]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched/fair: Add lsub_positive() and use it consistently
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
325ea10c 8#include "sched.h"
1da177e4 9
7281c8de 10#include <linux/nospec.h>
85f1abe0 11
0ed557aa
MR
12#include <linux/kcov.h>
13
96f951ed 14#include <asm/switch_to.h>
5517d86b 15#include <asm/tlb.h>
1da177e4 16
ea138446 17#include "../workqueue_internal.h"
29d5e047 18#include "../smpboot.h"
6e0534f2 19
91c27493
VG
20#include "pelt.h"
21
a8d154b0 22#define CREATE_TRACE_POINTS
ad8d75ff 23#include <trace/events/sched.h>
a8d154b0 24
029632fb 25DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 26
765cc3a4 27#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
bf5c91ba
IM
28/*
29 * Debugging: various feature bits
765cc3a4
PB
30 *
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
bf5c91ba 34 */
f00b45c1
PZ
35#define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 37const_debug unsigned int sysctl_sched_features =
391e43da 38#include "features.h"
f00b45c1 39 0;
f00b45c1 40#undef SCHED_FEAT
765cc3a4 41#endif
f00b45c1 42
b82d9fdd
PZ
43/*
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
46 */
47const_debug unsigned int sysctl_sched_nr_migrate = 32;
48
fa85ae24 49/*
d1ccc66d 50 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
51 * default: 1s
52 */
9f0c1e56 53unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 54
029632fb 55__read_mostly int scheduler_running;
6892b75e 56
9f0c1e56
PZ
57/*
58 * part of the period that we allow rt tasks to run in us.
59 * default: 0.95s
60 */
61int sysctl_sched_rt_runtime = 950000;
fa85ae24 62
3e71a462
PZ
63/*
64 * __task_rq_lock - lock the rq @p resides on.
65 */
eb580751 66struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
67 __acquires(rq->lock)
68{
69 struct rq *rq;
70
71 lockdep_assert_held(&p->pi_lock);
72
73 for (;;) {
74 rq = task_rq(p);
75 raw_spin_lock(&rq->lock);
76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 77 rq_pin_lock(rq, rf);
3e71a462
PZ
78 return rq;
79 }
80 raw_spin_unlock(&rq->lock);
81
82 while (unlikely(task_on_rq_migrating(p)))
83 cpu_relax();
84 }
85}
86
87/*
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89 */
eb580751 90struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
91 __acquires(p->pi_lock)
92 __acquires(rq->lock)
93{
94 struct rq *rq;
95
96 for (;;) {
eb580751 97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
98 rq = task_rq(p);
99 raw_spin_lock(&rq->lock);
100 /*
101 * move_queued_task() task_rq_lock()
102 *
103 * ACQUIRE (rq->lock)
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
107 * [L] ->on_rq
108 * RELEASE (rq->lock)
109 *
97fb7a0a 110 * If we observe the old CPU in task_rq_lock, the acquire of
3e71a462
PZ
111 * the old rq->lock will fully serialize against the stores.
112 *
d1ccc66d 113 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
114 * pair with the WMB to ensure we must then also see migrating.
115 */
116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 117 rq_pin_lock(rq, rf);
3e71a462
PZ
118 return rq;
119 }
120 raw_spin_unlock(&rq->lock);
eb580751 121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
122
123 while (unlikely(task_on_rq_migrating(p)))
124 cpu_relax();
125 }
126}
127
535b9552
IM
128/*
129 * RQ-clock updating methods:
130 */
131
132static void update_rq_clock_task(struct rq *rq, s64 delta)
133{
134/*
135 * In theory, the compile should just see 0 here, and optimize out the call
136 * to sched_rt_avg_update. But I don't trust it...
137 */
11d4afd4
VG
138 s64 __maybe_unused steal = 0, irq_delta = 0;
139
535b9552
IM
140#ifdef CONFIG_IRQ_TIME_ACCOUNTING
141 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
142
143 /*
144 * Since irq_time is only updated on {soft,}irq_exit, we might run into
145 * this case when a previous update_rq_clock() happened inside a
146 * {soft,}irq region.
147 *
148 * When this happens, we stop ->clock_task and only update the
149 * prev_irq_time stamp to account for the part that fit, so that a next
150 * update will consume the rest. This ensures ->clock_task is
151 * monotonic.
152 *
153 * It does however cause some slight miss-attribution of {soft,}irq
154 * time, a more accurate solution would be to update the irq_time using
155 * the current rq->clock timestamp, except that would require using
156 * atomic ops.
157 */
158 if (irq_delta > delta)
159 irq_delta = delta;
160
161 rq->prev_irq_time += irq_delta;
162 delta -= irq_delta;
163#endif
164#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
165 if (static_key_false((&paravirt_steal_rq_enabled))) {
166 steal = paravirt_steal_clock(cpu_of(rq));
167 steal -= rq->prev_steal_time_rq;
168
169 if (unlikely(steal > delta))
170 steal = delta;
171
172 rq->prev_steal_time_rq += steal;
173 delta -= steal;
174 }
175#endif
176
177 rq->clock_task += delta;
178
11d4afd4 179#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 180 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 181 update_irq_load_avg(rq, irq_delta + steal);
535b9552
IM
182#endif
183}
184
185void update_rq_clock(struct rq *rq)
186{
187 s64 delta;
188
189 lockdep_assert_held(&rq->lock);
190
191 if (rq->clock_update_flags & RQCF_ACT_SKIP)
192 return;
193
194#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
195 if (sched_feat(WARN_DOUBLE_CLOCK))
196 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
197 rq->clock_update_flags |= RQCF_UPDATED;
198#endif
26ae58d2 199
535b9552
IM
200 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
201 if (delta < 0)
202 return;
203 rq->clock += delta;
204 update_rq_clock_task(rq, delta);
205}
206
207
8f4d37ec
PZ
208#ifdef CONFIG_SCHED_HRTICK
209/*
210 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 211 */
8f4d37ec 212
8f4d37ec
PZ
213static void hrtick_clear(struct rq *rq)
214{
215 if (hrtimer_active(&rq->hrtick_timer))
216 hrtimer_cancel(&rq->hrtick_timer);
217}
218
8f4d37ec
PZ
219/*
220 * High-resolution timer tick.
221 * Runs from hardirq context with interrupts disabled.
222 */
223static enum hrtimer_restart hrtick(struct hrtimer *timer)
224{
225 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 226 struct rq_flags rf;
8f4d37ec
PZ
227
228 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
229
8a8c69c3 230 rq_lock(rq, &rf);
3e51f33f 231 update_rq_clock(rq);
8f4d37ec 232 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 233 rq_unlock(rq, &rf);
8f4d37ec
PZ
234
235 return HRTIMER_NORESTART;
236}
237
95e904c7 238#ifdef CONFIG_SMP
971ee28c 239
4961b6e1 240static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
241{
242 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 243
4961b6e1 244 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
245}
246
31656519
PZ
247/*
248 * called from hardirq (IPI) context
249 */
250static void __hrtick_start(void *arg)
b328ca18 251{
31656519 252 struct rq *rq = arg;
8a8c69c3 253 struct rq_flags rf;
b328ca18 254
8a8c69c3 255 rq_lock(rq, &rf);
971ee28c 256 __hrtick_restart(rq);
31656519 257 rq->hrtick_csd_pending = 0;
8a8c69c3 258 rq_unlock(rq, &rf);
b328ca18
PZ
259}
260
31656519
PZ
261/*
262 * Called to set the hrtick timer state.
263 *
264 * called with rq->lock held and irqs disabled
265 */
029632fb 266void hrtick_start(struct rq *rq, u64 delay)
b328ca18 267{
31656519 268 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 269 ktime_t time;
270 s64 delta;
271
272 /*
273 * Don't schedule slices shorter than 10000ns, that just
274 * doesn't make sense and can cause timer DoS.
275 */
276 delta = max_t(s64, delay, 10000LL);
277 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 278
cc584b21 279 hrtimer_set_expires(timer, time);
31656519
PZ
280
281 if (rq == this_rq()) {
971ee28c 282 __hrtick_restart(rq);
31656519 283 } else if (!rq->hrtick_csd_pending) {
c46fff2a 284 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
285 rq->hrtick_csd_pending = 1;
286 }
b328ca18
PZ
287}
288
31656519
PZ
289#else
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
31656519 296{
86893335
WL
297 /*
298 * Don't schedule slices shorter than 10000ns, that just
299 * doesn't make sense. Rely on vruntime for fairness.
300 */
301 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
302 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
303 HRTIMER_MODE_REL_PINNED);
31656519 304}
31656519 305#endif /* CONFIG_SMP */
8f4d37ec 306
77a021be 307static void hrtick_rq_init(struct rq *rq)
8f4d37ec 308{
31656519
PZ
309#ifdef CONFIG_SMP
310 rq->hrtick_csd_pending = 0;
8f4d37ec 311
31656519
PZ
312 rq->hrtick_csd.flags = 0;
313 rq->hrtick_csd.func = __hrtick_start;
314 rq->hrtick_csd.info = rq;
315#endif
8f4d37ec 316
31656519
PZ
317 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
318 rq->hrtick_timer.function = hrtick;
8f4d37ec 319}
006c75f1 320#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
321static inline void hrtick_clear(struct rq *rq)
322{
323}
324
77a021be 325static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
326{
327}
006c75f1 328#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 329
5529578a
FW
330/*
331 * cmpxchg based fetch_or, macro so it works for different integer types
332 */
333#define fetch_or(ptr, mask) \
334 ({ \
335 typeof(ptr) _ptr = (ptr); \
336 typeof(mask) _mask = (mask); \
337 typeof(*_ptr) _old, _val = *_ptr; \
338 \
339 for (;;) { \
340 _old = cmpxchg(_ptr, _val, _val | _mask); \
341 if (_old == _val) \
342 break; \
343 _val = _old; \
344 } \
345 _old; \
346})
347
e3baac47 348#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
349/*
350 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
351 * this avoids any races wrt polling state changes and thereby avoids
352 * spurious IPIs.
353 */
354static bool set_nr_and_not_polling(struct task_struct *p)
355{
356 struct thread_info *ti = task_thread_info(p);
357 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
358}
e3baac47
PZ
359
360/*
361 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
362 *
363 * If this returns true, then the idle task promises to call
364 * sched_ttwu_pending() and reschedule soon.
365 */
366static bool set_nr_if_polling(struct task_struct *p)
367{
368 struct thread_info *ti = task_thread_info(p);
316c1608 369 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
370
371 for (;;) {
372 if (!(val & _TIF_POLLING_NRFLAG))
373 return false;
374 if (val & _TIF_NEED_RESCHED)
375 return true;
376 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
377 if (old == val)
378 break;
379 val = old;
380 }
381 return true;
382}
383
fd99f91a
PZ
384#else
385static bool set_nr_and_not_polling(struct task_struct *p)
386{
387 set_tsk_need_resched(p);
388 return true;
389}
e3baac47
PZ
390
391#ifdef CONFIG_SMP
392static bool set_nr_if_polling(struct task_struct *p)
393{
394 return false;
395}
396#endif
fd99f91a
PZ
397#endif
398
76751049
PZ
399void wake_q_add(struct wake_q_head *head, struct task_struct *task)
400{
401 struct wake_q_node *node = &task->wake_q;
402
403 /*
404 * Atomically grab the task, if ->wake_q is !nil already it means
405 * its already queued (either by us or someone else) and will get the
406 * wakeup due to that.
407 *
7696f991
AP
408 * This cmpxchg() executes a full barrier, which pairs with the full
409 * barrier executed by the wakeup in wake_up_q().
76751049
PZ
410 */
411 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
412 return;
413
414 get_task_struct(task);
415
416 /*
417 * The head is context local, there can be no concurrency.
418 */
419 *head->lastp = node;
420 head->lastp = &node->next;
421}
422
423void wake_up_q(struct wake_q_head *head)
424{
425 struct wake_q_node *node = head->first;
426
427 while (node != WAKE_Q_TAIL) {
428 struct task_struct *task;
429
430 task = container_of(node, struct task_struct, wake_q);
431 BUG_ON(!task);
d1ccc66d 432 /* Task can safely be re-inserted now: */
76751049
PZ
433 node = node->next;
434 task->wake_q.next = NULL;
435
436 /*
7696f991
AP
437 * wake_up_process() executes a full barrier, which pairs with
438 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
439 */
440 wake_up_process(task);
441 put_task_struct(task);
442 }
443}
444
c24d20db 445/*
8875125e 446 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
447 *
448 * On UP this means the setting of the need_resched flag, on SMP it
449 * might also involve a cross-CPU call to trigger the scheduler on
450 * the target CPU.
451 */
8875125e 452void resched_curr(struct rq *rq)
c24d20db 453{
8875125e 454 struct task_struct *curr = rq->curr;
c24d20db
IM
455 int cpu;
456
8875125e 457 lockdep_assert_held(&rq->lock);
c24d20db 458
8875125e 459 if (test_tsk_need_resched(curr))
c24d20db
IM
460 return;
461
8875125e 462 cpu = cpu_of(rq);
fd99f91a 463
f27dde8d 464 if (cpu == smp_processor_id()) {
8875125e 465 set_tsk_need_resched(curr);
f27dde8d 466 set_preempt_need_resched();
c24d20db 467 return;
f27dde8d 468 }
c24d20db 469
8875125e 470 if (set_nr_and_not_polling(curr))
c24d20db 471 smp_send_reschedule(cpu);
dfc68f29
AL
472 else
473 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
474}
475
029632fb 476void resched_cpu(int cpu)
c24d20db
IM
477{
478 struct rq *rq = cpu_rq(cpu);
479 unsigned long flags;
480
7c2102e5 481 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
482 if (cpu_online(cpu) || cpu == smp_processor_id())
483 resched_curr(rq);
05fa785c 484 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 485}
06d8308c 486
b021fe3e 487#ifdef CONFIG_SMP
3451d024 488#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 489/*
d1ccc66d
IM
490 * In the semi idle case, use the nearest busy CPU for migrating timers
491 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
492 *
493 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
494 * selecting an idle CPU will add more delays to the timers than intended
495 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 496 */
bc7a34b8 497int get_nohz_timer_target(void)
83cd4fe2 498{
bc7a34b8 499 int i, cpu = smp_processor_id();
83cd4fe2
VP
500 struct sched_domain *sd;
501
de201559 502 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
503 return cpu;
504
057f3fad 505 rcu_read_lock();
83cd4fe2 506 for_each_domain(cpu, sd) {
057f3fad 507 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
508 if (cpu == i)
509 continue;
510
de201559 511 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
512 cpu = i;
513 goto unlock;
514 }
515 }
83cd4fe2 516 }
9642d18e 517
de201559
FW
518 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
519 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
520unlock:
521 rcu_read_unlock();
83cd4fe2
VP
522 return cpu;
523}
d1ccc66d 524
06d8308c
TG
525/*
526 * When add_timer_on() enqueues a timer into the timer wheel of an
527 * idle CPU then this timer might expire before the next timer event
528 * which is scheduled to wake up that CPU. In case of a completely
529 * idle system the next event might even be infinite time into the
530 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
531 * leaves the inner idle loop so the newly added timer is taken into
532 * account when the CPU goes back to idle and evaluates the timer
533 * wheel for the next timer event.
534 */
1c20091e 535static void wake_up_idle_cpu(int cpu)
06d8308c
TG
536{
537 struct rq *rq = cpu_rq(cpu);
538
539 if (cpu == smp_processor_id())
540 return;
541
67b9ca70 542 if (set_nr_and_not_polling(rq->idle))
06d8308c 543 smp_send_reschedule(cpu);
dfc68f29
AL
544 else
545 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
546}
547
c5bfece2 548static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 549{
53c5fa16
FW
550 /*
551 * We just need the target to call irq_exit() and re-evaluate
552 * the next tick. The nohz full kick at least implies that.
553 * If needed we can still optimize that later with an
554 * empty IRQ.
555 */
379d9ecb
PM
556 if (cpu_is_offline(cpu))
557 return true; /* Don't try to wake offline CPUs. */
c5bfece2 558 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
559 if (cpu != smp_processor_id() ||
560 tick_nohz_tick_stopped())
53c5fa16 561 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
562 return true;
563 }
564
565 return false;
566}
567
379d9ecb
PM
568/*
569 * Wake up the specified CPU. If the CPU is going offline, it is the
570 * caller's responsibility to deal with the lost wakeup, for example,
571 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
572 */
1c20091e
FW
573void wake_up_nohz_cpu(int cpu)
574{
c5bfece2 575 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
576 wake_up_idle_cpu(cpu);
577}
578
ca38062e 579static inline bool got_nohz_idle_kick(void)
45bf76df 580{
1c792db7 581 int cpu = smp_processor_id();
873b4c65 582
b7031a02 583 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
584 return false;
585
586 if (idle_cpu(cpu) && !need_resched())
587 return true;
588
589 /*
590 * We can't run Idle Load Balance on this CPU for this time so we
591 * cancel it and clear NOHZ_BALANCE_KICK
592 */
b7031a02 593 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 594 return false;
45bf76df
IM
595}
596
3451d024 597#else /* CONFIG_NO_HZ_COMMON */
45bf76df 598
ca38062e 599static inline bool got_nohz_idle_kick(void)
2069dd75 600{
ca38062e 601 return false;
2069dd75
PZ
602}
603
3451d024 604#endif /* CONFIG_NO_HZ_COMMON */
d842de87 605
ce831b38 606#ifdef CONFIG_NO_HZ_FULL
76d92ac3 607bool sched_can_stop_tick(struct rq *rq)
ce831b38 608{
76d92ac3
FW
609 int fifo_nr_running;
610
611 /* Deadline tasks, even if single, need the tick */
612 if (rq->dl.dl_nr_running)
613 return false;
614
1e78cdbd 615 /*
2548d546
PZ
616 * If there are more than one RR tasks, we need the tick to effect the
617 * actual RR behaviour.
1e78cdbd 618 */
76d92ac3
FW
619 if (rq->rt.rr_nr_running) {
620 if (rq->rt.rr_nr_running == 1)
621 return true;
622 else
623 return false;
1e78cdbd
RR
624 }
625
2548d546
PZ
626 /*
627 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
628 * forced preemption between FIFO tasks.
629 */
630 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
631 if (fifo_nr_running)
632 return true;
633
634 /*
635 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
636 * if there's more than one we need the tick for involuntary
637 * preemption.
638 */
639 if (rq->nr_running > 1)
541b8264 640 return false;
ce831b38 641
541b8264 642 return true;
ce831b38
FW
643}
644#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 645#endif /* CONFIG_SMP */
18d95a28 646
a790de99
PT
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 649/*
8277434e
PT
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 654 */
029632fb 655int walk_tg_tree_from(struct task_group *from,
8277434e 656 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
657{
658 struct task_group *parent, *child;
eb755805 659 int ret;
c09595f6 660
8277434e
PT
661 parent = from;
662
c09595f6 663down:
eb755805
PZ
664 ret = (*down)(parent, data);
665 if (ret)
8277434e 666 goto out;
c09595f6
PZ
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
eb755805 674 ret = (*up)(parent, data);
8277434e
PT
675 if (ret || parent == from)
676 goto out;
c09595f6
PZ
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
8277434e 682out:
eb755805 683 return ret;
c09595f6
PZ
684}
685
029632fb 686int tg_nop(struct task_group *tg, void *data)
eb755805 687{
e2b245f8 688 return 0;
eb755805 689}
18d95a28
PZ
690#endif
691
9059393e 692static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 693{
f05998d4
NR
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
dd41f596
IM
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
20f9cd2a 700 if (idle_policy(p->policy)) {
c8b28116 701 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 702 load->inv_weight = WMULT_IDLEPRIO;
4a465e3e 703 p->se.runnable_weight = load->weight;
dd41f596
IM
704 return;
705 }
71f8bd46 706
9059393e
VG
707 /*
708 * SCHED_OTHER tasks have to update their load when changing their
709 * weight
710 */
711 if (update_load && p->sched_class == &fair_sched_class) {
712 reweight_task(p, prio);
713 } else {
714 load->weight = scale_load(sched_prio_to_weight[prio]);
715 load->inv_weight = sched_prio_to_wmult[prio];
4a465e3e 716 p->se.runnable_weight = load->weight;
9059393e 717 }
71f8bd46
IM
718}
719
1de64443 720static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 721{
0a67d1ee
PZ
722 if (!(flags & ENQUEUE_NOCLOCK))
723 update_rq_clock(rq);
724
eb414681 725 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 726 sched_info_queued(rq, p);
eb414681
JW
727 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
728 }
0a67d1ee 729
371fd7e7 730 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
731}
732
1de64443 733static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 734{
0a67d1ee
PZ
735 if (!(flags & DEQUEUE_NOCLOCK))
736 update_rq_clock(rq);
737
eb414681 738 if (!(flags & DEQUEUE_SAVE)) {
1de64443 739 sched_info_dequeued(rq, p);
eb414681
JW
740 psi_dequeue(p, flags & DEQUEUE_SLEEP);
741 }
0a67d1ee 742
371fd7e7 743 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
744}
745
029632fb 746void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
747{
748 if (task_contributes_to_load(p))
749 rq->nr_uninterruptible--;
750
371fd7e7 751 enqueue_task(rq, p, flags);
1e3c88bd
PZ
752}
753
029632fb 754void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
755{
756 if (task_contributes_to_load(p))
757 rq->nr_uninterruptible++;
758
371fd7e7 759 dequeue_task(rq, p, flags);
1e3c88bd
PZ
760}
761
14531189 762/*
dd41f596 763 * __normal_prio - return the priority that is based on the static prio
14531189 764 */
14531189
IM
765static inline int __normal_prio(struct task_struct *p)
766{
dd41f596 767 return p->static_prio;
14531189
IM
768}
769
b29739f9
IM
770/*
771 * Calculate the expected normal priority: i.e. priority
772 * without taking RT-inheritance into account. Might be
773 * boosted by interactivity modifiers. Changes upon fork,
774 * setprio syscalls, and whenever the interactivity
775 * estimator recalculates.
776 */
36c8b586 777static inline int normal_prio(struct task_struct *p)
b29739f9
IM
778{
779 int prio;
780
aab03e05
DF
781 if (task_has_dl_policy(p))
782 prio = MAX_DL_PRIO-1;
783 else if (task_has_rt_policy(p))
b29739f9
IM
784 prio = MAX_RT_PRIO-1 - p->rt_priority;
785 else
786 prio = __normal_prio(p);
787 return prio;
788}
789
790/*
791 * Calculate the current priority, i.e. the priority
792 * taken into account by the scheduler. This value might
793 * be boosted by RT tasks, or might be boosted by
794 * interactivity modifiers. Will be RT if the task got
795 * RT-boosted. If not then it returns p->normal_prio.
796 */
36c8b586 797static int effective_prio(struct task_struct *p)
b29739f9
IM
798{
799 p->normal_prio = normal_prio(p);
800 /*
801 * If we are RT tasks or we were boosted to RT priority,
802 * keep the priority unchanged. Otherwise, update priority
803 * to the normal priority:
804 */
805 if (!rt_prio(p->prio))
806 return p->normal_prio;
807 return p->prio;
808}
809
1da177e4
LT
810/**
811 * task_curr - is this task currently executing on a CPU?
812 * @p: the task in question.
e69f6186
YB
813 *
814 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 815 */
36c8b586 816inline int task_curr(const struct task_struct *p)
1da177e4
LT
817{
818 return cpu_curr(task_cpu(p)) == p;
819}
820
67dfa1b7 821/*
4c9a4bc8
PZ
822 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
823 * use the balance_callback list if you want balancing.
824 *
825 * this means any call to check_class_changed() must be followed by a call to
826 * balance_callback().
67dfa1b7 827 */
cb469845
SR
828static inline void check_class_changed(struct rq *rq, struct task_struct *p,
829 const struct sched_class *prev_class,
da7a735e 830 int oldprio)
cb469845
SR
831{
832 if (prev_class != p->sched_class) {
833 if (prev_class->switched_from)
da7a735e 834 prev_class->switched_from(rq, p);
4c9a4bc8 835
da7a735e 836 p->sched_class->switched_to(rq, p);
2d3d891d 837 } else if (oldprio != p->prio || dl_task(p))
da7a735e 838 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
839}
840
029632fb 841void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
842{
843 const struct sched_class *class;
844
845 if (p->sched_class == rq->curr->sched_class) {
846 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
847 } else {
848 for_each_class(class) {
849 if (class == rq->curr->sched_class)
850 break;
851 if (class == p->sched_class) {
8875125e 852 resched_curr(rq);
1e5a7405
PZ
853 break;
854 }
855 }
856 }
857
858 /*
859 * A queue event has occurred, and we're going to schedule. In
860 * this case, we can save a useless back to back clock update.
861 */
da0c1e65 862 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 863 rq_clock_skip_update(rq);
1e5a7405
PZ
864}
865
1da177e4 866#ifdef CONFIG_SMP
175f0e25
PZ
867
868static inline bool is_per_cpu_kthread(struct task_struct *p)
869{
870 if (!(p->flags & PF_KTHREAD))
871 return false;
872
873 if (p->nr_cpus_allowed != 1)
874 return false;
875
876 return true;
877}
878
879/*
880 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
881 * __set_cpus_allowed_ptr() and select_fallback_rq().
882 */
883static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
884{
885 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
886 return false;
887
888 if (is_per_cpu_kthread(p))
889 return cpu_online(cpu);
890
891 return cpu_active(cpu);
892}
893
5cc389bc
PZ
894/*
895 * This is how migration works:
896 *
897 * 1) we invoke migration_cpu_stop() on the target CPU using
898 * stop_one_cpu().
899 * 2) stopper starts to run (implicitly forcing the migrated thread
900 * off the CPU)
901 * 3) it checks whether the migrated task is still in the wrong runqueue.
902 * 4) if it's in the wrong runqueue then the migration thread removes
903 * it and puts it into the right queue.
904 * 5) stopper completes and stop_one_cpu() returns and the migration
905 * is done.
906 */
907
908/*
909 * move_queued_task - move a queued task to new rq.
910 *
911 * Returns (locked) new rq. Old rq's lock is released.
912 */
8a8c69c3
PZ
913static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
914 struct task_struct *p, int new_cpu)
5cc389bc 915{
5cc389bc
PZ
916 lockdep_assert_held(&rq->lock);
917
5cc389bc 918 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 919 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 920 set_task_cpu(p, new_cpu);
8a8c69c3 921 rq_unlock(rq, rf);
5cc389bc
PZ
922
923 rq = cpu_rq(new_cpu);
924
8a8c69c3 925 rq_lock(rq, rf);
5cc389bc 926 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 927 enqueue_task(rq, p, 0);
3ea94de1 928 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
929 check_preempt_curr(rq, p, 0);
930
931 return rq;
932}
933
934struct migration_arg {
935 struct task_struct *task;
936 int dest_cpu;
937};
938
939/*
d1ccc66d 940 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
941 * this because either it can't run here any more (set_cpus_allowed()
942 * away from this CPU, or CPU going down), or because we're
943 * attempting to rebalance this task on exec (sched_exec).
944 *
945 * So we race with normal scheduler movements, but that's OK, as long
946 * as the task is no longer on this CPU.
5cc389bc 947 */
8a8c69c3
PZ
948static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
949 struct task_struct *p, int dest_cpu)
5cc389bc 950{
5cc389bc 951 /* Affinity changed (again). */
175f0e25 952 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 953 return rq;
5cc389bc 954
15ff991e 955 update_rq_clock(rq);
8a8c69c3 956 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
957
958 return rq;
5cc389bc
PZ
959}
960
961/*
962 * migration_cpu_stop - this will be executed by a highprio stopper thread
963 * and performs thread migration by bumping thread off CPU then
964 * 'pushing' onto another runqueue.
965 */
966static int migration_cpu_stop(void *data)
967{
968 struct migration_arg *arg = data;
5e16bbc2
PZ
969 struct task_struct *p = arg->task;
970 struct rq *rq = this_rq();
8a8c69c3 971 struct rq_flags rf;
5cc389bc
PZ
972
973 /*
d1ccc66d
IM
974 * The original target CPU might have gone down and we might
975 * be on another CPU but it doesn't matter.
