *
3433 * set_task_cpu(p, cpu);
3434 * STORE p->cpu = @cpu
3435 * __schedule() (switch to task 'p')
3436 * LOCK rq->lock
3437 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3438 * STORE p->on_cpu = 1 LOAD p->cpu
3439 *
3440 * to ensure we observe the correct CPU on which the task is currently
3441 * scheduling.
c6e7bd7a 3442 */
b6e13e85 3443 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 3444 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
3445 goto unlock;
3446
e9c84311 3447 /*
d1ccc66d 3448 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 3449 * this task as prev, wait until it's done referencing the task.
b75a2253 3450 *
31cb1bc0 3451 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
3452 *
3453 * This ensures that tasks getting woken will be fully ordered against
3454 * their previous state and preserve Program Order.
0970d299 3455 */
1f03e8d2 3456 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 3457
3aef1551 3458 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 3459 if (task_cpu(p) != cpu) {
ec618b84
PZ
3460 if (p->in_iowait) {
3461 delayacct_blkio_end(p);
3462 atomic_dec(&task_rq(p)->nr_iowait);
3463 }
3464
f339b9dc 3465 wake_flags |= WF_MIGRATED;
eb414681 3466 psi_ttwu_dequeue(p);
e4a52bcb 3467 set_task_cpu(p, cpu);
f339b9dc 3468 }
b6e13e85
PZ
3469#else
3470 cpu = task_cpu(p);
1da177e4 3471#endif /* CONFIG_SMP */
1da177e4 3472
b5179ac7 3473 ttwu_queue(p, cpu, wake_flags);
aacedf26 3474unlock:
013fdb80 3475 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
3476out:
3477 if (success)
b6e13e85 3478 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 3479 preempt_enable();
1da177e4
LT
3480
3481 return success;
3482}
3483
2beaf328
PM
3484/**
3485 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
1b7af295 3486 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
3487 * @func: Function to invoke.
3488 * @arg: Argument to function.
3489 *
3490 * If the specified task can be quickly locked into a definite state
3491 * (either sleeping or on a given runqueue), arrange to keep it in that
3492 * state while invoking @func(@arg). This function can use ->on_rq and
3493 * task_curr() to work out what the state is, if required. Given that
3494 * @func can be invoked with a runqueue lock held, it had better be quite
3495 * lightweight.
3496 *
3497 * Returns:
3498 * @false if the task slipped out from under the locks.
3499 * @true if the task was locked onto a runqueue or is sleeping.
3500 * However, @func can override this by returning @false.
3501 */
3502bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3503{
2beaf328 3504 struct rq_flags rf;
1b7af295 3505 bool ret = false;
2beaf328
PM
3506 struct rq *rq;
3507
1b7af295 3508 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2beaf328
PM
3509 if (p->on_rq) {
3510 rq = __task_rq_lock(p, &rf);
3511 if (task_rq(p) == rq)
3512 ret = func(p, arg);
3513 rq_unlock(rq, &rf);
3514 } else {
3515 switch (p->state) {
3516 case TASK_RUNNING:
3517 case TASK_WAKING:
3518 break;
3519 default:
3520 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3521 if (!p->on_rq)
3522 ret = func(p, arg);
3523 }
3524 }
1b7af295 3525 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
3526 return ret;
3527}
3528
50fa610a
DH
3529/**
3530 * wake_up_process - Wake up a specific process
3531 * @p: The process to be woken up.
3532 *
3533 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3534 * processes.
3535 *
3536 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3537 *
7696f991 3538 * This function executes a full memory barrier before accessing the task state.
50fa610a 3539 */
7ad5b3a5 3540int wake_up_process(struct task_struct *p)
1da177e4 3541{
9067ac85 3542 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3543}
1da177e4
LT
3544EXPORT_SYMBOL(wake_up_process);
3545
7ad5b3a5 3546int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3547{
3548 return try_to_wake_up(p, state, 0);
3549}
3550
1da177e4
LT
3551/*
3552 * Perform scheduler related setup for a newly forked process p.
3553 * p is forked by current.
dd41f596
IM
3554 *
3555 * __sched_fork() is basic setup used by init_idle() too:
3556 */
5e1576ed 3557static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3558{
fd2f4419
PZ
3559 p->on_rq = 0;
3560
3561 p->se.on_rq = 0;
dd41f596
IM
3562 p->se.exec_start = 0;
3563 p->se.sum_exec_runtime = 0;
f6cf891c 3564 p->se.prev_sum_exec_runtime = 0;
6c594c21 3565 p->se.nr_migrations = 0;
da7a735e 3566 p->se.vruntime = 0;
fd2f4419 3567 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3568
ad936d86
BP
3569#ifdef CONFIG_FAIR_GROUP_SCHED
3570 p->se.cfs_rq = NULL;
3571#endif
3572
6cfb0d5d 3573#ifdef CONFIG_SCHEDSTATS
cb251765 3574 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3575 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3576#endif
476d139c 3577
aab03e05 3578 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3579 init_dl_task_timer(&p->dl);
209a0cbd 3580 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3581 __dl_clear_params(p);
aab03e05 3582
fa717060 3583 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3584 p->rt.timeout = 0;
3585 p->rt.time_slice = sched_rr_timeslice;
3586 p->rt.on_rq = 0;
3587 p->rt.on_list = 0;
476d139c 3588
e107be36
AK
3589#ifdef CONFIG_PREEMPT_NOTIFIERS
3590 INIT_HLIST_HEAD(&p->preempt_notifiers);
3591#endif
cbee9f88 3592
5e1f0f09
MG
3593#ifdef CONFIG_COMPACTION
3594 p->capture_control = NULL;
3595#endif
13784475 3596 init_numa_balancing(clone_flags, p);
a1488664 3597#ifdef CONFIG_SMP
8c4890d1 3598 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 3599 p->migration_pending = NULL;
a1488664 3600#endif
dd41f596
IM
3601}
3602
2a595721
SD
3603DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3604
1a687c2e 3605#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3606
1a687c2e
MG
3607void set_numabalancing_state(bool enabled)
3608{
3609 if (enabled)
2a595721 3610 static_branch_enable(&sched_numa_balancing);
1a687c2e 3611 else
2a595721 3612 static_branch_disable(&sched_numa_balancing);
1a687c2e 3613}
54a43d54
AK
3614
3615#ifdef CONFIG_PROC_SYSCTL
3616int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3617 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3618{
3619 struct ctl_table t;
3620 int err;
2a595721 3621 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
3622
3623 if (write && !capable(CAP_SYS_ADMIN))
3624 return -EPERM;
3625
3626 t = *table;
3627 t.data = &state;
3628 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3629 if (err < 0)
3630 return err;
3631 if (write)
3632 set_numabalancing_state(state);
3633 return err;
3634}
3635#endif
3636#endif
dd41f596 3637
4698f88c
JP
3638#ifdef CONFIG_SCHEDSTATS
3639
cb251765 3640DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 3641static bool __initdata __sched_schedstats = false;
cb251765 3642
cb251765
MG
3643static void set_schedstats(bool enabled)
3644{
3645 if (enabled)
3646 static_branch_enable(&sched_schedstats);
3647 else
3648 static_branch_disable(&sched_schedstats);
3649}
3650
3651void force_schedstat_enabled(void)
3652{
3653 if (!schedstat_enabled()) {
3654 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3655 static_branch_enable(&sched_schedstats);
3656 }
3657}
3658
3659static int __init setup_schedstats(char *str)
3660{
3661 int ret = 0;
3662 if (!str)
3663 goto out;
3664
4698f88c
JP
3665 /*
3666 * This code is called before jump labels have been set up, so we can't
3667 * change the static branch directly just yet. Instead set a temporary
3668 * variable so init_schedstats() can do it later.
3669 */
cb251765 3670 if (!strcmp(str, "enable")) {
4698f88c 3671 __sched_schedstats = true;
cb251765
MG
3672 ret = 1;
3673 } else if (!strcmp(str, "disable")) {
4698f88c 3674 __sched_schedstats = false;
cb251765
MG
3675 ret = 1;
3676 }
3677out:
3678 if (!ret)
3679 pr_warn("Unable to parse schedstats=\n");
3680
3681 return ret;
3682}
3683__setup("schedstats=", setup_schedstats);
3684
4698f88c
JP
3685static void __init init_schedstats(void)
3686{
3687 set_schedstats(__sched_schedstats);
3688}
3689
cb251765 3690#ifdef CONFIG_PROC_SYSCTL
32927393
CH
3691int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3692 size_t *lenp, loff_t *ppos)
cb251765
MG
3693{
3694 struct ctl_table t;
3695 int err;
3696 int state = static_branch_likely(&sched_schedstats);
3697
3698 if (write && !capable(CAP_SYS_ADMIN))
3699 return -EPERM;
3700
3701 t = *table;
3702 t.data = &state;
3703 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3704 if (err < 0)
3705 return err;
3706 if (write)
3707 set_schedstats(state);
3708 return err;
3709}
4698f88c
JP
3710#endif /* CONFIG_PROC_SYSCTL */
3711#else /* !CONFIG_SCHEDSTATS */
3712static inline void init_schedstats(void) {}
3713#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
3714
3715/*
3716 * fork()/clone()-time setup:
3717 */
aab03e05 3718int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3719{
0122ec5b 3720 unsigned long flags;
dd41f596 3721
5e1576ed 3722 __sched_fork(clone_flags, p);
06b83b5f 3723 /*
7dc603c9 3724 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
3725 * nobody will actually run it, and a signal or other external
3726 * event cannot wake it up and insert it on the runqueue either.
3727 */
7dc603c9 3728 p->state = TASK_NEW;
dd41f596 3729
c350a04e
MG
3730 /*
3731 * Make sure we do not leak PI boosting priority to the child.
3732 */
3733 p->prio = current->normal_prio;
3734
e8f14172
PB
3735 uclamp_fork(p);
3736
b9dc29e7
MG
3737 /*
3738 * Revert to default priority/policy on fork if requested.
3739 */
3740 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 3741 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 3742 p->policy = SCHED_NORMAL;
6c697bdf 3743 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
3744 p->rt_priority = 0;
3745 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3746 p->static_prio = NICE_TO_PRIO(0);
3747
3748 p->prio = p->normal_prio = __normal_prio(p);
9059393e 3749 set_load_weight(p, false);
6c697bdf 3750
b9dc29e7
MG
3751 /*
3752 * We don't need the reset flag anymore after the fork. It has
3753 * fulfilled its duty:
3754 */
3755 p->sched_reset_on_fork = 0;
3756 }
ca94c442 3757
af0fffd9 3758 if (dl_prio(p->prio))
aab03e05 3759 return -EAGAIN;
af0fffd9 3760 else if (rt_prio(p->prio))
aab03e05 3761 p->sched_class = &rt_sched_class;
af0fffd9 3762 else
2ddbf952 3763 p->sched_class = &fair_sched_class;
b29739f9 3764
7dc603c9 3765 init_entity_runnable_average(&p->se);
cd29fe6f 3766
86951599
PZ
3767 /*
3768 * The child is not yet in the pid-hash so no cgroup attach races,
3769 * and the cgroup is pinned to this child due to cgroup_fork()
3770 * is ran before sched_fork().
3771 *
3772 * Silence PROVE_RCU.
3773 */
0122ec5b 3774 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 3775 rseq_migrate(p);
e210bffd 3776 /*
d1ccc66d 3777 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
3778 * so use __set_task_cpu().
3779 */
af0fffd9 3780 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
3781 if (p->sched_class->task_fork)
3782 p->sched_class->task_fork(p);
0122ec5b 3783 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3784
f6db8347 3785#ifdef CONFIG_SCHED_INFO
dd41f596 3786 if (likely(sched_info_on()))
52f17b6c 3787 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3788#endif
3ca7a440
PZ
3789#if defined(CONFIG_SMP)
3790 p->on_cpu = 0;
4866cde0 3791#endif
01028747 3792 init_task_preempt_count(p);
806c09a7 3793#ifdef CONFIG_SMP
917b627d 3794 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 3795 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 3796#endif
aab03e05 3797 return 0;
1da177e4
LT
3798}
3799
13685c4a
QY
3800void sched_post_fork(struct task_struct *p)
3801{
3802 uclamp_post_fork(p);
3803}
3804
332ac17e
DF
3805unsigned long to_ratio(u64 period, u64 runtime)
3806{
3807 if (runtime == RUNTIME_INF)
c52f14d3 3808 return BW_UNIT;
332ac17e
DF
3809
3810 /*
3811 * Doing this here saves a lot of checks in all
3812 * the calling paths, and returning zero seems
3813 * safe for them anyway.
3814 */
3815 if (period == 0)
3816 return 0;
3817
c52f14d3 3818 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
3819}
3820
1da177e4
LT
3821/*
3822 * wake_up_new_task - wake up a newly created task for the first time.
3823 *
3824 * This function will do some initial scheduler statistics housekeeping
3825 * that must be done for every newly created context, then puts the task
3826 * on the runqueue and wakes it.
3827 */
3e51e3ed 3828void wake_up_new_task(struct task_struct *p)
1da177e4 3829{
eb580751 3830 struct rq_flags rf;
dd41f596 3831 struct rq *rq;
fabf318e 3832
eb580751 3833 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 3834 p->state = TASK_RUNNING;
fabf318e
PZ
3835#ifdef CONFIG_SMP
3836 /*
3837 * Fork balancing, do it here and not earlier because:
3bd37062 3838 * - cpus_ptr can change in the fork path
d1ccc66d 3839 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
3840 *
3841 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3842 * as we're not fully set-up yet.
fabf318e 3843 */
32e839dd 3844 p->recent_used_cpu = task_cpu(p);
ce3614da 3845 rseq_migrate(p);
3aef1551 3846 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 3847#endif
b7fa30c9 3848 rq = __task_rq_lock(p, &rf);
4126bad6 3849 update_rq_clock(rq);
d0fe0b9c 3850 post_init_entity_util_avg(p);
0017d735 3851
7a57f32a 3852 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 3853 trace_sched_wakeup_new(p);
a7558e01 3854 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3855#ifdef CONFIG_SMP
0aaafaab
PZ
3856 if (p->sched_class->task_woken) {
3857 /*
b19a888c 3858 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
3859 * drop it.
3860 */
d8ac8971 3861 rq_unpin_lock(rq, &rf);
efbbd05a 3862 p->sched_class->task_woken(rq, p);
d8ac8971 3863 rq_repin_lock(rq, &rf);
0aaafaab 3864 }
9a897c5a 3865#endif
eb580751 3866 task_rq_unlock(rq, p, &rf);
1da177e4
LT
3867}
3868
e107be36
AK
3869#ifdef CONFIG_PREEMPT_NOTIFIERS
3870
b7203428 3871static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 3872
2ecd9d29
PZ
3873void preempt_notifier_inc(void)
3874{
b7203428 3875 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
3876}
3877EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3878
3879void preempt_notifier_dec(void)
3880{
b7203428 3881 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
3882}
3883EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3884
e107be36 3885/**
80dd99b3 3886 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3887 * @notifier: notifier struct to register
e107be36
AK
3888 */
3889void preempt_notifier_register(struct preempt_notifier *notifier)
3890{
b7203428 3891 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
3892 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3893
e107be36
AK
3894 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3895}
3896EXPORT_SYMBOL_GPL(preempt_notifier_register);
3897
3898/**
3899 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3900 * @notifier: notifier struct to unregister
e107be36 3901 *
d84525a8 3902 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3903 */
3904void preempt_notifier_unregister(struct preempt_notifier *notifier)
3905{
3906 hlist_del(&notifier->link);
3907}
3908EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3909
1cde2930 3910static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3911{
3912 struct preempt_notifier *notifier;
e107be36 3913
b67bfe0d 3914 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3915 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3916}
3917
1cde2930
PZ
3918static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3919{
b7203428 3920 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3921 __fire_sched_in_preempt_notifiers(curr);
3922}
3923
e107be36 3924static void
1cde2930
PZ
3925__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3926 struct task_struct *next)
e107be36
AK
3927{
3928 struct preempt_notifier *notifier;
e107be36 3929
b67bfe0d 3930 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3931 notifier->ops->sched_out(notifier, next);
3932}
3933
1cde2930
PZ
3934static __always_inline void
3935fire_sched_out_preempt_notifiers(struct task_struct *curr,
3936 struct task_struct *next)
3937{
b7203428 3938 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3939 __fire_sched_out_preempt_notifiers(curr, next);
3940}
3941
6d6bc0ad 3942#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3943
1cde2930 3944static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3945{
3946}
3947
1cde2930 3948static inline void
e107be36
AK
3949fire_sched_out_preempt_notifiers(struct task_struct *curr,
3950 struct task_struct *next)
3951{
3952}
3953
6d6bc0ad 3954#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3955
31cb1bc0 3956static inline void prepare_task(struct task_struct *next)
3957{
3958#ifdef CONFIG_SMP
3959 /*
3960 * Claim the task as running, we do this before switching to it
3961 * such that any running task will have this set.
58877d34
PZ
3962 *
3963 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 3964 */
58877d34 3965 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 3966#endif
3967}
3968
3969static inline void finish_task(struct task_struct *prev)
3970{
3971#ifdef CONFIG_SMP
3972 /*
58877d34
PZ
3973 * This must be the very last reference to @prev from this CPU. After
3974 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3975 * must ensure this doesn't happen until the switch is completely
31cb1bc0 3976 * finished.
3977 *
3978 * In particular, the load of prev->state in finish_task_switch() must
3979 * happen before this.
3980 *
3981 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3982 */
3983 smp_store_release(&prev->on_cpu, 0);
3984#endif
3985}
3986
565790d2
PZ
3987#ifdef CONFIG_SMP
3988
3989static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3990{
3991 void (*func)(struct rq *rq);
3992 struct callback_head *next;
3993
3994 lockdep_assert_held(&rq->lock);
3995
3996 while (head) {
3997 func = (void (*)(struct rq *))head->func;
3998 next = head->next;
3999 head->next = NULL;
4000 head = next;
4001
4002 func(rq);
4003 }
4004}
4005
ae792702
PZ
4006static void balance_push(struct rq *rq);
4007
4008struct callback_head balance_push_callback = {
4009 .next = NULL,
4010 .func = (void (*)(struct callback_head *))balance_push,
4011};
4012
565790d2
PZ
4013static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4014{
4015 struct callback_head *head = rq->balance_callback;
4016
4017 lockdep_assert_held(&rq->lock);
ae792702 4018 if (head)
565790d2
PZ
4019 rq->balance_callback = NULL;
4020
4021 return head;
4022}
4023
4024static void __balance_callbacks(struct rq *rq)
4025{
4026 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4027}
4028
4029static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4030{
4031 unsigned long flags;
4032
4033 if (unlikely(head)) {
4034 raw_spin_lock_irqsave(&rq->lock, flags);
4035 do_balance_callbacks(rq, head);
4036 raw_spin_unlock_irqrestore(&rq->lock, flags);
4037 }
4038}
4039
4040#else
4041
4042static inline void __balance_callbacks(struct rq *rq)
4043{
4044}
4045
4046static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4047{
4048 return NULL;
4049}
4050
4051static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4052{
4053}
4054
4055#endif
4056
269d5992
PZ
4057static inline void
4058prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4059{
269d5992
PZ
4060 /*
4061 * Since the runqueue lock will be released by the next
4062 * task (which is an invalid locking op but in the case
4063 * of the scheduler it's an obvious special-case), so we
4064 * do an early lockdep release here:
4065 */
4066 rq_unpin_lock(rq, rf);
5facae4f 4067 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 4068#ifdef CONFIG_DEBUG_SPINLOCK
4069 /* this is a valid case when another task releases the spinlock */
269d5992 4070 rq->lock.owner = next;
31cb1bc0 4071#endif
269d5992
PZ
4072}
4073
4074static inline void finish_lock_switch(struct rq *rq)
4075{
31cb1bc0 4076 /*
4077 * If we are tracking spinlock dependencies then we have to
4078 * fix up the runqueue lock - which gets 'carried over' from
4079 * prev into current:
4080 */
4081 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
ae792702 4082 __balance_callbacks(rq);
31cb1bc0 4083 raw_spin_unlock_irq(&rq->lock);
4084}
4085
325ea10c
IM
4086/*
4087 * NOP if the arch has not defined these:
4088 */
4089
4090#ifndef prepare_arch_switch
4091# define prepare_arch_switch(next) do { } while (0)
4092#endif
4093
4094#ifndef finish_arch_post_lock_switch
4095# define finish_arch_post_lock_switch() do { } while (0)
4096#endif
4097
5fbda3ec
TG
4098static inline void kmap_local_sched_out(void)
4099{
4100#ifdef CONFIG_KMAP_LOCAL
4101 if (unlikely(current->kmap_ctrl.idx))
4102 __kmap_local_sched_out();
4103#endif
4104}
4105
4106static inline void kmap_local_sched_in(void)
4107{
4108#ifdef CONFIG_KMAP_LOCAL
4109 if (unlikely(current->kmap_ctrl.idx))
4110 __kmap_local_sched_in();
4111#endif
4112}
4113
4866cde0
NP
4114/**
4115 * prepare_task_switch - prepare to switch tasks
4116 * @rq: the runqueue preparing to switch
421cee29 4117 * @prev: the current task that is being switched out
4866cde0
NP
4118 * @next: the task we are going to switch to.
4119 *
4120 * This is called with the rq lock held and interrupts off. It must
4121 * be paired with a subsequent finish_task_switch after the context
4122 * switch.
4123 *
4124 * prepare_task_switch sets up locking and calls architecture specific
4125 * hooks.
4126 */
e107be36
AK
4127static inline void
4128prepare_task_switch(struct rq *rq, struct task_struct *prev,
4129 struct task_struct *next)
4866cde0 4130{
0ed557aa 4131 kcov_prepare_switch(prev);
43148951 4132 sched_info_switch(rq, prev, next);
fe4b04fa 4133 perf_event_task_sched_out(prev, next);
d7822b1e 4134 rseq_preempt(prev);
e107be36 4135 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 4136 kmap_local_sched_out();
31cb1bc0 4137 prepare_task(next);
4866cde0
NP
4138 prepare_arch_switch(next);
4139}
4140
1da177e4
LT
4141/**
4142 * finish_task_switch - clean up after a task-switch
4143 * @prev: the thread we just switched away from.
4144 *
4866cde0
NP
4145 * finish_task_switch must be called after the context switch, paired
4146 * with a prepare_task_switch call before the context switch.
4147 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4148 * and do any other architecture-specific cleanup actions.
1da177e4
LT
4149 *
4150 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 4151 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
4152 * with the lock held can cause deadlocks; see schedule() for
4153 * details.)
dfa50b60
ON
4154 *
4155 * The context switch have flipped the stack from under us and restored the
4156 * local variables which were saved when this task called schedule() in the
4157 * past. prev == current is still correct but we need to recalculate this_rq
4158 * because prev may have moved to another CPU.
1da177e4 4159 */
dfa50b60 4160static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
4161 __releases(rq->lock)
4162{
dfa50b60 4163 struct rq *rq = this_rq();
1da177e4 4164 struct mm_struct *mm = rq->prev_mm;
55a101f8 4165 long prev_state;
1da177e4 4166
609ca066
PZ
4167 /*
4168 * The previous task will have left us with a preempt_count of 2
4169 * because it left us after:
4170 *
4171 * schedule()
4172 * preempt_disable(); // 1
4173 * __schedule()
4174 * raw_spin_lock_irq(&rq->lock) // 2
4175 *
4176 * Also, see FORK_PREEMPT_COUNT.
4177 */
e2bf1c4b
PZ
4178 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4179 "corrupted preempt_count: %s/%d/0x%x\n",
4180 current->comm, current->pid, preempt_count()))
4181 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 4182
1da177e4
LT
4183 rq->prev_mm = NULL;
4184
4185 /*
4186 * A task struct has one reference for the use as "current".
c394cc9f 4187 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
4188 * schedule one last time. The schedule call will never return, and
4189 * the scheduled task must drop that reference.
95913d97
PZ
4190 *
4191 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 4192 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
4193 * running on another CPU and we could rave with its RUNNING -> DEAD
4194 * transition, resulting in a double drop.
1da177e4 4195 */
55a101f8 4196 prev_state = prev->state;
bf9fae9f 4197 vtime_task_switch(prev);
a8d757ef 4198 perf_event_task_sched_in(prev, current);
31cb1bc0 4199 finish_task(prev);
4200 finish_lock_switch(rq);
01f23e16 4201 finish_arch_post_lock_switch();
0ed557aa 4202 kcov_finish_switch(current);
5fbda3ec
TG
4203 /*
4204 * kmap_local_sched_out() is invoked with rq::lock held and
4205 * interrupts disabled. There is no requirement for that, but the
4206 * sched out code does not have an interrupt enabled section.
4207 * Restoring the maps on sched in does not require interrupts being
4208 * disabled either.
4209 */
4210 kmap_local_sched_in();
e8fa1362 4211
e107be36 4212 fire_sched_in_preempt_notifiers(current);
306e0604 4213 /*
70216e18
MD
4214 * When switching through a kernel thread, the loop in
4215 * membarrier_{private,global}_expedited() may have observed that
4216 * kernel thread and not issued an IPI. It is therefore possible to
4217 * schedule between user->kernel->user threads without passing though
4218 * switch_mm(). Membarrier requires a barrier after storing to
4219 * rq->curr, before returning to userspace, so provide them here:
4220 *
4221 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4222 * provided by mmdrop(),
4223 * - a sync_core for SYNC_CORE.
