]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
sched/numa: Use select_idle_sibling() to select a destination for task_numa_move()
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
142 if (delta < 0)
143 return;
fe44d621
PZ
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
3e51f33f
PZ
146}
147
bf5c91ba
IM
148/*
149 * Debugging: various feature bits
150 */
f00b45c1 151
f00b45c1
PZ
152#define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
bf5c91ba 155const_debug unsigned int sysctl_sched_features =
391e43da 156#include "features.h"
f00b45c1
PZ
157 0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled) \
163 #name ,
164
1292531f 165static const char * const sched_feat_names[] = {
391e43da 166#include "features.h"
f00b45c1
PZ
167};
168
169#undef SCHED_FEAT
170
34f3a814 171static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 172{
f00b45c1
PZ
173 int i;
174
f8b6d1cc 175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 179 }
34f3a814 180 seq_puts(m, "\n");
f00b45c1 181
34f3a814 182 return 0;
f00b45c1
PZ
183}
184
f8b6d1cc
PZ
185#ifdef HAVE_JUMP_LABEL
186
c5905afb
IM
187#define jump_label_key__true STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
189
190#define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
c5905afb 193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
c5905afb
IM
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
203}
204
205static void sched_feat_enable(int i)
206{
c5905afb
IM
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
1a687c2e 215static int sched_feat_set(char *cmp)
f00b45c1 216{
f00b45c1 217 int i;
1a687c2e 218 int neg = 0;
f00b45c1 219
524429c3 220 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
221 neg = 1;
222 cmp += 3;
223 }
224
f8b6d1cc 225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 227 if (neg) {
f00b45c1 228 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
229 sched_feat_disable(i);
230 } else {
f00b45c1 231 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
232 sched_feat_enable(i);
233 }
f00b45c1
PZ
234 break;
235 }
236 }
237
1a687c2e
MG
238 return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244{
245 char buf[64];
246 char *cmp;
247 int i;
5cd08fbf 248 struct inode *inode;
1a687c2e
MG
249
250 if (cnt > 63)
251 cnt = 63;
252
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
255
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
258
5cd08fbf
JB
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
1a687c2e 262 i = sched_feat_set(cmp);
5cd08fbf 263 mutex_unlock(&inode->i_mutex);
f8b6d1cc 264 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
265 return -EINVAL;
266
42994724 267 *ppos += cnt;
f00b45c1
PZ
268
269 return cnt;
270}
271
34f3a814
LZ
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274 return single_open(filp, sched_feat_show, NULL);
275}
276
828c0950 277static const struct file_operations sched_feat_fops = {
34f3a814
LZ
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
f00b45c1
PZ
283};
284
285static __init int sched_init_debug(void)
286{
f00b45c1
PZ
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
289
290 return 0;
291}
292late_initcall(sched_init_debug);
f8b6d1cc 293#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 294
b82d9fdd
PZ
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
e9e9250b
PZ
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
fa85ae24 309/*
9f0c1e56 310 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
311 * default: 1s
312 */
9f0c1e56 313unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 314
029632fb 315__read_mostly int scheduler_running;
6892b75e 316
9f0c1e56
PZ
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
fa85ae24 322
0970d299 323/*
0122ec5b 324 * __task_rq_lock - lock the rq @p resides on.
b29739f9 325 */
70b97a7f 326static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
327 __acquires(rq->lock)
328{
0970d299
PZ
329 struct rq *rq;
330
0122ec5b
PZ
331 lockdep_assert_held(&p->pi_lock);
332
3a5c359a 333 for (;;) {
0970d299 334 rq = task_rq(p);
05fa785c 335 raw_spin_lock(&rq->lock);
cca26e80 336 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 337 return rq;
05fa785c 338 raw_spin_unlock(&rq->lock);
cca26e80
KT
339
340 while (unlikely(task_on_rq_migrating(p)))
341 cpu_relax();
b29739f9 342 }
b29739f9
IM
343}
344
1da177e4 345/*
0122ec5b 346 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 347 */
70b97a7f 348static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 349 __acquires(p->pi_lock)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4 353
3a5c359a 354 for (;;) {
0122ec5b 355 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 356 rq = task_rq(p);
05fa785c 357 raw_spin_lock(&rq->lock);
cca26e80 358 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 359 return rq;
0122ec5b
PZ
360 raw_spin_unlock(&rq->lock);
361 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
362
363 while (unlikely(task_on_rq_migrating(p)))
364 cpu_relax();
1da177e4 365 }
1da177e4
LT
366}
367
a9957449 368static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
369 __releases(rq->lock)
370{
05fa785c 371 raw_spin_unlock(&rq->lock);
b29739f9
IM
372}
373
0122ec5b
PZ
374static inline void
375task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 376 __releases(rq->lock)
0122ec5b 377 __releases(p->pi_lock)
1da177e4 378{
0122ec5b
PZ
379 raw_spin_unlock(&rq->lock);
380 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
381}
382
1da177e4 383/*
cc2a73b5 384 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 385 */
a9957449 386static struct rq *this_rq_lock(void)
1da177e4
LT
387 __acquires(rq->lock)
388{
70b97a7f 389 struct rq *rq;
1da177e4
LT
390
391 local_irq_disable();
392 rq = this_rq();
05fa785c 393 raw_spin_lock(&rq->lock);
1da177e4
LT
394
395 return rq;
396}
397
8f4d37ec
PZ
398#ifdef CONFIG_SCHED_HRTICK
399/*
400 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 401 */
8f4d37ec 402
8f4d37ec
PZ
403static void hrtick_clear(struct rq *rq)
404{
405 if (hrtimer_active(&rq->hrtick_timer))
406 hrtimer_cancel(&rq->hrtick_timer);
407}
408
8f4d37ec
PZ
409/*
410 * High-resolution timer tick.
411 * Runs from hardirq context with interrupts disabled.
412 */
413static enum hrtimer_restart hrtick(struct hrtimer *timer)
414{
415 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
416
417 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
418
05fa785c 419 raw_spin_lock(&rq->lock);
3e51f33f 420 update_rq_clock(rq);
8f4d37ec 421 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 422 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
423
424 return HRTIMER_NORESTART;
425}
426
95e904c7 427#ifdef CONFIG_SMP
971ee28c
PZ
428
429static int __hrtick_restart(struct rq *rq)
430{
431 struct hrtimer *timer = &rq->hrtick_timer;
432 ktime_t time = hrtimer_get_softexpires(timer);
433
434 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
435}
436
31656519
PZ
437/*
438 * called from hardirq (IPI) context
439 */
440static void __hrtick_start(void *arg)
b328ca18 441{
31656519 442 struct rq *rq = arg;
b328ca18 443
05fa785c 444 raw_spin_lock(&rq->lock);
971ee28c 445 __hrtick_restart(rq);
31656519 446 rq->hrtick_csd_pending = 0;
05fa785c 447 raw_spin_unlock(&rq->lock);
b328ca18
PZ
448}
449
31656519
PZ
450/*
451 * Called to set the hrtick timer state.
452 *
453 * called with rq->lock held and irqs disabled
454 */
029632fb 455void hrtick_start(struct rq *rq, u64 delay)
b328ca18 456{
31656519 457 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 458 ktime_t time;
459 s64 delta;
460
461 /*
462 * Don't schedule slices shorter than 10000ns, that just
463 * doesn't make sense and can cause timer DoS.
464 */
465 delta = max_t(s64, delay, 10000LL);
466 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 467
cc584b21 468 hrtimer_set_expires(timer, time);
31656519
PZ
469
470 if (rq == this_rq()) {
971ee28c 471 __hrtick_restart(rq);
31656519 472 } else if (!rq->hrtick_csd_pending) {
c46fff2a 473 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
474 rq->hrtick_csd_pending = 1;
475 }
b328ca18
PZ
476}
477
478static int
479hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
480{
481 int cpu = (int)(long)hcpu;
482
483 switch (action) {
484 case CPU_UP_CANCELED:
485 case CPU_UP_CANCELED_FROZEN:
486 case CPU_DOWN_PREPARE:
487 case CPU_DOWN_PREPARE_FROZEN:
488 case CPU_DEAD:
489 case CPU_DEAD_FROZEN:
31656519 490 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
491 return NOTIFY_OK;
492 }
493
494 return NOTIFY_DONE;
495}
496
fa748203 497static __init void init_hrtick(void)
b328ca18
PZ
498{
499 hotcpu_notifier(hotplug_hrtick, 0);
500}
31656519
PZ
501#else
502/*
503 * Called to set the hrtick timer state.
504 *
505 * called with rq->lock held and irqs disabled
506 */
029632fb 507void hrtick_start(struct rq *rq, u64 delay)
31656519 508{
7f1e2ca9 509 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 510 HRTIMER_MODE_REL_PINNED, 0);
31656519 511}
b328ca18 512
006c75f1 513static inline void init_hrtick(void)
8f4d37ec 514{
8f4d37ec 515}
31656519 516#endif /* CONFIG_SMP */
8f4d37ec 517
31656519 518static void init_rq_hrtick(struct rq *rq)
8f4d37ec 519{
31656519
PZ
520#ifdef CONFIG_SMP
521 rq->hrtick_csd_pending = 0;
8f4d37ec 522
31656519
PZ
523 rq->hrtick_csd.flags = 0;
524 rq->hrtick_csd.func = __hrtick_start;
525 rq->hrtick_csd.info = rq;
526#endif
8f4d37ec 527
31656519
PZ
528 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
529 rq->hrtick_timer.function = hrtick;
8f4d37ec 530}
006c75f1 531#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
532static inline void hrtick_clear(struct rq *rq)
533{
534}
535
8f4d37ec
PZ
536static inline void init_rq_hrtick(struct rq *rq)
537{
538}
539
b328ca18
PZ
540static inline void init_hrtick(void)
541{
542}
006c75f1 543#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 544
fd99f91a
PZ
545/*
546 * cmpxchg based fetch_or, macro so it works for different integer types
547 */
548#define fetch_or(ptr, val) \
549({ typeof(*(ptr)) __old, __val = *(ptr); \
550 for (;;) { \
551 __old = cmpxchg((ptr), __val, __val | (val)); \
552 if (__old == __val) \
553 break; \
554 __val = __old; \
555 } \
556 __old; \
557})
558
e3baac47 559#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
560/*
561 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
562 * this avoids any races wrt polling state changes and thereby avoids
563 * spurious IPIs.
564 */
565static bool set_nr_and_not_polling(struct task_struct *p)
566{
567 struct thread_info *ti = task_thread_info(p);
568 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
569}
e3baac47
PZ
570
571/*
572 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
573 *
574 * If this returns true, then the idle task promises to call
575 * sched_ttwu_pending() and reschedule soon.
576 */
577static bool set_nr_if_polling(struct task_struct *p)
578{
579 struct thread_info *ti = task_thread_info(p);
580 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
581
582 for (;;) {
583 if (!(val & _TIF_POLLING_NRFLAG))
584 return false;
585 if (val & _TIF_NEED_RESCHED)
586 return true;
587 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
588 if (old == val)
589 break;
590 val = old;
591 }
592 return true;
593}
594
fd99f91a
PZ
595#else
596static bool set_nr_and_not_polling(struct task_struct *p)
597{
598 set_tsk_need_resched(p);
599 return true;
600}
e3baac47
PZ
601
602#ifdef CONFIG_SMP
603static bool set_nr_if_polling(struct task_struct *p)
604{
605 return false;
606}
607#endif
fd99f91a
PZ
608#endif
609
c24d20db 610/*
8875125e 611 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
612 *
613 * On UP this means the setting of the need_resched flag, on SMP it
614 * might also involve a cross-CPU call to trigger the scheduler on
615 * the target CPU.
616 */
8875125e 617void resched_curr(struct rq *rq)
c24d20db 618{
8875125e 619 struct task_struct *curr = rq->curr;
c24d20db
IM
620 int cpu;
621
8875125e 622 lockdep_assert_held(&rq->lock);
c24d20db 623
8875125e 624 if (test_tsk_need_resched(curr))
c24d20db
IM
625 return;
626
8875125e 627 cpu = cpu_of(rq);
fd99f91a 628
f27dde8d 629 if (cpu == smp_processor_id()) {
8875125e 630 set_tsk_need_resched(curr);
f27dde8d 631 set_preempt_need_resched();
c24d20db 632 return;
f27dde8d 633 }
c24d20db 634
8875125e 635 if (set_nr_and_not_polling(curr))
c24d20db 636 smp_send_reschedule(cpu);
dfc68f29
AL
637 else
638 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
639}
640
029632fb 641void resched_cpu(int cpu)
c24d20db
IM
642{
643 struct rq *rq = cpu_rq(cpu);
644 unsigned long flags;
645
05fa785c 646 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 647 return;
8875125e 648 resched_curr(rq);
05fa785c 649 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 650}
06d8308c 651
b021fe3e 652#ifdef CONFIG_SMP
3451d024 653#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
654/*
655 * In the semi idle case, use the nearest busy cpu for migrating timers
656 * from an idle cpu. This is good for power-savings.
657 *
658 * We don't do similar optimization for completely idle system, as
659 * selecting an idle cpu will add more delays to the timers than intended
660 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
661 */
6201b4d6 662int get_nohz_timer_target(int pinned)
83cd4fe2
VP
663{
664 int cpu = smp_processor_id();
665 int i;
666 struct sched_domain *sd;
667
6201b4d6
VK
668 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
669 return cpu;
670
057f3fad 671 rcu_read_lock();
83cd4fe2 672 for_each_domain(cpu, sd) {
057f3fad
PZ
673 for_each_cpu(i, sched_domain_span(sd)) {
674 if (!idle_cpu(i)) {
675 cpu = i;
676 goto unlock;
677 }
678 }
83cd4fe2 679 }
057f3fad
PZ
680unlock:
681 rcu_read_unlock();
83cd4fe2
VP
682 return cpu;
683}
06d8308c
TG
684/*
685 * When add_timer_on() enqueues a timer into the timer wheel of an
686 * idle CPU then this timer might expire before the next timer event
687 * which is scheduled to wake up that CPU. In case of a completely
688 * idle system the next event might even be infinite time into the
689 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
690 * leaves the inner idle loop so the newly added timer is taken into
691 * account when the CPU goes back to idle and evaluates the timer
692 * wheel for the next timer event.
693 */
1c20091e 694static void wake_up_idle_cpu(int cpu)
06d8308c
TG
695{
696 struct rq *rq = cpu_rq(cpu);
697
698 if (cpu == smp_processor_id())
699 return;
700
67b9ca70 701 if (set_nr_and_not_polling(rq->idle))
06d8308c 702 smp_send_reschedule(cpu);
dfc68f29
AL
703 else
704 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
705}
706
c5bfece2 707static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 708{
53c5fa16
FW
709 /*
710 * We just need the target to call irq_exit() and re-evaluate
711 * the next tick. The nohz full kick at least implies that.
712 * If needed we can still optimize that later with an
713 * empty IRQ.
714 */
c5bfece2 715 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
716 if (cpu != smp_processor_id() ||
717 tick_nohz_tick_stopped())
53c5fa16 718 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
719 return true;
720 }
721
722 return false;
723}
724
725void wake_up_nohz_cpu(int cpu)
726{
c5bfece2 727 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
728 wake_up_idle_cpu(cpu);
729}
730
ca38062e 731static inline bool got_nohz_idle_kick(void)
45bf76df 732{
1c792db7 733 int cpu = smp_processor_id();
873b4c65
VG
734
735 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
736 return false;
737
738 if (idle_cpu(cpu) && !need_resched())
739 return true;
740
741 /*
742 * We can't run Idle Load Balance on this CPU for this time so we
743 * cancel it and clear NOHZ_BALANCE_KICK
744 */
745 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
746 return false;
45bf76df
IM
747}
748
3451d024 749#else /* CONFIG_NO_HZ_COMMON */
45bf76df 750
ca38062e 751static inline bool got_nohz_idle_kick(void)
2069dd75 752{
ca38062e 753 return false;
2069dd75
PZ
754}
755
3451d024 756#endif /* CONFIG_NO_HZ_COMMON */
d842de87 757
ce831b38
FW
758#ifdef CONFIG_NO_HZ_FULL
759bool sched_can_stop_tick(void)
760{
3882ec64
FW
761 /*
762 * More than one running task need preemption.
763 * nr_running update is assumed to be visible
764 * after IPI is sent from wakers.
765 */
541b8264
VK
766 if (this_rq()->nr_running > 1)
767 return false;
ce831b38 768
541b8264 769 return true;
ce831b38
FW
770}
771#endif /* CONFIG_NO_HZ_FULL */
d842de87 772
029632fb 773void sched_avg_update(struct rq *rq)
18d95a28 774{
e9e9250b
PZ
775 s64 period = sched_avg_period();
776
78becc27 777 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
778 /*
779 * Inline assembly required to prevent the compiler
780 * optimising this loop into a divmod call.
781 * See __iter_div_u64_rem() for another example of this.
782 */
783 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
784 rq->age_stamp += period;
785 rq->rt_avg /= 2;
786 }
18d95a28
PZ
787}
788
6d6bc0ad 789#endif /* CONFIG_SMP */
18d95a28 790
a790de99
PT
791#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
792 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 793/*
8277434e
PT
794 * Iterate task_group tree rooted at *from, calling @down when first entering a
795 * node and @up when leaving it for the final time.
796 *
797 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 798 */
029632fb 799int walk_tg_tree_from(struct task_group *from,
8277434e 800 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
801{
802 struct task_group *parent, *child;
eb755805 803 int ret;
c09595f6 804
8277434e
PT
805 parent = from;
806
c09595f6 807down:
eb755805
PZ
808 ret = (*down)(parent, data);
809 if (ret)
8277434e 810 goto out;
c09595f6
PZ
811 list_for_each_entry_rcu(child, &parent->children, siblings) {
812 parent = child;
813 goto down;
814
815up:
816 continue;
817 }
eb755805 818 ret = (*up)(parent, data);
8277434e
PT
819 if (ret || parent == from)
820 goto out;
c09595f6
PZ
821
822 child = parent;
823 parent = parent->parent;
824 if (parent)
825 goto up;
8277434e 826out:
eb755805 827 return ret;
c09595f6
PZ
828}
829
029632fb 830int tg_nop(struct task_group *tg, void *data)
eb755805 831{
e2b245f8 832 return 0;
eb755805 833}
18d95a28
PZ
834#endif
835
45bf76df
IM
836static void set_load_weight(struct task_struct *p)
837{
f05998d4
NR
838 int prio = p->static_prio - MAX_RT_PRIO;
839 struct load_weight *load = &p->se.load;
840
dd41f596
IM
841 /*
842 * SCHED_IDLE tasks get minimal weight:
843 */
844 if (p->policy == SCHED_IDLE) {
c8b28116 845 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 846 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
847 return;
848 }
71f8bd46 849
c8b28116 850 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 851 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
852}
853
371fd7e7 854static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 855{
a64692a3 856 update_rq_clock(rq);
43148951 857 sched_info_queued(rq, p);
371fd7e7 858 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
859}
860
371fd7e7 861static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 862{
a64692a3 863 update_rq_clock(rq);
43148951 864 sched_info_dequeued(rq, p);
371fd7e7 865 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
866}
867
029632fb 868void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
869{
870 if (task_contributes_to_load(p))
871 rq->nr_uninterruptible--;
872
371fd7e7 873 enqueue_task(rq, p, flags);
1e3c88bd
PZ
874}
875
029632fb 876void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
877{
878 if (task_contributes_to_load(p))
879 rq->nr_uninterruptible++;
880
371fd7e7 881 dequeue_task(rq, p, flags);
1e3c88bd
PZ
882}
883
fe44d621 884static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 885{
095c0aa8
GC
886/*
887 * In theory, the compile should just see 0 here, and optimize out the call
888 * to sched_rt_avg_update. But I don't trust it...
889 */
890#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
891 s64 steal = 0, irq_delta = 0;
892#endif
893#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 894 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
895
896 /*
897 * Since irq_time is only updated on {soft,}irq_exit, we might run into
898 * this case when a previous update_rq_clock() happened inside a
899 * {soft,}irq region.
900 *
901 * When this happens, we stop ->clock_task and only update the
902 * prev_irq_time stamp to account for the part that fit, so that a next
903 * update will consume the rest. This ensures ->clock_task is
904 * monotonic.
905 *
906 * It does however cause some slight miss-attribution of {soft,}irq
907 * time, a more accurate solution would be to update the irq_time using
908 * the current rq->clock timestamp, except that would require using
909 * atomic ops.
910 */
911 if (irq_delta > delta)
912 irq_delta = delta;
913
914 rq->prev_irq_time += irq_delta;
915 delta -= irq_delta;
095c0aa8
GC
916#endif
917#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 918 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
919 steal = paravirt_steal_clock(cpu_of(rq));
920 steal -= rq->prev_steal_time_rq;
921
922 if (unlikely(steal > delta))
923 steal = delta;
924
095c0aa8 925 rq->prev_steal_time_rq += steal;
095c0aa8
GC
926 delta -= steal;
927 }
928#endif
929
fe44d621
PZ
930 rq->clock_task += delta;
931
095c0aa8 932#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 933 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
934 sched_rt_avg_update(rq, irq_delta + steal);
935#endif
aa483808
VP
936}
937
34f971f6
PZ
938void sched_set_stop_task(int cpu, struct task_struct *stop)
939{
940 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
941 struct task_struct *old_stop = cpu_rq(cpu)->stop;
942
943 if (stop) {
944 /*
945 * Make it appear like a SCHED_FIFO task, its something
946 * userspace knows about and won't get confused about.
947 *
948 * Also, it will make PI more or less work without too
949 * much confusion -- but then, stop work should not
950 * rely on PI working anyway.
951 */
952 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
953
954 stop->sched_class = &stop_sched_class;
955 }
956
957 cpu_rq(cpu)->stop = stop;
958
959 if (old_stop) {
960 /*
961 * Reset it back to a normal scheduling class so that
962 * it can die in pieces.
963 */
964 old_stop->sched_class = &rt_sched_class;
965 }
966}
967
14531189 968/*
dd41f596 969 * __normal_prio - return the priority that is based on the static prio
14531189 970 */
14531189
IM
971static inline int __normal_prio(struct task_struct *p)
972{
dd41f596 973 return p->static_prio;
14531189
IM
974}
975
b29739f9
IM
976/*
977 * Calculate the expected normal priority: i.e. priority
978 * without taking RT-inheritance into account. Might be
979 * boosted by interactivity modifiers. Changes upon fork,
980 * setprio syscalls, and whenever the interactivity
981 * estimator recalculates.
982 */
36c8b586 983static inline int normal_prio(struct task_struct *p)
b29739f9
IM
984{
985 int prio;
986
aab03e05
DF
987 if (task_has_dl_policy(p))
988 prio = MAX_DL_PRIO-1;
989 else if (task_has_rt_policy(p))
b29739f9
IM
990 prio = MAX_RT_PRIO-1 - p->rt_priority;
991 else
992 prio = __normal_prio(p);
993 return prio;
994}
995
996/*
997 * Calculate the current priority, i.e. the priority
998 * taken into account by the scheduler. This value might
999 * be boosted by RT tasks, or might be boosted by
1000 * interactivity modifiers. Will be RT if the task got
1001 * RT-boosted. If not then it returns p->normal_prio.
1002 */
36c8b586 1003static int effective_prio(struct task_struct *p)
b29739f9
IM
1004{
1005 p->normal_prio = normal_prio(p);
1006 /*
1007 * If we are RT tasks or we were boosted to RT priority,
1008 * keep the priority unchanged. Otherwise, update priority
1009 * to the normal priority:
1010 */
1011 if (!rt_prio(p->prio))
1012 return p->normal_prio;
1013 return p->prio;
1014}
1015
1da177e4
LT
1016/**
1017 * task_curr - is this task currently executing on a CPU?
1018 * @p: the task in question.
e69f6186
YB
1019 *
1020 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1021 */
36c8b586 1022inline int task_curr(const struct task_struct *p)
1da177e4
LT
1023{
1024 return cpu_curr(task_cpu(p)) == p;
1025}
1026
cb469845
SR
1027static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1028 const struct sched_class *prev_class,
da7a735e 1029 int oldprio)
cb469845
SR
1030{
1031 if (prev_class != p->sched_class) {
1032 if (prev_class->switched_from)
da7a735e
PZ
1033 prev_class->switched_from(rq, p);
1034 p->sched_class->switched_to(rq, p);
2d3d891d 1035 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1036 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1037}
1038
029632fb 1039void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1040{
1041 const struct sched_class *class;
1042
1043 if (p->sched_class == rq->curr->sched_class) {
1044 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1045 } else {
1046 for_each_class(class) {
1047 if (class == rq->curr->sched_class)
1048 break;
1049 if (class == p->sched_class) {
8875125e 1050 resched_curr(rq);
1e5a7405
PZ
1051 break;
1052 }
1053 }
1054 }
1055
1056 /*
1057 * A queue event has occurred, and we're going to schedule. In
1058 * this case, we can save a useless back to back clock update.
1059 */
da0c1e65 1060 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1061 rq->skip_clock_update = 1;
1062}
1063
1da177e4 1064#ifdef CONFIG_SMP
dd41f596 1065void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1066{
e2912009
PZ
1067#ifdef CONFIG_SCHED_DEBUG
1068 /*
1069 * We should never call set_task_cpu() on a blocked task,
1070 * ttwu() will sort out the placement.
1071 */
077614ee 1072 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1073 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1074
1075#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1076 /*
1077 * The caller should hold either p->pi_lock or rq->lock, when changing
1078 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1079 *
1080 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1081 * see task_group().
6c6c54e1
PZ
1082 *
1083 * Furthermore, all task_rq users should acquire both locks, see
1084 * task_rq_lock().
1085 */
0122ec5b
PZ
1086 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1087 lockdep_is_held(&task_rq(p)->lock)));
1088#endif
e2912009
PZ
1089#endif
1090
de1d7286 1091 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1092
0c69774e 1093 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1094 if (p->sched_class->migrate_task_rq)
1095 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1096 p->se.nr_migrations++;
a8b0ca17 1097 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1098 }
dd41f596
IM
1099
1100 __set_task_cpu(p, new_cpu);
c65cc870
IM
1101}
1102
ac66f547
PZ
1103static void __migrate_swap_task(struct task_struct *p, int cpu)
1104{
da0c1e65 1105 if (task_on_rq_queued(p)) {
ac66f547
PZ
1106 struct rq *src_rq, *dst_rq;
1107
1108 src_rq = task_rq(p);
1109 dst_rq = cpu_rq(cpu);
1110
1111 deactivate_task(src_rq, p, 0);
1112 set_task_cpu(p, cpu);
1113 activate_task(dst_rq, p, 0);
1114 check_preempt_curr(dst_rq, p, 0);
1115 } else {
1116 /*
1117 * Task isn't running anymore; make it appear like we migrated
1118 * it before it went to sleep. This means on wakeup we make the
1119 * previous cpu our targer instead of where it really is.
1120 */
1121 p->wake_cpu = cpu;
1122 }
1123}
1124
1125struct migration_swap_arg {
1126 struct task_struct *src_task, *dst_task;
1127 int src_cpu, dst_cpu;
1128};
1129
1130static int migrate_swap_stop(void *data)
1131{
1132 struct migration_swap_arg *arg = data;
1133 struct rq *src_rq, *dst_rq;
1134 int ret = -EAGAIN;
1135
1136 src_rq = cpu_rq(arg->src_cpu);
1137 dst_rq = cpu_rq(arg->dst_cpu);
1138
74602315
PZ
1139 double_raw_lock(&arg->src_task->pi_lock,
1140 &arg->dst_task->pi_lock);
ac66f547
PZ
1141 double_rq_lock(src_rq, dst_rq);
1142 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1143 goto unlock;
1144
1145 if (task_cpu(arg->src_task) != arg->src_cpu)
1146 goto unlock;
1147
1148 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1149 goto unlock;
1150
1151 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1152 goto unlock;
1153
1154 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1155 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1156
1157 ret = 0;
1158
1159unlock:
1160 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1161 raw_spin_unlock(&arg->dst_task->pi_lock);
1162 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1163
1164 return ret;
1165}
1166
1167/*
1168 * Cross migrate two tasks
1169 */
1170int migrate_swap(struct task_struct *cur, struct task_struct *p)
1171{
1172 struct migration_swap_arg arg;
1173 int ret = -EINVAL;
1174
ac66f547
PZ
1175 arg = (struct migration_swap_arg){
1176 .src_task = cur,
1177 .src_cpu = task_cpu(cur),
1178 .dst_task = p,
1179 .dst_cpu = task_cpu(p),
1180 };
1181
1182 if (arg.src_cpu == arg.dst_cpu)
1183 goto out;
1184
6acce3ef
PZ
1185 /*
1186 * These three tests are all lockless; this is OK since all of them
1187 * will be re-checked with proper locks held further down the line.
1188 */
ac66f547
PZ
1189 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1190 goto out;
1191
1192 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1193 goto out;
1194
1195 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1196 goto out;
1197
286549dc 1198 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1199 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1200
1201out:
ac66f547
PZ
1202 return ret;
1203}
1204
969c7921 1205struct migration_arg {
36c8b586 1206 struct task_struct *task;
1da177e4 1207 int dest_cpu;
70b97a7f 1208};
1da177e4 1209
969c7921
TH
1210static int migration_cpu_stop(void *data);
1211
1da177e4
LT
1212/*
1213 * wait_task_inactive - wait for a thread to unschedule.
1214 *
85ba2d86
RM
1215 * If @match_state is nonzero, it's the @p->state value just checked and
1216 * not expected to change. If it changes, i.e. @p might have woken up,
1217 * then return zero. When we succeed in waiting for @p to be off its CPU,
1218 * we return a positive number (its total switch count). If a second call
1219 * a short while later returns the same number, the caller can be sure that
1220 * @p has remained unscheduled the whole time.
1221 *
1da177e4
LT
1222 * The caller must ensure that the task *will* unschedule sometime soon,
1223 * else this function might spin for a *long* time. This function can't
1224 * be called with interrupts off, or it may introduce deadlock with
1225 * smp_call_function() if an IPI is sent by the same process we are
1226 * waiting to become inactive.
1227 */
85ba2d86 1228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1229{
1230 unsigned long flags;
da0c1e65 1231 int running, queued;
85ba2d86 1232 unsigned long ncsw;
70b97a7f 1233 struct rq *rq;
1da177e4 1234
3a5c359a
AK
1235 for (;;) {
1236 /*
1237 * We do the initial early heuristics without holding
1238 * any task-queue locks at all. We'll only try to get
1239 * the runqueue lock when things look like they will
1240 * work out!
1241 */
1242 rq = task_rq(p);
fa490cfd 1243
3a5c359a
AK
1244 /*
1245 * If the task is actively running on another CPU
1246 * still, just relax and busy-wait without holding
1247 * any locks.
1248 *
1249 * NOTE! Since we don't hold any locks, it's not
1250 * even sure that "rq" stays as the right runqueue!
1251 * But we don't care, since "task_running()" will
1252 * return false if the runqueue has changed and p
1253 * is actually now running somewhere else!
