]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
Merge branch 'sched/urgent' into sched/core, to pick up fixes
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
325ea10c 8#include "sched.h"
1da177e4 9
7281c8de 10#include <linux/nospec.h>
85f1abe0 11
0ed557aa
MR
12#include <linux/kcov.h>
13
96f951ed 14#include <asm/switch_to.h>
5517d86b 15#include <asm/tlb.h>
1da177e4 16
ea138446 17#include "../workqueue_internal.h"
29d5e047 18#include "../smpboot.h"
6e0534f2 19
91c27493
VG
20#include "pelt.h"
21
a8d154b0 22#define CREATE_TRACE_POINTS
ad8d75ff 23#include <trace/events/sched.h>
a8d154b0 24
029632fb 25DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 26
765cc3a4 27#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
bf5c91ba
IM
28/*
29 * Debugging: various feature bits
765cc3a4
PB
30 *
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
bf5c91ba 34 */
f00b45c1
PZ
35#define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 37const_debug unsigned int sysctl_sched_features =
391e43da 38#include "features.h"
f00b45c1 39 0;
f00b45c1 40#undef SCHED_FEAT
765cc3a4 41#endif
f00b45c1 42
b82d9fdd
PZ
43/*
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
46 */
47const_debug unsigned int sysctl_sched_nr_migrate = 32;
48
fa85ae24 49/*
d1ccc66d 50 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
51 * default: 1s
52 */
9f0c1e56 53unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 54
029632fb 55__read_mostly int scheduler_running;
6892b75e 56
9f0c1e56
PZ
57/*
58 * part of the period that we allow rt tasks to run in us.
59 * default: 0.95s
60 */
61int sysctl_sched_rt_runtime = 950000;
fa85ae24 62
3e71a462
PZ
63/*
64 * __task_rq_lock - lock the rq @p resides on.
65 */
eb580751 66struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
67 __acquires(rq->lock)
68{
69 struct rq *rq;
70
71 lockdep_assert_held(&p->pi_lock);
72
73 for (;;) {
74 rq = task_rq(p);
75 raw_spin_lock(&rq->lock);
76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 77 rq_pin_lock(rq, rf);
3e71a462
PZ
78 return rq;
79 }
80 raw_spin_unlock(&rq->lock);
81
82 while (unlikely(task_on_rq_migrating(p)))
83 cpu_relax();
84 }
85}
86
87/*
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89 */
eb580751 90struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
91 __acquires(p->pi_lock)
92 __acquires(rq->lock)
93{
94 struct rq *rq;
95
96 for (;;) {
eb580751 97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
98 rq = task_rq(p);
99 raw_spin_lock(&rq->lock);
100 /*
101 * move_queued_task() task_rq_lock()
102 *
103 * ACQUIRE (rq->lock)
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
107 * [L] ->on_rq
108 * RELEASE (rq->lock)
109 *
97fb7a0a 110 * If we observe the old CPU in task_rq_lock, the acquire of
3e71a462
PZ
111 * the old rq->lock will fully serialize against the stores.
112 *
d1ccc66d 113 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
114 * pair with the WMB to ensure we must then also see migrating.
115 */
116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 117 rq_pin_lock(rq, rf);
3e71a462
PZ
118 return rq;
119 }
120 raw_spin_unlock(&rq->lock);
eb580751 121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
122
123 while (unlikely(task_on_rq_migrating(p)))
124 cpu_relax();
125 }
126}
127
535b9552
IM
128/*
129 * RQ-clock updating methods:
130 */
131
132static void update_rq_clock_task(struct rq *rq, s64 delta)
133{
134/*
135 * In theory, the compile should just see 0 here, and optimize out the call
136 * to sched_rt_avg_update. But I don't trust it...
137 */
138#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
139 s64 steal = 0, irq_delta = 0;
140#endif
141#ifdef CONFIG_IRQ_TIME_ACCOUNTING
142 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
143
144 /*
145 * Since irq_time is only updated on {soft,}irq_exit, we might run into
146 * this case when a previous update_rq_clock() happened inside a
147 * {soft,}irq region.
148 *
149 * When this happens, we stop ->clock_task and only update the
150 * prev_irq_time stamp to account for the part that fit, so that a next
151 * update will consume the rest. This ensures ->clock_task is
152 * monotonic.
153 *
154 * It does however cause some slight miss-attribution of {soft,}irq
155 * time, a more accurate solution would be to update the irq_time using
156 * the current rq->clock timestamp, except that would require using
157 * atomic ops.
158 */
159 if (irq_delta > delta)
160 irq_delta = delta;
161
162 rq->prev_irq_time += irq_delta;
163 delta -= irq_delta;
164#endif
165#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
166 if (static_key_false((&paravirt_steal_rq_enabled))) {
167 steal = paravirt_steal_clock(cpu_of(rq));
168 steal -= rq->prev_steal_time_rq;
169
170 if (unlikely(steal > delta))
171 steal = delta;
172
173 rq->prev_steal_time_rq += steal;
174 delta -= steal;
175 }
176#endif
177
178 rq->clock_task += delta;
179
2e62c474 180#ifdef HAVE_SCHED_AVG_IRQ
535b9552 181 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 182 update_irq_load_avg(rq, irq_delta + steal);
535b9552
IM
183#endif
184}
185
186void update_rq_clock(struct rq *rq)
187{
188 s64 delta;
189
190 lockdep_assert_held(&rq->lock);
191
192 if (rq->clock_update_flags & RQCF_ACT_SKIP)
193 return;
194
195#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
196 if (sched_feat(WARN_DOUBLE_CLOCK))
197 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
198 rq->clock_update_flags |= RQCF_UPDATED;
199#endif
26ae58d2 200
535b9552
IM
201 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
202 if (delta < 0)
203 return;
204 rq->clock += delta;
205 update_rq_clock_task(rq, delta);
206}
207
208
8f4d37ec
PZ
209#ifdef CONFIG_SCHED_HRTICK
210/*
211 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 212 */
8f4d37ec 213
8f4d37ec
PZ
214static void hrtick_clear(struct rq *rq)
215{
216 if (hrtimer_active(&rq->hrtick_timer))
217 hrtimer_cancel(&rq->hrtick_timer);
218}
219
8f4d37ec
PZ
220/*
221 * High-resolution timer tick.
222 * Runs from hardirq context with interrupts disabled.
223 */
224static enum hrtimer_restart hrtick(struct hrtimer *timer)
225{
226 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 227 struct rq_flags rf;
8f4d37ec
PZ
228
229 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
230
8a8c69c3 231 rq_lock(rq, &rf);
3e51f33f 232 update_rq_clock(rq);
8f4d37ec 233 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 234 rq_unlock(rq, &rf);
8f4d37ec
PZ
235
236 return HRTIMER_NORESTART;
237}
238
95e904c7 239#ifdef CONFIG_SMP
971ee28c 240
4961b6e1 241static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
242{
243 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 244
4961b6e1 245 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
246}
247
31656519
PZ
248/*
249 * called from hardirq (IPI) context
250 */
251static void __hrtick_start(void *arg)
b328ca18 252{
31656519 253 struct rq *rq = arg;
8a8c69c3 254 struct rq_flags rf;
b328ca18 255
8a8c69c3 256 rq_lock(rq, &rf);
971ee28c 257 __hrtick_restart(rq);
31656519 258 rq->hrtick_csd_pending = 0;
8a8c69c3 259 rq_unlock(rq, &rf);
b328ca18
PZ
260}
261
31656519
PZ
262/*
263 * Called to set the hrtick timer state.
264 *
265 * called with rq->lock held and irqs disabled
266 */
029632fb 267void hrtick_start(struct rq *rq, u64 delay)
b328ca18 268{
31656519 269 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 270 ktime_t time;
271 s64 delta;
272
273 /*
274 * Don't schedule slices shorter than 10000ns, that just
275 * doesn't make sense and can cause timer DoS.
276 */
277 delta = max_t(s64, delay, 10000LL);
278 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 279
cc584b21 280 hrtimer_set_expires(timer, time);
31656519
PZ
281
282 if (rq == this_rq()) {
971ee28c 283 __hrtick_restart(rq);
31656519 284 } else if (!rq->hrtick_csd_pending) {
c46fff2a 285 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
286 rq->hrtick_csd_pending = 1;
287 }
b328ca18
PZ
288}
289
31656519
PZ
290#else
291/*
292 * Called to set the hrtick timer state.
293 *
294 * called with rq->lock held and irqs disabled
295 */
029632fb 296void hrtick_start(struct rq *rq, u64 delay)
31656519 297{
86893335
WL
298 /*
299 * Don't schedule slices shorter than 10000ns, that just
300 * doesn't make sense. Rely on vruntime for fairness.
301 */
302 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
303 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
304 HRTIMER_MODE_REL_PINNED);
31656519 305}
31656519 306#endif /* CONFIG_SMP */
8f4d37ec 307
77a021be 308static void hrtick_rq_init(struct rq *rq)
8f4d37ec 309{
31656519
PZ
310#ifdef CONFIG_SMP
311 rq->hrtick_csd_pending = 0;
8f4d37ec 312
31656519
PZ
313 rq->hrtick_csd.flags = 0;
314 rq->hrtick_csd.func = __hrtick_start;
315 rq->hrtick_csd.info = rq;
316#endif
8f4d37ec 317
31656519
PZ
318 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
319 rq->hrtick_timer.function = hrtick;
8f4d37ec 320}
006c75f1 321#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
322static inline void hrtick_clear(struct rq *rq)
323{
324}
325
77a021be 326static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
327{
328}
006c75f1 329#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 330
5529578a
FW
331/*
332 * cmpxchg based fetch_or, macro so it works for different integer types
333 */
334#define fetch_or(ptr, mask) \
335 ({ \
336 typeof(ptr) _ptr = (ptr); \
337 typeof(mask) _mask = (mask); \
338 typeof(*_ptr) _old, _val = *_ptr; \
339 \
340 for (;;) { \
341 _old = cmpxchg(_ptr, _val, _val | _mask); \
342 if (_old == _val) \
343 break; \
344 _val = _old; \
345 } \
346 _old; \
347})
348
e3baac47 349#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
350/*
351 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
352 * this avoids any races wrt polling state changes and thereby avoids
353 * spurious IPIs.
354 */
355static bool set_nr_and_not_polling(struct task_struct *p)
356{
357 struct thread_info *ti = task_thread_info(p);
358 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
359}
e3baac47
PZ
360
361/*
362 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
363 *
364 * If this returns true, then the idle task promises to call
365 * sched_ttwu_pending() and reschedule soon.
366 */
367static bool set_nr_if_polling(struct task_struct *p)
368{
369 struct thread_info *ti = task_thread_info(p);
316c1608 370 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
371
372 for (;;) {
373 if (!(val & _TIF_POLLING_NRFLAG))
374 return false;
375 if (val & _TIF_NEED_RESCHED)
376 return true;
377 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
378 if (old == val)
379 break;
380 val = old;
381 }
382 return true;
383}
384
fd99f91a
PZ
385#else
386static bool set_nr_and_not_polling(struct task_struct *p)
387{
388 set_tsk_need_resched(p);
389 return true;
390}
e3baac47
PZ
391
392#ifdef CONFIG_SMP
393static bool set_nr_if_polling(struct task_struct *p)
394{
395 return false;
396}
397#endif
fd99f91a
PZ
398#endif
399
76751049
PZ
400void wake_q_add(struct wake_q_head *head, struct task_struct *task)
401{
402 struct wake_q_node *node = &task->wake_q;
403
404 /*
405 * Atomically grab the task, if ->wake_q is !nil already it means
406 * its already queued (either by us or someone else) and will get the
407 * wakeup due to that.
408 *
7696f991
AP
409 * This cmpxchg() executes a full barrier, which pairs with the full
410 * barrier executed by the wakeup in wake_up_q().
76751049
PZ
411 */
412 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
413 return;
414
415 get_task_struct(task);
416
417 /*
418 * The head is context local, there can be no concurrency.
419 */
420 *head->lastp = node;
421 head->lastp = &node->next;
422}
423
424void wake_up_q(struct wake_q_head *head)
425{
426 struct wake_q_node *node = head->first;
427
428 while (node != WAKE_Q_TAIL) {
429 struct task_struct *task;
430
431 task = container_of(node, struct task_struct, wake_q);
432 BUG_ON(!task);
d1ccc66d 433 /* Task can safely be re-inserted now: */
76751049
PZ
434 node = node->next;
435 task->wake_q.next = NULL;
436
437 /*
7696f991
AP
438 * wake_up_process() executes a full barrier, which pairs with
439 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
440 */
441 wake_up_process(task);
442 put_task_struct(task);
443 }
444}
445
c24d20db 446/*
8875125e 447 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
448 *
449 * On UP this means the setting of the need_resched flag, on SMP it
450 * might also involve a cross-CPU call to trigger the scheduler on
451 * the target CPU.
452 */
8875125e 453void resched_curr(struct rq *rq)
c24d20db 454{
8875125e 455 struct task_struct *curr = rq->curr;
c24d20db
IM
456 int cpu;
457
8875125e 458 lockdep_assert_held(&rq->lock);
c24d20db 459
8875125e 460 if (test_tsk_need_resched(curr))
c24d20db
IM
461 return;
462
8875125e 463 cpu = cpu_of(rq);
fd99f91a 464
f27dde8d 465 if (cpu == smp_processor_id()) {
8875125e 466 set_tsk_need_resched(curr);
f27dde8d 467 set_preempt_need_resched();
c24d20db 468 return;
f27dde8d 469 }
c24d20db 470
8875125e 471 if (set_nr_and_not_polling(curr))
c24d20db 472 smp_send_reschedule(cpu);
dfc68f29
AL
473 else
474 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
475}
476
029632fb 477void resched_cpu(int cpu)
c24d20db
IM
478{
479 struct rq *rq = cpu_rq(cpu);
480 unsigned long flags;
481
7c2102e5 482 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
483 if (cpu_online(cpu) || cpu == smp_processor_id())
484 resched_curr(rq);
05fa785c 485 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 486}
06d8308c 487
b021fe3e 488#ifdef CONFIG_SMP
3451d024 489#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 490/*
d1ccc66d
IM
491 * In the semi idle case, use the nearest busy CPU for migrating timers
492 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
493 *
494 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
495 * selecting an idle CPU will add more delays to the timers than intended
496 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 497 */
bc7a34b8 498int get_nohz_timer_target(void)
83cd4fe2 499{
bc7a34b8 500 int i, cpu = smp_processor_id();
83cd4fe2
VP
501 struct sched_domain *sd;
502
de201559 503 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
504 return cpu;
505
057f3fad 506 rcu_read_lock();
83cd4fe2 507 for_each_domain(cpu, sd) {
057f3fad 508 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
509 if (cpu == i)
510 continue;
511
de201559 512 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
513 cpu = i;
514 goto unlock;
515 }
516 }
83cd4fe2 517 }
9642d18e 518
de201559
FW
519 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
520 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
521unlock:
522 rcu_read_unlock();
83cd4fe2
VP
523 return cpu;
524}
d1ccc66d 525
06d8308c
TG
526/*
527 * When add_timer_on() enqueues a timer into the timer wheel of an
528 * idle CPU then this timer might expire before the next timer event
529 * which is scheduled to wake up that CPU. In case of a completely
530 * idle system the next event might even be infinite time into the
531 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
532 * leaves the inner idle loop so the newly added timer is taken into
533 * account when the CPU goes back to idle and evaluates the timer
534 * wheel for the next timer event.
535 */
1c20091e 536static void wake_up_idle_cpu(int cpu)
06d8308c
TG
537{
538 struct rq *rq = cpu_rq(cpu);
539
540 if (cpu == smp_processor_id())
541 return;
542
67b9ca70 543 if (set_nr_and_not_polling(rq->idle))
06d8308c 544 smp_send_reschedule(cpu);
dfc68f29
AL
545 else
546 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
547}
548
c5bfece2 549static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 550{
53c5fa16
FW
551 /*
552 * We just need the target to call irq_exit() and re-evaluate
553 * the next tick. The nohz full kick at least implies that.
554 * If needed we can still optimize that later with an
555 * empty IRQ.
556 */
379d9ecb
PM
557 if (cpu_is_offline(cpu))
558 return true; /* Don't try to wake offline CPUs. */
c5bfece2 559 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
560 if (cpu != smp_processor_id() ||
561 tick_nohz_tick_stopped())
53c5fa16 562 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
563 return true;
564 }
565
566 return false;
567}
568
379d9ecb
PM
569/*
570 * Wake up the specified CPU. If the CPU is going offline, it is the
571 * caller's responsibility to deal with the lost wakeup, for example,
572 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
573 */
1c20091e
FW
574void wake_up_nohz_cpu(int cpu)
575{
c5bfece2 576 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
577 wake_up_idle_cpu(cpu);
578}
579
ca38062e 580static inline bool got_nohz_idle_kick(void)
45bf76df 581{
1c792db7 582 int cpu = smp_processor_id();
873b4c65 583
b7031a02 584 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
585 return false;
586
587 if (idle_cpu(cpu) && !need_resched())
588 return true;
589
590 /*
591 * We can't run Idle Load Balance on this CPU for this time so we
592 * cancel it and clear NOHZ_BALANCE_KICK
593 */
b7031a02 594 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 595 return false;
45bf76df
IM
596}
597
3451d024 598#else /* CONFIG_NO_HZ_COMMON */
45bf76df 599
ca38062e 600static inline bool got_nohz_idle_kick(void)
2069dd75 601{
ca38062e 602 return false;
2069dd75
PZ
603}
604
3451d024 605#endif /* CONFIG_NO_HZ_COMMON */
d842de87 606
ce831b38 607#ifdef CONFIG_NO_HZ_FULL
76d92ac3 608bool sched_can_stop_tick(struct rq *rq)
ce831b38 609{
76d92ac3
FW
610 int fifo_nr_running;
611
612 /* Deadline tasks, even if single, need the tick */
613 if (rq->dl.dl_nr_running)
614 return false;
615
1e78cdbd 616 /*
2548d546
PZ
617 * If there are more than one RR tasks, we need the tick to effect the
618 * actual RR behaviour.
1e78cdbd 619 */
76d92ac3
FW
620 if (rq->rt.rr_nr_running) {
621 if (rq->rt.rr_nr_running == 1)
622 return true;
623 else
624 return false;
1e78cdbd
RR
625 }
626
2548d546
PZ
627 /*
628 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
629 * forced preemption between FIFO tasks.
630 */
631 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
632 if (fifo_nr_running)
633 return true;
634
635 /*
636 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
637 * if there's more than one we need the tick for involuntary
638 * preemption.
639 */
640 if (rq->nr_running > 1)
541b8264 641 return false;
ce831b38 642
541b8264 643 return true;
ce831b38
FW
644}
645#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 646#endif /* CONFIG_SMP */
18d95a28 647
a790de99
PT
648#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 650/*
8277434e
PT
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 655 */
029632fb 656int walk_tg_tree_from(struct task_group *from,
8277434e 657 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
658{
659 struct task_group *parent, *child;
eb755805 660 int ret;
c09595f6 661
8277434e
PT
662 parent = from;
663
c09595f6 664down:
eb755805
PZ
665 ret = (*down)(parent, data);
666 if (ret)
8277434e 667 goto out;
c09595f6
PZ
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
671
672up:
673 continue;
674 }
eb755805 675 ret = (*up)(parent, data);
8277434e
PT
676 if (ret || parent == from)
677 goto out;
c09595f6
PZ
678
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
8277434e 683out:
eb755805 684 return ret;
c09595f6
PZ
685}
686
029632fb 687int tg_nop(struct task_group *tg, void *data)
eb755805 688{
e2b245f8 689 return 0;
eb755805 690}
18d95a28
PZ
691#endif
692
9059393e 693static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 694{
f05998d4
NR
695 int prio = p->static_prio - MAX_RT_PRIO;
696 struct load_weight *load = &p->se.load;
697
dd41f596
IM
698 /*
699 * SCHED_IDLE tasks get minimal weight:
700 */
20f9cd2a 701 if (idle_policy(p->policy)) {
c8b28116 702 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 703 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
704 return;
705 }
71f8bd46 706
9059393e
VG
707 /*
708 * SCHED_OTHER tasks have to update their load when changing their
709 * weight
710 */
711 if (update_load && p->sched_class == &fair_sched_class) {
712 reweight_task(p, prio);
713 } else {
714 load->weight = scale_load(sched_prio_to_weight[prio]);
715 load->inv_weight = sched_prio_to_wmult[prio];
716 }
71f8bd46
IM
717}
718
1de64443 719static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 720{
0a67d1ee
PZ
721 if (!(flags & ENQUEUE_NOCLOCK))
722 update_rq_clock(rq);
723
1de64443
PZ
724 if (!(flags & ENQUEUE_RESTORE))
725 sched_info_queued(rq, p);
0a67d1ee 726
371fd7e7 727 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
728}
729
1de64443 730static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 731{
0a67d1ee
PZ
732 if (!(flags & DEQUEUE_NOCLOCK))
733 update_rq_clock(rq);
734
1de64443
PZ
735 if (!(flags & DEQUEUE_SAVE))
736 sched_info_dequeued(rq, p);
0a67d1ee 737
371fd7e7 738 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
739}
740
029632fb 741void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
742{
743 if (task_contributes_to_load(p))
744 rq->nr_uninterruptible--;
745
371fd7e7 746 enqueue_task(rq, p, flags);
1e3c88bd
PZ
747}
748
029632fb 749void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
750{
751 if (task_contributes_to_load(p))
752 rq->nr_uninterruptible++;
753
371fd7e7 754 dequeue_task(rq, p, flags);
1e3c88bd
PZ
755}
756
14531189 757/*
dd41f596 758 * __normal_prio - return the priority that is based on the static prio
14531189 759 */
14531189
IM
760static inline int __normal_prio(struct task_struct *p)
761{
dd41f596 762 return p->static_prio;
14531189
IM
763}
764
b29739f9
IM
765/*
766 * Calculate the expected normal priority: i.e. priority
767 * without taking RT-inheritance into account. Might be
768 * boosted by interactivity modifiers. Changes upon fork,
769 * setprio syscalls, and whenever the interactivity
770 * estimator recalculates.
771 */
36c8b586 772static inline int normal_prio(struct task_struct *p)
b29739f9
IM
773{
774 int prio;
775
aab03e05
DF
776 if (task_has_dl_policy(p))
777 prio = MAX_DL_PRIO-1;
778 else if (task_has_rt_policy(p))
b29739f9
IM
779 prio = MAX_RT_PRIO-1 - p->rt_priority;
780 else
781 prio = __normal_prio(p);
782 return prio;
783}
784
785/*
786 * Calculate the current priority, i.e. the priority
787 * taken into account by the scheduler. This value might
788 * be boosted by RT tasks, or might be boosted by
789 * interactivity modifiers. Will be RT if the task got
790 * RT-boosted. If not then it returns p->normal_prio.
791 */
36c8b586 792static int effective_prio(struct task_struct *p)
b29739f9
IM
793{
794 p->normal_prio = normal_prio(p);
795 /*
796 * If we are RT tasks or we were boosted to RT priority,
797 * keep the priority unchanged. Otherwise, update priority
798 * to the normal priority:
799 */
800 if (!rt_prio(p->prio))
801 return p->normal_prio;
802 return p->prio;
803}
804
1da177e4
LT
805/**
806 * task_curr - is this task currently executing on a CPU?
807 * @p: the task in question.
e69f6186
YB
808 *
809 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 810 */
36c8b586 811inline int task_curr(const struct task_struct *p)
1da177e4
LT
812{
813 return cpu_curr(task_cpu(p)) == p;
814}
815
67dfa1b7 816/*
4c9a4bc8
PZ
817 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
818 * use the balance_callback list if you want balancing.
819 *
820 * this means any call to check_class_changed() must be followed by a call to
821 * balance_callback().
67dfa1b7 822 */
cb469845
SR
823static inline void check_class_changed(struct rq *rq, struct task_struct *p,
824 const struct sched_class *prev_class,
da7a735e 825 int oldprio)
cb469845
SR
826{
827 if (prev_class != p->sched_class) {
828 if (prev_class->switched_from)
da7a735e 829 prev_class->switched_from(rq, p);
4c9a4bc8 830
da7a735e 831 p->sched_class->switched_to(rq, p);
2d3d891d 832 } else if (oldprio != p->prio || dl_task(p))
da7a735e 833 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
834}
835
029632fb 836void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
837{
838 const struct sched_class *class;
839
840 if (p->sched_class == rq->curr->sched_class) {
841 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
842 } else {
843 for_each_class(class) {
844 if (class == rq->curr->sched_class)
845 break;
846 if (class == p->sched_class) {
8875125e 847 resched_curr(rq);
1e5a7405
PZ
848 break;
849 }
850 }
851 }
852
853 /*
854 * A queue event has occurred, and we're going to schedule. In
855 * this case, we can save a useless back to back clock update.
856 */
da0c1e65 857 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 858 rq_clock_skip_update(rq);
1e5a7405
PZ
859}
860
1da177e4 861#ifdef CONFIG_SMP
175f0e25
PZ
862
863static inline bool is_per_cpu_kthread(struct task_struct *p)
864{
865 if (!(p->flags & PF_KTHREAD))
866 return false;
867
868 if (p->nr_cpus_allowed != 1)
869 return false;
870
871 return true;
872}
873
874/*
875 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
876 * __set_cpus_allowed_ptr() and select_fallback_rq().
877 */
878static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
879{
880 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
881 return false;
882
883 if (is_per_cpu_kthread(p))
884 return cpu_online(cpu);
885
886 return cpu_active(cpu);
887}
888
5cc389bc
PZ
889/*
890 * This is how migration works:
891 *
892 * 1) we invoke migration_cpu_stop() on the target CPU using
893 * stop_one_cpu().
894 * 2) stopper starts to run (implicitly forcing the migrated thread
895 * off the CPU)
896 * 3) it checks whether the migrated task is still in the wrong runqueue.
897 * 4) if it's in the wrong runqueue then the migration thread removes
898 * it and puts it into the right queue.
899 * 5) stopper completes and stop_one_cpu() returns and the migration
900 * is done.
901 */
902
903/*
904 * move_queued_task - move a queued task to new rq.
905 *
906 * Returns (locked) new rq. Old rq's lock is released.
907 */
8a8c69c3
PZ
908static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
909 struct task_struct *p, int new_cpu)
5cc389bc 910{
5cc389bc
PZ
911 lockdep_assert_held(&rq->lock);
912
5cc389bc 913 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 914 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 915 set_task_cpu(p, new_cpu);
8a8c69c3 916 rq_unlock(rq, rf);
5cc389bc
PZ
917
918 rq = cpu_rq(new_cpu);
919
8a8c69c3 920 rq_lock(rq, rf);
5cc389bc 921 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 922 enqueue_task(rq, p, 0);
3ea94de1 923 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
924 check_preempt_curr(rq, p, 0);
925
926 return rq;
927}
928
929struct migration_arg {
930 struct task_struct *task;
931 int dest_cpu;
932};
933
934/*
d1ccc66d 935 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
936 * this because either it can't run here any more (set_cpus_allowed()
937 * away from this CPU, or CPU going down), or because we're
938 * attempting to rebalance this task on exec (sched_exec).
939 *
940 * So we race with normal scheduler movements, but that's OK, as long
941 * as the task is no longer on this CPU.
5cc389bc 942 */
8a8c69c3
PZ
943static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
944 struct task_struct *p, int dest_cpu)
5cc389bc 945{
5cc389bc 946 /* Affinity changed (again). */
175f0e25 947 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 948 return rq;
5cc389bc 949
15ff991e 950 update_rq_clock(rq);
8a8c69c3 951 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
952
953 return rq;
5cc389bc
PZ
954}
955
956/*
957 * migration_cpu_stop - this will be executed by a highprio stopper thread
958 * and performs thread migration by bumping thread off CPU then
959 * 'pushing' onto another runqueue.
960 */
961static int migration_cpu_stop(void *data)
962{
963 struct migration_arg *arg = data;
5e16bbc2
PZ
964 struct task_struct *p = arg->task;
965 struct rq *rq = this_rq();
8a8c69c3 966 struct rq_flags rf;
5cc389bc
PZ
967
968 /*
d1ccc66d
IM
969 * The original target CPU might have gone down and we might
970 * be on another CPU but it doesn't matter.
