]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched: Introduce task_is_running()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
c006fac5
PT
61
62/*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69__read_mostly int sysctl_resched_latency_warn_ms = 100;
70__read_mostly int sysctl_resched_latency_warn_once = 1;
71#endif /* CONFIG_SCHED_DEBUG */
f00b45c1 72
b82d9fdd
PZ
73/*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
fa85ae24 79/*
d1ccc66d 80 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
81 * default: 1s
82 */
9f0c1e56 83unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 84
029632fb 85__read_mostly int scheduler_running;
6892b75e 86
9edeaea1
PZ
87#ifdef CONFIG_SCHED_CORE
88
89DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
8a311c74
PZ
91/* kernel prio, less is more */
92static inline int __task_prio(struct task_struct *p)
93{
94 if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 return -2;
96
97 if (rt_prio(p->prio)) /* includes deadline */
98 return p->prio; /* [-1, 99] */
99
100 if (p->sched_class == &idle_sched_class)
101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104}
105
106/*
107 * l(a,b)
108 * le(a,b) := !l(b,a)
109 * g(a,b) := l(b,a)
110 * ge(a,b) := !l(a,b)
111 */
112
113/* real prio, less is less */
c6047c2e 114static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
8a311c74
PZ
115{
116
117 int pa = __task_prio(a), pb = __task_prio(b);
118
119 if (-pa < -pb)
120 return true;
121
122 if (-pb < -pa)
123 return false;
124
125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
c6047c2e
JFG
128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
129 return cfs_prio_less(a, b, in_fi);
8a311c74
PZ
130
131 return false;
132}
133
134static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135{
136 if (a->core_cookie < b->core_cookie)
137 return true;
138
139 if (a->core_cookie > b->core_cookie)
140 return false;
141
142 /* flip prio, so high prio is leftmost */
c6047c2e 143 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
8a311c74
PZ
144 return true;
145
146 return false;
147}
148
149#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
151static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152{
153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154}
155
156static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157{
158 const struct task_struct *p = __node_2_sc(node);
159 unsigned long cookie = (unsigned long)key;
160
161 if (cookie < p->core_cookie)
162 return -1;
163
164 if (cookie > p->core_cookie)
165 return 1;
166
167 return 0;
168}
169
6e33cad0 170void sched_core_enqueue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
171{
172 rq->core->core_task_seq++;
173
174 if (!p->core_cookie)
175 return;
176
177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178}
179
6e33cad0 180void sched_core_dequeue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
181{
182 rq->core->core_task_seq++;
183
6e33cad0 184 if (!sched_core_enqueued(p))
8a311c74
PZ
185 return;
186
187 rb_erase(&p->core_node, &rq->core_tree);
6e33cad0 188 RB_CLEAR_NODE(&p->core_node);
8a311c74
PZ
189}
190
191/*
192 * Find left-most (aka, highest priority) task matching @cookie.
193 */
194static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195{
196 struct rb_node *node;
197
198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 /*
200 * The idle task always matches any cookie!
201 */
202 if (!node)
203 return idle_sched_class.pick_task(rq);
204
205 return __node_2_sc(node);
206}
207
d2dfa17b
PZ
208static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209{
210 struct rb_node *node = &p->core_node;
211
212 node = rb_next(node);
213 if (!node)
214 return NULL;
215
216 p = container_of(node, struct task_struct, core_node);
217 if (p->core_cookie != cookie)
218 return NULL;
219
220 return p;
221}
222
9edeaea1
PZ
223/*
224 * Magic required such that:
225 *
226 * raw_spin_rq_lock(rq);
227 * ...
228 * raw_spin_rq_unlock(rq);
229 *
230 * ends up locking and unlocking the _same_ lock, and all CPUs
231 * always agree on what rq has what lock.
232 *
233 * XXX entirely possible to selectively enable cores, don't bother for now.
234 */
235
236static DEFINE_MUTEX(sched_core_mutex);
875feb41 237static atomic_t sched_core_count;
9edeaea1
PZ
238static struct cpumask sched_core_mask;
239
240static void __sched_core_flip(bool enabled)
241{
242 int cpu, t, i;
243
244 cpus_read_lock();
245
246 /*
247 * Toggle the online cores, one by one.
248 */
249 cpumask_copy(&sched_core_mask, cpu_online_mask);
250 for_each_cpu(cpu, &sched_core_mask) {
251 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
252
253 i = 0;
254 local_irq_disable();
255 for_each_cpu(t, smt_mask) {
256 /* supports up to SMT8 */
257 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
258 }
259
260 for_each_cpu(t, smt_mask)
261 cpu_rq(t)->core_enabled = enabled;
262
263 for_each_cpu(t, smt_mask)
264 raw_spin_unlock(&cpu_rq(t)->__lock);
265 local_irq_enable();
266
267 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
268 }
269
270 /*
271 * Toggle the offline CPUs.
272 */
273 cpumask_copy(&sched_core_mask, cpu_possible_mask);
274 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
275
276 for_each_cpu(cpu, &sched_core_mask)
277 cpu_rq(cpu)->core_enabled = enabled;
278
279 cpus_read_unlock();
280}
281
8a311c74 282static void sched_core_assert_empty(void)
9edeaea1 283{
8a311c74 284 int cpu;
9edeaea1 285
8a311c74
PZ
286 for_each_possible_cpu(cpu)
287 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
288}
289
290static void __sched_core_enable(void)
291{
9edeaea1
PZ
292 static_branch_enable(&__sched_core_enabled);
293 /*
294 * Ensure all previous instances of raw_spin_rq_*lock() have finished
295 * and future ones will observe !sched_core_disabled().
296 */
297 synchronize_rcu();
298 __sched_core_flip(true);
8a311c74 299 sched_core_assert_empty();
9edeaea1
PZ
300}
301
302static void __sched_core_disable(void)
303{
8a311c74 304 sched_core_assert_empty();
9edeaea1
PZ
305 __sched_core_flip(false);
306 static_branch_disable(&__sched_core_enabled);
307}
308
309void sched_core_get(void)
310{
875feb41
PZ
311 if (atomic_inc_not_zero(&sched_core_count))
312 return;
313
9edeaea1 314 mutex_lock(&sched_core_mutex);
875feb41 315 if (!atomic_read(&sched_core_count))
9edeaea1 316 __sched_core_enable();
875feb41
PZ
317
318 smp_mb__before_atomic();
319 atomic_inc(&sched_core_count);
9edeaea1
PZ
320 mutex_unlock(&sched_core_mutex);
321}
322
875feb41 323static void __sched_core_put(struct work_struct *work)
9edeaea1 324{
875feb41 325 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
9edeaea1 326 __sched_core_disable();
875feb41
PZ
327 mutex_unlock(&sched_core_mutex);
328 }
329}
330
331void sched_core_put(void)
332{
333 static DECLARE_WORK(_work, __sched_core_put);
334
335 /*
336 * "There can be only one"
337 *
338 * Either this is the last one, or we don't actually need to do any
339 * 'work'. If it is the last *again*, we rely on
340 * WORK_STRUCT_PENDING_BIT.
341 */
342 if (!atomic_add_unless(&sched_core_count, -1, 1))
343 schedule_work(&_work);
9edeaea1
PZ
344}
345
8a311c74
PZ
346#else /* !CONFIG_SCHED_CORE */
347
348static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
349static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
350
9edeaea1
PZ
351#endif /* CONFIG_SCHED_CORE */
352
9f0c1e56
PZ
353/*
354 * part of the period that we allow rt tasks to run in us.
355 * default: 0.95s
356 */
357int sysctl_sched_rt_runtime = 950000;
fa85ae24 358
58877d34
PZ
359
360/*
361 * Serialization rules:
362 *
363 * Lock order:
364 *
365 * p->pi_lock
366 * rq->lock
367 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
368 *
369 * rq1->lock
370 * rq2->lock where: rq1 < rq2
371 *
372 * Regular state:
373 *
374 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
375 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 376 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
377 * to run next.
378 *
379 * Task enqueue is also under rq->lock, possibly taken from another CPU.
380 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
381 * the local CPU to avoid bouncing the runqueue state around [ see
382 * ttwu_queue_wakelist() ]
383 *
384 * Task wakeup, specifically wakeups that involve migration, are horribly
385 * complicated to avoid having to take two rq->locks.
386 *
387 * Special state:
388 *
389 * System-calls and anything external will use task_rq_lock() which acquires
390 * both p->pi_lock and rq->lock. As a consequence the state they change is
391 * stable while holding either lock:
392 *
393 * - sched_setaffinity()/
394 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
395 * - set_user_nice(): p->se.load, p->*prio
396 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
397 * p->se.load, p->rt_priority,
398 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
399 * - sched_setnuma(): p->numa_preferred_nid
400 * - sched_move_task()/
401 * cpu_cgroup_fork(): p->sched_task_group
402 * - uclamp_update_active() p->uclamp*
403 *
404 * p->state <- TASK_*:
405 *
406 * is changed locklessly using set_current_state(), __set_current_state() or
407 * set_special_state(), see their respective comments, or by
408 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
409 * concurrent self.
410 *
411 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
412 *
413 * is set by activate_task() and cleared by deactivate_task(), under
414 * rq->lock. Non-zero indicates the task is runnable, the special
415 * ON_RQ_MIGRATING state is used for migration without holding both
416 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
417 *
418 * p->on_cpu <- { 0, 1 }:
419 *
420 * is set by prepare_task() and cleared by finish_task() such that it will be
421 * set before p is scheduled-in and cleared after p is scheduled-out, both
422 * under rq->lock. Non-zero indicates the task is running on its CPU.
423 *
424 * [ The astute reader will observe that it is possible for two tasks on one
425 * CPU to have ->on_cpu = 1 at the same time. ]
426 *
427 * task_cpu(p): is changed by set_task_cpu(), the rules are:
428 *
429 * - Don't call set_task_cpu() on a blocked task:
430 *
431 * We don't care what CPU we're not running on, this simplifies hotplug,
432 * the CPU assignment of blocked tasks isn't required to be valid.
433 *
434 * - for try_to_wake_up(), called under p->pi_lock:
435 *
436 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
437 *
438 * - for migration called under rq->lock:
439 * [ see task_on_rq_migrating() in task_rq_lock() ]
440 *
441 * o move_queued_task()
442 * o detach_task()
443 *
444 * - for migration called under double_rq_lock():
445 *
446 * o __migrate_swap_task()
447 * o push_rt_task() / pull_rt_task()
448 * o push_dl_task() / pull_dl_task()
449 * o dl_task_offline_migration()
450 *
451 */
452
39d371b7
PZ
453void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
454{
d66f1b06
PZ
455 raw_spinlock_t *lock;
456
9edeaea1
PZ
457 /* Matches synchronize_rcu() in __sched_core_enable() */
458 preempt_disable();
d66f1b06
PZ
459 if (sched_core_disabled()) {
460 raw_spin_lock_nested(&rq->__lock, subclass);
9edeaea1
PZ
461 /* preempt_count *MUST* be > 1 */
462 preempt_enable_no_resched();
d66f1b06
PZ
463 return;
464 }
465
466 for (;;) {
9ef7e7e3 467 lock = __rq_lockp(rq);
d66f1b06 468 raw_spin_lock_nested(lock, subclass);
9ef7e7e3 469 if (likely(lock == __rq_lockp(rq))) {
9edeaea1
PZ
470 /* preempt_count *MUST* be > 1 */
471 preempt_enable_no_resched();
d66f1b06 472 return;
9edeaea1 473 }
d66f1b06
PZ
474 raw_spin_unlock(lock);
475 }
39d371b7
PZ
476}
477
478bool raw_spin_rq_trylock(struct rq *rq)
479{
d66f1b06
PZ
480 raw_spinlock_t *lock;
481 bool ret;
482
9edeaea1
PZ
483 /* Matches synchronize_rcu() in __sched_core_enable() */
484 preempt_disable();
485 if (sched_core_disabled()) {
486 ret = raw_spin_trylock(&rq->__lock);
487 preempt_enable();
488 return ret;
489 }
d66f1b06
PZ
490
491 for (;;) {
9ef7e7e3 492 lock = __rq_lockp(rq);
d66f1b06 493 ret = raw_spin_trylock(lock);
9ef7e7e3 494 if (!ret || (likely(lock == __rq_lockp(rq)))) {
9edeaea1 495 preempt_enable();
d66f1b06 496 return ret;
9edeaea1 497 }
d66f1b06
PZ
498 raw_spin_unlock(lock);
499 }
39d371b7
PZ
500}
501
502void raw_spin_rq_unlock(struct rq *rq)
503{
504 raw_spin_unlock(rq_lockp(rq));
505}
506
d66f1b06
PZ
507#ifdef CONFIG_SMP
508/*
509 * double_rq_lock - safely lock two runqueues
510 */
511void double_rq_lock(struct rq *rq1, struct rq *rq2)
512{
513 lockdep_assert_irqs_disabled();
514
515 if (rq_order_less(rq2, rq1))
516 swap(rq1, rq2);
517
518 raw_spin_rq_lock(rq1);
9ef7e7e3 519 if (__rq_lockp(rq1) == __rq_lockp(rq2))
d66f1b06
PZ
520 return;
521
522 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
523}
524#endif
525
3e71a462
PZ
526/*
527 * __task_rq_lock - lock the rq @p resides on.
528 */
eb580751 529struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
530 __acquires(rq->lock)
531{
532 struct rq *rq;
533
534 lockdep_assert_held(&p->pi_lock);
535
536 for (;;) {
537 rq = task_rq(p);
5cb9eaa3 538 raw_spin_rq_lock(rq);
3e71a462 539 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 540 rq_pin_lock(rq, rf);
3e71a462
PZ
541 return rq;
542 }
5cb9eaa3 543 raw_spin_rq_unlock(rq);
3e71a462
PZ
544
545 while (unlikely(task_on_rq_migrating(p)))
546 cpu_relax();
547 }
548}
549
550/*
551 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
552 */
eb580751 553struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
554 __acquires(p->pi_lock)
555 __acquires(rq->lock)
556{
557 struct rq *rq;
558
559 for (;;) {
eb580751 560 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462 561 rq = task_rq(p);
5cb9eaa3 562 raw_spin_rq_lock(rq);
3e71a462
PZ
563 /*
564 * move_queued_task() task_rq_lock()
565 *
566 * ACQUIRE (rq->lock)
567 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
568 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
569 * [S] ->cpu = new_cpu [L] task_rq()
570 * [L] ->on_rq
571 * RELEASE (rq->lock)
572 *
c546951d 573 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
574 * the old rq->lock will fully serialize against the stores.
575 *
c546951d
AP
576 * If we observe the new CPU in task_rq_lock(), the address
577 * dependency headed by '[L] rq = task_rq()' and the acquire
578 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
579 */
580 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 581 rq_pin_lock(rq, rf);
3e71a462
PZ
582 return rq;
583 }
5cb9eaa3 584 raw_spin_rq_unlock(rq);
eb580751 585 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
586
587 while (unlikely(task_on_rq_migrating(p)))
588 cpu_relax();
589 }
590}
591
535b9552
IM
592/*
593 * RQ-clock updating methods:
594 */
595
596static void update_rq_clock_task(struct rq *rq, s64 delta)
597{
598/*
599 * In theory, the compile should just see 0 here, and optimize out the call
600 * to sched_rt_avg_update. But I don't trust it...
601 */
11d4afd4
VG
602 s64 __maybe_unused steal = 0, irq_delta = 0;
603
535b9552
IM
604#ifdef CONFIG_IRQ_TIME_ACCOUNTING
605 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
606
607 /*
608 * Since irq_time is only updated on {soft,}irq_exit, we might run into
609 * this case when a previous update_rq_clock() happened inside a
610 * {soft,}irq region.
611 *
612 * When this happens, we stop ->clock_task and only update the
613 * prev_irq_time stamp to account for the part that fit, so that a next
614 * update will consume the rest. This ensures ->clock_task is
615 * monotonic.
616 *
617 * It does however cause some slight miss-attribution of {soft,}irq
618 * time, a more accurate solution would be to update the irq_time using
619 * the current rq->clock timestamp, except that would require using
620 * atomic ops.
621 */
622 if (irq_delta > delta)
623 irq_delta = delta;
624
625 rq->prev_irq_time += irq_delta;
626 delta -= irq_delta;
627#endif
628#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
629 if (static_key_false((&paravirt_steal_rq_enabled))) {
630 steal = paravirt_steal_clock(cpu_of(rq));
631 steal -= rq->prev_steal_time_rq;
632
633 if (unlikely(steal > delta))
634 steal = delta;
635
636 rq->prev_steal_time_rq += steal;
637 delta -= steal;
638 }
639#endif
640
641 rq->clock_task += delta;
642
11d4afd4 643#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 644 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 645 update_irq_load_avg(rq, irq_delta + steal);
535b9552 646#endif
23127296 647 update_rq_clock_pelt(rq, delta);
535b9552
IM
648}
649
650void update_rq_clock(struct rq *rq)
651{
652 s64 delta;
653
5cb9eaa3 654 lockdep_assert_rq_held(rq);
535b9552
IM
655
656 if (rq->clock_update_flags & RQCF_ACT_SKIP)
657 return;
658
659#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
660 if (sched_feat(WARN_DOUBLE_CLOCK))
661 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
662 rq->clock_update_flags |= RQCF_UPDATED;
663#endif
26ae58d2 664
535b9552
IM
665 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
666 if (delta < 0)
667 return;
668 rq->clock += delta;
669 update_rq_clock_task(rq, delta);
670}
671
8f4d37ec
PZ
672#ifdef CONFIG_SCHED_HRTICK
673/*
674 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 675 */
8f4d37ec 676
8f4d37ec
PZ
677static void hrtick_clear(struct rq *rq)
678{
679 if (hrtimer_active(&rq->hrtick_timer))
680 hrtimer_cancel(&rq->hrtick_timer);
681}
682
8f4d37ec
PZ
683/*
684 * High-resolution timer tick.
685 * Runs from hardirq context with interrupts disabled.
686 */
687static enum hrtimer_restart hrtick(struct hrtimer *timer)
688{
689 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 690 struct rq_flags rf;
8f4d37ec
PZ
691
692 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
693
8a8c69c3 694 rq_lock(rq, &rf);
3e51f33f 695 update_rq_clock(rq);
8f4d37ec 696 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 697 rq_unlock(rq, &rf);
8f4d37ec
PZ
698
699 return HRTIMER_NORESTART;
700}
701
95e904c7 702#ifdef CONFIG_SMP
971ee28c 703
4961b6e1 704static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
705{
706 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 707 ktime_t time = rq->hrtick_time;
971ee28c 708
156ec6f4 709 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
710}
711
31656519
PZ
712/*
713 * called from hardirq (IPI) context
714 */
715static void __hrtick_start(void *arg)
b328ca18 716{
31656519 717 struct rq *rq = arg;
8a8c69c3 718 struct rq_flags rf;
b328ca18 719
8a8c69c3 720 rq_lock(rq, &rf);
971ee28c 721 __hrtick_restart(rq);
8a8c69c3 722 rq_unlock(rq, &rf);
b328ca18
PZ
723}
724
31656519
PZ
725/*
726 * Called to set the hrtick timer state.
727 *
728 * called with rq->lock held and irqs disabled
729 */
029632fb 730void hrtick_start(struct rq *rq, u64 delay)
b328ca18 731{
31656519 732 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 733 s64 delta;
734
735 /*
736 * Don't schedule slices shorter than 10000ns, that just
737 * doesn't make sense and can cause timer DoS.
738 */
739 delta = max_t(s64, delay, 10000LL);
156ec6f4 740 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 741
fd3eafda 742 if (rq == this_rq())
971ee28c 743 __hrtick_restart(rq);
fd3eafda 744 else
c46fff2a 745 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
746}
747
31656519
PZ
748#else
749/*
750 * Called to set the hrtick timer state.
751 *
752 * called with rq->lock held and irqs disabled
753 */
029632fb 754void hrtick_start(struct rq *rq, u64 delay)
31656519 755{
86893335
WL
756 /*
757 * Don't schedule slices shorter than 10000ns, that just
758 * doesn't make sense. Rely on vruntime for fairness.
759 */
760 delay = max_t(u64, delay, 10000LL);
4961b6e1 761 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 762 HRTIMER_MODE_REL_PINNED_HARD);
31656519 763}
90b5363a 764
31656519 765#endif /* CONFIG_SMP */
8f4d37ec 766
77a021be 767static void hrtick_rq_init(struct rq *rq)
8f4d37ec 768{
31656519 769#ifdef CONFIG_SMP
545b8c8d 770 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 771#endif
d5096aa6 772 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 773 rq->hrtick_timer.function = hrtick;
8f4d37ec 774}
006c75f1 775#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
776static inline void hrtick_clear(struct rq *rq)
777{
778}
779
77a021be 780static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
781{
782}
006c75f1 783#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 784
5529578a
FW
785/*
786 * cmpxchg based fetch_or, macro so it works for different integer types
787 */
788#define fetch_or(ptr, mask) \
789 ({ \
790 typeof(ptr) _ptr = (ptr); \
791 typeof(mask) _mask = (mask); \
792 typeof(*_ptr) _old, _val = *_ptr; \
793 \
794 for (;;) { \
795 _old = cmpxchg(_ptr, _val, _val | _mask); \
796 if (_old == _val) \
797 break; \
798 _val = _old; \
799 } \
800 _old; \
801})
802
e3baac47 803#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
804/*
805 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
806 * this avoids any races wrt polling state changes and thereby avoids
807 * spurious IPIs.
808 */
809static bool set_nr_and_not_polling(struct task_struct *p)
810{
811 struct thread_info *ti = task_thread_info(p);
812 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
813}
e3baac47
PZ
814
815/*
816 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
817 *
818 * If this returns true, then the idle task promises to call
819 * sched_ttwu_pending() and reschedule soon.
820 */
821static bool set_nr_if_polling(struct task_struct *p)
822{
823 struct thread_info *ti = task_thread_info(p);
316c1608 824 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
825
826 for (;;) {
827 if (!(val & _TIF_POLLING_NRFLAG))
828 return false;
829 if (val & _TIF_NEED_RESCHED)
830 return true;
831 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
832 if (old == val)
833 break;
834 val = old;
835 }
836 return true;
837}
838
fd99f91a
PZ
839#else
840static bool set_nr_and_not_polling(struct task_struct *p)
841{
842 set_tsk_need_resched(p);
843 return true;
844}
e3baac47
PZ
845
846#ifdef CONFIG_SMP
847static bool set_nr_if_polling(struct task_struct *p)
848{
849 return false;
850}
851#endif
fd99f91a
PZ
852#endif
853
07879c6a 854static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
855{
856 struct wake_q_node *node = &task->wake_q;
857
858 /*
859 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 860 * it's already queued (either by us or someone else) and will get the
76751049
PZ
861 * wakeup due to that.
862 *
4c4e3731
PZ
863 * In order to ensure that a pending wakeup will observe our pending
864 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 865 */
4c4e3731 866 smp_mb__before_atomic();
87ff19cb 867 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 868 return false;
76751049
PZ
869
870 /*
871 * The head is context local, there can be no concurrency.
872 */
873 *head->lastp = node;
874 head->lastp = &node->next;
07879c6a
DB
875 return true;
876}
877
878/**
879 * wake_q_add() - queue a wakeup for 'later' waking.
880 * @head: the wake_q_head to add @task to
881 * @task: the task to queue for 'later' wakeup
882 *
883 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
884 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
885 * instantly.
886 *
887 * This function must be used as-if it were wake_up_process(); IOW the task
888 * must be ready to be woken at this location.
889 */
890void wake_q_add(struct wake_q_head *head, struct task_struct *task)
891{
892 if (__wake_q_add(head, task))
893 get_task_struct(task);
894}
895
896/**
897 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
898 * @head: the wake_q_head to add @task to
899 * @task: the task to queue for 'later' wakeup
900 *
901 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
902 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
903 * instantly.
904 *
905 * This function must be used as-if it were wake_up_process(); IOW the task
906 * must be ready to be woken at this location.
907 *
908 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
909 * that already hold reference to @task can call the 'safe' version and trust
910 * wake_q to do the right thing depending whether or not the @task is already
911 * queued for wakeup.
912 */
913void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
914{
915 if (!__wake_q_add(head, task))
916 put_task_struct(task);
76751049
PZ
917}
918
919void wake_up_q(struct wake_q_head *head)
920{
921 struct wake_q_node *node = head->first;
922
923 while (node != WAKE_Q_TAIL) {
924 struct task_struct *task;
925
926 task = container_of(node, struct task_struct, wake_q);
d1ccc66d 927 /* Task can safely be re-inserted now: */
76751049
PZ
928 node = node->next;
929 task->wake_q.next = NULL;
930
931 /*
7696f991
AP
932 * wake_up_process() executes a full barrier, which pairs with
933 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
934 */
935 wake_up_process(task);
936 put_task_struct(task);
937 }
938}
939
c24d20db 940/*
8875125e 941 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
942 *
943 * On UP this means the setting of the need_resched flag, on SMP it
944 * might also involve a cross-CPU call to trigger the scheduler on
945 * the target CPU.
946 */
8875125e 947void resched_curr(struct rq *rq)
c24d20db 948{
8875125e 949 struct task_struct *curr = rq->curr;
c24d20db
IM
950 int cpu;
951
5cb9eaa3 952 lockdep_assert_rq_held(rq);
c24d20db 953
8875125e 954 if (test_tsk_need_resched(curr))
c24d20db
IM
955 return;
956
8875125e 957 cpu = cpu_of(rq);
fd99f91a 958
f27dde8d 959 if (cpu == smp_processor_id()) {
8875125e 960 set_tsk_need_resched(curr);
f27dde8d 961 set_preempt_need_resched();
c24d20db 962 return;
f27dde8d 963 }
c24d20db 964
8875125e 965 if (set_nr_and_not_polling(curr))
c24d20db 966 smp_send_reschedule(cpu);
dfc68f29
AL
967 else
968 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
969}
970
029632fb 971void resched_cpu(int cpu)
c24d20db
IM
972{
973 struct rq *rq = cpu_rq(cpu);
974 unsigned long flags;
975
5cb9eaa3 976 raw_spin_rq_lock_irqsave(rq, flags);
a0982dfa
PM
977 if (cpu_online(cpu) || cpu == smp_processor_id())
978 resched_curr(rq);
5cb9eaa3 979 raw_spin_rq_unlock_irqrestore(rq, flags);
c24d20db 980}
06d8308c 981
b021fe3e 982#ifdef CONFIG_SMP
3451d024 983#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 984/*
d1ccc66d
IM
985 * In the semi idle case, use the nearest busy CPU for migrating timers
986 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
987 *
988 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
989 * selecting an idle CPU will add more delays to the timers than intended
990 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 991 */
bc7a34b8 992int get_nohz_timer_target(void)
83cd4fe2 993{
e938b9c9 994 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
995 struct sched_domain *sd;
996
e938b9c9
WL
997 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
998 if (!idle_cpu(cpu))
999 return cpu;
1000 default_cpu = cpu;
1001 }
6201b4d6 1002
057f3fad 1003 rcu_read_lock();
83cd4fe2 1004 for_each_domain(cpu, sd) {
e938b9c9
WL
1005 for_each_cpu_and(i, sched_domain_span(sd),
1006 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
1007 if (cpu == i)
1008 continue;
1009
e938b9c9 1010 if (!idle_cpu(i)) {
057f3fad
PZ
1011 cpu = i;
1012 goto unlock;
1013 }
1014 }
83cd4fe2 1015 }
9642d18e 1016
e938b9c9
WL
1017 if (default_cpu == -1)
1018 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1019 cpu = default_cpu;
057f3fad
PZ
1020unlock:
1021 rcu_read_unlock();
83cd4fe2
VP
1022 return cpu;
1023}
d1ccc66d 1024
06d8308c
TG
1025/*
1026 * When add_timer_on() enqueues a timer into the timer wheel of an
1027 * idle CPU then this timer might expire before the next timer event
1028 * which is scheduled to wake up that CPU. In case of a completely
1029 * idle system the next event might even be infinite time into the
1030 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1031 * leaves the inner idle loop so the newly added timer is taken into
1032 * account when the CPU goes back to idle and evaluates the timer
1033 * wheel for the next timer event.
1034 */
1c20091e 1035static void wake_up_idle_cpu(int cpu)
06d8308c
TG
1036{
1037 struct rq *rq = cpu_rq(cpu);
1038
1039 if (cpu == smp_processor_id())
1040 return;
1041
67b9ca70 1042 if (set_nr_and_not_polling(rq->idle))
06d8308c 1043 smp_send_reschedule(cpu);
dfc68f29
AL
1044 else
1045 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
1046}
1047
c5bfece2 1048static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 1049{
53c5fa16
FW
1050 /*
1051 * We just need the target to call irq_exit() and re-evaluate
1052 * the next tick. The nohz full kick at least implies that.
1053 * If needed we can still optimize that later with an
1054 * empty IRQ.
1055 */
379d9ecb
PM
1056 if (cpu_is_offline(cpu))
1057 return true; /* Don't try to wake offline CPUs. */
c5bfece2 1058 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
1059 if (cpu != smp_processor_id() ||
1060 tick_nohz_tick_stopped())
53c5fa16 1061 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
1062 return true;
1063 }
1064
1065 return false;
1066}
1067
379d9ecb
PM
1068/*
1069 * Wake up the specified CPU. If the CPU is going offline, it is the
1070 * caller's responsibility to deal with the lost wakeup, for example,
1071 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1072 */
1c20091e
FW
1073void wake_up_nohz_cpu(int cpu)
1074{
c5bfece2 1075 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
1076 wake_up_idle_cpu(cpu);
1077}
1078
19a1f5ec 1079static void nohz_csd_func(void *info)
45bf76df 1080{
19a1f5ec
PZ
1081 struct rq *rq = info;
1082 int cpu = cpu_of(rq);
1083 unsigned int flags;
873b4c65
VG
1084
1085 /*
19a1f5ec 1086 * Release the rq::nohz_csd.
873b4c65 1087 */
c6f88654 1088 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 1089 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 1090
19a1f5ec
PZ
1091 rq->idle_balance = idle_cpu(cpu);
1092 if (rq->idle_balance && !need_resched()) {
1093 rq->nohz_idle_balance = flags;
90b5363a
PZI
1094 raise_softirq_irqoff(SCHED_SOFTIRQ);
1095 }
2069dd75
PZ
1096}
1097
3451d024 1098#endif /* CONFIG_NO_HZ_COMMON */
d842de87 1099
ce831b38 1100#ifdef CONFIG_NO_HZ_FULL
76d92ac3 1101bool sched_can_stop_tick(struct rq *rq)
ce831b38 1102{
76d92ac3
FW
1103 int fifo_nr_running;
1104
1105 /* Deadline tasks, even if single, need the tick */
1106 if (rq->dl.dl_nr_running)
1107 return false;
1108
1e78cdbd 1109 /*
b19a888c 1110 * If there are more than one RR tasks, we need the tick to affect the
2548d546 1111 * actual RR behaviour.
1e78cdbd 1112 */
76d92ac3
FW
1113 if (rq->rt.rr_nr_running) {
1114 if (rq->rt.rr_nr_running == 1)
1115 return true;
1116 else
1117 return false;
1e78cdbd
RR
1118 }
1119
2548d546
PZ
1120 /*
1121 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1122 * forced preemption between FIFO tasks.
1123 */
1124 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1125 if (fifo_nr_running)
1126 return true;
1127
1128 /*
1129 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1130 * if there's more than one we need the tick for involuntary
1131 * preemption.
1132 */
1133 if (rq->nr_running > 1)
541b8264 1134 return false;
ce831b38 1135
541b8264 1136 return true;
ce831b38
FW
1137}
1138#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 1139#endif /* CONFIG_SMP */
18d95a28 1140
a790de99
PT
1141#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1142 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 1143/*
8277434e
PT
1144 * Iterate task_group tree rooted at *from, calling @down when first entering a
1145 * node and @up when leaving it for the final time.
1146 *
1147 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1148 */
029632fb 1149int walk_tg_tree_from(struct task_group *from,
8277434e 1150 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1151{
1152 struct task_group *parent, *child;
eb755805 1153 int ret;
c09595f6 1154
8277434e
PT
1155 parent = from;
1156
c09595f6 1157down:
eb755805
PZ
1158 ret = (*down)(parent, data);
1159 if (ret)
8277434e 1160 goto out;
c09595f6
PZ
1161 list_for_each_entry_rcu(child, &parent->children, siblings) {
1162 parent = child;
1163 goto down;
1164
1165up:
1166 continue;
1167 }
eb755805 1168 ret = (*up)(parent, data);
8277434e
PT
1169 if (ret || parent == from)
1170 goto out;
c09595f6
PZ
1171
1172 child = parent;
1173 parent = parent->parent;
1174 if (parent)
1175 goto up;
8277434e 1176out:
eb755805 1177 return ret;
c09595f6
PZ
1178}
1179
029632fb 1180int tg_nop(struct task_group *tg, void *data)
eb755805 1181{
e2b245f8 1182 return 0;
eb755805 1183}
18d95a28
PZ
1184#endif
1185
9059393e 1186static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 1187{
f05998d4
NR
1188 int prio = p->static_prio - MAX_RT_PRIO;
1189 struct load_weight *load = &p->se.load;
1190
dd41f596
IM
1191 /*
1192 * SCHED_IDLE tasks get minimal weight:
1193 */
1da1843f 1194 if (task_has_idle_policy(p)) {
c8b28116 1195 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1196 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1197 return;
1198 }
71f8bd46 1199
9059393e
VG
1200 /*
1201 * SCHED_OTHER tasks have to update their load when changing their
1202 * weight
1203 */
1204 if (update_load && p->sched_class == &fair_sched_class) {
1205 reweight_task(p, prio);
1206 } else {
1207 load->weight = scale_load(sched_prio_to_weight[prio]);
1208 load->inv_weight = sched_prio_to_wmult[prio];
1209 }
71f8bd46
IM
1210}
1211
69842cba 1212#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
1213/*
1214 * Serializes updates of utilization clamp values
1215 *
1216 * The (slow-path) user-space triggers utilization clamp value updates which
1217 * can require updates on (fast-path) scheduler's data structures used to
1218 * support enqueue/dequeue operations.
1219 * While the per-CPU rq lock protects fast-path update operations, user-space
1220 * requests are serialized using a mutex to reduce the risk of conflicting
1221 * updates or API abuses.
1222 */
1223static DEFINE_MUTEX(uclamp_mutex);
1224
e8f14172
PB
1225/* Max allowed minimum utilization */
1226unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1227
1228/* Max allowed maximum utilization */
1229unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1230
13685c4a
QY
1231/*
1232 * By default RT tasks run at the maximum performance point/capacity of the
1233 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1234 * SCHED_CAPACITY_SCALE.
1235 *
1236 * This knob allows admins to change the default behavior when uclamp is being
1237 * used. In battery powered devices, particularly, running at the maximum
1238 * capacity and frequency will increase energy consumption and shorten the
1239 * battery life.
1240 *
1241 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1242 *
1243 * This knob will not override the system default sched_util_clamp_min defined
1244 * above.
1245 */
1246unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1247
e8f14172
PB
1248/* All clamps are required to be less or equal than these values */
1249static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 1250
46609ce2
QY
1251/*
1252 * This static key is used to reduce the uclamp overhead in the fast path. It
1253 * primarily disables the call to uclamp_rq_{inc, dec}() in
1254 * enqueue/dequeue_task().
1255 *
1256 * This allows users to continue to enable uclamp in their kernel config with
1257 * minimum uclamp overhead in the fast path.
1258 *
1259 * As soon as userspace modifies any of the uclamp knobs, the static key is
1260 * enabled, since we have an actual users that make use of uclamp
1261 * functionality.
1262 *
1263 * The knobs that would enable this static key are:
1264 *
1265 * * A task modifying its uclamp value with sched_setattr().
1266 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1267 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1268 */
1269DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1270
69842cba
PB
1271/* Integer rounded range for each bucket */
1272#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1273
1274#define for_each_clamp_id(clamp_id) \
1275 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1276
1277static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1278{
6d2f8909 1279 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
69842cba
PB
1280}
1281
7763baac 1282static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
1283{
1284 if (clamp_id == UCLAMP_MIN)
1285 return 0;
1286 return SCHED_CAPACITY_SCALE;
1287}
1288
a509a7cd
PB
1289static inline void uclamp_se_set(struct uclamp_se *uc_se,
1290 unsigned int value, bool user_defined)
69842cba
PB
1291{
1292 uc_se->value = value;
1293 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 1294 uc_se->user_defined = user_defined;
69842cba
PB
1295}
1296
e496187d 1297static inline unsigned int
0413d7f3 1298uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1299 unsigned int clamp_value)
1300{
1301 /*
1302 * Avoid blocked utilization pushing up the frequency when we go
1303 * idle (which drops the max-clamp) by retaining the last known
1304 * max-clamp.
1305 */
1306 if (clamp_id == UCLAMP_MAX) {
1307 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1308 return clamp_value;
1309 }
1310
1311 return uclamp_none(UCLAMP_MIN);
1312}
1313
0413d7f3 1314static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1315 unsigned int clamp_value)
1316{
1317 /* Reset max-clamp retention only on idle exit */
1318 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1319 return;
1320
1321 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1322}
1323
69842cba 1324static inline
7763baac 1325unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 1326 unsigned int clamp_value)
69842cba
PB
1327{
1328 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1329 int bucket_id = UCLAMP_BUCKETS - 1;
1330
1331 /*
1332 * Since both min and max clamps are max aggregated, find the
1333 * top most bucket with tasks in.
1334 */
1335 for ( ; bucket_id >= 0; bucket_id--) {
1336 if (!bucket[bucket_id].tasks)
1337 continue;
1338 return bucket[bucket_id].value;
1339 }
1340
1341 /* No tasks -- default clamp values */
e496187d 1342 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1343}
1344
13685c4a
QY
1345static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1346{
1347 unsigned int default_util_min;
1348 struct uclamp_se *uc_se;
1349
1350 lockdep_assert_held(&p->pi_lock);
1351
1352 uc_se = &p->uclamp_req[UCLAMP_MIN];
1353
1354 /* Only sync if user didn't override the default */
1355 if (uc_se->user_defined)
1356 return;
1357
1358 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1359 uclamp_se_set(uc_se, default_util_min, false);
1360}
1361
1362static void uclamp_update_util_min_rt_default(struct task_struct *p)
1363{
1364 struct rq_flags rf;
1365 struct rq *rq;
1366
1367 if (!rt_task(p))
1368 return;
1369
1370 /* Protect updates to p->uclamp_* */
1371 rq = task_rq_lock(p, &rf);
1372 __uclamp_update_util_min_rt_default(p);
1373 task_rq_unlock(rq, p, &rf);
1374}
1375
1376static void uclamp_sync_util_min_rt_default(void)
1377{
1378 struct task_struct *g, *p;
1379
1380 /*
1381 * copy_process() sysctl_uclamp
1382 * uclamp_min_rt = X;
1383 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1384 * // link thread smp_mb__after_spinlock()
1385 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1386 * sched_post_fork() for_each_process_thread()
1387 * __uclamp_sync_rt() __uclamp_sync_rt()
1388 *
1389 * Ensures that either sched_post_fork() will observe the new
1390 * uclamp_min_rt or for_each_process_thread() will observe the new
1391 * task.
1392 */
1393 read_lock(&tasklist_lock);
1394 smp_mb__after_spinlock();
1395 read_unlock(&tasklist_lock);
1396
1397 rcu_read_lock();
1398 for_each_process_thread(g, p)
1399 uclamp_update_util_min_rt_default(p);
1400 rcu_read_unlock();
1401}
1402
3eac870a 1403static inline struct uclamp_se
0413d7f3 1404uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
1405{
1406 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1407#ifdef CONFIG_UCLAMP_TASK_GROUP
3eac870a
PB
1408
1409 /*
1410 * Tasks in autogroups or root task group will be
1411 * restricted by system defaults.
1412 */
1413 if (task_group_is_autogroup(task_group(p)))
1414 return uc_req;
1415 if (task_group(p) == &root_task_group)
1416 return uc_req;
1417
0c18f2ec
QY
1418 switch (clamp_id) {
1419 case UCLAMP_MIN: {
1420 struct uclamp_se uc_min = task_group(p)->uclamp[clamp_id];
1421 if (uc_req.value < uc_min.value)
1422 return uc_min;
1423 break;
1424 }
1425 case UCLAMP_MAX: {
1426 struct uclamp_se uc_max = task_group(p)->uclamp[clamp_id];
1427 if (uc_req.value > uc_max.value)
1428 return uc_max;
1429 break;
1430 }
1431 default:
1432 WARN_ON_ONCE(1);
1433 break;
1434 }
3eac870a
PB
1435#endif
1436
1437 return uc_req;
1438}
1439
e8f14172
PB
1440/*
1441 * The effective clamp bucket index of a task depends on, by increasing
1442 * priority:
1443 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1444 * - the task group effective clamp value, for tasks not either in the root
1445 * group or in an autogroup
e8f14172
PB
1446 * - the system default clamp value, defined by the sysadmin
1447 */
1448static inline struct uclamp_se
0413d7f3 1449uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1450{
3eac870a 1451 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1452 struct uclamp_se uc_max = uclamp_default[clamp_id];
1453
1454 /* System default restrictions always apply */
1455 if (unlikely(uc_req.value > uc_max.value))
1456 return uc_max;
1457
1458 return uc_req;
1459}
1460
686516b5 1461unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1462{
1463 struct uclamp_se uc_eff;
1464
1465 /* Task currently refcounted: use back-annotated (effective) value */
1466 if (p->uclamp[clamp_id].active)
686516b5 1467 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1468
1469 uc_eff = uclamp_eff_get(p, clamp_id);
1470
686516b5 1471 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1472}
1473
69842cba
PB
1474/*
1475 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1476 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1477 * updates the rq's clamp value if required.