1254 */
85ba2d86
RM
1255 while (task_running(rq, p)) {
1256 if (match_state && unlikely(p->state != match_state))
1257 return 0;
3a5c359a 1258 cpu_relax();
85ba2d86 1259 }
fa490cfd 1260
3a5c359a
AK
1261 /*
1262 * Ok, time to look more closely! We need the rq
1263 * lock now, to be *sure*. If we're wrong, we'll
1264 * just go back and repeat.
1265 */
1266 rq = task_rq_lock(p, &flags);
27a9da65 1267 trace_sched_wait_task(p);
3a5c359a 1268 running = task_running(rq, p);
da0c1e65 1269 queued = task_on_rq_queued(p);
85ba2d86 1270 ncsw = 0;
f31e11d8 1271 if (!match_state || p->state == match_state)
93dcf55f 1272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1273 task_rq_unlock(rq, p, &flags);
fa490cfd 1274
85ba2d86
RM
1275 /*
1276 * If it changed from the expected state, bail out now.
1277 */
1278 if (unlikely(!ncsw))
1279 break;
1280
3a5c359a
AK
1281 /*
1282 * Was it really running after all now that we
1283 * checked with the proper locks actually held?
1284 *
1285 * Oops. Go back and try again..
1286 */
1287 if (unlikely(running)) {
1288 cpu_relax();
1289 continue;
1290 }
fa490cfd 1291
3a5c359a
AK
1292 /*
1293 * It's not enough that it's not actively running,
1294 * it must be off the runqueue _entirely_, and not
1295 * preempted!
1296 *
80dd99b3 1297 * So if it was still runnable (but just not actively
3a5c359a
AK
1298 * running right now), it's preempted, and we should
1299 * yield - it could be a while.
1300 */
da0c1e65 1301 if (unlikely(queued)) {
8eb90c30
TG
1302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1303
1304 set_current_state(TASK_UNINTERRUPTIBLE);
1305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1306 continue;
1307 }
fa490cfd 1308
3a5c359a
AK
1309 /*
1310 * Ahh, all good. It wasn't running, and it wasn't
1311 * runnable, which means that it will never become
1312 * running in the future either. We're all done!
1313 */
1314 break;
1315 }
85ba2d86
RM
1316
1317 return ncsw;
1da177e4
LT
1318}
1319
1320/***
1321 * kick_process - kick a running thread to enter/exit the kernel
1322 * @p: the to-be-kicked thread
1323 *
1324 * Cause a process which is running on another CPU to enter
1325 * kernel-mode, without any delay. (to get signals handled.)
1326 *
25985edc 1327 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1328 * because all it wants to ensure is that the remote task enters
1329 * the kernel. If the IPI races and the task has been migrated
1330 * to another CPU then no harm is done and the purpose has been
1331 * achieved as well.
1332 */
36c8b586 1333void kick_process(struct task_struct *p)
1da177e4
LT
1334{
1335 int cpu;
1336
1337 preempt_disable();
1338 cpu = task_cpu(p);
1339 if ((cpu != smp_processor_id()) && task_curr(p))
1340 smp_send_reschedule(cpu);
1341 preempt_enable();
1342}
b43e3521 1343EXPORT_SYMBOL_GPL(kick_process);
476d139c 1344#endif /* CONFIG_SMP */
1da177e4 1345
970b13ba 1346#ifdef CONFIG_SMP
30da688e 1347/*
013fdb80 1348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1349 */
5da9a0fb
PZ
1350static int select_fallback_rq(int cpu, struct task_struct *p)
1351{
aa00d89c
TC
1352 int nid = cpu_to_node(cpu);
1353 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1354 enum { cpuset, possible, fail } state = cpuset;
1355 int dest_cpu;
5da9a0fb 1356
aa00d89c
TC
1357 /*
1358 * If the node that the cpu is on has been offlined, cpu_to_node()
1359 * will return -1. There is no cpu on the node, and we should
1360 * select the cpu on the other node.
1361 */
1362 if (nid != -1) {
1363 nodemask = cpumask_of_node(nid);
1364
1365 /* Look for allowed, online CPU in same node. */
1366 for_each_cpu(dest_cpu, nodemask) {
1367 if (!cpu_online(dest_cpu))
1368 continue;
1369 if (!cpu_active(dest_cpu))
1370 continue;
1371 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1372 return dest_cpu;
1373 }
2baab4e9 1374 }
5da9a0fb 1375
2baab4e9
PZ
1376 for (;;) {
1377 /* Any allowed, online CPU? */
e3831edd 1378 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1379 if (!cpu_online(dest_cpu))
1380 continue;
1381 if (!cpu_active(dest_cpu))
1382 continue;
1383 goto out;
1384 }
5da9a0fb 1385
2baab4e9
PZ
1386 switch (state) {
1387 case cpuset:
1388 /* No more Mr. Nice Guy. */
1389 cpuset_cpus_allowed_fallback(p);
1390 state = possible;
1391 break;
1392
1393 case possible:
1394 do_set_cpus_allowed(p, cpu_possible_mask);
1395 state = fail;
1396 break;
1397
1398 case fail:
1399 BUG();
1400 break;
1401 }
1402 }
1403
1404out:
1405 if (state != cpuset) {
1406 /*
1407 * Don't tell them about moving exiting tasks or
1408 * kernel threads (both mm NULL), since they never
1409 * leave kernel.
1410 */
1411 if (p->mm && printk_ratelimit()) {
aac74dc4 1412 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1413 task_pid_nr(p), p->comm, cpu);
1414 }
5da9a0fb
PZ
1415 }
1416
1417 return dest_cpu;
1418}
1419
e2912009 1420/*
013fdb80 1421 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1422 */
970b13ba 1423static inline
ac66f547 1424int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1425{
ac66f547 1426 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1427
1428 /*
1429 * In order not to call set_task_cpu() on a blocking task we need
1430 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1431 * cpu.
1432 *
1433 * Since this is common to all placement strategies, this lives here.
1434 *
1435 * [ this allows ->select_task() to simply return task_cpu(p) and
1436 * not worry about this generic constraint ]
1437 */
fa17b507 1438 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1439 !cpu_online(cpu)))
5da9a0fb 1440 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1441
1442 return cpu;
970b13ba 1443}
09a40af5
MG
1444
1445static void update_avg(u64 *avg, u64 sample)
1446{
1447 s64 diff = sample - *avg;
1448 *avg += diff >> 3;
1449}
970b13ba
PZ
1450#endif
1451
d7c01d27 1452static void
b84cb5df 1453ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1454{
d7c01d27 1455#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1456 struct rq *rq = this_rq();
1457
d7c01d27
PZ
1458#ifdef CONFIG_SMP
1459 int this_cpu = smp_processor_id();
1460
1461 if (cpu == this_cpu) {
1462 schedstat_inc(rq, ttwu_local);
1463 schedstat_inc(p, se.statistics.nr_wakeups_local);
1464 } else {
1465 struct sched_domain *sd;
1466
1467 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1468 rcu_read_lock();
d7c01d27
PZ
1469 for_each_domain(this_cpu, sd) {
1470 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1471 schedstat_inc(sd, ttwu_wake_remote);
1472 break;
1473 }
1474 }
057f3fad 1475 rcu_read_unlock();
d7c01d27 1476 }
f339b9dc
PZ
1477
1478 if (wake_flags & WF_MIGRATED)
1479 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1480
d7c01d27
PZ
1481#endif /* CONFIG_SMP */
1482
1483 schedstat_inc(rq, ttwu_count);
9ed3811a 1484 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1485
1486 if (wake_flags & WF_SYNC)
9ed3811a 1487 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1488
d7c01d27
PZ
1489#endif /* CONFIG_SCHEDSTATS */
1490}
1491
1492static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1493{
9ed3811a 1494 activate_task(rq, p, en_flags);
da0c1e65 1495 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1496
1497 /* if a worker is waking up, notify workqueue */
1498 if (p->flags & PF_WQ_WORKER)
1499 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1500}
1501
23f41eeb
PZ
1502/*
1503 * Mark the task runnable and perform wakeup-preemption.
1504 */
89363381 1505static void
23f41eeb 1506ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1507{
9ed3811a 1508 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1509 trace_sched_wakeup(p, true);
9ed3811a
TH
1510
1511 p->state = TASK_RUNNING;
1512#ifdef CONFIG_SMP
1513 if (p->sched_class->task_woken)
1514 p->sched_class->task_woken(rq, p);
1515
e69c6341 1516 if (rq->idle_stamp) {
78becc27 1517 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1518 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1519
abfafa54
JL
1520 update_avg(&rq->avg_idle, delta);
1521
1522 if (rq->avg_idle > max)
9ed3811a 1523 rq->avg_idle = max;
abfafa54 1524
9ed3811a
TH
1525 rq->idle_stamp = 0;
1526 }
1527#endif
1528}
1529
c05fbafb
PZ
1530static void
1531ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1532{
1533#ifdef CONFIG_SMP
1534 if (p->sched_contributes_to_load)
1535 rq->nr_uninterruptible--;
1536#endif
1537
1538 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1539 ttwu_do_wakeup(rq, p, wake_flags);
1540}
1541
1542/*
1543 * Called in case the task @p isn't fully descheduled from its runqueue,
1544 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1545 * since all we need to do is flip p->state to TASK_RUNNING, since
1546 * the task is still ->on_rq.
1547 */
1548static int ttwu_remote(struct task_struct *p, int wake_flags)
1549{
1550 struct rq *rq;
1551 int ret = 0;
1552
1553 rq = __task_rq_lock(p);
da0c1e65 1554 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1555 /* check_preempt_curr() may use rq clock */
1556 update_rq_clock(rq);
c05fbafb
PZ
1557 ttwu_do_wakeup(rq, p, wake_flags);
1558 ret = 1;
1559 }
1560 __task_rq_unlock(rq);
1561
1562 return ret;
1563}
1564
317f3941 1565#ifdef CONFIG_SMP
e3baac47 1566void sched_ttwu_pending(void)
317f3941
PZ
1567{
1568 struct rq *rq = this_rq();
fa14ff4a
PZ
1569 struct llist_node *llist = llist_del_all(&rq->wake_list);
1570 struct task_struct *p;
e3baac47 1571 unsigned long flags;
317f3941 1572
e3baac47
PZ
1573 if (!llist)
1574 return;
1575
1576 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1577
fa14ff4a
PZ
1578 while (llist) {
1579 p = llist_entry(llist, struct task_struct, wake_entry);
1580 llist = llist_next(llist);
317f3941
PZ
1581 ttwu_do_activate(rq, p, 0);
1582 }
1583
e3baac47 1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1585}
1586
1587void scheduler_ipi(void)
1588{
f27dde8d
PZ
1589 /*
1590 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1591 * TIF_NEED_RESCHED remotely (for the first time) will also send
1592 * this IPI.
1593 */
8cb75e0c 1594 preempt_fold_need_resched();
f27dde8d 1595
fd2ac4f4 1596 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1597 return;
1598
1599 /*
1600 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1601 * traditionally all their work was done from the interrupt return
1602 * path. Now that we actually do some work, we need to make sure
1603 * we do call them.
1604 *
1605 * Some archs already do call them, luckily irq_enter/exit nest
1606 * properly.
1607 *
1608 * Arguably we should visit all archs and update all handlers,
1609 * however a fair share of IPIs are still resched only so this would
1610 * somewhat pessimize the simple resched case.
1611 */
1612 irq_enter();
fa14ff4a 1613 sched_ttwu_pending();
ca38062e
SS
1614
1615 /*
1616 * Check if someone kicked us for doing the nohz idle load balance.
1617 */
873b4c65 1618 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1619 this_rq()->idle_balance = 1;
ca38062e 1620 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1621 }
c5d753a5 1622 irq_exit();
317f3941
PZ
1623}
1624
1625static void ttwu_queue_remote(struct task_struct *p, int cpu)
1626{
e3baac47
PZ
1627 struct rq *rq = cpu_rq(cpu);
1628
1629 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1630 if (!set_nr_if_polling(rq->idle))
1631 smp_send_reschedule(cpu);
1632 else
1633 trace_sched_wake_idle_without_ipi(cpu);
1634 }
317f3941 1635}
d6aa8f85 1636
39be3501 1637bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1638{
1639 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1640}
d6aa8f85 1641#endif /* CONFIG_SMP */
317f3941 1642
c05fbafb
PZ
1643static void ttwu_queue(struct task_struct *p, int cpu)
1644{
1645 struct rq *rq = cpu_rq(cpu);
1646
17d9f311 1647#if defined(CONFIG_SMP)
39be3501 1648 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1649 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1650 ttwu_queue_remote(p, cpu);
1651 return;
1652 }
1653#endif
1654
c05fbafb
PZ
1655 raw_spin_lock(&rq->lock);
1656 ttwu_do_activate(rq, p, 0);
1657 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1658}
1659
1660/**
1da177e4 1661 * try_to_wake_up - wake up a thread
9ed3811a 1662 * @p: the thread to be awakened
1da177e4 1663 * @state: the mask of task states that can be woken
9ed3811a 1664 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1665 *
1666 * Put it on the run-queue if it's not already there. The "current"
1667 * thread is always on the run-queue (except when the actual
1668 * re-schedule is in progress), and as such you're allowed to do
1669 * the simpler "current->state = TASK_RUNNING" to mark yourself
1670 * runnable without the overhead of this.
1671 *
e69f6186 1672 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1673 * or @state didn't match @p's state.
1da177e4 1674 */
e4a52bcb
PZ
1675static int
1676try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1677{
1da177e4 1678 unsigned long flags;
c05fbafb 1679 int cpu, success = 0;
2398f2c6 1680
e0acd0a6
ON
1681 /*
1682 * If we are going to wake up a thread waiting for CONDITION we
1683 * need to ensure that CONDITION=1 done by the caller can not be
1684 * reordered with p->state check below. This pairs with mb() in
1685 * set_current_state() the waiting thread does.
1686 */
1687 smp_mb__before_spinlock();
013fdb80 1688 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1689 if (!(p->state & state))
1da177e4
LT
1690 goto out;
1691
c05fbafb 1692 success = 1; /* we're going to change ->state */
1da177e4 1693 cpu = task_cpu(p);
1da177e4 1694
cca26e80 1695 if (p->on_rq && ttwu_remote(p, wake_flags))
c05fbafb 1696 goto stat;
1da177e4 1697
1da177e4 1698#ifdef CONFIG_SMP
e9c84311 1699 /*
c05fbafb
PZ
1700 * If the owning (remote) cpu is still in the middle of schedule() with
1701 * this task as prev, wait until its done referencing the task.
e9c84311 1702 */
f3e94786 1703 while (p->on_cpu)
e4a52bcb 1704 cpu_relax();
0970d299 1705 /*
e4a52bcb 1706 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1707 */
e4a52bcb 1708 smp_rmb();
1da177e4 1709
a8e4f2ea 1710 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1711 p->state = TASK_WAKING;
e7693a36 1712
e4a52bcb 1713 if (p->sched_class->task_waking)
74f8e4b2 1714 p->sched_class->task_waking(p);
efbbd05a 1715
ac66f547 1716 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1717 if (task_cpu(p) != cpu) {
1718 wake_flags |= WF_MIGRATED;
e4a52bcb 1719 set_task_cpu(p, cpu);
f339b9dc 1720 }
1da177e4 1721#endif /* CONFIG_SMP */
1da177e4 1722
c05fbafb
PZ
1723 ttwu_queue(p, cpu);
1724stat:
b84cb5df 1725 ttwu_stat(p, cpu, wake_flags);
1da177e4 1726out:
013fdb80 1727 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1728
1729 return success;
1730}
1731
21aa9af0
TH
1732/**
1733 * try_to_wake_up_local - try to wake up a local task with rq lock held
1734 * @p: the thread to be awakened
1735 *
2acca55e 1736 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1737 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1738 * the current task.
21aa9af0
TH
1739 */
1740static void try_to_wake_up_local(struct task_struct *p)
1741{
1742 struct rq *rq = task_rq(p);
21aa9af0 1743
383efcd0
TH
1744 if (WARN_ON_ONCE(rq != this_rq()) ||
1745 WARN_ON_ONCE(p == current))
1746 return;
1747
21aa9af0
TH
1748 lockdep_assert_held(&rq->lock);
1749
2acca55e
PZ
1750 if (!raw_spin_trylock(&p->pi_lock)) {
1751 raw_spin_unlock(&rq->lock);
1752 raw_spin_lock(&p->pi_lock);
1753 raw_spin_lock(&rq->lock);
1754 }
1755
21aa9af0 1756 if (!(p->state & TASK_NORMAL))
2acca55e 1757 goto out;
21aa9af0 1758
da0c1e65 1759 if (!task_on_rq_queued(p))
d7c01d27
PZ
1760 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1761
23f41eeb 1762 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1763 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1764out:
1765 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1766}
1767
50fa610a
DH
1768/**
1769 * wake_up_process - Wake up a specific process
1770 * @p: The process to be woken up.
1771 *
1772 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1773 * processes.
1774 *
1775 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1776 *
1777 * It may be assumed that this function implies a write memory barrier before
1778 * changing the task state if and only if any tasks are woken up.
1779 */
7ad5b3a5 1780int wake_up_process(struct task_struct *p)
1da177e4 1781{
9067ac85
ON
1782 WARN_ON(task_is_stopped_or_traced(p));
1783 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1784}
1da177e4
LT
1785EXPORT_SYMBOL(wake_up_process);
1786
7ad5b3a5 1787int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1788{
1789 return try_to_wake_up(p, state, 0);
1790}
1791
1da177e4
LT
1792/*
1793 * Perform scheduler related setup for a newly forked process p.
1794 * p is forked by current.
dd41f596
IM
1795 *
1796 * __sched_fork() is basic setup used by init_idle() too:
1797 */
5e1576ed 1798static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1799{
fd2f4419
PZ
1800 p->on_rq = 0;
1801
1802 p->se.on_rq = 0;
dd41f596
IM
1803 p->se.exec_start = 0;
1804 p->se.sum_exec_runtime = 0;
f6cf891c 1805 p->se.prev_sum_exec_runtime = 0;
6c594c21 1806 p->se.nr_migrations = 0;
da7a735e 1807 p->se.vruntime = 0;
fd2f4419 1808 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1809
1810#ifdef CONFIG_SCHEDSTATS
41acab88 1811 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1812#endif
476d139c 1813
aab03e05
DF
1814 RB_CLEAR_NODE(&p->dl.rb_node);
1815 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1816 p->dl.dl_runtime = p->dl.runtime = 0;
1817 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1818 p->dl.dl_period = 0;
aab03e05
DF
1819 p->dl.flags = 0;
1820
fa717060 1821 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1822
e107be36
AK
1823#ifdef CONFIG_PREEMPT_NOTIFIERS
1824 INIT_HLIST_HEAD(&p->preempt_notifiers);
1825#endif
cbee9f88
PZ
1826
1827#ifdef CONFIG_NUMA_BALANCING
1828 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1829 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1830 p->mm->numa_scan_seq = 0;
1831 }
1832
5e1576ed
RR
1833 if (clone_flags & CLONE_VM)
1834 p->numa_preferred_nid = current->numa_preferred_nid;
1835 else
1836 p->numa_preferred_nid = -1;
1837
cbee9f88
PZ
1838 p->node_stamp = 0ULL;
1839 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1840 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1841 p->numa_work.next = &p->numa_work;
ff1df896
RR
1842 p->numa_faults_memory = NULL;
1843 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1844 p->last_task_numa_placement = 0;
1845 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1846
1847 INIT_LIST_HEAD(&p->numa_entry);
1848 p->numa_group = NULL;
cbee9f88 1849#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1850}
1851
1a687c2e 1852#ifdef CONFIG_NUMA_BALANCING
3105b86a 1853#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1854void set_numabalancing_state(bool enabled)
1855{
1856 if (enabled)
1857 sched_feat_set("NUMA");
1858 else
1859 sched_feat_set("NO_NUMA");
1860}
3105b86a
MG
1861#else
1862__read_mostly bool numabalancing_enabled;
1863
1864void set_numabalancing_state(bool enabled)
1865{
1866 numabalancing_enabled = enabled;
dd41f596 1867}
3105b86a 1868#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1869
1870#ifdef CONFIG_PROC_SYSCTL
1871int sysctl_numa_balancing(struct ctl_table *table, int write,
1872 void __user *buffer, size_t *lenp, loff_t *ppos)
1873{
1874 struct ctl_table t;
1875 int err;
1876 int state = numabalancing_enabled;
1877
1878 if (write && !capable(CAP_SYS_ADMIN))
1879 return -EPERM;
1880
1881 t = *table;
1882 t.data = &state;
1883 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1884 if (err < 0)
1885 return err;
1886 if (write)
1887 set_numabalancing_state(state);
1888 return err;
1889}
1890#endif
1891#endif
dd41f596
IM
1892
1893/*
1894 * fork()/clone()-time setup:
1895 */
aab03e05 1896int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1897{
0122ec5b 1898 unsigned long flags;
dd41f596
IM
1899 int cpu = get_cpu();
1900
5e1576ed 1901 __sched_fork(clone_flags, p);
06b83b5f 1902 /*
0017d735 1903 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1904 * nobody will actually run it, and a signal or other external
1905 * event cannot wake it up and insert it on the runqueue either.
1906 */
0017d735 1907 p->state = TASK_RUNNING;
dd41f596 1908
c350a04e
MG
1909 /*
1910 * Make sure we do not leak PI boosting priority to the child.
1911 */
1912 p->prio = current->normal_prio;
1913
b9dc29e7
MG
1914 /*
1915 * Revert to default priority/policy on fork if requested.
1916 */
1917 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1918 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1919 p->policy = SCHED_NORMAL;
6c697bdf 1920 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1921 p->rt_priority = 0;
1922 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1923 p->static_prio = NICE_TO_PRIO(0);
1924
1925 p->prio = p->normal_prio = __normal_prio(p);
1926 set_load_weight(p);
6c697bdf 1927
b9dc29e7
MG
1928 /*
1929 * We don't need the reset flag anymore after the fork. It has
1930 * fulfilled its duty:
1931 */
1932 p->sched_reset_on_fork = 0;
1933 }
ca94c442 1934
aab03e05
DF
1935 if (dl_prio(p->prio)) {
1936 put_cpu();
1937 return -EAGAIN;
1938 } else if (rt_prio(p->prio)) {
1939 p->sched_class = &rt_sched_class;
1940 } else {
2ddbf952 1941 p->sched_class = &fair_sched_class;
aab03e05 1942 }
b29739f9 1943
cd29fe6f
PZ
1944 if (p->sched_class->task_fork)
1945 p->sched_class->task_fork(p);
1946
86951599
PZ
1947 /*
1948 * The child is not yet in the pid-hash so no cgroup attach races,
1949 * and the cgroup is pinned to this child due to cgroup_fork()
1950 * is ran before sched_fork().
1951 *
1952 * Silence PROVE_RCU.
1953 */
0122ec5b 1954 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1955 set_task_cpu(p, cpu);
0122ec5b 1956 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1957
52f17b6c 1958#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1959 if (likely(sched_info_on()))
52f17b6c 1960 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1961#endif
3ca7a440
PZ
1962#if defined(CONFIG_SMP)
1963 p->on_cpu = 0;
4866cde0 1964#endif
01028747 1965 init_task_preempt_count(p);
806c09a7 1966#ifdef CONFIG_SMP
917b627d 1967 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1968 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1969#endif
917b627d 1970
476d139c 1971 put_cpu();
aab03e05 1972 return 0;
1da177e4
LT
1973}
1974
332ac17e
DF
1975unsigned long to_ratio(u64 period, u64 runtime)
1976{
1977 if (runtime == RUNTIME_INF)
1978 return 1ULL << 20;
1979
1980 /*
1981 * Doing this here saves a lot of checks in all
1982 * the calling paths, and returning zero seems
1983 * safe for them anyway.
1984 */
1985 if (period == 0)
1986 return 0;
1987
1988 return div64_u64(runtime << 20, period);
1989}
1990
1991#ifdef CONFIG_SMP
1992inline struct dl_bw *dl_bw_of(int i)
1993{
1994 return &cpu_rq(i)->rd->dl_bw;
1995}
1996
de212f18 1997static inline int dl_bw_cpus(int i)
332ac17e 1998{
de212f18
PZ
1999 struct root_domain *rd = cpu_rq(i)->rd;
2000 int cpus = 0;
2001
2002 for_each_cpu_and(i, rd->span, cpu_active_mask)
2003 cpus++;
2004
2005 return cpus;
332ac17e
DF
2006}
2007#else
2008inline struct dl_bw *dl_bw_of(int i)
2009{
2010 return &cpu_rq(i)->dl.dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e
DF
2014{
2015 return 1;
2016}
2017#endif
2018
2019static inline
2020void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2021{
2022 dl_b->total_bw -= tsk_bw;
2023}
2024
2025static inline
2026void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2027{
2028 dl_b->total_bw += tsk_bw;
2029}
2030
2031static inline
2032bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2033{
2034 return dl_b->bw != -1 &&
2035 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2036}
2037
2038/*
2039 * We must be sure that accepting a new task (or allowing changing the
2040 * parameters of an existing one) is consistent with the bandwidth
2041 * constraints. If yes, this function also accordingly updates the currently
2042 * allocated bandwidth to reflect the new situation.
2043 *
2044 * This function is called while holding p's rq->lock.
2045 */
2046static int dl_overflow(struct task_struct *p, int policy,
2047 const struct sched_attr *attr)
2048{
2049
2050 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2051 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2052 u64 runtime = attr->sched_runtime;
2053 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2054 int cpus, err = -1;
332ac17e
DF
2055
2056 if (new_bw == p->dl.dl_bw)
2057 return 0;
2058
2059 /*
2060 * Either if a task, enters, leave, or stays -deadline but changes
2061 * its parameters, we may need to update accordingly the total
2062 * allocated bandwidth of the container.
2063 */
2064 raw_spin_lock(&dl_b->lock);
de212f18 2065 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2066 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2067 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2068 __dl_add(dl_b, new_bw);
2069 err = 0;
2070 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2071 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2072 __dl_clear(dl_b, p->dl.dl_bw);
2073 __dl_add(dl_b, new_bw);
2074 err = 0;
2075 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2076 __dl_clear(dl_b, p->dl.dl_bw);
2077 err = 0;
2078 }
2079 raw_spin_unlock(&dl_b->lock);
2080
2081 return err;
2082}
2083
2084extern void init_dl_bw(struct dl_bw *dl_b);
2085
1da177e4
LT
2086/*
2087 * wake_up_new_task - wake up a newly created task for the first time.
2088 *
2089 * This function will do some initial scheduler statistics housekeeping
2090 * that must be done for every newly created context, then puts the task
2091 * on the runqueue and wakes it.
2092 */
3e51e3ed 2093void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2094{
2095 unsigned long flags;
dd41f596 2096 struct rq *rq;
fabf318e 2097
ab2515c4 2098 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2099#ifdef CONFIG_SMP
2100 /*
2101 * Fork balancing, do it here and not earlier because:
2102 * - cpus_allowed can change in the fork path
2103 * - any previously selected cpu might disappear through hotplug
fabf318e 2104 */
ac66f547 2105 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2106#endif
2107
a75cdaa9
AS
2108 /* Initialize new task's runnable average */
2109 init_task_runnable_average(p);
ab2515c4 2110 rq = __task_rq_lock(p);
cd29fe6f 2111 activate_task(rq, p, 0);
da0c1e65 2112 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2113 trace_sched_wakeup_new(p, true);
a7558e01 2114 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2115#ifdef CONFIG_SMP
efbbd05a
PZ
2116 if (p->sched_class->task_woken)
2117 p->sched_class->task_woken(rq, p);
9a897c5a 2118#endif
0122ec5b 2119 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2120}
2121
e107be36
AK
2122#ifdef CONFIG_PREEMPT_NOTIFIERS
2123
2124/**
80dd99b3 2125 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2126 * @notifier: notifier struct to register
e107be36
AK
2127 */
2128void preempt_notifier_register(struct preempt_notifier *notifier)
2129{
2130 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2131}
2132EXPORT_SYMBOL_GPL(preempt_notifier_register);
2133
2134/**
2135 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2136 * @notifier: notifier struct to unregister
e107be36
AK
2137 *
2138 * This is safe to call from within a preemption notifier.
2139 */
2140void preempt_notifier_unregister(struct preempt_notifier *notifier)
2141{
2142 hlist_del(&notifier->link);
2143}
2144EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2145
2146static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2147{
2148 struct preempt_notifier *notifier;
e107be36 2149
b67bfe0d 2150 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2151 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2152}
2153
2154static void
2155fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156 struct task_struct *next)
2157{
2158 struct preempt_notifier *notifier;
e107be36 2159
b67bfe0d 2160 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2161 notifier->ops->sched_out(notifier, next);
2162}
2163
6d6bc0ad 2164#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2165
2166static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2167{
2168}
2169
2170static void
2171fire_sched_out_preempt_notifiers(struct task_struct *curr,
2172 struct task_struct *next)
2173{
2174}
2175
6d6bc0ad 2176#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2177
4866cde0
NP
2178/**
2179 * prepare_task_switch - prepare to switch tasks
2180 * @rq: the runqueue preparing to switch
421cee29 2181 * @prev: the current task that is being switched out
4866cde0
NP
2182 * @next: the task we are going to switch to.
2183 *
2184 * This is called with the rq lock held and interrupts off. It must
2185 * be paired with a subsequent finish_task_switch after the context
2186 * switch.
2187 *
2188 * prepare_task_switch sets up locking and calls architecture specific
2189 * hooks.
2190 */
e107be36
AK
2191static inline void
2192prepare_task_switch(struct rq *rq, struct task_struct *prev,
2193 struct task_struct *next)
4866cde0 2194{
895dd92c 2195 trace_sched_switch(prev, next);
43148951 2196 sched_info_switch(rq, prev, next);
fe4b04fa 2197 perf_event_task_sched_out(prev, next);
e107be36 2198 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2199 prepare_lock_switch(rq, next);
2200 prepare_arch_switch(next);
2201}
2202
1da177e4
LT
2203/**
2204 * finish_task_switch - clean up after a task-switch
344babaa 2205 * @rq: runqueue associated with task-switch
1da177e4
LT
2206 * @prev: the thread we just switched away from.
2207 *
4866cde0
NP
2208 * finish_task_switch must be called after the context switch, paired
2209 * with a prepare_task_switch call before the context switch.
2210 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2211 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2212 *
2213 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2214 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2215 * with the lock held can cause deadlocks; see schedule() for
2216 * details.)
2217 */
a9957449 2218static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2219 __releases(rq->lock)
2220{
1da177e4 2221 struct mm_struct *mm = rq->prev_mm;
55a101f8 2222 long prev_state;
1da177e4
LT
2223
2224 rq->prev_mm = NULL;
2225
2226 /*
2227 * A task struct has one reference for the use as "current".
c394cc9f 2228 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2229 * schedule one last time. The schedule call will never return, and
2230 * the scheduled task must drop that reference.
c394cc9f 2231 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2232 * still held, otherwise prev could be scheduled on another cpu, die
2233 * there before we look at prev->state, and then the reference would
2234 * be dropped twice.