306e0604 4224 */
70216e18
MD
4225 if (mm) {
4226 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 4227 mmdrop(mm);
70216e18 4228 }
1cef1150
PZ
4229 if (unlikely(prev_state == TASK_DEAD)) {
4230 if (prev->sched_class->task_dead)
4231 prev->sched_class->task_dead(prev);
68f24b08 4232
1cef1150
PZ
4233 /*
4234 * Remove function-return probe instances associated with this
4235 * task and put them back on the free list.
4236 */
4237 kprobe_flush_task(prev);
4238
4239 /* Task is done with its stack. */
4240 put_task_stack(prev);
4241
0ff7b2cf 4242 put_task_struct_rcu_user(prev);
c6fd91f0 4243 }
99e5ada9 4244
de734f89 4245 tick_nohz_task_switch();
dfa50b60 4246 return rq;
1da177e4
LT
4247}
4248
4249/**
4250 * schedule_tail - first thing a freshly forked thread must call.
4251 * @prev: the thread we just switched away from.
4252 */
722a9f92 4253asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4254 __releases(rq->lock)
4255{
609ca066
PZ
4256 /*
4257 * New tasks start with FORK_PREEMPT_COUNT, see there and
4258 * finish_task_switch() for details.
4259 *
4260 * finish_task_switch() will drop rq->lock() and lower preempt_count
4261 * and the preempt_enable() will end up enabling preemption (on
4262 * PREEMPT_COUNT kernels).
4263 */
4264
13c2235b 4265 finish_task_switch(prev);
1a43a14a 4266 preempt_enable();
70b97a7f 4267
1da177e4 4268 if (current->set_child_tid)
b488893a 4269 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4270
4271 calculate_sigpending();
1da177e4
LT
4272}
4273
4274/*
dfa50b60 4275 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4276 */
04936948 4277static __always_inline struct rq *
70b97a7f 4278context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4279 struct task_struct *next, struct rq_flags *rf)
1da177e4 4280{
e107be36 4281 prepare_task_switch(rq, prev, next);
fe4b04fa 4282
9226d125
ZA
4283 /*
4284 * For paravirt, this is coupled with an exit in switch_to to
4285 * combine the page table reload and the switch backend into
4286 * one hypercall.
4287 */
224101ed 4288 arch_start_context_switch(prev);
9226d125 4289
306e0604 4290 /*
139d025c
PZ
4291 * kernel -> kernel lazy + transfer active
4292 * user -> kernel lazy + mmgrab() active
4293 *
4294 * kernel -> user switch + mmdrop() active
4295 * user -> user switch
306e0604 4296 */
139d025c
PZ
4297 if (!next->mm) { // to kernel
4298 enter_lazy_tlb(prev->active_mm, next);
4299
4300 next->active_mm = prev->active_mm;
4301 if (prev->mm) // from user
4302 mmgrab(prev->active_mm);
4303 else
4304 prev->active_mm = NULL;
4305 } else { // to user
227a4aad 4306 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4307 /*
4308 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4309 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4310 *
4311 * The below provides this either through switch_mm(), or in
4312 * case 'prev->active_mm == next->mm' through
4313 * finish_task_switch()'s mmdrop().
4314 */
139d025c 4315 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4316
139d025c
PZ
4317 if (!prev->mm) { // from kernel
4318 /* will mmdrop() in finish_task_switch(). */
4319 rq->prev_mm = prev->active_mm;
4320 prev->active_mm = NULL;
4321 }
1da177e4 4322 }
92509b73 4323
cb42c9a3 4324 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4325
269d5992 4326 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4327
4328 /* Here we just switch the register state and the stack. */
4329 switch_to(prev, next, prev);
dd41f596 4330 barrier();
dfa50b60
ON
4331
4332 return finish_task_switch(prev);
1da177e4
LT
4333}
4334
4335/*
1c3e8264 4336 * nr_running and nr_context_switches:
1da177e4
LT
4337 *
4338 * externally visible scheduler statistics: current number of runnable
1c3e8264 4339 * threads, total number of context switches performed since bootup.
1da177e4
LT
4340 */
4341unsigned long nr_running(void)
4342{
4343 unsigned long i, sum = 0;
4344
4345 for_each_online_cpu(i)
4346 sum += cpu_rq(i)->nr_running;
4347
4348 return sum;
f711f609 4349}
1da177e4 4350
2ee507c4 4351/*
d1ccc66d 4352 * Check if only the current task is running on the CPU.
00cc1633
DD
4353 *
4354 * Caution: this function does not check that the caller has disabled
4355 * preemption, thus the result might have a time-of-check-to-time-of-use
4356 * race. The caller is responsible to use it correctly, for example:
4357 *
dfcb245e 4358 * - from a non-preemptible section (of course)
00cc1633
DD
4359 *
4360 * - from a thread that is bound to a single CPU
4361 *
4362 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
4363 */
4364bool single_task_running(void)
4365{
00cc1633 4366 return raw_rq()->nr_running == 1;
2ee507c4
TC
4367}
4368EXPORT_SYMBOL(single_task_running);
4369
1da177e4 4370unsigned long long nr_context_switches(void)
46cb4b7c 4371{
cc94abfc
SR
4372 int i;
4373 unsigned long long sum = 0;
46cb4b7c 4374
0a945022 4375 for_each_possible_cpu(i)
1da177e4 4376 sum += cpu_rq(i)->nr_switches;
46cb4b7c 4377
1da177e4
LT
4378 return sum;
4379}
483b4ee6 4380
145d952a
DL
4381/*
4382 * Consumers of these two interfaces, like for example the cpuidle menu
4383 * governor, are using nonsensical data. Preferring shallow idle state selection
4384 * for a CPU that has IO-wait which might not even end up running the task when
4385 * it does become runnable.
4386 */
4387
4388unsigned long nr_iowait_cpu(int cpu)
4389{
4390 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4391}
4392
e33a9bba 4393/*
b19a888c 4394 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
4395 *
4396 * The idea behind IO-wait account is to account the idle time that we could
4397 * have spend running if it were not for IO. That is, if we were to improve the
4398 * storage performance, we'd have a proportional reduction in IO-wait time.
4399 *
4400 * This all works nicely on UP, where, when a task blocks on IO, we account
4401 * idle time as IO-wait, because if the storage were faster, it could've been
4402 * running and we'd not be idle.
4403 *
4404 * This has been extended to SMP, by doing the same for each CPU. This however
4405 * is broken.
4406 *
4407 * Imagine for instance the case where two tasks block on one CPU, only the one
4408 * CPU will have IO-wait accounted, while the other has regular idle. Even
4409 * though, if the storage were faster, both could've ran at the same time,
4410 * utilising both CPUs.
4411 *
4412 * This means, that when looking globally, the current IO-wait accounting on
4413 * SMP is a lower bound, by reason of under accounting.
4414 *
4415 * Worse, since the numbers are provided per CPU, they are sometimes
4416 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4417 * associated with any one particular CPU, it can wake to another CPU than it
4418 * blocked on. This means the per CPU IO-wait number is meaningless.
4419 *
4420 * Task CPU affinities can make all that even more 'interesting'.
4421 */
4422
1da177e4
LT
4423unsigned long nr_iowait(void)
4424{
4425 unsigned long i, sum = 0;
483b4ee6 4426
0a945022 4427 for_each_possible_cpu(i)
145d952a 4428 sum += nr_iowait_cpu(i);
46cb4b7c 4429
1da177e4
LT
4430 return sum;
4431}
483b4ee6 4432
dd41f596 4433#ifdef CONFIG_SMP
8a0be9ef 4434
46cb4b7c 4435/*
38022906
PZ
4436 * sched_exec - execve() is a valuable balancing opportunity, because at
4437 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 4438 */
38022906 4439void sched_exec(void)
46cb4b7c 4440{
38022906 4441 struct task_struct *p = current;
1da177e4 4442 unsigned long flags;
0017d735 4443 int dest_cpu;
46cb4b7c 4444
8f42ced9 4445 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 4446 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
4447 if (dest_cpu == smp_processor_id())
4448 goto unlock;
38022906 4449
8f42ced9 4450 if (likely(cpu_active(dest_cpu))) {
969c7921 4451 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 4452
8f42ced9
PZ
4453 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4454 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
4455 return;
4456 }
0017d735 4457unlock:
8f42ced9 4458 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 4459}
dd41f596 4460
1da177e4
LT
4461#endif
4462
1da177e4 4463DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 4464DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
4465
4466EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 4467EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 4468
6075620b
GG
4469/*
4470 * The function fair_sched_class.update_curr accesses the struct curr
4471 * and its field curr->exec_start; when called from task_sched_runtime(),
4472 * we observe a high rate of cache misses in practice.
4473 * Prefetching this data results in improved performance.
4474 */
4475static inline void prefetch_curr_exec_start(struct task_struct *p)
4476{
4477#ifdef CONFIG_FAIR_GROUP_SCHED
4478 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4479#else
4480 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4481#endif
4482 prefetch(curr);
4483 prefetch(&curr->exec_start);
4484}
4485
c5f8d995
HS
4486/*
4487 * Return accounted runtime for the task.
4488 * In case the task is currently running, return the runtime plus current's
4489 * pending runtime that have not been accounted yet.
4490 */
4491unsigned long long task_sched_runtime(struct task_struct *p)
4492{
eb580751 4493 struct rq_flags rf;
c5f8d995 4494 struct rq *rq;
6e998916 4495 u64 ns;
c5f8d995 4496
911b2898
PZ
4497#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4498 /*
97fb7a0a 4499 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
4500 * So we have a optimization chance when the task's delta_exec is 0.
4501 * Reading ->on_cpu is racy, but this is ok.
4502 *
d1ccc66d
IM
4503 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4504 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 4505 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
4506 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4507 * been accounted, so we're correct here as well.
911b2898 4508 */
da0c1e65 4509 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
4510 return p->se.sum_exec_runtime;
4511#endif
4512
eb580751 4513 rq = task_rq_lock(p, &rf);
6e998916
SG
4514 /*
4515 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4516 * project cycles that may never be accounted to this
4517 * thread, breaking clock_gettime().
4518 */
4519 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 4520 prefetch_curr_exec_start(p);
6e998916
SG
4521 update_rq_clock(rq);
4522 p->sched_class->update_curr(rq);
4523 }
4524 ns = p->se.sum_exec_runtime;
eb580751 4525 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
4526
4527 return ns;
4528}
48f24c4d 4529
7835b98b
CL
4530/*
4531 * This function gets called by the timer code, with HZ frequency.
4532 * We call it with interrupts disabled.
7835b98b
CL
4533 */
4534void scheduler_tick(void)
4535{
7835b98b
CL
4536 int cpu = smp_processor_id();
4537 struct rq *rq = cpu_rq(cpu);
dd41f596 4538 struct task_struct *curr = rq->curr;
8a8c69c3 4539 struct rq_flags rf;
b4eccf5f 4540 unsigned long thermal_pressure;
3e51f33f 4541
1567c3e3 4542 arch_scale_freq_tick();
3e51f33f 4543 sched_clock_tick();
dd41f596 4544
8a8c69c3
PZ
4545 rq_lock(rq, &rf);
4546
3e51f33f 4547 update_rq_clock(rq);
b4eccf5f 4548 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 4549 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 4550 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 4551 calc_global_load_tick(rq);
8a8c69c3
PZ
4552
4553 rq_unlock(rq, &rf);
7835b98b 4554
e9d2b064 4555 perf_event_task_tick();
e220d2dc 4556
e418e1c2 4557#ifdef CONFIG_SMP
6eb57e0d 4558 rq->idle_balance = idle_cpu(cpu);
7caff66f 4559 trigger_load_balance(rq);
e418e1c2 4560#endif
1da177e4
LT
4561}
4562
265f22a9 4563#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4564
4565struct tick_work {
4566 int cpu;
b55bd585 4567 atomic_t state;
d84b3131
FW
4568 struct delayed_work work;
4569};
b55bd585
PM
4570/* Values for ->state, see diagram below. */
4571#define TICK_SCHED_REMOTE_OFFLINE 0
4572#define TICK_SCHED_REMOTE_OFFLINING 1
4573#define TICK_SCHED_REMOTE_RUNNING 2
4574
4575/*
4576 * State diagram for ->state:
4577 *
4578 *
4579 * TICK_SCHED_REMOTE_OFFLINE
4580 * | ^
4581 * | |
4582 * | | sched_tick_remote()
4583 * | |
4584 * | |
4585 * +--TICK_SCHED_REMOTE_OFFLINING
4586 * | ^
4587 * | |
4588 * sched_tick_start() | | sched_tick_stop()
4589 * | |
4590 * V |
4591 * TICK_SCHED_REMOTE_RUNNING
4592 *
4593 *
4594 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4595 * and sched_tick_start() are happy to leave the state in RUNNING.
4596 */
d84b3131
FW
4597
4598static struct tick_work __percpu *tick_work_cpu;
4599
4600static void sched_tick_remote(struct work_struct *work)
4601{
4602 struct delayed_work *dwork = to_delayed_work(work);
4603 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4604 int cpu = twork->cpu;
4605 struct rq *rq = cpu_rq(cpu);
d9c0ffca 4606 struct task_struct *curr;
d84b3131 4607 struct rq_flags rf;
d9c0ffca 4608 u64 delta;
b55bd585 4609 int os;
d84b3131
FW
4610
4611 /*
4612 * Handle the tick only if it appears the remote CPU is running in full
4613 * dynticks mode. The check is racy by nature, but missing a tick or
4614 * having one too much is no big deal because the scheduler tick updates
4615 * statistics and checks timeslices in a time-independent way, regardless
4616 * of when exactly it is running.
4617 */
488603b8 4618 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 4619 goto out_requeue;
d84b3131 4620
d9c0ffca
FW
4621 rq_lock_irq(rq, &rf);
4622 curr = rq->curr;
488603b8 4623 if (cpu_is_offline(cpu))
d9c0ffca 4624 goto out_unlock;
d84b3131 4625
d9c0ffca 4626 update_rq_clock(rq);
d9c0ffca 4627
488603b8
SW
4628 if (!is_idle_task(curr)) {
4629 /*
4630 * Make sure the next tick runs within a reasonable
4631 * amount of time.
4632 */
4633 delta = rq_clock_task(rq) - curr->se.exec_start;
4634 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4635 }
d9c0ffca
FW
4636 curr->sched_class->task_tick(rq, curr, 0);
4637
ebc0f83c 4638 calc_load_nohz_remote(rq);
d9c0ffca
FW
4639out_unlock:
4640 rq_unlock_irq(rq, &rf);
d9c0ffca 4641out_requeue:
ebc0f83c 4642
d84b3131
FW
4643 /*
4644 * Run the remote tick once per second (1Hz). This arbitrary
4645 * frequency is large enough to avoid overload but short enough
b55bd585
PM
4646 * to keep scheduler internal stats reasonably up to date. But
4647 * first update state to reflect hotplug activity if required.
d84b3131 4648 */
b55bd585
PM
4649 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4650 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4651 if (os == TICK_SCHED_REMOTE_RUNNING)
4652 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
4653}
4654
4655static void sched_tick_start(int cpu)
4656{
b55bd585 4657 int os;
d84b3131
FW
4658 struct tick_work *twork;
4659
4660 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4661 return;
4662
4663 WARN_ON_ONCE(!tick_work_cpu);
4664
4665 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4666 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4667 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4668 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4669 twork->cpu = cpu;
4670 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4671 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4672 }
d84b3131
FW
4673}
4674
4675#ifdef CONFIG_HOTPLUG_CPU
4676static void sched_tick_stop(int cpu)
4677{
4678 struct tick_work *twork;
b55bd585 4679 int os;
d84b3131
FW
4680
4681 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4682 return;
4683
4684 WARN_ON_ONCE(!tick_work_cpu);
4685
4686 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4687 /* There cannot be competing actions, but don't rely on stop-machine. */
4688 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4689 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4690 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
4691}
4692#endif /* CONFIG_HOTPLUG_CPU */
4693
4694int __init sched_tick_offload_init(void)
4695{
4696 tick_work_cpu = alloc_percpu(struct tick_work);
4697 BUG_ON(!tick_work_cpu);
d84b3131
FW
4698 return 0;
4699}
4700
4701#else /* !CONFIG_NO_HZ_FULL */
4702static inline void sched_tick_start(int cpu) { }
4703static inline void sched_tick_stop(int cpu) { }
265f22a9 4704#endif
1da177e4 4705
c1a280b6 4706#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 4707 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
4708/*
4709 * If the value passed in is equal to the current preempt count
4710 * then we just disabled preemption. Start timing the latency.
4711 */
4712static inline void preempt_latency_start(int val)
4713{
4714 if (preempt_count() == val) {
4715 unsigned long ip = get_lock_parent_ip();
4716#ifdef CONFIG_DEBUG_PREEMPT
4717 current->preempt_disable_ip = ip;
4718#endif
4719 trace_preempt_off(CALLER_ADDR0, ip);
4720 }
4721}
7e49fcce 4722
edafe3a5 4723void preempt_count_add(int val)
1da177e4 4724{
6cd8a4bb 4725#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4726 /*
4727 * Underflow?
4728 */
9a11b49a
IM
4729 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4730 return;
6cd8a4bb 4731#endif
bdb43806 4732 __preempt_count_add(val);
6cd8a4bb 4733#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4734 /*
4735 * Spinlock count overflowing soon?
4736 */
33859f7f
MOS
4737 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4738 PREEMPT_MASK - 10);
6cd8a4bb 4739#endif
47252cfb 4740 preempt_latency_start(val);
1da177e4 4741}
bdb43806 4742EXPORT_SYMBOL(preempt_count_add);
edafe3a5 4743NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 4744
47252cfb
SR
4745/*
4746 * If the value passed in equals to the current preempt count
4747 * then we just enabled preemption. Stop timing the latency.
4748 */
4749static inline void preempt_latency_stop(int val)
4750{
4751 if (preempt_count() == val)
4752 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4753}
4754
edafe3a5 4755void preempt_count_sub(int val)
1da177e4 4756{
6cd8a4bb 4757#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4758 /*
4759 * Underflow?
4760 */
01e3eb82 4761 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4762 return;
1da177e4
LT
4763 /*
4764 * Is the spinlock portion underflowing?
4765 */
9a11b49a
IM
4766 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4767 !(preempt_count() & PREEMPT_MASK)))
4768 return;
6cd8a4bb 4769#endif
9a11b49a 4770
47252cfb 4771 preempt_latency_stop(val);
bdb43806 4772 __preempt_count_sub(val);
1da177e4 4773}
bdb43806 4774EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 4775NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 4776
47252cfb
SR
4777#else
4778static inline void preempt_latency_start(int val) { }
4779static inline void preempt_latency_stop(int val) { }
1da177e4
LT
4780#endif
4781
59ddbcb2
IM
4782static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4783{
4784#ifdef CONFIG_DEBUG_PREEMPT
4785 return p->preempt_disable_ip;
4786#else
4787 return 0;
4788#endif
4789}
4790
1da177e4 4791/*
dd41f596 4792 * Print scheduling while atomic bug:
1da177e4 4793 */
dd41f596 4794static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4795{
d1c6d149
VN
4796 /* Save this before calling printk(), since that will clobber it */
4797 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4798
664dfa65
DJ
4799 if (oops_in_progress)
4800 return;
4801
3df0fc5b
PZ
4802 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4803 prev->comm, prev->pid, preempt_count());
838225b4 4804
dd41f596 4805 debug_show_held_locks(prev);
e21f5b15 4806 print_modules();
dd41f596
IM
4807 if (irqs_disabled())
4808 print_irqtrace_events(prev);
d1c6d149
VN
4809 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4810 && in_atomic_preempt_off()) {
8f47b187 4811 pr_err("Preemption disabled at:");
2062a4e8 4812 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 4813 }
748c7201
DBO
4814 if (panic_on_warn)
4815 panic("scheduling while atomic\n");
4816
6135fc1e 4817 dump_stack();
373d4d09 4818 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 4819}
1da177e4 4820
dd41f596
IM
4821/*
4822 * Various schedule()-time debugging checks and statistics:
4823 */
312364f3 4824static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 4825{
0d9e2632 4826#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
4827 if (task_stack_end_corrupted(prev))
4828 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
4829
4830 if (task_scs_end_corrupted(prev))
4831 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 4832#endif
b99def8b 4833
312364f3
DV
4834#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4835 if (!preempt && prev->state && prev->non_block_count) {
4836 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4837 prev->comm, prev->pid, prev->non_block_count);
4838 dump_stack();
4839 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4840 }
4841#endif
4842
1dc0fffc 4843 if (unlikely(in_atomic_preempt_off())) {
dd41f596 4844 __schedule_bug(prev);
1dc0fffc
PZ
4845 preempt_count_set(PREEMPT_DISABLED);
4846 }
b3fbab05 4847 rcu_sleep_check();
9f68b5b7 4848 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 4849
1da177e4
LT
4850 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4851
ae92882e 4852 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
4853}
4854
457d1f46
CY
4855static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4856 struct rq_flags *rf)
4857{
4858#ifdef CONFIG_SMP
4859 const struct sched_class *class;
4860 /*
4861 * We must do the balancing pass before put_prev_task(), such
4862 * that when we release the rq->lock the task is in the same
4863 * state as before we took rq->lock.
4864 *
4865 * We can terminate the balance pass as soon as we know there is
4866 * a runnable task of @class priority or higher.
4867 */
4868 for_class_range(class, prev->sched_class, &idle_sched_class) {
4869 if (class->balance(rq, prev, rf))
4870 break;
4871 }
4872#endif
4873
4874 put_prev_task(rq, prev);
4875}
4876
dd41f596
IM
4877/*
4878 * Pick up the highest-prio task:
4879 */
4880static inline struct task_struct *
d8ac8971 4881pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 4882{
49ee5768 4883 const struct sched_class *class;
dd41f596 4884 struct task_struct *p;
1da177e4
LT
4885
4886 /*
0ba87bb2
PZ
4887 * Optimization: we know that if all tasks are in the fair class we can
4888 * call that function directly, but only if the @prev task wasn't of a
b19a888c 4889 * higher scheduling class, because otherwise those lose the
0ba87bb2 4890 * opportunity to pull in more work from other CPUs.
1da177e4 4891 */
aa93cd53 4892 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
4893 rq->nr_running == rq->cfs.h_nr_running)) {
4894
5d7d6056 4895 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 4896 if (unlikely(p == RETRY_TASK))
67692435 4897 goto restart;
6ccdc84b 4898
d1ccc66d 4899 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 4900 if (!p) {
f488e105 4901 put_prev_task(rq, prev);
98c2f700 4902 p = pick_next_task_idle(rq);
f488e105 4903 }
6ccdc84b
PZ
4904
4905 return p;
1da177e4
LT
4906 }
4907
67692435 4908restart:
457d1f46 4909 put_prev_task_balance(rq, prev, rf);
67692435 4910
34f971f6 4911 for_each_class(class) {
98c2f700 4912 p = class->pick_next_task(rq);
67692435 4913 if (p)
dd41f596 4914 return p;
dd41f596 4915 }
34f971f6 4916
d1ccc66d
IM
4917 /* The idle class should always have a runnable task: */
4918 BUG();
dd41f596 4919}
1da177e4 4920
dd41f596 4921/*
c259e01a 4922 * __schedule() is the main scheduler function.
edde96ea
PE
4923 *
4924 * The main means of driving the scheduler and thus entering this function are:
4925 *
4926 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4927 *
4928 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4929 * paths. For example, see arch/x86/entry_64.S.
4930 *
4931 * To drive preemption between tasks, the scheduler sets the flag in timer
4932 * interrupt handler scheduler_tick().
4933 *
4934 * 3. Wakeups don't really cause entry into schedule(). They add a
4935 * task to the run-queue and that's it.
4936 *
4937 * Now, if the new task added to the run-queue preempts the current
4938 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4939 * called on the nearest possible occasion:
4940 *
c1a280b6 4941 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
4942 *
4943 * - in syscall or exception context, at the next outmost
4944 * preempt_enable(). (this might be as soon as the wake_up()'s
4945 * spin_unlock()!)