5cc389bc
PZ
976 */
977 local_irq_disable();
978 /*
979 * We need to explicitly wake pending tasks before running
980 * __migrate_task() such that we will not miss enforcing cpus_allowed
981 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
982 */
983 sched_ttwu_pending();
5e16bbc2
PZ
984
985 raw_spin_lock(&p->pi_lock);
8a8c69c3 986 rq_lock(rq, &rf);
5e16bbc2
PZ
987 /*
988 * If task_rq(p) != rq, it cannot be migrated here, because we're
989 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
990 * we're holding p->pi_lock.
991 */
bf89a304
CC
992 if (task_rq(p) == rq) {
993 if (task_on_rq_queued(p))
8a8c69c3 994 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
995 else
996 p->wake_cpu = arg->dest_cpu;
997 }
8a8c69c3 998 rq_unlock(rq, &rf);
5e16bbc2
PZ
999 raw_spin_unlock(&p->pi_lock);
1000
5cc389bc
PZ
1001 local_irq_enable();
1002 return 0;
1003}
1004
c5b28038
PZ
1005/*
1006 * sched_class::set_cpus_allowed must do the below, but is not required to
1007 * actually call this function.
1008 */
1009void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1010{
5cc389bc
PZ
1011 cpumask_copy(&p->cpus_allowed, new_mask);
1012 p->nr_cpus_allowed = cpumask_weight(new_mask);
1013}
1014
c5b28038
PZ
1015void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1016{
6c37067e
PZ
1017 struct rq *rq = task_rq(p);
1018 bool queued, running;
1019
c5b28038 1020 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1021
1022 queued = task_on_rq_queued(p);
1023 running = task_current(rq, p);
1024
1025 if (queued) {
1026 /*
1027 * Because __kthread_bind() calls this on blocked tasks without
1028 * holding rq->lock.
1029 */
1030 lockdep_assert_held(&rq->lock);
7a57f32a 1031 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1032 }
1033 if (running)
1034 put_prev_task(rq, p);
1035
c5b28038 1036 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1037
6c37067e 1038 if (queued)
7134b3e9 1039 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1040 if (running)
b2bf6c31 1041 set_curr_task(rq, p);
c5b28038
PZ
1042}
1043
5cc389bc
PZ
1044/*
1045 * Change a given task's CPU affinity. Migrate the thread to a
1046 * proper CPU and schedule it away if the CPU it's executing on
1047 * is removed from the allowed bitmask.
1048 *
1049 * NOTE: the caller must have a valid reference to the task, the
1050 * task must not exit() & deallocate itself prematurely. The
1051 * call is not atomic; no spinlocks may be held.
1052 */
25834c73
PZ
1053static int __set_cpus_allowed_ptr(struct task_struct *p,
1054 const struct cpumask *new_mask, bool check)
5cc389bc 1055{
e9d867a6 1056 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1057 unsigned int dest_cpu;
eb580751
PZ
1058 struct rq_flags rf;
1059 struct rq *rq;
5cc389bc
PZ
1060 int ret = 0;
1061
eb580751 1062 rq = task_rq_lock(p, &rf);
a499c3ea 1063 update_rq_clock(rq);
5cc389bc 1064
e9d867a6
PZI
1065 if (p->flags & PF_KTHREAD) {
1066 /*
1067 * Kernel threads are allowed on online && !active CPUs
1068 */
1069 cpu_valid_mask = cpu_online_mask;
1070 }
1071
25834c73
PZ
1072 /*
1073 * Must re-check here, to close a race against __kthread_bind(),
1074 * sched_setaffinity() is not guaranteed to observe the flag.
1075 */
1076 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1077 ret = -EINVAL;
1078 goto out;
1079 }
1080
5cc389bc
PZ
1081 if (cpumask_equal(&p->cpus_allowed, new_mask))
1082 goto out;
1083
e9d867a6 1084 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1085 ret = -EINVAL;
1086 goto out;
1087 }
1088
1089 do_set_cpus_allowed(p, new_mask);
1090
e9d867a6
PZI
1091 if (p->flags & PF_KTHREAD) {
1092 /*
1093 * For kernel threads that do indeed end up on online &&
d1ccc66d 1094 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1095 */
1096 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1097 !cpumask_intersects(new_mask, cpu_active_mask) &&
1098 p->nr_cpus_allowed != 1);
1099 }
1100
5cc389bc
PZ
1101 /* Can the task run on the task's current CPU? If so, we're done */
1102 if (cpumask_test_cpu(task_cpu(p), new_mask))
1103 goto out;
1104
e9d867a6 1105 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1106 if (task_running(rq, p) || p->state == TASK_WAKING) {
1107 struct migration_arg arg = { p, dest_cpu };
1108 /* Need help from migration thread: drop lock and wait. */
eb580751 1109 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1110 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1111 tlb_migrate_finish(p->mm);
1112 return 0;
cbce1a68
PZ
1113 } else if (task_on_rq_queued(p)) {
1114 /*
1115 * OK, since we're going to drop the lock immediately
1116 * afterwards anyway.
1117 */
8a8c69c3 1118 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1119 }
5cc389bc 1120out:
eb580751 1121 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1122
1123 return ret;
1124}
25834c73
PZ
1125
1126int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1127{
1128 return __set_cpus_allowed_ptr(p, new_mask, false);
1129}
5cc389bc
PZ
1130EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1131
dd41f596 1132void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1133{
e2912009
PZ
1134#ifdef CONFIG_SCHED_DEBUG
1135 /*
1136 * We should never call set_task_cpu() on a blocked task,
1137 * ttwu() will sort out the placement.
1138 */
077614ee 1139 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1140 !p->on_rq);
0122ec5b 1141
3ea94de1
JP
1142 /*
1143 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1144 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1145 * time relying on p->on_rq.
1146 */
1147 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1148 p->sched_class == &fair_sched_class &&
1149 (p->on_rq && !task_on_rq_migrating(p)));
1150
0122ec5b 1151#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1152 /*
1153 * The caller should hold either p->pi_lock or rq->lock, when changing
1154 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1155 *
1156 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1157 * see task_group().
6c6c54e1
PZ
1158 *
1159 * Furthermore, all task_rq users should acquire both locks, see
1160 * task_rq_lock().
1161 */
0122ec5b
PZ
1162 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1163 lockdep_is_held(&task_rq(p)->lock)));
1164#endif
4ff9083b
PZ
1165 /*
1166 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1167 */
1168 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1169#endif
1170
de1d7286 1171 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1172
0c69774e 1173 if (task_cpu(p) != new_cpu) {
0a74bef8 1174 if (p->sched_class->migrate_task_rq)
1327237a 1175 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1176 p->se.nr_migrations++;
d7822b1e 1177 rseq_migrate(p);
ff303e66 1178 perf_event_task_migrate(p);
0c69774e 1179 }
dd41f596
IM
1180
1181 __set_task_cpu(p, new_cpu);
c65cc870
IM
1182}
1183
0ad4e3df 1184#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1185static void __migrate_swap_task(struct task_struct *p, int cpu)
1186{
da0c1e65 1187 if (task_on_rq_queued(p)) {
ac66f547 1188 struct rq *src_rq, *dst_rq;
8a8c69c3 1189 struct rq_flags srf, drf;
ac66f547
PZ
1190
1191 src_rq = task_rq(p);
1192 dst_rq = cpu_rq(cpu);
1193
8a8c69c3
PZ
1194 rq_pin_lock(src_rq, &srf);
1195 rq_pin_lock(dst_rq, &drf);
1196
3ea94de1 1197 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1198 deactivate_task(src_rq, p, 0);
1199 set_task_cpu(p, cpu);
1200 activate_task(dst_rq, p, 0);
3ea94de1 1201 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1202 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1203
1204 rq_unpin_lock(dst_rq, &drf);
1205 rq_unpin_lock(src_rq, &srf);
1206
ac66f547
PZ
1207 } else {
1208 /*
1209 * Task isn't running anymore; make it appear like we migrated
1210 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1211 * previous CPU our target instead of where it really is.
ac66f547
PZ
1212 */
1213 p->wake_cpu = cpu;
1214 }
1215}
1216
1217struct migration_swap_arg {
1218 struct task_struct *src_task, *dst_task;
1219 int src_cpu, dst_cpu;
1220};
1221
1222static int migrate_swap_stop(void *data)
1223{
1224 struct migration_swap_arg *arg = data;
1225 struct rq *src_rq, *dst_rq;
1226 int ret = -EAGAIN;
1227
62694cd5
PZ
1228 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1229 return -EAGAIN;
1230
ac66f547
PZ
1231 src_rq = cpu_rq(arg->src_cpu);
1232 dst_rq = cpu_rq(arg->dst_cpu);
1233
74602315
PZ
1234 double_raw_lock(&arg->src_task->pi_lock,
1235 &arg->dst_task->pi_lock);
ac66f547 1236 double_rq_lock(src_rq, dst_rq);
62694cd5 1237
ac66f547
PZ
1238 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1239 goto unlock;
1240
1241 if (task_cpu(arg->src_task) != arg->src_cpu)
1242 goto unlock;
1243
0c98d344 1244 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1245 goto unlock;
1246
0c98d344 1247 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1248 goto unlock;
1249
1250 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1251 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1252
1253 ret = 0;
1254
1255unlock:
1256 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1257 raw_spin_unlock(&arg->dst_task->pi_lock);
1258 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1259
1260 return ret;
1261}
1262
1263/*
1264 * Cross migrate two tasks
1265 */
0ad4e3df
SD
1266int migrate_swap(struct task_struct *cur, struct task_struct *p,
1267 int target_cpu, int curr_cpu)
ac66f547
PZ
1268{
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1271
ac66f547
PZ
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
0ad4e3df 1274 .src_cpu = curr_cpu,
ac66f547 1275 .dst_task = p,
0ad4e3df 1276 .dst_cpu = target_cpu,
ac66f547
PZ
1277 };
1278
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1281
6acce3ef
PZ
1282 /*
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1285 */
ac66f547
PZ
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1288
0c98d344 1289 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1290 goto out;
1291
0c98d344 1292 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1293 goto out;
1294
286549dc 1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
ac66f547
PZ
1299 return ret;
1300}
0ad4e3df 1301#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1302
1da177e4
LT
1303/*
1304 * wait_task_inactive - wait for a thread to unschedule.
1305 *
85ba2d86
RM
1306 * If @match_state is nonzero, it's the @p->state value just checked and
1307 * not expected to change. If it changes, i.e. @p might have woken up,
1308 * then return zero. When we succeed in waiting for @p to be off its CPU,
1309 * we return a positive number (its total switch count). If a second call
1310 * a short while later returns the same number, the caller can be sure that
1311 * @p has remained unscheduled the whole time.
1312 *
1da177e4
LT
1313 * The caller must ensure that the task *will* unschedule sometime soon,
1314 * else this function might spin for a *long* time. This function can't
1315 * be called with interrupts off, or it may introduce deadlock with
1316 * smp_call_function() if an IPI is sent by the same process we are
1317 * waiting to become inactive.
1318 */
85ba2d86 1319unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1320{
da0c1e65 1321 int running, queued;
eb580751 1322 struct rq_flags rf;
85ba2d86 1323 unsigned long ncsw;
70b97a7f 1324 struct rq *rq;
1da177e4 1325
3a5c359a
AK
1326 for (;;) {
1327 /*
1328 * We do the initial early heuristics without holding
1329 * any task-queue locks at all. We'll only try to get
1330 * the runqueue lock when things look like they will
1331 * work out!
1332 */
1333 rq = task_rq(p);
fa490cfd 1334
3a5c359a
AK
1335 /*
1336 * If the task is actively running on another CPU
1337 * still, just relax and busy-wait without holding
1338 * any locks.
1339 *
1340 * NOTE! Since we don't hold any locks, it's not
1341 * even sure that "rq" stays as the right runqueue!
1342 * But we don't care, since "task_running()" will
1343 * return false if the runqueue has changed and p
1344 * is actually now running somewhere else!
1345 */
85ba2d86
RM
1346 while (task_running(rq, p)) {
1347 if (match_state && unlikely(p->state != match_state))
1348 return 0;
3a5c359a 1349 cpu_relax();
85ba2d86 1350 }
fa490cfd 1351
3a5c359a
AK
1352 /*
1353 * Ok, time to look more closely! We need the rq
1354 * lock now, to be *sure*. If we're wrong, we'll
1355 * just go back and repeat.
1356 */
eb580751 1357 rq = task_rq_lock(p, &rf);
27a9da65 1358 trace_sched_wait_task(p);
3a5c359a 1359 running = task_running(rq, p);
da0c1e65 1360 queued = task_on_rq_queued(p);
85ba2d86 1361 ncsw = 0;
f31e11d8 1362 if (!match_state || p->state == match_state)
93dcf55f 1363 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1364 task_rq_unlock(rq, p, &rf);
fa490cfd 1365
85ba2d86
RM
1366 /*
1367 * If it changed from the expected state, bail out now.
1368 */
1369 if (unlikely(!ncsw))
1370 break;
1371
3a5c359a
AK
1372 /*
1373 * Was it really running after all now that we
1374 * checked with the proper locks actually held?
1375 *
1376 * Oops. Go back and try again..
1377 */
1378 if (unlikely(running)) {
1379 cpu_relax();
1380 continue;
1381 }
fa490cfd 1382
3a5c359a
AK
1383 /*
1384 * It's not enough that it's not actively running,
1385 * it must be off the runqueue _entirely_, and not
1386 * preempted!
1387 *
80dd99b3 1388 * So if it was still runnable (but just not actively
3a5c359a
AK
1389 * running right now), it's preempted, and we should
1390 * yield - it could be a while.
1391 */
da0c1e65 1392 if (unlikely(queued)) {
8b0e1953 1393 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1394
1395 set_current_state(TASK_UNINTERRUPTIBLE);
1396 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1397 continue;
1398 }
fa490cfd 1399
3a5c359a
AK
1400 /*
1401 * Ahh, all good. It wasn't running, and it wasn't
1402 * runnable, which means that it will never become
1403 * running in the future either. We're all done!
1404 */
1405 break;
1406 }
85ba2d86
RM
1407
1408 return ncsw;
1da177e4
LT
1409}
1410
1411/***
1412 * kick_process - kick a running thread to enter/exit the kernel
1413 * @p: the to-be-kicked thread
1414 *
1415 * Cause a process which is running on another CPU to enter
1416 * kernel-mode, without any delay. (to get signals handled.)
1417 *
25985edc 1418 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1419 * because all it wants to ensure is that the remote task enters
1420 * the kernel. If the IPI races and the task has been migrated
1421 * to another CPU then no harm is done and the purpose has been
1422 * achieved as well.
1423 */
36c8b586 1424void kick_process(struct task_struct *p)
1da177e4
LT
1425{
1426 int cpu;
1427
1428 preempt_disable();
1429 cpu = task_cpu(p);
1430 if ((cpu != smp_processor_id()) && task_curr(p))
1431 smp_send_reschedule(cpu);
1432 preempt_enable();
1433}
b43e3521 1434EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1435
30da688e 1436/*
013fdb80 1437 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1438 *
1439 * A few notes on cpu_active vs cpu_online:
1440 *
1441 * - cpu_active must be a subset of cpu_online
1442 *
97fb7a0a 1443 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1444 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1445 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1446 * see it.
1447 *
d1ccc66d 1448 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1449 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1450 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1451 * off.
1452 *
1453 * This means that fallback selection must not select !active CPUs.
1454 * And can assume that any active CPU must be online. Conversely
1455 * select_task_rq() below may allow selection of !active CPUs in order
1456 * to satisfy the above rules.
30da688e 1457 */
5da9a0fb
PZ
1458static int select_fallback_rq(int cpu, struct task_struct *p)
1459{
aa00d89c
TC
1460 int nid = cpu_to_node(cpu);
1461 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1462 enum { cpuset, possible, fail } state = cpuset;
1463 int dest_cpu;
5da9a0fb 1464
aa00d89c 1465 /*
d1ccc66d
IM
1466 * If the node that the CPU is on has been offlined, cpu_to_node()
1467 * will return -1. There is no CPU on the node, and we should
1468 * select the CPU on the other node.
aa00d89c
TC
1469 */
1470 if (nid != -1) {
1471 nodemask = cpumask_of_node(nid);
1472
1473 /* Look for allowed, online CPU in same node. */
1474 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1475 if (!cpu_active(dest_cpu))
1476 continue;
0c98d344 1477 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1478 return dest_cpu;
1479 }
2baab4e9 1480 }
5da9a0fb 1481
2baab4e9
PZ
1482 for (;;) {
1483 /* Any allowed, online CPU? */
0c98d344 1484 for_each_cpu(dest_cpu, &p->cpus_allowed) {
175f0e25 1485 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1486 continue;
175f0e25 1487
2baab4e9
PZ
1488 goto out;
1489 }
5da9a0fb 1490
e73e85f0 1491 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1492 switch (state) {
1493 case cpuset:
e73e85f0
ON
1494 if (IS_ENABLED(CONFIG_CPUSETS)) {
1495 cpuset_cpus_allowed_fallback(p);
1496 state = possible;
1497 break;
1498 }
d1ccc66d 1499 /* Fall-through */
2baab4e9
PZ
1500 case possible:
1501 do_set_cpus_allowed(p, cpu_possible_mask);
1502 state = fail;
1503 break;
1504
1505 case fail:
1506 BUG();
1507 break;
1508 }
1509 }
1510
1511out:
1512 if (state != cpuset) {
1513 /*
1514 * Don't tell them about moving exiting tasks or
1515 * kernel threads (both mm NULL), since they never
1516 * leave kernel.
1517 */
1518 if (p->mm && printk_ratelimit()) {
aac74dc4 1519 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1520 task_pid_nr(p), p->comm, cpu);
1521 }
5da9a0fb
PZ
1522 }
1523
1524 return dest_cpu;
1525}
1526
e2912009 1527/*
013fdb80 1528 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1529 */
970b13ba 1530static inline
ac66f547 1531int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1532{
cbce1a68
PZ
1533 lockdep_assert_held(&p->pi_lock);
1534
4b53a341 1535 if (p->nr_cpus_allowed > 1)
6c1d9410 1536 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1537 else
0c98d344 1538 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1539
1540 /*
1541 * In order not to call set_task_cpu() on a blocking task we need
1542 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1543 * CPU.
e2912009
PZ
1544 *
1545 * Since this is common to all placement strategies, this lives here.
1546 *
1547 * [ this allows ->select_task() to simply return task_cpu(p) and
1548 * not worry about this generic constraint ]
1549 */
7af443ee 1550 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 1551 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1552
1553 return cpu;
970b13ba 1554}
09a40af5
MG
1555
1556static void update_avg(u64 *avg, u64 sample)
1557{
1558 s64 diff = sample - *avg;
1559 *avg += diff >> 3;
1560}
25834c73 1561
f5832c19
NP
1562void sched_set_stop_task(int cpu, struct task_struct *stop)
1563{
1564 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1565 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1566
1567 if (stop) {
1568 /*
1569 * Make it appear like a SCHED_FIFO task, its something
1570 * userspace knows about and won't get confused about.
1571 *
1572 * Also, it will make PI more or less work without too
1573 * much confusion -- but then, stop work should not
1574 * rely on PI working anyway.
1575 */
1576 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1577
1578 stop->sched_class = &stop_sched_class;
1579 }
1580
1581 cpu_rq(cpu)->stop = stop;
1582
1583 if (old_stop) {
1584 /*
1585 * Reset it back to a normal scheduling class so that
1586 * it can die in pieces.
1587 */
1588 old_stop->sched_class = &rt_sched_class;
1589 }
1590}
1591
25834c73
PZ
1592#else
1593
1594static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1595 const struct cpumask *new_mask, bool check)
1596{
1597 return set_cpus_allowed_ptr(p, new_mask);
1598}
1599
5cc389bc 1600#endif /* CONFIG_SMP */
970b13ba 1601
d7c01d27 1602static void
b84cb5df 1603ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1604{
4fa8d299 1605 struct rq *rq;
b84cb5df 1606
4fa8d299
JP
1607 if (!schedstat_enabled())
1608 return;
1609
1610 rq = this_rq();
d7c01d27 1611
4fa8d299
JP
1612#ifdef CONFIG_SMP
1613 if (cpu == rq->cpu) {
b85c8b71
PZ
1614 __schedstat_inc(rq->ttwu_local);
1615 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1616 } else {
1617 struct sched_domain *sd;
1618
b85c8b71 1619 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1620 rcu_read_lock();
4fa8d299 1621 for_each_domain(rq->cpu, sd) {
d7c01d27 1622 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1623 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1624 break;
1625 }
1626 }
057f3fad 1627 rcu_read_unlock();
d7c01d27 1628 }
f339b9dc
PZ
1629
1630 if (wake_flags & WF_MIGRATED)
b85c8b71 1631 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1632#endif /* CONFIG_SMP */
1633
b85c8b71
PZ
1634 __schedstat_inc(rq->ttwu_count);
1635 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1636
1637 if (wake_flags & WF_SYNC)
b85c8b71 1638 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1639}
1640
1de64443 1641static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1642{
9ed3811a 1643 activate_task(rq, p, en_flags);
da0c1e65 1644 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1645
d1ccc66d 1646 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1647 if (p->flags & PF_WQ_WORKER)
1648 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1649}
1650
23f41eeb
PZ
1651/*
1652 * Mark the task runnable and perform wakeup-preemption.
1653 */
e7904a28 1654static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1655 struct rq_flags *rf)
9ed3811a 1656{
9ed3811a 1657 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1658 p->state = TASK_RUNNING;
fbd705a0
PZ
1659 trace_sched_wakeup(p);
1660
9ed3811a 1661#ifdef CONFIG_SMP
4c9a4bc8
PZ
1662 if (p->sched_class->task_woken) {
1663 /*
cbce1a68
PZ
1664 * Our task @p is fully woken up and running; so its safe to
1665 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1666 */
d8ac8971 1667 rq_unpin_lock(rq, rf);
9ed3811a 1668 p->sched_class->task_woken(rq, p);
d8ac8971 1669 rq_repin_lock(rq, rf);
4c9a4bc8 1670 }
9ed3811a 1671
e69c6341 1672 if (rq->idle_stamp) {
78becc27 1673 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1674 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1675
abfafa54
JL
1676 update_avg(&rq->avg_idle, delta);
1677
1678 if (rq->avg_idle > max)
9ed3811a 1679 rq->avg_idle = max;
abfafa54 1680
9ed3811a
TH
1681 rq->idle_stamp = 0;
1682 }
1683#endif
1684}
1685
c05fbafb 1686static void
e7904a28 1687ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1688 struct rq_flags *rf)
c05fbafb 1689{
77558e4d 1690 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1691
cbce1a68
PZ
1692 lockdep_assert_held(&rq->lock);
1693
c05fbafb
PZ
1694#ifdef CONFIG_SMP
1695 if (p->sched_contributes_to_load)
1696 rq->nr_uninterruptible--;
b5179ac7 1697
b5179ac7 1698 if (wake_flags & WF_MIGRATED)
59efa0ba 1699 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1700#endif
1701
b5179ac7 1702 ttwu_activate(rq, p, en_flags);
d8ac8971 1703 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1704}
1705
1706/*
1707 * Called in case the task @p isn't fully descheduled from its runqueue,
1708 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1709 * since all we need to do is flip p->state to TASK_RUNNING, since
1710 * the task is still ->on_rq.
1711 */
1712static int ttwu_remote(struct task_struct *p, int wake_flags)
1713{
eb580751 1714 struct rq_flags rf;
c05fbafb
PZ
1715 struct rq *rq;
1716 int ret = 0;
1717
eb580751 1718 rq = __task_rq_lock(p, &rf);
da0c1e65 1719 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1720 /* check_preempt_curr() may use rq clock */
1721 update_rq_clock(rq);
d8ac8971 1722 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1723 ret = 1;
1724 }
eb580751 1725 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1726
1727 return ret;
1728}
1729
317f3941 1730#ifdef CONFIG_SMP
e3baac47 1731void sched_ttwu_pending(void)
317f3941
PZ
1732{
1733 struct rq *rq = this_rq();
fa14ff4a 1734 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1735 struct task_struct *p, *t;
d8ac8971 1736 struct rq_flags rf;
317f3941 1737
e3baac47
PZ
1738 if (!llist)
1739 return;
1740
8a8c69c3 1741 rq_lock_irqsave(rq, &rf);
77558e4d 1742 update_rq_clock(rq);
317f3941 1743
73215849
BP
1744 llist_for_each_entry_safe(p, t, llist, wake_entry)
1745 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1746
8a8c69c3 1747 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1748}
1749
1750void scheduler_ipi(void)
1751{
f27dde8d
PZ
1752 /*
1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 * TIF_NEED_RESCHED remotely (for the first time) will also send
1755 * this IPI.
1756 */
8cb75e0c 1757 preempt_fold_need_resched();
f27dde8d 1758
fd2ac4f4 1759 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1760 return;
1761
1762 /*
1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 * traditionally all their work was done from the interrupt return
1765 * path. Now that we actually do some work, we need to make sure
1766 * we do call them.
1767 *
1768 * Some archs already do call them, luckily irq_enter/exit nest
1769 * properly.
1770 *
1771 * Arguably we should visit all archs and update all handlers,
1772 * however a fair share of IPIs are still resched only so this would
1773 * somewhat pessimize the simple resched case.
1774 */
1775 irq_enter();
fa14ff4a 1776 sched_ttwu_pending();
ca38062e
SS
1777
1778 /*
1779 * Check if someone kicked us for doing the nohz idle load balance.
1780 */
873b4c65 1781 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1782 this_rq()->idle_balance = 1;
ca38062e 1783 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1784 }
c5d753a5 1785 irq_exit();
317f3941
PZ
1786}
1787
b7e7ade3 1788static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1789{
e3baac47
PZ
1790 struct rq *rq = cpu_rq(cpu);
1791
b7e7ade3
PZ
1792 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1793
e3baac47
PZ
1794 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1795 if (!set_nr_if_polling(rq->idle))
1796 smp_send_reschedule(cpu);
1797 else
1798 trace_sched_wake_idle_without_ipi(cpu);
1799 }
317f3941 1800}
d6aa8f85 1801
f6be8af1
CL
1802void wake_up_if_idle(int cpu)
1803{
1804 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1805 struct rq_flags rf;
f6be8af1 1806
fd7de1e8
AL
1807 rcu_read_lock();
1808
1809 if (!is_idle_task(rcu_dereference(rq->curr)))
1810 goto out;
f6be8af1
CL
1811
1812 if (set_nr_if_polling(rq->idle)) {
1813 trace_sched_wake_idle_without_ipi(cpu);
1814 } else {
8a8c69c3 1815 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1816 if (is_idle_task(rq->curr))
1817 smp_send_reschedule(cpu);
d1ccc66d 1818 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1819 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1820 }
fd7de1e8
AL
1821
1822out:
1823 rcu_read_unlock();
f6be8af1
CL
1824}
1825
39be3501 1826bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1827{
1828 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1829}
d6aa8f85 1830#endif /* CONFIG_SMP */
317f3941 1831
b5179ac7 1832static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1833{
1834 struct rq *rq = cpu_rq(cpu);
d8ac8971 1835 struct rq_flags rf;
c05fbafb 1836
17d9f311 1837#if defined(CONFIG_SMP)
39be3501 1838 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1839 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1840 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1841 return;
1842 }
1843#endif
1844
8a8c69c3 1845 rq_lock(rq, &rf);
77558e4d 1846 update_rq_clock(rq);
d8ac8971 1847 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1848 rq_unlock(rq, &rf);
9ed3811a
TH
1849}
1850
8643cda5
PZ
1851/*
1852 * Notes on Program-Order guarantees on SMP systems.
1853 *
1854 * MIGRATION
1855 *
1856 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1857 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1858 * execution on its new CPU [c1].
8643cda5
PZ
1859 *
1860 * For migration (of runnable tasks) this is provided by the following means:
1861 *
1862 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1863 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1864 * rq(c1)->lock (if not at the same time, then in that order).