60daf9c1
PB
1478 *
1479 * Tasks can have a task-specific value requested from user-space, track
1480 * within each bucket the maximum value for tasks refcounted in it.
1481 * This "local max aggregation" allows to track the exact "requested" value
1482 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1483 */
1484static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1485 enum uclamp_id clamp_id)
69842cba
PB
1486{
1487 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1488 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1489 struct uclamp_bucket *bucket;
1490
5cb9eaa3 1491 lockdep_assert_rq_held(rq);
69842cba 1492
e8f14172
PB
1493 /* Update task effective clamp */
1494 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1495
69842cba
PB
1496 bucket = &uc_rq->bucket[uc_se->bucket_id];
1497 bucket->tasks++;
e8f14172 1498 uc_se->active = true;
69842cba 1499
e496187d
PB
1500 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1501
60daf9c1
PB
1502 /*
1503 * Local max aggregation: rq buckets always track the max
1504 * "requested" clamp value of its RUNNABLE tasks.
1505 */
1506 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1507 bucket->value = uc_se->value;
1508
69842cba 1509 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1510 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1511}
1512
1513/*
1514 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1515 * is released. If this is the last task reference counting the rq's max
1516 * active clamp value, then the rq's clamp value is updated.
1517 *
1518 * Both refcounted tasks and rq's cached clamp values are expected to be
1519 * always valid. If it's detected they are not, as defensive programming,
1520 * enforce the expected state and warn.
1521 */
1522static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1523 enum uclamp_id clamp_id)
69842cba
PB
1524{
1525 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1526 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1527 struct uclamp_bucket *bucket;
e496187d 1528 unsigned int bkt_clamp;
69842cba
PB
1529 unsigned int rq_clamp;
1530
5cb9eaa3 1531 lockdep_assert_rq_held(rq);
69842cba 1532
46609ce2
QY
1533 /*
1534 * If sched_uclamp_used was enabled after task @p was enqueued,
1535 * we could end up with unbalanced call to uclamp_rq_dec_id().
1536 *
1537 * In this case the uc_se->active flag should be false since no uclamp
1538 * accounting was performed at enqueue time and we can just return
1539 * here.
1540 *
b19a888c 1541 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1542 * problem too
1543 *
1544 * enqueue(taskA)
1545 * // sched_uclamp_used gets enabled
1546 * enqueue(taskB)
1547 * dequeue(taskA)
b19a888c 1548 * // Must not decrement bucket->tasks here
46609ce2
QY
1549 * dequeue(taskB)
1550 *
1551 * where we could end up with stale data in uc_se and
1552 * bucket[uc_se->bucket_id].
1553 *
1554 * The following check here eliminates the possibility of such race.
1555 */
1556 if (unlikely(!uc_se->active))
1557 return;
1558
69842cba 1559 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1560
69842cba
PB
1561 SCHED_WARN_ON(!bucket->tasks);
1562 if (likely(bucket->tasks))
1563 bucket->tasks--;
46609ce2 1564
e8f14172 1565 uc_se->active = false;
69842cba 1566
60daf9c1
PB
1567 /*
1568 * Keep "local max aggregation" simple and accept to (possibly)
1569 * overboost some RUNNABLE tasks in the same bucket.
1570 * The rq clamp bucket value is reset to its base value whenever
1571 * there are no more RUNNABLE tasks refcounting it.
1572 */
69842cba
PB
1573 if (likely(bucket->tasks))
1574 return;
1575
1576 rq_clamp = READ_ONCE(uc_rq->value);
1577 /*
1578 * Defensive programming: this should never happen. If it happens,
1579 * e.g. due to future modification, warn and fixup the expected value.
1580 */
1581 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1582 if (bucket->value >= rq_clamp) {
1583 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1584 WRITE_ONCE(uc_rq->value, bkt_clamp);
1585 }
69842cba
PB
1586}
1587
1588static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1589{
0413d7f3 1590 enum uclamp_id clamp_id;
69842cba 1591
46609ce2
QY
1592 /*
1593 * Avoid any overhead until uclamp is actually used by the userspace.
1594 *
1595 * The condition is constructed such that a NOP is generated when
1596 * sched_uclamp_used is disabled.
1597 */
1598 if (!static_branch_unlikely(&sched_uclamp_used))
1599 return;
1600
69842cba
PB
1601 if (unlikely(!p->sched_class->uclamp_enabled))
1602 return;
1603
1604 for_each_clamp_id(clamp_id)
1605 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1606
1607 /* Reset clamp idle holding when there is one RUNNABLE task */
1608 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1609 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1610}
1611
1612static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1613{
0413d7f3 1614 enum uclamp_id clamp_id;
69842cba 1615
46609ce2
QY
1616 /*
1617 * Avoid any overhead until uclamp is actually used by the userspace.
1618 *
1619 * The condition is constructed such that a NOP is generated when
1620 * sched_uclamp_used is disabled.
1621 */
1622 if (!static_branch_unlikely(&sched_uclamp_used))
1623 return;
1624
69842cba
PB
1625 if (unlikely(!p->sched_class->uclamp_enabled))
1626 return;
1627
1628 for_each_clamp_id(clamp_id)
1629 uclamp_rq_dec_id(rq, p, clamp_id);
1630}
1631
babbe170 1632static inline void
0413d7f3 1633uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1634{
1635 struct rq_flags rf;
1636 struct rq *rq;
1637
1638 /*
1639 * Lock the task and the rq where the task is (or was) queued.
1640 *
1641 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1642 * price to pay to safely serialize util_{min,max} updates with
1643 * enqueues, dequeues and migration operations.
1644 * This is the same locking schema used by __set_cpus_allowed_ptr().
1645 */
1646 rq = task_rq_lock(p, &rf);
1647
1648 /*
1649 * Setting the clamp bucket is serialized by task_rq_lock().
1650 * If the task is not yet RUNNABLE and its task_struct is not
1651 * affecting a valid clamp bucket, the next time it's enqueued,
1652 * it will already see the updated clamp bucket value.
1653 */
6e1ff077 1654 if (p->uclamp[clamp_id].active) {
babbe170
PB
1655 uclamp_rq_dec_id(rq, p, clamp_id);
1656 uclamp_rq_inc_id(rq, p, clamp_id);
1657 }
1658
1659 task_rq_unlock(rq, p, &rf);
1660}
1661
e3b8b6a0 1662#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1663static inline void
1664uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1665 unsigned int clamps)
1666{
0413d7f3 1667 enum uclamp_id clamp_id;
babbe170
PB
1668 struct css_task_iter it;
1669 struct task_struct *p;
babbe170
PB
1670
1671 css_task_iter_start(css, 0, &it);
1672 while ((p = css_task_iter_next(&it))) {
1673 for_each_clamp_id(clamp_id) {
1674 if ((0x1 << clamp_id) & clamps)
1675 uclamp_update_active(p, clamp_id);
1676 }
1677 }
1678 css_task_iter_end(&it);
1679}
1680
7274a5c1
PB
1681static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1682static void uclamp_update_root_tg(void)
1683{
1684 struct task_group *tg = &root_task_group;
1685
1686 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1687 sysctl_sched_uclamp_util_min, false);
1688 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1689 sysctl_sched_uclamp_util_max, false);
1690
1691 rcu_read_lock();
1692 cpu_util_update_eff(&root_task_group.css);
1693 rcu_read_unlock();
1694}
1695#else
1696static void uclamp_update_root_tg(void) { }
1697#endif
1698
e8f14172 1699int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1700 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1701{
7274a5c1 1702 bool update_root_tg = false;
13685c4a 1703 int old_min, old_max, old_min_rt;
e8f14172
PB
1704 int result;
1705
2480c093 1706 mutex_lock(&uclamp_mutex);
e8f14172
PB
1707 old_min = sysctl_sched_uclamp_util_min;
1708 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1709 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1710
1711 result = proc_dointvec(table, write, buffer, lenp, ppos);
1712 if (result)
1713 goto undo;
1714 if (!write)
1715 goto done;
1716
1717 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1718 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1719 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1720
e8f14172
PB
1721 result = -EINVAL;
1722 goto undo;
1723 }
1724
1725 if (old_min != sysctl_sched_uclamp_util_min) {
1726 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1727 sysctl_sched_uclamp_util_min, false);
7274a5c1 1728 update_root_tg = true;
e8f14172
PB
1729 }
1730 if (old_max != sysctl_sched_uclamp_util_max) {
1731 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1732 sysctl_sched_uclamp_util_max, false);
7274a5c1 1733 update_root_tg = true;
e8f14172
PB
1734 }
1735
46609ce2
QY
1736 if (update_root_tg) {
1737 static_branch_enable(&sched_uclamp_used);
7274a5c1 1738 uclamp_update_root_tg();
46609ce2 1739 }
7274a5c1 1740
13685c4a
QY
1741 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1742 static_branch_enable(&sched_uclamp_used);
1743 uclamp_sync_util_min_rt_default();
1744 }
7274a5c1 1745
e8f14172 1746 /*
7274a5c1
PB
1747 * We update all RUNNABLE tasks only when task groups are in use.
1748 * Otherwise, keep it simple and do just a lazy update at each next
1749 * task enqueue time.
e8f14172 1750 */
7274a5c1 1751
e8f14172
PB
1752 goto done;
1753
1754undo:
1755 sysctl_sched_uclamp_util_min = old_min;
1756 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1757 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1758done:
2480c093 1759 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1760
1761 return result;
1762}
1763
a509a7cd
PB
1764static int uclamp_validate(struct task_struct *p,
1765 const struct sched_attr *attr)
1766{
480a6ca2
DE
1767 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1768 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1769
480a6ca2
DE
1770 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1771 util_min = attr->sched_util_min;
a509a7cd 1772
480a6ca2
DE
1773 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1774 return -EINVAL;
1775 }
1776
1777 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1778 util_max = attr->sched_util_max;
1779
1780 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1781 return -EINVAL;
1782 }
1783
1784 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1785 return -EINVAL;
1786
e65855a5
QY
1787 /*
1788 * We have valid uclamp attributes; make sure uclamp is enabled.
1789 *
1790 * We need to do that here, because enabling static branches is a
1791 * blocking operation which obviously cannot be done while holding
1792 * scheduler locks.
1793 */
1794 static_branch_enable(&sched_uclamp_used);
1795
a509a7cd
PB
1796 return 0;
1797}
1798
480a6ca2
DE
1799static bool uclamp_reset(const struct sched_attr *attr,
1800 enum uclamp_id clamp_id,
1801 struct uclamp_se *uc_se)
1802{
1803 /* Reset on sched class change for a non user-defined clamp value. */
1804 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1805 !uc_se->user_defined)
1806 return true;
1807
1808 /* Reset on sched_util_{min,max} == -1. */
1809 if (clamp_id == UCLAMP_MIN &&
1810 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1811 attr->sched_util_min == -1) {
1812 return true;
1813 }
1814
1815 if (clamp_id == UCLAMP_MAX &&
1816 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1817 attr->sched_util_max == -1) {
1818 return true;
1819 }
1820
1821 return false;
1822}
1823
a509a7cd
PB
1824static void __setscheduler_uclamp(struct task_struct *p,
1825 const struct sched_attr *attr)
1826{
0413d7f3 1827 enum uclamp_id clamp_id;
1a00d999 1828
1a00d999
PB
1829 for_each_clamp_id(clamp_id) {
1830 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1831 unsigned int value;
1a00d999 1832
480a6ca2 1833 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1834 continue;
1835
13685c4a
QY
1836 /*
1837 * RT by default have a 100% boost value that could be modified
1838 * at runtime.
1839 */
1a00d999 1840 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1841 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1842 else
480a6ca2
DE
1843 value = uclamp_none(clamp_id);
1844
1845 uclamp_se_set(uc_se, value, false);
1a00d999 1846
1a00d999
PB
1847 }
1848
a509a7cd
PB
1849 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1850 return;
1851
480a6ca2
DE
1852 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1853 attr->sched_util_min != -1) {
a509a7cd
PB
1854 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1855 attr->sched_util_min, true);
1856 }
1857
480a6ca2
DE
1858 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1859 attr->sched_util_max != -1) {
a509a7cd
PB
1860 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1861 attr->sched_util_max, true);
1862 }
1863}
1864
e8f14172
PB
1865static void uclamp_fork(struct task_struct *p)
1866{
0413d7f3 1867 enum uclamp_id clamp_id;
e8f14172 1868
13685c4a
QY
1869 /*
1870 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1871 * as the task is still at its early fork stages.
1872 */
e8f14172
PB
1873 for_each_clamp_id(clamp_id)
1874 p->uclamp[clamp_id].active = false;
a87498ac
PB
1875
1876 if (likely(!p->sched_reset_on_fork))
1877 return;
1878
1879 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1880 uclamp_se_set(&p->uclamp_req[clamp_id],
1881 uclamp_none(clamp_id), false);
a87498ac 1882 }
e8f14172
PB
1883}
1884
13685c4a
QY
1885static void uclamp_post_fork(struct task_struct *p)
1886{
1887 uclamp_update_util_min_rt_default(p);
1888}
1889
d81ae8aa
QY
1890static void __init init_uclamp_rq(struct rq *rq)
1891{
1892 enum uclamp_id clamp_id;
1893 struct uclamp_rq *uc_rq = rq->uclamp;
1894
1895 for_each_clamp_id(clamp_id) {
1896 uc_rq[clamp_id] = (struct uclamp_rq) {
1897 .value = uclamp_none(clamp_id)
1898 };
1899 }
1900
1901 rq->uclamp_flags = 0;
1902}
1903
69842cba
PB
1904static void __init init_uclamp(void)
1905{
e8f14172 1906 struct uclamp_se uc_max = {};
0413d7f3 1907 enum uclamp_id clamp_id;
69842cba
PB
1908 int cpu;
1909
d81ae8aa
QY
1910 for_each_possible_cpu(cpu)
1911 init_uclamp_rq(cpu_rq(cpu));
69842cba 1912
69842cba 1913 for_each_clamp_id(clamp_id) {
e8f14172 1914 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1915 uclamp_none(clamp_id), false);
69842cba 1916 }
e8f14172
PB
1917
1918 /* System defaults allow max clamp values for both indexes */
a509a7cd 1919 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1920 for_each_clamp_id(clamp_id) {
e8f14172 1921 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1922#ifdef CONFIG_UCLAMP_TASK_GROUP
1923 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1924 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1925#endif
1926 }
69842cba
PB
1927}
1928
1929#else /* CONFIG_UCLAMP_TASK */
1930static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1931static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1932static inline int uclamp_validate(struct task_struct *p,
1933 const struct sched_attr *attr)
1934{
1935 return -EOPNOTSUPP;
1936}
1937static void __setscheduler_uclamp(struct task_struct *p,
1938 const struct sched_attr *attr) { }
e8f14172 1939static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1940static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1941static inline void init_uclamp(void) { }
1942#endif /* CONFIG_UCLAMP_TASK */
1943
1de64443 1944static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1945{
0a67d1ee
PZ
1946 if (!(flags & ENQUEUE_NOCLOCK))
1947 update_rq_clock(rq);
1948
eb414681 1949 if (!(flags & ENQUEUE_RESTORE)) {
4e29fb70 1950 sched_info_enqueue(rq, p);
eb414681
JW
1951 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1952 }
0a67d1ee 1953
69842cba 1954 uclamp_rq_inc(rq, p);
371fd7e7 1955 p->sched_class->enqueue_task(rq, p, flags);
8a311c74
PZ
1956
1957 if (sched_core_enabled(rq))
1958 sched_core_enqueue(rq, p);
71f8bd46
IM
1959}
1960
1de64443 1961static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1962{
8a311c74
PZ
1963 if (sched_core_enabled(rq))
1964 sched_core_dequeue(rq, p);
1965
0a67d1ee
PZ
1966 if (!(flags & DEQUEUE_NOCLOCK))
1967 update_rq_clock(rq);
1968
eb414681 1969 if (!(flags & DEQUEUE_SAVE)) {
4e29fb70 1970 sched_info_dequeue(rq, p);
eb414681
JW
1971 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1972 }
0a67d1ee 1973
69842cba 1974 uclamp_rq_dec(rq, p);
371fd7e7 1975 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1976}
1977
029632fb 1978void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1979{
371fd7e7 1980 enqueue_task(rq, p, flags);
7dd77884
PZ
1981
1982 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1983}
1984
029632fb 1985void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1986{
7dd77884
PZ
1987 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1988
371fd7e7 1989 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1990}
1991
14531189 1992/*
dd41f596 1993 * __normal_prio - return the priority that is based on the static prio
14531189 1994 */
14531189
IM
1995static inline int __normal_prio(struct task_struct *p)
1996{
dd41f596 1997 return p->static_prio;
14531189
IM
1998}
1999
b29739f9
IM
2000/*
2001 * Calculate the expected normal priority: i.e. priority
2002 * without taking RT-inheritance into account. Might be
2003 * boosted by interactivity modifiers. Changes upon fork,
2004 * setprio syscalls, and whenever the interactivity
2005 * estimator recalculates.
2006 */
36c8b586 2007static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2008{
2009 int prio;
2010
aab03e05
DF
2011 if (task_has_dl_policy(p))
2012 prio = MAX_DL_PRIO-1;
2013 else if (task_has_rt_policy(p))
b29739f9
IM
2014 prio = MAX_RT_PRIO-1 - p->rt_priority;
2015 else
2016 prio = __normal_prio(p);
2017 return prio;
2018}
2019
2020/*
2021 * Calculate the current priority, i.e. the priority
2022 * taken into account by the scheduler. This value might
2023 * be boosted by RT tasks, or might be boosted by
2024 * interactivity modifiers. Will be RT if the task got
2025 * RT-boosted. If not then it returns p->normal_prio.
2026 */
36c8b586 2027static int effective_prio(struct task_struct *p)
b29739f9
IM
2028{
2029 p->normal_prio = normal_prio(p);
2030 /*
2031 * If we are RT tasks or we were boosted to RT priority,
2032 * keep the priority unchanged. Otherwise, update priority
2033 * to the normal priority:
2034 */
2035 if (!rt_prio(p->prio))
2036 return p->normal_prio;
2037 return p->prio;
2038}
2039
1da177e4
LT
2040/**
2041 * task_curr - is this task currently executing on a CPU?
2042 * @p: the task in question.
e69f6186
YB
2043 *
2044 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 2045 */
36c8b586 2046inline int task_curr(const struct task_struct *p)
1da177e4
LT
2047{
2048 return cpu_curr(task_cpu(p)) == p;
2049}
2050
67dfa1b7 2051/*
4c9a4bc8
PZ
2052 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2053 * use the balance_callback list if you want balancing.
2054 *
2055 * this means any call to check_class_changed() must be followed by a call to
2056 * balance_callback().
67dfa1b7 2057 */
cb469845
SR
2058static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2059 const struct sched_class *prev_class,
da7a735e 2060 int oldprio)
cb469845
SR
2061{
2062 if (prev_class != p->sched_class) {
2063 if (prev_class->switched_from)
da7a735e 2064 prev_class->switched_from(rq, p);
4c9a4bc8 2065
da7a735e 2066 p->sched_class->switched_to(rq, p);
2d3d891d 2067 } else if (oldprio != p->prio || dl_task(p))
da7a735e 2068 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2069}
2070
029632fb 2071void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 2072{
aa93cd53 2073 if (p->sched_class == rq->curr->sched_class)
1e5a7405 2074 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
2075 else if (p->sched_class > rq->curr->sched_class)
2076 resched_curr(rq);
1e5a7405
PZ
2077
2078 /*
2079 * A queue event has occurred, and we're going to schedule. In
2080 * this case, we can save a useless back to back clock update.
2081 */
da0c1e65 2082 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 2083 rq_clock_skip_update(rq);
1e5a7405
PZ
2084}
2085
1da177e4 2086#ifdef CONFIG_SMP
175f0e25 2087
af449901
PZ
2088static void
2089__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2090
2091static int __set_cpus_allowed_ptr(struct task_struct *p,
2092 const struct cpumask *new_mask,
2093 u32 flags);
2094
2095static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2096{
2097 if (likely(!p->migration_disabled))
2098 return;
2099
2100 if (p->cpus_ptr != &p->cpus_mask)
2101 return;
2102
2103 /*
2104 * Violates locking rules! see comment in __do_set_cpus_allowed().
2105 */
2106 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2107}
2108
2109void migrate_disable(void)
2110{
3015ef4b
TG
2111 struct task_struct *p = current;
2112
2113 if (p->migration_disabled) {
2114 p->migration_disabled++;
af449901 2115 return;
3015ef4b 2116 }
af449901 2117
3015ef4b
TG
2118 preempt_disable();
2119 this_rq()->nr_pinned++;
2120 p->migration_disabled = 1;
2121 preempt_enable();
af449901
PZ
2122}
2123EXPORT_SYMBOL_GPL(migrate_disable);
2124
2125void migrate_enable(void)
2126{
2127 struct task_struct *p = current;
2128
6d337eab
PZ
2129 if (p->migration_disabled > 1) {
2130 p->migration_disabled--;
af449901 2131 return;
6d337eab 2132 }
af449901 2133
6d337eab
PZ
2134 /*
2135 * Ensure stop_task runs either before or after this, and that
2136 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2137 */
2138 preempt_disable();
2139 if (p->cpus_ptr != &p->cpus_mask)
2140 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2141 /*
2142 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2143 * regular cpus_mask, otherwise things that race (eg.
2144 * select_fallback_rq) get confused.
2145 */
af449901 2146 barrier();
6d337eab 2147 p->migration_disabled = 0;
3015ef4b 2148 this_rq()->nr_pinned--;
6d337eab 2149 preempt_enable();
af449901
PZ
2150}
2151EXPORT_SYMBOL_GPL(migrate_enable);
2152
3015ef4b
TG
2153static inline bool rq_has_pinned_tasks(struct rq *rq)
2154{
2155 return rq->nr_pinned;
2156}
2157
175f0e25 2158/*
bee98539 2159 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
2160 * __set_cpus_allowed_ptr() and select_fallback_rq().
2161 */
2162static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2163{
5ba2ffba 2164 /* When not in the task's cpumask, no point in looking further. */
3bd37062 2165 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
2166 return false;
2167
5ba2ffba
PZ
2168 /* migrate_disabled() must be allowed to finish. */
2169 if (is_migration_disabled(p))
175f0e25
PZ
2170 return cpu_online(cpu);
2171
5ba2ffba
PZ
2172 /* Non kernel threads are not allowed during either online or offline. */
2173 if (!(p->flags & PF_KTHREAD))
2174 return cpu_active(cpu);
2175
2176 /* KTHREAD_IS_PER_CPU is always allowed. */
2177 if (kthread_is_per_cpu(p))
2178 return cpu_online(cpu);
2179
2180 /* Regular kernel threads don't get to stay during offline. */
b5c44773 2181 if (cpu_dying(cpu))
5ba2ffba
PZ
2182 return false;
2183
2184 /* But are allowed during online. */
2185 return cpu_online(cpu);
175f0e25
PZ
2186}
2187
5cc389bc
PZ
2188/*
2189 * This is how migration works:
2190 *
2191 * 1) we invoke migration_cpu_stop() on the target CPU using
2192 * stop_one_cpu().
2193 * 2) stopper starts to run (implicitly forcing the migrated thread
2194 * off the CPU)
2195 * 3) it checks whether the migrated task is still in the wrong runqueue.
2196 * 4) if it's in the wrong runqueue then the migration thread removes
2197 * it and puts it into the right queue.
2198 * 5) stopper completes and stop_one_cpu() returns and the migration
2199 * is done.
2200 */
2201
2202/*
2203 * move_queued_task - move a queued task to new rq.
2204 *
2205 * Returns (locked) new rq. Old rq's lock is released.
2206 */
8a8c69c3
PZ
2207static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2208 struct task_struct *p, int new_cpu)
5cc389bc 2209{
5cb9eaa3 2210 lockdep_assert_rq_held(rq);
5cc389bc 2211
58877d34 2212 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 2213 set_task_cpu(p, new_cpu);
8a8c69c3 2214 rq_unlock(rq, rf);
5cc389bc
PZ
2215
2216 rq = cpu_rq(new_cpu);
2217
8a8c69c3 2218 rq_lock(rq, rf);
5cc389bc 2219 BUG_ON(task_cpu(p) != new_cpu);
58877d34 2220 activate_task(rq, p, 0);
5cc389bc
PZ
2221 check_preempt_curr(rq, p, 0);
2222
2223 return rq;
2224}
2225
2226struct migration_arg {
6d337eab
PZ
2227 struct task_struct *task;
2228 int dest_cpu;
2229 struct set_affinity_pending *pending;
2230};
2231
50caf9c1
PZ
2232/*
2233 * @refs: number of wait_for_completion()
2234 * @stop_pending: is @stop_work in use
2235 */
6d337eab
PZ
2236struct set_affinity_pending {
2237 refcount_t refs;
9e81889c 2238 unsigned int stop_pending;
6d337eab
PZ
2239 struct completion done;
2240 struct cpu_stop_work stop_work;
2241 struct migration_arg arg;
5cc389bc
PZ
2242};
2243
2244/*
d1ccc66d 2245 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
2246 * this because either it can't run here any more (set_cpus_allowed()
2247 * away from this CPU, or CPU going down), or because we're
2248 * attempting to rebalance this task on exec (sched_exec).
2249 *
2250 * So we race with normal scheduler movements, but that's OK, as long
2251 * as the task is no longer on this CPU.
5cc389bc 2252 */
8a8c69c3
PZ
2253static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2254 struct task_struct *p, int dest_cpu)
5cc389bc 2255{
5cc389bc 2256 /* Affinity changed (again). */
175f0e25 2257 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 2258 return rq;
5cc389bc 2259
15ff991e 2260 update_rq_clock(rq);
8a8c69c3 2261 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
2262
2263 return rq;
5cc389bc
PZ
2264}
2265
2266/*
2267 * migration_cpu_stop - this will be executed by a highprio stopper thread
2268 * and performs thread migration by bumping thread off CPU then
2269 * 'pushing' onto another runqueue.
2270 */
2271static int migration_cpu_stop(void *data)
2272{
2273 struct migration_arg *arg = data;
c20cf065 2274 struct set_affinity_pending *pending = arg->pending;
5e16bbc2
PZ
2275 struct task_struct *p = arg->task;
2276 struct rq *rq = this_rq();
6d337eab 2277 bool complete = false;
8a8c69c3 2278 struct rq_flags rf;
5cc389bc
PZ
2279
2280 /*
d1ccc66d
IM
2281 * The original target CPU might have gone down and we might
2282 * be on another CPU but it doesn't matter.
5cc389bc 2283 */
6d337eab 2284 local_irq_save(rf.flags);
5cc389bc
PZ
2285 /*
2286 * We need to explicitly wake pending tasks before running
3bd37062 2287 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
2288 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2289 */
a1488664 2290 flush_smp_call_function_from_idle();
5e16bbc2
PZ
2291
2292 raw_spin_lock(&p->pi_lock);
8a8c69c3 2293 rq_lock(rq, &rf);
6d337eab 2294
e140749c
VS
2295 /*
2296 * If we were passed a pending, then ->stop_pending was set, thus
2297 * p->migration_pending must have remained stable.
2298 */
2299 WARN_ON_ONCE(pending && pending != p->migration_pending);
2300
5e16bbc2
PZ
2301 /*
2302 * If task_rq(p) != rq, it cannot be migrated here, because we're
2303 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2304 * we're holding p->pi_lock.
2305 */
bf89a304 2306 if (task_rq(p) == rq) {
6d337eab
PZ
2307 if (is_migration_disabled(p))
2308 goto out;
2309
2310 if (pending) {
e140749c 2311 p->migration_pending = NULL;
6d337eab 2312 complete = true;
6d337eab 2313
3f1bc119
PZ
2314 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2315 goto out;
3f1bc119 2316 }
6d337eab 2317
bf89a304 2318 if (task_on_rq_queued(p))
475ea6c6 2319 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304 2320 else
475ea6c6 2321 p->wake_cpu = arg->dest_cpu;
6d337eab 2322
3f1bc119
PZ
2323 /*
2324 * XXX __migrate_task() can fail, at which point we might end
2325 * up running on a dodgy CPU, AFAICT this can only happen
2326 * during CPU hotplug, at which point we'll get pushed out
2327 * anyway, so it's probably not a big deal.
2328 */
2329
c20cf065 2330 } else if (pending) {
6d337eab
PZ
2331 /*
2332 * This happens when we get migrated between migrate_enable()'s
2333 * preempt_enable() and scheduling the stopper task. At that
2334 * point we're a regular task again and not current anymore.
2335 *
2336 * A !PREEMPT kernel has a giant hole here, which makes it far
2337 * more likely.
2338 */
2339
d707faa6
VS
2340 /*
2341 * The task moved before the stopper got to run. We're holding
2342 * ->pi_lock, so the allowed mask is stable - if it got
2343 * somewhere allowed, we're done.
2344 */
c20cf065 2345 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 2346 p->migration_pending = NULL;
d707faa6
VS
2347 complete = true;
2348 goto out;
2349 }
2350
6d337eab
PZ
2351 /*
2352 * When migrate_enable() hits a rq mis-match we can't reliably
2353 * determine is_migration_disabled() and so have to chase after
2354 * it.
2355 */
9e81889c 2356 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
2357 task_rq_unlock(rq, p, &rf);
2358 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2359 &pending->arg, &pending->stop_work);
2360 return 0;
bf89a304 2361 }
6d337eab 2362out:
9e81889c
PZ
2363 if (pending)
2364 pending->stop_pending = false;
6d337eab
PZ
2365 task_rq_unlock(rq, p, &rf);
2366
2367 if (complete)
2368 complete_all(&pending->done);
2369
5cc389bc
PZ
2370 return 0;
2371}
2372
a7c81556
PZ
2373int push_cpu_stop(void *arg)
2374{
2375 struct rq *lowest_rq = NULL, *rq = this_rq();
2376 struct task_struct *p = arg;
2377
2378 raw_spin_lock_irq(&p->pi_lock);
5cb9eaa3 2379 raw_spin_rq_lock(rq);
a7c81556
PZ
2380
2381 if (task_rq(p) != rq)
2382 goto out_unlock;
2383
2384 if (is_migration_disabled(p)) {
2385 p->migration_flags |= MDF_PUSH;
2386 goto out_unlock;
2387 }
2388
2389 p->migration_flags &= ~MDF_PUSH;
2390
2391 if (p->sched_class->find_lock_rq)
2392 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2393
a7c81556
PZ
2394 if (!lowest_rq)
2395 goto out_unlock;
2396
2397 // XXX validate p is still the highest prio task
2398 if (task_rq(p) == rq) {
2399 deactivate_task(rq, p, 0);
2400 set_task_cpu(p, lowest_rq->cpu);
2401 activate_task(lowest_rq, p, 0);
2402 resched_curr(lowest_rq);
2403 }
2404
2405 double_unlock_balance(rq, lowest_rq);
2406
2407out_unlock:
2408 rq->push_busy = false;
5cb9eaa3 2409 raw_spin_rq_unlock(rq);
a7c81556
PZ
2410 raw_spin_unlock_irq(&p->pi_lock);
2411
2412 put_task_struct(p);
5cc389bc
PZ
2413 return 0;
2414}
2415
c5b28038
PZ
2416/*
2417 * sched_class::set_cpus_allowed must do the below, but is not required to
2418 * actually call this function.
2419 */
9cfc3e18 2420void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2421{
af449901
PZ
2422 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2423 p->cpus_ptr = new_mask;
2424 return;
2425 }
2426
3bd37062 2427 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2428 p->nr_cpus_allowed = cpumask_weight(new_mask);
2429}
2430
9cfc3e18
PZ
2431static void
2432__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2433{
6c37067e
PZ
2434 struct rq *rq = task_rq(p);
2435 bool queued, running;
2436
af449901
PZ
2437 /*
2438 * This here violates the locking rules for affinity, since we're only
2439 * supposed to change these variables while holding both rq->lock and
2440 * p->pi_lock.
2441 *
2442 * HOWEVER, it magically works, because ttwu() is the only code that
2443 * accesses these variables under p->pi_lock and only does so after
2444 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2445 * before finish_task().
2446 *
2447 * XXX do further audits, this smells like something putrid.
2448 */
2449 if (flags & SCA_MIGRATE_DISABLE)
2450 SCHED_WARN_ON(!p->on_cpu);
2451 else
2452 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2453
2454 queued = task_on_rq_queued(p);
2455 running = task_current(rq, p);
2456
2457 if (queued) {
2458 /*
2459 * Because __kthread_bind() calls this on blocked tasks without
2460 * holding rq->lock.
2461 */
5cb9eaa3 2462 lockdep_assert_rq_held(rq);
7a57f32a 2463 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2464 }
2465 if (running)
2466 put_prev_task(rq, p);
2467
9cfc3e18 2468 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2469
6c37067e 2470 if (queued)
7134b3e9 2471 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2472 if (running)
03b7fad1 2473 set_next_task(rq, p);
c5b28038
PZ
2474}
2475
9cfc3e18
PZ
2476void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2477{
2478 __do_set_cpus_allowed(p, new_mask, 0);
2479}
2480
6d337eab 2481/*
c777d847
VS
2482 * This function is wildly self concurrent; here be dragons.
2483 *
2484 *
2485 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2486 * designated task is enqueued on an allowed CPU. If that task is currently
2487 * running, we have to kick it out using the CPU stopper.
2488 *
2489 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2490 * Consider:
2491 *
2492 * Initial conditions: P0->cpus_mask = [0, 1]
2493 *
2494 * P0@CPU0 P1
2495 *
2496 * migrate_disable();
2497 * <preempted>
2498 * set_cpus_allowed_ptr(P0, [1]);
2499 *
2500 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2501 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2502 * This means we need the following scheme:
2503 *
2504 * P0@CPU0 P1
2505 *
2506 * migrate_disable();
2507 * <preempted>
2508 * set_cpus_allowed_ptr(P0, [1]);
2509 * <blocks>
2510 * <resumes>
2511 * migrate_enable();
2512 * __set_cpus_allowed_ptr();
2513 * <wakes local stopper>
2514 * `--> <woken on migration completion>
2515 *
2516 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2517 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2518 * task p are serialized by p->pi_lock, which we can leverage: the one that
2519 * should come into effect at the end of the Migrate-Disable region is the last
2520 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2521 * but we still need to properly signal those waiting tasks at the appropriate
2522 * moment.
2523 *
2524 * This is implemented using struct set_affinity_pending. The first
2525 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2526 * setup an instance of that struct and install it on the targeted task_struct.
2527 * Any and all further callers will reuse that instance. Those then wait for
2528 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2529 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2530 *
2531 *
2532 * (1) In the cases covered above. There is one more where the completion is
2533 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2534 * occurs after the stopper bailed out due to the targeted task still being
2535 * Migrate-Disable. Consider:
c777d847
VS
2536 *
2537 * Initial conditions: P0->cpus_mask = [0, 1]
2538 *
e140749c
VS
2539 * CPU0 P1 P2
2540 * <P0>
2541 * migrate_disable();
2542 * <preempted>
c777d847
VS
2543 * set_cpus_allowed_ptr(P0, [1]);
2544 * <blocks>
e140749c
VS
2545 * <migration/0>
2546 * migration_cpu_stop()
2547 * is_migration_disabled()
2548 * <bails>
c777d847
VS
2549 * set_cpus_allowed_ptr(P0, [0, 1]);
2550 * <signal completion>
2551 * <awakes>
2552 *
2553 * Note that the above is safe vs a concurrent migrate_enable(), as any
2554 * pending affinity completion is preceded by an uninstallation of
2555 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2556 */
2557static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2558 int dest_cpu, unsigned int flags)
2559{
2560 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2561 bool stop_pending, complete = false;
6d337eab
PZ
2562
2563 /* Can the task run on the task's current CPU? If so, we're done */
2564 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2565 struct task_struct *push_task = NULL;
2566
2567 if ((flags & SCA_MIGRATE_ENABLE) &&
2568 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2569 rq->push_busy = true;
2570 push_task = get_task_struct(p);
2571 }
2572
50caf9c1
PZ
2573 /*
2574 * If there are pending waiters, but no pending stop_work,
2575 * then complete now.
2576 */
6d337eab 2577 pending = p->migration_pending;
50caf9c1 2578 if (pending && !pending->stop_pending) {
6d337eab
PZ
2579 p->migration_pending = NULL;
2580 complete = true;
2581 }
50caf9c1 2582
6d337eab
PZ
2583 task_rq_unlock(rq, p, rf);
2584
a7c81556
PZ
2585 if (push_task) {
2586 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2587 p, &rq->push_work);
2588 }
2589
6d337eab 2590 if (complete)
50caf9c1 2591 complete_all(&pending->done);
6d337eab
PZ
2592
2593 return 0;
2594 }
2595
2596 if (!(flags & SCA_MIGRATE_ENABLE)) {
2597 /* serialized by p->pi_lock */
2598 if (!p->migration_pending) {
c777d847 2599 /* Install the request */
6d337eab
PZ
2600 refcount_set(&my_pending.refs, 1);
2601 init_completion(&my_pending.done);
8a6edb52
PZ
2602 my_pending.arg = (struct migration_arg) {
2603 .task = p,
475ea6c6 2604 .dest_cpu = dest_cpu,
8a6edb52
PZ
2605 .pending = &my_pending,
2606 };
2607
6d337eab
PZ
2608 p->migration_pending = &my_pending;
2609 } else {
2610 pending = p->migration_pending;
2611 refcount_inc(&pending->refs);
475ea6c6
VS
2612 /*
2613 * Affinity has changed, but we've already installed a
2614 * pending. migration_cpu_stop() *must* see this, else
2615 * we risk a completion of the pending despite having a
2616 * task on a disallowed CPU.
2617 *
2618 * Serialized by p->pi_lock, so this is safe.
2619 */
2620 pending->arg.dest_cpu = dest_cpu;
6d337eab
PZ
2621 }
2622 }
2623 pending = p->migration_pending;
2624 /*
2625 * - !MIGRATE_ENABLE:
2626 * we'll have installed a pending if there wasn't one already.
2627 *
2628 * - MIGRATE_ENABLE:
2629 * we're here because the current CPU isn't matching anymore,
2630 * the only way that can happen is because of a concurrent
2631 * set_cpus_allowed_ptr() call, which should then still be
2632 * pending completion.
2633 *
2634 * Either way, we really should have a @pending here.
2635 */
2636 if (WARN_ON_ONCE(!pending)) {
2637 task_rq_unlock(rq, p, rf);
2638 return -EINVAL;
2639 }
2640
6d337eab 2641 if (task_running(rq, p) || p->state == TASK_WAKING) {
c777d847 2642 /*
58b1a450
PZ
2643 * MIGRATE_ENABLE gets here because 'p == current', but for
2644 * anything else we cannot do is_migration_disabled(), punt
2645 * and have the stopper function handle it all race-free.
c777d847 2646 */
9e81889c
PZ
2647 stop_pending = pending->stop_pending;
2648 if (!stop_pending)
2649 pending->stop_pending = true;
58b1a450 2650
58b1a450
PZ
2651 if (flags & SCA_MIGRATE_ENABLE)
2652 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2653
6d337eab 2654 task_rq_unlock(rq, p, rf);
8a6edb52 2655
9e81889c
PZ
2656 if (!stop_pending) {
2657 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2658 &pending->arg, &pending->stop_work);
2659 }
6d337eab 2660
58b1a450
PZ
2661 if (flags & SCA_MIGRATE_ENABLE)
2662 return 0;
6d337eab
PZ
2663 } else {
2664
2665 if (!is_migration_disabled(p)) {
2666 if (task_on_rq_queued(p))
2667 rq = move_queued_task(rq, rf, p, dest_cpu);
2668
50caf9c1
PZ
2669 if (!pending->stop_pending) {
2670 p->migration_pending = NULL;
2671 complete = true;
2672 }
6d337eab
PZ
2673 }
2674 task_rq_unlock(rq, p, rf);
2675
6d337eab
PZ
2676 if (complete)
2677 complete_all(&pending->done);
2678 }
2679
2680 wait_for_completion(&pending->done);
2681
2682 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2683 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2684
c777d847
VS
2685 /*
2686 * Block the original owner of &pending until all subsequent callers
2687 * have seen the completion and decremented the refcount
2688 */
6d337eab
PZ
2689 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2690
50caf9c1
PZ
2691 /* ARGH */
2692 WARN_ON_ONCE(my_pending.stop_pending);
2693
6d337eab
PZ
2694 return 0;
2695}
2696
5cc389bc
PZ
2697/*
2698 * Change a given task's CPU affinity. Migrate the thread to a
2699 * proper CPU and schedule it away if the CPU it's executing on
2700 * is removed from the allowed bitmask.
2701 *
2702 * NOTE: the caller must have a valid reference to the task, the
2703 * task must not exit() & deallocate itself prematurely. The
2704 * call is not atomic; no spinlocks may be held.
2705 */
25834c73 2706static int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2707 const struct cpumask *new_mask,
2708 u32 flags)
5cc389bc 2709{
e9d867a6 2710 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 2711 unsigned int dest_cpu;
eb580751
PZ
2712 struct rq_flags rf;
2713 struct rq *rq;
5cc389bc
PZ
2714 int ret = 0;
2715
eb580751 2716 rq = task_rq_lock(p, &rf);
a499c3ea 2717 update_rq_clock(rq);
5cc389bc 2718
af449901 2719 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
e9d867a6 2720 /*
741ba80f
PZ
2721 * Kernel threads are allowed on online && !active CPUs,
2722 * however, during cpu-hot-unplug, even these might get pushed
2723 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2724 *
2725 * Specifically, migration_disabled() tasks must not fail the
2726 * cpumask_any_and_distribute() pick below, esp. so on
2727 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2728 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2729 */
2730 cpu_valid_mask = cpu_online_mask;
2731 }
2732
25834c73
PZ
2733 /*
2734 * Must re-check here, to close a race against __kthread_bind(),
2735 * sched_setaffinity() is not guaranteed to observe the flag.
