]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched: cpu_power: enable ARCH_POWER
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb 91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 92{
58088ad0
PT
93 unsigned long delta;
94 ktime_t soft, hard, now;
d0b27fa7 95
58088ad0
PT
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
d0b27fa7 102
58088ad0
PT
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
029632fb
PZ
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 113
fe44d621 114static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 115
029632fb 116void update_rq_clock(struct rq *rq)
3e51f33f 117{
fe44d621 118 s64 delta;
305e6835 119
61eadef6 120 if (rq->skip_clock_update > 0)
f26f9aff 121 return;
aa483808 122
fe44d621
PZ
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
3e51f33f
PZ
126}
127
bf5c91ba
IM
128/*
129 * Debugging: various feature bits
130 */
f00b45c1 131
f00b45c1
PZ
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
bf5c91ba 135const_debug unsigned int sysctl_sched_features =
391e43da 136#include "features.h"
f00b45c1
PZ
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
1292531f 145static const char * const sched_feat_names[] = {
391e43da 146#include "features.h"
f00b45c1
PZ
147};
148
149#undef SCHED_FEAT
150
34f3a814 151static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 152{
f00b45c1
PZ
153 int i;
154
f8b6d1cc 155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 159 }
34f3a814 160 seq_puts(m, "\n");
f00b45c1 161
34f3a814 162 return 0;
f00b45c1
PZ
163}
164
f8b6d1cc
PZ
165#ifdef HAVE_JUMP_LABEL
166
c5905afb
IM
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
c5905afb 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
c5905afb
IM
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
183}
184
185static void sched_feat_enable(int i)
186{
c5905afb
IM
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
f00b45c1
PZ
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198{
199 char buf[64];
7740191c 200 char *cmp;
f00b45c1
PZ
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
7740191c 211 cmp = strstrip(buf);
f00b45c1 212
524429c3 213 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
214 neg = 1;
215 cmp += 3;
216 }
217
f8b6d1cc 218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 220 if (neg) {
f00b45c1 221 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
222 sched_feat_disable(i);
223 } else {
f00b45c1 224 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
225 sched_feat_enable(i);
226 }
f00b45c1
PZ
227 break;
228 }
229 }
230
f8b6d1cc 231 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
232 return -EINVAL;
233
42994724 234 *ppos += cnt;
f00b45c1
PZ
235
236 return cnt;
237}
238
34f3a814
LZ
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241 return single_open(filp, sched_feat_show, NULL);
242}
243
828c0950 244static const struct file_operations sched_feat_fops = {
34f3a814
LZ
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
f00b45c1
PZ
250};
251
252static __init int sched_init_debug(void)
253{
f00b45c1
PZ
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258}
259late_initcall(sched_init_debug);
f8b6d1cc 260#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 261
b82d9fdd
PZ
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
e9e9250b
PZ
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
fa85ae24 276/*
9f0c1e56 277 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
278 * default: 1s
279 */
9f0c1e56 280unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 281
029632fb 282__read_mostly int scheduler_running;
6892b75e 283
9f0c1e56
PZ
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
fa85ae24 289
fa85ae24 290
1da177e4 291
0970d299 292/*
0122ec5b 293 * __task_rq_lock - lock the rq @p resides on.