1865 * C) LOCK of the rq(c1)->lock scheduling in task
1866 *
7696f991 1867 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 1868 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1869 *
1870 * Example:
1871 *
1872 * CPU0 CPU1 CPU2
1873 *
1874 * LOCK rq(0)->lock
1875 * sched-out X
1876 * sched-in Y
1877 * UNLOCK rq(0)->lock
1878 *
1879 * LOCK rq(0)->lock // orders against CPU0
1880 * dequeue X
1881 * UNLOCK rq(0)->lock
1882 *
1883 * LOCK rq(1)->lock
1884 * enqueue X
1885 * UNLOCK rq(1)->lock
1886 *
1887 * LOCK rq(1)->lock // orders against CPU2
1888 * sched-out Z
1889 * sched-in X
1890 * UNLOCK rq(1)->lock
1891 *
1892 *
1893 * BLOCKING -- aka. SLEEP + WAKEUP
1894 *
1895 * For blocking we (obviously) need to provide the same guarantee as for
1896 * migration. However the means are completely different as there is no lock
1897 * chain to provide order. Instead we do:
1898 *
1899 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1900 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1901 *
1902 * Example:
1903 *
1904 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1905 *
1906 * LOCK rq(0)->lock LOCK X->pi_lock
1907 * dequeue X
1908 * sched-out X
1909 * smp_store_release(X->on_cpu, 0);
1910 *
1f03e8d2 1911 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1912 * X->state = WAKING
1913 * set_task_cpu(X,2)
1914 *
1915 * LOCK rq(2)->lock
1916 * enqueue X
1917 * X->state = RUNNING
1918 * UNLOCK rq(2)->lock
1919 *
1920 * LOCK rq(2)->lock // orders against CPU1
1921 * sched-out Z
1922 * sched-in X
1923 * UNLOCK rq(2)->lock
1924 *
1925 * UNLOCK X->pi_lock
1926 * UNLOCK rq(0)->lock
1927 *
1928 *
7696f991
AP
1929 * However, for wakeups there is a second guarantee we must provide, namely we
1930 * must ensure that CONDITION=1 done by the caller can not be reordered with
1931 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
1932 */
1933
9ed3811a 1934/**
1da177e4 1935 * try_to_wake_up - wake up a thread
9ed3811a 1936 * @p: the thread to be awakened
1da177e4 1937 * @state: the mask of task states that can be woken
9ed3811a 1938 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1939 *
a2250238 1940 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1941 *
a2250238
PZ
1942 * If the task was not queued/runnable, also place it back on a runqueue.
1943 *
1944 * Atomic against schedule() which would dequeue a task, also see
1945 * set_current_state().
1946 *
7696f991
AP
1947 * This function executes a full memory barrier before accessing the task
1948 * state; see set_current_state().
1949 *
a2250238
PZ
1950 * Return: %true if @p->state changes (an actual wakeup was done),
1951 * %false otherwise.
1da177e4 1952 */
e4a52bcb
PZ
1953static int
1954try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1955{
1da177e4 1956 unsigned long flags;
c05fbafb 1957 int cpu, success = 0;
2398f2c6 1958
e0acd0a6
ON
1959 /*
1960 * If we are going to wake up a thread waiting for CONDITION we
1961 * need to ensure that CONDITION=1 done by the caller can not be
1962 * reordered with p->state check below. This pairs with mb() in
1963 * set_current_state() the waiting thread does.
1964 */
013fdb80 1965 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 1966 smp_mb__after_spinlock();
e9c84311 1967 if (!(p->state & state))
1da177e4
LT
1968 goto out;
1969
fbd705a0
PZ
1970 trace_sched_waking(p);
1971
d1ccc66d
IM
1972 /* We're going to change ->state: */
1973 success = 1;
1da177e4 1974 cpu = task_cpu(p);
1da177e4 1975
135e8c92
BS
1976 /*
1977 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1978 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1979 * in smp_cond_load_acquire() below.
1980 *
3d85b270
AP
1981 * sched_ttwu_pending() try_to_wake_up()
1982 * STORE p->on_rq = 1 LOAD p->state
1983 * UNLOCK rq->lock
1984 *
1985 * __schedule() (switch to task 'p')
1986 * LOCK rq->lock smp_rmb();
1987 * smp_mb__after_spinlock();
1988 * UNLOCK rq->lock
135e8c92
BS
1989 *
1990 * [task p]
3d85b270 1991 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 1992 *
3d85b270
AP
1993 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1994 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
1995 */
1996 smp_rmb();
c05fbafb
PZ
1997 if (p->on_rq && ttwu_remote(p, wake_flags))
1998 goto stat;
1da177e4 1999
1da177e4 2000#ifdef CONFIG_SMP
ecf7d01c
PZ
2001 /*
2002 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2003 * possible to, falsely, observe p->on_cpu == 0.
2004 *
2005 * One must be running (->on_cpu == 1) in order to remove oneself
2006 * from the runqueue.
2007 *
3d85b270
AP
2008 * __schedule() (switch to task 'p') try_to_wake_up()
2009 * STORE p->on_cpu = 1 LOAD p->on_rq
2010 * UNLOCK rq->lock
2011 *
2012 * __schedule() (put 'p' to sleep)
2013 * LOCK rq->lock smp_rmb();
2014 * smp_mb__after_spinlock();
2015 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2016 *
3d85b270
AP
2017 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2018 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2019 */
2020 smp_rmb();
2021
e9c84311 2022 /*
d1ccc66d 2023 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2024 * this task as prev, wait until its done referencing the task.
b75a2253 2025 *
31cb1bc0 2026 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2027 *
2028 * This ensures that tasks getting woken will be fully ordered against
2029 * their previous state and preserve Program Order.
0970d299 2030 */
1f03e8d2 2031 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2032
a8e4f2ea 2033 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2034 p->state = TASK_WAKING;
e7693a36 2035
e33a9bba 2036 if (p->in_iowait) {
c96f5471 2037 delayacct_blkio_end(p);
e33a9bba
TH
2038 atomic_dec(&task_rq(p)->nr_iowait);
2039 }
2040
ac66f547 2041 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2042 if (task_cpu(p) != cpu) {
2043 wake_flags |= WF_MIGRATED;
eb414681 2044 psi_ttwu_dequeue(p);
e4a52bcb 2045 set_task_cpu(p, cpu);
f339b9dc 2046 }
e33a9bba
TH
2047
2048#else /* CONFIG_SMP */
2049
2050 if (p->in_iowait) {
c96f5471 2051 delayacct_blkio_end(p);
e33a9bba
TH
2052 atomic_dec(&task_rq(p)->nr_iowait);
2053 }
2054
1da177e4 2055#endif /* CONFIG_SMP */
1da177e4 2056
b5179ac7 2057 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2058stat:
4fa8d299 2059 ttwu_stat(p, cpu, wake_flags);
1da177e4 2060out:
013fdb80 2061 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2062
2063 return success;
2064}
2065
21aa9af0
TH
2066/**
2067 * try_to_wake_up_local - try to wake up a local task with rq lock held
2068 * @p: the thread to be awakened
bf50f0e8 2069 * @rf: request-queue flags for pinning
21aa9af0 2070 *
2acca55e 2071 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2072 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2073 * the current task.
21aa9af0 2074 */
d8ac8971 2075static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2076{
2077 struct rq *rq = task_rq(p);
21aa9af0 2078
383efcd0
TH
2079 if (WARN_ON_ONCE(rq != this_rq()) ||
2080 WARN_ON_ONCE(p == current))
2081 return;
2082
21aa9af0
TH
2083 lockdep_assert_held(&rq->lock);
2084
2acca55e 2085 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2086 /*
2087 * This is OK, because current is on_cpu, which avoids it being
2088 * picked for load-balance and preemption/IRQs are still
2089 * disabled avoiding further scheduler activity on it and we've
2090 * not yet picked a replacement task.
2091 */
8a8c69c3 2092 rq_unlock(rq, rf);
2acca55e 2093 raw_spin_lock(&p->pi_lock);
8a8c69c3 2094 rq_relock(rq, rf);
2acca55e
PZ
2095 }
2096
21aa9af0 2097 if (!(p->state & TASK_NORMAL))
2acca55e 2098 goto out;
21aa9af0 2099
fbd705a0
PZ
2100 trace_sched_waking(p);
2101
e33a9bba
TH
2102 if (!task_on_rq_queued(p)) {
2103 if (p->in_iowait) {
c96f5471 2104 delayacct_blkio_end(p);
e33a9bba
TH
2105 atomic_dec(&rq->nr_iowait);
2106 }
bce4dc80 2107 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2108 }
d7c01d27 2109
d8ac8971 2110 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2111 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2112out:
2113 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2114}
2115
50fa610a
DH
2116/**
2117 * wake_up_process - Wake up a specific process
2118 * @p: The process to be woken up.
2119 *
2120 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2121 * processes.
2122 *
2123 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2124 *
7696f991 2125 * This function executes a full memory barrier before accessing the task state.
50fa610a 2126 */
7ad5b3a5 2127int wake_up_process(struct task_struct *p)
1da177e4 2128{
9067ac85 2129 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2130}
1da177e4
LT
2131EXPORT_SYMBOL(wake_up_process);
2132
7ad5b3a5 2133int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2134{
2135 return try_to_wake_up(p, state, 0);
2136}
2137
1da177e4
LT
2138/*
2139 * Perform scheduler related setup for a newly forked process p.
2140 * p is forked by current.
dd41f596
IM
2141 *
2142 * __sched_fork() is basic setup used by init_idle() too:
2143 */
5e1576ed 2144static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2145{
fd2f4419
PZ
2146 p->on_rq = 0;
2147
2148 p->se.on_rq = 0;
dd41f596
IM
2149 p->se.exec_start = 0;
2150 p->se.sum_exec_runtime = 0;
f6cf891c 2151 p->se.prev_sum_exec_runtime = 0;
6c594c21 2152 p->se.nr_migrations = 0;
da7a735e 2153 p->se.vruntime = 0;
fd2f4419 2154 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2155
ad936d86
BP
2156#ifdef CONFIG_FAIR_GROUP_SCHED
2157 p->se.cfs_rq = NULL;
2158#endif
2159
6cfb0d5d 2160#ifdef CONFIG_SCHEDSTATS
cb251765 2161 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2162 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2163#endif
476d139c 2164
aab03e05 2165 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2166 init_dl_task_timer(&p->dl);
209a0cbd 2167 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2168 __dl_clear_params(p);
aab03e05 2169
fa717060 2170 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2171 p->rt.timeout = 0;
2172 p->rt.time_slice = sched_rr_timeslice;
2173 p->rt.on_rq = 0;
2174 p->rt.on_list = 0;
476d139c 2175
e107be36
AK
2176#ifdef CONFIG_PREEMPT_NOTIFIERS
2177 INIT_HLIST_HEAD(&p->preempt_notifiers);
2178#endif
cbee9f88 2179
13784475 2180 init_numa_balancing(clone_flags, p);
dd41f596
IM
2181}
2182
2a595721
SD
2183DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2184
1a687c2e 2185#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2186
1a687c2e
MG
2187void set_numabalancing_state(bool enabled)
2188{
2189 if (enabled)
2a595721 2190 static_branch_enable(&sched_numa_balancing);
1a687c2e 2191 else
2a595721 2192 static_branch_disable(&sched_numa_balancing);
1a687c2e 2193}
54a43d54
AK
2194
2195#ifdef CONFIG_PROC_SYSCTL
2196int sysctl_numa_balancing(struct ctl_table *table, int write,
2197 void __user *buffer, size_t *lenp, loff_t *ppos)
2198{
2199 struct ctl_table t;
2200 int err;
2a595721 2201 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2202
2203 if (write && !capable(CAP_SYS_ADMIN))
2204 return -EPERM;
2205
2206 t = *table;
2207 t.data = &state;
2208 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2209 if (err < 0)
2210 return err;
2211 if (write)
2212 set_numabalancing_state(state);
2213 return err;
2214}
2215#endif
2216#endif
dd41f596 2217
4698f88c
JP
2218#ifdef CONFIG_SCHEDSTATS
2219
cb251765 2220DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2221static bool __initdata __sched_schedstats = false;
cb251765 2222
cb251765
MG
2223static void set_schedstats(bool enabled)
2224{
2225 if (enabled)
2226 static_branch_enable(&sched_schedstats);
2227 else
2228 static_branch_disable(&sched_schedstats);
2229}
2230
2231void force_schedstat_enabled(void)
2232{
2233 if (!schedstat_enabled()) {
2234 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2235 static_branch_enable(&sched_schedstats);
2236 }
2237}
2238
2239static int __init setup_schedstats(char *str)
2240{
2241 int ret = 0;
2242 if (!str)
2243 goto out;
2244
4698f88c
JP
2245 /*
2246 * This code is called before jump labels have been set up, so we can't
2247 * change the static branch directly just yet. Instead set a temporary
2248 * variable so init_schedstats() can do it later.
2249 */
cb251765 2250 if (!strcmp(str, "enable")) {
4698f88c 2251 __sched_schedstats = true;
cb251765
MG
2252 ret = 1;
2253 } else if (!strcmp(str, "disable")) {
4698f88c 2254 __sched_schedstats = false;
cb251765
MG
2255 ret = 1;
2256 }
2257out:
2258 if (!ret)
2259 pr_warn("Unable to parse schedstats=\n");
2260
2261 return ret;
2262}
2263__setup("schedstats=", setup_schedstats);
2264
4698f88c
JP
2265static void __init init_schedstats(void)
2266{
2267 set_schedstats(__sched_schedstats);
2268}
2269
cb251765
MG
2270#ifdef CONFIG_PROC_SYSCTL
2271int sysctl_schedstats(struct ctl_table *table, int write,
2272 void __user *buffer, size_t *lenp, loff_t *ppos)
2273{
2274 struct ctl_table t;
2275 int err;
2276 int state = static_branch_likely(&sched_schedstats);
2277
2278 if (write && !capable(CAP_SYS_ADMIN))
2279 return -EPERM;
2280
2281 t = *table;
2282 t.data = &state;
2283 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2284 if (err < 0)
2285 return err;
2286 if (write)
2287 set_schedstats(state);
2288 return err;
2289}
4698f88c
JP
2290#endif /* CONFIG_PROC_SYSCTL */
2291#else /* !CONFIG_SCHEDSTATS */
2292static inline void init_schedstats(void) {}
2293#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2294
2295/*
2296 * fork()/clone()-time setup:
2297 */
aab03e05 2298int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2299{
0122ec5b 2300 unsigned long flags;
dd41f596 2301
5e1576ed 2302 __sched_fork(clone_flags, p);
06b83b5f 2303 /*
7dc603c9 2304 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2305 * nobody will actually run it, and a signal or other external
2306 * event cannot wake it up and insert it on the runqueue either.
2307 */
7dc603c9 2308 p->state = TASK_NEW;
dd41f596 2309
c350a04e
MG
2310 /*
2311 * Make sure we do not leak PI boosting priority to the child.
2312 */
2313 p->prio = current->normal_prio;
2314
b9dc29e7
MG
2315 /*
2316 * Revert to default priority/policy on fork if requested.
2317 */
2318 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2319 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2320 p->policy = SCHED_NORMAL;
6c697bdf 2321 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2322 p->rt_priority = 0;
2323 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2324 p->static_prio = NICE_TO_PRIO(0);
2325
2326 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2327 set_load_weight(p, false);
6c697bdf 2328
b9dc29e7
MG
2329 /*
2330 * We don't need the reset flag anymore after the fork. It has
2331 * fulfilled its duty:
2332 */
2333 p->sched_reset_on_fork = 0;
2334 }
ca94c442 2335
af0fffd9 2336 if (dl_prio(p->prio))
aab03e05 2337 return -EAGAIN;
af0fffd9 2338 else if (rt_prio(p->prio))
aab03e05 2339 p->sched_class = &rt_sched_class;
af0fffd9 2340 else
2ddbf952 2341 p->sched_class = &fair_sched_class;
b29739f9 2342
7dc603c9 2343 init_entity_runnable_average(&p->se);
cd29fe6f 2344
86951599
PZ
2345 /*
2346 * The child is not yet in the pid-hash so no cgroup attach races,
2347 * and the cgroup is pinned to this child due to cgroup_fork()
2348 * is ran before sched_fork().
2349 *
2350 * Silence PROVE_RCU.
2351 */
0122ec5b 2352 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2353 /*
d1ccc66d 2354 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2355 * so use __set_task_cpu().
2356 */
af0fffd9 2357 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2358 if (p->sched_class->task_fork)
2359 p->sched_class->task_fork(p);
0122ec5b 2360 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2361
f6db8347 2362#ifdef CONFIG_SCHED_INFO
dd41f596 2363 if (likely(sched_info_on()))
52f17b6c 2364 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2365#endif
3ca7a440
PZ
2366#if defined(CONFIG_SMP)
2367 p->on_cpu = 0;
4866cde0 2368#endif
01028747 2369 init_task_preempt_count(p);
806c09a7 2370#ifdef CONFIG_SMP
917b627d 2371 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2372 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2373#endif
aab03e05 2374 return 0;
1da177e4
LT
2375}
2376
332ac17e
DF
2377unsigned long to_ratio(u64 period, u64 runtime)
2378{
2379 if (runtime == RUNTIME_INF)
c52f14d3 2380 return BW_UNIT;
332ac17e
DF
2381
2382 /*
2383 * Doing this here saves a lot of checks in all
2384 * the calling paths, and returning zero seems
2385 * safe for them anyway.
2386 */
2387 if (period == 0)
2388 return 0;
2389
c52f14d3 2390 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2391}
2392
1da177e4
LT
2393/*
2394 * wake_up_new_task - wake up a newly created task for the first time.
2395 *
2396 * This function will do some initial scheduler statistics housekeeping
2397 * that must be done for every newly created context, then puts the task
2398 * on the runqueue and wakes it.
2399 */
3e51e3ed 2400void wake_up_new_task(struct task_struct *p)
1da177e4 2401{
eb580751 2402 struct rq_flags rf;
dd41f596 2403 struct rq *rq;
fabf318e 2404
eb580751 2405 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2406 p->state = TASK_RUNNING;
fabf318e
PZ
2407#ifdef CONFIG_SMP
2408 /*
2409 * Fork balancing, do it here and not earlier because:
2410 * - cpus_allowed can change in the fork path
d1ccc66d 2411 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2412 *
2413 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2414 * as we're not fully set-up yet.
fabf318e 2415 */
32e839dd 2416 p->recent_used_cpu = task_cpu(p);
e210bffd 2417 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2418#endif
b7fa30c9 2419 rq = __task_rq_lock(p, &rf);
4126bad6 2420 update_rq_clock(rq);
2b8c41da 2421 post_init_entity_util_avg(&p->se);
0017d735 2422
7a57f32a 2423 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2424 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2425 trace_sched_wakeup_new(p);
a7558e01 2426 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2427#ifdef CONFIG_SMP
0aaafaab
PZ
2428 if (p->sched_class->task_woken) {
2429 /*
2430 * Nothing relies on rq->lock after this, so its fine to
2431 * drop it.
2432 */
d8ac8971 2433 rq_unpin_lock(rq, &rf);
efbbd05a 2434 p->sched_class->task_woken(rq, p);
d8ac8971 2435 rq_repin_lock(rq, &rf);
0aaafaab 2436 }
9a897c5a 2437#endif
eb580751 2438 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2439}
2440
e107be36
AK
2441#ifdef CONFIG_PREEMPT_NOTIFIERS
2442
b7203428 2443static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2444
2ecd9d29
PZ
2445void preempt_notifier_inc(void)
2446{
b7203428 2447 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2448}
2449EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2450
2451void preempt_notifier_dec(void)
2452{
b7203428 2453 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2454}
2455EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2456
e107be36 2457/**
80dd99b3 2458 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2459 * @notifier: notifier struct to register
e107be36
AK
2460 */
2461void preempt_notifier_register(struct preempt_notifier *notifier)
2462{
b7203428 2463 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2464 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2465
e107be36
AK
2466 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2467}
2468EXPORT_SYMBOL_GPL(preempt_notifier_register);
2469
2470/**
2471 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2472 * @notifier: notifier struct to unregister
e107be36 2473 *
d84525a8 2474 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2475 */
2476void preempt_notifier_unregister(struct preempt_notifier *notifier)
2477{
2478 hlist_del(&notifier->link);
2479}
2480EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2481
1cde2930 2482static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2483{
2484 struct preempt_notifier *notifier;
e107be36 2485
b67bfe0d 2486 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2487 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2488}
2489
1cde2930
PZ
2490static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2491{
b7203428 2492 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2493 __fire_sched_in_preempt_notifiers(curr);
2494}
2495
e107be36 2496static void
1cde2930
PZ
2497__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2498 struct task_struct *next)
e107be36
AK
2499{
2500 struct preempt_notifier *notifier;
e107be36 2501
b67bfe0d 2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2503 notifier->ops->sched_out(notifier, next);
2504}
2505
1cde2930
PZ
2506static __always_inline void
2507fire_sched_out_preempt_notifiers(struct task_struct *curr,
2508 struct task_struct *next)
2509{
b7203428 2510 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2511 __fire_sched_out_preempt_notifiers(curr, next);
2512}
2513
6d6bc0ad 2514#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2515
1cde2930 2516static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2517{
2518}
2519
1cde2930 2520static inline void
e107be36
AK
2521fire_sched_out_preempt_notifiers(struct task_struct *curr,
2522 struct task_struct *next)
2523{
2524}
2525
6d6bc0ad 2526#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2527
31cb1bc0 2528static inline void prepare_task(struct task_struct *next)
2529{
2530#ifdef CONFIG_SMP
2531 /*
2532 * Claim the task as running, we do this before switching to it
2533 * such that any running task will have this set.
2534 */
2535 next->on_cpu = 1;
2536#endif
2537}
2538
2539static inline void finish_task(struct task_struct *prev)
2540{
2541#ifdef CONFIG_SMP
2542 /*
2543 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2544 * We must ensure this doesn't happen until the switch is completely
2545 * finished.
2546 *
2547 * In particular, the load of prev->state in finish_task_switch() must
2548 * happen before this.
2549 *
2550 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2551 */
2552 smp_store_release(&prev->on_cpu, 0);
2553#endif
2554}
2555
269d5992
PZ
2556static inline void
2557prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2558{
269d5992
PZ
2559 /*
2560 * Since the runqueue lock will be released by the next
2561 * task (which is an invalid locking op but in the case
2562 * of the scheduler it's an obvious special-case), so we
2563 * do an early lockdep release here:
2564 */
2565 rq_unpin_lock(rq, rf);
2566 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2567#ifdef CONFIG_DEBUG_SPINLOCK
2568 /* this is a valid case when another task releases the spinlock */
269d5992 2569 rq->lock.owner = next;
31cb1bc0 2570#endif
269d5992
PZ
2571}
2572
2573static inline void finish_lock_switch(struct rq *rq)
2574{
31cb1bc0 2575 /*
2576 * If we are tracking spinlock dependencies then we have to
2577 * fix up the runqueue lock - which gets 'carried over' from
2578 * prev into current:
2579 */
2580 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2581 raw_spin_unlock_irq(&rq->lock);
2582}
2583
325ea10c
IM
2584/*
2585 * NOP if the arch has not defined these:
2586 */
2587
2588#ifndef prepare_arch_switch
2589# define prepare_arch_switch(next) do { } while (0)
2590#endif
2591
2592#ifndef finish_arch_post_lock_switch
2593# define finish_arch_post_lock_switch() do { } while (0)
2594#endif
2595
4866cde0
NP
2596/**
2597 * prepare_task_switch - prepare to switch tasks
2598 * @rq: the runqueue preparing to switch
421cee29 2599 * @prev: the current task that is being switched out
4866cde0
NP
2600 * @next: the task we are going to switch to.
2601 *
2602 * This is called with the rq lock held and interrupts off. It must
2603 * be paired with a subsequent finish_task_switch after the context
2604 * switch.
2605 *
2606 * prepare_task_switch sets up locking and calls architecture specific
2607 * hooks.
2608 */
e107be36
AK
2609static inline void
2610prepare_task_switch(struct rq *rq, struct task_struct *prev,
2611 struct task_struct *next)
4866cde0 2612{
0ed557aa 2613 kcov_prepare_switch(prev);
43148951 2614 sched_info_switch(rq, prev, next);
fe4b04fa 2615 perf_event_task_sched_out(prev, next);
d7822b1e 2616 rseq_preempt(prev);
e107be36 2617 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2618 prepare_task(next);
4866cde0
NP
2619 prepare_arch_switch(next);
2620}
2621
1da177e4
LT
2622/**
2623 * finish_task_switch - clean up after a task-switch
2624 * @prev: the thread we just switched away from.
2625 *
4866cde0
NP
2626 * finish_task_switch must be called after the context switch, paired
2627 * with a prepare_task_switch call before the context switch.
2628 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2629 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2630 *
2631 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2632 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2633 * with the lock held can cause deadlocks; see schedule() for
2634 * details.)
dfa50b60
ON
2635 *
2636 * The context switch have flipped the stack from under us and restored the
2637 * local variables which were saved when this task called schedule() in the
2638 * past. prev == current is still correct but we need to recalculate this_rq
2639 * because prev may have moved to another CPU.
1da177e4 2640 */
dfa50b60 2641static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2642 __releases(rq->lock)
2643{
dfa50b60 2644 struct rq *rq = this_rq();
1da177e4 2645 struct mm_struct *mm = rq->prev_mm;
55a101f8 2646 long prev_state;
1da177e4 2647
609ca066
PZ
2648 /*
2649 * The previous task will have left us with a preempt_count of 2
2650 * because it left us after:
2651 *
2652 * schedule()
2653 * preempt_disable(); // 1
2654 * __schedule()
2655 * raw_spin_lock_irq(&rq->lock) // 2
2656 *
2657 * Also, see FORK_PREEMPT_COUNT.
2658 */
e2bf1c4b
PZ
2659 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2660 "corrupted preempt_count: %s/%d/0x%x\n",
2661 current->comm, current->pid, preempt_count()))
2662 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2663
1da177e4
LT
2664 rq->prev_mm = NULL;
2665
2666 /*
2667 * A task struct has one reference for the use as "current".
c394cc9f 2668 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2669 * schedule one last time. The schedule call will never return, and
2670 * the scheduled task must drop that reference.
95913d97
PZ
2671 *
2672 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2673 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2674 * running on another CPU and we could rave with its RUNNING -> DEAD
2675 * transition, resulting in a double drop.
1da177e4 2676 */
55a101f8 2677 prev_state = prev->state;
bf9fae9f 2678 vtime_task_switch(prev);
a8d757ef 2679 perf_event_task_sched_in(prev, current);
31cb1bc0 2680 finish_task(prev);
2681 finish_lock_switch(rq);
01f23e16 2682 finish_arch_post_lock_switch();
0ed557aa 2683 kcov_finish_switch(current);
e8fa1362 2684
e107be36 2685 fire_sched_in_preempt_notifiers(current);
306e0604 2686 /*
70216e18
MD
2687 * When switching through a kernel thread, the loop in
2688 * membarrier_{private,global}_expedited() may have observed that
2689 * kernel thread and not issued an IPI. It is therefore possible to
2690 * schedule between user->kernel->user threads without passing though
2691 * switch_mm(). Membarrier requires a barrier after storing to
2692 * rq->curr, before returning to userspace, so provide them here:
2693 *
2694 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2695 * provided by mmdrop(),
2696 * - a sync_core for SYNC_CORE.
306e0604 2697 */
70216e18
MD
2698 if (mm) {
2699 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2700 mmdrop(mm);
70216e18 2701 }
1cef1150
PZ
2702 if (unlikely(prev_state == TASK_DEAD)) {
2703 if (prev->sched_class->task_dead)
2704 prev->sched_class->task_dead(prev);
68f24b08 2705
1cef1150
PZ
2706 /*
2707 * Remove function-return probe instances associated with this
2708 * task and put them back on the free list.
2709 */
2710 kprobe_flush_task(prev);
2711
2712 /* Task is done with its stack. */
2713 put_task_stack(prev);
2714
2715 put_task_struct(prev);
c6fd91f0 2716 }
99e5ada9 2717
de734f89 2718 tick_nohz_task_switch();
dfa50b60 2719 return rq;
1da177e4
LT
2720}
2721
3f029d3c
GH
2722#ifdef CONFIG_SMP
2723
3f029d3c 2724/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2725static void __balance_callback(struct rq *rq)
3f029d3c 2726{
e3fca9e7
PZ
2727 struct callback_head *head, *next;
2728 void (*func)(struct rq *rq);
2729 unsigned long flags;
3f029d3c 2730
e3fca9e7
PZ
2731 raw_spin_lock_irqsave(&rq->lock, flags);
2732 head = rq->balance_callback;
2733 rq->balance_callback = NULL;
2734 while (head) {
2735 func = (void (*)(struct rq *))head->func;
2736 next = head->next;
2737 head->next = NULL;
2738 head = next;
3f029d3c 2739
e3fca9e7 2740 func(rq);
3f029d3c 2741 }
e3fca9e7
PZ
2742 raw_spin_unlock_irqrestore(&rq->lock, flags);
2743}
2744
2745static inline void balance_callback(struct rq *rq)
2746{
2747 if (unlikely(rq->balance_callback))
2748 __balance_callback(rq);
3f029d3c
GH
2749}
2750
2751#else
da19ab51 2752
e3fca9e7 2753static inline void balance_callback(struct rq *rq)
3f029d3c 2754{
1da177e4
LT
2755}
2756
3f029d3c
GH
2757#endif
2758
1da177e4
LT
2759/**
2760 * schedule_tail - first thing a freshly forked thread must call.