2736 */
9cfc3e18 2737 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2738 ret = -EINVAL;
2739 goto out;
2740 }
2741
885b3ba4
VS
2742 if (!(flags & SCA_MIGRATE_ENABLE)) {
2743 if (cpumask_equal(&p->cpus_mask, new_mask))
2744 goto out;
2745
2746 if (WARN_ON_ONCE(p == current &&
2747 is_migration_disabled(p) &&
2748 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2749 ret = -EBUSY;
2750 goto out;
2751 }
2752 }
5cc389bc 2753
46a87b38
PT
2754 /*
2755 * Picking a ~random cpu helps in cases where we are changing affinity
2756 * for groups of tasks (ie. cpuset), so that load balancing is not
2757 * immediately required to distribute the tasks within their new mask.
2758 */
2759 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2760 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2761 ret = -EINVAL;
2762 goto out;
2763 }
2764
9cfc3e18 2765 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2766
6d337eab 2767 return affine_move_task(rq, p, &rf, dest_cpu, flags);
5cc389bc 2768
5cc389bc 2769out:
eb580751 2770 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
2771
2772 return ret;
2773}
25834c73
PZ
2774
2775int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2776{
9cfc3e18 2777 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2778}
5cc389bc
PZ
2779EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2780
dd41f596 2781void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2782{
e2912009
PZ
2783#ifdef CONFIG_SCHED_DEBUG
2784 /*
2785 * We should never call set_task_cpu() on a blocked task,
2786 * ttwu() will sort out the placement.
2787 */
077614ee 2788 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 2789 !p->on_rq);
0122ec5b 2790
3ea94de1
JP
2791 /*
2792 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2793 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2794 * time relying on p->on_rq.
2795 */
2796 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2797 p->sched_class == &fair_sched_class &&
2798 (p->on_rq && !task_on_rq_migrating(p)));
2799
0122ec5b 2800#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2801 /*
2802 * The caller should hold either p->pi_lock or rq->lock, when changing
2803 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2804 *
2805 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 2806 * see task_group().
6c6c54e1
PZ
2807 *
2808 * Furthermore, all task_rq users should acquire both locks, see
2809 * task_rq_lock().
2810 */
0122ec5b 2811 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
9ef7e7e3 2812 lockdep_is_held(__rq_lockp(task_rq(p)))));
0122ec5b 2813#endif
4ff9083b
PZ
2814 /*
2815 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2816 */
2817 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
2818
2819 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
2820#endif
2821
de1d7286 2822 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2823
0c69774e 2824 if (task_cpu(p) != new_cpu) {
0a74bef8 2825 if (p->sched_class->migrate_task_rq)
1327237a 2826 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 2827 p->se.nr_migrations++;
d7822b1e 2828 rseq_migrate(p);
ff303e66 2829 perf_event_task_migrate(p);
0c69774e 2830 }
dd41f596
IM
2831
2832 __set_task_cpu(p, new_cpu);
c65cc870
IM
2833}
2834
0ad4e3df 2835#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2836static void __migrate_swap_task(struct task_struct *p, int cpu)
2837{
da0c1e65 2838 if (task_on_rq_queued(p)) {
ac66f547 2839 struct rq *src_rq, *dst_rq;
8a8c69c3 2840 struct rq_flags srf, drf;
ac66f547
PZ
2841
2842 src_rq = task_rq(p);
2843 dst_rq = cpu_rq(cpu);
2844
8a8c69c3
PZ
2845 rq_pin_lock(src_rq, &srf);
2846 rq_pin_lock(dst_rq, &drf);
2847
ac66f547
PZ
2848 deactivate_task(src_rq, p, 0);
2849 set_task_cpu(p, cpu);
2850 activate_task(dst_rq, p, 0);
2851 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2852
2853 rq_unpin_lock(dst_rq, &drf);
2854 rq_unpin_lock(src_rq, &srf);
2855
ac66f547
PZ
2856 } else {
2857 /*
2858 * Task isn't running anymore; make it appear like we migrated
2859 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2860 * previous CPU our target instead of where it really is.
ac66f547
PZ
2861 */
2862 p->wake_cpu = cpu;
2863 }
2864}
2865
2866struct migration_swap_arg {
2867 struct task_struct *src_task, *dst_task;
2868 int src_cpu, dst_cpu;
2869};
2870
2871static int migrate_swap_stop(void *data)
2872{
2873 struct migration_swap_arg *arg = data;
2874 struct rq *src_rq, *dst_rq;
2875 int ret = -EAGAIN;
2876
62694cd5
PZ
2877 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2878 return -EAGAIN;
2879
ac66f547
PZ
2880 src_rq = cpu_rq(arg->src_cpu);
2881 dst_rq = cpu_rq(arg->dst_cpu);
2882
74602315
PZ
2883 double_raw_lock(&arg->src_task->pi_lock,
2884 &arg->dst_task->pi_lock);
ac66f547 2885 double_rq_lock(src_rq, dst_rq);
62694cd5 2886
ac66f547
PZ
2887 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2888 goto unlock;
2889
2890 if (task_cpu(arg->src_task) != arg->src_cpu)
2891 goto unlock;
2892
3bd37062 2893 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2894 goto unlock;
2895
3bd37062 2896 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2897 goto unlock;
2898
2899 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2900 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2901
2902 ret = 0;
2903
2904unlock:
2905 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2906 raw_spin_unlock(&arg->dst_task->pi_lock);
2907 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2908
2909 return ret;
2910}
2911
2912/*
2913 * Cross migrate two tasks
2914 */
0ad4e3df
SD
2915int migrate_swap(struct task_struct *cur, struct task_struct *p,
2916 int target_cpu, int curr_cpu)
ac66f547
PZ
2917{
2918 struct migration_swap_arg arg;
2919 int ret = -EINVAL;
2920
ac66f547
PZ
2921 arg = (struct migration_swap_arg){
2922 .src_task = cur,
0ad4e3df 2923 .src_cpu = curr_cpu,
ac66f547 2924 .dst_task = p,
0ad4e3df 2925 .dst_cpu = target_cpu,
ac66f547
PZ
2926 };
2927
2928 if (arg.src_cpu == arg.dst_cpu)
2929 goto out;
2930
6acce3ef
PZ
2931 /*
2932 * These three tests are all lockless; this is OK since all of them
2933 * will be re-checked with proper locks held further down the line.
2934 */
ac66f547
PZ
2935 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2936 goto out;
2937
3bd37062 2938 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2939 goto out;
2940
3bd37062 2941 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2942 goto out;
2943
286549dc 2944 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2945 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2946
2947out:
ac66f547
PZ
2948 return ret;
2949}
0ad4e3df 2950#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2951
1da177e4
LT
2952/*
2953 * wait_task_inactive - wait for a thread to unschedule.
2954 *
85ba2d86
RM
2955 * If @match_state is nonzero, it's the @p->state value just checked and
2956 * not expected to change. If it changes, i.e. @p might have woken up,
2957 * then return zero. When we succeed in waiting for @p to be off its CPU,
2958 * we return a positive number (its total switch count). If a second call
2959 * a short while later returns the same number, the caller can be sure that
2960 * @p has remained unscheduled the whole time.
2961 *
1da177e4
LT
2962 * The caller must ensure that the task *will* unschedule sometime soon,
2963 * else this function might spin for a *long* time. This function can't
2964 * be called with interrupts off, or it may introduce deadlock with
2965 * smp_call_function() if an IPI is sent by the same process we are
2966 * waiting to become inactive.
2967 */
85ba2d86 2968unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 2969{
da0c1e65 2970 int running, queued;
eb580751 2971 struct rq_flags rf;
85ba2d86 2972 unsigned long ncsw;
70b97a7f 2973 struct rq *rq;
1da177e4 2974
3a5c359a
AK
2975 for (;;) {
2976 /*
2977 * We do the initial early heuristics without holding
2978 * any task-queue locks at all. We'll only try to get
2979 * the runqueue lock when things look like they will
2980 * work out!
2981 */
2982 rq = task_rq(p);
fa490cfd 2983
3a5c359a
AK
2984 /*
2985 * If the task is actively running on another CPU
2986 * still, just relax and busy-wait without holding
2987 * any locks.
2988 *
2989 * NOTE! Since we don't hold any locks, it's not
2990 * even sure that "rq" stays as the right runqueue!
2991 * But we don't care, since "task_running()" will
2992 * return false if the runqueue has changed and p
2993 * is actually now running somewhere else!
2994 */
85ba2d86
RM
2995 while (task_running(rq, p)) {
2996 if (match_state && unlikely(p->state != match_state))
2997 return 0;
3a5c359a 2998 cpu_relax();
85ba2d86 2999 }
fa490cfd 3000
3a5c359a
AK
3001 /*
3002 * Ok, time to look more closely! We need the rq
3003 * lock now, to be *sure*. If we're wrong, we'll
3004 * just go back and repeat.
3005 */
eb580751 3006 rq = task_rq_lock(p, &rf);
27a9da65 3007 trace_sched_wait_task(p);
3a5c359a 3008 running = task_running(rq, p);
da0c1e65 3009 queued = task_on_rq_queued(p);
85ba2d86 3010 ncsw = 0;
f31e11d8 3011 if (!match_state || p->state == match_state)
93dcf55f 3012 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 3013 task_rq_unlock(rq, p, &rf);
fa490cfd 3014
85ba2d86
RM
3015 /*
3016 * If it changed from the expected state, bail out now.
3017 */
3018 if (unlikely(!ncsw))
3019 break;
3020
3a5c359a
AK
3021 /*
3022 * Was it really running after all now that we
3023 * checked with the proper locks actually held?
3024 *
3025 * Oops. Go back and try again..
3026 */
3027 if (unlikely(running)) {
3028 cpu_relax();
3029 continue;
3030 }
fa490cfd 3031
3a5c359a
AK
3032 /*
3033 * It's not enough that it's not actively running,
3034 * it must be off the runqueue _entirely_, and not
3035 * preempted!
3036 *
80dd99b3 3037 * So if it was still runnable (but just not actively
3a5c359a
AK
3038 * running right now), it's preempted, and we should
3039 * yield - it could be a while.
3040 */
da0c1e65 3041 if (unlikely(queued)) {
8b0e1953 3042 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
3043
3044 set_current_state(TASK_UNINTERRUPTIBLE);
3045 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
3046 continue;
3047 }
fa490cfd 3048
3a5c359a
AK
3049 /*
3050 * Ahh, all good. It wasn't running, and it wasn't
3051 * runnable, which means that it will never become
3052 * running in the future either. We're all done!
3053 */
3054 break;
3055 }
85ba2d86
RM
3056
3057 return ncsw;
1da177e4
LT
3058}
3059
3060/***
3061 * kick_process - kick a running thread to enter/exit the kernel
3062 * @p: the to-be-kicked thread
3063 *
3064 * Cause a process which is running on another CPU to enter
3065 * kernel-mode, without any delay. (to get signals handled.)
3066 *
25985edc 3067 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
3068 * because all it wants to ensure is that the remote task enters
3069 * the kernel. If the IPI races and the task has been migrated
3070 * to another CPU then no harm is done and the purpose has been
3071 * achieved as well.
3072 */
36c8b586 3073void kick_process(struct task_struct *p)
1da177e4
LT
3074{
3075 int cpu;
3076
3077 preempt_disable();
3078 cpu = task_cpu(p);
3079 if ((cpu != smp_processor_id()) && task_curr(p))
3080 smp_send_reschedule(cpu);
3081 preempt_enable();
3082}
b43e3521 3083EXPORT_SYMBOL_GPL(kick_process);
1da177e4 3084
30da688e 3085/*
3bd37062 3086 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
3087 *
3088 * A few notes on cpu_active vs cpu_online:
3089 *
3090 * - cpu_active must be a subset of cpu_online
3091 *
97fb7a0a 3092 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 3093 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 3094 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
3095 * see it.
3096 *
d1ccc66d 3097 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 3098 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 3099 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
3100 * off.
3101 *
3102 * This means that fallback selection must not select !active CPUs.
3103 * And can assume that any active CPU must be online. Conversely
3104 * select_task_rq() below may allow selection of !active CPUs in order
3105 * to satisfy the above rules.
30da688e 3106 */
5da9a0fb
PZ
3107static int select_fallback_rq(int cpu, struct task_struct *p)
3108{
aa00d89c
TC
3109 int nid = cpu_to_node(cpu);
3110 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
3111 enum { cpuset, possible, fail } state = cpuset;
3112 int dest_cpu;
5da9a0fb 3113
aa00d89c 3114 /*
d1ccc66d
IM
3115 * If the node that the CPU is on has been offlined, cpu_to_node()
3116 * will return -1. There is no CPU on the node, and we should
3117 * select the CPU on the other node.
aa00d89c
TC
3118 */
3119 if (nid != -1) {
3120 nodemask = cpumask_of_node(nid);
3121
3122 /* Look for allowed, online CPU in same node. */
3123 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
3124 if (!cpu_active(dest_cpu))
3125 continue;
3bd37062 3126 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
3127 return dest_cpu;
3128 }
2baab4e9 3129 }
5da9a0fb 3130
2baab4e9
PZ
3131 for (;;) {
3132 /* Any allowed, online CPU? */
3bd37062 3133 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 3134 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 3135 continue;
175f0e25 3136
2baab4e9
PZ
3137 goto out;
3138 }
5da9a0fb 3139
e73e85f0 3140 /* No more Mr. Nice Guy. */
2baab4e9
PZ
3141 switch (state) {
3142 case cpuset:
e73e85f0
ON
3143 if (IS_ENABLED(CONFIG_CPUSETS)) {
3144 cpuset_cpus_allowed_fallback(p);
3145 state = possible;
3146 break;
3147 }
df561f66 3148 fallthrough;
2baab4e9 3149 case possible:
af449901
PZ
3150 /*
3151 * XXX When called from select_task_rq() we only
3152 * hold p->pi_lock and again violate locking order.
3153 *
3154 * More yuck to audit.
3155 */
2baab4e9
PZ
3156 do_set_cpus_allowed(p, cpu_possible_mask);
3157 state = fail;
3158 break;
3159
3160 case fail:
3161 BUG();
3162 break;
3163 }
3164 }
3165
3166out:
3167 if (state != cpuset) {
3168 /*
3169 * Don't tell them about moving exiting tasks or
3170 * kernel threads (both mm NULL), since they never
3171 * leave kernel.
3172 */
3173 if (p->mm && printk_ratelimit()) {
aac74dc4 3174 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
3175 task_pid_nr(p), p->comm, cpu);
3176 }
5da9a0fb
PZ
3177 }
3178
3179 return dest_cpu;
3180}
3181
e2912009 3182/*
3bd37062 3183 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 3184 */
970b13ba 3185static inline
3aef1551 3186int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 3187{
cbce1a68
PZ
3188 lockdep_assert_held(&p->pi_lock);
3189
af449901 3190 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 3191 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 3192 else
3bd37062 3193 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
3194
3195 /*
3196 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 3197 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 3198 * CPU.
e2912009
PZ
3199 *
3200 * Since this is common to all placement strategies, this lives here.
3201 *
3202 * [ this allows ->select_task() to simply return task_cpu(p) and
3203 * not worry about this generic constraint ]
3204 */
7af443ee 3205 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 3206 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
3207
3208 return cpu;
970b13ba 3209}
09a40af5 3210
f5832c19
NP
3211void sched_set_stop_task(int cpu, struct task_struct *stop)
3212{
ded467dc 3213 static struct lock_class_key stop_pi_lock;
f5832c19
NP
3214 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3215 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3216
3217 if (stop) {
3218 /*
3219 * Make it appear like a SCHED_FIFO task, its something
3220 * userspace knows about and won't get confused about.
3221 *
3222 * Also, it will make PI more or less work without too
3223 * much confusion -- but then, stop work should not
3224 * rely on PI working anyway.
3225 */
3226 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3227
3228 stop->sched_class = &stop_sched_class;
ded467dc
PZ
3229
3230 /*
3231 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3232 * adjust the effective priority of a task. As a result,
3233 * rt_mutex_setprio() can trigger (RT) balancing operations,
3234 * which can then trigger wakeups of the stop thread to push
3235 * around the current task.
3236 *
3237 * The stop task itself will never be part of the PI-chain, it
3238 * never blocks, therefore that ->pi_lock recursion is safe.
3239 * Tell lockdep about this by placing the stop->pi_lock in its
3240 * own class.
3241 */
3242 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
3243 }
3244
3245 cpu_rq(cpu)->stop = stop;
3246
3247 if (old_stop) {
3248 /*
3249 * Reset it back to a normal scheduling class so that
3250 * it can die in pieces.
3251 */
3252 old_stop->sched_class = &rt_sched_class;
3253 }
3254}
3255
74d862b6 3256#else /* CONFIG_SMP */
25834c73
PZ
3257
3258static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
3259 const struct cpumask *new_mask,
3260 u32 flags)
25834c73
PZ
3261{
3262 return set_cpus_allowed_ptr(p, new_mask);
3263}
3264
af449901
PZ
3265static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3266
3015ef4b
TG
3267static inline bool rq_has_pinned_tasks(struct rq *rq)
3268{
3269 return false;
3270}
3271
74d862b6 3272#endif /* !CONFIG_SMP */
970b13ba 3273
d7c01d27 3274static void
b84cb5df 3275ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 3276{
4fa8d299 3277 struct rq *rq;
b84cb5df 3278
4fa8d299
JP
3279 if (!schedstat_enabled())
3280 return;
3281
3282 rq = this_rq();
d7c01d27 3283
4fa8d299
JP
3284#ifdef CONFIG_SMP
3285 if (cpu == rq->cpu) {
b85c8b71
PZ
3286 __schedstat_inc(rq->ttwu_local);
3287 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
3288 } else {
3289 struct sched_domain *sd;
3290
b85c8b71 3291 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 3292 rcu_read_lock();
4fa8d299 3293 for_each_domain(rq->cpu, sd) {
d7c01d27 3294 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 3295 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
3296 break;
3297 }
3298 }
057f3fad 3299 rcu_read_unlock();
d7c01d27 3300 }
f339b9dc
PZ
3301
3302 if (wake_flags & WF_MIGRATED)
b85c8b71 3303 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
3304#endif /* CONFIG_SMP */
3305
b85c8b71
PZ
3306 __schedstat_inc(rq->ttwu_count);
3307 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
3308
3309 if (wake_flags & WF_SYNC)
b85c8b71 3310 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
3311}
3312
23f41eeb
PZ
3313/*
3314 * Mark the task runnable and perform wakeup-preemption.
3315 */
e7904a28 3316static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3317 struct rq_flags *rf)
9ed3811a 3318{
9ed3811a 3319 check_preempt_curr(rq, p, wake_flags);
9ed3811a 3320 p->state = TASK_RUNNING;
fbd705a0
PZ
3321 trace_sched_wakeup(p);
3322
9ed3811a 3323#ifdef CONFIG_SMP
4c9a4bc8
PZ
3324 if (p->sched_class->task_woken) {
3325 /*
b19a888c 3326 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 3327 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 3328 */
d8ac8971 3329 rq_unpin_lock(rq, rf);
9ed3811a 3330 p->sched_class->task_woken(rq, p);
d8ac8971 3331 rq_repin_lock(rq, rf);
4c9a4bc8 3332 }
9ed3811a 3333
e69c6341 3334 if (rq->idle_stamp) {
78becc27 3335 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 3336 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 3337
abfafa54
JL
3338 update_avg(&rq->avg_idle, delta);
3339
3340 if (rq->avg_idle > max)
9ed3811a 3341 rq->avg_idle = max;
abfafa54 3342
94aafc3e
PZ
3343 rq->wake_stamp = jiffies;
3344 rq->wake_avg_idle = rq->avg_idle / 2;
3345
9ed3811a
TH
3346 rq->idle_stamp = 0;
3347 }
3348#endif
3349}
3350
c05fbafb 3351static void
e7904a28 3352ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3353 struct rq_flags *rf)
c05fbafb 3354{
77558e4d 3355 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 3356
5cb9eaa3 3357 lockdep_assert_rq_held(rq);
cbce1a68 3358
c05fbafb
PZ
3359 if (p->sched_contributes_to_load)
3360 rq->nr_uninterruptible--;
b5179ac7 3361
dbfb089d 3362#ifdef CONFIG_SMP
b5179ac7 3363 if (wake_flags & WF_MIGRATED)
59efa0ba 3364 en_flags |= ENQUEUE_MIGRATED;
ec618b84 3365 else
c05fbafb 3366#endif
ec618b84
PZ
3367 if (p->in_iowait) {
3368 delayacct_blkio_end(p);
3369 atomic_dec(&task_rq(p)->nr_iowait);
3370 }
c05fbafb 3371
1b174a2c 3372 activate_task(rq, p, en_flags);
d8ac8971 3373 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
3374}
3375
3376/*
58877d34
PZ
3377 * Consider @p being inside a wait loop:
3378 *
3379 * for (;;) {
3380 * set_current_state(TASK_UNINTERRUPTIBLE);
3381 *
3382 * if (CONDITION)
3383 * break;
3384 *
3385 * schedule();
3386 * }
3387 * __set_current_state(TASK_RUNNING);
3388 *
3389 * between set_current_state() and schedule(). In this case @p is still
3390 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3391 * an atomic manner.
3392 *
3393 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3394 * then schedule() must still happen and p->state can be changed to
3395 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3396 * need to do a full wakeup with enqueue.
3397 *
3398 * Returns: %true when the wakeup is done,
3399 * %false otherwise.
c05fbafb 3400 */
58877d34 3401static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3402{
eb580751 3403 struct rq_flags rf;
c05fbafb
PZ
3404 struct rq *rq;
3405 int ret = 0;
3406
eb580751 3407 rq = __task_rq_lock(p, &rf);
da0c1e65 3408 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3409 /* check_preempt_curr() may use rq clock */
3410 update_rq_clock(rq);
d8ac8971 3411 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3412 ret = 1;
3413 }
eb580751 3414 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3415
3416 return ret;
3417}
3418
317f3941 3419#ifdef CONFIG_SMP
a1488664 3420void sched_ttwu_pending(void *arg)
317f3941 3421{
a1488664 3422 struct llist_node *llist = arg;
317f3941 3423 struct rq *rq = this_rq();
73215849 3424 struct task_struct *p, *t;
d8ac8971 3425 struct rq_flags rf;
317f3941 3426
e3baac47
PZ
3427 if (!llist)
3428 return;
3429
126c2092
PZ
3430 /*
3431 * rq::ttwu_pending racy indication of out-standing wakeups.
3432 * Races such that false-negatives are possible, since they
3433 * are shorter lived that false-positives would be.
3434 */
3435 WRITE_ONCE(rq->ttwu_pending, 0);
3436
8a8c69c3 3437 rq_lock_irqsave(rq, &rf);
77558e4d 3438 update_rq_clock(rq);
317f3941 3439
8c4890d1 3440 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3441 if (WARN_ON_ONCE(p->on_cpu))
3442 smp_cond_load_acquire(&p->on_cpu, !VAL);
3443
3444 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3445 set_task_cpu(p, cpu_of(rq));
3446
73215849 3447 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3448 }
317f3941 3449
8a8c69c3 3450 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3451}
3452
b2a02fc4 3453void send_call_function_single_ipi(int cpu)
317f3941 3454{
b2a02fc4 3455 struct rq *rq = cpu_rq(cpu);
ca38062e 3456
b2a02fc4
PZ
3457 if (!set_nr_if_polling(rq->idle))
3458 arch_send_call_function_single_ipi(cpu);
3459 else
3460 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3461}
3462
2ebb1771
MG
3463/*
3464 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3465 * necessary. The wakee CPU on receipt of the IPI will queue the task
3466 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3467 * of the wakeup instead of the waker.
3468 */
3469static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3470{
e3baac47
PZ
3471 struct rq *rq = cpu_rq(cpu);
3472
b7e7ade3
PZ
3473 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3474
126c2092 3475 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3476 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3477}
d6aa8f85 3478
f6be8af1
CL
3479void wake_up_if_idle(int cpu)
3480{
3481 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3482 struct rq_flags rf;
f6be8af1 3483
fd7de1e8
AL
3484 rcu_read_lock();
3485
3486 if (!is_idle_task(rcu_dereference(rq->curr)))
3487 goto out;
f6be8af1
CL
3488
3489 if (set_nr_if_polling(rq->idle)) {
3490 trace_sched_wake_idle_without_ipi(cpu);
3491 } else {
8a8c69c3 3492 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
3493 if (is_idle_task(rq->curr))
3494 smp_send_reschedule(cpu);
d1ccc66d 3495 /* Else CPU is not idle, do nothing here: */
8a8c69c3 3496 rq_unlock_irqrestore(rq, &rf);
f6be8af1 3497 }
fd7de1e8
AL
3498
3499out:
3500 rcu_read_unlock();
f6be8af1
CL
3501}
3502
39be3501 3503bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
3504{
3505 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3506}
c6e7bd7a 3507
2ebb1771
MG
3508static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3509{
5ba2ffba
PZ
3510 /*
3511 * Do not complicate things with the async wake_list while the CPU is
3512 * in hotplug state.
3513 */
3514 if (!cpu_active(cpu))
3515 return false;
3516
2ebb1771
MG
3517 /*
3518 * If the CPU does not share cache, then queue the task on the
3519 * remote rqs wakelist to avoid accessing remote data.
3520 */
3521 if (!cpus_share_cache(smp_processor_id(), cpu))
3522 return true;
3523
3524 /*
3525 * If the task is descheduling and the only running task on the
3526 * CPU then use the wakelist to offload the task activation to
3527 * the soon-to-be-idle CPU as the current CPU is likely busy.
3528 * nr_running is checked to avoid unnecessary task stacking.
3529 */
739f70b4 3530 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
3531 return true;
3532
3533 return false;
3534}
3535
3536static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3537{
2ebb1771 3538 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
3539 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3540 return false;
3541
c6e7bd7a 3542 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3543 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3544 return true;
3545 }
3546
3547 return false;
3548}
58877d34
PZ
3549
3550#else /* !CONFIG_SMP */
3551
3552static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3553{
3554 return false;
3555}
3556
d6aa8f85 3557#endif /* CONFIG_SMP */
317f3941 3558
b5179ac7 3559static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3560{
3561 struct rq *rq = cpu_rq(cpu);
d8ac8971 3562 struct rq_flags rf;
c05fbafb 3563
2ebb1771 3564 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3565 return;
317f3941 3566
8a8c69c3 3567 rq_lock(rq, &rf);
77558e4d 3568 update_rq_clock(rq);
d8ac8971 3569 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3570 rq_unlock(rq, &rf);
9ed3811a
TH
3571}
3572
8643cda5
PZ
3573/*
3574 * Notes on Program-Order guarantees on SMP systems.
3575 *
3576 * MIGRATION
3577 *
3578 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3579 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3580 * execution on its new CPU [c1].
8643cda5
PZ
3581 *
3582 * For migration (of runnable tasks) this is provided by the following means:
3583 *
3584 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3585 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3586 * rq(c1)->lock (if not at the same time, then in that order).
3587 * C) LOCK of the rq(c1)->lock scheduling in task
3588 *
7696f991 3589 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3590 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3591 *
3592 * Example:
3593 *
3594 * CPU0 CPU1 CPU2
3595 *
3596 * LOCK rq(0)->lock
3597 * sched-out X
3598 * sched-in Y
3599 * UNLOCK rq(0)->lock
3600 *
3601 * LOCK rq(0)->lock // orders against CPU0
3602 * dequeue X
3603 * UNLOCK rq(0)->lock
3604 *
3605 * LOCK rq(1)->lock
3606 * enqueue X
3607 * UNLOCK rq(1)->lock
3608 *
3609 * LOCK rq(1)->lock // orders against CPU2
3610 * sched-out Z
3611 * sched-in X
3612 * UNLOCK rq(1)->lock
3613 *
3614 *
3615 * BLOCKING -- aka. SLEEP + WAKEUP
3616 *
3617 * For blocking we (obviously) need to provide the same guarantee as for
3618 * migration. However the means are completely different as there is no lock
3619 * chain to provide order. Instead we do:
3620 *
58877d34
PZ
3621 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3622 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3623 *
3624 * Example:
3625 *
3626 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3627 *
3628 * LOCK rq(0)->lock LOCK X->pi_lock
3629 * dequeue X
3630 * sched-out X
3631 * smp_store_release(X->on_cpu, 0);
3632 *
1f03e8d2 3633 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3634 * X->state = WAKING
3635 * set_task_cpu(X,2)
3636 *
3637 * LOCK rq(2)->lock
3638 * enqueue X
3639 * X->state = RUNNING
3640 * UNLOCK rq(2)->lock
3641 *
3642 * LOCK rq(2)->lock // orders against CPU1
3643 * sched-out Z
3644 * sched-in X
3645 * UNLOCK rq(2)->lock
3646 *
3647 * UNLOCK X->pi_lock
3648 * UNLOCK rq(0)->lock
3649 *
3650 *
7696f991
AP
3651 * However, for wakeups there is a second guarantee we must provide, namely we
3652 * must ensure that CONDITION=1 done by the caller can not be reordered with
3653 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3654 */
3655
9ed3811a 3656/**
1da177e4 3657 * try_to_wake_up - wake up a thread
9ed3811a 3658 * @p: the thread to be awakened
1da177e4 3659 * @state: the mask of task states that can be woken
9ed3811a 3660 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3661 *
58877d34
PZ
3662 * Conceptually does:
3663 *
3664 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3665 *
a2250238
PZ
3666 * If the task was not queued/runnable, also place it back on a runqueue.
3667 *
58877d34
PZ
3668 * This function is atomic against schedule() which would dequeue the task.
3669 *
3670 * It issues a full memory barrier before accessing @p->state, see the comment
3671 * with set_current_state().
a2250238 3672 *
58877d34 3673 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3674 *
58877d34
PZ
3675 * Relies on p->pi_lock stabilizing:
3676 * - p->sched_class
3677 * - p->cpus_ptr
3678 * - p->sched_task_group
3679 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3680 *
3681 * Tries really hard to only take one task_rq(p)->lock for performance.
3682 * Takes rq->lock in:
3683 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3684 * - ttwu_queue() -- new rq, for enqueue of the task;
3685 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3686 *
3687 * As a consequence we race really badly with just about everything. See the
3688 * many memory barriers and their comments for details.
7696f991 3689 *
a2250238
PZ
3690 * Return: %true if @p->state changes (an actual wakeup was done),
3691 * %false otherwise.
1da177e4 3692 */
e4a52bcb
PZ
3693static int
3694try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3695{
1da177e4 3696 unsigned long flags;
c05fbafb 3697 int cpu, success = 0;
2398f2c6 3698
e3d85487 3699 preempt_disable();
aacedf26
PZ
3700 if (p == current) {
3701 /*
3702 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3703 * == smp_processor_id()'. Together this means we can special
58877d34 3704 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3705 * without taking any locks.
3706 *
3707 * In particular:
3708 * - we rely on Program-Order guarantees for all the ordering,
3709 * - we're serialized against set_special_state() by virtue of
3710 * it disabling IRQs (this allows not taking ->pi_lock).
3711 */
3712 if (!(p->state & state))
e3d85487 3713 goto out;
aacedf26
PZ
3714
3715 success = 1;
aacedf26
PZ
3716 trace_sched_waking(p);
3717 p->state = TASK_RUNNING;
3718 trace_sched_wakeup(p);
3719 goto out;
3720 }
3721
e0acd0a6
ON
3722 /*
3723 * If we are going to wake up a thread waiting for CONDITION we
3724 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
3725 * reordered with p->state check below. This pairs with smp_store_mb()
3726 * in set_current_state() that the waiting thread does.
e0acd0a6 3727 */
013fdb80 3728 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 3729 smp_mb__after_spinlock();
e9c84311 3730 if (!(p->state & state))
aacedf26 3731 goto unlock;
1da177e4 3732
fbd705a0
PZ
3733 trace_sched_waking(p);
3734
d1ccc66d
IM
3735 /* We're going to change ->state: */
3736 success = 1;
1da177e4 3737
135e8c92
BS
3738 /*
3739 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3740 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3741 * in smp_cond_load_acquire() below.
3742 *
3d85b270
AP
3743 * sched_ttwu_pending() try_to_wake_up()
3744 * STORE p->on_rq = 1 LOAD p->state
3745 * UNLOCK rq->lock
3746 *
3747 * __schedule() (switch to task 'p')
3748 * LOCK rq->lock smp_rmb();
3749 * smp_mb__after_spinlock();
3750 * UNLOCK rq->lock
135e8c92
BS
3751 *
3752 * [task p]
3d85b270 3753 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 3754 *
3d85b270
AP
3755 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3756 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
3757 *
3758 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
3759 */
3760 smp_rmb();
58877d34 3761 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 3762 goto unlock;
1da177e4 3763
1da177e4 3764#ifdef CONFIG_SMP
ecf7d01c
PZ
3765 /*
3766 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3767 * possible to, falsely, observe p->on_cpu == 0.
3768 *
3769 * One must be running (->on_cpu == 1) in order to remove oneself
3770 * from the runqueue.
3771 *
3d85b270
AP
3772 * __schedule() (switch to task 'p') try_to_wake_up()
3773 * STORE p->on_cpu = 1 LOAD p->on_rq
3774 * UNLOCK rq->lock
3775 *
3776 * __schedule() (put 'p' to sleep)
3777 * LOCK rq->lock smp_rmb();
3778 * smp_mb__after_spinlock();
3779 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 3780 *
3d85b270
AP
3781 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3782 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
3783 *
3784 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3785 * schedule()'s deactivate_task() has 'happened' and p will no longer
3786 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 3787 */
dbfb089d
PZ
3788 smp_acquire__after_ctrl_dep();
3789
3790 /*
3791 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3792 * == 0), which means we need to do an enqueue, change p->state to
3793 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3794 * enqueue, such as ttwu_queue_wakelist().
3795 */
3796 p->state = TASK_WAKING;
ecf7d01c 3797
c6e7bd7a
PZ
3798 /*
3799 * If the owning (remote) CPU is still in the middle of schedule() with
3800 * this task as prev, considering queueing p on the remote CPUs wake_list
3801 * which potentially sends an IPI instead of spinning on p->on_cpu to
3802 * let the waker make forward progress. This is safe because IRQs are
3803 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
3804 *
3805 * Ensure we load task_cpu(p) after p->on_cpu:
3806 *
3807 * set_task_cpu(p, cpu);
3808 * STORE p->cpu = @cpu
3809 * __schedule() (switch to task 'p')
3810 * LOCK rq->lock
3811 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3812 * STORE p->on_cpu = 1 LOAD p->cpu
3813 *
3814 * to ensure we observe the correct CPU on which the task is currently
3815 * scheduling.
c6e7bd7a 3816 */
b6e13e85 3817 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 3818 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
3819 goto unlock;
3820
e9c84311 3821 /*
d1ccc66d 3822 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 3823 * this task as prev, wait until it's done referencing the task.
b75a2253 3824 *
31cb1bc0 3825 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
3826 *
3827 * This ensures that tasks getting woken will be fully ordered against
3828 * their previous state and preserve Program Order.
0970d299 3829 */
1f03e8d2 3830 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 3831
3aef1551 3832 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 3833 if (task_cpu(p) != cpu) {
ec618b84
PZ
3834 if (p->in_iowait) {
3835 delayacct_blkio_end(p);
3836 atomic_dec(&task_rq(p)->nr_iowait);
3837 }
3838
f339b9dc 3839 wake_flags |= WF_MIGRATED;
eb414681 3840 psi_ttwu_dequeue(p);
e4a52bcb 3841 set_task_cpu(p, cpu);
f339b9dc 3842 }
b6e13e85
PZ
3843#else
3844 cpu = task_cpu(p);
1da177e4 3845#endif /* CONFIG_SMP */
1da177e4 3846
b5179ac7 3847 ttwu_queue(p, cpu, wake_flags);
aacedf26 3848unlock:
013fdb80 3849 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
3850out:
3851 if (success)
b6e13e85 3852 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 3853 preempt_enable();
1da177e4
LT
3854
3855 return success;
3856}
3857
2beaf328
PM
3858/**
3859 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
1b7af295 3860 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
3861 * @func: Function to invoke.
3862 * @arg: Argument to function.
3863 *
3864 * If the specified task can be quickly locked into a definite state
3865 * (either sleeping or on a given runqueue), arrange to keep it in that
3866 * state while invoking @func(@arg). This function can use ->on_rq and
3867 * task_curr() to work out what the state is, if required. Given that
3868 * @func can be invoked with a runqueue lock held, it had better be quite
3869 * lightweight.
3870 *
3871 * Returns:
3872 * @false if the task slipped out from under the locks.
3873 * @true if the task was locked onto a runqueue or is sleeping.
3874 * However, @func can override this by returning @false.
3875 */
3876bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3877{
2beaf328 3878 struct rq_flags rf;
1b7af295 3879 bool ret = false;
2beaf328
PM
3880 struct rq *rq;
3881
1b7af295 3882 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2beaf328
PM
3883 if (p->on_rq) {
3884 rq = __task_rq_lock(p, &rf);
3885 if (task_rq(p) == rq)
3886 ret = func(p, arg);
3887 rq_unlock(rq, &rf);
3888 } else {
3889 switch (p->state) {
3890 case TASK_RUNNING:
3891 case TASK_WAKING:
3892 break;
3893 default:
3894 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3895 if (!p->on_rq)
3896 ret = func(p, arg);
3897 }
3898 }
1b7af295 3899 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
3900 return ret;
3901}
3902
50fa610a
DH
3903/**
3904 * wake_up_process - Wake up a specific process
3905 * @p: The process to be woken up.
3906 *
3907 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3908 * processes.
3909 *
3910 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3911 *
7696f991 3912 * This function executes a full memory barrier before accessing the task state.
50fa610a 3913 */
7ad5b3a5 3914int wake_up_process(struct task_struct *p)
1da177e4 3915{
9067ac85 3916 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3917}
1da177e4
LT
3918EXPORT_SYMBOL(wake_up_process);
3919
7ad5b3a5 3920int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3921{
3922 return try_to_wake_up(p, state, 0);
3923}
3924
1da177e4
LT
3925/*
3926 * Perform scheduler related setup for a newly forked process p.
3927 * p is forked by current.
dd41f596
IM
3928 *
3929 * __sched_fork() is basic setup used by init_idle() too:
3930 */
5e1576ed 3931static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3932{
fd2f4419
PZ
3933 p->on_rq = 0;
3934
3935 p->se.on_rq = 0;
dd41f596
IM
3936 p->se.exec_start = 0;
3937 p->se.sum_exec_runtime = 0;
f6cf891c 3938 p->se.prev_sum_exec_runtime = 0;
6c594c21 3939 p->se.nr_migrations = 0;
da7a735e 3940 p->se.vruntime = 0;
fd2f4419 3941 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3942
ad936d86
BP
3943#ifdef CONFIG_FAIR_GROUP_SCHED
3944 p->se.cfs_rq = NULL;
3945#endif
3946
6cfb0d5d 3947#ifdef CONFIG_SCHEDSTATS
cb251765 3948 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3949 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3950#endif
476d139c 3951
aab03e05 3952 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3953 init_dl_task_timer(&p->dl);
209a0cbd 3954 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3955 __dl_clear_params(p);
aab03e05 3956
fa717060 3957 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3958 p->rt.timeout = 0;
3959 p->rt.time_slice = sched_rr_timeslice;
3960 p->rt.on_rq = 0;
3961 p->rt.on_list = 0;
476d139c 3962
e107be36
AK
3963#ifdef CONFIG_PREEMPT_NOTIFIERS
3964 INIT_HLIST_HEAD(&p->preempt_notifiers);
3965#endif
cbee9f88 3966
5e1f0f09
MG
3967#ifdef CONFIG_COMPACTION
3968 p->capture_control = NULL;
3969#endif
13784475 3970 init_numa_balancing(clone_flags, p);
a1488664 3971#ifdef CONFIG_SMP
8c4890d1 3972 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 3973 p->migration_pending = NULL;
a1488664 3974#endif
dd41f596
IM
3975}
3976
2a595721
SD
3977DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3978
1a687c2e 3979#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3980
1a687c2e
MG
3981void set_numabalancing_state(bool enabled)
3982{
3983 if (enabled)
2a595721 3984 static_branch_enable(&sched_numa_balancing);
1a687c2e 3985 else
2a595721 3986 static_branch_disable(&sched_numa_balancing);
1a687c2e 3987}
54a43d54
AK
3988
3989#ifdef CONFIG_PROC_SYSCTL
3990int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3991 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3992{
3993 struct ctl_table t;
3994 int err;
2a595721 3995 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
3996
3997 if (write && !capable(CAP_SYS_ADMIN))
3998 return -EPERM;
3999
4000 t = *table;
4001 t.data = &state;
4002 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4003 if (err < 0)
4004 return err;
4005 if (write)
4006 set_numabalancing_state(state);
4007 return err;
4008}
4009#endif
4010#endif
dd41f596 4011
4698f88c
JP
4012#ifdef CONFIG_SCHEDSTATS
4013
cb251765
MG
4014DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4015
cb251765
MG
4016static void set_schedstats(bool enabled)
4017{
4018 if (enabled)
4019 static_branch_enable(&sched_schedstats);
4020 else
4021 static_branch_disable(&sched_schedstats);
4022}
4023
4024void force_schedstat_enabled(void)
4025{
4026 if (!schedstat_enabled()) {
4027 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4028 static_branch_enable(&sched_schedstats);
4029 }
4030}
4031
4032static int __init setup_schedstats(char *str)
4033{
4034 int ret = 0;
4035 if (!str)
4036 goto out;
4037
4038 if (!strcmp(str, "enable")) {
1faa491a 4039 set_schedstats(true);
cb251765
MG
4040 ret = 1;
4041 } else if (!strcmp(str, "disable")) {
1faa491a 4042 set_schedstats(false);
cb251765
MG
4043 ret = 1;
4044 }
4045out:
4046 if (!ret)
4047 pr_warn("Unable to parse schedstats=\n");
4048
4049 return ret;
4050}
4051__setup("schedstats=", setup_schedstats);
4052
4053#ifdef CONFIG_PROC_SYSCTL
32927393
CH
4054int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4055 size_t *lenp, loff_t *ppos)
cb251765
MG
4056{
4057 struct ctl_table t;
4058 int err;
4059 int state = static_branch_likely(&sched_schedstats);
4060
4061 if (write && !capable(CAP_SYS_ADMIN))
4062 return -EPERM;
4063
4064 t = *table;
4065 t.data = &state;
4066 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4067 if (err < 0)
4068 return err;
4069 if (write)
4070 set_schedstats(state);
4071 return err;
4072}
4698f88c 4073#endif /* CONFIG_PROC_SYSCTL */
4698f88c 4074#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
4075
4076/*
4077 * fork()/clone()-time setup:
4078 */
aab03e05 4079int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4080{
0122ec5b 4081 unsigned long flags;
dd41f596 4082
5e1576ed 4083 __sched_fork(clone_flags, p);
06b83b5f 4084 /*
7dc603c9 4085 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
4086 * nobody will actually run it, and a signal or other external
4087 * event cannot wake it up and insert it on the runqueue either.