5cc389bc
PZ
971 */
972 local_irq_disable();
973 /*
974 * We need to explicitly wake pending tasks before running
975 * __migrate_task() such that we will not miss enforcing cpus_allowed
976 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
977 */
978 sched_ttwu_pending();
5e16bbc2
PZ
979
980 raw_spin_lock(&p->pi_lock);
8a8c69c3 981 rq_lock(rq, &rf);
5e16bbc2
PZ
982 /*
983 * If task_rq(p) != rq, it cannot be migrated here, because we're
984 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
985 * we're holding p->pi_lock.
986 */
bf89a304
CC
987 if (task_rq(p) == rq) {
988 if (task_on_rq_queued(p))
8a8c69c3 989 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
990 else
991 p->wake_cpu = arg->dest_cpu;
992 }
8a8c69c3 993 rq_unlock(rq, &rf);
5e16bbc2
PZ
994 raw_spin_unlock(&p->pi_lock);
995
5cc389bc
PZ
996 local_irq_enable();
997 return 0;
998}
999
c5b28038
PZ
1000/*
1001 * sched_class::set_cpus_allowed must do the below, but is not required to
1002 * actually call this function.
1003 */
1004void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1005{
5cc389bc
PZ
1006 cpumask_copy(&p->cpus_allowed, new_mask);
1007 p->nr_cpus_allowed = cpumask_weight(new_mask);
1008}
1009
c5b28038
PZ
1010void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1011{
6c37067e
PZ
1012 struct rq *rq = task_rq(p);
1013 bool queued, running;
1014
c5b28038 1015 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1016
1017 queued = task_on_rq_queued(p);
1018 running = task_current(rq, p);
1019
1020 if (queued) {
1021 /*
1022 * Because __kthread_bind() calls this on blocked tasks without
1023 * holding rq->lock.
1024 */
1025 lockdep_assert_held(&rq->lock);
7a57f32a 1026 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1027 }
1028 if (running)
1029 put_prev_task(rq, p);
1030
c5b28038 1031 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1032
6c37067e 1033 if (queued)
7134b3e9 1034 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1035 if (running)
b2bf6c31 1036 set_curr_task(rq, p);
c5b28038
PZ
1037}
1038
5cc389bc
PZ
1039/*
1040 * Change a given task's CPU affinity. Migrate the thread to a
1041 * proper CPU and schedule it away if the CPU it's executing on
1042 * is removed from the allowed bitmask.
1043 *
1044 * NOTE: the caller must have a valid reference to the task, the
1045 * task must not exit() & deallocate itself prematurely. The
1046 * call is not atomic; no spinlocks may be held.
1047 */
25834c73
PZ
1048static int __set_cpus_allowed_ptr(struct task_struct *p,
1049 const struct cpumask *new_mask, bool check)
5cc389bc 1050{
e9d867a6 1051 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1052 unsigned int dest_cpu;
eb580751
PZ
1053 struct rq_flags rf;
1054 struct rq *rq;
5cc389bc
PZ
1055 int ret = 0;
1056
eb580751 1057 rq = task_rq_lock(p, &rf);
a499c3ea 1058 update_rq_clock(rq);
5cc389bc 1059
e9d867a6
PZI
1060 if (p->flags & PF_KTHREAD) {
1061 /*
1062 * Kernel threads are allowed on online && !active CPUs
1063 */
1064 cpu_valid_mask = cpu_online_mask;
1065 }
1066
25834c73
PZ
1067 /*
1068 * Must re-check here, to close a race against __kthread_bind(),
1069 * sched_setaffinity() is not guaranteed to observe the flag.
1070 */
1071 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1072 ret = -EINVAL;
1073 goto out;
1074 }
1075
5cc389bc
PZ
1076 if (cpumask_equal(&p->cpus_allowed, new_mask))
1077 goto out;
1078
e9d867a6 1079 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1080 ret = -EINVAL;
1081 goto out;
1082 }
1083
1084 do_set_cpus_allowed(p, new_mask);
1085
e9d867a6
PZI
1086 if (p->flags & PF_KTHREAD) {
1087 /*
1088 * For kernel threads that do indeed end up on online &&
d1ccc66d 1089 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1090 */
1091 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1092 !cpumask_intersects(new_mask, cpu_active_mask) &&
1093 p->nr_cpus_allowed != 1);
1094 }
1095
5cc389bc
PZ
1096 /* Can the task run on the task's current CPU? If so, we're done */
1097 if (cpumask_test_cpu(task_cpu(p), new_mask))
1098 goto out;
1099
e9d867a6 1100 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1101 if (task_running(rq, p) || p->state == TASK_WAKING) {
1102 struct migration_arg arg = { p, dest_cpu };
1103 /* Need help from migration thread: drop lock and wait. */
eb580751 1104 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1105 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1106 tlb_migrate_finish(p->mm);
1107 return 0;
cbce1a68
PZ
1108 } else if (task_on_rq_queued(p)) {
1109 /*
1110 * OK, since we're going to drop the lock immediately
1111 * afterwards anyway.
1112 */
8a8c69c3 1113 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1114 }
5cc389bc 1115out:
eb580751 1116 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1117
1118 return ret;
1119}
25834c73
PZ
1120
1121int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1122{
1123 return __set_cpus_allowed_ptr(p, new_mask, false);
1124}
5cc389bc
PZ
1125EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1126
dd41f596 1127void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1128{
e2912009
PZ
1129#ifdef CONFIG_SCHED_DEBUG
1130 /*
1131 * We should never call set_task_cpu() on a blocked task,
1132 * ttwu() will sort out the placement.
1133 */
077614ee 1134 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1135 !p->on_rq);
0122ec5b 1136
3ea94de1
JP
1137 /*
1138 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1139 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1140 * time relying on p->on_rq.
1141 */
1142 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1143 p->sched_class == &fair_sched_class &&
1144 (p->on_rq && !task_on_rq_migrating(p)));
1145
0122ec5b 1146#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1147 /*
1148 * The caller should hold either p->pi_lock or rq->lock, when changing
1149 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1150 *
1151 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1152 * see task_group().
6c6c54e1
PZ
1153 *
1154 * Furthermore, all task_rq users should acquire both locks, see
1155 * task_rq_lock().
1156 */
0122ec5b
PZ
1157 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1158 lockdep_is_held(&task_rq(p)->lock)));
1159#endif
4ff9083b
PZ
1160 /*
1161 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1162 */
1163 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1164#endif
1165
de1d7286 1166 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1167
0c69774e 1168 if (task_cpu(p) != new_cpu) {
0a74bef8 1169 if (p->sched_class->migrate_task_rq)
1327237a 1170 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1171 p->se.nr_migrations++;
d7822b1e 1172 rseq_migrate(p);
ff303e66 1173 perf_event_task_migrate(p);
0c69774e 1174 }
dd41f596
IM
1175
1176 __set_task_cpu(p, new_cpu);
c65cc870
IM
1177}
1178
0ad4e3df 1179#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1180static void __migrate_swap_task(struct task_struct *p, int cpu)
1181{
da0c1e65 1182 if (task_on_rq_queued(p)) {
ac66f547 1183 struct rq *src_rq, *dst_rq;
8a8c69c3 1184 struct rq_flags srf, drf;
ac66f547
PZ
1185
1186 src_rq = task_rq(p);
1187 dst_rq = cpu_rq(cpu);
1188
8a8c69c3
PZ
1189 rq_pin_lock(src_rq, &srf);
1190 rq_pin_lock(dst_rq, &drf);
1191
3ea94de1 1192 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1193 deactivate_task(src_rq, p, 0);
1194 set_task_cpu(p, cpu);
1195 activate_task(dst_rq, p, 0);
3ea94de1 1196 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1197 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1198
1199 rq_unpin_lock(dst_rq, &drf);
1200 rq_unpin_lock(src_rq, &srf);
1201
ac66f547
PZ
1202 } else {
1203 /*
1204 * Task isn't running anymore; make it appear like we migrated
1205 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1206 * previous CPU our target instead of where it really is.
ac66f547
PZ
1207 */
1208 p->wake_cpu = cpu;
1209 }
1210}
1211
1212struct migration_swap_arg {
1213 struct task_struct *src_task, *dst_task;
1214 int src_cpu, dst_cpu;
1215};
1216
1217static int migrate_swap_stop(void *data)
1218{
1219 struct migration_swap_arg *arg = data;
1220 struct rq *src_rq, *dst_rq;
1221 int ret = -EAGAIN;
1222
62694cd5
PZ
1223 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1224 return -EAGAIN;
1225
ac66f547
PZ
1226 src_rq = cpu_rq(arg->src_cpu);
1227 dst_rq = cpu_rq(arg->dst_cpu);
1228
74602315
PZ
1229 double_raw_lock(&arg->src_task->pi_lock,
1230 &arg->dst_task->pi_lock);
ac66f547 1231 double_rq_lock(src_rq, dst_rq);
62694cd5 1232
ac66f547
PZ
1233 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1234 goto unlock;
1235
1236 if (task_cpu(arg->src_task) != arg->src_cpu)
1237 goto unlock;
1238
0c98d344 1239 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1240 goto unlock;
1241
0c98d344 1242 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1243 goto unlock;
1244
1245 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1246 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1247
1248 ret = 0;
1249
1250unlock:
1251 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1252 raw_spin_unlock(&arg->dst_task->pi_lock);
1253 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1254
1255 return ret;
1256}
1257
1258/*
1259 * Cross migrate two tasks
1260 */
0ad4e3df
SD
1261int migrate_swap(struct task_struct *cur, struct task_struct *p,
1262 int target_cpu, int curr_cpu)
ac66f547
PZ
1263{
1264 struct migration_swap_arg arg;
1265 int ret = -EINVAL;
1266
ac66f547
PZ
1267 arg = (struct migration_swap_arg){
1268 .src_task = cur,
0ad4e3df 1269 .src_cpu = curr_cpu,
ac66f547 1270 .dst_task = p,
0ad4e3df 1271 .dst_cpu = target_cpu,
ac66f547
PZ
1272 };
1273
1274 if (arg.src_cpu == arg.dst_cpu)
1275 goto out;
1276
6acce3ef
PZ
1277 /*
1278 * These three tests are all lockless; this is OK since all of them
1279 * will be re-checked with proper locks held further down the line.
1280 */
ac66f547
PZ
1281 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1282 goto out;
1283
0c98d344 1284 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1285 goto out;
1286
0c98d344 1287 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1288 goto out;
1289
286549dc 1290 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1291 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1292
1293out:
ac66f547
PZ
1294 return ret;
1295}
0ad4e3df 1296#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1297
1da177e4
LT
1298/*
1299 * wait_task_inactive - wait for a thread to unschedule.
1300 *
85ba2d86
RM
1301 * If @match_state is nonzero, it's the @p->state value just checked and
1302 * not expected to change. If it changes, i.e. @p might have woken up,
1303 * then return zero. When we succeed in waiting for @p to be off its CPU,
1304 * we return a positive number (its total switch count). If a second call
1305 * a short while later returns the same number, the caller can be sure that
1306 * @p has remained unscheduled the whole time.
1307 *
1da177e4
LT
1308 * The caller must ensure that the task *will* unschedule sometime soon,
1309 * else this function might spin for a *long* time. This function can't
1310 * be called with interrupts off, or it may introduce deadlock with
1311 * smp_call_function() if an IPI is sent by the same process we are
1312 * waiting to become inactive.
1313 */
85ba2d86 1314unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1315{
da0c1e65 1316 int running, queued;
eb580751 1317 struct rq_flags rf;
85ba2d86 1318 unsigned long ncsw;
70b97a7f 1319 struct rq *rq;
1da177e4 1320
3a5c359a
AK
1321 for (;;) {
1322 /*
1323 * We do the initial early heuristics without holding
1324 * any task-queue locks at all. We'll only try to get
1325 * the runqueue lock when things look like they will
1326 * work out!
1327 */
1328 rq = task_rq(p);
fa490cfd 1329
3a5c359a
AK
1330 /*
1331 * If the task is actively running on another CPU
1332 * still, just relax and busy-wait without holding
1333 * any locks.
1334 *
1335 * NOTE! Since we don't hold any locks, it's not
1336 * even sure that "rq" stays as the right runqueue!
1337 * But we don't care, since "task_running()" will
1338 * return false if the runqueue has changed and p
1339 * is actually now running somewhere else!
1340 */
85ba2d86
RM
1341 while (task_running(rq, p)) {
1342 if (match_state && unlikely(p->state != match_state))
1343 return 0;
3a5c359a 1344 cpu_relax();
85ba2d86 1345 }
fa490cfd 1346
3a5c359a
AK
1347 /*
1348 * Ok, time to look more closely! We need the rq
1349 * lock now, to be *sure*. If we're wrong, we'll
1350 * just go back and repeat.
1351 */
eb580751 1352 rq = task_rq_lock(p, &rf);
27a9da65 1353 trace_sched_wait_task(p);
3a5c359a 1354 running = task_running(rq, p);
da0c1e65 1355 queued = task_on_rq_queued(p);
85ba2d86 1356 ncsw = 0;
f31e11d8 1357 if (!match_state || p->state == match_state)
93dcf55f 1358 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1359 task_rq_unlock(rq, p, &rf);
fa490cfd 1360
85ba2d86
RM
1361 /*
1362 * If it changed from the expected state, bail out now.
1363 */
1364 if (unlikely(!ncsw))
1365 break;
1366
3a5c359a
AK
1367 /*
1368 * Was it really running after all now that we
1369 * checked with the proper locks actually held?
1370 *
1371 * Oops. Go back and try again..
1372 */
1373 if (unlikely(running)) {
1374 cpu_relax();
1375 continue;
1376 }
fa490cfd 1377
3a5c359a
AK
1378 /*
1379 * It's not enough that it's not actively running,
1380 * it must be off the runqueue _entirely_, and not
1381 * preempted!
1382 *
80dd99b3 1383 * So if it was still runnable (but just not actively
3a5c359a
AK
1384 * running right now), it's preempted, and we should
1385 * yield - it could be a while.
1386 */
da0c1e65 1387 if (unlikely(queued)) {
8b0e1953 1388 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1389
1390 set_current_state(TASK_UNINTERRUPTIBLE);
1391 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1392 continue;
1393 }
fa490cfd 1394
3a5c359a
AK
1395 /*
1396 * Ahh, all good. It wasn't running, and it wasn't
1397 * runnable, which means that it will never become
1398 * running in the future either. We're all done!
1399 */
1400 break;
1401 }
85ba2d86
RM
1402
1403 return ncsw;
1da177e4
LT
1404}
1405
1406/***
1407 * kick_process - kick a running thread to enter/exit the kernel
1408 * @p: the to-be-kicked thread
1409 *
1410 * Cause a process which is running on another CPU to enter
1411 * kernel-mode, without any delay. (to get signals handled.)
1412 *
25985edc 1413 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1414 * because all it wants to ensure is that the remote task enters
1415 * the kernel. If the IPI races and the task has been migrated
1416 * to another CPU then no harm is done and the purpose has been
1417 * achieved as well.
1418 */
36c8b586 1419void kick_process(struct task_struct *p)
1da177e4
LT
1420{
1421 int cpu;
1422
1423 preempt_disable();
1424 cpu = task_cpu(p);
1425 if ((cpu != smp_processor_id()) && task_curr(p))
1426 smp_send_reschedule(cpu);
1427 preempt_enable();
1428}
b43e3521 1429EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1430
30da688e 1431/*
013fdb80 1432 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1433 *
1434 * A few notes on cpu_active vs cpu_online:
1435 *
1436 * - cpu_active must be a subset of cpu_online
1437 *
97fb7a0a 1438 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1439 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1440 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1441 * see it.
1442 *
d1ccc66d 1443 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1444 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1445 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1446 * off.
1447 *
1448 * This means that fallback selection must not select !active CPUs.
1449 * And can assume that any active CPU must be online. Conversely
1450 * select_task_rq() below may allow selection of !active CPUs in order
1451 * to satisfy the above rules.
30da688e 1452 */
5da9a0fb
PZ
1453static int select_fallback_rq(int cpu, struct task_struct *p)
1454{
aa00d89c
TC
1455 int nid = cpu_to_node(cpu);
1456 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1457 enum { cpuset, possible, fail } state = cpuset;
1458 int dest_cpu;
5da9a0fb 1459
aa00d89c 1460 /*
d1ccc66d
IM
1461 * If the node that the CPU is on has been offlined, cpu_to_node()
1462 * will return -1. There is no CPU on the node, and we should
1463 * select the CPU on the other node.
aa00d89c
TC
1464 */
1465 if (nid != -1) {
1466 nodemask = cpumask_of_node(nid);
1467
1468 /* Look for allowed, online CPU in same node. */
1469 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1470 if (!cpu_active(dest_cpu))
1471 continue;
0c98d344 1472 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1473 return dest_cpu;
1474 }
2baab4e9 1475 }
5da9a0fb 1476
2baab4e9
PZ
1477 for (;;) {
1478 /* Any allowed, online CPU? */
0c98d344 1479 for_each_cpu(dest_cpu, &p->cpus_allowed) {
175f0e25 1480 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1481 continue;
175f0e25 1482
2baab4e9
PZ
1483 goto out;
1484 }
5da9a0fb 1485
e73e85f0 1486 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1487 switch (state) {
1488 case cpuset:
e73e85f0
ON
1489 if (IS_ENABLED(CONFIG_CPUSETS)) {
1490 cpuset_cpus_allowed_fallback(p);
1491 state = possible;
1492 break;
1493 }
d1ccc66d 1494 /* Fall-through */
2baab4e9
PZ
1495 case possible:
1496 do_set_cpus_allowed(p, cpu_possible_mask);
1497 state = fail;
1498 break;
1499
1500 case fail:
1501 BUG();
1502 break;
1503 }
1504 }
1505
1506out:
1507 if (state != cpuset) {
1508 /*
1509 * Don't tell them about moving exiting tasks or
1510 * kernel threads (both mm NULL), since they never
1511 * leave kernel.
1512 */
1513 if (p->mm && printk_ratelimit()) {
aac74dc4 1514 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1515 task_pid_nr(p), p->comm, cpu);
1516 }
5da9a0fb
PZ
1517 }
1518
1519 return dest_cpu;
1520}
1521
e2912009 1522/*
013fdb80 1523 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1524 */
970b13ba 1525static inline
ac66f547 1526int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1527{
cbce1a68
PZ
1528 lockdep_assert_held(&p->pi_lock);
1529
4b53a341 1530 if (p->nr_cpus_allowed > 1)
6c1d9410 1531 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1532 else
0c98d344 1533 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1534
1535 /*
1536 * In order not to call set_task_cpu() on a blocking task we need
1537 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1538 * CPU.
e2912009
PZ
1539 *
1540 * Since this is common to all placement strategies, this lives here.
1541 *
1542 * [ this allows ->select_task() to simply return task_cpu(p) and
1543 * not worry about this generic constraint ]
1544 */
7af443ee 1545 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 1546 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1547
1548 return cpu;
970b13ba 1549}
09a40af5
MG
1550
1551static void update_avg(u64 *avg, u64 sample)
1552{
1553 s64 diff = sample - *avg;
1554 *avg += diff >> 3;
1555}
25834c73 1556
f5832c19
NP
1557void sched_set_stop_task(int cpu, struct task_struct *stop)
1558{
1559 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1560 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1561
1562 if (stop) {
1563 /*
1564 * Make it appear like a SCHED_FIFO task, its something
1565 * userspace knows about and won't get confused about.
1566 *
1567 * Also, it will make PI more or less work without too
1568 * much confusion -- but then, stop work should not
1569 * rely on PI working anyway.
1570 */
1571 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1572
1573 stop->sched_class = &stop_sched_class;
1574 }
1575
1576 cpu_rq(cpu)->stop = stop;
1577
1578 if (old_stop) {
1579 /*
1580 * Reset it back to a normal scheduling class so that
1581 * it can die in pieces.
1582 */
1583 old_stop->sched_class = &rt_sched_class;
1584 }
1585}
1586
25834c73
PZ
1587#else
1588
1589static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1590 const struct cpumask *new_mask, bool check)
1591{
1592 return set_cpus_allowed_ptr(p, new_mask);
1593}
1594
5cc389bc 1595#endif /* CONFIG_SMP */
970b13ba 1596
d7c01d27 1597static void
b84cb5df 1598ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1599{
4fa8d299 1600 struct rq *rq;
b84cb5df 1601
4fa8d299
JP
1602 if (!schedstat_enabled())
1603 return;
1604
1605 rq = this_rq();
d7c01d27 1606
4fa8d299
JP
1607#ifdef CONFIG_SMP
1608 if (cpu == rq->cpu) {
b85c8b71
PZ
1609 __schedstat_inc(rq->ttwu_local);
1610 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1611 } else {
1612 struct sched_domain *sd;
1613
b85c8b71 1614 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1615 rcu_read_lock();
4fa8d299 1616 for_each_domain(rq->cpu, sd) {
d7c01d27 1617 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1618 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1619 break;
1620 }
1621 }
057f3fad 1622 rcu_read_unlock();
d7c01d27 1623 }
f339b9dc
PZ
1624
1625 if (wake_flags & WF_MIGRATED)
b85c8b71 1626 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1627#endif /* CONFIG_SMP */
1628
b85c8b71
PZ
1629 __schedstat_inc(rq->ttwu_count);
1630 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1631
1632 if (wake_flags & WF_SYNC)
b85c8b71 1633 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1634}
1635
1de64443 1636static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1637{
9ed3811a 1638 activate_task(rq, p, en_flags);
da0c1e65 1639 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1640
d1ccc66d 1641 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1642 if (p->flags & PF_WQ_WORKER)
1643 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1644}
1645
23f41eeb
PZ
1646/*
1647 * Mark the task runnable and perform wakeup-preemption.
1648 */
e7904a28 1649static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1650 struct rq_flags *rf)
9ed3811a 1651{
9ed3811a 1652 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1653 p->state = TASK_RUNNING;
fbd705a0
PZ
1654 trace_sched_wakeup(p);
1655
9ed3811a 1656#ifdef CONFIG_SMP
4c9a4bc8
PZ
1657 if (p->sched_class->task_woken) {
1658 /*
cbce1a68
PZ
1659 * Our task @p is fully woken up and running; so its safe to
1660 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1661 */
d8ac8971 1662 rq_unpin_lock(rq, rf);
9ed3811a 1663 p->sched_class->task_woken(rq, p);
d8ac8971 1664 rq_repin_lock(rq, rf);
4c9a4bc8 1665 }
9ed3811a 1666
e69c6341 1667 if (rq->idle_stamp) {
78becc27 1668 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1669 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1670
abfafa54
JL
1671 update_avg(&rq->avg_idle, delta);
1672
1673 if (rq->avg_idle > max)
9ed3811a 1674 rq->avg_idle = max;
abfafa54 1675
9ed3811a
TH
1676 rq->idle_stamp = 0;
1677 }
1678#endif
1679}
1680
c05fbafb 1681static void
e7904a28 1682ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1683 struct rq_flags *rf)
c05fbafb 1684{
77558e4d 1685 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1686
cbce1a68
PZ
1687 lockdep_assert_held(&rq->lock);
1688
c05fbafb
PZ
1689#ifdef CONFIG_SMP
1690 if (p->sched_contributes_to_load)
1691 rq->nr_uninterruptible--;
b5179ac7 1692
b5179ac7 1693 if (wake_flags & WF_MIGRATED)
59efa0ba 1694 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1695#endif
1696
b5179ac7 1697 ttwu_activate(rq, p, en_flags);
d8ac8971 1698 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1699}
1700
1701/*
1702 * Called in case the task @p isn't fully descheduled from its runqueue,
1703 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1704 * since all we need to do is flip p->state to TASK_RUNNING, since
1705 * the task is still ->on_rq.
1706 */
1707static int ttwu_remote(struct task_struct *p, int wake_flags)
1708{
eb580751 1709 struct rq_flags rf;
c05fbafb
PZ
1710 struct rq *rq;
1711 int ret = 0;
1712
eb580751 1713 rq = __task_rq_lock(p, &rf);
da0c1e65 1714 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1715 /* check_preempt_curr() may use rq clock */
1716 update_rq_clock(rq);
d8ac8971 1717 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1718 ret = 1;
1719 }
eb580751 1720 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1721
1722 return ret;
1723}
1724
317f3941 1725#ifdef CONFIG_SMP
e3baac47 1726void sched_ttwu_pending(void)
317f3941
PZ
1727{
1728 struct rq *rq = this_rq();
fa14ff4a 1729 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1730 struct task_struct *p, *t;
d8ac8971 1731 struct rq_flags rf;
317f3941 1732
e3baac47
PZ
1733 if (!llist)
1734 return;
1735
8a8c69c3 1736 rq_lock_irqsave(rq, &rf);
77558e4d 1737 update_rq_clock(rq);
317f3941 1738
73215849
BP
1739 llist_for_each_entry_safe(p, t, llist, wake_entry)
1740 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1741
8a8c69c3 1742 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1743}
1744
1745void scheduler_ipi(void)
1746{
f27dde8d
PZ
1747 /*
1748 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1749 * TIF_NEED_RESCHED remotely (for the first time) will also send
1750 * this IPI.
1751 */
8cb75e0c 1752 preempt_fold_need_resched();
f27dde8d 1753
fd2ac4f4 1754 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1755 return;
1756
1757 /*
1758 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1759 * traditionally all their work was done from the interrupt return
1760 * path. Now that we actually do some work, we need to make sure
1761 * we do call them.
1762 *
1763 * Some archs already do call them, luckily irq_enter/exit nest
1764 * properly.
1765 *
1766 * Arguably we should visit all archs and update all handlers,
1767 * however a fair share of IPIs are still resched only so this would
1768 * somewhat pessimize the simple resched case.
1769 */
1770 irq_enter();
fa14ff4a 1771 sched_ttwu_pending();
ca38062e
SS
1772
1773 /*
1774 * Check if someone kicked us for doing the nohz idle load balance.
1775 */
873b4c65 1776 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1777 this_rq()->idle_balance = 1;
ca38062e 1778 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1779 }
c5d753a5 1780 irq_exit();
317f3941
PZ
1781}
1782
b7e7ade3 1783static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1784{
e3baac47
PZ
1785 struct rq *rq = cpu_rq(cpu);
1786
b7e7ade3
PZ
1787 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1788
e3baac47
PZ
1789 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1790 if (!set_nr_if_polling(rq->idle))
1791 smp_send_reschedule(cpu);
1792 else
1793 trace_sched_wake_idle_without_ipi(cpu);
1794 }
317f3941 1795}
d6aa8f85 1796
f6be8af1
CL
1797void wake_up_if_idle(int cpu)
1798{
1799 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1800 struct rq_flags rf;
f6be8af1 1801
fd7de1e8
AL
1802 rcu_read_lock();
1803
1804 if (!is_idle_task(rcu_dereference(rq->curr)))
1805 goto out;
f6be8af1
CL
1806
1807 if (set_nr_if_polling(rq->idle)) {
1808 trace_sched_wake_idle_without_ipi(cpu);
1809 } else {
8a8c69c3 1810 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1811 if (is_idle_task(rq->curr))
1812 smp_send_reschedule(cpu);
d1ccc66d 1813 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1814 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1815 }
fd7de1e8
AL
1816
1817out:
1818 rcu_read_unlock();
f6be8af1
CL
1819}
1820
39be3501 1821bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1822{
1823 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1824}
d6aa8f85 1825#endif /* CONFIG_SMP */
317f3941 1826
b5179ac7 1827static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1828{
1829 struct rq *rq = cpu_rq(cpu);
d8ac8971 1830 struct rq_flags rf;
c05fbafb 1831
17d9f311 1832#if defined(CONFIG_SMP)
39be3501 1833 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1834 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1835 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1836 return;
1837 }
1838#endif
1839
8a8c69c3 1840 rq_lock(rq, &rf);
77558e4d 1841 update_rq_clock(rq);
d8ac8971 1842 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1843 rq_unlock(rq, &rf);
9ed3811a
TH
1844}
1845
8643cda5
PZ
1846/*
1847 * Notes on Program-Order guarantees on SMP systems.
1848 *
1849 * MIGRATION
1850 *
1851 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1852 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1853 * execution on its new CPU [c1].
8643cda5
PZ
1854 *
1855 * For migration (of runnable tasks) this is provided by the following means:
1856 *
1857 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1858 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1859 * rq(c1)->lock (if not at the same time, then in that order).