2761 * @prev: the thread we just switched away from.
2762 */
722a9f92 2763asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2764 __releases(rq->lock)
2765{
1a43a14a 2766 struct rq *rq;
da19ab51 2767
609ca066
PZ
2768 /*
2769 * New tasks start with FORK_PREEMPT_COUNT, see there and
2770 * finish_task_switch() for details.
2771 *
2772 * finish_task_switch() will drop rq->lock() and lower preempt_count
2773 * and the preempt_enable() will end up enabling preemption (on
2774 * PREEMPT_COUNT kernels).
2775 */
2776
dfa50b60 2777 rq = finish_task_switch(prev);
e3fca9e7 2778 balance_callback(rq);
1a43a14a 2779 preempt_enable();
70b97a7f 2780
1da177e4 2781 if (current->set_child_tid)
b488893a 2782 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
2783
2784 calculate_sigpending();
1da177e4
LT
2785}
2786
2787/*
dfa50b60 2788 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2789 */
04936948 2790static __always_inline struct rq *
70b97a7f 2791context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2792 struct task_struct *next, struct rq_flags *rf)
1da177e4 2793{
dd41f596 2794 struct mm_struct *mm, *oldmm;
1da177e4 2795
e107be36 2796 prepare_task_switch(rq, prev, next);
fe4b04fa 2797
dd41f596
IM
2798 mm = next->mm;
2799 oldmm = prev->active_mm;
9226d125
ZA
2800 /*
2801 * For paravirt, this is coupled with an exit in switch_to to
2802 * combine the page table reload and the switch backend into
2803 * one hypercall.
2804 */
224101ed 2805 arch_start_context_switch(prev);
9226d125 2806
306e0604
MD
2807 /*
2808 * If mm is non-NULL, we pass through switch_mm(). If mm is
2809 * NULL, we will pass through mmdrop() in finish_task_switch().
2810 * Both of these contain the full memory barrier required by
2811 * membarrier after storing to rq->curr, before returning to
2812 * user-space.
2813 */
31915ab4 2814 if (!mm) {
1da177e4 2815 next->active_mm = oldmm;
f1f10076 2816 mmgrab(oldmm);
1da177e4
LT
2817 enter_lazy_tlb(oldmm, next);
2818 } else
f98db601 2819 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2820
31915ab4 2821 if (!prev->mm) {
1da177e4 2822 prev->active_mm = NULL;
1da177e4
LT
2823 rq->prev_mm = oldmm;
2824 }
92509b73 2825
cb42c9a3 2826 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2827
269d5992 2828 prepare_lock_switch(rq, next, rf);
1da177e4
LT
2829
2830 /* Here we just switch the register state and the stack. */
2831 switch_to(prev, next, prev);
dd41f596 2832 barrier();
dfa50b60
ON
2833
2834 return finish_task_switch(prev);
1da177e4
LT
2835}
2836
2837/*
1c3e8264 2838 * nr_running and nr_context_switches:
1da177e4
LT
2839 *
2840 * externally visible scheduler statistics: current number of runnable
1c3e8264 2841 * threads, total number of context switches performed since bootup.
1da177e4
LT
2842 */
2843unsigned long nr_running(void)
2844{
2845 unsigned long i, sum = 0;
2846
2847 for_each_online_cpu(i)
2848 sum += cpu_rq(i)->nr_running;
2849
2850 return sum;
f711f609 2851}
1da177e4 2852
2ee507c4 2853/*
d1ccc66d 2854 * Check if only the current task is running on the CPU.
00cc1633
DD
2855 *
2856 * Caution: this function does not check that the caller has disabled
2857 * preemption, thus the result might have a time-of-check-to-time-of-use
2858 * race. The caller is responsible to use it correctly, for example:
2859 *
2860 * - from a non-preemptable section (of course)
2861 *
2862 * - from a thread that is bound to a single CPU
2863 *
2864 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2865 */
2866bool single_task_running(void)
2867{
00cc1633 2868 return raw_rq()->nr_running == 1;
2ee507c4
TC
2869}
2870EXPORT_SYMBOL(single_task_running);
2871
1da177e4 2872unsigned long long nr_context_switches(void)
46cb4b7c 2873{
cc94abfc
SR
2874 int i;
2875 unsigned long long sum = 0;
46cb4b7c 2876
0a945022 2877 for_each_possible_cpu(i)
1da177e4 2878 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2879
1da177e4
LT
2880 return sum;
2881}
483b4ee6 2882
e33a9bba
TH
2883/*
2884 * IO-wait accounting, and how its mostly bollocks (on SMP).
2885 *
2886 * The idea behind IO-wait account is to account the idle time that we could
2887 * have spend running if it were not for IO. That is, if we were to improve the
2888 * storage performance, we'd have a proportional reduction in IO-wait time.
2889 *
2890 * This all works nicely on UP, where, when a task blocks on IO, we account
2891 * idle time as IO-wait, because if the storage were faster, it could've been
2892 * running and we'd not be idle.
2893 *
2894 * This has been extended to SMP, by doing the same for each CPU. This however
2895 * is broken.
2896 *
2897 * Imagine for instance the case where two tasks block on one CPU, only the one
2898 * CPU will have IO-wait accounted, while the other has regular idle. Even
2899 * though, if the storage were faster, both could've ran at the same time,
2900 * utilising both CPUs.
2901 *
2902 * This means, that when looking globally, the current IO-wait accounting on
2903 * SMP is a lower bound, by reason of under accounting.
2904 *
2905 * Worse, since the numbers are provided per CPU, they are sometimes
2906 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2907 * associated with any one particular CPU, it can wake to another CPU than it
2908 * blocked on. This means the per CPU IO-wait number is meaningless.
2909 *
2910 * Task CPU affinities can make all that even more 'interesting'.
2911 */
2912
1da177e4
LT
2913unsigned long nr_iowait(void)
2914{
2915 unsigned long i, sum = 0;
483b4ee6 2916
0a945022 2917 for_each_possible_cpu(i)
1da177e4 2918 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2919
1da177e4
LT
2920 return sum;
2921}
483b4ee6 2922
e33a9bba 2923/*
9c2298aa
RW
2924 * Consumers of these two interfaces, like for example the cpuidle menu
2925 * governor, are using nonsensical data. Preferring shallow idle state selection
2926 * for a CPU that has IO-wait which might not even end up running the task when
2927 * it does become runnable.
e33a9bba
TH
2928 */
2929
8c215bd3 2930unsigned long nr_iowait_cpu(int cpu)
69d25870 2931{
8c215bd3 2932 struct rq *this = cpu_rq(cpu);
69d25870
AV
2933 return atomic_read(&this->nr_iowait);
2934}
46cb4b7c 2935
372ba8cb
MG
2936void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2937{
3289bdb4
PZ
2938 struct rq *rq = this_rq();
2939 *nr_waiters = atomic_read(&rq->nr_iowait);
2940 *load = rq->load.weight;
372ba8cb
MG
2941}
2942
dd41f596 2943#ifdef CONFIG_SMP
8a0be9ef 2944
46cb4b7c 2945/*
38022906
PZ
2946 * sched_exec - execve() is a valuable balancing opportunity, because at
2947 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2948 */
38022906 2949void sched_exec(void)
46cb4b7c 2950{
38022906 2951 struct task_struct *p = current;
1da177e4 2952 unsigned long flags;
0017d735 2953 int dest_cpu;
46cb4b7c 2954
8f42ced9 2955 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2956 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2957 if (dest_cpu == smp_processor_id())
2958 goto unlock;
38022906 2959
8f42ced9 2960 if (likely(cpu_active(dest_cpu))) {
969c7921 2961 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2962
8f42ced9
PZ
2963 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2964 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2965 return;
2966 }
0017d735 2967unlock:
8f42ced9 2968 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2969}
dd41f596 2970
1da177e4
LT
2971#endif
2972
1da177e4 2973DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2974DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2975
2976EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2977EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2978
6075620b
GG
2979/*
2980 * The function fair_sched_class.update_curr accesses the struct curr
2981 * and its field curr->exec_start; when called from task_sched_runtime(),
2982 * we observe a high rate of cache misses in practice.
2983 * Prefetching this data results in improved performance.
2984 */
2985static inline void prefetch_curr_exec_start(struct task_struct *p)
2986{
2987#ifdef CONFIG_FAIR_GROUP_SCHED
2988 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2989#else
2990 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2991#endif
2992 prefetch(curr);
2993 prefetch(&curr->exec_start);
2994}
2995
c5f8d995
HS
2996/*
2997 * Return accounted runtime for the task.
2998 * In case the task is currently running, return the runtime plus current's
2999 * pending runtime that have not been accounted yet.
3000 */
3001unsigned long long task_sched_runtime(struct task_struct *p)
3002{
eb580751 3003 struct rq_flags rf;
c5f8d995 3004 struct rq *rq;
6e998916 3005 u64 ns;
c5f8d995 3006
911b2898
PZ
3007#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3008 /*
97fb7a0a 3009 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3010 * So we have a optimization chance when the task's delta_exec is 0.
3011 * Reading ->on_cpu is racy, but this is ok.
3012 *
d1ccc66d
IM
3013 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3014 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3015 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3016 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3017 * been accounted, so we're correct here as well.
911b2898 3018 */
da0c1e65 3019 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3020 return p->se.sum_exec_runtime;
3021#endif
3022
eb580751 3023 rq = task_rq_lock(p, &rf);
6e998916
SG
3024 /*
3025 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3026 * project cycles that may never be accounted to this
3027 * thread, breaking clock_gettime().
3028 */
3029 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3030 prefetch_curr_exec_start(p);
6e998916
SG
3031 update_rq_clock(rq);
3032 p->sched_class->update_curr(rq);
3033 }
3034 ns = p->se.sum_exec_runtime;
eb580751 3035 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3036
3037 return ns;
3038}
48f24c4d 3039
7835b98b
CL
3040/*
3041 * This function gets called by the timer code, with HZ frequency.
3042 * We call it with interrupts disabled.
7835b98b
CL
3043 */
3044void scheduler_tick(void)
3045{
7835b98b
CL
3046 int cpu = smp_processor_id();
3047 struct rq *rq = cpu_rq(cpu);
dd41f596 3048 struct task_struct *curr = rq->curr;
8a8c69c3 3049 struct rq_flags rf;
3e51f33f
PZ
3050
3051 sched_clock_tick();
dd41f596 3052
8a8c69c3
PZ
3053 rq_lock(rq, &rf);
3054
3e51f33f 3055 update_rq_clock(rq);
fa85ae24 3056 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3057 cpu_load_update_active(rq);
3289bdb4 3058 calc_global_load_tick(rq);
eb414681 3059 psi_task_tick(rq);
8a8c69c3
PZ
3060
3061 rq_unlock(rq, &rf);
7835b98b 3062
e9d2b064 3063 perf_event_task_tick();
e220d2dc 3064
e418e1c2 3065#ifdef CONFIG_SMP
6eb57e0d 3066 rq->idle_balance = idle_cpu(cpu);
7caff66f 3067 trigger_load_balance(rq);
e418e1c2 3068#endif
1da177e4
LT
3069}
3070
265f22a9 3071#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3072
3073struct tick_work {
3074 int cpu;
3075 struct delayed_work work;
3076};
3077
3078static struct tick_work __percpu *tick_work_cpu;
3079
3080static void sched_tick_remote(struct work_struct *work)
3081{
3082 struct delayed_work *dwork = to_delayed_work(work);
3083 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3084 int cpu = twork->cpu;
3085 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3086 struct task_struct *curr;
d84b3131 3087 struct rq_flags rf;
d9c0ffca 3088 u64 delta;
d84b3131
FW
3089
3090 /*
3091 * Handle the tick only if it appears the remote CPU is running in full
3092 * dynticks mode. The check is racy by nature, but missing a tick or
3093 * having one too much is no big deal because the scheduler tick updates
3094 * statistics and checks timeslices in a time-independent way, regardless
3095 * of when exactly it is running.
3096 */
d9c0ffca
FW
3097 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3098 goto out_requeue;
d84b3131 3099
d9c0ffca
FW
3100 rq_lock_irq(rq, &rf);
3101 curr = rq->curr;
3102 if (is_idle_task(curr))
3103 goto out_unlock;
d84b3131 3104
d9c0ffca
FW
3105 update_rq_clock(rq);
3106 delta = rq_clock_task(rq) - curr->se.exec_start;
3107
3108 /*
3109 * Make sure the next tick runs within a reasonable
3110 * amount of time.
3111 */
3112 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3113 curr->sched_class->task_tick(rq, curr, 0);
3114
3115out_unlock:
3116 rq_unlock_irq(rq, &rf);
d84b3131 3117
d9c0ffca 3118out_requeue:
d84b3131
FW
3119 /*
3120 * Run the remote tick once per second (1Hz). This arbitrary
3121 * frequency is large enough to avoid overload but short enough
3122 * to keep scheduler internal stats reasonably up to date.
3123 */
3124 queue_delayed_work(system_unbound_wq, dwork, HZ);
3125}
3126
3127static void sched_tick_start(int cpu)
3128{
3129 struct tick_work *twork;
3130
3131 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3132 return;
3133
3134 WARN_ON_ONCE(!tick_work_cpu);
3135
3136 twork = per_cpu_ptr(tick_work_cpu, cpu);
3137 twork->cpu = cpu;
3138 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3139 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3140}
3141
3142#ifdef CONFIG_HOTPLUG_CPU
3143static void sched_tick_stop(int cpu)
3144{
3145 struct tick_work *twork;
3146
3147 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3148 return;
3149
3150 WARN_ON_ONCE(!tick_work_cpu);
3151
3152 twork = per_cpu_ptr(tick_work_cpu, cpu);
3153 cancel_delayed_work_sync(&twork->work);
3154}
3155#endif /* CONFIG_HOTPLUG_CPU */
3156
3157int __init sched_tick_offload_init(void)
3158{
3159 tick_work_cpu = alloc_percpu(struct tick_work);
3160 BUG_ON(!tick_work_cpu);
3161
3162 return 0;
3163}
3164
3165#else /* !CONFIG_NO_HZ_FULL */
3166static inline void sched_tick_start(int cpu) { }
3167static inline void sched_tick_stop(int cpu) { }
265f22a9 3168#endif
1da177e4 3169
7e49fcce 3170#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3171 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3172/*
3173 * If the value passed in is equal to the current preempt count
3174 * then we just disabled preemption. Start timing the latency.
3175 */
3176static inline void preempt_latency_start(int val)
3177{
3178 if (preempt_count() == val) {
3179 unsigned long ip = get_lock_parent_ip();
3180#ifdef CONFIG_DEBUG_PREEMPT
3181 current->preempt_disable_ip = ip;
3182#endif
3183 trace_preempt_off(CALLER_ADDR0, ip);
3184 }
3185}
7e49fcce 3186
edafe3a5 3187void preempt_count_add(int val)
1da177e4 3188{
6cd8a4bb 3189#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3190 /*
3191 * Underflow?
3192 */
9a11b49a
IM
3193 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3194 return;
6cd8a4bb 3195#endif
bdb43806 3196 __preempt_count_add(val);
6cd8a4bb 3197#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3198 /*
3199 * Spinlock count overflowing soon?
3200 */
33859f7f
MOS
3201 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3202 PREEMPT_MASK - 10);
6cd8a4bb 3203#endif
47252cfb 3204 preempt_latency_start(val);
1da177e4 3205}
bdb43806 3206EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3207NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3208
47252cfb
SR
3209/*
3210 * If the value passed in equals to the current preempt count
3211 * then we just enabled preemption. Stop timing the latency.
3212 */
3213static inline void preempt_latency_stop(int val)
3214{
3215 if (preempt_count() == val)
3216 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3217}
3218
edafe3a5 3219void preempt_count_sub(int val)
1da177e4 3220{
6cd8a4bb 3221#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3222 /*
3223 * Underflow?
3224 */
01e3eb82 3225 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3226 return;
1da177e4
LT
3227 /*
3228 * Is the spinlock portion underflowing?
3229 */
9a11b49a
IM
3230 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3231 !(preempt_count() & PREEMPT_MASK)))
3232 return;
6cd8a4bb 3233#endif
9a11b49a 3234
47252cfb 3235 preempt_latency_stop(val);
bdb43806 3236 __preempt_count_sub(val);
1da177e4 3237}
bdb43806 3238EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3239NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3240
47252cfb
SR
3241#else
3242static inline void preempt_latency_start(int val) { }
3243static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3244#endif
3245
59ddbcb2
IM
3246static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3247{
3248#ifdef CONFIG_DEBUG_PREEMPT
3249 return p->preempt_disable_ip;
3250#else
3251 return 0;
3252#endif
3253}
3254
1da177e4 3255/*
dd41f596 3256 * Print scheduling while atomic bug:
1da177e4 3257 */
dd41f596 3258static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3259{
d1c6d149
VN
3260 /* Save this before calling printk(), since that will clobber it */
3261 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3262
664dfa65
DJ
3263 if (oops_in_progress)
3264 return;
3265
3df0fc5b
PZ
3266 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3267 prev->comm, prev->pid, preempt_count());
838225b4 3268
dd41f596 3269 debug_show_held_locks(prev);
e21f5b15 3270 print_modules();
dd41f596
IM
3271 if (irqs_disabled())
3272 print_irqtrace_events(prev);
d1c6d149
VN
3273 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3274 && in_atomic_preempt_off()) {
8f47b187 3275 pr_err("Preemption disabled at:");
d1c6d149 3276 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3277 pr_cont("\n");
3278 }
748c7201
DBO
3279 if (panic_on_warn)
3280 panic("scheduling while atomic\n");
3281
6135fc1e 3282 dump_stack();
373d4d09 3283 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3284}
1da177e4 3285
dd41f596
IM
3286/*
3287 * Various schedule()-time debugging checks and statistics:
3288 */
3289static inline void schedule_debug(struct task_struct *prev)
3290{
0d9e2632 3291#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3292 if (task_stack_end_corrupted(prev))
3293 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3294#endif
b99def8b 3295
1dc0fffc 3296 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3297 __schedule_bug(prev);
1dc0fffc
PZ
3298 preempt_count_set(PREEMPT_DISABLED);
3299 }
b3fbab05 3300 rcu_sleep_check();
dd41f596 3301
1da177e4
LT
3302 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3303
ae92882e 3304 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3305}
3306
3307/*
3308 * Pick up the highest-prio task:
3309 */
3310static inline struct task_struct *
d8ac8971 3311pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3312{
49ee5768 3313 const struct sched_class *class;
dd41f596 3314 struct task_struct *p;
1da177e4
LT
3315
3316 /*
0ba87bb2
PZ
3317 * Optimization: we know that if all tasks are in the fair class we can
3318 * call that function directly, but only if the @prev task wasn't of a
3319 * higher scheduling class, because otherwise those loose the
3320 * opportunity to pull in more work from other CPUs.
1da177e4 3321 */
0ba87bb2
PZ
3322 if (likely((prev->sched_class == &idle_sched_class ||
3323 prev->sched_class == &fair_sched_class) &&
3324 rq->nr_running == rq->cfs.h_nr_running)) {
3325
d8ac8971 3326 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3327 if (unlikely(p == RETRY_TASK))
3328 goto again;
3329
d1ccc66d 3330 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3331 if (unlikely(!p))
d8ac8971 3332 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3333
3334 return p;
1da177e4
LT
3335 }
3336
37e117c0 3337again:
34f971f6 3338 for_each_class(class) {
d8ac8971 3339 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3340 if (p) {
3341 if (unlikely(p == RETRY_TASK))
3342 goto again;
dd41f596 3343 return p;
37e117c0 3344 }
dd41f596 3345 }
34f971f6 3346
d1ccc66d
IM
3347 /* The idle class should always have a runnable task: */
3348 BUG();
dd41f596 3349}
1da177e4 3350
dd41f596 3351/*
c259e01a 3352 * __schedule() is the main scheduler function.
edde96ea
PE
3353 *
3354 * The main means of driving the scheduler and thus entering this function are:
3355 *
3356 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3357 *
3358 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3359 * paths. For example, see arch/x86/entry_64.S.
3360 *
3361 * To drive preemption between tasks, the scheduler sets the flag in timer
3362 * interrupt handler scheduler_tick().
3363 *
3364 * 3. Wakeups don't really cause entry into schedule(). They add a
3365 * task to the run-queue and that's it.
3366 *
3367 * Now, if the new task added to the run-queue preempts the current
3368 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3369 * called on the nearest possible occasion:
3370 *
3371 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3372 *
3373 * - in syscall or exception context, at the next outmost
3374 * preempt_enable(). (this might be as soon as the wake_up()'s
3375 * spin_unlock()!)
3376 *
3377 * - in IRQ context, return from interrupt-handler to
3378 * preemptible context
3379 *
3380 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3381 * then at the next:
3382 *
3383 * - cond_resched() call
3384 * - explicit schedule() call
3385 * - return from syscall or exception to user-space
3386 * - return from interrupt-handler to user-space
bfd9b2b5 3387 *
b30f0e3f 3388 * WARNING: must be called with preemption disabled!
dd41f596 3389 */
499d7955 3390static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3391{
3392 struct task_struct *prev, *next;
67ca7bde 3393 unsigned long *switch_count;
d8ac8971 3394 struct rq_flags rf;
dd41f596 3395 struct rq *rq;
31656519 3396 int cpu;
dd41f596 3397
dd41f596
IM
3398 cpu = smp_processor_id();
3399 rq = cpu_rq(cpu);
dd41f596 3400 prev = rq->curr;
dd41f596 3401
dd41f596 3402 schedule_debug(prev);
1da177e4 3403
31656519 3404 if (sched_feat(HRTICK))
f333fdc9 3405 hrtick_clear(rq);
8f4d37ec 3406
46a5d164 3407 local_irq_disable();
bcbfdd01 3408 rcu_note_context_switch(preempt);
46a5d164 3409
e0acd0a6
ON
3410 /*
3411 * Make sure that signal_pending_state()->signal_pending() below
3412 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3413 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3414 *
3415 * The membarrier system call requires a full memory barrier
3416 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3417 */
8a8c69c3 3418 rq_lock(rq, &rf);
d89e588c 3419 smp_mb__after_spinlock();
1da177e4 3420
d1ccc66d
IM
3421 /* Promote REQ to ACT */
3422 rq->clock_update_flags <<= 1;
bce4dc80 3423 update_rq_clock(rq);
9edfbfed 3424
246d86b5 3425 switch_count = &prev->nivcsw;
fc13aeba 3426 if (!preempt && prev->state) {
21aa9af0 3427 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3428 prev->state = TASK_RUNNING;
21aa9af0 3429 } else {
bce4dc80 3430 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3431 prev->on_rq = 0;
3432
e33a9bba
TH
3433 if (prev->in_iowait) {
3434 atomic_inc(&rq->nr_iowait);
3435 delayacct_blkio_start();
3436 }
3437
21aa9af0 3438 /*
2acca55e
PZ
3439 * If a worker went to sleep, notify and ask workqueue
3440 * whether it wants to wake up a task to maintain
3441 * concurrency.
21aa9af0
TH
3442 */
3443 if (prev->flags & PF_WQ_WORKER) {
3444 struct task_struct *to_wakeup;
3445
9b7f6597 3446 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3447 if (to_wakeup)
d8ac8971 3448 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3449 }
21aa9af0 3450 }
dd41f596 3451 switch_count = &prev->nvcsw;
1da177e4
LT
3452 }
3453
d8ac8971 3454 next = pick_next_task(rq, prev, &rf);
f26f9aff 3455 clear_tsk_need_resched(prev);
f27dde8d 3456 clear_preempt_need_resched();
1da177e4 3457
1da177e4 3458 if (likely(prev != next)) {
1da177e4
LT
3459 rq->nr_switches++;
3460 rq->curr = next;
22e4ebb9
MD
3461 /*
3462 * The membarrier system call requires each architecture
3463 * to have a full memory barrier after updating
306e0604
MD
3464 * rq->curr, before returning to user-space.
3465 *
3466 * Here are the schemes providing that barrier on the
3467 * various architectures:
3468 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3469 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3470 * - finish_lock_switch() for weakly-ordered
3471 * architectures where spin_unlock is a full barrier,
3472 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3473 * is a RELEASE barrier),
22e4ebb9 3474 */
1da177e4
LT
3475 ++*switch_count;
3476
c73464b1 3477 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3478
3479 /* Also unlocks the rq: */
3480 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3481 } else {
cb42c9a3 3482 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3483 rq_unlock_irq(rq, &rf);
cbce1a68 3484 }
1da177e4 3485
e3fca9e7 3486 balance_callback(rq);
1da177e4 3487}
c259e01a 3488
9af6528e
PZ
3489void __noreturn do_task_dead(void)
3490{
d1ccc66d 3491 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3492 set_special_state(TASK_DEAD);
d1ccc66d
IM
3493
3494 /* Tell freezer to ignore us: */
3495 current->flags |= PF_NOFREEZE;
3496
9af6528e
PZ
3497 __schedule(false);
3498 BUG();
d1ccc66d
IM
3499
3500 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3501 for (;;)
d1ccc66d 3502 cpu_relax();
9af6528e
PZ
3503}
3504
9c40cef2
TG
3505static inline void sched_submit_work(struct task_struct *tsk)
3506{
3c7d5184 3507 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3508 return;
3509 /*
3510 * If we are going to sleep and we have plugged IO queued,
3511 * make sure to submit it to avoid deadlocks.
3512 */
3513 if (blk_needs_flush_plug(tsk))
3514 blk_schedule_flush_plug(tsk);
3515}
3516
722a9f92 3517asmlinkage __visible void __sched schedule(void)
c259e01a 3518{
9c40cef2
TG
3519 struct task_struct *tsk = current;
3520
3521 sched_submit_work(tsk);
bfd9b2b5 3522 do {
b30f0e3f 3523 preempt_disable();
fc13aeba 3524 __schedule(false);
b30f0e3f 3525 sched_preempt_enable_no_resched();
bfd9b2b5 3526 } while (need_resched());
c259e01a 3527}
1da177e4
LT
3528EXPORT_SYMBOL(schedule);
3529
8663effb
SRV
3530/*
3531 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3532 * state (have scheduled out non-voluntarily) by making sure that all
3533 * tasks have either left the run queue or have gone into user space.
3534 * As idle tasks do not do either, they must not ever be preempted
3535 * (schedule out non-voluntarily).
3536 *
3537 * schedule_idle() is similar to schedule_preempt_disable() except that it
3538 * never enables preemption because it does not call sched_submit_work().
3539 */
3540void __sched schedule_idle(void)
3541{
3542 /*
3543 * As this skips calling sched_submit_work(), which the idle task does
3544 * regardless because that function is a nop when the task is in a
3545 * TASK_RUNNING state, make sure this isn't used someplace that the
3546 * current task can be in any other state. Note, idle is always in the
3547 * TASK_RUNNING state.
3548 */
3549 WARN_ON_ONCE(current->state);
3550 do {
3551 __schedule(false);
3552 } while (need_resched());
3553}
3554
91d1aa43 3555#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3556asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3557{
3558 /*
3559 * If we come here after a random call to set_need_resched(),
3560 * or we have been woken up remotely but the IPI has not yet arrived,
3561 * we haven't yet exited the RCU idle mode. Do it here manually until
3562 * we find a better solution.
7cc78f8f
AL
3563 *
3564 * NB: There are buggy callers of this function. Ideally we
c467ea76 3565 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3566 * too frequently to make sense yet.