4946 *
4947 * - in IRQ context, return from interrupt-handler to
4948 * preemptible context
4949 *
c1a280b6 4950 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
4951 * then at the next:
4952 *
4953 * - cond_resched() call
4954 * - explicit schedule() call
4955 * - return from syscall or exception to user-space
4956 * - return from interrupt-handler to user-space
bfd9b2b5 4957 *
b30f0e3f 4958 * WARNING: must be called with preemption disabled!
dd41f596 4959 */
499d7955 4960static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4961{
4962 struct task_struct *prev, *next;
67ca7bde 4963 unsigned long *switch_count;
dbfb089d 4964 unsigned long prev_state;
d8ac8971 4965 struct rq_flags rf;
dd41f596 4966 struct rq *rq;
31656519 4967 int cpu;
dd41f596 4968
dd41f596
IM
4969 cpu = smp_processor_id();
4970 rq = cpu_rq(cpu);
dd41f596 4971 prev = rq->curr;
dd41f596 4972
312364f3 4973 schedule_debug(prev, preempt);
1da177e4 4974
e0ee463c 4975 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 4976 hrtick_clear(rq);
8f4d37ec 4977
46a5d164 4978 local_irq_disable();
bcbfdd01 4979 rcu_note_context_switch(preempt);
46a5d164 4980
e0acd0a6
ON
4981 /*
4982 * Make sure that signal_pending_state()->signal_pending() below
4983 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
4984 * done by the caller to avoid the race with signal_wake_up():
4985 *
4986 * __set_current_state(@state) signal_wake_up()
4987 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4988 * wake_up_state(p, state)
4989 * LOCK rq->lock LOCK p->pi_state
4990 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4991 * if (signal_pending_state()) if (p->state & @state)
306e0604 4992 *
dbfb089d 4993 * Also, the membarrier system call requires a full memory barrier
306e0604 4994 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4995 */
8a8c69c3 4996 rq_lock(rq, &rf);
d89e588c 4997 smp_mb__after_spinlock();
1da177e4 4998
d1ccc66d
IM
4999 /* Promote REQ to ACT */
5000 rq->clock_update_flags <<= 1;
bce4dc80 5001 update_rq_clock(rq);
9edfbfed 5002
246d86b5 5003 switch_count = &prev->nivcsw;
d136122f 5004
dbfb089d 5005 /*
d136122f
PZ
5006 * We must load prev->state once (task_struct::state is volatile), such
5007 * that:
5008 *
5009 * - we form a control dependency vs deactivate_task() below.
5010 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 5011 */
d136122f
PZ
5012 prev_state = prev->state;
5013 if (!preempt && prev_state) {
dbfb089d 5014 if (signal_pending_state(prev_state, prev)) {
1da177e4 5015 prev->state = TASK_RUNNING;
21aa9af0 5016 } else {
dbfb089d
PZ
5017 prev->sched_contributes_to_load =
5018 (prev_state & TASK_UNINTERRUPTIBLE) &&
5019 !(prev_state & TASK_NOLOAD) &&
5020 !(prev->flags & PF_FROZEN);
5021
5022 if (prev->sched_contributes_to_load)
5023 rq->nr_uninterruptible++;
5024
5025 /*
5026 * __schedule() ttwu()
d136122f
PZ
5027 * prev_state = prev->state; if (p->on_rq && ...)
5028 * if (prev_state) goto out;
5029 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5030 * p->state = TASK_WAKING
5031 *
5032 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
5033 *
5034 * After this, schedule() must not care about p->state any more.
5035 */
bce4dc80 5036 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 5037
e33a9bba
TH
5038 if (prev->in_iowait) {
5039 atomic_inc(&rq->nr_iowait);
5040 delayacct_blkio_start();
5041 }
21aa9af0 5042 }
dd41f596 5043 switch_count = &prev->nvcsw;
1da177e4
LT
5044 }
5045
d8ac8971 5046 next = pick_next_task(rq, prev, &rf);
f26f9aff 5047 clear_tsk_need_resched(prev);
f27dde8d 5048 clear_preempt_need_resched();
1da177e4 5049
1da177e4 5050 if (likely(prev != next)) {
1da177e4 5051 rq->nr_switches++;
5311a98f
EB
5052 /*
5053 * RCU users of rcu_dereference(rq->curr) may not see
5054 * changes to task_struct made by pick_next_task().
5055 */
5056 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
5057 /*
5058 * The membarrier system call requires each architecture
5059 * to have a full memory barrier after updating
306e0604
MD
5060 * rq->curr, before returning to user-space.
5061 *
5062 * Here are the schemes providing that barrier on the
5063 * various architectures:
5064 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5065 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5066 * - finish_lock_switch() for weakly-ordered
5067 * architectures where spin_unlock is a full barrier,
5068 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5069 * is a RELEASE barrier),
22e4ebb9 5070 */
1da177e4
LT
5071 ++*switch_count;
5072
af449901 5073 migrate_disable_switch(rq, prev);
b05e75d6
JW
5074 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5075
c73464b1 5076 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
5077
5078 /* Also unlocks the rq: */
5079 rq = context_switch(rq, prev, next, &rf);
cbce1a68 5080 } else {
cb42c9a3 5081 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 5082
565790d2
PZ
5083 rq_unpin_lock(rq, &rf);
5084 __balance_callbacks(rq);
5085 raw_spin_unlock_irq(&rq->lock);
5086 }
1da177e4 5087}
c259e01a 5088
9af6528e
PZ
5089void __noreturn do_task_dead(void)
5090{
d1ccc66d 5091 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 5092 set_special_state(TASK_DEAD);
d1ccc66d
IM
5093
5094 /* Tell freezer to ignore us: */
5095 current->flags |= PF_NOFREEZE;
5096
9af6528e
PZ
5097 __schedule(false);
5098 BUG();
d1ccc66d
IM
5099
5100 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 5101 for (;;)
d1ccc66d 5102 cpu_relax();
9af6528e
PZ
5103}
5104
9c40cef2
TG
5105static inline void sched_submit_work(struct task_struct *tsk)
5106{
c1cecf88
SAS
5107 unsigned int task_flags;
5108
b0fdc013 5109 if (!tsk->state)
9c40cef2 5110 return;
6d25be57 5111
c1cecf88 5112 task_flags = tsk->flags;
6d25be57
TG
5113 /*
5114 * If a worker went to sleep, notify and ask workqueue whether
5115 * it wants to wake up a task to maintain concurrency.
5116 * As this function is called inside the schedule() context,
5117 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
5118 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5119 * requires it.
6d25be57 5120 */
c1cecf88 5121 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 5122 preempt_disable();
c1cecf88 5123 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
5124 wq_worker_sleeping(tsk);
5125 else
5126 io_wq_worker_sleeping(tsk);
6d25be57
TG
5127 preempt_enable_no_resched();
5128 }
5129
b0fdc013
SAS
5130 if (tsk_is_pi_blocked(tsk))
5131 return;
5132
9c40cef2
TG
5133 /*
5134 * If we are going to sleep and we have plugged IO queued,
5135 * make sure to submit it to avoid deadlocks.
5136 */
5137 if (blk_needs_flush_plug(tsk))
5138 blk_schedule_flush_plug(tsk);
5139}
5140
6d25be57
TG
5141static void sched_update_worker(struct task_struct *tsk)
5142{
771b53d0
JA
5143 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5144 if (tsk->flags & PF_WQ_WORKER)
5145 wq_worker_running(tsk);
5146 else
5147 io_wq_worker_running(tsk);
5148 }
6d25be57
TG
5149}
5150
722a9f92 5151asmlinkage __visible void __sched schedule(void)
c259e01a 5152{
9c40cef2
TG
5153 struct task_struct *tsk = current;
5154
5155 sched_submit_work(tsk);
bfd9b2b5 5156 do {
b30f0e3f 5157 preempt_disable();
fc13aeba 5158 __schedule(false);
b30f0e3f 5159 sched_preempt_enable_no_resched();
bfd9b2b5 5160 } while (need_resched());
6d25be57 5161 sched_update_worker(tsk);
c259e01a 5162}
1da177e4
LT
5163EXPORT_SYMBOL(schedule);
5164
8663effb
SRV
5165/*
5166 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5167 * state (have scheduled out non-voluntarily) by making sure that all
5168 * tasks have either left the run queue or have gone into user space.
5169 * As idle tasks do not do either, they must not ever be preempted
5170 * (schedule out non-voluntarily).
5171 *
5172 * schedule_idle() is similar to schedule_preempt_disable() except that it
5173 * never enables preemption because it does not call sched_submit_work().
5174 */
5175void __sched schedule_idle(void)
5176{
5177 /*
5178 * As this skips calling sched_submit_work(), which the idle task does
5179 * regardless because that function is a nop when the task is in a
5180 * TASK_RUNNING state, make sure this isn't used someplace that the
5181 * current task can be in any other state. Note, idle is always in the
5182 * TASK_RUNNING state.
5183 */
5184 WARN_ON_ONCE(current->state);
5185 do {
5186 __schedule(false);
5187 } while (need_resched());
5188}
5189
6775de49 5190#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
722a9f92 5191asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
5192{
5193 /*
5194 * If we come here after a random call to set_need_resched(),
5195 * or we have been woken up remotely but the IPI has not yet arrived,
5196 * we haven't yet exited the RCU idle mode. Do it here manually until
5197 * we find a better solution.
7cc78f8f
AL
5198 *
5199 * NB: There are buggy callers of this function. Ideally we
c467ea76 5200 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 5201 * too frequently to make sense yet.
20ab65e3 5202 */
7cc78f8f 5203 enum ctx_state prev_state = exception_enter();
20ab65e3 5204 schedule();
7cc78f8f 5205 exception_exit(prev_state);
20ab65e3
FW
5206}
5207#endif
5208
c5491ea7
TG
5209/**
5210 * schedule_preempt_disabled - called with preemption disabled
5211 *
5212 * Returns with preemption disabled. Note: preempt_count must be 1
5213 */
5214void __sched schedule_preempt_disabled(void)
5215{
ba74c144 5216 sched_preempt_enable_no_resched();
c5491ea7
TG
5217 schedule();
5218 preempt_disable();
5219}
5220
06b1f808 5221static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
5222{
5223 do {
47252cfb
SR
5224 /*
5225 * Because the function tracer can trace preempt_count_sub()
5226 * and it also uses preempt_enable/disable_notrace(), if
5227 * NEED_RESCHED is set, the preempt_enable_notrace() called
5228 * by the function tracer will call this function again and
5229 * cause infinite recursion.
5230 *
5231 * Preemption must be disabled here before the function
5232 * tracer can trace. Break up preempt_disable() into two
5233 * calls. One to disable preemption without fear of being
5234 * traced. The other to still record the preemption latency,
5235 * which can also be traced by the function tracer.
5236 */
499d7955 5237 preempt_disable_notrace();
47252cfb 5238 preempt_latency_start(1);
fc13aeba 5239 __schedule(true);
47252cfb 5240 preempt_latency_stop(1);
499d7955 5241 preempt_enable_no_resched_notrace();
a18b5d01
FW
5242
5243 /*
5244 * Check again in case we missed a preemption opportunity
5245 * between schedule and now.
5246 */
a18b5d01
FW
5247 } while (need_resched());
5248}
5249
c1a280b6 5250#ifdef CONFIG_PREEMPTION
1da177e4 5251/*
a49b4f40
VS
5252 * This is the entry point to schedule() from in-kernel preemption
5253 * off of preempt_enable.
1da177e4 5254 */
722a9f92 5255asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 5256{
1da177e4
LT
5257 /*
5258 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5259 * we do not want to preempt the current task. Just return..
1da177e4 5260 */
fbb00b56 5261 if (likely(!preemptible()))
1da177e4
LT
5262 return;
5263
a18b5d01 5264 preempt_schedule_common();
1da177e4 5265}
376e2424 5266NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 5267EXPORT_SYMBOL(preempt_schedule);
009f60e2 5268
2c9a98d3
PZI
5269#ifdef CONFIG_PREEMPT_DYNAMIC
5270DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
ef72661e 5271EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
2c9a98d3
PZI
5272#endif
5273
5274
009f60e2 5275/**
4eaca0a8 5276 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
5277 *
5278 * The tracing infrastructure uses preempt_enable_notrace to prevent
5279 * recursion and tracing preempt enabling caused by the tracing
5280 * infrastructure itself. But as tracing can happen in areas coming
5281 * from userspace or just about to enter userspace, a preempt enable
5282 * can occur before user_exit() is called. This will cause the scheduler
5283 * to be called when the system is still in usermode.
5284 *
5285 * To prevent this, the preempt_enable_notrace will use this function
5286 * instead of preempt_schedule() to exit user context if needed before
5287 * calling the scheduler.
5288 */
4eaca0a8 5289asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
5290{
5291 enum ctx_state prev_ctx;
5292
5293 if (likely(!preemptible()))
5294 return;
5295
5296 do {
47252cfb
SR
5297 /*
5298 * Because the function tracer can trace preempt_count_sub()
5299 * and it also uses preempt_enable/disable_notrace(), if
5300 * NEED_RESCHED is set, the preempt_enable_notrace() called
5301 * by the function tracer will call this function again and
5302 * cause infinite recursion.
5303 *
5304 * Preemption must be disabled here before the function
5305 * tracer can trace. Break up preempt_disable() into two
5306 * calls. One to disable preemption without fear of being
5307 * traced. The other to still record the preemption latency,
5308 * which can also be traced by the function tracer.
5309 */
3d8f74dd 5310 preempt_disable_notrace();
47252cfb 5311 preempt_latency_start(1);
009f60e2
ON
5312 /*
5313 * Needs preempt disabled in case user_exit() is traced
5314 * and the tracer calls preempt_enable_notrace() causing
5315 * an infinite recursion.
5316 */
5317 prev_ctx = exception_enter();
fc13aeba 5318 __schedule(true);
009f60e2
ON
5319 exception_exit(prev_ctx);
5320
47252cfb 5321 preempt_latency_stop(1);
3d8f74dd 5322 preempt_enable_no_resched_notrace();
009f60e2
ON
5323 } while (need_resched());
5324}
4eaca0a8 5325EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 5326
2c9a98d3
PZI
5327#ifdef CONFIG_PREEMPT_DYNAMIC
5328DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
ef72661e 5329EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
2c9a98d3
PZI
5330#endif
5331
c1a280b6 5332#endif /* CONFIG_PREEMPTION */
1da177e4 5333
826bfeb3
PZI
5334#ifdef CONFIG_PREEMPT_DYNAMIC
5335
5336#include <linux/entry-common.h>
5337
5338/*
5339 * SC:cond_resched
5340 * SC:might_resched
5341 * SC:preempt_schedule
5342 * SC:preempt_schedule_notrace
5343 * SC:irqentry_exit_cond_resched
5344 *
5345 *
5346 * NONE:
5347 * cond_resched <- __cond_resched
5348 * might_resched <- RET0
5349 * preempt_schedule <- NOP
5350 * preempt_schedule_notrace <- NOP
5351 * irqentry_exit_cond_resched <- NOP
5352 *
5353 * VOLUNTARY:
5354 * cond_resched <- __cond_resched
5355 * might_resched <- __cond_resched
5356 * preempt_schedule <- NOP
5357 * preempt_schedule_notrace <- NOP
5358 * irqentry_exit_cond_resched <- NOP
5359 *
5360 * FULL:
5361 * cond_resched <- RET0
5362 * might_resched <- RET0
5363 * preempt_schedule <- preempt_schedule
5364 * preempt_schedule_notrace <- preempt_schedule_notrace
5365 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
5366 */
e59e10f8
PZ
5367
5368enum {
5369 preempt_dynamic_none = 0,
5370 preempt_dynamic_voluntary,
5371 preempt_dynamic_full,
5372};
5373
5374static int preempt_dynamic_mode = preempt_dynamic_full;
5375
5376static int sched_dynamic_mode(const char *str)
826bfeb3 5377{
e59e10f8
PZ
5378 if (!strcmp(str, "none"))
5379 return 0;
5380
5381 if (!strcmp(str, "voluntary"))
5382 return 1;
5383
5384 if (!strcmp(str, "full"))
5385 return 2;
5386
5387 return -1;
5388}
5389
5390static void sched_dynamic_update(int mode)
5391{
5392 /*
5393 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
5394 * the ZERO state, which is invalid.
5395 */
5396 static_call_update(cond_resched, __cond_resched);
5397 static_call_update(might_resched, __cond_resched);
5398 static_call_update(preempt_schedule, __preempt_schedule_func);
5399 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5400 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5401
5402 switch (mode) {
5403 case preempt_dynamic_none:
826bfeb3
PZI
5404 static_call_update(cond_resched, __cond_resched);
5405 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5406 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5407 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5408 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
e59e10f8
PZ
5409 pr_info("Dynamic Preempt: none\n");
5410 break;
5411
5412 case preempt_dynamic_voluntary:
826bfeb3
PZI
5413 static_call_update(cond_resched, __cond_resched);
5414 static_call_update(might_resched, __cond_resched);
5415 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5416 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5417 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
e59e10f8
PZ
5418 pr_info("Dynamic Preempt: voluntary\n");
5419 break;
5420
5421 case preempt_dynamic_full:
826bfeb3
PZI
5422 static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0);
5423 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5424 static_call_update(preempt_schedule, __preempt_schedule_func);
5425 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5426 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
e59e10f8
PZ
5427 pr_info("Dynamic Preempt: full\n");
5428 break;
5429 }
5430
5431 preempt_dynamic_mode = mode;
5432}
5433
5434static int __init setup_preempt_mode(char *str)
5435{
5436 int mode = sched_dynamic_mode(str);
5437 if (mode < 0) {
5438 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
826bfeb3
PZI
5439 return 1;
5440 }
e59e10f8
PZ
5441
5442 sched_dynamic_update(mode);
826bfeb3
PZI
5443 return 0;
5444}
5445__setup("preempt=", setup_preempt_mode);
5446
e59e10f8
PZ
5447#ifdef CONFIG_SCHED_DEBUG
5448
5449static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
5450 size_t cnt, loff_t *ppos)
5451{
5452 char buf[16];
5453 int mode;
5454
5455 if (cnt > 15)
5456 cnt = 15;
5457
5458 if (copy_from_user(&buf, ubuf, cnt))
5459 return -EFAULT;
5460
5461 buf[cnt] = 0;
5462 mode = sched_dynamic_mode(strstrip(buf));
5463 if (mode < 0)
5464 return mode;
5465
5466 sched_dynamic_update(mode);
5467
5468 *ppos += cnt;
5469
5470 return cnt;
5471}
5472
5473static int sched_dynamic_show(struct seq_file *m, void *v)
5474{
5475 static const char * preempt_modes[] = {
5476 "none", "voluntary", "full"
5477 };
5478 int i;
5479
5480 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
5481 if (preempt_dynamic_mode == i)
5482 seq_puts(m, "(");
5483 seq_puts(m, preempt_modes[i]);
5484 if (preempt_dynamic_mode == i)
5485 seq_puts(m, ")");
5486
5487 seq_puts(m, " ");
5488 }
5489
5490 seq_puts(m, "\n");
5491 return 0;
5492}
5493
5494static int sched_dynamic_open(struct inode *inode, struct file *filp)
5495{
5496 return single_open(filp, sched_dynamic_show, NULL);
5497}
5498
5499static const struct file_operations sched_dynamic_fops = {
5500 .open = sched_dynamic_open,
5501 .write = sched_dynamic_write,
5502 .read = seq_read,
5503 .llseek = seq_lseek,
5504 .release = single_release,
5505};
5506
5507static __init int sched_init_debug_dynamic(void)
5508{
5509 debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops);
5510 return 0;
5511}
5512late_initcall(sched_init_debug_dynamic);
5513
5514#endif /* CONFIG_SCHED_DEBUG */
826bfeb3
PZI
5515#endif /* CONFIG_PREEMPT_DYNAMIC */
5516
5517
1da177e4 5518/*
a49b4f40 5519 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
5520 * off of irq context.
5521 * Note, that this is called and return with irqs disabled. This will
5522 * protect us against recursive calling from irq.
5523 */
722a9f92 5524asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 5525{
b22366cd 5526 enum ctx_state prev_state;
6478d880 5527
2ed6e34f 5528 /* Catch callers which need to be fixed */
f27dde8d 5529 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 5530
b22366cd
FW
5531 prev_state = exception_enter();
5532
3a5c359a 5533 do {
3d8f74dd 5534 preempt_disable();
3a5c359a 5535 local_irq_enable();
fc13aeba 5536 __schedule(true);
3a5c359a 5537 local_irq_disable();
3d8f74dd 5538 sched_preempt_enable_no_resched();
5ed0cec0 5539 } while (need_resched());
b22366cd
FW
5540
5541 exception_exit(prev_state);
1da177e4
LT
5542}
5543
ac6424b9 5544int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5545 void *key)
1da177e4 5546{
062d3f95 5547 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 5548 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5549}
1da177e4
LT
5550EXPORT_SYMBOL(default_wake_function);
5551
b29739f9
IM
5552#ifdef CONFIG_RT_MUTEXES
5553
acd58620
PZ
5554static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5555{
5556 if (pi_task)
5557 prio = min(prio, pi_task->prio);
5558
5559 return prio;
5560}
5561
5562static inline int rt_effective_prio(struct task_struct *p, int prio)
5563{
5564 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5565
5566 return __rt_effective_prio(pi_task, prio);
5567}
5568
b29739f9
IM
5569/*
5570 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
5571 * @p: task to boost
5572 * @pi_task: donor task
b29739f9
IM
5573 *
5574 * This function changes the 'effective' priority of a task. It does
5575 * not touch ->normal_prio like __setscheduler().
5576 *
c365c292
TG
5577 * Used by the rt_mutex code to implement priority inheritance
5578 * logic. Call site only calls if the priority of the task changed.
b29739f9 5579 */
acd58620 5580void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 5581{
acd58620 5582 int prio, oldprio, queued, running, queue_flag =
7a57f32a 5583 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 5584 const struct sched_class *prev_class;
eb580751
PZ
5585 struct rq_flags rf;
5586 struct rq *rq;
b29739f9 5587
acd58620
PZ
5588 /* XXX used to be waiter->prio, not waiter->task->prio */
5589 prio = __rt_effective_prio(pi_task, p->normal_prio);
5590
5591 /*
5592 * If nothing changed; bail early.
5593 */
5594 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5595 return;
b29739f9 5596
eb580751 5597 rq = __task_rq_lock(p, &rf);
80f5c1b8 5598 update_rq_clock(rq);
acd58620
PZ
5599 /*
5600 * Set under pi_lock && rq->lock, such that the value can be used under
5601 * either lock.
5602 *
5603 * Note that there is loads of tricky to make this pointer cache work
5604 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5605 * ensure a task is de-boosted (pi_task is set to NULL) before the
5606 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 5607 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
5608 */
5609 p->pi_top_task = pi_task;
5610
5611 /*
5612 * For FIFO/RR we only need to set prio, if that matches we're done.
5613 */
5614 if (prio == p->prio && !dl_prio(prio))
5615 goto out_unlock;
b29739f9 5616
1c4dd99b
TG
5617 /*
5618 * Idle task boosting is a nono in general. There is one
5619 * exception, when PREEMPT_RT and NOHZ is active:
5620 *
5621 * The idle task calls get_next_timer_interrupt() and holds
5622 * the timer wheel base->lock on the CPU and another CPU wants
5623 * to access the timer (probably to cancel it). We can safely
5624 * ignore the boosting request, as the idle CPU runs this code
5625 * with interrupts disabled and will complete the lock
5626 * protected section without being interrupted. So there is no
5627 * real need to boost.
5628 */
5629 if (unlikely(p == rq->idle)) {
5630 WARN_ON(p != rq->curr);
5631 WARN_ON(p->pi_blocked_on);
5632 goto out_unlock;
5633 }
5634
b91473ff 5635 trace_sched_pi_setprio(p, pi_task);
d5f9f942 5636 oldprio = p->prio;
ff77e468
PZ
5637
5638 if (oldprio == prio)
5639 queue_flag &= ~DEQUEUE_MOVE;
5640
83ab0aa0 5641 prev_class = p->sched_class;
da0c1e65 5642 queued = task_on_rq_queued(p);
051a1d1a 5643 running = task_current(rq, p);
da0c1e65 5644 if (queued)
ff77e468 5645 dequeue_task(rq, p, queue_flag);
0e1f3483 5646 if (running)
f3cd1c4e 5647 put_prev_task(rq, p);
dd41f596 5648
2d3d891d
DF
5649 /*
5650 * Boosting condition are:
5651 * 1. -rt task is running and holds mutex A
5652 * --> -dl task blocks on mutex A
5653 *
5654 * 2. -dl task is running and holds mutex A
5655 * --> -dl task blocks on mutex A and could preempt the
5656 * running task
5657 */
5658 if (dl_prio(prio)) {
466af29b 5659 if (!dl_prio(p->normal_prio) ||
740797ce
JL
5660 (pi_task && dl_prio(pi_task->prio) &&
5661 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 5662 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 5663 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
5664 } else {
5665 p->dl.pi_se = &p->dl;
5666 }
aab03e05 5667 p->sched_class = &dl_sched_class;
2d3d891d
DF
5668 } else if (rt_prio(prio)) {
5669 if (dl_prio(oldprio))
2279f540 5670 p->dl.pi_se = &p->dl;
2d3d891d 5671 if (oldprio < prio)
ff77e468 5672 queue_flag |= ENQUEUE_HEAD;
dd41f596 5673 p->sched_class = &rt_sched_class;
2d3d891d
DF
5674 } else {
5675 if (dl_prio(oldprio))
2279f540 5676 p->dl.pi_se = &p->dl;
746db944
BS
5677 if (rt_prio(oldprio))
5678 p->rt.timeout = 0;
dd41f596 5679 p->sched_class = &fair_sched_class;
2d3d891d 5680 }
dd41f596 5681
b29739f9
IM
5682 p->prio = prio;
5683
da0c1e65 5684 if (queued)
ff77e468 5685 enqueue_task(rq, p, queue_flag);
a399d233 5686 if (running)
03b7fad1 5687 set_next_task(rq, p);
cb469845 5688
da7a735e 5689 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 5690out_unlock:
d1ccc66d
IM
5691 /* Avoid rq from going away on us: */
5692 preempt_disable();
4c9a4bc8 5693
565790d2
PZ
5694 rq_unpin_lock(rq, &rf);
5695 __balance_callbacks(rq);
5696 raw_spin_unlock(&rq->lock);
5697
4c9a4bc8 5698 preempt_enable();
b29739f9 5699}
acd58620
PZ
5700#else
5701static inline int rt_effective_prio(struct task_struct *p, int prio)
5702{
5703 return prio;
5704}
b29739f9 5705#endif
d50dde5a 5706
36c8b586 5707void set_user_nice(struct task_struct *p, long nice)
1da177e4 5708{
49bd21ef 5709 bool queued, running;
53a23364 5710 int old_prio;
eb580751 5711 struct rq_flags rf;
70b97a7f 5712 struct rq *rq;
1da177e4 5713
75e45d51 5714 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
5715 return;
5716 /*
5717 * We have to be careful, if called from sys_setpriority(),
5718 * the task might be in the middle of scheduling on another CPU.
