]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
sched/numa: Fix task_tick_fair() from disabling numa_balancing
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
1a687c2e 226 i = sched_feat_set(cmp);
5cd08fbf 227 mutex_unlock(&inode->i_mutex);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
fd99f91a
PZ
456/*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459#define fetch_or(ptr, val) \
460({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468})
469
e3baac47 470#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
471/*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476static bool set_nr_and_not_polling(struct task_struct *p)
477{
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480}
e3baac47
PZ
481
482/*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488static bool set_nr_if_polling(struct task_struct *p)
489{
490 struct thread_info *ti = task_thread_info(p);
316c1608 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504}
505
fd99f91a
PZ
506#else
507static bool set_nr_and_not_polling(struct task_struct *p)
508{
509 set_tsk_need_resched(p);
510 return true;
511}
e3baac47
PZ
512
513#ifdef CONFIG_SMP
514static bool set_nr_if_polling(struct task_struct *p)
515{
516 return false;
517}
518#endif
fd99f91a
PZ
519#endif
520
76751049
PZ
521void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522{
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543}
544
545void wake_up_q(struct wake_q_head *head)
546{
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565}
566
c24d20db 567/*
8875125e 568 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
8875125e 574void resched_curr(struct rq *rq)
c24d20db 575{
8875125e 576 struct task_struct *curr = rq->curr;
c24d20db
IM
577 int cpu;
578
8875125e 579 lockdep_assert_held(&rq->lock);
c24d20db 580
8875125e 581 if (test_tsk_need_resched(curr))
c24d20db
IM
582 return;
583
8875125e 584 cpu = cpu_of(rq);
fd99f91a 585
f27dde8d 586 if (cpu == smp_processor_id()) {
8875125e 587 set_tsk_need_resched(curr);
f27dde8d 588 set_preempt_need_resched();
c24d20db 589 return;
f27dde8d 590 }
c24d20db 591
8875125e 592 if (set_nr_and_not_polling(curr))
c24d20db 593 smp_send_reschedule(cpu);
dfc68f29
AL
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
596}
597
029632fb 598void resched_cpu(int cpu)
c24d20db
IM
599{
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
05fa785c 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 604 return;
8875125e 605 resched_curr(rq);
05fa785c 606 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 607}
06d8308c 608
b021fe3e 609#ifdef CONFIG_SMP
3451d024 610#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
611/*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
bc7a34b8 619int get_nohz_timer_target(void)
83cd4fe2 620{
bc7a34b8 621 int i, cpu = smp_processor_id();
83cd4fe2
VP
622 struct sched_domain *sd;
623
9642d18e 624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
625 return cpu;
626
057f3fad 627 rcu_read_lock();
83cd4fe2 628 for_each_domain(cpu, sd) {
057f3fad 629 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
631 cpu = i;
632 goto unlock;
633 }
634 }
83cd4fe2 635 }
9642d18e
VH
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
20f9cd2a 820 if (idle_policy(p->policy)) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
371fd7e7 830static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
43148951 833 sched_info_queued(rq, p);
371fd7e7 834 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
835}
836
371fd7e7 837static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 838{
a64692a3 839 update_rq_clock(rq);
43148951 840 sched_info_dequeued(rq, p);
371fd7e7 841 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
842}
843
029632fb 844void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
845{
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
371fd7e7 849 enqueue_task(rq, p, flags);
1e3c88bd
PZ
850}
851
029632fb 852void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
371fd7e7 857 dequeue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
fe44d621 860static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 861{
095c0aa8
GC
862/*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868#endif
869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
095c0aa8
GC
892#endif
893#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 894 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
095c0aa8 901 rq->prev_steal_time_rq += steal;
095c0aa8
GC
902 delta -= steal;
903 }
904#endif
905
fe44d621
PZ
906 rq->clock_task += delta;
907
095c0aa8 908#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
910 sched_rt_avg_update(rq, irq_delta + steal);
911#endif
aa483808
VP
912}
913
34f971f6
PZ
914void sched_set_stop_task(int cpu, struct task_struct *stop)
915{
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942}
943
14531189 944/*
dd41f596 945 * __normal_prio - return the priority that is based on the static prio
14531189 946 */
14531189
IM
947static inline int __normal_prio(struct task_struct *p)
948{
dd41f596 949 return p->static_prio;
14531189
IM
950}
951
b29739f9
IM
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
36c8b586 959static inline int normal_prio(struct task_struct *p)
b29739f9
IM
960{
961 int prio;
962
aab03e05
DF
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
b29739f9
IM
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970}
971
972/*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
36c8b586 979static int effective_prio(struct task_struct *p)
b29739f9
IM
980{
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990}
991
1da177e4
LT
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
e69f6186
YB
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 997 */
36c8b586 998inline int task_curr(const struct task_struct *p)
1da177e4
LT
999{
1000 return cpu_curr(task_cpu(p)) == p;
1001}
1002
67dfa1b7 1003/*
4c9a4bc8
PZ
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
67dfa1b7 1009 */
cb469845
SR
1010static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
da7a735e 1012 int oldprio)
cb469845
SR
1013{
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
da7a735e 1016 prev_class->switched_from(rq, p);
4c9a4bc8 1017
da7a735e 1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1045 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
5cc389bc
PZ
1049/*
1050 * This is how migration works:
1051 *
1052 * 1) we invoke migration_cpu_stop() on the target CPU using
1053 * stop_one_cpu().
1054 * 2) stopper starts to run (implicitly forcing the migrated thread
1055 * off the CPU)
1056 * 3) it checks whether the migrated task is still in the wrong runqueue.
1057 * 4) if it's in the wrong runqueue then the migration thread removes
1058 * it and puts it into the right queue.
1059 * 5) stopper completes and stop_one_cpu() returns and the migration
1060 * is done.
1061 */
1062
1063/*
1064 * move_queued_task - move a queued task to new rq.
1065 *
1066 * Returns (locked) new rq. Old rq's lock is released.
1067 */
5e16bbc2 1068static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1069{
5cc389bc
PZ
1070 lockdep_assert_held(&rq->lock);
1071
1072 dequeue_task(rq, p, 0);
1073 p->on_rq = TASK_ON_RQ_MIGRATING;
1074 set_task_cpu(p, new_cpu);
1075 raw_spin_unlock(&rq->lock);
1076
1077 rq = cpu_rq(new_cpu);
1078
1079 raw_spin_lock(&rq->lock);
1080 BUG_ON(task_cpu(p) != new_cpu);
1081 p->on_rq = TASK_ON_RQ_QUEUED;
1082 enqueue_task(rq, p, 0);
1083 check_preempt_curr(rq, p, 0);
1084
1085 return rq;
1086}
1087
1088struct migration_arg {
1089 struct task_struct *task;
1090 int dest_cpu;
1091};
1092
1093/*
1094 * Move (not current) task off this cpu, onto dest cpu. We're doing
1095 * this because either it can't run here any more (set_cpus_allowed()
1096 * away from this CPU, or CPU going down), or because we're
1097 * attempting to rebalance this task on exec (sched_exec).
1098 *
1099 * So we race with normal scheduler movements, but that's OK, as long
1100 * as the task is no longer on this CPU.
5cc389bc 1101 */
5e16bbc2 1102static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1103{
5cc389bc 1104 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1105 return rq;
5cc389bc
PZ
1106
1107 /* Affinity changed (again). */
1108 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1109 return rq;
5cc389bc 1110
5e16bbc2
PZ
1111 rq = move_queued_task(rq, p, dest_cpu);
1112
1113 return rq;
5cc389bc
PZ
1114}
1115
1116/*
1117 * migration_cpu_stop - this will be executed by a highprio stopper thread
1118 * and performs thread migration by bumping thread off CPU then
1119 * 'pushing' onto another runqueue.
1120 */
1121static int migration_cpu_stop(void *data)
1122{
1123 struct migration_arg *arg = data;
5e16bbc2
PZ
1124 struct task_struct *p = arg->task;
1125 struct rq *rq = this_rq();
5cc389bc
PZ
1126
1127 /*
1128 * The original target cpu might have gone down and we might
1129 * be on another cpu but it doesn't matter.
1130 */
1131 local_irq_disable();
1132 /*
1133 * We need to explicitly wake pending tasks before running
1134 * __migrate_task() such that we will not miss enforcing cpus_allowed
1135 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 */
1137 sched_ttwu_pending();
5e16bbc2
PZ
1138
1139 raw_spin_lock(&p->pi_lock);
1140 raw_spin_lock(&rq->lock);
1141 /*
1142 * If task_rq(p) != rq, it cannot be migrated here, because we're
1143 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1144 * we're holding p->pi_lock.
1145 */
1146 if (task_rq(p) == rq && task_on_rq_queued(p))
1147 rq = __migrate_task(rq, p, arg->dest_cpu);
1148 raw_spin_unlock(&rq->lock);
1149 raw_spin_unlock(&p->pi_lock);
1150
5cc389bc
PZ
1151 local_irq_enable();
1152 return 0;
1153}
1154
c5b28038
PZ
1155/*
1156 * sched_class::set_cpus_allowed must do the below, but is not required to
1157 * actually call this function.
1158 */
1159void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1160{
5cc389bc
PZ
1161 cpumask_copy(&p->cpus_allowed, new_mask);
1162 p->nr_cpus_allowed = cpumask_weight(new_mask);
1163}
1164
c5b28038
PZ
1165void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166{
6c37067e
PZ
1167 struct rq *rq = task_rq(p);
1168 bool queued, running;
1169
c5b28038 1170 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1171
1172 queued = task_on_rq_queued(p);
1173 running = task_current(rq, p);
1174
1175 if (queued) {
1176 /*
1177 * Because __kthread_bind() calls this on blocked tasks without
1178 * holding rq->lock.
1179 */
1180 lockdep_assert_held(&rq->lock);
1181 dequeue_task(rq, p, 0);
1182 }
1183 if (running)
1184 put_prev_task(rq, p);
1185
c5b28038 1186 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1187
1188 if (running)
1189 p->sched_class->set_curr_task(rq);
1190 if (queued)
1191 enqueue_task(rq, p, 0);
c5b28038
PZ
1192}
1193
5cc389bc
PZ
1194/*
1195 * Change a given task's CPU affinity. Migrate the thread to a
1196 * proper CPU and schedule it away if the CPU it's executing on
1197 * is removed from the allowed bitmask.
1198 *
1199 * NOTE: the caller must have a valid reference to the task, the
1200 * task must not exit() & deallocate itself prematurely. The
1201 * call is not atomic; no spinlocks may be held.
1202 */
25834c73
PZ
1203static int __set_cpus_allowed_ptr(struct task_struct *p,
1204 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1205{
1206 unsigned long flags;
1207 struct rq *rq;
1208 unsigned int dest_cpu;
1209 int ret = 0;
1210
1211 rq = task_rq_lock(p, &flags);
1212
25834c73
PZ
1213 /*
1214 * Must re-check here, to close a race against __kthread_bind(),
1215 * sched_setaffinity() is not guaranteed to observe the flag.
1216 */
1217 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1218 ret = -EINVAL;
1219 goto out;
1220 }
1221
5cc389bc
PZ
1222 if (cpumask_equal(&p->cpus_allowed, new_mask))
1223 goto out;
1224
1225 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229
1230 do_set_cpus_allowed(p, new_mask);
1231
1232 /* Can the task run on the task's current CPU? If so, we're done */
1233 if (cpumask_test_cpu(task_cpu(p), new_mask))
1234 goto out;
1235
1236 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1237 if (task_running(rq, p) || p->state == TASK_WAKING) {
1238 struct migration_arg arg = { p, dest_cpu };
1239 /* Need help from migration thread: drop lock and wait. */
1240 task_rq_unlock(rq, p, &flags);
1241 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1242 tlb_migrate_finish(p->mm);
1243 return 0;
cbce1a68
PZ
1244 } else if (task_on_rq_queued(p)) {
1245 /*
1246 * OK, since we're going to drop the lock immediately
1247 * afterwards anyway.
1248 */
1249 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1250 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1251 lockdep_pin_lock(&rq->lock);
1252 }
5cc389bc
PZ
1253out:
1254 task_rq_unlock(rq, p, &flags);
1255
1256 return ret;
1257}
25834c73
PZ
1258
1259int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260{
1261 return __set_cpus_allowed_ptr(p, new_mask, false);
1262}
5cc389bc
PZ
1263EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264
dd41f596 1265void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1266{
e2912009
PZ
1267#ifdef CONFIG_SCHED_DEBUG
1268 /*
1269 * We should never call set_task_cpu() on a blocked task,
1270 * ttwu() will sort out the placement.
1271 */
077614ee 1272 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1273 !p->on_rq);
0122ec5b
PZ
1274
1275#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1276 /*
1277 * The caller should hold either p->pi_lock or rq->lock, when changing
1278 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 *
1280 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1281 * see task_group().
6c6c54e1
PZ
1282 *
1283 * Furthermore, all task_rq users should acquire both locks, see
1284 * task_rq_lock().
1285 */
0122ec5b
PZ
1286 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1287 lockdep_is_held(&task_rq(p)->lock)));
1288#endif
e2912009
PZ
1289#endif
1290
de1d7286 1291 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1292
0c69774e 1293 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1294 if (p->sched_class->migrate_task_rq)
1295 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1296 p->se.nr_migrations++;
ff303e66 1297 perf_event_task_migrate(p);
0c69774e 1298 }
dd41f596
IM
1299
1300 __set_task_cpu(p, new_cpu);
c65cc870
IM
1301}
1302
ac66f547
PZ
1303static void __migrate_swap_task(struct task_struct *p, int cpu)
1304{
da0c1e65 1305 if (task_on_rq_queued(p)) {
ac66f547
PZ
1306 struct rq *src_rq, *dst_rq;
1307
1308 src_rq = task_rq(p);
1309 dst_rq = cpu_rq(cpu);
1310
1311 deactivate_task(src_rq, p, 0);
1312 set_task_cpu(p, cpu);
1313 activate_task(dst_rq, p, 0);
1314 check_preempt_curr(dst_rq, p, 0);
1315 } else {
1316 /*
1317 * Task isn't running anymore; make it appear like we migrated
1318 * it before it went to sleep. This means on wakeup we make the
1319 * previous cpu our targer instead of where it really is.
1320 */
1321 p->wake_cpu = cpu;
1322 }
1323}
1324
1325struct migration_swap_arg {
1326 struct task_struct *src_task, *dst_task;
1327 int src_cpu, dst_cpu;
1328};
1329
1330static int migrate_swap_stop(void *data)
1331{
1332 struct migration_swap_arg *arg = data;
1333 struct rq *src_rq, *dst_rq;
1334 int ret = -EAGAIN;
1335
1336 src_rq = cpu_rq(arg->src_cpu);
1337 dst_rq = cpu_rq(arg->dst_cpu);
1338
74602315
PZ
1339 double_raw_lock(&arg->src_task->pi_lock,
1340 &arg->dst_task->pi_lock);
ac66f547
PZ
1341 double_rq_lock(src_rq, dst_rq);
1342 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1343 goto unlock;
1344
1345 if (task_cpu(arg->src_task) != arg->src_cpu)
1346 goto unlock;
1347
1348 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1349 goto unlock;
1350
1351 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1352 goto unlock;
1353
1354 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1355 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1356
1357 ret = 0;
1358
1359unlock:
1360 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1361 raw_spin_unlock(&arg->dst_task->pi_lock);
1362 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1363
1364 return ret;
1365}
1366
1367/*
1368 * Cross migrate two tasks
1369 */
1370int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371{
1372 struct migration_swap_arg arg;
1373 int ret = -EINVAL;
1374
ac66f547
PZ
1375 arg = (struct migration_swap_arg){
1376 .src_task = cur,
1377 .src_cpu = task_cpu(cur),
1378 .dst_task = p,
1379 .dst_cpu = task_cpu(p),
1380 };
1381
1382 if (arg.src_cpu == arg.dst_cpu)
1383 goto out;
1384
6acce3ef
PZ
1385 /*
1386 * These three tests are all lockless; this is OK since all of them
1387 * will be re-checked with proper locks held further down the line.
1388 */
ac66f547
PZ
1389 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1390 goto out;
1391
1392 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1393 goto out;
1394
1395 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1396 goto out;
1397
286549dc 1398 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1399 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1400
1401out:
ac66f547
PZ
1402 return ret;
1403}
1404
1da177e4
LT
1405/*
1406 * wait_task_inactive - wait for a thread to unschedule.
1407 *
85ba2d86
RM
1408 * If @match_state is nonzero, it's the @p->state value just checked and
1409 * not expected to change. If it changes, i.e. @p might have woken up,
1410 * then return zero. When we succeed in waiting for @p to be off its CPU,
1411 * we return a positive number (its total switch count). If a second call
1412 * a short while later returns the same number, the caller can be sure that
1413 * @p has remained unscheduled the whole time.
1414 *
1da177e4
LT
1415 * The caller must ensure that the task *will* unschedule sometime soon,
1416 * else this function might spin for a *long* time. This function can't
1417 * be called with interrupts off, or it may introduce deadlock with
1418 * smp_call_function() if an IPI is sent by the same process we are
1419 * waiting to become inactive.
1420 */
85ba2d86 1421unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1422{
1423 unsigned long flags;
da0c1e65 1424 int running, queued;
85ba2d86 1425 unsigned long ncsw;
70b97a7f 1426 struct rq *rq;
1da177e4 1427
3a5c359a
AK
1428 for (;;) {
1429 /*
1430 * We do the initial early heuristics without holding
1431 * any task-queue locks at all. We'll only try to get
1432 * the runqueue lock when things look like they will
1433 * work out!
1434 */
1435 rq = task_rq(p);
fa490cfd 1436
3a5c359a
AK
1437 /*
1438 * If the task is actively running on another CPU
1439 * still, just relax and busy-wait without holding
1440 * any locks.
1441 *
1442 * NOTE! Since we don't hold any locks, it's not
1443 * even sure that "rq" stays as the right runqueue!
1444 * But we don't care, since "task_running()" will
1445 * return false if the runqueue has changed and p
1446 * is actually now running somewhere else!
1447 */
85ba2d86
RM
1448 while (task_running(rq, p)) {
1449 if (match_state && unlikely(p->state != match_state))
1450 return 0;
3a5c359a 1451 cpu_relax();
85ba2d86 1452 }
fa490cfd 1453
3a5c359a
AK
1454 /*
1455 * Ok, time to look more closely! We need the rq
1456 * lock now, to be *sure*. If we're wrong, we'll
1457 * just go back and repeat.
1458 */
1459 rq = task_rq_lock(p, &flags);
27a9da65 1460 trace_sched_wait_task(p);
3a5c359a 1461 running = task_running(rq, p);
da0c1e65 1462 queued = task_on_rq_queued(p);
85ba2d86 1463 ncsw = 0;
f31e11d8 1464 if (!match_state || p->state == match_state)
93dcf55f 1465 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1466 task_rq_unlock(rq, p, &flags);
fa490cfd 1467
85ba2d86
RM
1468 /*
1469 * If it changed from the expected state, bail out now.
1470 */
1471 if (unlikely(!ncsw))
1472 break;
1473
3a5c359a
AK
1474 /*
1475 * Was it really running after all now that we
1476 * checked with the proper locks actually held?
1477 *
1478 * Oops. Go back and try again..
1479 */
1480 if (unlikely(running)) {
1481 cpu_relax();
1482 continue;
1483 }
fa490cfd 1484
3a5c359a
AK
1485 /*
1486 * It's not enough that it's not actively running,
1487 * it must be off the runqueue _entirely_, and not
1488 * preempted!
1489 *
80dd99b3 1490 * So if it was still runnable (but just not actively
3a5c359a
AK
1491 * running right now), it's preempted, and we should
1492 * yield - it could be a while.
1493 */
da0c1e65 1494 if (unlikely(queued)) {
8eb90c30
TG
1495 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496
1497 set_current_state(TASK_UNINTERRUPTIBLE);
1498 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1499 continue;
1500 }
fa490cfd 1501
3a5c359a
AK
1502 /*
1503 * Ahh, all good. It wasn't running, and it wasn't
1504 * runnable, which means that it will never become
1505 * running in the future either. We're all done!
1506 */
1507 break;
1508 }
85ba2d86
RM
1509
1510 return ncsw;
1da177e4
LT
1511}
1512
1513/***
1514 * kick_process - kick a running thread to enter/exit the kernel
1515 * @p: the to-be-kicked thread
1516 *
1517 * Cause a process which is running on another CPU to enter
1518 * kernel-mode, without any delay. (to get signals handled.)
1519 *
25985edc 1520 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1521 * because all it wants to ensure is that the remote task enters
1522 * the kernel. If the IPI races and the task has been migrated
1523 * to another CPU then no harm is done and the purpose has been
1524 * achieved as well.
1525 */
36c8b586 1526void kick_process(struct task_struct *p)
1da177e4
LT
1527{
1528 int cpu;
1529
1530 preempt_disable();
1531 cpu = task_cpu(p);
1532 if ((cpu != smp_processor_id()) && task_curr(p))
1533 smp_send_reschedule(cpu);
1534 preempt_enable();
1535}
b43e3521 1536EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1537
30da688e 1538/*
013fdb80 1539 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1540 */
5da9a0fb
PZ
1541static int select_fallback_rq(int cpu, struct task_struct *p)
1542{
aa00d89c
TC
1543 int nid = cpu_to_node(cpu);
1544 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1545 enum { cpuset, possible, fail } state = cpuset;
1546 int dest_cpu;
5da9a0fb 1547
aa00d89c
TC
1548 /*
1549 * If the node that the cpu is on has been offlined, cpu_to_node()
1550 * will return -1. There is no cpu on the node, and we should
1551 * select the cpu on the other node.
1552 */
1553 if (nid != -1) {
1554 nodemask = cpumask_of_node(nid);
1555
1556 /* Look for allowed, online CPU in same node. */
1557 for_each_cpu(dest_cpu, nodemask) {
1558 if (!cpu_online(dest_cpu))
1559 continue;
1560 if (!cpu_active(dest_cpu))
1561 continue;
1562 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1563 return dest_cpu;
1564 }
2baab4e9 1565 }
5da9a0fb 1566
2baab4e9
PZ
1567 for (;;) {
1568 /* Any allowed, online CPU? */
e3831edd 1569 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1570 if (!cpu_online(dest_cpu))
1571 continue;
1572 if (!cpu_active(dest_cpu))
1573 continue;
1574 goto out;
1575 }
5da9a0fb 1576
2baab4e9
PZ
1577 switch (state) {
1578 case cpuset:
1579 /* No more Mr. Nice Guy. */
1580 cpuset_cpus_allowed_fallback(p);
1581 state = possible;
1582 break;
1583
1584 case possible:
1585 do_set_cpus_allowed(p, cpu_possible_mask);
1586 state = fail;
1587 break;
1588
1589 case fail:
1590 BUG();
1591 break;
1592 }
1593 }
1594
1595out:
1596 if (state != cpuset) {
1597 /*
1598 * Don't tell them about moving exiting tasks or
1599 * kernel threads (both mm NULL), since they never
1600 * leave kernel.
1601 */
1602 if (p->mm && printk_ratelimit()) {
aac74dc4 1603 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1604 task_pid_nr(p), p->comm, cpu);
1605 }
5da9a0fb
PZ
1606 }
1607
1608 return dest_cpu;
1609}
1610
e2912009 1611/*
013fdb80 1612 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1613 */
970b13ba 1614static inline
ac66f547 1615int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1616{
cbce1a68
PZ
1617 lockdep_assert_held(&p->pi_lock);
1618
6c1d9410
WL
1619 if (p->nr_cpus_allowed > 1)
1620 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1621
1622 /*
1623 * In order not to call set_task_cpu() on a blocking task we need
1624 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1625 * cpu.
1626 *
1627 * Since this is common to all placement strategies, this lives here.
1628 *
1629 * [ this allows ->select_task() to simply return task_cpu(p) and
1630 * not worry about this generic constraint ]
1631 */
fa17b507 1632 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1633 !cpu_online(cpu)))
5da9a0fb 1634 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1635
1636 return cpu;
970b13ba 1637}
09a40af5
MG
1638
1639static void update_avg(u64 *avg, u64 sample)
1640{
1641 s64 diff = sample - *avg;
1642 *avg += diff >> 3;
1643}
25834c73
PZ
1644
1645#else
1646
1647static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1648 const struct cpumask *new_mask, bool check)
1649{
1650 return set_cpus_allowed_ptr(p, new_mask);
1651}
1652
5cc389bc 1653#endif /* CONFIG_SMP */
970b13ba 1654
d7c01d27 1655static void
b84cb5df 1656ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1657{
d7c01d27 1658#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1659 struct rq *rq = this_rq();
1660
d7c01d27
PZ
1661#ifdef CONFIG_SMP
1662 int this_cpu = smp_processor_id();
1663
1664 if (cpu == this_cpu) {
1665 schedstat_inc(rq, ttwu_local);
1666 schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 } else {
1668 struct sched_domain *sd;
1669
1670 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1671 rcu_read_lock();
d7c01d27
PZ
1672 for_each_domain(this_cpu, sd) {
1673 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1674 schedstat_inc(sd, ttwu_wake_remote);
1675 break;
1676 }
1677 }
057f3fad 1678 rcu_read_unlock();
d7c01d27 1679 }
f339b9dc
PZ
1680
1681 if (wake_flags & WF_MIGRATED)
1682 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683
d7c01d27
PZ
1684#endif /* CONFIG_SMP */
1685
1686 schedstat_inc(rq, ttwu_count);
9ed3811a 1687 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1688
1689 if (wake_flags & WF_SYNC)
9ed3811a 1690 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1691
d7c01d27
PZ
1692#endif /* CONFIG_SCHEDSTATS */
1693}
1694
1695static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696{
9ed3811a 1697 activate_task(rq, p, en_flags);
da0c1e65 1698 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1699
1700 /* if a worker is waking up, notify workqueue */
1701 if (p->flags & PF_WQ_WORKER)
1702 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1703}
1704
23f41eeb
PZ
1705/*
1706 * Mark the task runnable and perform wakeup-preemption.
1707 */
89363381 1708static void
23f41eeb 1709ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1710{
9ed3811a 1711 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1712 p->state = TASK_RUNNING;
fbd705a0
PZ
1713 trace_sched_wakeup(p);
1714
9ed3811a 1715#ifdef CONFIG_SMP
4c9a4bc8
PZ
1716 if (p->sched_class->task_woken) {
1717 /*
cbce1a68
PZ
1718 * Our task @p is fully woken up and running; so its safe to
1719 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1720 */
cbce1a68 1721 lockdep_unpin_lock(&rq->lock);
9ed3811a 1722 p->sched_class->task_woken(rq, p);
cbce1a68 1723 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1724 }
9ed3811a 1725
e69c6341 1726 if (rq->idle_stamp) {
78becc27 1727 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1728 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1729
abfafa54
JL
1730 update_avg(&rq->avg_idle, delta);
1731
1732 if (rq->avg_idle > max)
9ed3811a 1733 rq->avg_idle = max;
abfafa54 1734
9ed3811a
TH
1735 rq->idle_stamp = 0;
1736 }
1737#endif
1738}
1739
c05fbafb
PZ
1740static void
1741ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742{
cbce1a68
PZ
1743 lockdep_assert_held(&rq->lock);
1744
c05fbafb
PZ
1745#ifdef CONFIG_SMP
1746 if (p->sched_contributes_to_load)
1747 rq->nr_uninterruptible--;
1748#endif
1749
1750 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1751 ttwu_do_wakeup(rq, p, wake_flags);
1752}
1753
1754/*
1755 * Called in case the task @p isn't fully descheduled from its runqueue,
1756 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1757 * since all we need to do is flip p->state to TASK_RUNNING, since
1758 * the task is still ->on_rq.
1759 */
1760static int ttwu_remote(struct task_struct *p, int wake_flags)
1761{
1762 struct rq *rq;
1763 int ret = 0;
1764
1765 rq = __task_rq_lock(p);
da0c1e65 1766 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1767 /* check_preempt_curr() may use rq clock */
1768 update_rq_clock(rq);
c05fbafb
PZ
1769 ttwu_do_wakeup(rq, p, wake_flags);
1770 ret = 1;
1771 }
1772 __task_rq_unlock(rq);
1773
1774 return ret;
1775}
1776
317f3941 1777#ifdef CONFIG_SMP
e3baac47 1778void sched_ttwu_pending(void)
317f3941
PZ
1779{
1780 struct rq *rq = this_rq();
fa14ff4a
PZ
1781 struct llist_node *llist = llist_del_all(&rq->wake_list);
1782 struct task_struct *p;
e3baac47 1783 unsigned long flags;
317f3941 1784
e3baac47
PZ
1785 if (!llist)
1786 return;
1787
1788 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1789 lockdep_pin_lock(&rq->lock);
317f3941 1790
fa14ff4a
PZ
1791 while (llist) {
1792 p = llist_entry(llist, struct task_struct, wake_entry);
1793 llist = llist_next(llist);
317f3941
PZ
1794 ttwu_do_activate(rq, p, 0);
1795 }
1796
cbce1a68 1797 lockdep_unpin_lock(&rq->lock);
e3baac47 1798 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1799}
1800
1801void scheduler_ipi(void)
1802{
f27dde8d
PZ
1803 /*
1804 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1805 * TIF_NEED_RESCHED remotely (for the first time) will also send
1806 * this IPI.
1807 */
8cb75e0c 1808 preempt_fold_need_resched();
f27dde8d 1809
fd2ac4f4 1810 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1811 return;
1812
1813 /*
1814 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1815 * traditionally all their work was done from the interrupt return
1816 * path. Now that we actually do some work, we need to make sure
1817 * we do call them.
1818 *
1819 * Some archs already do call them, luckily irq_enter/exit nest
1820 * properly.
1821 *
1822 * Arguably we should visit all archs and update all handlers,
1823 * however a fair share of IPIs are still resched only so this would
1824 * somewhat pessimize the simple resched case.
1825 */
1826 irq_enter();
fa14ff4a 1827 sched_ttwu_pending();
ca38062e
SS
1828
1829 /*
1830 * Check if someone kicked us for doing the nohz idle load balance.