20ab65e3 3567 */
7cc78f8f 3568 enum ctx_state prev_state = exception_enter();
20ab65e3 3569 schedule();
7cc78f8f 3570 exception_exit(prev_state);
20ab65e3
FW
3571}
3572#endif
3573
c5491ea7
TG
3574/**
3575 * schedule_preempt_disabled - called with preemption disabled
3576 *
3577 * Returns with preemption disabled. Note: preempt_count must be 1
3578 */
3579void __sched schedule_preempt_disabled(void)
3580{
ba74c144 3581 sched_preempt_enable_no_resched();
c5491ea7
TG
3582 schedule();
3583 preempt_disable();
3584}
3585
06b1f808 3586static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3587{
3588 do {
47252cfb
SR
3589 /*
3590 * Because the function tracer can trace preempt_count_sub()
3591 * and it also uses preempt_enable/disable_notrace(), if
3592 * NEED_RESCHED is set, the preempt_enable_notrace() called
3593 * by the function tracer will call this function again and
3594 * cause infinite recursion.
3595 *
3596 * Preemption must be disabled here before the function
3597 * tracer can trace. Break up preempt_disable() into two
3598 * calls. One to disable preemption without fear of being
3599 * traced. The other to still record the preemption latency,
3600 * which can also be traced by the function tracer.
3601 */
499d7955 3602 preempt_disable_notrace();
47252cfb 3603 preempt_latency_start(1);
fc13aeba 3604 __schedule(true);
47252cfb 3605 preempt_latency_stop(1);
499d7955 3606 preempt_enable_no_resched_notrace();
a18b5d01
FW
3607
3608 /*
3609 * Check again in case we missed a preemption opportunity
3610 * between schedule and now.
3611 */
a18b5d01
FW
3612 } while (need_resched());
3613}
3614
1da177e4
LT
3615#ifdef CONFIG_PREEMPT
3616/*
2ed6e34f 3617 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3618 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3619 * occur there and call schedule directly.
3620 */
722a9f92 3621asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3622{
1da177e4
LT
3623 /*
3624 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3625 * we do not want to preempt the current task. Just return..
1da177e4 3626 */
fbb00b56 3627 if (likely(!preemptible()))
1da177e4
LT
3628 return;
3629
a18b5d01 3630 preempt_schedule_common();
1da177e4 3631}
376e2424 3632NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3633EXPORT_SYMBOL(preempt_schedule);
009f60e2 3634
009f60e2 3635/**
4eaca0a8 3636 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3637 *
3638 * The tracing infrastructure uses preempt_enable_notrace to prevent
3639 * recursion and tracing preempt enabling caused by the tracing
3640 * infrastructure itself. But as tracing can happen in areas coming
3641 * from userspace or just about to enter userspace, a preempt enable
3642 * can occur before user_exit() is called. This will cause the scheduler
3643 * to be called when the system is still in usermode.
3644 *
3645 * To prevent this, the preempt_enable_notrace will use this function
3646 * instead of preempt_schedule() to exit user context if needed before
3647 * calling the scheduler.
3648 */
4eaca0a8 3649asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3650{
3651 enum ctx_state prev_ctx;
3652
3653 if (likely(!preemptible()))
3654 return;
3655
3656 do {
47252cfb
SR
3657 /*
3658 * Because the function tracer can trace preempt_count_sub()
3659 * and it also uses preempt_enable/disable_notrace(), if
3660 * NEED_RESCHED is set, the preempt_enable_notrace() called
3661 * by the function tracer will call this function again and
3662 * cause infinite recursion.
3663 *
3664 * Preemption must be disabled here before the function
3665 * tracer can trace. Break up preempt_disable() into two
3666 * calls. One to disable preemption without fear of being
3667 * traced. The other to still record the preemption latency,
3668 * which can also be traced by the function tracer.
3669 */
3d8f74dd 3670 preempt_disable_notrace();
47252cfb 3671 preempt_latency_start(1);
009f60e2
ON
3672 /*
3673 * Needs preempt disabled in case user_exit() is traced
3674 * and the tracer calls preempt_enable_notrace() causing
3675 * an infinite recursion.
3676 */
3677 prev_ctx = exception_enter();
fc13aeba 3678 __schedule(true);
009f60e2
ON
3679 exception_exit(prev_ctx);
3680
47252cfb 3681 preempt_latency_stop(1);
3d8f74dd 3682 preempt_enable_no_resched_notrace();
009f60e2
ON
3683 } while (need_resched());
3684}
4eaca0a8 3685EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3686
32e475d7 3687#endif /* CONFIG_PREEMPT */
1da177e4
LT
3688
3689/*
2ed6e34f 3690 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3691 * off of irq context.
3692 * Note, that this is called and return with irqs disabled. This will
3693 * protect us against recursive calling from irq.
3694 */
722a9f92 3695asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3696{
b22366cd 3697 enum ctx_state prev_state;
6478d880 3698
2ed6e34f 3699 /* Catch callers which need to be fixed */
f27dde8d 3700 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3701
b22366cd
FW
3702 prev_state = exception_enter();
3703
3a5c359a 3704 do {
3d8f74dd 3705 preempt_disable();
3a5c359a 3706 local_irq_enable();
fc13aeba 3707 __schedule(true);
3a5c359a 3708 local_irq_disable();
3d8f74dd 3709 sched_preempt_enable_no_resched();
5ed0cec0 3710 } while (need_resched());
b22366cd
FW
3711
3712 exception_exit(prev_state);
1da177e4
LT
3713}
3714
ac6424b9 3715int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3716 void *key)
1da177e4 3717{
63859d4f 3718 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3719}
1da177e4
LT
3720EXPORT_SYMBOL(default_wake_function);
3721
b29739f9
IM
3722#ifdef CONFIG_RT_MUTEXES
3723
acd58620
PZ
3724static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3725{
3726 if (pi_task)
3727 prio = min(prio, pi_task->prio);
3728
3729 return prio;
3730}
3731
3732static inline int rt_effective_prio(struct task_struct *p, int prio)
3733{
3734 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3735
3736 return __rt_effective_prio(pi_task, prio);
3737}
3738
b29739f9
IM
3739/*
3740 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3741 * @p: task to boost
3742 * @pi_task: donor task
b29739f9
IM
3743 *
3744 * This function changes the 'effective' priority of a task. It does
3745 * not touch ->normal_prio like __setscheduler().
3746 *
c365c292
TG
3747 * Used by the rt_mutex code to implement priority inheritance
3748 * logic. Call site only calls if the priority of the task changed.
b29739f9 3749 */
acd58620 3750void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3751{
acd58620 3752 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3753 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3754 const struct sched_class *prev_class;
eb580751
PZ
3755 struct rq_flags rf;
3756 struct rq *rq;
b29739f9 3757
acd58620
PZ
3758 /* XXX used to be waiter->prio, not waiter->task->prio */
3759 prio = __rt_effective_prio(pi_task, p->normal_prio);
3760
3761 /*
3762 * If nothing changed; bail early.
3763 */
3764 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3765 return;
b29739f9 3766
eb580751 3767 rq = __task_rq_lock(p, &rf);
80f5c1b8 3768 update_rq_clock(rq);
acd58620
PZ
3769 /*
3770 * Set under pi_lock && rq->lock, such that the value can be used under
3771 * either lock.
3772 *
3773 * Note that there is loads of tricky to make this pointer cache work
3774 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3775 * ensure a task is de-boosted (pi_task is set to NULL) before the
3776 * task is allowed to run again (and can exit). This ensures the pointer
3777 * points to a blocked task -- which guaratees the task is present.
3778 */
3779 p->pi_top_task = pi_task;
3780
3781 /*
3782 * For FIFO/RR we only need to set prio, if that matches we're done.
3783 */
3784 if (prio == p->prio && !dl_prio(prio))
3785 goto out_unlock;
b29739f9 3786
1c4dd99b
TG
3787 /*
3788 * Idle task boosting is a nono in general. There is one
3789 * exception, when PREEMPT_RT and NOHZ is active:
3790 *
3791 * The idle task calls get_next_timer_interrupt() and holds
3792 * the timer wheel base->lock on the CPU and another CPU wants
3793 * to access the timer (probably to cancel it). We can safely
3794 * ignore the boosting request, as the idle CPU runs this code
3795 * with interrupts disabled and will complete the lock
3796 * protected section without being interrupted. So there is no
3797 * real need to boost.
3798 */
3799 if (unlikely(p == rq->idle)) {
3800 WARN_ON(p != rq->curr);
3801 WARN_ON(p->pi_blocked_on);
3802 goto out_unlock;
3803 }
3804
b91473ff 3805 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3806 oldprio = p->prio;
ff77e468
PZ
3807
3808 if (oldprio == prio)
3809 queue_flag &= ~DEQUEUE_MOVE;
3810
83ab0aa0 3811 prev_class = p->sched_class;
da0c1e65 3812 queued = task_on_rq_queued(p);
051a1d1a 3813 running = task_current(rq, p);
da0c1e65 3814 if (queued)
ff77e468 3815 dequeue_task(rq, p, queue_flag);
0e1f3483 3816 if (running)
f3cd1c4e 3817 put_prev_task(rq, p);
dd41f596 3818
2d3d891d
DF
3819 /*
3820 * Boosting condition are:
3821 * 1. -rt task is running and holds mutex A
3822 * --> -dl task blocks on mutex A
3823 *
3824 * 2. -dl task is running and holds mutex A
3825 * --> -dl task blocks on mutex A and could preempt the
3826 * running task
3827 */
3828 if (dl_prio(prio)) {
466af29b
ON
3829 if (!dl_prio(p->normal_prio) ||
3830 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3831 p->dl.dl_boosted = 1;
ff77e468 3832 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3833 } else
3834 p->dl.dl_boosted = 0;
aab03e05 3835 p->sched_class = &dl_sched_class;
2d3d891d
DF
3836 } else if (rt_prio(prio)) {
3837 if (dl_prio(oldprio))
3838 p->dl.dl_boosted = 0;
3839 if (oldprio < prio)
ff77e468 3840 queue_flag |= ENQUEUE_HEAD;
dd41f596 3841 p->sched_class = &rt_sched_class;
2d3d891d
DF
3842 } else {
3843 if (dl_prio(oldprio))
3844 p->dl.dl_boosted = 0;
746db944
BS
3845 if (rt_prio(oldprio))
3846 p->rt.timeout = 0;
dd41f596 3847 p->sched_class = &fair_sched_class;
2d3d891d 3848 }
dd41f596 3849
b29739f9
IM
3850 p->prio = prio;
3851
da0c1e65 3852 if (queued)
ff77e468 3853 enqueue_task(rq, p, queue_flag);
a399d233 3854 if (running)
b2bf6c31 3855 set_curr_task(rq, p);
cb469845 3856
da7a735e 3857 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3858out_unlock:
d1ccc66d
IM
3859 /* Avoid rq from going away on us: */
3860 preempt_disable();
eb580751 3861 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3862
3863 balance_callback(rq);
3864 preempt_enable();
b29739f9 3865}
acd58620
PZ
3866#else
3867static inline int rt_effective_prio(struct task_struct *p, int prio)
3868{
3869 return prio;
3870}
b29739f9 3871#endif
d50dde5a 3872
36c8b586 3873void set_user_nice(struct task_struct *p, long nice)
1da177e4 3874{
49bd21ef
PZ
3875 bool queued, running;
3876 int old_prio, delta;
eb580751 3877 struct rq_flags rf;
70b97a7f 3878 struct rq *rq;
1da177e4 3879
75e45d51 3880 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3881 return;
3882 /*
3883 * We have to be careful, if called from sys_setpriority(),
3884 * the task might be in the middle of scheduling on another CPU.
3885 */
eb580751 3886 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3887 update_rq_clock(rq);
3888
1da177e4
LT
3889 /*
3890 * The RT priorities are set via sched_setscheduler(), but we still
3891 * allow the 'normal' nice value to be set - but as expected
3892 * it wont have any effect on scheduling until the task is
aab03e05 3893 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3894 */
aab03e05 3895 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3896 p->static_prio = NICE_TO_PRIO(nice);
3897 goto out_unlock;
3898 }
da0c1e65 3899 queued = task_on_rq_queued(p);
49bd21ef 3900 running = task_current(rq, p);
da0c1e65 3901 if (queued)
7a57f32a 3902 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3903 if (running)
3904 put_prev_task(rq, p);
1da177e4 3905
1da177e4 3906 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3907 set_load_weight(p, true);
b29739f9
IM
3908 old_prio = p->prio;
3909 p->prio = effective_prio(p);
3910 delta = p->prio - old_prio;
1da177e4 3911
da0c1e65 3912 if (queued) {
7134b3e9 3913 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3914 /*
d5f9f942
AM
3915 * If the task increased its priority or is running and
3916 * lowered its priority, then reschedule its CPU:
1da177e4 3917 */
d5f9f942 3918 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3919 resched_curr(rq);
1da177e4 3920 }
49bd21ef
PZ
3921 if (running)
3922 set_curr_task(rq, p);
1da177e4 3923out_unlock:
eb580751 3924 task_rq_unlock(rq, p, &rf);
1da177e4 3925}
1da177e4
LT
3926EXPORT_SYMBOL(set_user_nice);
3927
e43379f1
MM
3928/*
3929 * can_nice - check if a task can reduce its nice value
3930 * @p: task
3931 * @nice: nice value
3932 */
36c8b586 3933int can_nice(const struct task_struct *p, const int nice)
e43379f1 3934{
d1ccc66d 3935 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3936 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3937
78d7d407 3938 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3939 capable(CAP_SYS_NICE));
3940}
3941
1da177e4
LT
3942#ifdef __ARCH_WANT_SYS_NICE
3943
3944/*
3945 * sys_nice - change the priority of the current process.
3946 * @increment: priority increment
3947 *
3948 * sys_setpriority is a more generic, but much slower function that
3949 * does similar things.
3950 */
5add95d4 3951SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3952{
48f24c4d 3953 long nice, retval;
1da177e4
LT
3954
3955 /*
3956 * Setpriority might change our priority at the same moment.
3957 * We don't have to worry. Conceptually one call occurs first
3958 * and we have a single winner.
3959 */
a9467fa3 3960 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3961 nice = task_nice(current) + increment;
1da177e4 3962
a9467fa3 3963 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3964 if (increment < 0 && !can_nice(current, nice))
3965 return -EPERM;
3966
1da177e4
LT
3967 retval = security_task_setnice(current, nice);
3968 if (retval)
3969 return retval;
3970
3971 set_user_nice(current, nice);
3972 return 0;
3973}
3974
3975#endif
3976
3977/**
3978 * task_prio - return the priority value of a given task.
3979 * @p: the task in question.
3980 *
e69f6186 3981 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3982 * RT tasks are offset by -200. Normal tasks are centered
3983 * around 0, value goes from -16 to +15.
3984 */
36c8b586 3985int task_prio(const struct task_struct *p)
1da177e4
LT
3986{
3987 return p->prio - MAX_RT_PRIO;
3988}
3989
1da177e4 3990/**
d1ccc66d 3991 * idle_cpu - is a given CPU idle currently?
1da177e4 3992 * @cpu: the processor in question.
e69f6186
YB
3993 *
3994 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3995 */
3996int idle_cpu(int cpu)
3997{
908a3283
TG
3998 struct rq *rq = cpu_rq(cpu);
3999
4000 if (rq->curr != rq->idle)
4001 return 0;
4002
4003 if (rq->nr_running)
4004 return 0;
4005
4006#ifdef CONFIG_SMP
4007 if (!llist_empty(&rq->wake_list))
4008 return 0;
4009#endif
4010
4011 return 1;
1da177e4
LT
4012}
4013
943d355d
RJ
4014/**
4015 * available_idle_cpu - is a given CPU idle for enqueuing work.
4016 * @cpu: the CPU in question.
4017 *
4018 * Return: 1 if the CPU is currently idle. 0 otherwise.
4019 */
4020int available_idle_cpu(int cpu)
4021{
4022 if (!idle_cpu(cpu))
4023 return 0;
4024
247f2f6f
RJ
4025 if (vcpu_is_preempted(cpu))
4026 return 0;
4027
908a3283 4028 return 1;
1da177e4
LT
4029}
4030
1da177e4 4031/**
d1ccc66d 4032 * idle_task - return the idle task for a given CPU.
1da177e4 4033 * @cpu: the processor in question.
e69f6186 4034 *
d1ccc66d 4035 * Return: The idle task for the CPU @cpu.
1da177e4 4036 */
36c8b586 4037struct task_struct *idle_task(int cpu)
1da177e4
LT
4038{
4039 return cpu_rq(cpu)->idle;
4040}
4041
4042/**
4043 * find_process_by_pid - find a process with a matching PID value.
4044 * @pid: the pid in question.
e69f6186
YB
4045 *
4046 * The task of @pid, if found. %NULL otherwise.
1da177e4 4047 */
a9957449 4048static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4049{
228ebcbe 4050 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4051}
4052
c13db6b1
SR
4053/*
4054 * sched_setparam() passes in -1 for its policy, to let the functions
4055 * it calls know not to change it.
4056 */
4057#define SETPARAM_POLICY -1
4058
c365c292
TG
4059static void __setscheduler_params(struct task_struct *p,
4060 const struct sched_attr *attr)
1da177e4 4061{
d50dde5a
DF
4062 int policy = attr->sched_policy;
4063
c13db6b1 4064 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4065 policy = p->policy;
4066
1da177e4 4067 p->policy = policy;
d50dde5a 4068
aab03e05
DF
4069 if (dl_policy(policy))
4070 __setparam_dl(p, attr);
39fd8fd2 4071 else if (fair_policy(policy))
d50dde5a
DF
4072 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4073
39fd8fd2
PZ
4074 /*
4075 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4076 * !rt_policy. Always setting this ensures that things like
4077 * getparam()/getattr() don't report silly values for !rt tasks.
4078 */
4079 p->rt_priority = attr->sched_priority;
383afd09 4080 p->normal_prio = normal_prio(p);
9059393e 4081 set_load_weight(p, true);
c365c292 4082}
39fd8fd2 4083
c365c292
TG
4084/* Actually do priority change: must hold pi & rq lock. */
4085static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4086 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4087{
4088 __setscheduler_params(p, attr);
d50dde5a 4089
383afd09 4090 /*
0782e63b
TG
4091 * Keep a potential priority boosting if called from
4092 * sched_setscheduler().
383afd09 4093 */
acd58620 4094 p->prio = normal_prio(p);
0782e63b 4095 if (keep_boost)
acd58620 4096 p->prio = rt_effective_prio(p, p->prio);
383afd09 4097
aab03e05
DF
4098 if (dl_prio(p->prio))
4099 p->sched_class = &dl_sched_class;
4100 else if (rt_prio(p->prio))
ffd44db5
PZ
4101 p->sched_class = &rt_sched_class;
4102 else
4103 p->sched_class = &fair_sched_class;
1da177e4 4104}
aab03e05 4105
c69e8d9c 4106/*
d1ccc66d 4107 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4108 */
4109static bool check_same_owner(struct task_struct *p)
4110{
4111 const struct cred *cred = current_cred(), *pcred;
4112 bool match;
4113
4114 rcu_read_lock();
4115 pcred = __task_cred(p);
9c806aa0
EB
4116 match = (uid_eq(cred->euid, pcred->euid) ||
4117 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4118 rcu_read_unlock();
4119 return match;
4120}
4121
d50dde5a
DF
4122static int __sched_setscheduler(struct task_struct *p,
4123 const struct sched_attr *attr,
dbc7f069 4124 bool user, bool pi)
1da177e4 4125{
383afd09
SR
4126 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4127 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4128 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4129 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4130 const struct sched_class *prev_class;
eb580751 4131 struct rq_flags rf;
ca94c442 4132 int reset_on_fork;
7a57f32a 4133 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4134 struct rq *rq;
1da177e4 4135
896bbb25
SRV
4136 /* The pi code expects interrupts enabled */
4137 BUG_ON(pi && in_interrupt());
1da177e4 4138recheck:
d1ccc66d 4139 /* Double check policy once rq lock held: */
ca94c442
LP
4140 if (policy < 0) {
4141 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4142 policy = oldpolicy = p->policy;
ca94c442 4143 } else {
7479f3c9 4144 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4145
20f9cd2a 4146 if (!valid_policy(policy))
ca94c442
LP
4147 return -EINVAL;
4148 }
4149
794a56eb 4150 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4151 return -EINVAL;
4152
1da177e4
LT
4153 /*
4154 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4155 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4156 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4157 */
0bb040a4 4158 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4159 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4160 return -EINVAL;
aab03e05
DF
4161 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4162 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4163 return -EINVAL;
4164
37e4ab3f
OC
4165 /*
4166 * Allow unprivileged RT tasks to decrease priority:
4167 */
961ccddd 4168 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4169 if (fair_policy(policy)) {
d0ea0268 4170 if (attr->sched_nice < task_nice(p) &&
eaad4513 4171 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4172 return -EPERM;
4173 }
4174
e05606d3 4175 if (rt_policy(policy)) {
a44702e8
ON
4176 unsigned long rlim_rtprio =
4177 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4178
d1ccc66d 4179 /* Can't set/change the rt policy: */
8dc3e909
ON
4180 if (policy != p->policy && !rlim_rtprio)
4181 return -EPERM;
4182
d1ccc66d 4183 /* Can't increase priority: */
d50dde5a
DF
4184 if (attr->sched_priority > p->rt_priority &&
4185 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4186 return -EPERM;
4187 }
c02aa73b 4188
d44753b8
JL
4189 /*
4190 * Can't set/change SCHED_DEADLINE policy at all for now
4191 * (safest behavior); in the future we would like to allow
4192 * unprivileged DL tasks to increase their relative deadline
4193 * or reduce their runtime (both ways reducing utilization)
4194 */
4195 if (dl_policy(policy))
4196 return -EPERM;
4197
dd41f596 4198 /*
c02aa73b
DH
4199 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4200 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4201 */
20f9cd2a 4202 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4203 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4204 return -EPERM;
4205 }
5fe1d75f 4206
d1ccc66d 4207 /* Can't change other user's priorities: */
c69e8d9c 4208 if (!check_same_owner(p))
37e4ab3f 4209 return -EPERM;
ca94c442 4210
d1ccc66d 4211 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4212 if (p->sched_reset_on_fork && !reset_on_fork)
4213 return -EPERM;
37e4ab3f 4214 }
1da177e4 4215
725aad24 4216 if (user) {
794a56eb
JL
4217 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4218 return -EINVAL;
4219
b0ae1981 4220 retval = security_task_setscheduler(p);
725aad24
JF
4221 if (retval)
4222 return retval;
4223 }
4224
b29739f9 4225 /*
d1ccc66d 4226 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4227 * changing the priority of the task:
0122ec5b 4228 *
25985edc 4229 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4230 * runqueue lock must be held.
4231 */
eb580751 4232 rq = task_rq_lock(p, &rf);
80f5c1b8 4233 update_rq_clock(rq);
dc61b1d6 4234
34f971f6 4235 /*
d1ccc66d 4236 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4237 */
4238 if (p == rq->stop) {
eb580751 4239 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4240 return -EINVAL;
4241 }
4242
a51e9198 4243 /*
d6b1e911
TG
4244 * If not changing anything there's no need to proceed further,
4245 * but store a possible modification of reset_on_fork.
a51e9198 4246 */
d50dde5a 4247 if (unlikely(policy == p->policy)) {
d0ea0268 4248 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4249 goto change;
4250 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4251 goto change;
75381608 4252 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4253 goto change;
d50dde5a 4254
d6b1e911 4255 p->sched_reset_on_fork = reset_on_fork;
eb580751 4256 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4257 return 0;
4258 }
d50dde5a 4259change:
a51e9198 4260
dc61b1d6 4261 if (user) {
332ac17e 4262#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4263 /*
4264 * Do not allow realtime tasks into groups that have no runtime
4265 * assigned.
4266 */
4267 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4268 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4269 !task_group_is_autogroup(task_group(p))) {
eb580751 4270 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4271 return -EPERM;
4272 }
dc61b1d6 4273#endif
332ac17e 4274#ifdef CONFIG_SMP
794a56eb
JL
4275 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4276 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4277 cpumask_t *span = rq->rd->span;
332ac17e
DF
4278
4279 /*
4280 * Don't allow tasks with an affinity mask smaller than
4281 * the entire root_domain to become SCHED_DEADLINE. We
4282 * will also fail if there's no bandwidth available.
4283 */
e4099a5e
PZ
4284 if (!cpumask_subset(span, &p->cpus_allowed) ||
4285 rq->rd->dl_bw.bw == 0) {
eb580751 4286 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4287 return -EPERM;
4288 }
4289 }
4290#endif
4291 }
dc61b1d6 4292
d1ccc66d 4293 /* Re-check policy now with rq lock held: */
1da177e4
LT
4294 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4295 policy = oldpolicy = -1;
eb580751 4296 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4297 goto recheck;
4298 }
332ac17e
DF
4299
4300 /*
4301 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4302 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4303 * is available.
4304 */
06a76fe0 4305 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4306 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4307 return -EBUSY;
4308 }
4309
c365c292
TG
4310 p->sched_reset_on_fork = reset_on_fork;
4311 oldprio = p->prio;
4312
dbc7f069
PZ
4313 if (pi) {
4314 /*
4315 * Take priority boosted tasks into account. If the new
4316 * effective priority is unchanged, we just store the new
4317 * normal parameters and do not touch the scheduler class and
4318 * the runqueue. This will be done when the task deboost
4319 * itself.
4320 */
acd58620 4321 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4322 if (new_effective_prio == oldprio)
4323 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4324 }
4325
da0c1e65 4326 queued = task_on_rq_queued(p);
051a1d1a 4327 running = task_current(rq, p);
da0c1e65 4328 if (queued)
ff77e468 4329 dequeue_task(rq, p, queue_flags);
0e1f3483 4330 if (running)
f3cd1c4e 4331 put_prev_task(rq, p);
f6b53205 4332
83ab0aa0 4333 prev_class = p->sched_class;
dbc7f069 4334 __setscheduler(rq, p, attr, pi);
f6b53205 4335
da0c1e65 4336 if (queued) {
81a44c54
TG
4337 /*
4338 * We enqueue to tail when the priority of a task is
4339 * increased (user space view).
4340 */
ff77e468
PZ
4341 if (oldprio < p->prio)
4342 queue_flags |= ENQUEUE_HEAD;
1de64443 4343
ff77e468 4344 enqueue_task(rq, p, queue_flags);
81a44c54 4345 }
a399d233 4346 if (running)
b2bf6c31 4347 set_curr_task(rq, p);
cb469845 4348
da7a735e 4349 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4350
4351 /* Avoid rq from going away on us: */
4352 preempt_disable();
eb580751 4353 task_rq_unlock(rq, p, &rf);
b29739f9 4354
dbc7f069
PZ
4355 if (pi)
4356 rt_mutex_adjust_pi(p);
95e02ca9 4357
d1ccc66d 4358 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4359 balance_callback(rq);
4360 preempt_enable();
95e02ca9 4361
1da177e4
LT
4362 return 0;
4363}
961ccddd 4364
7479f3c9
PZ
4365static int _sched_setscheduler(struct task_struct *p, int policy,
4366 const struct sched_param *param, bool check)
4367{
4368 struct sched_attr attr = {
4369 .sched_policy = policy,
4370 .sched_priority = param->sched_priority,
4371 .sched_nice = PRIO_TO_NICE(p->static_prio),
4372 };
4373
c13db6b1
SR
4374 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4375 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4376 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4377 policy &= ~SCHED_RESET_ON_FORK;
4378 attr.sched_policy = policy;
4379 }
4380
dbc7f069 4381 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4382}
961ccddd
RR
4383/**
4384 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4385 * @p: the task in question.
4386 * @policy: new policy.
4387 * @param: structure containing the new RT priority.
4388 *
e69f6186
YB
4389 * Return: 0 on success. An error code otherwise.
4390 *
961ccddd
RR
4391 * NOTE that the task may be already dead.
4392 */
4393int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4394 const struct sched_param *param)
961ccddd 4395{
7479f3c9 4396 return _sched_setscheduler(p, policy, param, true);
961ccddd 4397}
1da177e4
LT
4398EXPORT_SYMBOL_GPL(sched_setscheduler);
4399
d50dde5a
DF
4400int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4401{
dbc7f069 4402 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4403}
4404EXPORT_SYMBOL_GPL(sched_setattr);
4405
794a56eb
JL
4406int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4407{
4408 return __sched_setscheduler(p, attr, false, true);
4409}
4410
961ccddd
RR
4411/**
4412 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4413 * @p: the task in question.