2235 * Manfred Spraul <manfred@colorfullife.com>
2236 */
55a101f8 2237 prev_state = prev->state;
bf9fae9f 2238 vtime_task_switch(prev);
4866cde0 2239 finish_arch_switch(prev);
a8d757ef 2240 perf_event_task_sched_in(prev, current);
4866cde0 2241 finish_lock_switch(rq, prev);
01f23e16 2242 finish_arch_post_lock_switch();
e8fa1362 2243
e107be36 2244 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2245 if (mm)
2246 mmdrop(mm);
c394cc9f 2247 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2248 if (prev->sched_class->task_dead)
2249 prev->sched_class->task_dead(prev);
2250
c6fd91f0 2251 /*
2252 * Remove function-return probe instances associated with this
2253 * task and put them back on the free list.
9761eea8 2254 */
c6fd91f0 2255 kprobe_flush_task(prev);
1da177e4 2256 put_task_struct(prev);
c6fd91f0 2257 }
99e5ada9
FW
2258
2259 tick_nohz_task_switch(current);
1da177e4
LT
2260}
2261
3f029d3c
GH
2262#ifdef CONFIG_SMP
2263
3f029d3c
GH
2264/* rq->lock is NOT held, but preemption is disabled */
2265static inline void post_schedule(struct rq *rq)
2266{
2267 if (rq->post_schedule) {
2268 unsigned long flags;
2269
05fa785c 2270 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2271 if (rq->curr->sched_class->post_schedule)
2272 rq->curr->sched_class->post_schedule(rq);
05fa785c 2273 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2274
2275 rq->post_schedule = 0;
2276 }
2277}
2278
2279#else
da19ab51 2280
3f029d3c
GH
2281static inline void post_schedule(struct rq *rq)
2282{
1da177e4
LT
2283}
2284
3f029d3c
GH
2285#endif
2286
1da177e4
LT
2287/**
2288 * schedule_tail - first thing a freshly forked thread must call.
2289 * @prev: the thread we just switched away from.
2290 */
722a9f92 2291asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2292 __releases(rq->lock)
2293{
70b97a7f
IM
2294 struct rq *rq = this_rq();
2295
4866cde0 2296 finish_task_switch(rq, prev);
da19ab51 2297
3f029d3c
GH
2298 /*
2299 * FIXME: do we need to worry about rq being invalidated by the
2300 * task_switch?
2301 */
2302 post_schedule(rq);
70b97a7f 2303
4866cde0
NP
2304#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2305 /* In this case, finish_task_switch does not reenable preemption */
2306 preempt_enable();
2307#endif
1da177e4 2308 if (current->set_child_tid)
b488893a 2309 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2310}
2311
2312/*
2313 * context_switch - switch to the new MM and the new
2314 * thread's register state.
2315 */
dd41f596 2316static inline void
70b97a7f 2317context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2318 struct task_struct *next)
1da177e4 2319{
dd41f596 2320 struct mm_struct *mm, *oldmm;
1da177e4 2321
e107be36 2322 prepare_task_switch(rq, prev, next);
fe4b04fa 2323
dd41f596
IM
2324 mm = next->mm;
2325 oldmm = prev->active_mm;
9226d125
ZA
2326 /*
2327 * For paravirt, this is coupled with an exit in switch_to to
2328 * combine the page table reload and the switch backend into
2329 * one hypercall.
2330 */
224101ed 2331 arch_start_context_switch(prev);
9226d125 2332
31915ab4 2333 if (!mm) {
1da177e4
LT
2334 next->active_mm = oldmm;
2335 atomic_inc(&oldmm->mm_count);
2336 enter_lazy_tlb(oldmm, next);
2337 } else
2338 switch_mm(oldmm, mm, next);
2339
31915ab4 2340 if (!prev->mm) {
1da177e4 2341 prev->active_mm = NULL;
1da177e4
LT
2342 rq->prev_mm = oldmm;
2343 }
3a5f5e48
IM
2344 /*
2345 * Since the runqueue lock will be released by the next
2346 * task (which is an invalid locking op but in the case
2347 * of the scheduler it's an obvious special-case), so we
2348 * do an early lockdep release here:
2349 */
2350#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2351 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2352#endif
1da177e4 2353
91d1aa43 2354 context_tracking_task_switch(prev, next);
1da177e4
LT
2355 /* Here we just switch the register state and the stack. */
2356 switch_to(prev, next, prev);
2357
dd41f596
IM
2358 barrier();
2359 /*
2360 * this_rq must be evaluated again because prev may have moved
2361 * CPUs since it called schedule(), thus the 'rq' on its stack
2362 * frame will be invalid.
2363 */
2364 finish_task_switch(this_rq(), prev);
1da177e4
LT
2365}
2366
2367/*
1c3e8264 2368 * nr_running and nr_context_switches:
1da177e4
LT
2369 *
2370 * externally visible scheduler statistics: current number of runnable
1c3e8264 2371 * threads, total number of context switches performed since bootup.
1da177e4
LT
2372 */
2373unsigned long nr_running(void)
2374{
2375 unsigned long i, sum = 0;
2376
2377 for_each_online_cpu(i)
2378 sum += cpu_rq(i)->nr_running;
2379
2380 return sum;
f711f609 2381}
1da177e4 2382
1da177e4 2383unsigned long long nr_context_switches(void)
46cb4b7c 2384{
cc94abfc
SR
2385 int i;
2386 unsigned long long sum = 0;
46cb4b7c 2387
0a945022 2388 for_each_possible_cpu(i)
1da177e4 2389 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2390
1da177e4
LT
2391 return sum;
2392}
483b4ee6 2393
1da177e4
LT
2394unsigned long nr_iowait(void)
2395{
2396 unsigned long i, sum = 0;
483b4ee6 2397
0a945022 2398 for_each_possible_cpu(i)
1da177e4 2399 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2400
1da177e4
LT
2401 return sum;
2402}
483b4ee6 2403
8c215bd3 2404unsigned long nr_iowait_cpu(int cpu)
69d25870 2405{
8c215bd3 2406 struct rq *this = cpu_rq(cpu);
69d25870
AV
2407 return atomic_read(&this->nr_iowait);
2408}
46cb4b7c 2409
372ba8cb
MG
2410void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2411{
2412 struct rq *this = this_rq();
2413 *nr_waiters = atomic_read(&this->nr_iowait);
2414 *load = this->cpu_load[0];
2415}
2416
dd41f596 2417#ifdef CONFIG_SMP
8a0be9ef 2418
46cb4b7c 2419/*
38022906
PZ
2420 * sched_exec - execve() is a valuable balancing opportunity, because at
2421 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2422 */
38022906 2423void sched_exec(void)
46cb4b7c 2424{
38022906 2425 struct task_struct *p = current;
1da177e4 2426 unsigned long flags;
0017d735 2427 int dest_cpu;
46cb4b7c 2428
8f42ced9 2429 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2430 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2431 if (dest_cpu == smp_processor_id())
2432 goto unlock;
38022906 2433
8f42ced9 2434 if (likely(cpu_active(dest_cpu))) {
969c7921 2435 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2436
8f42ced9
PZ
2437 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2438 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2439 return;
2440 }
0017d735 2441unlock:
8f42ced9 2442 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2443}
dd41f596 2444
1da177e4
LT
2445#endif
2446
1da177e4 2447DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2448DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2449
2450EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2451EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2452
2453/*
c5f8d995 2454 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2455 * @p in case that task is currently running.
c5f8d995
HS
2456 *
2457 * Called with task_rq_lock() held on @rq.
1da177e4 2458 */
c5f8d995
HS
2459static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2460{
2461 u64 ns = 0;
2462
4036ac15
MG
2463 /*
2464 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2465 * project cycles that may never be accounted to this
2466 * thread, breaking clock_gettime().
2467 */
da0c1e65 2468 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2469 update_rq_clock(rq);
78becc27 2470 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2471 if ((s64)ns < 0)
2472 ns = 0;
2473 }
2474
2475 return ns;
2476}
2477
bb34d92f 2478unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2479{
1da177e4 2480 unsigned long flags;
41b86e9c 2481 struct rq *rq;
bb34d92f 2482 u64 ns = 0;
48f24c4d 2483
41b86e9c 2484 rq = task_rq_lock(p, &flags);
c5f8d995 2485 ns = do_task_delta_exec(p, rq);
0122ec5b 2486 task_rq_unlock(rq, p, &flags);
1508487e 2487
c5f8d995
HS
2488 return ns;
2489}
f06febc9 2490
c5f8d995
HS
2491/*
2492 * Return accounted runtime for the task.
2493 * In case the task is currently running, return the runtime plus current's
2494 * pending runtime that have not been accounted yet.
2495 */
2496unsigned long long task_sched_runtime(struct task_struct *p)
2497{
2498 unsigned long flags;
2499 struct rq *rq;
2500 u64 ns = 0;
2501
911b2898
PZ
2502#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2503 /*
2504 * 64-bit doesn't need locks to atomically read a 64bit value.
2505 * So we have a optimization chance when the task's delta_exec is 0.
2506 * Reading ->on_cpu is racy, but this is ok.
2507 *
2508 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2509 * If we race with it entering cpu, unaccounted time is 0. This is
2510 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2511 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2512 * been accounted, so we're correct here as well.
911b2898 2513 */
da0c1e65 2514 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2515 return p->se.sum_exec_runtime;
2516#endif
2517
c5f8d995
HS
2518 rq = task_rq_lock(p, &flags);
2519 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2520 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2521
2522 return ns;
2523}
48f24c4d 2524
7835b98b
CL
2525/*
2526 * This function gets called by the timer code, with HZ frequency.
2527 * We call it with interrupts disabled.
7835b98b
CL
2528 */
2529void scheduler_tick(void)
2530{
7835b98b
CL
2531 int cpu = smp_processor_id();
2532 struct rq *rq = cpu_rq(cpu);
dd41f596 2533 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2534
2535 sched_clock_tick();
dd41f596 2536
05fa785c 2537 raw_spin_lock(&rq->lock);
3e51f33f 2538 update_rq_clock(rq);
fa85ae24 2539 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2540 update_cpu_load_active(rq);
05fa785c 2541 raw_spin_unlock(&rq->lock);
7835b98b 2542
e9d2b064 2543 perf_event_task_tick();
e220d2dc 2544
e418e1c2 2545#ifdef CONFIG_SMP
6eb57e0d 2546 rq->idle_balance = idle_cpu(cpu);
7caff66f 2547 trigger_load_balance(rq);
e418e1c2 2548#endif
265f22a9 2549 rq_last_tick_reset(rq);
1da177e4
LT
2550}
2551
265f22a9
FW
2552#ifdef CONFIG_NO_HZ_FULL
2553/**
2554 * scheduler_tick_max_deferment
2555 *
2556 * Keep at least one tick per second when a single
2557 * active task is running because the scheduler doesn't
2558 * yet completely support full dynticks environment.
2559 *
2560 * This makes sure that uptime, CFS vruntime, load
2561 * balancing, etc... continue to move forward, even
2562 * with a very low granularity.
e69f6186
YB
2563 *
2564 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2565 */
2566u64 scheduler_tick_max_deferment(void)
2567{
2568 struct rq *rq = this_rq();
2569 unsigned long next, now = ACCESS_ONCE(jiffies);
2570
2571 next = rq->last_sched_tick + HZ;
2572
2573 if (time_before_eq(next, now))
2574 return 0;
2575
8fe8ff09 2576 return jiffies_to_nsecs(next - now);
1da177e4 2577}
265f22a9 2578#endif
1da177e4 2579
132380a0 2580notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2581{
2582 if (in_lock_functions(addr)) {
2583 addr = CALLER_ADDR2;
2584 if (in_lock_functions(addr))
2585 addr = CALLER_ADDR3;
2586 }
2587 return addr;
2588}
1da177e4 2589
7e49fcce
SR
2590#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2591 defined(CONFIG_PREEMPT_TRACER))
2592
edafe3a5 2593void preempt_count_add(int val)
1da177e4 2594{
6cd8a4bb 2595#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2596 /*
2597 * Underflow?
2598 */
9a11b49a
IM
2599 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2600 return;
6cd8a4bb 2601#endif
bdb43806 2602 __preempt_count_add(val);
6cd8a4bb 2603#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2604 /*
2605 * Spinlock count overflowing soon?
2606 */
33859f7f
MOS
2607 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2608 PREEMPT_MASK - 10);
6cd8a4bb 2609#endif
8f47b187
TG
2610 if (preempt_count() == val) {
2611 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2612#ifdef CONFIG_DEBUG_PREEMPT
2613 current->preempt_disable_ip = ip;
2614#endif
2615 trace_preempt_off(CALLER_ADDR0, ip);
2616 }
1da177e4 2617}
bdb43806 2618EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2619NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2620
edafe3a5 2621void preempt_count_sub(int val)
1da177e4 2622{
6cd8a4bb 2623#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2624 /*
2625 * Underflow?
2626 */
01e3eb82 2627 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2628 return;
1da177e4
LT
2629 /*
2630 * Is the spinlock portion underflowing?
2631 */
9a11b49a
IM
2632 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2633 !(preempt_count() & PREEMPT_MASK)))
2634 return;
6cd8a4bb 2635#endif
9a11b49a 2636
6cd8a4bb
SR
2637 if (preempt_count() == val)
2638 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2639 __preempt_count_sub(val);
1da177e4 2640}
bdb43806 2641EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2642NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2643
2644#endif
2645
2646/*
dd41f596 2647 * Print scheduling while atomic bug:
1da177e4 2648 */
dd41f596 2649static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2650{
664dfa65
DJ
2651 if (oops_in_progress)
2652 return;
2653
3df0fc5b
PZ
2654 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2655 prev->comm, prev->pid, preempt_count());
838225b4 2656
dd41f596 2657 debug_show_held_locks(prev);
e21f5b15 2658 print_modules();
dd41f596
IM
2659 if (irqs_disabled())
2660 print_irqtrace_events(prev);
8f47b187
TG
2661#ifdef CONFIG_DEBUG_PREEMPT
2662 if (in_atomic_preempt_off()) {
2663 pr_err("Preemption disabled at:");
2664 print_ip_sym(current->preempt_disable_ip);
2665 pr_cont("\n");
2666 }
2667#endif
6135fc1e 2668 dump_stack();
373d4d09 2669 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2670}
1da177e4 2671
dd41f596
IM
2672/*
2673 * Various schedule()-time debugging checks and statistics:
2674 */
2675static inline void schedule_debug(struct task_struct *prev)
2676{
1da177e4 2677 /*
41a2d6cf 2678 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2679 * schedule() atomically, we ignore that path. Otherwise whine
2680 * if we are scheduling when we should not.
1da177e4 2681 */
192301e7 2682 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2683 __schedule_bug(prev);
b3fbab05 2684 rcu_sleep_check();
dd41f596 2685
1da177e4
LT
2686 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2687
2d72376b 2688 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2689}
2690
2691/*
2692 * Pick up the highest-prio task:
2693 */
2694static inline struct task_struct *
606dba2e 2695pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2696{
37e117c0 2697 const struct sched_class *class = &fair_sched_class;
dd41f596 2698 struct task_struct *p;
1da177e4
LT
2699
2700 /*
dd41f596
IM
2701 * Optimization: we know that if all tasks are in
2702 * the fair class we can call that function directly:
1da177e4 2703 */
37e117c0 2704 if (likely(prev->sched_class == class &&
38033c37 2705 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2706 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2707 if (unlikely(p == RETRY_TASK))
2708 goto again;
2709
2710 /* assumes fair_sched_class->next == idle_sched_class */
2711 if (unlikely(!p))
2712 p = idle_sched_class.pick_next_task(rq, prev);
2713
2714 return p;
1da177e4
LT
2715 }
2716
37e117c0 2717again:
34f971f6 2718 for_each_class(class) {
606dba2e 2719 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2720 if (p) {
2721 if (unlikely(p == RETRY_TASK))
2722 goto again;
dd41f596 2723 return p;
37e117c0 2724 }
dd41f596 2725 }
34f971f6
PZ
2726
2727 BUG(); /* the idle class will always have a runnable task */
dd41f596 2728}
1da177e4 2729
dd41f596 2730/*
c259e01a 2731 * __schedule() is the main scheduler function.
edde96ea
PE
2732 *
2733 * The main means of driving the scheduler and thus entering this function are:
2734 *
2735 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2736 *
2737 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2738 * paths. For example, see arch/x86/entry_64.S.
2739 *
2740 * To drive preemption between tasks, the scheduler sets the flag in timer
2741 * interrupt handler scheduler_tick().
2742 *
2743 * 3. Wakeups don't really cause entry into schedule(). They add a
2744 * task to the run-queue and that's it.
2745 *
2746 * Now, if the new task added to the run-queue preempts the current
2747 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2748 * called on the nearest possible occasion:
2749 *
2750 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2751 *
2752 * - in syscall or exception context, at the next outmost
2753 * preempt_enable(). (this might be as soon as the wake_up()'s
2754 * spin_unlock()!)
2755 *
2756 * - in IRQ context, return from interrupt-handler to
2757 * preemptible context
2758 *
2759 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2760 * then at the next:
2761 *
2762 * - cond_resched() call
2763 * - explicit schedule() call
2764 * - return from syscall or exception to user-space
2765 * - return from interrupt-handler to user-space
dd41f596 2766 */
c259e01a 2767static void __sched __schedule(void)
dd41f596
IM
2768{
2769 struct task_struct *prev, *next;
67ca7bde 2770 unsigned long *switch_count;
dd41f596 2771 struct rq *rq;
31656519 2772 int cpu;
dd41f596 2773
ff743345
PZ
2774need_resched:
2775 preempt_disable();
dd41f596
IM
2776 cpu = smp_processor_id();
2777 rq = cpu_rq(cpu);
25502a6c 2778 rcu_note_context_switch(cpu);
dd41f596 2779 prev = rq->curr;
dd41f596 2780
dd41f596 2781 schedule_debug(prev);
1da177e4 2782
31656519 2783 if (sched_feat(HRTICK))
f333fdc9 2784 hrtick_clear(rq);
8f4d37ec 2785
e0acd0a6
ON
2786 /*
2787 * Make sure that signal_pending_state()->signal_pending() below
2788 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2789 * done by the caller to avoid the race with signal_wake_up().
2790 */
2791 smp_mb__before_spinlock();
05fa785c 2792 raw_spin_lock_irq(&rq->lock);
1da177e4 2793
246d86b5 2794 switch_count = &prev->nivcsw;
1da177e4 2795 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2796 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2797 prev->state = TASK_RUNNING;
21aa9af0 2798 } else {
2acca55e
PZ
2799 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2800 prev->on_rq = 0;
2801
21aa9af0 2802 /*
2acca55e
PZ
2803 * If a worker went to sleep, notify and ask workqueue
2804 * whether it wants to wake up a task to maintain
2805 * concurrency.
21aa9af0
TH
2806 */
2807 if (prev->flags & PF_WQ_WORKER) {
2808 struct task_struct *to_wakeup;
2809
2810 to_wakeup = wq_worker_sleeping(prev, cpu);
2811 if (to_wakeup)
2812 try_to_wake_up_local(to_wakeup);
2813 }
21aa9af0 2814 }
dd41f596 2815 switch_count = &prev->nvcsw;
1da177e4
LT
2816 }
2817
da0c1e65 2818 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2819 update_rq_clock(rq);
2820
2821 next = pick_next_task(rq, prev);
f26f9aff 2822 clear_tsk_need_resched(prev);
f27dde8d 2823 clear_preempt_need_resched();
f26f9aff 2824 rq->skip_clock_update = 0;
1da177e4 2825
1da177e4 2826 if (likely(prev != next)) {
1da177e4
LT
2827 rq->nr_switches++;
2828 rq->curr = next;
2829 ++*switch_count;
2830
dd41f596 2831 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2832 /*
246d86b5
ON
2833 * The context switch have flipped the stack from under us
2834 * and restored the local variables which were saved when
2835 * this task called schedule() in the past. prev == current
2836 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2837 */
2838 cpu = smp_processor_id();
2839 rq = cpu_rq(cpu);
1da177e4 2840 } else
05fa785c 2841 raw_spin_unlock_irq(&rq->lock);
1da177e4 2842
3f029d3c 2843 post_schedule(rq);
1da177e4 2844
ba74c144 2845 sched_preempt_enable_no_resched();
ff743345 2846 if (need_resched())
1da177e4
LT
2847 goto need_resched;
2848}
c259e01a 2849
9c40cef2
TG
2850static inline void sched_submit_work(struct task_struct *tsk)
2851{
3c7d5184 2852 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2853 return;
2854 /*
2855 * If we are going to sleep and we have plugged IO queued,
2856 * make sure to submit it to avoid deadlocks.
2857 */
2858 if (blk_needs_flush_plug(tsk))
2859 blk_schedule_flush_plug(tsk);
2860}
2861
722a9f92 2862asmlinkage __visible void __sched schedule(void)
c259e01a 2863{
9c40cef2
TG
2864 struct task_struct *tsk = current;
2865
2866 sched_submit_work(tsk);
c259e01a
TG
2867 __schedule();
2868}
1da177e4
LT
2869EXPORT_SYMBOL(schedule);
2870
91d1aa43 2871#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2872asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2873{
2874 /*
2875 * If we come here after a random call to set_need_resched(),
2876 * or we have been woken up remotely but the IPI has not yet arrived,
2877 * we haven't yet exited the RCU idle mode. Do it here manually until
2878 * we find a better solution.
2879 */
91d1aa43 2880 user_exit();
20ab65e3 2881 schedule();
91d1aa43 2882 user_enter();
20ab65e3
FW
2883}
2884#endif
2885
c5491ea7
TG
2886/**
2887 * schedule_preempt_disabled - called with preemption disabled
2888 *
2889 * Returns with preemption disabled. Note: preempt_count must be 1
2890 */
2891void __sched schedule_preempt_disabled(void)
2892{
ba74c144 2893 sched_preempt_enable_no_resched();
c5491ea7
TG
2894 schedule();
2895 preempt_disable();
2896}
2897
1da177e4
LT
2898#ifdef CONFIG_PREEMPT
2899/*
2ed6e34f 2900 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2901 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2902 * occur there and call schedule directly.
2903 */
722a9f92 2904asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2905{
1da177e4
LT
2906 /*
2907 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2908 * we do not want to preempt the current task. Just return..
1da177e4 2909 */
fbb00b56 2910 if (likely(!preemptible()))
1da177e4
LT
2911 return;
2912
3a5c359a 2913 do {
bdb43806 2914 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2915 __schedule();
bdb43806 2916 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2917
3a5c359a
AK
2918 /*
2919 * Check again in case we missed a preemption opportunity
2920 * between schedule and now.
2921 */
2922 barrier();
5ed0cec0 2923 } while (need_resched());
1da177e4 2924}
376e2424 2925NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2926EXPORT_SYMBOL(preempt_schedule);
32e475d7 2927#endif /* CONFIG_PREEMPT */
1da177e4
LT
2928
2929/*
2ed6e34f 2930 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2931 * off of irq context.
2932 * Note, that this is called and return with irqs disabled. This will
2933 * protect us against recursive calling from irq.
2934 */
722a9f92 2935asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2936{
b22366cd 2937 enum ctx_state prev_state;
6478d880 2938
2ed6e34f 2939 /* Catch callers which need to be fixed */
f27dde8d 2940 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2941
b22366cd
FW
2942 prev_state = exception_enter();
2943
3a5c359a 2944 do {
bdb43806 2945 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2946 local_irq_enable();
c259e01a 2947 __schedule();
3a5c359a 2948 local_irq_disable();
bdb43806 2949 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2950
3a5c359a
AK
2951 /*
2952 * Check again in case we missed a preemption opportunity
2953 * between schedule and now.
2954 */
2955 barrier();
5ed0cec0 2956 } while (need_resched());
b22366cd
FW
2957
2958 exception_exit(prev_state);
1da177e4
LT
2959}
2960
63859d4f 2961int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2962 void *key)
1da177e4 2963{
63859d4f 2964 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2965}
1da177e4
LT
2966EXPORT_SYMBOL(default_wake_function);
2967
b29739f9
IM
2968#ifdef CONFIG_RT_MUTEXES
2969
2970/*
2971 * rt_mutex_setprio - set the current priority of a task
2972 * @p: task
2973 * @prio: prio value (kernel-internal form)
2974 *
2975 * This function changes the 'effective' priority of a task. It does
2976 * not touch ->normal_prio like __setscheduler().
2977 *
c365c292
TG
2978 * Used by the rt_mutex code to implement priority inheritance
2979 * logic. Call site only calls if the priority of the task changed.
b29739f9 2980 */
36c8b586 2981void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2982{
da0c1e65 2983 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 2984 struct rq *rq;
83ab0aa0 2985 const struct sched_class *prev_class;
b29739f9 2986
aab03e05 2987 BUG_ON(prio > MAX_PRIO);
b29739f9 2988
0122ec5b 2989 rq = __task_rq_lock(p);
b29739f9 2990
1c4dd99b
TG
2991 /*
2992 * Idle task boosting is a nono in general. There is one
2993 * exception, when PREEMPT_RT and NOHZ is active:
2994 *
2995 * The idle task calls get_next_timer_interrupt() and holds
2996 * the timer wheel base->lock on the CPU and another CPU wants
2997 * to access the timer (probably to cancel it). We can safely
2998 * ignore the boosting request, as the idle CPU runs this code
2999 * with interrupts disabled and will complete the lock
3000 * protected section without being interrupted. So there is no
3001 * real need to boost.
3002 */
3003 if (unlikely(p == rq->idle)) {
3004 WARN_ON(p != rq->curr);
3005 WARN_ON(p->pi_blocked_on);
3006 goto out_unlock;
3007 }
3008
a8027073 3009 trace_sched_pi_setprio(p, prio);
d5f9f942 3010 oldprio = p->prio;
83ab0aa0 3011 prev_class = p->sched_class;
da0c1e65 3012 queued = task_on_rq_queued(p);
051a1d1a 3013 running = task_current(rq, p);
da0c1e65 3014 if (queued)
69be72c1 3015 dequeue_task(rq, p, 0);
0e1f3483
HS
3016 if (running)
3017 p->sched_class->put_prev_task(rq, p);
dd41f596 3018
2d3d891d
DF
3019 /*
3020 * Boosting condition are:
3021 * 1. -rt task is running and holds mutex A
3022 * --> -dl task blocks on mutex A
3023 *
3024 * 2. -dl task is running and holds mutex A
3025 * --> -dl task blocks on mutex A and could preempt the
3026 * running task
3027 */
3028 if (dl_prio(prio)) {
466af29b
ON
3029 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3030 if (!dl_prio(p->normal_prio) ||
3031 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3032 p->dl.dl_boosted = 1;
3033 p->dl.dl_throttled = 0;
3034 enqueue_flag = ENQUEUE_REPLENISH;
3035 } else
3036 p->dl.dl_boosted = 0;
aab03e05 3037 p->sched_class = &dl_sched_class;
2d3d891d
DF
3038 } else if (rt_prio(prio)) {
3039 if (dl_prio(oldprio))
3040 p->dl.dl_boosted = 0;
3041 if (oldprio < prio)
3042 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3043 p->sched_class = &rt_sched_class;
2d3d891d
DF
3044 } else {
3045 if (dl_prio(oldprio))
3046 p->dl.dl_boosted = 0;
dd41f596 3047 p->sched_class = &fair_sched_class;
2d3d891d 3048 }
dd41f596 3049
b29739f9
IM
3050 p->prio = prio;
3051
0e1f3483
HS
3052 if (running)
3053 p->sched_class->set_curr_task(rq);
da0c1e65 3054 if (queued)
2d3d891d 3055 enqueue_task(rq, p, enqueue_flag);
cb469845 3056
da7a735e 3057 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3058out_unlock:
0122ec5b 3059 __task_rq_unlock(rq);
b29739f9 3060}
b29739f9 3061#endif
d50dde5a 3062
36c8b586 3063void set_user_nice(struct task_struct *p, long nice)
1da177e4 3064{
da0c1e65 3065 int old_prio, delta, queued;
1da177e4 3066 unsigned long flags;
70b97a7f 3067 struct rq *rq;
1da177e4 3068
75e45d51 3069 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3070 return;
3071 /*
3072 * We have to be careful, if called from sys_setpriority(),
3073 * the task might be in the middle of scheduling on another CPU.
3074 */
3075 rq = task_rq_lock(p, &flags);
3076 /*
3077 * The RT priorities are set via sched_setscheduler(), but we still
3078 * allow the 'normal' nice value to be set - but as expected
3079 * it wont have any effect on scheduling until the task is
aab03e05 3080 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3081 */
aab03e05 3082 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3083 p->static_prio = NICE_TO_PRIO(nice);
3084 goto out_unlock;
3085 }
da0c1e65
KT
3086 queued = task_on_rq_queued(p);
3087 if (queued)
69be72c1 3088 dequeue_task(rq, p, 0);
1da177e4 3089
1da177e4 3090 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3091 set_load_weight(p);
b29739f9
IM
3092 old_prio = p->prio;
3093 p->prio = effective_prio(p);
3094 delta = p->prio - old_prio;
1da177e4 3095
da0c1e65 3096 if (queued) {
371fd7e7 3097 enqueue_task(rq, p, 0);
1da177e4 3098 /*
d5f9f942
AM
3099 * If the task increased its priority or is running and
3100 * lowered its priority, then reschedule its CPU:
1da177e4 3101 */
d5f9f942 3102 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3103 resched_curr(rq);
1da177e4
LT
3104 }
3105out_unlock:
0122ec5b 3106 task_rq_unlock(rq, p, &flags);
1da177e4 3107}
1da177e4
LT
3108EXPORT_SYMBOL(set_user_nice);
3109
e43379f1
MM
3110/*
3111 * can_nice - check if a task can reduce its nice value
3112 * @p: task
3113 * @nice: nice value
3114 */
36c8b586 3115int can_nice(const struct task_struct *p, const int nice)
e43379f1 3116{
024f4747 3117 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3118 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3119
78d7d407 3120 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3121 capable(CAP_SYS_NICE));
3122}
3123
1da177e4
LT
3124#ifdef __ARCH_WANT_SYS_NICE
3125
3126/*
3127 * sys_nice - change the priority of the current process.
3128 * @increment: priority increment
3129 *
3130 * sys_setpriority is a more generic, but much slower function that
3131 * does similar things.
3132 */
5add95d4 3133SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3134{
48f24c4d 3135 long nice, retval;
1da177e4
LT
3136
3137 /*
3138 * Setpriority might change our priority at the same moment.
3139 * We don't have to worry. Conceptually one call occurs first
3140 * and we have a single winner.
3141 */
a9467fa3 3142 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3143 nice = task_nice(current) + increment;
1da177e4 3144
a9467fa3 3145 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3146 if (increment < 0 && !can_nice(current, nice))
3147 return -EPERM;
3148
1da177e4
LT
3149 retval = security_task_setnice(current, nice);
3150 if (retval)
3151 return retval;
3152
3153 set_user_nice(current, nice);
3154 return 0;
3155}
3156
3157#endif
3158
3159/**
3160 * task_prio - return the priority value of a given task.
3161 * @p: the task in question.
3162 *
e69f6186 3163 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3164 * RT tasks are offset by -200. Normal tasks are centered
3165 * around 0, value goes from -16 to +15.