1860 * C) LOCK of the rq(c1)->lock scheduling in task
1861 *
7696f991 1862 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 1863 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1864 *
1865 * Example:
1866 *
1867 * CPU0 CPU1 CPU2
1868 *
1869 * LOCK rq(0)->lock
1870 * sched-out X
1871 * sched-in Y
1872 * UNLOCK rq(0)->lock
1873 *
1874 * LOCK rq(0)->lock // orders against CPU0
1875 * dequeue X
1876 * UNLOCK rq(0)->lock
1877 *
1878 * LOCK rq(1)->lock
1879 * enqueue X
1880 * UNLOCK rq(1)->lock
1881 *
1882 * LOCK rq(1)->lock // orders against CPU2
1883 * sched-out Z
1884 * sched-in X
1885 * UNLOCK rq(1)->lock
1886 *
1887 *
1888 * BLOCKING -- aka. SLEEP + WAKEUP
1889 *
1890 * For blocking we (obviously) need to provide the same guarantee as for
1891 * migration. However the means are completely different as there is no lock
1892 * chain to provide order. Instead we do:
1893 *
1894 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1895 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1896 *
1897 * Example:
1898 *
1899 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1900 *
1901 * LOCK rq(0)->lock LOCK X->pi_lock
1902 * dequeue X
1903 * sched-out X
1904 * smp_store_release(X->on_cpu, 0);
1905 *
1f03e8d2 1906 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1907 * X->state = WAKING
1908 * set_task_cpu(X,2)
1909 *
1910 * LOCK rq(2)->lock
1911 * enqueue X
1912 * X->state = RUNNING
1913 * UNLOCK rq(2)->lock
1914 *
1915 * LOCK rq(2)->lock // orders against CPU1
1916 * sched-out Z
1917 * sched-in X
1918 * UNLOCK rq(2)->lock
1919 *
1920 * UNLOCK X->pi_lock
1921 * UNLOCK rq(0)->lock
1922 *
1923 *
7696f991
AP
1924 * However, for wakeups there is a second guarantee we must provide, namely we
1925 * must ensure that CONDITION=1 done by the caller can not be reordered with
1926 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
1927 */
1928
9ed3811a 1929/**
1da177e4 1930 * try_to_wake_up - wake up a thread
9ed3811a 1931 * @p: the thread to be awakened
1da177e4 1932 * @state: the mask of task states that can be woken
9ed3811a 1933 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1934 *
a2250238 1935 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1936 *
a2250238
PZ
1937 * If the task was not queued/runnable, also place it back on a runqueue.
1938 *
1939 * Atomic against schedule() which would dequeue a task, also see
1940 * set_current_state().
1941 *
7696f991
AP
1942 * This function executes a full memory barrier before accessing the task
1943 * state; see set_current_state().
1944 *
a2250238
PZ
1945 * Return: %true if @p->state changes (an actual wakeup was done),
1946 * %false otherwise.
1da177e4 1947 */
e4a52bcb
PZ
1948static int
1949try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1950{
1da177e4 1951 unsigned long flags;
c05fbafb 1952 int cpu, success = 0;
2398f2c6 1953
e0acd0a6
ON
1954 /*
1955 * If we are going to wake up a thread waiting for CONDITION we
1956 * need to ensure that CONDITION=1 done by the caller can not be
1957 * reordered with p->state check below. This pairs with mb() in
1958 * set_current_state() the waiting thread does.
1959 */
013fdb80 1960 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 1961 smp_mb__after_spinlock();
e9c84311 1962 if (!(p->state & state))
1da177e4
LT
1963 goto out;
1964
fbd705a0
PZ
1965 trace_sched_waking(p);
1966
d1ccc66d
IM
1967 /* We're going to change ->state: */
1968 success = 1;
1da177e4 1969 cpu = task_cpu(p);
1da177e4 1970
135e8c92
BS
1971 /*
1972 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1973 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1974 * in smp_cond_load_acquire() below.
1975 *
3d85b270
AP
1976 * sched_ttwu_pending() try_to_wake_up()
1977 * STORE p->on_rq = 1 LOAD p->state
1978 * UNLOCK rq->lock
1979 *
1980 * __schedule() (switch to task 'p')
1981 * LOCK rq->lock smp_rmb();
1982 * smp_mb__after_spinlock();
1983 * UNLOCK rq->lock
135e8c92
BS
1984 *
1985 * [task p]
3d85b270 1986 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 1987 *
3d85b270
AP
1988 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1989 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
1990 */
1991 smp_rmb();
c05fbafb
PZ
1992 if (p->on_rq && ttwu_remote(p, wake_flags))
1993 goto stat;
1da177e4 1994
1da177e4 1995#ifdef CONFIG_SMP
ecf7d01c
PZ
1996 /*
1997 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1998 * possible to, falsely, observe p->on_cpu == 0.
1999 *
2000 * One must be running (->on_cpu == 1) in order to remove oneself
2001 * from the runqueue.
2002 *
3d85b270
AP
2003 * __schedule() (switch to task 'p') try_to_wake_up()
2004 * STORE p->on_cpu = 1 LOAD p->on_rq
2005 * UNLOCK rq->lock
2006 *
2007 * __schedule() (put 'p' to sleep)
2008 * LOCK rq->lock smp_rmb();
2009 * smp_mb__after_spinlock();
2010 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2011 *
3d85b270
AP
2012 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2013 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2014 */
2015 smp_rmb();
2016
e9c84311 2017 /*
d1ccc66d 2018 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2019 * this task as prev, wait until its done referencing the task.
b75a2253 2020 *
31cb1bc0 2021 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2022 *
2023 * This ensures that tasks getting woken will be fully ordered against
2024 * their previous state and preserve Program Order.
0970d299 2025 */
1f03e8d2 2026 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2027
a8e4f2ea 2028 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2029 p->state = TASK_WAKING;
e7693a36 2030
e33a9bba 2031 if (p->in_iowait) {
c96f5471 2032 delayacct_blkio_end(p);
e33a9bba
TH
2033 atomic_dec(&task_rq(p)->nr_iowait);
2034 }
2035
ac66f547 2036 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2037 if (task_cpu(p) != cpu) {
2038 wake_flags |= WF_MIGRATED;
e4a52bcb 2039 set_task_cpu(p, cpu);
f339b9dc 2040 }
e33a9bba
TH
2041
2042#else /* CONFIG_SMP */
2043
2044 if (p->in_iowait) {
c96f5471 2045 delayacct_blkio_end(p);
e33a9bba
TH
2046 atomic_dec(&task_rq(p)->nr_iowait);
2047 }
2048
1da177e4 2049#endif /* CONFIG_SMP */
1da177e4 2050
b5179ac7 2051 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2052stat:
4fa8d299 2053 ttwu_stat(p, cpu, wake_flags);
1da177e4 2054out:
013fdb80 2055 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2056
2057 return success;
2058}
2059
21aa9af0
TH
2060/**
2061 * try_to_wake_up_local - try to wake up a local task with rq lock held
2062 * @p: the thread to be awakened
bf50f0e8 2063 * @rf: request-queue flags for pinning
21aa9af0 2064 *
2acca55e 2065 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2066 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2067 * the current task.
21aa9af0 2068 */
d8ac8971 2069static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2070{
2071 struct rq *rq = task_rq(p);
21aa9af0 2072
383efcd0
TH
2073 if (WARN_ON_ONCE(rq != this_rq()) ||
2074 WARN_ON_ONCE(p == current))
2075 return;
2076
21aa9af0
TH
2077 lockdep_assert_held(&rq->lock);
2078
2acca55e 2079 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2080 /*
2081 * This is OK, because current is on_cpu, which avoids it being
2082 * picked for load-balance and preemption/IRQs are still
2083 * disabled avoiding further scheduler activity on it and we've
2084 * not yet picked a replacement task.
2085 */
8a8c69c3 2086 rq_unlock(rq, rf);
2acca55e 2087 raw_spin_lock(&p->pi_lock);
8a8c69c3 2088 rq_relock(rq, rf);
2acca55e
PZ
2089 }
2090
21aa9af0 2091 if (!(p->state & TASK_NORMAL))
2acca55e 2092 goto out;
21aa9af0 2093
fbd705a0
PZ
2094 trace_sched_waking(p);
2095
e33a9bba
TH
2096 if (!task_on_rq_queued(p)) {
2097 if (p->in_iowait) {
c96f5471 2098 delayacct_blkio_end(p);
e33a9bba
TH
2099 atomic_dec(&rq->nr_iowait);
2100 }
bce4dc80 2101 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2102 }
d7c01d27 2103
d8ac8971 2104 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2105 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2106out:
2107 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2108}
2109
50fa610a
DH
2110/**
2111 * wake_up_process - Wake up a specific process
2112 * @p: The process to be woken up.
2113 *
2114 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2115 * processes.
2116 *
2117 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2118 *
7696f991 2119 * This function executes a full memory barrier before accessing the task state.
50fa610a 2120 */
7ad5b3a5 2121int wake_up_process(struct task_struct *p)
1da177e4 2122{
9067ac85 2123 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2124}
1da177e4
LT
2125EXPORT_SYMBOL(wake_up_process);
2126
7ad5b3a5 2127int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2128{
2129 return try_to_wake_up(p, state, 0);
2130}
2131
1da177e4
LT
2132/*
2133 * Perform scheduler related setup for a newly forked process p.
2134 * p is forked by current.
dd41f596
IM
2135 *
2136 * __sched_fork() is basic setup used by init_idle() too:
2137 */
5e1576ed 2138static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2139{
fd2f4419
PZ
2140 p->on_rq = 0;
2141
2142 p->se.on_rq = 0;
dd41f596
IM
2143 p->se.exec_start = 0;
2144 p->se.sum_exec_runtime = 0;
f6cf891c 2145 p->se.prev_sum_exec_runtime = 0;
6c594c21 2146 p->se.nr_migrations = 0;
da7a735e 2147 p->se.vruntime = 0;
fd2f4419 2148 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2149
ad936d86
BP
2150#ifdef CONFIG_FAIR_GROUP_SCHED
2151 p->se.cfs_rq = NULL;
2152#endif
2153
6cfb0d5d 2154#ifdef CONFIG_SCHEDSTATS
cb251765 2155 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2156 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2157#endif
476d139c 2158
aab03e05 2159 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2160 init_dl_task_timer(&p->dl);
209a0cbd 2161 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2162 __dl_clear_params(p);
aab03e05 2163
fa717060 2164 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2165 p->rt.timeout = 0;
2166 p->rt.time_slice = sched_rr_timeslice;
2167 p->rt.on_rq = 0;
2168 p->rt.on_list = 0;
476d139c 2169
e107be36
AK
2170#ifdef CONFIG_PREEMPT_NOTIFIERS
2171 INIT_HLIST_HEAD(&p->preempt_notifiers);
2172#endif
cbee9f88 2173
13784475 2174 init_numa_balancing(clone_flags, p);
dd41f596
IM
2175}
2176
2a595721
SD
2177DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2178
1a687c2e 2179#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2180
1a687c2e
MG
2181void set_numabalancing_state(bool enabled)
2182{
2183 if (enabled)
2a595721 2184 static_branch_enable(&sched_numa_balancing);
1a687c2e 2185 else
2a595721 2186 static_branch_disable(&sched_numa_balancing);
1a687c2e 2187}
54a43d54
AK
2188
2189#ifdef CONFIG_PROC_SYSCTL
2190int sysctl_numa_balancing(struct ctl_table *table, int write,
2191 void __user *buffer, size_t *lenp, loff_t *ppos)
2192{
2193 struct ctl_table t;
2194 int err;
2a595721 2195 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2196
2197 if (write && !capable(CAP_SYS_ADMIN))
2198 return -EPERM;
2199
2200 t = *table;
2201 t.data = &state;
2202 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2203 if (err < 0)
2204 return err;
2205 if (write)
2206 set_numabalancing_state(state);
2207 return err;
2208}
2209#endif
2210#endif
dd41f596 2211
4698f88c
JP
2212#ifdef CONFIG_SCHEDSTATS
2213
cb251765 2214DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2215static bool __initdata __sched_schedstats = false;
cb251765 2216
cb251765
MG
2217static void set_schedstats(bool enabled)
2218{
2219 if (enabled)
2220 static_branch_enable(&sched_schedstats);
2221 else
2222 static_branch_disable(&sched_schedstats);
2223}
2224
2225void force_schedstat_enabled(void)
2226{
2227 if (!schedstat_enabled()) {
2228 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2229 static_branch_enable(&sched_schedstats);
2230 }
2231}
2232
2233static int __init setup_schedstats(char *str)
2234{
2235 int ret = 0;
2236 if (!str)
2237 goto out;
2238
4698f88c
JP
2239 /*
2240 * This code is called before jump labels have been set up, so we can't
2241 * change the static branch directly just yet. Instead set a temporary
2242 * variable so init_schedstats() can do it later.
2243 */
cb251765 2244 if (!strcmp(str, "enable")) {
4698f88c 2245 __sched_schedstats = true;
cb251765
MG
2246 ret = 1;
2247 } else if (!strcmp(str, "disable")) {
4698f88c 2248 __sched_schedstats = false;
cb251765
MG
2249 ret = 1;
2250 }
2251out:
2252 if (!ret)
2253 pr_warn("Unable to parse schedstats=\n");
2254
2255 return ret;
2256}
2257__setup("schedstats=", setup_schedstats);
2258
4698f88c
JP
2259static void __init init_schedstats(void)
2260{
2261 set_schedstats(__sched_schedstats);
2262}
2263
cb251765
MG
2264#ifdef CONFIG_PROC_SYSCTL
2265int sysctl_schedstats(struct ctl_table *table, int write,
2266 void __user *buffer, size_t *lenp, loff_t *ppos)
2267{
2268 struct ctl_table t;
2269 int err;
2270 int state = static_branch_likely(&sched_schedstats);
2271
2272 if (write && !capable(CAP_SYS_ADMIN))
2273 return -EPERM;
2274
2275 t = *table;
2276 t.data = &state;
2277 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2278 if (err < 0)
2279 return err;
2280 if (write)
2281 set_schedstats(state);
2282 return err;
2283}
4698f88c
JP
2284#endif /* CONFIG_PROC_SYSCTL */
2285#else /* !CONFIG_SCHEDSTATS */
2286static inline void init_schedstats(void) {}
2287#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2288
2289/*
2290 * fork()/clone()-time setup:
2291 */
aab03e05 2292int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2293{
0122ec5b 2294 unsigned long flags;
dd41f596 2295
5e1576ed 2296 __sched_fork(clone_flags, p);
06b83b5f 2297 /*
7dc603c9 2298 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2299 * nobody will actually run it, and a signal or other external
2300 * event cannot wake it up and insert it on the runqueue either.
2301 */
7dc603c9 2302 p->state = TASK_NEW;
dd41f596 2303
c350a04e
MG
2304 /*
2305 * Make sure we do not leak PI boosting priority to the child.
2306 */
2307 p->prio = current->normal_prio;
2308
b9dc29e7
MG
2309 /*
2310 * Revert to default priority/policy on fork if requested.
2311 */
2312 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2313 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2314 p->policy = SCHED_NORMAL;
6c697bdf 2315 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2316 p->rt_priority = 0;
2317 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2318 p->static_prio = NICE_TO_PRIO(0);
2319
2320 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2321 set_load_weight(p, false);
6c697bdf 2322
b9dc29e7
MG
2323 /*
2324 * We don't need the reset flag anymore after the fork. It has
2325 * fulfilled its duty:
2326 */
2327 p->sched_reset_on_fork = 0;
2328 }
ca94c442 2329
af0fffd9 2330 if (dl_prio(p->prio))
aab03e05 2331 return -EAGAIN;
af0fffd9 2332 else if (rt_prio(p->prio))
aab03e05 2333 p->sched_class = &rt_sched_class;
af0fffd9 2334 else
2ddbf952 2335 p->sched_class = &fair_sched_class;
b29739f9 2336
7dc603c9 2337 init_entity_runnable_average(&p->se);
cd29fe6f 2338
86951599
PZ
2339 /*
2340 * The child is not yet in the pid-hash so no cgroup attach races,
2341 * and the cgroup is pinned to this child due to cgroup_fork()
2342 * is ran before sched_fork().
2343 *
2344 * Silence PROVE_RCU.
2345 */
0122ec5b 2346 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2347 /*
d1ccc66d 2348 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2349 * so use __set_task_cpu().
2350 */
af0fffd9 2351 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2352 if (p->sched_class->task_fork)
2353 p->sched_class->task_fork(p);
0122ec5b 2354 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2355
f6db8347 2356#ifdef CONFIG_SCHED_INFO
dd41f596 2357 if (likely(sched_info_on()))
52f17b6c 2358 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2359#endif
3ca7a440
PZ
2360#if defined(CONFIG_SMP)
2361 p->on_cpu = 0;
4866cde0 2362#endif
01028747 2363 init_task_preempt_count(p);
806c09a7 2364#ifdef CONFIG_SMP
917b627d 2365 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2366 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2367#endif
aab03e05 2368 return 0;
1da177e4
LT
2369}
2370
332ac17e
DF
2371unsigned long to_ratio(u64 period, u64 runtime)
2372{
2373 if (runtime == RUNTIME_INF)
c52f14d3 2374 return BW_UNIT;
332ac17e
DF
2375
2376 /*
2377 * Doing this here saves a lot of checks in all
2378 * the calling paths, and returning zero seems
2379 * safe for them anyway.
2380 */
2381 if (period == 0)
2382 return 0;
2383
c52f14d3 2384 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2385}
2386
1da177e4
LT
2387/*
2388 * wake_up_new_task - wake up a newly created task for the first time.
2389 *
2390 * This function will do some initial scheduler statistics housekeeping
2391 * that must be done for every newly created context, then puts the task
2392 * on the runqueue and wakes it.
2393 */
3e51e3ed 2394void wake_up_new_task(struct task_struct *p)
1da177e4 2395{
eb580751 2396 struct rq_flags rf;
dd41f596 2397 struct rq *rq;
fabf318e 2398
eb580751 2399 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2400 p->state = TASK_RUNNING;
fabf318e
PZ
2401#ifdef CONFIG_SMP
2402 /*
2403 * Fork balancing, do it here and not earlier because:
2404 * - cpus_allowed can change in the fork path
d1ccc66d 2405 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2406 *
2407 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2408 * as we're not fully set-up yet.
fabf318e 2409 */
32e839dd 2410 p->recent_used_cpu = task_cpu(p);
e210bffd 2411 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2412#endif
b7fa30c9 2413 rq = __task_rq_lock(p, &rf);
4126bad6 2414 update_rq_clock(rq);
2b8c41da 2415 post_init_entity_util_avg(&p->se);
0017d735 2416
7a57f32a 2417 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2418 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2419 trace_sched_wakeup_new(p);
a7558e01 2420 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2421#ifdef CONFIG_SMP
0aaafaab
PZ
2422 if (p->sched_class->task_woken) {
2423 /*
2424 * Nothing relies on rq->lock after this, so its fine to
2425 * drop it.
2426 */
d8ac8971 2427 rq_unpin_lock(rq, &rf);
efbbd05a 2428 p->sched_class->task_woken(rq, p);
d8ac8971 2429 rq_repin_lock(rq, &rf);
0aaafaab 2430 }
9a897c5a 2431#endif
eb580751 2432 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2433}
2434
e107be36
AK
2435#ifdef CONFIG_PREEMPT_NOTIFIERS
2436
b7203428 2437static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2438
2ecd9d29
PZ
2439void preempt_notifier_inc(void)
2440{
b7203428 2441 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2442}
2443EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2444
2445void preempt_notifier_dec(void)
2446{
b7203428 2447 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2448}
2449EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2450
e107be36 2451/**
80dd99b3 2452 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2453 * @notifier: notifier struct to register
e107be36
AK
2454 */
2455void preempt_notifier_register(struct preempt_notifier *notifier)
2456{
b7203428 2457 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2458 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2459
e107be36
AK
2460 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2461}
2462EXPORT_SYMBOL_GPL(preempt_notifier_register);
2463
2464/**
2465 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2466 * @notifier: notifier struct to unregister
e107be36 2467 *
d84525a8 2468 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2469 */
2470void preempt_notifier_unregister(struct preempt_notifier *notifier)
2471{
2472 hlist_del(&notifier->link);
2473}
2474EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2475
1cde2930 2476static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2477{
2478 struct preempt_notifier *notifier;
e107be36 2479
b67bfe0d 2480 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2481 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2482}
2483
1cde2930
PZ
2484static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2485{
b7203428 2486 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2487 __fire_sched_in_preempt_notifiers(curr);
2488}
2489
e107be36 2490static void
1cde2930
PZ
2491__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2492 struct task_struct *next)
e107be36
AK
2493{
2494 struct preempt_notifier *notifier;
e107be36 2495
b67bfe0d 2496 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2497 notifier->ops->sched_out(notifier, next);
2498}
2499
1cde2930
PZ
2500static __always_inline void
2501fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502 struct task_struct *next)
2503{
b7203428 2504 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2505 __fire_sched_out_preempt_notifiers(curr, next);
2506}
2507
6d6bc0ad 2508#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2509
1cde2930 2510static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2511{
2512}
2513
1cde2930 2514static inline void
e107be36
AK
2515fire_sched_out_preempt_notifiers(struct task_struct *curr,
2516 struct task_struct *next)
2517{
2518}
2519
6d6bc0ad 2520#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2521
31cb1bc0 2522static inline void prepare_task(struct task_struct *next)
2523{
2524#ifdef CONFIG_SMP
2525 /*
2526 * Claim the task as running, we do this before switching to it
2527 * such that any running task will have this set.
2528 */
2529 next->on_cpu = 1;
2530#endif
2531}
2532
2533static inline void finish_task(struct task_struct *prev)
2534{
2535#ifdef CONFIG_SMP
2536 /*
2537 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2538 * We must ensure this doesn't happen until the switch is completely
2539 * finished.
2540 *
2541 * In particular, the load of prev->state in finish_task_switch() must
2542 * happen before this.
2543 *
2544 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2545 */
2546 smp_store_release(&prev->on_cpu, 0);
2547#endif
2548}
2549
269d5992
PZ
2550static inline void
2551prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2552{
269d5992
PZ
2553 /*
2554 * Since the runqueue lock will be released by the next
2555 * task (which is an invalid locking op but in the case
2556 * of the scheduler it's an obvious special-case), so we
2557 * do an early lockdep release here:
2558 */
2559 rq_unpin_lock(rq, rf);
2560 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2561#ifdef CONFIG_DEBUG_SPINLOCK
2562 /* this is a valid case when another task releases the spinlock */
269d5992 2563 rq->lock.owner = next;
31cb1bc0 2564#endif
269d5992
PZ
2565}
2566
2567static inline void finish_lock_switch(struct rq *rq)
2568{
31cb1bc0 2569 /*
2570 * If we are tracking spinlock dependencies then we have to
2571 * fix up the runqueue lock - which gets 'carried over' from
2572 * prev into current:
2573 */
2574 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2575 raw_spin_unlock_irq(&rq->lock);
2576}
2577
325ea10c
IM
2578/*
2579 * NOP if the arch has not defined these:
2580 */
2581
2582#ifndef prepare_arch_switch
2583# define prepare_arch_switch(next) do { } while (0)
2584#endif
2585
2586#ifndef finish_arch_post_lock_switch
2587# define finish_arch_post_lock_switch() do { } while (0)
2588#endif
2589
4866cde0
NP
2590/**
2591 * prepare_task_switch - prepare to switch tasks
2592 * @rq: the runqueue preparing to switch
421cee29 2593 * @prev: the current task that is being switched out
4866cde0
NP
2594 * @next: the task we are going to switch to.
2595 *
2596 * This is called with the rq lock held and interrupts off. It must
2597 * be paired with a subsequent finish_task_switch after the context
2598 * switch.
2599 *
2600 * prepare_task_switch sets up locking and calls architecture specific
2601 * hooks.
2602 */
e107be36
AK
2603static inline void
2604prepare_task_switch(struct rq *rq, struct task_struct *prev,
2605 struct task_struct *next)
4866cde0 2606{
0ed557aa 2607 kcov_prepare_switch(prev);
43148951 2608 sched_info_switch(rq, prev, next);
fe4b04fa 2609 perf_event_task_sched_out(prev, next);
d7822b1e 2610 rseq_preempt(prev);
e107be36 2611 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2612 prepare_task(next);
4866cde0
NP
2613 prepare_arch_switch(next);
2614}
2615
1da177e4
LT
2616/**
2617 * finish_task_switch - clean up after a task-switch
2618 * @prev: the thread we just switched away from.
2619 *
4866cde0
NP
2620 * finish_task_switch must be called after the context switch, paired
2621 * with a prepare_task_switch call before the context switch.
2622 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2623 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2624 *
2625 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2626 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2627 * with the lock held can cause deadlocks; see schedule() for
2628 * details.)
dfa50b60
ON
2629 *
2630 * The context switch have flipped the stack from under us and restored the
2631 * local variables which were saved when this task called schedule() in the
2632 * past. prev == current is still correct but we need to recalculate this_rq
2633 * because prev may have moved to another CPU.
1da177e4 2634 */
dfa50b60 2635static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2636 __releases(rq->lock)
2637{
dfa50b60 2638 struct rq *rq = this_rq();
1da177e4 2639 struct mm_struct *mm = rq->prev_mm;
55a101f8 2640 long prev_state;
1da177e4 2641
609ca066
PZ
2642 /*
2643 * The previous task will have left us with a preempt_count of 2
2644 * because it left us after:
2645 *
2646 * schedule()
2647 * preempt_disable(); // 1
2648 * __schedule()
2649 * raw_spin_lock_irq(&rq->lock) // 2
2650 *
2651 * Also, see FORK_PREEMPT_COUNT.
2652 */
e2bf1c4b
PZ
2653 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2654 "corrupted preempt_count: %s/%d/0x%x\n",
2655 current->comm, current->pid, preempt_count()))
2656 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2657
1da177e4
LT
2658 rq->prev_mm = NULL;
2659
2660 /*
2661 * A task struct has one reference for the use as "current".
c394cc9f 2662 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2663 * schedule one last time. The schedule call will never return, and
2664 * the scheduled task must drop that reference.
95913d97
PZ
2665 *
2666 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2667 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2668 * running on another CPU and we could rave with its RUNNING -> DEAD
2669 * transition, resulting in a double drop.
1da177e4 2670 */
55a101f8 2671 prev_state = prev->state;
bf9fae9f 2672 vtime_task_switch(prev);
a8d757ef 2673 perf_event_task_sched_in(prev, current);
31cb1bc0 2674 finish_task(prev);
2675 finish_lock_switch(rq);
01f23e16 2676 finish_arch_post_lock_switch();
0ed557aa 2677 kcov_finish_switch(current);
e8fa1362 2678
e107be36 2679 fire_sched_in_preempt_notifiers(current);
306e0604 2680 /*
70216e18
MD
2681 * When switching through a kernel thread, the loop in
2682 * membarrier_{private,global}_expedited() may have observed that
2683 * kernel thread and not issued an IPI. It is therefore possible to
2684 * schedule between user->kernel->user threads without passing though
2685 * switch_mm(). Membarrier requires a barrier after storing to
2686 * rq->curr, before returning to userspace, so provide them here:
2687 *
2688 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2689 * provided by mmdrop(),
2690 * - a sync_core for SYNC_CORE.
306e0604 2691 */
70216e18
MD
2692 if (mm) {
2693 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2694 mmdrop(mm);
70216e18 2695 }
1cef1150
PZ
2696 if (unlikely(prev_state == TASK_DEAD)) {
2697 if (prev->sched_class->task_dead)
2698 prev->sched_class->task_dead(prev);
68f24b08 2699
1cef1150
PZ
2700 /*
2701 * Remove function-return probe instances associated with this
2702 * task and put them back on the free list.