4414 * @policy: new policy.
4415 * @param: structure containing the new RT priority.
4416 *
4417 * Just like sched_setscheduler, only don't bother checking if the
4418 * current context has permission. For example, this is needed in
4419 * stop_machine(): we create temporary high priority worker threads,
4420 * but our caller might not have that capability.
e69f6186
YB
4421 *
4422 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4423 */
4424int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4425 const struct sched_param *param)
961ccddd 4426{
7479f3c9 4427 return _sched_setscheduler(p, policy, param, false);
961ccddd 4428}
84778472 4429EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4430
95cdf3b7
IM
4431static int
4432do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4433{
1da177e4
LT
4434 struct sched_param lparam;
4435 struct task_struct *p;
36c8b586 4436 int retval;
1da177e4
LT
4437
4438 if (!param || pid < 0)
4439 return -EINVAL;
4440 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4441 return -EFAULT;
5fe1d75f
ON
4442
4443 rcu_read_lock();
4444 retval = -ESRCH;
1da177e4 4445 p = find_process_by_pid(pid);
5fe1d75f
ON
4446 if (p != NULL)
4447 retval = sched_setscheduler(p, policy, &lparam);
4448 rcu_read_unlock();
36c8b586 4449
1da177e4
LT
4450 return retval;
4451}
4452
d50dde5a
DF
4453/*
4454 * Mimics kernel/events/core.c perf_copy_attr().
4455 */
d1ccc66d 4456static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4457{
4458 u32 size;
4459 int ret;
4460
4461 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4462 return -EFAULT;
4463
d1ccc66d 4464 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4465 memset(attr, 0, sizeof(*attr));
4466
4467 ret = get_user(size, &uattr->size);
4468 if (ret)
4469 return ret;
4470
d1ccc66d
IM
4471 /* Bail out on silly large: */
4472 if (size > PAGE_SIZE)
d50dde5a
DF
4473 goto err_size;
4474
d1ccc66d
IM
4475 /* ABI compatibility quirk: */
4476 if (!size)
d50dde5a
DF
4477 size = SCHED_ATTR_SIZE_VER0;
4478
4479 if (size < SCHED_ATTR_SIZE_VER0)
4480 goto err_size;
4481
4482 /*
4483 * If we're handed a bigger struct than we know of,
4484 * ensure all the unknown bits are 0 - i.e. new
4485 * user-space does not rely on any kernel feature
4486 * extensions we dont know about yet.
4487 */
4488 if (size > sizeof(*attr)) {
4489 unsigned char __user *addr;
4490 unsigned char __user *end;
4491 unsigned char val;
4492
4493 addr = (void __user *)uattr + sizeof(*attr);
4494 end = (void __user *)uattr + size;
4495
4496 for (; addr < end; addr++) {
4497 ret = get_user(val, addr);
4498 if (ret)
4499 return ret;
4500 if (val)
4501 goto err_size;
4502 }
4503 size = sizeof(*attr);
4504 }
4505
4506 ret = copy_from_user(attr, uattr, size);
4507 if (ret)
4508 return -EFAULT;
4509
4510 /*
d1ccc66d 4511 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4512 * to be strict and return an error on out-of-bounds values?
4513 */
75e45d51 4514 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4515
e78c7bca 4516 return 0;
d50dde5a
DF
4517
4518err_size:
4519 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4520 return -E2BIG;
d50dde5a
DF
4521}
4522
1da177e4
LT
4523/**
4524 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4525 * @pid: the pid in question.
4526 * @policy: new policy.
4527 * @param: structure containing the new RT priority.
e69f6186
YB
4528 *
4529 * Return: 0 on success. An error code otherwise.
1da177e4 4530 */
d1ccc66d 4531SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4532{
c21761f1
JB
4533 if (policy < 0)
4534 return -EINVAL;
4535
1da177e4
LT
4536 return do_sched_setscheduler(pid, policy, param);
4537}
4538
4539/**
4540 * sys_sched_setparam - set/change the RT priority of a thread
4541 * @pid: the pid in question.
4542 * @param: structure containing the new RT priority.
e69f6186
YB
4543 *
4544 * Return: 0 on success. An error code otherwise.
1da177e4 4545 */
5add95d4 4546SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4547{
c13db6b1 4548 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4549}
4550
d50dde5a
DF
4551/**
4552 * sys_sched_setattr - same as above, but with extended sched_attr
4553 * @pid: the pid in question.
5778fccf 4554 * @uattr: structure containing the extended parameters.
db66d756 4555 * @flags: for future extension.
d50dde5a 4556 */
6d35ab48
PZ
4557SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4558 unsigned int, flags)
d50dde5a
DF
4559{
4560 struct sched_attr attr;
4561 struct task_struct *p;
4562 int retval;
4563
6d35ab48 4564 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4565 return -EINVAL;
4566
143cf23d
MK
4567 retval = sched_copy_attr(uattr, &attr);
4568 if (retval)
4569 return retval;
d50dde5a 4570
b14ed2c2 4571 if ((int)attr.sched_policy < 0)
dbdb2275 4572 return -EINVAL;
d50dde5a
DF
4573
4574 rcu_read_lock();
4575 retval = -ESRCH;
4576 p = find_process_by_pid(pid);
4577 if (p != NULL)
4578 retval = sched_setattr(p, &attr);
4579 rcu_read_unlock();
4580
4581 return retval;
4582}
4583
1da177e4
LT
4584/**
4585 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4586 * @pid: the pid in question.
e69f6186
YB
4587 *
4588 * Return: On success, the policy of the thread. Otherwise, a negative error
4589 * code.
1da177e4 4590 */
5add95d4 4591SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4592{
36c8b586 4593 struct task_struct *p;
3a5c359a 4594 int retval;
1da177e4
LT
4595
4596 if (pid < 0)
3a5c359a 4597 return -EINVAL;
1da177e4
LT
4598
4599 retval = -ESRCH;
5fe85be0 4600 rcu_read_lock();
1da177e4
LT
4601 p = find_process_by_pid(pid);
4602 if (p) {
4603 retval = security_task_getscheduler(p);
4604 if (!retval)
ca94c442
LP
4605 retval = p->policy
4606 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4607 }
5fe85be0 4608 rcu_read_unlock();
1da177e4
LT
4609 return retval;
4610}
4611
4612/**
ca94c442 4613 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4614 * @pid: the pid in question.
4615 * @param: structure containing the RT priority.
e69f6186
YB
4616 *
4617 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4618 * code.
1da177e4 4619 */
5add95d4 4620SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4621{
ce5f7f82 4622 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4623 struct task_struct *p;
3a5c359a 4624 int retval;
1da177e4
LT
4625
4626 if (!param || pid < 0)
3a5c359a 4627 return -EINVAL;
1da177e4 4628
5fe85be0 4629 rcu_read_lock();
1da177e4
LT
4630 p = find_process_by_pid(pid);
4631 retval = -ESRCH;
4632 if (!p)
4633 goto out_unlock;
4634
4635 retval = security_task_getscheduler(p);
4636 if (retval)
4637 goto out_unlock;
4638
ce5f7f82
PZ
4639 if (task_has_rt_policy(p))
4640 lp.sched_priority = p->rt_priority;
5fe85be0 4641 rcu_read_unlock();
1da177e4
LT
4642
4643 /*
4644 * This one might sleep, we cannot do it with a spinlock held ...
4645 */
4646 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4647
1da177e4
LT
4648 return retval;
4649
4650out_unlock:
5fe85be0 4651 rcu_read_unlock();
1da177e4
LT
4652 return retval;
4653}
4654
d50dde5a
DF
4655static int sched_read_attr(struct sched_attr __user *uattr,
4656 struct sched_attr *attr,
4657 unsigned int usize)
4658{
4659 int ret;
4660
4661 if (!access_ok(VERIFY_WRITE, uattr, usize))
4662 return -EFAULT;
4663
4664 /*
4665 * If we're handed a smaller struct than we know of,
4666 * ensure all the unknown bits are 0 - i.e. old
4667 * user-space does not get uncomplete information.
4668 */
4669 if (usize < sizeof(*attr)) {
4670 unsigned char *addr;
4671 unsigned char *end;
4672
4673 addr = (void *)attr + usize;
4674 end = (void *)attr + sizeof(*attr);
4675
4676 for (; addr < end; addr++) {
4677 if (*addr)
22400674 4678 return -EFBIG;
d50dde5a
DF
4679 }
4680
4681 attr->size = usize;
4682 }
4683
4efbc454 4684 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4685 if (ret)
4686 return -EFAULT;
4687
22400674 4688 return 0;
d50dde5a
DF
4689}
4690
4691/**
aab03e05 4692 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4693 * @pid: the pid in question.
5778fccf 4694 * @uattr: structure containing the extended parameters.
d50dde5a 4695 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4696 * @flags: for future extension.
d50dde5a 4697 */
6d35ab48
PZ
4698SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4699 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4700{
4701 struct sched_attr attr = {
4702 .size = sizeof(struct sched_attr),
4703 };
4704 struct task_struct *p;
4705 int retval;
4706
4707 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4708 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4709 return -EINVAL;
4710
4711 rcu_read_lock();
4712 p = find_process_by_pid(pid);
4713 retval = -ESRCH;
4714 if (!p)
4715 goto out_unlock;
4716
4717 retval = security_task_getscheduler(p);
4718 if (retval)
4719 goto out_unlock;
4720
4721 attr.sched_policy = p->policy;
7479f3c9
PZ
4722 if (p->sched_reset_on_fork)
4723 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4724 if (task_has_dl_policy(p))
4725 __getparam_dl(p, &attr);
4726 else if (task_has_rt_policy(p))
d50dde5a
DF
4727 attr.sched_priority = p->rt_priority;
4728 else
d0ea0268 4729 attr.sched_nice = task_nice(p);
d50dde5a
DF
4730
4731 rcu_read_unlock();
4732
4733 retval = sched_read_attr(uattr, &attr, size);
4734 return retval;
4735
4736out_unlock:
4737 rcu_read_unlock();
4738 return retval;
4739}
4740
96f874e2 4741long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4742{
5a16f3d3 4743 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4744 struct task_struct *p;
4745 int retval;
1da177e4 4746
23f5d142 4747 rcu_read_lock();
1da177e4
LT
4748
4749 p = find_process_by_pid(pid);
4750 if (!p) {
23f5d142 4751 rcu_read_unlock();
1da177e4
LT
4752 return -ESRCH;
4753 }
4754
23f5d142 4755 /* Prevent p going away */
1da177e4 4756 get_task_struct(p);
23f5d142 4757 rcu_read_unlock();
1da177e4 4758
14a40ffc
TH
4759 if (p->flags & PF_NO_SETAFFINITY) {
4760 retval = -EINVAL;
4761 goto out_put_task;
4762 }
5a16f3d3
RR
4763 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4764 retval = -ENOMEM;
4765 goto out_put_task;
4766 }
4767 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4768 retval = -ENOMEM;
4769 goto out_free_cpus_allowed;
4770 }
1da177e4 4771 retval = -EPERM;
4c44aaaf
EB
4772 if (!check_same_owner(p)) {
4773 rcu_read_lock();
4774 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4775 rcu_read_unlock();
16303ab2 4776 goto out_free_new_mask;
4c44aaaf
EB
4777 }
4778 rcu_read_unlock();
4779 }
1da177e4 4780
b0ae1981 4781 retval = security_task_setscheduler(p);
e7834f8f 4782 if (retval)
16303ab2 4783 goto out_free_new_mask;
e7834f8f 4784
e4099a5e
PZ
4785
4786 cpuset_cpus_allowed(p, cpus_allowed);
4787 cpumask_and(new_mask, in_mask, cpus_allowed);
4788
332ac17e
DF
4789 /*
4790 * Since bandwidth control happens on root_domain basis,
4791 * if admission test is enabled, we only admit -deadline
4792 * tasks allowed to run on all the CPUs in the task's
4793 * root_domain.
4794 */
4795#ifdef CONFIG_SMP
f1e3a093
KT
4796 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4797 rcu_read_lock();
4798 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4799 retval = -EBUSY;
f1e3a093 4800 rcu_read_unlock();
16303ab2 4801 goto out_free_new_mask;
332ac17e 4802 }
f1e3a093 4803 rcu_read_unlock();
332ac17e
DF
4804 }
4805#endif
49246274 4806again:
25834c73 4807 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4808
8707d8b8 4809 if (!retval) {
5a16f3d3
RR
4810 cpuset_cpus_allowed(p, cpus_allowed);
4811 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4812 /*
4813 * We must have raced with a concurrent cpuset
4814 * update. Just reset the cpus_allowed to the
4815 * cpuset's cpus_allowed
4816 */
5a16f3d3 4817 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4818 goto again;
4819 }
4820 }
16303ab2 4821out_free_new_mask:
5a16f3d3
RR
4822 free_cpumask_var(new_mask);
4823out_free_cpus_allowed:
4824 free_cpumask_var(cpus_allowed);
4825out_put_task:
1da177e4 4826 put_task_struct(p);
1da177e4
LT
4827 return retval;
4828}
4829
4830static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4831 struct cpumask *new_mask)
1da177e4 4832{
96f874e2
RR
4833 if (len < cpumask_size())
4834 cpumask_clear(new_mask);
4835 else if (len > cpumask_size())
4836 len = cpumask_size();
4837
1da177e4
LT
4838 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4839}
4840
4841/**
d1ccc66d 4842 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4843 * @pid: pid of the process
4844 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4845 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4846 *
4847 * Return: 0 on success. An error code otherwise.
1da177e4 4848 */
5add95d4
HC
4849SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4850 unsigned long __user *, user_mask_ptr)
1da177e4 4851{
5a16f3d3 4852 cpumask_var_t new_mask;
1da177e4
LT
4853 int retval;
4854
5a16f3d3
RR
4855 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4856 return -ENOMEM;
1da177e4 4857
5a16f3d3
RR
4858 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4859 if (retval == 0)
4860 retval = sched_setaffinity(pid, new_mask);
4861 free_cpumask_var(new_mask);
4862 return retval;
1da177e4
LT
4863}
4864
96f874e2 4865long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4866{
36c8b586 4867 struct task_struct *p;
31605683 4868 unsigned long flags;
1da177e4 4869 int retval;
1da177e4 4870
23f5d142 4871 rcu_read_lock();
1da177e4
LT
4872
4873 retval = -ESRCH;
4874 p = find_process_by_pid(pid);
4875 if (!p)
4876 goto out_unlock;
4877
e7834f8f
DQ
4878 retval = security_task_getscheduler(p);
4879 if (retval)
4880 goto out_unlock;
4881
013fdb80 4882 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4883 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4884 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4885
4886out_unlock:
23f5d142 4887 rcu_read_unlock();
1da177e4 4888
9531b62f 4889 return retval;
1da177e4
LT
4890}
4891
4892/**
d1ccc66d 4893 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4894 * @pid: pid of the process
4895 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4896 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4897 *
599b4840
ZW
4898 * Return: size of CPU mask copied to user_mask_ptr on success. An
4899 * error code otherwise.
1da177e4 4900 */
5add95d4
HC
4901SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4902 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4903{
4904 int ret;
f17c8607 4905 cpumask_var_t mask;
1da177e4 4906
84fba5ec 4907 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4908 return -EINVAL;
4909 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4910 return -EINVAL;
4911
f17c8607
RR
4912 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4913 return -ENOMEM;
1da177e4 4914
f17c8607
RR
4915 ret = sched_getaffinity(pid, mask);
4916 if (ret == 0) {
4de373a1 4917 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
4918
4919 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4920 ret = -EFAULT;
4921 else
cd3d8031 4922 ret = retlen;
f17c8607
RR
4923 }
4924 free_cpumask_var(mask);
1da177e4 4925
f17c8607 4926 return ret;
1da177e4
LT
4927}
4928
4929/**
4930 * sys_sched_yield - yield the current processor to other threads.
4931 *
dd41f596
IM
4932 * This function yields the current CPU to other tasks. If there are no
4933 * other threads running on this CPU then this function will return.
e69f6186
YB
4934 *
4935 * Return: 0.
1da177e4 4936 */
7d4dd4f1 4937static void do_sched_yield(void)
1da177e4 4938{
8a8c69c3
PZ
4939 struct rq_flags rf;
4940 struct rq *rq;
4941
246b3b33 4942 rq = this_rq_lock_irq(&rf);
1da177e4 4943
ae92882e 4944 schedstat_inc(rq->yld_count);
4530d7ab 4945 current->sched_class->yield_task(rq);
1da177e4
LT
4946
4947 /*
4948 * Since we are going to call schedule() anyway, there's
4949 * no need to preempt or enable interrupts:
4950 */
8a8c69c3
PZ
4951 preempt_disable();
4952 rq_unlock(rq, &rf);
ba74c144 4953 sched_preempt_enable_no_resched();
1da177e4
LT
4954
4955 schedule();
7d4dd4f1 4956}
1da177e4 4957
7d4dd4f1
DB
4958SYSCALL_DEFINE0(sched_yield)
4959{
4960 do_sched_yield();
1da177e4
LT
4961 return 0;
4962}
4963
35a773a0 4964#ifndef CONFIG_PREEMPT
02b67cc3 4965int __sched _cond_resched(void)
1da177e4 4966{
fe32d3cd 4967 if (should_resched(0)) {
a18b5d01 4968 preempt_schedule_common();
1da177e4
LT
4969 return 1;
4970 }
f79c3ad6 4971 rcu_all_qs();
1da177e4
LT
4972 return 0;
4973}
02b67cc3 4974EXPORT_SYMBOL(_cond_resched);
35a773a0 4975#endif
1da177e4
LT
4976
4977/*
613afbf8 4978 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4979 * call schedule, and on return reacquire the lock.
4980 *
41a2d6cf 4981 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4982 * operations here to prevent schedule() from being called twice (once via
4983 * spin_unlock(), once by hand).
4984 */
613afbf8 4985int __cond_resched_lock(spinlock_t *lock)
1da177e4 4986{
fe32d3cd 4987 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4988 int ret = 0;
4989
f607c668
PZ
4990 lockdep_assert_held(lock);
4991
4a81e832 4992 if (spin_needbreak(lock) || resched) {
1da177e4 4993 spin_unlock(lock);
d86ee480 4994 if (resched)
a18b5d01 4995 preempt_schedule_common();
95c354fe
NP
4996 else
4997 cpu_relax();
6df3cecb 4998 ret = 1;
1da177e4 4999 spin_lock(lock);
1da177e4 5000 }
6df3cecb 5001 return ret;
1da177e4 5002}
613afbf8 5003EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5004
1da177e4
LT
5005/**
5006 * yield - yield the current processor to other threads.
5007 *
8e3fabfd
PZ
5008 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5009 *
5010 * The scheduler is at all times free to pick the calling task as the most
5011 * eligible task to run, if removing the yield() call from your code breaks
5012 * it, its already broken.
5013 *
5014 * Typical broken usage is:
5015 *
5016 * while (!event)
d1ccc66d 5017 * yield();
8e3fabfd
PZ
5018 *
5019 * where one assumes that yield() will let 'the other' process run that will
5020 * make event true. If the current task is a SCHED_FIFO task that will never
5021 * happen. Never use yield() as a progress guarantee!!
5022 *
5023 * If you want to use yield() to wait for something, use wait_event().
5024 * If you want to use yield() to be 'nice' for others, use cond_resched().
5025 * If you still want to use yield(), do not!
1da177e4
LT
5026 */
5027void __sched yield(void)
5028{
5029 set_current_state(TASK_RUNNING);
7d4dd4f1 5030 do_sched_yield();
1da177e4 5031}
1da177e4
LT
5032EXPORT_SYMBOL(yield);
5033
d95f4122
MG
5034/**
5035 * yield_to - yield the current processor to another thread in
5036 * your thread group, or accelerate that thread toward the
5037 * processor it's on.
16addf95
RD
5038 * @p: target task
5039 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5040 *
5041 * It's the caller's job to ensure that the target task struct
5042 * can't go away on us before we can do any checks.
5043 *
e69f6186 5044 * Return:
7b270f60
PZ
5045 * true (>0) if we indeed boosted the target task.
5046 * false (0) if we failed to boost the target.
5047 * -ESRCH if there's no task to yield to.
d95f4122 5048 */
fa93384f 5049int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5050{
5051 struct task_struct *curr = current;
5052 struct rq *rq, *p_rq;
5053 unsigned long flags;
c3c18640 5054 int yielded = 0;
d95f4122
MG
5055
5056 local_irq_save(flags);
5057 rq = this_rq();
5058
5059again:
5060 p_rq = task_rq(p);
7b270f60
PZ
5061 /*
5062 * If we're the only runnable task on the rq and target rq also
5063 * has only one task, there's absolutely no point in yielding.
5064 */
5065 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5066 yielded = -ESRCH;
5067 goto out_irq;
5068 }
5069
d95f4122 5070 double_rq_lock(rq, p_rq);
39e24d8f 5071 if (task_rq(p) != p_rq) {
d95f4122
MG
5072 double_rq_unlock(rq, p_rq);
5073 goto again;
5074 }
5075
5076 if (!curr->sched_class->yield_to_task)
7b270f60 5077 goto out_unlock;
d95f4122
MG
5078
5079 if (curr->sched_class != p->sched_class)
7b270f60 5080 goto out_unlock;
d95f4122
MG
5081
5082 if (task_running(p_rq, p) || p->state)
7b270f60 5083 goto out_unlock;
d95f4122
MG
5084
5085 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5086 if (yielded) {
ae92882e 5087 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5088 /*
5089 * Make p's CPU reschedule; pick_next_entity takes care of
5090 * fairness.
5091 */
5092 if (preempt && rq != p_rq)
8875125e 5093 resched_curr(p_rq);
6d1cafd8 5094 }
d95f4122 5095
7b270f60 5096out_unlock:
d95f4122 5097 double_rq_unlock(rq, p_rq);
7b270f60 5098out_irq:
d95f4122
MG
5099 local_irq_restore(flags);
5100
7b270f60 5101 if (yielded > 0)
d95f4122
MG
5102 schedule();
5103
5104 return yielded;
5105}
5106EXPORT_SYMBOL_GPL(yield_to);
5107
10ab5643
TH
5108int io_schedule_prepare(void)
5109{
5110 int old_iowait = current->in_iowait;
5111
5112 current->in_iowait = 1;
5113 blk_schedule_flush_plug(current);
5114
5115 return old_iowait;
5116}
5117
5118void io_schedule_finish(int token)
5119{
5120 current->in_iowait = token;
5121}
5122
1da177e4 5123/*
41a2d6cf 5124 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5125 * that process accounting knows that this is a task in IO wait state.
1da177e4 5126 */
1da177e4
LT
5127long __sched io_schedule_timeout(long timeout)
5128{
10ab5643 5129 int token;
1da177e4
LT
5130 long ret;
5131
10ab5643 5132 token = io_schedule_prepare();
1da177e4 5133 ret = schedule_timeout(timeout);
10ab5643 5134 io_schedule_finish(token);
9cff8ade 5135
1da177e4
LT
5136 return ret;
5137}
9cff8ade 5138EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5139
10ab5643
TH
5140void io_schedule(void)
5141{
5142 int token;
5143
5144 token = io_schedule_prepare();
5145 schedule();
5146 io_schedule_finish(token);
5147}
5148EXPORT_SYMBOL(io_schedule);
5149
1da177e4
LT
5150/**
5151 * sys_sched_get_priority_max - return maximum RT priority.
5152 * @policy: scheduling class.
5153 *
e69f6186
YB
5154 * Return: On success, this syscall returns the maximum
5155 * rt_priority that can be used by a given scheduling class.
5156 * On failure, a negative error code is returned.
1da177e4 5157 */
5add95d4 5158SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5159{
5160 int ret = -EINVAL;
5161
5162 switch (policy) {
5163 case SCHED_FIFO:
5164 case SCHED_RR:
5165 ret = MAX_USER_RT_PRIO-1;
5166 break;
aab03e05 5167 case SCHED_DEADLINE:
1da177e4 5168 case SCHED_NORMAL:
b0a9499c 5169 case SCHED_BATCH:
dd41f596 5170 case SCHED_IDLE:
1da177e4
LT
5171 ret = 0;
5172 break;
5173 }
5174 return ret;
5175}
5176
5177/**
5178 * sys_sched_get_priority_min - return minimum RT priority.
5179 * @policy: scheduling class.
5180 *
e69f6186
YB
5181 * Return: On success, this syscall returns the minimum
5182 * rt_priority that can be used by a given scheduling class.
5183 * On failure, a negative error code is returned.
1da177e4 5184 */
5add95d4 5185SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5186{
5187 int ret = -EINVAL;
5188
5189 switch (policy) {
5190 case SCHED_FIFO:
5191 case SCHED_RR:
5192 ret = 1;
5193 break;
aab03e05 5194 case SCHED_DEADLINE:
1da177e4 5195 case SCHED_NORMAL:
b0a9499c 5196 case SCHED_BATCH:
dd41f596 5197 case SCHED_IDLE:
1da177e4
LT
5198 ret = 0;
5199 }
5200 return ret;
5201}
5202
abca5fc5 5203static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5204{
36c8b586 5205 struct task_struct *p;
a4ec24b4 5206 unsigned int time_slice;
eb580751 5207 struct rq_flags rf;
dba091b9 5208 struct rq *rq;
3a5c359a 5209 int retval;
1da177e4
LT
5210
5211 if (pid < 0)
3a5c359a 5212 return -EINVAL;
1da177e4
LT
5213
5214 retval = -ESRCH;
1a551ae7 5215 rcu_read_lock();
1da177e4
LT
5216 p = find_process_by_pid(pid);
5217 if (!p)
5218 goto out_unlock;
5219
5220 retval = security_task_getscheduler(p);
5221 if (retval)
5222 goto out_unlock;
5223
eb580751 5224 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5225 time_slice = 0;
5226 if (p->sched_class->get_rr_interval)
5227 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5228 task_rq_unlock(rq, p, &rf);
a4ec24b4 5229
1a551ae7 5230 rcu_read_unlock();
abca5fc5
AV
5231 jiffies_to_timespec64(time_slice, t);
5232 return 0;
3a5c359a 5233
1da177e4 5234out_unlock:
1a551ae7 5235 rcu_read_unlock();
1da177e4
LT
5236 return retval;
5237}
5238
2064a5ab
RD
5239/**
5240 * sys_sched_rr_get_interval - return the default timeslice of a process.
5241 * @pid: pid of the process.
5242 * @interval: userspace pointer to the timeslice value.
5243 *
5244 * this syscall writes the default timeslice value of a given process
5245 * into the user-space timespec buffer. A value of '0' means infinity.
5246 *
5247 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5248 * an error code.
5249 */
abca5fc5 5250SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5251 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5252{
5253 struct timespec64 t;
5254 int retval = sched_rr_get_interval(pid, &t);
5255
5256 if (retval == 0)
5257 retval = put_timespec64(&t, interval);
5258
5259 return retval;
5260}
5261
474b9c77 5262#ifdef CONFIG_COMPAT_32BIT_TIME
abca5fc5
AV
5263COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5264 compat_pid_t, pid,
9afc5eee 5265 struct old_timespec32 __user *, interval)
abca5fc5
AV
5266{
5267 struct timespec64 t;
5268 int retval = sched_rr_get_interval(pid, &t);
5269
5270 if (retval == 0)
9afc5eee 5271 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5272 return retval;
5273}
5274#endif
5275
82a1fcb9 5276void sched_show_task(struct task_struct *p)
1da177e4 5277{
1da177e4 5278 unsigned long free = 0;
4e79752c 5279 int ppid;
c930b2c0 5280
38200502
TH
5281 if (!try_get_task_stack(p))
5282 return;
20435d84
XX
5283
5284 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5285
5286 if (p->state == TASK_RUNNING)
3df0fc5b 5287 printk(KERN_CONT " running task ");
1da177e4 5288#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5289 free = stack_not_used(p);
1da177e4 5290#endif
a90e984c 5291 ppid = 0;
4e79752c 5292 rcu_read_lock();
a90e984c
ON
5293 if (pid_alive(p))
5294 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5295 rcu_read_unlock();
3df0fc5b 5296 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5297 task_pid_nr(p), ppid,
aa47b7e0 5298 (unsigned long)task_thread_info(p)->flags);
1da177e4 5299
3d1cb205 5300 print_worker_info(KERN_INFO, p);
5fb5e6de 5301 show_stack(p, NULL);
38200502 5302 put_task_stack(p);
1da177e4 5303}
0032f4e8 5304EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5305
5d68cc95
PZ
5306static inline bool
5307state_filter_match(unsigned long state_filter, struct task_struct *p)
5308{
5309 /* no filter, everything matches */
5310 if (!state_filter)
5311 return true;
5312
5313 /* filter, but doesn't match */
5314 if (!(p->state & state_filter))
5315 return false;
5316
5317 /*
5318 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5319 * TASK_KILLABLE).