4088 */
7dc603c9 4089 p->state = TASK_NEW;
dd41f596 4090
c350a04e
MG
4091 /*
4092 * Make sure we do not leak PI boosting priority to the child.
4093 */
4094 p->prio = current->normal_prio;
4095
e8f14172
PB
4096 uclamp_fork(p);
4097
b9dc29e7
MG
4098 /*
4099 * Revert to default priority/policy on fork if requested.
4100 */
4101 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 4102 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 4103 p->policy = SCHED_NORMAL;
6c697bdf 4104 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
4105 p->rt_priority = 0;
4106 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4107 p->static_prio = NICE_TO_PRIO(0);
4108
4109 p->prio = p->normal_prio = __normal_prio(p);
9059393e 4110 set_load_weight(p, false);
6c697bdf 4111
b9dc29e7
MG
4112 /*
4113 * We don't need the reset flag anymore after the fork. It has
4114 * fulfilled its duty:
4115 */
4116 p->sched_reset_on_fork = 0;
4117 }
ca94c442 4118
af0fffd9 4119 if (dl_prio(p->prio))
aab03e05 4120 return -EAGAIN;
af0fffd9 4121 else if (rt_prio(p->prio))
aab03e05 4122 p->sched_class = &rt_sched_class;
af0fffd9 4123 else
2ddbf952 4124 p->sched_class = &fair_sched_class;
b29739f9 4125
7dc603c9 4126 init_entity_runnable_average(&p->se);
cd29fe6f 4127
86951599
PZ
4128 /*
4129 * The child is not yet in the pid-hash so no cgroup attach races,
4130 * and the cgroup is pinned to this child due to cgroup_fork()
4131 * is ran before sched_fork().
4132 *
4133 * Silence PROVE_RCU.
4134 */
0122ec5b 4135 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 4136 rseq_migrate(p);
e210bffd 4137 /*
d1ccc66d 4138 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
4139 * so use __set_task_cpu().
4140 */
af0fffd9 4141 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
4142 if (p->sched_class->task_fork)
4143 p->sched_class->task_fork(p);
0122ec5b 4144 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 4145
f6db8347 4146#ifdef CONFIG_SCHED_INFO
dd41f596 4147 if (likely(sched_info_on()))
52f17b6c 4148 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 4149#endif
3ca7a440
PZ
4150#if defined(CONFIG_SMP)
4151 p->on_cpu = 0;
4866cde0 4152#endif
01028747 4153 init_task_preempt_count(p);
806c09a7 4154#ifdef CONFIG_SMP
917b627d 4155 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 4156 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 4157#endif
aab03e05 4158 return 0;
1da177e4
LT
4159}
4160
13685c4a
QY
4161void sched_post_fork(struct task_struct *p)
4162{
4163 uclamp_post_fork(p);
4164}
4165
332ac17e
DF
4166unsigned long to_ratio(u64 period, u64 runtime)
4167{
4168 if (runtime == RUNTIME_INF)
c52f14d3 4169 return BW_UNIT;
332ac17e
DF
4170
4171 /*
4172 * Doing this here saves a lot of checks in all
4173 * the calling paths, and returning zero seems
4174 * safe for them anyway.
4175 */
4176 if (period == 0)
4177 return 0;
4178
c52f14d3 4179 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
4180}
4181
1da177e4
LT
4182/*
4183 * wake_up_new_task - wake up a newly created task for the first time.
4184 *
4185 * This function will do some initial scheduler statistics housekeeping
4186 * that must be done for every newly created context, then puts the task
4187 * on the runqueue and wakes it.
4188 */
3e51e3ed 4189void wake_up_new_task(struct task_struct *p)
1da177e4 4190{
eb580751 4191 struct rq_flags rf;
dd41f596 4192 struct rq *rq;
fabf318e 4193
eb580751 4194 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 4195 p->state = TASK_RUNNING;
fabf318e
PZ
4196#ifdef CONFIG_SMP
4197 /*
4198 * Fork balancing, do it here and not earlier because:
3bd37062 4199 * - cpus_ptr can change in the fork path
d1ccc66d 4200 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
4201 *
4202 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4203 * as we're not fully set-up yet.
fabf318e 4204 */
32e839dd 4205 p->recent_used_cpu = task_cpu(p);
ce3614da 4206 rseq_migrate(p);
3aef1551 4207 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 4208#endif
b7fa30c9 4209 rq = __task_rq_lock(p, &rf);
4126bad6 4210 update_rq_clock(rq);
d0fe0b9c 4211 post_init_entity_util_avg(p);
0017d735 4212
7a57f32a 4213 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 4214 trace_sched_wakeup_new(p);
a7558e01 4215 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 4216#ifdef CONFIG_SMP
0aaafaab
PZ
4217 if (p->sched_class->task_woken) {
4218 /*
b19a888c 4219 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
4220 * drop it.
4221 */
d8ac8971 4222 rq_unpin_lock(rq, &rf);
efbbd05a 4223 p->sched_class->task_woken(rq, p);
d8ac8971 4224 rq_repin_lock(rq, &rf);
0aaafaab 4225 }
9a897c5a 4226#endif
eb580751 4227 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4228}
4229
e107be36
AK
4230#ifdef CONFIG_PREEMPT_NOTIFIERS
4231
b7203428 4232static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 4233
2ecd9d29
PZ
4234void preempt_notifier_inc(void)
4235{
b7203428 4236 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
4237}
4238EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4239
4240void preempt_notifier_dec(void)
4241{
b7203428 4242 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
4243}
4244EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4245
e107be36 4246/**
80dd99b3 4247 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 4248 * @notifier: notifier struct to register
e107be36
AK
4249 */
4250void preempt_notifier_register(struct preempt_notifier *notifier)
4251{
b7203428 4252 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
4253 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4254
e107be36
AK
4255 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4256}
4257EXPORT_SYMBOL_GPL(preempt_notifier_register);
4258
4259/**
4260 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 4261 * @notifier: notifier struct to unregister
e107be36 4262 *
d84525a8 4263 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
4264 */
4265void preempt_notifier_unregister(struct preempt_notifier *notifier)
4266{
4267 hlist_del(&notifier->link);
4268}
4269EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4270
1cde2930 4271static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4272{
4273 struct preempt_notifier *notifier;
e107be36 4274
b67bfe0d 4275 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4276 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4277}
4278
1cde2930
PZ
4279static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4280{
b7203428 4281 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4282 __fire_sched_in_preempt_notifiers(curr);
4283}
4284
e107be36 4285static void
1cde2930
PZ
4286__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4287 struct task_struct *next)
e107be36
AK
4288{
4289 struct preempt_notifier *notifier;
e107be36 4290
b67bfe0d 4291 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4292 notifier->ops->sched_out(notifier, next);
4293}
4294
1cde2930
PZ
4295static __always_inline void
4296fire_sched_out_preempt_notifiers(struct task_struct *curr,
4297 struct task_struct *next)
4298{
b7203428 4299 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4300 __fire_sched_out_preempt_notifiers(curr, next);
4301}
4302
6d6bc0ad 4303#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 4304
1cde2930 4305static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4306{
4307}
4308
1cde2930 4309static inline void
e107be36
AK
4310fire_sched_out_preempt_notifiers(struct task_struct *curr,
4311 struct task_struct *next)
4312{
4313}
4314
6d6bc0ad 4315#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 4316
31cb1bc0 4317static inline void prepare_task(struct task_struct *next)
4318{
4319#ifdef CONFIG_SMP
4320 /*
4321 * Claim the task as running, we do this before switching to it
4322 * such that any running task will have this set.
58877d34
PZ
4323 *
4324 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 4325 */
58877d34 4326 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 4327#endif
4328}
4329
4330static inline void finish_task(struct task_struct *prev)
4331{
4332#ifdef CONFIG_SMP
4333 /*
58877d34
PZ
4334 * This must be the very last reference to @prev from this CPU. After
4335 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4336 * must ensure this doesn't happen until the switch is completely
31cb1bc0 4337 * finished.
4338 *
4339 * In particular, the load of prev->state in finish_task_switch() must
4340 * happen before this.
4341 *
4342 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4343 */
4344 smp_store_release(&prev->on_cpu, 0);
4345#endif
4346}
4347
565790d2
PZ
4348#ifdef CONFIG_SMP
4349
4350static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4351{
4352 void (*func)(struct rq *rq);
4353 struct callback_head *next;
4354
5cb9eaa3 4355 lockdep_assert_rq_held(rq);
565790d2
PZ
4356
4357 while (head) {
4358 func = (void (*)(struct rq *))head->func;
4359 next = head->next;
4360 head->next = NULL;
4361 head = next;
4362
4363 func(rq);
4364 }
4365}
4366
ae792702
PZ
4367static void balance_push(struct rq *rq);
4368
4369struct callback_head balance_push_callback = {
4370 .next = NULL,
4371 .func = (void (*)(struct callback_head *))balance_push,
4372};
4373
565790d2
PZ
4374static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4375{
4376 struct callback_head *head = rq->balance_callback;
4377
5cb9eaa3 4378 lockdep_assert_rq_held(rq);
ae792702 4379 if (head)
565790d2
PZ
4380 rq->balance_callback = NULL;
4381
4382 return head;
4383}
4384
4385static void __balance_callbacks(struct rq *rq)
4386{
4387 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4388}
4389
4390static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4391{
4392 unsigned long flags;
4393
4394 if (unlikely(head)) {
5cb9eaa3 4395 raw_spin_rq_lock_irqsave(rq, flags);
565790d2 4396 do_balance_callbacks(rq, head);
5cb9eaa3 4397 raw_spin_rq_unlock_irqrestore(rq, flags);
565790d2
PZ
4398 }
4399}
4400
4401#else
4402
4403static inline void __balance_callbacks(struct rq *rq)
4404{
4405}
4406
4407static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4408{
4409 return NULL;
4410}
4411
4412static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4413{
4414}
4415
4416#endif
4417
269d5992
PZ
4418static inline void
4419prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4420{
269d5992
PZ
4421 /*
4422 * Since the runqueue lock will be released by the next
4423 * task (which is an invalid locking op but in the case
4424 * of the scheduler it's an obvious special-case), so we
4425 * do an early lockdep release here:
4426 */
4427 rq_unpin_lock(rq, rf);
9ef7e7e3 4428 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
31cb1bc0 4429#ifdef CONFIG_DEBUG_SPINLOCK
4430 /* this is a valid case when another task releases the spinlock */
5cb9eaa3 4431 rq_lockp(rq)->owner = next;
31cb1bc0 4432#endif
269d5992
PZ
4433}
4434
4435static inline void finish_lock_switch(struct rq *rq)
4436{
31cb1bc0 4437 /*
4438 * If we are tracking spinlock dependencies then we have to
4439 * fix up the runqueue lock - which gets 'carried over' from
4440 * prev into current:
4441 */
9ef7e7e3 4442 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
ae792702 4443 __balance_callbacks(rq);
5cb9eaa3 4444 raw_spin_rq_unlock_irq(rq);
31cb1bc0 4445}
4446
325ea10c
IM
4447/*
4448 * NOP if the arch has not defined these:
4449 */
4450
4451#ifndef prepare_arch_switch
4452# define prepare_arch_switch(next) do { } while (0)
4453#endif
4454
4455#ifndef finish_arch_post_lock_switch
4456# define finish_arch_post_lock_switch() do { } while (0)
4457#endif
4458
5fbda3ec
TG
4459static inline void kmap_local_sched_out(void)
4460{
4461#ifdef CONFIG_KMAP_LOCAL
4462 if (unlikely(current->kmap_ctrl.idx))
4463 __kmap_local_sched_out();
4464#endif
4465}
4466
4467static inline void kmap_local_sched_in(void)
4468{
4469#ifdef CONFIG_KMAP_LOCAL
4470 if (unlikely(current->kmap_ctrl.idx))
4471 __kmap_local_sched_in();
4472#endif
4473}
4474
4866cde0
NP
4475/**
4476 * prepare_task_switch - prepare to switch tasks
4477 * @rq: the runqueue preparing to switch
421cee29 4478 * @prev: the current task that is being switched out
4866cde0
NP
4479 * @next: the task we are going to switch to.
4480 *
4481 * This is called with the rq lock held and interrupts off. It must
4482 * be paired with a subsequent finish_task_switch after the context
4483 * switch.
4484 *
4485 * prepare_task_switch sets up locking and calls architecture specific
4486 * hooks.
4487 */
e107be36
AK
4488static inline void
4489prepare_task_switch(struct rq *rq, struct task_struct *prev,
4490 struct task_struct *next)
4866cde0 4491{
0ed557aa 4492 kcov_prepare_switch(prev);
43148951 4493 sched_info_switch(rq, prev, next);
fe4b04fa 4494 perf_event_task_sched_out(prev, next);
d7822b1e 4495 rseq_preempt(prev);
e107be36 4496 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 4497 kmap_local_sched_out();
31cb1bc0 4498 prepare_task(next);
4866cde0
NP
4499 prepare_arch_switch(next);
4500}
4501
1da177e4
LT
4502/**
4503 * finish_task_switch - clean up after a task-switch
4504 * @prev: the thread we just switched away from.
4505 *
4866cde0
NP
4506 * finish_task_switch must be called after the context switch, paired
4507 * with a prepare_task_switch call before the context switch.
4508 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4509 * and do any other architecture-specific cleanup actions.
1da177e4
LT
4510 *
4511 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 4512 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
4513 * with the lock held can cause deadlocks; see schedule() for
4514 * details.)
dfa50b60
ON
4515 *
4516 * The context switch have flipped the stack from under us and restored the
4517 * local variables which were saved when this task called schedule() in the
4518 * past. prev == current is still correct but we need to recalculate this_rq
4519 * because prev may have moved to another CPU.
1da177e4 4520 */
dfa50b60 4521static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
4522 __releases(rq->lock)
4523{
dfa50b60 4524 struct rq *rq = this_rq();
1da177e4 4525 struct mm_struct *mm = rq->prev_mm;
55a101f8 4526 long prev_state;
1da177e4 4527
609ca066
PZ
4528 /*
4529 * The previous task will have left us with a preempt_count of 2
4530 * because it left us after:
4531 *
4532 * schedule()
4533 * preempt_disable(); // 1
4534 * __schedule()
4535 * raw_spin_lock_irq(&rq->lock) // 2
4536 *
4537 * Also, see FORK_PREEMPT_COUNT.
4538 */
e2bf1c4b
PZ
4539 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4540 "corrupted preempt_count: %s/%d/0x%x\n",
4541 current->comm, current->pid, preempt_count()))
4542 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 4543
1da177e4
LT
4544 rq->prev_mm = NULL;
4545
4546 /*
4547 * A task struct has one reference for the use as "current".
c394cc9f 4548 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
4549 * schedule one last time. The schedule call will never return, and
4550 * the scheduled task must drop that reference.
95913d97
PZ
4551 *
4552 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 4553 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
4554 * running on another CPU and we could rave with its RUNNING -> DEAD
4555 * transition, resulting in a double drop.
1da177e4 4556 */
55a101f8 4557 prev_state = prev->state;
bf9fae9f 4558 vtime_task_switch(prev);
a8d757ef 4559 perf_event_task_sched_in(prev, current);
31cb1bc0 4560 finish_task(prev);
4561 finish_lock_switch(rq);
01f23e16 4562 finish_arch_post_lock_switch();
0ed557aa 4563 kcov_finish_switch(current);
5fbda3ec
TG
4564 /*
4565 * kmap_local_sched_out() is invoked with rq::lock held and
4566 * interrupts disabled. There is no requirement for that, but the
4567 * sched out code does not have an interrupt enabled section.
4568 * Restoring the maps on sched in does not require interrupts being
4569 * disabled either.
4570 */
4571 kmap_local_sched_in();
e8fa1362 4572
e107be36 4573 fire_sched_in_preempt_notifiers(current);
306e0604 4574 /*
70216e18
MD
4575 * When switching through a kernel thread, the loop in
4576 * membarrier_{private,global}_expedited() may have observed that
4577 * kernel thread and not issued an IPI. It is therefore possible to
4578 * schedule between user->kernel->user threads without passing though
4579 * switch_mm(). Membarrier requires a barrier after storing to
4580 * rq->curr, before returning to userspace, so provide them here:
4581 *
4582 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4583 * provided by mmdrop(),
4584 * - a sync_core for SYNC_CORE.
306e0604 4585 */
70216e18
MD
4586 if (mm) {
4587 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 4588 mmdrop(mm);
70216e18 4589 }
1cef1150
PZ
4590 if (unlikely(prev_state == TASK_DEAD)) {
4591 if (prev->sched_class->task_dead)
4592 prev->sched_class->task_dead(prev);
68f24b08 4593
1cef1150
PZ
4594 /*
4595 * Remove function-return probe instances associated with this
4596 * task and put them back on the free list.
4597 */
4598 kprobe_flush_task(prev);
4599
4600 /* Task is done with its stack. */
4601 put_task_stack(prev);
4602
0ff7b2cf 4603 put_task_struct_rcu_user(prev);
c6fd91f0 4604 }
99e5ada9 4605
de734f89 4606 tick_nohz_task_switch();
dfa50b60 4607 return rq;
1da177e4
LT
4608}
4609
4610/**
4611 * schedule_tail - first thing a freshly forked thread must call.
4612 * @prev: the thread we just switched away from.
4613 */
722a9f92 4614asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4615 __releases(rq->lock)
4616{
609ca066
PZ
4617 /*
4618 * New tasks start with FORK_PREEMPT_COUNT, see there and
4619 * finish_task_switch() for details.
4620 *
4621 * finish_task_switch() will drop rq->lock() and lower preempt_count
4622 * and the preempt_enable() will end up enabling preemption (on
4623 * PREEMPT_COUNT kernels).
4624 */
4625
13c2235b 4626 finish_task_switch(prev);
1a43a14a 4627 preempt_enable();
70b97a7f 4628
1da177e4 4629 if (current->set_child_tid)
b488893a 4630 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4631
4632 calculate_sigpending();
1da177e4
LT
4633}
4634
4635/*
dfa50b60 4636 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4637 */
04936948 4638static __always_inline struct rq *
70b97a7f 4639context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4640 struct task_struct *next, struct rq_flags *rf)
1da177e4 4641{
e107be36 4642 prepare_task_switch(rq, prev, next);
fe4b04fa 4643
9226d125
ZA
4644 /*
4645 * For paravirt, this is coupled with an exit in switch_to to
4646 * combine the page table reload and the switch backend into
4647 * one hypercall.
4648 */
224101ed 4649 arch_start_context_switch(prev);
9226d125 4650
306e0604 4651 /*
139d025c
PZ
4652 * kernel -> kernel lazy + transfer active
4653 * user -> kernel lazy + mmgrab() active
4654 *
4655 * kernel -> user switch + mmdrop() active
4656 * user -> user switch
306e0604 4657 */
139d025c
PZ
4658 if (!next->mm) { // to kernel
4659 enter_lazy_tlb(prev->active_mm, next);
4660
4661 next->active_mm = prev->active_mm;
4662 if (prev->mm) // from user
4663 mmgrab(prev->active_mm);
4664 else
4665 prev->active_mm = NULL;
4666 } else { // to user
227a4aad 4667 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4668 /*
4669 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4670 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4671 *
4672 * The below provides this either through switch_mm(), or in
4673 * case 'prev->active_mm == next->mm' through
4674 * finish_task_switch()'s mmdrop().
4675 */
139d025c 4676 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4677
139d025c
PZ
4678 if (!prev->mm) { // from kernel
4679 /* will mmdrop() in finish_task_switch(). */
4680 rq->prev_mm = prev->active_mm;
4681 prev->active_mm = NULL;
4682 }
1da177e4 4683 }
92509b73 4684
cb42c9a3 4685 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4686
269d5992 4687 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4688
4689 /* Here we just switch the register state and the stack. */
4690 switch_to(prev, next, prev);
dd41f596 4691 barrier();
dfa50b60
ON
4692
4693 return finish_task_switch(prev);
1da177e4
LT
4694}
4695
4696/*
1c3e8264 4697 * nr_running and nr_context_switches:
1da177e4
LT
4698 *
4699 * externally visible scheduler statistics: current number of runnable
1c3e8264 4700 * threads, total number of context switches performed since bootup.
1da177e4 4701 */
01aee8fd 4702unsigned int nr_running(void)
1da177e4 4703{
01aee8fd 4704 unsigned int i, sum = 0;
1da177e4
LT
4705
4706 for_each_online_cpu(i)
4707 sum += cpu_rq(i)->nr_running;
4708
4709 return sum;
f711f609 4710}
1da177e4 4711
2ee507c4 4712/*
d1ccc66d 4713 * Check if only the current task is running on the CPU.
00cc1633
DD
4714 *
4715 * Caution: this function does not check that the caller has disabled
4716 * preemption, thus the result might have a time-of-check-to-time-of-use
4717 * race. The caller is responsible to use it correctly, for example:
4718 *
dfcb245e 4719 * - from a non-preemptible section (of course)
00cc1633
DD
4720 *
4721 * - from a thread that is bound to a single CPU
4722 *
4723 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
4724 */
4725bool single_task_running(void)
4726{
00cc1633 4727 return raw_rq()->nr_running == 1;
2ee507c4
TC
4728}
4729EXPORT_SYMBOL(single_task_running);
4730
1da177e4 4731unsigned long long nr_context_switches(void)
46cb4b7c 4732{
cc94abfc
SR
4733 int i;
4734 unsigned long long sum = 0;
46cb4b7c 4735
0a945022 4736 for_each_possible_cpu(i)
1da177e4 4737 sum += cpu_rq(i)->nr_switches;
46cb4b7c 4738
1da177e4
LT
4739 return sum;
4740}
483b4ee6 4741
145d952a
DL
4742/*
4743 * Consumers of these two interfaces, like for example the cpuidle menu
4744 * governor, are using nonsensical data. Preferring shallow idle state selection
4745 * for a CPU that has IO-wait which might not even end up running the task when
4746 * it does become runnable.
4747 */
4748
8fc2858e 4749unsigned int nr_iowait_cpu(int cpu)
145d952a
DL
4750{
4751 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4752}
4753
e33a9bba 4754/*
b19a888c 4755 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
4756 *
4757 * The idea behind IO-wait account is to account the idle time that we could
4758 * have spend running if it were not for IO. That is, if we were to improve the
4759 * storage performance, we'd have a proportional reduction in IO-wait time.
4760 *
4761 * This all works nicely on UP, where, when a task blocks on IO, we account
4762 * idle time as IO-wait, because if the storage were faster, it could've been
4763 * running and we'd not be idle.
4764 *
4765 * This has been extended to SMP, by doing the same for each CPU. This however
4766 * is broken.
4767 *
4768 * Imagine for instance the case where two tasks block on one CPU, only the one
4769 * CPU will have IO-wait accounted, while the other has regular idle. Even
4770 * though, if the storage were faster, both could've ran at the same time,
4771 * utilising both CPUs.
4772 *
4773 * This means, that when looking globally, the current IO-wait accounting on
4774 * SMP is a lower bound, by reason of under accounting.
4775 *
4776 * Worse, since the numbers are provided per CPU, they are sometimes
4777 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4778 * associated with any one particular CPU, it can wake to another CPU than it
4779 * blocked on. This means the per CPU IO-wait number is meaningless.
4780 *
4781 * Task CPU affinities can make all that even more 'interesting'.
4782 */
4783
97455168 4784unsigned int nr_iowait(void)
1da177e4 4785{
97455168 4786 unsigned int i, sum = 0;
483b4ee6 4787
0a945022 4788 for_each_possible_cpu(i)
145d952a 4789 sum += nr_iowait_cpu(i);
46cb4b7c 4790
1da177e4
LT
4791 return sum;
4792}
483b4ee6 4793
dd41f596 4794#ifdef CONFIG_SMP
8a0be9ef 4795
46cb4b7c 4796/*
38022906
PZ
4797 * sched_exec - execve() is a valuable balancing opportunity, because at
4798 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 4799 */
38022906 4800void sched_exec(void)
46cb4b7c 4801{
38022906 4802 struct task_struct *p = current;
1da177e4 4803 unsigned long flags;
0017d735 4804 int dest_cpu;
46cb4b7c 4805
8f42ced9 4806 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 4807 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
4808 if (dest_cpu == smp_processor_id())
4809 goto unlock;
38022906 4810
8f42ced9 4811 if (likely(cpu_active(dest_cpu))) {
969c7921 4812 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 4813
8f42ced9
PZ
4814 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4815 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
4816 return;
4817 }
0017d735 4818unlock:
8f42ced9 4819 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 4820}
dd41f596 4821
1da177e4
LT
4822#endif
4823
1da177e4 4824DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 4825DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
4826
4827EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 4828EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 4829
6075620b
GG
4830/*
4831 * The function fair_sched_class.update_curr accesses the struct curr
4832 * and its field curr->exec_start; when called from task_sched_runtime(),
4833 * we observe a high rate of cache misses in practice.
4834 * Prefetching this data results in improved performance.
4835 */
4836static inline void prefetch_curr_exec_start(struct task_struct *p)
4837{
4838#ifdef CONFIG_FAIR_GROUP_SCHED
4839 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4840#else
4841 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4842#endif
4843 prefetch(curr);
4844 prefetch(&curr->exec_start);
4845}
4846
c5f8d995
HS
4847/*
4848 * Return accounted runtime for the task.
4849 * In case the task is currently running, return the runtime plus current's
4850 * pending runtime that have not been accounted yet.
4851 */
4852unsigned long long task_sched_runtime(struct task_struct *p)
4853{
eb580751 4854 struct rq_flags rf;
c5f8d995 4855 struct rq *rq;
6e998916 4856 u64 ns;
c5f8d995 4857
911b2898
PZ
4858#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4859 /*
97fb7a0a 4860 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
4861 * So we have a optimization chance when the task's delta_exec is 0.
4862 * Reading ->on_cpu is racy, but this is ok.
4863 *
d1ccc66d
IM
4864 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4865 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 4866 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
4867 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4868 * been accounted, so we're correct here as well.
911b2898 4869 */
da0c1e65 4870 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
4871 return p->se.sum_exec_runtime;
4872#endif
4873
eb580751 4874 rq = task_rq_lock(p, &rf);
6e998916
SG
4875 /*
4876 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4877 * project cycles that may never be accounted to this
4878 * thread, breaking clock_gettime().
4879 */
4880 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 4881 prefetch_curr_exec_start(p);
6e998916
SG
4882 update_rq_clock(rq);
4883 p->sched_class->update_curr(rq);
4884 }
4885 ns = p->se.sum_exec_runtime;
eb580751 4886 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
4887
4888 return ns;
4889}
48f24c4d 4890
c006fac5
PT
4891#ifdef CONFIG_SCHED_DEBUG
4892static u64 cpu_resched_latency(struct rq *rq)
4893{
4894 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4895 u64 resched_latency, now = rq_clock(rq);
4896 static bool warned_once;
4897
4898 if (sysctl_resched_latency_warn_once && warned_once)
4899 return 0;
4900
4901 if (!need_resched() || !latency_warn_ms)
4902 return 0;
4903
4904 if (system_state == SYSTEM_BOOTING)
4905 return 0;
4906
4907 if (!rq->last_seen_need_resched_ns) {
4908 rq->last_seen_need_resched_ns = now;
4909 rq->ticks_without_resched = 0;
4910 return 0;
4911 }
4912
4913 rq->ticks_without_resched++;
4914 resched_latency = now - rq->last_seen_need_resched_ns;
4915 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4916 return 0;
4917
4918 warned_once = true;
4919
4920 return resched_latency;
4921}
4922
4923static int __init setup_resched_latency_warn_ms(char *str)
4924{
4925 long val;
4926
4927 if ((kstrtol(str, 0, &val))) {
4928 pr_warn("Unable to set resched_latency_warn_ms\n");
4929 return 1;
4930 }
4931
4932 sysctl_resched_latency_warn_ms = val;
4933 return 1;
4934}
4935__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4936#else
4937static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4938#endif /* CONFIG_SCHED_DEBUG */
4939
7835b98b
CL
4940/*
4941 * This function gets called by the timer code, with HZ frequency.
4942 * We call it with interrupts disabled.
7835b98b
CL
4943 */
4944void scheduler_tick(void)
4945{
7835b98b
CL
4946 int cpu = smp_processor_id();
4947 struct rq *rq = cpu_rq(cpu);
dd41f596 4948 struct task_struct *curr = rq->curr;
8a8c69c3 4949 struct rq_flags rf;
b4eccf5f 4950 unsigned long thermal_pressure;
c006fac5 4951 u64 resched_latency;
3e51f33f 4952
1567c3e3 4953 arch_scale_freq_tick();
3e51f33f 4954 sched_clock_tick();
dd41f596 4955
8a8c69c3
PZ
4956 rq_lock(rq, &rf);
4957
3e51f33f 4958 update_rq_clock(rq);
b4eccf5f 4959 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 4960 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 4961 curr->sched_class->task_tick(rq, curr, 0);
c006fac5
PT
4962 if (sched_feat(LATENCY_WARN))
4963 resched_latency = cpu_resched_latency(rq);
3289bdb4 4964 calc_global_load_tick(rq);
8a8c69c3
PZ
4965
4966 rq_unlock(rq, &rf);
7835b98b 4967
c006fac5
PT
4968 if (sched_feat(LATENCY_WARN) && resched_latency)
4969 resched_latency_warn(cpu, resched_latency);
4970
e9d2b064 4971 perf_event_task_tick();
e220d2dc 4972
e418e1c2 4973#ifdef CONFIG_SMP
6eb57e0d 4974 rq->idle_balance = idle_cpu(cpu);
7caff66f 4975 trigger_load_balance(rq);
e418e1c2 4976#endif
1da177e4
LT
4977}
4978
265f22a9 4979#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4980
4981struct tick_work {
4982 int cpu;
b55bd585 4983 atomic_t state;
d84b3131
FW
4984 struct delayed_work work;
4985};
b55bd585
PM
4986/* Values for ->state, see diagram below. */
4987#define TICK_SCHED_REMOTE_OFFLINE 0
4988#define TICK_SCHED_REMOTE_OFFLINING 1
4989#define TICK_SCHED_REMOTE_RUNNING 2
4990
4991/*
4992 * State diagram for ->state:
4993 *
4994 *
4995 * TICK_SCHED_REMOTE_OFFLINE
4996 * | ^
4997 * | |
4998 * | | sched_tick_remote()
4999 * | |
5000 * | |
5001 * +--TICK_SCHED_REMOTE_OFFLINING
5002 * | ^
5003 * | |
5004 * sched_tick_start() | | sched_tick_stop()
5005 * | |
5006 * V |
5007 * TICK_SCHED_REMOTE_RUNNING
5008 *
5009 *
5010 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5011 * and sched_tick_start() are happy to leave the state in RUNNING.
5012 */
d84b3131
FW
5013
5014static struct tick_work __percpu *tick_work_cpu;
5015
5016static void sched_tick_remote(struct work_struct *work)
5017{
5018 struct delayed_work *dwork = to_delayed_work(work);
5019 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5020 int cpu = twork->cpu;
5021 struct rq *rq = cpu_rq(cpu);
d9c0ffca 5022 struct task_struct *curr;
d84b3131 5023 struct rq_flags rf;
d9c0ffca 5024 u64 delta;
b55bd585 5025 int os;
d84b3131
FW
5026
5027 /*
5028 * Handle the tick only if it appears the remote CPU is running in full
5029 * dynticks mode. The check is racy by nature, but missing a tick or
5030 * having one too much is no big deal because the scheduler tick updates
5031 * statistics and checks timeslices in a time-independent way, regardless
5032 * of when exactly it is running.
5033 */
488603b8 5034 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 5035 goto out_requeue;
d84b3131 5036
d9c0ffca
FW
5037 rq_lock_irq(rq, &rf);
5038 curr = rq->curr;
488603b8 5039 if (cpu_is_offline(cpu))
d9c0ffca 5040 goto out_unlock;
d84b3131 5041
d9c0ffca 5042 update_rq_clock(rq);
d9c0ffca 5043
488603b8
SW
5044 if (!is_idle_task(curr)) {
5045 /*
5046 * Make sure the next tick runs within a reasonable
5047 * amount of time.
5048 */
5049 delta = rq_clock_task(rq) - curr->se.exec_start;
5050 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5051 }
d9c0ffca
FW
5052 curr->sched_class->task_tick(rq, curr, 0);
5053
ebc0f83c 5054 calc_load_nohz_remote(rq);
d9c0ffca
FW
5055out_unlock:
5056 rq_unlock_irq(rq, &rf);
d9c0ffca 5057out_requeue:
ebc0f83c 5058
d84b3131
FW
5059 /*
5060 * Run the remote tick once per second (1Hz). This arbitrary
5061 * frequency is large enough to avoid overload but short enough
b55bd585
PM
5062 * to keep scheduler internal stats reasonably up to date. But
5063 * first update state to reflect hotplug activity if required.
d84b3131 5064 */
b55bd585
PM
5065 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5066 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5067 if (os == TICK_SCHED_REMOTE_RUNNING)
5068 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
5069}
5070
5071static void sched_tick_start(int cpu)
5072{
b55bd585 5073 int os;
d84b3131
FW
5074 struct tick_work *twork;
5075
5076 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5077 return;
5078
5079 WARN_ON_ONCE(!tick_work_cpu);
5080
5081 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5082 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5083 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5084 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5085 twork->cpu = cpu;
5086 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5087 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5088 }
d84b3131
FW
5089}
5090
5091#ifdef CONFIG_HOTPLUG_CPU
5092static void sched_tick_stop(int cpu)
5093{
5094 struct tick_work *twork;
b55bd585 5095 int os;
d84b3131
FW
5096
5097 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5098 return;
5099
5100 WARN_ON_ONCE(!tick_work_cpu);
5101
5102 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5103 /* There cannot be competing actions, but don't rely on stop-machine. */
5104 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5105 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5106 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
5107}
5108#endif /* CONFIG_HOTPLUG_CPU */
5109
5110int __init sched_tick_offload_init(void)
5111{
5112 tick_work_cpu = alloc_percpu(struct tick_work);
5113 BUG_ON(!tick_work_cpu);
d84b3131
FW
5114 return 0;
5115}
5116
5117#else /* !CONFIG_NO_HZ_FULL */
5118static inline void sched_tick_start(int cpu) { }
5119static inline void sched_tick_stop(int cpu) { }
265f22a9 5120#endif
1da177e4 5121
c1a280b6 5122#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 5123 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
5124/*
5125 * If the value passed in is equal to the current preempt count
5126 * then we just disabled preemption. Start timing the latency.
5127 */
5128static inline void preempt_latency_start(int val)
5129{
5130 if (preempt_count() == val) {
5131 unsigned long ip = get_lock_parent_ip();
5132#ifdef CONFIG_DEBUG_PREEMPT
5133 current->preempt_disable_ip = ip;
5134#endif
5135 trace_preempt_off(CALLER_ADDR0, ip);
5136 }
5137}
7e49fcce 5138
edafe3a5 5139void preempt_count_add(int val)
1da177e4 5140{
6cd8a4bb 5141#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5142 /*
5143 * Underflow?
5144 */
9a11b49a
IM
5145 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5146 return;
6cd8a4bb 5147#endif
bdb43806 5148 __preempt_count_add(val);
6cd8a4bb 5149#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5150 /*
5151 * Spinlock count overflowing soon?
5152 */
33859f7f
MOS
5153 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5154 PREEMPT_MASK - 10);
6cd8a4bb 5155#endif
47252cfb 5156 preempt_latency_start(val);
1da177e4 5157}
bdb43806 5158EXPORT_SYMBOL(preempt_count_add);
edafe3a5 5159NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 5160
47252cfb
SR
5161/*
5162 * If the value passed in equals to the current preempt count
5163 * then we just enabled preemption. Stop timing the latency.
5164 */
5165static inline void preempt_latency_stop(int val)
5166{
5167 if (preempt_count() == val)
5168 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5169}
5170
edafe3a5 5171void preempt_count_sub(int val)
1da177e4 5172{
6cd8a4bb 5173#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5174 /*
5175 * Underflow?
5176 */
01e3eb82 5177 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5178 return;
1da177e4
LT
5179 /*
5180 * Is the spinlock portion underflowing?
5181 */
9a11b49a
IM
5182 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5183 !(preempt_count() & PREEMPT_MASK)))
5184 return;
6cd8a4bb 5185#endif
9a11b49a 5186
47252cfb 5187 preempt_latency_stop(val);
bdb43806 5188 __preempt_count_sub(val);
1da177e4 5189}
bdb43806 5190EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 5191NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 5192
47252cfb
SR
5193#else
5194static inline void preempt_latency_start(int val) { }
5195static inline void preempt_latency_stop(int val) { }
1da177e4
LT
5196#endif
5197
59ddbcb2
IM
5198static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5199{
5200#ifdef CONFIG_DEBUG_PREEMPT
5201 return p->preempt_disable_ip;
5202#else
5203 return 0;
5204#endif
5205}
5206
1da177e4 5207/*
dd41f596 5208 * Print scheduling while atomic bug:
1da177e4 5209 */
dd41f596 5210static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5211{
d1c6d149
VN
5212 /* Save this before calling printk(), since that will clobber it */
5213 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5214
664dfa65
DJ
5215 if (oops_in_progress)
5216 return;
5217
3df0fc5b
PZ
5218 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5219 prev->comm, prev->pid, preempt_count());
838225b4 5220
dd41f596 5221 debug_show_held_locks(prev);
e21f5b15 5222 print_modules();
dd41f596
IM
5223 if (irqs_disabled())
5224 print_irqtrace_events(prev);
d1c6d149
VN
5225 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5226 && in_atomic_preempt_off()) {
8f47b187 5227 pr_err("Preemption disabled at:");
2062a4e8 5228 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 5229 }
748c7201
DBO
5230 if (panic_on_warn)
5231 panic("scheduling while atomic\n");
5232
6135fc1e 5233 dump_stack();
373d4d09 5234 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 5235}
1da177e4 5236
dd41f596
IM
5237/*
5238 * Various schedule()-time debugging checks and statistics:
5239 */
312364f3 5240static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 5241{
0d9e2632 5242#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
5243 if (task_stack_end_corrupted(prev))
5244 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
5245
5246 if (task_scs_end_corrupted(prev))
5247 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 5248#endif
b99def8b 5249
312364f3
DV
5250#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5251 if (!preempt && prev->state && prev->non_block_count) {
5252 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5253 prev->comm, prev->pid, prev->non_block_count);
5254 dump_stack();
5255 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5256 }
5257#endif
5258
1dc0fffc 5259 if (unlikely(in_atomic_preempt_off())) {
dd41f596 5260 __schedule_bug(prev);
1dc0fffc
PZ
5261 preempt_count_set(PREEMPT_DISABLED);
5262 }
b3fbab05 5263 rcu_sleep_check();
9f68b5b7 5264 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 5265
1da177e4
LT
5266 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5267
ae92882e 5268 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
5269}
5270
457d1f46
CY
5271static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5272 struct rq_flags *rf)
5273{
5274#ifdef CONFIG_SMP
5275 const struct sched_class *class;
5276 /*
5277 * We must do the balancing pass before put_prev_task(), such
5278 * that when we release the rq->lock the task is in the same
5279 * state as before we took rq->lock.
5280 *
5281 * We can terminate the balance pass as soon as we know there is
5282 * a runnable task of @class priority or higher.
5283 */
5284 for_class_range(class, prev->sched_class, &idle_sched_class) {
5285 if (class->balance(rq, prev, rf))
5286 break;
5287 }
5288#endif
5289
5290 put_prev_task(rq, prev);
5291}
5292
dd41f596
IM
5293/*
5294 * Pick up the highest-prio task:
5295 */
5296static inline struct task_struct *
539f6512 5297__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 5298{
49ee5768 5299 const struct sched_class *class;
dd41f596 5300 struct task_struct *p;
1da177e4
LT
5301
5302 /*
0ba87bb2
PZ
5303 * Optimization: we know that if all tasks are in the fair class we can
5304 * call that function directly, but only if the @prev task wasn't of a
b19a888c 5305 * higher scheduling class, because otherwise those lose the
0ba87bb2 5306 * opportunity to pull in more work from other CPUs.