b29739f9 294 */
70b97a7f 295static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
296 __acquires(rq->lock)
297{
0970d299
PZ
298 struct rq *rq;
299
0122ec5b
PZ
300 lockdep_assert_held(&p->pi_lock);
301
3a5c359a 302 for (;;) {
0970d299 303 rq = task_rq(p);
05fa785c 304 raw_spin_lock(&rq->lock);
65cc8e48 305 if (likely(rq == task_rq(p)))
3a5c359a 306 return rq;
05fa785c 307 raw_spin_unlock(&rq->lock);
b29739f9 308 }
b29739f9
IM
309}
310
1da177e4 311/*
0122ec5b 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 313 */
70b97a7f 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 315 __acquires(p->pi_lock)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4 319
3a5c359a 320 for (;;) {
0122ec5b 321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 322 rq = task_rq(p);
05fa785c 323 raw_spin_lock(&rq->lock);
65cc8e48 324 if (likely(rq == task_rq(p)))
3a5c359a 325 return rq;
0122ec5b
PZ
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 328 }
1da177e4
LT
329}
330
a9957449 331static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
332 __releases(rq->lock)
333{
05fa785c 334 raw_spin_unlock(&rq->lock);
b29739f9
IM
335}
336
0122ec5b
PZ
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 339 __releases(rq->lock)
0122ec5b 340 __releases(p->pi_lock)
1da177e4 341{
0122ec5b
PZ
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
344}
345
1da177e4 346/*
cc2a73b5 347 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 348 */
a9957449 349static struct rq *this_rq_lock(void)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4
LT
353
354 local_irq_disable();
355 rq = this_rq();
05fa785c 356 raw_spin_lock(&rq->lock);
1da177e4
LT
357
358 return rq;
359}
360
8f4d37ec
PZ
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
31656519
PZ
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
b328ca18 402{
31656519 403 struct rq *rq = arg;
b328ca18 404
05fa785c 405 raw_spin_lock(&rq->lock);
31656519
PZ
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
05fa785c 408 raw_spin_unlock(&rq->lock);
b328ca18
PZ
409}
410
31656519
PZ
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
029632fb 416void hrtick_start(struct rq *rq, u64 delay)
b328ca18 417{
31656519
PZ
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 420
cc584b21 421 hrtimer_set_expires(timer, time);
31656519
PZ
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
6e275637 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
427 rq->hrtick_csd_pending = 1;
428 }
b328ca18
PZ
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
31656519 443 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448}
449
fa748203 450static __init void init_hrtick(void)
b328ca18
PZ
451{
452 hotcpu_notifier(hotplug_hrtick, 0);
453}
31656519
PZ
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
029632fb 460void hrtick_start(struct rq *rq, u64 delay)
31656519 461{
7f1e2ca9 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 463 HRTIMER_MODE_REL_PINNED, 0);
31656519 464}
b328ca18 465
006c75f1 466static inline void init_hrtick(void)
8f4d37ec 467{
8f4d37ec 468}
31656519 469#endif /* CONFIG_SMP */
8f4d37ec 470
31656519 471static void init_rq_hrtick(struct rq *rq)
8f4d37ec 472{
31656519
PZ
473#ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
8f4d37ec 475
31656519
PZ
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479#endif
8f4d37ec 480
31656519
PZ
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
8f4d37ec 483}
006c75f1 484#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
8f4d37ec
PZ
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
b328ca18
PZ
493static inline void init_hrtick(void)
494{
495}
006c75f1 496#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 497
c24d20db
IM
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
029632fb 511void resched_task(struct task_struct *p)
c24d20db
IM
512{
513 int cpu;
514
05fa785c 515 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 516
5ed0cec0 517 if (test_tsk_need_resched(p))
c24d20db
IM
518 return;
519
5ed0cec0 520 set_tsk_need_resched(p);
c24d20db
IM
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
05fa785c 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
538 return;
539 resched_task(cpu_curr(cpu));
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c
TG
542
543#ifdef CONFIG_NO_HZ
83cd4fe2
VP
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
057f3fad 558 rcu_read_lock();
83cd4fe2 559 for_each_domain(cpu, sd) {
057f3fad
PZ
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
83cd4fe2 566 }
057f3fad
PZ
567unlock:
568 rcu_read_unlock();
83cd4fe2
VP
569 return cpu;
570}
06d8308c
TG
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
45bf76df 597
45bf76df 598 /*
06d8308c
TG
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
45bf76df 602 */
5ed0cec0 603 set_tsk_need_resched(rq->idle);
45bf76df 604
06d8308c