1831 */
873b4c65 1832 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1833 this_rq()->idle_balance = 1;
ca38062e 1834 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1835 }
c5d753a5 1836 irq_exit();
317f3941
PZ
1837}
1838
1839static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840{
e3baac47
PZ
1841 struct rq *rq = cpu_rq(cpu);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
317f3941 1849}
d6aa8f85 1850
f6be8af1
CL
1851void wake_up_if_idle(int cpu)
1852{
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
fd7de1e8
AL
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
f6be8af1
CL
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
fd7de1e8
AL
1870
1871out:
1872 rcu_read_unlock();
f6be8af1
CL
1873}
1874
39be3501 1875bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1876{
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
d6aa8f85 1879#endif /* CONFIG_SMP */
317f3941 1880
c05fbafb
PZ
1881static void ttwu_queue(struct task_struct *p, int cpu)
1882{
1883 struct rq *rq = cpu_rq(cpu);
1884
17d9f311 1885#if defined(CONFIG_SMP)
39be3501 1886 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1887 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1888 ttwu_queue_remote(p, cpu);
1889 return;
1890 }
1891#endif
1892
c05fbafb 1893 raw_spin_lock(&rq->lock);
cbce1a68 1894 lockdep_pin_lock(&rq->lock);
c05fbafb 1895 ttwu_do_activate(rq, p, 0);
cbce1a68 1896 lockdep_unpin_lock(&rq->lock);
c05fbafb 1897 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1898}
1899
1900/**
1da177e4 1901 * try_to_wake_up - wake up a thread
9ed3811a 1902 * @p: the thread to be awakened
1da177e4 1903 * @state: the mask of task states that can be woken
9ed3811a 1904 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1905 *
1906 * Put it on the run-queue if it's not already there. The "current"
1907 * thread is always on the run-queue (except when the actual
1908 * re-schedule is in progress), and as such you're allowed to do
1909 * the simpler "current->state = TASK_RUNNING" to mark yourself
1910 * runnable without the overhead of this.
1911 *
e69f6186 1912 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1913 * or @state didn't match @p's state.
1da177e4 1914 */
e4a52bcb
PZ
1915static int
1916try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1917{
1da177e4 1918 unsigned long flags;
c05fbafb 1919 int cpu, success = 0;
2398f2c6 1920
e0acd0a6
ON
1921 /*
1922 * If we are going to wake up a thread waiting for CONDITION we
1923 * need to ensure that CONDITION=1 done by the caller can not be
1924 * reordered with p->state check below. This pairs with mb() in
1925 * set_current_state() the waiting thread does.
1926 */
1927 smp_mb__before_spinlock();
013fdb80 1928 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1929 if (!(p->state & state))
1da177e4
LT
1930 goto out;
1931
fbd705a0
PZ
1932 trace_sched_waking(p);
1933
c05fbafb 1934 success = 1; /* we're going to change ->state */
1da177e4 1935 cpu = task_cpu(p);
1da177e4 1936
c05fbafb
PZ
1937 if (p->on_rq && ttwu_remote(p, wake_flags))
1938 goto stat;
1da177e4 1939
1da177e4 1940#ifdef CONFIG_SMP
e9c84311 1941 /*
c05fbafb
PZ
1942 * If the owning (remote) cpu is still in the middle of schedule() with
1943 * this task as prev, wait until its done referencing the task.
e9c84311 1944 */
f3e94786 1945 while (p->on_cpu)
e4a52bcb 1946 cpu_relax();
0970d299 1947 /*
e4a52bcb 1948 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1949 */
e4a52bcb 1950 smp_rmb();
1da177e4 1951
a8e4f2ea 1952 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1953 p->state = TASK_WAKING;
e7693a36 1954
e4a52bcb 1955 if (p->sched_class->task_waking)
74f8e4b2 1956 p->sched_class->task_waking(p);
efbbd05a 1957
ac66f547 1958 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1959 if (task_cpu(p) != cpu) {
1960 wake_flags |= WF_MIGRATED;
e4a52bcb 1961 set_task_cpu(p, cpu);
f339b9dc 1962 }
1da177e4 1963#endif /* CONFIG_SMP */
1da177e4 1964
c05fbafb
PZ
1965 ttwu_queue(p, cpu);
1966stat:
b84cb5df 1967 ttwu_stat(p, cpu, wake_flags);
1da177e4 1968out:
013fdb80 1969 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1970
1971 return success;
1972}
1973
21aa9af0
TH
1974/**
1975 * try_to_wake_up_local - try to wake up a local task with rq lock held
1976 * @p: the thread to be awakened
1977 *
2acca55e 1978 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1979 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1980 * the current task.
21aa9af0
TH
1981 */
1982static void try_to_wake_up_local(struct task_struct *p)
1983{
1984 struct rq *rq = task_rq(p);
21aa9af0 1985
383efcd0
TH
1986 if (WARN_ON_ONCE(rq != this_rq()) ||
1987 WARN_ON_ONCE(p == current))
1988 return;
1989
21aa9af0
TH
1990 lockdep_assert_held(&rq->lock);
1991
2acca55e 1992 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1993 /*
1994 * This is OK, because current is on_cpu, which avoids it being
1995 * picked for load-balance and preemption/IRQs are still
1996 * disabled avoiding further scheduler activity on it and we've
1997 * not yet picked a replacement task.
1998 */
1999 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2000 raw_spin_unlock(&rq->lock);
2001 raw_spin_lock(&p->pi_lock);
2002 raw_spin_lock(&rq->lock);
cbce1a68 2003 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2004 }
2005
21aa9af0 2006 if (!(p->state & TASK_NORMAL))
2acca55e 2007 goto out;
21aa9af0 2008
fbd705a0
PZ
2009 trace_sched_waking(p);
2010
da0c1e65 2011 if (!task_on_rq_queued(p))
d7c01d27
PZ
2012 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013
23f41eeb 2014 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2015 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2016out:
2017 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2018}
2019
50fa610a
DH
2020/**
2021 * wake_up_process - Wake up a specific process
2022 * @p: The process to be woken up.
2023 *
2024 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2025 * processes.
2026 *
2027 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2028 *
2029 * It may be assumed that this function implies a write memory barrier before
2030 * changing the task state if and only if any tasks are woken up.
2031 */
7ad5b3a5 2032int wake_up_process(struct task_struct *p)
1da177e4 2033{
9067ac85
ON
2034 WARN_ON(task_is_stopped_or_traced(p));
2035 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2036}
1da177e4
LT
2037EXPORT_SYMBOL(wake_up_process);
2038
7ad5b3a5 2039int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2040{
2041 return try_to_wake_up(p, state, 0);
2042}
2043
a5e7be3b
JL
2044/*
2045 * This function clears the sched_dl_entity static params.
2046 */
2047void __dl_clear_params(struct task_struct *p)
2048{
2049 struct sched_dl_entity *dl_se = &p->dl;
2050
2051 dl_se->dl_runtime = 0;
2052 dl_se->dl_deadline = 0;
2053 dl_se->dl_period = 0;
2054 dl_se->flags = 0;
2055 dl_se->dl_bw = 0;
40767b0d
PZ
2056
2057 dl_se->dl_throttled = 0;
2058 dl_se->dl_new = 1;
2059 dl_se->dl_yielded = 0;
a5e7be3b
JL
2060}
2061
1da177e4
LT
2062/*
2063 * Perform scheduler related setup for a newly forked process p.
2064 * p is forked by current.
dd41f596
IM
2065 *
2066 * __sched_fork() is basic setup used by init_idle() too:
2067 */
5e1576ed 2068static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2069{
fd2f4419
PZ
2070 p->on_rq = 0;
2071
2072 p->se.on_rq = 0;
dd41f596
IM
2073 p->se.exec_start = 0;
2074 p->se.sum_exec_runtime = 0;
f6cf891c 2075 p->se.prev_sum_exec_runtime = 0;
6c594c21 2076 p->se.nr_migrations = 0;
da7a735e 2077 p->se.vruntime = 0;
fd2f4419 2078 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2079
2080#ifdef CONFIG_SCHEDSTATS
41acab88 2081 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2082#endif
476d139c 2083
aab03e05 2084 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2085 init_dl_task_timer(&p->dl);
a5e7be3b 2086 __dl_clear_params(p);
aab03e05 2087
fa717060 2088 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2089
e107be36
AK
2090#ifdef CONFIG_PREEMPT_NOTIFIERS
2091 INIT_HLIST_HEAD(&p->preempt_notifiers);
2092#endif
cbee9f88
PZ
2093
2094#ifdef CONFIG_NUMA_BALANCING
2095 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2096 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2097 p->mm->numa_scan_seq = 0;
2098 }
2099
5e1576ed
RR
2100 if (clone_flags & CLONE_VM)
2101 p->numa_preferred_nid = current->numa_preferred_nid;
2102 else
2103 p->numa_preferred_nid = -1;
2104
cbee9f88
PZ
2105 p->node_stamp = 0ULL;
2106 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2107 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2108 p->numa_work.next = &p->numa_work;
44dba3d5 2109 p->numa_faults = NULL;
7e2703e6
RR
2110 p->last_task_numa_placement = 0;
2111 p->last_sum_exec_runtime = 0;
8c8a743c 2112
8c8a743c 2113 p->numa_group = NULL;
cbee9f88 2114#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2115}
2116
2a595721
SD
2117DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2118
1a687c2e 2119#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2120
1a687c2e
MG
2121void set_numabalancing_state(bool enabled)
2122{
2a595721
SD
2123 if (enabled)
2124 static_branch_enable(&sched_numa_balancing);
2125 else
2126 static_branch_disable(&sched_numa_balancing);
c3b9bc5b 2127}
54a43d54
AK
2128
2129#ifdef CONFIG_PROC_SYSCTL
2130int sysctl_numa_balancing(struct ctl_table *table, int write,
2131 void __user *buffer, size_t *lenp, loff_t *ppos)
2132{
2133 struct ctl_table t;
2134 int err;
2a595721 2135 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2136
2137 if (write && !capable(CAP_SYS_ADMIN))
2138 return -EPERM;
2139
2140 t = *table;
2141 t.data = &state;
2142 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2143 if (err < 0)
2144 return err;
2145 if (write)
2146 set_numabalancing_state(state);
2147 return err;
2148}
2149#endif
2150#endif
dd41f596
IM
2151
2152/*
2153 * fork()/clone()-time setup:
2154 */
aab03e05 2155int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2156{
0122ec5b 2157 unsigned long flags;
dd41f596
IM
2158 int cpu = get_cpu();
2159
5e1576ed 2160 __sched_fork(clone_flags, p);
06b83b5f 2161 /*
0017d735 2162 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2163 * nobody will actually run it, and a signal or other external
2164 * event cannot wake it up and insert it on the runqueue either.
2165 */
0017d735 2166 p->state = TASK_RUNNING;
dd41f596 2167
c350a04e
MG
2168 /*
2169 * Make sure we do not leak PI boosting priority to the child.
2170 */
2171 p->prio = current->normal_prio;
2172
b9dc29e7
MG
2173 /*
2174 * Revert to default priority/policy on fork if requested.
2175 */
2176 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2177 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2178 p->policy = SCHED_NORMAL;
6c697bdf 2179 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2180 p->rt_priority = 0;
2181 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2182 p->static_prio = NICE_TO_PRIO(0);
2183
2184 p->prio = p->normal_prio = __normal_prio(p);
2185 set_load_weight(p);
6c697bdf 2186
b9dc29e7
MG
2187 /*
2188 * We don't need the reset flag anymore after the fork. It has
2189 * fulfilled its duty:
2190 */
2191 p->sched_reset_on_fork = 0;
2192 }
ca94c442 2193
aab03e05
DF
2194 if (dl_prio(p->prio)) {
2195 put_cpu();
2196 return -EAGAIN;
2197 } else if (rt_prio(p->prio)) {
2198 p->sched_class = &rt_sched_class;
2199 } else {
2ddbf952 2200 p->sched_class = &fair_sched_class;
aab03e05 2201 }
b29739f9 2202
cd29fe6f
PZ
2203 if (p->sched_class->task_fork)
2204 p->sched_class->task_fork(p);
2205
86951599
PZ
2206 /*
2207 * The child is not yet in the pid-hash so no cgroup attach races,
2208 * and the cgroup is pinned to this child due to cgroup_fork()
2209 * is ran before sched_fork().
2210 *
2211 * Silence PROVE_RCU.
2212 */
0122ec5b 2213 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2214 set_task_cpu(p, cpu);
0122ec5b 2215 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2216
f6db8347 2217#ifdef CONFIG_SCHED_INFO
dd41f596 2218 if (likely(sched_info_on()))
52f17b6c 2219 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2220#endif
3ca7a440
PZ
2221#if defined(CONFIG_SMP)
2222 p->on_cpu = 0;
4866cde0 2223#endif
01028747 2224 init_task_preempt_count(p);
806c09a7 2225#ifdef CONFIG_SMP
917b627d 2226 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2227 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2228#endif
917b627d 2229
476d139c 2230 put_cpu();
aab03e05 2231 return 0;
1da177e4
LT
2232}
2233
332ac17e
DF
2234unsigned long to_ratio(u64 period, u64 runtime)
2235{
2236 if (runtime == RUNTIME_INF)
2237 return 1ULL << 20;
2238
2239 /*
2240 * Doing this here saves a lot of checks in all
2241 * the calling paths, and returning zero seems
2242 * safe for them anyway.
2243 */
2244 if (period == 0)
2245 return 0;
2246
2247 return div64_u64(runtime << 20, period);
2248}
2249
2250#ifdef CONFIG_SMP
2251inline struct dl_bw *dl_bw_of(int i)
2252{
f78f5b90
PM
2253 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2254 "sched RCU must be held");
332ac17e
DF
2255 return &cpu_rq(i)->rd->dl_bw;
2256}
2257
de212f18 2258static inline int dl_bw_cpus(int i)
332ac17e 2259{
de212f18
PZ
2260 struct root_domain *rd = cpu_rq(i)->rd;
2261 int cpus = 0;
2262
f78f5b90
PM
2263 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2264 "sched RCU must be held");
de212f18
PZ
2265 for_each_cpu_and(i, rd->span, cpu_active_mask)
2266 cpus++;
2267
2268 return cpus;
332ac17e
DF
2269}
2270#else
2271inline struct dl_bw *dl_bw_of(int i)
2272{
2273 return &cpu_rq(i)->dl.dl_bw;
2274}
2275
de212f18 2276static inline int dl_bw_cpus(int i)
332ac17e
DF
2277{
2278 return 1;
2279}
2280#endif
2281
332ac17e
DF
2282/*
2283 * We must be sure that accepting a new task (or allowing changing the
2284 * parameters of an existing one) is consistent with the bandwidth
2285 * constraints. If yes, this function also accordingly updates the currently
2286 * allocated bandwidth to reflect the new situation.
2287 *
2288 * This function is called while holding p's rq->lock.
40767b0d
PZ
2289 *
2290 * XXX we should delay bw change until the task's 0-lag point, see
2291 * __setparam_dl().
332ac17e
DF
2292 */
2293static int dl_overflow(struct task_struct *p, int policy,
2294 const struct sched_attr *attr)
2295{
2296
2297 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2298 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2299 u64 runtime = attr->sched_runtime;
2300 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2301 int cpus, err = -1;
332ac17e
DF
2302
2303 if (new_bw == p->dl.dl_bw)
2304 return 0;
2305
2306 /*
2307 * Either if a task, enters, leave, or stays -deadline but changes
2308 * its parameters, we may need to update accordingly the total
2309 * allocated bandwidth of the container.
2310 */
2311 raw_spin_lock(&dl_b->lock);
de212f18 2312 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2313 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2314 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2315 __dl_add(dl_b, new_bw);
2316 err = 0;
2317 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2318 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2319 __dl_clear(dl_b, p->dl.dl_bw);
2320 __dl_add(dl_b, new_bw);
2321 err = 0;
2322 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2323 __dl_clear(dl_b, p->dl.dl_bw);
2324 err = 0;
2325 }
2326 raw_spin_unlock(&dl_b->lock);
2327
2328 return err;
2329}
2330
2331extern void init_dl_bw(struct dl_bw *dl_b);
2332
1da177e4
LT
2333/*
2334 * wake_up_new_task - wake up a newly created task for the first time.
2335 *
2336 * This function will do some initial scheduler statistics housekeeping
2337 * that must be done for every newly created context, then puts the task
2338 * on the runqueue and wakes it.
2339 */
3e51e3ed 2340void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2341{
2342 unsigned long flags;
dd41f596 2343 struct rq *rq;
fabf318e 2344
ab2515c4 2345 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2346 /* Initialize new task's runnable average */
2347 init_entity_runnable_average(&p->se);
fabf318e
PZ
2348#ifdef CONFIG_SMP
2349 /*
2350 * Fork balancing, do it here and not earlier because:
2351 * - cpus_allowed can change in the fork path
2352 * - any previously selected cpu might disappear through hotplug
fabf318e 2353 */
ac66f547 2354 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2355#endif
2356
ab2515c4 2357 rq = __task_rq_lock(p);
cd29fe6f 2358 activate_task(rq, p, 0);
da0c1e65 2359 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2360 trace_sched_wakeup_new(p);
a7558e01 2361 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2362#ifdef CONFIG_SMP
efbbd05a
PZ
2363 if (p->sched_class->task_woken)
2364 p->sched_class->task_woken(rq, p);
9a897c5a 2365#endif
0122ec5b 2366 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2367}
2368
e107be36
AK
2369#ifdef CONFIG_PREEMPT_NOTIFIERS
2370
1cde2930
PZ
2371static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2372
2ecd9d29
PZ
2373void preempt_notifier_inc(void)
2374{
2375 static_key_slow_inc(&preempt_notifier_key);
2376}
2377EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2378
2379void preempt_notifier_dec(void)
2380{
2381 static_key_slow_dec(&preempt_notifier_key);
2382}
2383EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2384
e107be36 2385/**
80dd99b3 2386 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2387 * @notifier: notifier struct to register
e107be36
AK
2388 */
2389void preempt_notifier_register(struct preempt_notifier *notifier)
2390{
2ecd9d29
PZ
2391 if (!static_key_false(&preempt_notifier_key))
2392 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2393
e107be36
AK
2394 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2395}
2396EXPORT_SYMBOL_GPL(preempt_notifier_register);
2397
2398/**
2399 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2400 * @notifier: notifier struct to unregister
e107be36 2401 *
d84525a8 2402 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2403 */
2404void preempt_notifier_unregister(struct preempt_notifier *notifier)
2405{
2406 hlist_del(&notifier->link);
2407}
2408EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2409
1cde2930 2410static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2411{
2412 struct preempt_notifier *notifier;
e107be36 2413
b67bfe0d 2414 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2415 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2416}
2417
1cde2930
PZ
2418static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2419{
2420 if (static_key_false(&preempt_notifier_key))
2421 __fire_sched_in_preempt_notifiers(curr);
2422}
2423
e107be36 2424static void
1cde2930
PZ
2425__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2426 struct task_struct *next)
e107be36
AK
2427{
2428 struct preempt_notifier *notifier;
e107be36 2429
b67bfe0d 2430 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2431 notifier->ops->sched_out(notifier, next);
2432}
2433
1cde2930
PZ
2434static __always_inline void
2435fire_sched_out_preempt_notifiers(struct task_struct *curr,
2436 struct task_struct *next)
2437{
2438 if (static_key_false(&preempt_notifier_key))
2439 __fire_sched_out_preempt_notifiers(curr, next);
2440}
2441
6d6bc0ad 2442#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2443
1cde2930 2444static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2445{
2446}
2447
1cde2930 2448static inline void
e107be36
AK
2449fire_sched_out_preempt_notifiers(struct task_struct *curr,
2450 struct task_struct *next)
2451{
2452}
2453
6d6bc0ad 2454#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2455
4866cde0
NP
2456/**
2457 * prepare_task_switch - prepare to switch tasks
2458 * @rq: the runqueue preparing to switch
421cee29 2459 * @prev: the current task that is being switched out
4866cde0
NP
2460 * @next: the task we are going to switch to.
2461 *
2462 * This is called with the rq lock held and interrupts off. It must
2463 * be paired with a subsequent finish_task_switch after the context
2464 * switch.
2465 *
2466 * prepare_task_switch sets up locking and calls architecture specific
2467 * hooks.
2468 */
e107be36
AK
2469static inline void
2470prepare_task_switch(struct rq *rq, struct task_struct *prev,
2471 struct task_struct *next)
4866cde0 2472{
43148951 2473 sched_info_switch(rq, prev, next);
fe4b04fa 2474 perf_event_task_sched_out(prev, next);
e107be36 2475 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2476 prepare_lock_switch(rq, next);
2477 prepare_arch_switch(next);
2478}
2479
1da177e4
LT
2480/**
2481 * finish_task_switch - clean up after a task-switch
2482 * @prev: the thread we just switched away from.
2483 *
4866cde0
NP
2484 * finish_task_switch must be called after the context switch, paired
2485 * with a prepare_task_switch call before the context switch.
2486 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2487 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2488 *
2489 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2490 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2491 * with the lock held can cause deadlocks; see schedule() for
2492 * details.)
dfa50b60
ON
2493 *
2494 * The context switch have flipped the stack from under us and restored the
2495 * local variables which were saved when this task called schedule() in the
2496 * past. prev == current is still correct but we need to recalculate this_rq
2497 * because prev may have moved to another CPU.
1da177e4 2498 */
dfa50b60 2499static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2500 __releases(rq->lock)
2501{
dfa50b60 2502 struct rq *rq = this_rq();
1da177e4 2503 struct mm_struct *mm = rq->prev_mm;
55a101f8 2504 long prev_state;
1da177e4 2505
609ca066
PZ
2506 /*
2507 * The previous task will have left us with a preempt_count of 2
2508 * because it left us after:
2509 *
2510 * schedule()
2511 * preempt_disable(); // 1
2512 * __schedule()
2513 * raw_spin_lock_irq(&rq->lock) // 2
2514 *
2515 * Also, see FORK_PREEMPT_COUNT.
2516 */
e2bf1c4b
PZ
2517 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2518 "corrupted preempt_count: %s/%d/0x%x\n",
2519 current->comm, current->pid, preempt_count()))
2520 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2521
1da177e4
LT
2522 rq->prev_mm = NULL;
2523
2524 /*
2525 * A task struct has one reference for the use as "current".
c394cc9f 2526 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2527 * schedule one last time. The schedule call will never return, and
2528 * the scheduled task must drop that reference.
95913d97
PZ
2529 *
2530 * We must observe prev->state before clearing prev->on_cpu (in
2531 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2532 * running on another CPU and we could rave with its RUNNING -> DEAD
2533 * transition, resulting in a double drop.
1da177e4 2534 */
55a101f8 2535 prev_state = prev->state;
bf9fae9f 2536 vtime_task_switch(prev);
a8d757ef 2537 perf_event_task_sched_in(prev, current);
4866cde0 2538 finish_lock_switch(rq, prev);
01f23e16 2539 finish_arch_post_lock_switch();
e8fa1362 2540
e107be36 2541 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2542 if (mm)
2543 mmdrop(mm);
c394cc9f 2544 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2545 if (prev->sched_class->task_dead)
2546 prev->sched_class->task_dead(prev);
2547
c6fd91f0 2548 /*
2549 * Remove function-return probe instances associated with this
2550 * task and put them back on the free list.
9761eea8 2551 */
c6fd91f0 2552 kprobe_flush_task(prev);
1da177e4 2553 put_task_struct(prev);
c6fd91f0 2554 }
99e5ada9 2555
de734f89 2556 tick_nohz_task_switch();
dfa50b60 2557 return rq;
1da177e4
LT
2558}
2559
3f029d3c
GH
2560#ifdef CONFIG_SMP
2561
3f029d3c 2562/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2563static void __balance_callback(struct rq *rq)
3f029d3c 2564{
e3fca9e7
PZ
2565 struct callback_head *head, *next;
2566 void (*func)(struct rq *rq);
2567 unsigned long flags;
3f029d3c 2568
e3fca9e7
PZ
2569 raw_spin_lock_irqsave(&rq->lock, flags);
2570 head = rq->balance_callback;
2571 rq->balance_callback = NULL;
2572 while (head) {
2573 func = (void (*)(struct rq *))head->func;
2574 next = head->next;
2575 head->next = NULL;
2576 head = next;
3f029d3c 2577
e3fca9e7 2578 func(rq);
3f029d3c 2579 }
e3fca9e7
PZ
2580 raw_spin_unlock_irqrestore(&rq->lock, flags);
2581}
2582
2583static inline void balance_callback(struct rq *rq)
2584{
2585 if (unlikely(rq->balance_callback))
2586 __balance_callback(rq);
3f029d3c
GH
2587}
2588
2589#else
da19ab51 2590
e3fca9e7 2591static inline void balance_callback(struct rq *rq)
3f029d3c 2592{
1da177e4
LT
2593}
2594
3f029d3c
GH
2595#endif
2596
1da177e4
LT
2597/**
2598 * schedule_tail - first thing a freshly forked thread must call.
2599 * @prev: the thread we just switched away from.
2600 */
722a9f92 2601asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2602 __releases(rq->lock)
2603{
1a43a14a 2604 struct rq *rq;
da19ab51 2605
609ca066
PZ
2606 /*
2607 * New tasks start with FORK_PREEMPT_COUNT, see there and
2608 * finish_task_switch() for details.
2609 *
2610 * finish_task_switch() will drop rq->lock() and lower preempt_count
2611 * and the preempt_enable() will end up enabling preemption (on
2612 * PREEMPT_COUNT kernels).
2613 */
2614
dfa50b60 2615 rq = finish_task_switch(prev);
e3fca9e7 2616 balance_callback(rq);
1a43a14a 2617 preempt_enable();
70b97a7f 2618
1da177e4 2619 if (current->set_child_tid)
b488893a 2620 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2621}
2622
2623/*
dfa50b60 2624 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2625 */
dfa50b60 2626static inline struct rq *
70b97a7f 2627context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2628 struct task_struct *next)
1da177e4 2629{
dd41f596 2630 struct mm_struct *mm, *oldmm;
1da177e4 2631
e107be36 2632 prepare_task_switch(rq, prev, next);
fe4b04fa 2633
dd41f596
IM
2634 mm = next->mm;
2635 oldmm = prev->active_mm;
9226d125
ZA
2636 /*
2637 * For paravirt, this is coupled with an exit in switch_to to
2638 * combine the page table reload and the switch backend into
2639 * one hypercall.
2640 */
224101ed 2641 arch_start_context_switch(prev);
9226d125 2642
31915ab4 2643 if (!mm) {
1da177e4
LT
2644 next->active_mm = oldmm;
2645 atomic_inc(&oldmm->mm_count);
2646 enter_lazy_tlb(oldmm, next);
2647 } else
2648 switch_mm(oldmm, mm, next);
2649
31915ab4 2650 if (!prev->mm) {
1da177e4 2651 prev->active_mm = NULL;
1da177e4
LT
2652 rq->prev_mm = oldmm;
2653 }
3a5f5e48
IM
2654 /*
2655 * Since the runqueue lock will be released by the next
2656 * task (which is an invalid locking op but in the case
2657 * of the scheduler it's an obvious special-case), so we
2658 * do an early lockdep release here:
2659 */
cbce1a68 2660 lockdep_unpin_lock(&rq->lock);
8a25d5de 2661 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2662
2663 /* Here we just switch the register state and the stack. */
2664 switch_to(prev, next, prev);
dd41f596 2665 barrier();
dfa50b60
ON
2666
2667 return finish_task_switch(prev);
1da177e4
LT
2668}
2669
2670/*
1c3e8264 2671 * nr_running and nr_context_switches:
1da177e4
LT
2672 *
2673 * externally visible scheduler statistics: current number of runnable
1c3e8264 2674 * threads, total number of context switches performed since bootup.
1da177e4
LT
2675 */
2676unsigned long nr_running(void)
2677{
2678 unsigned long i, sum = 0;
2679
2680 for_each_online_cpu(i)
2681 sum += cpu_rq(i)->nr_running;
2682
2683 return sum;
f711f609 2684}
1da177e4 2685
2ee507c4
TC
2686/*
2687 * Check if only the current task is running on the cpu.
00cc1633
DD
2688 *
2689 * Caution: this function does not check that the caller has disabled
2690 * preemption, thus the result might have a time-of-check-to-time-of-use
2691 * race. The caller is responsible to use it correctly, for example:
2692 *
2693 * - from a non-preemptable section (of course)
2694 *
2695 * - from a thread that is bound to a single CPU
2696 *
2697 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2698 */
2699bool single_task_running(void)
2700{
00cc1633 2701 return raw_rq()->nr_running == 1;
2ee507c4
TC
2702}
2703EXPORT_SYMBOL(single_task_running);
2704
1da177e4 2705unsigned long long nr_context_switches(void)
46cb4b7c 2706{
cc94abfc
SR
2707 int i;
2708 unsigned long long sum = 0;
46cb4b7c 2709
0a945022 2710 for_each_possible_cpu(i)
1da177e4 2711 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2712
1da177e4
LT
2713 return sum;
2714}
483b4ee6 2715
1da177e4
LT
2716unsigned long nr_iowait(void)
2717{
2718 unsigned long i, sum = 0;
483b4ee6 2719
0a945022 2720 for_each_possible_cpu(i)
1da177e4 2721 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2722
1da177e4
LT
2723 return sum;
2724}
483b4ee6 2725
8c215bd3 2726unsigned long nr_iowait_cpu(int cpu)
69d25870 2727{
8c215bd3 2728 struct rq *this = cpu_rq(cpu);
69d25870
AV
2729 return atomic_read(&this->nr_iowait);
2730}
46cb4b7c 2731
372ba8cb
MG
2732void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2733{
3289bdb4
PZ
2734 struct rq *rq = this_rq();
2735 *nr_waiters = atomic_read(&rq->nr_iowait);
2736 *load = rq->load.weight;
372ba8cb
MG
2737}
2738
dd41f596 2739#ifdef CONFIG_SMP
8a0be9ef 2740
46cb4b7c 2741/*
38022906
PZ
2742 * sched_exec - execve() is a valuable balancing opportunity, because at
2743 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2744 */
38022906 2745void sched_exec(void)
46cb4b7c 2746{
38022906 2747 struct task_struct *p = current;
1da177e4 2748 unsigned long flags;
0017d735 2749 int dest_cpu;
46cb4b7c 2750
8f42ced9 2751 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2752 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2753 if (dest_cpu == smp_processor_id())
2754 goto unlock;
38022906 2755
8f42ced9 2756 if (likely(cpu_active(dest_cpu))) {
969c7921 2757 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2758
8f42ced9
PZ
2759 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2760 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2761 return;
2762 }
0017d735 2763unlock:
8f42ced9 2764 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2765}
dd41f596 2766
1da177e4
LT
2767#endif
2768
1da177e4 2769DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2770DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2771
2772EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2773EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2774
c5f8d995
HS
2775/*
2776 * Return accounted runtime for the task.
2777 * In case the task is currently running, return the runtime plus current's
2778 * pending runtime that have not been accounted yet.