2703 */
2704 kprobe_flush_task(prev);
2705
2706 /* Task is done with its stack. */
2707 put_task_stack(prev);
2708
2709 put_task_struct(prev);
c6fd91f0 2710 }
99e5ada9 2711
de734f89 2712 tick_nohz_task_switch();
dfa50b60 2713 return rq;
1da177e4
LT
2714}
2715
3f029d3c
GH
2716#ifdef CONFIG_SMP
2717
3f029d3c 2718/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2719static void __balance_callback(struct rq *rq)
3f029d3c 2720{
e3fca9e7
PZ
2721 struct callback_head *head, *next;
2722 void (*func)(struct rq *rq);
2723 unsigned long flags;
3f029d3c 2724
e3fca9e7
PZ
2725 raw_spin_lock_irqsave(&rq->lock, flags);
2726 head = rq->balance_callback;
2727 rq->balance_callback = NULL;
2728 while (head) {
2729 func = (void (*)(struct rq *))head->func;
2730 next = head->next;
2731 head->next = NULL;
2732 head = next;
3f029d3c 2733
e3fca9e7 2734 func(rq);
3f029d3c 2735 }
e3fca9e7
PZ
2736 raw_spin_unlock_irqrestore(&rq->lock, flags);
2737}
2738
2739static inline void balance_callback(struct rq *rq)
2740{
2741 if (unlikely(rq->balance_callback))
2742 __balance_callback(rq);
3f029d3c
GH
2743}
2744
2745#else
da19ab51 2746
e3fca9e7 2747static inline void balance_callback(struct rq *rq)
3f029d3c 2748{
1da177e4
LT
2749}
2750
3f029d3c
GH
2751#endif
2752
1da177e4
LT
2753/**
2754 * schedule_tail - first thing a freshly forked thread must call.
2755 * @prev: the thread we just switched away from.
2756 */
722a9f92 2757asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2758 __releases(rq->lock)
2759{
1a43a14a 2760 struct rq *rq;
da19ab51 2761
609ca066
PZ
2762 /*
2763 * New tasks start with FORK_PREEMPT_COUNT, see there and
2764 * finish_task_switch() for details.
2765 *
2766 * finish_task_switch() will drop rq->lock() and lower preempt_count
2767 * and the preempt_enable() will end up enabling preemption (on
2768 * PREEMPT_COUNT kernels).
2769 */
2770
dfa50b60 2771 rq = finish_task_switch(prev);
e3fca9e7 2772 balance_callback(rq);
1a43a14a 2773 preempt_enable();
70b97a7f 2774
1da177e4 2775 if (current->set_child_tid)
b488893a 2776 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
2777
2778 calculate_sigpending();
1da177e4
LT
2779}
2780
2781/*
dfa50b60 2782 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2783 */
04936948 2784static __always_inline struct rq *
70b97a7f 2785context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2786 struct task_struct *next, struct rq_flags *rf)
1da177e4 2787{
dd41f596 2788 struct mm_struct *mm, *oldmm;
1da177e4 2789
e107be36 2790 prepare_task_switch(rq, prev, next);
fe4b04fa 2791
dd41f596
IM
2792 mm = next->mm;
2793 oldmm = prev->active_mm;
9226d125
ZA
2794 /*
2795 * For paravirt, this is coupled with an exit in switch_to to
2796 * combine the page table reload and the switch backend into
2797 * one hypercall.
2798 */
224101ed 2799 arch_start_context_switch(prev);
9226d125 2800
306e0604
MD
2801 /*
2802 * If mm is non-NULL, we pass through switch_mm(). If mm is
2803 * NULL, we will pass through mmdrop() in finish_task_switch().
2804 * Both of these contain the full memory barrier required by
2805 * membarrier after storing to rq->curr, before returning to
2806 * user-space.
2807 */
31915ab4 2808 if (!mm) {
1da177e4 2809 next->active_mm = oldmm;
f1f10076 2810 mmgrab(oldmm);
1da177e4
LT
2811 enter_lazy_tlb(oldmm, next);
2812 } else
f98db601 2813 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2814
31915ab4 2815 if (!prev->mm) {
1da177e4 2816 prev->active_mm = NULL;
1da177e4
LT
2817 rq->prev_mm = oldmm;
2818 }
92509b73 2819
cb42c9a3 2820 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2821
269d5992 2822 prepare_lock_switch(rq, next, rf);
1da177e4
LT
2823
2824 /* Here we just switch the register state and the stack. */
2825 switch_to(prev, next, prev);
dd41f596 2826 barrier();
dfa50b60
ON
2827
2828 return finish_task_switch(prev);
1da177e4
LT
2829}
2830
2831/*
1c3e8264 2832 * nr_running and nr_context_switches:
1da177e4
LT
2833 *
2834 * externally visible scheduler statistics: current number of runnable
1c3e8264 2835 * threads, total number of context switches performed since bootup.
1da177e4
LT
2836 */
2837unsigned long nr_running(void)
2838{
2839 unsigned long i, sum = 0;
2840
2841 for_each_online_cpu(i)
2842 sum += cpu_rq(i)->nr_running;
2843
2844 return sum;
f711f609 2845}
1da177e4 2846
2ee507c4 2847/*
d1ccc66d 2848 * Check if only the current task is running on the CPU.
00cc1633
DD
2849 *
2850 * Caution: this function does not check that the caller has disabled
2851 * preemption, thus the result might have a time-of-check-to-time-of-use
2852 * race. The caller is responsible to use it correctly, for example:
2853 *
2854 * - from a non-preemptable section (of course)
2855 *
2856 * - from a thread that is bound to a single CPU
2857 *
2858 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2859 */
2860bool single_task_running(void)
2861{
00cc1633 2862 return raw_rq()->nr_running == 1;
2ee507c4
TC
2863}
2864EXPORT_SYMBOL(single_task_running);
2865
1da177e4 2866unsigned long long nr_context_switches(void)
46cb4b7c 2867{
cc94abfc
SR
2868 int i;
2869 unsigned long long sum = 0;
46cb4b7c 2870
0a945022 2871 for_each_possible_cpu(i)
1da177e4 2872 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2873
1da177e4
LT
2874 return sum;
2875}
483b4ee6 2876
e33a9bba
TH
2877/*
2878 * IO-wait accounting, and how its mostly bollocks (on SMP).
2879 *
2880 * The idea behind IO-wait account is to account the idle time that we could
2881 * have spend running if it were not for IO. That is, if we were to improve the
2882 * storage performance, we'd have a proportional reduction in IO-wait time.
2883 *
2884 * This all works nicely on UP, where, when a task blocks on IO, we account
2885 * idle time as IO-wait, because if the storage were faster, it could've been
2886 * running and we'd not be idle.
2887 *
2888 * This has been extended to SMP, by doing the same for each CPU. This however
2889 * is broken.
2890 *
2891 * Imagine for instance the case where two tasks block on one CPU, only the one
2892 * CPU will have IO-wait accounted, while the other has regular idle. Even
2893 * though, if the storage were faster, both could've ran at the same time,
2894 * utilising both CPUs.
2895 *
2896 * This means, that when looking globally, the current IO-wait accounting on
2897 * SMP is a lower bound, by reason of under accounting.
2898 *
2899 * Worse, since the numbers are provided per CPU, they are sometimes
2900 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2901 * associated with any one particular CPU, it can wake to another CPU than it
2902 * blocked on. This means the per CPU IO-wait number is meaningless.
2903 *
2904 * Task CPU affinities can make all that even more 'interesting'.
2905 */
2906
1da177e4
LT
2907unsigned long nr_iowait(void)
2908{
2909 unsigned long i, sum = 0;
483b4ee6 2910
0a945022 2911 for_each_possible_cpu(i)
1da177e4 2912 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2913
1da177e4
LT
2914 return sum;
2915}
483b4ee6 2916
e33a9bba
TH
2917/*
2918 * Consumers of these two interfaces, like for example the cpufreq menu
2919 * governor are using nonsensical data. Boosting frequency for a CPU that has
2920 * IO-wait which might not even end up running the task when it does become
2921 * runnable.
2922 */
2923
8c215bd3 2924unsigned long nr_iowait_cpu(int cpu)
69d25870 2925{
8c215bd3 2926 struct rq *this = cpu_rq(cpu);
69d25870
AV
2927 return atomic_read(&this->nr_iowait);
2928}
46cb4b7c 2929
372ba8cb
MG
2930void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2931{
3289bdb4
PZ
2932 struct rq *rq = this_rq();
2933 *nr_waiters = atomic_read(&rq->nr_iowait);
2934 *load = rq->load.weight;
372ba8cb
MG
2935}
2936
dd41f596 2937#ifdef CONFIG_SMP
8a0be9ef 2938
46cb4b7c 2939/*
38022906
PZ
2940 * sched_exec - execve() is a valuable balancing opportunity, because at
2941 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2942 */
38022906 2943void sched_exec(void)
46cb4b7c 2944{
38022906 2945 struct task_struct *p = current;
1da177e4 2946 unsigned long flags;
0017d735 2947 int dest_cpu;
46cb4b7c 2948
8f42ced9 2949 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2950 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2951 if (dest_cpu == smp_processor_id())
2952 goto unlock;
38022906 2953
8f42ced9 2954 if (likely(cpu_active(dest_cpu))) {
969c7921 2955 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2956
8f42ced9
PZ
2957 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2958 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2959 return;
2960 }
0017d735 2961unlock:
8f42ced9 2962 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2963}
dd41f596 2964
1da177e4
LT
2965#endif
2966
1da177e4 2967DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2968DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2969
2970EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2971EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2972
6075620b
GG
2973/*
2974 * The function fair_sched_class.update_curr accesses the struct curr
2975 * and its field curr->exec_start; when called from task_sched_runtime(),
2976 * we observe a high rate of cache misses in practice.
2977 * Prefetching this data results in improved performance.
2978 */
2979static inline void prefetch_curr_exec_start(struct task_struct *p)
2980{
2981#ifdef CONFIG_FAIR_GROUP_SCHED
2982 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2983#else
2984 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2985#endif
2986 prefetch(curr);
2987 prefetch(&curr->exec_start);
2988}
2989
c5f8d995
HS
2990/*
2991 * Return accounted runtime for the task.
2992 * In case the task is currently running, return the runtime plus current's
2993 * pending runtime that have not been accounted yet.
2994 */
2995unsigned long long task_sched_runtime(struct task_struct *p)
2996{
eb580751 2997 struct rq_flags rf;
c5f8d995 2998 struct rq *rq;
6e998916 2999 u64 ns;
c5f8d995 3000
911b2898
PZ
3001#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3002 /*
97fb7a0a 3003 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3004 * So we have a optimization chance when the task's delta_exec is 0.
3005 * Reading ->on_cpu is racy, but this is ok.
3006 *
d1ccc66d
IM
3007 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3008 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3009 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3010 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3011 * been accounted, so we're correct here as well.
911b2898 3012 */
da0c1e65 3013 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3014 return p->se.sum_exec_runtime;
3015#endif
3016
eb580751 3017 rq = task_rq_lock(p, &rf);
6e998916
SG
3018 /*
3019 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3020 * project cycles that may never be accounted to this
3021 * thread, breaking clock_gettime().
3022 */
3023 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3024 prefetch_curr_exec_start(p);
6e998916
SG
3025 update_rq_clock(rq);
3026 p->sched_class->update_curr(rq);
3027 }
3028 ns = p->se.sum_exec_runtime;
eb580751 3029 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3030
3031 return ns;
3032}
48f24c4d 3033
7835b98b
CL
3034/*
3035 * This function gets called by the timer code, with HZ frequency.
3036 * We call it with interrupts disabled.
7835b98b
CL
3037 */
3038void scheduler_tick(void)
3039{
7835b98b
CL
3040 int cpu = smp_processor_id();
3041 struct rq *rq = cpu_rq(cpu);
dd41f596 3042 struct task_struct *curr = rq->curr;
8a8c69c3 3043 struct rq_flags rf;
3e51f33f
PZ
3044
3045 sched_clock_tick();
dd41f596 3046
8a8c69c3
PZ
3047 rq_lock(rq, &rf);
3048
3e51f33f 3049 update_rq_clock(rq);
fa85ae24 3050 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3051 cpu_load_update_active(rq);
3289bdb4 3052 calc_global_load_tick(rq);
8a8c69c3
PZ
3053
3054 rq_unlock(rq, &rf);
7835b98b 3055
e9d2b064 3056 perf_event_task_tick();
e220d2dc 3057
e418e1c2 3058#ifdef CONFIG_SMP
6eb57e0d 3059 rq->idle_balance = idle_cpu(cpu);
7caff66f 3060 trigger_load_balance(rq);
e418e1c2 3061#endif
1da177e4
LT
3062}
3063
265f22a9 3064#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3065
3066struct tick_work {
3067 int cpu;
3068 struct delayed_work work;
3069};
3070
3071static struct tick_work __percpu *tick_work_cpu;
3072
3073static void sched_tick_remote(struct work_struct *work)
3074{
3075 struct delayed_work *dwork = to_delayed_work(work);
3076 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3077 int cpu = twork->cpu;
3078 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3079 struct task_struct *curr;
d84b3131 3080 struct rq_flags rf;
d9c0ffca 3081 u64 delta;
d84b3131
FW
3082
3083 /*
3084 * Handle the tick only if it appears the remote CPU is running in full
3085 * dynticks mode. The check is racy by nature, but missing a tick or
3086 * having one too much is no big deal because the scheduler tick updates
3087 * statistics and checks timeslices in a time-independent way, regardless
3088 * of when exactly it is running.
3089 */
d9c0ffca
FW
3090 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3091 goto out_requeue;
d84b3131 3092
d9c0ffca
FW
3093 rq_lock_irq(rq, &rf);
3094 curr = rq->curr;
3095 if (is_idle_task(curr))
3096 goto out_unlock;
d84b3131 3097
d9c0ffca
FW
3098 update_rq_clock(rq);
3099 delta = rq_clock_task(rq) - curr->se.exec_start;
3100
3101 /*
3102 * Make sure the next tick runs within a reasonable
3103 * amount of time.
3104 */
3105 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3106 curr->sched_class->task_tick(rq, curr, 0);
3107
3108out_unlock:
3109 rq_unlock_irq(rq, &rf);
d84b3131 3110
d9c0ffca 3111out_requeue:
d84b3131
FW
3112 /*
3113 * Run the remote tick once per second (1Hz). This arbitrary
3114 * frequency is large enough to avoid overload but short enough
3115 * to keep scheduler internal stats reasonably up to date.
3116 */
3117 queue_delayed_work(system_unbound_wq, dwork, HZ);
3118}
3119
3120static void sched_tick_start(int cpu)
3121{
3122 struct tick_work *twork;
3123
3124 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3125 return;
3126
3127 WARN_ON_ONCE(!tick_work_cpu);
3128
3129 twork = per_cpu_ptr(tick_work_cpu, cpu);
3130 twork->cpu = cpu;
3131 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3132 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3133}
3134
3135#ifdef CONFIG_HOTPLUG_CPU
3136static void sched_tick_stop(int cpu)
3137{
3138 struct tick_work *twork;
3139
3140 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3141 return;
3142
3143 WARN_ON_ONCE(!tick_work_cpu);
3144
3145 twork = per_cpu_ptr(tick_work_cpu, cpu);
3146 cancel_delayed_work_sync(&twork->work);
3147}
3148#endif /* CONFIG_HOTPLUG_CPU */
3149
3150int __init sched_tick_offload_init(void)
3151{
3152 tick_work_cpu = alloc_percpu(struct tick_work);
3153 BUG_ON(!tick_work_cpu);
3154
3155 return 0;
3156}
3157
3158#else /* !CONFIG_NO_HZ_FULL */
3159static inline void sched_tick_start(int cpu) { }
3160static inline void sched_tick_stop(int cpu) { }
265f22a9 3161#endif
1da177e4 3162
7e49fcce 3163#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3164 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3165/*
3166 * If the value passed in is equal to the current preempt count
3167 * then we just disabled preemption. Start timing the latency.
3168 */
3169static inline void preempt_latency_start(int val)
3170{
3171 if (preempt_count() == val) {
3172 unsigned long ip = get_lock_parent_ip();
3173#ifdef CONFIG_DEBUG_PREEMPT
3174 current->preempt_disable_ip = ip;
3175#endif
3176 trace_preempt_off(CALLER_ADDR0, ip);
3177 }
3178}
7e49fcce 3179
edafe3a5 3180void preempt_count_add(int val)
1da177e4 3181{
6cd8a4bb 3182#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3183 /*
3184 * Underflow?
3185 */
9a11b49a
IM
3186 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3187 return;
6cd8a4bb 3188#endif
bdb43806 3189 __preempt_count_add(val);
6cd8a4bb 3190#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3191 /*
3192 * Spinlock count overflowing soon?
3193 */
33859f7f
MOS
3194 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3195 PREEMPT_MASK - 10);
6cd8a4bb 3196#endif
47252cfb 3197 preempt_latency_start(val);
1da177e4 3198}
bdb43806 3199EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3200NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3201
47252cfb
SR
3202/*
3203 * If the value passed in equals to the current preempt count
3204 * then we just enabled preemption. Stop timing the latency.
3205 */
3206static inline void preempt_latency_stop(int val)
3207{
3208 if (preempt_count() == val)
3209 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3210}
3211
edafe3a5 3212void preempt_count_sub(int val)
1da177e4 3213{
6cd8a4bb 3214#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3215 /*
3216 * Underflow?
3217 */
01e3eb82 3218 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3219 return;
1da177e4
LT
3220 /*
3221 * Is the spinlock portion underflowing?
3222 */
9a11b49a
IM
3223 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3224 !(preempt_count() & PREEMPT_MASK)))
3225 return;
6cd8a4bb 3226#endif
9a11b49a 3227
47252cfb 3228 preempt_latency_stop(val);
bdb43806 3229 __preempt_count_sub(val);
1da177e4 3230}
bdb43806 3231EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3232NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3233
47252cfb
SR
3234#else
3235static inline void preempt_latency_start(int val) { }
3236static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3237#endif
3238
59ddbcb2
IM
3239static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3240{
3241#ifdef CONFIG_DEBUG_PREEMPT
3242 return p->preempt_disable_ip;
3243#else
3244 return 0;
3245#endif
3246}
3247
1da177e4 3248/*
dd41f596 3249 * Print scheduling while atomic bug:
1da177e4 3250 */
dd41f596 3251static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3252{
d1c6d149
VN
3253 /* Save this before calling printk(), since that will clobber it */
3254 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3255
664dfa65
DJ
3256 if (oops_in_progress)
3257 return;
3258
3df0fc5b
PZ
3259 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3260 prev->comm, prev->pid, preempt_count());
838225b4 3261
dd41f596 3262 debug_show_held_locks(prev);
e21f5b15 3263 print_modules();
dd41f596
IM
3264 if (irqs_disabled())
3265 print_irqtrace_events(prev);
d1c6d149
VN
3266 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3267 && in_atomic_preempt_off()) {
8f47b187 3268 pr_err("Preemption disabled at:");
d1c6d149 3269 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3270 pr_cont("\n");
3271 }
748c7201
DBO
3272 if (panic_on_warn)
3273 panic("scheduling while atomic\n");
3274
6135fc1e 3275 dump_stack();
373d4d09 3276 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3277}
1da177e4 3278
dd41f596
IM
3279/*
3280 * Various schedule()-time debugging checks and statistics:
3281 */
3282static inline void schedule_debug(struct task_struct *prev)
3283{
0d9e2632 3284#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3285 if (task_stack_end_corrupted(prev))
3286 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3287#endif
b99def8b 3288
1dc0fffc 3289 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3290 __schedule_bug(prev);
1dc0fffc
PZ
3291 preempt_count_set(PREEMPT_DISABLED);
3292 }
b3fbab05 3293 rcu_sleep_check();
dd41f596 3294
1da177e4
LT
3295 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3296
ae92882e 3297 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3298}
3299
3300/*
3301 * Pick up the highest-prio task:
3302 */
3303static inline struct task_struct *
d8ac8971 3304pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3305{
49ee5768 3306 const struct sched_class *class;
dd41f596 3307 struct task_struct *p;
1da177e4
LT
3308
3309 /*
0ba87bb2
PZ
3310 * Optimization: we know that if all tasks are in the fair class we can
3311 * call that function directly, but only if the @prev task wasn't of a
3312 * higher scheduling class, because otherwise those loose the
3313 * opportunity to pull in more work from other CPUs.
1da177e4 3314 */
0ba87bb2
PZ
3315 if (likely((prev->sched_class == &idle_sched_class ||
3316 prev->sched_class == &fair_sched_class) &&
3317 rq->nr_running == rq->cfs.h_nr_running)) {
3318
d8ac8971 3319 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3320 if (unlikely(p == RETRY_TASK))
3321 goto again;
3322
d1ccc66d 3323 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3324 if (unlikely(!p))
d8ac8971 3325 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3326
3327 return p;
1da177e4
LT
3328 }
3329
37e117c0 3330again:
34f971f6 3331 for_each_class(class) {
d8ac8971 3332 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3333 if (p) {
3334 if (unlikely(p == RETRY_TASK))
3335 goto again;
dd41f596 3336 return p;
37e117c0 3337 }
dd41f596 3338 }
34f971f6 3339
d1ccc66d
IM
3340 /* The idle class should always have a runnable task: */
3341 BUG();
dd41f596 3342}
1da177e4 3343
dd41f596 3344/*
c259e01a 3345 * __schedule() is the main scheduler function.
edde96ea
PE
3346 *
3347 * The main means of driving the scheduler and thus entering this function are:
3348 *
3349 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3350 *
3351 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3352 * paths. For example, see arch/x86/entry_64.S.
3353 *
3354 * To drive preemption between tasks, the scheduler sets the flag in timer
3355 * interrupt handler scheduler_tick().
3356 *
3357 * 3. Wakeups don't really cause entry into schedule(). They add a
3358 * task to the run-queue and that's it.
3359 *
3360 * Now, if the new task added to the run-queue preempts the current
3361 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3362 * called on the nearest possible occasion:
3363 *
3364 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3365 *
3366 * - in syscall or exception context, at the next outmost
3367 * preempt_enable(). (this might be as soon as the wake_up()'s
3368 * spin_unlock()!)
3369 *
3370 * - in IRQ context, return from interrupt-handler to
3371 * preemptible context
3372 *
3373 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3374 * then at the next:
3375 *
3376 * - cond_resched() call
3377 * - explicit schedule() call
3378 * - return from syscall or exception to user-space
3379 * - return from interrupt-handler to user-space
bfd9b2b5 3380 *
b30f0e3f 3381 * WARNING: must be called with preemption disabled!
dd41f596 3382 */
499d7955 3383static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3384{
3385 struct task_struct *prev, *next;
67ca7bde 3386 unsigned long *switch_count;
d8ac8971 3387 struct rq_flags rf;
dd41f596 3388 struct rq *rq;
31656519 3389 int cpu;
dd41f596 3390
dd41f596
IM
3391 cpu = smp_processor_id();
3392 rq = cpu_rq(cpu);
dd41f596 3393 prev = rq->curr;
dd41f596 3394
dd41f596 3395 schedule_debug(prev);
1da177e4 3396
31656519 3397 if (sched_feat(HRTICK))
f333fdc9 3398 hrtick_clear(rq);
8f4d37ec 3399
46a5d164 3400 local_irq_disable();
bcbfdd01 3401 rcu_note_context_switch(preempt);
46a5d164 3402
e0acd0a6
ON
3403 /*
3404 * Make sure that signal_pending_state()->signal_pending() below
3405 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3406 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3407 *
3408 * The membarrier system call requires a full memory barrier
3409 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3410 */
8a8c69c3 3411 rq_lock(rq, &rf);
d89e588c 3412 smp_mb__after_spinlock();
1da177e4 3413
d1ccc66d
IM
3414 /* Promote REQ to ACT */
3415 rq->clock_update_flags <<= 1;
bce4dc80 3416 update_rq_clock(rq);
9edfbfed 3417
246d86b5 3418 switch_count = &prev->nivcsw;
fc13aeba 3419 if (!preempt && prev->state) {
21aa9af0 3420 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3421 prev->state = TASK_RUNNING;
21aa9af0 3422 } else {
bce4dc80 3423 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3424 prev->on_rq = 0;
3425
e33a9bba
TH
3426 if (prev->in_iowait) {
3427 atomic_inc(&rq->nr_iowait);
3428 delayacct_blkio_start();
3429 }
3430
21aa9af0 3431 /*
2acca55e
PZ
3432 * If a worker went to sleep, notify and ask workqueue
3433 * whether it wants to wake up a task to maintain
3434 * concurrency.
21aa9af0
TH
3435 */
3436 if (prev->flags & PF_WQ_WORKER) {
3437 struct task_struct *to_wakeup;
3438
9b7f6597 3439 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3440 if (to_wakeup)
d8ac8971 3441 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3442 }
21aa9af0 3443 }
dd41f596 3444 switch_count = &prev->nvcsw;
1da177e4
LT
3445 }
3446
d8ac8971 3447 next = pick_next_task(rq, prev, &rf);
f26f9aff 3448 clear_tsk_need_resched(prev);
f27dde8d 3449 clear_preempt_need_resched();
1da177e4 3450
1da177e4 3451 if (likely(prev != next)) {
1da177e4
LT
3452 rq->nr_switches++;
3453 rq->curr = next;
22e4ebb9
MD
3454 /*
3455 * The membarrier system call requires each architecture
3456 * to have a full memory barrier after updating
306e0604
MD
3457 * rq->curr, before returning to user-space.
3458 *
3459 * Here are the schemes providing that barrier on the
3460 * various architectures:
3461 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3462 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3463 * - finish_lock_switch() for weakly-ordered
3464 * architectures where spin_unlock is a full barrier,
3465 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3466 * is a RELEASE barrier),
22e4ebb9 3467 */
1da177e4
LT
3468 ++*switch_count;
3469
c73464b1 3470 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3471
3472 /* Also unlocks the rq: */
3473 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3474 } else {
cb42c9a3 3475 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3476 rq_unlock_irq(rq, &rf);
cbce1a68 3477 }
1da177e4 3478
e3fca9e7 3479 balance_callback(rq);
1da177e4 3480}
c259e01a 3481
9af6528e
PZ
3482void __noreturn do_task_dead(void)
3483{
d1ccc66d 3484 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3485 set_special_state(TASK_DEAD);
d1ccc66d
IM
3486
3487 /* Tell freezer to ignore us: */
3488 current->flags |= PF_NOFREEZE;
3489
9af6528e
PZ
3490 __schedule(false);
3491 BUG();
d1ccc66d
IM
3492
3493 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3494 for (;;)
d1ccc66d 3495 cpu_relax();
9af6528e
PZ
3496}
3497
9c40cef2
TG
3498static inline void sched_submit_work(struct task_struct *tsk)
3499{
3c7d5184 3500 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3501 return;
3502 /*
3503 * If we are going to sleep and we have plugged IO queued,
3504 * make sure to submit it to avoid deadlocks.
3505 */
3506 if (blk_needs_flush_plug(tsk))
3507 blk_schedule_flush_plug(tsk);
3508}
3509
722a9f92 3510asmlinkage __visible void __sched schedule(void)
c259e01a 3511{
9c40cef2
TG
3512 struct task_struct *tsk = current;
3513
3514 sched_submit_work(tsk);
bfd9b2b5 3515 do {
b30f0e3f 3516 preempt_disable();
fc13aeba 3517 __schedule(false);
b30f0e3f 3518 sched_preempt_enable_no_resched();
bfd9b2b5 3519 } while (need_resched());
c259e01a 3520}
1da177e4
LT
3521EXPORT_SYMBOL(schedule);
3522
8663effb
SRV
3523/*
3524 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3525 * state (have scheduled out non-voluntarily) by making sure that all
3526 * tasks have either left the run queue or have gone into user space.
3527 * As idle tasks do not do either, they must not ever be preempted
3528 * (schedule out non-voluntarily).
3529 *
3530 * schedule_idle() is similar to schedule_preempt_disable() except that it
3531 * never enables preemption because it does not call sched_submit_work().
3532 */
3533void __sched schedule_idle(void)
3534{
3535 /*
3536 * As this skips calling sched_submit_work(), which the idle task does
3537 * regardless because that function is a nop when the task is in a
3538 * TASK_RUNNING state, make sure this isn't used someplace that the
3539 * current task can be in any other state. Note, idle is always in the
3540 * TASK_RUNNING state.
3541 */
3542 WARN_ON_ONCE(current->state);
3543 do {
3544 __schedule(false);
3545 } while (need_resched());
3546}
3547
91d1aa43 3548#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3549asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3550{
3551 /*
3552 * If we come here after a random call to set_need_resched(),
3553 * or we have been woken up remotely but the IPI has not yet arrived,
3554 * we haven't yet exited the RCU idle mode. Do it here manually until
3555 * we find a better solution.