1da177e4 5307 */
aa93cd53 5308 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
5309 rq->nr_running == rq->cfs.h_nr_running)) {
5310
5d7d6056 5311 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 5312 if (unlikely(p == RETRY_TASK))
67692435 5313 goto restart;
6ccdc84b 5314
1699949d 5315 /* Assume the next prioritized class is idle_sched_class */
5d7d6056 5316 if (!p) {
f488e105 5317 put_prev_task(rq, prev);
98c2f700 5318 p = pick_next_task_idle(rq);
f488e105 5319 }
6ccdc84b
PZ
5320
5321 return p;
1da177e4
LT
5322 }
5323
67692435 5324restart:
457d1f46 5325 put_prev_task_balance(rq, prev, rf);
67692435 5326
34f971f6 5327 for_each_class(class) {
98c2f700 5328 p = class->pick_next_task(rq);
67692435 5329 if (p)
dd41f596 5330 return p;
dd41f596 5331 }
34f971f6 5332
d1ccc66d
IM
5333 /* The idle class should always have a runnable task: */
5334 BUG();
dd41f596 5335}
1da177e4 5336
9edeaea1 5337#ifdef CONFIG_SCHED_CORE
539f6512
PZ
5338static inline bool is_task_rq_idle(struct task_struct *t)
5339{
5340 return (task_rq(t)->idle == t);
5341}
5342
5343static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5344{
5345 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5346}
5347
5348static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5349{
5350 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5351 return true;
5352
5353 return a->core_cookie == b->core_cookie;
5354}
5355
5356// XXX fairness/fwd progress conditions
5357/*
5358 * Returns
5359 * - NULL if there is no runnable task for this class.
5360 * - the highest priority task for this runqueue if it matches
5361 * rq->core->core_cookie or its priority is greater than max.
5362 * - Else returns idle_task.
5363 */
5364static struct task_struct *
c6047c2e 5365pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
539f6512
PZ
5366{
5367 struct task_struct *class_pick, *cookie_pick;
5368 unsigned long cookie = rq->core->core_cookie;
5369
5370 class_pick = class->pick_task(rq);
5371 if (!class_pick)
5372 return NULL;
5373
5374 if (!cookie) {
5375 /*
5376 * If class_pick is tagged, return it only if it has
5377 * higher priority than max.
5378 */
5379 if (max && class_pick->core_cookie &&
c6047c2e 5380 prio_less(class_pick, max, in_fi))
539f6512
PZ
5381 return idle_sched_class.pick_task(rq);
5382
5383 return class_pick;
5384 }
5385
5386 /*
5387 * If class_pick is idle or matches cookie, return early.
5388 */
5389 if (cookie_equals(class_pick, cookie))
5390 return class_pick;
5391
5392 cookie_pick = sched_core_find(rq, cookie);
5393
5394 /*
5395 * If class > max && class > cookie, it is the highest priority task on
5396 * the core (so far) and it must be selected, otherwise we must go with
5397 * the cookie pick in order to satisfy the constraint.
5398 */
c6047c2e
JFG
5399 if (prio_less(cookie_pick, class_pick, in_fi) &&
5400 (!max || prio_less(max, class_pick, in_fi)))
539f6512
PZ
5401 return class_pick;
5402
5403 return cookie_pick;
5404}
5405
c6047c2e
JFG
5406extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5407
539f6512
PZ
5408static struct task_struct *
5409pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5410{
5411 struct task_struct *next, *max = NULL;
5412 const struct sched_class *class;
5413 const struct cpumask *smt_mask;
c6047c2e 5414 bool fi_before = false;
d2dfa17b 5415 int i, j, cpu, occ = 0;
539f6512 5416 bool need_sync;
539f6512
PZ
5417
5418 if (!sched_core_enabled(rq))
5419 return __pick_next_task(rq, prev, rf);
5420
5421 cpu = cpu_of(rq);
5422
5423 /* Stopper task is switching into idle, no need core-wide selection. */
5424 if (cpu_is_offline(cpu)) {
5425 /*
5426 * Reset core_pick so that we don't enter the fastpath when
5427 * coming online. core_pick would already be migrated to
5428 * another cpu during offline.
5429 */
5430 rq->core_pick = NULL;
5431 return __pick_next_task(rq, prev, rf);
5432 }
5433
5434 /*
5435 * If there were no {en,de}queues since we picked (IOW, the task
5436 * pointers are all still valid), and we haven't scheduled the last
5437 * pick yet, do so now.
5438 *
5439 * rq->core_pick can be NULL if no selection was made for a CPU because
5440 * it was either offline or went offline during a sibling's core-wide
5441 * selection. In this case, do a core-wide selection.
5442 */
5443 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5444 rq->core->core_pick_seq != rq->core_sched_seq &&
5445 rq->core_pick) {
5446 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5447
5448 next = rq->core_pick;
5449 if (next != prev) {
5450 put_prev_task(rq, prev);
5451 set_next_task(rq, next);
5452 }
5453
5454 rq->core_pick = NULL;
5455 return next;
5456 }
5457
5458 put_prev_task_balance(rq, prev, rf);
5459
5460 smt_mask = cpu_smt_mask(cpu);
7afbba11
JFG
5461 need_sync = !!rq->core->core_cookie;
5462
5463 /* reset state */
5464 rq->core->core_cookie = 0UL;
5465 if (rq->core->core_forceidle) {
5466 need_sync = true;
5467 fi_before = true;
5468 rq->core->core_forceidle = false;
5469 }
539f6512
PZ
5470
5471 /*
5472 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5473 *
5474 * @task_seq guards the task state ({en,de}queues)
5475 * @pick_seq is the @task_seq we did a selection on
5476 * @sched_seq is the @pick_seq we scheduled
5477 *
5478 * However, preemptions can cause multiple picks on the same task set.
5479 * 'Fix' this by also increasing @task_seq for every pick.
5480 */
5481 rq->core->core_task_seq++;
539f6512 5482
7afbba11
JFG
5483 /*
5484 * Optimize for common case where this CPU has no cookies
5485 * and there are no cookied tasks running on siblings.
5486 */
5487 if (!need_sync) {
5488 for_each_class(class) {
5489 next = class->pick_task(rq);
5490 if (next)
5491 break;
5492 }
5493
5494 if (!next->core_cookie) {
5495 rq->core_pick = NULL;
c6047c2e
JFG
5496 /*
5497 * For robustness, update the min_vruntime_fi for
5498 * unconstrained picks as well.
5499 */
5500 WARN_ON_ONCE(fi_before);
5501 task_vruntime_update(rq, next, false);
7afbba11
JFG
5502 goto done;
5503 }
8039e96f 5504 }
7afbba11 5505
539f6512
PZ
5506 for_each_cpu(i, smt_mask) {
5507 struct rq *rq_i = cpu_rq(i);
5508
5509 rq_i->core_pick = NULL;
5510
539f6512
PZ
5511 if (i != cpu)
5512 update_rq_clock(rq_i);
5513 }
5514
5515 /*
cc00c198 5516 * Try and select tasks for each sibling in descending sched_class
539f6512
PZ
5517 * order.
5518 */
5519 for_each_class(class) {
5520again:
5521 for_each_cpu_wrap(i, smt_mask, cpu) {
5522 struct rq *rq_i = cpu_rq(i);
5523 struct task_struct *p;
5524
5525 if (rq_i->core_pick)
5526 continue;
5527
5528 /*
5529 * If this sibling doesn't yet have a suitable task to
cc00c198 5530 * run; ask for the most eligible task, given the
539f6512
PZ
5531 * highest priority task already selected for this
5532 * core.
5533 */
c6047c2e 5534 p = pick_task(rq_i, class, max, fi_before);
7afbba11 5535 if (!p)
539f6512 5536 continue;
539f6512 5537
d2dfa17b
PZ
5538 if (!is_task_rq_idle(p))
5539 occ++;
5540
539f6512 5541 rq_i->core_pick = p;
c6047c2e
JFG
5542 if (rq_i->idle == p && rq_i->nr_running) {
5543 rq->core->core_forceidle = true;
5544 if (!fi_before)
5545 rq->core->core_forceidle_seq++;
5546 }
539f6512
PZ
5547
5548 /*
5549 * If this new candidate is of higher priority than the
5550 * previous; and they're incompatible; we need to wipe
5551 * the slate and start over. pick_task makes sure that
5552 * p's priority is more than max if it doesn't match
5553 * max's cookie.
5554 *
5555 * NOTE: this is a linear max-filter and is thus bounded
5556 * in execution time.
5557 */
5558 if (!max || !cookie_match(max, p)) {
5559 struct task_struct *old_max = max;
5560
5561 rq->core->core_cookie = p->core_cookie;
5562 max = p;
5563
5564 if (old_max) {
c6047c2e 5565 rq->core->core_forceidle = false;
539f6512
PZ
5566 for_each_cpu(j, smt_mask) {
5567 if (j == i)
5568 continue;
5569
5570 cpu_rq(j)->core_pick = NULL;
5571 }
d2dfa17b 5572 occ = 1;
539f6512 5573 goto again;
539f6512 5574 }
539f6512
PZ
5575 }
5576 }
539f6512
PZ
5577 }
5578
5579 rq->core->core_pick_seq = rq->core->core_task_seq;
5580 next = rq->core_pick;
5581 rq->core_sched_seq = rq->core->core_pick_seq;
5582
5583 /* Something should have been selected for current CPU */
5584 WARN_ON_ONCE(!next);
5585
5586 /*
5587 * Reschedule siblings
5588 *
5589 * NOTE: L1TF -- at this point we're no longer running the old task and
5590 * sending an IPI (below) ensures the sibling will no longer be running
5591 * their task. This ensures there is no inter-sibling overlap between
5592 * non-matching user state.
5593 */
5594 for_each_cpu(i, smt_mask) {
5595 struct rq *rq_i = cpu_rq(i);
5596
5597 /*
5598 * An online sibling might have gone offline before a task
5599 * could be picked for it, or it might be offline but later
5600 * happen to come online, but its too late and nothing was
5601 * picked for it. That's Ok - it will pick tasks for itself,
5602 * so ignore it.
5603 */
5604 if (!rq_i->core_pick)
5605 continue;
5606
c6047c2e
JFG
5607 /*
5608 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5609 * fi_before fi update?
5610 * 0 0 1
5611 * 0 1 1
5612 * 1 0 1
5613 * 1 1 0
5614 */
5615 if (!(fi_before && rq->core->core_forceidle))
5616 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
539f6512 5617
d2dfa17b
PZ
5618 rq_i->core_pick->core_occupation = occ;
5619
539f6512
PZ
5620 if (i == cpu) {
5621 rq_i->core_pick = NULL;
5622 continue;
5623 }
5624
5625 /* Did we break L1TF mitigation requirements? */
5626 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5627
5628 if (rq_i->curr == rq_i->core_pick) {
5629 rq_i->core_pick = NULL;
5630 continue;
5631 }
5632
5633 resched_curr(rq_i);
5634 }
5635
5636done:
5637 set_next_task(rq, next);
5638 return next;
5639}
9edeaea1 5640
d2dfa17b
PZ
5641static bool try_steal_cookie(int this, int that)
5642{
5643 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5644 struct task_struct *p;
5645 unsigned long cookie;
5646 bool success = false;
5647
5648 local_irq_disable();
5649 double_rq_lock(dst, src);
5650
5651 cookie = dst->core->core_cookie;
5652 if (!cookie)
5653 goto unlock;
5654
5655 if (dst->curr != dst->idle)
5656 goto unlock;
5657
5658 p = sched_core_find(src, cookie);
5659 if (p == src->idle)
5660 goto unlock;
5661
5662 do {
5663 if (p == src->core_pick || p == src->curr)
5664 goto next;
5665
5666 if (!cpumask_test_cpu(this, &p->cpus_mask))
5667 goto next;
5668
5669 if (p->core_occupation > dst->idle->core_occupation)
5670 goto next;
5671
5672 p->on_rq = TASK_ON_RQ_MIGRATING;
5673 deactivate_task(src, p, 0);
5674 set_task_cpu(p, this);
5675 activate_task(dst, p, 0);
5676 p->on_rq = TASK_ON_RQ_QUEUED;
5677
5678 resched_curr(dst);
5679
5680 success = true;
5681 break;
5682
5683next:
5684 p = sched_core_next(p, cookie);
5685 } while (p);
5686
5687unlock:
5688 double_rq_unlock(dst, src);
5689 local_irq_enable();
5690
5691 return success;
5692}
5693
5694static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5695{
5696 int i;
5697
5698 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5699 if (i == cpu)
5700 continue;
5701
5702 if (need_resched())
5703 break;
5704
5705 if (try_steal_cookie(cpu, i))
5706 return true;
5707 }
5708
5709 return false;
5710}
5711
5712static void sched_core_balance(struct rq *rq)
5713{
5714 struct sched_domain *sd;
5715 int cpu = cpu_of(rq);
5716
5717 preempt_disable();
5718 rcu_read_lock();
5719 raw_spin_rq_unlock_irq(rq);
5720 for_each_domain(cpu, sd) {
5721 if (need_resched())
5722 break;
5723
5724 if (steal_cookie_task(cpu, sd))
5725 break;
5726 }
5727 raw_spin_rq_lock_irq(rq);
5728 rcu_read_unlock();
5729 preempt_enable();
5730}
5731
5732static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5733
5734void queue_core_balance(struct rq *rq)
5735{
5736 if (!sched_core_enabled(rq))
5737 return;
5738
5739 if (!rq->core->core_cookie)
5740 return;
5741
5742 if (!rq->nr_running) /* not forced idle */
5743 return;
5744
5745 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5746}
5747
9edeaea1
PZ
5748static inline void sched_core_cpu_starting(unsigned int cpu)
5749{
5750 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5751 struct rq *rq, *core_rq = NULL;
5752 int i;
5753
5754 core_rq = cpu_rq(cpu)->core;
5755
5756 if (!core_rq) {
5757 for_each_cpu(i, smt_mask) {
5758 rq = cpu_rq(i);
5759 if (rq->core && rq->core == rq)
5760 core_rq = rq;
5761 }
5762
5763 if (!core_rq)
5764 core_rq = cpu_rq(cpu);
5765
5766 for_each_cpu(i, smt_mask) {
5767 rq = cpu_rq(i);
5768
5769 WARN_ON_ONCE(rq->core && rq->core != core_rq);
5770 rq->core = core_rq;
5771 }
5772 }
5773}
5774#else /* !CONFIG_SCHED_CORE */
5775
5776static inline void sched_core_cpu_starting(unsigned int cpu) {}
5777
539f6512
PZ
5778static struct task_struct *
5779pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5780{
5781 return __pick_next_task(rq, prev, rf);
5782}
5783
9edeaea1
PZ
5784#endif /* CONFIG_SCHED_CORE */
5785
dd41f596 5786/*
c259e01a 5787 * __schedule() is the main scheduler function.
edde96ea
PE
5788 *
5789 * The main means of driving the scheduler and thus entering this function are:
5790 *
5791 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
5792 *
5793 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
5794 * paths. For example, see arch/x86/entry_64.S.
5795 *
5796 * To drive preemption between tasks, the scheduler sets the flag in timer
5797 * interrupt handler scheduler_tick().
5798 *
5799 * 3. Wakeups don't really cause entry into schedule(). They add a
5800 * task to the run-queue and that's it.
5801 *
5802 * Now, if the new task added to the run-queue preempts the current
5803 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5804 * called on the nearest possible occasion:
5805 *
c1a280b6 5806 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
5807 *
5808 * - in syscall or exception context, at the next outmost
5809 * preempt_enable(). (this might be as soon as the wake_up()'s
5810 * spin_unlock()!)
5811 *
5812 * - in IRQ context, return from interrupt-handler to
5813 * preemptible context
5814 *
c1a280b6 5815 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
5816 * then at the next:
5817 *
5818 * - cond_resched() call
5819 * - explicit schedule() call
5820 * - return from syscall or exception to user-space
5821 * - return from interrupt-handler to user-space
bfd9b2b5 5822 *
b30f0e3f 5823 * WARNING: must be called with preemption disabled!
dd41f596 5824 */
499d7955 5825static void __sched notrace __schedule(bool preempt)
dd41f596
IM
5826{
5827 struct task_struct *prev, *next;
67ca7bde 5828 unsigned long *switch_count;
dbfb089d 5829 unsigned long prev_state;
d8ac8971 5830 struct rq_flags rf;
dd41f596 5831 struct rq *rq;
31656519 5832 int cpu;
dd41f596 5833
dd41f596
IM
5834 cpu = smp_processor_id();
5835 rq = cpu_rq(cpu);
dd41f596 5836 prev = rq->curr;
dd41f596 5837
312364f3 5838 schedule_debug(prev, preempt);
1da177e4 5839
e0ee463c 5840 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 5841 hrtick_clear(rq);
8f4d37ec 5842
46a5d164 5843 local_irq_disable();
bcbfdd01 5844 rcu_note_context_switch(preempt);
46a5d164 5845
e0acd0a6
ON
5846 /*
5847 * Make sure that signal_pending_state()->signal_pending() below
5848 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
5849 * done by the caller to avoid the race with signal_wake_up():
5850 *
5851 * __set_current_state(@state) signal_wake_up()
5852 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
5853 * wake_up_state(p, state)
5854 * LOCK rq->lock LOCK p->pi_state
5855 * smp_mb__after_spinlock() smp_mb__after_spinlock()
5856 * if (signal_pending_state()) if (p->state & @state)
306e0604 5857 *
dbfb089d 5858 * Also, the membarrier system call requires a full memory barrier
306e0604 5859 * after coming from user-space, before storing to rq->curr.
e0acd0a6 5860 */
8a8c69c3 5861 rq_lock(rq, &rf);
d89e588c 5862 smp_mb__after_spinlock();
1da177e4 5863
d1ccc66d
IM
5864 /* Promote REQ to ACT */
5865 rq->clock_update_flags <<= 1;
bce4dc80 5866 update_rq_clock(rq);
9edfbfed 5867
246d86b5 5868 switch_count = &prev->nivcsw;
d136122f 5869
dbfb089d 5870 /*
d136122f
PZ
5871 * We must load prev->state once (task_struct::state is volatile), such
5872 * that:
5873 *
5874 * - we form a control dependency vs deactivate_task() below.
5875 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 5876 */
d136122f
PZ
5877 prev_state = prev->state;
5878 if (!preempt && prev_state) {
dbfb089d 5879 if (signal_pending_state(prev_state, prev)) {
1da177e4 5880 prev->state = TASK_RUNNING;
21aa9af0 5881 } else {
dbfb089d
PZ
5882 prev->sched_contributes_to_load =
5883 (prev_state & TASK_UNINTERRUPTIBLE) &&
5884 !(prev_state & TASK_NOLOAD) &&
5885 !(prev->flags & PF_FROZEN);
5886
5887 if (prev->sched_contributes_to_load)
5888 rq->nr_uninterruptible++;
5889
5890 /*
5891 * __schedule() ttwu()
d136122f
PZ
5892 * prev_state = prev->state; if (p->on_rq && ...)
5893 * if (prev_state) goto out;
5894 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5895 * p->state = TASK_WAKING
5896 *
5897 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
5898 *
5899 * After this, schedule() must not care about p->state any more.
5900 */
bce4dc80 5901 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 5902
e33a9bba
TH
5903 if (prev->in_iowait) {
5904 atomic_inc(&rq->nr_iowait);
5905 delayacct_blkio_start();
5906 }
21aa9af0 5907 }
dd41f596 5908 switch_count = &prev->nvcsw;
1da177e4
LT
5909 }
5910
d8ac8971 5911 next = pick_next_task(rq, prev, &rf);
f26f9aff 5912 clear_tsk_need_resched(prev);
f27dde8d 5913 clear_preempt_need_resched();
c006fac5
PT
5914#ifdef CONFIG_SCHED_DEBUG
5915 rq->last_seen_need_resched_ns = 0;
5916#endif
1da177e4 5917
1da177e4 5918 if (likely(prev != next)) {
1da177e4 5919 rq->nr_switches++;
5311a98f
EB
5920 /*
5921 * RCU users of rcu_dereference(rq->curr) may not see
5922 * changes to task_struct made by pick_next_task().
5923 */
5924 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
5925 /*
5926 * The membarrier system call requires each architecture
5927 * to have a full memory barrier after updating
306e0604
MD
5928 * rq->curr, before returning to user-space.
5929 *
5930 * Here are the schemes providing that barrier on the
5931 * various architectures:
5932 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5933 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5934 * - finish_lock_switch() for weakly-ordered
5935 * architectures where spin_unlock is a full barrier,
5936 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5937 * is a RELEASE barrier),
22e4ebb9 5938 */
1da177e4
LT
5939 ++*switch_count;
5940
af449901 5941 migrate_disable_switch(rq, prev);
b05e75d6
JW
5942 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5943
c73464b1 5944 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
5945
5946 /* Also unlocks the rq: */
5947 rq = context_switch(rq, prev, next, &rf);
cbce1a68 5948 } else {
cb42c9a3 5949 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 5950
565790d2
PZ
5951 rq_unpin_lock(rq, &rf);
5952 __balance_callbacks(rq);
5cb9eaa3 5953 raw_spin_rq_unlock_irq(rq);
565790d2 5954 }
1da177e4 5955}
c259e01a 5956
9af6528e
PZ
5957void __noreturn do_task_dead(void)
5958{
d1ccc66d 5959 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 5960 set_special_state(TASK_DEAD);
d1ccc66d
IM
5961
5962 /* Tell freezer to ignore us: */
5963 current->flags |= PF_NOFREEZE;
5964
9af6528e
PZ
5965 __schedule(false);
5966 BUG();
d1ccc66d
IM
5967
5968 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 5969 for (;;)
d1ccc66d 5970 cpu_relax();
9af6528e
PZ
5971}
5972
9c40cef2
TG
5973static inline void sched_submit_work(struct task_struct *tsk)
5974{
c1cecf88
SAS
5975 unsigned int task_flags;
5976
b03fbd4f 5977 if (task_is_running(tsk))
9c40cef2 5978 return;
6d25be57 5979
c1cecf88 5980 task_flags = tsk->flags;
6d25be57
TG
5981 /*
5982 * If a worker went to sleep, notify and ask workqueue whether
5983 * it wants to wake up a task to maintain concurrency.
5984 * As this function is called inside the schedule() context,
5985 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
5986 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5987 * requires it.
6d25be57 5988 */
c1cecf88 5989 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 5990 preempt_disable();
c1cecf88 5991 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
5992 wq_worker_sleeping(tsk);
5993 else
5994 io_wq_worker_sleeping(tsk);
6d25be57
TG
5995 preempt_enable_no_resched();
5996 }
5997
b0fdc013
SAS
5998 if (tsk_is_pi_blocked(tsk))
5999 return;
6000
9c40cef2
TG
6001 /*
6002 * If we are going to sleep and we have plugged IO queued,
6003 * make sure to submit it to avoid deadlocks.
6004 */
6005 if (blk_needs_flush_plug(tsk))
6006 blk_schedule_flush_plug(tsk);
6007}
6008
6d25be57
TG
6009static void sched_update_worker(struct task_struct *tsk)
6010{
771b53d0
JA
6011 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6012 if (tsk->flags & PF_WQ_WORKER)
6013 wq_worker_running(tsk);
6014 else
6015 io_wq_worker_running(tsk);
6016 }
6d25be57
TG
6017}
6018
722a9f92 6019asmlinkage __visible void __sched schedule(void)
c259e01a 6020{
9c40cef2
TG
6021 struct task_struct *tsk = current;
6022
6023 sched_submit_work(tsk);
bfd9b2b5 6024 do {
b30f0e3f 6025 preempt_disable();
fc13aeba 6026 __schedule(false);
b30f0e3f 6027 sched_preempt_enable_no_resched();
bfd9b2b5 6028 } while (need_resched());
6d25be57 6029 sched_update_worker(tsk);
c259e01a 6030}
1da177e4
LT
6031EXPORT_SYMBOL(schedule);
6032
8663effb
SRV
6033/*
6034 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6035 * state (have scheduled out non-voluntarily) by making sure that all
6036 * tasks have either left the run queue or have gone into user space.
6037 * As idle tasks do not do either, they must not ever be preempted
6038 * (schedule out non-voluntarily).
6039 *
6040 * schedule_idle() is similar to schedule_preempt_disable() except that it
6041 * never enables preemption because it does not call sched_submit_work().
6042 */
6043void __sched schedule_idle(void)
6044{
6045 /*
6046 * As this skips calling sched_submit_work(), which the idle task does
6047 * regardless because that function is a nop when the task is in a
6048 * TASK_RUNNING state, make sure this isn't used someplace that the
6049 * current task can be in any other state. Note, idle is always in the
6050 * TASK_RUNNING state.
6051 */
6052 WARN_ON_ONCE(current->state);
6053 do {
6054 __schedule(false);
6055 } while (need_resched());
6056}
6057
6775de49 6058#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
722a9f92 6059asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
6060{
6061 /*
6062 * If we come here after a random call to set_need_resched(),
6063 * or we have been woken up remotely but the IPI has not yet arrived,
6064 * we haven't yet exited the RCU idle mode. Do it here manually until
6065 * we find a better solution.
7cc78f8f
AL
6066 *
6067 * NB: There are buggy callers of this function. Ideally we
c467ea76 6068 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 6069 * too frequently to make sense yet.
20ab65e3 6070 */
7cc78f8f 6071 enum ctx_state prev_state = exception_enter();
20ab65e3 6072 schedule();
7cc78f8f 6073 exception_exit(prev_state);
20ab65e3
FW
6074}
6075#endif
6076
c5491ea7
TG
6077/**
6078 * schedule_preempt_disabled - called with preemption disabled
6079 *
6080 * Returns with preemption disabled. Note: preempt_count must be 1
6081 */
6082void __sched schedule_preempt_disabled(void)
6083{
ba74c144 6084 sched_preempt_enable_no_resched();
c5491ea7
TG
6085 schedule();
6086 preempt_disable();
6087}
6088
06b1f808 6089static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
6090{
6091 do {
47252cfb
SR
6092 /*
6093 * Because the function tracer can trace preempt_count_sub()
6094 * and it also uses preempt_enable/disable_notrace(), if
6095 * NEED_RESCHED is set, the preempt_enable_notrace() called
6096 * by the function tracer will call this function again and
6097 * cause infinite recursion.
6098 *
6099 * Preemption must be disabled here before the function
6100 * tracer can trace. Break up preempt_disable() into two
6101 * calls. One to disable preemption without fear of being
6102 * traced. The other to still record the preemption latency,
6103 * which can also be traced by the function tracer.
6104 */
499d7955 6105 preempt_disable_notrace();
47252cfb 6106 preempt_latency_start(1);
fc13aeba 6107 __schedule(true);
47252cfb 6108 preempt_latency_stop(1);
499d7955 6109 preempt_enable_no_resched_notrace();
a18b5d01
FW
6110
6111 /*
6112 * Check again in case we missed a preemption opportunity
6113 * between schedule and now.
6114 */
a18b5d01
FW
6115 } while (need_resched());
6116}
6117
c1a280b6 6118#ifdef CONFIG_PREEMPTION
1da177e4 6119/*
a49b4f40
VS
6120 * This is the entry point to schedule() from in-kernel preemption
6121 * off of preempt_enable.
1da177e4 6122 */
722a9f92 6123asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 6124{
1da177e4
LT
6125 /*
6126 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 6127 * we do not want to preempt the current task. Just return..
1da177e4 6128 */
fbb00b56 6129 if (likely(!preemptible()))
1da177e4
LT
6130 return;
6131
a18b5d01 6132 preempt_schedule_common();
1da177e4 6133}
376e2424 6134NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 6135EXPORT_SYMBOL(preempt_schedule);
009f60e2 6136
2c9a98d3
PZI
6137#ifdef CONFIG_PREEMPT_DYNAMIC
6138DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
ef72661e 6139EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
2c9a98d3
PZI
6140#endif
6141
6142
009f60e2 6143/**
4eaca0a8 6144 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
6145 *
6146 * The tracing infrastructure uses preempt_enable_notrace to prevent
6147 * recursion and tracing preempt enabling caused by the tracing
6148 * infrastructure itself. But as tracing can happen in areas coming
6149 * from userspace or just about to enter userspace, a preempt enable
6150 * can occur before user_exit() is called. This will cause the scheduler
6151 * to be called when the system is still in usermode.
6152 *
6153 * To prevent this, the preempt_enable_notrace will use this function
6154 * instead of preempt_schedule() to exit user context if needed before
6155 * calling the scheduler.
6156 */
4eaca0a8 6157asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
6158{
6159 enum ctx_state prev_ctx;
6160
6161 if (likely(!preemptible()))
6162 return;
6163
6164 do {
47252cfb
SR
6165 /*
6166 * Because the function tracer can trace preempt_count_sub()
6167 * and it also uses preempt_enable/disable_notrace(), if
6168 * NEED_RESCHED is set, the preempt_enable_notrace() called
6169 * by the function tracer will call this function again and
6170 * cause infinite recursion.
6171 *
6172 * Preemption must be disabled here before the function
6173 * tracer can trace. Break up preempt_disable() into two
6174 * calls. One to disable preemption without fear of being
6175 * traced. The other to still record the preemption latency,
6176 * which can also be traced by the function tracer.
6177 */
3d8f74dd 6178 preempt_disable_notrace();
47252cfb 6179 preempt_latency_start(1);
009f60e2
ON
6180 /*
6181 * Needs preempt disabled in case user_exit() is traced
6182 * and the tracer calls preempt_enable_notrace() causing
6183 * an infinite recursion.
6184 */
6185 prev_ctx = exception_enter();
fc13aeba 6186 __schedule(true);
009f60e2
ON
6187 exception_exit(prev_ctx);
6188
47252cfb 6189 preempt_latency_stop(1);
3d8f74dd 6190 preempt_enable_no_resched_notrace();
009f60e2
ON
6191 } while (need_resched());
6192}
4eaca0a8 6193EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 6194
2c9a98d3
PZI
6195#ifdef CONFIG_PREEMPT_DYNAMIC
6196DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
ef72661e 6197EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
2c9a98d3
PZI
6198#endif
6199
c1a280b6 6200#endif /* CONFIG_PREEMPTION */
1da177e4 6201
826bfeb3
PZI
6202#ifdef CONFIG_PREEMPT_DYNAMIC
6203
6204#include <linux/entry-common.h>
6205
6206/*
6207 * SC:cond_resched
6208 * SC:might_resched
6209 * SC:preempt_schedule
6210 * SC:preempt_schedule_notrace
6211 * SC:irqentry_exit_cond_resched
6212 *
6213 *
6214 * NONE:
6215 * cond_resched <- __cond_resched
6216 * might_resched <- RET0
6217 * preempt_schedule <- NOP
6218 * preempt_schedule_notrace <- NOP
6219 * irqentry_exit_cond_resched <- NOP
6220 *
6221 * VOLUNTARY:
6222 * cond_resched <- __cond_resched
6223 * might_resched <- __cond_resched
6224 * preempt_schedule <- NOP
6225 * preempt_schedule_notrace <- NOP
6226 * irqentry_exit_cond_resched <- NOP
6227 *
6228 * FULL:
6229 * cond_resched <- RET0
6230 * might_resched <- RET0
6231 * preempt_schedule <- preempt_schedule
6232 * preempt_schedule_notrace <- preempt_schedule_notrace
6233 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6234 */
e59e10f8
PZ
6235
6236enum {
6237 preempt_dynamic_none = 0,
6238 preempt_dynamic_voluntary,
6239 preempt_dynamic_full,
6240};
6241
1011dcce 6242int preempt_dynamic_mode = preempt_dynamic_full;
e59e10f8 6243
1011dcce 6244int sched_dynamic_mode(const char *str)
826bfeb3 6245{
e59e10f8 6246 if (!strcmp(str, "none"))
7e1b2eb7 6247 return preempt_dynamic_none;
e59e10f8
PZ
6248
6249 if (!strcmp(str, "voluntary"))
7e1b2eb7 6250 return preempt_dynamic_voluntary;
e59e10f8
PZ
6251
6252 if (!strcmp(str, "full"))
7e1b2eb7 6253 return preempt_dynamic_full;
e59e10f8 6254
c4681f3f 6255 return -EINVAL;
e59e10f8
PZ
6256}
6257
1011dcce 6258void sched_dynamic_update(int mode)
e59e10f8
PZ
6259{
6260 /*
6261 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6262 * the ZERO state, which is invalid.
6263 */
6264 static_call_update(cond_resched, __cond_resched);
6265 static_call_update(might_resched, __cond_resched);
6266 static_call_update(preempt_schedule, __preempt_schedule_func);
6267 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6268 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6269
6270 switch (mode) {
6271 case preempt_dynamic_none:
826bfeb3 6272 static_call_update(cond_resched, __cond_resched);
9432bbd9
PZ
6273 static_call_update(might_resched, (void *)&__static_call_return0);
6274 static_call_update(preempt_schedule, NULL);
6275 static_call_update(preempt_schedule_notrace, NULL);
6276 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6277 pr_info("Dynamic Preempt: none\n");
6278 break;
6279
6280 case preempt_dynamic_voluntary:
826bfeb3
PZI
6281 static_call_update(cond_resched, __cond_resched);
6282 static_call_update(might_resched, __cond_resched);
9432bbd9
PZ
6283 static_call_update(preempt_schedule, NULL);
6284 static_call_update(preempt_schedule_notrace, NULL);
6285 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6286 pr_info("Dynamic Preempt: voluntary\n");
6287 break;
6288
6289 case preempt_dynamic_full:
9432bbd9
PZ
6290 static_call_update(cond_resched, (void *)&__static_call_return0);
6291 static_call_update(might_resched, (void *)&__static_call_return0);
826bfeb3
PZI
6292 static_call_update(preempt_schedule, __preempt_schedule_func);
6293 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6294 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
e59e10f8
PZ
6295 pr_info("Dynamic Preempt: full\n");
6296 break;
6297 }
6298
6299 preempt_dynamic_mode = mode;
6300}
6301
6302static int __init setup_preempt_mode(char *str)
6303{
6304 int mode = sched_dynamic_mode(str);
6305 if (mode < 0) {
6306 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
826bfeb3
PZI
6307 return 1;
6308 }
e59e10f8
PZ
6309
6310 sched_dynamic_update(mode);
826bfeb3
PZI
6311 return 0;
6312}
6313__setup("preempt=", setup_preempt_mode);
6314
6315#endif /* CONFIG_PREEMPT_DYNAMIC */
6316
1da177e4 6317/*
a49b4f40 6318 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
6319 * off of irq context.
6320 * Note, that this is called and return with irqs disabled. This will
6321 * protect us against recursive calling from irq.
6322 */
722a9f92 6323asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 6324{
b22366cd 6325 enum ctx_state prev_state;
6478d880 6326
2ed6e34f 6327 /* Catch callers which need to be fixed */
f27dde8d 6328 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 6329
b22366cd
FW
6330 prev_state = exception_enter();
6331
3a5c359a 6332 do {
3d8f74dd 6333 preempt_disable();
3a5c359a 6334 local_irq_enable();
fc13aeba 6335 __schedule(true);
3a5c359a 6336 local_irq_disable();
3d8f74dd 6337 sched_preempt_enable_no_resched();
5ed0cec0 6338 } while (need_resched());
b22366cd
FW
6339
6340 exception_exit(prev_state);
1da177e4
LT
6341}
6342
ac6424b9 6343int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 6344 void *key)
1da177e4 6345{
062d3f95 6346 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 6347 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 6348}
1da177e4
LT
6349EXPORT_SYMBOL(default_wake_function);
6350
b29739f9
IM
6351#ifdef CONFIG_RT_MUTEXES
6352
acd58620
PZ
6353static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6354{
6355 if (pi_task)
6356 prio = min(prio, pi_task->prio);
6357
6358 return prio;
6359}
6360
6361static inline int rt_effective_prio(struct task_struct *p, int prio)
6362{
6363 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6364
6365 return __rt_effective_prio(pi_task, prio);
6366}
6367
b29739f9
IM
6368/*
6369 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
6370 * @p: task to boost
6371 * @pi_task: donor task
b29739f9
IM
6372 *
6373 * This function changes the 'effective' priority of a task. It does
6374 * not touch ->normal_prio like __setscheduler().
6375 *
c365c292
TG
6376 * Used by the rt_mutex code to implement priority inheritance
6377 * logic. Call site only calls if the priority of the task changed.
b29739f9 6378 */
acd58620 6379void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 6380{
acd58620 6381 int prio, oldprio, queued, running, queue_flag =
7a57f32a 6382 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 6383 const struct sched_class *prev_class;
eb580751
PZ
6384 struct rq_flags rf;
6385 struct rq *rq;
b29739f9 6386
acd58620
PZ
6387 /* XXX used to be waiter->prio, not waiter->task->prio */
6388 prio = __rt_effective_prio(pi_task, p->normal_prio);
6389
6390 /*
6391 * If nothing changed; bail early.
6392 */
6393 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6394 return;
b29739f9 6395
eb580751 6396 rq = __task_rq_lock(p, &rf);
80f5c1b8 6397 update_rq_clock(rq);
acd58620
PZ
6398 /*
6399 * Set under pi_lock && rq->lock, such that the value can be used under
6400 * either lock.
6401 *
6402 * Note that there is loads of tricky to make this pointer cache work
6403 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6404 * ensure a task is de-boosted (pi_task is set to NULL) before the
6405 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 6406 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
6407 */
6408 p->pi_top_task = pi_task;
6409
6410 /*
6411 * For FIFO/RR we only need to set prio, if that matches we're done.
6412 */
6413 if (prio == p->prio && !dl_prio(prio))
6414 goto out_unlock;
b29739f9 6415
1c4dd99b
TG
6416 /*
6417 * Idle task boosting is a nono in general. There is one
6418 * exception, when PREEMPT_RT and NOHZ is active:
6419 *
6420 * The idle task calls get_next_timer_interrupt() and holds
6421 * the timer wheel base->lock on the CPU and another CPU wants
6422 * to access the timer (probably to cancel it). We can safely
6423 * ignore the boosting request, as the idle CPU runs this code
6424 * with interrupts disabled and will complete the lock
6425 * protected section without being interrupted. So there is no
6426 * real need to boost.
6427 */
6428 if (unlikely(p == rq->idle)) {
6429 WARN_ON(p != rq->curr);
6430 WARN_ON(p->pi_blocked_on);
6431 goto out_unlock;
6432 }
6433
b91473ff 6434 trace_sched_pi_setprio(p, pi_task);
d5f9f942 6435 oldprio = p->prio;
ff77e468
PZ
6436
6437 if (oldprio == prio)
6438 queue_flag &= ~DEQUEUE_MOVE;
6439
83ab0aa0 6440 prev_class = p->sched_class;
da0c1e65 6441 queued = task_on_rq_queued(p);
051a1d1a 6442 running = task_current(rq, p);
da0c1e65 6443 if (queued)
ff77e468 6444 dequeue_task(rq, p, queue_flag);
0e1f3483 6445 if (running)
f3cd1c4e 6446 put_prev_task(rq, p);
dd41f596 6447
2d3d891d
DF
6448 /*
6449 * Boosting condition are:
6450 * 1. -rt task is running and holds mutex A
6451 * --> -dl task blocks on mutex A
6452 *
6453 * 2. -dl task is running and holds mutex A
6454 * --> -dl task blocks on mutex A and could preempt the
6455 * running task
6456 */
6457 if (dl_prio(prio)) {
466af29b 6458 if (!dl_prio(p->normal_prio) ||
740797ce
JL
6459 (pi_task && dl_prio(pi_task->prio) &&
6460 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 6461 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 6462 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
6463 } else {
6464 p->dl.pi_se = &p->dl;
6465 }
aab03e05 6466 p->sched_class = &dl_sched_class;
2d3d891d
DF
6467 } else if (rt_prio(prio)) {
6468 if (dl_prio(oldprio))
2279f540 6469 p->dl.pi_se = &p->dl;
2d3d891d 6470 if (oldprio < prio)
ff77e468 6471 queue_flag |= ENQUEUE_HEAD;
dd41f596 6472 p->sched_class = &rt_sched_class;
2d3d891d
DF
6473 } else {
6474 if (dl_prio(oldprio))
2279f540 6475 p->dl.pi_se = &p->dl;
746db944
BS
6476 if (rt_prio(oldprio))
6477 p->rt.timeout = 0;
dd41f596 6478 p->sched_class = &fair_sched_class;
2d3d891d 6479 }
dd41f596 6480
b29739f9
IM
6481 p->prio = prio;
6482
da0c1e65 6483 if (queued)
ff77e468 6484 enqueue_task(rq, p, queue_flag);
a399d233 6485 if (running)
03b7fad1 6486 set_next_task(rq, p);
cb469845 6487
da7a735e 6488 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 6489out_unlock:
d1ccc66d
IM
6490 /* Avoid rq from going away on us: */
6491 preempt_disable();
4c9a4bc8 6492
565790d2
PZ
6493 rq_unpin_lock(rq, &rf);
6494 __balance_callbacks(rq);
5cb9eaa3 6495 raw_spin_rq_unlock(rq);
565790d2 6496
4c9a4bc8 6497 preempt_enable();
b29739f9 6498}
acd58620
PZ
6499#else
6500static inline int rt_effective_prio(struct task_struct *p, int prio)
6501{
6502 return prio;
6503}
b29739f9 6504#endif
d50dde5a 6505
36c8b586 6506void set_user_nice(struct task_struct *p, long nice)
1da177e4 6507{
49bd21ef 6508 bool queued, running;
53a23364 6509 int old_prio;
eb580751 6510 struct rq_flags rf;
70b97a7f 6511 struct rq *rq;
1da177e4 6512
75e45d51 6513 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
6514 return;
6515 /*
6516 * We have to be careful, if called from sys_setpriority(),
6517 * the task might be in the middle of scheduling on another CPU.