TG
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
45bf76df
IM
609}
610
ca38062e 611static inline bool got_nohz_idle_kick(void)
45bf76df 612{
1c792db7
SS
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
615}
616
ca38062e 617#else /* CONFIG_NO_HZ */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
6d6bc0ad 624#endif /* CONFIG_NO_HZ */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#else /* !CONFIG_SMP */
029632fb 643void resched_task(struct task_struct *p)
18d95a28 644{
05fa785c 645 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 646 set_tsk_need_resched(p);
18d95a28 647}
6d6bc0ad 648#endif /* CONFIG_SMP */
18d95a28 649
a790de99
PT
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 652/*
8277434e
PT
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 657 */
029632fb 658int walk_tg_tree_from(struct task_group *from,
8277434e 659 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
660{
661 struct task_group *parent, *child;
eb755805 662 int ret;
c09595f6 663
8277434e
PT
664 parent = from;
665
c09595f6 666down:
eb755805
PZ
667 ret = (*down)(parent, data);
668 if (ret)
8277434e 669 goto out;
c09595f6
PZ
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674up:
675 continue;
676 }
eb755805 677 ret = (*up)(parent, data);
8277434e
PT
678 if (ret || parent == from)
679 goto out;
c09595f6
PZ
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
8277434e 685out:
eb755805 686 return ret;
c09595f6
PZ
687}
688
029632fb 689int tg_nop(struct task_group *tg, void *data)
eb755805 690{
e2b245f8 691 return 0;
eb755805 692}
18d95a28
PZ
693#endif
694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
fe44d621 743static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 744{
095c0aa8
GC
745/*
746 * In theory, the compile should just see 0 here, and optimize out the call
747 * to sched_rt_avg_update. But I don't trust it...
748 */
749#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750 s64 steal = 0, irq_delta = 0;
751#endif
752#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 753 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
754
755 /*
756 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757 * this case when a previous update_rq_clock() happened inside a
758 * {soft,}irq region.
759 *
760 * When this happens, we stop ->clock_task and only update the
761 * prev_irq_time stamp to account for the part that fit, so that a next
762 * update will consume the rest. This ensures ->clock_task is
763 * monotonic.
764 *
765 * It does however cause some slight miss-attribution of {soft,}irq
766 * time, a more accurate solution would be to update the irq_time using
767 * the current rq->clock timestamp, except that would require using
768 * atomic ops.
769 */
770 if (irq_delta > delta)
771 irq_delta = delta;
772
773 rq->prev_irq_time += irq_delta;
774 delta -= irq_delta;
095c0aa8
GC
775#endif
776#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 777 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
778 u64 st;
779
780 steal = paravirt_steal_clock(cpu_of(rq));
781 steal -= rq->prev_steal_time_rq;
782
783 if (unlikely(steal > delta))
784 steal = delta;
785
786 st = steal_ticks(steal);
787 steal = st * TICK_NSEC;
788
789 rq->prev_steal_time_rq += steal;
790
791 delta -= steal;
792 }
793#endif
794
fe44d621
PZ
795 rq->clock_task += delta;
796
095c0aa8
GC
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799 sched_rt_avg_update(rq, irq_delta + steal);
800#endif
aa483808
VP
801}
802
34f971f6
PZ
803void sched_set_stop_task(int cpu, struct task_struct *stop)
804{
805 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806 struct task_struct *old_stop = cpu_rq(cpu)->stop;
807
808 if (stop) {
809 /*
810 * Make it appear like a SCHED_FIFO task, its something
811 * userspace knows about and won't get confused about.
812 *
813 * Also, it will make PI more or less work without too
814 * much confusion -- but then, stop work should not
815 * rely on PI working anyway.
816 */
817 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818
819 stop->sched_class = &stop_sched_class;
820 }
821
822 cpu_rq(cpu)->stop = stop;
823
824 if (old_stop) {
825 /*
826 * Reset it back to a normal scheduling class so that
827 * it can die in pieces.
828 */
829 old_stop->sched_class = &rt_sched_class;
830 }
831}
832
14531189 833/*
dd41f596 834 * __normal_prio - return the priority that is based on the static prio
14531189 835 */
14531189
IM
836static inline int __normal_prio(struct task_struct *p)
837{
dd41f596 838 return p->static_prio;
14531189
IM
839}
840
b29739f9
IM
841/*
842 * Calculate the expected normal priority: i.e. priority
843 * without taking RT-inheritance into account. Might be
844 * boosted by interactivity modifiers. Changes upon fork,
845 * setprio syscalls, and whenever the interactivity
846 * estimator recalculates.