5719 */
eb580751 5720 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
5721 update_rq_clock(rq);
5722
1da177e4
LT
5723 /*
5724 * The RT priorities are set via sched_setscheduler(), but we still
5725 * allow the 'normal' nice value to be set - but as expected
b19a888c 5726 * it won't have any effect on scheduling until the task is
aab03e05 5727 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 5728 */
aab03e05 5729 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
5730 p->static_prio = NICE_TO_PRIO(nice);
5731 goto out_unlock;
5732 }
da0c1e65 5733 queued = task_on_rq_queued(p);
49bd21ef 5734 running = task_current(rq, p);
da0c1e65 5735 if (queued)
7a57f32a 5736 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
5737 if (running)
5738 put_prev_task(rq, p);
1da177e4 5739
1da177e4 5740 p->static_prio = NICE_TO_PRIO(nice);
9059393e 5741 set_load_weight(p, true);
b29739f9
IM
5742 old_prio = p->prio;
5743 p->prio = effective_prio(p);
1da177e4 5744
5443a0be 5745 if (queued)
7134b3e9 5746 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 5747 if (running)
03b7fad1 5748 set_next_task(rq, p);
5443a0be
FW
5749
5750 /*
5751 * If the task increased its priority or is running and
5752 * lowered its priority, then reschedule its CPU:
5753 */
5754 p->sched_class->prio_changed(rq, p, old_prio);
5755
1da177e4 5756out_unlock:
eb580751 5757 task_rq_unlock(rq, p, &rf);
1da177e4 5758}
1da177e4
LT
5759EXPORT_SYMBOL(set_user_nice);
5760
e43379f1
MM
5761/*
5762 * can_nice - check if a task can reduce its nice value
5763 * @p: task
5764 * @nice: nice value
5765 */
36c8b586 5766int can_nice(const struct task_struct *p, const int nice)
e43379f1 5767{
d1ccc66d 5768 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 5769 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 5770
78d7d407 5771 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5772 capable(CAP_SYS_NICE));
5773}
5774
1da177e4
LT
5775#ifdef __ARCH_WANT_SYS_NICE
5776
5777/*
5778 * sys_nice - change the priority of the current process.
5779 * @increment: priority increment
5780 *
5781 * sys_setpriority is a more generic, but much slower function that
5782 * does similar things.
5783 */
5add95d4 5784SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5785{
48f24c4d 5786 long nice, retval;
1da177e4
LT
5787
5788 /*
5789 * Setpriority might change our priority at the same moment.
5790 * We don't have to worry. Conceptually one call occurs first
5791 * and we have a single winner.
5792 */
a9467fa3 5793 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 5794 nice = task_nice(current) + increment;
1da177e4 5795
a9467fa3 5796 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
5797 if (increment < 0 && !can_nice(current, nice))
5798 return -EPERM;
5799
1da177e4
LT
5800 retval = security_task_setnice(current, nice);
5801 if (retval)
5802 return retval;
5803
5804 set_user_nice(current, nice);
5805 return 0;
5806}
5807
5808#endif
5809
5810/**
5811 * task_prio - return the priority value of a given task.
5812 * @p: the task in question.
5813 *
e69f6186 5814 * Return: The priority value as seen by users in /proc.
c541bb78
DE
5815 *
5816 * sched policy return value kernel prio user prio/nice
5817 *
5818 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
5819 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
5820 * deadline -101 -1 0
1da177e4 5821 */
36c8b586 5822int task_prio(const struct task_struct *p)
1da177e4
LT
5823{
5824 return p->prio - MAX_RT_PRIO;
5825}
5826
1da177e4 5827/**
d1ccc66d 5828 * idle_cpu - is a given CPU idle currently?
1da177e4 5829 * @cpu: the processor in question.
e69f6186
YB
5830 *
5831 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
5832 */
5833int idle_cpu(int cpu)
5834{
908a3283
TG
5835 struct rq *rq = cpu_rq(cpu);
5836
5837 if (rq->curr != rq->idle)
5838 return 0;
5839
5840 if (rq->nr_running)
5841 return 0;
5842
5843#ifdef CONFIG_SMP
126c2092 5844 if (rq->ttwu_pending)
908a3283
TG
5845 return 0;
5846#endif
5847
5848 return 1;
1da177e4
LT
5849}
5850
943d355d
RJ
5851/**
5852 * available_idle_cpu - is a given CPU idle for enqueuing work.
5853 * @cpu: the CPU in question.
5854 *
5855 * Return: 1 if the CPU is currently idle. 0 otherwise.
5856 */
5857int available_idle_cpu(int cpu)
5858{
5859 if (!idle_cpu(cpu))
5860 return 0;
5861
247f2f6f
RJ
5862 if (vcpu_is_preempted(cpu))
5863 return 0;
5864
908a3283 5865 return 1;
1da177e4
LT
5866}
5867
1da177e4 5868/**
d1ccc66d 5869 * idle_task - return the idle task for a given CPU.
1da177e4 5870 * @cpu: the processor in question.
e69f6186 5871 *
d1ccc66d 5872 * Return: The idle task for the CPU @cpu.
1da177e4 5873 */
36c8b586 5874struct task_struct *idle_task(int cpu)
1da177e4
LT
5875{
5876 return cpu_rq(cpu)->idle;
5877}
5878
7d6a905f
VK
5879#ifdef CONFIG_SMP
5880/*
5881 * This function computes an effective utilization for the given CPU, to be
5882 * used for frequency selection given the linear relation: f = u * f_max.
5883 *
5884 * The scheduler tracks the following metrics:
5885 *
5886 * cpu_util_{cfs,rt,dl,irq}()
5887 * cpu_bw_dl()
5888 *
5889 * Where the cfs,rt and dl util numbers are tracked with the same metric and
5890 * synchronized windows and are thus directly comparable.
5891 *
5892 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5893 * which excludes things like IRQ and steal-time. These latter are then accrued
5894 * in the irq utilization.
5895 *
5896 * The DL bandwidth number otoh is not a measured metric but a value computed
5897 * based on the task model parameters and gives the minimal utilization
5898 * required to meet deadlines.
5899 */
a5418be9
VK
5900unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5901 unsigned long max, enum cpu_util_type type,
7d6a905f
VK
5902 struct task_struct *p)
5903{
5904 unsigned long dl_util, util, irq;
5905 struct rq *rq = cpu_rq(cpu);
5906
5907 if (!uclamp_is_used() &&
5908 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5909 return max;
5910 }
5911
5912 /*
5913 * Early check to see if IRQ/steal time saturates the CPU, can be
5914 * because of inaccuracies in how we track these -- see
5915 * update_irq_load_avg().
5916 */
5917 irq = cpu_util_irq(rq);
5918 if (unlikely(irq >= max))
5919 return max;
5920
5921 /*
5922 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5923 * CFS tasks and we use the same metric to track the effective
5924 * utilization (PELT windows are synchronized) we can directly add them
5925 * to obtain the CPU's actual utilization.
5926 *
5927 * CFS and RT utilization can be boosted or capped, depending on
5928 * utilization clamp constraints requested by currently RUNNABLE
5929 * tasks.
5930 * When there are no CFS RUNNABLE tasks, clamps are released and
5931 * frequency will be gracefully reduced with the utilization decay.
5932 */
5933 util = util_cfs + cpu_util_rt(rq);
5934 if (type == FREQUENCY_UTIL)
5935 util = uclamp_rq_util_with(rq, util, p);
5936
5937 dl_util = cpu_util_dl(rq);
5938
5939 /*
5940 * For frequency selection we do not make cpu_util_dl() a permanent part
5941 * of this sum because we want to use cpu_bw_dl() later on, but we need
5942 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5943 * that we select f_max when there is no idle time.
5944 *
5945 * NOTE: numerical errors or stop class might cause us to not quite hit
5946 * saturation when we should -- something for later.
5947 */
5948 if (util + dl_util >= max)
5949 return max;
5950
5951 /*
5952 * OTOH, for energy computation we need the estimated running time, so
5953 * include util_dl and ignore dl_bw.
5954 */
5955 if (type == ENERGY_UTIL)
5956 util += dl_util;
5957
5958 /*
5959 * There is still idle time; further improve the number by using the
5960 * irq metric. Because IRQ/steal time is hidden from the task clock we
5961 * need to scale the task numbers:
5962 *
5963 * max - irq
5964 * U' = irq + --------- * U
5965 * max
5966 */
5967 util = scale_irq_capacity(util, irq, max);
5968 util += irq;
5969
5970 /*
5971 * Bandwidth required by DEADLINE must always be granted while, for
5972 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5973 * to gracefully reduce the frequency when no tasks show up for longer
5974 * periods of time.
5975 *
5976 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5977 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5978 * an interface. So, we only do the latter for now.
5979 */
5980 if (type == FREQUENCY_UTIL)
5981 util += cpu_bw_dl(rq);
5982
5983 return min(max, util);
5984}
a5418be9
VK
5985
5986unsigned long sched_cpu_util(int cpu, unsigned long max)
5987{
5988 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
5989 ENERGY_UTIL, NULL);
5990}
7d6a905f
VK
5991#endif /* CONFIG_SMP */
5992
1da177e4
LT
5993/**
5994 * find_process_by_pid - find a process with a matching PID value.
5995 * @pid: the pid in question.
e69f6186
YB
5996 *
5997 * The task of @pid, if found. %NULL otherwise.
1da177e4 5998 */
a9957449 5999static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6000{
228ebcbe 6001 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6002}
6003
c13db6b1
SR
6004/*
6005 * sched_setparam() passes in -1 for its policy, to let the functions
6006 * it calls know not to change it.
6007 */
6008#define SETPARAM_POLICY -1
6009
c365c292
TG
6010static void __setscheduler_params(struct task_struct *p,
6011 const struct sched_attr *attr)
1da177e4 6012{
d50dde5a
DF
6013 int policy = attr->sched_policy;
6014
c13db6b1 6015 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
6016 policy = p->policy;
6017
1da177e4 6018 p->policy = policy;
d50dde5a 6019
aab03e05
DF
6020 if (dl_policy(policy))
6021 __setparam_dl(p, attr);
39fd8fd2 6022 else if (fair_policy(policy))
d50dde5a
DF
6023 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6024
39fd8fd2
PZ
6025 /*
6026 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6027 * !rt_policy. Always setting this ensures that things like
6028 * getparam()/getattr() don't report silly values for !rt tasks.
6029 */
6030 p->rt_priority = attr->sched_priority;
383afd09 6031 p->normal_prio = normal_prio(p);
9059393e 6032 set_load_weight(p, true);
c365c292 6033}
39fd8fd2 6034
c365c292
TG
6035/* Actually do priority change: must hold pi & rq lock. */
6036static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 6037 const struct sched_attr *attr, bool keep_boost)
c365c292 6038{
a509a7cd
PB
6039 /*
6040 * If params can't change scheduling class changes aren't allowed
6041 * either.
6042 */
6043 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6044 return;
6045
c365c292 6046 __setscheduler_params(p, attr);
d50dde5a 6047
383afd09 6048 /*
0782e63b
TG
6049 * Keep a potential priority boosting if called from
6050 * sched_setscheduler().
383afd09 6051 */
acd58620 6052 p->prio = normal_prio(p);
0782e63b 6053 if (keep_boost)
acd58620 6054 p->prio = rt_effective_prio(p, p->prio);
383afd09 6055
aab03e05
DF
6056 if (dl_prio(p->prio))
6057 p->sched_class = &dl_sched_class;
6058 else if (rt_prio(p->prio))
ffd44db5
PZ
6059 p->sched_class = &rt_sched_class;
6060 else
6061 p->sched_class = &fair_sched_class;
1da177e4 6062}
aab03e05 6063
c69e8d9c 6064/*
d1ccc66d 6065 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
6066 */
6067static bool check_same_owner(struct task_struct *p)
6068{
6069 const struct cred *cred = current_cred(), *pcred;
6070 bool match;
6071
6072 rcu_read_lock();
6073 pcred = __task_cred(p);
9c806aa0
EB
6074 match = (uid_eq(cred->euid, pcred->euid) ||
6075 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
6076 rcu_read_unlock();
6077 return match;
6078}
6079
d50dde5a
DF
6080static int __sched_setscheduler(struct task_struct *p,
6081 const struct sched_attr *attr,
dbc7f069 6082 bool user, bool pi)
1da177e4 6083{
383afd09
SR
6084 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6085 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 6086 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 6087 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 6088 const struct sched_class *prev_class;
565790d2 6089 struct callback_head *head;
eb580751 6090 struct rq_flags rf;
ca94c442 6091 int reset_on_fork;
7a57f32a 6092 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 6093 struct rq *rq;
1da177e4 6094
896bbb25
SRV
6095 /* The pi code expects interrupts enabled */
6096 BUG_ON(pi && in_interrupt());
1da177e4 6097recheck:
d1ccc66d 6098 /* Double check policy once rq lock held: */
ca94c442
LP
6099 if (policy < 0) {
6100 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6101 policy = oldpolicy = p->policy;
ca94c442 6102 } else {
7479f3c9 6103 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 6104
20f9cd2a 6105 if (!valid_policy(policy))
ca94c442
LP
6106 return -EINVAL;
6107 }
6108
794a56eb 6109 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
6110 return -EINVAL;
6111
1da177e4
LT
6112 /*
6113 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 6114 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 6115 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 6116 */
ae18ad28 6117 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 6118 return -EINVAL;
aab03e05
DF
6119 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6120 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
6121 return -EINVAL;
6122
37e4ab3f
OC
6123 /*
6124 * Allow unprivileged RT tasks to decrease priority:
6125 */
961ccddd 6126 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 6127 if (fair_policy(policy)) {
d0ea0268 6128 if (attr->sched_nice < task_nice(p) &&
eaad4513 6129 !can_nice(p, attr->sched_nice))
d50dde5a
DF
6130 return -EPERM;
6131 }
6132
e05606d3 6133 if (rt_policy(policy)) {
a44702e8
ON
6134 unsigned long rlim_rtprio =
6135 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 6136
d1ccc66d 6137 /* Can't set/change the rt policy: */
8dc3e909
ON
6138 if (policy != p->policy && !rlim_rtprio)
6139 return -EPERM;
6140
d1ccc66d 6141 /* Can't increase priority: */
d50dde5a
DF
6142 if (attr->sched_priority > p->rt_priority &&
6143 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
6144 return -EPERM;
6145 }
c02aa73b 6146
d44753b8
JL
6147 /*
6148 * Can't set/change SCHED_DEADLINE policy at all for now
6149 * (safest behavior); in the future we would like to allow
6150 * unprivileged DL tasks to increase their relative deadline
6151 * or reduce their runtime (both ways reducing utilization)
6152 */
6153 if (dl_policy(policy))
6154 return -EPERM;
6155
dd41f596 6156 /*
c02aa73b
DH
6157 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6158 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 6159 */
1da1843f 6160 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 6161 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
6162 return -EPERM;
6163 }
5fe1d75f 6164
d1ccc66d 6165 /* Can't change other user's priorities: */
c69e8d9c 6166 if (!check_same_owner(p))
37e4ab3f 6167 return -EPERM;
ca94c442 6168
d1ccc66d 6169 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
6170 if (p->sched_reset_on_fork && !reset_on_fork)
6171 return -EPERM;
37e4ab3f 6172 }
1da177e4 6173
725aad24 6174 if (user) {
794a56eb
JL
6175 if (attr->sched_flags & SCHED_FLAG_SUGOV)
6176 return -EINVAL;
6177
b0ae1981 6178 retval = security_task_setscheduler(p);
725aad24
JF
6179 if (retval)
6180 return retval;
6181 }
6182
a509a7cd
PB
6183 /* Update task specific "requested" clamps */
6184 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6185 retval = uclamp_validate(p, attr);
6186 if (retval)
6187 return retval;
6188 }
6189
710da3c8
JL
6190 if (pi)
6191 cpuset_read_lock();
6192
b29739f9 6193 /*
d1ccc66d 6194 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 6195 * changing the priority of the task:
0122ec5b 6196 *
25985edc 6197 * To be able to change p->policy safely, the appropriate
1da177e4
LT
6198 * runqueue lock must be held.
6199 */
eb580751 6200 rq = task_rq_lock(p, &rf);
80f5c1b8 6201 update_rq_clock(rq);
dc61b1d6 6202
34f971f6 6203 /*
d1ccc66d 6204 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
6205 */
6206 if (p == rq->stop) {
4b211f2b
MP
6207 retval = -EINVAL;
6208 goto unlock;
34f971f6
PZ
6209 }
6210
a51e9198 6211 /*
d6b1e911
TG
6212 * If not changing anything there's no need to proceed further,
6213 * but store a possible modification of reset_on_fork.
a51e9198 6214 */
d50dde5a 6215 if (unlikely(policy == p->policy)) {
d0ea0268 6216 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
6217 goto change;
6218 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6219 goto change;
75381608 6220 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 6221 goto change;
a509a7cd
PB
6222 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6223 goto change;
d50dde5a 6224
d6b1e911 6225 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
6226 retval = 0;
6227 goto unlock;
a51e9198 6228 }
d50dde5a 6229change:
a51e9198 6230
dc61b1d6 6231 if (user) {
332ac17e 6232#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
6233 /*
6234 * Do not allow realtime tasks into groups that have no runtime
6235 * assigned.
6236 */
6237 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
6238 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6239 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
6240 retval = -EPERM;
6241 goto unlock;
dc61b1d6 6242 }
dc61b1d6 6243#endif
332ac17e 6244#ifdef CONFIG_SMP
794a56eb
JL
6245 if (dl_bandwidth_enabled() && dl_policy(policy) &&
6246 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 6247 cpumask_t *span = rq->rd->span;
332ac17e
DF
6248
6249 /*
6250 * Don't allow tasks with an affinity mask smaller than
6251 * the entire root_domain to become SCHED_DEADLINE. We
6252 * will also fail if there's no bandwidth available.
6253 */
3bd37062 6254 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 6255 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
6256 retval = -EPERM;
6257 goto unlock;
332ac17e
DF
6258 }
6259 }
6260#endif
6261 }
dc61b1d6 6262
d1ccc66d 6263 /* Re-check policy now with rq lock held: */
1da177e4
LT
6264 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6265 policy = oldpolicy = -1;
eb580751 6266 task_rq_unlock(rq, p, &rf);
710da3c8
JL
6267 if (pi)
6268 cpuset_read_unlock();
1da177e4
LT
6269 goto recheck;
6270 }
332ac17e
DF
6271
6272 /*
6273 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6274 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6275 * is available.
6276 */
06a76fe0 6277 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
6278 retval = -EBUSY;
6279 goto unlock;
332ac17e
DF
6280 }
6281
c365c292
TG
6282 p->sched_reset_on_fork = reset_on_fork;
6283 oldprio = p->prio;
6284
dbc7f069
PZ
6285 if (pi) {
6286 /*
6287 * Take priority boosted tasks into account. If the new
6288 * effective priority is unchanged, we just store the new
6289 * normal parameters and do not touch the scheduler class and
6290 * the runqueue. This will be done when the task deboost
6291 * itself.
6292 */
acd58620 6293 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
6294 if (new_effective_prio == oldprio)
6295 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
6296 }
6297
da0c1e65 6298 queued = task_on_rq_queued(p);
051a1d1a 6299 running = task_current(rq, p);
da0c1e65 6300 if (queued)
ff77e468 6301 dequeue_task(rq, p, queue_flags);
0e1f3483 6302 if (running)
f3cd1c4e 6303 put_prev_task(rq, p);
f6b53205 6304
83ab0aa0 6305 prev_class = p->sched_class;
a509a7cd 6306
dbc7f069 6307 __setscheduler(rq, p, attr, pi);
a509a7cd 6308 __setscheduler_uclamp(p, attr);
f6b53205 6309
da0c1e65 6310 if (queued) {
81a44c54
TG
6311 /*
6312 * We enqueue to tail when the priority of a task is
6313 * increased (user space view).
6314 */
ff77e468
PZ
6315 if (oldprio < p->prio)
6316 queue_flags |= ENQUEUE_HEAD;
1de64443 6317
ff77e468 6318 enqueue_task(rq, p, queue_flags);
81a44c54 6319 }
a399d233 6320 if (running)
03b7fad1 6321 set_next_task(rq, p);
cb469845 6322
da7a735e 6323 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
6324
6325 /* Avoid rq from going away on us: */
6326 preempt_disable();
565790d2 6327 head = splice_balance_callbacks(rq);
eb580751 6328 task_rq_unlock(rq, p, &rf);
b29739f9 6329
710da3c8
JL
6330 if (pi) {
6331 cpuset_read_unlock();
dbc7f069 6332 rt_mutex_adjust_pi(p);
710da3c8 6333 }
95e02ca9 6334
d1ccc66d 6335 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 6336 balance_callbacks(rq, head);
4c9a4bc8 6337 preempt_enable();
95e02ca9 6338
1da177e4 6339 return 0;
4b211f2b
MP
6340
6341unlock:
6342 task_rq_unlock(rq, p, &rf);
710da3c8
JL
6343 if (pi)
6344 cpuset_read_unlock();
4b211f2b 6345 return retval;
1da177e4 6346}
961ccddd 6347
7479f3c9
PZ
6348static int _sched_setscheduler(struct task_struct *p, int policy,
6349 const struct sched_param *param, bool check)
6350{
6351 struct sched_attr attr = {
6352 .sched_policy = policy,
6353 .sched_priority = param->sched_priority,
6354 .sched_nice = PRIO_TO_NICE(p->static_prio),
6355 };
6356
c13db6b1
SR
6357 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6358 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
6359 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6360 policy &= ~SCHED_RESET_ON_FORK;
6361 attr.sched_policy = policy;
6362 }
6363
dbc7f069 6364 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 6365}
961ccddd
RR
6366/**
6367 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6368 * @p: the task in question.
6369 * @policy: new policy.
6370 * @param: structure containing the new RT priority.
6371 *
7318d4cc
PZ
6372 * Use sched_set_fifo(), read its comment.
6373 *
e69f6186
YB
6374 * Return: 0 on success. An error code otherwise.
6375 *
961ccddd
RR
6376 * NOTE that the task may be already dead.
6377 */
6378int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 6379 const struct sched_param *param)
961ccddd 6380{
7479f3c9 6381 return _sched_setscheduler(p, policy, param, true);
961ccddd 6382}
1da177e4 6383
d50dde5a
DF
6384int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6385{
dbc7f069 6386 return __sched_setscheduler(p, attr, true, true);
d50dde5a 6387}
d50dde5a 6388
794a56eb
JL
6389int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6390{
6391 return __sched_setscheduler(p, attr, false, true);
6392}
6393
961ccddd
RR
6394/**
6395 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6396 * @p: the task in question.
6397 * @policy: new policy.
6398 * @param: structure containing the new RT priority.
6399 *
6400 * Just like sched_setscheduler, only don't bother checking if the
6401 * current context has permission. For example, this is needed in
6402 * stop_machine(): we create temporary high priority worker threads,
6403 * but our caller might not have that capability.
e69f6186
YB
6404 *
6405 * Return: 0 on success. An error code otherwise.
961ccddd
RR
6406 */
6407int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 6408 const struct sched_param *param)
961ccddd 6409{
7479f3c9 6410 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
6411}
6412
7318d4cc
PZ
6413/*
6414 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6415 * incapable of resource management, which is the one thing an OS really should
6416 * be doing.
6417 *
6418 * This is of course the reason it is limited to privileged users only.
6419 *
6420 * Worse still; it is fundamentally impossible to compose static priority
6421 * workloads. You cannot take two correctly working static prio workloads
6422 * and smash them together and still expect them to work.
6423 *
6424 * For this reason 'all' FIFO tasks the kernel creates are basically at:
6425 *
6426 * MAX_RT_PRIO / 2
6427 *
6428 * The administrator _MUST_ configure the system, the kernel simply doesn't
6429 * know enough information to make a sensible choice.