2779 */
2780unsigned long long task_sched_runtime(struct task_struct *p)
2781{
2782 unsigned long flags;
2783 struct rq *rq;
6e998916 2784 u64 ns;
c5f8d995 2785
911b2898
PZ
2786#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2787 /*
2788 * 64-bit doesn't need locks to atomically read a 64bit value.
2789 * So we have a optimization chance when the task's delta_exec is 0.
2790 * Reading ->on_cpu is racy, but this is ok.
2791 *
2792 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2793 * If we race with it entering cpu, unaccounted time is 0. This is
2794 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2795 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2796 * been accounted, so we're correct here as well.
911b2898 2797 */
da0c1e65 2798 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2799 return p->se.sum_exec_runtime;
2800#endif
2801
c5f8d995 2802 rq = task_rq_lock(p, &flags);
6e998916
SG
2803 /*
2804 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2805 * project cycles that may never be accounted to this
2806 * thread, breaking clock_gettime().
2807 */
2808 if (task_current(rq, p) && task_on_rq_queued(p)) {
2809 update_rq_clock(rq);
2810 p->sched_class->update_curr(rq);
2811 }
2812 ns = p->se.sum_exec_runtime;
0122ec5b 2813 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2814
2815 return ns;
2816}
48f24c4d 2817
7835b98b
CL
2818/*
2819 * This function gets called by the timer code, with HZ frequency.
2820 * We call it with interrupts disabled.
7835b98b
CL
2821 */
2822void scheduler_tick(void)
2823{
7835b98b
CL
2824 int cpu = smp_processor_id();
2825 struct rq *rq = cpu_rq(cpu);
dd41f596 2826 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2827
2828 sched_clock_tick();
dd41f596 2829
05fa785c 2830 raw_spin_lock(&rq->lock);
3e51f33f 2831 update_rq_clock(rq);
fa85ae24 2832 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2833 update_cpu_load_active(rq);
3289bdb4 2834 calc_global_load_tick(rq);
05fa785c 2835 raw_spin_unlock(&rq->lock);
7835b98b 2836
e9d2b064 2837 perf_event_task_tick();
e220d2dc 2838
e418e1c2 2839#ifdef CONFIG_SMP
6eb57e0d 2840 rq->idle_balance = idle_cpu(cpu);
7caff66f 2841 trigger_load_balance(rq);
e418e1c2 2842#endif
265f22a9 2843 rq_last_tick_reset(rq);
1da177e4
LT
2844}
2845
265f22a9
FW
2846#ifdef CONFIG_NO_HZ_FULL
2847/**
2848 * scheduler_tick_max_deferment
2849 *
2850 * Keep at least one tick per second when a single
2851 * active task is running because the scheduler doesn't
2852 * yet completely support full dynticks environment.
2853 *
2854 * This makes sure that uptime, CFS vruntime, load
2855 * balancing, etc... continue to move forward, even
2856 * with a very low granularity.
e69f6186
YB
2857 *
2858 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2859 */
2860u64 scheduler_tick_max_deferment(void)
2861{
2862 struct rq *rq = this_rq();
316c1608 2863 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2864
2865 next = rq->last_sched_tick + HZ;
2866
2867 if (time_before_eq(next, now))
2868 return 0;
2869
8fe8ff09 2870 return jiffies_to_nsecs(next - now);
1da177e4 2871}
265f22a9 2872#endif
1da177e4 2873
132380a0 2874notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2875{
2876 if (in_lock_functions(addr)) {
2877 addr = CALLER_ADDR2;
2878 if (in_lock_functions(addr))
2879 addr = CALLER_ADDR3;
2880 }
2881 return addr;
2882}
1da177e4 2883
7e49fcce
SR
2884#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2885 defined(CONFIG_PREEMPT_TRACER))
2886
edafe3a5 2887void preempt_count_add(int val)
1da177e4 2888{
6cd8a4bb 2889#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2890 /*
2891 * Underflow?
2892 */
9a11b49a
IM
2893 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2894 return;
6cd8a4bb 2895#endif
bdb43806 2896 __preempt_count_add(val);
6cd8a4bb 2897#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2898 /*
2899 * Spinlock count overflowing soon?
2900 */
33859f7f
MOS
2901 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2902 PREEMPT_MASK - 10);
6cd8a4bb 2903#endif
8f47b187
TG
2904 if (preempt_count() == val) {
2905 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2906#ifdef CONFIG_DEBUG_PREEMPT
2907 current->preempt_disable_ip = ip;
2908#endif
2909 trace_preempt_off(CALLER_ADDR0, ip);
2910 }
1da177e4 2911}
bdb43806 2912EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2913NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2914
edafe3a5 2915void preempt_count_sub(int val)
1da177e4 2916{
6cd8a4bb 2917#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2918 /*
2919 * Underflow?
2920 */
01e3eb82 2921 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2922 return;
1da177e4
LT
2923 /*
2924 * Is the spinlock portion underflowing?
2925 */
9a11b49a
IM
2926 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2927 !(preempt_count() & PREEMPT_MASK)))
2928 return;
6cd8a4bb 2929#endif
9a11b49a 2930
6cd8a4bb
SR
2931 if (preempt_count() == val)
2932 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2933 __preempt_count_sub(val);
1da177e4 2934}
bdb43806 2935EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2936NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2937
2938#endif
2939
2940/*
dd41f596 2941 * Print scheduling while atomic bug:
1da177e4 2942 */
dd41f596 2943static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2944{
664dfa65
DJ
2945 if (oops_in_progress)
2946 return;
2947
3df0fc5b
PZ
2948 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2949 prev->comm, prev->pid, preempt_count());
838225b4 2950
dd41f596 2951 debug_show_held_locks(prev);
e21f5b15 2952 print_modules();
dd41f596
IM
2953 if (irqs_disabled())
2954 print_irqtrace_events(prev);
8f47b187
TG
2955#ifdef CONFIG_DEBUG_PREEMPT
2956 if (in_atomic_preempt_off()) {
2957 pr_err("Preemption disabled at:");
2958 print_ip_sym(current->preempt_disable_ip);
2959 pr_cont("\n");
2960 }
2961#endif
6135fc1e 2962 dump_stack();
373d4d09 2963 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2964}
1da177e4 2965
dd41f596
IM
2966/*
2967 * Various schedule()-time debugging checks and statistics:
2968 */
2969static inline void schedule_debug(struct task_struct *prev)
2970{
0d9e2632
AT
2971#ifdef CONFIG_SCHED_STACK_END_CHECK
2972 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2973#endif
b99def8b 2974
1dc0fffc 2975 if (unlikely(in_atomic_preempt_off())) {
dd41f596 2976 __schedule_bug(prev);
1dc0fffc
PZ
2977 preempt_count_set(PREEMPT_DISABLED);
2978 }
b3fbab05 2979 rcu_sleep_check();
dd41f596 2980
1da177e4
LT
2981 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2982
2d72376b 2983 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2984}
2985
2986/*
2987 * Pick up the highest-prio task:
2988 */
2989static inline struct task_struct *
606dba2e 2990pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2991{
37e117c0 2992 const struct sched_class *class = &fair_sched_class;
dd41f596 2993 struct task_struct *p;
1da177e4
LT
2994
2995 /*
dd41f596
IM
2996 * Optimization: we know that if all tasks are in
2997 * the fair class we can call that function directly:
1da177e4 2998 */
37e117c0 2999 if (likely(prev->sched_class == class &&
38033c37 3000 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3001 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3002 if (unlikely(p == RETRY_TASK))
3003 goto again;
3004
3005 /* assumes fair_sched_class->next == idle_sched_class */
3006 if (unlikely(!p))
3007 p = idle_sched_class.pick_next_task(rq, prev);
3008
3009 return p;
1da177e4
LT
3010 }
3011
37e117c0 3012again:
34f971f6 3013 for_each_class(class) {
606dba2e 3014 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3015 if (p) {
3016 if (unlikely(p == RETRY_TASK))
3017 goto again;
dd41f596 3018 return p;
37e117c0 3019 }
dd41f596 3020 }
34f971f6
PZ
3021
3022 BUG(); /* the idle class will always have a runnable task */
dd41f596 3023}
1da177e4 3024
dd41f596 3025/*
c259e01a 3026 * __schedule() is the main scheduler function.
edde96ea
PE
3027 *
3028 * The main means of driving the scheduler and thus entering this function are:
3029 *
3030 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3031 *
3032 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3033 * paths. For example, see arch/x86/entry_64.S.
3034 *
3035 * To drive preemption between tasks, the scheduler sets the flag in timer
3036 * interrupt handler scheduler_tick().
3037 *
3038 * 3. Wakeups don't really cause entry into schedule(). They add a
3039 * task to the run-queue and that's it.
3040 *
3041 * Now, if the new task added to the run-queue preempts the current
3042 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3043 * called on the nearest possible occasion:
3044 *
3045 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3046 *
3047 * - in syscall or exception context, at the next outmost
3048 * preempt_enable(). (this might be as soon as the wake_up()'s
3049 * spin_unlock()!)
3050 *
3051 * - in IRQ context, return from interrupt-handler to
3052 * preemptible context
3053 *
3054 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3055 * then at the next:
3056 *
3057 * - cond_resched() call
3058 * - explicit schedule() call
3059 * - return from syscall or exception to user-space
3060 * - return from interrupt-handler to user-space
bfd9b2b5 3061 *
b30f0e3f 3062 * WARNING: must be called with preemption disabled!
dd41f596 3063 */
499d7955 3064static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3065{
3066 struct task_struct *prev, *next;
67ca7bde 3067 unsigned long *switch_count;
dd41f596 3068 struct rq *rq;
31656519 3069 int cpu;
dd41f596 3070
dd41f596
IM
3071 cpu = smp_processor_id();
3072 rq = cpu_rq(cpu);
38200cf2 3073 rcu_note_context_switch();
dd41f596 3074 prev = rq->curr;
dd41f596 3075
b99def8b
PZ
3076 /*
3077 * do_exit() calls schedule() with preemption disabled as an exception;
3078 * however we must fix that up, otherwise the next task will see an
3079 * inconsistent (higher) preempt count.
3080 *
3081 * It also avoids the below schedule_debug() test from complaining
3082 * about this.
3083 */
3084 if (unlikely(prev->state == TASK_DEAD))
3085 preempt_enable_no_resched_notrace();
3086
dd41f596 3087 schedule_debug(prev);
1da177e4 3088
31656519 3089 if (sched_feat(HRTICK))
f333fdc9 3090 hrtick_clear(rq);
8f4d37ec 3091
e0acd0a6
ON
3092 /*
3093 * Make sure that signal_pending_state()->signal_pending() below
3094 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3095 * done by the caller to avoid the race with signal_wake_up().
3096 */
3097 smp_mb__before_spinlock();
05fa785c 3098 raw_spin_lock_irq(&rq->lock);
cbce1a68 3099 lockdep_pin_lock(&rq->lock);
1da177e4 3100
9edfbfed
PZ
3101 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3102
246d86b5 3103 switch_count = &prev->nivcsw;
fc13aeba 3104 if (!preempt && prev->state) {
21aa9af0 3105 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3106 prev->state = TASK_RUNNING;
21aa9af0 3107 } else {
2acca55e
PZ
3108 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3109 prev->on_rq = 0;
3110
21aa9af0 3111 /*
2acca55e
PZ
3112 * If a worker went to sleep, notify and ask workqueue
3113 * whether it wants to wake up a task to maintain
3114 * concurrency.
21aa9af0
TH
3115 */
3116 if (prev->flags & PF_WQ_WORKER) {
3117 struct task_struct *to_wakeup;
3118
3119 to_wakeup = wq_worker_sleeping(prev, cpu);
3120 if (to_wakeup)
3121 try_to_wake_up_local(to_wakeup);
3122 }
21aa9af0 3123 }
dd41f596 3124 switch_count = &prev->nvcsw;
1da177e4
LT
3125 }
3126
9edfbfed 3127 if (task_on_rq_queued(prev))
606dba2e
PZ
3128 update_rq_clock(rq);
3129
3130 next = pick_next_task(rq, prev);
f26f9aff 3131 clear_tsk_need_resched(prev);
f27dde8d 3132 clear_preempt_need_resched();
9edfbfed 3133 rq->clock_skip_update = 0;
1da177e4 3134
1da177e4 3135 if (likely(prev != next)) {
1da177e4
LT
3136 rq->nr_switches++;
3137 rq->curr = next;
3138 ++*switch_count;
3139
c73464b1 3140 trace_sched_switch(preempt, prev, next);
dfa50b60
ON
3141 rq = context_switch(rq, prev, next); /* unlocks the rq */
3142 cpu = cpu_of(rq);
cbce1a68
PZ
3143 } else {
3144 lockdep_unpin_lock(&rq->lock);
05fa785c 3145 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3146 }
1da177e4 3147
e3fca9e7 3148 balance_callback(rq);
1da177e4 3149}
c259e01a 3150
9c40cef2
TG
3151static inline void sched_submit_work(struct task_struct *tsk)
3152{
3c7d5184 3153 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3154 return;
3155 /*
3156 * If we are going to sleep and we have plugged IO queued,
3157 * make sure to submit it to avoid deadlocks.
3158 */
3159 if (blk_needs_flush_plug(tsk))
3160 blk_schedule_flush_plug(tsk);
3161}
3162
722a9f92 3163asmlinkage __visible void __sched schedule(void)
c259e01a 3164{
9c40cef2
TG
3165 struct task_struct *tsk = current;
3166
3167 sched_submit_work(tsk);
bfd9b2b5 3168 do {
b30f0e3f 3169 preempt_disable();
fc13aeba 3170 __schedule(false);
b30f0e3f 3171 sched_preempt_enable_no_resched();
bfd9b2b5 3172 } while (need_resched());
c259e01a 3173}
1da177e4
LT
3174EXPORT_SYMBOL(schedule);
3175
91d1aa43 3176#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3177asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3178{
3179 /*
3180 * If we come here after a random call to set_need_resched(),
3181 * or we have been woken up remotely but the IPI has not yet arrived,
3182 * we haven't yet exited the RCU idle mode. Do it here manually until
3183 * we find a better solution.
7cc78f8f
AL
3184 *
3185 * NB: There are buggy callers of this function. Ideally we
c467ea76 3186 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3187 * too frequently to make sense yet.
20ab65e3 3188 */
7cc78f8f 3189 enum ctx_state prev_state = exception_enter();
20ab65e3 3190 schedule();
7cc78f8f 3191 exception_exit(prev_state);
20ab65e3
FW
3192}
3193#endif
3194
c5491ea7
TG
3195/**
3196 * schedule_preempt_disabled - called with preemption disabled
3197 *
3198 * Returns with preemption disabled. Note: preempt_count must be 1
3199 */
3200void __sched schedule_preempt_disabled(void)
3201{
ba74c144 3202 sched_preempt_enable_no_resched();
c5491ea7
TG
3203 schedule();
3204 preempt_disable();
3205}
3206
06b1f808 3207static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3208{
3209 do {
499d7955 3210 preempt_disable_notrace();
fc13aeba 3211 __schedule(true);
499d7955 3212 preempt_enable_no_resched_notrace();
a18b5d01
FW
3213
3214 /*
3215 * Check again in case we missed a preemption opportunity
3216 * between schedule and now.
3217 */
a18b5d01
FW
3218 } while (need_resched());
3219}
3220
1da177e4
LT
3221#ifdef CONFIG_PREEMPT
3222/*
2ed6e34f 3223 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3224 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3225 * occur there and call schedule directly.
3226 */
722a9f92 3227asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3228{
1da177e4
LT
3229 /*
3230 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3231 * we do not want to preempt the current task. Just return..
1da177e4 3232 */
fbb00b56 3233 if (likely(!preemptible()))
1da177e4
LT
3234 return;
3235
a18b5d01 3236 preempt_schedule_common();
1da177e4 3237}
376e2424 3238NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3239EXPORT_SYMBOL(preempt_schedule);
009f60e2 3240
009f60e2 3241/**
4eaca0a8 3242 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3243 *
3244 * The tracing infrastructure uses preempt_enable_notrace to prevent
3245 * recursion and tracing preempt enabling caused by the tracing
3246 * infrastructure itself. But as tracing can happen in areas coming
3247 * from userspace or just about to enter userspace, a preempt enable
3248 * can occur before user_exit() is called. This will cause the scheduler
3249 * to be called when the system is still in usermode.
3250 *
3251 * To prevent this, the preempt_enable_notrace will use this function
3252 * instead of preempt_schedule() to exit user context if needed before
3253 * calling the scheduler.
3254 */
4eaca0a8 3255asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3256{
3257 enum ctx_state prev_ctx;
3258
3259 if (likely(!preemptible()))
3260 return;
3261
3262 do {
3d8f74dd 3263 preempt_disable_notrace();
009f60e2
ON
3264 /*
3265 * Needs preempt disabled in case user_exit() is traced
3266 * and the tracer calls preempt_enable_notrace() causing
3267 * an infinite recursion.
3268 */
3269 prev_ctx = exception_enter();
fc13aeba 3270 __schedule(true);
009f60e2
ON
3271 exception_exit(prev_ctx);
3272
3d8f74dd 3273 preempt_enable_no_resched_notrace();
009f60e2
ON
3274 } while (need_resched());
3275}
4eaca0a8 3276EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3277
32e475d7 3278#endif /* CONFIG_PREEMPT */
1da177e4
LT
3279
3280/*
2ed6e34f 3281 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3282 * off of irq context.
3283 * Note, that this is called and return with irqs disabled. This will
3284 * protect us against recursive calling from irq.
3285 */
722a9f92 3286asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3287{
b22366cd 3288 enum ctx_state prev_state;
6478d880 3289
2ed6e34f 3290 /* Catch callers which need to be fixed */
f27dde8d 3291 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3292
b22366cd
FW
3293 prev_state = exception_enter();
3294
3a5c359a 3295 do {
3d8f74dd 3296 preempt_disable();
3a5c359a 3297 local_irq_enable();
fc13aeba 3298 __schedule(true);
3a5c359a 3299 local_irq_disable();
3d8f74dd 3300 sched_preempt_enable_no_resched();
5ed0cec0 3301 } while (need_resched());
b22366cd
FW
3302
3303 exception_exit(prev_state);
1da177e4
LT
3304}
3305
63859d4f 3306int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3307 void *key)
1da177e4 3308{
63859d4f 3309 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3310}
1da177e4
LT
3311EXPORT_SYMBOL(default_wake_function);
3312
b29739f9
IM
3313#ifdef CONFIG_RT_MUTEXES
3314
3315/*
3316 * rt_mutex_setprio - set the current priority of a task
3317 * @p: task
3318 * @prio: prio value (kernel-internal form)
3319 *
3320 * This function changes the 'effective' priority of a task. It does
3321 * not touch ->normal_prio like __setscheduler().
3322 *
c365c292
TG
3323 * Used by the rt_mutex code to implement priority inheritance
3324 * logic. Call site only calls if the priority of the task changed.
b29739f9 3325 */
36c8b586 3326void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3327{
da0c1e65 3328 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3329 struct rq *rq;
83ab0aa0 3330 const struct sched_class *prev_class;
b29739f9 3331
aab03e05 3332 BUG_ON(prio > MAX_PRIO);
b29739f9 3333
0122ec5b 3334 rq = __task_rq_lock(p);
b29739f9 3335
1c4dd99b
TG
3336 /*
3337 * Idle task boosting is a nono in general. There is one
3338 * exception, when PREEMPT_RT and NOHZ is active:
3339 *
3340 * The idle task calls get_next_timer_interrupt() and holds
3341 * the timer wheel base->lock on the CPU and another CPU wants
3342 * to access the timer (probably to cancel it). We can safely
3343 * ignore the boosting request, as the idle CPU runs this code
3344 * with interrupts disabled and will complete the lock
3345 * protected section without being interrupted. So there is no
3346 * real need to boost.
3347 */
3348 if (unlikely(p == rq->idle)) {
3349 WARN_ON(p != rq->curr);
3350 WARN_ON(p->pi_blocked_on);
3351 goto out_unlock;
3352 }
3353
a8027073 3354 trace_sched_pi_setprio(p, prio);
d5f9f942 3355 oldprio = p->prio;
83ab0aa0 3356 prev_class = p->sched_class;
da0c1e65 3357 queued = task_on_rq_queued(p);
051a1d1a 3358 running = task_current(rq, p);
da0c1e65 3359 if (queued)
69be72c1 3360 dequeue_task(rq, p, 0);
0e1f3483 3361 if (running)
f3cd1c4e 3362 put_prev_task(rq, p);
dd41f596 3363
2d3d891d
DF
3364 /*
3365 * Boosting condition are:
3366 * 1. -rt task is running and holds mutex A
3367 * --> -dl task blocks on mutex A
3368 *
3369 * 2. -dl task is running and holds mutex A
3370 * --> -dl task blocks on mutex A and could preempt the
3371 * running task
3372 */
3373 if (dl_prio(prio)) {
466af29b
ON
3374 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3375 if (!dl_prio(p->normal_prio) ||
3376 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3377 p->dl.dl_boosted = 1;
2d3d891d
DF
3378 enqueue_flag = ENQUEUE_REPLENISH;
3379 } else
3380 p->dl.dl_boosted = 0;
aab03e05 3381 p->sched_class = &dl_sched_class;
2d3d891d
DF
3382 } else if (rt_prio(prio)) {
3383 if (dl_prio(oldprio))
3384 p->dl.dl_boosted = 0;
3385 if (oldprio < prio)
3386 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3387 p->sched_class = &rt_sched_class;
2d3d891d
DF
3388 } else {
3389 if (dl_prio(oldprio))
3390 p->dl.dl_boosted = 0;
746db944
BS
3391 if (rt_prio(oldprio))
3392 p->rt.timeout = 0;
dd41f596 3393 p->sched_class = &fair_sched_class;
2d3d891d 3394 }
dd41f596 3395
b29739f9
IM
3396 p->prio = prio;
3397
0e1f3483
HS
3398 if (running)
3399 p->sched_class->set_curr_task(rq);
da0c1e65 3400 if (queued)
2d3d891d 3401 enqueue_task(rq, p, enqueue_flag);
cb469845 3402
da7a735e 3403 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3404out_unlock:
4c9a4bc8 3405 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3406 __task_rq_unlock(rq);
4c9a4bc8
PZ
3407
3408 balance_callback(rq);
3409 preempt_enable();
b29739f9 3410}
b29739f9 3411#endif
d50dde5a 3412
36c8b586 3413void set_user_nice(struct task_struct *p, long nice)
1da177e4 3414{
da0c1e65 3415 int old_prio, delta, queued;
1da177e4 3416 unsigned long flags;
70b97a7f 3417 struct rq *rq;
1da177e4 3418
75e45d51 3419 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3420 return;
3421 /*
3422 * We have to be careful, if called from sys_setpriority(),
3423 * the task might be in the middle of scheduling on another CPU.
3424 */
3425 rq = task_rq_lock(p, &flags);
3426 /*
3427 * The RT priorities are set via sched_setscheduler(), but we still
3428 * allow the 'normal' nice value to be set - but as expected
3429 * it wont have any effect on scheduling until the task is
aab03e05 3430 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3431 */
aab03e05 3432 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3433 p->static_prio = NICE_TO_PRIO(nice);
3434 goto out_unlock;
3435 }
da0c1e65
KT
3436 queued = task_on_rq_queued(p);
3437 if (queued)
69be72c1 3438 dequeue_task(rq, p, 0);
1da177e4 3439
1da177e4 3440 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3441 set_load_weight(p);
b29739f9
IM
3442 old_prio = p->prio;
3443 p->prio = effective_prio(p);
3444 delta = p->prio - old_prio;
1da177e4 3445
da0c1e65 3446 if (queued) {
371fd7e7 3447 enqueue_task(rq, p, 0);
1da177e4 3448 /*
d5f9f942
AM
3449 * If the task increased its priority or is running and
3450 * lowered its priority, then reschedule its CPU:
1da177e4 3451 */
d5f9f942 3452 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3453 resched_curr(rq);
1da177e4
LT
3454 }
3455out_unlock:
0122ec5b 3456 task_rq_unlock(rq, p, &flags);
1da177e4 3457}
1da177e4
LT
3458EXPORT_SYMBOL(set_user_nice);
3459
e43379f1
MM
3460/*
3461 * can_nice - check if a task can reduce its nice value
3462 * @p: task
3463 * @nice: nice value
3464 */
36c8b586 3465int can_nice(const struct task_struct *p, const int nice)
e43379f1 3466{
024f4747 3467 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3468 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3469
78d7d407 3470 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3471 capable(CAP_SYS_NICE));
3472}
3473
1da177e4
LT
3474#ifdef __ARCH_WANT_SYS_NICE
3475
3476/*
3477 * sys_nice - change the priority of the current process.
3478 * @increment: priority increment
3479 *
3480 * sys_setpriority is a more generic, but much slower function that
3481 * does similar things.
3482 */
5add95d4 3483SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3484{
48f24c4d 3485 long nice, retval;
1da177e4
LT
3486
3487 /*
3488 * Setpriority might change our priority at the same moment.
3489 * We don't have to worry. Conceptually one call occurs first
3490 * and we have a single winner.
3491 */
a9467fa3 3492 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3493 nice = task_nice(current) + increment;
1da177e4 3494
a9467fa3 3495 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3496 if (increment < 0 && !can_nice(current, nice))
3497 return -EPERM;
3498
1da177e4
LT
3499 retval = security_task_setnice(current, nice);
3500 if (retval)
3501 return retval;
3502
3503 set_user_nice(current, nice);
3504 return 0;
3505}
3506
3507#endif
3508
3509/**
3510 * task_prio - return the priority value of a given task.
3511 * @p: the task in question.
3512 *
e69f6186 3513 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3514 * RT tasks are offset by -200. Normal tasks are centered
3515 * around 0, value goes from -16 to +15.
3516 */
36c8b586 3517int task_prio(const struct task_struct *p)
1da177e4
LT
3518{
3519 return p->prio - MAX_RT_PRIO;
3520}
3521
1da177e4
LT
3522/**
3523 * idle_cpu - is a given cpu idle currently?
3524 * @cpu: the processor in question.
e69f6186
YB
3525 *
3526 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3527 */
3528int idle_cpu(int cpu)
3529{
908a3283
TG
3530 struct rq *rq = cpu_rq(cpu);
3531
3532 if (rq->curr != rq->idle)
3533 return 0;
3534
3535 if (rq->nr_running)
3536 return 0;
3537
3538#ifdef CONFIG_SMP
3539 if (!llist_empty(&rq->wake_list))
3540 return 0;
3541#endif
3542
3543 return 1;
1da177e4
LT
3544}
3545
1da177e4
LT
3546/**
3547 * idle_task - return the idle task for a given cpu.
3548 * @cpu: the processor in question.
e69f6186
YB
3549 *
3550 * Return: The idle task for the cpu @cpu.
1da177e4 3551 */
36c8b586 3552struct task_struct *idle_task(int cpu)
1da177e4
LT
3553{
3554 return cpu_rq(cpu)->idle;
3555}
3556
3557/**
3558 * find_process_by_pid - find a process with a matching PID value.
3559 * @pid: the pid in question.
e69f6186
YB
3560 *
3561 * The task of @pid, if found. %NULL otherwise.
1da177e4 3562 */
a9957449 3563static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3564{
228ebcbe 3565 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3566}
3567
aab03e05
DF
3568/*
3569 * This function initializes the sched_dl_entity of a newly becoming
3570 * SCHED_DEADLINE task.
3571 *
3572 * Only the static values are considered here, the actual runtime and the
3573 * absolute deadline will be properly calculated when the task is enqueued
3574 * for the first time with its new policy.
3575 */
3576static void
3577__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3578{
3579 struct sched_dl_entity *dl_se = &p->dl;
3580
aab03e05
DF
3581 dl_se->dl_runtime = attr->sched_runtime;
3582 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3583 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3584 dl_se->flags = attr->sched_flags;
332ac17e 3585 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3586
3587 /*
3588 * Changing the parameters of a task is 'tricky' and we're not doing
3589 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3590 *
3591 * What we SHOULD do is delay the bandwidth release until the 0-lag
3592 * point. This would include retaining the task_struct until that time
3593 * and change dl_overflow() to not immediately decrement the current
3594 * amount.
3595 *
3596 * Instead we retain the current runtime/deadline and let the new
3597 * parameters take effect after the current reservation period lapses.
3598 * This is safe (albeit pessimistic) because the 0-lag point is always
3599 * before the current scheduling deadline.
3600 *
3601 * We can still have temporary overloads because we do not delay the
3602 * change in bandwidth until that time; so admission control is
3603 * not on the safe side. It does however guarantee tasks will never
3604 * consume more than promised.
3605 */
aab03e05
DF
3606}
3607
c13db6b1
SR
3608/*
3609 * sched_setparam() passes in -1 for its policy, to let the functions
3610 * it calls know not to change it.
3611 */
3612#define SETPARAM_POLICY -1
3613
c365c292
TG
3614static void __setscheduler_params(struct task_struct *p,
3615 const struct sched_attr *attr)
1da177e4 3616{
d50dde5a
DF
3617 int policy = attr->sched_policy;
3618
c13db6b1 3619 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3620 policy = p->policy;
3621
1da177e4 3622 p->policy = policy;
d50dde5a 3623
aab03e05
DF
3624 if (dl_policy(policy))
3625 __setparam_dl(p, attr);
39fd8fd2 3626 else if (fair_policy(policy))
d50dde5a
DF
3627 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3628
39fd8fd2
PZ
3629 /*
3630 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3631 * !rt_policy. Always setting this ensures that things like
3632 * getparam()/getattr() don't report silly values for !rt tasks.
3633 */
3634 p->rt_priority = attr->sched_priority;
383afd09 3635 p->normal_prio = normal_prio(p);
c365c292
TG
3636 set_load_weight(p);
3637}
39fd8fd2 3638
c365c292
TG
3639/* Actually do priority change: must hold pi & rq lock. */
3640static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3641 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3642{
3643 __setscheduler_params(p, attr);
d50dde5a 3644
383afd09 3645 /*
0782e63b
TG
3646 * Keep a potential priority boosting if called from
3647 * sched_setscheduler().
383afd09 3648 */
0782e63b
TG
3649 if (keep_boost)
3650 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3651 else
3652 p->prio = normal_prio(p);
383afd09 3653
aab03e05
DF
3654 if (dl_prio(p->prio))
3655 p->sched_class = &dl_sched_class;
3656 else if (rt_prio(p->prio))
ffd44db5
PZ
3657 p->sched_class = &rt_sched_class;
3658 else
3659 p->sched_class = &fair_sched_class;
1da177e4 3660}
aab03e05
DF
3661
3662static void
3663__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3664{
3665 struct sched_dl_entity *dl_se = &p->dl;
3666
3667 attr->sched_priority = p->rt_priority;
3668 attr->sched_runtime = dl_se->dl_runtime;
3669 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3670 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3671 attr->sched_flags = dl_se->flags;
3672}
3673
3674/*
3675 * This function validates the new parameters of a -deadline task.