6518 */
eb580751 6519 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
6520 update_rq_clock(rq);
6521
1da177e4
LT
6522 /*
6523 * The RT priorities are set via sched_setscheduler(), but we still
6524 * allow the 'normal' nice value to be set - but as expected
b19a888c 6525 * it won't have any effect on scheduling until the task is
aab03e05 6526 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 6527 */
aab03e05 6528 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
6529 p->static_prio = NICE_TO_PRIO(nice);
6530 goto out_unlock;
6531 }
da0c1e65 6532 queued = task_on_rq_queued(p);
49bd21ef 6533 running = task_current(rq, p);
da0c1e65 6534 if (queued)
7a57f32a 6535 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
6536 if (running)
6537 put_prev_task(rq, p);
1da177e4 6538
1da177e4 6539 p->static_prio = NICE_TO_PRIO(nice);
9059393e 6540 set_load_weight(p, true);
b29739f9
IM
6541 old_prio = p->prio;
6542 p->prio = effective_prio(p);
1da177e4 6543
5443a0be 6544 if (queued)
7134b3e9 6545 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 6546 if (running)
03b7fad1 6547 set_next_task(rq, p);
5443a0be
FW
6548
6549 /*
6550 * If the task increased its priority or is running and
6551 * lowered its priority, then reschedule its CPU:
6552 */
6553 p->sched_class->prio_changed(rq, p, old_prio);
6554
1da177e4 6555out_unlock:
eb580751 6556 task_rq_unlock(rq, p, &rf);
1da177e4 6557}
1da177e4
LT
6558EXPORT_SYMBOL(set_user_nice);
6559
e43379f1
MM
6560/*
6561 * can_nice - check if a task can reduce its nice value
6562 * @p: task
6563 * @nice: nice value
6564 */
36c8b586 6565int can_nice(const struct task_struct *p, const int nice)
e43379f1 6566{
d1ccc66d 6567 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 6568 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 6569
78d7d407 6570 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
6571 capable(CAP_SYS_NICE));
6572}
6573
1da177e4
LT
6574#ifdef __ARCH_WANT_SYS_NICE
6575
6576/*
6577 * sys_nice - change the priority of the current process.
6578 * @increment: priority increment
6579 *
6580 * sys_setpriority is a more generic, but much slower function that
6581 * does similar things.
6582 */
5add95d4 6583SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6584{
48f24c4d 6585 long nice, retval;
1da177e4
LT
6586
6587 /*
6588 * Setpriority might change our priority at the same moment.
6589 * We don't have to worry. Conceptually one call occurs first
6590 * and we have a single winner.
6591 */
a9467fa3 6592 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 6593 nice = task_nice(current) + increment;
1da177e4 6594
a9467fa3 6595 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
6596 if (increment < 0 && !can_nice(current, nice))
6597 return -EPERM;
6598
1da177e4
LT
6599 retval = security_task_setnice(current, nice);
6600 if (retval)
6601 return retval;
6602
6603 set_user_nice(current, nice);
6604 return 0;
6605}
6606
6607#endif
6608
6609/**
6610 * task_prio - return the priority value of a given task.
6611 * @p: the task in question.
6612 *
e69f6186 6613 * Return: The priority value as seen by users in /proc.
c541bb78
DE
6614 *
6615 * sched policy return value kernel prio user prio/nice
6616 *
6617 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6618 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6619 * deadline -101 -1 0
1da177e4 6620 */
36c8b586 6621int task_prio(const struct task_struct *p)
1da177e4
LT
6622{
6623 return p->prio - MAX_RT_PRIO;
6624}
6625
1da177e4 6626/**
d1ccc66d 6627 * idle_cpu - is a given CPU idle currently?
1da177e4 6628 * @cpu: the processor in question.
e69f6186
YB
6629 *
6630 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
6631 */
6632int idle_cpu(int cpu)
6633{
908a3283
TG
6634 struct rq *rq = cpu_rq(cpu);
6635
6636 if (rq->curr != rq->idle)
6637 return 0;
6638
6639 if (rq->nr_running)
6640 return 0;
6641
6642#ifdef CONFIG_SMP
126c2092 6643 if (rq->ttwu_pending)
908a3283
TG
6644 return 0;
6645#endif
6646
6647 return 1;
1da177e4
LT
6648}
6649
943d355d
RJ
6650/**
6651 * available_idle_cpu - is a given CPU idle for enqueuing work.
6652 * @cpu: the CPU in question.
6653 *
6654 * Return: 1 if the CPU is currently idle. 0 otherwise.
6655 */
6656int available_idle_cpu(int cpu)
6657{
6658 if (!idle_cpu(cpu))
6659 return 0;
6660
247f2f6f
RJ
6661 if (vcpu_is_preempted(cpu))
6662 return 0;
6663
908a3283 6664 return 1;
1da177e4
LT
6665}
6666
1da177e4 6667/**
d1ccc66d 6668 * idle_task - return the idle task for a given CPU.
1da177e4 6669 * @cpu: the processor in question.
e69f6186 6670 *
d1ccc66d 6671 * Return: The idle task for the CPU @cpu.
1da177e4 6672 */
36c8b586 6673struct task_struct *idle_task(int cpu)
1da177e4
LT
6674{
6675 return cpu_rq(cpu)->idle;
6676}
6677
7d6a905f
VK
6678#ifdef CONFIG_SMP
6679/*
6680 * This function computes an effective utilization for the given CPU, to be
6681 * used for frequency selection given the linear relation: f = u * f_max.
6682 *
6683 * The scheduler tracks the following metrics:
6684 *
6685 * cpu_util_{cfs,rt,dl,irq}()
6686 * cpu_bw_dl()
6687 *
6688 * Where the cfs,rt and dl util numbers are tracked with the same metric and
6689 * synchronized windows and are thus directly comparable.
6690 *
6691 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6692 * which excludes things like IRQ and steal-time. These latter are then accrued
6693 * in the irq utilization.
6694 *
6695 * The DL bandwidth number otoh is not a measured metric but a value computed
6696 * based on the task model parameters and gives the minimal utilization
6697 * required to meet deadlines.
6698 */
a5418be9
VK
6699unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6700 unsigned long max, enum cpu_util_type type,
7d6a905f
VK
6701 struct task_struct *p)
6702{
6703 unsigned long dl_util, util, irq;
6704 struct rq *rq = cpu_rq(cpu);
6705
6706 if (!uclamp_is_used() &&
6707 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
6708 return max;
6709 }
6710
6711 /*
6712 * Early check to see if IRQ/steal time saturates the CPU, can be
6713 * because of inaccuracies in how we track these -- see
6714 * update_irq_load_avg().
6715 */
6716 irq = cpu_util_irq(rq);
6717 if (unlikely(irq >= max))
6718 return max;
6719
6720 /*
6721 * Because the time spend on RT/DL tasks is visible as 'lost' time to
6722 * CFS tasks and we use the same metric to track the effective
6723 * utilization (PELT windows are synchronized) we can directly add them
6724 * to obtain the CPU's actual utilization.
6725 *
6726 * CFS and RT utilization can be boosted or capped, depending on
6727 * utilization clamp constraints requested by currently RUNNABLE
6728 * tasks.
6729 * When there are no CFS RUNNABLE tasks, clamps are released and
6730 * frequency will be gracefully reduced with the utilization decay.
6731 */
6732 util = util_cfs + cpu_util_rt(rq);
6733 if (type == FREQUENCY_UTIL)
6734 util = uclamp_rq_util_with(rq, util, p);
6735
6736 dl_util = cpu_util_dl(rq);
6737
6738 /*
6739 * For frequency selection we do not make cpu_util_dl() a permanent part
6740 * of this sum because we want to use cpu_bw_dl() later on, but we need
6741 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
6742 * that we select f_max when there is no idle time.
6743 *
6744 * NOTE: numerical errors or stop class might cause us to not quite hit
6745 * saturation when we should -- something for later.
6746 */
6747 if (util + dl_util >= max)
6748 return max;
6749
6750 /*
6751 * OTOH, for energy computation we need the estimated running time, so
6752 * include util_dl and ignore dl_bw.
6753 */
6754 if (type == ENERGY_UTIL)
6755 util += dl_util;
6756
6757 /*
6758 * There is still idle time; further improve the number by using the
6759 * irq metric. Because IRQ/steal time is hidden from the task clock we
6760 * need to scale the task numbers:
6761 *
6762 * max - irq
6763 * U' = irq + --------- * U
6764 * max
6765 */
6766 util = scale_irq_capacity(util, irq, max);
6767 util += irq;
6768
6769 /*
6770 * Bandwidth required by DEADLINE must always be granted while, for
6771 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
6772 * to gracefully reduce the frequency when no tasks show up for longer
6773 * periods of time.
6774 *
6775 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
6776 * bw_dl as requested freq. However, cpufreq is not yet ready for such
6777 * an interface. So, we only do the latter for now.
6778 */
6779 if (type == FREQUENCY_UTIL)
6780 util += cpu_bw_dl(rq);
6781
6782 return min(max, util);
6783}
a5418be9
VK
6784
6785unsigned long sched_cpu_util(int cpu, unsigned long max)
6786{
6787 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6788 ENERGY_UTIL, NULL);
6789}
7d6a905f
VK
6790#endif /* CONFIG_SMP */
6791
1da177e4
LT
6792/**
6793 * find_process_by_pid - find a process with a matching PID value.
6794 * @pid: the pid in question.
e69f6186
YB
6795 *
6796 * The task of @pid, if found. %NULL otherwise.
1da177e4 6797 */
a9957449 6798static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6799{
228ebcbe 6800 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6801}
6802
c13db6b1
SR
6803/*
6804 * sched_setparam() passes in -1 for its policy, to let the functions
6805 * it calls know not to change it.
6806 */
6807#define SETPARAM_POLICY -1
6808
c365c292
TG
6809static void __setscheduler_params(struct task_struct *p,
6810 const struct sched_attr *attr)
1da177e4 6811{
d50dde5a
DF
6812 int policy = attr->sched_policy;
6813
c13db6b1 6814 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
6815 policy = p->policy;
6816
1da177e4 6817 p->policy = policy;
d50dde5a 6818
aab03e05
DF
6819 if (dl_policy(policy))
6820 __setparam_dl(p, attr);
39fd8fd2 6821 else if (fair_policy(policy))
d50dde5a
DF
6822 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6823
39fd8fd2
PZ
6824 /*
6825 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6826 * !rt_policy. Always setting this ensures that things like
6827 * getparam()/getattr() don't report silly values for !rt tasks.
6828 */
6829 p->rt_priority = attr->sched_priority;
383afd09 6830 p->normal_prio = normal_prio(p);
9059393e 6831 set_load_weight(p, true);
c365c292 6832}
39fd8fd2 6833
c365c292
TG
6834/* Actually do priority change: must hold pi & rq lock. */
6835static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 6836 const struct sched_attr *attr, bool keep_boost)
c365c292 6837{
a509a7cd
PB
6838 /*
6839 * If params can't change scheduling class changes aren't allowed
6840 * either.
6841 */
6842 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6843 return;
6844
c365c292 6845 __setscheduler_params(p, attr);
d50dde5a 6846
383afd09 6847 /*
0782e63b
TG
6848 * Keep a potential priority boosting if called from
6849 * sched_setscheduler().
383afd09 6850 */
acd58620 6851 p->prio = normal_prio(p);
0782e63b 6852 if (keep_boost)
acd58620 6853 p->prio = rt_effective_prio(p, p->prio);
383afd09 6854
aab03e05
DF
6855 if (dl_prio(p->prio))
6856 p->sched_class = &dl_sched_class;
6857 else if (rt_prio(p->prio))
ffd44db5
PZ
6858 p->sched_class = &rt_sched_class;
6859 else
6860 p->sched_class = &fair_sched_class;
1da177e4 6861}
aab03e05 6862
c69e8d9c 6863/*
d1ccc66d 6864 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
6865 */
6866static bool check_same_owner(struct task_struct *p)
6867{
6868 const struct cred *cred = current_cred(), *pcred;
6869 bool match;
6870
6871 rcu_read_lock();
6872 pcred = __task_cred(p);
9c806aa0
EB
6873 match = (uid_eq(cred->euid, pcred->euid) ||
6874 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
6875 rcu_read_unlock();
6876 return match;
6877}
6878
d50dde5a
DF
6879static int __sched_setscheduler(struct task_struct *p,
6880 const struct sched_attr *attr,
dbc7f069 6881 bool user, bool pi)
1da177e4 6882{
383afd09
SR
6883 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6884 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 6885 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 6886 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 6887 const struct sched_class *prev_class;
565790d2 6888 struct callback_head *head;
eb580751 6889 struct rq_flags rf;
ca94c442 6890 int reset_on_fork;
7a57f32a 6891 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 6892 struct rq *rq;
1da177e4 6893
896bbb25
SRV
6894 /* The pi code expects interrupts enabled */
6895 BUG_ON(pi && in_interrupt());
1da177e4 6896recheck:
d1ccc66d 6897 /* Double check policy once rq lock held: */
ca94c442
LP
6898 if (policy < 0) {
6899 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6900 policy = oldpolicy = p->policy;
ca94c442 6901 } else {
7479f3c9 6902 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 6903
20f9cd2a 6904 if (!valid_policy(policy))
ca94c442
LP
6905 return -EINVAL;
6906 }
6907
794a56eb 6908 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
6909 return -EINVAL;
6910
1da177e4
LT
6911 /*
6912 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 6913 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 6914 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 6915 */
ae18ad28 6916 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 6917 return -EINVAL;
aab03e05
DF
6918 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6919 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
6920 return -EINVAL;
6921
37e4ab3f
OC
6922 /*
6923 * Allow unprivileged RT tasks to decrease priority:
6924 */
961ccddd 6925 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 6926 if (fair_policy(policy)) {
d0ea0268 6927 if (attr->sched_nice < task_nice(p) &&
eaad4513 6928 !can_nice(p, attr->sched_nice))
d50dde5a
DF
6929 return -EPERM;
6930 }
6931
e05606d3 6932 if (rt_policy(policy)) {
a44702e8
ON
6933 unsigned long rlim_rtprio =
6934 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 6935
d1ccc66d 6936 /* Can't set/change the rt policy: */
8dc3e909
ON
6937 if (policy != p->policy && !rlim_rtprio)
6938 return -EPERM;
6939
d1ccc66d 6940 /* Can't increase priority: */
d50dde5a
DF
6941 if (attr->sched_priority > p->rt_priority &&
6942 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
6943 return -EPERM;
6944 }
c02aa73b 6945
d44753b8
JL
6946 /*
6947 * Can't set/change SCHED_DEADLINE policy at all for now
6948 * (safest behavior); in the future we would like to allow
6949 * unprivileged DL tasks to increase their relative deadline
6950 * or reduce their runtime (both ways reducing utilization)
6951 */
6952 if (dl_policy(policy))
6953 return -EPERM;
6954
dd41f596 6955 /*
c02aa73b
DH
6956 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6957 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 6958 */
1da1843f 6959 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 6960 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
6961 return -EPERM;
6962 }
5fe1d75f 6963
d1ccc66d 6964 /* Can't change other user's priorities: */
c69e8d9c 6965 if (!check_same_owner(p))
37e4ab3f 6966 return -EPERM;
ca94c442 6967
d1ccc66d 6968 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
6969 if (p->sched_reset_on_fork && !reset_on_fork)
6970 return -EPERM;
37e4ab3f 6971 }
1da177e4 6972
725aad24 6973 if (user) {
794a56eb
JL
6974 if (attr->sched_flags & SCHED_FLAG_SUGOV)
6975 return -EINVAL;
6976
b0ae1981 6977 retval = security_task_setscheduler(p);
725aad24
JF
6978 if (retval)
6979 return retval;
6980 }
6981
a509a7cd
PB
6982 /* Update task specific "requested" clamps */
6983 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6984 retval = uclamp_validate(p, attr);
6985 if (retval)
6986 return retval;
6987 }
6988
710da3c8
JL
6989 if (pi)
6990 cpuset_read_lock();
6991
b29739f9 6992 /*
d1ccc66d 6993 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 6994 * changing the priority of the task:
0122ec5b 6995 *
25985edc 6996 * To be able to change p->policy safely, the appropriate
1da177e4
LT
6997 * runqueue lock must be held.
6998 */
eb580751 6999 rq = task_rq_lock(p, &rf);
80f5c1b8 7000 update_rq_clock(rq);
dc61b1d6 7001
34f971f6 7002 /*
d1ccc66d 7003 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
7004 */
7005 if (p == rq->stop) {
4b211f2b
MP
7006 retval = -EINVAL;
7007 goto unlock;
34f971f6
PZ
7008 }
7009
a51e9198 7010 /*
d6b1e911
TG
7011 * If not changing anything there's no need to proceed further,
7012 * but store a possible modification of reset_on_fork.
a51e9198 7013 */
d50dde5a 7014 if (unlikely(policy == p->policy)) {
d0ea0268 7015 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
7016 goto change;
7017 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7018 goto change;
75381608 7019 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 7020 goto change;
a509a7cd
PB
7021 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7022 goto change;
d50dde5a 7023
d6b1e911 7024 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
7025 retval = 0;
7026 goto unlock;
a51e9198 7027 }
d50dde5a 7028change:
a51e9198 7029
dc61b1d6 7030 if (user) {
332ac17e 7031#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
7032 /*
7033 * Do not allow realtime tasks into groups that have no runtime
7034 * assigned.
7035 */
7036 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
7037 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7038 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
7039 retval = -EPERM;
7040 goto unlock;
dc61b1d6 7041 }
dc61b1d6 7042#endif
332ac17e 7043#ifdef CONFIG_SMP
794a56eb
JL
7044 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7045 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 7046 cpumask_t *span = rq->rd->span;
332ac17e
DF
7047
7048 /*
7049 * Don't allow tasks with an affinity mask smaller than
7050 * the entire root_domain to become SCHED_DEADLINE. We
7051 * will also fail if there's no bandwidth available.
7052 */
3bd37062 7053 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 7054 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
7055 retval = -EPERM;
7056 goto unlock;
332ac17e
DF
7057 }
7058 }
7059#endif
7060 }
dc61b1d6 7061
d1ccc66d 7062 /* Re-check policy now with rq lock held: */
1da177e4
LT
7063 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7064 policy = oldpolicy = -1;
eb580751 7065 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7066 if (pi)
7067 cpuset_read_unlock();
1da177e4
LT
7068 goto recheck;
7069 }
332ac17e
DF
7070
7071 /*
7072 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7073 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7074 * is available.
7075 */
06a76fe0 7076 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
7077 retval = -EBUSY;
7078 goto unlock;
332ac17e
DF
7079 }
7080
c365c292
TG
7081 p->sched_reset_on_fork = reset_on_fork;
7082 oldprio = p->prio;
7083
dbc7f069
PZ
7084 if (pi) {
7085 /*
7086 * Take priority boosted tasks into account. If the new
7087 * effective priority is unchanged, we just store the new
7088 * normal parameters and do not touch the scheduler class and
7089 * the runqueue. This will be done when the task deboost
7090 * itself.
7091 */
acd58620 7092 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
7093 if (new_effective_prio == oldprio)
7094 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
7095 }
7096
da0c1e65 7097 queued = task_on_rq_queued(p);
051a1d1a 7098 running = task_current(rq, p);
da0c1e65 7099 if (queued)
ff77e468 7100 dequeue_task(rq, p, queue_flags);
0e1f3483 7101 if (running)
f3cd1c4e 7102 put_prev_task(rq, p);
f6b53205 7103
83ab0aa0 7104 prev_class = p->sched_class;
a509a7cd 7105
dbc7f069 7106 __setscheduler(rq, p, attr, pi);
a509a7cd 7107 __setscheduler_uclamp(p, attr);
f6b53205 7108
da0c1e65 7109 if (queued) {
81a44c54
TG
7110 /*
7111 * We enqueue to tail when the priority of a task is
7112 * increased (user space view).
7113 */
ff77e468
PZ
7114 if (oldprio < p->prio)
7115 queue_flags |= ENQUEUE_HEAD;
1de64443 7116
ff77e468 7117 enqueue_task(rq, p, queue_flags);
81a44c54 7118 }
a399d233 7119 if (running)
03b7fad1 7120 set_next_task(rq, p);
cb469845 7121
da7a735e 7122 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
7123
7124 /* Avoid rq from going away on us: */
7125 preempt_disable();
565790d2 7126 head = splice_balance_callbacks(rq);
eb580751 7127 task_rq_unlock(rq, p, &rf);
b29739f9 7128
710da3c8
JL
7129 if (pi) {
7130 cpuset_read_unlock();
dbc7f069 7131 rt_mutex_adjust_pi(p);
710da3c8 7132 }
95e02ca9 7133
d1ccc66d 7134 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 7135 balance_callbacks(rq, head);
4c9a4bc8 7136 preempt_enable();
95e02ca9 7137
1da177e4 7138 return 0;
4b211f2b
MP
7139
7140unlock:
7141 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7142 if (pi)
7143 cpuset_read_unlock();
4b211f2b 7144 return retval;
1da177e4 7145}
961ccddd 7146
7479f3c9
PZ
7147static int _sched_setscheduler(struct task_struct *p, int policy,
7148 const struct sched_param *param, bool check)
7149{
7150 struct sched_attr attr = {
7151 .sched_policy = policy,
7152 .sched_priority = param->sched_priority,
7153 .sched_nice = PRIO_TO_NICE(p->static_prio),
7154 };
7155
c13db6b1
SR
7156 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7157 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
7158 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7159 policy &= ~SCHED_RESET_ON_FORK;
7160 attr.sched_policy = policy;
7161 }
7162
dbc7f069 7163 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 7164}
961ccddd
RR
7165/**
7166 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7167 * @p: the task in question.
7168 * @policy: new policy.
7169 * @param: structure containing the new RT priority.
7170 *
7318d4cc
PZ
7171 * Use sched_set_fifo(), read its comment.
7172 *
e69f6186
YB
7173 * Return: 0 on success. An error code otherwise.
7174 *
961ccddd
RR
7175 * NOTE that the task may be already dead.
7176 */
7177int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 7178 const struct sched_param *param)
961ccddd 7179{
7479f3c9 7180 return _sched_setscheduler(p, policy, param, true);
961ccddd 7181}
1da177e4 7182
d50dde5a
DF
7183int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7184{
dbc7f069 7185 return __sched_setscheduler(p, attr, true, true);
d50dde5a 7186}
d50dde5a 7187
794a56eb
JL
7188int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7189{
7190 return __sched_setscheduler(p, attr, false, true);
7191}
4c38f2df 7192EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
794a56eb 7193
961ccddd
RR
7194/**
7195 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7196 * @p: the task in question.
7197 * @policy: new policy.
7198 * @param: structure containing the new RT priority.
7199 *
7200 * Just like sched_setscheduler, only don't bother checking if the
7201 * current context has permission. For example, this is needed in
7202 * stop_machine(): we create temporary high priority worker threads,
7203 * but our caller might not have that capability.
e69f6186
YB
7204 *
7205 * Return: 0 on success. An error code otherwise.
961ccddd
RR
7206 */
7207int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 7208 const struct sched_param *param)
961ccddd 7209{
7479f3c9 7210 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
7211}
7212
7318d4cc
PZ
7213/*
7214 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7215 * incapable of resource management, which is the one thing an OS really should
7216 * be doing.
7217 *
7218 * This is of course the reason it is limited to privileged users only.
7219 *
7220 * Worse still; it is fundamentally impossible to compose static priority
7221 * workloads. You cannot take two correctly working static prio workloads
7222 * and smash them together and still expect them to work.
7223 *
7224 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7225 *
7226 * MAX_RT_PRIO / 2
7227 *
7228 * The administrator _MUST_ configure the system, the kernel simply doesn't
7229 * know enough information to make a sensible choice.
7230 */
8b700983 7231void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
7232{
7233 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 7234 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7235}
7236EXPORT_SYMBOL_GPL(sched_set_fifo);
7237
7238/*
7239 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7240 */
8b700983 7241void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
7242{
7243 struct sched_param sp = { .sched_priority = 1 };
8b700983 7244 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7245}
7246EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7247
8b700983 7248void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
7249{
7250 struct sched_attr attr = {
7251 .sched_policy = SCHED_NORMAL,
7252 .sched_nice = nice,
7253 };
8b700983 7254 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
7255}
7256EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 7257
95cdf3b7
IM
7258static int
7259do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 7260{
1da177e4
LT
7261 struct sched_param lparam;
7262 struct task_struct *p;
36c8b586 7263 int retval;
1da177e4
LT
7264
7265 if (!param || pid < 0)
7266 return -EINVAL;
7267 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7268 return -EFAULT;
5fe1d75f
ON
7269
7270 rcu_read_lock();
7271 retval = -ESRCH;
1da177e4 7272 p = find_process_by_pid(pid);
710da3c8
JL
7273 if (likely(p))
7274 get_task_struct(p);
5fe1d75f 7275 rcu_read_unlock();
36c8b586 7276
710da3c8
JL
7277 if (likely(p)) {
7278 retval = sched_setscheduler(p, policy, &lparam);
7279 put_task_struct(p);
7280 }
7281
1da177e4
LT
7282 return retval;
7283}
7284
d50dde5a
DF
7285/*
7286 * Mimics kernel/events/core.c perf_copy_attr().
7287 */
d1ccc66d 7288static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
7289{
7290 u32 size;
7291 int ret;
7292
d1ccc66d 7293 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
7294 memset(attr, 0, sizeof(*attr));
7295
7296 ret = get_user(size, &uattr->size);
7297 if (ret)
7298 return ret;
7299
d1ccc66d
IM
7300 /* ABI compatibility quirk: */
7301 if (!size)
d50dde5a 7302 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 7303 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
7304 goto err_size;
7305
dff3a85f
AS
7306 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7307 if (ret) {
7308 if (ret == -E2BIG)
7309 goto err_size;
7310 return ret;
d50dde5a
DF
7311 }
7312
a509a7cd
PB
7313 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7314 size < SCHED_ATTR_SIZE_VER1)
7315 return -EINVAL;
7316
d50dde5a 7317 /*
d1ccc66d 7318 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
7319 * to be strict and return an error on out-of-bounds values?
7320 */
75e45d51 7321 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 7322
e78c7bca 7323 return 0;
d50dde5a
DF
7324
7325err_size:
7326 put_user(sizeof(*attr), &uattr->size);
e78c7bca 7327 return -E2BIG;
d50dde5a
DF
7328}
7329
1da177e4
LT
7330/**
7331 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7332 * @pid: the pid in question.
7333 * @policy: new policy.
7334 * @param: structure containing the new RT priority.
e69f6186
YB
7335 *
7336 * Return: 0 on success. An error code otherwise.
1da177e4 7337 */
d1ccc66d 7338SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 7339{
c21761f1
JB
7340 if (policy < 0)
7341 return -EINVAL;
7342
1da177e4
LT
7343 return do_sched_setscheduler(pid, policy, param);
7344}
7345
7346/**
7347 * sys_sched_setparam - set/change the RT priority of a thread
7348 * @pid: the pid in question.
7349 * @param: structure containing the new RT priority.
e69f6186
YB
7350 *
7351 * Return: 0 on success. An error code otherwise.
1da177e4 7352 */
5add95d4 7353SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7354{
c13db6b1 7355 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
7356}
7357
d50dde5a
DF
7358/**
7359 * sys_sched_setattr - same as above, but with extended sched_attr
7360 * @pid: the pid in question.
5778fccf 7361 * @uattr: structure containing the extended parameters.
db66d756 7362 * @flags: for future extension.
d50dde5a 7363 */
6d35ab48
PZ
7364SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7365 unsigned int, flags)
d50dde5a
DF
7366{
7367 struct sched_attr attr;
7368 struct task_struct *p;
7369 int retval;
7370
6d35ab48 7371 if (!uattr || pid < 0 || flags)
d50dde5a
DF
7372 return -EINVAL;
7373
143cf23d
MK
7374 retval = sched_copy_attr(uattr, &attr);
7375 if (retval)
7376 return retval;
d50dde5a 7377
b14ed2c2 7378 if ((int)attr.sched_policy < 0)
dbdb2275 7379 return -EINVAL;
1d6362fa
PB
7380 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7381 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
7382
7383 rcu_read_lock();
7384 retval = -ESRCH;
7385 p = find_process_by_pid(pid);
a509a7cd
PB
7386 if (likely(p))
7387 get_task_struct(p);
d50dde5a
DF
7388 rcu_read_unlock();
7389
a509a7cd
PB
7390 if (likely(p)) {
7391 retval = sched_setattr(p, &attr);
7392 put_task_struct(p);
7393 }
7394
d50dde5a
DF
7395 return retval;
7396}
7397
1da177e4
LT
7398/**
7399 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7400 * @pid: the pid in question.
e69f6186
YB
7401 *
7402 * Return: On success, the policy of the thread. Otherwise, a negative error
7403 * code.
1da177e4 7404 */
5add95d4 7405SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 7406{
36c8b586 7407 struct task_struct *p;
3a5c359a 7408 int retval;
1da177e4
LT
7409
7410 if (pid < 0)
3a5c359a 7411 return -EINVAL;
1da177e4
LT
7412
7413 retval = -ESRCH;
5fe85be0 7414 rcu_read_lock();
1da177e4
LT
7415 p = find_process_by_pid(pid);
7416 if (p) {
7417 retval = security_task_getscheduler(p);
7418 if (!retval)
ca94c442
LP
7419 retval = p->policy
7420 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 7421 }
5fe85be0 7422 rcu_read_unlock();
1da177e4
LT
7423 return retval;
7424}
7425
7426/**
ca94c442 7427 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
7428 * @pid: the pid in question.
7429 * @param: structure containing the RT priority.
e69f6186
YB
7430 *
7431 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7432 * code.
1da177e4 7433 */
5add95d4 7434SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7435{
ce5f7f82 7436 struct sched_param lp = { .sched_priority = 0 };
36c8b586 7437 struct task_struct *p;
3a5c359a 7438 int retval;
1da177e4
LT
7439
7440 if (!param || pid < 0)
3a5c359a 7441 return -EINVAL;
1da177e4 7442
5fe85be0 7443 rcu_read_lock();
1da177e4
LT
7444 p = find_process_by_pid(pid);
7445 retval = -ESRCH;
7446 if (!p)
7447 goto out_unlock;
7448
7449 retval = security_task_getscheduler(p);
7450 if (retval)
7451 goto out_unlock;
7452
ce5f7f82
PZ
7453 if (task_has_rt_policy(p))
7454 lp.sched_priority = p->rt_priority;
5fe85be0 7455 rcu_read_unlock();
1da177e4
LT
7456
7457 /*
7458 * This one might sleep, we cannot do it with a spinlock held ...
7459 */
7460 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7461
1da177e4
LT
7462 return retval;
7463
7464out_unlock:
5fe85be0 7465 rcu_read_unlock();
1da177e4
LT
7466 return retval;
7467}
7468
1251201c
IM
7469/*
7470 * Copy the kernel size attribute structure (which might be larger
7471 * than what user-space knows about) to user-space.
7472 *
7473 * Note that all cases are valid: user-space buffer can be larger or
7474 * smaller than the kernel-space buffer. The usual case is that both
7475 * have the same size.
7476 */
7477static int
7478sched_attr_copy_to_user(struct sched_attr __user *uattr,
7479 struct sched_attr *kattr,
7480 unsigned int usize)
d50dde5a 7481{
1251201c 7482 unsigned int ksize = sizeof(*kattr);
d50dde5a 7483
96d4f267 7484 if (!access_ok(uattr, usize))
d50dde5a
DF
7485 return -EFAULT;
7486
7487 /*
1251201c
IM
7488 * sched_getattr() ABI forwards and backwards compatibility:
7489 *
7490 * If usize == ksize then we just copy everything to user-space and all is good.
7491 *
7492 * If usize < ksize then we only copy as much as user-space has space for,
7493 * this keeps ABI compatibility as well. We skip the rest.
7494 *
7495 * If usize > ksize then user-space is using a newer version of the ABI,
7496 * which part the kernel doesn't know about. Just ignore it - tooling can
7497 * detect the kernel's knowledge of attributes from the attr->size value
7498 * which is set to ksize in this case.
d50dde5a 7499 */
1251201c 7500 kattr->size = min(usize, ksize);
d50dde5a 7501
1251201c 7502 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
7503 return -EFAULT;
7504
22400674 7505 return 0;
d50dde5a
DF
7506}
7507
7508/**
aab03e05 7509 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 7510 * @pid: the pid in question.
5778fccf 7511 * @uattr: structure containing the extended parameters.
dff3a85f 7512 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 7513 * @flags: for future extension.
d50dde5a 7514 */
6d35ab48 7515SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 7516 unsigned int, usize, unsigned int, flags)
d50dde5a 7517{
1251201c 7518 struct sched_attr kattr = { };
d50dde5a
DF
7519 struct task_struct *p;
7520 int retval;
7521
1251201c
IM
7522 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7523 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
7524 return -EINVAL;
7525
7526 rcu_read_lock();
7527 p = find_process_by_pid(pid);
7528 retval = -ESRCH;
7529 if (!p)
7530 goto out_unlock;
7531
7532 retval = security_task_getscheduler(p);
7533 if (retval)
7534 goto out_unlock;
7535
1251201c 7536 kattr.sched_policy = p->policy;
7479f3c9 7537 if (p->sched_reset_on_fork)
1251201c 7538 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 7539 if (task_has_dl_policy(p))
1251201c 7540 __getparam_dl(p, &kattr);
aab03e05 7541 else if (task_has_rt_policy(p))
1251201c 7542 kattr.sched_priority = p->rt_priority;
d50dde5a 7543 else
1251201c 7544 kattr.sched_nice = task_nice(p);
d50dde5a 7545
a509a7cd 7546#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
7547 /*
7548 * This could race with another potential updater, but this is fine
7549 * because it'll correctly read the old or the new value. We don't need
7550 * to guarantee who wins the race as long as it doesn't return garbage.
7551 */
1251201c
IM
7552 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7553 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
7554#endif
7555
d50dde5a
DF
7556 rcu_read_unlock();
7557
1251201c 7558 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
7559
7560out_unlock:
7561 rcu_read_unlock();
7562 return retval;
7563}
7564
96f874e2 7565long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 7566{
5a16f3d3 7567 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
7568 struct task_struct *p;
7569 int retval;
1da177e4 7570
23f5d142 7571 rcu_read_lock();
1da177e4
LT
7572
7573 p = find_process_by_pid(pid);
7574 if (!p) {
23f5d142 7575 rcu_read_unlock();
1da177e4
LT
7576 return -ESRCH;
7577 }
7578
23f5d142 7579 /* Prevent p going away */
1da177e4 7580 get_task_struct(p);
23f5d142 7581 rcu_read_unlock();
1da177e4 7582
14a40ffc
TH
7583 if (p->flags & PF_NO_SETAFFINITY) {
7584 retval = -EINVAL;
7585 goto out_put_task;
7586 }
5a16f3d3
RR
7587 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
7588 retval = -ENOMEM;
7589 goto out_put_task;
7590 }
7591 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7592 retval = -ENOMEM;
7593 goto out_free_cpus_allowed;
7594 }
1da177e4 7595 retval = -EPERM;
4c44aaaf
EB
7596 if (!check_same_owner(p)) {
7597 rcu_read_lock();
7598 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7599 rcu_read_unlock();
16303ab2 7600 goto out_free_new_mask;
4c44aaaf
EB
7601 }
7602 rcu_read_unlock();
7603 }
1da177e4 7604
b0ae1981 7605 retval = security_task_setscheduler(p);
e7834f8f 7606 if (retval)
16303ab2 7607 goto out_free_new_mask;
e7834f8f 7608
e4099a5e
PZ
7609
7610 cpuset_cpus_allowed(p, cpus_allowed);
7611 cpumask_and(new_mask, in_mask, cpus_allowed);
7612
332ac17e
DF
7613 /*
7614 * Since bandwidth control happens on root_domain basis,
7615 * if admission test is enabled, we only admit -deadline
7616 * tasks allowed to run on all the CPUs in the task's
7617 * root_domain.
7618 */
7619#ifdef CONFIG_SMP
f1e3a093
KT
7620 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
7621 rcu_read_lock();
7622 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 7623 retval = -EBUSY;
f1e3a093 7624 rcu_read_unlock();
16303ab2 7625 goto out_free_new_mask;
332ac17e 7626 }
f1e3a093 7627 rcu_read_unlock();
332ac17e
DF
7628 }
7629#endif
49246274 7630again:
9cfc3e18 7631 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
1da177e4 7632
8707d8b8 7633 if (!retval) {
5a16f3d3
RR
7634 cpuset_cpus_allowed(p, cpus_allowed);
7635 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
7636 /*
7637 * We must have raced with a concurrent cpuset
7638 * update. Just reset the cpus_allowed to the
7639 * cpuset's cpus_allowed
7640 */
5a16f3d3 7641 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
7642 goto again;
7643 }
7644 }
16303ab2 7645out_free_new_mask:
5a16f3d3
RR
7646 free_cpumask_var(new_mask);
7647out_free_cpus_allowed:
7648 free_cpumask_var(cpus_allowed);
7649out_put_task:
1da177e4 7650 put_task_struct(p);
1da177e4
LT
7651 return retval;
7652}
7653
7654static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 7655 struct cpumask *new_mask)
1da177e4 7656{
96f874e2
RR
7657 if (len < cpumask_size())
7658 cpumask_clear(new_mask);
7659 else if (len > cpumask_size())
7660 len = cpumask_size();
7661
1da177e4
LT
7662 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7663}
7664
7665/**
d1ccc66d 7666 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
7667 * @pid: pid of the process
7668 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 7669 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
7670 *
7671 * Return: 0 on success. An error code otherwise.
1da177e4 7672 */
5add95d4
HC
7673SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7674 unsigned long __user *, user_mask_ptr)
1da177e4 7675{
5a16f3d3 7676 cpumask_var_t new_mask;
1da177e4
LT
7677 int retval;
7678
5a16f3d3
RR
7679 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7680 return -ENOMEM;
1da177e4 7681
5a16f3d3
RR
7682 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7683 if (retval == 0)
7684 retval = sched_setaffinity(pid, new_mask);
7685 free_cpumask_var(new_mask);
7686 return retval;
1da177e4
LT
7687}
7688
96f874e2 7689long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 7690{
36c8b586 7691 struct task_struct *p;
31605683 7692 unsigned long flags;
1da177e4 7693 int retval;
1da177e4 7694
23f5d142 7695 rcu_read_lock();
1da177e4
LT
7696
7697 retval = -ESRCH;
7698 p = find_process_by_pid(pid);
7699 if (!p)
7700 goto out_unlock;
7701
e7834f8f
DQ
7702 retval = security_task_getscheduler(p);
7703 if (retval)
7704 goto out_unlock;
7705
013fdb80 7706 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 7707 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 7708 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
7709
7710out_unlock:
23f5d142 7711 rcu_read_unlock();
1da177e4 7712
9531b62f 7713 return retval;
1da177e4
LT
7714}
7715
7716/**
d1ccc66d 7717 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
7718 * @pid: pid of the process
7719 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 7720 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 7721 *
599b4840
ZW
7722 * Return: size of CPU mask copied to user_mask_ptr on success. An
7723 * error code otherwise.
1da177e4 7724 */
5add95d4
HC
7725SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
7726 unsigned long __user *, user_mask_ptr)
1da177e4
LT
7727{
7728 int ret;
f17c8607 7729 cpumask_var_t mask;
1da177e4 7730
84fba5ec 7731 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
7732 return -EINVAL;
7733 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
7734 return -EINVAL;
7735
f17c8607
RR
7736 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
7737 return -ENOMEM;
1da177e4 7738
f17c8607
RR
7739 ret = sched_getaffinity(pid, mask);
7740 if (ret == 0) {
4de373a1 7741 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
7742
7743 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
7744 ret = -EFAULT;
7745 else
cd3d8031 7746 ret = retlen;
f17c8607
RR
7747 }
7748 free_cpumask_var(mask);
1da177e4 7749
f17c8607 7750 return ret;
1da177e4
LT
7751}
7752
7d4dd4f1 7753static void do_sched_yield(void)
1da177e4 7754{
8a8c69c3
PZ
7755 struct rq_flags rf;
7756 struct rq *rq;
7757
246b3b33 7758 rq = this_rq_lock_irq(&rf);
1da177e4 7759
ae92882e 7760 schedstat_inc(rq->yld_count);
4530d7ab 7761 current->sched_class->yield_task(rq);
1da177e4 7762
8a8c69c3 7763 preempt_disable();
345a957f 7764 rq_unlock_irq(rq, &rf);
ba74c144 7765 sched_preempt_enable_no_resched();
1da177e4
LT
7766
7767 schedule();
7d4dd4f1 7768}
1da177e4 7769
59a74b15
MCC
7770/**
7771 * sys_sched_yield - yield the current processor to other threads.
7772 *
7773 * This function yields the current CPU to other tasks. If there are no
7774 * other threads running on this CPU then this function will return.
7775 *
7776 * Return: 0.
7777 */
7d4dd4f1
DB
7778SYSCALL_DEFINE0(sched_yield)
7779{
7780 do_sched_yield();
1da177e4
LT
7781 return 0;
7782}
7783
b965f1dd
PZI
7784#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7785int __sched __cond_resched(void)
1da177e4 7786{
fe32d3cd 7787 if (should_resched(0)) {
a18b5d01 7788 preempt_schedule_common();
1da177e4
LT
7789 return 1;
7790 }
b965f1dd 7791#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 7792 rcu_all_qs();
b965f1dd 7793#endif
1da177e4
LT
7794 return 0;
7795}
b965f1dd
PZI
7796EXPORT_SYMBOL(__cond_resched);
7797#endif
7798
7799#ifdef CONFIG_PREEMPT_DYNAMIC
7800DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 7801EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd
PZI
7802
7803DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 7804EXPORT_STATIC_CALL_TRAMP(might_resched);
35a773a0 7805#endif
1da177e4
LT
7806
7807/*
613afbf8 7808 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
7809 * call schedule, and on return reacquire the lock.
7810 *
c1a280b6 7811 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
7812 * operations here to prevent schedule() from being called twice (once via
7813 * spin_unlock(), once by hand).