7cc78f8f
AL
3556 *
3557 * NB: There are buggy callers of this function. Ideally we
c467ea76 3558 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3559 * too frequently to make sense yet.
20ab65e3 3560 */
7cc78f8f 3561 enum ctx_state prev_state = exception_enter();
20ab65e3 3562 schedule();
7cc78f8f 3563 exception_exit(prev_state);
20ab65e3
FW
3564}
3565#endif
3566
c5491ea7
TG
3567/**
3568 * schedule_preempt_disabled - called with preemption disabled
3569 *
3570 * Returns with preemption disabled. Note: preempt_count must be 1
3571 */
3572void __sched schedule_preempt_disabled(void)
3573{
ba74c144 3574 sched_preempt_enable_no_resched();
c5491ea7
TG
3575 schedule();
3576 preempt_disable();
3577}
3578
06b1f808 3579static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3580{
3581 do {
47252cfb
SR
3582 /*
3583 * Because the function tracer can trace preempt_count_sub()
3584 * and it also uses preempt_enable/disable_notrace(), if
3585 * NEED_RESCHED is set, the preempt_enable_notrace() called
3586 * by the function tracer will call this function again and
3587 * cause infinite recursion.
3588 *
3589 * Preemption must be disabled here before the function
3590 * tracer can trace. Break up preempt_disable() into two
3591 * calls. One to disable preemption without fear of being
3592 * traced. The other to still record the preemption latency,
3593 * which can also be traced by the function tracer.
3594 */
499d7955 3595 preempt_disable_notrace();
47252cfb 3596 preempt_latency_start(1);
fc13aeba 3597 __schedule(true);
47252cfb 3598 preempt_latency_stop(1);
499d7955 3599 preempt_enable_no_resched_notrace();
a18b5d01
FW
3600
3601 /*
3602 * Check again in case we missed a preemption opportunity
3603 * between schedule and now.
3604 */
a18b5d01
FW
3605 } while (need_resched());
3606}
3607
1da177e4
LT
3608#ifdef CONFIG_PREEMPT
3609/*
2ed6e34f 3610 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3611 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3612 * occur there and call schedule directly.
3613 */
722a9f92 3614asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3615{
1da177e4
LT
3616 /*
3617 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3618 * we do not want to preempt the current task. Just return..
1da177e4 3619 */
fbb00b56 3620 if (likely(!preemptible()))
1da177e4
LT
3621 return;
3622
a18b5d01 3623 preempt_schedule_common();
1da177e4 3624}
376e2424 3625NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3626EXPORT_SYMBOL(preempt_schedule);
009f60e2 3627
009f60e2 3628/**
4eaca0a8 3629 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3630 *
3631 * The tracing infrastructure uses preempt_enable_notrace to prevent
3632 * recursion and tracing preempt enabling caused by the tracing
3633 * infrastructure itself. But as tracing can happen in areas coming
3634 * from userspace or just about to enter userspace, a preempt enable
3635 * can occur before user_exit() is called. This will cause the scheduler
3636 * to be called when the system is still in usermode.
3637 *
3638 * To prevent this, the preempt_enable_notrace will use this function
3639 * instead of preempt_schedule() to exit user context if needed before
3640 * calling the scheduler.
3641 */
4eaca0a8 3642asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3643{
3644 enum ctx_state prev_ctx;
3645
3646 if (likely(!preemptible()))
3647 return;
3648
3649 do {
47252cfb
SR
3650 /*
3651 * Because the function tracer can trace preempt_count_sub()
3652 * and it also uses preempt_enable/disable_notrace(), if
3653 * NEED_RESCHED is set, the preempt_enable_notrace() called
3654 * by the function tracer will call this function again and
3655 * cause infinite recursion.
3656 *
3657 * Preemption must be disabled here before the function
3658 * tracer can trace. Break up preempt_disable() into two
3659 * calls. One to disable preemption without fear of being
3660 * traced. The other to still record the preemption latency,
3661 * which can also be traced by the function tracer.
3662 */
3d8f74dd 3663 preempt_disable_notrace();
47252cfb 3664 preempt_latency_start(1);
009f60e2
ON
3665 /*
3666 * Needs preempt disabled in case user_exit() is traced
3667 * and the tracer calls preempt_enable_notrace() causing
3668 * an infinite recursion.
3669 */
3670 prev_ctx = exception_enter();
fc13aeba 3671 __schedule(true);
009f60e2
ON
3672 exception_exit(prev_ctx);
3673
47252cfb 3674 preempt_latency_stop(1);
3d8f74dd 3675 preempt_enable_no_resched_notrace();
009f60e2
ON
3676 } while (need_resched());
3677}
4eaca0a8 3678EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3679
32e475d7 3680#endif /* CONFIG_PREEMPT */
1da177e4
LT
3681
3682/*
2ed6e34f 3683 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3684 * off of irq context.
3685 * Note, that this is called and return with irqs disabled. This will
3686 * protect us against recursive calling from irq.
3687 */
722a9f92 3688asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3689{
b22366cd 3690 enum ctx_state prev_state;
6478d880 3691
2ed6e34f 3692 /* Catch callers which need to be fixed */
f27dde8d 3693 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3694
b22366cd
FW
3695 prev_state = exception_enter();
3696
3a5c359a 3697 do {
3d8f74dd 3698 preempt_disable();
3a5c359a 3699 local_irq_enable();
fc13aeba 3700 __schedule(true);
3a5c359a 3701 local_irq_disable();
3d8f74dd 3702 sched_preempt_enable_no_resched();
5ed0cec0 3703 } while (need_resched());
b22366cd
FW
3704
3705 exception_exit(prev_state);
1da177e4
LT
3706}
3707
ac6424b9 3708int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3709 void *key)
1da177e4 3710{
63859d4f 3711 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3712}
1da177e4
LT
3713EXPORT_SYMBOL(default_wake_function);
3714
b29739f9
IM
3715#ifdef CONFIG_RT_MUTEXES
3716
acd58620
PZ
3717static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3718{
3719 if (pi_task)
3720 prio = min(prio, pi_task->prio);
3721
3722 return prio;
3723}
3724
3725static inline int rt_effective_prio(struct task_struct *p, int prio)
3726{
3727 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3728
3729 return __rt_effective_prio(pi_task, prio);
3730}
3731
b29739f9
IM
3732/*
3733 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3734 * @p: task to boost
3735 * @pi_task: donor task
b29739f9
IM
3736 *
3737 * This function changes the 'effective' priority of a task. It does
3738 * not touch ->normal_prio like __setscheduler().
3739 *
c365c292
TG
3740 * Used by the rt_mutex code to implement priority inheritance
3741 * logic. Call site only calls if the priority of the task changed.
b29739f9 3742 */
acd58620 3743void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3744{
acd58620 3745 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3746 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3747 const struct sched_class *prev_class;
eb580751
PZ
3748 struct rq_flags rf;
3749 struct rq *rq;
b29739f9 3750
acd58620
PZ
3751 /* XXX used to be waiter->prio, not waiter->task->prio */
3752 prio = __rt_effective_prio(pi_task, p->normal_prio);
3753
3754 /*
3755 * If nothing changed; bail early.
3756 */
3757 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3758 return;
b29739f9 3759
eb580751 3760 rq = __task_rq_lock(p, &rf);
80f5c1b8 3761 update_rq_clock(rq);
acd58620
PZ
3762 /*
3763 * Set under pi_lock && rq->lock, such that the value can be used under
3764 * either lock.
3765 *
3766 * Note that there is loads of tricky to make this pointer cache work
3767 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3768 * ensure a task is de-boosted (pi_task is set to NULL) before the
3769 * task is allowed to run again (and can exit). This ensures the pointer
3770 * points to a blocked task -- which guaratees the task is present.
3771 */
3772 p->pi_top_task = pi_task;
3773
3774 /*
3775 * For FIFO/RR we only need to set prio, if that matches we're done.
3776 */
3777 if (prio == p->prio && !dl_prio(prio))
3778 goto out_unlock;
b29739f9 3779
1c4dd99b
TG
3780 /*
3781 * Idle task boosting is a nono in general. There is one
3782 * exception, when PREEMPT_RT and NOHZ is active:
3783 *
3784 * The idle task calls get_next_timer_interrupt() and holds
3785 * the timer wheel base->lock on the CPU and another CPU wants
3786 * to access the timer (probably to cancel it). We can safely
3787 * ignore the boosting request, as the idle CPU runs this code
3788 * with interrupts disabled and will complete the lock
3789 * protected section without being interrupted. So there is no
3790 * real need to boost.
3791 */
3792 if (unlikely(p == rq->idle)) {
3793 WARN_ON(p != rq->curr);
3794 WARN_ON(p->pi_blocked_on);
3795 goto out_unlock;
3796 }
3797
b91473ff 3798 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3799 oldprio = p->prio;
ff77e468
PZ
3800
3801 if (oldprio == prio)
3802 queue_flag &= ~DEQUEUE_MOVE;
3803
83ab0aa0 3804 prev_class = p->sched_class;
da0c1e65 3805 queued = task_on_rq_queued(p);
051a1d1a 3806 running = task_current(rq, p);
da0c1e65 3807 if (queued)
ff77e468 3808 dequeue_task(rq, p, queue_flag);
0e1f3483 3809 if (running)
f3cd1c4e 3810 put_prev_task(rq, p);
dd41f596 3811
2d3d891d
DF
3812 /*
3813 * Boosting condition are:
3814 * 1. -rt task is running and holds mutex A
3815 * --> -dl task blocks on mutex A
3816 *
3817 * 2. -dl task is running and holds mutex A
3818 * --> -dl task blocks on mutex A and could preempt the
3819 * running task
3820 */
3821 if (dl_prio(prio)) {
466af29b
ON
3822 if (!dl_prio(p->normal_prio) ||
3823 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3824 p->dl.dl_boosted = 1;
ff77e468 3825 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3826 } else
3827 p->dl.dl_boosted = 0;
aab03e05 3828 p->sched_class = &dl_sched_class;
2d3d891d
DF
3829 } else if (rt_prio(prio)) {
3830 if (dl_prio(oldprio))
3831 p->dl.dl_boosted = 0;
3832 if (oldprio < prio)
ff77e468 3833 queue_flag |= ENQUEUE_HEAD;
dd41f596 3834 p->sched_class = &rt_sched_class;
2d3d891d
DF
3835 } else {
3836 if (dl_prio(oldprio))
3837 p->dl.dl_boosted = 0;
746db944
BS
3838 if (rt_prio(oldprio))
3839 p->rt.timeout = 0;
dd41f596 3840 p->sched_class = &fair_sched_class;
2d3d891d 3841 }
dd41f596 3842
b29739f9
IM
3843 p->prio = prio;
3844
da0c1e65 3845 if (queued)
ff77e468 3846 enqueue_task(rq, p, queue_flag);
a399d233 3847 if (running)
b2bf6c31 3848 set_curr_task(rq, p);
cb469845 3849
da7a735e 3850 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3851out_unlock:
d1ccc66d
IM
3852 /* Avoid rq from going away on us: */
3853 preempt_disable();
eb580751 3854 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3855
3856 balance_callback(rq);
3857 preempt_enable();
b29739f9 3858}
acd58620
PZ
3859#else
3860static inline int rt_effective_prio(struct task_struct *p, int prio)
3861{
3862 return prio;
3863}
b29739f9 3864#endif
d50dde5a 3865
36c8b586 3866void set_user_nice(struct task_struct *p, long nice)
1da177e4 3867{
49bd21ef
PZ
3868 bool queued, running;
3869 int old_prio, delta;
eb580751 3870 struct rq_flags rf;
70b97a7f 3871 struct rq *rq;
1da177e4 3872
75e45d51 3873 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3874 return;
3875 /*
3876 * We have to be careful, if called from sys_setpriority(),
3877 * the task might be in the middle of scheduling on another CPU.
3878 */
eb580751 3879 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3880 update_rq_clock(rq);
3881
1da177e4
LT
3882 /*
3883 * The RT priorities are set via sched_setscheduler(), but we still
3884 * allow the 'normal' nice value to be set - but as expected
3885 * it wont have any effect on scheduling until the task is
aab03e05 3886 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3887 */
aab03e05 3888 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3889 p->static_prio = NICE_TO_PRIO(nice);
3890 goto out_unlock;
3891 }
da0c1e65 3892 queued = task_on_rq_queued(p);
49bd21ef 3893 running = task_current(rq, p);
da0c1e65 3894 if (queued)
7a57f32a 3895 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3896 if (running)
3897 put_prev_task(rq, p);
1da177e4 3898
1da177e4 3899 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3900 set_load_weight(p, true);
b29739f9
IM
3901 old_prio = p->prio;
3902 p->prio = effective_prio(p);
3903 delta = p->prio - old_prio;
1da177e4 3904
da0c1e65 3905 if (queued) {
7134b3e9 3906 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3907 /*
d5f9f942
AM
3908 * If the task increased its priority or is running and
3909 * lowered its priority, then reschedule its CPU:
1da177e4 3910 */
d5f9f942 3911 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3912 resched_curr(rq);
1da177e4 3913 }
49bd21ef
PZ
3914 if (running)
3915 set_curr_task(rq, p);
1da177e4 3916out_unlock:
eb580751 3917 task_rq_unlock(rq, p, &rf);
1da177e4 3918}
1da177e4
LT
3919EXPORT_SYMBOL(set_user_nice);
3920
e43379f1
MM
3921/*
3922 * can_nice - check if a task can reduce its nice value
3923 * @p: task
3924 * @nice: nice value
3925 */
36c8b586 3926int can_nice(const struct task_struct *p, const int nice)
e43379f1 3927{
d1ccc66d 3928 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3929 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3930
78d7d407 3931 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3932 capable(CAP_SYS_NICE));
3933}
3934
1da177e4
LT
3935#ifdef __ARCH_WANT_SYS_NICE
3936
3937/*
3938 * sys_nice - change the priority of the current process.
3939 * @increment: priority increment
3940 *
3941 * sys_setpriority is a more generic, but much slower function that
3942 * does similar things.
3943 */
5add95d4 3944SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3945{
48f24c4d 3946 long nice, retval;
1da177e4
LT
3947
3948 /*
3949 * Setpriority might change our priority at the same moment.
3950 * We don't have to worry. Conceptually one call occurs first
3951 * and we have a single winner.
3952 */
a9467fa3 3953 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3954 nice = task_nice(current) + increment;
1da177e4 3955
a9467fa3 3956 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3957 if (increment < 0 && !can_nice(current, nice))
3958 return -EPERM;
3959
1da177e4
LT
3960 retval = security_task_setnice(current, nice);
3961 if (retval)
3962 return retval;
3963
3964 set_user_nice(current, nice);
3965 return 0;
3966}
3967
3968#endif
3969
3970/**
3971 * task_prio - return the priority value of a given task.
3972 * @p: the task in question.
3973 *
e69f6186 3974 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3975 * RT tasks are offset by -200. Normal tasks are centered
3976 * around 0, value goes from -16 to +15.
3977 */
36c8b586 3978int task_prio(const struct task_struct *p)
1da177e4
LT
3979{
3980 return p->prio - MAX_RT_PRIO;
3981}
3982
1da177e4 3983/**
d1ccc66d 3984 * idle_cpu - is a given CPU idle currently?
1da177e4 3985 * @cpu: the processor in question.
e69f6186
YB
3986 *
3987 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3988 */
3989int idle_cpu(int cpu)
3990{
908a3283
TG
3991 struct rq *rq = cpu_rq(cpu);
3992
3993 if (rq->curr != rq->idle)
3994 return 0;
3995
3996 if (rq->nr_running)
3997 return 0;
3998
3999#ifdef CONFIG_SMP
4000 if (!llist_empty(&rq->wake_list))
4001 return 0;
4002#endif
4003
4004 return 1;
1da177e4
LT
4005}
4006
943d355d
RJ
4007/**
4008 * available_idle_cpu - is a given CPU idle for enqueuing work.
4009 * @cpu: the CPU in question.
4010 *
4011 * Return: 1 if the CPU is currently idle. 0 otherwise.
4012 */
4013int available_idle_cpu(int cpu)
4014{
4015 if (!idle_cpu(cpu))
4016 return 0;
4017
247f2f6f
RJ
4018 if (vcpu_is_preempted(cpu))
4019 return 0;
4020
908a3283 4021 return 1;
1da177e4
LT
4022}
4023
1da177e4 4024/**
d1ccc66d 4025 * idle_task - return the idle task for a given CPU.
1da177e4 4026 * @cpu: the processor in question.
e69f6186 4027 *
d1ccc66d 4028 * Return: The idle task for the CPU @cpu.
1da177e4 4029 */
36c8b586 4030struct task_struct *idle_task(int cpu)
1da177e4
LT
4031{
4032 return cpu_rq(cpu)->idle;
4033}
4034
4035/**
4036 * find_process_by_pid - find a process with a matching PID value.
4037 * @pid: the pid in question.
e69f6186
YB
4038 *
4039 * The task of @pid, if found. %NULL otherwise.
1da177e4 4040 */
a9957449 4041static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4042{
228ebcbe 4043 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4044}
4045
c13db6b1
SR
4046/*
4047 * sched_setparam() passes in -1 for its policy, to let the functions
4048 * it calls know not to change it.
4049 */
4050#define SETPARAM_POLICY -1
4051
c365c292
TG
4052static void __setscheduler_params(struct task_struct *p,
4053 const struct sched_attr *attr)
1da177e4 4054{
d50dde5a
DF
4055 int policy = attr->sched_policy;
4056
c13db6b1 4057 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4058 policy = p->policy;
4059
1da177e4 4060 p->policy = policy;
d50dde5a 4061
aab03e05
DF
4062 if (dl_policy(policy))
4063 __setparam_dl(p, attr);
39fd8fd2 4064 else if (fair_policy(policy))
d50dde5a
DF
4065 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4066
39fd8fd2
PZ
4067 /*
4068 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4069 * !rt_policy. Always setting this ensures that things like
4070 * getparam()/getattr() don't report silly values for !rt tasks.
4071 */
4072 p->rt_priority = attr->sched_priority;
383afd09 4073 p->normal_prio = normal_prio(p);
9059393e 4074 set_load_weight(p, true);
c365c292 4075}
39fd8fd2 4076
c365c292
TG
4077/* Actually do priority change: must hold pi & rq lock. */
4078static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4079 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4080{
4081 __setscheduler_params(p, attr);
d50dde5a 4082
383afd09 4083 /*
0782e63b
TG
4084 * Keep a potential priority boosting if called from
4085 * sched_setscheduler().
383afd09 4086 */
acd58620 4087 p->prio = normal_prio(p);
0782e63b 4088 if (keep_boost)
acd58620 4089 p->prio = rt_effective_prio(p, p->prio);
383afd09 4090
aab03e05
DF
4091 if (dl_prio(p->prio))
4092 p->sched_class = &dl_sched_class;
4093 else if (rt_prio(p->prio))
ffd44db5
PZ
4094 p->sched_class = &rt_sched_class;
4095 else
4096 p->sched_class = &fair_sched_class;
1da177e4 4097}
aab03e05 4098
c69e8d9c 4099/*
d1ccc66d 4100 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4101 */
4102static bool check_same_owner(struct task_struct *p)
4103{
4104 const struct cred *cred = current_cred(), *pcred;
4105 bool match;
4106
4107 rcu_read_lock();
4108 pcred = __task_cred(p);
9c806aa0
EB
4109 match = (uid_eq(cred->euid, pcred->euid) ||
4110 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4111 rcu_read_unlock();
4112 return match;
4113}
4114
d50dde5a
DF
4115static int __sched_setscheduler(struct task_struct *p,
4116 const struct sched_attr *attr,
dbc7f069 4117 bool user, bool pi)
1da177e4 4118{
383afd09
SR
4119 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4120 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4121 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4122 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4123 const struct sched_class *prev_class;
eb580751 4124 struct rq_flags rf;
ca94c442 4125 int reset_on_fork;
7a57f32a 4126 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4127 struct rq *rq;
1da177e4 4128
896bbb25
SRV
4129 /* The pi code expects interrupts enabled */
4130 BUG_ON(pi && in_interrupt());
1da177e4 4131recheck:
d1ccc66d 4132 /* Double check policy once rq lock held: */
ca94c442
LP
4133 if (policy < 0) {
4134 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4135 policy = oldpolicy = p->policy;
ca94c442 4136 } else {
7479f3c9 4137 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4138
20f9cd2a 4139 if (!valid_policy(policy))
ca94c442
LP
4140 return -EINVAL;
4141 }
4142
794a56eb 4143 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4144 return -EINVAL;
4145
1da177e4
LT
4146 /*
4147 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4148 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4149 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4150 */
0bb040a4 4151 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4152 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4153 return -EINVAL;
aab03e05
DF
4154 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4155 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4156 return -EINVAL;
4157
37e4ab3f
OC
4158 /*
4159 * Allow unprivileged RT tasks to decrease priority:
4160 */
961ccddd 4161 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4162 if (fair_policy(policy)) {
d0ea0268 4163 if (attr->sched_nice < task_nice(p) &&
eaad4513 4164 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4165 return -EPERM;
4166 }
4167
e05606d3 4168 if (rt_policy(policy)) {
a44702e8
ON
4169 unsigned long rlim_rtprio =
4170 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4171
d1ccc66d 4172 /* Can't set/change the rt policy: */
8dc3e909
ON
4173 if (policy != p->policy && !rlim_rtprio)
4174 return -EPERM;
4175
d1ccc66d 4176 /* Can't increase priority: */
d50dde5a
DF
4177 if (attr->sched_priority > p->rt_priority &&
4178 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4179 return -EPERM;
4180 }
c02aa73b 4181
d44753b8
JL
4182 /*
4183 * Can't set/change SCHED_DEADLINE policy at all for now
4184 * (safest behavior); in the future we would like to allow
4185 * unprivileged DL tasks to increase their relative deadline
4186 * or reduce their runtime (both ways reducing utilization)
4187 */
4188 if (dl_policy(policy))
4189 return -EPERM;
4190
dd41f596 4191 /*
c02aa73b
DH
4192 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4193 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4194 */
20f9cd2a 4195 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4196 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4197 return -EPERM;
4198 }
5fe1d75f 4199
d1ccc66d 4200 /* Can't change other user's priorities: */
c69e8d9c 4201 if (!check_same_owner(p))
37e4ab3f 4202 return -EPERM;
ca94c442 4203
d1ccc66d 4204 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4205 if (p->sched_reset_on_fork && !reset_on_fork)
4206 return -EPERM;
37e4ab3f 4207 }
1da177e4 4208
725aad24 4209 if (user) {
794a56eb
JL
4210 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4211 return -EINVAL;
4212
b0ae1981 4213 retval = security_task_setscheduler(p);
725aad24
JF
4214 if (retval)
4215 return retval;
4216 }
4217
b29739f9 4218 /*
d1ccc66d 4219 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4220 * changing the priority of the task:
0122ec5b 4221 *
25985edc 4222 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4223 * runqueue lock must be held.
4224 */
eb580751 4225 rq = task_rq_lock(p, &rf);
80f5c1b8 4226 update_rq_clock(rq);
dc61b1d6 4227
34f971f6 4228 /*
d1ccc66d 4229 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4230 */
4231 if (p == rq->stop) {
eb580751 4232 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4233 return -EINVAL;
4234 }
4235
a51e9198 4236 /*
d6b1e911
TG
4237 * If not changing anything there's no need to proceed further,
4238 * but store a possible modification of reset_on_fork.
a51e9198 4239 */
d50dde5a 4240 if (unlikely(policy == p->policy)) {
d0ea0268 4241 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4242 goto change;
4243 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4244 goto change;
75381608 4245 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4246 goto change;
d50dde5a 4247
d6b1e911 4248 p->sched_reset_on_fork = reset_on_fork;
eb580751 4249 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4250 return 0;
4251 }
d50dde5a 4252change:
a51e9198 4253
dc61b1d6 4254 if (user) {
332ac17e 4255#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4256 /*
4257 * Do not allow realtime tasks into groups that have no runtime
4258 * assigned.
4259 */
4260 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4261 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4262 !task_group_is_autogroup(task_group(p))) {
eb580751 4263 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4264 return -EPERM;
4265 }
dc61b1d6 4266#endif
332ac17e 4267#ifdef CONFIG_SMP
794a56eb
JL
4268 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4269 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4270 cpumask_t *span = rq->rd->span;
332ac17e
DF
4271
4272 /*
4273 * Don't allow tasks with an affinity mask smaller than
4274 * the entire root_domain to become SCHED_DEADLINE. We
4275 * will also fail if there's no bandwidth available.
4276 */
e4099a5e
PZ
4277 if (!cpumask_subset(span, &p->cpus_allowed) ||
4278 rq->rd->dl_bw.bw == 0) {
eb580751 4279 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4280 return -EPERM;
4281 }
4282 }
4283#endif
4284 }
dc61b1d6 4285
d1ccc66d 4286 /* Re-check policy now with rq lock held: */
1da177e4
LT
4287 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4288 policy = oldpolicy = -1;
eb580751 4289 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4290 goto recheck;
4291 }
332ac17e
DF
4292
4293 /*
4294 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4295 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4296 * is available.
4297 */
06a76fe0 4298 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4299 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4300 return -EBUSY;
4301 }
4302
c365c292
TG
4303 p->sched_reset_on_fork = reset_on_fork;
4304 oldprio = p->prio;
4305
dbc7f069
PZ
4306 if (pi) {
4307 /*
4308 * Take priority boosted tasks into account. If the new
4309 * effective priority is unchanged, we just store the new
4310 * normal parameters and do not touch the scheduler class and
4311 * the runqueue. This will be done when the task deboost
4312 * itself.
4313 */
acd58620 4314 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4315 if (new_effective_prio == oldprio)
4316 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4317 }
4318
da0c1e65 4319 queued = task_on_rq_queued(p);
051a1d1a 4320 running = task_current(rq, p);
da0c1e65 4321 if (queued)
ff77e468 4322 dequeue_task(rq, p, queue_flags);
0e1f3483 4323 if (running)
f3cd1c4e 4324 put_prev_task(rq, p);
f6b53205 4325
83ab0aa0 4326 prev_class = p->sched_class;
dbc7f069 4327 __setscheduler(rq, p, attr, pi);
f6b53205 4328
da0c1e65 4329 if (queued) {
81a44c54
TG
4330 /*
4331 * We enqueue to tail when the priority of a task is
4332 * increased (user space view).
4333 */
ff77e468
PZ
4334 if (oldprio < p->prio)
4335 queue_flags |= ENQUEUE_HEAD;
1de64443 4336
ff77e468 4337 enqueue_task(rq, p, queue_flags);
81a44c54 4338 }
a399d233 4339 if (running)
b2bf6c31 4340 set_curr_task(rq, p);
cb469845 4341
da7a735e 4342 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4343
4344 /* Avoid rq from going away on us: */
4345 preempt_disable();
eb580751 4346 task_rq_unlock(rq, p, &rf);
b29739f9 4347
dbc7f069
PZ
4348 if (pi)
4349 rt_mutex_adjust_pi(p);
95e02ca9 4350
d1ccc66d 4351 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4352 balance_callback(rq);
4353 preempt_enable();
95e02ca9 4354
1da177e4
LT
4355 return 0;
4356}
961ccddd 4357
7479f3c9
PZ
4358static int _sched_setscheduler(struct task_struct *p, int policy,
4359 const struct sched_param *param, bool check)
4360{
4361 struct sched_attr attr = {
4362 .sched_policy = policy,
4363 .sched_priority = param->sched_priority,
4364 .sched_nice = PRIO_TO_NICE(p->static_prio),
4365 };
4366
c13db6b1
SR
4367 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4368 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4369 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4370 policy &= ~SCHED_RESET_ON_FORK;
4371 attr.sched_policy = policy;
4372 }
4373
dbc7f069 4374 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4375}
961ccddd
RR
4376/**
4377 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4378 * @p: the task in question.
4379 * @policy: new policy.
4380 * @param: structure containing the new RT priority.
4381 *
e69f6186
YB
4382 * Return: 0 on success. An error code otherwise.
4383 *
961ccddd
RR
4384 * NOTE that the task may be already dead.