6430 */
8b700983 6431void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
6432{
6433 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 6434 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
6435}
6436EXPORT_SYMBOL_GPL(sched_set_fifo);
6437
6438/*
6439 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6440 */
8b700983 6441void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
6442{
6443 struct sched_param sp = { .sched_priority = 1 };
8b700983 6444 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
6445}
6446EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6447
8b700983 6448void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
6449{
6450 struct sched_attr attr = {
6451 .sched_policy = SCHED_NORMAL,
6452 .sched_nice = nice,
6453 };
8b700983 6454 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
6455}
6456EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 6457
95cdf3b7
IM
6458static int
6459do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6460{
1da177e4
LT
6461 struct sched_param lparam;
6462 struct task_struct *p;
36c8b586 6463 int retval;
1da177e4
LT
6464
6465 if (!param || pid < 0)
6466 return -EINVAL;
6467 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6468 return -EFAULT;
5fe1d75f
ON
6469
6470 rcu_read_lock();
6471 retval = -ESRCH;
1da177e4 6472 p = find_process_by_pid(pid);
710da3c8
JL
6473 if (likely(p))
6474 get_task_struct(p);
5fe1d75f 6475 rcu_read_unlock();
36c8b586 6476
710da3c8
JL
6477 if (likely(p)) {
6478 retval = sched_setscheduler(p, policy, &lparam);
6479 put_task_struct(p);
6480 }
6481
1da177e4
LT
6482 return retval;
6483}
6484
d50dde5a
DF
6485/*
6486 * Mimics kernel/events/core.c perf_copy_attr().
6487 */
d1ccc66d 6488static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
6489{
6490 u32 size;
6491 int ret;
6492
d1ccc66d 6493 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
6494 memset(attr, 0, sizeof(*attr));
6495
6496 ret = get_user(size, &uattr->size);
6497 if (ret)
6498 return ret;
6499
d1ccc66d
IM
6500 /* ABI compatibility quirk: */
6501 if (!size)
d50dde5a 6502 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 6503 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
6504 goto err_size;
6505
dff3a85f
AS
6506 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6507 if (ret) {
6508 if (ret == -E2BIG)
6509 goto err_size;
6510 return ret;
d50dde5a
DF
6511 }
6512
a509a7cd
PB
6513 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6514 size < SCHED_ATTR_SIZE_VER1)
6515 return -EINVAL;
6516
d50dde5a 6517 /*
d1ccc66d 6518 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
6519 * to be strict and return an error on out-of-bounds values?
6520 */
75e45d51 6521 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 6522
e78c7bca 6523 return 0;
d50dde5a
DF
6524
6525err_size:
6526 put_user(sizeof(*attr), &uattr->size);
e78c7bca 6527 return -E2BIG;
d50dde5a
DF
6528}
6529
1da177e4
LT
6530/**
6531 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6532 * @pid: the pid in question.
6533 * @policy: new policy.
6534 * @param: structure containing the new RT priority.
e69f6186
YB
6535 *
6536 * Return: 0 on success. An error code otherwise.
1da177e4 6537 */
d1ccc66d 6538SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 6539{
c21761f1
JB
6540 if (policy < 0)
6541 return -EINVAL;
6542
1da177e4
LT
6543 return do_sched_setscheduler(pid, policy, param);
6544}
6545
6546/**
6547 * sys_sched_setparam - set/change the RT priority of a thread
6548 * @pid: the pid in question.
6549 * @param: structure containing the new RT priority.
e69f6186
YB
6550 *
6551 * Return: 0 on success. An error code otherwise.
1da177e4 6552 */
5add95d4 6553SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 6554{
c13db6b1 6555 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
6556}
6557
d50dde5a
DF
6558/**
6559 * sys_sched_setattr - same as above, but with extended sched_attr
6560 * @pid: the pid in question.
5778fccf 6561 * @uattr: structure containing the extended parameters.
db66d756 6562 * @flags: for future extension.
d50dde5a 6563 */
6d35ab48
PZ
6564SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6565 unsigned int, flags)
d50dde5a
DF
6566{
6567 struct sched_attr attr;
6568 struct task_struct *p;
6569 int retval;
6570
6d35ab48 6571 if (!uattr || pid < 0 || flags)
d50dde5a
DF
6572 return -EINVAL;
6573
143cf23d
MK
6574 retval = sched_copy_attr(uattr, &attr);
6575 if (retval)
6576 return retval;
d50dde5a 6577
b14ed2c2 6578 if ((int)attr.sched_policy < 0)
dbdb2275 6579 return -EINVAL;
1d6362fa
PB
6580 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6581 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
6582
6583 rcu_read_lock();
6584 retval = -ESRCH;
6585 p = find_process_by_pid(pid);
a509a7cd
PB
6586 if (likely(p))
6587 get_task_struct(p);
d50dde5a
DF
6588 rcu_read_unlock();
6589
a509a7cd
PB
6590 if (likely(p)) {
6591 retval = sched_setattr(p, &attr);
6592 put_task_struct(p);
6593 }
6594
d50dde5a
DF
6595 return retval;
6596}
6597
1da177e4
LT
6598/**
6599 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6600 * @pid: the pid in question.
e69f6186
YB
6601 *
6602 * Return: On success, the policy of the thread. Otherwise, a negative error
6603 * code.
1da177e4 6604 */
5add95d4 6605SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6606{
36c8b586 6607 struct task_struct *p;
3a5c359a 6608 int retval;
1da177e4
LT
6609
6610 if (pid < 0)
3a5c359a 6611 return -EINVAL;
1da177e4
LT
6612
6613 retval = -ESRCH;
5fe85be0 6614 rcu_read_lock();
1da177e4
LT
6615 p = find_process_by_pid(pid);
6616 if (p) {
6617 retval = security_task_getscheduler(p);
6618 if (!retval)
ca94c442
LP
6619 retval = p->policy
6620 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6621 }
5fe85be0 6622 rcu_read_unlock();
1da177e4
LT
6623 return retval;
6624}
6625
6626/**
ca94c442 6627 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6628 * @pid: the pid in question.
6629 * @param: structure containing the RT priority.
e69f6186
YB
6630 *
6631 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6632 * code.
1da177e4 6633 */
5add95d4 6634SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 6635{
ce5f7f82 6636 struct sched_param lp = { .sched_priority = 0 };
36c8b586 6637 struct task_struct *p;
3a5c359a 6638 int retval;
1da177e4
LT
6639
6640 if (!param || pid < 0)
3a5c359a 6641 return -EINVAL;
1da177e4 6642
5fe85be0 6643 rcu_read_lock();
1da177e4
LT
6644 p = find_process_by_pid(pid);
6645 retval = -ESRCH;
6646 if (!p)
6647 goto out_unlock;
6648
6649 retval = security_task_getscheduler(p);
6650 if (retval)
6651 goto out_unlock;
6652
ce5f7f82
PZ
6653 if (task_has_rt_policy(p))
6654 lp.sched_priority = p->rt_priority;
5fe85be0 6655 rcu_read_unlock();
1da177e4
LT
6656
6657 /*
6658 * This one might sleep, we cannot do it with a spinlock held ...
6659 */
6660 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6661
1da177e4
LT
6662 return retval;
6663
6664out_unlock:
5fe85be0 6665 rcu_read_unlock();
1da177e4
LT
6666 return retval;
6667}
6668
1251201c
IM
6669/*
6670 * Copy the kernel size attribute structure (which might be larger
6671 * than what user-space knows about) to user-space.
6672 *
6673 * Note that all cases are valid: user-space buffer can be larger or
6674 * smaller than the kernel-space buffer. The usual case is that both
6675 * have the same size.
6676 */
6677static int
6678sched_attr_copy_to_user(struct sched_attr __user *uattr,
6679 struct sched_attr *kattr,
6680 unsigned int usize)
d50dde5a 6681{
1251201c 6682 unsigned int ksize = sizeof(*kattr);
d50dde5a 6683
96d4f267 6684 if (!access_ok(uattr, usize))
d50dde5a
DF
6685 return -EFAULT;
6686
6687 /*
1251201c
IM
6688 * sched_getattr() ABI forwards and backwards compatibility:
6689 *
6690 * If usize == ksize then we just copy everything to user-space and all is good.
6691 *
6692 * If usize < ksize then we only copy as much as user-space has space for,
6693 * this keeps ABI compatibility as well. We skip the rest.
6694 *
6695 * If usize > ksize then user-space is using a newer version of the ABI,
6696 * which part the kernel doesn't know about. Just ignore it - tooling can
6697 * detect the kernel's knowledge of attributes from the attr->size value
6698 * which is set to ksize in this case.
d50dde5a 6699 */
1251201c 6700 kattr->size = min(usize, ksize);
d50dde5a 6701
1251201c 6702 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
6703 return -EFAULT;
6704
22400674 6705 return 0;
d50dde5a
DF
6706}
6707
6708/**
aab03e05 6709 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 6710 * @pid: the pid in question.
5778fccf 6711 * @uattr: structure containing the extended parameters.
dff3a85f 6712 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 6713 * @flags: for future extension.
d50dde5a 6714 */
6d35ab48 6715SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 6716 unsigned int, usize, unsigned int, flags)
d50dde5a 6717{
1251201c 6718 struct sched_attr kattr = { };
d50dde5a
DF
6719 struct task_struct *p;
6720 int retval;
6721
1251201c
IM
6722 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6723 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
6724 return -EINVAL;
6725
6726 rcu_read_lock();
6727 p = find_process_by_pid(pid);
6728 retval = -ESRCH;
6729 if (!p)
6730 goto out_unlock;
6731
6732 retval = security_task_getscheduler(p);
6733 if (retval)
6734 goto out_unlock;
6735
1251201c 6736 kattr.sched_policy = p->policy;
7479f3c9 6737 if (p->sched_reset_on_fork)
1251201c 6738 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 6739 if (task_has_dl_policy(p))
1251201c 6740 __getparam_dl(p, &kattr);
aab03e05 6741 else if (task_has_rt_policy(p))
1251201c 6742 kattr.sched_priority = p->rt_priority;
d50dde5a 6743 else
1251201c 6744 kattr.sched_nice = task_nice(p);
d50dde5a 6745
a509a7cd 6746#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
6747 /*
6748 * This could race with another potential updater, but this is fine
6749 * because it'll correctly read the old or the new value. We don't need
6750 * to guarantee who wins the race as long as it doesn't return garbage.
6751 */
1251201c
IM
6752 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6753 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
6754#endif
6755
d50dde5a
DF
6756 rcu_read_unlock();
6757
1251201c 6758 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
6759
6760out_unlock:
6761 rcu_read_unlock();
6762 return retval;
6763}
6764
96f874e2 6765long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6766{
5a16f3d3 6767 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6768 struct task_struct *p;
6769 int retval;
1da177e4 6770
23f5d142 6771 rcu_read_lock();
1da177e4
LT
6772
6773 p = find_process_by_pid(pid);
6774 if (!p) {
23f5d142 6775 rcu_read_unlock();
1da177e4
LT
6776 return -ESRCH;
6777 }
6778
23f5d142 6779 /* Prevent p going away */
1da177e4 6780 get_task_struct(p);
23f5d142 6781 rcu_read_unlock();
1da177e4 6782
14a40ffc
TH
6783 if (p->flags & PF_NO_SETAFFINITY) {
6784 retval = -EINVAL;
6785 goto out_put_task;
6786 }
5a16f3d3
RR
6787 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6788 retval = -ENOMEM;
6789 goto out_put_task;
6790 }
6791 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6792 retval = -ENOMEM;
6793 goto out_free_cpus_allowed;
6794 }
1da177e4 6795 retval = -EPERM;
4c44aaaf
EB
6796 if (!check_same_owner(p)) {
6797 rcu_read_lock();
6798 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6799 rcu_read_unlock();
16303ab2 6800 goto out_free_new_mask;
4c44aaaf
EB
6801 }
6802 rcu_read_unlock();
6803 }
1da177e4 6804
b0ae1981 6805 retval = security_task_setscheduler(p);
e7834f8f 6806 if (retval)
16303ab2 6807 goto out_free_new_mask;
e7834f8f 6808
e4099a5e
PZ
6809
6810 cpuset_cpus_allowed(p, cpus_allowed);
6811 cpumask_and(new_mask, in_mask, cpus_allowed);
6812
332ac17e
DF
6813 /*
6814 * Since bandwidth control happens on root_domain basis,
6815 * if admission test is enabled, we only admit -deadline
6816 * tasks allowed to run on all the CPUs in the task's
6817 * root_domain.
6818 */
6819#ifdef CONFIG_SMP
f1e3a093
KT
6820 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6821 rcu_read_lock();
6822 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 6823 retval = -EBUSY;
f1e3a093 6824 rcu_read_unlock();
16303ab2 6825 goto out_free_new_mask;
332ac17e 6826 }
f1e3a093 6827 rcu_read_unlock();
332ac17e
DF
6828 }
6829#endif
49246274 6830again:
9cfc3e18 6831 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
1da177e4 6832
8707d8b8 6833 if (!retval) {
5a16f3d3
RR
6834 cpuset_cpus_allowed(p, cpus_allowed);
6835 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6836 /*
6837 * We must have raced with a concurrent cpuset
6838 * update. Just reset the cpus_allowed to the
6839 * cpuset's cpus_allowed
6840 */
5a16f3d3 6841 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6842 goto again;
6843 }
6844 }
16303ab2 6845out_free_new_mask:
5a16f3d3
RR
6846 free_cpumask_var(new_mask);
6847out_free_cpus_allowed:
6848 free_cpumask_var(cpus_allowed);
6849out_put_task:
1da177e4 6850 put_task_struct(p);
1da177e4
LT
6851 return retval;
6852}
6853
6854static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6855 struct cpumask *new_mask)
1da177e4 6856{
96f874e2
RR
6857 if (len < cpumask_size())
6858 cpumask_clear(new_mask);
6859 else if (len > cpumask_size())
6860 len = cpumask_size();
6861
1da177e4
LT
6862 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6863}
6864
6865/**
d1ccc66d 6866 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
6867 * @pid: pid of the process
6868 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6869 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
6870 *
6871 * Return: 0 on success. An error code otherwise.
1da177e4 6872 */
5add95d4
HC
6873SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6874 unsigned long __user *, user_mask_ptr)
1da177e4 6875{
5a16f3d3 6876 cpumask_var_t new_mask;
1da177e4
LT
6877 int retval;
6878
5a16f3d3
RR
6879 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6880 return -ENOMEM;
1da177e4 6881
5a16f3d3
RR
6882 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6883 if (retval == 0)
6884 retval = sched_setaffinity(pid, new_mask);
6885 free_cpumask_var(new_mask);
6886 return retval;
1da177e4
LT
6887}
6888
96f874e2 6889long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6890{
36c8b586 6891 struct task_struct *p;
31605683 6892 unsigned long flags;
1da177e4 6893 int retval;
1da177e4 6894
23f5d142 6895 rcu_read_lock();
1da177e4
LT
6896
6897 retval = -ESRCH;
6898 p = find_process_by_pid(pid);
6899 if (!p)
6900 goto out_unlock;
6901
e7834f8f
DQ
6902 retval = security_task_getscheduler(p);
6903 if (retval)
6904 goto out_unlock;
6905
013fdb80 6906 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 6907 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 6908 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6909
6910out_unlock:
23f5d142 6911 rcu_read_unlock();
1da177e4 6912
9531b62f 6913 return retval;
1da177e4
LT
6914}
6915
6916/**
d1ccc66d 6917 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
6918 * @pid: pid of the process
6919 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6920 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 6921 *
599b4840
ZW
6922 * Return: size of CPU mask copied to user_mask_ptr on success. An
6923 * error code otherwise.
1da177e4 6924 */
5add95d4
HC
6925SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6926 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6927{
6928 int ret;
f17c8607 6929 cpumask_var_t mask;
1da177e4 6930
84fba5ec 6931 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
6932 return -EINVAL;
6933 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
6934 return -EINVAL;
6935
f17c8607
RR
6936 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6937 return -ENOMEM;
1da177e4 6938
f17c8607
RR
6939 ret = sched_getaffinity(pid, mask);
6940 if (ret == 0) {
4de373a1 6941 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
6942
6943 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
6944 ret = -EFAULT;
6945 else
cd3d8031 6946 ret = retlen;
f17c8607
RR
6947 }
6948 free_cpumask_var(mask);
1da177e4 6949
f17c8607 6950 return ret;
1da177e4
LT
6951}
6952
7d4dd4f1 6953static void do_sched_yield(void)
1da177e4 6954{
8a8c69c3
PZ
6955 struct rq_flags rf;
6956 struct rq *rq;
6957
246b3b33 6958 rq = this_rq_lock_irq(&rf);
1da177e4 6959
ae92882e 6960 schedstat_inc(rq->yld_count);
4530d7ab 6961 current->sched_class->yield_task(rq);
1da177e4 6962
8a8c69c3 6963 preempt_disable();
345a957f 6964 rq_unlock_irq(rq, &rf);
ba74c144 6965 sched_preempt_enable_no_resched();
1da177e4
LT
6966
6967 schedule();
7d4dd4f1 6968}
1da177e4 6969
59a74b15
MCC
6970/**
6971 * sys_sched_yield - yield the current processor to other threads.
6972 *
6973 * This function yields the current CPU to other tasks. If there are no
6974 * other threads running on this CPU then this function will return.
6975 *
6976 * Return: 0.
6977 */
7d4dd4f1
DB
6978SYSCALL_DEFINE0(sched_yield)
6979{
6980 do_sched_yield();
1da177e4
LT
6981 return 0;
6982}
6983
b965f1dd
PZI
6984#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
6985int __sched __cond_resched(void)
1da177e4 6986{
fe32d3cd 6987 if (should_resched(0)) {
a18b5d01 6988 preempt_schedule_common();
1da177e4
LT
6989 return 1;
6990 }
b965f1dd 6991#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 6992 rcu_all_qs();
b965f1dd 6993#endif
1da177e4
LT
6994 return 0;
6995}
b965f1dd
PZI
6996EXPORT_SYMBOL(__cond_resched);
6997#endif
6998
6999#ifdef CONFIG_PREEMPT_DYNAMIC
7000DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 7001EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd
PZI
7002
7003DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 7004EXPORT_STATIC_CALL_TRAMP(might_resched);
35a773a0 7005#endif
1da177e4
LT
7006
7007/*
613afbf8 7008 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
7009 * call schedule, and on return reacquire the lock.
7010 *
c1a280b6 7011 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
7012 * operations here to prevent schedule() from being called twice (once via
7013 * spin_unlock(), once by hand).
7014 */
613afbf8 7015int __cond_resched_lock(spinlock_t *lock)
1da177e4 7016{
fe32d3cd 7017 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
7018 int ret = 0;
7019
f607c668
PZ
7020 lockdep_assert_held(lock);
7021
4a81e832 7022 if (spin_needbreak(lock) || resched) {
1da177e4 7023 spin_unlock(lock);
d86ee480 7024 if (resched)
a18b5d01 7025 preempt_schedule_common();
95c354fe
NP
7026 else
7027 cpu_relax();
6df3cecb 7028 ret = 1;
1da177e4 7029 spin_lock(lock);
1da177e4 7030 }
6df3cecb 7031 return ret;
1da177e4 7032}
613afbf8 7033EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 7034
f3d4b4b1
BG
7035int __cond_resched_rwlock_read(rwlock_t *lock)
7036{
7037 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7038 int ret = 0;
7039
7040 lockdep_assert_held_read(lock);
7041
7042 if (rwlock_needbreak(lock) || resched) {
7043 read_unlock(lock);
7044 if (resched)
7045 preempt_schedule_common();
7046 else
7047 cpu_relax();
7048 ret = 1;
7049 read_lock(lock);
7050 }
7051 return ret;
7052}
7053EXPORT_SYMBOL(__cond_resched_rwlock_read);
7054
7055int __cond_resched_rwlock_write(rwlock_t *lock)
7056{
7057 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7058 int ret = 0;
7059
7060 lockdep_assert_held_write(lock);
7061
7062 if (rwlock_needbreak(lock) || resched) {
7063 write_unlock(lock);
7064 if (resched)
7065 preempt_schedule_common();
7066 else
7067 cpu_relax();
7068 ret = 1;
7069 write_lock(lock);
7070 }
7071 return ret;
7072}
7073EXPORT_SYMBOL(__cond_resched_rwlock_write);
7074
1da177e4
LT
7075/**
7076 * yield - yield the current processor to other threads.
7077 *
8e3fabfd
PZ
7078 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7079 *
7080 * The scheduler is at all times free to pick the calling task as the most
7081 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 7082 * it, it's already broken.
8e3fabfd
PZ
7083 *
7084 * Typical broken usage is:
7085 *
7086 * while (!event)
d1ccc66d 7087 * yield();
8e3fabfd
PZ
7088 *
7089 * where one assumes that yield() will let 'the other' process run that will
7090 * make event true. If the current task is a SCHED_FIFO task that will never
7091 * happen. Never use yield() as a progress guarantee!!
7092 *
7093 * If you want to use yield() to wait for something, use wait_event().
7094 * If you want to use yield() to be 'nice' for others, use cond_resched().
7095 * If you still want to use yield(), do not!
1da177e4
LT
7096 */
7097void __sched yield(void)
7098{
7099 set_current_state(TASK_RUNNING);
7d4dd4f1 7100 do_sched_yield();
1da177e4 7101}
1da177e4
LT
7102EXPORT_SYMBOL(yield);
7103
d95f4122
MG
7104/**
7105 * yield_to - yield the current processor to another thread in
7106 * your thread group, or accelerate that thread toward the
7107 * processor it's on.
16addf95
RD
7108 * @p: target task
7109 * @preempt: whether task preemption is allowed or not
d95f4122
MG
7110 *
7111 * It's the caller's job to ensure that the target task struct
7112 * can't go away on us before we can do any checks.
7113 *
e69f6186 7114 * Return:
7b270f60
PZ
7115 * true (>0) if we indeed boosted the target task.
7116 * false (0) if we failed to boost the target.
7117 * -ESRCH if there's no task to yield to.
d95f4122 7118 */
fa93384f 7119int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
7120{
7121 struct task_struct *curr = current;
7122 struct rq *rq, *p_rq;
7123 unsigned long flags;
c3c18640 7124 int yielded = 0;
d95f4122
MG
7125
7126 local_irq_save(flags);
7127 rq = this_rq();
7128
7129again:
7130 p_rq = task_rq(p);
7b270f60
PZ
7131 /*
7132 * If we're the only runnable task on the rq and target rq also
7133 * has only one task, there's absolutely no point in yielding.
7134 */
7135 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7136 yielded = -ESRCH;
7137 goto out_irq;
7138 }
7139
d95f4122 7140 double_rq_lock(rq, p_rq);
39e24d8f 7141 if (task_rq(p) != p_rq) {
d95f4122
MG
7142 double_rq_unlock(rq, p_rq);
7143 goto again;
7144 }
7145
7146 if (!curr->sched_class->yield_to_task)
7b270f60 7147 goto out_unlock;
d95f4122
MG
7148
7149 if (curr->sched_class != p->sched_class)
7b270f60 7150 goto out_unlock;
d95f4122
MG
7151
7152 if (task_running(p_rq, p) || p->state)
7b270f60 7153 goto out_unlock;
d95f4122 7154
0900acf2 7155 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 7156 if (yielded) {
ae92882e 7157 schedstat_inc(rq->yld_count);
6d1cafd8
VP
7158 /*
7159 * Make p's CPU reschedule; pick_next_entity takes care of
7160 * fairness.
7161 */
7162 if (preempt && rq != p_rq)
8875125e 7163 resched_curr(p_rq);
6d1cafd8 7164 }
d95f4122 7165
7b270f60 7166out_unlock:
d95f4122 7167 double_rq_unlock(rq, p_rq);
7b270f60 7168out_irq:
d95f4122
MG
7169 local_irq_restore(flags);
7170
7b270f60 7171 if (yielded > 0)
d95f4122
MG
7172 schedule();
7173
7174 return yielded;
7175}
7176EXPORT_SYMBOL_GPL(yield_to);
7177
10ab5643
TH
7178int io_schedule_prepare(void)
7179{
7180 int old_iowait = current->in_iowait;
7181
7182 current->in_iowait = 1;
7183 blk_schedule_flush_plug(current);
7184
7185 return old_iowait;
7186}
7187
7188void io_schedule_finish(int token)
7189{
7190 current->in_iowait = token;
7191}
7192
1da177e4 7193/*
41a2d6cf 7194 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 7195 * that process accounting knows that this is a task in IO wait state.
1da177e4 7196 */
1da177e4
LT
7197long __sched io_schedule_timeout(long timeout)
7198{
10ab5643 7199 int token;
1da177e4
LT
7200 long ret;
7201
10ab5643 7202 token = io_schedule_prepare();
1da177e4 7203 ret = schedule_timeout(timeout);
10ab5643 7204 io_schedule_finish(token);
9cff8ade 7205
1da177e4
LT
7206 return ret;
7207}
9cff8ade 7208EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 7209
e3b929b0 7210void __sched io_schedule(void)
10ab5643
TH
7211{
7212 int token;
7213
7214 token = io_schedule_prepare();
7215 schedule();
7216 io_schedule_finish(token);
7217}
7218EXPORT_SYMBOL(io_schedule);
7219
1da177e4
LT
7220/**
7221 * sys_sched_get_priority_max - return maximum RT priority.
7222 * @policy: scheduling class.