847 */
36c8b586 848static inline int normal_prio(struct task_struct *p)
b29739f9
IM
849{
850 int prio;
851
e05606d3 852 if (task_has_rt_policy(p))
b29739f9
IM
853 prio = MAX_RT_PRIO-1 - p->rt_priority;
854 else
855 prio = __normal_prio(p);
856 return prio;
857}
858
859/*
860 * Calculate the current priority, i.e. the priority
861 * taken into account by the scheduler. This value might
862 * be boosted by RT tasks, or might be boosted by
863 * interactivity modifiers. Will be RT if the task got
864 * RT-boosted. If not then it returns p->normal_prio.
865 */
36c8b586 866static int effective_prio(struct task_struct *p)
b29739f9
IM
867{
868 p->normal_prio = normal_prio(p);
869 /*
870 * If we are RT tasks or we were boosted to RT priority,
871 * keep the priority unchanged. Otherwise, update priority
872 * to the normal priority:
873 */
874 if (!rt_prio(p->prio))
875 return p->normal_prio;
876 return p->prio;
877}
878
1da177e4
LT
879/**
880 * task_curr - is this task currently executing on a CPU?
881 * @p: the task in question.
882 */
36c8b586 883inline int task_curr(const struct task_struct *p)
1da177e4
LT
884{
885 return cpu_curr(task_cpu(p)) == p;
886}
887
cb469845
SR
888static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889 const struct sched_class *prev_class,
da7a735e 890 int oldprio)
cb469845
SR
891{
892 if (prev_class != p->sched_class) {
893 if (prev_class->switched_from)
da7a735e
PZ
894 prev_class->switched_from(rq, p);
895 p->sched_class->switched_to(rq, p);
896 } else if (oldprio != p->prio)
897 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
898}
899
029632fb 900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
901{
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
911 resched_task(rq->curr);
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
fd2f4419 921 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
922 rq->skip_clock_update = 1;
923}
924
1da177e4 925#ifdef CONFIG_SMP
dd41f596 926void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 927{
e2912009
PZ
928#ifdef CONFIG_SCHED_DEBUG
929 /*
930 * We should never call set_task_cpu() on a blocked task,
931 * ttwu() will sort out the placement.
932 */
077614ee
PZ
933 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
934 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
935
936#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
937 /*
938 * The caller should hold either p->pi_lock or rq->lock, when changing
939 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
940 *
941 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 942 * see task_group().
6c6c54e1
PZ
943 *
944 * Furthermore, all task_rq users should acquire both locks, see
945 * task_rq_lock().
946 */
0122ec5b
PZ
947 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
948 lockdep_is_held(&task_rq(p)->lock)));
949#endif
e2912009
PZ
950#endif
951
de1d7286 952 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 953
0c69774e
PZ
954 if (task_cpu(p) != new_cpu) {
955 p->se.nr_migrations++;
a8b0ca17 956 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 957 }
dd41f596
IM
958
959 __set_task_cpu(p, new_cpu);
c65cc870
IM
960}
961
969c7921 962struct migration_arg {
36c8b586 963 struct task_struct *task;
1da177e4 964 int dest_cpu;
70b97a7f 965};
1da177e4 966
969c7921
TH
967static int migration_cpu_stop(void *data);
968
1da177e4
LT
969/*
970 * wait_task_inactive - wait for a thread to unschedule.
971 *
85ba2d86
RM
972 * If @match_state is nonzero, it's the @p->state value just checked and
973 * not expected to change. If it changes, i.e. @p might have woken up,
974 * then return zero. When we succeed in waiting for @p to be off its CPU,
975 * we return a positive number (its total switch count). If a second call
976 * a short while later returns the same number, the caller can be sure that
977 * @p has remained unscheduled the whole time.