3166 */
36c8b586 3167int task_prio(const struct task_struct *p)
1da177e4
LT
3168{
3169 return p->prio - MAX_RT_PRIO;
3170}
3171
1da177e4
LT
3172/**
3173 * idle_cpu - is a given cpu idle currently?
3174 * @cpu: the processor in question.
e69f6186
YB
3175 *
3176 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3177 */
3178int idle_cpu(int cpu)
3179{
908a3283
TG
3180 struct rq *rq = cpu_rq(cpu);
3181
3182 if (rq->curr != rq->idle)
3183 return 0;
3184
3185 if (rq->nr_running)
3186 return 0;
3187
3188#ifdef CONFIG_SMP
3189 if (!llist_empty(&rq->wake_list))
3190 return 0;
3191#endif
3192
3193 return 1;
1da177e4
LT
3194}
3195
1da177e4
LT
3196/**
3197 * idle_task - return the idle task for a given cpu.
3198 * @cpu: the processor in question.
e69f6186
YB
3199 *
3200 * Return: The idle task for the cpu @cpu.
1da177e4 3201 */
36c8b586 3202struct task_struct *idle_task(int cpu)
1da177e4
LT
3203{
3204 return cpu_rq(cpu)->idle;
3205}
3206
3207/**
3208 * find_process_by_pid - find a process with a matching PID value.
3209 * @pid: the pid in question.
e69f6186
YB
3210 *
3211 * The task of @pid, if found. %NULL otherwise.
1da177e4 3212 */
a9957449 3213static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3214{
228ebcbe 3215 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3216}
3217
aab03e05
DF
3218/*
3219 * This function initializes the sched_dl_entity of a newly becoming
3220 * SCHED_DEADLINE task.
3221 *
3222 * Only the static values are considered here, the actual runtime and the
3223 * absolute deadline will be properly calculated when the task is enqueued
3224 * for the first time with its new policy.
3225 */
3226static void
3227__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3228{
3229 struct sched_dl_entity *dl_se = &p->dl;
3230
3231 init_dl_task_timer(dl_se);
3232 dl_se->dl_runtime = attr->sched_runtime;
3233 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3234 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3235 dl_se->flags = attr->sched_flags;
332ac17e 3236 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3237 dl_se->dl_throttled = 0;
3238 dl_se->dl_new = 1;
5bfd126e 3239 dl_se->dl_yielded = 0;
aab03e05
DF
3240}
3241
c13db6b1
SR
3242/*
3243 * sched_setparam() passes in -1 for its policy, to let the functions
3244 * it calls know not to change it.
3245 */
3246#define SETPARAM_POLICY -1
3247
c365c292
TG
3248static void __setscheduler_params(struct task_struct *p,
3249 const struct sched_attr *attr)
1da177e4 3250{
d50dde5a
DF
3251 int policy = attr->sched_policy;
3252
c13db6b1 3253 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3254 policy = p->policy;
3255
1da177e4 3256 p->policy = policy;
d50dde5a 3257
aab03e05
DF
3258 if (dl_policy(policy))
3259 __setparam_dl(p, attr);
39fd8fd2 3260 else if (fair_policy(policy))
d50dde5a
DF
3261 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3262
39fd8fd2
PZ
3263 /*
3264 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3265 * !rt_policy. Always setting this ensures that things like
3266 * getparam()/getattr() don't report silly values for !rt tasks.
3267 */
3268 p->rt_priority = attr->sched_priority;
383afd09 3269 p->normal_prio = normal_prio(p);
c365c292
TG
3270 set_load_weight(p);
3271}
39fd8fd2 3272
c365c292
TG
3273/* Actually do priority change: must hold pi & rq lock. */
3274static void __setscheduler(struct rq *rq, struct task_struct *p,
3275 const struct sched_attr *attr)
3276{
3277 __setscheduler_params(p, attr);
d50dde5a 3278
383afd09
SR
3279 /*
3280 * If we get here, there was no pi waiters boosting the
3281 * task. It is safe to use the normal prio.
3282 */
3283 p->prio = normal_prio(p);
3284
aab03e05
DF
3285 if (dl_prio(p->prio))
3286 p->sched_class = &dl_sched_class;
3287 else if (rt_prio(p->prio))
ffd44db5
PZ
3288 p->sched_class = &rt_sched_class;
3289 else
3290 p->sched_class = &fair_sched_class;
1da177e4 3291}
aab03e05
DF
3292
3293static void
3294__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3295{
3296 struct sched_dl_entity *dl_se = &p->dl;
3297
3298 attr->sched_priority = p->rt_priority;
3299 attr->sched_runtime = dl_se->dl_runtime;
3300 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3301 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3302 attr->sched_flags = dl_se->flags;
3303}
3304
3305/*
3306 * This function validates the new parameters of a -deadline task.
3307 * We ask for the deadline not being zero, and greater or equal
755378a4 3308 * than the runtime, as well as the period of being zero or
332ac17e 3309 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3310 * user parameters are above the internal resolution of 1us (we
3311 * check sched_runtime only since it is always the smaller one) and
3312 * below 2^63 ns (we have to check both sched_deadline and
3313 * sched_period, as the latter can be zero).
aab03e05
DF
3314 */
3315static bool
3316__checkparam_dl(const struct sched_attr *attr)
3317{
b0827819
JL
3318 /* deadline != 0 */
3319 if (attr->sched_deadline == 0)
3320 return false;
3321
3322 /*
3323 * Since we truncate DL_SCALE bits, make sure we're at least
3324 * that big.
3325 */
3326 if (attr->sched_runtime < (1ULL << DL_SCALE))
3327 return false;
3328
3329 /*
3330 * Since we use the MSB for wrap-around and sign issues, make
3331 * sure it's not set (mind that period can be equal to zero).
3332 */
3333 if (attr->sched_deadline & (1ULL << 63) ||
3334 attr->sched_period & (1ULL << 63))
3335 return false;
3336
3337 /* runtime <= deadline <= period (if period != 0) */
3338 if ((attr->sched_period != 0 &&
3339 attr->sched_period < attr->sched_deadline) ||
3340 attr->sched_deadline < attr->sched_runtime)
3341 return false;
3342
3343 return true;
aab03e05
DF
3344}
3345
c69e8d9c
DH
3346/*
3347 * check the target process has a UID that matches the current process's
3348 */
3349static bool check_same_owner(struct task_struct *p)
3350{
3351 const struct cred *cred = current_cred(), *pcred;
3352 bool match;
3353
3354 rcu_read_lock();
3355 pcred = __task_cred(p);
9c806aa0
EB
3356 match = (uid_eq(cred->euid, pcred->euid) ||
3357 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3358 rcu_read_unlock();
3359 return match;
3360}
3361
d50dde5a
DF
3362static int __sched_setscheduler(struct task_struct *p,
3363 const struct sched_attr *attr,
3364 bool user)
1da177e4 3365{
383afd09
SR
3366 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3367 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3368 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3369 int policy = attr->sched_policy;
1da177e4 3370 unsigned long flags;
83ab0aa0 3371 const struct sched_class *prev_class;
70b97a7f 3372 struct rq *rq;
ca94c442 3373 int reset_on_fork;
1da177e4 3374
66e5393a
SR
3375 /* may grab non-irq protected spin_locks */
3376 BUG_ON(in_interrupt());
1da177e4
LT
3377recheck:
3378 /* double check policy once rq lock held */
ca94c442
LP
3379 if (policy < 0) {
3380 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3381 policy = oldpolicy = p->policy;
ca94c442 3382 } else {
7479f3c9 3383 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3384
aab03e05
DF
3385 if (policy != SCHED_DEADLINE &&
3386 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3387 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3388 policy != SCHED_IDLE)
3389 return -EINVAL;
3390 }
3391
7479f3c9
PZ
3392 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3393 return -EINVAL;
3394
1da177e4
LT
3395 /*
3396 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3397 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3398 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3399 */
0bb040a4 3400 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3401 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3402 return -EINVAL;
aab03e05
DF
3403 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3404 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3405 return -EINVAL;
3406
37e4ab3f
OC
3407 /*
3408 * Allow unprivileged RT tasks to decrease priority:
3409 */
961ccddd 3410 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3411 if (fair_policy(policy)) {
d0ea0268 3412 if (attr->sched_nice < task_nice(p) &&
eaad4513 3413 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3414 return -EPERM;
3415 }
3416
e05606d3 3417 if (rt_policy(policy)) {
a44702e8
ON
3418 unsigned long rlim_rtprio =
3419 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3420
3421 /* can't set/change the rt policy */
3422 if (policy != p->policy && !rlim_rtprio)
3423 return -EPERM;
3424
3425 /* can't increase priority */
d50dde5a
DF
3426 if (attr->sched_priority > p->rt_priority &&
3427 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3428 return -EPERM;
3429 }
c02aa73b 3430
d44753b8
JL
3431 /*
3432 * Can't set/change SCHED_DEADLINE policy at all for now
3433 * (safest behavior); in the future we would like to allow
3434 * unprivileged DL tasks to increase their relative deadline
3435 * or reduce their runtime (both ways reducing utilization)
3436 */
3437 if (dl_policy(policy))
3438 return -EPERM;
3439
dd41f596 3440 /*
c02aa73b
DH
3441 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3442 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3443 */
c02aa73b 3444 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3445 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3446 return -EPERM;
3447 }
5fe1d75f 3448
37e4ab3f 3449 /* can't change other user's priorities */
c69e8d9c 3450 if (!check_same_owner(p))
37e4ab3f 3451 return -EPERM;
ca94c442
LP
3452
3453 /* Normal users shall not reset the sched_reset_on_fork flag */
3454 if (p->sched_reset_on_fork && !reset_on_fork)
3455 return -EPERM;
37e4ab3f 3456 }
1da177e4 3457
725aad24 3458 if (user) {
b0ae1981 3459 retval = security_task_setscheduler(p);
725aad24
JF
3460 if (retval)
3461 return retval;
3462 }
3463
b29739f9
IM
3464 /*
3465 * make sure no PI-waiters arrive (or leave) while we are
3466 * changing the priority of the task:
0122ec5b 3467 *
25985edc 3468 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3469 * runqueue lock must be held.
3470 */
0122ec5b 3471 rq = task_rq_lock(p, &flags);
dc61b1d6 3472
34f971f6
PZ
3473 /*
3474 * Changing the policy of the stop threads its a very bad idea
3475 */
3476 if (p == rq->stop) {
0122ec5b 3477 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3478 return -EINVAL;
3479 }
3480
a51e9198 3481 /*
d6b1e911
TG
3482 * If not changing anything there's no need to proceed further,
3483 * but store a possible modification of reset_on_fork.
a51e9198 3484 */
d50dde5a 3485 if (unlikely(policy == p->policy)) {
d0ea0268 3486 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3487 goto change;
3488 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3489 goto change;
aab03e05
DF
3490 if (dl_policy(policy))
3491 goto change;
d50dde5a 3492
d6b1e911 3493 p->sched_reset_on_fork = reset_on_fork;
45afb173 3494 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3495 return 0;
3496 }
d50dde5a 3497change:
a51e9198 3498
dc61b1d6 3499 if (user) {
332ac17e 3500#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3501 /*
3502 * Do not allow realtime tasks into groups that have no runtime
3503 * assigned.
3504 */
3505 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3506 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3507 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3508 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3509 return -EPERM;
3510 }
dc61b1d6 3511#endif
332ac17e
DF
3512#ifdef CONFIG_SMP
3513 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3514 cpumask_t *span = rq->rd->span;
332ac17e
DF
3515
3516 /*
3517 * Don't allow tasks with an affinity mask smaller than
3518 * the entire root_domain to become SCHED_DEADLINE. We
3519 * will also fail if there's no bandwidth available.
3520 */
e4099a5e
PZ
3521 if (!cpumask_subset(span, &p->cpus_allowed) ||
3522 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3523 task_rq_unlock(rq, p, &flags);
3524 return -EPERM;
3525 }
3526 }
3527#endif
3528 }
dc61b1d6 3529
1da177e4
LT
3530 /* recheck policy now with rq lock held */
3531 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3532 policy = oldpolicy = -1;
0122ec5b 3533 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3534 goto recheck;
3535 }
332ac17e
DF
3536
3537 /*
3538 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3539 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3540 * is available.
3541 */
e4099a5e 3542 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3543 task_rq_unlock(rq, p, &flags);
3544 return -EBUSY;
3545 }
3546
c365c292
TG
3547 p->sched_reset_on_fork = reset_on_fork;
3548 oldprio = p->prio;
3549
3550 /*
3551 * Special case for priority boosted tasks.
3552 *
3553 * If the new priority is lower or equal (user space view)
3554 * than the current (boosted) priority, we just store the new
3555 * normal parameters and do not touch the scheduler class and
3556 * the runqueue. This will be done when the task deboost
3557 * itself.
3558 */
3559 if (rt_mutex_check_prio(p, newprio)) {
3560 __setscheduler_params(p, attr);
3561 task_rq_unlock(rq, p, &flags);
3562 return 0;
3563 }
3564
da0c1e65 3565 queued = task_on_rq_queued(p);
051a1d1a 3566 running = task_current(rq, p);
da0c1e65 3567 if (queued)
4ca9b72b 3568 dequeue_task(rq, p, 0);
0e1f3483
HS
3569 if (running)
3570 p->sched_class->put_prev_task(rq, p);
f6b53205 3571
83ab0aa0 3572 prev_class = p->sched_class;
d50dde5a 3573 __setscheduler(rq, p, attr);
f6b53205 3574
0e1f3483
HS
3575 if (running)
3576 p->sched_class->set_curr_task(rq);
da0c1e65 3577 if (queued) {
81a44c54
TG
3578 /*
3579 * We enqueue to tail when the priority of a task is
3580 * increased (user space view).
3581 */
3582 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3583 }
cb469845 3584
da7a735e 3585 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3586 task_rq_unlock(rq, p, &flags);
b29739f9 3587
95e02ca9
TG
3588 rt_mutex_adjust_pi(p);
3589
1da177e4
LT
3590 return 0;
3591}
961ccddd 3592
7479f3c9
PZ
3593static int _sched_setscheduler(struct task_struct *p, int policy,
3594 const struct sched_param *param, bool check)
3595{
3596 struct sched_attr attr = {
3597 .sched_policy = policy,
3598 .sched_priority = param->sched_priority,
3599 .sched_nice = PRIO_TO_NICE(p->static_prio),
3600 };
3601
c13db6b1
SR
3602 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3603 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3604 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3605 policy &= ~SCHED_RESET_ON_FORK;
3606 attr.sched_policy = policy;
3607 }
3608
3609 return __sched_setscheduler(p, &attr, check);
3610}
961ccddd
RR
3611/**
3612 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3613 * @p: the task in question.
3614 * @policy: new policy.
3615 * @param: structure containing the new RT priority.
3616 *
e69f6186
YB
3617 * Return: 0 on success. An error code otherwise.
3618 *
961ccddd
RR
3619 * NOTE that the task may be already dead.
3620 */
3621int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3622 const struct sched_param *param)
961ccddd 3623{
7479f3c9 3624 return _sched_setscheduler(p, policy, param, true);
961ccddd 3625}
1da177e4
LT
3626EXPORT_SYMBOL_GPL(sched_setscheduler);
3627
d50dde5a
DF
3628int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3629{
3630 return __sched_setscheduler(p, attr, true);
3631}
3632EXPORT_SYMBOL_GPL(sched_setattr);
3633
961ccddd
RR
3634/**
3635 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3636 * @p: the task in question.
3637 * @policy: new policy.
3638 * @param: structure containing the new RT priority.
3639 *
3640 * Just like sched_setscheduler, only don't bother checking if the
3641 * current context has permission. For example, this is needed in
3642 * stop_machine(): we create temporary high priority worker threads,
3643 * but our caller might not have that capability.
e69f6186
YB
3644 *
3645 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3646 */
3647int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3648 const struct sched_param *param)
961ccddd 3649{
7479f3c9 3650 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3651}
3652
95cdf3b7
IM
3653static int
3654do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3655{
1da177e4
LT
3656 struct sched_param lparam;
3657 struct task_struct *p;
36c8b586 3658 int retval;
1da177e4
LT
3659
3660 if (!param || pid < 0)
3661 return -EINVAL;
3662 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3663 return -EFAULT;
5fe1d75f
ON
3664
3665 rcu_read_lock();
3666 retval = -ESRCH;
1da177e4 3667 p = find_process_by_pid(pid);
5fe1d75f
ON
3668 if (p != NULL)
3669 retval = sched_setscheduler(p, policy, &lparam);
3670 rcu_read_unlock();
36c8b586 3671
1da177e4
LT
3672 return retval;
3673}
3674
d50dde5a
DF
3675/*
3676 * Mimics kernel/events/core.c perf_copy_attr().
3677 */
3678static int sched_copy_attr(struct sched_attr __user *uattr,
3679 struct sched_attr *attr)
3680{
3681 u32 size;
3682 int ret;
3683
3684 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3685 return -EFAULT;
3686
3687 /*
3688 * zero the full structure, so that a short copy will be nice.
3689 */
3690 memset(attr, 0, sizeof(*attr));
3691
3692 ret = get_user(size, &uattr->size);
3693 if (ret)
3694 return ret;
3695
3696 if (size > PAGE_SIZE) /* silly large */
3697 goto err_size;
3698
3699 if (!size) /* abi compat */
3700 size = SCHED_ATTR_SIZE_VER0;
3701
3702 if (size < SCHED_ATTR_SIZE_VER0)
3703 goto err_size;
3704
3705 /*
3706 * If we're handed a bigger struct than we know of,
3707 * ensure all the unknown bits are 0 - i.e. new
3708 * user-space does not rely on any kernel feature
3709 * extensions we dont know about yet.
3710 */
3711 if (size > sizeof(*attr)) {
3712 unsigned char __user *addr;
3713 unsigned char __user *end;
3714 unsigned char val;
3715
3716 addr = (void __user *)uattr + sizeof(*attr);
3717 end = (void __user *)uattr + size;
3718
3719 for (; addr < end; addr++) {
3720 ret = get_user(val, addr);
3721 if (ret)
3722 return ret;
3723 if (val)
3724 goto err_size;
3725 }
3726 size = sizeof(*attr);
3727 }
3728
3729 ret = copy_from_user(attr, uattr, size);
3730 if (ret)
3731 return -EFAULT;
3732
3733 /*
3734 * XXX: do we want to be lenient like existing syscalls; or do we want
3735 * to be strict and return an error on out-of-bounds values?
3736 */
75e45d51 3737 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3738
e78c7bca 3739 return 0;
d50dde5a
DF
3740
3741err_size:
3742 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3743 return -E2BIG;
d50dde5a
DF
3744}
3745
1da177e4
LT
3746/**
3747 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3748 * @pid: the pid in question.
3749 * @policy: new policy.
3750 * @param: structure containing the new RT priority.
e69f6186
YB
3751 *
3752 * Return: 0 on success. An error code otherwise.
1da177e4 3753 */
5add95d4
HC
3754SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3755 struct sched_param __user *, param)
1da177e4 3756{
c21761f1
JB
3757 /* negative values for policy are not valid */
3758 if (policy < 0)
3759 return -EINVAL;
3760
1da177e4
LT
3761 return do_sched_setscheduler(pid, policy, param);
3762}
3763
3764/**
3765 * sys_sched_setparam - set/change the RT priority of a thread
3766 * @pid: the pid in question.
3767 * @param: structure containing the new RT priority.
e69f6186
YB
3768 *
3769 * Return: 0 on success. An error code otherwise.
1da177e4 3770 */
5add95d4 3771SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3772{
c13db6b1 3773 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3774}
3775
d50dde5a
DF
3776/**
3777 * sys_sched_setattr - same as above, but with extended sched_attr
3778 * @pid: the pid in question.
5778fccf 3779 * @uattr: structure containing the extended parameters.
db66d756 3780 * @flags: for future extension.
d50dde5a 3781 */
6d35ab48
PZ
3782SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3783 unsigned int, flags)
d50dde5a
DF
3784{
3785 struct sched_attr attr;
3786 struct task_struct *p;
3787 int retval;
3788
6d35ab48 3789 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3790 return -EINVAL;
3791
143cf23d
MK
3792 retval = sched_copy_attr(uattr, &attr);
3793 if (retval)
3794 return retval;
d50dde5a 3795
b14ed2c2 3796 if ((int)attr.sched_policy < 0)
dbdb2275 3797 return -EINVAL;
d50dde5a
DF
3798
3799 rcu_read_lock();
3800 retval = -ESRCH;
3801 p = find_process_by_pid(pid);
3802 if (p != NULL)
3803 retval = sched_setattr(p, &attr);
3804 rcu_read_unlock();
3805
3806 return retval;
3807}
3808
1da177e4
LT
3809/**
3810 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3811 * @pid: the pid in question.
e69f6186
YB
3812 *
3813 * Return: On success, the policy of the thread. Otherwise, a negative error
3814 * code.
1da177e4 3815 */
5add95d4 3816SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3817{
36c8b586 3818 struct task_struct *p;
3a5c359a 3819 int retval;
1da177e4
LT
3820
3821 if (pid < 0)
3a5c359a 3822 return -EINVAL;
1da177e4
LT
3823
3824 retval = -ESRCH;
5fe85be0 3825 rcu_read_lock();
1da177e4
LT
3826 p = find_process_by_pid(pid);
3827 if (p) {
3828 retval = security_task_getscheduler(p);
3829 if (!retval)
ca94c442
LP
3830 retval = p->policy
3831 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3832 }
5fe85be0 3833 rcu_read_unlock();
1da177e4
LT
3834 return retval;
3835}
3836
3837/**
ca94c442 3838 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3839 * @pid: the pid in question.
3840 * @param: structure containing the RT priority.
e69f6186
YB
3841 *
3842 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3843 * code.
1da177e4 3844 */
5add95d4 3845SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3846{
ce5f7f82 3847 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3848 struct task_struct *p;
3a5c359a 3849 int retval;
1da177e4
LT
3850
3851 if (!param || pid < 0)
3a5c359a 3852 return -EINVAL;
1da177e4 3853
5fe85be0 3854 rcu_read_lock();
1da177e4
LT
3855 p = find_process_by_pid(pid);
3856 retval = -ESRCH;
3857 if (!p)
3858 goto out_unlock;
3859
3860 retval = security_task_getscheduler(p);
3861 if (retval)
3862 goto out_unlock;
3863
ce5f7f82
PZ
3864 if (task_has_rt_policy(p))
3865 lp.sched_priority = p->rt_priority;
5fe85be0 3866 rcu_read_unlock();
1da177e4
LT
3867
3868 /*
3869 * This one might sleep, we cannot do it with a spinlock held ...
3870 */
3871 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3872
1da177e4
LT
3873 return retval;
3874
3875out_unlock:
5fe85be0 3876 rcu_read_unlock();
1da177e4
LT
3877 return retval;
3878}
3879
d50dde5a
DF
3880static int sched_read_attr(struct sched_attr __user *uattr,
3881 struct sched_attr *attr,
3882 unsigned int usize)
3883{
3884 int ret;
3885
3886 if (!access_ok(VERIFY_WRITE, uattr, usize))
3887 return -EFAULT;
3888
3889 /*
3890 * If we're handed a smaller struct than we know of,
3891 * ensure all the unknown bits are 0 - i.e. old
3892 * user-space does not get uncomplete information.
3893 */
3894 if (usize < sizeof(*attr)) {
3895 unsigned char *addr;
3896 unsigned char *end;
3897
3898 addr = (void *)attr + usize;
3899 end = (void *)attr + sizeof(*attr);
3900
3901 for (; addr < end; addr++) {
3902 if (*addr)
22400674 3903 return -EFBIG;
d50dde5a
DF
3904 }
3905
3906 attr->size = usize;
3907 }
3908
4efbc454 3909 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3910 if (ret)
3911 return -EFAULT;
3912
22400674 3913 return 0;
d50dde5a
DF
3914}
3915
3916/**
aab03e05 3917 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3918 * @pid: the pid in question.
5778fccf 3919 * @uattr: structure containing the extended parameters.
d50dde5a 3920 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3921 * @flags: for future extension.
d50dde5a 3922 */
6d35ab48
PZ
3923SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3924 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3925{
3926 struct sched_attr attr = {
3927 .size = sizeof(struct sched_attr),
3928 };
3929 struct task_struct *p;
3930 int retval;
3931
3932 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3933 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3934 return -EINVAL;
3935
3936 rcu_read_lock();
3937 p = find_process_by_pid(pid);
3938 retval = -ESRCH;
3939 if (!p)
3940 goto out_unlock;
3941
3942 retval = security_task_getscheduler(p);
3943 if (retval)
3944 goto out_unlock;
3945
3946 attr.sched_policy = p->policy;
7479f3c9
PZ
3947 if (p->sched_reset_on_fork)
3948 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3949 if (task_has_dl_policy(p))
3950 __getparam_dl(p, &attr);
3951 else if (task_has_rt_policy(p))
d50dde5a
DF
3952 attr.sched_priority = p->rt_priority;
3953 else
d0ea0268 3954 attr.sched_nice = task_nice(p);
d50dde5a
DF
3955
3956 rcu_read_unlock();
3957
3958 retval = sched_read_attr(uattr, &attr, size);
3959 return retval;
3960
3961out_unlock:
3962 rcu_read_unlock();
3963 return retval;
3964}
3965
96f874e2 3966long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3967{
5a16f3d3 3968 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3969 struct task_struct *p;
3970 int retval;
1da177e4 3971
23f5d142 3972 rcu_read_lock();
1da177e4
LT
3973
3974 p = find_process_by_pid(pid);
3975 if (!p) {
23f5d142 3976 rcu_read_unlock();
1da177e4
LT
3977 return -ESRCH;
3978 }
3979
23f5d142 3980 /* Prevent p going away */
1da177e4 3981 get_task_struct(p);
23f5d142 3982 rcu_read_unlock();
1da177e4 3983
14a40ffc
TH
3984 if (p->flags & PF_NO_SETAFFINITY) {
3985 retval = -EINVAL;
3986 goto out_put_task;
3987 }
5a16f3d3
RR
3988 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3989 retval = -ENOMEM;
3990 goto out_put_task;
3991 }
3992 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3993 retval = -ENOMEM;
3994 goto out_free_cpus_allowed;
3995 }
1da177e4 3996 retval = -EPERM;
4c44aaaf
EB
3997 if (!check_same_owner(p)) {
3998 rcu_read_lock();
3999 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4000 rcu_read_unlock();
4001 goto out_unlock;
4002 }
4003 rcu_read_unlock();
4004 }
1da177e4 4005
b0ae1981 4006 retval = security_task_setscheduler(p);
e7834f8f
DQ
4007 if (retval)
4008 goto out_unlock;
4009
e4099a5e
PZ
4010
4011 cpuset_cpus_allowed(p, cpus_allowed);
4012 cpumask_and(new_mask, in_mask, cpus_allowed);
4013
332ac17e
DF
4014 /*
4015 * Since bandwidth control happens on root_domain basis,
4016 * if admission test is enabled, we only admit -deadline
4017 * tasks allowed to run on all the CPUs in the task's
4018 * root_domain.
4019 */
4020#ifdef CONFIG_SMP
4021 if (task_has_dl_policy(p)) {
4022 const struct cpumask *span = task_rq(p)->rd->span;
4023
e4099a5e 4024 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
4025 retval = -EBUSY;
4026 goto out_unlock;
4027 }
4028 }
4029#endif
49246274 4030again:
5a16f3d3 4031 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4032
8707d8b8 4033 if (!retval) {
5a16f3d3
RR
4034 cpuset_cpus_allowed(p, cpus_allowed);
4035 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4036 /*
4037 * We must have raced with a concurrent cpuset
4038 * update. Just reset the cpus_allowed to the
4039 * cpuset's cpus_allowed
4040 */
5a16f3d3 4041 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4042 goto again;
4043 }
4044 }
1da177e4 4045out_unlock:
5a16f3d3
RR
4046 free_cpumask_var(new_mask);
4047out_free_cpus_allowed:
4048 free_cpumask_var(cpus_allowed);
4049out_put_task:
1da177e4 4050 put_task_struct(p);
1da177e4
LT
4051 return retval;
4052}
4053
4054static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4055 struct cpumask *new_mask)
1da177e4 4056{
96f874e2
RR
4057 if (len < cpumask_size())
4058 cpumask_clear(new_mask);
4059 else if (len > cpumask_size())
4060 len = cpumask_size();
4061
1da177e4
LT
4062 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4063}
4064
4065/**
4066 * sys_sched_setaffinity - set the cpu affinity of a process
4067 * @pid: pid of the process
4068 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4069 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4070 *
4071 * Return: 0 on success. An error code otherwise.
1da177e4 4072 */
5add95d4
HC
4073SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4074 unsigned long __user *, user_mask_ptr)
1da177e4 4075{
5a16f3d3 4076 cpumask_var_t new_mask;
1da177e4
LT
4077 int retval;
4078
5a16f3d3
RR
4079 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4080 return -ENOMEM;
1da177e4 4081
5a16f3d3
RR
4082 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4083 if (retval == 0)
4084 retval = sched_setaffinity(pid, new_mask);
4085 free_cpumask_var(new_mask);
4086 return retval;
1da177e4
LT
4087}
4088
96f874e2 4089long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4090{
36c8b586 4091 struct task_struct *p;
31605683 4092 unsigned long flags;
1da177e4 4093 int retval;
1da177e4 4094
23f5d142 4095 rcu_read_lock();
1da177e4
LT
4096
4097 retval = -ESRCH;
4098 p = find_process_by_pid(pid);
4099 if (!p)
4100 goto out_unlock;
4101
e7834f8f
DQ
4102 retval = security_task_getscheduler(p);
4103 if (retval)
4104 goto out_unlock;
4105
013fdb80 4106 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4107 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4108 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4109
4110out_unlock:
23f5d142 4111 rcu_read_unlock();
1da177e4 4112
9531b62f 4113 return retval;
1da177e4
LT
4114}
4115
4116/**
4117 * sys_sched_getaffinity - get the cpu affinity of a process
4118 * @pid: pid of the process
4119 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4120 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4121 *
4122 * Return: 0 on success. An error code otherwise.
1da177e4 4123 */
5add95d4
HC
4124SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4125 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4126{
4127 int ret;
f17c8607 4128 cpumask_var_t mask;
1da177e4 4129
84fba5ec 4130 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4131 return -EINVAL;
4132 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4133 return -EINVAL;
4134
f17c8607
RR
4135 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4136 return -ENOMEM;
1da177e4 4137
f17c8607
RR
4138 ret = sched_getaffinity(pid, mask);
4139 if (ret == 0) {
8bc037fb 4140 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4141
4142 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4143 ret = -EFAULT;
4144 else
cd3d8031 4145 ret = retlen;
f17c8607
RR
4146 }
4147 free_cpumask_var(mask);
1da177e4 4148
f17c8607 4149 return ret;
1da177e4
LT
4150}
4151
4152/**
4153 * sys_sched_yield - yield the current processor to other threads.
4154 *
dd41f596
IM
4155 * This function yields the current CPU to other tasks. If there are no
4156 * other threads running on this CPU then this function will return.
e69f6186
YB
4157 *
4158 * Return: 0.