7223 *
e69f6186
YB
7224 * Return: On success, this syscall returns the maximum
7225 * rt_priority that can be used by a given scheduling class.
7226 * On failure, a negative error code is returned.
1da177e4 7227 */
5add95d4 7228SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
7229{
7230 int ret = -EINVAL;
7231
7232 switch (policy) {
7233 case SCHED_FIFO:
7234 case SCHED_RR:
ae18ad28 7235 ret = MAX_RT_PRIO-1;
1da177e4 7236 break;
aab03e05 7237 case SCHED_DEADLINE:
1da177e4 7238 case SCHED_NORMAL:
b0a9499c 7239 case SCHED_BATCH:
dd41f596 7240 case SCHED_IDLE:
1da177e4
LT
7241 ret = 0;
7242 break;
7243 }
7244 return ret;
7245}
7246
7247/**
7248 * sys_sched_get_priority_min - return minimum RT priority.
7249 * @policy: scheduling class.
7250 *
e69f6186
YB
7251 * Return: On success, this syscall returns the minimum
7252 * rt_priority that can be used by a given scheduling class.
7253 * On failure, a negative error code is returned.
1da177e4 7254 */
5add95d4 7255SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
7256{
7257 int ret = -EINVAL;
7258
7259 switch (policy) {
7260 case SCHED_FIFO:
7261 case SCHED_RR:
7262 ret = 1;
7263 break;
aab03e05 7264 case SCHED_DEADLINE:
1da177e4 7265 case SCHED_NORMAL:
b0a9499c 7266 case SCHED_BATCH:
dd41f596 7267 case SCHED_IDLE:
1da177e4
LT
7268 ret = 0;
7269 }
7270 return ret;
7271}
7272
abca5fc5 7273static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 7274{
36c8b586 7275 struct task_struct *p;
a4ec24b4 7276 unsigned int time_slice;
eb580751 7277 struct rq_flags rf;
dba091b9 7278 struct rq *rq;
3a5c359a 7279 int retval;
1da177e4
LT
7280
7281 if (pid < 0)
3a5c359a 7282 return -EINVAL;
1da177e4
LT
7283
7284 retval = -ESRCH;
1a551ae7 7285 rcu_read_lock();
1da177e4
LT
7286 p = find_process_by_pid(pid);
7287 if (!p)
7288 goto out_unlock;
7289
7290 retval = security_task_getscheduler(p);
7291 if (retval)
7292 goto out_unlock;
7293
eb580751 7294 rq = task_rq_lock(p, &rf);
a57beec5
PZ
7295 time_slice = 0;
7296 if (p->sched_class->get_rr_interval)
7297 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 7298 task_rq_unlock(rq, p, &rf);
a4ec24b4 7299
1a551ae7 7300 rcu_read_unlock();
abca5fc5
AV
7301 jiffies_to_timespec64(time_slice, t);
7302 return 0;
3a5c359a 7303
1da177e4 7304out_unlock:
1a551ae7 7305 rcu_read_unlock();
1da177e4
LT
7306 return retval;
7307}
7308
2064a5ab
RD
7309/**
7310 * sys_sched_rr_get_interval - return the default timeslice of a process.
7311 * @pid: pid of the process.
7312 * @interval: userspace pointer to the timeslice value.
7313 *
7314 * this syscall writes the default timeslice value of a given process
7315 * into the user-space timespec buffer. A value of '0' means infinity.
7316 *
7317 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7318 * an error code.
7319 */
abca5fc5 7320SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 7321 struct __kernel_timespec __user *, interval)
abca5fc5
AV
7322{
7323 struct timespec64 t;
7324 int retval = sched_rr_get_interval(pid, &t);
7325
7326 if (retval == 0)
7327 retval = put_timespec64(&t, interval);
7328
7329 return retval;
7330}
7331
474b9c77 7332#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
7333SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7334 struct old_timespec32 __user *, interval)
abca5fc5
AV
7335{
7336 struct timespec64 t;
7337 int retval = sched_rr_get_interval(pid, &t);
7338
7339 if (retval == 0)
9afc5eee 7340 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
7341 return retval;
7342}
7343#endif
7344
82a1fcb9 7345void sched_show_task(struct task_struct *p)
1da177e4 7346{
1da177e4 7347 unsigned long free = 0;
4e79752c 7348 int ppid;
c930b2c0 7349
38200502
TH
7350 if (!try_get_task_stack(p))
7351 return;
20435d84 7352
cc172ff3 7353 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84
XX
7354
7355 if (p->state == TASK_RUNNING)
cc172ff3 7356 pr_cont(" running task ");
1da177e4 7357#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 7358 free = stack_not_used(p);
1da177e4 7359#endif
a90e984c 7360 ppid = 0;
4e79752c 7361 rcu_read_lock();
a90e984c
ON
7362 if (pid_alive(p))
7363 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 7364 rcu_read_unlock();
cc172ff3
LZ
7365 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7366 free, task_pid_nr(p), ppid,
aa47b7e0 7367 (unsigned long)task_thread_info(p)->flags);
1da177e4 7368
3d1cb205 7369 print_worker_info(KERN_INFO, p);
a8b62fd0 7370 print_stop_info(KERN_INFO, p);
9cb8f069 7371 show_stack(p, NULL, KERN_INFO);
38200502 7372 put_task_stack(p);
1da177e4 7373}
0032f4e8 7374EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 7375
5d68cc95
PZ
7376static inline bool
7377state_filter_match(unsigned long state_filter, struct task_struct *p)
7378{
7379 /* no filter, everything matches */
7380 if (!state_filter)
7381 return true;
7382
7383 /* filter, but doesn't match */
7384 if (!(p->state & state_filter))
7385 return false;
7386
7387 /*
7388 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7389 * TASK_KILLABLE).
7390 */
7391 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7392 return false;
7393
7394 return true;
7395}
7396
7397
e59e2ae2 7398void show_state_filter(unsigned long state_filter)
1da177e4 7399{
36c8b586 7400 struct task_struct *g, *p;
1da177e4 7401
510f5acc 7402 rcu_read_lock();
5d07f420 7403 for_each_process_thread(g, p) {
1da177e4
LT
7404 /*
7405 * reset the NMI-timeout, listing all files on a slow
25985edc 7406 * console might take a lot of time:
57675cb9
AR
7407 * Also, reset softlockup watchdogs on all CPUs, because
7408 * another CPU might be blocked waiting for us to process
7409 * an IPI.
1da177e4
LT
7410 */
7411 touch_nmi_watchdog();
57675cb9 7412 touch_all_softlockup_watchdogs();
5d68cc95 7413 if (state_filter_match(state_filter, p))
82a1fcb9 7414 sched_show_task(p);
5d07f420 7415 }
1da177e4 7416
dd41f596 7417#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
7418 if (!state_filter)
7419 sysrq_sched_debug_show();
dd41f596 7420#endif
510f5acc 7421 rcu_read_unlock();
e59e2ae2
IM
7422 /*
7423 * Only show locks if all tasks are dumped:
7424 */
93335a21 7425 if (!state_filter)
e59e2ae2 7426 debug_show_all_locks();
1da177e4
LT
7427}
7428
f340c0d1
IM
7429/**
7430 * init_idle - set up an idle thread for a given CPU
7431 * @idle: task in question
d1ccc66d 7432 * @cpu: CPU the idle task belongs to
f340c0d1
IM
7433 *
7434 * NOTE: this function does not set the idle thread's NEED_RESCHED
7435 * flag, to make booting more robust.
7436 */
0db0628d 7437void init_idle(struct task_struct *idle, int cpu)
1da177e4 7438{
70b97a7f 7439 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7440 unsigned long flags;
7441
ff51ff84
PZ
7442 __sched_fork(0, idle);
7443
25834c73
PZ
7444 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7445 raw_spin_lock(&rq->lock);
5cbd54ef 7446
06b83b5f 7447 idle->state = TASK_RUNNING;
dd41f596 7448 idle->se.exec_start = sched_clock();
c1de45ca 7449 idle->flags |= PF_IDLE;
dd41f596 7450
d08b9f0c 7451 scs_task_reset(idle);
e1b77c92
MR
7452 kasan_unpoison_task_stack(idle);
7453
de9b8f5d
PZ
7454#ifdef CONFIG_SMP
7455 /*
b19a888c 7456 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
7457 * in that case do_set_cpus_allowed() will not do the right thing.
7458 *
7459 * And since this is boot we can forgo the serialization.
7460 */
9cfc3e18 7461 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 7462#endif
6506cf6c
PZ
7463 /*
7464 * We're having a chicken and egg problem, even though we are
d1ccc66d 7465 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
7466 * lockdep check in task_group() will fail.
7467 *
7468 * Similar case to sched_fork(). / Alternatively we could
7469 * use task_rq_lock() here and obtain the other rq->lock.
7470 *
7471 * Silence PROVE_RCU
7472 */
7473 rcu_read_lock();
dd41f596 7474 __set_task_cpu(idle, cpu);
6506cf6c 7475 rcu_read_unlock();
1da177e4 7476
5311a98f
EB
7477 rq->idle = idle;
7478 rcu_assign_pointer(rq->curr, idle);
da0c1e65 7479 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 7480#ifdef CONFIG_SMP
3ca7a440 7481 idle->on_cpu = 1;
4866cde0 7482#endif
25834c73
PZ
7483 raw_spin_unlock(&rq->lock);
7484 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
7485
7486 /* Set the preempt count _outside_ the spinlocks! */
01028747 7487 init_idle_preempt_count(idle, cpu);
55cd5340 7488
dd41f596
IM
7489 /*
7490 * The idle tasks have their own, simple scheduling class:
7491 */
7492 idle->sched_class = &idle_sched_class;
868baf07 7493 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 7494 vtime_init_idle(idle, cpu);
de9b8f5d 7495#ifdef CONFIG_SMP
f1c6f1a7
CE
7496 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7497#endif
19978ca6
IM
7498}
7499
e1d4eeec
NP
7500#ifdef CONFIG_SMP
7501
f82f8042
JL
7502int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7503 const struct cpumask *trial)
7504{
06a76fe0 7505 int ret = 1;
f82f8042 7506
bb2bc55a
MG
7507 if (!cpumask_weight(cur))
7508 return ret;
7509
06a76fe0 7510 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
7511
7512 return ret;
7513}
7514
7f51412a
JL
7515int task_can_attach(struct task_struct *p,
7516 const struct cpumask *cs_cpus_allowed)
7517{
7518 int ret = 0;
7519
7520 /*
7521 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 7522 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
7523 * affinity and isolating such threads by their set of
7524 * allowed nodes is unnecessary. Thus, cpusets are not
7525 * applicable for such threads. This prevents checking for
7526 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 7527 * before cpus_mask may be changed.
7f51412a
JL
7528 */
7529 if (p->flags & PF_NO_SETAFFINITY) {
7530 ret = -EINVAL;
7531 goto out;
7532 }
7533
7f51412a 7534 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
7535 cs_cpus_allowed))
7536 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 7537
7f51412a
JL
7538out:
7539 return ret;
7540}
7541
f2cb1360 7542bool sched_smp_initialized __read_mostly;
e26fbffd 7543
e6628d5b
MG
7544#ifdef CONFIG_NUMA_BALANCING
7545/* Migrate current task p to target_cpu */
7546int migrate_task_to(struct task_struct *p, int target_cpu)
7547{
7548 struct migration_arg arg = { p, target_cpu };
7549 int curr_cpu = task_cpu(p);
7550
7551 if (curr_cpu == target_cpu)
7552 return 0;
7553
3bd37062 7554 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
7555 return -EINVAL;
7556
7557 /* TODO: This is not properly updating schedstats */
7558
286549dc 7559 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
7560 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7561}
0ec8aa00
PZ
7562
7563/*
7564 * Requeue a task on a given node and accurately track the number of NUMA
7565 * tasks on the runqueues
7566 */
7567void sched_setnuma(struct task_struct *p, int nid)
7568{
da0c1e65 7569 bool queued, running;
eb580751
PZ
7570 struct rq_flags rf;
7571 struct rq *rq;
0ec8aa00 7572
eb580751 7573 rq = task_rq_lock(p, &rf);
da0c1e65 7574 queued = task_on_rq_queued(p);
0ec8aa00
PZ
7575 running = task_current(rq, p);
7576
da0c1e65 7577 if (queued)
1de64443 7578 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 7579 if (running)
f3cd1c4e 7580 put_prev_task(rq, p);
0ec8aa00
PZ
7581
7582 p->numa_preferred_nid = nid;
0ec8aa00 7583
da0c1e65 7584 if (queued)
7134b3e9 7585 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 7586 if (running)
03b7fad1 7587 set_next_task(rq, p);
eb580751 7588 task_rq_unlock(rq, p, &rf);
0ec8aa00 7589}
5cc389bc 7590#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 7591
1da177e4 7592#ifdef CONFIG_HOTPLUG_CPU
054b9108 7593/*
d1ccc66d 7594 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 7595 * offline.
054b9108 7596 */
48c5ccae 7597void idle_task_exit(void)
1da177e4 7598{
48c5ccae 7599 struct mm_struct *mm = current->active_mm;
e76bd8d9 7600
48c5ccae 7601 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 7602 BUG_ON(current != this_rq()->idle);
e76bd8d9 7603
a53efe5f 7604 if (mm != &init_mm) {
252d2a41 7605 switch_mm(mm, &init_mm, current);
a53efe5f
MS
7606 finish_arch_post_lock_switch();
7607 }
bf2c59fc
PZ
7608
7609 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
7610}
7611
2558aacf 7612static int __balance_push_cpu_stop(void *arg)
1da177e4 7613{
2558aacf
PZ
7614 struct task_struct *p = arg;
7615 struct rq *rq = this_rq();
7616 struct rq_flags rf;
7617 int cpu;
1da177e4 7618
2558aacf
PZ
7619 raw_spin_lock_irq(&p->pi_lock);
7620 rq_lock(rq, &rf);
3f1d2a31 7621
2558aacf
PZ
7622 update_rq_clock(rq);
7623
7624 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7625 cpu = select_fallback_rq(rq->cpu, p);
7626 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 7627 }
3f1d2a31 7628
2558aacf
PZ
7629 rq_unlock(rq, &rf);
7630 raw_spin_unlock_irq(&p->pi_lock);
7631
7632 put_task_struct(p);
7633
7634 return 0;
10e7071b 7635}
3f1d2a31 7636
2558aacf
PZ
7637static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7638
48f24c4d 7639/*
2558aacf 7640 * Ensure we only run per-cpu kthreads once the CPU goes !active.
1da177e4 7641 */
2558aacf 7642static void balance_push(struct rq *rq)
1da177e4 7643{
2558aacf
PZ
7644 struct task_struct *push_task = rq->curr;
7645
7646 lockdep_assert_held(&rq->lock);
7647 SCHED_WARN_ON(rq->cpu != smp_processor_id());
ae792702
PZ
7648 /*
7649 * Ensure the thing is persistent until balance_push_set(.on = false);
7650 */
7651 rq->balance_callback = &balance_push_callback;
1da177e4
LT
7652
7653 /*
2558aacf
PZ
7654 * Both the cpu-hotplug and stop task are in this case and are
7655 * required to complete the hotplug process.
5ba2ffba
PZ
7656 *
7657 * XXX: the idle task does not match kthread_is_per_cpu() due to
7658 * histerical raisins.
1da177e4 7659 */
5ba2ffba
PZ
7660 if (rq->idle == push_task ||
7661 ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7662 is_migration_disabled(push_task)) {
7663
f2469a1f
TG
7664 /*
7665 * If this is the idle task on the outgoing CPU try to wake
7666 * up the hotplug control thread which might wait for the
7667 * last task to vanish. The rcuwait_active() check is
7668 * accurate here because the waiter is pinned on this CPU
7669 * and can't obviously be running in parallel.
3015ef4b
TG
7670 *
7671 * On RT kernels this also has to check whether there are
7672 * pinned and scheduled out tasks on the runqueue. They
7673 * need to leave the migrate disabled section first.
f2469a1f 7674 */
3015ef4b
TG
7675 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7676 rcuwait_active(&rq->hotplug_wait)) {
f2469a1f
TG
7677 raw_spin_unlock(&rq->lock);
7678 rcuwait_wake_up(&rq->hotplug_wait);
7679 raw_spin_lock(&rq->lock);
7680 }
2558aacf 7681 return;
f2469a1f 7682 }
48f24c4d 7683
2558aacf 7684 get_task_struct(push_task);
77bd3970 7685 /*
2558aacf
PZ
7686 * Temporarily drop rq->lock such that we can wake-up the stop task.
7687 * Both preemption and IRQs are still disabled.
77bd3970 7688 */
2558aacf
PZ
7689 raw_spin_unlock(&rq->lock);
7690 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7691 this_cpu_ptr(&push_work));
7692 /*
7693 * At this point need_resched() is true and we'll take the loop in
7694 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 7695 * which kthread_is_per_cpu() and will push this task away.
2558aacf
PZ
7696 */
7697 raw_spin_lock(&rq->lock);
7698}
77bd3970 7699
2558aacf
PZ
7700static void balance_push_set(int cpu, bool on)
7701{
7702 struct rq *rq = cpu_rq(cpu);
7703 struct rq_flags rf;
48c5ccae 7704
2558aacf 7705 rq_lock_irqsave(rq, &rf);
975707f2 7706 rq->balance_push = on;
22f667c9
PZ
7707 if (on) {
7708 WARN_ON_ONCE(rq->balance_callback);
ae792702 7709 rq->balance_callback = &balance_push_callback;
22f667c9 7710 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 7711 rq->balance_callback = NULL;
22f667c9 7712 }
2558aacf
PZ
7713 rq_unlock_irqrestore(rq, &rf);
7714}
e692ab53 7715
f2469a1f
TG
7716/*
7717 * Invoked from a CPUs hotplug control thread after the CPU has been marked
7718 * inactive. All tasks which are not per CPU kernel threads are either
7719 * pushed off this CPU now via balance_push() or placed on a different CPU
7720 * during wakeup. Wait until the CPU is quiescent.
7721 */
7722static void balance_hotplug_wait(void)
7723{
7724 struct rq *rq = this_rq();
5473e0cc 7725
3015ef4b
TG
7726 rcuwait_wait_event(&rq->hotplug_wait,
7727 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
7728 TASK_UNINTERRUPTIBLE);
7729}
5473e0cc 7730
2558aacf 7731#else
dce48a84 7732
2558aacf
PZ
7733static inline void balance_push(struct rq *rq)
7734{
dce48a84 7735}
dce48a84 7736
2558aacf
PZ
7737static inline void balance_push_set(int cpu, bool on)
7738{
7739}
7740
f2469a1f
TG
7741static inline void balance_hotplug_wait(void)
7742{
dce48a84 7743}
f2469a1f 7744
1da177e4
LT
7745#endif /* CONFIG_HOTPLUG_CPU */
7746
f2cb1360 7747void set_rq_online(struct rq *rq)
1f11eb6a
GH
7748{
7749 if (!rq->online) {
7750 const struct sched_class *class;
7751
c6c4927b 7752 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7753 rq->online = 1;
7754
7755 for_each_class(class) {
7756 if (class->rq_online)
7757 class->rq_online(rq);
7758 }
7759 }
7760}
7761
f2cb1360 7762void set_rq_offline(struct rq *rq)
1f11eb6a
GH
7763{
7764 if (rq->online) {
7765 const struct sched_class *class;
7766
7767 for_each_class(class) {
7768 if (class->rq_offline)
7769 class->rq_offline(rq);
7770 }
7771
c6c4927b 7772 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7773 rq->online = 0;
7774 }
7775}
7776
d1ccc66d
IM
7777/*
7778 * used to mark begin/end of suspend/resume:
7779 */
7780static int num_cpus_frozen;
d35be8ba 7781
1da177e4 7782/*
3a101d05
TH
7783 * Update cpusets according to cpu_active mask. If cpusets are
7784 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7785 * around partition_sched_domains().
d35be8ba
SB
7786 *
7787 * If we come here as part of a suspend/resume, don't touch cpusets because we
7788 * want to restore it back to its original state upon resume anyway.
1da177e4 7789 */
40190a78 7790static void cpuset_cpu_active(void)
e761b772 7791{
40190a78 7792 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7793 /*
7794 * num_cpus_frozen tracks how many CPUs are involved in suspend
7795 * resume sequence. As long as this is not the last online
7796 * operation in the resume sequence, just build a single sched
7797 * domain, ignoring cpusets.
7798 */
50e76632
PZ
7799 partition_sched_domains(1, NULL, NULL);
7800 if (--num_cpus_frozen)
135fb3e1 7801 return;
d35be8ba
SB
7802 /*
7803 * This is the last CPU online operation. So fall through and
7804 * restore the original sched domains by considering the
7805 * cpuset configurations.
7806 */
50e76632 7807 cpuset_force_rebuild();
3a101d05 7808 }
30e03acd 7809 cpuset_update_active_cpus();
3a101d05 7810}
e761b772 7811
40190a78 7812static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7813{
40190a78 7814 if (!cpuhp_tasks_frozen) {
06a76fe0 7815 if (dl_cpu_busy(cpu))
135fb3e1 7816 return -EBUSY;
30e03acd 7817 cpuset_update_active_cpus();
135fb3e1 7818 } else {
d35be8ba
SB
7819 num_cpus_frozen++;
7820 partition_sched_domains(1, NULL, NULL);
e761b772 7821 }
135fb3e1 7822 return 0;
e761b772 7823}
e761b772 7824
40190a78 7825int sched_cpu_activate(unsigned int cpu)
135fb3e1 7826{
7d976699 7827 struct rq *rq = cpu_rq(cpu);
8a8c69c3 7828 struct rq_flags rf;
7d976699 7829
22f667c9
PZ
7830 /*
7831 * Make sure that when the hotplug state machine does a roll-back
7832 * we clear balance_push. Ideally that would happen earlier...
7833 */
2558aacf
PZ
7834 balance_push_set(cpu, false);
7835
ba2591a5
PZ
7836#ifdef CONFIG_SCHED_SMT
7837 /*
c5511d03 7838 * When going up, increment the number of cores with SMT present.
ba2591a5 7839 */
c5511d03
PZI
7840 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7841 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 7842#endif
40190a78 7843 set_cpu_active(cpu, true);
135fb3e1 7844
40190a78 7845 if (sched_smp_initialized) {
135fb3e1 7846 sched_domains_numa_masks_set(cpu);
40190a78 7847 cpuset_cpu_active();
e761b772 7848 }
7d976699
TG
7849
7850 /*
7851 * Put the rq online, if not already. This happens:
7852 *
7853 * 1) In the early boot process, because we build the real domains
d1ccc66d 7854 * after all CPUs have been brought up.
7d976699
TG
7855 *
7856 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7857 * domains.
7858 */
8a8c69c3 7859 rq_lock_irqsave(rq, &rf);
7d976699
TG
7860 if (rq->rd) {
7861 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7862 set_rq_online(rq);
7863 }
8a8c69c3 7864 rq_unlock_irqrestore(rq, &rf);
7d976699 7865
40190a78 7866 return 0;
135fb3e1
TG
7867}
7868
40190a78 7869int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7870{
120455c5
PZ
7871 struct rq *rq = cpu_rq(cpu);
7872 struct rq_flags rf;
135fb3e1
TG
7873 int ret;
7874
e0b257c3
AMB
7875 /*
7876 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7877 * load balancing when not active
7878 */
7879 nohz_balance_exit_idle(rq);
7880
40190a78 7881 set_cpu_active(cpu, false);
741ba80f
PZ
7882
7883 /*
7884 * From this point forward, this CPU will refuse to run any task that
7885 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7886 * push those tasks away until this gets cleared, see
7887 * sched_cpu_dying().
7888 */
975707f2
PZ
7889 balance_push_set(cpu, true);
7890
b2454caa 7891 /*
975707f2
PZ
7892 * We've cleared cpu_active_mask / set balance_push, wait for all
7893 * preempt-disabled and RCU users of this state to go away such that
7894 * all new such users will observe it.
b2454caa 7895 *
5ba2ffba
PZ
7896 * Specifically, we rely on ttwu to no longer target this CPU, see
7897 * ttwu_queue_cond() and is_cpu_allowed().
7898 *
b2454caa
PZ
7899 * Do sync before park smpboot threads to take care the rcu boost case.
7900 */
309ba859 7901 synchronize_rcu();
40190a78 7902
120455c5
PZ
7903 rq_lock_irqsave(rq, &rf);
7904 if (rq->rd) {
7905 update_rq_clock(rq);
7906 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7907 set_rq_offline(rq);
7908 }
7909 rq_unlock_irqrestore(rq, &rf);
7910
c5511d03
PZI
7911#ifdef CONFIG_SCHED_SMT
7912 /*
7913 * When going down, decrement the number of cores with SMT present.