978 *
1da177e4
LT
979 * The caller must ensure that the task *will* unschedule sometime soon,
980 * else this function might spin for a *long* time. This function can't
981 * be called with interrupts off, or it may introduce deadlock with
982 * smp_call_function() if an IPI is sent by the same process we are
983 * waiting to become inactive.
984 */
85ba2d86 985unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
986{
987 unsigned long flags;
dd41f596 988 int running, on_rq;
85ba2d86 989 unsigned long ncsw;
70b97a7f 990 struct rq *rq;
1da177e4 991
3a5c359a
AK
992 for (;;) {
993 /*
994 * We do the initial early heuristics without holding
995 * any task-queue locks at all. We'll only try to get
996 * the runqueue lock when things look like they will
997 * work out!
998 */
999 rq = task_rq(p);
fa490cfd 1000
3a5c359a
AK
1001 /*
1002 * If the task is actively running on another CPU
1003 * still, just relax and busy-wait without holding
1004 * any locks.
1005 *
1006 * NOTE! Since we don't hold any locks, it's not
1007 * even sure that "rq" stays as the right runqueue!
1008 * But we don't care, since "task_running()" will
1009 * return false if the runqueue has changed and p
1010 * is actually now running somewhere else!
1011 */
85ba2d86
RM
1012 while (task_running(rq, p)) {
1013 if (match_state && unlikely(p->state != match_state))
1014 return 0;
3a5c359a 1015 cpu_relax();
85ba2d86 1016 }
fa490cfd 1017
3a5c359a
AK
1018 /*
1019 * Ok, time to look more closely! We need the rq
1020 * lock now, to be *sure*. If we're wrong, we'll
1021 * just go back and repeat.
1022 */
1023 rq = task_rq_lock(p, &flags);
27a9da65 1024 trace_sched_wait_task(p);
3a5c359a 1025 running = task_running(rq, p);
fd2f4419 1026 on_rq = p->on_rq;
85ba2d86 1027 ncsw = 0;
f31e11d8 1028 if (!match_state || p->state == match_state)
93dcf55f 1029 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1030 task_rq_unlock(rq, p, &flags);
fa490cfd 1031
85ba2d86
RM
1032 /*
1033 * If it changed from the expected state, bail out now.
1034 */
1035 if (unlikely(!ncsw))
1036 break;
1037
3a5c359a
AK
1038 /*
1039 * Was it really running after all now that we
1040 * checked with the proper locks actually held?
1041 *
1042 * Oops. Go back and try again..
1043 */
1044 if (unlikely(running)) {
1045 cpu_relax();
1046 continue;
1047 }
fa490cfd 1048
3a5c359a
AK
1049 /*
1050 * It's not enough that it's not actively running,
1051 * it must be off the runqueue _entirely_, and not
1052 * preempted!
1053 *
80dd99b3 1054 * So if it was still runnable (but just not actively
3a5c359a
AK
1055 * running right now), it's preempted, and we should
1056 * yield - it could be a while.
1057 */
1058 if (unlikely(on_rq)) {
8eb90c30
TG
1059 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1060
1061 set_current_state(TASK_UNINTERRUPTIBLE);
1062 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1063 continue;
1064 }
fa490cfd 1065
3a5c359a
AK
1066 /*
1067 * Ahh, all good. It wasn't running, and it wasn't
1068 * runnable, which means that it will never become
1069 * running in the future either. We're all done!
1070 */
1071 break;
1072 }
85ba2d86
RM
1073
1074 return ncsw;
1da177e4
LT
1075}
1076
1077/***
1078 * kick_process - kick a running thread to enter/exit the kernel
1079 * @p: the to-be-kicked thread
1080 *
1081 * Cause a process which is running on another CPU to enter
1082 * kernel-mode, without any delay. (to get signals handled.)
1083 *
25985edc 1084 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1085 * because all it wants to ensure is that the remote task enters
1086 * the kernel. If the IPI races and the task has been migrated
1087 * to another CPU then no harm is done and the purpose has been
1088 * achieved as well.