1da177e4 4159 */
5add95d4 4160SYSCALL_DEFINE0(sched_yield)
1da177e4 4161{
70b97a7f 4162 struct rq *rq = this_rq_lock();
1da177e4 4163
2d72376b 4164 schedstat_inc(rq, yld_count);
4530d7ab 4165 current->sched_class->yield_task(rq);
1da177e4
LT
4166
4167 /*
4168 * Since we are going to call schedule() anyway, there's
4169 * no need to preempt or enable interrupts:
4170 */
4171 __release(rq->lock);
8a25d5de 4172 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4173 do_raw_spin_unlock(&rq->lock);
ba74c144 4174 sched_preempt_enable_no_resched();
1da177e4
LT
4175
4176 schedule();
4177
4178 return 0;
4179}
4180
e7b38404 4181static void __cond_resched(void)
1da177e4 4182{
bdb43806 4183 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4184 __schedule();
bdb43806 4185 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4186}
4187
02b67cc3 4188int __sched _cond_resched(void)
1da177e4 4189{
d86ee480 4190 if (should_resched()) {
1da177e4
LT
4191 __cond_resched();
4192 return 1;
4193 }
4194 return 0;
4195}
02b67cc3 4196EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4197
4198/*
613afbf8 4199 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4200 * call schedule, and on return reacquire the lock.
4201 *
41a2d6cf 4202 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4203 * operations here to prevent schedule() from being called twice (once via
4204 * spin_unlock(), once by hand).
4205 */
613afbf8 4206int __cond_resched_lock(spinlock_t *lock)
1da177e4 4207{
d86ee480 4208 int resched = should_resched();
6df3cecb
JK
4209 int ret = 0;
4210
f607c668
PZ
4211 lockdep_assert_held(lock);
4212
4a81e832 4213 if (spin_needbreak(lock) || resched) {
1da177e4 4214 spin_unlock(lock);
d86ee480 4215 if (resched)
95c354fe
NP
4216 __cond_resched();
4217 else
4218 cpu_relax();
6df3cecb 4219 ret = 1;
1da177e4 4220 spin_lock(lock);
1da177e4 4221 }
6df3cecb 4222 return ret;
1da177e4 4223}
613afbf8 4224EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4225
613afbf8 4226int __sched __cond_resched_softirq(void)
1da177e4
LT
4227{
4228 BUG_ON(!in_softirq());
4229
d86ee480 4230 if (should_resched()) {
98d82567 4231 local_bh_enable();
1da177e4
LT
4232 __cond_resched();
4233 local_bh_disable();
4234 return 1;
4235 }
4236 return 0;
4237}
613afbf8 4238EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4239
1da177e4
LT
4240/**
4241 * yield - yield the current processor to other threads.
4242 *
8e3fabfd
PZ
4243 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4244 *
4245 * The scheduler is at all times free to pick the calling task as the most
4246 * eligible task to run, if removing the yield() call from your code breaks
4247 * it, its already broken.
4248 *
4249 * Typical broken usage is:
4250 *
4251 * while (!event)
4252 * yield();
4253 *
4254 * where one assumes that yield() will let 'the other' process run that will
4255 * make event true. If the current task is a SCHED_FIFO task that will never
4256 * happen. Never use yield() as a progress guarantee!!
4257 *
4258 * If you want to use yield() to wait for something, use wait_event().
4259 * If you want to use yield() to be 'nice' for others, use cond_resched().
4260 * If you still want to use yield(), do not!
1da177e4
LT
4261 */
4262void __sched yield(void)
4263{
4264 set_current_state(TASK_RUNNING);
4265 sys_sched_yield();
4266}
1da177e4
LT
4267EXPORT_SYMBOL(yield);
4268
d95f4122
MG
4269/**
4270 * yield_to - yield the current processor to another thread in
4271 * your thread group, or accelerate that thread toward the
4272 * processor it's on.
16addf95
RD
4273 * @p: target task
4274 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4275 *
4276 * It's the caller's job to ensure that the target task struct
4277 * can't go away on us before we can do any checks.
4278 *
e69f6186 4279 * Return:
7b270f60
PZ
4280 * true (>0) if we indeed boosted the target task.
4281 * false (0) if we failed to boost the target.
4282 * -ESRCH if there's no task to yield to.
d95f4122 4283 */
fa93384f 4284int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4285{
4286 struct task_struct *curr = current;
4287 struct rq *rq, *p_rq;
4288 unsigned long flags;
c3c18640 4289 int yielded = 0;
d95f4122
MG
4290
4291 local_irq_save(flags);
4292 rq = this_rq();
4293
4294again:
4295 p_rq = task_rq(p);
7b270f60
PZ
4296 /*
4297 * If we're the only runnable task on the rq and target rq also
4298 * has only one task, there's absolutely no point in yielding.
4299 */
4300 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4301 yielded = -ESRCH;
4302 goto out_irq;
4303 }
4304
d95f4122 4305 double_rq_lock(rq, p_rq);
39e24d8f 4306 if (task_rq(p) != p_rq) {
d95f4122
MG
4307 double_rq_unlock(rq, p_rq);
4308 goto again;
4309 }
4310
4311 if (!curr->sched_class->yield_to_task)
7b270f60 4312 goto out_unlock;
d95f4122
MG
4313
4314 if (curr->sched_class != p->sched_class)
7b270f60 4315 goto out_unlock;
d95f4122
MG
4316
4317 if (task_running(p_rq, p) || p->state)
7b270f60 4318 goto out_unlock;
d95f4122
MG
4319
4320 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4321 if (yielded) {
d95f4122 4322 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4323 /*
4324 * Make p's CPU reschedule; pick_next_entity takes care of
4325 * fairness.
4326 */
4327 if (preempt && rq != p_rq)
8875125e 4328 resched_curr(p_rq);
6d1cafd8 4329 }
d95f4122 4330
7b270f60 4331out_unlock:
d95f4122 4332 double_rq_unlock(rq, p_rq);
7b270f60 4333out_irq:
d95f4122
MG
4334 local_irq_restore(flags);
4335
7b270f60 4336 if (yielded > 0)
d95f4122
MG
4337 schedule();
4338
4339 return yielded;
4340}
4341EXPORT_SYMBOL_GPL(yield_to);
4342
1da177e4 4343/*
41a2d6cf 4344 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4345 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4346 */
4347void __sched io_schedule(void)
4348{
54d35f29 4349 struct rq *rq = raw_rq();
1da177e4 4350
0ff92245 4351 delayacct_blkio_start();
1da177e4 4352 atomic_inc(&rq->nr_iowait);
73c10101 4353 blk_flush_plug(current);
8f0dfc34 4354 current->in_iowait = 1;
1da177e4 4355 schedule();
8f0dfc34 4356 current->in_iowait = 0;
1da177e4 4357 atomic_dec(&rq->nr_iowait);
0ff92245 4358 delayacct_blkio_end();
1da177e4 4359}
1da177e4
LT
4360EXPORT_SYMBOL(io_schedule);
4361
4362long __sched io_schedule_timeout(long timeout)
4363{
54d35f29 4364 struct rq *rq = raw_rq();
1da177e4
LT
4365 long ret;
4366
0ff92245 4367 delayacct_blkio_start();
1da177e4 4368 atomic_inc(&rq->nr_iowait);
73c10101 4369 blk_flush_plug(current);
8f0dfc34 4370 current->in_iowait = 1;
1da177e4 4371 ret = schedule_timeout(timeout);
8f0dfc34 4372 current->in_iowait = 0;
1da177e4 4373 atomic_dec(&rq->nr_iowait);
0ff92245 4374 delayacct_blkio_end();
1da177e4
LT
4375 return ret;
4376}
4377
4378/**
4379 * sys_sched_get_priority_max - return maximum RT priority.
4380 * @policy: scheduling class.
4381 *
e69f6186
YB
4382 * Return: On success, this syscall returns the maximum
4383 * rt_priority that can be used by a given scheduling class.
4384 * On failure, a negative error code is returned.
1da177e4 4385 */
5add95d4 4386SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4387{
4388 int ret = -EINVAL;
4389
4390 switch (policy) {
4391 case SCHED_FIFO:
4392 case SCHED_RR:
4393 ret = MAX_USER_RT_PRIO-1;
4394 break;
aab03e05 4395 case SCHED_DEADLINE:
1da177e4 4396 case SCHED_NORMAL:
b0a9499c 4397 case SCHED_BATCH:
dd41f596 4398 case SCHED_IDLE:
1da177e4
LT
4399 ret = 0;
4400 break;
4401 }
4402 return ret;
4403}
4404
4405/**
4406 * sys_sched_get_priority_min - return minimum RT priority.
4407 * @policy: scheduling class.
4408 *
e69f6186
YB
4409 * Return: On success, this syscall returns the minimum
4410 * rt_priority that can be used by a given scheduling class.
4411 * On failure, a negative error code is returned.
1da177e4 4412 */
5add95d4 4413SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4414{
4415 int ret = -EINVAL;
4416
4417 switch (policy) {
4418 case SCHED_FIFO:
4419 case SCHED_RR:
4420 ret = 1;
4421 break;
aab03e05 4422 case SCHED_DEADLINE:
1da177e4 4423 case SCHED_NORMAL:
b0a9499c 4424 case SCHED_BATCH:
dd41f596 4425 case SCHED_IDLE:
1da177e4
LT
4426 ret = 0;
4427 }
4428 return ret;
4429}
4430
4431/**
4432 * sys_sched_rr_get_interval - return the default timeslice of a process.
4433 * @pid: pid of the process.
4434 * @interval: userspace pointer to the timeslice value.
4435 *
4436 * this syscall writes the default timeslice value of a given process
4437 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4438 *
4439 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4440 * an error code.
1da177e4 4441 */
17da2bd9 4442SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4443 struct timespec __user *, interval)
1da177e4 4444{
36c8b586 4445 struct task_struct *p;
a4ec24b4 4446 unsigned int time_slice;
dba091b9
TG
4447 unsigned long flags;
4448 struct rq *rq;
3a5c359a 4449 int retval;
1da177e4 4450 struct timespec t;
1da177e4
LT
4451
4452 if (pid < 0)
3a5c359a 4453 return -EINVAL;
1da177e4
LT
4454
4455 retval = -ESRCH;
1a551ae7 4456 rcu_read_lock();
1da177e4
LT
4457 p = find_process_by_pid(pid);
4458 if (!p)
4459 goto out_unlock;
4460
4461 retval = security_task_getscheduler(p);
4462 if (retval)
4463 goto out_unlock;
4464
dba091b9 4465 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4466 time_slice = 0;
4467 if (p->sched_class->get_rr_interval)
4468 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4469 task_rq_unlock(rq, p, &flags);
a4ec24b4 4470
1a551ae7 4471 rcu_read_unlock();
a4ec24b4 4472 jiffies_to_timespec(time_slice, &t);
1da177e4 4473 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4474 return retval;
3a5c359a 4475
1da177e4 4476out_unlock:
1a551ae7 4477 rcu_read_unlock();
1da177e4
LT
4478 return retval;
4479}
4480
7c731e0a 4481static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4482
82a1fcb9 4483void sched_show_task(struct task_struct *p)
1da177e4 4484{
1da177e4 4485 unsigned long free = 0;
4e79752c 4486 int ppid;
36c8b586 4487 unsigned state;
1da177e4 4488
1da177e4 4489 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4490 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4491 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4492#if BITS_PER_LONG == 32
1da177e4 4493 if (state == TASK_RUNNING)
3df0fc5b 4494 printk(KERN_CONT " running ");
1da177e4 4495 else
3df0fc5b 4496 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4497#else
4498 if (state == TASK_RUNNING)
3df0fc5b 4499 printk(KERN_CONT " running task ");
1da177e4 4500 else
3df0fc5b 4501 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4502#endif
4503#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4504 free = stack_not_used(p);
1da177e4 4505#endif
4e79752c
PM
4506 rcu_read_lock();
4507 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4508 rcu_read_unlock();
3df0fc5b 4509 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4510 task_pid_nr(p), ppid,
aa47b7e0 4511 (unsigned long)task_thread_info(p)->flags);
1da177e4 4512
3d1cb205 4513 print_worker_info(KERN_INFO, p);
5fb5e6de 4514 show_stack(p, NULL);
1da177e4
LT
4515}
4516
e59e2ae2 4517void show_state_filter(unsigned long state_filter)
1da177e4 4518{
36c8b586 4519 struct task_struct *g, *p;
1da177e4 4520
4bd77321 4521#if BITS_PER_LONG == 32
3df0fc5b
PZ
4522 printk(KERN_INFO
4523 " task PC stack pid father\n");
1da177e4 4524#else
3df0fc5b
PZ
4525 printk(KERN_INFO
4526 " task PC stack pid father\n");
1da177e4 4527#endif
510f5acc 4528 rcu_read_lock();
5d07f420 4529 for_each_process_thread(g, p) {
1da177e4
LT
4530 /*
4531 * reset the NMI-timeout, listing all files on a slow
25985edc 4532 * console might take a lot of time:
1da177e4
LT
4533 */
4534 touch_nmi_watchdog();
39bc89fd 4535 if (!state_filter || (p->state & state_filter))
82a1fcb9 4536 sched_show_task(p);
5d07f420 4537 }
1da177e4 4538
04c9167f
JF
4539 touch_all_softlockup_watchdogs();
4540
dd41f596
IM
4541#ifdef CONFIG_SCHED_DEBUG
4542 sysrq_sched_debug_show();
4543#endif
510f5acc 4544 rcu_read_unlock();
e59e2ae2
IM
4545 /*
4546 * Only show locks if all tasks are dumped:
4547 */
93335a21 4548 if (!state_filter)
e59e2ae2 4549 debug_show_all_locks();
1da177e4
LT
4550}
4551
0db0628d 4552void init_idle_bootup_task(struct task_struct *idle)
1df21055 4553{
dd41f596 4554 idle->sched_class = &idle_sched_class;
1df21055
IM
4555}
4556
f340c0d1
IM
4557/**
4558 * init_idle - set up an idle thread for a given CPU
4559 * @idle: task in question
4560 * @cpu: cpu the idle task belongs to
4561 *
4562 * NOTE: this function does not set the idle thread's NEED_RESCHED
4563 * flag, to make booting more robust.
4564 */
0db0628d 4565void init_idle(struct task_struct *idle, int cpu)
1da177e4 4566{
70b97a7f 4567 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4568 unsigned long flags;
4569
05fa785c 4570 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4571
5e1576ed 4572 __sched_fork(0, idle);
06b83b5f 4573 idle->state = TASK_RUNNING;
dd41f596
IM
4574 idle->se.exec_start = sched_clock();
4575
1e1b6c51 4576 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4577 /*
4578 * We're having a chicken and egg problem, even though we are
4579 * holding rq->lock, the cpu isn't yet set to this cpu so the
4580 * lockdep check in task_group() will fail.
4581 *
4582 * Similar case to sched_fork(). / Alternatively we could
4583 * use task_rq_lock() here and obtain the other rq->lock.
4584 *
4585 * Silence PROVE_RCU
4586 */
4587 rcu_read_lock();
dd41f596 4588 __set_task_cpu(idle, cpu);
6506cf6c 4589 rcu_read_unlock();
1da177e4 4590
1da177e4 4591 rq->curr = rq->idle = idle;
da0c1e65 4592 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4593#if defined(CONFIG_SMP)
4594 idle->on_cpu = 1;
4866cde0 4595#endif
05fa785c 4596 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4597
4598 /* Set the preempt count _outside_ the spinlocks! */
01028747 4599 init_idle_preempt_count(idle, cpu);
55cd5340 4600
dd41f596
IM
4601 /*
4602 * The idle tasks have their own, simple scheduling class:
4603 */
4604 idle->sched_class = &idle_sched_class;
868baf07 4605 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4606 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4607#if defined(CONFIG_SMP)
4608 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4609#endif
19978ca6
IM
4610}
4611
1da177e4 4612#ifdef CONFIG_SMP
1e1b6c51
KM
4613void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4614{
4615 if (p->sched_class && p->sched_class->set_cpus_allowed)
4616 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4617
4618 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4619 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4620}
4621
1da177e4
LT
4622/*
4623 * This is how migration works:
4624 *
969c7921
TH
4625 * 1) we invoke migration_cpu_stop() on the target CPU using
4626 * stop_one_cpu().
4627 * 2) stopper starts to run (implicitly forcing the migrated thread
4628 * off the CPU)
4629 * 3) it checks whether the migrated task is still in the wrong runqueue.
4630 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4631 * it and puts it into the right queue.
969c7921
TH
4632 * 5) stopper completes and stop_one_cpu() returns and the migration
4633 * is done.
1da177e4
LT
4634 */
4635
4636/*
4637 * Change a given task's CPU affinity. Migrate the thread to a
4638 * proper CPU and schedule it away if the CPU it's executing on
4639 * is removed from the allowed bitmask.
4640 *
4641 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4642 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4643 * call is not atomic; no spinlocks may be held.
4644 */
96f874e2 4645int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4646{
4647 unsigned long flags;
70b97a7f 4648 struct rq *rq;
969c7921 4649 unsigned int dest_cpu;
48f24c4d 4650 int ret = 0;
1da177e4
LT
4651
4652 rq = task_rq_lock(p, &flags);
e2912009 4653
db44fc01
YZ
4654 if (cpumask_equal(&p->cpus_allowed, new_mask))
4655 goto out;
4656
6ad4c188 4657 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4658 ret = -EINVAL;
4659 goto out;
4660 }
4661
1e1b6c51 4662 do_set_cpus_allowed(p, new_mask);
73fe6aae 4663
1da177e4 4664 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4665 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4666 goto out;
4667
969c7921 4668 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5cd038f5 4669 if (task_on_rq_queued(p) || p->state == TASK_WAKING) {
969c7921 4670 struct migration_arg arg = { p, dest_cpu };
1da177e4 4671 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4672 task_rq_unlock(rq, p, &flags);
969c7921 4673 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4674 tlb_migrate_finish(p->mm);
4675 return 0;
4676 }
4677out:
0122ec5b 4678 task_rq_unlock(rq, p, &flags);
48f24c4d 4679
1da177e4
LT
4680 return ret;
4681}
cd8ba7cd 4682EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4683
4684/*
41a2d6cf 4685 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4686 * this because either it can't run here any more (set_cpus_allowed()
4687 * away from this CPU, or CPU going down), or because we're
4688 * attempting to rebalance this task on exec (sched_exec).
4689 *
4690 * So we race with normal scheduler movements, but that's OK, as long
4691 * as the task is no longer on this CPU.
efc30814
KK
4692 *
4693 * Returns non-zero if task was successfully migrated.
1da177e4 4694 */
efc30814 4695static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4696{
a1e01829 4697 struct rq *rq;
e2912009 4698 int ret = 0;
1da177e4 4699
e761b772 4700 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4701 return ret;
1da177e4 4702
a1e01829 4703 rq = cpu_rq(src_cpu);
1da177e4 4704
0122ec5b 4705 raw_spin_lock(&p->pi_lock);
a1e01829 4706 raw_spin_lock(&rq->lock);
1da177e4
LT
4707 /* Already moved. */
4708 if (task_cpu(p) != src_cpu)
b1e38734 4709 goto done;
a1e01829 4710
1da177e4 4711 /* Affinity changed (again). */
fa17b507 4712 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4713 goto fail;
1da177e4 4714
e2912009
PZ
4715 /*
4716 * If we're not on a rq, the next wake-up will ensure we're
4717 * placed properly.
4718 */
da0c1e65 4719 if (task_on_rq_queued(p)) {
a1e01829
KT
4720 dequeue_task(rq, p, 0);
4721 p->on_rq = TASK_ON_RQ_MIGRATING;
e2912009 4722 set_task_cpu(p, dest_cpu);
a1e01829
KT
4723 raw_spin_unlock(&rq->lock);
4724
4725 rq = cpu_rq(dest_cpu);
4726 raw_spin_lock(&rq->lock);
4727 BUG_ON(task_rq(p) != rq);
4728 p->on_rq = TASK_ON_RQ_QUEUED;
4729 enqueue_task(rq, p, 0);
4730 check_preempt_curr(rq, p, 0);
1da177e4 4731 }
b1e38734 4732done:
efc30814 4733 ret = 1;
b1e38734 4734fail:
a1e01829 4735 raw_spin_unlock(&rq->lock);
0122ec5b 4736 raw_spin_unlock(&p->pi_lock);
efc30814 4737 return ret;
1da177e4
LT
4738}
4739
e6628d5b
MG
4740#ifdef CONFIG_NUMA_BALANCING
4741/* Migrate current task p to target_cpu */
4742int migrate_task_to(struct task_struct *p, int target_cpu)
4743{
4744 struct migration_arg arg = { p, target_cpu };
4745 int curr_cpu = task_cpu(p);
4746
4747 if (curr_cpu == target_cpu)
4748 return 0;
4749
4750 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4751 return -EINVAL;
4752
4753 /* TODO: This is not properly updating schedstats */
4754
286549dc 4755 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4756 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4757}
0ec8aa00
PZ
4758
4759/*
4760 * Requeue a task on a given node and accurately track the number of NUMA
4761 * tasks on the runqueues
4762 */
4763void sched_setnuma(struct task_struct *p, int nid)
4764{
4765 struct rq *rq;
4766 unsigned long flags;
da0c1e65 4767 bool queued, running;
0ec8aa00
PZ
4768
4769 rq = task_rq_lock(p, &flags);
da0c1e65 4770 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4771 running = task_current(rq, p);
4772
da0c1e65 4773 if (queued)
0ec8aa00
PZ
4774 dequeue_task(rq, p, 0);
4775 if (running)
4776 p->sched_class->put_prev_task(rq, p);
4777
4778 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4779
4780 if (running)
4781 p->sched_class->set_curr_task(rq);
da0c1e65 4782 if (queued)
0ec8aa00
PZ
4783 enqueue_task(rq, p, 0);
4784 task_rq_unlock(rq, p, &flags);
4785}
e6628d5b
MG
4786#endif
4787
1da177e4 4788/*
969c7921
TH
4789 * migration_cpu_stop - this will be executed by a highprio stopper thread
4790 * and performs thread migration by bumping thread off CPU then
4791 * 'pushing' onto another runqueue.
1da177e4 4792 */
969c7921 4793static int migration_cpu_stop(void *data)
1da177e4 4794{
969c7921 4795 struct migration_arg *arg = data;
f7b4cddc 4796
969c7921
TH
4797 /*
4798 * The original target cpu might have gone down and we might
4799 * be on another cpu but it doesn't matter.
4800 */
f7b4cddc 4801 local_irq_disable();
5cd038f5
LJ
4802 /*
4803 * We need to explicitly wake pending tasks before running
4804 * __migrate_task() such that we will not miss enforcing cpus_allowed
4805 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4806 */
4807 sched_ttwu_pending();
969c7921 4808 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4809 local_irq_enable();
1da177e4 4810 return 0;
f7b4cddc
ON
4811}
4812
1da177e4 4813#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4814
054b9108 4815/*
48c5ccae
PZ
4816 * Ensures that the idle task is using init_mm right before its cpu goes
4817 * offline.
054b9108 4818 */
48c5ccae 4819void idle_task_exit(void)
1da177e4 4820{
48c5ccae 4821 struct mm_struct *mm = current->active_mm;
e76bd8d9 4822
48c5ccae 4823 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4824
a53efe5f 4825 if (mm != &init_mm) {
48c5ccae 4826 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4827 finish_arch_post_lock_switch();
4828 }
48c5ccae 4829 mmdrop(mm);
1da177e4
LT
4830}
4831
4832/*
5d180232
PZ
4833 * Since this CPU is going 'away' for a while, fold any nr_active delta
4834 * we might have. Assumes we're called after migrate_tasks() so that the
4835 * nr_active count is stable.
4836 *
4837 * Also see the comment "Global load-average calculations".
1da177e4 4838 */
5d180232 4839static void calc_load_migrate(struct rq *rq)
1da177e4 4840{
5d180232
PZ
4841 long delta = calc_load_fold_active(rq);
4842 if (delta)
4843 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4844}
4845
3f1d2a31
PZ
4846static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4847{
4848}
4849
4850static const struct sched_class fake_sched_class = {
4851 .put_prev_task = put_prev_task_fake,
4852};
4853
4854static struct task_struct fake_task = {
4855 /*
4856 * Avoid pull_{rt,dl}_task()
4857 */
4858 .prio = MAX_PRIO + 1,
4859 .sched_class = &fake_sched_class,
4860};
4861
48f24c4d 4862/*
48c5ccae
PZ
4863 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4864 * try_to_wake_up()->select_task_rq().
4865 *
4866 * Called with rq->lock held even though we'er in stop_machine() and
4867 * there's no concurrency possible, we hold the required locks anyway
4868 * because of lock validation efforts.
1da177e4 4869 */
48c5ccae 4870static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4871{
70b97a7f 4872 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4873 struct task_struct *next, *stop = rq->stop;
4874 int dest_cpu;
1da177e4
LT
4875
4876 /*
48c5ccae
PZ
4877 * Fudge the rq selection such that the below task selection loop
4878 * doesn't get stuck on the currently eligible stop task.
4879 *
4880 * We're currently inside stop_machine() and the rq is either stuck
4881 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4882 * either way we should never end up calling schedule() until we're
4883 * done here.
1da177e4 4884 */
48c5ccae 4885 rq->stop = NULL;
48f24c4d 4886
77bd3970
FW
4887 /*
4888 * put_prev_task() and pick_next_task() sched
4889 * class method both need to have an up-to-date
4890 * value of rq->clock[_task]
4891 */
4892 update_rq_clock(rq);
4893
dd41f596 4894 for ( ; ; ) {
48c5ccae
PZ
4895 /*
4896 * There's this thread running, bail when that's the only
4897 * remaining thread.
4898 */
4899 if (rq->nr_running == 1)
dd41f596 4900 break;
48c5ccae 4901
3f1d2a31 4902 next = pick_next_task(rq, &fake_task);
48c5ccae 4903 BUG_ON(!next);
79c53799 4904 next->sched_class->put_prev_task(rq, next);
e692ab53 4905
48c5ccae
PZ
4906 /* Find suitable destination for @next, with force if needed. */
4907 dest_cpu = select_fallback_rq(dead_cpu, next);
4908 raw_spin_unlock(&rq->lock);
4909
4910 __migrate_task(next, dead_cpu, dest_cpu);
4911
4912 raw_spin_lock(&rq->lock);
1da177e4 4913 }
dce48a84 4914
48c5ccae 4915 rq->stop = stop;
dce48a84 4916}
48c5ccae 4917
1da177e4
LT
4918#endif /* CONFIG_HOTPLUG_CPU */
4919
e692ab53
NP
4920#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4921
4922static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4923 {
4924 .procname = "sched_domain",
c57baf1e 4925 .mode = 0555,
e0361851 4926 },
56992309 4927 {}
e692ab53
NP
4928};
4929
4930static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4931 {
4932 .procname = "kernel",
c57baf1e 4933 .mode = 0555,
e0361851
AD
4934 .child = sd_ctl_dir,
4935 },
56992309 4936 {}
e692ab53
NP
4937};
4938
4939static struct ctl_table *sd_alloc_ctl_entry(int n)
4940{
4941 struct ctl_table *entry =
5cf9f062 4942 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4943
e692ab53
NP
4944 return entry;
4945}
4946
6382bc90
MM
4947static void sd_free_ctl_entry(struct ctl_table **tablep)
4948{
cd790076 4949 struct ctl_table *entry;
6382bc90 4950
cd790076
MM
4951 /*
4952 * In the intermediate directories, both the child directory and
4953 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4954 * will always be set. In the lowest directory the names are
cd790076
MM
4955 * static strings and all have proc handlers.
4956 */
4957 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4958 if (entry->child)
4959 sd_free_ctl_entry(&entry->child);
cd790076
MM
4960 if (entry->proc_handler == NULL)
4961 kfree(entry->procname);
4962 }
6382bc90
MM
4963
4964 kfree(*tablep);
4965 *tablep = NULL;
4966}
4967
201c373e 4968static int min_load_idx = 0;
fd9b86d3 4969static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4970
e692ab53 4971static void
e0361851 4972set_table_entry(struct ctl_table *entry,
e692ab53 4973 const char *procname, void *data, int maxlen,
201c373e
NK
4974 umode_t mode, proc_handler *proc_handler,
4975 bool load_idx)
e692ab53 4976{
e692ab53
NP
4977 entry->procname = procname;
4978 entry->data = data;
4979 entry->maxlen = maxlen;
4980 entry->mode = mode;
4981 entry->proc_handler = proc_handler;
201c373e
NK
4982
4983 if (load_idx) {
4984 entry->extra1 = &min_load_idx;
4985 entry->extra2 = &max_load_idx;
4986 }
e692ab53
NP
4987}
4988
4989static struct ctl_table *
4990sd_alloc_ctl_domain_table(struct sched_domain *sd)
4991{
37e6bae8 4992 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4993
ad1cdc1d
MM
4994 if (table == NULL)
4995 return NULL;
4996
e0361851 4997 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4998 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4999 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5000 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5001 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5002 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5003 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5004 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5005 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5006 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5007 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5008 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5009 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5010 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5011 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5012 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5013 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5014 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5015 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5016 &sd->cache_nice_tries,
201c373e 5017 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5018 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5019 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5020 set_table_entry(&table[11], "max_newidle_lb_cost",
5021 &sd->max_newidle_lb_cost,
5022 sizeof(long), 0644, proc_doulongvec_minmax, false);
5023 set_table_entry(&table[12], "name", sd->name,
201c373e 5024 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5025 /* &table[13] is terminator */
e692ab53
NP
5026
5027 return table;
5028}
5029
be7002e6 5030static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5031{
5032 struct ctl_table *entry, *table;
5033 struct sched_domain *sd;
5034 int domain_num = 0, i;
5035 char buf[32];
5036
5037 for_each_domain(cpu, sd)
5038 domain_num++;
5039 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5040 if (table == NULL)
5041 return NULL;
e692ab53
NP
5042
5043 i = 0;
5044 for_each_domain(cpu, sd) {
5045 snprintf(buf, 32, "domain%d", i);
e692ab53 5046 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5047 entry->mode = 0555;
e692ab53
NP
5048 entry->child = sd_alloc_ctl_domain_table(sd);
5049 entry++;
5050 i++;
5051 }
5052 return table;
5053}
5054
5055static struct ctl_table_header *sd_sysctl_header;
6382bc90 5056static void register_sched_domain_sysctl(void)
e692ab53 5057{
6ad4c188 5058 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5059 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5060 char buf[32];
5061
7378547f
MM
5062 WARN_ON(sd_ctl_dir[0].child);
5063 sd_ctl_dir[0].child = entry;
5064
ad1cdc1d
MM
5065 if (entry == NULL)
5066 return;
5067
6ad4c188 5068 for_each_possible_cpu(i) {
e692ab53 5069 snprintf(buf, 32, "cpu%d", i);
e692ab53 5070 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5071 entry->mode = 0555;
e692ab53 5072 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5073 entry++;
e692ab53 5074 }
7378547f
MM
5075
5076 WARN_ON(sd_sysctl_header);
e692ab53
NP
5077 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5078}
6382bc90 5079
7378547f 5080/* may be called multiple times per register */
6382bc90
MM
5081static void unregister_sched_domain_sysctl(void)
5082{
7378547f
MM
5083 if (sd_sysctl_header)
5084 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5085 sd_sysctl_header = NULL;
7378547f
MM
5086 if (sd_ctl_dir[0].child)
5087 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5088}
e692ab53 5089#else
6382bc90
MM
5090static void register_sched_domain_sysctl(void)
5091{
5092}
5093static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5094{
5095}
5096#endif
5097
1f11eb6a
GH
5098static void set_rq_online(struct rq *rq)
5099{
5100 if (!rq->online) {
5101 const struct sched_class *class;
5102
c6c4927b 5103 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5104 rq->online = 1;
5105
5106 for_each_class(class) {
5107 if (class->rq_online)
5108 class->rq_online(rq);
5109 }
5110 }
5111}
5112
5113static void set_rq_offline(struct rq *rq)
5114{
5115 if (rq->online) {
5116 const struct sched_class *class;
5117
5118 for_each_class(class) {
5119 if (class->rq_offline)
5120 class->rq_offline(rq);
5121 }
5122
c6c4927b 5123 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5124 rq->online = 0;
5125 }
5126}
5127
1da177e4
LT
5128/*
5129 * migration_call - callback that gets triggered when a CPU is added.