7914 */
7915 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7916 static_branch_dec_cpuslocked(&sched_smt_present);
7917#endif
7918
40190a78
TG
7919 if (!sched_smp_initialized)
7920 return 0;
7921
7922 ret = cpuset_cpu_inactive(cpu);
7923 if (ret) {
2558aacf 7924 balance_push_set(cpu, false);
40190a78
TG
7925 set_cpu_active(cpu, true);
7926 return ret;
135fb3e1 7927 }
40190a78
TG
7928 sched_domains_numa_masks_clear(cpu);
7929 return 0;
135fb3e1
TG
7930}
7931
94baf7a5
TG
7932static void sched_rq_cpu_starting(unsigned int cpu)
7933{
7934 struct rq *rq = cpu_rq(cpu);
7935
7936 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7937 update_max_interval();
7938}
7939
135fb3e1
TG
7940int sched_cpu_starting(unsigned int cpu)
7941{
94baf7a5 7942 sched_rq_cpu_starting(cpu);
d84b3131 7943 sched_tick_start(cpu);
135fb3e1 7944 return 0;
e761b772 7945}
e761b772 7946
f2785ddb 7947#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
7948
7949/*
7950 * Invoked immediately before the stopper thread is invoked to bring the
7951 * CPU down completely. At this point all per CPU kthreads except the
7952 * hotplug thread (current) and the stopper thread (inactive) have been
7953 * either parked or have been unbound from the outgoing CPU. Ensure that
7954 * any of those which might be on the way out are gone.
7955 *
7956 * If after this point a bound task is being woken on this CPU then the
7957 * responsible hotplug callback has failed to do it's job.
7958 * sched_cpu_dying() will catch it with the appropriate fireworks.
7959 */
7960int sched_cpu_wait_empty(unsigned int cpu)
7961{
7962 balance_hotplug_wait();
7963 return 0;
7964}
7965
7966/*
7967 * Since this CPU is going 'away' for a while, fold any nr_active delta we
7968 * might have. Called from the CPU stopper task after ensuring that the
7969 * stopper is the last running task on the CPU, so nr_active count is
7970 * stable. We need to take the teardown thread which is calling this into
7971 * account, so we hand in adjust = 1 to the load calculation.
7972 *
7973 * Also see the comment "Global load-average calculations".
7974 */
7975static void calc_load_migrate(struct rq *rq)
7976{
7977 long delta = calc_load_fold_active(rq, 1);
7978
7979 if (delta)
7980 atomic_long_add(delta, &calc_load_tasks);
7981}
7982
36c6e17b
VS
7983static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7984{
7985 struct task_struct *g, *p;
7986 int cpu = cpu_of(rq);
7987
7988 lockdep_assert_held(&rq->lock);
7989
7990 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
7991 for_each_process_thread(g, p) {
7992 if (task_cpu(p) != cpu)
7993 continue;
7994
7995 if (!task_on_rq_queued(p))
7996 continue;
7997
7998 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
7999 }
8000}
8001
f2785ddb
TG
8002int sched_cpu_dying(unsigned int cpu)
8003{
8004 struct rq *rq = cpu_rq(cpu);
8a8c69c3 8005 struct rq_flags rf;
f2785ddb
TG
8006
8007 /* Handle pending wakeups and then migrate everything off */
d84b3131 8008 sched_tick_stop(cpu);
8a8c69c3
PZ
8009
8010 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
8011 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8012 WARN(true, "Dying CPU not properly vacated!");
8013 dump_rq_tasks(rq, KERN_WARNING);
8014 }
8a8c69c3
PZ
8015 rq_unlock_irqrestore(rq, &rf);
8016
22f667c9
PZ
8017 /*
8018 * Now that the CPU is offline, make sure we're welcome
8019 * to new tasks once we come back up.
8020 */
8021 balance_push_set(cpu, false);
8022
f2785ddb
TG
8023 calc_load_migrate(rq);
8024 update_max_interval();
e5ef27d0 8025 hrtick_clear(rq);
f2785ddb
TG
8026 return 0;
8027}
8028#endif
8029
1da177e4
LT
8030void __init sched_init_smp(void)
8031{
cb83b629
PZ
8032 sched_init_numa();
8033
6acce3ef
PZ
8034 /*
8035 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 8036 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 8037 * happen.
6acce3ef 8038 */
712555ee 8039 mutex_lock(&sched_domains_mutex);
8d5dc512 8040 sched_init_domains(cpu_active_mask);
712555ee 8041 mutex_unlock(&sched_domains_mutex);
e761b772 8042
5c1e1767 8043 /* Move init over to a non-isolated CPU */
edb93821 8044 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 8045 BUG();
19978ca6 8046 sched_init_granularity();
4212823f 8047
0e3900e6 8048 init_sched_rt_class();
1baca4ce 8049 init_sched_dl_class();
1b568f0a 8050
e26fbffd 8051 sched_smp_initialized = true;
1da177e4 8052}
e26fbffd
TG
8053
8054static int __init migration_init(void)
8055{
77a5352b 8056 sched_cpu_starting(smp_processor_id());
e26fbffd 8057 return 0;
1da177e4 8058}
e26fbffd
TG
8059early_initcall(migration_init);
8060
1da177e4
LT
8061#else
8062void __init sched_init_smp(void)
8063{
19978ca6 8064 sched_init_granularity();
1da177e4
LT
8065}
8066#endif /* CONFIG_SMP */
8067
8068int in_sched_functions(unsigned long addr)
8069{
1da177e4
LT
8070 return in_lock_functions(addr) ||
8071 (addr >= (unsigned long)__sched_text_start
8072 && addr < (unsigned long)__sched_text_end);
8073}
8074
029632fb 8075#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
8076/*
8077 * Default task group.
8078 * Every task in system belongs to this group at bootup.
8079 */
029632fb 8080struct task_group root_task_group;
35cf4e50 8081LIST_HEAD(task_groups);
b0367629
WL
8082
8083/* Cacheline aligned slab cache for task_group */
8084static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 8085#endif
6f505b16 8086
e6252c3e 8087DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 8088DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 8089
1da177e4
LT
8090void __init sched_init(void)
8091{
a1dc0446 8092 unsigned long ptr = 0;
55627e3c 8093 int i;
434d53b0 8094
c3a340f7
SRV
8095 /* Make sure the linker didn't screw up */
8096 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8097 &fair_sched_class + 1 != &rt_sched_class ||
8098 &rt_sched_class + 1 != &dl_sched_class);
8099#ifdef CONFIG_SMP
8100 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8101#endif
8102
5822a454 8103 wait_bit_init();
9dcb8b68 8104
434d53b0 8105#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 8106 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
8107#endif
8108#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 8109 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 8110#endif
a1dc0446
QC
8111 if (ptr) {
8112 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
8113
8114#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8115 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8116 ptr += nr_cpu_ids * sizeof(void **);
8117
07e06b01 8118 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8119 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8120
b1d1779e
WY
8121 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8122 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 8123#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8124#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8125 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8126 ptr += nr_cpu_ids * sizeof(void **);
8127
07e06b01 8128 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8129 ptr += nr_cpu_ids * sizeof(void **);
8130
6d6bc0ad 8131#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 8132 }
df7c8e84 8133#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
8134 for_each_possible_cpu(i) {
8135 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8136 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
8137 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8138 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 8139 }
b74e6278 8140#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 8141
d1ccc66d
IM
8142 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8143 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 8144
57d885fe
GH
8145#ifdef CONFIG_SMP
8146 init_defrootdomain();
8147#endif
8148
d0b27fa7 8149#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8150 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8151 global_rt_period(), global_rt_runtime());
6d6bc0ad 8152#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8153
7c941438 8154#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
8155 task_group_cache = KMEM_CACHE(task_group, 0);
8156
07e06b01
YZ
8157 list_add(&root_task_group.list, &task_groups);
8158 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 8159 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 8160 autogroup_init(&init_task);
7c941438 8161#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8162
0a945022 8163 for_each_possible_cpu(i) {
70b97a7f 8164 struct rq *rq;
1da177e4
LT
8165
8166 rq = cpu_rq(i);
05fa785c 8167 raw_spin_lock_init(&rq->lock);
7897986b 8168 rq->nr_running = 0;
dce48a84
TG
8169 rq->calc_load_active = 0;
8170 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8171 init_cfs_rq(&rq->cfs);
07c54f7a
AV
8172 init_rt_rq(&rq->rt);
8173 init_dl_rq(&rq->dl);
dd41f596 8174#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 8175 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 8176 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 8177 /*
d1ccc66d 8178 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
8179 *
8180 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
8181 * gets 100% of the CPU resources in the system. This overall
8182 * system CPU resource is divided among the tasks of
07e06b01 8183 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8184 * based on each entity's (task or task-group's) weight
8185 * (se->load.weight).
8186 *
07e06b01 8187 * In other words, if root_task_group has 10 tasks of weight
354d60c2 8188 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 8189 * then A0's share of the CPU resource is:
354d60c2 8190 *
0d905bca 8191 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8192 *
07e06b01
YZ
8193 * We achieve this by letting root_task_group's tasks sit
8194 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8195 */
07e06b01 8196 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8197#endif /* CONFIG_FAIR_GROUP_SCHED */
8198
8199 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8200#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8201 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8202#endif
1da177e4 8203#ifdef CONFIG_SMP
41c7ce9a 8204 rq->sd = NULL;
57d885fe 8205 rq->rd = NULL;
ca6d75e6 8206 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 8207 rq->balance_callback = NULL;
1da177e4 8208 rq->active_balance = 0;
dd41f596 8209 rq->next_balance = jiffies;
1da177e4 8210 rq->push_cpu = 0;
0a2966b4 8211 rq->cpu = i;
1f11eb6a 8212 rq->online = 0;
eae0c9df
MG
8213 rq->idle_stamp = 0;
8214 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 8215 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
8216
8217 INIT_LIST_HEAD(&rq->cfs_tasks);
8218
dc938520 8219 rq_attach_root(rq, &def_root_domain);
3451d024 8220#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 8221 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 8222 atomic_set(&rq->nohz_flags, 0);
90b5363a 8223
545b8c8d 8224 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 8225#endif
f2469a1f
TG
8226#ifdef CONFIG_HOTPLUG_CPU
8227 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 8228#endif
9fd81dd5 8229#endif /* CONFIG_SMP */
77a021be 8230 hrtick_rq_init(rq);
1da177e4 8231 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8232 }
8233
9059393e 8234 set_load_weight(&init_task, false);
b50f60ce 8235
1da177e4
LT
8236 /*
8237 * The boot idle thread does lazy MMU switching as well:
8238 */
f1f10076 8239 mmgrab(&init_mm);
1da177e4
LT
8240 enter_lazy_tlb(&init_mm, current);
8241
8242 /*
8243 * Make us the idle thread. Technically, schedule() should not be
8244 * called from this thread, however somewhere below it might be,
8245 * but because we are the idle thread, we just pick up running again
8246 * when this runqueue becomes "idle".
8247 */
8248 init_idle(current, smp_processor_id());
dce48a84
TG
8249
8250 calc_load_update = jiffies + LOAD_FREQ;
8251
bf4d83f6 8252#ifdef CONFIG_SMP
29d5e047 8253 idle_thread_set_boot_cpu();
029632fb
PZ
8254#endif
8255 init_sched_fair_class();
6a7b3dc3 8256
4698f88c
JP
8257 init_schedstats();
8258
eb414681
JW
8259 psi_init();
8260
69842cba
PB
8261 init_uclamp();
8262
6892b75e 8263 scheduler_running = 1;
1da177e4
LT
8264}
8265
d902db1e 8266#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8267static inline int preempt_count_equals(int preempt_offset)
8268{
da7142e2 8269 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 8270
4ba8216c 8271 return (nested == preempt_offset);
e4aafea2
FW
8272}
8273
d894837f 8274void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8275{
8eb23b9f
PZ
8276 /*
8277 * Blocking primitives will set (and therefore destroy) current->state,
8278 * since we will exit with TASK_RUNNING make sure we enter with it,
8279 * otherwise we will destroy state.
8280 */
00845eb9 8281 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
8282 "do not call blocking ops when !TASK_RUNNING; "
8283 "state=%lx set at [<%p>] %pS\n",
8284 current->state,
8285 (void *)current->task_state_change,
00845eb9 8286 (void *)current->task_state_change);
8eb23b9f 8287
3427445a
PZ
8288 ___might_sleep(file, line, preempt_offset);
8289}
8290EXPORT_SYMBOL(__might_sleep);
8291
8292void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8293{
d1ccc66d
IM
8294 /* Ratelimiting timestamp: */
8295 static unsigned long prev_jiffy;
8296
d1c6d149 8297 unsigned long preempt_disable_ip;
1da177e4 8298
d1ccc66d
IM
8299 /* WARN_ON_ONCE() by default, no rate limit required: */
8300 rcu_sleep_check();
8301
db273be2 8302 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 8303 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
8304 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8305 oops_in_progress)
aef745fc 8306 return;
1c3c5eab 8307
aef745fc
IM
8308 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8309 return;
8310 prev_jiffy = jiffies;
8311
d1ccc66d 8312 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
8313 preempt_disable_ip = get_preempt_disable_ip(current);
8314
3df0fc5b
PZ
8315 printk(KERN_ERR
8316 "BUG: sleeping function called from invalid context at %s:%d\n",
8317 file, line);
8318 printk(KERN_ERR
312364f3
DV
8319 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8320 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 8321 current->pid, current->comm);
aef745fc 8322
a8b686b3
ES
8323 if (task_stack_end_corrupted(current))
8324 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8325
aef745fc
IM
8326 debug_show_held_locks(current);
8327 if (irqs_disabled())
8328 print_irqtrace_events(current);
d1c6d149
VN
8329 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8330 && !preempt_count_equals(preempt_offset)) {
8f47b187 8331 pr_err("Preemption disabled at:");
2062a4e8 8332 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 8333 }
aef745fc 8334 dump_stack();
f0b22e39 8335 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 8336}
3427445a 8337EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
8338
8339void __cant_sleep(const char *file, int line, int preempt_offset)
8340{
8341 static unsigned long prev_jiffy;
8342
8343 if (irqs_disabled())
8344 return;
8345
8346 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8347 return;
8348
8349 if (preempt_count() > preempt_offset)
8350 return;
8351
8352 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8353 return;
8354 prev_jiffy = jiffies;
8355
8356 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8357 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8358 in_atomic(), irqs_disabled(),
8359 current->pid, current->comm);
8360
8361 debug_show_held_locks(current);
8362 dump_stack();
8363 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8364}
8365EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
8366
8367#ifdef CONFIG_SMP
8368void __cant_migrate(const char *file, int line)
8369{
8370 static unsigned long prev_jiffy;
8371
8372 if (irqs_disabled())
8373 return;
8374
8375 if (is_migration_disabled(current))
8376 return;
8377
8378 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8379 return;
8380
8381 if (preempt_count() > 0)
8382 return;
8383
8384 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8385 return;
8386 prev_jiffy = jiffies;
8387
8388 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8389 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8390 in_atomic(), irqs_disabled(), is_migration_disabled(current),
8391 current->pid, current->comm);
8392
8393 debug_show_held_locks(current);
8394 dump_stack();
8395 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8396}
8397EXPORT_SYMBOL_GPL(__cant_migrate);
8398#endif
1da177e4
LT
8399#endif
8400
8401#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 8402void normalize_rt_tasks(void)
3a5e4dc1 8403{
dbc7f069 8404 struct task_struct *g, *p;
d50dde5a
DF
8405 struct sched_attr attr = {
8406 .sched_policy = SCHED_NORMAL,
8407 };
1da177e4 8408
3472eaa1 8409 read_lock(&tasklist_lock);
5d07f420 8410 for_each_process_thread(g, p) {
178be793
IM
8411 /*
8412 * Only normalize user tasks:
8413 */
3472eaa1 8414 if (p->flags & PF_KTHREAD)
178be793
IM
8415 continue;
8416
4fa8d299
JP
8417 p->se.exec_start = 0;
8418 schedstat_set(p->se.statistics.wait_start, 0);
8419 schedstat_set(p->se.statistics.sleep_start, 0);
8420 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 8421
aab03e05 8422 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
8423 /*
8424 * Renice negative nice level userspace
8425 * tasks back to 0:
8426 */
3472eaa1 8427 if (task_nice(p) < 0)
dd41f596 8428 set_user_nice(p, 0);
1da177e4 8429 continue;
dd41f596 8430 }
1da177e4 8431
dbc7f069 8432 __sched_setscheduler(p, &attr, false, false);
5d07f420 8433 }
3472eaa1 8434 read_unlock(&tasklist_lock);
1da177e4
LT
8435}
8436
8437#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8438
67fc4e0c 8439#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8440/*
67fc4e0c 8441 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8442 *
8443 * They can only be called when the whole system has been
8444 * stopped - every CPU needs to be quiescent, and no scheduling
8445 * activity can take place. Using them for anything else would
8446 * be a serious bug, and as a result, they aren't even visible
8447 * under any other configuration.
8448 */
8449
8450/**
d1ccc66d 8451 * curr_task - return the current task for a given CPU.
1df5c10a
LT
8452 * @cpu: the processor in question.
8453 *
8454 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
8455 *
8456 * Return: The current task for @cpu.
1df5c10a 8457 */
36c8b586 8458struct task_struct *curr_task(int cpu)
1df5c10a
LT
8459{
8460 return cpu_curr(cpu);
8461}
8462
67fc4e0c
JW
8463#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8464
8465#ifdef CONFIG_IA64
1df5c10a 8466/**
5feeb783 8467 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
8468 * @cpu: the processor in question.
8469 * @p: the task pointer to set.
8470 *
8471 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 8472 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 8473 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
8474 * must be called with all CPU's synchronized, and interrupts disabled, the
8475 * and caller must save the original value of the current task (see
8476 * curr_task() above) and restore that value before reenabling interrupts and
8477 * re-starting the system.
8478 *
8479 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8480 */
a458ae2e 8481void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8482{
8483 cpu_curr(cpu) = p;
8484}
8485
8486#endif
29f59db3 8487
7c941438 8488#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
8489/* task_group_lock serializes the addition/removal of task groups */
8490static DEFINE_SPINLOCK(task_group_lock);
8491
2480c093
PB
8492static inline void alloc_uclamp_sched_group(struct task_group *tg,
8493 struct task_group *parent)
8494{
8495#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 8496 enum uclamp_id clamp_id;
2480c093
PB
8497
8498 for_each_clamp_id(clamp_id) {
8499 uclamp_se_set(&tg->uclamp_req[clamp_id],
8500 uclamp_none(clamp_id), false);
0b60ba2d 8501 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
8502 }
8503#endif
8504}
8505
2f5177f0 8506static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
8507{
8508 free_fair_sched_group(tg);
8509 free_rt_sched_group(tg);
e9aa1dd1 8510 autogroup_free(tg);
b0367629 8511 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
8512}
8513
8514/* allocate runqueue etc for a new task group */
ec7dc8ac 8515struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8516{
8517 struct task_group *tg;
bccbe08a 8518
b0367629 8519 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
8520 if (!tg)
8521 return ERR_PTR(-ENOMEM);
8522
ec7dc8ac 8523 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8524 goto err;
8525
ec7dc8ac 8526 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8527 goto err;
8528
2480c093
PB
8529 alloc_uclamp_sched_group(tg, parent);
8530
ace783b9
LZ
8531 return tg;
8532
8533err:
2f5177f0 8534 sched_free_group(tg);
ace783b9
LZ
8535 return ERR_PTR(-ENOMEM);
8536}
8537
8538void sched_online_group(struct task_group *tg, struct task_group *parent)
8539{
8540 unsigned long flags;
8541
8ed36996 8542 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8543 list_add_rcu(&tg->list, &task_groups);
f473aa5e 8544
d1ccc66d
IM
8545 /* Root should already exist: */
8546 WARN_ON(!parent);
f473aa5e
PZ
8547
8548 tg->parent = parent;
f473aa5e 8549 INIT_LIST_HEAD(&tg->children);
09f2724a 8550 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8551 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
8552
8553 online_fair_sched_group(tg);
29f59db3
SV
8554}
8555
9b5b7751 8556/* rcu callback to free various structures associated with a task group */
2f5177f0 8557static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 8558{
d1ccc66d 8559 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 8560 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8561}
8562
4cf86d77 8563void sched_destroy_group(struct task_group *tg)
ace783b9 8564{
d1ccc66d 8565 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 8566 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
8567}
8568
8569void sched_offline_group(struct task_group *tg)
29f59db3 8570{
8ed36996 8571 unsigned long flags;
29f59db3 8572
d1ccc66d 8573 /* End participation in shares distribution: */
6fe1f348 8574 unregister_fair_sched_group(tg);
3d4b47b4
PZ
8575
8576 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8577 list_del_rcu(&tg->list);
f473aa5e 8578 list_del_rcu(&tg->siblings);
8ed36996 8579 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
8580}
8581
ea86cb4b 8582static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 8583{
8323f26c 8584 struct task_group *tg;
29f59db3 8585
f7b8a47d
KT
8586 /*
8587 * All callers are synchronized by task_rq_lock(); we do not use RCU
8588 * which is pointless here. Thus, we pass "true" to task_css_check()
8589 * to prevent lockdep warnings.
8590 */
8591 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
8592 struct task_group, css);
8593 tg = autogroup_task_group(tsk, tg);
8594 tsk->sched_task_group = tg;
8595
810b3817 8596#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8597 if (tsk->sched_class->task_change_group)
8598 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 8599 else
810b3817 8600#endif
b2b5ce02 8601 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
8602}
8603
8604/*
8605 * Change task's runqueue when it moves between groups.
8606 *
8607 * The caller of this function should have put the task in its new group by
8608 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8609 * its new group.
8610 */
8611void sched_move_task(struct task_struct *tsk)
8612{
7a57f32a
PZ
8613 int queued, running, queue_flags =
8614 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
8615 struct rq_flags rf;
8616 struct rq *rq;
8617
8618 rq = task_rq_lock(tsk, &rf);
1b1d6225 8619 update_rq_clock(rq);
ea86cb4b
VG
8620
8621 running = task_current(rq, tsk);
8622 queued = task_on_rq_queued(tsk);
8623
8624 if (queued)
7a57f32a 8625 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 8626 if (running)
ea86cb4b
VG
8627 put_prev_task(rq, tsk);
8628
8629 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 8630
da0c1e65 8631 if (queued)
7a57f32a 8632 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 8633 if (running) {
03b7fad1 8634 set_next_task(rq, tsk);
2a4b03ff
VG
8635 /*
8636 * After changing group, the running task may have joined a
8637 * throttled one but it's still the running task. Trigger a
8638 * resched to make sure that task can still run.
8639 */
8640 resched_curr(rq);
8641 }
29f59db3 8642
eb580751 8643 task_rq_unlock(rq, tsk, &rf);
29f59db3 8644}
68318b8e 8645
a7c6d554 8646static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8647{
a7c6d554 8648 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8649}
8650
eb95419b
TH
8651static struct cgroup_subsys_state *
8652cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8653{
eb95419b
TH
8654 struct task_group *parent = css_tg(parent_css);
8655 struct task_group *tg;
68318b8e 8656
eb95419b 8657 if (!parent) {
68318b8e 8658 /* This is early initialization for the top cgroup */
07e06b01 8659 return &root_task_group.css;
68318b8e
SV
8660 }
8661
ec7dc8ac 8662 tg = sched_create_group(parent);
68318b8e
SV
8663 if (IS_ERR(tg))
8664 return ERR_PTR(-ENOMEM);
8665
68318b8e
SV
8666 return &tg->css;
8667}
8668
96b77745
KK
8669/* Expose task group only after completing cgroup initialization */
8670static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8671{
8672 struct task_group *tg = css_tg(css);
8673 struct task_group *parent = css_tg(css->parent);
8674
8675 if (parent)
8676 sched_online_group(tg, parent);
7226017a
QY
8677
8678#ifdef CONFIG_UCLAMP_TASK_GROUP
8679 /* Propagate the effective uclamp value for the new group */
8680 cpu_util_update_eff(css);
8681#endif
8682
96b77745
KK
8683 return 0;
8684}
8685
2f5177f0 8686static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8687{
eb95419b 8688 struct task_group *tg = css_tg(css);
ace783b9 8689
2f5177f0 8690 sched_offline_group(tg);
ace783b9
LZ
8691}
8692
eb95419b 8693static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8694{
eb95419b 8695 struct task_group *tg = css_tg(css);
68318b8e 8696
2f5177f0
PZ
8697 /*
8698 * Relies on the RCU grace period between css_released() and this.
8699 */
8700 sched_free_group(tg);
ace783b9
LZ
8701}
8702
ea86cb4b
VG
8703/*
8704 * This is called before wake_up_new_task(), therefore we really only
8705 * have to set its group bits, all the other stuff does not apply.
8706 */
b53202e6 8707static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8708{
ea86cb4b
VG
8709 struct rq_flags rf;
8710 struct rq *rq;
8711
8712 rq = task_rq_lock(task, &rf);
8713
80f5c1b8 8714 update_rq_clock(rq);
ea86cb4b
VG
8715 sched_change_group(task, TASK_SET_GROUP);
8716
8717 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8718}
8719
1f7dd3e5 8720static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8721{
bb9d97b6 8722 struct task_struct *task;
1f7dd3e5 8723 struct cgroup_subsys_state *css;
7dc603c9 8724 int ret = 0;
bb9d97b6 8725
1f7dd3e5 8726 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8727#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8728 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8729 return -EINVAL;
b68aa230 8730#endif
7dc603c9 8731 /*
b19a888c 8732 * Serialize against wake_up_new_task() such that if it's
7dc603c9
PZ
8733 * running, we're sure to observe its full state.