1089 */
36c8b586 1090void kick_process(struct task_struct *p)
1da177e4
LT
1091{
1092 int cpu;
1093
1094 preempt_disable();
1095 cpu = task_cpu(p);
1096 if ((cpu != smp_processor_id()) && task_curr(p))
1097 smp_send_reschedule(cpu);
1098 preempt_enable();
1099}
b43e3521 1100EXPORT_SYMBOL_GPL(kick_process);
476d139c 1101#endif /* CONFIG_SMP */
1da177e4 1102
970b13ba 1103#ifdef CONFIG_SMP
30da688e 1104/*
013fdb80 1105 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1106 */
5da9a0fb
PZ
1107static int select_fallback_rq(int cpu, struct task_struct *p)
1108{
5da9a0fb 1109 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1110 enum { cpuset, possible, fail } state = cpuset;
1111 int dest_cpu;
5da9a0fb
PZ
1112
1113 /* Look for allowed, online CPU in same node. */
e3831edd 1114 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1115 if (!cpu_online(dest_cpu))
1116 continue;
1117 if (!cpu_active(dest_cpu))
1118 continue;
fa17b507 1119 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1120 return dest_cpu;
2baab4e9 1121 }
5da9a0fb 1122
2baab4e9
PZ
1123 for (;;) {
1124 /* Any allowed, online CPU? */
e3831edd 1125 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1126 if (!cpu_online(dest_cpu))
1127 continue;
1128 if (!cpu_active(dest_cpu))
1129 continue;
1130 goto out;
1131 }
5da9a0fb 1132
2baab4e9
PZ
1133 switch (state) {
1134 case cpuset:
1135 /* No more Mr. Nice Guy. */
1136 cpuset_cpus_allowed_fallback(p);
1137 state = possible;
1138 break;
1139
1140 case possible:
1141 do_set_cpus_allowed(p, cpu_possible_mask);
1142 state = fail;
1143 break;
1144
1145 case fail:
1146 BUG();
1147 break;
1148 }
1149 }
1150
1151out:
1152 if (state != cpuset) {
1153 /*
1154 * Don't tell them about moving exiting tasks or
1155 * kernel threads (both mm NULL), since they never
1156 * leave kernel.
1157 */
1158 if (p->mm && printk_ratelimit()) {
1159 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1160 task_pid_nr(p), p->comm, cpu);
1161 }
5da9a0fb
PZ
1162 }
1163
1164 return dest_cpu;
1165}
1166
e2912009 1167/*
013fdb80 1168 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1169 */
970b13ba 1170static inline
7608dec2 1171int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1172{
7608dec2 1173 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1174
1175 /*
1176 * In order not to call set_task_cpu() on a blocking task we need
1177 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1178 * cpu.
1179 *
1180 * Since this is common to all placement strategies, this lives here.
1181 *
1182 * [ this allows ->select_task() to simply return task_cpu(p) and
1183 * not worry about this generic constraint ]
1184 */
fa17b507 1185 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1186 !cpu_online(cpu)))
5da9a0fb 1187 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1188
1189 return cpu;
970b13ba 1190}
09a40af5
MG
1191
1192static void update_avg(u64 *avg, u64 sample)
1193{
1194 s64 diff = sample - *avg;
1195 *avg += diff >> 3;
1196}
970b13ba
PZ
1197#endif
1198
d7c01d27 1199static void
b84cb5df 1200ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1201{
d7c01d27 1202#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1203 struct rq *rq = this_rq();
1204
d7c01d27
PZ
1205#ifdef CONFIG_SMP
1206 int this_cpu = smp_processor_id();
1207
1208 if (cpu == this_cpu) {
1209 schedstat_inc(rq, ttwu_local);
1210 schedstat_inc(p, se.statistics.nr_wakeups_local);
1211 } else {
1212 struct sched_domain *sd;
1213
1214 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1215 rcu_read_lock();
d7c01d27
PZ
1216 for_each_domain(this_cpu, sd) {
1217 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1218 schedstat_inc(sd, ttwu_wake_remote);
1219 break;
1220 }
1221 }
057f3fad 1222 rcu_read_unlock();
d7c01d27 1223 }
f339b9dc
PZ
1224
1225 if (wake_flags & WF_MIGRATED)
1226 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1227
d7c01d27
PZ
1228#endif /* CONFIG_SMP */
1229
1230 schedstat_inc(rq, ttwu_count);
9ed3811a 1231 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1232
1233 if (wake_flags & WF_SYNC)
9ed3811a 1234 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1235
d7c01d27
PZ
1236#endif /* CONFIG_SCHEDSTATS */
1237}
1238
1239static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1240{
9ed3811a 1241 activate_task(rq, p, en_flags);
fd2f4419 1242 p->on_rq = 1;
c2f7115e
PZ
1243
1244 /* if a worker is waking up, notify workqueue */
1245 if (p->flags & PF_WQ_WORKER)
1246 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1247}
1248
23f41eeb
PZ
1249/*
1250 * Mark the task runnable and perform wakeup-preemption.