3676 * We ask for the deadline not being zero, and greater or equal
755378a4 3677 * than the runtime, as well as the period of being zero or
332ac17e 3678 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3679 * user parameters are above the internal resolution of 1us (we
3680 * check sched_runtime only since it is always the smaller one) and
3681 * below 2^63 ns (we have to check both sched_deadline and
3682 * sched_period, as the latter can be zero).
aab03e05
DF
3683 */
3684static bool
3685__checkparam_dl(const struct sched_attr *attr)
3686{
b0827819
JL
3687 /* deadline != 0 */
3688 if (attr->sched_deadline == 0)
3689 return false;
3690
3691 /*
3692 * Since we truncate DL_SCALE bits, make sure we're at least
3693 * that big.
3694 */
3695 if (attr->sched_runtime < (1ULL << DL_SCALE))
3696 return false;
3697
3698 /*
3699 * Since we use the MSB for wrap-around and sign issues, make
3700 * sure it's not set (mind that period can be equal to zero).
3701 */
3702 if (attr->sched_deadline & (1ULL << 63) ||
3703 attr->sched_period & (1ULL << 63))
3704 return false;
3705
3706 /* runtime <= deadline <= period (if period != 0) */
3707 if ((attr->sched_period != 0 &&
3708 attr->sched_period < attr->sched_deadline) ||
3709 attr->sched_deadline < attr->sched_runtime)
3710 return false;
3711
3712 return true;
aab03e05
DF
3713}
3714
c69e8d9c
DH
3715/*
3716 * check the target process has a UID that matches the current process's
3717 */
3718static bool check_same_owner(struct task_struct *p)
3719{
3720 const struct cred *cred = current_cred(), *pcred;
3721 bool match;
3722
3723 rcu_read_lock();
3724 pcred = __task_cred(p);
9c806aa0
EB
3725 match = (uid_eq(cred->euid, pcred->euid) ||
3726 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3727 rcu_read_unlock();
3728 return match;
3729}
3730
75381608
WL
3731static bool dl_param_changed(struct task_struct *p,
3732 const struct sched_attr *attr)
3733{
3734 struct sched_dl_entity *dl_se = &p->dl;
3735
3736 if (dl_se->dl_runtime != attr->sched_runtime ||
3737 dl_se->dl_deadline != attr->sched_deadline ||
3738 dl_se->dl_period != attr->sched_period ||
3739 dl_se->flags != attr->sched_flags)
3740 return true;
3741
3742 return false;
3743}
3744
d50dde5a
DF
3745static int __sched_setscheduler(struct task_struct *p,
3746 const struct sched_attr *attr,
dbc7f069 3747 bool user, bool pi)
1da177e4 3748{
383afd09
SR
3749 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3750 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3751 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3752 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3753 unsigned long flags;
83ab0aa0 3754 const struct sched_class *prev_class;
70b97a7f 3755 struct rq *rq;
ca94c442 3756 int reset_on_fork;
1da177e4 3757
66e5393a
SR
3758 /* may grab non-irq protected spin_locks */
3759 BUG_ON(in_interrupt());
1da177e4
LT
3760recheck:
3761 /* double check policy once rq lock held */
ca94c442
LP
3762 if (policy < 0) {
3763 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3764 policy = oldpolicy = p->policy;
ca94c442 3765 } else {
7479f3c9 3766 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3767
20f9cd2a 3768 if (!valid_policy(policy))
ca94c442
LP
3769 return -EINVAL;
3770 }
3771
7479f3c9
PZ
3772 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3773 return -EINVAL;
3774
1da177e4
LT
3775 /*
3776 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3777 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3778 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3779 */
0bb040a4 3780 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3781 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3782 return -EINVAL;
aab03e05
DF
3783 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3784 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3785 return -EINVAL;
3786
37e4ab3f
OC
3787 /*
3788 * Allow unprivileged RT tasks to decrease priority:
3789 */
961ccddd 3790 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3791 if (fair_policy(policy)) {
d0ea0268 3792 if (attr->sched_nice < task_nice(p) &&
eaad4513 3793 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3794 return -EPERM;
3795 }
3796
e05606d3 3797 if (rt_policy(policy)) {
a44702e8
ON
3798 unsigned long rlim_rtprio =
3799 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3800
3801 /* can't set/change the rt policy */
3802 if (policy != p->policy && !rlim_rtprio)
3803 return -EPERM;
3804
3805 /* can't increase priority */
d50dde5a
DF
3806 if (attr->sched_priority > p->rt_priority &&
3807 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3808 return -EPERM;
3809 }
c02aa73b 3810
d44753b8
JL
3811 /*
3812 * Can't set/change SCHED_DEADLINE policy at all for now
3813 * (safest behavior); in the future we would like to allow
3814 * unprivileged DL tasks to increase their relative deadline
3815 * or reduce their runtime (both ways reducing utilization)
3816 */
3817 if (dl_policy(policy))
3818 return -EPERM;
3819
dd41f596 3820 /*
c02aa73b
DH
3821 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3822 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3823 */
20f9cd2a 3824 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3825 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3826 return -EPERM;
3827 }
5fe1d75f 3828
37e4ab3f 3829 /* can't change other user's priorities */
c69e8d9c 3830 if (!check_same_owner(p))
37e4ab3f 3831 return -EPERM;
ca94c442
LP
3832
3833 /* Normal users shall not reset the sched_reset_on_fork flag */
3834 if (p->sched_reset_on_fork && !reset_on_fork)
3835 return -EPERM;
37e4ab3f 3836 }
1da177e4 3837
725aad24 3838 if (user) {
b0ae1981 3839 retval = security_task_setscheduler(p);
725aad24
JF
3840 if (retval)
3841 return retval;
3842 }
3843
b29739f9
IM
3844 /*
3845 * make sure no PI-waiters arrive (or leave) while we are
3846 * changing the priority of the task:
0122ec5b 3847 *
25985edc 3848 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3849 * runqueue lock must be held.
3850 */
0122ec5b 3851 rq = task_rq_lock(p, &flags);
dc61b1d6 3852
34f971f6
PZ
3853 /*
3854 * Changing the policy of the stop threads its a very bad idea
3855 */
3856 if (p == rq->stop) {
0122ec5b 3857 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3858 return -EINVAL;
3859 }
3860
a51e9198 3861 /*
d6b1e911
TG
3862 * If not changing anything there's no need to proceed further,
3863 * but store a possible modification of reset_on_fork.
a51e9198 3864 */
d50dde5a 3865 if (unlikely(policy == p->policy)) {
d0ea0268 3866 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3867 goto change;
3868 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3869 goto change;
75381608 3870 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3871 goto change;
d50dde5a 3872
d6b1e911 3873 p->sched_reset_on_fork = reset_on_fork;
45afb173 3874 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3875 return 0;
3876 }
d50dde5a 3877change:
a51e9198 3878
dc61b1d6 3879 if (user) {
332ac17e 3880#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3881 /*
3882 * Do not allow realtime tasks into groups that have no runtime
3883 * assigned.
3884 */
3885 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3886 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3887 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3888 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3889 return -EPERM;
3890 }
dc61b1d6 3891#endif
332ac17e
DF
3892#ifdef CONFIG_SMP
3893 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3894 cpumask_t *span = rq->rd->span;
332ac17e
DF
3895
3896 /*
3897 * Don't allow tasks with an affinity mask smaller than
3898 * the entire root_domain to become SCHED_DEADLINE. We
3899 * will also fail if there's no bandwidth available.
3900 */
e4099a5e
PZ
3901 if (!cpumask_subset(span, &p->cpus_allowed) ||
3902 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3903 task_rq_unlock(rq, p, &flags);
3904 return -EPERM;
3905 }
3906 }
3907#endif
3908 }
dc61b1d6 3909
1da177e4
LT
3910 /* recheck policy now with rq lock held */
3911 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3912 policy = oldpolicy = -1;
0122ec5b 3913 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3914 goto recheck;
3915 }
332ac17e
DF
3916
3917 /*
3918 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3919 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3920 * is available.
3921 */
e4099a5e 3922 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3923 task_rq_unlock(rq, p, &flags);
3924 return -EBUSY;
3925 }
3926
c365c292
TG
3927 p->sched_reset_on_fork = reset_on_fork;
3928 oldprio = p->prio;
3929
dbc7f069
PZ
3930 if (pi) {
3931 /*
3932 * Take priority boosted tasks into account. If the new
3933 * effective priority is unchanged, we just store the new
3934 * normal parameters and do not touch the scheduler class and
3935 * the runqueue. This will be done when the task deboost
3936 * itself.
3937 */
3938 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3939 if (new_effective_prio == oldprio) {
3940 __setscheduler_params(p, attr);
3941 task_rq_unlock(rq, p, &flags);
3942 return 0;
3943 }
c365c292
TG
3944 }
3945
da0c1e65 3946 queued = task_on_rq_queued(p);
051a1d1a 3947 running = task_current(rq, p);
da0c1e65 3948 if (queued)
4ca9b72b 3949 dequeue_task(rq, p, 0);
0e1f3483 3950 if (running)
f3cd1c4e 3951 put_prev_task(rq, p);
f6b53205 3952
83ab0aa0 3953 prev_class = p->sched_class;
dbc7f069 3954 __setscheduler(rq, p, attr, pi);
f6b53205 3955
0e1f3483
HS
3956 if (running)
3957 p->sched_class->set_curr_task(rq);
da0c1e65 3958 if (queued) {
81a44c54
TG
3959 /*
3960 * We enqueue to tail when the priority of a task is
3961 * increased (user space view).
3962 */
3963 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3964 }
cb469845 3965
da7a735e 3966 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3967 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3968 task_rq_unlock(rq, p, &flags);
b29739f9 3969
dbc7f069
PZ
3970 if (pi)
3971 rt_mutex_adjust_pi(p);
95e02ca9 3972
4c9a4bc8
PZ
3973 /*
3974 * Run balance callbacks after we've adjusted the PI chain.
3975 */
3976 balance_callback(rq);
3977 preempt_enable();
95e02ca9 3978
1da177e4
LT
3979 return 0;
3980}
961ccddd 3981
7479f3c9
PZ
3982static int _sched_setscheduler(struct task_struct *p, int policy,
3983 const struct sched_param *param, bool check)
3984{
3985 struct sched_attr attr = {
3986 .sched_policy = policy,
3987 .sched_priority = param->sched_priority,
3988 .sched_nice = PRIO_TO_NICE(p->static_prio),
3989 };
3990
c13db6b1
SR
3991 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3992 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3993 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3994 policy &= ~SCHED_RESET_ON_FORK;
3995 attr.sched_policy = policy;
3996 }
3997
dbc7f069 3998 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3999}
961ccddd
RR
4000/**
4001 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4002 * @p: the task in question.
4003 * @policy: new policy.
4004 * @param: structure containing the new RT priority.
4005 *
e69f6186
YB
4006 * Return: 0 on success. An error code otherwise.
4007 *
961ccddd
RR
4008 * NOTE that the task may be already dead.
4009 */
4010int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4011 const struct sched_param *param)
961ccddd 4012{
7479f3c9 4013 return _sched_setscheduler(p, policy, param, true);
961ccddd 4014}
1da177e4
LT
4015EXPORT_SYMBOL_GPL(sched_setscheduler);
4016
d50dde5a
DF
4017int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4018{
dbc7f069 4019 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4020}
4021EXPORT_SYMBOL_GPL(sched_setattr);
4022
961ccddd
RR
4023/**
4024 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4025 * @p: the task in question.
4026 * @policy: new policy.
4027 * @param: structure containing the new RT priority.
4028 *
4029 * Just like sched_setscheduler, only don't bother checking if the
4030 * current context has permission. For example, this is needed in
4031 * stop_machine(): we create temporary high priority worker threads,
4032 * but our caller might not have that capability.
e69f6186
YB
4033 *
4034 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4035 */
4036int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4037 const struct sched_param *param)
961ccddd 4038{
7479f3c9 4039 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
4040}
4041
95cdf3b7
IM
4042static int
4043do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4044{
1da177e4
LT
4045 struct sched_param lparam;
4046 struct task_struct *p;
36c8b586 4047 int retval;
1da177e4
LT
4048
4049 if (!param || pid < 0)
4050 return -EINVAL;
4051 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4052 return -EFAULT;
5fe1d75f
ON
4053
4054 rcu_read_lock();
4055 retval = -ESRCH;
1da177e4 4056 p = find_process_by_pid(pid);
5fe1d75f
ON
4057 if (p != NULL)
4058 retval = sched_setscheduler(p, policy, &lparam);
4059 rcu_read_unlock();
36c8b586 4060
1da177e4
LT
4061 return retval;
4062}
4063
d50dde5a
DF
4064/*
4065 * Mimics kernel/events/core.c perf_copy_attr().
4066 */
4067static int sched_copy_attr(struct sched_attr __user *uattr,
4068 struct sched_attr *attr)
4069{
4070 u32 size;
4071 int ret;
4072
4073 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4074 return -EFAULT;
4075
4076 /*
4077 * zero the full structure, so that a short copy will be nice.
4078 */
4079 memset(attr, 0, sizeof(*attr));
4080
4081 ret = get_user(size, &uattr->size);
4082 if (ret)
4083 return ret;
4084
4085 if (size > PAGE_SIZE) /* silly large */
4086 goto err_size;
4087
4088 if (!size) /* abi compat */
4089 size = SCHED_ATTR_SIZE_VER0;
4090
4091 if (size < SCHED_ATTR_SIZE_VER0)
4092 goto err_size;
4093
4094 /*
4095 * If we're handed a bigger struct than we know of,
4096 * ensure all the unknown bits are 0 - i.e. new
4097 * user-space does not rely on any kernel feature
4098 * extensions we dont know about yet.
4099 */
4100 if (size > sizeof(*attr)) {
4101 unsigned char __user *addr;
4102 unsigned char __user *end;
4103 unsigned char val;
4104
4105 addr = (void __user *)uattr + sizeof(*attr);
4106 end = (void __user *)uattr + size;
4107
4108 for (; addr < end; addr++) {
4109 ret = get_user(val, addr);
4110 if (ret)
4111 return ret;
4112 if (val)
4113 goto err_size;
4114 }
4115 size = sizeof(*attr);
4116 }
4117
4118 ret = copy_from_user(attr, uattr, size);
4119 if (ret)
4120 return -EFAULT;
4121
4122 /*
4123 * XXX: do we want to be lenient like existing syscalls; or do we want
4124 * to be strict and return an error on out-of-bounds values?
4125 */
75e45d51 4126 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4127
e78c7bca 4128 return 0;
d50dde5a
DF
4129
4130err_size:
4131 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4132 return -E2BIG;
d50dde5a
DF
4133}
4134
1da177e4
LT
4135/**
4136 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4137 * @pid: the pid in question.
4138 * @policy: new policy.
4139 * @param: structure containing the new RT priority.
e69f6186
YB
4140 *
4141 * Return: 0 on success. An error code otherwise.
1da177e4 4142 */
5add95d4
HC
4143SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4144 struct sched_param __user *, param)
1da177e4 4145{
c21761f1
JB
4146 /* negative values for policy are not valid */
4147 if (policy < 0)
4148 return -EINVAL;
4149
1da177e4
LT
4150 return do_sched_setscheduler(pid, policy, param);
4151}
4152
4153/**
4154 * sys_sched_setparam - set/change the RT priority of a thread
4155 * @pid: the pid in question.
4156 * @param: structure containing the new RT priority.
e69f6186
YB
4157 *
4158 * Return: 0 on success. An error code otherwise.
1da177e4 4159 */
5add95d4 4160SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4161{
c13db6b1 4162 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4163}
4164
d50dde5a
DF
4165/**
4166 * sys_sched_setattr - same as above, but with extended sched_attr
4167 * @pid: the pid in question.
5778fccf 4168 * @uattr: structure containing the extended parameters.
db66d756 4169 * @flags: for future extension.
d50dde5a 4170 */
6d35ab48
PZ
4171SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4172 unsigned int, flags)
d50dde5a
DF
4173{
4174 struct sched_attr attr;
4175 struct task_struct *p;
4176 int retval;
4177
6d35ab48 4178 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4179 return -EINVAL;
4180
143cf23d
MK
4181 retval = sched_copy_attr(uattr, &attr);
4182 if (retval)
4183 return retval;
d50dde5a 4184
b14ed2c2 4185 if ((int)attr.sched_policy < 0)
dbdb2275 4186 return -EINVAL;
d50dde5a
DF
4187
4188 rcu_read_lock();
4189 retval = -ESRCH;
4190 p = find_process_by_pid(pid);
4191 if (p != NULL)
4192 retval = sched_setattr(p, &attr);
4193 rcu_read_unlock();
4194
4195 return retval;
4196}
4197
1da177e4
LT
4198/**
4199 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4200 * @pid: the pid in question.
e69f6186
YB
4201 *
4202 * Return: On success, the policy of the thread. Otherwise, a negative error
4203 * code.
1da177e4 4204 */
5add95d4 4205SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4206{
36c8b586 4207 struct task_struct *p;
3a5c359a 4208 int retval;
1da177e4
LT
4209
4210 if (pid < 0)
3a5c359a 4211 return -EINVAL;
1da177e4
LT
4212
4213 retval = -ESRCH;
5fe85be0 4214 rcu_read_lock();
1da177e4
LT
4215 p = find_process_by_pid(pid);
4216 if (p) {
4217 retval = security_task_getscheduler(p);
4218 if (!retval)
ca94c442
LP
4219 retval = p->policy
4220 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4221 }
5fe85be0 4222 rcu_read_unlock();
1da177e4
LT
4223 return retval;
4224}
4225
4226/**
ca94c442 4227 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4228 * @pid: the pid in question.
4229 * @param: structure containing the RT priority.
e69f6186
YB
4230 *
4231 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4232 * code.
1da177e4 4233 */
5add95d4 4234SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4235{
ce5f7f82 4236 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4237 struct task_struct *p;
3a5c359a 4238 int retval;
1da177e4
LT
4239
4240 if (!param || pid < 0)
3a5c359a 4241 return -EINVAL;
1da177e4 4242
5fe85be0 4243 rcu_read_lock();
1da177e4
LT
4244 p = find_process_by_pid(pid);
4245 retval = -ESRCH;
4246 if (!p)
4247 goto out_unlock;
4248
4249 retval = security_task_getscheduler(p);
4250 if (retval)
4251 goto out_unlock;
4252
ce5f7f82
PZ
4253 if (task_has_rt_policy(p))
4254 lp.sched_priority = p->rt_priority;
5fe85be0 4255 rcu_read_unlock();
1da177e4
LT
4256
4257 /*
4258 * This one might sleep, we cannot do it with a spinlock held ...
4259 */
4260 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4261
1da177e4
LT
4262 return retval;
4263
4264out_unlock:
5fe85be0 4265 rcu_read_unlock();
1da177e4
LT
4266 return retval;
4267}
4268
d50dde5a
DF
4269static int sched_read_attr(struct sched_attr __user *uattr,
4270 struct sched_attr *attr,
4271 unsigned int usize)
4272{
4273 int ret;
4274
4275 if (!access_ok(VERIFY_WRITE, uattr, usize))
4276 return -EFAULT;
4277
4278 /*
4279 * If we're handed a smaller struct than we know of,
4280 * ensure all the unknown bits are 0 - i.e. old
4281 * user-space does not get uncomplete information.
4282 */
4283 if (usize < sizeof(*attr)) {
4284 unsigned char *addr;
4285 unsigned char *end;
4286
4287 addr = (void *)attr + usize;
4288 end = (void *)attr + sizeof(*attr);
4289
4290 for (; addr < end; addr++) {
4291 if (*addr)
22400674 4292 return -EFBIG;
d50dde5a
DF
4293 }
4294
4295 attr->size = usize;
4296 }
4297
4efbc454 4298 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4299 if (ret)
4300 return -EFAULT;
4301
22400674 4302 return 0;
d50dde5a
DF
4303}
4304
4305/**
aab03e05 4306 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4307 * @pid: the pid in question.
5778fccf 4308 * @uattr: structure containing the extended parameters.
d50dde5a 4309 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4310 * @flags: for future extension.
d50dde5a 4311 */
6d35ab48
PZ
4312SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4313 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4314{
4315 struct sched_attr attr = {
4316 .size = sizeof(struct sched_attr),
4317 };
4318 struct task_struct *p;
4319 int retval;
4320
4321 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4322 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4323 return -EINVAL;
4324
4325 rcu_read_lock();
4326 p = find_process_by_pid(pid);
4327 retval = -ESRCH;
4328 if (!p)
4329 goto out_unlock;
4330
4331 retval = security_task_getscheduler(p);
4332 if (retval)
4333 goto out_unlock;
4334
4335 attr.sched_policy = p->policy;
7479f3c9
PZ
4336 if (p->sched_reset_on_fork)
4337 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4338 if (task_has_dl_policy(p))
4339 __getparam_dl(p, &attr);
4340 else if (task_has_rt_policy(p))
d50dde5a
DF
4341 attr.sched_priority = p->rt_priority;
4342 else
d0ea0268 4343 attr.sched_nice = task_nice(p);
d50dde5a
DF
4344
4345 rcu_read_unlock();
4346
4347 retval = sched_read_attr(uattr, &attr, size);
4348 return retval;
4349
4350out_unlock:
4351 rcu_read_unlock();
4352 return retval;
4353}
4354
96f874e2 4355long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4356{
5a16f3d3 4357 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4358 struct task_struct *p;
4359 int retval;
1da177e4 4360
23f5d142 4361 rcu_read_lock();
1da177e4
LT
4362
4363 p = find_process_by_pid(pid);
4364 if (!p) {
23f5d142 4365 rcu_read_unlock();
1da177e4
LT
4366 return -ESRCH;
4367 }
4368
23f5d142 4369 /* Prevent p going away */
1da177e4 4370 get_task_struct(p);
23f5d142 4371 rcu_read_unlock();
1da177e4 4372
14a40ffc
TH
4373 if (p->flags & PF_NO_SETAFFINITY) {
4374 retval = -EINVAL;
4375 goto out_put_task;
4376 }
5a16f3d3
RR
4377 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4378 retval = -ENOMEM;
4379 goto out_put_task;
4380 }
4381 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4382 retval = -ENOMEM;
4383 goto out_free_cpus_allowed;
4384 }
1da177e4 4385 retval = -EPERM;
4c44aaaf
EB
4386 if (!check_same_owner(p)) {
4387 rcu_read_lock();
4388 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4389 rcu_read_unlock();
16303ab2 4390 goto out_free_new_mask;
4c44aaaf
EB
4391 }
4392 rcu_read_unlock();
4393 }
1da177e4 4394
b0ae1981 4395 retval = security_task_setscheduler(p);
e7834f8f 4396 if (retval)
16303ab2 4397 goto out_free_new_mask;
e7834f8f 4398
e4099a5e
PZ
4399
4400 cpuset_cpus_allowed(p, cpus_allowed);
4401 cpumask_and(new_mask, in_mask, cpus_allowed);
4402
332ac17e
DF
4403 /*
4404 * Since bandwidth control happens on root_domain basis,
4405 * if admission test is enabled, we only admit -deadline
4406 * tasks allowed to run on all the CPUs in the task's
4407 * root_domain.
4408 */
4409#ifdef CONFIG_SMP
f1e3a093
KT
4410 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4411 rcu_read_lock();
4412 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4413 retval = -EBUSY;
f1e3a093 4414 rcu_read_unlock();
16303ab2 4415 goto out_free_new_mask;
332ac17e 4416 }
f1e3a093 4417 rcu_read_unlock();
332ac17e
DF
4418 }
4419#endif
49246274 4420again:
25834c73 4421 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4422
8707d8b8 4423 if (!retval) {
5a16f3d3
RR
4424 cpuset_cpus_allowed(p, cpus_allowed);
4425 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4426 /*
4427 * We must have raced with a concurrent cpuset
4428 * update. Just reset the cpus_allowed to the
4429 * cpuset's cpus_allowed
4430 */
5a16f3d3 4431 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4432 goto again;
4433 }
4434 }
16303ab2 4435out_free_new_mask:
5a16f3d3
RR
4436 free_cpumask_var(new_mask);
4437out_free_cpus_allowed:
4438 free_cpumask_var(cpus_allowed);
4439out_put_task:
1da177e4 4440 put_task_struct(p);
1da177e4
LT
4441 return retval;
4442}
4443
4444static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4445 struct cpumask *new_mask)
1da177e4 4446{
96f874e2
RR
4447 if (len < cpumask_size())
4448 cpumask_clear(new_mask);
4449 else if (len > cpumask_size())
4450 len = cpumask_size();
4451
1da177e4
LT
4452 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4453}
4454
4455/**
4456 * sys_sched_setaffinity - set the cpu affinity of a process
4457 * @pid: pid of the process
4458 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4459 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4460 *
4461 * Return: 0 on success. An error code otherwise.
1da177e4 4462 */
5add95d4
HC
4463SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4464 unsigned long __user *, user_mask_ptr)
1da177e4 4465{
5a16f3d3 4466 cpumask_var_t new_mask;
1da177e4
LT
4467 int retval;
4468
5a16f3d3
RR
4469 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4470 return -ENOMEM;
1da177e4 4471
5a16f3d3
RR
4472 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4473 if (retval == 0)
4474 retval = sched_setaffinity(pid, new_mask);
4475 free_cpumask_var(new_mask);
4476 return retval;
1da177e4
LT
4477}
4478
96f874e2 4479long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4480{
36c8b586 4481 struct task_struct *p;
31605683 4482 unsigned long flags;
1da177e4 4483 int retval;
1da177e4 4484
23f5d142 4485 rcu_read_lock();
1da177e4
LT
4486
4487 retval = -ESRCH;
4488 p = find_process_by_pid(pid);
4489 if (!p)
4490 goto out_unlock;
4491
e7834f8f
DQ
4492 retval = security_task_getscheduler(p);
4493 if (retval)
4494 goto out_unlock;
4495
013fdb80 4496 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4497 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4498 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4499
4500out_unlock:
23f5d142 4501 rcu_read_unlock();
1da177e4 4502
9531b62f 4503 return retval;
1da177e4
LT
4504}
4505
4506/**
4507 * sys_sched_getaffinity - get the cpu affinity of a process
4508 * @pid: pid of the process
4509 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4510 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4511 *
4512 * Return: 0 on success. An error code otherwise.
1da177e4 4513 */
5add95d4
HC
4514SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4515 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4516{
4517 int ret;
f17c8607 4518 cpumask_var_t mask;
1da177e4 4519
84fba5ec 4520 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4521 return -EINVAL;
4522 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4523 return -EINVAL;
4524
f17c8607
RR
4525 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4526 return -ENOMEM;
1da177e4 4527
f17c8607
RR
4528 ret = sched_getaffinity(pid, mask);
4529 if (ret == 0) {
8bc037fb 4530 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4531
4532 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4533 ret = -EFAULT;
4534 else
cd3d8031 4535 ret = retlen;
f17c8607
RR
4536 }
4537 free_cpumask_var(mask);
1da177e4 4538
f17c8607 4539 return ret;
1da177e4
LT
4540}
4541
4542/**
4543 * sys_sched_yield - yield the current processor to other threads.
4544 *
dd41f596
IM
4545 * This function yields the current CPU to other tasks. If there are no
4546 * other threads running on this CPU then this function will return.
e69f6186
YB
4547 *
4548 * Return: 0.
1da177e4 4549 */
5add95d4 4550SYSCALL_DEFINE0(sched_yield)
1da177e4 4551{
70b97a7f 4552 struct rq *rq = this_rq_lock();
1da177e4 4553
2d72376b 4554 schedstat_inc(rq, yld_count);
4530d7ab 4555 current->sched_class->yield_task(rq);
1da177e4
LT
4556
4557 /*
4558 * Since we are going to call schedule() anyway, there's
4559 * no need to preempt or enable interrupts:
4560 */
4561 __release(rq->lock);
8a25d5de 4562 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4563 do_raw_spin_unlock(&rq->lock);
ba74c144 4564 sched_preempt_enable_no_resched();
1da177e4
LT
4565
4566 schedule();
4567
4568 return 0;
4569}
4570
02b67cc3 4571int __sched _cond_resched(void)
1da177e4 4572{
fe32d3cd 4573 if (should_resched(0)) {
a18b5d01 4574 preempt_schedule_common();
1da177e4
LT
4575 return 1;
4576 }
4577 return 0;
4578}
02b67cc3 4579EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4580
4581/*
613afbf8 4582 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4583 * call schedule, and on return reacquire the lock.
4584 *
41a2d6cf 4585 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4586 * operations here to prevent schedule() from being called twice (once via
4587 * spin_unlock(), once by hand).
4588 */
613afbf8 4589int __cond_resched_lock(spinlock_t *lock)
1da177e4 4590{
fe32d3cd 4591 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4592 int ret = 0;
4593
f607c668
PZ
4594 lockdep_assert_held(lock);
4595
4a81e832 4596 if (spin_needbreak(lock) || resched) {
1da177e4 4597 spin_unlock(lock);
d86ee480 4598 if (resched)
a18b5d01 4599 preempt_schedule_common();
95c354fe
NP
4600 else
4601 cpu_relax();
6df3cecb 4602 ret = 1;
1da177e4 4603 spin_lock(lock);
1da177e4 4604 }
6df3cecb 4605 return ret;
1da177e4 4606}
613afbf8 4607EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4608
613afbf8 4609int __sched __cond_resched_softirq(void)
1da177e4
LT
4610{
4611 BUG_ON(!in_softirq());
4612
fe32d3cd 4613 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4614 local_bh_enable();
a18b5d01 4615 preempt_schedule_common();
1da177e4
LT
4616 local_bh_disable();
4617 return 1;
4618 }
4619 return 0;
4620}
613afbf8 4621EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4622
1da177e4
LT
4623/**
4624 * yield - yield the current processor to other threads.
4625 *
8e3fabfd
PZ
4626 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4627 *
4628 * The scheduler is at all times free to pick the calling task as the most
4629 * eligible task to run, if removing the yield() call from your code breaks
4630 * it, its already broken.
4631 *
4632 * Typical broken usage is:
4633 *
4634 * while (!event)
4635 * yield();
4636 *
4637 * where one assumes that yield() will let 'the other' process run that will
4638 * make event true. If the current task is a SCHED_FIFO task that will never
4639 * happen. Never use yield() as a progress guarantee!!
4640 *
4641 * If you want to use yield() to wait for something, use wait_event().