8734 */
8735 raw_spin_lock_irq(&task->pi_lock);
8736 /*
8737 * Avoid calling sched_move_task() before wake_up_new_task()
8738 * has happened. This would lead to problems with PELT, due to
8739 * move wanting to detach+attach while we're not attached yet.
8740 */
8741 if (task->state == TASK_NEW)
8742 ret = -EINVAL;
8743 raw_spin_unlock_irq(&task->pi_lock);
8744
8745 if (ret)
8746 break;
bb9d97b6 8747 }
7dc603c9 8748 return ret;
be367d09 8749}
68318b8e 8750
1f7dd3e5 8751static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8752{
bb9d97b6 8753 struct task_struct *task;
1f7dd3e5 8754 struct cgroup_subsys_state *css;
bb9d97b6 8755
1f7dd3e5 8756 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8757 sched_move_task(task);
68318b8e
SV
8758}
8759
2480c093 8760#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
8761static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8762{
8763 struct cgroup_subsys_state *top_css = css;
8764 struct uclamp_se *uc_parent = NULL;
8765 struct uclamp_se *uc_se = NULL;
8766 unsigned int eff[UCLAMP_CNT];
0413d7f3 8767 enum uclamp_id clamp_id;
0b60ba2d
PB
8768 unsigned int clamps;
8769
8770 css_for_each_descendant_pre(css, top_css) {
8771 uc_parent = css_tg(css)->parent
8772 ? css_tg(css)->parent->uclamp : NULL;
8773
8774 for_each_clamp_id(clamp_id) {
8775 /* Assume effective clamps matches requested clamps */
8776 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8777 /* Cap effective clamps with parent's effective clamps */
8778 if (uc_parent &&
8779 eff[clamp_id] > uc_parent[clamp_id].value) {
8780 eff[clamp_id] = uc_parent[clamp_id].value;
8781 }
8782 }
8783 /* Ensure protection is always capped by limit */
8784 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8785
8786 /* Propagate most restrictive effective clamps */
8787 clamps = 0x0;
8788 uc_se = css_tg(css)->uclamp;
8789 for_each_clamp_id(clamp_id) {
8790 if (eff[clamp_id] == uc_se[clamp_id].value)
8791 continue;
8792 uc_se[clamp_id].value = eff[clamp_id];
8793 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8794 clamps |= (0x1 << clamp_id);
8795 }
babbe170 8796 if (!clamps) {
0b60ba2d 8797 css = css_rightmost_descendant(css);
babbe170
PB
8798 continue;
8799 }
8800
8801 /* Immediately update descendants RUNNABLE tasks */
8802 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
8803 }
8804}
2480c093
PB
8805
8806/*
8807 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8808 * C expression. Since there is no way to convert a macro argument (N) into a
8809 * character constant, use two levels of macros.
8810 */
8811#define _POW10(exp) ((unsigned int)1e##exp)
8812#define POW10(exp) _POW10(exp)
8813
8814struct uclamp_request {
8815#define UCLAMP_PERCENT_SHIFT 2
8816#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8817 s64 percent;
8818 u64 util;
8819 int ret;
8820};
8821
8822static inline struct uclamp_request
8823capacity_from_percent(char *buf)
8824{
8825 struct uclamp_request req = {
8826 .percent = UCLAMP_PERCENT_SCALE,
8827 .util = SCHED_CAPACITY_SCALE,
8828 .ret = 0,
8829 };
8830
8831 buf = strim(buf);
8832 if (strcmp(buf, "max")) {
8833 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8834 &req.percent);
8835 if (req.ret)
8836 return req;
b562d140 8837 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
8838 req.ret = -ERANGE;
8839 return req;
8840 }
8841
8842 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8843 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8844 }
8845
8846 return req;
8847}
8848
8849static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8850 size_t nbytes, loff_t off,
8851 enum uclamp_id clamp_id)
8852{
8853 struct uclamp_request req;
8854 struct task_group *tg;
8855
8856 req = capacity_from_percent(buf);
8857 if (req.ret)
8858 return req.ret;
8859
46609ce2
QY
8860 static_branch_enable(&sched_uclamp_used);
8861
2480c093
PB
8862 mutex_lock(&uclamp_mutex);
8863 rcu_read_lock();
8864
8865 tg = css_tg(of_css(of));
8866 if (tg->uclamp_req[clamp_id].value != req.util)
8867 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8868
8869 /*
8870 * Because of not recoverable conversion rounding we keep track of the
8871 * exact requested value
8872 */
8873 tg->uclamp_pct[clamp_id] = req.percent;
8874
0b60ba2d
PB
8875 /* Update effective clamps to track the most restrictive value */
8876 cpu_util_update_eff(of_css(of));
8877
2480c093
PB
8878 rcu_read_unlock();
8879 mutex_unlock(&uclamp_mutex);
8880
8881 return nbytes;
8882}
8883
8884static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8885 char *buf, size_t nbytes,
8886 loff_t off)
8887{
8888 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8889}
8890
8891static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8892 char *buf, size_t nbytes,
8893 loff_t off)
8894{
8895 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8896}
8897
8898static inline void cpu_uclamp_print(struct seq_file *sf,
8899 enum uclamp_id clamp_id)
8900{
8901 struct task_group *tg;
8902 u64 util_clamp;
8903 u64 percent;
8904 u32 rem;
8905
8906 rcu_read_lock();
8907 tg = css_tg(seq_css(sf));
8908 util_clamp = tg->uclamp_req[clamp_id].value;
8909 rcu_read_unlock();
8910
8911 if (util_clamp == SCHED_CAPACITY_SCALE) {
8912 seq_puts(sf, "max\n");
8913 return;
8914 }
8915
8916 percent = tg->uclamp_pct[clamp_id];
8917 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8918 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8919}
8920
8921static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8922{
8923 cpu_uclamp_print(sf, UCLAMP_MIN);
8924 return 0;
8925}
8926
8927static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8928{
8929 cpu_uclamp_print(sf, UCLAMP_MAX);
8930 return 0;
8931}
8932#endif /* CONFIG_UCLAMP_TASK_GROUP */
8933
052f1dc7 8934#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8935static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8936 struct cftype *cftype, u64 shareval)
68318b8e 8937{
5b61d50a
KK
8938 if (shareval > scale_load_down(ULONG_MAX))
8939 shareval = MAX_SHARES;
182446d0 8940 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8941}
8942
182446d0
TH
8943static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8944 struct cftype *cft)
68318b8e 8945{
182446d0 8946 struct task_group *tg = css_tg(css);
68318b8e 8947
c8b28116 8948 return (u64) scale_load_down(tg->shares);
68318b8e 8949}
ab84d31e
PT
8950
8951#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8952static DEFINE_MUTEX(cfs_constraints_mutex);
8953
ab84d31e 8954const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 8955static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
8956/* More than 203 days if BW_SHIFT equals 20. */
8957static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 8958
a790de99
PT
8959static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8960
ab84d31e
PT
8961static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8962{
56f570e5 8963 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8964 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8965
8966 if (tg == &root_task_group)
8967 return -EINVAL;
8968
8969 /*
8970 * Ensure we have at some amount of bandwidth every period. This is
8971 * to prevent reaching a state of large arrears when throttled via
8972 * entity_tick() resulting in prolonged exit starvation.
8973 */
8974 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8975 return -EINVAL;
8976
8977 /*
3b03706f 8978 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
8979 * periods. This also allows us to normalize in computing quota
8980 * feasibility.
8981 */
8982 if (period > max_cfs_quota_period)
8983 return -EINVAL;
8984
d505b8af
HC
8985 /*
8986 * Bound quota to defend quota against overflow during bandwidth shift.
8987 */
8988 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8989 return -EINVAL;
8990
0e59bdae
KT
8991 /*
8992 * Prevent race between setting of cfs_rq->runtime_enabled and
8993 * unthrottle_offline_cfs_rqs().
8994 */
8995 get_online_cpus();
a790de99
PT
8996 mutex_lock(&cfs_constraints_mutex);
8997 ret = __cfs_schedulable(tg, period, quota);
8998 if (ret)
8999 goto out_unlock;
9000
58088ad0 9001 runtime_enabled = quota != RUNTIME_INF;
56f570e5 9002 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
9003 /*
9004 * If we need to toggle cfs_bandwidth_used, off->on must occur
9005 * before making related changes, and on->off must occur afterwards
9006 */
9007 if (runtime_enabled && !runtime_was_enabled)
9008 cfs_bandwidth_usage_inc();
ab84d31e
PT
9009 raw_spin_lock_irq(&cfs_b->lock);
9010 cfs_b->period = ns_to_ktime(period);
9011 cfs_b->quota = quota;
58088ad0 9012
a9cf55b2 9013 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
9014
9015 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
9016 if (runtime_enabled)
9017 start_cfs_bandwidth(cfs_b);
d1ccc66d 9018
ab84d31e
PT
9019 raw_spin_unlock_irq(&cfs_b->lock);
9020
0e59bdae 9021 for_each_online_cpu(i) {
ab84d31e 9022 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 9023 struct rq *rq = cfs_rq->rq;
8a8c69c3 9024 struct rq_flags rf;
ab84d31e 9025
8a8c69c3 9026 rq_lock_irq(rq, &rf);
58088ad0 9027 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9028 cfs_rq->runtime_remaining = 0;
671fd9da 9029
029632fb 9030 if (cfs_rq->throttled)
671fd9da 9031 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 9032 rq_unlock_irq(rq, &rf);
ab84d31e 9033 }
1ee14e6c
BS
9034 if (runtime_was_enabled && !runtime_enabled)
9035 cfs_bandwidth_usage_dec();
a790de99
PT
9036out_unlock:
9037 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 9038 put_online_cpus();
ab84d31e 9039
a790de99 9040 return ret;
ab84d31e
PT
9041}
9042
b1546edc 9043static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
9044{
9045 u64 quota, period;
9046
029632fb 9047 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9048 if (cfs_quota_us < 0)
9049 quota = RUNTIME_INF;
1a8b4540 9050 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 9051 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
9052 else
9053 return -EINVAL;
ab84d31e
PT
9054
9055 return tg_set_cfs_bandwidth(tg, period, quota);
9056}
9057
b1546edc 9058static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
9059{
9060 u64 quota_us;
9061
029632fb 9062 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
9063 return -1;
9064
029632fb 9065 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
9066 do_div(quota_us, NSEC_PER_USEC);
9067
9068 return quota_us;
9069}
9070
b1546edc 9071static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
9072{
9073 u64 quota, period;
9074
1a8b4540
KK
9075 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9076 return -EINVAL;
9077
ab84d31e 9078 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 9079 quota = tg->cfs_bandwidth.quota;
ab84d31e 9080
ab84d31e
PT
9081 return tg_set_cfs_bandwidth(tg, period, quota);
9082}
9083
b1546edc 9084static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
9085{
9086 u64 cfs_period_us;
9087
029632fb 9088 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9089 do_div(cfs_period_us, NSEC_PER_USEC);
9090
9091 return cfs_period_us;
9092}
9093
182446d0
TH
9094static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9095 struct cftype *cft)
ab84d31e 9096{
182446d0 9097 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
9098}
9099
182446d0
TH
9100static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9101 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 9102{
182446d0 9103 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
9104}
9105
182446d0
TH
9106static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9107 struct cftype *cft)
ab84d31e 9108{
182446d0 9109 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
9110}
9111
182446d0
TH
9112static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9113 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 9114{
182446d0 9115 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
9116}
9117
a790de99
PT
9118struct cfs_schedulable_data {
9119 struct task_group *tg;
9120 u64 period, quota;
9121};
9122
9123/*
9124 * normalize group quota/period to be quota/max_period
9125 * note: units are usecs
9126 */
9127static u64 normalize_cfs_quota(struct task_group *tg,
9128 struct cfs_schedulable_data *d)
9129{
9130 u64 quota, period;
9131
9132 if (tg == d->tg) {
9133 period = d->period;
9134 quota = d->quota;
9135 } else {
9136 period = tg_get_cfs_period(tg);
9137 quota = tg_get_cfs_quota(tg);
9138 }
9139
9140 /* note: these should typically be equivalent */
9141 if (quota == RUNTIME_INF || quota == -1)
9142 return RUNTIME_INF;
9143
9144 return to_ratio(period, quota);
9145}
9146
9147static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9148{
9149 struct cfs_schedulable_data *d = data;
029632fb 9150 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
9151 s64 quota = 0, parent_quota = -1;
9152
9153 if (!tg->parent) {
9154 quota = RUNTIME_INF;
9155 } else {
029632fb 9156 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
9157
9158 quota = normalize_cfs_quota(tg, d);
9c58c79a 9159 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
9160
9161 /*
c53593e5
TH
9162 * Ensure max(child_quota) <= parent_quota. On cgroup2,
9163 * always take the min. On cgroup1, only inherit when no
d1ccc66d 9164 * limit is set:
a790de99 9165 */
c53593e5
TH
9166 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9167 quota = min(quota, parent_quota);
9168 } else {
9169 if (quota == RUNTIME_INF)
9170 quota = parent_quota;
9171 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9172 return -EINVAL;
9173 }
a790de99 9174 }
9c58c79a 9175 cfs_b->hierarchical_quota = quota;
a790de99
PT
9176
9177 return 0;
9178}
9179
9180static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9181{
8277434e 9182 int ret;
a790de99
PT
9183 struct cfs_schedulable_data data = {
9184 .tg = tg,
9185 .period = period,
9186 .quota = quota,
9187 };
9188
9189 if (quota != RUNTIME_INF) {
9190 do_div(data.period, NSEC_PER_USEC);
9191 do_div(data.quota, NSEC_PER_USEC);
9192 }
9193
8277434e
PT
9194 rcu_read_lock();
9195 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9196 rcu_read_unlock();
9197
9198 return ret;
a790de99 9199}
e8da1b18 9200
a1f7164c 9201static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 9202{
2da8ca82 9203 struct task_group *tg = css_tg(seq_css(sf));
029632fb 9204 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 9205
44ffc75b
TH
9206 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9207 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9208 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 9209
3d6c50c2
YW
9210 if (schedstat_enabled() && tg != &root_task_group) {
9211 u64 ws = 0;
9212 int i;
9213
9214 for_each_possible_cpu(i)
9215 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
9216
9217 seq_printf(sf, "wait_sum %llu\n", ws);
9218 }
9219
e8da1b18
NR
9220 return 0;
9221}
ab84d31e 9222#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9223#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9224
052f1dc7 9225#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
9226static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9227 struct cftype *cft, s64 val)
6f505b16 9228{
182446d0 9229 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
9230}
9231
182446d0
TH
9232static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9233 struct cftype *cft)
6f505b16 9234{
182446d0 9235 return sched_group_rt_runtime(css_tg(css));
6f505b16 9236}
d0b27fa7 9237
182446d0
TH
9238static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9239 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 9240{
182446d0 9241 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
9242}
9243
182446d0
TH
9244static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9245 struct cftype *cft)
d0b27fa7 9246{
182446d0 9247 return sched_group_rt_period(css_tg(css));
d0b27fa7 9248}
6d6bc0ad 9249#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9250
a1f7164c 9251static struct cftype cpu_legacy_files[] = {
052f1dc7 9252#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9253 {
9254 .name = "shares",
f4c753b7
PM
9255 .read_u64 = cpu_shares_read_u64,
9256 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9257 },
052f1dc7 9258#endif
ab84d31e
PT
9259#ifdef CONFIG_CFS_BANDWIDTH
9260 {
9261 .name = "cfs_quota_us",
9262 .read_s64 = cpu_cfs_quota_read_s64,
9263 .write_s64 = cpu_cfs_quota_write_s64,
9264 },
9265 {
9266 .name = "cfs_period_us",
9267 .read_u64 = cpu_cfs_period_read_u64,
9268 .write_u64 = cpu_cfs_period_write_u64,
9269 },
e8da1b18
NR
9270 {
9271 .name = "stat",
a1f7164c 9272 .seq_show = cpu_cfs_stat_show,
e8da1b18 9273 },
ab84d31e 9274#endif
052f1dc7 9275#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9276 {
9f0c1e56 9277 .name = "rt_runtime_us",
06ecb27c
PM
9278 .read_s64 = cpu_rt_runtime_read,
9279 .write_s64 = cpu_rt_runtime_write,
6f505b16 9280 },
d0b27fa7
PZ
9281 {
9282 .name = "rt_period_us",
f4c753b7
PM
9283 .read_u64 = cpu_rt_period_read_uint,
9284 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9285 },
2480c093
PB
9286#endif
9287#ifdef CONFIG_UCLAMP_TASK_GROUP
9288 {
9289 .name = "uclamp.min",
9290 .flags = CFTYPE_NOT_ON_ROOT,
9291 .seq_show = cpu_uclamp_min_show,
9292 .write = cpu_uclamp_min_write,
9293 },
9294 {
9295 .name = "uclamp.max",
9296 .flags = CFTYPE_NOT_ON_ROOT,
9297 .seq_show = cpu_uclamp_max_show,
9298 .write = cpu_uclamp_max_write,
9299 },
052f1dc7 9300#endif
d1ccc66d 9301 { } /* Terminate */
68318b8e
SV
9302};
9303
d41bf8c9
TH
9304static int cpu_extra_stat_show(struct seq_file *sf,
9305 struct cgroup_subsys_state *css)
0d593634 9306{
0d593634
TH
9307#ifdef CONFIG_CFS_BANDWIDTH
9308 {
d41bf8c9 9309 struct task_group *tg = css_tg(css);
0d593634
TH
9310 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9311 u64 throttled_usec;
9312
9313 throttled_usec = cfs_b->throttled_time;
9314 do_div(throttled_usec, NSEC_PER_USEC);
9315
9316 seq_printf(sf, "nr_periods %d\n"
9317 "nr_throttled %d\n"
9318 "throttled_usec %llu\n",
9319 cfs_b->nr_periods, cfs_b->nr_throttled,
9320 throttled_usec);
9321 }
9322#endif
9323 return 0;
9324}
9325
9326#ifdef CONFIG_FAIR_GROUP_SCHED
9327static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9328 struct cftype *cft)
9329{
9330 struct task_group *tg = css_tg(css);
9331 u64 weight = scale_load_down(tg->shares);
9332
9333 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9334}
9335
9336static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9337 struct cftype *cft, u64 weight)
9338{
9339 /*
9340 * cgroup weight knobs should use the common MIN, DFL and MAX
9341 * values which are 1, 100 and 10000 respectively. While it loses
9342 * a bit of range on both ends, it maps pretty well onto the shares
9343 * value used by scheduler and the round-trip conversions preserve
9344 * the original value over the entire range.
9345 */
9346 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9347 return -ERANGE;
9348
9349 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9350
9351 return sched_group_set_shares(css_tg(css), scale_load(weight));
9352}
9353
9354static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9355 struct cftype *cft)
9356{
9357 unsigned long weight = scale_load_down(css_tg(css)->shares);
9358 int last_delta = INT_MAX;
9359 int prio, delta;
9360
9361 /* find the closest nice value to the current weight */
9362 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9363 delta = abs(sched_prio_to_weight[prio] - weight);
9364 if (delta >= last_delta)
9365 break;
9366 last_delta = delta;
9367 }
9368
9369 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9370}
9371
9372static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9373 struct cftype *cft, s64 nice)
9374{
9375 unsigned long weight;
7281c8de 9376 int idx;
0d593634
TH
9377
9378 if (nice < MIN_NICE || nice > MAX_NICE)
9379 return -ERANGE;
9380
7281c8de
PZ
9381 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9382 idx = array_index_nospec(idx, 40);
9383 weight = sched_prio_to_weight[idx];
9384
0d593634
TH
9385 return sched_group_set_shares(css_tg(css), scale_load(weight));
9386}
9387#endif
9388
9389static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9390 long period, long quota)
9391{
9392 if (quota < 0)
9393 seq_puts(sf, "max");
9394 else
9395 seq_printf(sf, "%ld", quota);
9396
9397 seq_printf(sf, " %ld\n", period);
9398}
9399
9400/* caller should put the current value in *@periodp before calling */
9401static int __maybe_unused cpu_period_quota_parse(char *buf,
9402 u64 *periodp, u64 *quotap)
9403{
9404 char tok[21]; /* U64_MAX */
9405
4c47acd8 9406 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
9407 return -EINVAL;
9408
9409 *periodp *= NSEC_PER_USEC;
9410
9411 if (sscanf(tok, "%llu", quotap))
9412 *quotap *= NSEC_PER_USEC;
9413 else if (!strcmp(tok, "max"))
9414 *quotap = RUNTIME_INF;
9415 else
9416 return -EINVAL;
9417
9418 return 0;
9419}
9420
9421#ifdef CONFIG_CFS_BANDWIDTH
9422static int cpu_max_show(struct seq_file *sf, void *v)
9423{
9424 struct task_group *tg = css_tg(seq_css(sf));
9425
9426 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9427 return 0;
9428}
9429
9430static ssize_t cpu_max_write(struct kernfs_open_file *of,
9431 char *buf, size_t nbytes, loff_t off)
9432{
9433 struct task_group *tg = css_tg(of_css(of));
9434 u64 period = tg_get_cfs_period(tg);
9435 u64 quota;
9436 int ret;
9437
9438 ret = cpu_period_quota_parse(buf, &period, &quota);
9439 if (!ret)
9440 ret = tg_set_cfs_bandwidth(tg, period, quota);
9441 return ret ?: nbytes;
9442}
9443#endif
9444
9445static struct cftype cpu_files[] = {
0d593634
TH
9446#ifdef CONFIG_FAIR_GROUP_SCHED
9447 {
9448 .name = "weight",
9449 .flags = CFTYPE_NOT_ON_ROOT,
9450 .read_u64 = cpu_weight_read_u64,
9451 .write_u64 = cpu_weight_write_u64,
9452 },
9453 {
9454 .name = "weight.nice",
9455 .flags = CFTYPE_NOT_ON_ROOT,
9456 .read_s64 = cpu_weight_nice_read_s64,
9457 .write_s64 = cpu_weight_nice_write_s64,
9458 },
9459#endif
9460#ifdef CONFIG_CFS_BANDWIDTH
9461 {
9462 .name = "max",
9463 .flags = CFTYPE_NOT_ON_ROOT,
9464 .seq_show = cpu_max_show,
9465 .write = cpu_max_write,
9466 },
2480c093
PB
9467#endif
9468#ifdef CONFIG_UCLAMP_TASK_GROUP
9469 {
9470 .name = "uclamp.min",
9471 .flags = CFTYPE_NOT_ON_ROOT,
9472 .seq_show = cpu_uclamp_min_show,
9473 .write = cpu_uclamp_min_write,
9474 },
9475 {
9476 .name = "uclamp.max",
9477 .flags = CFTYPE_NOT_ON_ROOT,
9478 .seq_show = cpu_uclamp_max_show,
9479 .write = cpu_uclamp_max_write,
9480 },
0d593634
TH
9481#endif
9482 { } /* terminate */
9483};
9484
073219e9 9485struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 9486 .css_alloc = cpu_cgroup_css_alloc,
96b77745 9487 .css_online = cpu_cgroup_css_online,
2f5177f0 9488 .css_released = cpu_cgroup_css_released,
92fb9748 9489 .css_free = cpu_cgroup_css_free,
d41bf8c9 9490 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 9491 .fork = cpu_cgroup_fork,
bb9d97b6
TH
9492 .can_attach = cpu_cgroup_can_attach,
9493 .attach = cpu_cgroup_attach,
a1f7164c 9494 .legacy_cftypes = cpu_legacy_files,
0d593634 9495 .dfl_cftypes = cpu_files,
b38e42e9 9496 .early_init = true,
0d593634 9497 .threaded = true,
68318b8e
SV
9498};
9499
052f1dc7 9500#endif /* CONFIG_CGROUP_SCHED */
d842de87 9501
b637a328
PM
9502void dump_cpu_task(int cpu)
9503{
9504 pr_info("Task dump for CPU %d:\n", cpu);
9505 sched_show_task(cpu_curr(cpu));
9506}
ed82b8a1
AK
9507
9508/*
9509 * Nice levels are multiplicative, with a gentle 10% change for every
9510 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9511 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9512 * that remained on nice 0.
9513 *
9514 * The "10% effect" is relative and cumulative: from _any_ nice level,
9515 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9516 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9517 * If a task goes up by ~10% and another task goes down by ~10% then
9518 * the relative distance between them is ~25%.)
9519 */
9520const int sched_prio_to_weight[40] = {
9521 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9522 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9523 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9524 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9525 /* 0 */ 1024, 820, 655, 526, 423,
9526 /* 5 */ 335, 272, 215, 172, 137,
9527 /* 10 */ 110, 87, 70, 56, 45,
9528 /* 15 */ 36, 29, 23, 18, 15,
9529};
9530
9531/*
9532 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9533 *
9534 * In cases where the weight does not change often, we can use the
9535 * precalculated inverse to speed up arithmetics by turning divisions
9536 * into multiplications:
9537 */
9538const u32 sched_prio_to_wmult[40] = {
9539 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9540 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9541 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9542 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9543 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9544 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9545 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9546 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9547};
14a7405b 9548
9d246053
PA
9549void call_trace_sched_update_nr_running(struct rq *rq, int count)
9550{
9551 trace_sched_update_nr_running_tp(rq, count);
9552}