1251 */
89363381 1252static void
23f41eeb 1253ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1254{
89363381 1255 trace_sched_wakeup(p, true);
9ed3811a
TH
1256 check_preempt_curr(rq, p, wake_flags);
1257
1258 p->state = TASK_RUNNING;
1259#ifdef CONFIG_SMP
1260 if (p->sched_class->task_woken)
1261 p->sched_class->task_woken(rq, p);
1262
e69c6341 1263 if (rq->idle_stamp) {
9ed3811a
TH
1264 u64 delta = rq->clock - rq->idle_stamp;
1265 u64 max = 2*sysctl_sched_migration_cost;
1266
1267 if (delta > max)
1268 rq->avg_idle = max;
1269 else
1270 update_avg(&rq->avg_idle, delta);
1271 rq->idle_stamp = 0;
1272 }
1273#endif
1274}
1275
c05fbafb
PZ
1276static void
1277ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1278{
1279#ifdef CONFIG_SMP
1280 if (p->sched_contributes_to_load)
1281 rq->nr_uninterruptible--;
1282#endif
1283
1284 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1285 ttwu_do_wakeup(rq, p, wake_flags);
1286}
1287
1288/*
1289 * Called in case the task @p isn't fully descheduled from its runqueue,
1290 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1291 * since all we need to do is flip p->state to TASK_RUNNING, since
1292 * the task is still ->on_rq.
1293 */
1294static int ttwu_remote(struct task_struct *p, int wake_flags)
1295{
1296 struct rq *rq;
1297 int ret = 0;
1298
1299 rq = __task_rq_lock(p);
1300 if (p->on_rq) {
1301 ttwu_do_wakeup(rq, p, wake_flags);
1302 ret = 1;
1303 }
1304 __task_rq_unlock(rq);
1305
1306 return ret;
1307}
1308
317f3941 1309#ifdef CONFIG_SMP
fa14ff4a 1310static void sched_ttwu_pending(void)
317f3941
PZ
1311{
1312 struct rq *rq = this_rq();
fa14ff4a
PZ
1313 struct llist_node *llist = llist_del_all(&rq->wake_list);
1314 struct task_struct *p;
317f3941
PZ
1315
1316 raw_spin_lock(&rq->lock);
1317
fa14ff4a
PZ
1318 while (llist) {
1319 p = llist_entry(llist, struct task_struct, wake_entry);
1320 llist = llist_next(llist);
317f3941
PZ
1321 ttwu_do_activate(rq, p, 0);
1322 }
1323
1324 raw_spin_unlock(&rq->lock);
1325}
1326
1327void scheduler_ipi(void)
1328{
ca38062e 1329 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1330 return;
1331
1332 /*
1333 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1334 * traditionally all their work was done from the interrupt return
1335 * path. Now that we actually do some work, we need to make sure
1336 * we do call them.
1337 *
1338 * Some archs already do call them, luckily irq_enter/exit nest
1339 * properly.
1340 *
1341 * Arguably we should visit all archs and update all handlers,
1342 * however a fair share of IPIs are still resched only so this would
1343 * somewhat pessimize the simple resched case.
1344 */
1345 irq_enter();
fa14ff4a 1346 sched_ttwu_pending();
ca38062e
SS
1347
1348 /*
1349 * Check if someone kicked us for doing the nohz idle load balance.