4385 */
4386int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4387 const struct sched_param *param)
961ccddd 4388{
7479f3c9 4389 return _sched_setscheduler(p, policy, param, true);
961ccddd 4390}
1da177e4
LT
4391EXPORT_SYMBOL_GPL(sched_setscheduler);
4392
d50dde5a
DF
4393int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4394{
dbc7f069 4395 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4396}
4397EXPORT_SYMBOL_GPL(sched_setattr);
4398
794a56eb
JL
4399int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4400{
4401 return __sched_setscheduler(p, attr, false, true);
4402}
4403
961ccddd
RR
4404/**
4405 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4406 * @p: the task in question.
4407 * @policy: new policy.
4408 * @param: structure containing the new RT priority.
4409 *
4410 * Just like sched_setscheduler, only don't bother checking if the
4411 * current context has permission. For example, this is needed in
4412 * stop_machine(): we create temporary high priority worker threads,
4413 * but our caller might not have that capability.
e69f6186
YB
4414 *
4415 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4416 */
4417int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4418 const struct sched_param *param)
961ccddd 4419{
7479f3c9 4420 return _sched_setscheduler(p, policy, param, false);
961ccddd 4421}
84778472 4422EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4423
95cdf3b7
IM
4424static int
4425do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4426{
1da177e4
LT
4427 struct sched_param lparam;
4428 struct task_struct *p;
36c8b586 4429 int retval;
1da177e4
LT
4430
4431 if (!param || pid < 0)
4432 return -EINVAL;
4433 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4434 return -EFAULT;
5fe1d75f
ON
4435
4436 rcu_read_lock();
4437 retval = -ESRCH;
1da177e4 4438 p = find_process_by_pid(pid);
5fe1d75f
ON
4439 if (p != NULL)
4440 retval = sched_setscheduler(p, policy, &lparam);
4441 rcu_read_unlock();
36c8b586 4442
1da177e4
LT
4443 return retval;
4444}
4445
d50dde5a
DF
4446/*
4447 * Mimics kernel/events/core.c perf_copy_attr().
4448 */
d1ccc66d 4449static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4450{
4451 u32 size;
4452 int ret;
4453
4454 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4455 return -EFAULT;
4456
d1ccc66d 4457 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4458 memset(attr, 0, sizeof(*attr));
4459
4460 ret = get_user(size, &uattr->size);
4461 if (ret)
4462 return ret;
4463
d1ccc66d
IM
4464 /* Bail out on silly large: */
4465 if (size > PAGE_SIZE)
d50dde5a
DF
4466 goto err_size;
4467
d1ccc66d
IM
4468 /* ABI compatibility quirk: */
4469 if (!size)
d50dde5a
DF
4470 size = SCHED_ATTR_SIZE_VER0;
4471
4472 if (size < SCHED_ATTR_SIZE_VER0)
4473 goto err_size;
4474
4475 /*
4476 * If we're handed a bigger struct than we know of,
4477 * ensure all the unknown bits are 0 - i.e. new
4478 * user-space does not rely on any kernel feature
4479 * extensions we dont know about yet.
4480 */
4481 if (size > sizeof(*attr)) {
4482 unsigned char __user *addr;
4483 unsigned char __user *end;
4484 unsigned char val;
4485
4486 addr = (void __user *)uattr + sizeof(*attr);
4487 end = (void __user *)uattr + size;
4488
4489 for (; addr < end; addr++) {
4490 ret = get_user(val, addr);
4491 if (ret)
4492 return ret;
4493 if (val)
4494 goto err_size;
4495 }
4496 size = sizeof(*attr);
4497 }
4498
4499 ret = copy_from_user(attr, uattr, size);
4500 if (ret)
4501 return -EFAULT;
4502
4503 /*
d1ccc66d 4504 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4505 * to be strict and return an error on out-of-bounds values?
4506 */
75e45d51 4507 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4508
e78c7bca 4509 return 0;
d50dde5a
DF
4510
4511err_size:
4512 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4513 return -E2BIG;
d50dde5a
DF
4514}
4515
1da177e4
LT
4516/**
4517 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4518 * @pid: the pid in question.
4519 * @policy: new policy.
4520 * @param: structure containing the new RT priority.
e69f6186
YB
4521 *
4522 * Return: 0 on success. An error code otherwise.
1da177e4 4523 */
d1ccc66d 4524SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4525{
c21761f1
JB
4526 if (policy < 0)
4527 return -EINVAL;
4528
1da177e4
LT
4529 return do_sched_setscheduler(pid, policy, param);
4530}
4531
4532/**
4533 * sys_sched_setparam - set/change the RT priority of a thread
4534 * @pid: the pid in question.
4535 * @param: structure containing the new RT priority.
e69f6186
YB
4536 *
4537 * Return: 0 on success. An error code otherwise.
1da177e4 4538 */
5add95d4 4539SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4540{
c13db6b1 4541 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4542}
4543
d50dde5a
DF
4544/**
4545 * sys_sched_setattr - same as above, but with extended sched_attr
4546 * @pid: the pid in question.
5778fccf 4547 * @uattr: structure containing the extended parameters.
db66d756 4548 * @flags: for future extension.
d50dde5a 4549 */
6d35ab48
PZ
4550SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4551 unsigned int, flags)
d50dde5a
DF
4552{
4553 struct sched_attr attr;
4554 struct task_struct *p;
4555 int retval;
4556
6d35ab48 4557 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4558 return -EINVAL;
4559
143cf23d
MK
4560 retval = sched_copy_attr(uattr, &attr);
4561 if (retval)
4562 return retval;
d50dde5a 4563
b14ed2c2 4564 if ((int)attr.sched_policy < 0)
dbdb2275 4565 return -EINVAL;
d50dde5a
DF
4566
4567 rcu_read_lock();
4568 retval = -ESRCH;
4569 p = find_process_by_pid(pid);
4570 if (p != NULL)
4571 retval = sched_setattr(p, &attr);
4572 rcu_read_unlock();
4573
4574 return retval;
4575}
4576
1da177e4
LT
4577/**
4578 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4579 * @pid: the pid in question.
e69f6186
YB
4580 *
4581 * Return: On success, the policy of the thread. Otherwise, a negative error
4582 * code.
1da177e4 4583 */
5add95d4 4584SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4585{
36c8b586 4586 struct task_struct *p;
3a5c359a 4587 int retval;
1da177e4
LT
4588
4589 if (pid < 0)
3a5c359a 4590 return -EINVAL;
1da177e4
LT
4591
4592 retval = -ESRCH;
5fe85be0 4593 rcu_read_lock();
1da177e4
LT
4594 p = find_process_by_pid(pid);
4595 if (p) {
4596 retval = security_task_getscheduler(p);
4597 if (!retval)
ca94c442
LP
4598 retval = p->policy
4599 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4600 }
5fe85be0 4601 rcu_read_unlock();
1da177e4
LT
4602 return retval;
4603}
4604
4605/**
ca94c442 4606 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4607 * @pid: the pid in question.
4608 * @param: structure containing the RT priority.
e69f6186
YB
4609 *
4610 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4611 * code.
1da177e4 4612 */
5add95d4 4613SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4614{
ce5f7f82 4615 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4616 struct task_struct *p;
3a5c359a 4617 int retval;
1da177e4
LT
4618
4619 if (!param || pid < 0)
3a5c359a 4620 return -EINVAL;
1da177e4 4621
5fe85be0 4622 rcu_read_lock();
1da177e4
LT
4623 p = find_process_by_pid(pid);
4624 retval = -ESRCH;
4625 if (!p)
4626 goto out_unlock;
4627
4628 retval = security_task_getscheduler(p);
4629 if (retval)
4630 goto out_unlock;
4631
ce5f7f82
PZ
4632 if (task_has_rt_policy(p))
4633 lp.sched_priority = p->rt_priority;
5fe85be0 4634 rcu_read_unlock();
1da177e4
LT
4635
4636 /*
4637 * This one might sleep, we cannot do it with a spinlock held ...
4638 */
4639 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4640
1da177e4
LT
4641 return retval;
4642
4643out_unlock:
5fe85be0 4644 rcu_read_unlock();
1da177e4
LT
4645 return retval;
4646}
4647
d50dde5a
DF
4648static int sched_read_attr(struct sched_attr __user *uattr,
4649 struct sched_attr *attr,
4650 unsigned int usize)
4651{
4652 int ret;
4653
4654 if (!access_ok(VERIFY_WRITE, uattr, usize))
4655 return -EFAULT;
4656
4657 /*
4658 * If we're handed a smaller struct than we know of,
4659 * ensure all the unknown bits are 0 - i.e. old
4660 * user-space does not get uncomplete information.
4661 */
4662 if (usize < sizeof(*attr)) {
4663 unsigned char *addr;
4664 unsigned char *end;
4665
4666 addr = (void *)attr + usize;
4667 end = (void *)attr + sizeof(*attr);
4668
4669 for (; addr < end; addr++) {
4670 if (*addr)
22400674 4671 return -EFBIG;
d50dde5a
DF
4672 }
4673
4674 attr->size = usize;
4675 }
4676
4efbc454 4677 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4678 if (ret)
4679 return -EFAULT;
4680
22400674 4681 return 0;
d50dde5a
DF
4682}
4683
4684/**
aab03e05 4685 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4686 * @pid: the pid in question.
5778fccf 4687 * @uattr: structure containing the extended parameters.
d50dde5a 4688 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4689 * @flags: for future extension.
d50dde5a 4690 */
6d35ab48
PZ
4691SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4692 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4693{
4694 struct sched_attr attr = {
4695 .size = sizeof(struct sched_attr),
4696 };
4697 struct task_struct *p;
4698 int retval;
4699
4700 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4701 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4702 return -EINVAL;
4703
4704 rcu_read_lock();
4705 p = find_process_by_pid(pid);
4706 retval = -ESRCH;
4707 if (!p)
4708 goto out_unlock;
4709
4710 retval = security_task_getscheduler(p);
4711 if (retval)
4712 goto out_unlock;
4713
4714 attr.sched_policy = p->policy;
7479f3c9
PZ
4715 if (p->sched_reset_on_fork)
4716 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4717 if (task_has_dl_policy(p))
4718 __getparam_dl(p, &attr);
4719 else if (task_has_rt_policy(p))
d50dde5a
DF
4720 attr.sched_priority = p->rt_priority;
4721 else
d0ea0268 4722 attr.sched_nice = task_nice(p);
d50dde5a
DF
4723
4724 rcu_read_unlock();
4725
4726 retval = sched_read_attr(uattr, &attr, size);
4727 return retval;
4728
4729out_unlock:
4730 rcu_read_unlock();
4731 return retval;
4732}
4733
96f874e2 4734long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4735{
5a16f3d3 4736 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4737 struct task_struct *p;
4738 int retval;
1da177e4 4739
23f5d142 4740 rcu_read_lock();
1da177e4
LT
4741
4742 p = find_process_by_pid(pid);
4743 if (!p) {
23f5d142 4744 rcu_read_unlock();
1da177e4
LT
4745 return -ESRCH;
4746 }
4747
23f5d142 4748 /* Prevent p going away */
1da177e4 4749 get_task_struct(p);
23f5d142 4750 rcu_read_unlock();
1da177e4 4751
14a40ffc
TH
4752 if (p->flags & PF_NO_SETAFFINITY) {
4753 retval = -EINVAL;
4754 goto out_put_task;
4755 }
5a16f3d3
RR
4756 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4757 retval = -ENOMEM;
4758 goto out_put_task;
4759 }
4760 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4761 retval = -ENOMEM;
4762 goto out_free_cpus_allowed;
4763 }
1da177e4 4764 retval = -EPERM;
4c44aaaf
EB
4765 if (!check_same_owner(p)) {
4766 rcu_read_lock();
4767 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4768 rcu_read_unlock();
16303ab2 4769 goto out_free_new_mask;
4c44aaaf
EB
4770 }
4771 rcu_read_unlock();
4772 }
1da177e4 4773
b0ae1981 4774 retval = security_task_setscheduler(p);
e7834f8f 4775 if (retval)
16303ab2 4776 goto out_free_new_mask;
e7834f8f 4777
e4099a5e
PZ
4778
4779 cpuset_cpus_allowed(p, cpus_allowed);
4780 cpumask_and(new_mask, in_mask, cpus_allowed);
4781
332ac17e
DF
4782 /*
4783 * Since bandwidth control happens on root_domain basis,
4784 * if admission test is enabled, we only admit -deadline
4785 * tasks allowed to run on all the CPUs in the task's
4786 * root_domain.
4787 */
4788#ifdef CONFIG_SMP
f1e3a093
KT
4789 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4790 rcu_read_lock();
4791 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4792 retval = -EBUSY;
f1e3a093 4793 rcu_read_unlock();
16303ab2 4794 goto out_free_new_mask;
332ac17e 4795 }
f1e3a093 4796 rcu_read_unlock();
332ac17e
DF
4797 }
4798#endif
49246274 4799again:
25834c73 4800 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4801
8707d8b8 4802 if (!retval) {
5a16f3d3
RR
4803 cpuset_cpus_allowed(p, cpus_allowed);
4804 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4805 /*
4806 * We must have raced with a concurrent cpuset
4807 * update. Just reset the cpus_allowed to the
4808 * cpuset's cpus_allowed
4809 */
5a16f3d3 4810 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4811 goto again;
4812 }
4813 }
16303ab2 4814out_free_new_mask:
5a16f3d3
RR
4815 free_cpumask_var(new_mask);
4816out_free_cpus_allowed:
4817 free_cpumask_var(cpus_allowed);
4818out_put_task:
1da177e4 4819 put_task_struct(p);
1da177e4
LT
4820 return retval;
4821}
4822
4823static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4824 struct cpumask *new_mask)
1da177e4 4825{
96f874e2
RR
4826 if (len < cpumask_size())
4827 cpumask_clear(new_mask);
4828 else if (len > cpumask_size())
4829 len = cpumask_size();
4830
1da177e4
LT
4831 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4832}
4833
4834/**
d1ccc66d 4835 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4836 * @pid: pid of the process
4837 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4838 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4839 *
4840 * Return: 0 on success. An error code otherwise.
1da177e4 4841 */
5add95d4
HC
4842SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4843 unsigned long __user *, user_mask_ptr)
1da177e4 4844{
5a16f3d3 4845 cpumask_var_t new_mask;
1da177e4
LT
4846 int retval;
4847
5a16f3d3
RR
4848 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4849 return -ENOMEM;
1da177e4 4850
5a16f3d3
RR
4851 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4852 if (retval == 0)
4853 retval = sched_setaffinity(pid, new_mask);
4854 free_cpumask_var(new_mask);
4855 return retval;
1da177e4
LT
4856}
4857
96f874e2 4858long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4859{
36c8b586 4860 struct task_struct *p;
31605683 4861 unsigned long flags;
1da177e4 4862 int retval;
1da177e4 4863
23f5d142 4864 rcu_read_lock();
1da177e4
LT
4865
4866 retval = -ESRCH;
4867 p = find_process_by_pid(pid);
4868 if (!p)
4869 goto out_unlock;
4870
e7834f8f
DQ
4871 retval = security_task_getscheduler(p);
4872 if (retval)
4873 goto out_unlock;
4874
013fdb80 4875 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4876 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4877 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4878
4879out_unlock:
23f5d142 4880 rcu_read_unlock();
1da177e4 4881
9531b62f 4882 return retval;
1da177e4
LT
4883}
4884
4885/**
d1ccc66d 4886 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4887 * @pid: pid of the process
4888 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4889 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4890 *
599b4840
ZW
4891 * Return: size of CPU mask copied to user_mask_ptr on success. An
4892 * error code otherwise.
1da177e4 4893 */
5add95d4
HC
4894SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4895 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4896{
4897 int ret;
f17c8607 4898 cpumask_var_t mask;
1da177e4 4899
84fba5ec 4900 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4901 return -EINVAL;
4902 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4903 return -EINVAL;
4904
f17c8607
RR
4905 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4906 return -ENOMEM;
1da177e4 4907
f17c8607
RR
4908 ret = sched_getaffinity(pid, mask);
4909 if (ret == 0) {
4de373a1 4910 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
4911
4912 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4913 ret = -EFAULT;
4914 else
cd3d8031 4915 ret = retlen;
f17c8607
RR
4916 }
4917 free_cpumask_var(mask);
1da177e4 4918
f17c8607 4919 return ret;
1da177e4
LT
4920}
4921
4922/**
4923 * sys_sched_yield - yield the current processor to other threads.
4924 *
dd41f596
IM
4925 * This function yields the current CPU to other tasks. If there are no
4926 * other threads running on this CPU then this function will return.
e69f6186
YB
4927 *
4928 * Return: 0.
1da177e4 4929 */
7d4dd4f1 4930static void do_sched_yield(void)
1da177e4 4931{
8a8c69c3
PZ
4932 struct rq_flags rf;
4933 struct rq *rq;
4934
4935 local_irq_disable();
4936 rq = this_rq();
4937 rq_lock(rq, &rf);
1da177e4 4938
ae92882e 4939 schedstat_inc(rq->yld_count);
4530d7ab 4940 current->sched_class->yield_task(rq);
1da177e4
LT
4941
4942 /*
4943 * Since we are going to call schedule() anyway, there's
4944 * no need to preempt or enable interrupts:
4945 */
8a8c69c3
PZ
4946 preempt_disable();
4947 rq_unlock(rq, &rf);
ba74c144 4948 sched_preempt_enable_no_resched();
1da177e4
LT
4949
4950 schedule();
7d4dd4f1 4951}
1da177e4 4952
7d4dd4f1
DB
4953SYSCALL_DEFINE0(sched_yield)
4954{
4955 do_sched_yield();
1da177e4
LT
4956 return 0;
4957}
4958
35a773a0 4959#ifndef CONFIG_PREEMPT
02b67cc3 4960int __sched _cond_resched(void)
1da177e4 4961{
fe32d3cd 4962 if (should_resched(0)) {
a18b5d01 4963 preempt_schedule_common();
1da177e4
LT
4964 return 1;
4965 }
f79c3ad6 4966 rcu_all_qs();
1da177e4
LT
4967 return 0;
4968}
02b67cc3 4969EXPORT_SYMBOL(_cond_resched);
35a773a0 4970#endif
1da177e4
LT
4971
4972/*
613afbf8 4973 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4974 * call schedule, and on return reacquire the lock.
4975 *
41a2d6cf 4976 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4977 * operations here to prevent schedule() from being called twice (once via
4978 * spin_unlock(), once by hand).
4979 */
613afbf8 4980int __cond_resched_lock(spinlock_t *lock)
1da177e4 4981{
fe32d3cd 4982 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4983 int ret = 0;
4984
f607c668
PZ
4985 lockdep_assert_held(lock);
4986
4a81e832 4987 if (spin_needbreak(lock) || resched) {
1da177e4 4988 spin_unlock(lock);
d86ee480 4989 if (resched)
a18b5d01 4990 preempt_schedule_common();
95c354fe
NP
4991 else
4992 cpu_relax();
6df3cecb 4993 ret = 1;
1da177e4 4994 spin_lock(lock);
1da177e4 4995 }
6df3cecb 4996 return ret;
1da177e4 4997}
613afbf8 4998EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4999
1da177e4
LT
5000/**
5001 * yield - yield the current processor to other threads.
5002 *
8e3fabfd
PZ
5003 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5004 *
5005 * The scheduler is at all times free to pick the calling task as the most
5006 * eligible task to run, if removing the yield() call from your code breaks
5007 * it, its already broken.
5008 *
5009 * Typical broken usage is:
5010 *
5011 * while (!event)
d1ccc66d 5012 * yield();
8e3fabfd
PZ
5013 *
5014 * where one assumes that yield() will let 'the other' process run that will
5015 * make event true. If the current task is a SCHED_FIFO task that will never
5016 * happen. Never use yield() as a progress guarantee!!
5017 *
5018 * If you want to use yield() to wait for something, use wait_event().
5019 * If you want to use yield() to be 'nice' for others, use cond_resched().
5020 * If you still want to use yield(), do not!
1da177e4
LT
5021 */
5022void __sched yield(void)
5023{
5024 set_current_state(TASK_RUNNING);
7d4dd4f1 5025 do_sched_yield();
1da177e4 5026}
1da177e4
LT
5027EXPORT_SYMBOL(yield);
5028
d95f4122
MG
5029/**
5030 * yield_to - yield the current processor to another thread in
5031 * your thread group, or accelerate that thread toward the
5032 * processor it's on.
16addf95
RD
5033 * @p: target task
5034 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5035 *
5036 * It's the caller's job to ensure that the target task struct
5037 * can't go away on us before we can do any checks.
5038 *
e69f6186 5039 * Return:
7b270f60
PZ
5040 * true (>0) if we indeed boosted the target task.
5041 * false (0) if we failed to boost the target.
5042 * -ESRCH if there's no task to yield to.
d95f4122 5043 */
fa93384f 5044int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5045{
5046 struct task_struct *curr = current;
5047 struct rq *rq, *p_rq;
5048 unsigned long flags;
c3c18640 5049 int yielded = 0;
d95f4122
MG
5050
5051 local_irq_save(flags);
5052 rq = this_rq();
5053
5054again:
5055 p_rq = task_rq(p);
7b270f60
PZ
5056 /*
5057 * If we're the only runnable task on the rq and target rq also
5058 * has only one task, there's absolutely no point in yielding.
5059 */
5060 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5061 yielded = -ESRCH;
5062 goto out_irq;
5063 }
5064
d95f4122 5065 double_rq_lock(rq, p_rq);
39e24d8f 5066 if (task_rq(p) != p_rq) {
d95f4122
MG
5067 double_rq_unlock(rq, p_rq);
5068 goto again;
5069 }
5070
5071 if (!curr->sched_class->yield_to_task)
7b270f60 5072 goto out_unlock;
d95f4122
MG
5073
5074 if (curr->sched_class != p->sched_class)
7b270f60 5075 goto out_unlock;
d95f4122
MG
5076
5077 if (task_running(p_rq, p) || p->state)
7b270f60 5078 goto out_unlock;
d95f4122
MG
5079
5080 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5081 if (yielded) {
ae92882e 5082 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5083 /*
5084 * Make p's CPU reschedule; pick_next_entity takes care of
5085 * fairness.
5086 */
5087 if (preempt && rq != p_rq)
8875125e 5088 resched_curr(p_rq);
6d1cafd8 5089 }
d95f4122 5090
7b270f60 5091out_unlock:
d95f4122 5092 double_rq_unlock(rq, p_rq);
7b270f60 5093out_irq:
d95f4122
MG
5094 local_irq_restore(flags);
5095
7b270f60 5096 if (yielded > 0)
d95f4122
MG
5097 schedule();
5098
5099 return yielded;
5100}
5101EXPORT_SYMBOL_GPL(yield_to);
5102
10ab5643
TH
5103int io_schedule_prepare(void)
5104{
5105 int old_iowait = current->in_iowait;
5106
5107 current->in_iowait = 1;
5108 blk_schedule_flush_plug(current);
5109
5110 return old_iowait;
5111}
5112
5113void io_schedule_finish(int token)
5114{
5115 current->in_iowait = token;
5116}
5117
1da177e4 5118/*
41a2d6cf 5119 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5120 * that process accounting knows that this is a task in IO wait state.
1da177e4 5121 */
1da177e4
LT
5122long __sched io_schedule_timeout(long timeout)
5123{
10ab5643 5124 int token;
1da177e4
LT
5125 long ret;
5126
10ab5643 5127 token = io_schedule_prepare();
1da177e4 5128 ret = schedule_timeout(timeout);
10ab5643 5129 io_schedule_finish(token);
9cff8ade 5130
1da177e4
LT
5131 return ret;
5132}
9cff8ade 5133EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5134
10ab5643
TH
5135void io_schedule(void)
5136{
5137 int token;
5138
5139 token = io_schedule_prepare();
5140 schedule();
5141 io_schedule_finish(token);
5142}
5143EXPORT_SYMBOL(io_schedule);
5144
1da177e4
LT
5145/**
5146 * sys_sched_get_priority_max - return maximum RT priority.
5147 * @policy: scheduling class.
5148 *
e69f6186
YB
5149 * Return: On success, this syscall returns the maximum
5150 * rt_priority that can be used by a given scheduling class.
5151 * On failure, a negative error code is returned.
1da177e4 5152 */
5add95d4 5153SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5154{
5155 int ret = -EINVAL;
5156
5157 switch (policy) {
5158 case SCHED_FIFO:
5159 case SCHED_RR:
5160 ret = MAX_USER_RT_PRIO-1;
5161 break;
aab03e05 5162 case SCHED_DEADLINE:
1da177e4 5163 case SCHED_NORMAL:
b0a9499c 5164 case SCHED_BATCH:
dd41f596 5165 case SCHED_IDLE:
1da177e4
LT
5166 ret = 0;
5167 break;
5168 }
5169 return ret;
5170}
5171
5172/**
5173 * sys_sched_get_priority_min - return minimum RT priority.
5174 * @policy: scheduling class.
5175 *
e69f6186
YB
5176 * Return: On success, this syscall returns the minimum
5177 * rt_priority that can be used by a given scheduling class.
5178 * On failure, a negative error code is returned.
1da177e4 5179 */
5add95d4 5180SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5181{
5182 int ret = -EINVAL;
5183
5184 switch (policy) {
5185 case SCHED_FIFO:
5186 case SCHED_RR:
5187 ret = 1;
5188 break;
aab03e05 5189 case SCHED_DEADLINE:
1da177e4 5190 case SCHED_NORMAL:
b0a9499c 5191 case SCHED_BATCH:
dd41f596 5192 case SCHED_IDLE:
1da177e4
LT
5193 ret = 0;
5194 }
5195 return ret;
5196}
5197
abca5fc5 5198static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5199{
36c8b586 5200 struct task_struct *p;
a4ec24b4 5201 unsigned int time_slice;
eb580751 5202 struct rq_flags rf;
dba091b9 5203 struct rq *rq;
3a5c359a 5204 int retval;
1da177e4
LT
5205
5206 if (pid < 0)
3a5c359a 5207 return -EINVAL;
1da177e4
LT
5208
5209 retval = -ESRCH;
1a551ae7 5210 rcu_read_lock();
1da177e4
LT
5211 p = find_process_by_pid(pid);
5212 if (!p)
5213 goto out_unlock;
5214
5215 retval = security_task_getscheduler(p);
5216 if (retval)
5217 goto out_unlock;
5218
eb580751 5219 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5220 time_slice = 0;
5221 if (p->sched_class->get_rr_interval)
5222 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5223 task_rq_unlock(rq, p, &rf);
a4ec24b4 5224
1a551ae7 5225 rcu_read_unlock();
abca5fc5
AV
5226 jiffies_to_timespec64(time_slice, t);
5227 return 0;
3a5c359a 5228
1da177e4 5229out_unlock:
1a551ae7 5230 rcu_read_unlock();
1da177e4
LT
5231 return retval;
5232}
5233
2064a5ab
RD
5234/**
5235 * sys_sched_rr_get_interval - return the default timeslice of a process.
5236 * @pid: pid of the process.
5237 * @interval: userspace pointer to the timeslice value.
5238 *
5239 * this syscall writes the default timeslice value of a given process
5240 * into the user-space timespec buffer. A value of '0' means infinity.
5241 *
5242 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5243 * an error code.
5244 */
abca5fc5
AV
5245SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5246 struct timespec __user *, interval)
5247{
5248 struct timespec64 t;
5249 int retval = sched_rr_get_interval(pid, &t);
5250
5251 if (retval == 0)
5252 retval = put_timespec64(&t, interval);
5253
5254 return retval;
5255}
5256
5257#ifdef CONFIG_COMPAT
5258COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5259 compat_pid_t, pid,
5260 struct compat_timespec __user *, interval)
5261{
5262 struct timespec64 t;
5263 int retval = sched_rr_get_interval(pid, &t);
5264
5265 if (retval == 0)
5266 retval = compat_put_timespec64(&t, interval);
5267 return retval;
5268}
5269#endif
5270
82a1fcb9 5271void sched_show_task(struct task_struct *p)
1da177e4 5272{
1da177e4 5273 unsigned long free = 0;
4e79752c 5274 int ppid;
c930b2c0 5275
38200502
TH
5276 if (!try_get_task_stack(p))
5277 return;
20435d84
XX
5278
5279 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5280
5281 if (p->state == TASK_RUNNING)
3df0fc5b 5282 printk(KERN_CONT " running task ");
1da177e4 5283#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5284 free = stack_not_used(p);
1da177e4 5285#endif
a90e984c 5286 ppid = 0;
4e79752c 5287 rcu_read_lock();
a90e984c
ON
5288 if (pid_alive(p))
5289 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5290 rcu_read_unlock();
3df0fc5b 5291 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5292 task_pid_nr(p), ppid,
aa47b7e0 5293 (unsigned long)task_thread_info(p)->flags);
1da177e4 5294
3d1cb205 5295 print_worker_info(KERN_INFO, p);
5fb5e6de 5296 show_stack(p, NULL);
38200502 5297 put_task_stack(p);
1da177e4 5298}
0032f4e8 5299EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5300
5d68cc95
PZ
5301static inline bool
5302state_filter_match(unsigned long state_filter, struct task_struct *p)
5303{
5304 /* no filter, everything matches */
5305 if (!state_filter)
5306 return true;
5307
5308 /* filter, but doesn't match */
5309 if (!(p->state & state_filter))
5310 return false;
5311
5312 /*
5313 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5314 * TASK_KILLABLE).