5130 * Here we can start up the necessary migration thread for the new CPU.
5131 */
0db0628d 5132static int
48f24c4d 5133migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5134{
48f24c4d 5135 int cpu = (long)hcpu;
1da177e4 5136 unsigned long flags;
969c7921 5137 struct rq *rq = cpu_rq(cpu);
1da177e4 5138
48c5ccae 5139 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5140
1da177e4 5141 case CPU_UP_PREPARE:
a468d389 5142 rq->calc_load_update = calc_load_update;
1da177e4 5143 break;
48f24c4d 5144
1da177e4 5145 case CPU_ONLINE:
1f94ef59 5146 /* Update our root-domain */
05fa785c 5147 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5148 if (rq->rd) {
c6c4927b 5149 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5150
5151 set_rq_online(rq);
1f94ef59 5152 }
05fa785c 5153 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5154 break;
48f24c4d 5155
1da177e4 5156#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5157 case CPU_DYING:
317f3941 5158 sched_ttwu_pending();
57d885fe 5159 /* Update our root-domain */
05fa785c 5160 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5161 if (rq->rd) {
c6c4927b 5162 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5163 set_rq_offline(rq);
57d885fe 5164 }
48c5ccae
PZ
5165 migrate_tasks(cpu);
5166 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5167 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5168 break;
48c5ccae 5169
5d180232 5170 case CPU_DEAD:
f319da0c 5171 calc_load_migrate(rq);
57d885fe 5172 break;
1da177e4
LT
5173#endif
5174 }
49c022e6
PZ
5175
5176 update_max_interval();
5177
1da177e4
LT
5178 return NOTIFY_OK;
5179}
5180
f38b0820
PM
5181/*
5182 * Register at high priority so that task migration (migrate_all_tasks)
5183 * happens before everything else. This has to be lower priority than
cdd6c482 5184 * the notifier in the perf_event subsystem, though.
1da177e4 5185 */
0db0628d 5186static struct notifier_block migration_notifier = {
1da177e4 5187 .notifier_call = migration_call,
50a323b7 5188 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5189};
5190
a803f026
CM
5191static void __cpuinit set_cpu_rq_start_time(void)
5192{
5193 int cpu = smp_processor_id();
5194 struct rq *rq = cpu_rq(cpu);
5195 rq->age_stamp = sched_clock_cpu(cpu);
5196}
5197
0db0628d 5198static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5199 unsigned long action, void *hcpu)
5200{
5201 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5202 case CPU_STARTING:
5203 set_cpu_rq_start_time();
5204 return NOTIFY_OK;
3a101d05
TH
5205 case CPU_DOWN_FAILED:
5206 set_cpu_active((long)hcpu, true);
5207 return NOTIFY_OK;
5208 default:
5209 return NOTIFY_DONE;
5210 }
5211}
5212
0db0628d 5213static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5214 unsigned long action, void *hcpu)
5215{
de212f18
PZ
5216 unsigned long flags;
5217 long cpu = (long)hcpu;
5218
3a101d05
TH
5219 switch (action & ~CPU_TASKS_FROZEN) {
5220 case CPU_DOWN_PREPARE:
de212f18
PZ
5221 set_cpu_active(cpu, false);
5222
5223 /* explicitly allow suspend */
5224 if (!(action & CPU_TASKS_FROZEN)) {
5225 struct dl_bw *dl_b = dl_bw_of(cpu);
5226 bool overflow;
5227 int cpus;
5228
5229 raw_spin_lock_irqsave(&dl_b->lock, flags);
5230 cpus = dl_bw_cpus(cpu);
5231 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5232 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5233
5234 if (overflow)
5235 return notifier_from_errno(-EBUSY);
5236 }
3a101d05 5237 return NOTIFY_OK;
3a101d05 5238 }
de212f18
PZ
5239
5240 return NOTIFY_DONE;
3a101d05
TH
5241}
5242
7babe8db 5243static int __init migration_init(void)
1da177e4
LT
5244{
5245 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5246 int err;
48f24c4d 5247
3a101d05 5248 /* Initialize migration for the boot CPU */
07dccf33
AM
5249 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5250 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5251 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5252 register_cpu_notifier(&migration_notifier);
7babe8db 5253
3a101d05
TH
5254 /* Register cpu active notifiers */
5255 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5256 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5257
a004cd42 5258 return 0;
1da177e4 5259}
7babe8db 5260early_initcall(migration_init);
1da177e4
LT
5261#endif
5262
5263#ifdef CONFIG_SMP
476f3534 5264
4cb98839
PZ
5265static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5266
3e9830dc 5267#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5268
d039ac60 5269static __read_mostly int sched_debug_enabled;
f6630114 5270
d039ac60 5271static int __init sched_debug_setup(char *str)
f6630114 5272{
d039ac60 5273 sched_debug_enabled = 1;
f6630114
MT
5274
5275 return 0;
5276}
d039ac60
PZ
5277early_param("sched_debug", sched_debug_setup);
5278
5279static inline bool sched_debug(void)
5280{
5281 return sched_debug_enabled;
5282}
f6630114 5283
7c16ec58 5284static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5285 struct cpumask *groupmask)
1da177e4 5286{
4dcf6aff 5287 struct sched_group *group = sd->groups;
434d53b0 5288 char str[256];
1da177e4 5289
968ea6d8 5290 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5291 cpumask_clear(groupmask);
4dcf6aff
IM
5292
5293 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5294
5295 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5296 printk("does not load-balance\n");
4dcf6aff 5297 if (sd->parent)
3df0fc5b
PZ
5298 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5299 " has parent");
4dcf6aff 5300 return -1;
41c7ce9a
NP
5301 }
5302
3df0fc5b 5303 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5304
758b2cdc 5305 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5306 printk(KERN_ERR "ERROR: domain->span does not contain "
5307 "CPU%d\n", cpu);
4dcf6aff 5308 }
758b2cdc 5309 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5310 printk(KERN_ERR "ERROR: domain->groups does not contain"
5311 " CPU%d\n", cpu);
4dcf6aff 5312 }
1da177e4 5313
4dcf6aff 5314 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5315 do {
4dcf6aff 5316 if (!group) {
3df0fc5b
PZ
5317 printk("\n");
5318 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5319 break;
5320 }
5321
c3decf0d 5322 /*
63b2ca30
NP
5323 * Even though we initialize ->capacity to something semi-sane,
5324 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5325 * domain iteration is still funny without causing /0 traps.
5326 */
63b2ca30 5327 if (!group->sgc->capacity_orig) {
3df0fc5b 5328 printk(KERN_CONT "\n");
63b2ca30 5329 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5330 break;
5331 }
1da177e4 5332
758b2cdc 5333 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5334 printk(KERN_CONT "\n");
5335 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5336 break;
5337 }
1da177e4 5338
cb83b629
PZ
5339 if (!(sd->flags & SD_OVERLAP) &&
5340 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5341 printk(KERN_CONT "\n");
5342 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5343 break;
5344 }
1da177e4 5345
758b2cdc 5346 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5347
968ea6d8 5348 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5349
3df0fc5b 5350 printk(KERN_CONT " %s", str);
ca8ce3d0 5351 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5352 printk(KERN_CONT " (cpu_capacity = %d)",
5353 group->sgc->capacity);
381512cf 5354 }
1da177e4 5355
4dcf6aff
IM
5356 group = group->next;
5357 } while (group != sd->groups);
3df0fc5b 5358 printk(KERN_CONT "\n");
1da177e4 5359
758b2cdc 5360 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5361 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5362
758b2cdc
RR
5363 if (sd->parent &&
5364 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5365 printk(KERN_ERR "ERROR: parent span is not a superset "
5366 "of domain->span\n");
4dcf6aff
IM
5367 return 0;
5368}
1da177e4 5369
4dcf6aff
IM
5370static void sched_domain_debug(struct sched_domain *sd, int cpu)
5371{
5372 int level = 0;
1da177e4 5373
d039ac60 5374 if (!sched_debug_enabled)
f6630114
MT
5375 return;
5376
4dcf6aff
IM
5377 if (!sd) {
5378 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5379 return;
5380 }
1da177e4 5381
4dcf6aff
IM
5382 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5383
5384 for (;;) {
4cb98839 5385 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5386 break;
1da177e4
LT
5387 level++;
5388 sd = sd->parent;
33859f7f 5389 if (!sd)
4dcf6aff
IM
5390 break;
5391 }
1da177e4 5392}
6d6bc0ad 5393#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5394# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5395static inline bool sched_debug(void)
5396{
5397 return false;
5398}
6d6bc0ad 5399#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5400
1a20ff27 5401static int sd_degenerate(struct sched_domain *sd)
245af2c7 5402{
758b2cdc 5403 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5404 return 1;
5405
5406 /* Following flags need at least 2 groups */
5407 if (sd->flags & (SD_LOAD_BALANCE |
5408 SD_BALANCE_NEWIDLE |
5409 SD_BALANCE_FORK |
89c4710e 5410 SD_BALANCE_EXEC |
5d4dfddd 5411 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5412 SD_SHARE_PKG_RESOURCES |
5413 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5414 if (sd->groups != sd->groups->next)
5415 return 0;
5416 }
5417
5418 /* Following flags don't use groups */
c88d5910 5419 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5420 return 0;
5421
5422 return 1;
5423}
5424
48f24c4d
IM
5425static int
5426sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5427{
5428 unsigned long cflags = sd->flags, pflags = parent->flags;
5429
5430 if (sd_degenerate(parent))
5431 return 1;
5432
758b2cdc 5433 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5434 return 0;
5435
245af2c7
SS
5436 /* Flags needing groups don't count if only 1 group in parent */
5437 if (parent->groups == parent->groups->next) {
5438 pflags &= ~(SD_LOAD_BALANCE |
5439 SD_BALANCE_NEWIDLE |
5440 SD_BALANCE_FORK |
89c4710e 5441 SD_BALANCE_EXEC |
5d4dfddd 5442 SD_SHARE_CPUCAPACITY |
10866e62 5443 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5444 SD_PREFER_SIBLING |
5445 SD_SHARE_POWERDOMAIN);
5436499e
KC
5446 if (nr_node_ids == 1)
5447 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5448 }
5449 if (~cflags & pflags)
5450 return 0;
5451
5452 return 1;
5453}
5454
dce840a0 5455static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5456{
dce840a0 5457 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5458
68e74568 5459 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5460 cpudl_cleanup(&rd->cpudl);
1baca4ce 5461 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5462 free_cpumask_var(rd->rto_mask);
5463 free_cpumask_var(rd->online);
5464 free_cpumask_var(rd->span);
5465 kfree(rd);
5466}
5467
57d885fe
GH
5468static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5469{
a0490fa3 5470 struct root_domain *old_rd = NULL;
57d885fe 5471 unsigned long flags;
57d885fe 5472
05fa785c 5473 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5474
5475 if (rq->rd) {
a0490fa3 5476 old_rd = rq->rd;
57d885fe 5477
c6c4927b 5478 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5479 set_rq_offline(rq);
57d885fe 5480
c6c4927b 5481 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5482
a0490fa3 5483 /*
0515973f 5484 * If we dont want to free the old_rd yet then
a0490fa3
IM
5485 * set old_rd to NULL to skip the freeing later
5486 * in this function:
5487 */
5488 if (!atomic_dec_and_test(&old_rd->refcount))
5489 old_rd = NULL;
57d885fe
GH
5490 }
5491
5492 atomic_inc(&rd->refcount);
5493 rq->rd = rd;
5494
c6c4927b 5495 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5496 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5497 set_rq_online(rq);
57d885fe 5498
05fa785c 5499 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5500
5501 if (old_rd)
dce840a0 5502 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5503}
5504
68c38fc3 5505static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5506{
5507 memset(rd, 0, sizeof(*rd));
5508
68c38fc3 5509 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5510 goto out;
68c38fc3 5511 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5512 goto free_span;
1baca4ce 5513 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5514 goto free_online;
1baca4ce
JL
5515 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5516 goto free_dlo_mask;
6e0534f2 5517
332ac17e 5518 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5519 if (cpudl_init(&rd->cpudl) != 0)
5520 goto free_dlo_mask;
332ac17e 5521
68c38fc3 5522 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5523 goto free_rto_mask;
c6c4927b 5524 return 0;
6e0534f2 5525
68e74568
RR
5526free_rto_mask:
5527 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5528free_dlo_mask:
5529 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5530free_online:
5531 free_cpumask_var(rd->online);
5532free_span:
5533 free_cpumask_var(rd->span);
0c910d28 5534out:
c6c4927b 5535 return -ENOMEM;
57d885fe
GH
5536}
5537
029632fb
PZ
5538/*
5539 * By default the system creates a single root-domain with all cpus as
5540 * members (mimicking the global state we have today).
5541 */
5542struct root_domain def_root_domain;
5543
57d885fe
GH
5544static void init_defrootdomain(void)
5545{
68c38fc3 5546 init_rootdomain(&def_root_domain);
c6c4927b 5547
57d885fe
GH
5548 atomic_set(&def_root_domain.refcount, 1);
5549}
5550
dc938520 5551static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5552{
5553 struct root_domain *rd;
5554
5555 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5556 if (!rd)
5557 return NULL;
5558
68c38fc3 5559 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5560 kfree(rd);
5561 return NULL;
5562 }
57d885fe
GH
5563
5564 return rd;
5565}
5566
63b2ca30 5567static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5568{
5569 struct sched_group *tmp, *first;
5570
5571 if (!sg)
5572 return;
5573
5574 first = sg;
5575 do {
5576 tmp = sg->next;
5577
63b2ca30
NP
5578 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5579 kfree(sg->sgc);
e3589f6c
PZ
5580
5581 kfree(sg);
5582 sg = tmp;
5583 } while (sg != first);
5584}
5585
dce840a0
PZ
5586static void free_sched_domain(struct rcu_head *rcu)
5587{
5588 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5589
5590 /*
5591 * If its an overlapping domain it has private groups, iterate and
5592 * nuke them all.
5593 */
5594 if (sd->flags & SD_OVERLAP) {
5595 free_sched_groups(sd->groups, 1);
5596 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5597 kfree(sd->groups->sgc);
dce840a0 5598 kfree(sd->groups);
9c3f75cb 5599 }
dce840a0
PZ
5600 kfree(sd);
5601}
5602
5603static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5604{
5605 call_rcu(&sd->rcu, free_sched_domain);
5606}
5607
5608static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5609{
5610 for (; sd; sd = sd->parent)
5611 destroy_sched_domain(sd, cpu);
5612}
5613
518cd623
PZ
5614/*
5615 * Keep a special pointer to the highest sched_domain that has
5616 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5617 * allows us to avoid some pointer chasing select_idle_sibling().
5618 *
5619 * Also keep a unique ID per domain (we use the first cpu number in
5620 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5621 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5622 */
5623DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5624DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5625DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5626DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5627DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5628DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5629
5630static void update_top_cache_domain(int cpu)
5631{
5632 struct sched_domain *sd;
5d4cf996 5633 struct sched_domain *busy_sd = NULL;
518cd623 5634 int id = cpu;
7d9ffa89 5635 int size = 1;
518cd623
PZ
5636
5637 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5638 if (sd) {
518cd623 5639 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5640 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5641 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5642 }
5d4cf996 5643 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5644
5645 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5646 per_cpu(sd_llc_size, cpu) = size;
518cd623 5647 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5648
5649 sd = lowest_flag_domain(cpu, SD_NUMA);
5650 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5651
5652 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5653 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5654}
5655
1da177e4 5656/*
0eab9146 5657 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5658 * hold the hotplug lock.
5659 */
0eab9146
IM
5660static void
5661cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5662{
70b97a7f 5663 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5664 struct sched_domain *tmp;
5665
5666 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5667 for (tmp = sd; tmp; ) {
245af2c7
SS
5668 struct sched_domain *parent = tmp->parent;
5669 if (!parent)
5670 break;
f29c9b1c 5671
1a848870 5672 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5673 tmp->parent = parent->parent;
1a848870
SS
5674 if (parent->parent)
5675 parent->parent->child = tmp;
10866e62
PZ
5676 /*
5677 * Transfer SD_PREFER_SIBLING down in case of a
5678 * degenerate parent; the spans match for this
5679 * so the property transfers.
5680 */
5681 if (parent->flags & SD_PREFER_SIBLING)
5682 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5683 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5684 } else
5685 tmp = tmp->parent;
245af2c7
SS
5686 }
5687
1a848870 5688 if (sd && sd_degenerate(sd)) {
dce840a0 5689 tmp = sd;
245af2c7 5690 sd = sd->parent;
dce840a0 5691 destroy_sched_domain(tmp, cpu);
1a848870
SS
5692 if (sd)
5693 sd->child = NULL;
5694 }
1da177e4 5695
4cb98839 5696 sched_domain_debug(sd, cpu);
1da177e4 5697
57d885fe 5698 rq_attach_root(rq, rd);
dce840a0 5699 tmp = rq->sd;
674311d5 5700 rcu_assign_pointer(rq->sd, sd);
dce840a0 5701 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5702
5703 update_top_cache_domain(cpu);
1da177e4
LT
5704}
5705
5706/* cpus with isolated domains */
dcc30a35 5707static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5708
5709/* Setup the mask of cpus configured for isolated domains */
5710static int __init isolated_cpu_setup(char *str)
5711{
bdddd296 5712 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5713 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5714 return 1;
5715}
5716
8927f494 5717__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5718
49a02c51 5719struct s_data {
21d42ccf 5720 struct sched_domain ** __percpu sd;
49a02c51
AH
5721 struct root_domain *rd;
5722};
5723
2109b99e 5724enum s_alloc {
2109b99e 5725 sa_rootdomain,
21d42ccf 5726 sa_sd,
dce840a0 5727 sa_sd_storage,
2109b99e
AH
5728 sa_none,
5729};
5730
c1174876
PZ
5731/*
5732 * Build an iteration mask that can exclude certain CPUs from the upwards
5733 * domain traversal.
5734 *
5735 * Asymmetric node setups can result in situations where the domain tree is of
5736 * unequal depth, make sure to skip domains that already cover the entire
5737 * range.
5738 *
5739 * In that case build_sched_domains() will have terminated the iteration early
5740 * and our sibling sd spans will be empty. Domains should always include the
5741 * cpu they're built on, so check that.
5742 *
5743 */
5744static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5745{
5746 const struct cpumask *span = sched_domain_span(sd);
5747 struct sd_data *sdd = sd->private;
5748 struct sched_domain *sibling;
5749 int i;
5750
5751 for_each_cpu(i, span) {
5752 sibling = *per_cpu_ptr(sdd->sd, i);
5753 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5754 continue;
5755
5756 cpumask_set_cpu(i, sched_group_mask(sg));
5757 }
5758}
5759
5760/*
5761 * Return the canonical balance cpu for this group, this is the first cpu
5762 * of this group that's also in the iteration mask.
5763 */
5764int group_balance_cpu(struct sched_group *sg)
5765{
5766 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5767}
5768
e3589f6c
PZ
5769static int
5770build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5771{
5772 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5773 const struct cpumask *span = sched_domain_span(sd);
5774 struct cpumask *covered = sched_domains_tmpmask;
5775 struct sd_data *sdd = sd->private;
aaecac4a 5776 struct sched_domain *sibling;
e3589f6c
PZ
5777 int i;
5778
5779 cpumask_clear(covered);
5780
5781 for_each_cpu(i, span) {
5782 struct cpumask *sg_span;
5783
5784 if (cpumask_test_cpu(i, covered))
5785 continue;
5786
aaecac4a 5787 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5788
5789 /* See the comment near build_group_mask(). */
aaecac4a 5790 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5791 continue;
5792
e3589f6c 5793 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5794 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5795
5796 if (!sg)
5797 goto fail;
5798
5799 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5800 if (sibling->child)
5801 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5802 else
e3589f6c
PZ
5803 cpumask_set_cpu(i, sg_span);
5804
5805 cpumask_or(covered, covered, sg_span);
5806
63b2ca30
NP
5807 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5808 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5809 build_group_mask(sd, sg);
5810
c3decf0d 5811 /*
63b2ca30 5812 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5813 * domains and no possible iteration will get us here, we won't
5814 * die on a /0 trap.
5815 */
ca8ce3d0 5816 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5817 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5818
c1174876
PZ
5819 /*
5820 * Make sure the first group of this domain contains the
5821 * canonical balance cpu. Otherwise the sched_domain iteration
5822 * breaks. See update_sg_lb_stats().
5823 */
74a5ce20 5824 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5825 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5826 groups = sg;
5827
5828 if (!first)
5829 first = sg;
5830 if (last)
5831 last->next = sg;
5832 last = sg;
5833 last->next = first;
5834 }
5835 sd->groups = groups;
5836
5837 return 0;
5838
5839fail:
5840 free_sched_groups(first, 0);
5841
5842 return -ENOMEM;
5843}
5844
dce840a0 5845static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5846{
dce840a0
PZ
5847 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5848 struct sched_domain *child = sd->child;
1da177e4 5849
dce840a0
PZ
5850 if (child)
5851 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5852
9c3f75cb 5853 if (sg) {
dce840a0 5854 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5855 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5856 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5857 }
dce840a0
PZ
5858
5859 return cpu;
1e9f28fa 5860}
1e9f28fa 5861
01a08546 5862/*
dce840a0
PZ
5863 * build_sched_groups will build a circular linked list of the groups
5864 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5865 * and ->cpu_capacity to 0.
e3589f6c
PZ
5866 *
5867 * Assumes the sched_domain tree is fully constructed
01a08546 5868 */
e3589f6c
PZ
5869static int
5870build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5871{
dce840a0
PZ
5872 struct sched_group *first = NULL, *last = NULL;
5873 struct sd_data *sdd = sd->private;
5874 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5875 struct cpumask *covered;
dce840a0 5876 int i;
9c1cfda2 5877
e3589f6c
PZ
5878 get_group(cpu, sdd, &sd->groups);
5879 atomic_inc(&sd->groups->ref);
5880
0936629f 5881 if (cpu != cpumask_first(span))
e3589f6c
PZ
5882 return 0;
5883
f96225fd
PZ
5884 lockdep_assert_held(&sched_domains_mutex);
5885 covered = sched_domains_tmpmask;
5886
dce840a0 5887 cpumask_clear(covered);
6711cab4 5888
dce840a0
PZ
5889 for_each_cpu(i, span) {
5890 struct sched_group *sg;
cd08e923 5891 int group, j;
6711cab4 5892
dce840a0
PZ
5893 if (cpumask_test_cpu(i, covered))
5894 continue;
6711cab4 5895
cd08e923 5896 group = get_group(i, sdd, &sg);
c1174876 5897 cpumask_setall(sched_group_mask(sg));
0601a88d 5898
dce840a0
PZ
5899 for_each_cpu(j, span) {
5900 if (get_group(j, sdd, NULL) != group)
5901 continue;
0601a88d 5902
dce840a0
PZ
5903 cpumask_set_cpu(j, covered);
5904 cpumask_set_cpu(j, sched_group_cpus(sg));
5905 }
0601a88d 5906
dce840a0
PZ
5907 if (!first)
5908 first = sg;
5909 if (last)
5910 last->next = sg;
5911 last = sg;
5912 }
5913 last->next = first;
e3589f6c
PZ
5914
5915 return 0;
0601a88d 5916}
51888ca2 5917
89c4710e 5918/*
63b2ca30 5919 * Initialize sched groups cpu_capacity.
89c4710e 5920 *
63b2ca30 5921 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5922 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5923 * Typically cpu_capacity for all the groups in a sched domain will be same
5924 * unless there are asymmetries in the topology. If there are asymmetries,
5925 * group having more cpu_capacity will pickup more load compared to the
5926 * group having less cpu_capacity.
89c4710e 5927 */
63b2ca30 5928static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5929{
e3589f6c 5930 struct sched_group *sg = sd->groups;
89c4710e 5931
94c95ba6 5932 WARN_ON(!sg);
e3589f6c
PZ
5933
5934 do {
5935 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5936 sg = sg->next;
5937 } while (sg != sd->groups);
89c4710e 5938
c1174876 5939 if (cpu != group_balance_cpu(sg))
e3589f6c 5940 return;
aae6d3dd 5941
63b2ca30
NP
5942 update_group_capacity(sd, cpu);
5943 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5944}
5945
7c16ec58
MT
5946/*
5947 * Initializers for schedule domains
5948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5949 */
5950
1d3504fc 5951static int default_relax_domain_level = -1;
60495e77 5952int sched_domain_level_max;
1d3504fc
HS
5953
5954static int __init setup_relax_domain_level(char *str)
5955{
a841f8ce
DS
5956 if (kstrtoint(str, 0, &default_relax_domain_level))
5957 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5958
1d3504fc
HS
5959 return 1;
5960}
5961__setup("relax_domain_level=", setup_relax_domain_level);
5962
5963static void set_domain_attribute(struct sched_domain *sd,
5964 struct sched_domain_attr *attr)
5965{
5966 int request;
5967
5968 if (!attr || attr->relax_domain_level < 0) {
5969 if (default_relax_domain_level < 0)
5970 return;
5971 else
5972 request = default_relax_domain_level;
5973 } else
5974 request = attr->relax_domain_level;
5975 if (request < sd->level) {
5976 /* turn off idle balance on this domain */
c88d5910 5977 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5978 } else {
5979 /* turn on idle balance on this domain */
c88d5910 5980 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5981 }
5982}
5983
54ab4ff4
PZ
5984static void __sdt_free(const struct cpumask *cpu_map);
5985static int __sdt_alloc(const struct cpumask *cpu_map);
5986
2109b99e
AH
5987static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5988 const struct cpumask *cpu_map)
5989{
5990 switch (what) {
2109b99e 5991 case sa_rootdomain:
822ff793
PZ
5992 if (!atomic_read(&d->rd->refcount))
5993 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5994 case sa_sd:
5995 free_percpu(d->sd); /* fall through */
dce840a0 5996 case sa_sd_storage:
54ab4ff4 5997 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5998 case sa_none:
5999 break;
6000 }
6001}
3404c8d9 6002
2109b99e
AH
6003static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6004 const struct cpumask *cpu_map)
6005{
dce840a0
PZ
6006 memset(d, 0, sizeof(*d));
6007
54ab4ff4
PZ
6008 if (__sdt_alloc(cpu_map))
6009 return sa_sd_storage;
dce840a0
PZ
6010 d->sd = alloc_percpu(struct sched_domain *);
6011 if (!d->sd)
6012 return sa_sd_storage;
2109b99e 6013 d->rd = alloc_rootdomain();
dce840a0 6014 if (!d->rd)
21d42ccf 6015 return sa_sd;
2109b99e
AH
6016 return sa_rootdomain;
6017}
57d885fe 6018
dce840a0
PZ
6019/*
6020 * NULL the sd_data elements we've used to build the sched_domain and
6021 * sched_group structure so that the subsequent __free_domain_allocs()
6022 * will not free the data we're using.
6023 */
6024static void claim_allocations(int cpu, struct sched_domain *sd)
6025{
6026 struct sd_data *sdd = sd->private;
dce840a0
PZ
6027
6028 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6029 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6030
e3589f6c 6031 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6032 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6033
63b2ca30
NP
6034 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6035 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6036}
6037
cb83b629 6038#ifdef CONFIG_NUMA
cb83b629 6039static int sched_domains_numa_levels;
cb83b629
PZ
6040static int *sched_domains_numa_distance;
6041static struct cpumask ***sched_domains_numa_masks;
6042static int sched_domains_curr_level;
143e1e28 6043#endif
cb83b629 6044
143e1e28
VG
6045/*
6046 * SD_flags allowed in topology descriptions.
6047 *
5d4dfddd 6048 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6049 * SD_SHARE_PKG_RESOURCES - describes shared caches
6050 * SD_NUMA - describes NUMA topologies
d77b3ed5 6051 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6052 *
6053 * Odd one out:
6054 * SD_ASYM_PACKING - describes SMT quirks
6055 */
6056#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6057 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6058 SD_SHARE_PKG_RESOURCES | \
6059 SD_NUMA | \
d77b3ed5
VG
6060 SD_ASYM_PACKING | \
6061 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6062
6063static struct sched_domain *
143e1e28 6064sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6065{
6066 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6067 int sd_weight, sd_flags = 0;
6068
6069#ifdef CONFIG_NUMA
6070 /*
6071 * Ugly hack to pass state to sd_numa_mask()...
6072 */
6073 sched_domains_curr_level = tl->numa_level;
6074#endif
6075
6076 sd_weight = cpumask_weight(tl->mask(cpu));
6077
6078 if (tl->sd_flags)
6079 sd_flags = (*tl->sd_flags)();
6080 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6081 "wrong sd_flags in topology description\n"))
6082 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6083
6084 *sd = (struct sched_domain){
6085 .min_interval = sd_weight,
6086 .max_interval = 2*sd_weight,
6087 .busy_factor = 32,
870a0bb5 6088 .imbalance_pct = 125,
143e1e28
VG
6089
6090 .cache_nice_tries = 0,
6091 .busy_idx = 0,
6092 .idle_idx = 0,
cb83b629
PZ
6093 .newidle_idx = 0,
6094 .wake_idx = 0,
6095 .forkexec_idx = 0,
6096
6097 .flags = 1*SD_LOAD_BALANCE
6098 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6099 | 1*SD_BALANCE_EXEC
6100 | 1*SD_BALANCE_FORK
cb83b629 6101 | 0*SD_BALANCE_WAKE
143e1e28 6102 | 1*SD_WAKE_AFFINE
5d4dfddd 6103 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6104 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6105 | 0*SD_SERIALIZE
cb83b629 6106 | 0*SD_PREFER_SIBLING
143e1e28
VG
6107 | 0*SD_NUMA
6108 | sd_flags
cb83b629 6109 ,
143e1e28 6110
cb83b629
PZ
6111 .last_balance = jiffies,
6112 .balance_interval = sd_weight,
143e1e28 6113 .smt_gain = 0,
2b4cfe64
JL
6114 .max_newidle_lb_cost = 0,
6115 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6116#ifdef CONFIG_SCHED_DEBUG
6117 .name = tl->name,
6118#endif
cb83b629 6119 };
cb83b629
PZ
6120
6121 /*
143e1e28 6122 * Convert topological properties into behaviour.
cb83b629 6123 */
143e1e28 6124
5d4dfddd 6125 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6126 sd->imbalance_pct = 110;
6127 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6128
6129 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6130 sd->imbalance_pct = 117;
6131 sd->cache_nice_tries = 1;
6132 sd->busy_idx = 2;
6133
6134#ifdef CONFIG_NUMA
6135 } else if (sd->flags & SD_NUMA) {
6136 sd->cache_nice_tries = 2;
6137 sd->busy_idx = 3;
6138 sd->idle_idx = 2;
6139
6140 sd->flags |= SD_SERIALIZE;
6141 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6142 sd->flags &= ~(SD_BALANCE_EXEC |
6143 SD_BALANCE_FORK |
6144 SD_WAKE_AFFINE);
6145 }
6146
6147#endif
6148 } else {
6149 sd->flags |= SD_PREFER_SIBLING;
6150 sd->cache_nice_tries = 1;
6151 sd->busy_idx = 2;
6152 sd->idle_idx = 1;
6153 }
6154
6155 sd->private = &tl->data;
cb83b629
PZ
6156
6157 return sd;
6158}
6159
143e1e28
VG
6160/*
6161 * Topology list, bottom-up.