5320 */
5321 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5322 return false;
5323
5324 return true;
5325}
5326
5327
e59e2ae2 5328void show_state_filter(unsigned long state_filter)
1da177e4 5329{
36c8b586 5330 struct task_struct *g, *p;
1da177e4 5331
4bd77321 5332#if BITS_PER_LONG == 32
3df0fc5b
PZ
5333 printk(KERN_INFO
5334 " task PC stack pid father\n");
1da177e4 5335#else
3df0fc5b
PZ
5336 printk(KERN_INFO
5337 " task PC stack pid father\n");
1da177e4 5338#endif
510f5acc 5339 rcu_read_lock();
5d07f420 5340 for_each_process_thread(g, p) {
1da177e4
LT
5341 /*
5342 * reset the NMI-timeout, listing all files on a slow
25985edc 5343 * console might take a lot of time:
57675cb9
AR
5344 * Also, reset softlockup watchdogs on all CPUs, because
5345 * another CPU might be blocked waiting for us to process
5346 * an IPI.
1da177e4
LT
5347 */
5348 touch_nmi_watchdog();
57675cb9 5349 touch_all_softlockup_watchdogs();
5d68cc95 5350 if (state_filter_match(state_filter, p))
82a1fcb9 5351 sched_show_task(p);
5d07f420 5352 }
1da177e4 5353
dd41f596 5354#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5355 if (!state_filter)
5356 sysrq_sched_debug_show();
dd41f596 5357#endif
510f5acc 5358 rcu_read_unlock();
e59e2ae2
IM
5359 /*
5360 * Only show locks if all tasks are dumped:
5361 */
93335a21 5362 if (!state_filter)
e59e2ae2 5363 debug_show_all_locks();
1da177e4
LT
5364}
5365
f340c0d1
IM
5366/**
5367 * init_idle - set up an idle thread for a given CPU
5368 * @idle: task in question
d1ccc66d 5369 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5370 *
5371 * NOTE: this function does not set the idle thread's NEED_RESCHED
5372 * flag, to make booting more robust.
5373 */
0db0628d 5374void init_idle(struct task_struct *idle, int cpu)
1da177e4 5375{
70b97a7f 5376 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5377 unsigned long flags;
5378
25834c73
PZ
5379 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5380 raw_spin_lock(&rq->lock);
5cbd54ef 5381
5e1576ed 5382 __sched_fork(0, idle);
06b83b5f 5383 idle->state = TASK_RUNNING;
dd41f596 5384 idle->se.exec_start = sched_clock();
c1de45ca 5385 idle->flags |= PF_IDLE;
dd41f596 5386
e1b77c92
MR
5387 kasan_unpoison_task_stack(idle);
5388
de9b8f5d
PZ
5389#ifdef CONFIG_SMP
5390 /*
5391 * Its possible that init_idle() gets called multiple times on a task,
5392 * in that case do_set_cpus_allowed() will not do the right thing.
5393 *
5394 * And since this is boot we can forgo the serialization.
5395 */
5396 set_cpus_allowed_common(idle, cpumask_of(cpu));
5397#endif
6506cf6c
PZ
5398 /*
5399 * We're having a chicken and egg problem, even though we are
d1ccc66d 5400 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5401 * lockdep check in task_group() will fail.
5402 *
5403 * Similar case to sched_fork(). / Alternatively we could
5404 * use task_rq_lock() here and obtain the other rq->lock.
5405 *
5406 * Silence PROVE_RCU
5407 */
5408 rcu_read_lock();
dd41f596 5409 __set_task_cpu(idle, cpu);
6506cf6c 5410 rcu_read_unlock();
1da177e4 5411
1da177e4 5412 rq->curr = rq->idle = idle;
da0c1e65 5413 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5414#ifdef CONFIG_SMP
3ca7a440 5415 idle->on_cpu = 1;
4866cde0 5416#endif
25834c73
PZ
5417 raw_spin_unlock(&rq->lock);
5418 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5419
5420 /* Set the preempt count _outside_ the spinlocks! */
01028747 5421 init_idle_preempt_count(idle, cpu);
55cd5340 5422
dd41f596
IM
5423 /*
5424 * The idle tasks have their own, simple scheduling class:
5425 */
5426 idle->sched_class = &idle_sched_class;
868baf07 5427 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5428 vtime_init_idle(idle, cpu);
de9b8f5d 5429#ifdef CONFIG_SMP
f1c6f1a7
CE
5430 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5431#endif
19978ca6
IM
5432}
5433
e1d4eeec
NP
5434#ifdef CONFIG_SMP
5435
f82f8042
JL
5436int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5437 const struct cpumask *trial)
5438{
06a76fe0 5439 int ret = 1;
f82f8042 5440
bb2bc55a
MG
5441 if (!cpumask_weight(cur))
5442 return ret;
5443
06a76fe0 5444 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5445
5446 return ret;
5447}
5448
7f51412a
JL
5449int task_can_attach(struct task_struct *p,
5450 const struct cpumask *cs_cpus_allowed)
5451{
5452 int ret = 0;
5453
5454 /*
5455 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5456 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5457 * affinity and isolating such threads by their set of
5458 * allowed nodes is unnecessary. Thus, cpusets are not
5459 * applicable for such threads. This prevents checking for
5460 * success of set_cpus_allowed_ptr() on all attached tasks
5461 * before cpus_allowed may be changed.
5462 */
5463 if (p->flags & PF_NO_SETAFFINITY) {
5464 ret = -EINVAL;
5465 goto out;
5466 }
5467
7f51412a 5468 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5469 cs_cpus_allowed))
5470 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5471
7f51412a
JL
5472out:
5473 return ret;
5474}
5475
f2cb1360 5476bool sched_smp_initialized __read_mostly;
e26fbffd 5477
e6628d5b
MG
5478#ifdef CONFIG_NUMA_BALANCING
5479/* Migrate current task p to target_cpu */
5480int migrate_task_to(struct task_struct *p, int target_cpu)
5481{
5482 struct migration_arg arg = { p, target_cpu };
5483 int curr_cpu = task_cpu(p);
5484
5485 if (curr_cpu == target_cpu)
5486 return 0;
5487
0c98d344 5488 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5489 return -EINVAL;
5490
5491 /* TODO: This is not properly updating schedstats */
5492
286549dc 5493 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5494 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5495}
0ec8aa00
PZ
5496
5497/*
5498 * Requeue a task on a given node and accurately track the number of NUMA
5499 * tasks on the runqueues
5500 */
5501void sched_setnuma(struct task_struct *p, int nid)
5502{
da0c1e65 5503 bool queued, running;
eb580751
PZ
5504 struct rq_flags rf;
5505 struct rq *rq;
0ec8aa00 5506
eb580751 5507 rq = task_rq_lock(p, &rf);
da0c1e65 5508 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5509 running = task_current(rq, p);
5510
da0c1e65 5511 if (queued)
1de64443 5512 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5513 if (running)
f3cd1c4e 5514 put_prev_task(rq, p);
0ec8aa00
PZ
5515
5516 p->numa_preferred_nid = nid;
0ec8aa00 5517
da0c1e65 5518 if (queued)
7134b3e9 5519 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5520 if (running)
b2bf6c31 5521 set_curr_task(rq, p);
eb580751 5522 task_rq_unlock(rq, p, &rf);
0ec8aa00 5523}
5cc389bc 5524#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5525
1da177e4 5526#ifdef CONFIG_HOTPLUG_CPU
054b9108 5527/*
d1ccc66d 5528 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5529 * offline.
054b9108 5530 */
48c5ccae 5531void idle_task_exit(void)
1da177e4 5532{
48c5ccae 5533 struct mm_struct *mm = current->active_mm;
e76bd8d9 5534
48c5ccae 5535 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5536
a53efe5f 5537 if (mm != &init_mm) {
252d2a41 5538 switch_mm(mm, &init_mm, current);
3eda69c9 5539 current->active_mm = &init_mm;
a53efe5f
MS
5540 finish_arch_post_lock_switch();
5541 }
48c5ccae 5542 mmdrop(mm);
1da177e4
LT
5543}
5544
5545/*
5d180232
PZ
5546 * Since this CPU is going 'away' for a while, fold any nr_active delta
5547 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5548 * nr_active count is stable. We need to take the teardown thread which
5549 * is calling this into account, so we hand in adjust = 1 to the load
5550 * calculation.
5d180232
PZ
5551 *
5552 * Also see the comment "Global load-average calculations".
1da177e4 5553 */
5d180232 5554static void calc_load_migrate(struct rq *rq)
1da177e4 5555{
d60585c5 5556 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5557 if (delta)
5558 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5559}
5560
3f1d2a31
PZ
5561static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5562{
5563}
5564
5565static const struct sched_class fake_sched_class = {
5566 .put_prev_task = put_prev_task_fake,
5567};
5568
5569static struct task_struct fake_task = {
5570 /*
5571 * Avoid pull_{rt,dl}_task()
5572 */
5573 .prio = MAX_PRIO + 1,
5574 .sched_class = &fake_sched_class,
5575};
5576
48f24c4d 5577/*
48c5ccae
PZ
5578 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5579 * try_to_wake_up()->select_task_rq().
5580 *
5581 * Called with rq->lock held even though we'er in stop_machine() and
5582 * there's no concurrency possible, we hold the required locks anyway
5583 * because of lock validation efforts.
1da177e4 5584 */
8a8c69c3 5585static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5586{
5e16bbc2 5587 struct rq *rq = dead_rq;
48c5ccae 5588 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5589 struct rq_flags orf = *rf;
48c5ccae 5590 int dest_cpu;
1da177e4
LT
5591
5592 /*
48c5ccae
PZ
5593 * Fudge the rq selection such that the below task selection loop
5594 * doesn't get stuck on the currently eligible stop task.
5595 *
5596 * We're currently inside stop_machine() and the rq is either stuck
5597 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5598 * either way we should never end up calling schedule() until we're
5599 * done here.
1da177e4 5600 */
48c5ccae 5601 rq->stop = NULL;
48f24c4d 5602
77bd3970
FW
5603 /*
5604 * put_prev_task() and pick_next_task() sched
5605 * class method both need to have an up-to-date
5606 * value of rq->clock[_task]
5607 */
5608 update_rq_clock(rq);
5609
5e16bbc2 5610 for (;;) {
48c5ccae
PZ
5611 /*
5612 * There's this thread running, bail when that's the only
d1ccc66d 5613 * remaining thread:
48c5ccae
PZ
5614 */
5615 if (rq->nr_running == 1)
dd41f596 5616 break;
48c5ccae 5617
cbce1a68 5618 /*
d1ccc66d 5619 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5620 */
8a8c69c3 5621 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5622 BUG_ON(!next);
5b713a3d 5623 put_prev_task(rq, next);
e692ab53 5624
5473e0cc
WL
5625 /*
5626 * Rules for changing task_struct::cpus_allowed are holding
5627 * both pi_lock and rq->lock, such that holding either
5628 * stabilizes the mask.
5629 *
5630 * Drop rq->lock is not quite as disastrous as it usually is
5631 * because !cpu_active at this point, which means load-balance
5632 * will not interfere. Also, stop-machine.
5633 */
8a8c69c3 5634 rq_unlock(rq, rf);
5473e0cc 5635 raw_spin_lock(&next->pi_lock);
8a8c69c3 5636 rq_relock(rq, rf);
5473e0cc
WL
5637
5638 /*
5639 * Since we're inside stop-machine, _nothing_ should have
5640 * changed the task, WARN if weird stuff happened, because in
5641 * that case the above rq->lock drop is a fail too.
5642 */
5643 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5644 raw_spin_unlock(&next->pi_lock);
5645 continue;
5646 }
5647
48c5ccae 5648 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5649 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5650 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5651 if (rq != dead_rq) {
8a8c69c3 5652 rq_unlock(rq, rf);
5e16bbc2 5653 rq = dead_rq;
8a8c69c3
PZ
5654 *rf = orf;
5655 rq_relock(rq, rf);
5e16bbc2 5656 }
5473e0cc 5657 raw_spin_unlock(&next->pi_lock);
1da177e4 5658 }
dce48a84 5659
48c5ccae 5660 rq->stop = stop;
dce48a84 5661}
1da177e4
LT
5662#endif /* CONFIG_HOTPLUG_CPU */
5663
f2cb1360 5664void set_rq_online(struct rq *rq)
1f11eb6a
GH
5665{
5666 if (!rq->online) {
5667 const struct sched_class *class;
5668
c6c4927b 5669 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5670 rq->online = 1;
5671
5672 for_each_class(class) {
5673 if (class->rq_online)
5674 class->rq_online(rq);
5675 }
5676 }
5677}
5678
f2cb1360 5679void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5680{
5681 if (rq->online) {
5682 const struct sched_class *class;
5683
5684 for_each_class(class) {
5685 if (class->rq_offline)
5686 class->rq_offline(rq);
5687 }
5688
c6c4927b 5689 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5690 rq->online = 0;
5691 }
5692}
5693
d1ccc66d
IM
5694/*
5695 * used to mark begin/end of suspend/resume:
5696 */
5697static int num_cpus_frozen;
d35be8ba 5698
1da177e4 5699/*
3a101d05
TH
5700 * Update cpusets according to cpu_active mask. If cpusets are
5701 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5702 * around partition_sched_domains().
d35be8ba
SB
5703 *
5704 * If we come here as part of a suspend/resume, don't touch cpusets because we
5705 * want to restore it back to its original state upon resume anyway.
1da177e4 5706 */
40190a78 5707static void cpuset_cpu_active(void)
e761b772 5708{
40190a78 5709 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5710 /*
5711 * num_cpus_frozen tracks how many CPUs are involved in suspend
5712 * resume sequence. As long as this is not the last online
5713 * operation in the resume sequence, just build a single sched
5714 * domain, ignoring cpusets.
5715 */
50e76632
PZ
5716 partition_sched_domains(1, NULL, NULL);
5717 if (--num_cpus_frozen)
135fb3e1 5718 return;
d35be8ba
SB
5719 /*
5720 * This is the last CPU online operation. So fall through and
5721 * restore the original sched domains by considering the
5722 * cpuset configurations.
5723 */
50e76632 5724 cpuset_force_rebuild();
3a101d05 5725 }
30e03acd 5726 cpuset_update_active_cpus();
3a101d05 5727}
e761b772 5728
40190a78 5729static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5730{
40190a78 5731 if (!cpuhp_tasks_frozen) {
06a76fe0 5732 if (dl_cpu_busy(cpu))
135fb3e1 5733 return -EBUSY;
30e03acd 5734 cpuset_update_active_cpus();
135fb3e1 5735 } else {
d35be8ba
SB
5736 num_cpus_frozen++;
5737 partition_sched_domains(1, NULL, NULL);
e761b772 5738 }
135fb3e1 5739 return 0;
e761b772 5740}
e761b772 5741
40190a78 5742int sched_cpu_activate(unsigned int cpu)
135fb3e1 5743{
7d976699 5744 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5745 struct rq_flags rf;
7d976699 5746
ba2591a5
PZ
5747#ifdef CONFIG_SCHED_SMT
5748 /*
5749 * The sched_smt_present static key needs to be evaluated on every
5750 * hotplug event because at boot time SMT might be disabled when
5751 * the number of booted CPUs is limited.
5752 *
5753 * If then later a sibling gets hotplugged, then the key would stay
5754 * off and SMT scheduling would never be functional.
5755 */
5756 if (cpumask_weight(cpu_smt_mask(cpu)) > 1)
5757 static_branch_enable_cpuslocked(&sched_smt_present);
5758#endif
40190a78 5759 set_cpu_active(cpu, true);
135fb3e1 5760
40190a78 5761 if (sched_smp_initialized) {
135fb3e1 5762 sched_domains_numa_masks_set(cpu);
40190a78 5763 cpuset_cpu_active();
e761b772 5764 }
7d976699
TG
5765
5766 /*
5767 * Put the rq online, if not already. This happens:
5768 *
5769 * 1) In the early boot process, because we build the real domains
d1ccc66d 5770 * after all CPUs have been brought up.
7d976699
TG
5771 *
5772 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5773 * domains.
5774 */
8a8c69c3 5775 rq_lock_irqsave(rq, &rf);
7d976699
TG
5776 if (rq->rd) {
5777 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5778 set_rq_online(rq);
5779 }
8a8c69c3 5780 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5781
5782 update_max_interval();
5783
40190a78 5784 return 0;
135fb3e1
TG
5785}
5786
40190a78 5787int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5788{
135fb3e1
TG
5789 int ret;
5790
40190a78 5791 set_cpu_active(cpu, false);
b2454caa
PZ
5792 /*
5793 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5794 * users of this state to go away such that all new such users will
5795 * observe it.
5796 *
b2454caa
PZ
5797 * Do sync before park smpboot threads to take care the rcu boost case.
5798 */
d7d34d5e 5799 synchronize_rcu_mult(call_rcu, call_rcu_sched);
40190a78
TG
5800
5801 if (!sched_smp_initialized)
5802 return 0;
5803
5804 ret = cpuset_cpu_inactive(cpu);
5805 if (ret) {
5806 set_cpu_active(cpu, true);
5807 return ret;
135fb3e1 5808 }
40190a78
TG
5809 sched_domains_numa_masks_clear(cpu);
5810 return 0;
135fb3e1
TG
5811}
5812
94baf7a5
TG
5813static void sched_rq_cpu_starting(unsigned int cpu)
5814{
5815 struct rq *rq = cpu_rq(cpu);
5816
5817 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5818 update_max_interval();
5819}
5820
135fb3e1
TG
5821int sched_cpu_starting(unsigned int cpu)
5822{
94baf7a5 5823 sched_rq_cpu_starting(cpu);
d84b3131 5824 sched_tick_start(cpu);
135fb3e1 5825 return 0;
e761b772 5826}
e761b772 5827
f2785ddb
TG
5828#ifdef CONFIG_HOTPLUG_CPU
5829int sched_cpu_dying(unsigned int cpu)
5830{
5831 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5832 struct rq_flags rf;
f2785ddb
TG
5833
5834 /* Handle pending wakeups and then migrate everything off */
5835 sched_ttwu_pending();
d84b3131 5836 sched_tick_stop(cpu);
8a8c69c3
PZ
5837
5838 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5839 if (rq->rd) {
5840 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5841 set_rq_offline(rq);
5842 }
8a8c69c3 5843 migrate_tasks(rq, &rf);
f2785ddb 5844 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5845 rq_unlock_irqrestore(rq, &rf);
5846
f2785ddb
TG
5847 calc_load_migrate(rq);
5848 update_max_interval();
00357f5e 5849 nohz_balance_exit_idle(rq);
e5ef27d0 5850 hrtick_clear(rq);
f2785ddb
TG
5851 return 0;
5852}
5853#endif
5854
1da177e4
LT
5855void __init sched_init_smp(void)
5856{
cb83b629
PZ
5857 sched_init_numa();
5858
6acce3ef
PZ
5859 /*
5860 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5861 * CPU masks are stable and all blatant races in the below code cannot
40fa3780
VS
5862 * happen. The hotplug lock is nevertheless taken to satisfy lockdep,
5863 * but there won't be any contention on it.
6acce3ef 5864 */
40fa3780 5865 cpus_read_lock();
712555ee 5866 mutex_lock(&sched_domains_mutex);
8d5dc512 5867 sched_init_domains(cpu_active_mask);
712555ee 5868 mutex_unlock(&sched_domains_mutex);
40fa3780 5869 cpus_read_unlock();
e761b772 5870
5c1e1767 5871 /* Move init over to a non-isolated CPU */
edb93821 5872 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5873 BUG();
19978ca6 5874 sched_init_granularity();
4212823f 5875
0e3900e6 5876 init_sched_rt_class();
1baca4ce 5877 init_sched_dl_class();
1b568f0a 5878
e26fbffd 5879 sched_smp_initialized = true;
1da177e4 5880}
e26fbffd
TG
5881
5882static int __init migration_init(void)
5883{
94baf7a5 5884 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5885 return 0;
1da177e4 5886}
e26fbffd
TG
5887early_initcall(migration_init);
5888
1da177e4
LT
5889#else
5890void __init sched_init_smp(void)
5891{
19978ca6 5892 sched_init_granularity();
1da177e4
LT
5893}
5894#endif /* CONFIG_SMP */
5895
5896int in_sched_functions(unsigned long addr)
5897{
1da177e4
LT
5898 return in_lock_functions(addr) ||
5899 (addr >= (unsigned long)__sched_text_start
5900 && addr < (unsigned long)__sched_text_end);
5901}
5902
029632fb 5903#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5904/*
5905 * Default task group.
5906 * Every task in system belongs to this group at bootup.
5907 */
029632fb 5908struct task_group root_task_group;
35cf4e50 5909LIST_HEAD(task_groups);
b0367629
WL
5910
5911/* Cacheline aligned slab cache for task_group */
5912static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5913#endif
6f505b16 5914
e6252c3e 5915DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5916DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5917
1da177e4
LT
5918void __init sched_init(void)
5919{
dd41f596 5920 int i, j;
434d53b0
MT
5921 unsigned long alloc_size = 0, ptr;
5922
5822a454 5923 wait_bit_init();
9dcb8b68 5924
434d53b0
MT
5925#ifdef CONFIG_FAIR_GROUP_SCHED
5926 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5927#endif
5928#ifdef CONFIG_RT_GROUP_SCHED
5929 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5930#endif
434d53b0 5931 if (alloc_size) {
36b7b6d4 5932 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5933
5934#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5935 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5936 ptr += nr_cpu_ids * sizeof(void **);
5937
07e06b01 5938 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5939 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5940
6d6bc0ad 5941#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5942#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5943 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5944 ptr += nr_cpu_ids * sizeof(void **);
5945
07e06b01 5946 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5947 ptr += nr_cpu_ids * sizeof(void **);
5948
6d6bc0ad 5949#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5950 }
df7c8e84 5951#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5952 for_each_possible_cpu(i) {
5953 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5954 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5955 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5956 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 5957 }
b74e6278 5958#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 5959
d1ccc66d
IM
5960 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5961 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 5962
57d885fe
GH
5963#ifdef CONFIG_SMP
5964 init_defrootdomain();
5965#endif
5966
d0b27fa7 5967#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5968 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 5969 global_rt_period(), global_rt_runtime());
6d6bc0ad 5970#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 5971
7c941438 5972#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
5973 task_group_cache = KMEM_CACHE(task_group, 0);
5974
07e06b01
YZ
5975 list_add(&root_task_group.list, &task_groups);
5976 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 5977 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 5978 autogroup_init(&init_task);
7c941438 5979#endif /* CONFIG_CGROUP_SCHED */
6f505b16 5980
0a945022 5981 for_each_possible_cpu(i) {
70b97a7f 5982 struct rq *rq;
1da177e4
LT
5983
5984 rq = cpu_rq(i);
05fa785c 5985 raw_spin_lock_init(&rq->lock);
7897986b 5986 rq->nr_running = 0;
dce48a84
TG
5987 rq->calc_load_active = 0;
5988 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 5989 init_cfs_rq(&rq->cfs);
07c54f7a
AV
5990 init_rt_rq(&rq->rt);
5991 init_dl_rq(&rq->dl);
dd41f596 5992#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 5993 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 5994 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 5995 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 5996 /*
d1ccc66d 5997 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
5998 *
5999 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6000 * gets 100% of the CPU resources in the system. This overall
6001 * system CPU resource is divided among the tasks of
07e06b01 6002 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6003 * based on each entity's (task or task-group's) weight
6004 * (se->load.weight).
6005 *
07e06b01 6006 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6007 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6008 * then A0's share of the CPU resource is:
354d60c2 6009 *
0d905bca 6010 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6011 *
07e06b01
YZ
6012 * We achieve this by letting root_task_group's tasks sit
6013 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6014 */
ab84d31e 6015 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6016 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6017#endif /* CONFIG_FAIR_GROUP_SCHED */
6018
6019 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6020#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6021 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6022#endif
1da177e4 6023
dd41f596
IM
6024 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6025 rq->cpu_load[j] = 0;
fdf3e95d 6026
1da177e4 6027#ifdef CONFIG_SMP
41c7ce9a 6028 rq->sd = NULL;
57d885fe 6029 rq->rd = NULL;
ca6d75e6 6030 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6031 rq->balance_callback = NULL;
1da177e4 6032 rq->active_balance = 0;
dd41f596 6033 rq->next_balance = jiffies;
1da177e4 6034 rq->push_cpu = 0;
0a2966b4 6035 rq->cpu = i;
1f11eb6a 6036 rq->online = 0;
eae0c9df
MG
6037 rq->idle_stamp = 0;
6038 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6039 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6040
6041 INIT_LIST_HEAD(&rq->cfs_tasks);
6042
dc938520 6043 rq_attach_root(rq, &def_root_domain);
3451d024 6044#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6045 rq->last_load_update_tick = jiffies;
e022e0d3 6046 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6047 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6048#endif
9fd81dd5 6049#endif /* CONFIG_SMP */
77a021be 6050 hrtick_rq_init(rq);
1da177e4 6051 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6052 }
6053
9059393e 6054 set_load_weight(&init_task, false);
b50f60ce 6055
1da177e4
LT
6056 /*
6057 * The boot idle thread does lazy MMU switching as well:
6058 */
f1f10076 6059 mmgrab(&init_mm);
1da177e4
LT
6060 enter_lazy_tlb(&init_mm, current);
6061
6062 /*
6063 * Make us the idle thread. Technically, schedule() should not be
6064 * called from this thread, however somewhere below it might be,
6065 * but because we are the idle thread, we just pick up running again
6066 * when this runqueue becomes "idle".
6067 */
6068 init_idle(current, smp_processor_id());
dce48a84
TG
6069
6070 calc_load_update = jiffies + LOAD_FREQ;
6071
bf4d83f6 6072#ifdef CONFIG_SMP
29d5e047 6073 idle_thread_set_boot_cpu();
029632fb
PZ
6074#endif
6075 init_sched_fair_class();
6a7b3dc3 6076
4698f88c
JP
6077 init_schedstats();
6078
eb414681
JW
6079 psi_init();
6080
6892b75e 6081 scheduler_running = 1;
1da177e4
LT
6082}
6083
d902db1e 6084#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6085static inline int preempt_count_equals(int preempt_offset)
6086{
da7142e2 6087 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6088
4ba8216c 6089 return (nested == preempt_offset);
e4aafea2
FW
6090}
6091
d894837f 6092void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6093{
8eb23b9f
PZ
6094 /*
6095 * Blocking primitives will set (and therefore destroy) current->state,
6096 * since we will exit with TASK_RUNNING make sure we enter with it,
6097 * otherwise we will destroy state.