5315 */
5316 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5317 return false;
5318
5319 return true;
5320}
5321
5322
e59e2ae2 5323void show_state_filter(unsigned long state_filter)
1da177e4 5324{
36c8b586 5325 struct task_struct *g, *p;
1da177e4 5326
4bd77321 5327#if BITS_PER_LONG == 32
3df0fc5b
PZ
5328 printk(KERN_INFO
5329 " task PC stack pid father\n");
1da177e4 5330#else
3df0fc5b
PZ
5331 printk(KERN_INFO
5332 " task PC stack pid father\n");
1da177e4 5333#endif
510f5acc 5334 rcu_read_lock();
5d07f420 5335 for_each_process_thread(g, p) {
1da177e4
LT
5336 /*
5337 * reset the NMI-timeout, listing all files on a slow
25985edc 5338 * console might take a lot of time:
57675cb9
AR
5339 * Also, reset softlockup watchdogs on all CPUs, because
5340 * another CPU might be blocked waiting for us to process
5341 * an IPI.
1da177e4
LT
5342 */
5343 touch_nmi_watchdog();
57675cb9 5344 touch_all_softlockup_watchdogs();
5d68cc95 5345 if (state_filter_match(state_filter, p))
82a1fcb9 5346 sched_show_task(p);
5d07f420 5347 }
1da177e4 5348
dd41f596 5349#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5350 if (!state_filter)
5351 sysrq_sched_debug_show();
dd41f596 5352#endif
510f5acc 5353 rcu_read_unlock();
e59e2ae2
IM
5354 /*
5355 * Only show locks if all tasks are dumped:
5356 */
93335a21 5357 if (!state_filter)
e59e2ae2 5358 debug_show_all_locks();
1da177e4
LT
5359}
5360
f340c0d1
IM
5361/**
5362 * init_idle - set up an idle thread for a given CPU
5363 * @idle: task in question
d1ccc66d 5364 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5365 *
5366 * NOTE: this function does not set the idle thread's NEED_RESCHED
5367 * flag, to make booting more robust.
5368 */
0db0628d 5369void init_idle(struct task_struct *idle, int cpu)
1da177e4 5370{
70b97a7f 5371 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5372 unsigned long flags;
5373
25834c73
PZ
5374 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5375 raw_spin_lock(&rq->lock);
5cbd54ef 5376
5e1576ed 5377 __sched_fork(0, idle);
06b83b5f 5378 idle->state = TASK_RUNNING;
dd41f596 5379 idle->se.exec_start = sched_clock();
c1de45ca 5380 idle->flags |= PF_IDLE;
dd41f596 5381
e1b77c92
MR
5382 kasan_unpoison_task_stack(idle);
5383
de9b8f5d
PZ
5384#ifdef CONFIG_SMP
5385 /*
5386 * Its possible that init_idle() gets called multiple times on a task,
5387 * in that case do_set_cpus_allowed() will not do the right thing.
5388 *
5389 * And since this is boot we can forgo the serialization.
5390 */
5391 set_cpus_allowed_common(idle, cpumask_of(cpu));
5392#endif
6506cf6c
PZ
5393 /*
5394 * We're having a chicken and egg problem, even though we are
d1ccc66d 5395 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5396 * lockdep check in task_group() will fail.
5397 *
5398 * Similar case to sched_fork(). / Alternatively we could
5399 * use task_rq_lock() here and obtain the other rq->lock.
5400 *
5401 * Silence PROVE_RCU
5402 */
5403 rcu_read_lock();
dd41f596 5404 __set_task_cpu(idle, cpu);
6506cf6c 5405 rcu_read_unlock();
1da177e4 5406
1da177e4 5407 rq->curr = rq->idle = idle;
da0c1e65 5408 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5409#ifdef CONFIG_SMP
3ca7a440 5410 idle->on_cpu = 1;
4866cde0 5411#endif
25834c73
PZ
5412 raw_spin_unlock(&rq->lock);
5413 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5414
5415 /* Set the preempt count _outside_ the spinlocks! */
01028747 5416 init_idle_preempt_count(idle, cpu);
55cd5340 5417
dd41f596
IM
5418 /*
5419 * The idle tasks have their own, simple scheduling class:
5420 */
5421 idle->sched_class = &idle_sched_class;
868baf07 5422 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5423 vtime_init_idle(idle, cpu);
de9b8f5d 5424#ifdef CONFIG_SMP
f1c6f1a7
CE
5425 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5426#endif
19978ca6
IM
5427}
5428
e1d4eeec
NP
5429#ifdef CONFIG_SMP
5430
f82f8042
JL
5431int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5432 const struct cpumask *trial)
5433{
06a76fe0 5434 int ret = 1;
f82f8042 5435
bb2bc55a
MG
5436 if (!cpumask_weight(cur))
5437 return ret;
5438
06a76fe0 5439 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5440
5441 return ret;
5442}
5443
7f51412a
JL
5444int task_can_attach(struct task_struct *p,
5445 const struct cpumask *cs_cpus_allowed)
5446{
5447 int ret = 0;
5448
5449 /*
5450 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5451 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5452 * affinity and isolating such threads by their set of
5453 * allowed nodes is unnecessary. Thus, cpusets are not
5454 * applicable for such threads. This prevents checking for
5455 * success of set_cpus_allowed_ptr() on all attached tasks
5456 * before cpus_allowed may be changed.
5457 */
5458 if (p->flags & PF_NO_SETAFFINITY) {
5459 ret = -EINVAL;
5460 goto out;
5461 }
5462
7f51412a 5463 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5464 cs_cpus_allowed))
5465 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5466
7f51412a
JL
5467out:
5468 return ret;
5469}
5470
f2cb1360 5471bool sched_smp_initialized __read_mostly;
e26fbffd 5472
e6628d5b
MG
5473#ifdef CONFIG_NUMA_BALANCING
5474/* Migrate current task p to target_cpu */
5475int migrate_task_to(struct task_struct *p, int target_cpu)
5476{
5477 struct migration_arg arg = { p, target_cpu };
5478 int curr_cpu = task_cpu(p);
5479
5480 if (curr_cpu == target_cpu)
5481 return 0;
5482
0c98d344 5483 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5484 return -EINVAL;
5485
5486 /* TODO: This is not properly updating schedstats */
5487
286549dc 5488 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5489 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5490}
0ec8aa00
PZ
5491
5492/*
5493 * Requeue a task on a given node and accurately track the number of NUMA
5494 * tasks on the runqueues
5495 */
5496void sched_setnuma(struct task_struct *p, int nid)
5497{
da0c1e65 5498 bool queued, running;
eb580751
PZ
5499 struct rq_flags rf;
5500 struct rq *rq;
0ec8aa00 5501
eb580751 5502 rq = task_rq_lock(p, &rf);
da0c1e65 5503 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5504 running = task_current(rq, p);
5505
da0c1e65 5506 if (queued)
1de64443 5507 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5508 if (running)
f3cd1c4e 5509 put_prev_task(rq, p);
0ec8aa00
PZ
5510
5511 p->numa_preferred_nid = nid;
0ec8aa00 5512
da0c1e65 5513 if (queued)
7134b3e9 5514 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5515 if (running)
b2bf6c31 5516 set_curr_task(rq, p);
eb580751 5517 task_rq_unlock(rq, p, &rf);
0ec8aa00 5518}
5cc389bc 5519#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5520
1da177e4 5521#ifdef CONFIG_HOTPLUG_CPU
054b9108 5522/*
d1ccc66d 5523 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5524 * offline.
054b9108 5525 */
48c5ccae 5526void idle_task_exit(void)
1da177e4 5527{
48c5ccae 5528 struct mm_struct *mm = current->active_mm;
e76bd8d9 5529
48c5ccae 5530 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5531
a53efe5f 5532 if (mm != &init_mm) {
252d2a41 5533 switch_mm(mm, &init_mm, current);
3eda69c9 5534 current->active_mm = &init_mm;
a53efe5f
MS
5535 finish_arch_post_lock_switch();
5536 }
48c5ccae 5537 mmdrop(mm);
1da177e4
LT
5538}
5539
5540/*
5d180232
PZ
5541 * Since this CPU is going 'away' for a while, fold any nr_active delta
5542 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5543 * nr_active count is stable. We need to take the teardown thread which
5544 * is calling this into account, so we hand in adjust = 1 to the load
5545 * calculation.
5d180232
PZ
5546 *
5547 * Also see the comment "Global load-average calculations".
1da177e4 5548 */
5d180232 5549static void calc_load_migrate(struct rq *rq)
1da177e4 5550{
d60585c5 5551 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5552 if (delta)
5553 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5554}
5555
3f1d2a31
PZ
5556static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5557{
5558}
5559
5560static const struct sched_class fake_sched_class = {
5561 .put_prev_task = put_prev_task_fake,
5562};
5563
5564static struct task_struct fake_task = {
5565 /*
5566 * Avoid pull_{rt,dl}_task()
5567 */
5568 .prio = MAX_PRIO + 1,
5569 .sched_class = &fake_sched_class,
5570};
5571
48f24c4d 5572/*
48c5ccae
PZ
5573 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5574 * try_to_wake_up()->select_task_rq().
5575 *
5576 * Called with rq->lock held even though we'er in stop_machine() and
5577 * there's no concurrency possible, we hold the required locks anyway
5578 * because of lock validation efforts.
1da177e4 5579 */
8a8c69c3 5580static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5581{
5e16bbc2 5582 struct rq *rq = dead_rq;
48c5ccae 5583 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5584 struct rq_flags orf = *rf;
48c5ccae 5585 int dest_cpu;
1da177e4
LT
5586
5587 /*
48c5ccae
PZ
5588 * Fudge the rq selection such that the below task selection loop
5589 * doesn't get stuck on the currently eligible stop task.
5590 *
5591 * We're currently inside stop_machine() and the rq is either stuck
5592 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5593 * either way we should never end up calling schedule() until we're
5594 * done here.
1da177e4 5595 */
48c5ccae 5596 rq->stop = NULL;
48f24c4d 5597
77bd3970
FW
5598 /*
5599 * put_prev_task() and pick_next_task() sched
5600 * class method both need to have an up-to-date
5601 * value of rq->clock[_task]
5602 */
5603 update_rq_clock(rq);
5604
5e16bbc2 5605 for (;;) {
48c5ccae
PZ
5606 /*
5607 * There's this thread running, bail when that's the only
d1ccc66d 5608 * remaining thread:
48c5ccae
PZ
5609 */
5610 if (rq->nr_running == 1)
dd41f596 5611 break;
48c5ccae 5612
cbce1a68 5613 /*
d1ccc66d 5614 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5615 */
8a8c69c3 5616 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5617 BUG_ON(!next);
5b713a3d 5618 put_prev_task(rq, next);
e692ab53 5619
5473e0cc
WL
5620 /*
5621 * Rules for changing task_struct::cpus_allowed are holding
5622 * both pi_lock and rq->lock, such that holding either
5623 * stabilizes the mask.
5624 *
5625 * Drop rq->lock is not quite as disastrous as it usually is
5626 * because !cpu_active at this point, which means load-balance
5627 * will not interfere. Also, stop-machine.
5628 */
8a8c69c3 5629 rq_unlock(rq, rf);
5473e0cc 5630 raw_spin_lock(&next->pi_lock);
8a8c69c3 5631 rq_relock(rq, rf);
5473e0cc
WL
5632
5633 /*
5634 * Since we're inside stop-machine, _nothing_ should have
5635 * changed the task, WARN if weird stuff happened, because in
5636 * that case the above rq->lock drop is a fail too.
5637 */
5638 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5639 raw_spin_unlock(&next->pi_lock);
5640 continue;
5641 }
5642
48c5ccae 5643 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5644 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5645 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5646 if (rq != dead_rq) {
8a8c69c3 5647 rq_unlock(rq, rf);
5e16bbc2 5648 rq = dead_rq;
8a8c69c3
PZ
5649 *rf = orf;
5650 rq_relock(rq, rf);
5e16bbc2 5651 }
5473e0cc 5652 raw_spin_unlock(&next->pi_lock);
1da177e4 5653 }
dce48a84 5654
48c5ccae 5655 rq->stop = stop;
dce48a84 5656}
1da177e4
LT
5657#endif /* CONFIG_HOTPLUG_CPU */
5658
f2cb1360 5659void set_rq_online(struct rq *rq)
1f11eb6a
GH
5660{
5661 if (!rq->online) {
5662 const struct sched_class *class;
5663
c6c4927b 5664 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5665 rq->online = 1;
5666
5667 for_each_class(class) {
5668 if (class->rq_online)
5669 class->rq_online(rq);
5670 }
5671 }
5672}
5673
f2cb1360 5674void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5675{
5676 if (rq->online) {
5677 const struct sched_class *class;
5678
5679 for_each_class(class) {
5680 if (class->rq_offline)
5681 class->rq_offline(rq);
5682 }
5683
c6c4927b 5684 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5685 rq->online = 0;
5686 }
5687}
5688
d1ccc66d
IM
5689/*
5690 * used to mark begin/end of suspend/resume:
5691 */
5692static int num_cpus_frozen;
d35be8ba 5693
1da177e4 5694/*
3a101d05
TH
5695 * Update cpusets according to cpu_active mask. If cpusets are
5696 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5697 * around partition_sched_domains().
d35be8ba
SB
5698 *
5699 * If we come here as part of a suspend/resume, don't touch cpusets because we
5700 * want to restore it back to its original state upon resume anyway.
1da177e4 5701 */
40190a78 5702static void cpuset_cpu_active(void)
e761b772 5703{
40190a78 5704 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5705 /*
5706 * num_cpus_frozen tracks how many CPUs are involved in suspend
5707 * resume sequence. As long as this is not the last online
5708 * operation in the resume sequence, just build a single sched
5709 * domain, ignoring cpusets.
5710 */
50e76632
PZ
5711 partition_sched_domains(1, NULL, NULL);
5712 if (--num_cpus_frozen)
135fb3e1 5713 return;
d35be8ba
SB
5714 /*
5715 * This is the last CPU online operation. So fall through and
5716 * restore the original sched domains by considering the
5717 * cpuset configurations.
5718 */
50e76632 5719 cpuset_force_rebuild();
3a101d05 5720 }
30e03acd 5721 cpuset_update_active_cpus();
3a101d05 5722}
e761b772 5723
40190a78 5724static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5725{
40190a78 5726 if (!cpuhp_tasks_frozen) {
06a76fe0 5727 if (dl_cpu_busy(cpu))
135fb3e1 5728 return -EBUSY;
30e03acd 5729 cpuset_update_active_cpus();
135fb3e1 5730 } else {
d35be8ba
SB
5731 num_cpus_frozen++;
5732 partition_sched_domains(1, NULL, NULL);
e761b772 5733 }
135fb3e1 5734 return 0;
e761b772 5735}
e761b772 5736
40190a78 5737int sched_cpu_activate(unsigned int cpu)
135fb3e1 5738{
7d976699 5739 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5740 struct rq_flags rf;
7d976699 5741
ba2591a5
PZ
5742#ifdef CONFIG_SCHED_SMT
5743 /*
5744 * The sched_smt_present static key needs to be evaluated on every
5745 * hotplug event because at boot time SMT might be disabled when
5746 * the number of booted CPUs is limited.
5747 *
5748 * If then later a sibling gets hotplugged, then the key would stay
5749 * off and SMT scheduling would never be functional.
5750 */
5751 if (cpumask_weight(cpu_smt_mask(cpu)) > 1)
5752 static_branch_enable_cpuslocked(&sched_smt_present);
5753#endif
40190a78 5754 set_cpu_active(cpu, true);
135fb3e1 5755
40190a78 5756 if (sched_smp_initialized) {
135fb3e1 5757 sched_domains_numa_masks_set(cpu);
40190a78 5758 cpuset_cpu_active();
e761b772 5759 }
7d976699
TG
5760
5761 /*
5762 * Put the rq online, if not already. This happens:
5763 *
5764 * 1) In the early boot process, because we build the real domains
d1ccc66d 5765 * after all CPUs have been brought up.
7d976699
TG
5766 *
5767 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5768 * domains.
5769 */
8a8c69c3 5770 rq_lock_irqsave(rq, &rf);
7d976699
TG
5771 if (rq->rd) {
5772 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5773 set_rq_online(rq);
5774 }
8a8c69c3 5775 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5776
5777 update_max_interval();
5778
40190a78 5779 return 0;
135fb3e1
TG
5780}
5781
40190a78 5782int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5783{
135fb3e1
TG
5784 int ret;
5785
40190a78 5786 set_cpu_active(cpu, false);
b2454caa
PZ
5787 /*
5788 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5789 * users of this state to go away such that all new such users will
5790 * observe it.
5791 *
b2454caa
PZ
5792 * Do sync before park smpboot threads to take care the rcu boost case.
5793 */
d7d34d5e 5794 synchronize_rcu_mult(call_rcu, call_rcu_sched);
40190a78
TG
5795
5796 if (!sched_smp_initialized)
5797 return 0;
5798
5799 ret = cpuset_cpu_inactive(cpu);
5800 if (ret) {
5801 set_cpu_active(cpu, true);
5802 return ret;
135fb3e1 5803 }
40190a78
TG
5804 sched_domains_numa_masks_clear(cpu);
5805 return 0;
135fb3e1
TG
5806}
5807
94baf7a5
TG
5808static void sched_rq_cpu_starting(unsigned int cpu)
5809{
5810 struct rq *rq = cpu_rq(cpu);
5811
5812 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5813 update_max_interval();
5814}
5815
135fb3e1
TG
5816int sched_cpu_starting(unsigned int cpu)
5817{
94baf7a5 5818 sched_rq_cpu_starting(cpu);
d84b3131 5819 sched_tick_start(cpu);
135fb3e1 5820 return 0;
e761b772 5821}
e761b772 5822
f2785ddb
TG
5823#ifdef CONFIG_HOTPLUG_CPU
5824int sched_cpu_dying(unsigned int cpu)
5825{
5826 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5827 struct rq_flags rf;
f2785ddb
TG
5828
5829 /* Handle pending wakeups and then migrate everything off */
5830 sched_ttwu_pending();
d84b3131 5831 sched_tick_stop(cpu);
8a8c69c3
PZ
5832
5833 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5834 if (rq->rd) {
5835 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5836 set_rq_offline(rq);
5837 }
8a8c69c3 5838 migrate_tasks(rq, &rf);
f2785ddb 5839 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5840 rq_unlock_irqrestore(rq, &rf);
5841
f2785ddb
TG
5842 calc_load_migrate(rq);
5843 update_max_interval();
00357f5e 5844 nohz_balance_exit_idle(rq);
e5ef27d0 5845 hrtick_clear(rq);
f2785ddb
TG
5846 return 0;
5847}
5848#endif
5849
1da177e4
LT
5850void __init sched_init_smp(void)
5851{
cb83b629
PZ
5852 sched_init_numa();
5853
6acce3ef
PZ
5854 /*
5855 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5856 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5857 * happen.
5858 */
712555ee 5859 mutex_lock(&sched_domains_mutex);
8d5dc512 5860 sched_init_domains(cpu_active_mask);
712555ee 5861 mutex_unlock(&sched_domains_mutex);
e761b772 5862
5c1e1767 5863 /* Move init over to a non-isolated CPU */
edb93821 5864 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5865 BUG();
19978ca6 5866 sched_init_granularity();
4212823f 5867
0e3900e6 5868 init_sched_rt_class();
1baca4ce 5869 init_sched_dl_class();
1b568f0a 5870
e26fbffd 5871 sched_smp_initialized = true;
1da177e4 5872}
e26fbffd
TG
5873
5874static int __init migration_init(void)
5875{
94baf7a5 5876 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5877 return 0;
1da177e4 5878}
e26fbffd
TG
5879early_initcall(migration_init);
5880
1da177e4
LT
5881#else
5882void __init sched_init_smp(void)
5883{
19978ca6 5884 sched_init_granularity();
1da177e4
LT
5885}
5886#endif /* CONFIG_SMP */
5887
5888int in_sched_functions(unsigned long addr)
5889{
1da177e4
LT
5890 return in_lock_functions(addr) ||
5891 (addr >= (unsigned long)__sched_text_start
5892 && addr < (unsigned long)__sched_text_end);
5893}
5894
029632fb 5895#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5896/*
5897 * Default task group.
5898 * Every task in system belongs to this group at bootup.
5899 */
029632fb 5900struct task_group root_task_group;
35cf4e50 5901LIST_HEAD(task_groups);
b0367629
WL
5902
5903/* Cacheline aligned slab cache for task_group */
5904static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5905#endif
6f505b16 5906
e6252c3e 5907DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5908DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5909
1da177e4
LT
5910void __init sched_init(void)
5911{
dd41f596 5912 int i, j;
434d53b0
MT
5913 unsigned long alloc_size = 0, ptr;
5914
5822a454 5915 wait_bit_init();
9dcb8b68 5916
434d53b0
MT
5917#ifdef CONFIG_FAIR_GROUP_SCHED
5918 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5919#endif
5920#ifdef CONFIG_RT_GROUP_SCHED
5921 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5922#endif
434d53b0 5923 if (alloc_size) {
36b7b6d4 5924 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5925
5926#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5927 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5928 ptr += nr_cpu_ids * sizeof(void **);
5929
07e06b01 5930 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5931 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5932
6d6bc0ad 5933#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5934#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5935 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5936 ptr += nr_cpu_ids * sizeof(void **);
5937
07e06b01 5938 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5939 ptr += nr_cpu_ids * sizeof(void **);
5940
6d6bc0ad 5941#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5942 }
df7c8e84 5943#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5944 for_each_possible_cpu(i) {
5945 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5946 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5947 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5948 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 5949 }
b74e6278 5950#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 5951
d1ccc66d
IM
5952 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5953 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 5954
57d885fe
GH
5955#ifdef CONFIG_SMP
5956 init_defrootdomain();
5957#endif
5958
d0b27fa7 5959#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5960 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 5961 global_rt_period(), global_rt_runtime());
6d6bc0ad 5962#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 5963
7c941438 5964#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
5965 task_group_cache = KMEM_CACHE(task_group, 0);
5966
07e06b01
YZ
5967 list_add(&root_task_group.list, &task_groups);
5968 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 5969 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 5970 autogroup_init(&init_task);
7c941438 5971#endif /* CONFIG_CGROUP_SCHED */
6f505b16 5972
0a945022 5973 for_each_possible_cpu(i) {
70b97a7f 5974 struct rq *rq;
1da177e4
LT
5975
5976 rq = cpu_rq(i);
05fa785c 5977 raw_spin_lock_init(&rq->lock);
7897986b 5978 rq->nr_running = 0;
dce48a84
TG
5979 rq->calc_load_active = 0;
5980 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 5981 init_cfs_rq(&rq->cfs);
07c54f7a
AV
5982 init_rt_rq(&rq->rt);
5983 init_dl_rq(&rq->dl);
dd41f596 5984#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 5985 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 5986 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 5987 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 5988 /*
d1ccc66d 5989 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
5990 *
5991 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
5992 * gets 100% of the CPU resources in the system. This overall
5993 * system CPU resource is divided among the tasks of
07e06b01 5994 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
5995 * based on each entity's (task or task-group's) weight
5996 * (se->load.weight).
5997 *
07e06b01 5998 * In other words, if root_task_group has 10 tasks of weight
354d60c2 5999 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6000 * then A0's share of the CPU resource is:
354d60c2 6001 *
0d905bca 6002 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6003 *
07e06b01
YZ
6004 * We achieve this by letting root_task_group's tasks sit
6005 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6006 */
ab84d31e 6007 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6008 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6009#endif /* CONFIG_FAIR_GROUP_SCHED */
6010
6011 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6012#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6013 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6014#endif
1da177e4 6015
dd41f596
IM
6016 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6017 rq->cpu_load[j] = 0;
fdf3e95d 6018
1da177e4 6019#ifdef CONFIG_SMP
41c7ce9a 6020 rq->sd = NULL;
57d885fe 6021 rq->rd = NULL;
ca6d75e6 6022 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6023 rq->balance_callback = NULL;
1da177e4 6024 rq->active_balance = 0;
dd41f596 6025 rq->next_balance = jiffies;
1da177e4 6026 rq->push_cpu = 0;
0a2966b4 6027 rq->cpu = i;
1f11eb6a 6028 rq->online = 0;
eae0c9df
MG
6029 rq->idle_stamp = 0;
6030 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6031 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6032
6033 INIT_LIST_HEAD(&rq->cfs_tasks);
6034
dc938520 6035 rq_attach_root(rq, &def_root_domain);
3451d024 6036#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6037 rq->last_load_update_tick = jiffies;
e022e0d3 6038 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6039 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6040#endif
9fd81dd5 6041#endif /* CONFIG_SMP */
77a021be 6042 hrtick_rq_init(rq);
1da177e4 6043 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6044 }
6045
9059393e 6046 set_load_weight(&init_task, false);
b50f60ce 6047
1da177e4
LT
6048 /*
6049 * The boot idle thread does lazy MMU switching as well:
6050 */
f1f10076 6051 mmgrab(&init_mm);
1da177e4
LT
6052 enter_lazy_tlb(&init_mm, current);
6053
6054 /*
6055 * Make us the idle thread. Technically, schedule() should not be
6056 * called from this thread, however somewhere below it might be,
6057 * but because we are the idle thread, we just pick up running again
6058 * when this runqueue becomes "idle".
6059 */
6060 init_idle(current, smp_processor_id());
dce48a84
TG
6061
6062 calc_load_update = jiffies + LOAD_FREQ;
6063
bf4d83f6 6064#ifdef CONFIG_SMP
29d5e047 6065 idle_thread_set_boot_cpu();
029632fb
PZ
6066#endif
6067 init_sched_fair_class();
6a7b3dc3 6068
4698f88c
JP
6069 init_schedstats();
6070
6892b75e 6071 scheduler_running = 1;
1da177e4
LT
6072}
6073
d902db1e 6074#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6075static inline int preempt_count_equals(int preempt_offset)
6076{
da7142e2 6077 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6078
4ba8216c 6079 return (nested == preempt_offset);
e4aafea2
FW
6080}
6081
d894837f 6082void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6083{
8eb23b9f
PZ
6084 /*
6085 * Blocking primitives will set (and therefore destroy) current->state,
6086 * since we will exit with TASK_RUNNING make sure we enter with it,
6087 * otherwise we will destroy state.