7814 */
613afbf8 7815int __cond_resched_lock(spinlock_t *lock)
1da177e4 7816{
fe32d3cd 7817 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
7818 int ret = 0;
7819
f607c668
PZ
7820 lockdep_assert_held(lock);
7821
4a81e832 7822 if (spin_needbreak(lock) || resched) {
1da177e4 7823 spin_unlock(lock);
d86ee480 7824 if (resched)
a18b5d01 7825 preempt_schedule_common();
95c354fe
NP
7826 else
7827 cpu_relax();
6df3cecb 7828 ret = 1;
1da177e4 7829 spin_lock(lock);
1da177e4 7830 }
6df3cecb 7831 return ret;
1da177e4 7832}
613afbf8 7833EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 7834
f3d4b4b1
BG
7835int __cond_resched_rwlock_read(rwlock_t *lock)
7836{
7837 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7838 int ret = 0;
7839
7840 lockdep_assert_held_read(lock);
7841
7842 if (rwlock_needbreak(lock) || resched) {
7843 read_unlock(lock);
7844 if (resched)
7845 preempt_schedule_common();
7846 else
7847 cpu_relax();
7848 ret = 1;
7849 read_lock(lock);
7850 }
7851 return ret;
7852}
7853EXPORT_SYMBOL(__cond_resched_rwlock_read);
7854
7855int __cond_resched_rwlock_write(rwlock_t *lock)
7856{
7857 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7858 int ret = 0;
7859
7860 lockdep_assert_held_write(lock);
7861
7862 if (rwlock_needbreak(lock) || resched) {
7863 write_unlock(lock);
7864 if (resched)
7865 preempt_schedule_common();
7866 else
7867 cpu_relax();
7868 ret = 1;
7869 write_lock(lock);
7870 }
7871 return ret;
7872}
7873EXPORT_SYMBOL(__cond_resched_rwlock_write);
7874
1da177e4
LT
7875/**
7876 * yield - yield the current processor to other threads.
7877 *
8e3fabfd
PZ
7878 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7879 *
7880 * The scheduler is at all times free to pick the calling task as the most
7881 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 7882 * it, it's already broken.
8e3fabfd
PZ
7883 *
7884 * Typical broken usage is:
7885 *
7886 * while (!event)
d1ccc66d 7887 * yield();
8e3fabfd
PZ
7888 *
7889 * where one assumes that yield() will let 'the other' process run that will
7890 * make event true. If the current task is a SCHED_FIFO task that will never
7891 * happen. Never use yield() as a progress guarantee!!
7892 *
7893 * If you want to use yield() to wait for something, use wait_event().
7894 * If you want to use yield() to be 'nice' for others, use cond_resched().
7895 * If you still want to use yield(), do not!
1da177e4
LT
7896 */
7897void __sched yield(void)
7898{
7899 set_current_state(TASK_RUNNING);
7d4dd4f1 7900 do_sched_yield();
1da177e4 7901}
1da177e4
LT
7902EXPORT_SYMBOL(yield);
7903
d95f4122
MG
7904/**
7905 * yield_to - yield the current processor to another thread in
7906 * your thread group, or accelerate that thread toward the
7907 * processor it's on.
16addf95
RD
7908 * @p: target task
7909 * @preempt: whether task preemption is allowed or not
d95f4122
MG
7910 *
7911 * It's the caller's job to ensure that the target task struct
7912 * can't go away on us before we can do any checks.
7913 *
e69f6186 7914 * Return:
7b270f60
PZ
7915 * true (>0) if we indeed boosted the target task.
7916 * false (0) if we failed to boost the target.
7917 * -ESRCH if there's no task to yield to.
d95f4122 7918 */
fa93384f 7919int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
7920{
7921 struct task_struct *curr = current;
7922 struct rq *rq, *p_rq;
7923 unsigned long flags;
c3c18640 7924 int yielded = 0;
d95f4122
MG
7925
7926 local_irq_save(flags);
7927 rq = this_rq();
7928
7929again:
7930 p_rq = task_rq(p);
7b270f60
PZ
7931 /*
7932 * If we're the only runnable task on the rq and target rq also
7933 * has only one task, there's absolutely no point in yielding.
7934 */
7935 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7936 yielded = -ESRCH;
7937 goto out_irq;
7938 }
7939
d95f4122 7940 double_rq_lock(rq, p_rq);
39e24d8f 7941 if (task_rq(p) != p_rq) {
d95f4122
MG
7942 double_rq_unlock(rq, p_rq);
7943 goto again;
7944 }
7945
7946 if (!curr->sched_class->yield_to_task)
7b270f60 7947 goto out_unlock;
d95f4122
MG
7948
7949 if (curr->sched_class != p->sched_class)
7b270f60 7950 goto out_unlock;
d95f4122 7951
b03fbd4f 7952 if (task_running(p_rq, p) || !task_is_running(p))
7b270f60 7953 goto out_unlock;
d95f4122 7954
0900acf2 7955 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 7956 if (yielded) {
ae92882e 7957 schedstat_inc(rq->yld_count);
6d1cafd8
VP
7958 /*
7959 * Make p's CPU reschedule; pick_next_entity takes care of
7960 * fairness.
7961 */
7962 if (preempt && rq != p_rq)
8875125e 7963 resched_curr(p_rq);
6d1cafd8 7964 }
d95f4122 7965
7b270f60 7966out_unlock:
d95f4122 7967 double_rq_unlock(rq, p_rq);
7b270f60 7968out_irq:
d95f4122
MG
7969 local_irq_restore(flags);
7970
7b270f60 7971 if (yielded > 0)
d95f4122
MG
7972 schedule();
7973
7974 return yielded;
7975}
7976EXPORT_SYMBOL_GPL(yield_to);
7977
10ab5643
TH
7978int io_schedule_prepare(void)
7979{
7980 int old_iowait = current->in_iowait;
7981
7982 current->in_iowait = 1;
7983 blk_schedule_flush_plug(current);
7984
7985 return old_iowait;
7986}
7987
7988void io_schedule_finish(int token)
7989{
7990 current->in_iowait = token;
7991}
7992
1da177e4 7993/*
41a2d6cf 7994 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 7995 * that process accounting knows that this is a task in IO wait state.
1da177e4 7996 */
1da177e4
LT
7997long __sched io_schedule_timeout(long timeout)
7998{
10ab5643 7999 int token;
1da177e4
LT
8000 long ret;
8001
10ab5643 8002 token = io_schedule_prepare();
1da177e4 8003 ret = schedule_timeout(timeout);
10ab5643 8004 io_schedule_finish(token);
9cff8ade 8005
1da177e4
LT
8006 return ret;
8007}
9cff8ade 8008EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 8009
e3b929b0 8010void __sched io_schedule(void)
10ab5643
TH
8011{
8012 int token;
8013
8014 token = io_schedule_prepare();
8015 schedule();
8016 io_schedule_finish(token);
8017}
8018EXPORT_SYMBOL(io_schedule);
8019
1da177e4
LT
8020/**
8021 * sys_sched_get_priority_max - return maximum RT priority.
8022 * @policy: scheduling class.
8023 *
e69f6186
YB
8024 * Return: On success, this syscall returns the maximum
8025 * rt_priority that can be used by a given scheduling class.
8026 * On failure, a negative error code is returned.
1da177e4 8027 */
5add95d4 8028SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
8029{
8030 int ret = -EINVAL;
8031
8032 switch (policy) {
8033 case SCHED_FIFO:
8034 case SCHED_RR:
ae18ad28 8035 ret = MAX_RT_PRIO-1;
1da177e4 8036 break;
aab03e05 8037 case SCHED_DEADLINE:
1da177e4 8038 case SCHED_NORMAL:
b0a9499c 8039 case SCHED_BATCH:
dd41f596 8040 case SCHED_IDLE:
1da177e4
LT
8041 ret = 0;
8042 break;
8043 }
8044 return ret;
8045}
8046
8047/**
8048 * sys_sched_get_priority_min - return minimum RT priority.
8049 * @policy: scheduling class.
8050 *
e69f6186
YB
8051 * Return: On success, this syscall returns the minimum
8052 * rt_priority that can be used by a given scheduling class.
8053 * On failure, a negative error code is returned.
1da177e4 8054 */
5add95d4 8055SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
8056{
8057 int ret = -EINVAL;
8058
8059 switch (policy) {
8060 case SCHED_FIFO:
8061 case SCHED_RR:
8062 ret = 1;
8063 break;
aab03e05 8064 case SCHED_DEADLINE:
1da177e4 8065 case SCHED_NORMAL:
b0a9499c 8066 case SCHED_BATCH:
dd41f596 8067 case SCHED_IDLE:
1da177e4
LT
8068 ret = 0;
8069 }
8070 return ret;
8071}
8072
abca5fc5 8073static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 8074{
36c8b586 8075 struct task_struct *p;
a4ec24b4 8076 unsigned int time_slice;
eb580751 8077 struct rq_flags rf;
dba091b9 8078 struct rq *rq;
3a5c359a 8079 int retval;
1da177e4
LT
8080
8081 if (pid < 0)
3a5c359a 8082 return -EINVAL;
1da177e4
LT
8083
8084 retval = -ESRCH;
1a551ae7 8085 rcu_read_lock();
1da177e4
LT
8086 p = find_process_by_pid(pid);
8087 if (!p)
8088 goto out_unlock;
8089
8090 retval = security_task_getscheduler(p);
8091 if (retval)
8092 goto out_unlock;
8093
eb580751 8094 rq = task_rq_lock(p, &rf);
a57beec5
PZ
8095 time_slice = 0;
8096 if (p->sched_class->get_rr_interval)
8097 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 8098 task_rq_unlock(rq, p, &rf);
a4ec24b4 8099
1a551ae7 8100 rcu_read_unlock();
abca5fc5
AV
8101 jiffies_to_timespec64(time_slice, t);
8102 return 0;
3a5c359a 8103
1da177e4 8104out_unlock:
1a551ae7 8105 rcu_read_unlock();
1da177e4
LT
8106 return retval;
8107}
8108
2064a5ab
RD
8109/**
8110 * sys_sched_rr_get_interval - return the default timeslice of a process.
8111 * @pid: pid of the process.
8112 * @interval: userspace pointer to the timeslice value.
8113 *
8114 * this syscall writes the default timeslice value of a given process
8115 * into the user-space timespec buffer. A value of '0' means infinity.
8116 *
8117 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8118 * an error code.
8119 */
abca5fc5 8120SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 8121 struct __kernel_timespec __user *, interval)
abca5fc5
AV
8122{
8123 struct timespec64 t;
8124 int retval = sched_rr_get_interval(pid, &t);
8125
8126 if (retval == 0)
8127 retval = put_timespec64(&t, interval);
8128
8129 return retval;
8130}
8131
474b9c77 8132#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
8133SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8134 struct old_timespec32 __user *, interval)
abca5fc5
AV
8135{
8136 struct timespec64 t;
8137 int retval = sched_rr_get_interval(pid, &t);
8138
8139 if (retval == 0)
9afc5eee 8140 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
8141 return retval;
8142}
8143#endif
8144
82a1fcb9 8145void sched_show_task(struct task_struct *p)
1da177e4 8146{
1da177e4 8147 unsigned long free = 0;
4e79752c 8148 int ppid;
c930b2c0 8149
38200502
TH
8150 if (!try_get_task_stack(p))
8151 return;
20435d84 8152
cc172ff3 8153 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84 8154
b03fbd4f 8155 if (task_is_running(p))
cc172ff3 8156 pr_cont(" running task ");
1da177e4 8157#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 8158 free = stack_not_used(p);
1da177e4 8159#endif
a90e984c 8160 ppid = 0;
4e79752c 8161 rcu_read_lock();
a90e984c
ON
8162 if (pid_alive(p))
8163 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 8164 rcu_read_unlock();
cc172ff3
LZ
8165 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8166 free, task_pid_nr(p), ppid,
aa47b7e0 8167 (unsigned long)task_thread_info(p)->flags);
1da177e4 8168
3d1cb205 8169 print_worker_info(KERN_INFO, p);
a8b62fd0 8170 print_stop_info(KERN_INFO, p);
9cb8f069 8171 show_stack(p, NULL, KERN_INFO);
38200502 8172 put_task_stack(p);
1da177e4 8173}
0032f4e8 8174EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 8175
5d68cc95
PZ
8176static inline bool
8177state_filter_match(unsigned long state_filter, struct task_struct *p)
8178{
8179 /* no filter, everything matches */
8180 if (!state_filter)
8181 return true;
8182
8183 /* filter, but doesn't match */
8184 if (!(p->state & state_filter))
8185 return false;
8186
8187 /*
8188 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8189 * TASK_KILLABLE).
8190 */
8191 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
8192 return false;
8193
8194 return true;
8195}
8196
8197
e59e2ae2 8198void show_state_filter(unsigned long state_filter)
1da177e4 8199{
36c8b586 8200 struct task_struct *g, *p;
1da177e4 8201
510f5acc 8202 rcu_read_lock();
5d07f420 8203 for_each_process_thread(g, p) {
1da177e4
LT
8204 /*
8205 * reset the NMI-timeout, listing all files on a slow
25985edc 8206 * console might take a lot of time:
57675cb9
AR
8207 * Also, reset softlockup watchdogs on all CPUs, because
8208 * another CPU might be blocked waiting for us to process
8209 * an IPI.
1da177e4
LT
8210 */
8211 touch_nmi_watchdog();
57675cb9 8212 touch_all_softlockup_watchdogs();
5d68cc95 8213 if (state_filter_match(state_filter, p))
82a1fcb9 8214 sched_show_task(p);
5d07f420 8215 }
1da177e4 8216
dd41f596 8217#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
8218 if (!state_filter)
8219 sysrq_sched_debug_show();
dd41f596 8220#endif
510f5acc 8221 rcu_read_unlock();
e59e2ae2
IM
8222 /*
8223 * Only show locks if all tasks are dumped:
8224 */
93335a21 8225 if (!state_filter)
e59e2ae2 8226 debug_show_all_locks();
1da177e4
LT
8227}
8228
f340c0d1
IM
8229/**
8230 * init_idle - set up an idle thread for a given CPU
8231 * @idle: task in question
d1ccc66d 8232 * @cpu: CPU the idle task belongs to
f340c0d1
IM
8233 *
8234 * NOTE: this function does not set the idle thread's NEED_RESCHED
8235 * flag, to make booting more robust.
8236 */
f1a0a376 8237void __init init_idle(struct task_struct *idle, int cpu)
1da177e4 8238{
70b97a7f 8239 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
8240 unsigned long flags;
8241
ff51ff84
PZ
8242 __sched_fork(0, idle);
8243
00b89fe0
VS
8244 /*
8245 * The idle task doesn't need the kthread struct to function, but it
8246 * is dressed up as a per-CPU kthread and thus needs to play the part
8247 * if we want to avoid special-casing it in code that deals with per-CPU
8248 * kthreads.
8249 */
8250 set_kthread_struct(idle);
8251
25834c73 8252 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5cb9eaa3 8253 raw_spin_rq_lock(rq);
5cbd54ef 8254
06b83b5f 8255 idle->state = TASK_RUNNING;
dd41f596 8256 idle->se.exec_start = sched_clock();
00b89fe0
VS
8257 /*
8258 * PF_KTHREAD should already be set at this point; regardless, make it
8259 * look like a proper per-CPU kthread.
8260 */
8261 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8262 kthread_set_per_cpu(idle, cpu);
dd41f596 8263
d08b9f0c 8264 scs_task_reset(idle);
e1b77c92
MR
8265 kasan_unpoison_task_stack(idle);
8266
de9b8f5d
PZ
8267#ifdef CONFIG_SMP
8268 /*
b19a888c 8269 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
8270 * in that case do_set_cpus_allowed() will not do the right thing.
8271 *
8272 * And since this is boot we can forgo the serialization.
8273 */
9cfc3e18 8274 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 8275#endif
6506cf6c
PZ
8276 /*
8277 * We're having a chicken and egg problem, even though we are
d1ccc66d 8278 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
8279 * lockdep check in task_group() will fail.
8280 *
8281 * Similar case to sched_fork(). / Alternatively we could
8282 * use task_rq_lock() here and obtain the other rq->lock.
8283 *
8284 * Silence PROVE_RCU
8285 */
8286 rcu_read_lock();
dd41f596 8287 __set_task_cpu(idle, cpu);
6506cf6c 8288 rcu_read_unlock();
1da177e4 8289
5311a98f
EB
8290 rq->idle = idle;
8291 rcu_assign_pointer(rq->curr, idle);
da0c1e65 8292 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 8293#ifdef CONFIG_SMP
3ca7a440 8294 idle->on_cpu = 1;
4866cde0 8295#endif
5cb9eaa3 8296 raw_spin_rq_unlock(rq);
25834c73 8297 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
8298
8299 /* Set the preempt count _outside_ the spinlocks! */
01028747 8300 init_idle_preempt_count(idle, cpu);
55cd5340 8301
dd41f596
IM
8302 /*
8303 * The idle tasks have their own, simple scheduling class:
8304 */
8305 idle->sched_class = &idle_sched_class;
868baf07 8306 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 8307 vtime_init_idle(idle, cpu);
de9b8f5d 8308#ifdef CONFIG_SMP
f1c6f1a7
CE
8309 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8310#endif
19978ca6
IM
8311}
8312
e1d4eeec
NP
8313#ifdef CONFIG_SMP
8314
f82f8042
JL
8315int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8316 const struct cpumask *trial)
8317{
06a76fe0 8318 int ret = 1;
f82f8042 8319
bb2bc55a
MG
8320 if (!cpumask_weight(cur))
8321 return ret;
8322
06a76fe0 8323 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
8324
8325 return ret;
8326}
8327
7f51412a
JL
8328int task_can_attach(struct task_struct *p,
8329 const struct cpumask *cs_cpus_allowed)
8330{
8331 int ret = 0;
8332
8333 /*
8334 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 8335 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
8336 * affinity and isolating such threads by their set of
8337 * allowed nodes is unnecessary. Thus, cpusets are not
8338 * applicable for such threads. This prevents checking for
8339 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 8340 * before cpus_mask may be changed.
7f51412a
JL
8341 */
8342 if (p->flags & PF_NO_SETAFFINITY) {
8343 ret = -EINVAL;
8344 goto out;
8345 }
8346
7f51412a 8347 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
8348 cs_cpus_allowed))
8349 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 8350
7f51412a
JL
8351out:
8352 return ret;
8353}
8354
f2cb1360 8355bool sched_smp_initialized __read_mostly;
e26fbffd 8356
e6628d5b
MG
8357#ifdef CONFIG_NUMA_BALANCING
8358/* Migrate current task p to target_cpu */
8359int migrate_task_to(struct task_struct *p, int target_cpu)
8360{
8361 struct migration_arg arg = { p, target_cpu };
8362 int curr_cpu = task_cpu(p);
8363
8364 if (curr_cpu == target_cpu)
8365 return 0;
8366
3bd37062 8367 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
8368 return -EINVAL;
8369
8370 /* TODO: This is not properly updating schedstats */
8371
286549dc 8372 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
8373 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8374}
0ec8aa00
PZ
8375
8376/*
8377 * Requeue a task on a given node and accurately track the number of NUMA
8378 * tasks on the runqueues
8379 */
8380void sched_setnuma(struct task_struct *p, int nid)
8381{
da0c1e65 8382 bool queued, running;
eb580751
PZ
8383 struct rq_flags rf;
8384 struct rq *rq;
0ec8aa00 8385
eb580751 8386 rq = task_rq_lock(p, &rf);
da0c1e65 8387 queued = task_on_rq_queued(p);
0ec8aa00
PZ
8388 running = task_current(rq, p);
8389
da0c1e65 8390 if (queued)
1de64443 8391 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 8392 if (running)
f3cd1c4e 8393 put_prev_task(rq, p);
0ec8aa00
PZ
8394
8395 p->numa_preferred_nid = nid;
0ec8aa00 8396
da0c1e65 8397 if (queued)
7134b3e9 8398 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 8399 if (running)
03b7fad1 8400 set_next_task(rq, p);
eb580751 8401 task_rq_unlock(rq, p, &rf);
0ec8aa00 8402}
5cc389bc 8403#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 8404
1da177e4 8405#ifdef CONFIG_HOTPLUG_CPU
054b9108 8406/*
d1ccc66d 8407 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 8408 * offline.
054b9108 8409 */
48c5ccae 8410void idle_task_exit(void)
1da177e4 8411{
48c5ccae 8412 struct mm_struct *mm = current->active_mm;
e76bd8d9 8413
48c5ccae 8414 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 8415 BUG_ON(current != this_rq()->idle);
e76bd8d9 8416
a53efe5f 8417 if (mm != &init_mm) {
252d2a41 8418 switch_mm(mm, &init_mm, current);
a53efe5f
MS
8419 finish_arch_post_lock_switch();
8420 }
bf2c59fc
PZ
8421
8422 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
8423}
8424
2558aacf 8425static int __balance_push_cpu_stop(void *arg)
1da177e4 8426{
2558aacf
PZ
8427 struct task_struct *p = arg;
8428 struct rq *rq = this_rq();
8429 struct rq_flags rf;
8430 int cpu;
1da177e4 8431
2558aacf
PZ
8432 raw_spin_lock_irq(&p->pi_lock);
8433 rq_lock(rq, &rf);
3f1d2a31 8434
2558aacf
PZ
8435 update_rq_clock(rq);
8436
8437 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8438 cpu = select_fallback_rq(rq->cpu, p);
8439 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 8440 }
3f1d2a31 8441
2558aacf
PZ
8442 rq_unlock(rq, &rf);
8443 raw_spin_unlock_irq(&p->pi_lock);
8444
8445 put_task_struct(p);
8446
8447 return 0;
10e7071b 8448}
3f1d2a31 8449
2558aacf
PZ
8450static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8451
48f24c4d 8452/*
2558aacf 8453 * Ensure we only run per-cpu kthreads once the CPU goes !active.
b5c44773
PZ
8454 *
8455 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8456 * effective when the hotplug motion is down.
1da177e4 8457 */
2558aacf 8458static void balance_push(struct rq *rq)
1da177e4 8459{
2558aacf
PZ
8460 struct task_struct *push_task = rq->curr;
8461
5cb9eaa3 8462 lockdep_assert_rq_held(rq);
2558aacf 8463 SCHED_WARN_ON(rq->cpu != smp_processor_id());
b5c44773 8464
ae792702
PZ
8465 /*
8466 * Ensure the thing is persistent until balance_push_set(.on = false);
8467 */
8468 rq->balance_callback = &balance_push_callback;
1da177e4 8469
b5c44773
PZ
8470 /*
8471 * Only active while going offline.
8472 */
8473 if (!cpu_dying(rq->cpu))
8474 return;
8475
1da177e4 8476 /*
2558aacf
PZ
8477 * Both the cpu-hotplug and stop task are in this case and are
8478 * required to complete the hotplug process.
1da177e4 8479 */
00b89fe0 8480 if (kthread_is_per_cpu(push_task) ||
5ba2ffba
PZ
8481 is_migration_disabled(push_task)) {
8482
f2469a1f
TG
8483 /*
8484 * If this is the idle task on the outgoing CPU try to wake
8485 * up the hotplug control thread which might wait for the
8486 * last task to vanish. The rcuwait_active() check is
8487 * accurate here because the waiter is pinned on this CPU
8488 * and can't obviously be running in parallel.
3015ef4b
TG
8489 *
8490 * On RT kernels this also has to check whether there are
8491 * pinned and scheduled out tasks on the runqueue. They
8492 * need to leave the migrate disabled section first.
f2469a1f 8493 */
3015ef4b
TG
8494 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8495 rcuwait_active(&rq->hotplug_wait)) {
5cb9eaa3 8496 raw_spin_rq_unlock(rq);
f2469a1f 8497 rcuwait_wake_up(&rq->hotplug_wait);
5cb9eaa3 8498 raw_spin_rq_lock(rq);
f2469a1f 8499 }
2558aacf 8500 return;
f2469a1f 8501 }
48f24c4d 8502
2558aacf 8503 get_task_struct(push_task);
77bd3970 8504 /*
2558aacf
PZ
8505 * Temporarily drop rq->lock such that we can wake-up the stop task.
8506 * Both preemption and IRQs are still disabled.
77bd3970 8507 */
5cb9eaa3 8508 raw_spin_rq_unlock(rq);
2558aacf
PZ
8509 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8510 this_cpu_ptr(&push_work));
8511 /*
8512 * At this point need_resched() is true and we'll take the loop in
8513 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 8514 * which kthread_is_per_cpu() and will push this task away.
2558aacf 8515 */
5cb9eaa3 8516 raw_spin_rq_lock(rq);
2558aacf 8517}
77bd3970 8518
2558aacf
PZ
8519static void balance_push_set(int cpu, bool on)
8520{
8521 struct rq *rq = cpu_rq(cpu);
8522 struct rq_flags rf;
48c5ccae 8523
2558aacf 8524 rq_lock_irqsave(rq, &rf);
22f667c9
PZ
8525 if (on) {
8526 WARN_ON_ONCE(rq->balance_callback);
ae792702 8527 rq->balance_callback = &balance_push_callback;
22f667c9 8528 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 8529 rq->balance_callback = NULL;
22f667c9 8530 }
2558aacf
PZ
8531 rq_unlock_irqrestore(rq, &rf);
8532}
e692ab53 8533
f2469a1f
TG
8534/*
8535 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8536 * inactive. All tasks which are not per CPU kernel threads are either
8537 * pushed off this CPU now via balance_push() or placed on a different CPU
8538 * during wakeup. Wait until the CPU is quiescent.
8539 */
8540static void balance_hotplug_wait(void)
8541{
8542 struct rq *rq = this_rq();
5473e0cc 8543
3015ef4b
TG
8544 rcuwait_wait_event(&rq->hotplug_wait,
8545 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
8546 TASK_UNINTERRUPTIBLE);
8547}
5473e0cc 8548
2558aacf 8549#else
dce48a84 8550
2558aacf
PZ
8551static inline void balance_push(struct rq *rq)
8552{
dce48a84 8553}
dce48a84 8554
2558aacf
PZ
8555static inline void balance_push_set(int cpu, bool on)
8556{
8557}
8558
f2469a1f
TG
8559static inline void balance_hotplug_wait(void)
8560{
dce48a84 8561}
f2469a1f 8562
1da177e4
LT
8563#endif /* CONFIG_HOTPLUG_CPU */
8564
f2cb1360 8565void set_rq_online(struct rq *rq)
1f11eb6a
GH
8566{
8567 if (!rq->online) {
8568 const struct sched_class *class;
8569
c6c4927b 8570 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8571 rq->online = 1;
8572
8573 for_each_class(class) {
8574 if (class->rq_online)
8575 class->rq_online(rq);
8576 }
8577 }
8578}
8579
f2cb1360 8580void set_rq_offline(struct rq *rq)
1f11eb6a
GH
8581{
8582 if (rq->online) {
8583 const struct sched_class *class;
8584
8585 for_each_class(class) {
8586 if (class->rq_offline)
8587 class->rq_offline(rq);
8588 }
8589
c6c4927b 8590 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8591 rq->online = 0;
8592 }
8593}
8594
d1ccc66d
IM
8595/*
8596 * used to mark begin/end of suspend/resume:
8597 */
8598static int num_cpus_frozen;
d35be8ba 8599
1da177e4 8600/*
3a101d05
TH
8601 * Update cpusets according to cpu_active mask. If cpusets are
8602 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8603 * around partition_sched_domains().
d35be8ba
SB
8604 *
8605 * If we come here as part of a suspend/resume, don't touch cpusets because we
8606 * want to restore it back to its original state upon resume anyway.
1da177e4 8607 */
40190a78 8608static void cpuset_cpu_active(void)
e761b772 8609{
40190a78 8610 if (cpuhp_tasks_frozen) {
d35be8ba
SB
8611 /*
8612 * num_cpus_frozen tracks how many CPUs are involved in suspend
8613 * resume sequence. As long as this is not the last online
8614 * operation in the resume sequence, just build a single sched
8615 * domain, ignoring cpusets.
8616 */
50e76632
PZ
8617 partition_sched_domains(1, NULL, NULL);
8618 if (--num_cpus_frozen)
135fb3e1 8619 return;
d35be8ba
SB
8620 /*
8621 * This is the last CPU online operation. So fall through and
8622 * restore the original sched domains by considering the
8623 * cpuset configurations.
8624 */
50e76632 8625 cpuset_force_rebuild();
3a101d05 8626 }
30e03acd 8627 cpuset_update_active_cpus();
3a101d05 8628}
e761b772 8629
40190a78 8630static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 8631{
40190a78 8632 if (!cpuhp_tasks_frozen) {
06a76fe0 8633 if (dl_cpu_busy(cpu))
135fb3e1 8634 return -EBUSY;
30e03acd 8635 cpuset_update_active_cpus();
135fb3e1 8636 } else {
d35be8ba
SB
8637 num_cpus_frozen++;
8638 partition_sched_domains(1, NULL, NULL);
e761b772 8639 }
135fb3e1 8640 return 0;
e761b772 8641}
e761b772 8642
40190a78 8643int sched_cpu_activate(unsigned int cpu)
135fb3e1 8644{
7d976699 8645 struct rq *rq = cpu_rq(cpu);
8a8c69c3 8646 struct rq_flags rf;
7d976699 8647
22f667c9 8648 /*
b5c44773
PZ
8649 * Clear the balance_push callback and prepare to schedule
8650 * regular tasks.
22f667c9 8651 */
2558aacf
PZ
8652 balance_push_set(cpu, false);
8653
ba2591a5
PZ
8654#ifdef CONFIG_SCHED_SMT
8655 /*
c5511d03 8656 * When going up, increment the number of cores with SMT present.
ba2591a5 8657 */
c5511d03
PZI
8658 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8659 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 8660#endif
40190a78 8661 set_cpu_active(cpu, true);
135fb3e1 8662
40190a78 8663 if (sched_smp_initialized) {
135fb3e1 8664 sched_domains_numa_masks_set(cpu);
40190a78 8665 cpuset_cpu_active();
e761b772 8666 }
7d976699
TG
8667
8668 /*
8669 * Put the rq online, if not already. This happens:
8670 *
8671 * 1) In the early boot process, because we build the real domains
d1ccc66d 8672 * after all CPUs have been brought up.
7d976699
TG
8673 *
8674 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8675 * domains.
8676 */
8a8c69c3 8677 rq_lock_irqsave(rq, &rf);
7d976699
TG
8678 if (rq->rd) {
8679 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8680 set_rq_online(rq);
8681 }
8a8c69c3 8682 rq_unlock_irqrestore(rq, &rf);
7d976699 8683
40190a78 8684 return 0;
135fb3e1
TG
8685}
8686
40190a78 8687int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 8688{
120455c5
PZ
8689 struct rq *rq = cpu_rq(cpu);
8690 struct rq_flags rf;
135fb3e1
TG
8691 int ret;
8692
e0b257c3
AMB
8693 /*
8694 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8695 * load balancing when not active
8696 */
8697 nohz_balance_exit_idle(rq);
8698
40190a78 8699 set_cpu_active(cpu, false);
741ba80f
PZ
8700
8701 /*
8702 * From this point forward, this CPU will refuse to run any task that
8703 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8704 * push those tasks away until this gets cleared, see
8705 * sched_cpu_dying().
8706 */
975707f2
PZ
8707 balance_push_set(cpu, true);
8708
b2454caa 8709 /*
975707f2
PZ
8710 * We've cleared cpu_active_mask / set balance_push, wait for all
8711 * preempt-disabled and RCU users of this state to go away such that
8712 * all new such users will observe it.
b2454caa 8713 *
5ba2ffba
PZ
8714 * Specifically, we rely on ttwu to no longer target this CPU, see
8715 * ttwu_queue_cond() and is_cpu_allowed().
8716 *
b2454caa
PZ
8717 * Do sync before park smpboot threads to take care the rcu boost case.
8718 */
309ba859 8719 synchronize_rcu();
40190a78 8720
120455c5
PZ
8721 rq_lock_irqsave(rq, &rf);
8722 if (rq->rd) {
8723 update_rq_clock(rq);
8724 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8725 set_rq_offline(rq);
8726 }
8727 rq_unlock_irqrestore(rq, &rf);
8728
c5511d03
PZI
8729#ifdef CONFIG_SCHED_SMT
8730 /*
8731 * When going down, decrement the number of cores with SMT present.
8732 */
8733 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8734 static_branch_dec_cpuslocked(&sched_smt_present);
8735#endif
8736
40190a78
TG
8737 if (!sched_smp_initialized)
8738 return 0;
8739
8740 ret = cpuset_cpu_inactive(cpu);
8741 if (ret) {
2558aacf 8742 balance_push_set(cpu, false);
40190a78
TG
8743 set_cpu_active(cpu, true);
8744 return ret;
135fb3e1 8745 }
40190a78
TG
8746 sched_domains_numa_masks_clear(cpu);
8747 return 0;
135fb3e1
TG
8748}
8749
94baf7a5
TG
8750static void sched_rq_cpu_starting(unsigned int cpu)
8751{
8752 struct rq *rq = cpu_rq(cpu);
8753
8754 rq->calc_load_update = calc_load_update;
94baf7a5
TG
8755 update_max_interval();
8756}
8757
135fb3e1
TG
8758int sched_cpu_starting(unsigned int cpu)
8759{
9edeaea1 8760 sched_core_cpu_starting(cpu);
94baf7a5 8761 sched_rq_cpu_starting(cpu);
d84b3131 8762 sched_tick_start(cpu);
135fb3e1 8763 return 0;
e761b772 8764}
e761b772 8765
f2785ddb 8766#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
8767
8768/*
8769 * Invoked immediately before the stopper thread is invoked to bring the
8770 * CPU down completely. At this point all per CPU kthreads except the
8771 * hotplug thread (current) and the stopper thread (inactive) have been
8772 * either parked or have been unbound from the outgoing CPU. Ensure that
8773 * any of those which might be on the way out are gone.
8774 *
8775 * If after this point a bound task is being woken on this CPU then the
8776 * responsible hotplug callback has failed to do it's job.
8777 * sched_cpu_dying() will catch it with the appropriate fireworks.
8778 */
8779int sched_cpu_wait_empty(unsigned int cpu)
8780{
8781 balance_hotplug_wait();
8782 return 0;
8783}
8784
8785/*
8786 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8787 * might have. Called from the CPU stopper task after ensuring that the
8788 * stopper is the last running task on the CPU, so nr_active count is
8789 * stable. We need to take the teardown thread which is calling this into
8790 * account, so we hand in adjust = 1 to the load calculation.
8791 *
8792 * Also see the comment "Global load-average calculations".
8793 */
8794static void calc_load_migrate(struct rq *rq)
8795{
8796 long delta = calc_load_fold_active(rq, 1);
8797
8798 if (delta)
8799 atomic_long_add(delta, &calc_load_tasks);
8800}
8801
36c6e17b
VS
8802static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8803{
8804 struct task_struct *g, *p;
8805 int cpu = cpu_of(rq);
8806
5cb9eaa3 8807 lockdep_assert_rq_held(rq);
36c6e17b
VS
8808
8809 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8810 for_each_process_thread(g, p) {
8811 if (task_cpu(p) != cpu)
8812 continue;
8813
8814 if (!task_on_rq_queued(p))
8815 continue;
8816
8817 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8818 }
8819}
8820
f2785ddb
TG
8821int sched_cpu_dying(unsigned int cpu)
8822{
8823 struct rq *rq = cpu_rq(cpu);
8a8c69c3 8824 struct rq_flags rf;
f2785ddb
TG
8825
8826 /* Handle pending wakeups and then migrate everything off */
d84b3131 8827 sched_tick_stop(cpu);
8a8c69c3
PZ
8828
8829 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
8830 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8831 WARN(true, "Dying CPU not properly vacated!");
8832 dump_rq_tasks(rq, KERN_WARNING);
8833 }
8a8c69c3
PZ
8834 rq_unlock_irqrestore(rq, &rf);
8835
f2785ddb
TG
8836 calc_load_migrate(rq);
8837 update_max_interval();
e5ef27d0 8838 hrtick_clear(rq);
f2785ddb
TG
8839 return 0;
8840}
8841#endif
8842
1da177e4
LT
8843void __init sched_init_smp(void)
8844{
cb83b629
PZ
8845 sched_init_numa();
8846
6acce3ef
PZ
8847 /*
8848 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 8849 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 8850 * happen.
6acce3ef 8851 */
712555ee 8852 mutex_lock(&sched_domains_mutex);
8d5dc512 8853 sched_init_domains(cpu_active_mask);
712555ee 8854 mutex_unlock(&sched_domains_mutex);
e761b772 8855
5c1e1767 8856 /* Move init over to a non-isolated CPU */
edb93821 8857 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 8858 BUG();
15faafc6 8859 current->flags &= ~PF_NO_SETAFFINITY;
19978ca6 8860 sched_init_granularity();
4212823f 8861
0e3900e6 8862 init_sched_rt_class();
1baca4ce 8863 init_sched_dl_class();
1b568f0a 8864
e26fbffd 8865 sched_smp_initialized = true;
1da177e4 8866}
e26fbffd
TG
8867
8868static int __init migration_init(void)
8869{
77a5352b 8870 sched_cpu_starting(smp_processor_id());
e26fbffd 8871 return 0;
1da177e4 8872}
e26fbffd
TG
8873early_initcall(migration_init);
8874
1da177e4
LT
8875#else
8876void __init sched_init_smp(void)
8877{
19978ca6 8878 sched_init_granularity();
1da177e4
LT
8879}
8880#endif /* CONFIG_SMP */
8881
8882int in_sched_functions(unsigned long addr)
8883{
1da177e4
LT
8884 return in_lock_functions(addr) ||
8885 (addr >= (unsigned long)__sched_text_start
8886 && addr < (unsigned long)__sched_text_end);
8887}
8888
029632fb 8889#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
8890/*
8891 * Default task group.
8892 * Every task in system belongs to this group at bootup.
8893 */
029632fb 8894struct task_group root_task_group;
35cf4e50 8895LIST_HEAD(task_groups);
b0367629
WL
8896
8897/* Cacheline aligned slab cache for task_group */
8898static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 8899#endif
6f505b16 8900
e6252c3e 8901DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 8902DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 8903
1da177e4
LT
8904void __init sched_init(void)
8905{
a1dc0446 8906 unsigned long ptr = 0;
55627e3c 8907 int i;
434d53b0 8908
c3a340f7
SRV
8909 /* Make sure the linker didn't screw up */
8910 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8911 &fair_sched_class + 1 != &rt_sched_class ||
8912 &rt_sched_class + 1 != &dl_sched_class);
8913#ifdef CONFIG_SMP
8914 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8915#endif
8916
5822a454 8917 wait_bit_init();
9dcb8b68 8918
434d53b0 8919#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 8920 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
8921#endif
8922#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 8923 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 8924#endif
a1dc0446
QC
8925 if (ptr) {
8926 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
8927
8928#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8929 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8930 ptr += nr_cpu_ids * sizeof(void **);
8931
07e06b01 8932 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8933 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8934
b1d1779e
WY
8935 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8936 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 8937#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8938#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8939 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8940 ptr += nr_cpu_ids * sizeof(void **);
8941
07e06b01 8942 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8943 ptr += nr_cpu_ids * sizeof(void **);
8944
6d6bc0ad 8945#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 8946 }
df7c8e84 8947#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
8948 for_each_possible_cpu(i) {
8949 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8950 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
8951 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8952 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 8953 }
b74e6278 8954#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 8955
d1ccc66d
IM
8956 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8957 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 8958
57d885fe
GH
8959#ifdef CONFIG_SMP
8960 init_defrootdomain();
8961#endif
8962
d0b27fa7 8963#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8964 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8965 global_rt_period(), global_rt_runtime());
6d6bc0ad 8966#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8967
7c941438 8968#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
8969 task_group_cache = KMEM_CACHE(task_group, 0);
8970
07e06b01
YZ
8971 list_add(&root_task_group.list, &task_groups);
8972 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 8973 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 8974 autogroup_init(&init_task);
7c941438 8975#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8976
0a945022 8977 for_each_possible_cpu(i) {
70b97a7f 8978 struct rq *rq;
1da177e4
LT
8979
8980 rq = cpu_rq(i);
5cb9eaa3 8981 raw_spin_lock_init(&rq->__lock);
7897986b 8982 rq->nr_running = 0;
dce48a84
TG
8983 rq->calc_load_active = 0;
8984 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8985 init_cfs_rq(&rq->cfs);
07c54f7a
AV
8986 init_rt_rq(&rq->rt);
8987 init_dl_rq(&rq->dl);
dd41f596 8988#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 8989 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 8990 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 8991 /*
d1ccc66d 8992 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
8993 *
8994 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
8995 * gets 100% of the CPU resources in the system. This overall
8996 * system CPU resource is divided among the tasks of
07e06b01 8997 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8998 * based on each entity's (task or task-group's) weight
8999 * (se->load.weight).