4642 * If you want to use yield() to be 'nice' for others, use cond_resched().
4643 * If you still want to use yield(), do not!
1da177e4
LT
4644 */
4645void __sched yield(void)
4646{
4647 set_current_state(TASK_RUNNING);
4648 sys_sched_yield();
4649}
1da177e4
LT
4650EXPORT_SYMBOL(yield);
4651
d95f4122
MG
4652/**
4653 * yield_to - yield the current processor to another thread in
4654 * your thread group, or accelerate that thread toward the
4655 * processor it's on.
16addf95
RD
4656 * @p: target task
4657 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4658 *
4659 * It's the caller's job to ensure that the target task struct
4660 * can't go away on us before we can do any checks.
4661 *
e69f6186 4662 * Return:
7b270f60
PZ
4663 * true (>0) if we indeed boosted the target task.
4664 * false (0) if we failed to boost the target.
4665 * -ESRCH if there's no task to yield to.
d95f4122 4666 */
fa93384f 4667int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4668{
4669 struct task_struct *curr = current;
4670 struct rq *rq, *p_rq;
4671 unsigned long flags;
c3c18640 4672 int yielded = 0;
d95f4122
MG
4673
4674 local_irq_save(flags);
4675 rq = this_rq();
4676
4677again:
4678 p_rq = task_rq(p);
7b270f60
PZ
4679 /*
4680 * If we're the only runnable task on the rq and target rq also
4681 * has only one task, there's absolutely no point in yielding.
4682 */
4683 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4684 yielded = -ESRCH;
4685 goto out_irq;
4686 }
4687
d95f4122 4688 double_rq_lock(rq, p_rq);
39e24d8f 4689 if (task_rq(p) != p_rq) {
d95f4122
MG
4690 double_rq_unlock(rq, p_rq);
4691 goto again;
4692 }
4693
4694 if (!curr->sched_class->yield_to_task)
7b270f60 4695 goto out_unlock;
d95f4122
MG
4696
4697 if (curr->sched_class != p->sched_class)
7b270f60 4698 goto out_unlock;
d95f4122
MG
4699
4700 if (task_running(p_rq, p) || p->state)
7b270f60 4701 goto out_unlock;
d95f4122
MG
4702
4703 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4704 if (yielded) {
d95f4122 4705 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4706 /*
4707 * Make p's CPU reschedule; pick_next_entity takes care of
4708 * fairness.
4709 */
4710 if (preempt && rq != p_rq)
8875125e 4711 resched_curr(p_rq);
6d1cafd8 4712 }
d95f4122 4713
7b270f60 4714out_unlock:
d95f4122 4715 double_rq_unlock(rq, p_rq);
7b270f60 4716out_irq:
d95f4122
MG
4717 local_irq_restore(flags);
4718
7b270f60 4719 if (yielded > 0)
d95f4122
MG
4720 schedule();
4721
4722 return yielded;
4723}
4724EXPORT_SYMBOL_GPL(yield_to);
4725
1da177e4 4726/*
41a2d6cf 4727 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4728 * that process accounting knows that this is a task in IO wait state.
1da177e4 4729 */
1da177e4
LT
4730long __sched io_schedule_timeout(long timeout)
4731{
9cff8ade
N
4732 int old_iowait = current->in_iowait;
4733 struct rq *rq;
1da177e4
LT
4734 long ret;
4735
9cff8ade 4736 current->in_iowait = 1;
10d784ea 4737 blk_schedule_flush_plug(current);
9cff8ade 4738
0ff92245 4739 delayacct_blkio_start();
9cff8ade 4740 rq = raw_rq();
1da177e4
LT
4741 atomic_inc(&rq->nr_iowait);
4742 ret = schedule_timeout(timeout);
9cff8ade 4743 current->in_iowait = old_iowait;
1da177e4 4744 atomic_dec(&rq->nr_iowait);
0ff92245 4745 delayacct_blkio_end();
9cff8ade 4746
1da177e4
LT
4747 return ret;
4748}
9cff8ade 4749EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4750
4751/**
4752 * sys_sched_get_priority_max - return maximum RT priority.
4753 * @policy: scheduling class.
4754 *
e69f6186
YB
4755 * Return: On success, this syscall returns the maximum
4756 * rt_priority that can be used by a given scheduling class.
4757 * On failure, a negative error code is returned.
1da177e4 4758 */
5add95d4 4759SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4760{
4761 int ret = -EINVAL;
4762
4763 switch (policy) {
4764 case SCHED_FIFO:
4765 case SCHED_RR:
4766 ret = MAX_USER_RT_PRIO-1;
4767 break;
aab03e05 4768 case SCHED_DEADLINE:
1da177e4 4769 case SCHED_NORMAL:
b0a9499c 4770 case SCHED_BATCH:
dd41f596 4771 case SCHED_IDLE:
1da177e4
LT
4772 ret = 0;
4773 break;
4774 }
4775 return ret;
4776}
4777
4778/**
4779 * sys_sched_get_priority_min - return minimum RT priority.
4780 * @policy: scheduling class.
4781 *
e69f6186
YB
4782 * Return: On success, this syscall returns the minimum
4783 * rt_priority that can be used by a given scheduling class.
4784 * On failure, a negative error code is returned.
1da177e4 4785 */
5add95d4 4786SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4787{
4788 int ret = -EINVAL;
4789
4790 switch (policy) {
4791 case SCHED_FIFO:
4792 case SCHED_RR:
4793 ret = 1;
4794 break;
aab03e05 4795 case SCHED_DEADLINE:
1da177e4 4796 case SCHED_NORMAL:
b0a9499c 4797 case SCHED_BATCH:
dd41f596 4798 case SCHED_IDLE:
1da177e4
LT
4799 ret = 0;
4800 }
4801 return ret;
4802}
4803
4804/**
4805 * sys_sched_rr_get_interval - return the default timeslice of a process.
4806 * @pid: pid of the process.
4807 * @interval: userspace pointer to the timeslice value.
4808 *
4809 * this syscall writes the default timeslice value of a given process
4810 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4811 *
4812 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4813 * an error code.
1da177e4 4814 */
17da2bd9 4815SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4816 struct timespec __user *, interval)
1da177e4 4817{
36c8b586 4818 struct task_struct *p;
a4ec24b4 4819 unsigned int time_slice;
dba091b9
TG
4820 unsigned long flags;
4821 struct rq *rq;
3a5c359a 4822 int retval;
1da177e4 4823 struct timespec t;
1da177e4
LT
4824
4825 if (pid < 0)
3a5c359a 4826 return -EINVAL;
1da177e4
LT
4827
4828 retval = -ESRCH;
1a551ae7 4829 rcu_read_lock();
1da177e4
LT
4830 p = find_process_by_pid(pid);
4831 if (!p)
4832 goto out_unlock;
4833
4834 retval = security_task_getscheduler(p);
4835 if (retval)
4836 goto out_unlock;
4837
dba091b9 4838 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4839 time_slice = 0;
4840 if (p->sched_class->get_rr_interval)
4841 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4842 task_rq_unlock(rq, p, &flags);
a4ec24b4 4843
1a551ae7 4844 rcu_read_unlock();
a4ec24b4 4845 jiffies_to_timespec(time_slice, &t);
1da177e4 4846 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4847 return retval;
3a5c359a 4848
1da177e4 4849out_unlock:
1a551ae7 4850 rcu_read_unlock();
1da177e4
LT
4851 return retval;
4852}
4853
7c731e0a 4854static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4855
82a1fcb9 4856void sched_show_task(struct task_struct *p)
1da177e4 4857{
1da177e4 4858 unsigned long free = 0;
4e79752c 4859 int ppid;
1f8a7633 4860 unsigned long state = p->state;
1da177e4 4861
1f8a7633
TH
4862 if (state)
4863 state = __ffs(state) + 1;
28d0686c 4864 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4865 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4866#if BITS_PER_LONG == 32
1da177e4 4867 if (state == TASK_RUNNING)
3df0fc5b 4868 printk(KERN_CONT " running ");
1da177e4 4869 else
3df0fc5b 4870 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4871#else
4872 if (state == TASK_RUNNING)
3df0fc5b 4873 printk(KERN_CONT " running task ");
1da177e4 4874 else
3df0fc5b 4875 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4876#endif
4877#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4878 free = stack_not_used(p);
1da177e4 4879#endif
a90e984c 4880 ppid = 0;
4e79752c 4881 rcu_read_lock();
a90e984c
ON
4882 if (pid_alive(p))
4883 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4884 rcu_read_unlock();
3df0fc5b 4885 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4886 task_pid_nr(p), ppid,
aa47b7e0 4887 (unsigned long)task_thread_info(p)->flags);
1da177e4 4888
3d1cb205 4889 print_worker_info(KERN_INFO, p);
5fb5e6de 4890 show_stack(p, NULL);
1da177e4
LT
4891}
4892
e59e2ae2 4893void show_state_filter(unsigned long state_filter)
1da177e4 4894{
36c8b586 4895 struct task_struct *g, *p;
1da177e4 4896
4bd77321 4897#if BITS_PER_LONG == 32
3df0fc5b
PZ
4898 printk(KERN_INFO
4899 " task PC stack pid father\n");
1da177e4 4900#else
3df0fc5b
PZ
4901 printk(KERN_INFO
4902 " task PC stack pid father\n");
1da177e4 4903#endif
510f5acc 4904 rcu_read_lock();
5d07f420 4905 for_each_process_thread(g, p) {
1da177e4
LT
4906 /*
4907 * reset the NMI-timeout, listing all files on a slow
25985edc 4908 * console might take a lot of time:
1da177e4
LT
4909 */
4910 touch_nmi_watchdog();
39bc89fd 4911 if (!state_filter || (p->state & state_filter))
82a1fcb9 4912 sched_show_task(p);
5d07f420 4913 }
1da177e4 4914
04c9167f
JF
4915 touch_all_softlockup_watchdogs();
4916
dd41f596
IM
4917#ifdef CONFIG_SCHED_DEBUG
4918 sysrq_sched_debug_show();
4919#endif
510f5acc 4920 rcu_read_unlock();
e59e2ae2
IM
4921 /*
4922 * Only show locks if all tasks are dumped:
4923 */
93335a21 4924 if (!state_filter)
e59e2ae2 4925 debug_show_all_locks();
1da177e4
LT
4926}
4927
0db0628d 4928void init_idle_bootup_task(struct task_struct *idle)
1df21055 4929{
dd41f596 4930 idle->sched_class = &idle_sched_class;
1df21055
IM
4931}
4932
f340c0d1
IM
4933/**
4934 * init_idle - set up an idle thread for a given CPU
4935 * @idle: task in question
4936 * @cpu: cpu the idle task belongs to
4937 *
4938 * NOTE: this function does not set the idle thread's NEED_RESCHED
4939 * flag, to make booting more robust.
4940 */
0db0628d 4941void init_idle(struct task_struct *idle, int cpu)
1da177e4 4942{
70b97a7f 4943 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4944 unsigned long flags;
4945
25834c73
PZ
4946 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4947 raw_spin_lock(&rq->lock);
5cbd54ef 4948
5e1576ed 4949 __sched_fork(0, idle);
06b83b5f 4950 idle->state = TASK_RUNNING;
dd41f596
IM
4951 idle->se.exec_start = sched_clock();
4952
de9b8f5d
PZ
4953#ifdef CONFIG_SMP
4954 /*
4955 * Its possible that init_idle() gets called multiple times on a task,
4956 * in that case do_set_cpus_allowed() will not do the right thing.
4957 *
4958 * And since this is boot we can forgo the serialization.
4959 */
4960 set_cpus_allowed_common(idle, cpumask_of(cpu));
4961#endif
6506cf6c
PZ
4962 /*
4963 * We're having a chicken and egg problem, even though we are
4964 * holding rq->lock, the cpu isn't yet set to this cpu so the
4965 * lockdep check in task_group() will fail.
4966 *
4967 * Similar case to sched_fork(). / Alternatively we could
4968 * use task_rq_lock() here and obtain the other rq->lock.
4969 *
4970 * Silence PROVE_RCU
4971 */
4972 rcu_read_lock();
dd41f596 4973 __set_task_cpu(idle, cpu);
6506cf6c 4974 rcu_read_unlock();
1da177e4 4975
1da177e4 4976 rq->curr = rq->idle = idle;
da0c1e65 4977 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 4978#ifdef CONFIG_SMP
3ca7a440 4979 idle->on_cpu = 1;
4866cde0 4980#endif
25834c73
PZ
4981 raw_spin_unlock(&rq->lock);
4982 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
4983
4984 /* Set the preempt count _outside_ the spinlocks! */
01028747 4985 init_idle_preempt_count(idle, cpu);
55cd5340 4986
dd41f596
IM
4987 /*
4988 * The idle tasks have their own, simple scheduling class:
4989 */
4990 idle->sched_class = &idle_sched_class;
868baf07 4991 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4992 vtime_init_idle(idle, cpu);
de9b8f5d 4993#ifdef CONFIG_SMP
f1c6f1a7
CE
4994 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4995#endif
19978ca6
IM
4996}
4997
f82f8042
JL
4998int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4999 const struct cpumask *trial)
5000{
5001 int ret = 1, trial_cpus;
5002 struct dl_bw *cur_dl_b;
5003 unsigned long flags;
5004
bb2bc55a
MG
5005 if (!cpumask_weight(cur))
5006 return ret;
5007
75e23e49 5008 rcu_read_lock_sched();
f82f8042
JL
5009 cur_dl_b = dl_bw_of(cpumask_any(cur));
5010 trial_cpus = cpumask_weight(trial);
5011
5012 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5013 if (cur_dl_b->bw != -1 &&
5014 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5015 ret = 0;
5016 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5017 rcu_read_unlock_sched();
f82f8042
JL
5018
5019 return ret;
5020}
5021
7f51412a
JL
5022int task_can_attach(struct task_struct *p,
5023 const struct cpumask *cs_cpus_allowed)
5024{
5025 int ret = 0;
5026
5027 /*
5028 * Kthreads which disallow setaffinity shouldn't be moved
5029 * to a new cpuset; we don't want to change their cpu
5030 * affinity and isolating such threads by their set of
5031 * allowed nodes is unnecessary. Thus, cpusets are not
5032 * applicable for such threads. This prevents checking for
5033 * success of set_cpus_allowed_ptr() on all attached tasks
5034 * before cpus_allowed may be changed.
5035 */
5036 if (p->flags & PF_NO_SETAFFINITY) {
5037 ret = -EINVAL;
5038 goto out;
5039 }
5040
5041#ifdef CONFIG_SMP
5042 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5043 cs_cpus_allowed)) {
5044 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5045 cs_cpus_allowed);
75e23e49 5046 struct dl_bw *dl_b;
7f51412a
JL
5047 bool overflow;
5048 int cpus;
5049 unsigned long flags;
5050
75e23e49
JL
5051 rcu_read_lock_sched();
5052 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5053 raw_spin_lock_irqsave(&dl_b->lock, flags);
5054 cpus = dl_bw_cpus(dest_cpu);
5055 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5056 if (overflow)
5057 ret = -EBUSY;
5058 else {
5059 /*
5060 * We reserve space for this task in the destination
5061 * root_domain, as we can't fail after this point.
5062 * We will free resources in the source root_domain
5063 * later on (see set_cpus_allowed_dl()).
5064 */
5065 __dl_add(dl_b, p->dl.dl_bw);
5066 }
5067 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5068 rcu_read_unlock_sched();
7f51412a
JL
5069
5070 }
5071#endif
5072out:
5073 return ret;
5074}
5075
1da177e4 5076#ifdef CONFIG_SMP
1da177e4 5077
e6628d5b
MG
5078#ifdef CONFIG_NUMA_BALANCING
5079/* Migrate current task p to target_cpu */
5080int migrate_task_to(struct task_struct *p, int target_cpu)
5081{
5082 struct migration_arg arg = { p, target_cpu };
5083 int curr_cpu = task_cpu(p);
5084
5085 if (curr_cpu == target_cpu)
5086 return 0;
5087
5088 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5089 return -EINVAL;
5090
5091 /* TODO: This is not properly updating schedstats */
5092
286549dc 5093 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5094 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5095}
0ec8aa00
PZ
5096
5097/*
5098 * Requeue a task on a given node and accurately track the number of NUMA
5099 * tasks on the runqueues
5100 */
5101void sched_setnuma(struct task_struct *p, int nid)
5102{
5103 struct rq *rq;
5104 unsigned long flags;
da0c1e65 5105 bool queued, running;
0ec8aa00
PZ
5106
5107 rq = task_rq_lock(p, &flags);
da0c1e65 5108 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5109 running = task_current(rq, p);
5110
da0c1e65 5111 if (queued)
0ec8aa00
PZ
5112 dequeue_task(rq, p, 0);
5113 if (running)
f3cd1c4e 5114 put_prev_task(rq, p);
0ec8aa00
PZ
5115
5116 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5117
5118 if (running)
5119 p->sched_class->set_curr_task(rq);
da0c1e65 5120 if (queued)
0ec8aa00
PZ
5121 enqueue_task(rq, p, 0);
5122 task_rq_unlock(rq, p, &flags);
5123}
5cc389bc 5124#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5125
1da177e4 5126#ifdef CONFIG_HOTPLUG_CPU
054b9108 5127/*
48c5ccae
PZ
5128 * Ensures that the idle task is using init_mm right before its cpu goes
5129 * offline.
054b9108 5130 */
48c5ccae 5131void idle_task_exit(void)
1da177e4 5132{
48c5ccae 5133 struct mm_struct *mm = current->active_mm;
e76bd8d9 5134
48c5ccae 5135 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5136
a53efe5f 5137 if (mm != &init_mm) {
48c5ccae 5138 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5139 finish_arch_post_lock_switch();
5140 }
48c5ccae 5141 mmdrop(mm);
1da177e4
LT
5142}
5143
5144/*
5d180232
PZ
5145 * Since this CPU is going 'away' for a while, fold any nr_active delta
5146 * we might have. Assumes we're called after migrate_tasks() so that the
5147 * nr_active count is stable.
5148 *
5149 * Also see the comment "Global load-average calculations".
1da177e4 5150 */
5d180232 5151static void calc_load_migrate(struct rq *rq)
1da177e4 5152{
5d180232
PZ
5153 long delta = calc_load_fold_active(rq);
5154 if (delta)
5155 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5156}
5157
3f1d2a31
PZ
5158static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5159{
5160}
5161
5162static const struct sched_class fake_sched_class = {
5163 .put_prev_task = put_prev_task_fake,
5164};
5165
5166static struct task_struct fake_task = {
5167 /*
5168 * Avoid pull_{rt,dl}_task()
5169 */
5170 .prio = MAX_PRIO + 1,
5171 .sched_class = &fake_sched_class,
5172};
5173
48f24c4d 5174/*
48c5ccae
PZ
5175 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5176 * try_to_wake_up()->select_task_rq().
5177 *
5178 * Called with rq->lock held even though we'er in stop_machine() and
5179 * there's no concurrency possible, we hold the required locks anyway
5180 * because of lock validation efforts.
1da177e4 5181 */
5e16bbc2 5182static void migrate_tasks(struct rq *dead_rq)
1da177e4 5183{
5e16bbc2 5184 struct rq *rq = dead_rq;
48c5ccae
PZ
5185 struct task_struct *next, *stop = rq->stop;
5186 int dest_cpu;
1da177e4
LT
5187
5188 /*
48c5ccae
PZ
5189 * Fudge the rq selection such that the below task selection loop
5190 * doesn't get stuck on the currently eligible stop task.
5191 *
5192 * We're currently inside stop_machine() and the rq is either stuck
5193 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5194 * either way we should never end up calling schedule() until we're
5195 * done here.
1da177e4 5196 */
48c5ccae 5197 rq->stop = NULL;
48f24c4d 5198
77bd3970
FW
5199 /*
5200 * put_prev_task() and pick_next_task() sched
5201 * class method both need to have an up-to-date
5202 * value of rq->clock[_task]
5203 */
5204 update_rq_clock(rq);
5205
5e16bbc2 5206 for (;;) {
48c5ccae
PZ
5207 /*
5208 * There's this thread running, bail when that's the only
5209 * remaining thread.
5210 */
5211 if (rq->nr_running == 1)
dd41f596 5212 break;
48c5ccae 5213
cbce1a68 5214 /*
5473e0cc 5215 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5216 */
5217 lockdep_pin_lock(&rq->lock);
3f1d2a31 5218 next = pick_next_task(rq, &fake_task);
48c5ccae 5219 BUG_ON(!next);
79c53799 5220 next->sched_class->put_prev_task(rq, next);
e692ab53 5221
5473e0cc
WL
5222 /*
5223 * Rules for changing task_struct::cpus_allowed are holding
5224 * both pi_lock and rq->lock, such that holding either
5225 * stabilizes the mask.
5226 *
5227 * Drop rq->lock is not quite as disastrous as it usually is
5228 * because !cpu_active at this point, which means load-balance
5229 * will not interfere. Also, stop-machine.
5230 */
5231 lockdep_unpin_lock(&rq->lock);
5232 raw_spin_unlock(&rq->lock);
5233 raw_spin_lock(&next->pi_lock);
5234 raw_spin_lock(&rq->lock);
5235
5236 /*
5237 * Since we're inside stop-machine, _nothing_ should have
5238 * changed the task, WARN if weird stuff happened, because in
5239 * that case the above rq->lock drop is a fail too.
5240 */
5241 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5242 raw_spin_unlock(&next->pi_lock);
5243 continue;
5244 }
5245
48c5ccae 5246 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5247 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5248
5e16bbc2
PZ
5249 rq = __migrate_task(rq, next, dest_cpu);
5250 if (rq != dead_rq) {
5251 raw_spin_unlock(&rq->lock);
5252 rq = dead_rq;
5253 raw_spin_lock(&rq->lock);
5254 }
5473e0cc 5255 raw_spin_unlock(&next->pi_lock);
1da177e4 5256 }
dce48a84 5257
48c5ccae 5258 rq->stop = stop;
dce48a84 5259}
1da177e4
LT
5260#endif /* CONFIG_HOTPLUG_CPU */
5261
e692ab53
NP
5262#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5263
5264static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5265 {
5266 .procname = "sched_domain",
c57baf1e 5267 .mode = 0555,
e0361851 5268 },
56992309 5269 {}
e692ab53
NP
5270};
5271
5272static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5273 {
5274 .procname = "kernel",
c57baf1e 5275 .mode = 0555,
e0361851
AD
5276 .child = sd_ctl_dir,
5277 },
56992309 5278 {}
e692ab53
NP
5279};
5280
5281static struct ctl_table *sd_alloc_ctl_entry(int n)
5282{
5283 struct ctl_table *entry =
5cf9f062 5284 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5285
e692ab53
NP
5286 return entry;
5287}
5288
6382bc90
MM
5289static void sd_free_ctl_entry(struct ctl_table **tablep)
5290{
cd790076 5291 struct ctl_table *entry;
6382bc90 5292
cd790076
MM
5293 /*
5294 * In the intermediate directories, both the child directory and
5295 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5296 * will always be set. In the lowest directory the names are
cd790076
MM
5297 * static strings and all have proc handlers.
5298 */
5299 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5300 if (entry->child)
5301 sd_free_ctl_entry(&entry->child);
cd790076
MM
5302 if (entry->proc_handler == NULL)
5303 kfree(entry->procname);
5304 }
6382bc90
MM
5305
5306 kfree(*tablep);
5307 *tablep = NULL;
5308}
5309
201c373e 5310static int min_load_idx = 0;
fd9b86d3 5311static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5312
e692ab53 5313static void
e0361851 5314set_table_entry(struct ctl_table *entry,
e692ab53 5315 const char *procname, void *data, int maxlen,
201c373e
NK
5316 umode_t mode, proc_handler *proc_handler,
5317 bool load_idx)
e692ab53 5318{
e692ab53
NP
5319 entry->procname = procname;
5320 entry->data = data;
5321 entry->maxlen = maxlen;
5322 entry->mode = mode;
5323 entry->proc_handler = proc_handler;
201c373e
NK
5324
5325 if (load_idx) {
5326 entry->extra1 = &min_load_idx;
5327 entry->extra2 = &max_load_idx;
5328 }
e692ab53
NP
5329}
5330
5331static struct ctl_table *
5332sd_alloc_ctl_domain_table(struct sched_domain *sd)
5333{
37e6bae8 5334 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5335
ad1cdc1d
MM
5336 if (table == NULL)
5337 return NULL;
5338
e0361851 5339 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5340 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5341 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5342 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5343 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5344 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5345 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5346 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5347 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5348 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5349 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5350 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5351 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5352 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5353 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5354 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5355 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5356 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5357 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5358 &sd->cache_nice_tries,
201c373e 5359 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5360 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5361 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5362 set_table_entry(&table[11], "max_newidle_lb_cost",
5363 &sd->max_newidle_lb_cost,
5364 sizeof(long), 0644, proc_doulongvec_minmax, false);
5365 set_table_entry(&table[12], "name", sd->name,
201c373e 5366 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5367 /* &table[13] is terminator */
e692ab53
NP
5368
5369 return table;
5370}
5371
be7002e6 5372static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5373{
5374 struct ctl_table *entry, *table;
5375 struct sched_domain *sd;
5376 int domain_num = 0, i;
5377 char buf[32];
5378
5379 for_each_domain(cpu, sd)
5380 domain_num++;
5381 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5382 if (table == NULL)
5383 return NULL;
e692ab53
NP
5384
5385 i = 0;
5386 for_each_domain(cpu, sd) {
5387 snprintf(buf, 32, "domain%d", i);
e692ab53 5388 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5389 entry->mode = 0555;
e692ab53
NP
5390 entry->child = sd_alloc_ctl_domain_table(sd);
5391 entry++;
5392 i++;
5393 }
5394 return table;
5395}
5396
5397static struct ctl_table_header *sd_sysctl_header;
6382bc90 5398static void register_sched_domain_sysctl(void)
e692ab53 5399{
6ad4c188 5400 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5401 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5402 char buf[32];
5403
7378547f
MM
5404 WARN_ON(sd_ctl_dir[0].child);
5405 sd_ctl_dir[0].child = entry;
5406
ad1cdc1d
MM
5407 if (entry == NULL)
5408 return;
5409
6ad4c188 5410 for_each_possible_cpu(i) {
e692ab53 5411 snprintf(buf, 32, "cpu%d", i);
e692ab53 5412 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5413 entry->mode = 0555;
e692ab53 5414 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5415 entry++;
e692ab53 5416 }
7378547f
MM
5417
5418 WARN_ON(sd_sysctl_header);
e692ab53
NP
5419 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5420}
6382bc90 5421
7378547f 5422/* may be called multiple times per register */
6382bc90
MM
5423static void unregister_sched_domain_sysctl(void)
5424{
781b0203 5425 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5426 sd_sysctl_header = NULL;
7378547f
MM
5427 if (sd_ctl_dir[0].child)
5428 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5429}
e692ab53 5430#else
6382bc90
MM
5431static void register_sched_domain_sysctl(void)
5432{
5433}
5434static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5435{
5436}
5cc389bc 5437#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5438
1f11eb6a
GH
5439static void set_rq_online(struct rq *rq)
5440{
5441 if (!rq->online) {
5442 const struct sched_class *class;
5443
c6c4927b 5444 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5445 rq->online = 1;
5446
5447 for_each_class(class) {
5448 if (class->rq_online)
5449 class->rq_online(rq);
5450 }
5451 }
5452}
5453
5454static void set_rq_offline(struct rq *rq)
5455{
5456 if (rq->online) {
5457 const struct sched_class *class;
5458
5459 for_each_class(class) {
5460 if (class->rq_offline)
5461 class->rq_offline(rq);
5462 }
5463
c6c4927b 5464 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5465 rq->online = 0;
5466 }
5467}
5468
1da177e4
LT
5469/*
5470 * migration_call - callback that gets triggered when a CPU is added.
5471 * Here we can start up the necessary migration thread for the new CPU.
5472 */
0db0628d 5473static int
48f24c4d 5474migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5475{
48f24c4d 5476 int cpu = (long)hcpu;
1da177e4 5477 unsigned long flags;
969c7921 5478 struct rq *rq = cpu_rq(cpu);
1da177e4 5479
48c5ccae 5480 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5481
1da177e4 5482 case CPU_UP_PREPARE:
a468d389 5483 rq->calc_load_update = calc_load_update;
1da177e4 5484 break;
48f24c4d 5485
1da177e4 5486 case CPU_ONLINE:
1f94ef59 5487 /* Update our root-domain */
05fa785c 5488 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5489 if (rq->rd) {
c6c4927b 5490 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5491
5492 set_rq_online(rq);
1f94ef59 5493 }
05fa785c 5494 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5495 break;
48f24c4d 5496
1da177e4 5497#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5498 case CPU_DYING:
317f3941 5499 sched_ttwu_pending();
57d885fe 5500 /* Update our root-domain */
05fa785c 5501 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5502 if (rq->rd) {
c6c4927b 5503 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5504 set_rq_offline(rq);
57d885fe 5505 }
5e16bbc2 5506 migrate_tasks(rq);
48c5ccae 5507 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5508 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5509 break;
48c5ccae 5510
5d180232 5511 case CPU_DEAD:
f319da0c 5512 calc_load_migrate(rq);
57d885fe 5513 break;
1da177e4
LT
5514#endif
5515 }
49c022e6
PZ
5516
5517 update_max_interval();
5518
1da177e4
LT
5519 return NOTIFY_OK;
5520}
5521
f38b0820
PM
5522/*
5523 * Register at high priority so that task migration (migrate_all_tasks)
5524 * happens before everything else. This has to be lower priority than
cdd6c482 5525 * the notifier in the perf_event subsystem, though.
1da177e4 5526 */
0db0628d 5527static struct notifier_block migration_notifier = {
1da177e4 5528 .notifier_call = migration_call,
50a323b7 5529 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5530};
5531
6a82b60d 5532static void set_cpu_rq_start_time(void)
a803f026
CM
5533{
5534 int cpu = smp_processor_id();
5535 struct rq *rq = cpu_rq(cpu);
5536 rq->age_stamp = sched_clock_cpu(cpu);
5537}
5538
0db0628d 5539static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5540 unsigned long action, void *hcpu)
5541{
5542 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5543 case CPU_STARTING:
5544 set_cpu_rq_start_time();
5545 return NOTIFY_OK;
dd9d3843
JS
5546 case CPU_ONLINE:
5547 /*
5548 * At this point a starting CPU has marked itself as online via
5549 * set_cpu_online(). But it might not yet have marked itself
5550 * as active, which is essential from here on.
5551 *
5552 * Thus, fall-through and help the starting CPU along.