6162 */
6163static struct sched_domain_topology_level default_topology[] = {
6164#ifdef CONFIG_SCHED_SMT
6165 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6166#endif
6167#ifdef CONFIG_SCHED_MC
6168 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6169#endif
6170 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6171 { NULL, },
6172};
6173
6174struct sched_domain_topology_level *sched_domain_topology = default_topology;
6175
6176#define for_each_sd_topology(tl) \
6177 for (tl = sched_domain_topology; tl->mask; tl++)
6178
6179void set_sched_topology(struct sched_domain_topology_level *tl)
6180{
6181 sched_domain_topology = tl;
6182}
6183
6184#ifdef CONFIG_NUMA
6185
cb83b629
PZ
6186static const struct cpumask *sd_numa_mask(int cpu)
6187{
6188 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6189}
6190
d039ac60
PZ
6191static void sched_numa_warn(const char *str)
6192{
6193 static int done = false;
6194 int i,j;
6195
6196 if (done)
6197 return;
6198
6199 done = true;
6200
6201 printk(KERN_WARNING "ERROR: %s\n\n", str);
6202
6203 for (i = 0; i < nr_node_ids; i++) {
6204 printk(KERN_WARNING " ");
6205 for (j = 0; j < nr_node_ids; j++)
6206 printk(KERN_CONT "%02d ", node_distance(i,j));
6207 printk(KERN_CONT "\n");
6208 }
6209 printk(KERN_WARNING "\n");
6210}
6211
6212static bool find_numa_distance(int distance)
6213{
6214 int i;
6215
6216 if (distance == node_distance(0, 0))
6217 return true;
6218
6219 for (i = 0; i < sched_domains_numa_levels; i++) {
6220 if (sched_domains_numa_distance[i] == distance)
6221 return true;
6222 }
6223
6224 return false;
6225}
6226
cb83b629
PZ
6227static void sched_init_numa(void)
6228{
6229 int next_distance, curr_distance = node_distance(0, 0);
6230 struct sched_domain_topology_level *tl;
6231 int level = 0;
6232 int i, j, k;
6233
cb83b629
PZ
6234 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6235 if (!sched_domains_numa_distance)
6236 return;
6237
6238 /*
6239 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6240 * unique distances in the node_distance() table.
6241 *
6242 * Assumes node_distance(0,j) includes all distances in
6243 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6244 */
6245 next_distance = curr_distance;
6246 for (i = 0; i < nr_node_ids; i++) {
6247 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6248 for (k = 0; k < nr_node_ids; k++) {
6249 int distance = node_distance(i, k);
6250
6251 if (distance > curr_distance &&
6252 (distance < next_distance ||
6253 next_distance == curr_distance))
6254 next_distance = distance;
6255
6256 /*
6257 * While not a strong assumption it would be nice to know
6258 * about cases where if node A is connected to B, B is not
6259 * equally connected to A.
6260 */
6261 if (sched_debug() && node_distance(k, i) != distance)
6262 sched_numa_warn("Node-distance not symmetric");
6263
6264 if (sched_debug() && i && !find_numa_distance(distance))
6265 sched_numa_warn("Node-0 not representative");
6266 }
6267 if (next_distance != curr_distance) {
6268 sched_domains_numa_distance[level++] = next_distance;
6269 sched_domains_numa_levels = level;
6270 curr_distance = next_distance;
6271 } else break;
cb83b629 6272 }
d039ac60
PZ
6273
6274 /*
6275 * In case of sched_debug() we verify the above assumption.
6276 */
6277 if (!sched_debug())
6278 break;
cb83b629
PZ
6279 }
6280 /*
6281 * 'level' contains the number of unique distances, excluding the
6282 * identity distance node_distance(i,i).
6283 *
28b4a521 6284 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6285 * numbers.
6286 */
6287
5f7865f3
TC
6288 /*
6289 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6290 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6291 * the array will contain less then 'level' members. This could be
6292 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6293 * in other functions.
6294 *
6295 * We reset it to 'level' at the end of this function.
6296 */
6297 sched_domains_numa_levels = 0;
6298
cb83b629
PZ
6299 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6300 if (!sched_domains_numa_masks)
6301 return;
6302
6303 /*
6304 * Now for each level, construct a mask per node which contains all
6305 * cpus of nodes that are that many hops away from us.
6306 */
6307 for (i = 0; i < level; i++) {
6308 sched_domains_numa_masks[i] =
6309 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6310 if (!sched_domains_numa_masks[i])
6311 return;
6312
6313 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6314 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6315 if (!mask)
6316 return;
6317
6318 sched_domains_numa_masks[i][j] = mask;
6319
6320 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6321 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6322 continue;
6323
6324 cpumask_or(mask, mask, cpumask_of_node(k));
6325 }
6326 }
6327 }
6328
143e1e28
VG
6329 /* Compute default topology size */
6330 for (i = 0; sched_domain_topology[i].mask; i++);
6331
c515db8c 6332 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6333 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6334 if (!tl)
6335 return;
6336
6337 /*
6338 * Copy the default topology bits..
6339 */
143e1e28
VG
6340 for (i = 0; sched_domain_topology[i].mask; i++)
6341 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6342
6343 /*
6344 * .. and append 'j' levels of NUMA goodness.
6345 */
6346 for (j = 0; j < level; i++, j++) {
6347 tl[i] = (struct sched_domain_topology_level){
cb83b629 6348 .mask = sd_numa_mask,
143e1e28 6349 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6350 .flags = SDTL_OVERLAP,
6351 .numa_level = j,
143e1e28 6352 SD_INIT_NAME(NUMA)
cb83b629
PZ
6353 };
6354 }
6355
6356 sched_domain_topology = tl;
5f7865f3
TC
6357
6358 sched_domains_numa_levels = level;
cb83b629 6359}
301a5cba
TC
6360
6361static void sched_domains_numa_masks_set(int cpu)
6362{
6363 int i, j;
6364 int node = cpu_to_node(cpu);
6365
6366 for (i = 0; i < sched_domains_numa_levels; i++) {
6367 for (j = 0; j < nr_node_ids; j++) {
6368 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6369 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6370 }
6371 }
6372}
6373
6374static void sched_domains_numa_masks_clear(int cpu)
6375{
6376 int i, j;
6377 for (i = 0; i < sched_domains_numa_levels; i++) {
6378 for (j = 0; j < nr_node_ids; j++)
6379 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6380 }
6381}
6382
6383/*
6384 * Update sched_domains_numa_masks[level][node] array when new cpus
6385 * are onlined.
6386 */
6387static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6388 unsigned long action,
6389 void *hcpu)
6390{
6391 int cpu = (long)hcpu;
6392
6393 switch (action & ~CPU_TASKS_FROZEN) {
6394 case CPU_ONLINE:
6395 sched_domains_numa_masks_set(cpu);
6396 break;
6397
6398 case CPU_DEAD:
6399 sched_domains_numa_masks_clear(cpu);
6400 break;
6401
6402 default:
6403 return NOTIFY_DONE;
6404 }
6405
6406 return NOTIFY_OK;
cb83b629
PZ
6407}
6408#else
6409static inline void sched_init_numa(void)
6410{
6411}
301a5cba
TC
6412
6413static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6414 unsigned long action,
6415 void *hcpu)
6416{
6417 return 0;
6418}
cb83b629
PZ
6419#endif /* CONFIG_NUMA */
6420
54ab4ff4
PZ
6421static int __sdt_alloc(const struct cpumask *cpu_map)
6422{
6423 struct sched_domain_topology_level *tl;
6424 int j;
6425
27723a68 6426 for_each_sd_topology(tl) {
54ab4ff4
PZ
6427 struct sd_data *sdd = &tl->data;
6428
6429 sdd->sd = alloc_percpu(struct sched_domain *);
6430 if (!sdd->sd)
6431 return -ENOMEM;
6432
6433 sdd->sg = alloc_percpu(struct sched_group *);
6434 if (!sdd->sg)
6435 return -ENOMEM;
6436
63b2ca30
NP
6437 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6438 if (!sdd->sgc)
9c3f75cb
PZ
6439 return -ENOMEM;
6440
54ab4ff4
PZ
6441 for_each_cpu(j, cpu_map) {
6442 struct sched_domain *sd;
6443 struct sched_group *sg;
63b2ca30 6444 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6445
6446 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6447 GFP_KERNEL, cpu_to_node(j));
6448 if (!sd)
6449 return -ENOMEM;
6450
6451 *per_cpu_ptr(sdd->sd, j) = sd;
6452
6453 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6454 GFP_KERNEL, cpu_to_node(j));
6455 if (!sg)
6456 return -ENOMEM;
6457
30b4e9eb
IM
6458 sg->next = sg;
6459
54ab4ff4 6460 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6461
63b2ca30 6462 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6463 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6464 if (!sgc)
9c3f75cb
PZ
6465 return -ENOMEM;
6466
63b2ca30 6467 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6468 }
6469 }
6470
6471 return 0;
6472}
6473
6474static void __sdt_free(const struct cpumask *cpu_map)
6475{
6476 struct sched_domain_topology_level *tl;
6477 int j;
6478
27723a68 6479 for_each_sd_topology(tl) {
54ab4ff4
PZ
6480 struct sd_data *sdd = &tl->data;
6481
6482 for_each_cpu(j, cpu_map) {
fb2cf2c6 6483 struct sched_domain *sd;
6484
6485 if (sdd->sd) {
6486 sd = *per_cpu_ptr(sdd->sd, j);
6487 if (sd && (sd->flags & SD_OVERLAP))
6488 free_sched_groups(sd->groups, 0);
6489 kfree(*per_cpu_ptr(sdd->sd, j));
6490 }
6491
6492 if (sdd->sg)
6493 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6494 if (sdd->sgc)
6495 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6496 }
6497 free_percpu(sdd->sd);
fb2cf2c6 6498 sdd->sd = NULL;
54ab4ff4 6499 free_percpu(sdd->sg);
fb2cf2c6 6500 sdd->sg = NULL;
63b2ca30
NP
6501 free_percpu(sdd->sgc);
6502 sdd->sgc = NULL;
54ab4ff4
PZ
6503 }
6504}
6505
2c402dc3 6506struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6507 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6508 struct sched_domain *child, int cpu)
2c402dc3 6509{
143e1e28 6510 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6511 if (!sd)
d069b916 6512 return child;
2c402dc3 6513
2c402dc3 6514 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6515 if (child) {
6516 sd->level = child->level + 1;
6517 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6518 child->parent = sd;
c75e0128 6519 sd->child = child;
6ae72dff
PZ
6520
6521 if (!cpumask_subset(sched_domain_span(child),
6522 sched_domain_span(sd))) {
6523 pr_err("BUG: arch topology borken\n");
6524#ifdef CONFIG_SCHED_DEBUG
6525 pr_err(" the %s domain not a subset of the %s domain\n",
6526 child->name, sd->name);
6527#endif
6528 /* Fixup, ensure @sd has at least @child cpus. */
6529 cpumask_or(sched_domain_span(sd),
6530 sched_domain_span(sd),
6531 sched_domain_span(child));
6532 }
6533
60495e77 6534 }
a841f8ce 6535 set_domain_attribute(sd, attr);
2c402dc3
PZ
6536
6537 return sd;
6538}
6539
2109b99e
AH
6540/*
6541 * Build sched domains for a given set of cpus and attach the sched domains
6542 * to the individual cpus
6543 */
dce840a0
PZ
6544static int build_sched_domains(const struct cpumask *cpu_map,
6545 struct sched_domain_attr *attr)
2109b99e 6546{
1c632169 6547 enum s_alloc alloc_state;
dce840a0 6548 struct sched_domain *sd;
2109b99e 6549 struct s_data d;
822ff793 6550 int i, ret = -ENOMEM;
9c1cfda2 6551
2109b99e
AH
6552 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6553 if (alloc_state != sa_rootdomain)
6554 goto error;
9c1cfda2 6555
dce840a0 6556 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6557 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6558 struct sched_domain_topology_level *tl;
6559
3bd65a80 6560 sd = NULL;
27723a68 6561 for_each_sd_topology(tl) {
4a850cbe 6562 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6563 if (tl == sched_domain_topology)
6564 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6565 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6566 sd->flags |= SD_OVERLAP;
d110235d
PZ
6567 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6568 break;
e3589f6c 6569 }
dce840a0
PZ
6570 }
6571
6572 /* Build the groups for the domains */
6573 for_each_cpu(i, cpu_map) {
6574 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6575 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6576 if (sd->flags & SD_OVERLAP) {
6577 if (build_overlap_sched_groups(sd, i))
6578 goto error;
6579 } else {
6580 if (build_sched_groups(sd, i))
6581 goto error;
6582 }
1cf51902 6583 }
a06dadbe 6584 }
9c1cfda2 6585
ced549fa 6586 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6587 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6588 if (!cpumask_test_cpu(i, cpu_map))
6589 continue;
9c1cfda2 6590
dce840a0
PZ
6591 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6592 claim_allocations(i, sd);
63b2ca30 6593 init_sched_groups_capacity(i, sd);
dce840a0 6594 }
f712c0c7 6595 }
9c1cfda2 6596
1da177e4 6597 /* Attach the domains */
dce840a0 6598 rcu_read_lock();
abcd083a 6599 for_each_cpu(i, cpu_map) {
21d42ccf 6600 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6601 cpu_attach_domain(sd, d.rd, i);
1da177e4 6602 }
dce840a0 6603 rcu_read_unlock();
51888ca2 6604
822ff793 6605 ret = 0;
51888ca2 6606error:
2109b99e 6607 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6608 return ret;
1da177e4 6609}
029190c5 6610
acc3f5d7 6611static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6612static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6613static struct sched_domain_attr *dattr_cur;
6614 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6615
6616/*
6617 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6618 * cpumask) fails, then fallback to a single sched domain,
6619 * as determined by the single cpumask fallback_doms.
029190c5 6620 */
4212823f 6621static cpumask_var_t fallback_doms;
029190c5 6622
ee79d1bd
HC
6623/*
6624 * arch_update_cpu_topology lets virtualized architectures update the
6625 * cpu core maps. It is supposed to return 1 if the topology changed
6626 * or 0 if it stayed the same.
6627 */
52f5684c 6628int __weak arch_update_cpu_topology(void)
22e52b07 6629{
ee79d1bd 6630 return 0;
22e52b07
HC
6631}
6632
acc3f5d7
RR
6633cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6634{
6635 int i;
6636 cpumask_var_t *doms;
6637
6638 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6639 if (!doms)
6640 return NULL;
6641 for (i = 0; i < ndoms; i++) {
6642 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6643 free_sched_domains(doms, i);
6644 return NULL;
6645 }
6646 }
6647 return doms;
6648}
6649
6650void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6651{
6652 unsigned int i;
6653 for (i = 0; i < ndoms; i++)
6654 free_cpumask_var(doms[i]);
6655 kfree(doms);
6656}
6657
1a20ff27 6658/*
41a2d6cf 6659 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6660 * For now this just excludes isolated cpus, but could be used to
6661 * exclude other special cases in the future.
1a20ff27 6662 */
c4a8849a 6663static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6664{
7378547f
MM
6665 int err;
6666
22e52b07 6667 arch_update_cpu_topology();
029190c5 6668 ndoms_cur = 1;
acc3f5d7 6669 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6670 if (!doms_cur)
acc3f5d7
RR
6671 doms_cur = &fallback_doms;
6672 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6673 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6674 register_sched_domain_sysctl();
7378547f
MM
6675
6676 return err;
1a20ff27
DG
6677}
6678
1a20ff27
DG
6679/*
6680 * Detach sched domains from a group of cpus specified in cpu_map
6681 * These cpus will now be attached to the NULL domain
6682 */
96f874e2 6683static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6684{
6685 int i;
6686
dce840a0 6687 rcu_read_lock();
abcd083a 6688 for_each_cpu(i, cpu_map)
57d885fe 6689 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6690 rcu_read_unlock();
1a20ff27
DG
6691}
6692
1d3504fc
HS
6693/* handle null as "default" */
6694static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6695 struct sched_domain_attr *new, int idx_new)
6696{
6697 struct sched_domain_attr tmp;
6698
6699 /* fast path */
6700 if (!new && !cur)
6701 return 1;
6702
6703 tmp = SD_ATTR_INIT;
6704 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6705 new ? (new + idx_new) : &tmp,
6706 sizeof(struct sched_domain_attr));
6707}
6708
029190c5
PJ
6709/*
6710 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6711 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6712 * doms_new[] to the current sched domain partitioning, doms_cur[].
6713 * It destroys each deleted domain and builds each new domain.
6714 *
acc3f5d7 6715 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6716 * The masks don't intersect (don't overlap.) We should setup one
6717 * sched domain for each mask. CPUs not in any of the cpumasks will
6718 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6719 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6720 * it as it is.
6721 *
acc3f5d7
RR
6722 * The passed in 'doms_new' should be allocated using
6723 * alloc_sched_domains. This routine takes ownership of it and will
6724 * free_sched_domains it when done with it. If the caller failed the
6725 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6726 * and partition_sched_domains() will fallback to the single partition
6727 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6728 *
96f874e2 6729 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6730 * ndoms_new == 0 is a special case for destroying existing domains,
6731 * and it will not create the default domain.
dfb512ec 6732 *
029190c5
PJ
6733 * Call with hotplug lock held
6734 */
acc3f5d7 6735void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6736 struct sched_domain_attr *dattr_new)
029190c5 6737{
dfb512ec 6738 int i, j, n;
d65bd5ec 6739 int new_topology;
029190c5 6740
712555ee 6741 mutex_lock(&sched_domains_mutex);
a1835615 6742
7378547f
MM
6743 /* always unregister in case we don't destroy any domains */
6744 unregister_sched_domain_sysctl();
6745
d65bd5ec
HC
6746 /* Let architecture update cpu core mappings. */
6747 new_topology = arch_update_cpu_topology();
6748
dfb512ec 6749 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6750
6751 /* Destroy deleted domains */
6752 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6753 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6754 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6755 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6756 goto match1;
6757 }
6758 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6759 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6760match1:
6761 ;
6762 }
6763
c8d2d47a 6764 n = ndoms_cur;
e761b772 6765 if (doms_new == NULL) {
c8d2d47a 6766 n = 0;
acc3f5d7 6767 doms_new = &fallback_doms;
6ad4c188 6768 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6769 WARN_ON_ONCE(dattr_new);
e761b772
MK
6770 }
6771
029190c5
PJ
6772 /* Build new domains */
6773 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6774 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6775 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6776 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6777 goto match2;
6778 }
6779 /* no match - add a new doms_new */
dce840a0 6780 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6781match2:
6782 ;
6783 }
6784
6785 /* Remember the new sched domains */
acc3f5d7
RR
6786 if (doms_cur != &fallback_doms)
6787 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6788 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6789 doms_cur = doms_new;
1d3504fc 6790 dattr_cur = dattr_new;
029190c5 6791 ndoms_cur = ndoms_new;
7378547f
MM
6792
6793 register_sched_domain_sysctl();
a1835615 6794
712555ee 6795 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6796}
6797
d35be8ba
SB
6798static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6799
1da177e4 6800/*
3a101d05
TH
6801 * Update cpusets according to cpu_active mask. If cpusets are
6802 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6803 * around partition_sched_domains().
d35be8ba
SB
6804 *
6805 * If we come here as part of a suspend/resume, don't touch cpusets because we
6806 * want to restore it back to its original state upon resume anyway.
1da177e4 6807 */
0b2e918a
TH
6808static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6809 void *hcpu)
e761b772 6810{
d35be8ba
SB
6811 switch (action) {
6812 case CPU_ONLINE_FROZEN:
6813 case CPU_DOWN_FAILED_FROZEN:
6814
6815 /*
6816 * num_cpus_frozen tracks how many CPUs are involved in suspend
6817 * resume sequence. As long as this is not the last online
6818 * operation in the resume sequence, just build a single sched
6819 * domain, ignoring cpusets.
6820 */
6821 num_cpus_frozen--;
6822 if (likely(num_cpus_frozen)) {
6823 partition_sched_domains(1, NULL, NULL);
6824 break;
6825 }
6826
6827 /*
6828 * This is the last CPU online operation. So fall through and
6829 * restore the original sched domains by considering the
6830 * cpuset configurations.
6831 */
6832
e761b772 6833 case CPU_ONLINE:
6ad4c188 6834 case CPU_DOWN_FAILED:
7ddf96b0 6835 cpuset_update_active_cpus(true);
d35be8ba 6836 break;
3a101d05
TH
6837 default:
6838 return NOTIFY_DONE;
6839 }
d35be8ba 6840 return NOTIFY_OK;
3a101d05 6841}
e761b772 6842
0b2e918a
TH
6843static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6844 void *hcpu)
3a101d05 6845{
d35be8ba 6846 switch (action) {
3a101d05 6847 case CPU_DOWN_PREPARE:
7ddf96b0 6848 cpuset_update_active_cpus(false);
d35be8ba
SB
6849 break;
6850 case CPU_DOWN_PREPARE_FROZEN:
6851 num_cpus_frozen++;
6852 partition_sched_domains(1, NULL, NULL);
6853 break;
e761b772
MK
6854 default:
6855 return NOTIFY_DONE;
6856 }
d35be8ba 6857 return NOTIFY_OK;
e761b772 6858}
e761b772 6859
1da177e4
LT
6860void __init sched_init_smp(void)
6861{
dcc30a35
RR
6862 cpumask_var_t non_isolated_cpus;
6863
6864 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6865 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6866
cb83b629
PZ
6867 sched_init_numa();
6868
6acce3ef
PZ
6869 /*
6870 * There's no userspace yet to cause hotplug operations; hence all the
6871 * cpu masks are stable and all blatant races in the below code cannot
6872 * happen.
6873 */
712555ee 6874 mutex_lock(&sched_domains_mutex);
c4a8849a 6875 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6876 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6877 if (cpumask_empty(non_isolated_cpus))
6878 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6879 mutex_unlock(&sched_domains_mutex);
e761b772 6880
301a5cba 6881 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6882 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6883 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6884
b328ca18 6885 init_hrtick();
5c1e1767
NP
6886
6887 /* Move init over to a non-isolated CPU */
dcc30a35 6888 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6889 BUG();
19978ca6 6890 sched_init_granularity();
dcc30a35 6891 free_cpumask_var(non_isolated_cpus);
4212823f 6892
0e3900e6 6893 init_sched_rt_class();
1baca4ce 6894 init_sched_dl_class();
1da177e4
LT
6895}
6896#else
6897void __init sched_init_smp(void)
6898{
19978ca6 6899 sched_init_granularity();
1da177e4
LT
6900}
6901#endif /* CONFIG_SMP */
6902
cd1bb94b
AB
6903const_debug unsigned int sysctl_timer_migration = 1;
6904
1da177e4
LT
6905int in_sched_functions(unsigned long addr)
6906{
1da177e4
LT
6907 return in_lock_functions(addr) ||
6908 (addr >= (unsigned long)__sched_text_start
6909 && addr < (unsigned long)__sched_text_end);
6910}
6911
029632fb 6912#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6913/*
6914 * Default task group.
6915 * Every task in system belongs to this group at bootup.
6916 */
029632fb 6917struct task_group root_task_group;
35cf4e50 6918LIST_HEAD(task_groups);
052f1dc7 6919#endif
6f505b16 6920
e6252c3e 6921DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6922
1da177e4
LT
6923void __init sched_init(void)
6924{
dd41f596 6925 int i, j;
434d53b0
MT
6926 unsigned long alloc_size = 0, ptr;
6927
6928#ifdef CONFIG_FAIR_GROUP_SCHED
6929 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6930#endif
6931#ifdef CONFIG_RT_GROUP_SCHED
6932 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6933#endif
df7c8e84 6934#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6935 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6936#endif
434d53b0 6937 if (alloc_size) {
36b7b6d4 6938 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6939
6940#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6941 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6942 ptr += nr_cpu_ids * sizeof(void **);
6943
07e06b01 6944 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6945 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6946
6d6bc0ad 6947#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6948#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6949 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6950 ptr += nr_cpu_ids * sizeof(void **);
6951
07e06b01 6952 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6953 ptr += nr_cpu_ids * sizeof(void **);
6954
6d6bc0ad 6955#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6956#ifdef CONFIG_CPUMASK_OFFSTACK
6957 for_each_possible_cpu(i) {
e6252c3e 6958 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6959 ptr += cpumask_size();
6960 }
6961#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6962 }
dd41f596 6963
332ac17e
DF
6964 init_rt_bandwidth(&def_rt_bandwidth,
6965 global_rt_period(), global_rt_runtime());
6966 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6967 global_rt_period(), global_rt_runtime());
332ac17e 6968
57d885fe
GH
6969#ifdef CONFIG_SMP
6970 init_defrootdomain();
6971#endif
6972
d0b27fa7 6973#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6974 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6975 global_rt_period(), global_rt_runtime());
6d6bc0ad 6976#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6977
7c941438 6978#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6979 list_add(&root_task_group.list, &task_groups);
6980 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6981 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6982 autogroup_init(&init_task);
54c707e9 6983
7c941438 6984#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6985
0a945022 6986 for_each_possible_cpu(i) {
70b97a7f 6987 struct rq *rq;
1da177e4
LT
6988
6989 rq = cpu_rq(i);
05fa785c 6990 raw_spin_lock_init(&rq->lock);
7897986b 6991 rq->nr_running = 0;
dce48a84
TG
6992 rq->calc_load_active = 0;
6993 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6994 init_cfs_rq(&rq->cfs);
6f505b16 6995 init_rt_rq(&rq->rt, rq);
aab03e05 6996 init_dl_rq(&rq->dl, rq);
dd41f596 6997#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6998 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6999 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7000 /*
07e06b01 7001 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7002 *
7003 * In case of task-groups formed thr' the cgroup filesystem, it
7004 * gets 100% of the cpu resources in the system. This overall
7005 * system cpu resource is divided among the tasks of
07e06b01 7006 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7007 * based on each entity's (task or task-group's) weight
7008 * (se->load.weight).
7009 *
07e06b01 7010 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7011 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7012 * then A0's share of the cpu resource is:
7013 *
0d905bca 7014 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7015 *
07e06b01
YZ
7016 * We achieve this by letting root_task_group's tasks sit
7017 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7018 */
ab84d31e 7019 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7020 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7021#endif /* CONFIG_FAIR_GROUP_SCHED */
7022
7023 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7024#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7025 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7026#endif
1da177e4 7027
dd41f596
IM
7028 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7029 rq->cpu_load[j] = 0;
fdf3e95d
VP
7030
7031 rq->last_load_update_tick = jiffies;
7032
1da177e4 7033#ifdef CONFIG_SMP
41c7ce9a 7034 rq->sd = NULL;
57d885fe 7035 rq->rd = NULL;
ca8ce3d0 7036 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7037 rq->post_schedule = 0;
1da177e4 7038 rq->active_balance = 0;
dd41f596 7039 rq->next_balance = jiffies;
1da177e4 7040 rq->push_cpu = 0;
0a2966b4 7041 rq->cpu = i;
1f11eb6a 7042 rq->online = 0;
eae0c9df
MG
7043 rq->idle_stamp = 0;
7044 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7045 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7046
7047 INIT_LIST_HEAD(&rq->cfs_tasks);
7048
dc938520 7049 rq_attach_root(rq, &def_root_domain);
3451d024 7050#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7051 rq->nohz_flags = 0;
83cd4fe2 7052#endif
265f22a9
FW
7053#ifdef CONFIG_NO_HZ_FULL
7054 rq->last_sched_tick = 0;
7055#endif
1da177e4 7056#endif
8f4d37ec 7057 init_rq_hrtick(rq);
1da177e4 7058 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7059 }
7060
2dd73a4f 7061 set_load_weight(&init_task);
b50f60ce 7062
e107be36
AK
7063#ifdef CONFIG_PREEMPT_NOTIFIERS
7064 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7065#endif
7066
1da177e4
LT
7067 /*
7068 * The boot idle thread does lazy MMU switching as well:
7069 */
7070 atomic_inc(&init_mm.mm_count);
7071 enter_lazy_tlb(&init_mm, current);
7072
7073 /*
7074 * Make us the idle thread. Technically, schedule() should not be
7075 * called from this thread, however somewhere below it might be,
7076 * but because we are the idle thread, we just pick up running again
7077 * when this runqueue becomes "idle".