9000 *
07e06b01 9001 * In other words, if root_task_group has 10 tasks of weight
354d60c2 9002 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 9003 * then A0's share of the CPU resource is:
354d60c2 9004 *
0d905bca 9005 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 9006 *
07e06b01
YZ
9007 * We achieve this by letting root_task_group's tasks sit
9008 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 9009 */
07e06b01 9010 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
9011#endif /* CONFIG_FAIR_GROUP_SCHED */
9012
9013 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9014#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9015 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 9016#endif
1da177e4 9017#ifdef CONFIG_SMP
41c7ce9a 9018 rq->sd = NULL;
57d885fe 9019 rq->rd = NULL;
ca6d75e6 9020 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
b5c44773 9021 rq->balance_callback = &balance_push_callback;
1da177e4 9022 rq->active_balance = 0;
dd41f596 9023 rq->next_balance = jiffies;
1da177e4 9024 rq->push_cpu = 0;
0a2966b4 9025 rq->cpu = i;
1f11eb6a 9026 rq->online = 0;
eae0c9df
MG
9027 rq->idle_stamp = 0;
9028 rq->avg_idle = 2*sysctl_sched_migration_cost;
94aafc3e
PZ
9029 rq->wake_stamp = jiffies;
9030 rq->wake_avg_idle = rq->avg_idle;
9bd721c5 9031 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
9032
9033 INIT_LIST_HEAD(&rq->cfs_tasks);
9034
dc938520 9035 rq_attach_root(rq, &def_root_domain);
3451d024 9036#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 9037 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 9038 atomic_set(&rq->nohz_flags, 0);
90b5363a 9039
545b8c8d 9040 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 9041#endif
f2469a1f
TG
9042#ifdef CONFIG_HOTPLUG_CPU
9043 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 9044#endif
9fd81dd5 9045#endif /* CONFIG_SMP */
77a021be 9046 hrtick_rq_init(rq);
1da177e4 9047 atomic_set(&rq->nr_iowait, 0);
9edeaea1
PZ
9048
9049#ifdef CONFIG_SCHED_CORE
9050 rq->core = NULL;
539f6512 9051 rq->core_pick = NULL;
9edeaea1 9052 rq->core_enabled = 0;
539f6512
PZ
9053 rq->core_tree = RB_ROOT;
9054 rq->core_forceidle = false;
9055
9056 rq->core_cookie = 0UL;
9edeaea1 9057#endif
1da177e4
LT
9058 }
9059
9059393e 9060 set_load_weight(&init_task, false);
b50f60ce 9061
1da177e4
LT
9062 /*
9063 * The boot idle thread does lazy MMU switching as well:
9064 */
f1f10076 9065 mmgrab(&init_mm);
1da177e4
LT
9066 enter_lazy_tlb(&init_mm, current);
9067
9068 /*
9069 * Make us the idle thread. Technically, schedule() should not be
9070 * called from this thread, however somewhere below it might be,
9071 * but because we are the idle thread, we just pick up running again
9072 * when this runqueue becomes "idle".
9073 */
9074 init_idle(current, smp_processor_id());
dce48a84
TG
9075
9076 calc_load_update = jiffies + LOAD_FREQ;
9077
bf4d83f6 9078#ifdef CONFIG_SMP
29d5e047 9079 idle_thread_set_boot_cpu();
b5c44773 9080 balance_push_set(smp_processor_id(), false);
029632fb
PZ
9081#endif
9082 init_sched_fair_class();
6a7b3dc3 9083
eb414681
JW
9084 psi_init();
9085
69842cba
PB
9086 init_uclamp();
9087
6892b75e 9088 scheduler_running = 1;
1da177e4
LT
9089}
9090
d902db1e 9091#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
9092static inline int preempt_count_equals(int preempt_offset)
9093{
da7142e2 9094 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 9095
4ba8216c 9096 return (nested == preempt_offset);
e4aafea2
FW
9097}
9098
d894837f 9099void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 9100{
8eb23b9f
PZ
9101 /*
9102 * Blocking primitives will set (and therefore destroy) current->state,
9103 * since we will exit with TASK_RUNNING make sure we enter with it,
9104 * otherwise we will destroy state.
9105 */
00845eb9 9106 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
9107 "do not call blocking ops when !TASK_RUNNING; "
9108 "state=%lx set at [<%p>] %pS\n",
9109 current->state,
9110 (void *)current->task_state_change,
00845eb9 9111 (void *)current->task_state_change);
8eb23b9f 9112
3427445a
PZ
9113 ___might_sleep(file, line, preempt_offset);
9114}
9115EXPORT_SYMBOL(__might_sleep);
9116
9117void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 9118{
d1ccc66d
IM
9119 /* Ratelimiting timestamp: */
9120 static unsigned long prev_jiffy;
9121
d1c6d149 9122 unsigned long preempt_disable_ip;
1da177e4 9123
d1ccc66d
IM
9124 /* WARN_ON_ONCE() by default, no rate limit required: */
9125 rcu_sleep_check();
9126
db273be2 9127 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 9128 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
9129 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9130 oops_in_progress)
aef745fc 9131 return;
1c3c5eab 9132
aef745fc
IM
9133 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9134 return;
9135 prev_jiffy = jiffies;
9136
d1ccc66d 9137 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
9138 preempt_disable_ip = get_preempt_disable_ip(current);
9139
3df0fc5b
PZ
9140 printk(KERN_ERR
9141 "BUG: sleeping function called from invalid context at %s:%d\n",
9142 file, line);
9143 printk(KERN_ERR
312364f3
DV
9144 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9145 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 9146 current->pid, current->comm);
aef745fc 9147
a8b686b3
ES
9148 if (task_stack_end_corrupted(current))
9149 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9150
aef745fc
IM
9151 debug_show_held_locks(current);
9152 if (irqs_disabled())
9153 print_irqtrace_events(current);
d1c6d149
VN
9154 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9155 && !preempt_count_equals(preempt_offset)) {
8f47b187 9156 pr_err("Preemption disabled at:");
2062a4e8 9157 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 9158 }
aef745fc 9159 dump_stack();
f0b22e39 9160 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 9161}
3427445a 9162EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
9163
9164void __cant_sleep(const char *file, int line, int preempt_offset)
9165{
9166 static unsigned long prev_jiffy;
9167
9168 if (irqs_disabled())
9169 return;
9170
9171 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9172 return;
9173
9174 if (preempt_count() > preempt_offset)
9175 return;
9176
9177 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9178 return;
9179 prev_jiffy = jiffies;
9180
9181 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9182 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9183 in_atomic(), irqs_disabled(),
9184 current->pid, current->comm);
9185
9186 debug_show_held_locks(current);
9187 dump_stack();
9188 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9189}
9190EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
9191
9192#ifdef CONFIG_SMP
9193void __cant_migrate(const char *file, int line)
9194{
9195 static unsigned long prev_jiffy;
9196
9197 if (irqs_disabled())
9198 return;
9199
9200 if (is_migration_disabled(current))
9201 return;
9202
9203 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9204 return;
9205
9206 if (preempt_count() > 0)
9207 return;
9208
9209 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9210 return;
9211 prev_jiffy = jiffies;
9212
9213 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9214 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9215 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9216 current->pid, current->comm);
9217
9218 debug_show_held_locks(current);
9219 dump_stack();
9220 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9221}
9222EXPORT_SYMBOL_GPL(__cant_migrate);
9223#endif
1da177e4
LT
9224#endif
9225
9226#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 9227void normalize_rt_tasks(void)
3a5e4dc1 9228{
dbc7f069 9229 struct task_struct *g, *p;
d50dde5a
DF
9230 struct sched_attr attr = {
9231 .sched_policy = SCHED_NORMAL,
9232 };
1da177e4 9233
3472eaa1 9234 read_lock(&tasklist_lock);
5d07f420 9235 for_each_process_thread(g, p) {
178be793
IM
9236 /*
9237 * Only normalize user tasks:
9238 */
3472eaa1 9239 if (p->flags & PF_KTHREAD)
178be793
IM
9240 continue;
9241
4fa8d299
JP
9242 p->se.exec_start = 0;
9243 schedstat_set(p->se.statistics.wait_start, 0);
9244 schedstat_set(p->se.statistics.sleep_start, 0);
9245 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 9246
aab03e05 9247 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
9248 /*
9249 * Renice negative nice level userspace
9250 * tasks back to 0:
9251 */
3472eaa1 9252 if (task_nice(p) < 0)
dd41f596 9253 set_user_nice(p, 0);
1da177e4 9254 continue;
dd41f596 9255 }
1da177e4 9256
dbc7f069 9257 __sched_setscheduler(p, &attr, false, false);
5d07f420 9258 }
3472eaa1 9259 read_unlock(&tasklist_lock);
1da177e4
LT
9260}
9261
9262#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 9263
67fc4e0c 9264#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 9265/*
67fc4e0c 9266 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
9267 *
9268 * They can only be called when the whole system has been
9269 * stopped - every CPU needs to be quiescent, and no scheduling
9270 * activity can take place. Using them for anything else would
9271 * be a serious bug, and as a result, they aren't even visible
9272 * under any other configuration.
9273 */
9274
9275/**
d1ccc66d 9276 * curr_task - return the current task for a given CPU.
1df5c10a
LT
9277 * @cpu: the processor in question.
9278 *
9279 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
9280 *
9281 * Return: The current task for @cpu.
1df5c10a 9282 */
36c8b586 9283struct task_struct *curr_task(int cpu)
1df5c10a
LT
9284{
9285 return cpu_curr(cpu);
9286}
9287
67fc4e0c
JW
9288#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9289
9290#ifdef CONFIG_IA64
1df5c10a 9291/**
5feeb783 9292 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
9293 * @cpu: the processor in question.
9294 * @p: the task pointer to set.
9295 *
9296 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 9297 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 9298 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
9299 * must be called with all CPU's synchronized, and interrupts disabled, the
9300 * and caller must save the original value of the current task (see
9301 * curr_task() above) and restore that value before reenabling interrupts and
9302 * re-starting the system.
9303 *
9304 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9305 */
a458ae2e 9306void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9307{
9308 cpu_curr(cpu) = p;
9309}
9310
9311#endif
29f59db3 9312
7c941438 9313#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
9314/* task_group_lock serializes the addition/removal of task groups */
9315static DEFINE_SPINLOCK(task_group_lock);
9316
2480c093
PB
9317static inline void alloc_uclamp_sched_group(struct task_group *tg,
9318 struct task_group *parent)
9319{
9320#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 9321 enum uclamp_id clamp_id;
2480c093
PB
9322
9323 for_each_clamp_id(clamp_id) {
9324 uclamp_se_set(&tg->uclamp_req[clamp_id],
9325 uclamp_none(clamp_id), false);
0b60ba2d 9326 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
9327 }
9328#endif
9329}
9330
2f5177f0 9331static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
9332{
9333 free_fair_sched_group(tg);
9334 free_rt_sched_group(tg);
e9aa1dd1 9335 autogroup_free(tg);
b0367629 9336 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
9337}
9338
9339/* allocate runqueue etc for a new task group */
ec7dc8ac 9340struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9341{
9342 struct task_group *tg;
bccbe08a 9343
b0367629 9344 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
9345 if (!tg)
9346 return ERR_PTR(-ENOMEM);
9347
ec7dc8ac 9348 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9349 goto err;
9350
ec7dc8ac 9351 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9352 goto err;
9353
2480c093
PB
9354 alloc_uclamp_sched_group(tg, parent);
9355
ace783b9
LZ
9356 return tg;
9357
9358err:
2f5177f0 9359 sched_free_group(tg);
ace783b9
LZ
9360 return ERR_PTR(-ENOMEM);
9361}
9362
9363void sched_online_group(struct task_group *tg, struct task_group *parent)
9364{
9365 unsigned long flags;
9366
8ed36996 9367 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9368 list_add_rcu(&tg->list, &task_groups);
f473aa5e 9369
d1ccc66d
IM
9370 /* Root should already exist: */
9371 WARN_ON(!parent);
f473aa5e
PZ
9372
9373 tg->parent = parent;
f473aa5e 9374 INIT_LIST_HEAD(&tg->children);
09f2724a 9375 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9376 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
9377
9378 online_fair_sched_group(tg);
29f59db3
SV
9379}
9380
9b5b7751 9381/* rcu callback to free various structures associated with a task group */
2f5177f0 9382static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 9383{
d1ccc66d 9384 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 9385 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9386}
9387
4cf86d77 9388void sched_destroy_group(struct task_group *tg)
ace783b9 9389{
d1ccc66d 9390 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 9391 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
9392}
9393
9394void sched_offline_group(struct task_group *tg)
29f59db3 9395{
8ed36996 9396 unsigned long flags;
29f59db3 9397
d1ccc66d 9398 /* End participation in shares distribution: */
6fe1f348 9399 unregister_fair_sched_group(tg);
3d4b47b4
PZ
9400
9401 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9402 list_del_rcu(&tg->list);
f473aa5e 9403 list_del_rcu(&tg->siblings);
8ed36996 9404 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
9405}
9406
ea86cb4b 9407static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 9408{
8323f26c 9409 struct task_group *tg;
29f59db3 9410
f7b8a47d
KT
9411 /*
9412 * All callers are synchronized by task_rq_lock(); we do not use RCU
9413 * which is pointless here. Thus, we pass "true" to task_css_check()
9414 * to prevent lockdep warnings.
9415 */
9416 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
9417 struct task_group, css);
9418 tg = autogroup_task_group(tsk, tg);
9419 tsk->sched_task_group = tg;
9420
810b3817 9421#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9422 if (tsk->sched_class->task_change_group)
9423 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 9424 else
810b3817 9425#endif
b2b5ce02 9426 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
9427}
9428
9429/*
9430 * Change task's runqueue when it moves between groups.
9431 *
9432 * The caller of this function should have put the task in its new group by
9433 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9434 * its new group.
9435 */
9436void sched_move_task(struct task_struct *tsk)
9437{
7a57f32a
PZ
9438 int queued, running, queue_flags =
9439 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
9440 struct rq_flags rf;
9441 struct rq *rq;
9442
9443 rq = task_rq_lock(tsk, &rf);
1b1d6225 9444 update_rq_clock(rq);
ea86cb4b
VG
9445
9446 running = task_current(rq, tsk);
9447 queued = task_on_rq_queued(tsk);
9448
9449 if (queued)
7a57f32a 9450 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 9451 if (running)
ea86cb4b
VG
9452 put_prev_task(rq, tsk);
9453
9454 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 9455
da0c1e65 9456 if (queued)
7a57f32a 9457 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 9458 if (running) {
03b7fad1 9459 set_next_task(rq, tsk);
2a4b03ff
VG
9460 /*
9461 * After changing group, the running task may have joined a
9462 * throttled one but it's still the running task. Trigger a
9463 * resched to make sure that task can still run.
9464 */
9465 resched_curr(rq);
9466 }
29f59db3 9467
eb580751 9468 task_rq_unlock(rq, tsk, &rf);
29f59db3 9469}
68318b8e 9470
a7c6d554 9471static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 9472{
a7c6d554 9473 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
9474}
9475
eb95419b
TH
9476static struct cgroup_subsys_state *
9477cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 9478{
eb95419b
TH
9479 struct task_group *parent = css_tg(parent_css);
9480 struct task_group *tg;
68318b8e 9481
eb95419b 9482 if (!parent) {
68318b8e 9483 /* This is early initialization for the top cgroup */
07e06b01 9484 return &root_task_group.css;
68318b8e
SV
9485 }
9486
ec7dc8ac 9487 tg = sched_create_group(parent);
68318b8e
SV
9488 if (IS_ERR(tg))
9489 return ERR_PTR(-ENOMEM);
9490
68318b8e
SV
9491 return &tg->css;
9492}
9493
96b77745
KK
9494/* Expose task group only after completing cgroup initialization */
9495static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9496{
9497 struct task_group *tg = css_tg(css);
9498 struct task_group *parent = css_tg(css->parent);
9499
9500 if (parent)
9501 sched_online_group(tg, parent);
7226017a
QY
9502
9503#ifdef CONFIG_UCLAMP_TASK_GROUP
9504 /* Propagate the effective uclamp value for the new group */
93b73858
QY
9505 mutex_lock(&uclamp_mutex);
9506 rcu_read_lock();
7226017a 9507 cpu_util_update_eff(css);
93b73858
QY
9508 rcu_read_unlock();
9509 mutex_unlock(&uclamp_mutex);
7226017a
QY
9510#endif
9511
96b77745
KK
9512 return 0;
9513}
9514
2f5177f0 9515static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 9516{
eb95419b 9517 struct task_group *tg = css_tg(css);
ace783b9 9518
2f5177f0 9519 sched_offline_group(tg);
ace783b9
LZ
9520}
9521
eb95419b 9522static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 9523{
eb95419b 9524 struct task_group *tg = css_tg(css);
68318b8e 9525
2f5177f0
PZ
9526 /*
9527 * Relies on the RCU grace period between css_released() and this.
9528 */
9529 sched_free_group(tg);
ace783b9
LZ
9530}
9531
ea86cb4b
VG
9532/*
9533 * This is called before wake_up_new_task(), therefore we really only
9534 * have to set its group bits, all the other stuff does not apply.
9535 */
b53202e6 9536static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 9537{
ea86cb4b
VG
9538 struct rq_flags rf;
9539 struct rq *rq;
9540
9541 rq = task_rq_lock(task, &rf);
9542
80f5c1b8 9543 update_rq_clock(rq);
ea86cb4b
VG
9544 sched_change_group(task, TASK_SET_GROUP);
9545
9546 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
9547}
9548
1f7dd3e5 9549static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 9550{
bb9d97b6 9551 struct task_struct *task;
1f7dd3e5 9552 struct cgroup_subsys_state *css;
7dc603c9 9553 int ret = 0;
bb9d97b6 9554
1f7dd3e5 9555 cgroup_taskset_for_each(task, css, tset) {
b68aa230 9556#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 9557 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 9558 return -EINVAL;
b68aa230 9559#endif
7dc603c9 9560 /*
b19a888c 9561 * Serialize against wake_up_new_task() such that if it's
7dc603c9
PZ
9562 * running, we're sure to observe its full state.
9563 */
9564 raw_spin_lock_irq(&task->pi_lock);
9565 /*
9566 * Avoid calling sched_move_task() before wake_up_new_task()
9567 * has happened. This would lead to problems with PELT, due to
9568 * move wanting to detach+attach while we're not attached yet.
9569 */
9570 if (task->state == TASK_NEW)
9571 ret = -EINVAL;
9572 raw_spin_unlock_irq(&task->pi_lock);
9573
9574 if (ret)
9575 break;
bb9d97b6 9576 }
7dc603c9 9577 return ret;
be367d09 9578}
68318b8e 9579
1f7dd3e5 9580static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 9581{
bb9d97b6 9582 struct task_struct *task;
1f7dd3e5 9583 struct cgroup_subsys_state *css;
bb9d97b6 9584
1f7dd3e5 9585 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9586 sched_move_task(task);
68318b8e
SV
9587}
9588
2480c093 9589#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
9590static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9591{
9592 struct cgroup_subsys_state *top_css = css;
9593 struct uclamp_se *uc_parent = NULL;
9594 struct uclamp_se *uc_se = NULL;
9595 unsigned int eff[UCLAMP_CNT];
0413d7f3 9596 enum uclamp_id clamp_id;
0b60ba2d
PB
9597 unsigned int clamps;
9598
93b73858
QY
9599 lockdep_assert_held(&uclamp_mutex);
9600 SCHED_WARN_ON(!rcu_read_lock_held());
9601
0b60ba2d
PB
9602 css_for_each_descendant_pre(css, top_css) {
9603 uc_parent = css_tg(css)->parent
9604 ? css_tg(css)->parent->uclamp : NULL;
9605
9606 for_each_clamp_id(clamp_id) {
9607 /* Assume effective clamps matches requested clamps */
9608 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9609 /* Cap effective clamps with parent's effective clamps */
9610 if (uc_parent &&
9611 eff[clamp_id] > uc_parent[clamp_id].value) {
9612 eff[clamp_id] = uc_parent[clamp_id].value;
9613 }
9614 }
9615 /* Ensure protection is always capped by limit */
9616 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9617
9618 /* Propagate most restrictive effective clamps */
9619 clamps = 0x0;
9620 uc_se = css_tg(css)->uclamp;
9621 for_each_clamp_id(clamp_id) {
9622 if (eff[clamp_id] == uc_se[clamp_id].value)
9623 continue;
9624 uc_se[clamp_id].value = eff[clamp_id];
9625 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9626 clamps |= (0x1 << clamp_id);
9627 }
babbe170 9628 if (!clamps) {
0b60ba2d 9629 css = css_rightmost_descendant(css);
babbe170
PB
9630 continue;
9631 }
9632
9633 /* Immediately update descendants RUNNABLE tasks */
9634 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
9635 }
9636}
2480c093
PB
9637
9638/*
9639 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9640 * C expression. Since there is no way to convert a macro argument (N) into a
9641 * character constant, use two levels of macros.
9642 */
9643#define _POW10(exp) ((unsigned int)1e##exp)
9644#define POW10(exp) _POW10(exp)
9645
9646struct uclamp_request {
9647#define UCLAMP_PERCENT_SHIFT 2
9648#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9649 s64 percent;
9650 u64 util;
9651 int ret;
9652};
9653
9654static inline struct uclamp_request
9655capacity_from_percent(char *buf)
9656{
9657 struct uclamp_request req = {
9658 .percent = UCLAMP_PERCENT_SCALE,
9659 .util = SCHED_CAPACITY_SCALE,
9660 .ret = 0,
9661 };
9662
9663 buf = strim(buf);
9664 if (strcmp(buf, "max")) {
9665 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9666 &req.percent);
9667 if (req.ret)
9668 return req;
b562d140 9669 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
9670 req.ret = -ERANGE;
9671 return req;
9672 }
9673
9674 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9675 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9676 }
9677
9678 return req;
9679}
9680
9681static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9682 size_t nbytes, loff_t off,
9683 enum uclamp_id clamp_id)
9684{
9685 struct uclamp_request req;
9686 struct task_group *tg;
9687
9688 req = capacity_from_percent(buf);
9689 if (req.ret)
9690 return req.ret;
9691
46609ce2
QY
9692 static_branch_enable(&sched_uclamp_used);
9693
2480c093
PB
9694 mutex_lock(&uclamp_mutex);
9695 rcu_read_lock();
9696
9697 tg = css_tg(of_css(of));
9698 if (tg->uclamp_req[clamp_id].value != req.util)
9699 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9700
9701 /*
9702 * Because of not recoverable conversion rounding we keep track of the
9703 * exact requested value
9704 */
9705 tg->uclamp_pct[clamp_id] = req.percent;
9706
0b60ba2d
PB
9707 /* Update effective clamps to track the most restrictive value */
9708 cpu_util_update_eff(of_css(of));
9709
2480c093
PB
9710 rcu_read_unlock();
9711 mutex_unlock(&uclamp_mutex);
9712
9713 return nbytes;
9714}
9715
9716static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9717 char *buf, size_t nbytes,
9718 loff_t off)
9719{
9720 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9721}
9722
9723static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9724 char *buf, size_t nbytes,
9725 loff_t off)
9726{
9727 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9728}
9729
9730static inline void cpu_uclamp_print(struct seq_file *sf,
9731 enum uclamp_id clamp_id)
9732{
9733 struct task_group *tg;
9734 u64 util_clamp;
9735 u64 percent;
9736 u32 rem;
9737
9738 rcu_read_lock();
9739 tg = css_tg(seq_css(sf));
9740 util_clamp = tg->uclamp_req[clamp_id].value;
9741 rcu_read_unlock();
9742
9743 if (util_clamp == SCHED_CAPACITY_SCALE) {
9744 seq_puts(sf, "max\n");
9745 return;
9746 }
9747
9748 percent = tg->uclamp_pct[clamp_id];
9749 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9750 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9751}
9752
9753static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9754{
9755 cpu_uclamp_print(sf, UCLAMP_MIN);
9756 return 0;
9757}
9758
9759static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9760{
9761 cpu_uclamp_print(sf, UCLAMP_MAX);
9762 return 0;
9763}
9764#endif /* CONFIG_UCLAMP_TASK_GROUP */
9765
052f1dc7 9766#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
9767static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9768 struct cftype *cftype, u64 shareval)
68318b8e 9769{
5b61d50a
KK
9770 if (shareval > scale_load_down(ULONG_MAX))
9771 shareval = MAX_SHARES;
182446d0 9772 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
9773}
9774
182446d0
TH
9775static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9776 struct cftype *cft)
68318b8e 9777{
182446d0 9778 struct task_group *tg = css_tg(css);
68318b8e 9779
c8b28116 9780 return (u64) scale_load_down(tg->shares);
68318b8e 9781}
ab84d31e
PT
9782
9783#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9784static DEFINE_MUTEX(cfs_constraints_mutex);
9785
ab84d31e 9786const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 9787static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
9788/* More than 203 days if BW_SHIFT equals 20. */
9789static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 9790
a790de99
PT
9791static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9792
ab84d31e
PT
9793static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9794{
56f570e5 9795 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 9796 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
9797
9798 if (tg == &root_task_group)
9799 return -EINVAL;
9800
9801 /*
9802 * Ensure we have at some amount of bandwidth every period. This is
9803 * to prevent reaching a state of large arrears when throttled via
9804 * entity_tick() resulting in prolonged exit starvation.
9805 */
9806 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9807 return -EINVAL;
9808
9809 /*
3b03706f 9810 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
9811 * periods. This also allows us to normalize in computing quota
9812 * feasibility.
9813 */
9814 if (period > max_cfs_quota_period)
9815 return -EINVAL;
9816
d505b8af
HC
9817 /*
9818 * Bound quota to defend quota against overflow during bandwidth shift.
9819 */
9820 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9821 return -EINVAL;
9822
0e59bdae
KT
9823 /*
9824 * Prevent race between setting of cfs_rq->runtime_enabled and
9825 * unthrottle_offline_cfs_rqs().
9826 */
9827 get_online_cpus();
a790de99
PT
9828 mutex_lock(&cfs_constraints_mutex);
9829 ret = __cfs_schedulable(tg, period, quota);
9830 if (ret)
9831 goto out_unlock;
9832
58088ad0 9833 runtime_enabled = quota != RUNTIME_INF;
56f570e5 9834 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
9835 /*
9836 * If we need to toggle cfs_bandwidth_used, off->on must occur
9837 * before making related changes, and on->off must occur afterwards
9838 */
9839 if (runtime_enabled && !runtime_was_enabled)
9840 cfs_bandwidth_usage_inc();
ab84d31e
PT
9841 raw_spin_lock_irq(&cfs_b->lock);
9842 cfs_b->period = ns_to_ktime(period);
9843 cfs_b->quota = quota;
58088ad0 9844
a9cf55b2 9845 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
9846
9847 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
9848 if (runtime_enabled)
9849 start_cfs_bandwidth(cfs_b);
d1ccc66d 9850
ab84d31e
PT
9851 raw_spin_unlock_irq(&cfs_b->lock);
9852
0e59bdae 9853 for_each_online_cpu(i) {
ab84d31e 9854 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 9855 struct rq *rq = cfs_rq->rq;
8a8c69c3 9856 struct rq_flags rf;
ab84d31e 9857
8a8c69c3 9858 rq_lock_irq(rq, &rf);
58088ad0 9859 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9860 cfs_rq->runtime_remaining = 0;
671fd9da 9861
029632fb 9862 if (cfs_rq->throttled)
671fd9da 9863 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 9864 rq_unlock_irq(rq, &rf);
ab84d31e 9865 }
1ee14e6c
BS
9866 if (runtime_was_enabled && !runtime_enabled)
9867 cfs_bandwidth_usage_dec();
a790de99
PT
9868out_unlock:
9869 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 9870 put_online_cpus();
ab84d31e 9871
a790de99 9872 return ret;
ab84d31e
PT
9873}
9874
b1546edc 9875static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
9876{
9877 u64 quota, period;
9878
029632fb 9879 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9880 if (cfs_quota_us < 0)
9881 quota = RUNTIME_INF;
1a8b4540 9882 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 9883 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
9884 else
9885 return -EINVAL;
ab84d31e
PT
9886
9887 return tg_set_cfs_bandwidth(tg, period, quota);
9888}
9889
b1546edc 9890static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
9891{
9892 u64 quota_us;
9893
029632fb 9894 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
9895 return -1;
9896
029632fb 9897 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
9898 do_div(quota_us, NSEC_PER_USEC);
9899
9900 return quota_us;
9901}
9902
b1546edc 9903static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
9904{
9905 u64 quota, period;
9906
1a8b4540
KK
9907 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9908 return -EINVAL;
9909
ab84d31e 9910 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 9911 quota = tg->cfs_bandwidth.quota;
ab84d31e 9912
ab84d31e
PT
9913 return tg_set_cfs_bandwidth(tg, period, quota);
9914}
9915
b1546edc 9916static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
9917{
9918 u64 cfs_period_us;
9919
029632fb 9920 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9921 do_div(cfs_period_us, NSEC_PER_USEC);
9922
9923 return cfs_period_us;
9924}
9925
182446d0
TH
9926static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9927 struct cftype *cft)
ab84d31e 9928{
182446d0 9929 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
9930}
9931
182446d0
TH
9932static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9933 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 9934{
182446d0 9935 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
9936}
9937
182446d0
TH
9938static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9939 struct cftype *cft)
ab84d31e 9940{
182446d0 9941 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
9942}
9943
182446d0
TH
9944static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9945 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 9946{
182446d0 9947 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
9948}
9949
a790de99
PT
9950struct cfs_schedulable_data {
9951 struct task_group *tg;
9952 u64 period, quota;
9953};
9954
9955/*
9956 * normalize group quota/period to be quota/max_period
9957 * note: units are usecs
9958 */
9959static u64 normalize_cfs_quota(struct task_group *tg,
9960 struct cfs_schedulable_data *d)
9961{
9962 u64 quota, period;
9963
9964 if (tg == d->tg) {
9965 period = d->period;
9966 quota = d->quota;
9967 } else {
9968 period = tg_get_cfs_period(tg);
9969 quota = tg_get_cfs_quota(tg);
9970 }
9971
9972 /* note: these should typically be equivalent */
9973 if (quota == RUNTIME_INF || quota == -1)
9974 return RUNTIME_INF;
9975
9976 return to_ratio(period, quota);
9977}
9978
9979static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9980{
9981 struct cfs_schedulable_data *d = data;
029632fb 9982 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
9983 s64 quota = 0, parent_quota = -1;
9984
9985 if (!tg->parent) {
9986 quota = RUNTIME_INF;
9987 } else {
029632fb 9988 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
9989
9990 quota = normalize_cfs_quota(tg, d);
9c58c79a 9991 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
9992
9993 /*
c53593e5
TH
9994 * Ensure max(child_quota) <= parent_quota. On cgroup2,
9995 * always take the min. On cgroup1, only inherit when no
d1ccc66d 9996 * limit is set:
a790de99 9997 */
c53593e5
TH
9998 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9999 quota = min(quota, parent_quota);
10000 } else {
10001 if (quota == RUNTIME_INF)
10002 quota = parent_quota;
10003 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10004 return -EINVAL;
10005 }
a790de99 10006 }
9c58c79a 10007 cfs_b->hierarchical_quota = quota;
a790de99
PT
10008
10009 return 0;
10010}
10011
10012static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10013{
8277434e 10014 int ret;
a790de99
PT
10015 struct cfs_schedulable_data data = {
10016 .tg = tg,
10017 .period = period,
10018 .quota = quota,
10019 };
10020
10021 if (quota != RUNTIME_INF) {
10022 do_div(data.period, NSEC_PER_USEC);
10023 do_div(data.quota, NSEC_PER_USEC);
10024 }
10025
8277434e
PT
10026 rcu_read_lock();
10027 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10028 rcu_read_unlock();
10029
10030 return ret;
a790de99 10031}
e8da1b18 10032
a1f7164c 10033static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 10034{
2da8ca82 10035 struct task_group *tg = css_tg(seq_css(sf));
029632fb 10036 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 10037
44ffc75b
TH
10038 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10039 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10040 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 10041
3d6c50c2
YW
10042 if (schedstat_enabled() && tg != &root_task_group) {
10043 u64 ws = 0;
10044 int i;
10045
10046 for_each_possible_cpu(i)
10047 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10048
10049 seq_printf(sf, "wait_sum %llu\n", ws);
10050 }
10051
e8da1b18
NR
10052 return 0;
10053}
ab84d31e 10054#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 10055#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10056
052f1dc7 10057#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
10058static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10059 struct cftype *cft, s64 val)
6f505b16 10060{
182446d0 10061 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
10062}
10063
182446d0
TH
10064static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10065 struct cftype *cft)
6f505b16 10066{
182446d0 10067 return sched_group_rt_runtime(css_tg(css));
6f505b16 10068}
d0b27fa7 10069
182446d0
TH
10070static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10071 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 10072{
182446d0 10073 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
10074}
10075
182446d0
TH
10076static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10077 struct cftype *cft)
d0b27fa7 10078{
182446d0 10079 return sched_group_rt_period(css_tg(css));
d0b27fa7 10080}
6d6bc0ad 10081#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10082
a1f7164c 10083static struct cftype cpu_legacy_files[] = {
052f1dc7 10084#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10085 {
10086 .name = "shares",
f4c753b7
PM
10087 .read_u64 = cpu_shares_read_u64,
10088 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10089 },
052f1dc7 10090#endif
ab84d31e
PT
10091#ifdef CONFIG_CFS_BANDWIDTH
10092 {
10093 .name = "cfs_quota_us",
10094 .read_s64 = cpu_cfs_quota_read_s64,
10095 .write_s64 = cpu_cfs_quota_write_s64,
10096 },
10097 {
10098 .name = "cfs_period_us",
10099 .read_u64 = cpu_cfs_period_read_u64,
10100 .write_u64 = cpu_cfs_period_write_u64,
10101 },
e8da1b18
NR
10102 {
10103 .name = "stat",
a1f7164c 10104 .seq_show = cpu_cfs_stat_show,
e8da1b18 10105 },
ab84d31e 10106#endif
052f1dc7 10107#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10108 {
9f0c1e56 10109 .name = "rt_runtime_us",
06ecb27c
PM
10110 .read_s64 = cpu_rt_runtime_read,
10111 .write_s64 = cpu_rt_runtime_write,
6f505b16 10112 },
d0b27fa7
PZ
10113 {
10114 .name = "rt_period_us",
f4c753b7
PM
10115 .read_u64 = cpu_rt_period_read_uint,
10116 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10117 },
2480c093
PB
10118#endif
10119#ifdef CONFIG_UCLAMP_TASK_GROUP
10120 {
10121 .name = "uclamp.min",
10122 .flags = CFTYPE_NOT_ON_ROOT,
10123 .seq_show = cpu_uclamp_min_show,
10124 .write = cpu_uclamp_min_write,
10125 },
10126 {
10127 .name = "uclamp.max",
10128 .flags = CFTYPE_NOT_ON_ROOT,
10129 .seq_show = cpu_uclamp_max_show,
10130 .write = cpu_uclamp_max_write,
10131 },
052f1dc7 10132#endif
d1ccc66d 10133 { } /* Terminate */
68318b8e
SV
10134};
10135
d41bf8c9
TH
10136static int cpu_extra_stat_show(struct seq_file *sf,
10137 struct cgroup_subsys_state *css)
0d593634 10138{
0d593634
TH
10139#ifdef CONFIG_CFS_BANDWIDTH
10140 {
d41bf8c9 10141 struct task_group *tg = css_tg(css);
0d593634
TH
10142 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10143 u64 throttled_usec;
10144
10145 throttled_usec = cfs_b->throttled_time;
10146 do_div(throttled_usec, NSEC_PER_USEC);
10147
10148 seq_printf(sf, "nr_periods %d\n"
10149 "nr_throttled %d\n"
10150 "throttled_usec %llu\n",
10151 cfs_b->nr_periods, cfs_b->nr_throttled,
10152 throttled_usec);
10153 }
10154#endif
10155 return 0;
10156}
10157
10158#ifdef CONFIG_FAIR_GROUP_SCHED
10159static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10160 struct cftype *cft)
10161{
10162 struct task_group *tg = css_tg(css);
10163 u64 weight = scale_load_down(tg->shares);
10164
10165 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10166}
10167
10168static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10169 struct cftype *cft, u64 weight)
10170{
10171 /*
10172 * cgroup weight knobs should use the common MIN, DFL and MAX
10173 * values which are 1, 100 and 10000 respectively. While it loses
10174 * a bit of range on both ends, it maps pretty well onto the shares
10175 * value used by scheduler and the round-trip conversions preserve
10176 * the original value over the entire range.
10177 */
10178 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10179 return -ERANGE;
10180
10181 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10182
10183 return sched_group_set_shares(css_tg(css), scale_load(weight));
10184}
10185
10186static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10187 struct cftype *cft)
10188{
10189 unsigned long weight = scale_load_down(css_tg(css)->shares);
10190 int last_delta = INT_MAX;
10191 int prio, delta;
10192
10193 /* find the closest nice value to the current weight */
10194 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10195 delta = abs(sched_prio_to_weight[prio] - weight);
10196 if (delta >= last_delta)
10197 break;
10198 last_delta = delta;
10199 }
10200
10201 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10202}
10203
10204static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10205 struct cftype *cft, s64 nice)
10206{
10207 unsigned long weight;
7281c8de 10208 int idx;
0d593634
TH
10209
10210 if (nice < MIN_NICE || nice > MAX_NICE)
10211 return -ERANGE;
10212
7281c8de
PZ
10213 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10214 idx = array_index_nospec(idx, 40);
10215 weight = sched_prio_to_weight[idx];
10216
0d593634
TH
10217 return sched_group_set_shares(css_tg(css), scale_load(weight));
10218}
10219#endif
10220
10221static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10222 long period, long quota)
10223{
10224 if (quota < 0)
10225 seq_puts(sf, "max");
10226 else
10227 seq_printf(sf, "%ld", quota);
10228
10229 seq_printf(sf, " %ld\n", period);
10230}
10231
10232/* caller should put the current value in *@periodp before calling */
10233static int __maybe_unused cpu_period_quota_parse(char *buf,
10234 u64 *periodp, u64 *quotap)
10235{
10236 char tok[21]; /* U64_MAX */
10237
4c47acd8 10238 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
10239 return -EINVAL;
10240
10241 *periodp *= NSEC_PER_USEC;
10242
10243 if (sscanf(tok, "%llu", quotap))
10244 *quotap *= NSEC_PER_USEC;
10245 else if (!strcmp(tok, "max"))
10246 *quotap = RUNTIME_INF;
10247 else
10248 return -EINVAL;
10249
10250 return 0;
10251}
10252
10253#ifdef CONFIG_CFS_BANDWIDTH
10254static int cpu_max_show(struct seq_file *sf, void *v)
10255{
10256 struct task_group *tg = css_tg(seq_css(sf));
10257
10258 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10259 return 0;
10260}
10261
10262static ssize_t cpu_max_write(struct kernfs_open_file *of,
10263 char *buf, size_t nbytes, loff_t off)
10264{
10265 struct task_group *tg = css_tg(of_css(of));
10266 u64 period = tg_get_cfs_period(tg);
10267 u64 quota;
10268 int ret;
10269
10270 ret = cpu_period_quota_parse(buf, &period, &quota);
10271 if (!ret)
10272 ret = tg_set_cfs_bandwidth(tg, period, quota);
10273 return ret ?: nbytes;
10274}
10275#endif
10276
10277static struct cftype cpu_files[] = {
0d593634
TH
10278#ifdef CONFIG_FAIR_GROUP_SCHED
10279 {
10280 .name = "weight",
10281 .flags = CFTYPE_NOT_ON_ROOT,
10282 .read_u64 = cpu_weight_read_u64,
10283 .write_u64 = cpu_weight_write_u64,
10284 },
10285 {
10286 .name = "weight.nice",
10287 .flags = CFTYPE_NOT_ON_ROOT,
10288 .read_s64 = cpu_weight_nice_read_s64,
10289 .write_s64 = cpu_weight_nice_write_s64,
10290 },
10291#endif
10292#ifdef CONFIG_CFS_BANDWIDTH
10293 {
10294 .name = "max",
10295 .flags = CFTYPE_NOT_ON_ROOT,
10296 .seq_show = cpu_max_show,
10297 .write = cpu_max_write,
10298 },
2480c093
PB
10299#endif
10300#ifdef CONFIG_UCLAMP_TASK_GROUP
10301 {
10302 .name = "uclamp.min",
10303 .flags = CFTYPE_NOT_ON_ROOT,
10304 .seq_show = cpu_uclamp_min_show,
10305 .write = cpu_uclamp_min_write,
10306 },
10307 {
10308 .name = "uclamp.max",
10309 .flags = CFTYPE_NOT_ON_ROOT,
10310 .seq_show = cpu_uclamp_max_show,
10311 .write = cpu_uclamp_max_write,
10312 },
0d593634
TH
10313#endif
10314 { } /* terminate */
10315};
10316
073219e9 10317struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 10318 .css_alloc = cpu_cgroup_css_alloc,
96b77745 10319 .css_online = cpu_cgroup_css_online,
2f5177f0 10320 .css_released = cpu_cgroup_css_released,
92fb9748 10321 .css_free = cpu_cgroup_css_free,
d41bf8c9 10322 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 10323 .fork = cpu_cgroup_fork,
bb9d97b6
TH
10324 .can_attach = cpu_cgroup_can_attach,
10325 .attach = cpu_cgroup_attach,
a1f7164c 10326 .legacy_cftypes = cpu_legacy_files,
0d593634 10327 .dfl_cftypes = cpu_files,
b38e42e9 10328 .early_init = true,
0d593634 10329 .threaded = true,
68318b8e
SV
10330};
10331
052f1dc7 10332#endif /* CONFIG_CGROUP_SCHED */
d842de87 10333
b637a328
PM
10334void dump_cpu_task(int cpu)
10335{
10336 pr_info("Task dump for CPU %d:\n", cpu);
10337 sched_show_task(cpu_curr(cpu));
10338}
ed82b8a1
AK
10339
10340/*
10341 * Nice levels are multiplicative, with a gentle 10% change for every
10342 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10343 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10344 * that remained on nice 0.
10345 *
10346 * The "10% effect" is relative and cumulative: from _any_ nice level,
10347 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10348 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10349 * If a task goes up by ~10% and another task goes down by ~10% then
10350 * the relative distance between them is ~25%.)
10351 */
10352const int sched_prio_to_weight[40] = {
10353 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10354 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10355 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10356 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10357 /* 0 */ 1024, 820, 655, 526, 423,
10358 /* 5 */ 335, 272, 215, 172, 137,
10359 /* 10 */ 110, 87, 70, 56, 45,
10360 /* 15 */ 36, 29, 23, 18, 15,
10361};
10362
10363/*
10364 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10365 *
10366 * In cases where the weight does not change often, we can use the
10367 * precalculated inverse to speed up arithmetics by turning divisions
10368 * into multiplications:
10369 */
10370const u32 sched_prio_to_wmult[40] = {
10371 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10372 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10373 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10374 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10375 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10376 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10377 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10378 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10379};
14a7405b 10380
9d246053
PA
10381void call_trace_sched_update_nr_running(struct rq *rq, int count)
10382{
10383 trace_sched_update_nr_running_tp(rq, count);
10384}