5553 */
3a101d05
TH
5554 case CPU_DOWN_FAILED:
5555 set_cpu_active((long)hcpu, true);
5556 return NOTIFY_OK;
5557 default:
5558 return NOTIFY_DONE;
5559 }
5560}
5561
0db0628d 5562static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5563 unsigned long action, void *hcpu)
5564{
5565 switch (action & ~CPU_TASKS_FROZEN) {
5566 case CPU_DOWN_PREPARE:
3c18d447 5567 set_cpu_active((long)hcpu, false);
3a101d05 5568 return NOTIFY_OK;
3c18d447
JL
5569 default:
5570 return NOTIFY_DONE;
3a101d05
TH
5571 }
5572}
5573
7babe8db 5574static int __init migration_init(void)
1da177e4
LT
5575{
5576 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5577 int err;
48f24c4d 5578
3a101d05 5579 /* Initialize migration for the boot CPU */
07dccf33
AM
5580 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5581 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5582 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5583 register_cpu_notifier(&migration_notifier);
7babe8db 5584
3a101d05
TH
5585 /* Register cpu active notifiers */
5586 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5587 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5588
a004cd42 5589 return 0;
1da177e4 5590}
7babe8db 5591early_initcall(migration_init);
476f3534 5592
4cb98839
PZ
5593static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5594
3e9830dc 5595#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5596
d039ac60 5597static __read_mostly int sched_debug_enabled;
f6630114 5598
d039ac60 5599static int __init sched_debug_setup(char *str)
f6630114 5600{
d039ac60 5601 sched_debug_enabled = 1;
f6630114
MT
5602
5603 return 0;
5604}
d039ac60
PZ
5605early_param("sched_debug", sched_debug_setup);
5606
5607static inline bool sched_debug(void)
5608{
5609 return sched_debug_enabled;
5610}
f6630114 5611
7c16ec58 5612static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5613 struct cpumask *groupmask)
1da177e4 5614{
4dcf6aff 5615 struct sched_group *group = sd->groups;
1da177e4 5616
96f874e2 5617 cpumask_clear(groupmask);
4dcf6aff
IM
5618
5619 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5620
5621 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5622 printk("does not load-balance\n");
4dcf6aff 5623 if (sd->parent)
3df0fc5b
PZ
5624 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5625 " has parent");
4dcf6aff 5626 return -1;
41c7ce9a
NP
5627 }
5628
333470ee
TH
5629 printk(KERN_CONT "span %*pbl level %s\n",
5630 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5631
758b2cdc 5632 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5633 printk(KERN_ERR "ERROR: domain->span does not contain "
5634 "CPU%d\n", cpu);
4dcf6aff 5635 }
758b2cdc 5636 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5637 printk(KERN_ERR "ERROR: domain->groups does not contain"
5638 " CPU%d\n", cpu);
4dcf6aff 5639 }
1da177e4 5640
4dcf6aff 5641 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5642 do {
4dcf6aff 5643 if (!group) {
3df0fc5b
PZ
5644 printk("\n");
5645 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5646 break;
5647 }
5648
758b2cdc 5649 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5650 printk(KERN_CONT "\n");
5651 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5652 break;
5653 }
1da177e4 5654
cb83b629
PZ
5655 if (!(sd->flags & SD_OVERLAP) &&
5656 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5657 printk(KERN_CONT "\n");
5658 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5659 break;
5660 }
1da177e4 5661
758b2cdc 5662 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5663
333470ee
TH
5664 printk(KERN_CONT " %*pbl",
5665 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5666 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5667 printk(KERN_CONT " (cpu_capacity = %d)",
5668 group->sgc->capacity);
381512cf 5669 }
1da177e4 5670
4dcf6aff
IM
5671 group = group->next;
5672 } while (group != sd->groups);
3df0fc5b 5673 printk(KERN_CONT "\n");
1da177e4 5674
758b2cdc 5675 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5676 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5677
758b2cdc
RR
5678 if (sd->parent &&
5679 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5680 printk(KERN_ERR "ERROR: parent span is not a superset "
5681 "of domain->span\n");
4dcf6aff
IM
5682 return 0;
5683}
1da177e4 5684
4dcf6aff
IM
5685static void sched_domain_debug(struct sched_domain *sd, int cpu)
5686{
5687 int level = 0;
1da177e4 5688
d039ac60 5689 if (!sched_debug_enabled)
f6630114
MT
5690 return;
5691
4dcf6aff
IM
5692 if (!sd) {
5693 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5694 return;
5695 }
1da177e4 5696
4dcf6aff
IM
5697 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5698
5699 for (;;) {
4cb98839 5700 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5701 break;
1da177e4
LT
5702 level++;
5703 sd = sd->parent;
33859f7f 5704 if (!sd)
4dcf6aff
IM
5705 break;
5706 }
1da177e4 5707}
6d6bc0ad 5708#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5709# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5710static inline bool sched_debug(void)
5711{
5712 return false;
5713}
6d6bc0ad 5714#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5715
1a20ff27 5716static int sd_degenerate(struct sched_domain *sd)
245af2c7 5717{
758b2cdc 5718 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5719 return 1;
5720
5721 /* Following flags need at least 2 groups */
5722 if (sd->flags & (SD_LOAD_BALANCE |
5723 SD_BALANCE_NEWIDLE |
5724 SD_BALANCE_FORK |
89c4710e 5725 SD_BALANCE_EXEC |
5d4dfddd 5726 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5727 SD_SHARE_PKG_RESOURCES |
5728 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5729 if (sd->groups != sd->groups->next)
5730 return 0;
5731 }
5732
5733 /* Following flags don't use groups */
c88d5910 5734 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5735 return 0;
5736
5737 return 1;
5738}
5739
48f24c4d
IM
5740static int
5741sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5742{
5743 unsigned long cflags = sd->flags, pflags = parent->flags;
5744
5745 if (sd_degenerate(parent))
5746 return 1;
5747
758b2cdc 5748 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5749 return 0;
5750
245af2c7
SS
5751 /* Flags needing groups don't count if only 1 group in parent */
5752 if (parent->groups == parent->groups->next) {
5753 pflags &= ~(SD_LOAD_BALANCE |
5754 SD_BALANCE_NEWIDLE |
5755 SD_BALANCE_FORK |
89c4710e 5756 SD_BALANCE_EXEC |
5d4dfddd 5757 SD_SHARE_CPUCAPACITY |
10866e62 5758 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5759 SD_PREFER_SIBLING |
5760 SD_SHARE_POWERDOMAIN);
5436499e
KC
5761 if (nr_node_ids == 1)
5762 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5763 }
5764 if (~cflags & pflags)
5765 return 0;
5766
5767 return 1;
5768}
5769
dce840a0 5770static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5771{
dce840a0 5772 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5773
68e74568 5774 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5775 cpudl_cleanup(&rd->cpudl);
1baca4ce 5776 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5777 free_cpumask_var(rd->rto_mask);
5778 free_cpumask_var(rd->online);
5779 free_cpumask_var(rd->span);
5780 kfree(rd);
5781}
5782
57d885fe
GH
5783static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5784{
a0490fa3 5785 struct root_domain *old_rd = NULL;
57d885fe 5786 unsigned long flags;
57d885fe 5787
05fa785c 5788 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5789
5790 if (rq->rd) {
a0490fa3 5791 old_rd = rq->rd;
57d885fe 5792
c6c4927b 5793 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5794 set_rq_offline(rq);
57d885fe 5795
c6c4927b 5796 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5797
a0490fa3 5798 /*
0515973f 5799 * If we dont want to free the old_rd yet then
a0490fa3
IM
5800 * set old_rd to NULL to skip the freeing later
5801 * in this function:
5802 */
5803 if (!atomic_dec_and_test(&old_rd->refcount))
5804 old_rd = NULL;
57d885fe
GH
5805 }
5806
5807 atomic_inc(&rd->refcount);
5808 rq->rd = rd;
5809
c6c4927b 5810 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5811 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5812 set_rq_online(rq);
57d885fe 5813
05fa785c 5814 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5815
5816 if (old_rd)
dce840a0 5817 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5818}
5819
68c38fc3 5820static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5821{
5822 memset(rd, 0, sizeof(*rd));
5823
68c38fc3 5824 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5825 goto out;
68c38fc3 5826 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5827 goto free_span;
1baca4ce 5828 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5829 goto free_online;
1baca4ce
JL
5830 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5831 goto free_dlo_mask;
6e0534f2 5832
332ac17e 5833 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5834 if (cpudl_init(&rd->cpudl) != 0)
5835 goto free_dlo_mask;
332ac17e 5836
68c38fc3 5837 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5838 goto free_rto_mask;
c6c4927b 5839 return 0;
6e0534f2 5840
68e74568
RR
5841free_rto_mask:
5842 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5843free_dlo_mask:
5844 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5845free_online:
5846 free_cpumask_var(rd->online);
5847free_span:
5848 free_cpumask_var(rd->span);
0c910d28 5849out:
c6c4927b 5850 return -ENOMEM;
57d885fe
GH
5851}
5852
029632fb
PZ
5853/*
5854 * By default the system creates a single root-domain with all cpus as
5855 * members (mimicking the global state we have today).
5856 */
5857struct root_domain def_root_domain;
5858
57d885fe
GH
5859static void init_defrootdomain(void)
5860{
68c38fc3 5861 init_rootdomain(&def_root_domain);
c6c4927b 5862
57d885fe
GH
5863 atomic_set(&def_root_domain.refcount, 1);
5864}
5865
dc938520 5866static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5867{
5868 struct root_domain *rd;
5869
5870 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5871 if (!rd)
5872 return NULL;
5873
68c38fc3 5874 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5875 kfree(rd);
5876 return NULL;
5877 }
57d885fe
GH
5878
5879 return rd;
5880}
5881
63b2ca30 5882static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5883{
5884 struct sched_group *tmp, *first;
5885
5886 if (!sg)
5887 return;
5888
5889 first = sg;
5890 do {
5891 tmp = sg->next;
5892
63b2ca30
NP
5893 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5894 kfree(sg->sgc);
e3589f6c
PZ
5895
5896 kfree(sg);
5897 sg = tmp;
5898 } while (sg != first);
5899}
5900
dce840a0
PZ
5901static void free_sched_domain(struct rcu_head *rcu)
5902{
5903 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5904
5905 /*
5906 * If its an overlapping domain it has private groups, iterate and
5907 * nuke them all.
5908 */
5909 if (sd->flags & SD_OVERLAP) {
5910 free_sched_groups(sd->groups, 1);
5911 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5912 kfree(sd->groups->sgc);
dce840a0 5913 kfree(sd->groups);
9c3f75cb 5914 }
dce840a0
PZ
5915 kfree(sd);
5916}
5917
5918static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5919{
5920 call_rcu(&sd->rcu, free_sched_domain);
5921}
5922
5923static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5924{
5925 for (; sd; sd = sd->parent)
5926 destroy_sched_domain(sd, cpu);
5927}
5928
518cd623
PZ
5929/*
5930 * Keep a special pointer to the highest sched_domain that has
5931 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5932 * allows us to avoid some pointer chasing select_idle_sibling().
5933 *
5934 * Also keep a unique ID per domain (we use the first cpu number in
5935 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5936 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5937 */
5938DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5939DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5940DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5941DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5942DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5943DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5944
5945static void update_top_cache_domain(int cpu)
5946{
5947 struct sched_domain *sd;
5d4cf996 5948 struct sched_domain *busy_sd = NULL;
518cd623 5949 int id = cpu;
7d9ffa89 5950 int size = 1;
518cd623
PZ
5951
5952 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5953 if (sd) {
518cd623 5954 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5955 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5956 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5957 }
5d4cf996 5958 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5959
5960 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5961 per_cpu(sd_llc_size, cpu) = size;
518cd623 5962 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5963
5964 sd = lowest_flag_domain(cpu, SD_NUMA);
5965 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5966
5967 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5968 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5969}
5970
1da177e4 5971/*
0eab9146 5972 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5973 * hold the hotplug lock.
5974 */
0eab9146
IM
5975static void
5976cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5977{
70b97a7f 5978 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5979 struct sched_domain *tmp;
5980
5981 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5982 for (tmp = sd; tmp; ) {
245af2c7
SS
5983 struct sched_domain *parent = tmp->parent;
5984 if (!parent)
5985 break;
f29c9b1c 5986
1a848870 5987 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5988 tmp->parent = parent->parent;
1a848870
SS
5989 if (parent->parent)
5990 parent->parent->child = tmp;
10866e62
PZ
5991 /*
5992 * Transfer SD_PREFER_SIBLING down in case of a
5993 * degenerate parent; the spans match for this
5994 * so the property transfers.
5995 */
5996 if (parent->flags & SD_PREFER_SIBLING)
5997 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5998 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5999 } else
6000 tmp = tmp->parent;
245af2c7
SS
6001 }
6002
1a848870 6003 if (sd && sd_degenerate(sd)) {
dce840a0 6004 tmp = sd;
245af2c7 6005 sd = sd->parent;
dce840a0 6006 destroy_sched_domain(tmp, cpu);
1a848870
SS
6007 if (sd)
6008 sd->child = NULL;
6009 }
1da177e4 6010
4cb98839 6011 sched_domain_debug(sd, cpu);
1da177e4 6012
57d885fe 6013 rq_attach_root(rq, rd);
dce840a0 6014 tmp = rq->sd;
674311d5 6015 rcu_assign_pointer(rq->sd, sd);
dce840a0 6016 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6017
6018 update_top_cache_domain(cpu);
1da177e4
LT
6019}
6020
1da177e4
LT
6021/* Setup the mask of cpus configured for isolated domains */
6022static int __init isolated_cpu_setup(char *str)
6023{
bdddd296 6024 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6025 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6026 return 1;
6027}
6028
8927f494 6029__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6030
49a02c51 6031struct s_data {
21d42ccf 6032 struct sched_domain ** __percpu sd;
49a02c51
AH
6033 struct root_domain *rd;
6034};
6035
2109b99e 6036enum s_alloc {
2109b99e 6037 sa_rootdomain,
21d42ccf 6038 sa_sd,
dce840a0 6039 sa_sd_storage,
2109b99e
AH
6040 sa_none,
6041};
6042
c1174876
PZ
6043/*
6044 * Build an iteration mask that can exclude certain CPUs from the upwards
6045 * domain traversal.
6046 *
6047 * Asymmetric node setups can result in situations where the domain tree is of
6048 * unequal depth, make sure to skip domains that already cover the entire
6049 * range.
6050 *
6051 * In that case build_sched_domains() will have terminated the iteration early
6052 * and our sibling sd spans will be empty. Domains should always include the
6053 * cpu they're built on, so check that.
6054 *
6055 */
6056static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6057{
6058 const struct cpumask *span = sched_domain_span(sd);
6059 struct sd_data *sdd = sd->private;
6060 struct sched_domain *sibling;
6061 int i;
6062
6063 for_each_cpu(i, span) {
6064 sibling = *per_cpu_ptr(sdd->sd, i);
6065 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6066 continue;
6067
6068 cpumask_set_cpu(i, sched_group_mask(sg));
6069 }
6070}
6071
6072/*
6073 * Return the canonical balance cpu for this group, this is the first cpu
6074 * of this group that's also in the iteration mask.
6075 */
6076int group_balance_cpu(struct sched_group *sg)
6077{
6078 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6079}
6080
e3589f6c
PZ
6081static int
6082build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6083{
6084 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6085 const struct cpumask *span = sched_domain_span(sd);
6086 struct cpumask *covered = sched_domains_tmpmask;
6087 struct sd_data *sdd = sd->private;
aaecac4a 6088 struct sched_domain *sibling;
e3589f6c
PZ
6089 int i;
6090
6091 cpumask_clear(covered);
6092
6093 for_each_cpu(i, span) {
6094 struct cpumask *sg_span;
6095
6096 if (cpumask_test_cpu(i, covered))
6097 continue;
6098
aaecac4a 6099 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6100
6101 /* See the comment near build_group_mask(). */
aaecac4a 6102 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6103 continue;
6104
e3589f6c 6105 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6106 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6107
6108 if (!sg)
6109 goto fail;
6110
6111 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6112 if (sibling->child)
6113 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6114 else
e3589f6c
PZ
6115 cpumask_set_cpu(i, sg_span);
6116
6117 cpumask_or(covered, covered, sg_span);
6118
63b2ca30
NP
6119 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6120 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6121 build_group_mask(sd, sg);
6122
c3decf0d 6123 /*
63b2ca30 6124 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6125 * domains and no possible iteration will get us here, we won't
6126 * die on a /0 trap.
6127 */
ca8ce3d0 6128 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6129
c1174876
PZ
6130 /*
6131 * Make sure the first group of this domain contains the
6132 * canonical balance cpu. Otherwise the sched_domain iteration
6133 * breaks. See update_sg_lb_stats().
6134 */
74a5ce20 6135 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6136 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6137 groups = sg;
6138
6139 if (!first)
6140 first = sg;
6141 if (last)
6142 last->next = sg;
6143 last = sg;
6144 last->next = first;
6145 }
6146 sd->groups = groups;
6147
6148 return 0;
6149
6150fail:
6151 free_sched_groups(first, 0);
6152
6153 return -ENOMEM;
6154}
6155
dce840a0 6156static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6157{
dce840a0
PZ
6158 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6159 struct sched_domain *child = sd->child;
1da177e4 6160
dce840a0
PZ
6161 if (child)
6162 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6163
9c3f75cb 6164 if (sg) {
dce840a0 6165 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6166 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6167 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6168 }
dce840a0
PZ
6169
6170 return cpu;
1e9f28fa 6171}
1e9f28fa 6172
01a08546 6173/*
dce840a0
PZ
6174 * build_sched_groups will build a circular linked list of the groups
6175 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6176 * and ->cpu_capacity to 0.
e3589f6c
PZ
6177 *
6178 * Assumes the sched_domain tree is fully constructed
01a08546 6179 */
e3589f6c
PZ
6180static int
6181build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6182{
dce840a0
PZ
6183 struct sched_group *first = NULL, *last = NULL;
6184 struct sd_data *sdd = sd->private;
6185 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6186 struct cpumask *covered;
dce840a0 6187 int i;
9c1cfda2 6188
e3589f6c
PZ
6189 get_group(cpu, sdd, &sd->groups);
6190 atomic_inc(&sd->groups->ref);
6191
0936629f 6192 if (cpu != cpumask_first(span))
e3589f6c
PZ
6193 return 0;
6194
f96225fd
PZ
6195 lockdep_assert_held(&sched_domains_mutex);
6196 covered = sched_domains_tmpmask;
6197
dce840a0 6198 cpumask_clear(covered);
6711cab4 6199
dce840a0
PZ
6200 for_each_cpu(i, span) {
6201 struct sched_group *sg;
cd08e923 6202 int group, j;
6711cab4 6203
dce840a0
PZ
6204 if (cpumask_test_cpu(i, covered))
6205 continue;
6711cab4 6206
cd08e923 6207 group = get_group(i, sdd, &sg);
c1174876 6208 cpumask_setall(sched_group_mask(sg));
0601a88d 6209
dce840a0
PZ
6210 for_each_cpu(j, span) {
6211 if (get_group(j, sdd, NULL) != group)
6212 continue;
0601a88d 6213
dce840a0
PZ
6214 cpumask_set_cpu(j, covered);
6215 cpumask_set_cpu(j, sched_group_cpus(sg));
6216 }
0601a88d 6217
dce840a0
PZ
6218 if (!first)
6219 first = sg;
6220 if (last)
6221 last->next = sg;
6222 last = sg;
6223 }
6224 last->next = first;
e3589f6c
PZ
6225
6226 return 0;
0601a88d 6227}
51888ca2 6228
89c4710e 6229/*
63b2ca30 6230 * Initialize sched groups cpu_capacity.
89c4710e 6231 *
63b2ca30 6232 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6233 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6234 * Typically cpu_capacity for all the groups in a sched domain will be same
6235 * unless there are asymmetries in the topology. If there are asymmetries,
6236 * group having more cpu_capacity will pickup more load compared to the
6237 * group having less cpu_capacity.
89c4710e 6238 */
63b2ca30 6239static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6240{
e3589f6c 6241 struct sched_group *sg = sd->groups;
89c4710e 6242
94c95ba6 6243 WARN_ON(!sg);
e3589f6c
PZ
6244
6245 do {
6246 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6247 sg = sg->next;
6248 } while (sg != sd->groups);
89c4710e 6249
c1174876 6250 if (cpu != group_balance_cpu(sg))
e3589f6c 6251 return;
aae6d3dd 6252
63b2ca30
NP
6253 update_group_capacity(sd, cpu);
6254 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6255}
6256
7c16ec58
MT
6257/*
6258 * Initializers for schedule domains
6259 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6260 */
6261
1d3504fc 6262static int default_relax_domain_level = -1;
60495e77 6263int sched_domain_level_max;
1d3504fc
HS
6264
6265static int __init setup_relax_domain_level(char *str)
6266{
a841f8ce
DS
6267 if (kstrtoint(str, 0, &default_relax_domain_level))
6268 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6269
1d3504fc
HS
6270 return 1;
6271}
6272__setup("relax_domain_level=", setup_relax_domain_level);
6273
6274static void set_domain_attribute(struct sched_domain *sd,
6275 struct sched_domain_attr *attr)
6276{
6277 int request;
6278
6279 if (!attr || attr->relax_domain_level < 0) {
6280 if (default_relax_domain_level < 0)
6281 return;
6282 else
6283 request = default_relax_domain_level;
6284 } else
6285 request = attr->relax_domain_level;
6286 if (request < sd->level) {
6287 /* turn off idle balance on this domain */
c88d5910 6288 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6289 } else {
6290 /* turn on idle balance on this domain */
c88d5910 6291 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6292 }
6293}
6294
54ab4ff4
PZ
6295static void __sdt_free(const struct cpumask *cpu_map);
6296static int __sdt_alloc(const struct cpumask *cpu_map);
6297
2109b99e
AH
6298static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6299 const struct cpumask *cpu_map)
6300{
6301 switch (what) {
2109b99e 6302 case sa_rootdomain:
822ff793
PZ
6303 if (!atomic_read(&d->rd->refcount))
6304 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6305 case sa_sd:
6306 free_percpu(d->sd); /* fall through */
dce840a0 6307 case sa_sd_storage:
54ab4ff4 6308 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6309 case sa_none:
6310 break;
6311 }
6312}
3404c8d9 6313
2109b99e
AH
6314static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6315 const struct cpumask *cpu_map)
6316{
dce840a0
PZ
6317 memset(d, 0, sizeof(*d));
6318
54ab4ff4
PZ
6319 if (__sdt_alloc(cpu_map))
6320 return sa_sd_storage;
dce840a0
PZ
6321 d->sd = alloc_percpu(struct sched_domain *);
6322 if (!d->sd)
6323 return sa_sd_storage;
2109b99e 6324 d->rd = alloc_rootdomain();
dce840a0 6325 if (!d->rd)
21d42ccf 6326 return sa_sd;
2109b99e
AH
6327 return sa_rootdomain;
6328}
57d885fe 6329
dce840a0
PZ
6330/*
6331 * NULL the sd_data elements we've used to build the sched_domain and
6332 * sched_group structure so that the subsequent __free_domain_allocs()
6333 * will not free the data we're using.
6334 */
6335static void claim_allocations(int cpu, struct sched_domain *sd)
6336{
6337 struct sd_data *sdd = sd->private;
dce840a0
PZ
6338
6339 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6340 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6341
e3589f6c 6342 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6343 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6344
63b2ca30
NP
6345 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6346 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6347}
6348
cb83b629 6349#ifdef CONFIG_NUMA
cb83b629 6350static int sched_domains_numa_levels;
e3fe70b1 6351enum numa_topology_type sched_numa_topology_type;
cb83b629 6352static int *sched_domains_numa_distance;
9942f79b 6353int sched_max_numa_distance;
cb83b629
PZ
6354static struct cpumask ***sched_domains_numa_masks;
6355static int sched_domains_curr_level;
143e1e28 6356#endif
cb83b629 6357
143e1e28
VG
6358/*
6359 * SD_flags allowed in topology descriptions.
6360 *
5d4dfddd 6361 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6362 * SD_SHARE_PKG_RESOURCES - describes shared caches
6363 * SD_NUMA - describes NUMA topologies
d77b3ed5 6364 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6365 *
6366 * Odd one out:
6367 * SD_ASYM_PACKING - describes SMT quirks
6368 */
6369#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6370 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6371 SD_SHARE_PKG_RESOURCES | \
6372 SD_NUMA | \
d77b3ed5
VG
6373 SD_ASYM_PACKING | \
6374 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6375
6376static struct sched_domain *
143e1e28 6377sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6378{
6379 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6380 int sd_weight, sd_flags = 0;
6381
6382#ifdef CONFIG_NUMA
6383 /*
6384 * Ugly hack to pass state to sd_numa_mask()...
6385 */
6386 sched_domains_curr_level = tl->numa_level;
6387#endif
6388
6389 sd_weight = cpumask_weight(tl->mask(cpu));
6390
6391 if (tl->sd_flags)
6392 sd_flags = (*tl->sd_flags)();
6393 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6394 "wrong sd_flags in topology description\n"))
6395 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6396
6397 *sd = (struct sched_domain){
6398 .min_interval = sd_weight,
6399 .max_interval = 2*sd_weight,
6400 .busy_factor = 32,
870a0bb5 6401 .imbalance_pct = 125,
143e1e28
VG
6402
6403 .cache_nice_tries = 0,
6404 .busy_idx = 0,
6405 .idle_idx = 0,
cb83b629
PZ
6406 .newidle_idx = 0,
6407 .wake_idx = 0,
6408 .forkexec_idx = 0,
6409
6410 .flags = 1*SD_LOAD_BALANCE
6411 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6412 | 1*SD_BALANCE_EXEC
6413 | 1*SD_BALANCE_FORK
cb83b629 6414 | 0*SD_BALANCE_WAKE
143e1e28 6415 | 1*SD_WAKE_AFFINE
5d4dfddd 6416 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6417 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6418 | 0*SD_SERIALIZE
cb83b629 6419 | 0*SD_PREFER_SIBLING
143e1e28
VG
6420 | 0*SD_NUMA
6421 | sd_flags
cb83b629 6422 ,
143e1e28 6423
cb83b629
PZ
6424 .last_balance = jiffies,
6425 .balance_interval = sd_weight,
143e1e28 6426 .smt_gain = 0,
2b4cfe64
JL
6427 .max_newidle_lb_cost = 0,
6428 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6429#ifdef CONFIG_SCHED_DEBUG
6430 .name = tl->name,
6431#endif
cb83b629 6432 };
cb83b629
PZ
6433
6434 /*
143e1e28 6435 * Convert topological properties into behaviour.
cb83b629 6436 */
143e1e28 6437
5d4dfddd 6438 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6439 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6440 sd->imbalance_pct = 110;
6441 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6442
6443 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6444 sd->imbalance_pct = 117;
6445 sd->cache_nice_tries = 1;
6446 sd->busy_idx = 2;
6447
6448#ifdef CONFIG_NUMA
6449 } else if (sd->flags & SD_NUMA) {
6450 sd->cache_nice_tries = 2;
6451 sd->busy_idx = 3;
6452 sd->idle_idx = 2;
6453
6454 sd->flags |= SD_SERIALIZE;
6455 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6456 sd->flags &= ~(SD_BALANCE_EXEC |
6457 SD_BALANCE_FORK |
6458 SD_WAKE_AFFINE);
6459 }
6460
6461#endif
6462 } else {
6463 sd->flags |= SD_PREFER_SIBLING;
6464 sd->cache_nice_tries = 1;
6465 sd->busy_idx = 2;
6466 sd->idle_idx = 1;
6467 }
6468
6469 sd->private = &tl->data;
cb83b629
PZ
6470
6471 return sd;
6472}
6473
143e1e28
VG
6474/*
6475 * Topology list, bottom-up.
6476 */
6477static struct sched_domain_topology_level default_topology[] = {
6478#ifdef CONFIG_SCHED_SMT
6479 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6480#endif
6481#ifdef CONFIG_SCHED_MC
6482 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6483#endif
6484 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6485 { NULL, },
6486};
6487
c6e1e7b5
JG
6488static struct sched_domain_topology_level *sched_domain_topology =
6489 default_topology;
143e1e28
VG
6490
6491#define for_each_sd_topology(tl) \
6492 for (tl = sched_domain_topology; tl->mask; tl++)
6493
6494void set_sched_topology(struct sched_domain_topology_level *tl)
6495{
6496 sched_domain_topology = tl;
6497}
6498
6499#ifdef CONFIG_NUMA
6500
cb83b629
PZ
6501static const struct cpumask *sd_numa_mask(int cpu)
6502{
6503 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6504}
6505
d039ac60
PZ
6506static void sched_numa_warn(const char *str)
6507{
6508 static int done = false;
6509 int i,j;
6510
6511 if (done)
6512 return;
6513
6514 done = true;
6515
6516 printk(KERN_WARNING "ERROR: %s\n\n", str);
6517
6518 for (i = 0; i < nr_node_ids; i++) {
6519 printk(KERN_WARNING " ");
6520 for (j = 0; j < nr_node_ids; j++)
6521 printk(KERN_CONT "%02d ", node_distance(i,j));
6522 printk(KERN_CONT "\n");
6523 }
6524 printk(KERN_WARNING "\n");
6525}
6526
9942f79b 6527bool find_numa_distance(int distance)
d039ac60
PZ
6528{
6529 int i;
6530
6531 if (distance == node_distance(0, 0))
6532 return true;
6533
6534 for (i = 0; i < sched_domains_numa_levels; i++) {
6535 if (sched_domains_numa_distance[i] == distance)
6536 return true;
6537 }
6538
6539 return false;
6540}
6541
e3fe70b1
RR
6542/*
6543 * A system can have three types of NUMA topology:
6544 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6545 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6546 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6547 *
6548 * The difference between a glueless mesh topology and a backplane
6549 * topology lies in whether communication between not directly
6550 * connected nodes goes through intermediary nodes (where programs
6551 * could run), or through backplane controllers. This affects
6552 * placement of programs.
6553 *
6554 * The type of topology can be discerned with the following tests:
6555 * - If the maximum distance between any nodes is 1 hop, the system
6556 * is directly connected.
6557 * - If for two nodes A and B, located N > 1 hops away from each other,
6558 * there is an intermediary node C, which is < N hops away from both
6559 * nodes A and B, the system is a glueless mesh.