6098 */
00845eb9 6099 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6100 "do not call blocking ops when !TASK_RUNNING; "
6101 "state=%lx set at [<%p>] %pS\n",
6102 current->state,
6103 (void *)current->task_state_change,
00845eb9 6104 (void *)current->task_state_change);
8eb23b9f 6105
3427445a
PZ
6106 ___might_sleep(file, line, preempt_offset);
6107}
6108EXPORT_SYMBOL(__might_sleep);
6109
6110void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6111{
d1ccc66d
IM
6112 /* Ratelimiting timestamp: */
6113 static unsigned long prev_jiffy;
6114
d1c6d149 6115 unsigned long preempt_disable_ip;
1da177e4 6116
d1ccc66d
IM
6117 /* WARN_ON_ONCE() by default, no rate limit required: */
6118 rcu_sleep_check();
6119
db273be2
TG
6120 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6121 !is_idle_task(current)) ||
1c3c5eab
TG
6122 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6123 oops_in_progress)
aef745fc 6124 return;
1c3c5eab 6125
aef745fc
IM
6126 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6127 return;
6128 prev_jiffy = jiffies;
6129
d1ccc66d 6130 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6131 preempt_disable_ip = get_preempt_disable_ip(current);
6132
3df0fc5b
PZ
6133 printk(KERN_ERR
6134 "BUG: sleeping function called from invalid context at %s:%d\n",
6135 file, line);
6136 printk(KERN_ERR
6137 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6138 in_atomic(), irqs_disabled(),
6139 current->pid, current->comm);
aef745fc 6140
a8b686b3
ES
6141 if (task_stack_end_corrupted(current))
6142 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6143
aef745fc
IM
6144 debug_show_held_locks(current);
6145 if (irqs_disabled())
6146 print_irqtrace_events(current);
d1c6d149
VN
6147 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6148 && !preempt_count_equals(preempt_offset)) {
8f47b187 6149 pr_err("Preemption disabled at:");
d1c6d149 6150 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6151 pr_cont("\n");
6152 }
aef745fc 6153 dump_stack();
f0b22e39 6154 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6155}
3427445a 6156EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6157#endif
6158
6159#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6160void normalize_rt_tasks(void)
3a5e4dc1 6161{
dbc7f069 6162 struct task_struct *g, *p;
d50dde5a
DF
6163 struct sched_attr attr = {
6164 .sched_policy = SCHED_NORMAL,
6165 };
1da177e4 6166
3472eaa1 6167 read_lock(&tasklist_lock);
5d07f420 6168 for_each_process_thread(g, p) {
178be793
IM
6169 /*
6170 * Only normalize user tasks:
6171 */
3472eaa1 6172 if (p->flags & PF_KTHREAD)
178be793
IM
6173 continue;
6174
4fa8d299
JP
6175 p->se.exec_start = 0;
6176 schedstat_set(p->se.statistics.wait_start, 0);
6177 schedstat_set(p->se.statistics.sleep_start, 0);
6178 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6179
aab03e05 6180 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6181 /*
6182 * Renice negative nice level userspace
6183 * tasks back to 0:
6184 */
3472eaa1 6185 if (task_nice(p) < 0)
dd41f596 6186 set_user_nice(p, 0);
1da177e4 6187 continue;
dd41f596 6188 }
1da177e4 6189
dbc7f069 6190 __sched_setscheduler(p, &attr, false, false);
5d07f420 6191 }
3472eaa1 6192 read_unlock(&tasklist_lock);
1da177e4
LT
6193}
6194
6195#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6196
67fc4e0c 6197#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6198/*
67fc4e0c 6199 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6200 *
6201 * They can only be called when the whole system has been
6202 * stopped - every CPU needs to be quiescent, and no scheduling
6203 * activity can take place. Using them for anything else would
6204 * be a serious bug, and as a result, they aren't even visible
6205 * under any other configuration.
6206 */
6207
6208/**
d1ccc66d 6209 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6210 * @cpu: the processor in question.
6211 *
6212 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6213 *
6214 * Return: The current task for @cpu.
1df5c10a 6215 */
36c8b586 6216struct task_struct *curr_task(int cpu)
1df5c10a
LT
6217{
6218 return cpu_curr(cpu);
6219}
6220
67fc4e0c
JW
6221#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6222
6223#ifdef CONFIG_IA64
1df5c10a 6224/**
d1ccc66d 6225 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6226 * @cpu: the processor in question.
6227 * @p: the task pointer to set.
6228 *
6229 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6230 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6231 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6232 * must be called with all CPU's synchronized, and interrupts disabled, the
6233 * and caller must save the original value of the current task (see
6234 * curr_task() above) and restore that value before reenabling interrupts and
6235 * re-starting the system.
6236 *
6237 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6238 */
a458ae2e 6239void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6240{
6241 cpu_curr(cpu) = p;
6242}
6243
6244#endif
29f59db3 6245
7c941438 6246#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6247/* task_group_lock serializes the addition/removal of task groups */
6248static DEFINE_SPINLOCK(task_group_lock);
6249
2f5177f0 6250static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6251{
6252 free_fair_sched_group(tg);
6253 free_rt_sched_group(tg);
e9aa1dd1 6254 autogroup_free(tg);
b0367629 6255 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6256}
6257
6258/* allocate runqueue etc for a new task group */
ec7dc8ac 6259struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6260{
6261 struct task_group *tg;
bccbe08a 6262
b0367629 6263 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6264 if (!tg)
6265 return ERR_PTR(-ENOMEM);
6266
ec7dc8ac 6267 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6268 goto err;
6269
ec7dc8ac 6270 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6271 goto err;
6272
ace783b9
LZ
6273 return tg;
6274
6275err:
2f5177f0 6276 sched_free_group(tg);
ace783b9
LZ
6277 return ERR_PTR(-ENOMEM);
6278}
6279
6280void sched_online_group(struct task_group *tg, struct task_group *parent)
6281{
6282 unsigned long flags;
6283
8ed36996 6284 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6285 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6286
d1ccc66d
IM
6287 /* Root should already exist: */
6288 WARN_ON(!parent);
f473aa5e
PZ
6289
6290 tg->parent = parent;
f473aa5e 6291 INIT_LIST_HEAD(&tg->children);
09f2724a 6292 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6293 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6294
6295 online_fair_sched_group(tg);
29f59db3
SV
6296}
6297
9b5b7751 6298/* rcu callback to free various structures associated with a task group */
2f5177f0 6299static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6300{
d1ccc66d 6301 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6302 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6303}
6304
4cf86d77 6305void sched_destroy_group(struct task_group *tg)
ace783b9 6306{
d1ccc66d 6307 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6308 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6309}
6310
6311void sched_offline_group(struct task_group *tg)
29f59db3 6312{
8ed36996 6313 unsigned long flags;
29f59db3 6314
d1ccc66d 6315 /* End participation in shares distribution: */
6fe1f348 6316 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6317
6318 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6319 list_del_rcu(&tg->list);
f473aa5e 6320 list_del_rcu(&tg->siblings);
8ed36996 6321 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6322}
6323
ea86cb4b 6324static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6325{
8323f26c 6326 struct task_group *tg;
29f59db3 6327
f7b8a47d
KT
6328 /*
6329 * All callers are synchronized by task_rq_lock(); we do not use RCU
6330 * which is pointless here. Thus, we pass "true" to task_css_check()
6331 * to prevent lockdep warnings.
6332 */
6333 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6334 struct task_group, css);
6335 tg = autogroup_task_group(tsk, tg);
6336 tsk->sched_task_group = tg;
6337
810b3817 6338#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6339 if (tsk->sched_class->task_change_group)
6340 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6341 else
810b3817 6342#endif
b2b5ce02 6343 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6344}
6345
6346/*
6347 * Change task's runqueue when it moves between groups.
6348 *
6349 * The caller of this function should have put the task in its new group by
6350 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6351 * its new group.
6352 */
6353void sched_move_task(struct task_struct *tsk)
6354{
7a57f32a
PZ
6355 int queued, running, queue_flags =
6356 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6357 struct rq_flags rf;
6358 struct rq *rq;
6359
6360 rq = task_rq_lock(tsk, &rf);
1b1d6225 6361 update_rq_clock(rq);
ea86cb4b
VG
6362
6363 running = task_current(rq, tsk);
6364 queued = task_on_rq_queued(tsk);
6365
6366 if (queued)
7a57f32a 6367 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6368 if (running)
ea86cb4b
VG
6369 put_prev_task(rq, tsk);
6370
6371 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6372
da0c1e65 6373 if (queued)
7a57f32a 6374 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6375 if (running)
b2bf6c31 6376 set_curr_task(rq, tsk);
29f59db3 6377
eb580751 6378 task_rq_unlock(rq, tsk, &rf);
29f59db3 6379}
68318b8e 6380
a7c6d554 6381static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6382{
a7c6d554 6383 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6384}
6385
eb95419b
TH
6386static struct cgroup_subsys_state *
6387cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6388{
eb95419b
TH
6389 struct task_group *parent = css_tg(parent_css);
6390 struct task_group *tg;
68318b8e 6391
eb95419b 6392 if (!parent) {
68318b8e 6393 /* This is early initialization for the top cgroup */
07e06b01 6394 return &root_task_group.css;
68318b8e
SV
6395 }
6396
ec7dc8ac 6397 tg = sched_create_group(parent);
68318b8e
SV
6398 if (IS_ERR(tg))
6399 return ERR_PTR(-ENOMEM);
6400
68318b8e
SV
6401 return &tg->css;
6402}
6403
96b77745
KK
6404/* Expose task group only after completing cgroup initialization */
6405static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6406{
6407 struct task_group *tg = css_tg(css);
6408 struct task_group *parent = css_tg(css->parent);
6409
6410 if (parent)
6411 sched_online_group(tg, parent);
6412 return 0;
6413}
6414
2f5177f0 6415static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6416{
eb95419b 6417 struct task_group *tg = css_tg(css);
ace783b9 6418
2f5177f0 6419 sched_offline_group(tg);
ace783b9
LZ
6420}
6421
eb95419b 6422static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6423{
eb95419b 6424 struct task_group *tg = css_tg(css);
68318b8e 6425
2f5177f0
PZ
6426 /*
6427 * Relies on the RCU grace period between css_released() and this.
6428 */
6429 sched_free_group(tg);
ace783b9
LZ
6430}
6431
ea86cb4b
VG
6432/*
6433 * This is called before wake_up_new_task(), therefore we really only
6434 * have to set its group bits, all the other stuff does not apply.
6435 */
b53202e6 6436static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6437{
ea86cb4b
VG
6438 struct rq_flags rf;
6439 struct rq *rq;
6440
6441 rq = task_rq_lock(task, &rf);
6442
80f5c1b8 6443 update_rq_clock(rq);
ea86cb4b
VG
6444 sched_change_group(task, TASK_SET_GROUP);
6445
6446 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6447}
6448
1f7dd3e5 6449static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6450{
bb9d97b6 6451 struct task_struct *task;
1f7dd3e5 6452 struct cgroup_subsys_state *css;
7dc603c9 6453 int ret = 0;
bb9d97b6 6454
1f7dd3e5 6455 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6456#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6457 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6458 return -EINVAL;
b68aa230 6459#else
bb9d97b6
TH
6460 /* We don't support RT-tasks being in separate groups */
6461 if (task->sched_class != &fair_sched_class)
6462 return -EINVAL;
b68aa230 6463#endif
7dc603c9
PZ
6464 /*
6465 * Serialize against wake_up_new_task() such that if its
6466 * running, we're sure to observe its full state.
6467 */
6468 raw_spin_lock_irq(&task->pi_lock);
6469 /*
6470 * Avoid calling sched_move_task() before wake_up_new_task()
6471 * has happened. This would lead to problems with PELT, due to
6472 * move wanting to detach+attach while we're not attached yet.
6473 */
6474 if (task->state == TASK_NEW)
6475 ret = -EINVAL;
6476 raw_spin_unlock_irq(&task->pi_lock);
6477
6478 if (ret)
6479 break;
bb9d97b6 6480 }
7dc603c9 6481 return ret;
be367d09 6482}
68318b8e 6483
1f7dd3e5 6484static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6485{
bb9d97b6 6486 struct task_struct *task;
1f7dd3e5 6487 struct cgroup_subsys_state *css;
bb9d97b6 6488
1f7dd3e5 6489 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6490 sched_move_task(task);
68318b8e
SV
6491}
6492
052f1dc7 6493#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6494static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6495 struct cftype *cftype, u64 shareval)
68318b8e 6496{
182446d0 6497 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6498}
6499
182446d0
TH
6500static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6501 struct cftype *cft)
68318b8e 6502{
182446d0 6503 struct task_group *tg = css_tg(css);
68318b8e 6504
c8b28116 6505 return (u64) scale_load_down(tg->shares);
68318b8e 6506}
ab84d31e
PT
6507
6508#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6509static DEFINE_MUTEX(cfs_constraints_mutex);
6510
ab84d31e
PT
6511const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6512const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6513
a790de99
PT
6514static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6515
ab84d31e
PT
6516static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6517{
56f570e5 6518 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6519 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6520
6521 if (tg == &root_task_group)
6522 return -EINVAL;
6523
6524 /*
6525 * Ensure we have at some amount of bandwidth every period. This is
6526 * to prevent reaching a state of large arrears when throttled via
6527 * entity_tick() resulting in prolonged exit starvation.
6528 */
6529 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6530 return -EINVAL;
6531
6532 /*
6533 * Likewise, bound things on the otherside by preventing insane quota
6534 * periods. This also allows us to normalize in computing quota
6535 * feasibility.
6536 */
6537 if (period > max_cfs_quota_period)
6538 return -EINVAL;
6539
0e59bdae
KT
6540 /*
6541 * Prevent race between setting of cfs_rq->runtime_enabled and
6542 * unthrottle_offline_cfs_rqs().
6543 */
6544 get_online_cpus();
a790de99
PT
6545 mutex_lock(&cfs_constraints_mutex);
6546 ret = __cfs_schedulable(tg, period, quota);
6547 if (ret)
6548 goto out_unlock;
6549
58088ad0 6550 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6551 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6552 /*
6553 * If we need to toggle cfs_bandwidth_used, off->on must occur
6554 * before making related changes, and on->off must occur afterwards
6555 */
6556 if (runtime_enabled && !runtime_was_enabled)
6557 cfs_bandwidth_usage_inc();
ab84d31e
PT
6558 raw_spin_lock_irq(&cfs_b->lock);
6559 cfs_b->period = ns_to_ktime(period);
6560 cfs_b->quota = quota;
58088ad0 6561
a9cf55b2 6562 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6563
6564 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6565 if (runtime_enabled)
6566 start_cfs_bandwidth(cfs_b);
d1ccc66d 6567
ab84d31e
PT
6568 raw_spin_unlock_irq(&cfs_b->lock);
6569
0e59bdae 6570 for_each_online_cpu(i) {
ab84d31e 6571 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6572 struct rq *rq = cfs_rq->rq;
8a8c69c3 6573 struct rq_flags rf;
ab84d31e 6574
8a8c69c3 6575 rq_lock_irq(rq, &rf);
58088ad0 6576 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6577 cfs_rq->runtime_remaining = 0;
671fd9da 6578
029632fb 6579 if (cfs_rq->throttled)
671fd9da 6580 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6581 rq_unlock_irq(rq, &rf);
ab84d31e 6582 }
1ee14e6c
BS
6583 if (runtime_was_enabled && !runtime_enabled)
6584 cfs_bandwidth_usage_dec();
a790de99
PT
6585out_unlock:
6586 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6587 put_online_cpus();
ab84d31e 6588
a790de99 6589 return ret;
ab84d31e
PT
6590}
6591
6592int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6593{
6594 u64 quota, period;
6595
029632fb 6596 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6597 if (cfs_quota_us < 0)
6598 quota = RUNTIME_INF;
6599 else
6600 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6601
6602 return tg_set_cfs_bandwidth(tg, period, quota);
6603}
6604
6605long tg_get_cfs_quota(struct task_group *tg)
6606{
6607 u64 quota_us;
6608
029632fb 6609 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6610 return -1;
6611
029632fb 6612 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6613 do_div(quota_us, NSEC_PER_USEC);
6614
6615 return quota_us;
6616}
6617
6618int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6619{
6620 u64 quota, period;
6621
6622 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6623 quota = tg->cfs_bandwidth.quota;
ab84d31e 6624
ab84d31e
PT
6625 return tg_set_cfs_bandwidth(tg, period, quota);
6626}
6627
6628long tg_get_cfs_period(struct task_group *tg)
6629{
6630 u64 cfs_period_us;
6631
029632fb 6632 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6633 do_div(cfs_period_us, NSEC_PER_USEC);
6634
6635 return cfs_period_us;
6636}
6637
182446d0
TH
6638static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6639 struct cftype *cft)
ab84d31e 6640{
182446d0 6641 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6642}
6643
182446d0
TH
6644static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6645 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6646{
182446d0 6647 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6648}
6649
182446d0
TH
6650static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6651 struct cftype *cft)
ab84d31e 6652{
182446d0 6653 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6654}
6655
182446d0
TH
6656static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6657 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6658{
182446d0 6659 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6660}
6661
a790de99
PT
6662struct cfs_schedulable_data {
6663 struct task_group *tg;
6664 u64 period, quota;
6665};
6666
6667/*
6668 * normalize group quota/period to be quota/max_period
6669 * note: units are usecs
6670 */
6671static u64 normalize_cfs_quota(struct task_group *tg,
6672 struct cfs_schedulable_data *d)
6673{
6674 u64 quota, period;
6675
6676 if (tg == d->tg) {
6677 period = d->period;
6678 quota = d->quota;
6679 } else {
6680 period = tg_get_cfs_period(tg);
6681 quota = tg_get_cfs_quota(tg);
6682 }
6683
6684 /* note: these should typically be equivalent */
6685 if (quota == RUNTIME_INF || quota == -1)
6686 return RUNTIME_INF;
6687
6688 return to_ratio(period, quota);
6689}
6690
6691static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6692{
6693 struct cfs_schedulable_data *d = data;
029632fb 6694 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6695 s64 quota = 0, parent_quota = -1;
6696
6697 if (!tg->parent) {
6698 quota = RUNTIME_INF;
6699 } else {
029632fb 6700 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6701
6702 quota = normalize_cfs_quota(tg, d);
9c58c79a 6703 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6704
6705 /*
c53593e5
TH
6706 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6707 * always take the min. On cgroup1, only inherit when no
d1ccc66d 6708 * limit is set:
a790de99 6709 */
c53593e5
TH
6710 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6711 quota = min(quota, parent_quota);
6712 } else {
6713 if (quota == RUNTIME_INF)
6714 quota = parent_quota;
6715 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6716 return -EINVAL;
6717 }
a790de99 6718 }
9c58c79a 6719 cfs_b->hierarchical_quota = quota;
a790de99
PT
6720
6721 return 0;
6722}
6723
6724static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6725{
8277434e 6726 int ret;
a790de99
PT
6727 struct cfs_schedulable_data data = {
6728 .tg = tg,
6729 .period = period,
6730 .quota = quota,
6731 };
6732
6733 if (quota != RUNTIME_INF) {
6734 do_div(data.period, NSEC_PER_USEC);
6735 do_div(data.quota, NSEC_PER_USEC);
6736 }
6737
8277434e
PT
6738 rcu_read_lock();
6739 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6740 rcu_read_unlock();
6741
6742 return ret;
a790de99 6743}
e8da1b18 6744
a1f7164c 6745static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6746{
2da8ca82 6747 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6748 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6749
44ffc75b
TH
6750 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6751 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6752 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 6753
3d6c50c2
YW
6754 if (schedstat_enabled() && tg != &root_task_group) {
6755 u64 ws = 0;
6756 int i;
6757
6758 for_each_possible_cpu(i)
6759 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6760
6761 seq_printf(sf, "wait_sum %llu\n", ws);
6762 }
6763
e8da1b18
NR
6764 return 0;
6765}
ab84d31e 6766#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6767#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6768
052f1dc7 6769#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6770static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6771 struct cftype *cft, s64 val)
6f505b16 6772{
182446d0 6773 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6774}
6775
182446d0
TH
6776static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6777 struct cftype *cft)
6f505b16 6778{
182446d0 6779 return sched_group_rt_runtime(css_tg(css));
6f505b16 6780}
d0b27fa7 6781
182446d0
TH
6782static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6783 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6784{
182446d0 6785 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6786}
6787
182446d0
TH
6788static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6789 struct cftype *cft)
d0b27fa7 6790{
182446d0 6791 return sched_group_rt_period(css_tg(css));
d0b27fa7 6792}
6d6bc0ad 6793#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6794
a1f7164c 6795static struct cftype cpu_legacy_files[] = {
052f1dc7 6796#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6797 {
6798 .name = "shares",
f4c753b7
PM
6799 .read_u64 = cpu_shares_read_u64,
6800 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6801 },
052f1dc7 6802#endif
ab84d31e
PT
6803#ifdef CONFIG_CFS_BANDWIDTH
6804 {
6805 .name = "cfs_quota_us",
6806 .read_s64 = cpu_cfs_quota_read_s64,
6807 .write_s64 = cpu_cfs_quota_write_s64,
6808 },
6809 {
6810 .name = "cfs_period_us",
6811 .read_u64 = cpu_cfs_period_read_u64,
6812 .write_u64 = cpu_cfs_period_write_u64,
6813 },
e8da1b18
NR
6814 {
6815 .name = "stat",
a1f7164c 6816 .seq_show = cpu_cfs_stat_show,
e8da1b18 6817 },
ab84d31e 6818#endif
052f1dc7 6819#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6820 {
9f0c1e56 6821 .name = "rt_runtime_us",
06ecb27c
PM
6822 .read_s64 = cpu_rt_runtime_read,
6823 .write_s64 = cpu_rt_runtime_write,
6f505b16 6824 },
d0b27fa7
PZ
6825 {
6826 .name = "rt_period_us",
f4c753b7
PM
6827 .read_u64 = cpu_rt_period_read_uint,
6828 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6829 },
052f1dc7 6830#endif
d1ccc66d 6831 { } /* Terminate */
68318b8e
SV
6832};
6833
d41bf8c9
TH
6834static int cpu_extra_stat_show(struct seq_file *sf,
6835 struct cgroup_subsys_state *css)
0d593634 6836{
0d593634
TH
6837#ifdef CONFIG_CFS_BANDWIDTH
6838 {
d41bf8c9 6839 struct task_group *tg = css_tg(css);
0d593634
TH
6840 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6841 u64 throttled_usec;
6842
6843 throttled_usec = cfs_b->throttled_time;
6844 do_div(throttled_usec, NSEC_PER_USEC);
6845
6846 seq_printf(sf, "nr_periods %d\n"
6847 "nr_throttled %d\n"
6848 "throttled_usec %llu\n",
6849 cfs_b->nr_periods, cfs_b->nr_throttled,
6850 throttled_usec);
6851 }
6852#endif
6853 return 0;
6854}
6855
6856#ifdef CONFIG_FAIR_GROUP_SCHED
6857static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6858 struct cftype *cft)
6859{
6860 struct task_group *tg = css_tg(css);
6861 u64 weight = scale_load_down(tg->shares);
6862
6863 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6864}
6865
6866static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6867 struct cftype *cft, u64 weight)
6868{
6869 /*
6870 * cgroup weight knobs should use the common MIN, DFL and MAX
6871 * values which are 1, 100 and 10000 respectively. While it loses
6872 * a bit of range on both ends, it maps pretty well onto the shares
6873 * value used by scheduler and the round-trip conversions preserve
6874 * the original value over the entire range.
6875 */
6876 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6877 return -ERANGE;
6878
6879 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6880
6881 return sched_group_set_shares(css_tg(css), scale_load(weight));
6882}
6883
6884static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6885 struct cftype *cft)
6886{
6887 unsigned long weight = scale_load_down(css_tg(css)->shares);
6888 int last_delta = INT_MAX;
6889 int prio, delta;
6890
6891 /* find the closest nice value to the current weight */
6892 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6893 delta = abs(sched_prio_to_weight[prio] - weight);
6894 if (delta >= last_delta)
6895 break;
6896 last_delta = delta;
6897 }
6898
6899 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6900}
6901
6902static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6903 struct cftype *cft, s64 nice)
6904{
6905 unsigned long weight;
7281c8de 6906 int idx;
0d593634
TH
6907
6908 if (nice < MIN_NICE || nice > MAX_NICE)
6909 return -ERANGE;
6910
7281c8de
PZ
6911 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6912 idx = array_index_nospec(idx, 40);
6913 weight = sched_prio_to_weight[idx];
6914
0d593634
TH
6915 return sched_group_set_shares(css_tg(css), scale_load(weight));
6916}
6917#endif
6918
6919static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6920 long period, long quota)
6921{
6922 if (quota < 0)
6923 seq_puts(sf, "max");
6924 else
6925 seq_printf(sf, "%ld", quota);
6926
6927 seq_printf(sf, " %ld\n", period);
6928}
6929
6930/* caller should put the current value in *@periodp before calling */
6931static int __maybe_unused cpu_period_quota_parse(char *buf,
6932 u64 *periodp, u64 *quotap)
6933{
6934 char tok[21]; /* U64_MAX */
6935
6936 if (!sscanf(buf, "%s %llu", tok, periodp))
6937 return -EINVAL;
6938
6939 *periodp *= NSEC_PER_USEC;
6940
6941 if (sscanf(tok, "%llu", quotap))
6942 *quotap *= NSEC_PER_USEC;
6943 else if (!strcmp(tok, "max"))
6944 *quotap = RUNTIME_INF;
6945 else
6946 return -EINVAL;
6947
6948 return 0;
6949}
6950
6951#ifdef CONFIG_CFS_BANDWIDTH
6952static int cpu_max_show(struct seq_file *sf, void *v)
6953{
6954 struct task_group *tg = css_tg(seq_css(sf));
6955
6956 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6957 return 0;
6958}
6959
6960static ssize_t cpu_max_write(struct kernfs_open_file *of,
6961 char *buf, size_t nbytes, loff_t off)
6962{
6963 struct task_group *tg = css_tg(of_css(of));
6964 u64 period = tg_get_cfs_period(tg);
6965 u64 quota;
6966 int ret;
6967
6968 ret = cpu_period_quota_parse(buf, &period, &quota);
6969 if (!ret)
6970 ret = tg_set_cfs_bandwidth(tg, period, quota);
6971 return ret ?: nbytes;
6972}
6973#endif
6974
6975static struct cftype cpu_files[] = {
0d593634
TH
6976#ifdef CONFIG_FAIR_GROUP_SCHED
6977 {
6978 .name = "weight",
6979 .flags = CFTYPE_NOT_ON_ROOT,
6980 .read_u64 = cpu_weight_read_u64,
6981 .write_u64 = cpu_weight_write_u64,
6982 },
6983 {
6984 .name = "weight.nice",
6985 .flags = CFTYPE_NOT_ON_ROOT,
6986 .read_s64 = cpu_weight_nice_read_s64,
6987 .write_s64 = cpu_weight_nice_write_s64,
6988 },
6989#endif
6990#ifdef CONFIG_CFS_BANDWIDTH
6991 {
6992 .name = "max",
6993 .flags = CFTYPE_NOT_ON_ROOT,
6994 .seq_show = cpu_max_show,
6995 .write = cpu_max_write,
6996 },
6997#endif
6998 { } /* terminate */
6999};
7000
073219e9 7001struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7002 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7003 .css_online = cpu_cgroup_css_online,
2f5177f0 7004 .css_released = cpu_cgroup_css_released,
92fb9748 7005 .css_free = cpu_cgroup_css_free,
d41bf8c9 7006 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7007 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7008 .can_attach = cpu_cgroup_can_attach,
7009 .attach = cpu_cgroup_attach,
a1f7164c 7010 .legacy_cftypes = cpu_legacy_files,
0d593634 7011 .dfl_cftypes = cpu_files,
b38e42e9 7012 .early_init = true,
0d593634 7013 .threaded = true,
68318b8e
SV
7014};
7015
052f1dc7 7016#endif /* CONFIG_CGROUP_SCHED */
d842de87 7017
b637a328
PM
7018void dump_cpu_task(int cpu)
7019{
7020 pr_info("Task dump for CPU %d:\n", cpu);
7021 sched_show_task(cpu_curr(cpu));
7022}
ed82b8a1
AK
7023
7024/*
7025 * Nice levels are multiplicative, with a gentle 10% change for every
7026 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7027 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7028 * that remained on nice 0.
7029 *
7030 * The "10% effect" is relative and cumulative: from _any_ nice level,
7031 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7032 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7033 * If a task goes up by ~10% and another task goes down by ~10% then
7034 * the relative distance between them is ~25%.)
7035 */
7036const int sched_prio_to_weight[40] = {
7037 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7038 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7039 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7040 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7041 /* 0 */ 1024, 820, 655, 526, 423,
7042 /* 5 */ 335, 272, 215, 172, 137,
7043 /* 10 */ 110, 87, 70, 56, 45,
7044 /* 15 */ 36, 29, 23, 18, 15,
7045};
7046
7047/*
7048 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7049 *
7050 * In cases where the weight does not change often, we can use the
7051 * precalculated inverse to speed up arithmetics by turning divisions
7052 * into multiplications:
7053 */
7054const u32 sched_prio_to_wmult[40] = {
7055 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7056 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7057 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7058 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7059 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7060 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7061 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7062 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7063};
14a7405b
IM
7064
7065#undef CREATE_TRACE_POINTS