6088 */
00845eb9 6089 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6090 "do not call blocking ops when !TASK_RUNNING; "
6091 "state=%lx set at [<%p>] %pS\n",
6092 current->state,
6093 (void *)current->task_state_change,
00845eb9 6094 (void *)current->task_state_change);
8eb23b9f 6095
3427445a
PZ
6096 ___might_sleep(file, line, preempt_offset);
6097}
6098EXPORT_SYMBOL(__might_sleep);
6099
6100void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6101{
d1ccc66d
IM
6102 /* Ratelimiting timestamp: */
6103 static unsigned long prev_jiffy;
6104
d1c6d149 6105 unsigned long preempt_disable_ip;
1da177e4 6106
d1ccc66d
IM
6107 /* WARN_ON_ONCE() by default, no rate limit required: */
6108 rcu_sleep_check();
6109
db273be2
TG
6110 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6111 !is_idle_task(current)) ||
1c3c5eab
TG
6112 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6113 oops_in_progress)
aef745fc 6114 return;
1c3c5eab 6115
aef745fc
IM
6116 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6117 return;
6118 prev_jiffy = jiffies;
6119
d1ccc66d 6120 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6121 preempt_disable_ip = get_preempt_disable_ip(current);
6122
3df0fc5b
PZ
6123 printk(KERN_ERR
6124 "BUG: sleeping function called from invalid context at %s:%d\n",
6125 file, line);
6126 printk(KERN_ERR
6127 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6128 in_atomic(), irqs_disabled(),
6129 current->pid, current->comm);
aef745fc 6130
a8b686b3
ES
6131 if (task_stack_end_corrupted(current))
6132 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6133
aef745fc
IM
6134 debug_show_held_locks(current);
6135 if (irqs_disabled())
6136 print_irqtrace_events(current);
d1c6d149
VN
6137 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6138 && !preempt_count_equals(preempt_offset)) {
8f47b187 6139 pr_err("Preemption disabled at:");
d1c6d149 6140 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6141 pr_cont("\n");
6142 }
aef745fc 6143 dump_stack();
f0b22e39 6144 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6145}
3427445a 6146EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6147#endif
6148
6149#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6150void normalize_rt_tasks(void)
3a5e4dc1 6151{
dbc7f069 6152 struct task_struct *g, *p;
d50dde5a
DF
6153 struct sched_attr attr = {
6154 .sched_policy = SCHED_NORMAL,
6155 };
1da177e4 6156
3472eaa1 6157 read_lock(&tasklist_lock);
5d07f420 6158 for_each_process_thread(g, p) {
178be793
IM
6159 /*
6160 * Only normalize user tasks:
6161 */
3472eaa1 6162 if (p->flags & PF_KTHREAD)
178be793
IM
6163 continue;
6164
4fa8d299
JP
6165 p->se.exec_start = 0;
6166 schedstat_set(p->se.statistics.wait_start, 0);
6167 schedstat_set(p->se.statistics.sleep_start, 0);
6168 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6169
aab03e05 6170 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6171 /*
6172 * Renice negative nice level userspace
6173 * tasks back to 0:
6174 */
3472eaa1 6175 if (task_nice(p) < 0)
dd41f596 6176 set_user_nice(p, 0);
1da177e4 6177 continue;
dd41f596 6178 }
1da177e4 6179
dbc7f069 6180 __sched_setscheduler(p, &attr, false, false);
5d07f420 6181 }
3472eaa1 6182 read_unlock(&tasklist_lock);
1da177e4
LT
6183}
6184
6185#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6186
67fc4e0c 6187#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6188/*
67fc4e0c 6189 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6190 *
6191 * They can only be called when the whole system has been
6192 * stopped - every CPU needs to be quiescent, and no scheduling
6193 * activity can take place. Using them for anything else would
6194 * be a serious bug, and as a result, they aren't even visible
6195 * under any other configuration.
6196 */
6197
6198/**
d1ccc66d 6199 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6200 * @cpu: the processor in question.
6201 *
6202 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6203 *
6204 * Return: The current task for @cpu.
1df5c10a 6205 */
36c8b586 6206struct task_struct *curr_task(int cpu)
1df5c10a
LT
6207{
6208 return cpu_curr(cpu);
6209}
6210
67fc4e0c
JW
6211#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6212
6213#ifdef CONFIG_IA64
1df5c10a 6214/**
d1ccc66d 6215 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6216 * @cpu: the processor in question.
6217 * @p: the task pointer to set.
6218 *
6219 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6220 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6221 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6222 * must be called with all CPU's synchronized, and interrupts disabled, the
6223 * and caller must save the original value of the current task (see
6224 * curr_task() above) and restore that value before reenabling interrupts and
6225 * re-starting the system.
6226 *
6227 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6228 */
a458ae2e 6229void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6230{
6231 cpu_curr(cpu) = p;
6232}
6233
6234#endif
29f59db3 6235
7c941438 6236#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6237/* task_group_lock serializes the addition/removal of task groups */
6238static DEFINE_SPINLOCK(task_group_lock);
6239
2f5177f0 6240static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6241{
6242 free_fair_sched_group(tg);
6243 free_rt_sched_group(tg);
e9aa1dd1 6244 autogroup_free(tg);
b0367629 6245 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6246}
6247
6248/* allocate runqueue etc for a new task group */
ec7dc8ac 6249struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6250{
6251 struct task_group *tg;
bccbe08a 6252
b0367629 6253 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6254 if (!tg)
6255 return ERR_PTR(-ENOMEM);
6256
ec7dc8ac 6257 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6258 goto err;
6259
ec7dc8ac 6260 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6261 goto err;
6262
ace783b9
LZ
6263 return tg;
6264
6265err:
2f5177f0 6266 sched_free_group(tg);
ace783b9
LZ
6267 return ERR_PTR(-ENOMEM);
6268}
6269
6270void sched_online_group(struct task_group *tg, struct task_group *parent)
6271{
6272 unsigned long flags;
6273
8ed36996 6274 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6275 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6276
d1ccc66d
IM
6277 /* Root should already exist: */
6278 WARN_ON(!parent);
f473aa5e
PZ
6279
6280 tg->parent = parent;
f473aa5e 6281 INIT_LIST_HEAD(&tg->children);
09f2724a 6282 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6283 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6284
6285 online_fair_sched_group(tg);
29f59db3
SV
6286}
6287
9b5b7751 6288/* rcu callback to free various structures associated with a task group */
2f5177f0 6289static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6290{
d1ccc66d 6291 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6292 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6293}
6294
4cf86d77 6295void sched_destroy_group(struct task_group *tg)
ace783b9 6296{
d1ccc66d 6297 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6298 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6299}
6300
6301void sched_offline_group(struct task_group *tg)
29f59db3 6302{
8ed36996 6303 unsigned long flags;
29f59db3 6304
d1ccc66d 6305 /* End participation in shares distribution: */
6fe1f348 6306 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6307
6308 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6309 list_del_rcu(&tg->list);
f473aa5e 6310 list_del_rcu(&tg->siblings);
8ed36996 6311 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6312}
6313
ea86cb4b 6314static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6315{
8323f26c 6316 struct task_group *tg;
29f59db3 6317
f7b8a47d
KT
6318 /*
6319 * All callers are synchronized by task_rq_lock(); we do not use RCU
6320 * which is pointless here. Thus, we pass "true" to task_css_check()
6321 * to prevent lockdep warnings.
6322 */
6323 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6324 struct task_group, css);
6325 tg = autogroup_task_group(tsk, tg);
6326 tsk->sched_task_group = tg;
6327
810b3817 6328#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6329 if (tsk->sched_class->task_change_group)
6330 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6331 else
810b3817 6332#endif
b2b5ce02 6333 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6334}
6335
6336/*
6337 * Change task's runqueue when it moves between groups.
6338 *
6339 * The caller of this function should have put the task in its new group by
6340 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6341 * its new group.
6342 */
6343void sched_move_task(struct task_struct *tsk)
6344{
7a57f32a
PZ
6345 int queued, running, queue_flags =
6346 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6347 struct rq_flags rf;
6348 struct rq *rq;
6349
6350 rq = task_rq_lock(tsk, &rf);
1b1d6225 6351 update_rq_clock(rq);
ea86cb4b
VG
6352
6353 running = task_current(rq, tsk);
6354 queued = task_on_rq_queued(tsk);
6355
6356 if (queued)
7a57f32a 6357 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6358 if (running)
ea86cb4b
VG
6359 put_prev_task(rq, tsk);
6360
6361 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6362
da0c1e65 6363 if (queued)
7a57f32a 6364 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6365 if (running)
b2bf6c31 6366 set_curr_task(rq, tsk);
29f59db3 6367
eb580751 6368 task_rq_unlock(rq, tsk, &rf);
29f59db3 6369}
68318b8e 6370
a7c6d554 6371static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6372{
a7c6d554 6373 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6374}
6375
eb95419b
TH
6376static struct cgroup_subsys_state *
6377cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6378{
eb95419b
TH
6379 struct task_group *parent = css_tg(parent_css);
6380 struct task_group *tg;
68318b8e 6381
eb95419b 6382 if (!parent) {
68318b8e 6383 /* This is early initialization for the top cgroup */
07e06b01 6384 return &root_task_group.css;
68318b8e
SV
6385 }
6386
ec7dc8ac 6387 tg = sched_create_group(parent);
68318b8e
SV
6388 if (IS_ERR(tg))
6389 return ERR_PTR(-ENOMEM);
6390
68318b8e
SV
6391 return &tg->css;
6392}
6393
96b77745
KK
6394/* Expose task group only after completing cgroup initialization */
6395static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6396{
6397 struct task_group *tg = css_tg(css);
6398 struct task_group *parent = css_tg(css->parent);
6399
6400 if (parent)
6401 sched_online_group(tg, parent);
6402 return 0;
6403}
6404
2f5177f0 6405static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6406{
eb95419b 6407 struct task_group *tg = css_tg(css);
ace783b9 6408
2f5177f0 6409 sched_offline_group(tg);
ace783b9
LZ
6410}
6411
eb95419b 6412static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6413{
eb95419b 6414 struct task_group *tg = css_tg(css);
68318b8e 6415
2f5177f0
PZ
6416 /*
6417 * Relies on the RCU grace period between css_released() and this.
6418 */
6419 sched_free_group(tg);
ace783b9
LZ
6420}
6421
ea86cb4b
VG
6422/*
6423 * This is called before wake_up_new_task(), therefore we really only
6424 * have to set its group bits, all the other stuff does not apply.
6425 */
b53202e6 6426static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6427{
ea86cb4b
VG
6428 struct rq_flags rf;
6429 struct rq *rq;
6430
6431 rq = task_rq_lock(task, &rf);
6432
80f5c1b8 6433 update_rq_clock(rq);
ea86cb4b
VG
6434 sched_change_group(task, TASK_SET_GROUP);
6435
6436 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6437}
6438
1f7dd3e5 6439static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6440{
bb9d97b6 6441 struct task_struct *task;
1f7dd3e5 6442 struct cgroup_subsys_state *css;
7dc603c9 6443 int ret = 0;
bb9d97b6 6444
1f7dd3e5 6445 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6446#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6447 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6448 return -EINVAL;
b68aa230 6449#else
bb9d97b6
TH
6450 /* We don't support RT-tasks being in separate groups */
6451 if (task->sched_class != &fair_sched_class)
6452 return -EINVAL;
b68aa230 6453#endif
7dc603c9
PZ
6454 /*
6455 * Serialize against wake_up_new_task() such that if its
6456 * running, we're sure to observe its full state.
6457 */
6458 raw_spin_lock_irq(&task->pi_lock);
6459 /*
6460 * Avoid calling sched_move_task() before wake_up_new_task()
6461 * has happened. This would lead to problems with PELT, due to
6462 * move wanting to detach+attach while we're not attached yet.
6463 */
6464 if (task->state == TASK_NEW)
6465 ret = -EINVAL;
6466 raw_spin_unlock_irq(&task->pi_lock);
6467
6468 if (ret)
6469 break;
bb9d97b6 6470 }
7dc603c9 6471 return ret;
be367d09 6472}
68318b8e 6473
1f7dd3e5 6474static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6475{
bb9d97b6 6476 struct task_struct *task;
1f7dd3e5 6477 struct cgroup_subsys_state *css;
bb9d97b6 6478
1f7dd3e5 6479 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6480 sched_move_task(task);
68318b8e
SV
6481}
6482
052f1dc7 6483#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6484static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6485 struct cftype *cftype, u64 shareval)
68318b8e 6486{
182446d0 6487 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6488}
6489
182446d0
TH
6490static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6491 struct cftype *cft)
68318b8e 6492{
182446d0 6493 struct task_group *tg = css_tg(css);
68318b8e 6494
c8b28116 6495 return (u64) scale_load_down(tg->shares);
68318b8e 6496}
ab84d31e
PT
6497
6498#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6499static DEFINE_MUTEX(cfs_constraints_mutex);
6500
ab84d31e
PT
6501const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6502const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6503
a790de99
PT
6504static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6505
ab84d31e
PT
6506static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6507{
56f570e5 6508 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6509 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6510
6511 if (tg == &root_task_group)
6512 return -EINVAL;
6513
6514 /*
6515 * Ensure we have at some amount of bandwidth every period. This is
6516 * to prevent reaching a state of large arrears when throttled via
6517 * entity_tick() resulting in prolonged exit starvation.
6518 */
6519 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6520 return -EINVAL;
6521
6522 /*
6523 * Likewise, bound things on the otherside by preventing insane quota
6524 * periods. This also allows us to normalize in computing quota
6525 * feasibility.
6526 */
6527 if (period > max_cfs_quota_period)
6528 return -EINVAL;
6529
0e59bdae
KT
6530 /*
6531 * Prevent race between setting of cfs_rq->runtime_enabled and
6532 * unthrottle_offline_cfs_rqs().
6533 */
6534 get_online_cpus();
a790de99
PT
6535 mutex_lock(&cfs_constraints_mutex);
6536 ret = __cfs_schedulable(tg, period, quota);
6537 if (ret)
6538 goto out_unlock;
6539
58088ad0 6540 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6541 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6542 /*
6543 * If we need to toggle cfs_bandwidth_used, off->on must occur
6544 * before making related changes, and on->off must occur afterwards
6545 */
6546 if (runtime_enabled && !runtime_was_enabled)
6547 cfs_bandwidth_usage_inc();
ab84d31e
PT
6548 raw_spin_lock_irq(&cfs_b->lock);
6549 cfs_b->period = ns_to_ktime(period);
6550 cfs_b->quota = quota;
58088ad0 6551
a9cf55b2 6552 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6553
6554 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6555 if (runtime_enabled)
6556 start_cfs_bandwidth(cfs_b);
d1ccc66d 6557
ab84d31e
PT
6558 raw_spin_unlock_irq(&cfs_b->lock);
6559
0e59bdae 6560 for_each_online_cpu(i) {
ab84d31e 6561 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6562 struct rq *rq = cfs_rq->rq;
8a8c69c3 6563 struct rq_flags rf;
ab84d31e 6564
8a8c69c3 6565 rq_lock_irq(rq, &rf);
58088ad0 6566 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6567 cfs_rq->runtime_remaining = 0;
671fd9da 6568
029632fb 6569 if (cfs_rq->throttled)
671fd9da 6570 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6571 rq_unlock_irq(rq, &rf);
ab84d31e 6572 }
1ee14e6c
BS
6573 if (runtime_was_enabled && !runtime_enabled)
6574 cfs_bandwidth_usage_dec();
a790de99
PT
6575out_unlock:
6576 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6577 put_online_cpus();
ab84d31e 6578
a790de99 6579 return ret;
ab84d31e
PT
6580}
6581
6582int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6583{
6584 u64 quota, period;
6585
029632fb 6586 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6587 if (cfs_quota_us < 0)
6588 quota = RUNTIME_INF;
6589 else
6590 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6591
6592 return tg_set_cfs_bandwidth(tg, period, quota);
6593}
6594
6595long tg_get_cfs_quota(struct task_group *tg)
6596{
6597 u64 quota_us;
6598
029632fb 6599 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6600 return -1;
6601
029632fb 6602 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6603 do_div(quota_us, NSEC_PER_USEC);
6604
6605 return quota_us;
6606}
6607
6608int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6609{
6610 u64 quota, period;
6611
6612 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6613 quota = tg->cfs_bandwidth.quota;
ab84d31e 6614
ab84d31e
PT
6615 return tg_set_cfs_bandwidth(tg, period, quota);
6616}
6617
6618long tg_get_cfs_period(struct task_group *tg)
6619{
6620 u64 cfs_period_us;
6621
029632fb 6622 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6623 do_div(cfs_period_us, NSEC_PER_USEC);
6624
6625 return cfs_period_us;
6626}
6627
182446d0
TH
6628static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6629 struct cftype *cft)
ab84d31e 6630{
182446d0 6631 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6632}
6633
182446d0
TH
6634static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6635 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6636{
182446d0 6637 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6638}
6639
182446d0
TH
6640static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6641 struct cftype *cft)
ab84d31e 6642{
182446d0 6643 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6644}
6645
182446d0
TH
6646static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6647 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6648{
182446d0 6649 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6650}
6651
a790de99
PT
6652struct cfs_schedulable_data {
6653 struct task_group *tg;
6654 u64 period, quota;
6655};
6656
6657/*
6658 * normalize group quota/period to be quota/max_period
6659 * note: units are usecs
6660 */
6661static u64 normalize_cfs_quota(struct task_group *tg,
6662 struct cfs_schedulable_data *d)
6663{
6664 u64 quota, period;
6665
6666 if (tg == d->tg) {
6667 period = d->period;
6668 quota = d->quota;
6669 } else {
6670 period = tg_get_cfs_period(tg);
6671 quota = tg_get_cfs_quota(tg);
6672 }
6673
6674 /* note: these should typically be equivalent */
6675 if (quota == RUNTIME_INF || quota == -1)
6676 return RUNTIME_INF;
6677
6678 return to_ratio(period, quota);
6679}
6680
6681static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6682{
6683 struct cfs_schedulable_data *d = data;
029632fb 6684 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6685 s64 quota = 0, parent_quota = -1;
6686
6687 if (!tg->parent) {
6688 quota = RUNTIME_INF;
6689 } else {
029632fb 6690 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6691
6692 quota = normalize_cfs_quota(tg, d);
9c58c79a 6693 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6694
6695 /*
c53593e5
TH
6696 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6697 * always take the min. On cgroup1, only inherit when no
d1ccc66d 6698 * limit is set:
a790de99 6699 */
c53593e5
TH
6700 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6701 quota = min(quota, parent_quota);
6702 } else {
6703 if (quota == RUNTIME_INF)
6704 quota = parent_quota;
6705 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6706 return -EINVAL;
6707 }
a790de99 6708 }
9c58c79a 6709 cfs_b->hierarchical_quota = quota;
a790de99
PT
6710
6711 return 0;
6712}
6713
6714static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6715{
8277434e 6716 int ret;
a790de99
PT
6717 struct cfs_schedulable_data data = {
6718 .tg = tg,
6719 .period = period,
6720 .quota = quota,
6721 };
6722
6723 if (quota != RUNTIME_INF) {
6724 do_div(data.period, NSEC_PER_USEC);
6725 do_div(data.quota, NSEC_PER_USEC);
6726 }
6727
8277434e
PT
6728 rcu_read_lock();
6729 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6730 rcu_read_unlock();
6731
6732 return ret;
a790de99 6733}
e8da1b18 6734
a1f7164c 6735static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6736{
2da8ca82 6737 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6738 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6739
44ffc75b
TH
6740 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6741 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6742 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 6743
3d6c50c2
YW
6744 if (schedstat_enabled() && tg != &root_task_group) {
6745 u64 ws = 0;
6746 int i;
6747
6748 for_each_possible_cpu(i)
6749 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6750
6751 seq_printf(sf, "wait_sum %llu\n", ws);
6752 }
6753
e8da1b18
NR
6754 return 0;
6755}
ab84d31e 6756#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6757#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6758
052f1dc7 6759#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6760static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6761 struct cftype *cft, s64 val)
6f505b16 6762{
182446d0 6763 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6764}
6765
182446d0
TH
6766static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6767 struct cftype *cft)
6f505b16 6768{
182446d0 6769 return sched_group_rt_runtime(css_tg(css));
6f505b16 6770}
d0b27fa7 6771
182446d0
TH
6772static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6773 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6774{
182446d0 6775 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6776}
6777
182446d0
TH
6778static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6779 struct cftype *cft)
d0b27fa7 6780{
182446d0 6781 return sched_group_rt_period(css_tg(css));
d0b27fa7 6782}
6d6bc0ad 6783#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6784
a1f7164c 6785static struct cftype cpu_legacy_files[] = {
052f1dc7 6786#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6787 {
6788 .name = "shares",
f4c753b7
PM
6789 .read_u64 = cpu_shares_read_u64,
6790 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6791 },
052f1dc7 6792#endif
ab84d31e
PT
6793#ifdef CONFIG_CFS_BANDWIDTH
6794 {
6795 .name = "cfs_quota_us",
6796 .read_s64 = cpu_cfs_quota_read_s64,
6797 .write_s64 = cpu_cfs_quota_write_s64,
6798 },
6799 {
6800 .name = "cfs_period_us",
6801 .read_u64 = cpu_cfs_period_read_u64,
6802 .write_u64 = cpu_cfs_period_write_u64,
6803 },
e8da1b18
NR
6804 {
6805 .name = "stat",
a1f7164c 6806 .seq_show = cpu_cfs_stat_show,
e8da1b18 6807 },
ab84d31e 6808#endif
052f1dc7 6809#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6810 {
9f0c1e56 6811 .name = "rt_runtime_us",
06ecb27c
PM
6812 .read_s64 = cpu_rt_runtime_read,
6813 .write_s64 = cpu_rt_runtime_write,
6f505b16 6814 },
d0b27fa7
PZ
6815 {
6816 .name = "rt_period_us",
f4c753b7
PM
6817 .read_u64 = cpu_rt_period_read_uint,
6818 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6819 },
052f1dc7 6820#endif
d1ccc66d 6821 { } /* Terminate */
68318b8e
SV
6822};
6823
d41bf8c9
TH
6824static int cpu_extra_stat_show(struct seq_file *sf,
6825 struct cgroup_subsys_state *css)
0d593634 6826{
0d593634
TH
6827#ifdef CONFIG_CFS_BANDWIDTH
6828 {
d41bf8c9 6829 struct task_group *tg = css_tg(css);
0d593634
TH
6830 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6831 u64 throttled_usec;
6832
6833 throttled_usec = cfs_b->throttled_time;
6834 do_div(throttled_usec, NSEC_PER_USEC);
6835
6836 seq_printf(sf, "nr_periods %d\n"
6837 "nr_throttled %d\n"
6838 "throttled_usec %llu\n",
6839 cfs_b->nr_periods, cfs_b->nr_throttled,
6840 throttled_usec);
6841 }
6842#endif
6843 return 0;
6844}
6845
6846#ifdef CONFIG_FAIR_GROUP_SCHED
6847static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6848 struct cftype *cft)
6849{
6850 struct task_group *tg = css_tg(css);
6851 u64 weight = scale_load_down(tg->shares);
6852
6853 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6854}
6855
6856static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6857 struct cftype *cft, u64 weight)
6858{
6859 /*
6860 * cgroup weight knobs should use the common MIN, DFL and MAX
6861 * values which are 1, 100 and 10000 respectively. While it loses
6862 * a bit of range on both ends, it maps pretty well onto the shares
6863 * value used by scheduler and the round-trip conversions preserve
6864 * the original value over the entire range.
6865 */
6866 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6867 return -ERANGE;
6868
6869 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6870
6871 return sched_group_set_shares(css_tg(css), scale_load(weight));
6872}
6873
6874static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6875 struct cftype *cft)
6876{
6877 unsigned long weight = scale_load_down(css_tg(css)->shares);
6878 int last_delta = INT_MAX;
6879 int prio, delta;
6880
6881 /* find the closest nice value to the current weight */
6882 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6883 delta = abs(sched_prio_to_weight[prio] - weight);
6884 if (delta >= last_delta)
6885 break;
6886 last_delta = delta;
6887 }
6888
6889 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6890}
6891
6892static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6893 struct cftype *cft, s64 nice)
6894{
6895 unsigned long weight;
7281c8de 6896 int idx;
0d593634
TH
6897
6898 if (nice < MIN_NICE || nice > MAX_NICE)
6899 return -ERANGE;
6900
7281c8de
PZ
6901 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6902 idx = array_index_nospec(idx, 40);
6903 weight = sched_prio_to_weight[idx];
6904
0d593634
TH
6905 return sched_group_set_shares(css_tg(css), scale_load(weight));
6906}
6907#endif
6908
6909static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6910 long period, long quota)
6911{
6912 if (quota < 0)
6913 seq_puts(sf, "max");
6914 else
6915 seq_printf(sf, "%ld", quota);
6916
6917 seq_printf(sf, " %ld\n", period);
6918}
6919
6920/* caller should put the current value in *@periodp before calling */
6921static int __maybe_unused cpu_period_quota_parse(char *buf,
6922 u64 *periodp, u64 *quotap)
6923{
6924 char tok[21]; /* U64_MAX */
6925
6926 if (!sscanf(buf, "%s %llu", tok, periodp))
6927 return -EINVAL;
6928
6929 *periodp *= NSEC_PER_USEC;
6930
6931 if (sscanf(tok, "%llu", quotap))
6932 *quotap *= NSEC_PER_USEC;
6933 else if (!strcmp(tok, "max"))
6934 *quotap = RUNTIME_INF;
6935 else
6936 return -EINVAL;
6937
6938 return 0;
6939}
6940
6941#ifdef CONFIG_CFS_BANDWIDTH
6942static int cpu_max_show(struct seq_file *sf, void *v)
6943{
6944 struct task_group *tg = css_tg(seq_css(sf));
6945
6946 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6947 return 0;
6948}
6949
6950static ssize_t cpu_max_write(struct kernfs_open_file *of,
6951 char *buf, size_t nbytes, loff_t off)
6952{
6953 struct task_group *tg = css_tg(of_css(of));
6954 u64 period = tg_get_cfs_period(tg);
6955 u64 quota;
6956 int ret;
6957
6958 ret = cpu_period_quota_parse(buf, &period, &quota);
6959 if (!ret)
6960 ret = tg_set_cfs_bandwidth(tg, period, quota);
6961 return ret ?: nbytes;
6962}
6963#endif
6964
6965static struct cftype cpu_files[] = {
0d593634
TH
6966#ifdef CONFIG_FAIR_GROUP_SCHED
6967 {
6968 .name = "weight",
6969 .flags = CFTYPE_NOT_ON_ROOT,
6970 .read_u64 = cpu_weight_read_u64,
6971 .write_u64 = cpu_weight_write_u64,
6972 },
6973 {
6974 .name = "weight.nice",
6975 .flags = CFTYPE_NOT_ON_ROOT,
6976 .read_s64 = cpu_weight_nice_read_s64,
6977 .write_s64 = cpu_weight_nice_write_s64,
6978 },
6979#endif
6980#ifdef CONFIG_CFS_BANDWIDTH
6981 {
6982 .name = "max",
6983 .flags = CFTYPE_NOT_ON_ROOT,
6984 .seq_show = cpu_max_show,
6985 .write = cpu_max_write,
6986 },
6987#endif
6988 { } /* terminate */
6989};
6990
073219e9 6991struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 6992 .css_alloc = cpu_cgroup_css_alloc,
96b77745 6993 .css_online = cpu_cgroup_css_online,
2f5177f0 6994 .css_released = cpu_cgroup_css_released,
92fb9748 6995 .css_free = cpu_cgroup_css_free,
d41bf8c9 6996 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 6997 .fork = cpu_cgroup_fork,
bb9d97b6
TH
6998 .can_attach = cpu_cgroup_can_attach,
6999 .attach = cpu_cgroup_attach,
a1f7164c 7000 .legacy_cftypes = cpu_legacy_files,
0d593634 7001 .dfl_cftypes = cpu_files,
b38e42e9 7002 .early_init = true,
0d593634 7003 .threaded = true,
68318b8e
SV
7004};
7005
052f1dc7 7006#endif /* CONFIG_CGROUP_SCHED */
d842de87 7007
b637a328
PM
7008void dump_cpu_task(int cpu)
7009{
7010 pr_info("Task dump for CPU %d:\n", cpu);
7011 sched_show_task(cpu_curr(cpu));
7012}
ed82b8a1
AK
7013
7014/*
7015 * Nice levels are multiplicative, with a gentle 10% change for every
7016 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7017 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7018 * that remained on nice 0.
7019 *
7020 * The "10% effect" is relative and cumulative: from _any_ nice level,
7021 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7022 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7023 * If a task goes up by ~10% and another task goes down by ~10% then
7024 * the relative distance between them is ~25%.)
7025 */
7026const int sched_prio_to_weight[40] = {
7027 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7028 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7029 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7030 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7031 /* 0 */ 1024, 820, 655, 526, 423,
7032 /* 5 */ 335, 272, 215, 172, 137,
7033 /* 10 */ 110, 87, 70, 56, 45,
7034 /* 15 */ 36, 29, 23, 18, 15,
7035};
7036
7037/*
7038 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7039 *
7040 * In cases where the weight does not change often, we can use the
7041 * precalculated inverse to speed up arithmetics by turning divisions
7042 * into multiplications:
7043 */
7044const u32 sched_prio_to_wmult[40] = {
7045 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7046 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7047 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7048 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7049 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7050 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7051 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7052 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7053};
14a7405b
IM
7054
7055#undef CREATE_TRACE_POINTS