7078 */
7079 init_idle(current, smp_processor_id());
dce48a84
TG
7080
7081 calc_load_update = jiffies + LOAD_FREQ;
7082
dd41f596
IM
7083 /*
7084 * During early bootup we pretend to be a normal task:
7085 */
7086 current->sched_class = &fair_sched_class;
6892b75e 7087
bf4d83f6 7088#ifdef CONFIG_SMP
4cb98839 7089 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7090 /* May be allocated at isolcpus cmdline parse time */
7091 if (cpu_isolated_map == NULL)
7092 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7093 idle_thread_set_boot_cpu();
a803f026 7094 set_cpu_rq_start_time();
029632fb
PZ
7095#endif
7096 init_sched_fair_class();
6a7b3dc3 7097
6892b75e 7098 scheduler_running = 1;
1da177e4
LT
7099}
7100
d902db1e 7101#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7102static inline int preempt_count_equals(int preempt_offset)
7103{
234da7bc 7104 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7105
4ba8216c 7106 return (nested == preempt_offset);
e4aafea2
FW
7107}
7108
d894837f 7109void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7110{
1da177e4
LT
7111 static unsigned long prev_jiffy; /* ratelimiting */
7112
b3fbab05 7113 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7114 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7115 !is_idle_task(current)) ||
e4aafea2 7116 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7117 return;
7118 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7119 return;
7120 prev_jiffy = jiffies;
7121
3df0fc5b
PZ
7122 printk(KERN_ERR
7123 "BUG: sleeping function called from invalid context at %s:%d\n",
7124 file, line);
7125 printk(KERN_ERR
7126 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7127 in_atomic(), irqs_disabled(),
7128 current->pid, current->comm);
aef745fc
IM
7129
7130 debug_show_held_locks(current);
7131 if (irqs_disabled())
7132 print_irqtrace_events(current);
8f47b187
TG
7133#ifdef CONFIG_DEBUG_PREEMPT
7134 if (!preempt_count_equals(preempt_offset)) {
7135 pr_err("Preemption disabled at:");
7136 print_ip_sym(current->preempt_disable_ip);
7137 pr_cont("\n");
7138 }
7139#endif
aef745fc 7140 dump_stack();
1da177e4
LT
7141}
7142EXPORT_SYMBOL(__might_sleep);
7143#endif
7144
7145#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7146static void normalize_task(struct rq *rq, struct task_struct *p)
7147{
da7a735e 7148 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7149 struct sched_attr attr = {
7150 .sched_policy = SCHED_NORMAL,
7151 };
da7a735e 7152 int old_prio = p->prio;
da0c1e65 7153 int queued;
3e51f33f 7154
da0c1e65
KT
7155 queued = task_on_rq_queued(p);
7156 if (queued)
4ca9b72b 7157 dequeue_task(rq, p, 0);
d50dde5a 7158 __setscheduler(rq, p, &attr);
da0c1e65 7159 if (queued) {
4ca9b72b 7160 enqueue_task(rq, p, 0);
8875125e 7161 resched_curr(rq);
3a5e4dc1 7162 }
da7a735e
PZ
7163
7164 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7165}
7166
1da177e4
LT
7167void normalize_rt_tasks(void)
7168{
a0f98a1c 7169 struct task_struct *g, *p;
1da177e4 7170 unsigned long flags;
70b97a7f 7171 struct rq *rq;
1da177e4 7172
4cf5d77a 7173 read_lock_irqsave(&tasklist_lock, flags);
5d07f420 7174 for_each_process_thread(g, p) {
178be793
IM
7175 /*
7176 * Only normalize user tasks:
7177 */
7178 if (!p->mm)
7179 continue;
7180
6cfb0d5d 7181 p->se.exec_start = 0;
6cfb0d5d 7182#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7183 p->se.statistics.wait_start = 0;
7184 p->se.statistics.sleep_start = 0;
7185 p->se.statistics.block_start = 0;
6cfb0d5d 7186#endif
dd41f596 7187
aab03e05 7188 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7189 /*
7190 * Renice negative nice level userspace
7191 * tasks back to 0:
7192 */
d0ea0268 7193 if (task_nice(p) < 0 && p->mm)
dd41f596 7194 set_user_nice(p, 0);
1da177e4 7195 continue;
dd41f596 7196 }
1da177e4 7197
1d615482 7198 raw_spin_lock(&p->pi_lock);
b29739f9 7199 rq = __task_rq_lock(p);
1da177e4 7200
178be793 7201 normalize_task(rq, p);
3a5e4dc1 7202
b29739f9 7203 __task_rq_unlock(rq);
1d615482 7204 raw_spin_unlock(&p->pi_lock);
5d07f420 7205 }
4cf5d77a 7206 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7207}
7208
7209#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7210
67fc4e0c 7211#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7212/*
67fc4e0c 7213 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7214 *
7215 * They can only be called when the whole system has been
7216 * stopped - every CPU needs to be quiescent, and no scheduling
7217 * activity can take place. Using them for anything else would
7218 * be a serious bug, and as a result, they aren't even visible
7219 * under any other configuration.
7220 */
7221
7222/**
7223 * curr_task - return the current task for a given cpu.
7224 * @cpu: the processor in question.
7225 *
7226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7227 *
7228 * Return: The current task for @cpu.
1df5c10a 7229 */
36c8b586 7230struct task_struct *curr_task(int cpu)
1df5c10a
LT
7231{
7232 return cpu_curr(cpu);
7233}
7234
67fc4e0c
JW
7235#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7236
7237#ifdef CONFIG_IA64
1df5c10a
LT
7238/**
7239 * set_curr_task - set the current task for a given cpu.
7240 * @cpu: the processor in question.
7241 * @p: the task pointer to set.
7242 *
7243 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7244 * are serviced on a separate stack. It allows the architecture to switch the
7245 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7246 * must be called with all CPU's synchronized, and interrupts disabled, the
7247 * and caller must save the original value of the current task (see
7248 * curr_task() above) and restore that value before reenabling interrupts and
7249 * re-starting the system.
7250 *
7251 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7252 */
36c8b586 7253void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7254{
7255 cpu_curr(cpu) = p;
7256}
7257
7258#endif
29f59db3 7259
7c941438 7260#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7261/* task_group_lock serializes the addition/removal of task groups */
7262static DEFINE_SPINLOCK(task_group_lock);
7263
bccbe08a
PZ
7264static void free_sched_group(struct task_group *tg)
7265{
7266 free_fair_sched_group(tg);
7267 free_rt_sched_group(tg);
e9aa1dd1 7268 autogroup_free(tg);
bccbe08a
PZ
7269 kfree(tg);
7270}
7271
7272/* allocate runqueue etc for a new task group */
ec7dc8ac 7273struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7274{
7275 struct task_group *tg;
bccbe08a
PZ
7276
7277 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7278 if (!tg)
7279 return ERR_PTR(-ENOMEM);
7280
ec7dc8ac 7281 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7282 goto err;
7283
ec7dc8ac 7284 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7285 goto err;
7286
ace783b9
LZ
7287 return tg;
7288
7289err:
7290 free_sched_group(tg);
7291 return ERR_PTR(-ENOMEM);
7292}
7293
7294void sched_online_group(struct task_group *tg, struct task_group *parent)
7295{
7296 unsigned long flags;
7297
8ed36996 7298 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7299 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7300
7301 WARN_ON(!parent); /* root should already exist */
7302
7303 tg->parent = parent;
f473aa5e 7304 INIT_LIST_HEAD(&tg->children);
09f2724a 7305 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7306 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7307}
7308
9b5b7751 7309/* rcu callback to free various structures associated with a task group */
6f505b16 7310static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7311{
29f59db3 7312 /* now it should be safe to free those cfs_rqs */
6f505b16 7313 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7314}
7315
9b5b7751 7316/* Destroy runqueue etc associated with a task group */
4cf86d77 7317void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7318{
7319 /* wait for possible concurrent references to cfs_rqs complete */
7320 call_rcu(&tg->rcu, free_sched_group_rcu);
7321}
7322
7323void sched_offline_group(struct task_group *tg)
29f59db3 7324{
8ed36996 7325 unsigned long flags;
9b5b7751 7326 int i;
29f59db3 7327
3d4b47b4
PZ
7328 /* end participation in shares distribution */
7329 for_each_possible_cpu(i)
bccbe08a 7330 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7331
7332 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7333 list_del_rcu(&tg->list);
f473aa5e 7334 list_del_rcu(&tg->siblings);
8ed36996 7335 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7336}
7337
9b5b7751 7338/* change task's runqueue when it moves between groups.
3a252015
IM
7339 * The caller of this function should have put the task in its new group
7340 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7341 * reflect its new group.
9b5b7751
SV
7342 */
7343void sched_move_task(struct task_struct *tsk)
29f59db3 7344{
8323f26c 7345 struct task_group *tg;
da0c1e65 7346 int queued, running;
29f59db3
SV
7347 unsigned long flags;
7348 struct rq *rq;
7349
7350 rq = task_rq_lock(tsk, &flags);
7351
051a1d1a 7352 running = task_current(rq, tsk);
da0c1e65 7353 queued = task_on_rq_queued(tsk);
29f59db3 7354
da0c1e65 7355 if (queued)
29f59db3 7356 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7357 if (unlikely(running))
7358 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7359
073219e9 7360 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7361 lockdep_is_held(&tsk->sighand->siglock)),
7362 struct task_group, css);
7363 tg = autogroup_task_group(tsk, tg);
7364 tsk->sched_task_group = tg;
7365
810b3817 7366#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7367 if (tsk->sched_class->task_move_group)
da0c1e65 7368 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7369 else
810b3817 7370#endif
b2b5ce02 7371 set_task_rq(tsk, task_cpu(tsk));
810b3817 7372
0e1f3483
HS
7373 if (unlikely(running))
7374 tsk->sched_class->set_curr_task(rq);
da0c1e65 7375 if (queued)
371fd7e7 7376 enqueue_task(rq, tsk, 0);
29f59db3 7377
0122ec5b 7378 task_rq_unlock(rq, tsk, &flags);
29f59db3 7379}
7c941438 7380#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7381
a790de99
PT
7382#ifdef CONFIG_RT_GROUP_SCHED
7383/*
7384 * Ensure that the real time constraints are schedulable.
7385 */
7386static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7387
9a7e0b18
PZ
7388/* Must be called with tasklist_lock held */
7389static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7390{
9a7e0b18 7391 struct task_struct *g, *p;
b40b2e8e 7392
5d07f420 7393 for_each_process_thread(g, p) {
029632fb 7394 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18 7395 return 1;
5d07f420 7396 }
b40b2e8e 7397
9a7e0b18
PZ
7398 return 0;
7399}
b40b2e8e 7400
9a7e0b18
PZ
7401struct rt_schedulable_data {
7402 struct task_group *tg;
7403 u64 rt_period;
7404 u64 rt_runtime;
7405};
b40b2e8e 7406
a790de99 7407static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7408{
7409 struct rt_schedulable_data *d = data;
7410 struct task_group *child;
7411 unsigned long total, sum = 0;
7412 u64 period, runtime;
b40b2e8e 7413
9a7e0b18
PZ
7414 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7415 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7416
9a7e0b18
PZ
7417 if (tg == d->tg) {
7418 period = d->rt_period;
7419 runtime = d->rt_runtime;
b40b2e8e 7420 }
b40b2e8e 7421
4653f803
PZ
7422 /*
7423 * Cannot have more runtime than the period.
7424 */
7425 if (runtime > period && runtime != RUNTIME_INF)
7426 return -EINVAL;
6f505b16 7427
4653f803
PZ
7428 /*
7429 * Ensure we don't starve existing RT tasks.
7430 */
9a7e0b18
PZ
7431 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7432 return -EBUSY;
6f505b16 7433
9a7e0b18 7434 total = to_ratio(period, runtime);
6f505b16 7435
4653f803
PZ
7436 /*
7437 * Nobody can have more than the global setting allows.
7438 */
7439 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7440 return -EINVAL;
6f505b16 7441
4653f803
PZ
7442 /*
7443 * The sum of our children's runtime should not exceed our own.
7444 */
9a7e0b18
PZ
7445 list_for_each_entry_rcu(child, &tg->children, siblings) {
7446 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7447 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7448
9a7e0b18
PZ
7449 if (child == d->tg) {
7450 period = d->rt_period;
7451 runtime = d->rt_runtime;
7452 }
6f505b16 7453
9a7e0b18 7454 sum += to_ratio(period, runtime);
9f0c1e56 7455 }
6f505b16 7456
9a7e0b18
PZ
7457 if (sum > total)
7458 return -EINVAL;
7459
7460 return 0;
6f505b16
PZ
7461}
7462
9a7e0b18 7463static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7464{
8277434e
PT
7465 int ret;
7466
9a7e0b18
PZ
7467 struct rt_schedulable_data data = {
7468 .tg = tg,
7469 .rt_period = period,
7470 .rt_runtime = runtime,
7471 };
7472
8277434e
PT
7473 rcu_read_lock();
7474 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7475 rcu_read_unlock();
7476
7477 return ret;
521f1a24
DG
7478}
7479
ab84d31e 7480static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7481 u64 rt_period, u64 rt_runtime)
6f505b16 7482{
ac086bc2 7483 int i, err = 0;
9f0c1e56 7484
9f0c1e56 7485 mutex_lock(&rt_constraints_mutex);
521f1a24 7486 read_lock(&tasklist_lock);
9a7e0b18
PZ
7487 err = __rt_schedulable(tg, rt_period, rt_runtime);
7488 if (err)
9f0c1e56 7489 goto unlock;
ac086bc2 7490
0986b11b 7491 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7492 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7493 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7494
7495 for_each_possible_cpu(i) {
7496 struct rt_rq *rt_rq = tg->rt_rq[i];
7497
0986b11b 7498 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7499 rt_rq->rt_runtime = rt_runtime;
0986b11b 7500 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7501 }
0986b11b 7502 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7503unlock:
521f1a24 7504 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7505 mutex_unlock(&rt_constraints_mutex);
7506
7507 return err;
6f505b16
PZ
7508}
7509
25cc7da7 7510static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7511{
7512 u64 rt_runtime, rt_period;
7513
7514 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7515 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7516 if (rt_runtime_us < 0)
7517 rt_runtime = RUNTIME_INF;
7518
ab84d31e 7519 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7520}
7521
25cc7da7 7522static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7523{
7524 u64 rt_runtime_us;
7525
d0b27fa7 7526 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7527 return -1;
7528
d0b27fa7 7529 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7530 do_div(rt_runtime_us, NSEC_PER_USEC);
7531 return rt_runtime_us;
7532}
d0b27fa7 7533
25cc7da7 7534static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7535{
7536 u64 rt_runtime, rt_period;
7537
7538 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7539 rt_runtime = tg->rt_bandwidth.rt_runtime;
7540
619b0488
R
7541 if (rt_period == 0)
7542 return -EINVAL;
7543
ab84d31e 7544 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7545}
7546
25cc7da7 7547static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7548{
7549 u64 rt_period_us;
7550
7551 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7552 do_div(rt_period_us, NSEC_PER_USEC);
7553 return rt_period_us;
7554}
332ac17e 7555#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7556
332ac17e 7557#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7558static int sched_rt_global_constraints(void)
7559{
7560 int ret = 0;
7561
7562 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7563 read_lock(&tasklist_lock);
4653f803 7564 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7565 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7566 mutex_unlock(&rt_constraints_mutex);
7567
7568 return ret;
7569}
54e99124 7570
25cc7da7 7571static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7572{
7573 /* Don't accept realtime tasks when there is no way for them to run */
7574 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7575 return 0;
7576
7577 return 1;
7578}
7579
6d6bc0ad 7580#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7581static int sched_rt_global_constraints(void)
7582{
ac086bc2 7583 unsigned long flags;
332ac17e 7584 int i, ret = 0;
ec5d4989 7585
0986b11b 7586 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7587 for_each_possible_cpu(i) {
7588 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7589
0986b11b 7590 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7591 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7592 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7593 }
0986b11b 7594 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7595
332ac17e 7596 return ret;
d0b27fa7 7597}
6d6bc0ad 7598#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7599
332ac17e
DF
7600static int sched_dl_global_constraints(void)
7601{
1724813d
PZ
7602 u64 runtime = global_rt_runtime();
7603 u64 period = global_rt_period();
332ac17e 7604 u64 new_bw = to_ratio(period, runtime);
1724813d 7605 int cpu, ret = 0;
49516342 7606 unsigned long flags;
332ac17e
DF
7607
7608 /*
7609 * Here we want to check the bandwidth not being set to some
7610 * value smaller than the currently allocated bandwidth in
7611 * any of the root_domains.
7612 *
7613 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7614 * cycling on root_domains... Discussion on different/better
7615 * solutions is welcome!
7616 */
1724813d
PZ
7617 for_each_possible_cpu(cpu) {
7618 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7619
49516342 7620 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7621 if (new_bw < dl_b->total_bw)
7622 ret = -EBUSY;
49516342 7623 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7624
7625 if (ret)
7626 break;
332ac17e
DF
7627 }
7628
1724813d 7629 return ret;
332ac17e
DF
7630}
7631
1724813d 7632static void sched_dl_do_global(void)
ce0dbbbb 7633{
1724813d
PZ
7634 u64 new_bw = -1;
7635 int cpu;
49516342 7636 unsigned long flags;
ce0dbbbb 7637
1724813d
PZ
7638 def_dl_bandwidth.dl_period = global_rt_period();
7639 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7640
7641 if (global_rt_runtime() != RUNTIME_INF)
7642 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7643
7644 /*
7645 * FIXME: As above...
7646 */
7647 for_each_possible_cpu(cpu) {
7648 struct dl_bw *dl_b = dl_bw_of(cpu);
7649
49516342 7650 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7651 dl_b->bw = new_bw;
49516342 7652 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7653 }
1724813d
PZ
7654}
7655
7656static int sched_rt_global_validate(void)
7657{
7658 if (sysctl_sched_rt_period <= 0)
7659 return -EINVAL;
7660
e9e7cb38
JL
7661 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7662 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7663 return -EINVAL;
7664
7665 return 0;
7666}
7667
7668static void sched_rt_do_global(void)
7669{
7670 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7671 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7672}
7673
d0b27fa7 7674int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7675 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7676 loff_t *ppos)
7677{
d0b27fa7
PZ
7678 int old_period, old_runtime;
7679 static DEFINE_MUTEX(mutex);
1724813d 7680 int ret;
d0b27fa7
PZ
7681
7682 mutex_lock(&mutex);
7683 old_period = sysctl_sched_rt_period;
7684 old_runtime = sysctl_sched_rt_runtime;
7685
8d65af78 7686 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7687
7688 if (!ret && write) {
1724813d
PZ
7689 ret = sched_rt_global_validate();
7690 if (ret)
7691 goto undo;
7692
d0b27fa7 7693 ret = sched_rt_global_constraints();
1724813d
PZ
7694 if (ret)
7695 goto undo;
7696
7697 ret = sched_dl_global_constraints();
7698 if (ret)
7699 goto undo;
7700
7701 sched_rt_do_global();
7702 sched_dl_do_global();
7703 }
7704 if (0) {
7705undo:
7706 sysctl_sched_rt_period = old_period;
7707 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7708 }
7709 mutex_unlock(&mutex);
7710
7711 return ret;
7712}
68318b8e 7713
1724813d 7714int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7715 void __user *buffer, size_t *lenp,
7716 loff_t *ppos)
7717{
7718 int ret;
332ac17e 7719 static DEFINE_MUTEX(mutex);
332ac17e
DF
7720
7721 mutex_lock(&mutex);
332ac17e 7722 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7723 /* make sure that internally we keep jiffies */
7724 /* also, writing zero resets timeslice to default */
332ac17e 7725 if (!ret && write) {
1724813d
PZ
7726 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7727 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7728 }
7729 mutex_unlock(&mutex);
332ac17e
DF
7730 return ret;
7731}
7732
052f1dc7 7733#ifdef CONFIG_CGROUP_SCHED
68318b8e 7734
a7c6d554 7735static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7736{
a7c6d554 7737 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7738}
7739
eb95419b
TH
7740static struct cgroup_subsys_state *
7741cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7742{
eb95419b
TH
7743 struct task_group *parent = css_tg(parent_css);
7744 struct task_group *tg;
68318b8e 7745
eb95419b 7746 if (!parent) {
68318b8e 7747 /* This is early initialization for the top cgroup */
07e06b01 7748 return &root_task_group.css;
68318b8e
SV
7749 }
7750
ec7dc8ac 7751 tg = sched_create_group(parent);
68318b8e
SV
7752 if (IS_ERR(tg))
7753 return ERR_PTR(-ENOMEM);
7754
68318b8e
SV
7755 return &tg->css;
7756}
7757
eb95419b 7758static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7759{
eb95419b 7760 struct task_group *tg = css_tg(css);
5c9d535b 7761 struct task_group *parent = css_tg(css->parent);
ace783b9 7762
63876986
TH
7763 if (parent)
7764 sched_online_group(tg, parent);
ace783b9
LZ
7765 return 0;
7766}
7767
eb95419b 7768static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7769{
eb95419b 7770 struct task_group *tg = css_tg(css);
68318b8e
SV
7771
7772 sched_destroy_group(tg);
7773}
7774
eb95419b 7775static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7776{
eb95419b 7777 struct task_group *tg = css_tg(css);
ace783b9
LZ
7778
7779 sched_offline_group(tg);
7780}
7781
eb95419b 7782static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7783 struct cgroup_taskset *tset)
68318b8e 7784{
bb9d97b6
TH
7785 struct task_struct *task;
7786
924f0d9a 7787 cgroup_taskset_for_each(task, tset) {
b68aa230 7788#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7789 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7790 return -EINVAL;
b68aa230 7791#else
bb9d97b6
TH
7792 /* We don't support RT-tasks being in separate groups */
7793 if (task->sched_class != &fair_sched_class)
7794 return -EINVAL;
b68aa230 7795#endif
bb9d97b6 7796 }
be367d09
BB
7797 return 0;
7798}
68318b8e 7799
eb95419b 7800static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7801 struct cgroup_taskset *tset)
68318b8e 7802{
bb9d97b6
TH
7803 struct task_struct *task;
7804
924f0d9a 7805 cgroup_taskset_for_each(task, tset)
bb9d97b6 7806 sched_move_task(task);
68318b8e
SV
7807}
7808
eb95419b
TH
7809static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7810 struct cgroup_subsys_state *old_css,
7811 struct task_struct *task)
068c5cc5
PZ
7812{
7813 /*
7814 * cgroup_exit() is called in the copy_process() failure path.
7815 * Ignore this case since the task hasn't ran yet, this avoids
7816 * trying to poke a half freed task state from generic code.
7817 */
7818 if (!(task->flags & PF_EXITING))
7819 return;
7820
7821 sched_move_task(task);
7822}
7823
052f1dc7 7824#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7825static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7826 struct cftype *cftype, u64 shareval)
68318b8e 7827{
182446d0 7828 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7829}
7830
182446d0
TH
7831static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7832 struct cftype *cft)
68318b8e 7833{
182446d0 7834 struct task_group *tg = css_tg(css);
68318b8e 7835
c8b28116 7836 return (u64) scale_load_down(tg->shares);
68318b8e 7837}
ab84d31e
PT
7838
7839#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7840static DEFINE_MUTEX(cfs_constraints_mutex);
7841
ab84d31e
PT
7842const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7843const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7844
a790de99
PT
7845static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7846
ab84d31e
PT
7847static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7848{
56f570e5 7849 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7850 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7851
7852 if (tg == &root_task_group)
7853 return -EINVAL;
7854
7855 /*
7856 * Ensure we have at some amount of bandwidth every period. This is
7857 * to prevent reaching a state of large arrears when throttled via
7858 * entity_tick() resulting in prolonged exit starvation.
7859 */
7860 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7861 return -EINVAL;
7862
7863 /*
7864 * Likewise, bound things on the otherside by preventing insane quota
7865 * periods. This also allows us to normalize in computing quota
7866 * feasibility.
7867 */
7868 if (period > max_cfs_quota_period)
7869 return -EINVAL;
7870
0e59bdae
KT
7871 /*
7872 * Prevent race between setting of cfs_rq->runtime_enabled and
7873 * unthrottle_offline_cfs_rqs().
7874 */
7875 get_online_cpus();
a790de99
PT
7876 mutex_lock(&cfs_constraints_mutex);
7877 ret = __cfs_schedulable(tg, period, quota);
7878 if (ret)
7879 goto out_unlock;
7880
58088ad0 7881 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7882 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7883 /*
7884 * If we need to toggle cfs_bandwidth_used, off->on must occur
7885 * before making related changes, and on->off must occur afterwards
7886 */
7887 if (runtime_enabled && !runtime_was_enabled)
7888 cfs_bandwidth_usage_inc();
ab84d31e
PT
7889 raw_spin_lock_irq(&cfs_b->lock);
7890 cfs_b->period = ns_to_ktime(period);
7891 cfs_b->quota = quota;
58088ad0 7892
a9cf55b2 7893 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7894 /* restart the period timer (if active) to handle new period expiry */
7895 if (runtime_enabled && cfs_b->timer_active) {
7896 /* force a reprogram */
09dc4ab0 7897 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7898 }
ab84d31e
PT
7899 raw_spin_unlock_irq(&cfs_b->lock);
7900
0e59bdae 7901 for_each_online_cpu(i) {
ab84d31e 7902 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7903 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7904
7905 raw_spin_lock_irq(&rq->lock);
58088ad0 7906 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7907 cfs_rq->runtime_remaining = 0;
671fd9da 7908
029632fb 7909 if (cfs_rq->throttled)
671fd9da 7910 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7911 raw_spin_unlock_irq(&rq->lock);
7912 }
1ee14e6c
BS
7913 if (runtime_was_enabled && !runtime_enabled)
7914 cfs_bandwidth_usage_dec();
a790de99
PT
7915out_unlock:
7916 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7917 put_online_cpus();
ab84d31e 7918
a790de99 7919 return ret;
ab84d31e
PT
7920}
7921
7922int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7923{
7924 u64 quota, period;
7925
029632fb 7926 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7927 if (cfs_quota_us < 0)
7928 quota = RUNTIME_INF;
7929 else
7930 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7931
7932 return tg_set_cfs_bandwidth(tg, period, quota);
7933}
7934
7935long tg_get_cfs_quota(struct task_group *tg)
7936{
7937 u64 quota_us;
7938
029632fb 7939 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7940 return -1;
7941
029632fb 7942 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7943 do_div(quota_us, NSEC_PER_USEC);
7944
7945 return quota_us;
7946}
7947
7948int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7949{
7950 u64 quota, period;
7951
7952 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7953 quota = tg->cfs_bandwidth.quota;
ab84d31e 7954
ab84d31e
PT
7955 return tg_set_cfs_bandwidth(tg, period, quota);
7956}
7957
7958long tg_get_cfs_period(struct task_group *tg)
7959{
7960 u64 cfs_period_us;
7961
029632fb 7962 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7963 do_div(cfs_period_us, NSEC_PER_USEC);
7964
7965 return cfs_period_us;
7966}
7967
182446d0
TH
7968static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7969 struct cftype *cft)
ab84d31e 7970{
182446d0 7971 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7972}
7973
182446d0
TH
7974static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7975 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7976{
182446d0 7977 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7978}
7979
182446d0
TH
7980static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7981 struct cftype *cft)
ab84d31e 7982{
182446d0 7983 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7984}
7985
182446d0
TH
7986static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7987 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7988{
182446d0 7989 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7990}
7991
a790de99
PT
7992struct cfs_schedulable_data {
7993 struct task_group *tg;
7994 u64 period, quota;
7995};
7996
7997/*
7998 * normalize group quota/period to be quota/max_period
7999 * note: units are usecs
8000 */
8001static u64 normalize_cfs_quota(struct task_group *tg,
8002 struct cfs_schedulable_data *d)
8003{
8004 u64 quota, period;
8005
8006 if (tg == d->tg) {
8007 period = d->period;
8008 quota = d->quota;
8009 } else {
8010 period = tg_get_cfs_period(tg);
8011 quota = tg_get_cfs_quota(tg);
8012 }
8013
8014 /* note: these should typically be equivalent */
8015 if (quota == RUNTIME_INF || quota == -1)
8016 return RUNTIME_INF;
8017
8018 return to_ratio(period, quota);
8019}
8020
8021static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8022{
8023 struct cfs_schedulable_data *d = data;
029632fb 8024 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8025 s64 quota = 0, parent_quota = -1;
8026
8027 if (!tg->parent) {
8028 quota = RUNTIME_INF;
8029 } else {
029632fb 8030 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8031
8032 quota = normalize_cfs_quota(tg, d);
8033 parent_quota = parent_b->hierarchal_quota;
8034
8035 /*
8036 * ensure max(child_quota) <= parent_quota, inherit when no
8037 * limit is set
8038 */
8039 if (quota == RUNTIME_INF)
8040 quota = parent_quota;
8041 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8042 return -EINVAL;
8043 }
8044 cfs_b->hierarchal_quota = quota;
8045
8046 return 0;
8047}
8048
8049static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8050{
8277434e 8051 int ret;
a790de99
PT
8052 struct cfs_schedulable_data data = {
8053 .tg = tg,
8054 .period = period,
8055 .quota = quota,
8056 };
8057
8058 if (quota != RUNTIME_INF) {
8059 do_div(data.period, NSEC_PER_USEC);
8060 do_div(data.quota, NSEC_PER_USEC);
8061 }
8062
8277434e
PT
8063 rcu_read_lock();
8064 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8065 rcu_read_unlock();
8066
8067 return ret;
a790de99 8068}
e8da1b18 8069
2da8ca82 8070static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8071{
2da8ca82 8072 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8073 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8074
44ffc75b
TH
8075 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8076 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8077 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8078
8079 return 0;
8080}
ab84d31e 8081#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8082#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8083
052f1dc7 8084#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8085static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8086 struct cftype *cft, s64 val)
6f505b16 8087{
182446d0 8088 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8089}
8090
182446d0
TH
8091static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8092 struct cftype *cft)
6f505b16 8093{
182446d0 8094 return sched_group_rt_runtime(css_tg(css));
6f505b16 8095}
d0b27fa7 8096
182446d0
TH
8097static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8098 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8099{
182446d0 8100 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8101}
8102
182446d0
TH
8103static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8104 struct cftype *cft)
d0b27fa7 8105{
182446d0 8106 return sched_group_rt_period(css_tg(css));
d0b27fa7 8107}
6d6bc0ad 8108#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8109
fe5c7cc2 8110static struct cftype cpu_files[] = {
052f1dc7 8111#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8112 {
8113 .name = "shares",
f4c753b7
PM
8114 .read_u64 = cpu_shares_read_u64,
8115 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8116 },
052f1dc7 8117#endif
ab84d31e
PT
8118#ifdef CONFIG_CFS_BANDWIDTH
8119 {
8120 .name = "cfs_quota_us",
8121 .read_s64 = cpu_cfs_quota_read_s64,
8122 .write_s64 = cpu_cfs_quota_write_s64,
8123 },
8124 {
8125 .name = "cfs_period_us",
8126 .read_u64 = cpu_cfs_period_read_u64,
8127 .write_u64 = cpu_cfs_period_write_u64,
8128 },
e8da1b18
NR
8129 {
8130 .name = "stat",
2da8ca82 8131 .seq_show = cpu_stats_show,
e8da1b18 8132 },
ab84d31e 8133#endif
052f1dc7 8134#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8135 {
9f0c1e56 8136 .name = "rt_runtime_us",
06ecb27c
PM
8137 .read_s64 = cpu_rt_runtime_read,
8138 .write_s64 = cpu_rt_runtime_write,
6f505b16 8139 },
d0b27fa7
PZ
8140 {
8141 .name = "rt_period_us",
f4c753b7
PM
8142 .read_u64 = cpu_rt_period_read_uint,
8143 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8144 },
052f1dc7 8145#endif
4baf6e33 8146 { } /* terminate */
68318b8e
SV
8147};
8148
073219e9 8149struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8150 .css_alloc = cpu_cgroup_css_alloc,
8151 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8152 .css_online = cpu_cgroup_css_online,
8153 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8154 .can_attach = cpu_cgroup_can_attach,
8155 .attach = cpu_cgroup_attach,
068c5cc5 8156 .exit = cpu_cgroup_exit,
5577964e 8157 .legacy_cftypes = cpu_files,
68318b8e
SV
8158 .early_init = 1,
8159};
8160
052f1dc7 8161#endif /* CONFIG_CGROUP_SCHED */
d842de87 8162
b637a328
PM
8163void dump_cpu_task(int cpu)
8164{
8165 pr_info("Task dump for CPU %d:\n", cpu);
8166 sched_show_task(cpu_curr(cpu));
8167}