6560 */
6561static void init_numa_topology_type(void)
6562{
6563 int a, b, c, n;
6564
6565 n = sched_max_numa_distance;
6566
e237882b 6567 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6568 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6569 return;
6570 }
e3fe70b1
RR
6571
6572 for_each_online_node(a) {
6573 for_each_online_node(b) {
6574 /* Find two nodes furthest removed from each other. */
6575 if (node_distance(a, b) < n)
6576 continue;
6577
6578 /* Is there an intermediary node between a and b? */
6579 for_each_online_node(c) {
6580 if (node_distance(a, c) < n &&
6581 node_distance(b, c) < n) {
6582 sched_numa_topology_type =
6583 NUMA_GLUELESS_MESH;
6584 return;
6585 }
6586 }
6587
6588 sched_numa_topology_type = NUMA_BACKPLANE;
6589 return;
6590 }
6591 }
6592}
6593
cb83b629
PZ
6594static void sched_init_numa(void)
6595{
6596 int next_distance, curr_distance = node_distance(0, 0);
6597 struct sched_domain_topology_level *tl;
6598 int level = 0;
6599 int i, j, k;
6600
cb83b629
PZ
6601 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6602 if (!sched_domains_numa_distance)
6603 return;
6604
6605 /*
6606 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6607 * unique distances in the node_distance() table.
6608 *
6609 * Assumes node_distance(0,j) includes all distances in
6610 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6611 */
6612 next_distance = curr_distance;
6613 for (i = 0; i < nr_node_ids; i++) {
6614 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6615 for (k = 0; k < nr_node_ids; k++) {
6616 int distance = node_distance(i, k);
6617
6618 if (distance > curr_distance &&
6619 (distance < next_distance ||
6620 next_distance == curr_distance))
6621 next_distance = distance;
6622
6623 /*
6624 * While not a strong assumption it would be nice to know
6625 * about cases where if node A is connected to B, B is not
6626 * equally connected to A.
6627 */
6628 if (sched_debug() && node_distance(k, i) != distance)
6629 sched_numa_warn("Node-distance not symmetric");
6630
6631 if (sched_debug() && i && !find_numa_distance(distance))
6632 sched_numa_warn("Node-0 not representative");
6633 }
6634 if (next_distance != curr_distance) {
6635 sched_domains_numa_distance[level++] = next_distance;
6636 sched_domains_numa_levels = level;
6637 curr_distance = next_distance;
6638 } else break;
cb83b629 6639 }
d039ac60
PZ
6640
6641 /*
6642 * In case of sched_debug() we verify the above assumption.
6643 */
6644 if (!sched_debug())
6645 break;
cb83b629 6646 }
c123588b
AR
6647
6648 if (!level)
6649 return;
6650
cb83b629
PZ
6651 /*
6652 * 'level' contains the number of unique distances, excluding the
6653 * identity distance node_distance(i,i).
6654 *
28b4a521 6655 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6656 * numbers.
6657 */
6658
5f7865f3
TC
6659 /*
6660 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6661 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6662 * the array will contain less then 'level' members. This could be
6663 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6664 * in other functions.
6665 *
6666 * We reset it to 'level' at the end of this function.
6667 */
6668 sched_domains_numa_levels = 0;
6669
cb83b629
PZ
6670 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6671 if (!sched_domains_numa_masks)
6672 return;
6673
6674 /*
6675 * Now for each level, construct a mask per node which contains all
6676 * cpus of nodes that are that many hops away from us.
6677 */
6678 for (i = 0; i < level; i++) {
6679 sched_domains_numa_masks[i] =
6680 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6681 if (!sched_domains_numa_masks[i])
6682 return;
6683
6684 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6685 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6686 if (!mask)
6687 return;
6688
6689 sched_domains_numa_masks[i][j] = mask;
6690
6691 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6692 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6693 continue;
6694
6695 cpumask_or(mask, mask, cpumask_of_node(k));
6696 }
6697 }
6698 }
6699
143e1e28
VG
6700 /* Compute default topology size */
6701 for (i = 0; sched_domain_topology[i].mask; i++);
6702
c515db8c 6703 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6704 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6705 if (!tl)
6706 return;
6707
6708 /*
6709 * Copy the default topology bits..
6710 */
143e1e28
VG
6711 for (i = 0; sched_domain_topology[i].mask; i++)
6712 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6713
6714 /*
6715 * .. and append 'j' levels of NUMA goodness.
6716 */
6717 for (j = 0; j < level; i++, j++) {
6718 tl[i] = (struct sched_domain_topology_level){
cb83b629 6719 .mask = sd_numa_mask,
143e1e28 6720 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6721 .flags = SDTL_OVERLAP,
6722 .numa_level = j,
143e1e28 6723 SD_INIT_NAME(NUMA)
cb83b629
PZ
6724 };
6725 }
6726
6727 sched_domain_topology = tl;
5f7865f3
TC
6728
6729 sched_domains_numa_levels = level;
9942f79b 6730 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6731
6732 init_numa_topology_type();
cb83b629 6733}
301a5cba
TC
6734
6735static void sched_domains_numa_masks_set(int cpu)
6736{
6737 int i, j;
6738 int node = cpu_to_node(cpu);
6739
6740 for (i = 0; i < sched_domains_numa_levels; i++) {
6741 for (j = 0; j < nr_node_ids; j++) {
6742 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6743 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6744 }
6745 }
6746}
6747
6748static void sched_domains_numa_masks_clear(int cpu)
6749{
6750 int i, j;
6751 for (i = 0; i < sched_domains_numa_levels; i++) {
6752 for (j = 0; j < nr_node_ids; j++)
6753 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6754 }
6755}
6756
6757/*
6758 * Update sched_domains_numa_masks[level][node] array when new cpus
6759 * are onlined.
6760 */
6761static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6762 unsigned long action,
6763 void *hcpu)
6764{
6765 int cpu = (long)hcpu;
6766
6767 switch (action & ~CPU_TASKS_FROZEN) {
6768 case CPU_ONLINE:
6769 sched_domains_numa_masks_set(cpu);
6770 break;
6771
6772 case CPU_DEAD:
6773 sched_domains_numa_masks_clear(cpu);
6774 break;
6775
6776 default:
6777 return NOTIFY_DONE;
6778 }
6779
6780 return NOTIFY_OK;
cb83b629
PZ
6781}
6782#else
6783static inline void sched_init_numa(void)
6784{
6785}
301a5cba
TC
6786
6787static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6788 unsigned long action,
6789 void *hcpu)
6790{
6791 return 0;
6792}
cb83b629
PZ
6793#endif /* CONFIG_NUMA */
6794
54ab4ff4
PZ
6795static int __sdt_alloc(const struct cpumask *cpu_map)
6796{
6797 struct sched_domain_topology_level *tl;
6798 int j;
6799
27723a68 6800 for_each_sd_topology(tl) {
54ab4ff4
PZ
6801 struct sd_data *sdd = &tl->data;
6802
6803 sdd->sd = alloc_percpu(struct sched_domain *);
6804 if (!sdd->sd)
6805 return -ENOMEM;
6806
6807 sdd->sg = alloc_percpu(struct sched_group *);
6808 if (!sdd->sg)
6809 return -ENOMEM;
6810
63b2ca30
NP
6811 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6812 if (!sdd->sgc)
9c3f75cb
PZ
6813 return -ENOMEM;
6814
54ab4ff4
PZ
6815 for_each_cpu(j, cpu_map) {
6816 struct sched_domain *sd;
6817 struct sched_group *sg;
63b2ca30 6818 struct sched_group_capacity *sgc;
54ab4ff4 6819
5cc389bc 6820 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6821 GFP_KERNEL, cpu_to_node(j));
6822 if (!sd)
6823 return -ENOMEM;
6824
6825 *per_cpu_ptr(sdd->sd, j) = sd;
6826
6827 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6828 GFP_KERNEL, cpu_to_node(j));
6829 if (!sg)
6830 return -ENOMEM;
6831
30b4e9eb
IM
6832 sg->next = sg;
6833
54ab4ff4 6834 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6835
63b2ca30 6836 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6837 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6838 if (!sgc)
9c3f75cb
PZ
6839 return -ENOMEM;
6840
63b2ca30 6841 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6842 }
6843 }
6844
6845 return 0;
6846}
6847
6848static void __sdt_free(const struct cpumask *cpu_map)
6849{
6850 struct sched_domain_topology_level *tl;
6851 int j;
6852
27723a68 6853 for_each_sd_topology(tl) {
54ab4ff4
PZ
6854 struct sd_data *sdd = &tl->data;
6855
6856 for_each_cpu(j, cpu_map) {
fb2cf2c6 6857 struct sched_domain *sd;
6858
6859 if (sdd->sd) {
6860 sd = *per_cpu_ptr(sdd->sd, j);
6861 if (sd && (sd->flags & SD_OVERLAP))
6862 free_sched_groups(sd->groups, 0);
6863 kfree(*per_cpu_ptr(sdd->sd, j));
6864 }
6865
6866 if (sdd->sg)
6867 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6868 if (sdd->sgc)
6869 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6870 }
6871 free_percpu(sdd->sd);
fb2cf2c6 6872 sdd->sd = NULL;
54ab4ff4 6873 free_percpu(sdd->sg);
fb2cf2c6 6874 sdd->sg = NULL;
63b2ca30
NP
6875 free_percpu(sdd->sgc);
6876 sdd->sgc = NULL;
54ab4ff4
PZ
6877 }
6878}
6879
2c402dc3 6880struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6881 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6882 struct sched_domain *child, int cpu)
2c402dc3 6883{
143e1e28 6884 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6885 if (!sd)
d069b916 6886 return child;
2c402dc3 6887
2c402dc3 6888 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6889 if (child) {
6890 sd->level = child->level + 1;
6891 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6892 child->parent = sd;
c75e0128 6893 sd->child = child;
6ae72dff
PZ
6894
6895 if (!cpumask_subset(sched_domain_span(child),
6896 sched_domain_span(sd))) {
6897 pr_err("BUG: arch topology borken\n");
6898#ifdef CONFIG_SCHED_DEBUG
6899 pr_err(" the %s domain not a subset of the %s domain\n",
6900 child->name, sd->name);
6901#endif
6902 /* Fixup, ensure @sd has at least @child cpus. */
6903 cpumask_or(sched_domain_span(sd),
6904 sched_domain_span(sd),
6905 sched_domain_span(child));
6906 }
6907
60495e77 6908 }
a841f8ce 6909 set_domain_attribute(sd, attr);
2c402dc3
PZ
6910
6911 return sd;
6912}
6913
2109b99e
AH
6914/*
6915 * Build sched domains for a given set of cpus and attach the sched domains
6916 * to the individual cpus
6917 */
dce840a0
PZ
6918static int build_sched_domains(const struct cpumask *cpu_map,
6919 struct sched_domain_attr *attr)
2109b99e 6920{
1c632169 6921 enum s_alloc alloc_state;
dce840a0 6922 struct sched_domain *sd;
2109b99e 6923 struct s_data d;
822ff793 6924 int i, ret = -ENOMEM;
9c1cfda2 6925
2109b99e
AH
6926 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6927 if (alloc_state != sa_rootdomain)
6928 goto error;
9c1cfda2 6929
dce840a0 6930 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6931 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6932 struct sched_domain_topology_level *tl;
6933
3bd65a80 6934 sd = NULL;
27723a68 6935 for_each_sd_topology(tl) {
4a850cbe 6936 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6937 if (tl == sched_domain_topology)
6938 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6939 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6940 sd->flags |= SD_OVERLAP;
d110235d
PZ
6941 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6942 break;
e3589f6c 6943 }
dce840a0
PZ
6944 }
6945
6946 /* Build the groups for the domains */
6947 for_each_cpu(i, cpu_map) {
6948 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6949 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6950 if (sd->flags & SD_OVERLAP) {
6951 if (build_overlap_sched_groups(sd, i))
6952 goto error;
6953 } else {
6954 if (build_sched_groups(sd, i))
6955 goto error;
6956 }
1cf51902 6957 }
a06dadbe 6958 }
9c1cfda2 6959
ced549fa 6960 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6961 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6962 if (!cpumask_test_cpu(i, cpu_map))
6963 continue;
9c1cfda2 6964
dce840a0
PZ
6965 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6966 claim_allocations(i, sd);
63b2ca30 6967 init_sched_groups_capacity(i, sd);
dce840a0 6968 }
f712c0c7 6969 }
9c1cfda2 6970
1da177e4 6971 /* Attach the domains */
dce840a0 6972 rcu_read_lock();
abcd083a 6973 for_each_cpu(i, cpu_map) {
21d42ccf 6974 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6975 cpu_attach_domain(sd, d.rd, i);
1da177e4 6976 }
dce840a0 6977 rcu_read_unlock();
51888ca2 6978
822ff793 6979 ret = 0;
51888ca2 6980error:
2109b99e 6981 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6982 return ret;
1da177e4 6983}
029190c5 6984
acc3f5d7 6985static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6986static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6987static struct sched_domain_attr *dattr_cur;
6988 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6989
6990/*
6991 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6992 * cpumask) fails, then fallback to a single sched domain,
6993 * as determined by the single cpumask fallback_doms.
029190c5 6994 */
4212823f 6995static cpumask_var_t fallback_doms;
029190c5 6996
ee79d1bd
HC
6997/*
6998 * arch_update_cpu_topology lets virtualized architectures update the
6999 * cpu core maps. It is supposed to return 1 if the topology changed
7000 * or 0 if it stayed the same.
7001 */
52f5684c 7002int __weak arch_update_cpu_topology(void)
22e52b07 7003{
ee79d1bd 7004 return 0;
22e52b07
HC
7005}
7006
acc3f5d7
RR
7007cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7008{
7009 int i;
7010 cpumask_var_t *doms;
7011
7012 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7013 if (!doms)
7014 return NULL;
7015 for (i = 0; i < ndoms; i++) {
7016 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7017 free_sched_domains(doms, i);
7018 return NULL;
7019 }
7020 }
7021 return doms;
7022}
7023
7024void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7025{
7026 unsigned int i;
7027 for (i = 0; i < ndoms; i++)
7028 free_cpumask_var(doms[i]);
7029 kfree(doms);
7030}
7031
1a20ff27 7032/*
41a2d6cf 7033 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7034 * For now this just excludes isolated cpus, but could be used to
7035 * exclude other special cases in the future.
1a20ff27 7036 */
c4a8849a 7037static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7038{
7378547f
MM
7039 int err;
7040
22e52b07 7041 arch_update_cpu_topology();
029190c5 7042 ndoms_cur = 1;
acc3f5d7 7043 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7044 if (!doms_cur)
acc3f5d7
RR
7045 doms_cur = &fallback_doms;
7046 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7047 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7048 register_sched_domain_sysctl();
7378547f
MM
7049
7050 return err;
1a20ff27
DG
7051}
7052
1a20ff27
DG
7053/*
7054 * Detach sched domains from a group of cpus specified in cpu_map
7055 * These cpus will now be attached to the NULL domain
7056 */
96f874e2 7057static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7058{
7059 int i;
7060
dce840a0 7061 rcu_read_lock();
abcd083a 7062 for_each_cpu(i, cpu_map)
57d885fe 7063 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7064 rcu_read_unlock();
1a20ff27
DG
7065}
7066
1d3504fc
HS
7067/* handle null as "default" */
7068static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7069 struct sched_domain_attr *new, int idx_new)
7070{
7071 struct sched_domain_attr tmp;
7072
7073 /* fast path */
7074 if (!new && !cur)
7075 return 1;
7076
7077 tmp = SD_ATTR_INIT;
7078 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7079 new ? (new + idx_new) : &tmp,
7080 sizeof(struct sched_domain_attr));
7081}
7082
029190c5
PJ
7083/*
7084 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7085 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7086 * doms_new[] to the current sched domain partitioning, doms_cur[].
7087 * It destroys each deleted domain and builds each new domain.
7088 *
acc3f5d7 7089 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7090 * The masks don't intersect (don't overlap.) We should setup one
7091 * sched domain for each mask. CPUs not in any of the cpumasks will
7092 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7093 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7094 * it as it is.
7095 *
acc3f5d7
RR
7096 * The passed in 'doms_new' should be allocated using
7097 * alloc_sched_domains. This routine takes ownership of it and will
7098 * free_sched_domains it when done with it. If the caller failed the
7099 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7100 * and partition_sched_domains() will fallback to the single partition
7101 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7102 *
96f874e2 7103 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7104 * ndoms_new == 0 is a special case for destroying existing domains,
7105 * and it will not create the default domain.
dfb512ec 7106 *
029190c5
PJ
7107 * Call with hotplug lock held
7108 */
acc3f5d7 7109void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7110 struct sched_domain_attr *dattr_new)
029190c5 7111{
dfb512ec 7112 int i, j, n;
d65bd5ec 7113 int new_topology;
029190c5 7114
712555ee 7115 mutex_lock(&sched_domains_mutex);
a1835615 7116
7378547f
MM
7117 /* always unregister in case we don't destroy any domains */
7118 unregister_sched_domain_sysctl();
7119
d65bd5ec
HC
7120 /* Let architecture update cpu core mappings. */
7121 new_topology = arch_update_cpu_topology();
7122
dfb512ec 7123 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7124
7125 /* Destroy deleted domains */
7126 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7127 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7128 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7129 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7130 goto match1;
7131 }
7132 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7133 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7134match1:
7135 ;
7136 }
7137
c8d2d47a 7138 n = ndoms_cur;
e761b772 7139 if (doms_new == NULL) {
c8d2d47a 7140 n = 0;
acc3f5d7 7141 doms_new = &fallback_doms;
6ad4c188 7142 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7143 WARN_ON_ONCE(dattr_new);
e761b772
MK
7144 }
7145
029190c5
PJ
7146 /* Build new domains */
7147 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7148 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7149 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7150 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7151 goto match2;
7152 }
7153 /* no match - add a new doms_new */
dce840a0 7154 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7155match2:
7156 ;
7157 }
7158
7159 /* Remember the new sched domains */
acc3f5d7
RR
7160 if (doms_cur != &fallback_doms)
7161 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7162 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7163 doms_cur = doms_new;
1d3504fc 7164 dattr_cur = dattr_new;
029190c5 7165 ndoms_cur = ndoms_new;
7378547f
MM
7166
7167 register_sched_domain_sysctl();
a1835615 7168
712555ee 7169 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7170}
7171
d35be8ba
SB
7172static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7173
1da177e4 7174/*
3a101d05
TH
7175 * Update cpusets according to cpu_active mask. If cpusets are
7176 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7177 * around partition_sched_domains().
d35be8ba
SB
7178 *
7179 * If we come here as part of a suspend/resume, don't touch cpusets because we
7180 * want to restore it back to its original state upon resume anyway.
1da177e4 7181 */
0b2e918a
TH
7182static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7183 void *hcpu)
e761b772 7184{
d35be8ba
SB
7185 switch (action) {
7186 case CPU_ONLINE_FROZEN:
7187 case CPU_DOWN_FAILED_FROZEN:
7188
7189 /*
7190 * num_cpus_frozen tracks how many CPUs are involved in suspend
7191 * resume sequence. As long as this is not the last online
7192 * operation in the resume sequence, just build a single sched
7193 * domain, ignoring cpusets.
7194 */
7195 num_cpus_frozen--;
7196 if (likely(num_cpus_frozen)) {
7197 partition_sched_domains(1, NULL, NULL);
7198 break;
7199 }
7200
7201 /*
7202 * This is the last CPU online operation. So fall through and
7203 * restore the original sched domains by considering the
7204 * cpuset configurations.
7205 */
7206
e761b772 7207 case CPU_ONLINE:
7ddf96b0 7208 cpuset_update_active_cpus(true);
d35be8ba 7209 break;
3a101d05
TH
7210 default:
7211 return NOTIFY_DONE;
7212 }
d35be8ba 7213 return NOTIFY_OK;
3a101d05 7214}
e761b772 7215
0b2e918a
TH
7216static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7217 void *hcpu)
3a101d05 7218{
3c18d447
JL
7219 unsigned long flags;
7220 long cpu = (long)hcpu;
7221 struct dl_bw *dl_b;
533445c6
OS
7222 bool overflow;
7223 int cpus;
3c18d447 7224
533445c6 7225 switch (action) {
3a101d05 7226 case CPU_DOWN_PREPARE:
533445c6
OS
7227 rcu_read_lock_sched();
7228 dl_b = dl_bw_of(cpu);
3c18d447 7229
533445c6
OS
7230 raw_spin_lock_irqsave(&dl_b->lock, flags);
7231 cpus = dl_bw_cpus(cpu);
7232 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7233 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7234
533445c6 7235 rcu_read_unlock_sched();
3c18d447 7236
533445c6
OS
7237 if (overflow)
7238 return notifier_from_errno(-EBUSY);
7ddf96b0 7239 cpuset_update_active_cpus(false);
d35be8ba
SB
7240 break;
7241 case CPU_DOWN_PREPARE_FROZEN:
7242 num_cpus_frozen++;
7243 partition_sched_domains(1, NULL, NULL);
7244 break;
e761b772
MK
7245 default:
7246 return NOTIFY_DONE;
7247 }
d35be8ba 7248 return NOTIFY_OK;
e761b772 7249}
e761b772 7250
1da177e4
LT
7251void __init sched_init_smp(void)
7252{
dcc30a35
RR
7253 cpumask_var_t non_isolated_cpus;
7254
7255 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7256 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7257
8cb9764f
CM
7258 /* nohz_full won't take effect without isolating the cpus. */
7259 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7260
cb83b629
PZ
7261 sched_init_numa();
7262
6acce3ef
PZ
7263 /*
7264 * There's no userspace yet to cause hotplug operations; hence all the
7265 * cpu masks are stable and all blatant races in the below code cannot
7266 * happen.
7267 */
712555ee 7268 mutex_lock(&sched_domains_mutex);
c4a8849a 7269 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7270 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7271 if (cpumask_empty(non_isolated_cpus))
7272 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7273 mutex_unlock(&sched_domains_mutex);
e761b772 7274
301a5cba 7275 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7276 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7277 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7278
b328ca18 7279 init_hrtick();
5c1e1767
NP
7280
7281 /* Move init over to a non-isolated CPU */
dcc30a35 7282 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7283 BUG();
19978ca6 7284 sched_init_granularity();
dcc30a35 7285 free_cpumask_var(non_isolated_cpus);
4212823f 7286
0e3900e6 7287 init_sched_rt_class();
1baca4ce 7288 init_sched_dl_class();
1da177e4
LT
7289}
7290#else
7291void __init sched_init_smp(void)
7292{
19978ca6 7293 sched_init_granularity();
1da177e4
LT
7294}
7295#endif /* CONFIG_SMP */
7296
7297int in_sched_functions(unsigned long addr)
7298{
1da177e4
LT
7299 return in_lock_functions(addr) ||
7300 (addr >= (unsigned long)__sched_text_start
7301 && addr < (unsigned long)__sched_text_end);
7302}
7303
029632fb 7304#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7305/*
7306 * Default task group.
7307 * Every task in system belongs to this group at bootup.
7308 */
029632fb 7309struct task_group root_task_group;
35cf4e50 7310LIST_HEAD(task_groups);
052f1dc7 7311#endif
6f505b16 7312
e6252c3e 7313DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7314
1da177e4
LT
7315void __init sched_init(void)
7316{
dd41f596 7317 int i, j;
434d53b0
MT
7318 unsigned long alloc_size = 0, ptr;
7319
7320#ifdef CONFIG_FAIR_GROUP_SCHED
7321 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7322#endif
7323#ifdef CONFIG_RT_GROUP_SCHED
7324 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7325#endif
434d53b0 7326 if (alloc_size) {
36b7b6d4 7327 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7328
7329#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7330 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7331 ptr += nr_cpu_ids * sizeof(void **);
7332
07e06b01 7333 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7334 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7335
6d6bc0ad 7336#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7337#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7338 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7339 ptr += nr_cpu_ids * sizeof(void **);
7340
07e06b01 7341 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7342 ptr += nr_cpu_ids * sizeof(void **);
7343
6d6bc0ad 7344#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7345 }
df7c8e84 7346#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7347 for_each_possible_cpu(i) {
7348 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7349 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7350 }
b74e6278 7351#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7352
332ac17e
DF
7353 init_rt_bandwidth(&def_rt_bandwidth,
7354 global_rt_period(), global_rt_runtime());
7355 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7356 global_rt_period(), global_rt_runtime());
332ac17e 7357
57d885fe
GH
7358#ifdef CONFIG_SMP
7359 init_defrootdomain();
7360#endif
7361
d0b27fa7 7362#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7363 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7364 global_rt_period(), global_rt_runtime());
6d6bc0ad 7365#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7366
7c941438 7367#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7368 list_add(&root_task_group.list, &task_groups);
7369 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7370 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7371 autogroup_init(&init_task);
54c707e9 7372
7c941438 7373#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7374
0a945022 7375 for_each_possible_cpu(i) {
70b97a7f 7376 struct rq *rq;
1da177e4
LT
7377
7378 rq = cpu_rq(i);
05fa785c 7379 raw_spin_lock_init(&rq->lock);
7897986b 7380 rq->nr_running = 0;
dce48a84
TG
7381 rq->calc_load_active = 0;
7382 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7383 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7384 init_rt_rq(&rq->rt);
7385 init_dl_rq(&rq->dl);
dd41f596 7386#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7387 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7388 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7389 /*
07e06b01 7390 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7391 *
7392 * In case of task-groups formed thr' the cgroup filesystem, it
7393 * gets 100% of the cpu resources in the system. This overall
7394 * system cpu resource is divided among the tasks of
07e06b01 7395 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7396 * based on each entity's (task or task-group's) weight
7397 * (se->load.weight).
7398 *
07e06b01 7399 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7400 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7401 * then A0's share of the cpu resource is:
7402 *
0d905bca 7403 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7404 *
07e06b01
YZ
7405 * We achieve this by letting root_task_group's tasks sit
7406 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7407 */
ab84d31e 7408 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7409 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7410#endif /* CONFIG_FAIR_GROUP_SCHED */
7411
7412 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7413#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7414 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7415#endif
1da177e4 7416
dd41f596
IM
7417 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7418 rq->cpu_load[j] = 0;
fdf3e95d
VP
7419
7420 rq->last_load_update_tick = jiffies;
7421
1da177e4 7422#ifdef CONFIG_SMP
41c7ce9a 7423 rq->sd = NULL;
57d885fe 7424 rq->rd = NULL;
ca6d75e6 7425 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7426 rq->balance_callback = NULL;
1da177e4 7427 rq->active_balance = 0;
dd41f596 7428 rq->next_balance = jiffies;
1da177e4 7429 rq->push_cpu = 0;
0a2966b4 7430 rq->cpu = i;
1f11eb6a 7431 rq->online = 0;
eae0c9df
MG
7432 rq->idle_stamp = 0;
7433 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7434 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7435
7436 INIT_LIST_HEAD(&rq->cfs_tasks);
7437
dc938520 7438 rq_attach_root(rq, &def_root_domain);
3451d024 7439#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7440 rq->nohz_flags = 0;
83cd4fe2 7441#endif
265f22a9
FW
7442#ifdef CONFIG_NO_HZ_FULL
7443 rq->last_sched_tick = 0;
7444#endif
1da177e4 7445#endif
8f4d37ec 7446 init_rq_hrtick(rq);
1da177e4 7447 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7448 }
7449
2dd73a4f 7450 set_load_weight(&init_task);
b50f60ce 7451
e107be36
AK
7452#ifdef CONFIG_PREEMPT_NOTIFIERS
7453 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7454#endif
7455
1da177e4
LT
7456 /*
7457 * The boot idle thread does lazy MMU switching as well:
7458 */
7459 atomic_inc(&init_mm.mm_count);
7460 enter_lazy_tlb(&init_mm, current);
7461
1b537c7d
YD
7462 /*
7463 * During early bootup we pretend to be a normal task:
7464 */
7465 current->sched_class = &fair_sched_class;
7466
1da177e4
LT
7467 /*
7468 * Make us the idle thread. Technically, schedule() should not be
7469 * called from this thread, however somewhere below it might be,
7470 * but because we are the idle thread, we just pick up running again
7471 * when this runqueue becomes "idle".
7472 */
7473 init_idle(current, smp_processor_id());
dce48a84
TG
7474
7475 calc_load_update = jiffies + LOAD_FREQ;
7476
bf4d83f6 7477#ifdef CONFIG_SMP
4cb98839 7478 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7479 /* May be allocated at isolcpus cmdline parse time */
7480 if (cpu_isolated_map == NULL)
7481 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7482 idle_thread_set_boot_cpu();
a803f026 7483 set_cpu_rq_start_time();
029632fb
PZ
7484#endif
7485 init_sched_fair_class();
6a7b3dc3 7486
6892b75e 7487 scheduler_running = 1;
1da177e4
LT
7488}
7489
d902db1e 7490#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7491static inline int preempt_count_equals(int preempt_offset)
7492{
da7142e2 7493 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7494
4ba8216c 7495 return (nested == preempt_offset);
e4aafea2
FW
7496}
7497
d894837f 7498void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7499{
8eb23b9f
PZ
7500 /*
7501 * Blocking primitives will set (and therefore destroy) current->state,
7502 * since we will exit with TASK_RUNNING make sure we enter with it,
7503 * otherwise we will destroy state.
7504 */
00845eb9 7505 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7506 "do not call blocking ops when !TASK_RUNNING; "
7507 "state=%lx set at [<%p>] %pS\n",
7508 current->state,
7509 (void *)current->task_state_change,
00845eb9 7510 (void *)current->task_state_change);
8eb23b9f 7511
3427445a
PZ
7512 ___might_sleep(file, line, preempt_offset);
7513}
7514EXPORT_SYMBOL(__might_sleep);
7515
7516void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7517{
1da177e4
LT
7518 static unsigned long prev_jiffy; /* ratelimiting */
7519
b3fbab05 7520 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7521 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7522 !is_idle_task(current)) ||
e4aafea2 7523 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7524 return;
7525 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7526 return;
7527 prev_jiffy = jiffies;
7528
3df0fc5b
PZ
7529 printk(KERN_ERR
7530 "BUG: sleeping function called from invalid context at %s:%d\n",
7531 file, line);
7532 printk(KERN_ERR
7533 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7534 in_atomic(), irqs_disabled(),
7535 current->pid, current->comm);
aef745fc 7536
a8b686b3
ES
7537 if (task_stack_end_corrupted(current))
7538 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7539
aef745fc
IM
7540 debug_show_held_locks(current);
7541 if (irqs_disabled())
7542 print_irqtrace_events(current);
8f47b187
TG
7543#ifdef CONFIG_DEBUG_PREEMPT
7544 if (!preempt_count_equals(preempt_offset)) {
7545 pr_err("Preemption disabled at:");
7546 print_ip_sym(current->preempt_disable_ip);
7547 pr_cont("\n");
7548 }
7549#endif
aef745fc 7550 dump_stack();
1da177e4 7551}
3427445a 7552EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7553#endif
7554
7555#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7556void normalize_rt_tasks(void)
3a5e4dc1 7557{
dbc7f069 7558 struct task_struct *g, *p;
d50dde5a
DF
7559 struct sched_attr attr = {
7560 .sched_policy = SCHED_NORMAL,
7561 };
1da177e4 7562
3472eaa1 7563 read_lock(&tasklist_lock);
5d07f420 7564 for_each_process_thread(g, p) {
178be793
IM
7565 /*
7566 * Only normalize user tasks:
7567 */
3472eaa1 7568 if (p->flags & PF_KTHREAD)
178be793
IM
7569 continue;
7570
6cfb0d5d 7571 p->se.exec_start = 0;
6cfb0d5d 7572#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7573 p->se.statistics.wait_start = 0;
7574 p->se.statistics.sleep_start = 0;
7575 p->se.statistics.block_start = 0;
6cfb0d5d 7576#endif
dd41f596 7577
aab03e05 7578 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7579 /*
7580 * Renice negative nice level userspace
7581 * tasks back to 0:
7582 */
3472eaa1 7583 if (task_nice(p) < 0)
dd41f596 7584 set_user_nice(p, 0);
1da177e4 7585 continue;
dd41f596 7586 }
1da177e4 7587
dbc7f069 7588 __sched_setscheduler(p, &attr, false, false);
5d07f420 7589 }
3472eaa1 7590 read_unlock(&tasklist_lock);
1da177e4
LT
7591}
7592
7593#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7594
67fc4e0c 7595#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7596/*
67fc4e0c 7597 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7598 *
7599 * They can only be called when the whole system has been
7600 * stopped - every CPU needs to be quiescent, and no scheduling
7601 * activity can take place. Using them for anything else would
7602 * be a serious bug, and as a result, they aren't even visible
7603 * under any other configuration.
7604 */
7605
7606/**
7607 * curr_task - return the current task for a given cpu.
7608 * @cpu: the processor in question.
7609 *
7610 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7611 *
7612 * Return: The current task for @cpu.
1df5c10a 7613 */
36c8b586 7614struct task_struct *curr_task(int cpu)
1df5c10a
LT
7615{
7616 return cpu_curr(cpu);
7617}
7618
67fc4e0c
JW
7619#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7620
7621#ifdef CONFIG_IA64
1df5c10a
LT
7622/**
7623 * set_curr_task - set the current task for a given cpu.
7624 * @cpu: the processor in question.
7625 * @p: the task pointer to set.
7626 *
7627 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7628 * are serviced on a separate stack. It allows the architecture to switch the
7629 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7630 * must be called with all CPU's synchronized, and interrupts disabled, the
7631 * and caller must save the original value of the current task (see
7632 * curr_task() above) and restore that value before reenabling interrupts and
7633 * re-starting the system.
7634 *
7635 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7636 */
36c8b586 7637void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7638{
7639 cpu_curr(cpu) = p;
7640}
7641
7642#endif
29f59db3 7643
7c941438 7644#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7645/* task_group_lock serializes the addition/removal of task groups */
7646static DEFINE_SPINLOCK(task_group_lock);
7647
bccbe08a
PZ
7648static void free_sched_group(struct task_group *tg)
7649{
7650 free_fair_sched_group(tg);
7651 free_rt_sched_group(tg);
e9aa1dd1 7652 autogroup_free(tg);
bccbe08a
PZ
7653 kfree(tg);
7654}
7655
7656/* allocate runqueue etc for a new task group */
ec7dc8ac 7657struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7658{
7659 struct task_group *tg;
bccbe08a
PZ
7660
7661 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7662 if (!tg)
7663 return ERR_PTR(-ENOMEM);
7664
ec7dc8ac 7665 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7666 goto err;
7667
ec7dc8ac 7668 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7669 goto err;
7670
ace783b9
LZ
7671 return tg;
7672
7673err:
7674 free_sched_group(tg);
7675 return ERR_PTR(-ENOMEM);
7676}
7677
7678void sched_online_group(struct task_group *tg, struct task_group *parent)
7679{
7680 unsigned long flags;
7681
8ed36996 7682 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7683 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7684
7685 WARN_ON(!parent); /* root should already exist */
7686
7687 tg->parent = parent;
f473aa5e 7688 INIT_LIST_HEAD(&tg->children);
09f2724a 7689 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7690 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7691}
7692
9b5b7751 7693/* rcu callback to free various structures associated with a task group */
6f505b16 7694static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7695{
29f59db3 7696 /* now it should be safe to free those cfs_rqs */
6f505b16 7697 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7698}
7699
9b5b7751 7700/* Destroy runqueue etc associated with a task group */
4cf86d77 7701void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7702{
7703 /* wait for possible concurrent references to cfs_rqs complete */
7704 call_rcu(&tg->rcu, free_sched_group_rcu);
7705}
7706
7707void sched_offline_group(struct task_group *tg)
29f59db3 7708{
8ed36996 7709 unsigned long flags;
9b5b7751 7710 int i;
29f59db3 7711
3d4b47b4
PZ
7712 /* end participation in shares distribution */
7713 for_each_possible_cpu(i)
bccbe08a 7714 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7715
7716 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7717 list_del_rcu(&tg->list);
f473aa5e 7718 list_del_rcu(&tg->siblings);
8ed36996 7719 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7720}
7721
9b5b7751 7722/* change task's runqueue when it moves between groups.
3a252015
IM
7723 * The caller of this function should have put the task in its new group
7724 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7725 * reflect its new group.
9b5b7751
SV
7726 */
7727void sched_move_task(struct task_struct *tsk)
29f59db3 7728{
8323f26c 7729 struct task_group *tg;
da0c1e65 7730 int queued, running;
29f59db3
SV
7731 unsigned long flags;
7732 struct rq *rq;
7733
7734 rq = task_rq_lock(tsk, &flags);
7735
051a1d1a 7736 running = task_current(rq, tsk);
da0c1e65 7737 queued = task_on_rq_queued(tsk);
29f59db3 7738
da0c1e65 7739 if (queued)
29f59db3 7740 dequeue_task(rq, tsk, 0);
0e1f3483 7741 if (unlikely(running))
f3cd1c4e 7742 put_prev_task(rq, tsk);
29f59db3 7743
f7b8a47d
KT
7744 /*
7745 * All callers are synchronized by task_rq_lock(); we do not use RCU
7746 * which is pointless here. Thus, we pass "true" to task_css_check()
7747 * to prevent lockdep warnings.
7748 */
7749 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7750 struct task_group, css);
7751 tg = autogroup_task_group(tsk, tg);
7752 tsk->sched_task_group = tg;
7753
810b3817 7754#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7755 if (tsk->sched_class->task_move_group)
bc54da21 7756 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7757 else
810b3817 7758#endif
b2b5ce02 7759 set_task_rq(tsk, task_cpu(tsk));
810b3817 7760
0e1f3483
HS
7761 if (unlikely(running))
7762 tsk->sched_class->set_curr_task(rq);
da0c1e65 7763 if (queued)
371fd7e7 7764 enqueue_task(rq, tsk, 0);
29f59db3 7765
0122ec5b 7766 task_rq_unlock(rq, tsk, &flags);
29f59db3 7767}
7c941438 7768#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7769
a790de99
PT
7770#ifdef CONFIG_RT_GROUP_SCHED
7771/*
7772 * Ensure that the real time constraints are schedulable.
7773 */
7774static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7775
9a7e0b18
PZ
7776/* Must be called with tasklist_lock held */
7777static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7778{
9a7e0b18 7779 struct task_struct *g, *p;
b40b2e8e 7780
1fe89e1b
PZ
7781 /*
7782 * Autogroups do not have RT tasks; see autogroup_create().
7783 */
7784 if (task_group_is_autogroup(tg))
7785 return 0;
7786
5d07f420 7787 for_each_process_thread(g, p) {
8651c658 7788 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7789 return 1;
5d07f420 7790 }
b40b2e8e 7791
9a7e0b18
PZ
7792 return 0;
7793}
b40b2e8e 7794
9a7e0b18
PZ
7795struct rt_schedulable_data {
7796 struct task_group *tg;
7797 u64 rt_period;
7798 u64 rt_runtime;
7799};
b40b2e8e 7800
a790de99 7801static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7802{
7803 struct rt_schedulable_data *d = data;
7804 struct task_group *child;
7805 unsigned long total, sum = 0;
7806 u64 period, runtime;
b40b2e8e 7807
9a7e0b18
PZ
7808 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7809 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7810
9a7e0b18
PZ
7811 if (tg == d->tg) {
7812 period = d->rt_period;
7813 runtime = d->rt_runtime;
b40b2e8e 7814 }
b40b2e8e 7815
4653f803
PZ
7816 /*
7817 * Cannot have more runtime than the period.
7818 */
7819 if (runtime > period && runtime != RUNTIME_INF)
7820 return -EINVAL;
6f505b16 7821
4653f803
PZ
7822 /*
7823 * Ensure we don't starve existing RT tasks.
7824 */
9a7e0b18
PZ
7825 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7826 return -EBUSY;
6f505b16 7827
9a7e0b18 7828 total = to_ratio(period, runtime);
6f505b16 7829
4653f803
PZ
7830 /*
7831 * Nobody can have more than the global setting allows.
7832 */
7833 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7834 return -EINVAL;
6f505b16 7835
4653f803
PZ
7836 /*
7837 * The sum of our children's runtime should not exceed our own.
7838 */
9a7e0b18
PZ
7839 list_for_each_entry_rcu(child, &tg->children, siblings) {
7840 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7841 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7842
9a7e0b18
PZ
7843 if (child == d->tg) {
7844 period = d->rt_period;
7845 runtime = d->rt_runtime;
7846 }
6f505b16 7847
9a7e0b18 7848 sum += to_ratio(period, runtime);
9f0c1e56 7849 }
6f505b16 7850
9a7e0b18
PZ
7851 if (sum > total)
7852 return -EINVAL;
7853
7854 return 0;
6f505b16
PZ
7855}
7856
9a7e0b18 7857static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7858{
8277434e
PT
7859 int ret;
7860
9a7e0b18
PZ
7861 struct rt_schedulable_data data = {
7862 .tg = tg,
7863 .rt_period = period,
7864 .rt_runtime = runtime,
7865 };
7866
8277434e
PT
7867 rcu_read_lock();
7868 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7869 rcu_read_unlock();
7870
7871 return ret;
521f1a24
DG
7872}
7873
ab84d31e 7874static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7875 u64 rt_period, u64 rt_runtime)
6f505b16 7876{
ac086bc2 7877 int i, err = 0;
9f0c1e56 7878
2636ed5f
PZ
7879 /*
7880 * Disallowing the root group RT runtime is BAD, it would disallow the
7881 * kernel creating (and or operating) RT threads.
7882 */
7883 if (tg == &root_task_group && rt_runtime == 0)
7884 return -EINVAL;
7885
7886 /* No period doesn't make any sense. */
7887 if (rt_period == 0)
7888 return -EINVAL;
7889
9f0c1e56 7890 mutex_lock(&rt_constraints_mutex);
521f1a24 7891 read_lock(&tasklist_lock);
9a7e0b18
PZ
7892 err = __rt_schedulable(tg, rt_period, rt_runtime);
7893 if (err)
9f0c1e56 7894 goto unlock;
ac086bc2 7895
0986b11b 7896 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7897 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7898 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7899
7900 for_each_possible_cpu(i) {
7901 struct rt_rq *rt_rq = tg->rt_rq[i];
7902
0986b11b 7903 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7904 rt_rq->rt_runtime = rt_runtime;
0986b11b 7905 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7906 }
0986b11b 7907 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7908unlock:
521f1a24 7909 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7910 mutex_unlock(&rt_constraints_mutex);
7911
7912 return err;
6f505b16
PZ
7913}
7914
25cc7da7 7915static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7916{
7917 u64 rt_runtime, rt_period;
7918
7919 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7920 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7921 if (rt_runtime_us < 0)
7922 rt_runtime = RUNTIME_INF;
7923
ab84d31e 7924 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7925}
7926
25cc7da7 7927static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7928{
7929 u64 rt_runtime_us;
7930
d0b27fa7 7931 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7932 return -1;
7933
d0b27fa7 7934 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7935 do_div(rt_runtime_us, NSEC_PER_USEC);
7936 return rt_runtime_us;
7937}
d0b27fa7 7938
ce2f5fe4 7939static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7940{
7941 u64 rt_runtime, rt_period;
7942
ce2f5fe4 7943 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7944 rt_runtime = tg->rt_bandwidth.rt_runtime;
7945
ab84d31e 7946 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7947}
7948
25cc7da7 7949static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7950{
7951 u64 rt_period_us;
7952
7953 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7954 do_div(rt_period_us, NSEC_PER_USEC);
7955 return rt_period_us;
7956}
332ac17e 7957#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7958
332ac17e 7959#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7960static int sched_rt_global_constraints(void)
7961{
7962 int ret = 0;
7963
7964 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7965 read_lock(&tasklist_lock);
4653f803 7966 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7967 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7968 mutex_unlock(&rt_constraints_mutex);
7969
7970 return ret;
7971}
54e99124 7972
25cc7da7 7973static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7974{
7975 /* Don't accept realtime tasks when there is no way for them to run */
7976 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7977 return 0;
7978
7979 return 1;
7980}
7981
6d6bc0ad 7982#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7983static int sched_rt_global_constraints(void)
7984{
ac086bc2 7985 unsigned long flags;
332ac17e 7986 int i, ret = 0;
ec5d4989 7987
0986b11b 7988 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7989 for_each_possible_cpu(i) {
7990 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7991
0986b11b 7992 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7993 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7994 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7995 }
0986b11b 7996 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7997
332ac17e 7998 return ret;
d0b27fa7 7999}
6d6bc0ad 8000#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8001
a1963b81 8002static int sched_dl_global_validate(void)
332ac17e 8003{
1724813d
PZ
8004 u64 runtime = global_rt_runtime();
8005 u64 period = global_rt_period();
332ac17e 8006 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8007 struct dl_bw *dl_b;
1724813d 8008 int cpu, ret = 0;
49516342 8009 unsigned long flags;
332ac17e
DF
8010
8011 /*
8012 * Here we want to check the bandwidth not being set to some
8013 * value smaller than the currently allocated bandwidth in
8014 * any of the root_domains.
8015 *
8016 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8017 * cycling on root_domains... Discussion on different/better
8018 * solutions is welcome!
8019 */
1724813d 8020 for_each_possible_cpu(cpu) {
f10e00f4
KT
8021 rcu_read_lock_sched();
8022 dl_b = dl_bw_of(cpu);
332ac17e 8023
49516342 8024 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8025 if (new_bw < dl_b->total_bw)
8026 ret = -EBUSY;
49516342 8027 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8028
f10e00f4
KT
8029 rcu_read_unlock_sched();
8030
1724813d
PZ
8031 if (ret)
8032 break;
332ac17e
DF
8033 }
8034
1724813d 8035 return ret;
332ac17e
DF
8036}
8037
1724813d 8038static void sched_dl_do_global(void)
ce0dbbbb 8039{
1724813d 8040 u64 new_bw = -1;
f10e00f4 8041 struct dl_bw *dl_b;
1724813d 8042 int cpu;
49516342 8043 unsigned long flags;
ce0dbbbb 8044
1724813d
PZ
8045 def_dl_bandwidth.dl_period = global_rt_period();
8046 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8047
8048 if (global_rt_runtime() != RUNTIME_INF)
8049 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8050
8051 /*
8052 * FIXME: As above...
8053 */
8054 for_each_possible_cpu(cpu) {
f10e00f4
KT
8055 rcu_read_lock_sched();
8056 dl_b = dl_bw_of(cpu);
1724813d 8057
49516342 8058 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8059 dl_b->bw = new_bw;
49516342 8060 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8061
8062 rcu_read_unlock_sched();
ce0dbbbb 8063 }
1724813d
PZ
8064}
8065
8066static int sched_rt_global_validate(void)
8067{
8068 if (sysctl_sched_rt_period <= 0)
8069 return -EINVAL;
8070
e9e7cb38
JL
8071 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8072 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8073 return -EINVAL;
8074
8075 return 0;
8076}
8077
8078static void sched_rt_do_global(void)
8079{
8080 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8081 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8082}
8083
d0b27fa7 8084int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8085 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8086 loff_t *ppos)
8087{
d0b27fa7
PZ
8088 int old_period, old_runtime;
8089 static DEFINE_MUTEX(mutex);
1724813d 8090 int ret;
d0b27fa7
PZ
8091
8092 mutex_lock(&mutex);
8093 old_period = sysctl_sched_rt_period;
8094 old_runtime = sysctl_sched_rt_runtime;
8095
8d65af78 8096 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8097
8098 if (!ret && write) {
1724813d
PZ
8099 ret = sched_rt_global_validate();
8100 if (ret)
8101 goto undo;
8102
a1963b81 8103 ret = sched_dl_global_validate();
1724813d
PZ
8104 if (ret)
8105 goto undo;
8106
a1963b81 8107 ret = sched_rt_global_constraints();
1724813d
PZ
8108 if (ret)
8109 goto undo;
8110
8111 sched_rt_do_global();
8112 sched_dl_do_global();
8113 }
8114 if (0) {
8115undo:
8116 sysctl_sched_rt_period = old_period;
8117 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8118 }
8119 mutex_unlock(&mutex);
8120
8121 return ret;
8122}
68318b8e 8123
1724813d 8124int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8125 void __user *buffer, size_t *lenp,
8126 loff_t *ppos)
8127{
8128 int ret;
332ac17e 8129 static DEFINE_MUTEX(mutex);
332ac17e
DF
8130
8131 mutex_lock(&mutex);
332ac17e 8132 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8133 /* make sure that internally we keep jiffies */
8134 /* also, writing zero resets timeslice to default */
332ac17e 8135 if (!ret && write) {
1724813d
PZ
8136 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8137 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8138 }
8139 mutex_unlock(&mutex);
332ac17e
DF
8140 return ret;
8141}
8142
052f1dc7 8143#ifdef CONFIG_CGROUP_SCHED
68318b8e 8144
a7c6d554 8145static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8146{
a7c6d554 8147 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8148}
8149
eb95419b
TH
8150static struct cgroup_subsys_state *
8151cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8152{
eb95419b
TH
8153 struct task_group *parent = css_tg(parent_css);
8154 struct task_group *tg;
68318b8e 8155
eb95419b 8156 if (!parent) {
68318b8e 8157 /* This is early initialization for the top cgroup */
07e06b01 8158 return &root_task_group.css;
68318b8e
SV
8159 }
8160
ec7dc8ac 8161 tg = sched_create_group(parent);
68318b8e
SV
8162 if (IS_ERR(tg))
8163 return ERR_PTR(-ENOMEM);
8164
68318b8e
SV
8165 return &tg->css;
8166}
8167
eb95419b 8168static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8169{
eb95419b 8170 struct task_group *tg = css_tg(css);
5c9d535b 8171 struct task_group *parent = css_tg(css->parent);
ace783b9 8172
63876986
TH
8173 if (parent)
8174 sched_online_group(tg, parent);
ace783b9
LZ
8175 return 0;
8176}
8177
eb95419b 8178static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8179{
eb95419b 8180 struct task_group *tg = css_tg(css);
68318b8e
SV
8181
8182 sched_destroy_group(tg);
8183}
8184
eb95419b 8185static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8186{
eb95419b 8187 struct task_group *tg = css_tg(css);
ace783b9
LZ
8188
8189 sched_offline_group(tg);
8190}
8191
7e47682e 8192static void cpu_cgroup_fork(struct task_struct *task, void *private)
eeb61e53
KT
8193{
8194 sched_move_task(task);
8195}
8196
eb95419b 8197static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8198 struct cgroup_taskset *tset)
68318b8e 8199{
bb9d97b6
TH
8200 struct task_struct *task;
8201
924f0d9a 8202 cgroup_taskset_for_each(task, tset) {
b68aa230 8203#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8204 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8205 return -EINVAL;
b68aa230 8206#else
bb9d97b6
TH
8207 /* We don't support RT-tasks being in separate groups */
8208 if (task->sched_class != &fair_sched_class)
8209 return -EINVAL;
b68aa230 8210#endif
bb9d97b6 8211 }
be367d09
BB
8212 return 0;
8213}
68318b8e 8214
eb95419b 8215static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8216 struct cgroup_taskset *tset)
68318b8e 8217{
bb9d97b6
TH
8218 struct task_struct *task;
8219
924f0d9a 8220 cgroup_taskset_for_each(task, tset)
bb9d97b6 8221 sched_move_task(task);
68318b8e
SV
8222}
8223
eb95419b
TH
8224static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8225 struct cgroup_subsys_state *old_css,
8226 struct task_struct *task)
068c5cc5 8227{
068c5cc5
PZ
8228 sched_move_task(task);
8229}
8230
052f1dc7 8231#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8232static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8233 struct cftype *cftype, u64 shareval)
68318b8e 8234{
182446d0 8235 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8236}
8237
182446d0
TH
8238static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8239 struct cftype *cft)
68318b8e 8240{
182446d0 8241 struct task_group *tg = css_tg(css);
68318b8e 8242
c8b28116 8243 return (u64) scale_load_down(tg->shares);
68318b8e 8244}
ab84d31e
PT
8245
8246#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8247static DEFINE_MUTEX(cfs_constraints_mutex);
8248
ab84d31e
PT
8249const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8250const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8251
a790de99
PT
8252static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8253
ab84d31e
PT
8254static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8255{
56f570e5 8256 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8257 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8258
8259 if (tg == &root_task_group)
8260 return -EINVAL;
8261
8262 /*
8263 * Ensure we have at some amount of bandwidth every period. This is
8264 * to prevent reaching a state of large arrears when throttled via
8265 * entity_tick() resulting in prolonged exit starvation.
8266 */
8267 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8268 return -EINVAL;
8269
8270 /*
8271 * Likewise, bound things on the otherside by preventing insane quota
8272 * periods. This also allows us to normalize in computing quota
8273 * feasibility.
8274 */
8275 if (period > max_cfs_quota_period)
8276 return -EINVAL;
8277
0e59bdae
KT
8278 /*
8279 * Prevent race between setting of cfs_rq->runtime_enabled and
8280 * unthrottle_offline_cfs_rqs().
8281 */
8282 get_online_cpus();
a790de99
PT
8283 mutex_lock(&cfs_constraints_mutex);
8284 ret = __cfs_schedulable(tg, period, quota);
8285 if (ret)
8286 goto out_unlock;
8287
58088ad0 8288 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8289 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8290 /*
8291 * If we need to toggle cfs_bandwidth_used, off->on must occur
8292 * before making related changes, and on->off must occur afterwards
8293 */
8294 if (runtime_enabled && !runtime_was_enabled)
8295 cfs_bandwidth_usage_inc();
ab84d31e
PT
8296 raw_spin_lock_irq(&cfs_b->lock);
8297 cfs_b->period = ns_to_ktime(period);
8298 cfs_b->quota = quota;
58088ad0 8299
a9cf55b2 8300 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8301 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8302 if (runtime_enabled)
8303 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8304 raw_spin_unlock_irq(&cfs_b->lock);
8305
0e59bdae 8306 for_each_online_cpu(i) {
ab84d31e 8307 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8308 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8309
8310 raw_spin_lock_irq(&rq->lock);
58088ad0 8311 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8312 cfs_rq->runtime_remaining = 0;
671fd9da 8313
029632fb 8314 if (cfs_rq->throttled)
671fd9da 8315 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8316 raw_spin_unlock_irq(&rq->lock);
8317 }
1ee14e6c
BS
8318 if (runtime_was_enabled && !runtime_enabled)
8319 cfs_bandwidth_usage_dec();
a790de99
PT
8320out_unlock:
8321 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8322 put_online_cpus();
ab84d31e 8323
a790de99 8324 return ret;
ab84d31e
PT
8325}
8326
8327int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8328{
8329 u64 quota, period;
8330
029632fb 8331 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8332 if (cfs_quota_us < 0)
8333 quota = RUNTIME_INF;
8334 else
8335 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8336
8337 return tg_set_cfs_bandwidth(tg, period, quota);
8338}
8339
8340long tg_get_cfs_quota(struct task_group *tg)
8341{
8342 u64 quota_us;
8343
029632fb 8344 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8345 return -1;
8346
029632fb 8347 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8348 do_div(quota_us, NSEC_PER_USEC);
8349
8350 return quota_us;
8351}
8352
8353int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8354{
8355 u64 quota, period;
8356
8357 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8358 quota = tg->cfs_bandwidth.quota;
ab84d31e 8359
ab84d31e
PT
8360 return tg_set_cfs_bandwidth(tg, period, quota);
8361}
8362
8363long tg_get_cfs_period(struct task_group *tg)
8364{
8365 u64 cfs_period_us;
8366
029632fb 8367 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8368 do_div(cfs_period_us, NSEC_PER_USEC);
8369
8370 return cfs_period_us;
8371}
8372
182446d0
TH
8373static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8374 struct cftype *cft)
ab84d31e 8375{
182446d0 8376 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8377}
8378
182446d0
TH
8379static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8380 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8381{
182446d0 8382 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8383}
8384
182446d0
TH
8385static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8386 struct cftype *cft)
ab84d31e 8387{
182446d0 8388 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8389}
8390
182446d0
TH
8391static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8392 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8393{
182446d0 8394 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8395}
8396
a790de99
PT
8397struct cfs_schedulable_data {
8398 struct task_group *tg;
8399 u64 period, quota;
8400};
8401
8402/*
8403 * normalize group quota/period to be quota/max_period
8404 * note: units are usecs
8405 */
8406static u64 normalize_cfs_quota(struct task_group *tg,
8407 struct cfs_schedulable_data *d)
8408{
8409 u64 quota, period;
8410
8411 if (tg == d->tg) {
8412 period = d->period;
8413 quota = d->quota;
8414 } else {
8415 period = tg_get_cfs_period(tg);
8416 quota = tg_get_cfs_quota(tg);
8417 }
8418
8419 /* note: these should typically be equivalent */
8420 if (quota == RUNTIME_INF || quota == -1)
8421 return RUNTIME_INF;
8422
8423 return to_ratio(period, quota);
8424}
8425
8426static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8427{
8428 struct cfs_schedulable_data *d = data;
029632fb 8429 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8430 s64 quota = 0, parent_quota = -1;
8431
8432 if (!tg->parent) {
8433 quota = RUNTIME_INF;
8434 } else {
029632fb 8435 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8436
8437 quota = normalize_cfs_quota(tg, d);
9c58c79a 8438 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8439
8440 /*
8441 * ensure max(child_quota) <= parent_quota, inherit when no
8442 * limit is set
8443 */
8444 if (quota == RUNTIME_INF)
8445 quota = parent_quota;
8446 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8447 return -EINVAL;
8448 }
9c58c79a 8449 cfs_b->hierarchical_quota = quota;
a790de99
PT
8450
8451 return 0;
8452}
8453
8454static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8455{
8277434e 8456 int ret;
a790de99
PT
8457 struct cfs_schedulable_data data = {
8458 .tg = tg,
8459 .period = period,
8460 .quota = quota,
8461 };
8462
8463 if (quota != RUNTIME_INF) {
8464 do_div(data.period, NSEC_PER_USEC);
8465 do_div(data.quota, NSEC_PER_USEC);
8466 }
8467
8277434e
PT
8468 rcu_read_lock();
8469 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8470 rcu_read_unlock();
8471
8472 return ret;
a790de99 8473}
e8da1b18 8474
2da8ca82 8475static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8476{
2da8ca82 8477 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8478 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8479
44ffc75b
TH
8480 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8481 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8482 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8483
8484 return 0;
8485}
ab84d31e 8486#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8487#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8488
052f1dc7 8489#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8490static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8491 struct cftype *cft, s64 val)
6f505b16 8492{
182446d0 8493 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8494}
8495
182446d0
TH
8496static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8497 struct cftype *cft)
6f505b16 8498{
182446d0 8499 return sched_group_rt_runtime(css_tg(css));
6f505b16 8500}
d0b27fa7 8501
182446d0
TH
8502static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8503 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8504{
182446d0 8505 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8506}
8507
182446d0
TH
8508static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8509 struct cftype *cft)
d0b27fa7 8510{
182446d0 8511 return sched_group_rt_period(css_tg(css));
d0b27fa7 8512}
6d6bc0ad 8513#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8514
fe5c7cc2 8515static struct cftype cpu_files[] = {
052f1dc7 8516#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8517 {
8518 .name = "shares",
f4c753b7
PM
8519 .read_u64 = cpu_shares_read_u64,
8520 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8521 },
052f1dc7 8522#endif
ab84d31e
PT
8523#ifdef CONFIG_CFS_BANDWIDTH
8524 {
8525 .name = "cfs_quota_us",
8526 .read_s64 = cpu_cfs_quota_read_s64,
8527 .write_s64 = cpu_cfs_quota_write_s64,
8528 },
8529 {
8530 .name = "cfs_period_us",
8531 .read_u64 = cpu_cfs_period_read_u64,
8532 .write_u64 = cpu_cfs_period_write_u64,
8533 },
e8da1b18
NR
8534 {
8535 .name = "stat",
2da8ca82 8536 .seq_show = cpu_stats_show,
e8da1b18 8537 },
ab84d31e 8538#endif
052f1dc7 8539#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8540 {
9f0c1e56 8541 .name = "rt_runtime_us",
06ecb27c
PM
8542 .read_s64 = cpu_rt_runtime_read,
8543 .write_s64 = cpu_rt_runtime_write,
6f505b16 8544 },
d0b27fa7
PZ
8545 {
8546 .name = "rt_period_us",
f4c753b7
PM
8547 .read_u64 = cpu_rt_period_read_uint,
8548 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8549 },
052f1dc7 8550#endif
4baf6e33 8551 { } /* terminate */
68318b8e
SV
8552};
8553
073219e9 8554struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8555 .css_alloc = cpu_cgroup_css_alloc,
8556 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8557 .css_online = cpu_cgroup_css_online,
8558 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8559 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8560 .can_attach = cpu_cgroup_can_attach,
8561 .attach = cpu_cgroup_attach,
068c5cc5 8562 .exit = cpu_cgroup_exit,
5577964e 8563 .legacy_cftypes = cpu_files,
68318b8e
SV
8564 .early_init = 1,
8565};
8566
052f1dc7 8567#endif /* CONFIG_CGROUP_SCHED */
d842de87 8568
b637a328
PM
8569void dump_cpu_task(int cpu)
8570{
8571 pr_info("Task dump for CPU %d:\n", cpu);
8572 sched_show_task(cpu_curr(cpu));
8573}