1350 */
6eb57e0d
SS
1351 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1352 this_rq()->idle_balance = 1;
ca38062e 1353 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1354 }
c5d753a5 1355 irq_exit();
317f3941
PZ
1356}
1357
1358static void ttwu_queue_remote(struct task_struct *p, int cpu)
1359{
fa14ff4a 1360 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1361 smp_send_reschedule(cpu);
1362}
d6aa8f85 1363
39be3501 1364bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1365{
1366 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1367}
d6aa8f85 1368#endif /* CONFIG_SMP */
317f3941 1369
c05fbafb
PZ
1370static void ttwu_queue(struct task_struct *p, int cpu)
1371{
1372 struct rq *rq = cpu_rq(cpu);
1373
17d9f311 1374#if defined(CONFIG_SMP)
39be3501 1375 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1376 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1377 ttwu_queue_remote(p, cpu);
1378 return;
1379 }
1380#endif
1381
c05fbafb
PZ
1382 raw_spin_lock(&rq->lock);
1383 ttwu_do_activate(rq, p, 0);
1384 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1385}
1386
1387/**
1da177e4 1388 * try_to_wake_up - wake up a thread
9ed3811a 1389 * @p: the thread to be awakened
1da177e4 1390 * @state: the mask of task states that can be woken
9ed3811a 1391 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1392 *
1393 * Put it on the run-queue if it's not already there. The "current"
1394 * thread is always on the run-queue (except when the actual
1395 * re-schedule is in progress), and as such you're allowed to do
1396 * the simpler "current->state = TASK_RUNNING" to mark yourself
1397 * runnable without the overhead of this.
1398 *
9ed3811a
TH
1399 * Returns %true if @p was woken up, %false if it was already running
1400 * or @state didn't match @p's state.
1da177e4 1401 */
e4a52bcb
PZ
1402static int
1403try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1404{
1da177e4 1405 unsigned long flags;
c05fbafb 1406 int cpu, success = 0;
2398f2c6 1407
04e2f174 1408 smp_wmb();
013fdb80 1409 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1410 if (!(p->state & state))
1da177e4
LT
1411 goto out;
1412
c05fbafb 1413 success = 1; /* we're going to change ->state */
1da177e4 1414 cpu = task_cpu(p);
1da177e4 1415
c05fbafb
PZ
1416 if (p->on_rq && ttwu_remote(p, wake_flags))
1417 goto stat;
1da177e4 1418
1da177e4 1419#ifdef CONFIG_SMP
e9c84311 1420 /*
c05fbafb
PZ
1421 * If the owning (remote) cpu is still in the middle of schedule() with
1422 * this task as prev, wait until its done referencing the task.
e9c84311 1423 */
f3e94786 1424 while (p->on_cpu)
e4a52bcb 1425 cpu_relax();
0970d299 1426 /*
e4a52bcb 1427 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1428 */
e4a52bcb 1429 smp_rmb();
1da177e4 1430
a8e4f2ea 1431 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1432 p->state = TASK_WAKING;
e7693a36 1433
e4a52bcb 1434 if (p->sched_class->task_waking)
74f8e4b2 1435 p->sched_class->task_waking(p);
efbbd05a 1436
7608dec2 1437 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1438 if (task_cpu(p) != cpu) {
1439 wake_flags |= WF_MIGRATED;
e4a52bcb 1440 set_task_cpu(p, cpu);
f339b9dc 1441 }
1da177e4 1442#endif /* CONFIG_SMP */
1da177e4 1443
c05fbafb
PZ
1444 ttwu_queue(p, cpu);
1445stat:
b84cb5df 1446 ttwu_stat(p, cpu, wake_flags);
1da177e4 1447out:
013fdb80 1448 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1449
1450 return success;
1451}
1452
21aa9af0
TH
1453/**
1454 * try_to_wake_up_local - try to wake up a local task with rq lock held
1455 * @p: the thread to be awakened
1456 *
2acca55e 1457 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1458 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1459 * the current task.
21aa9af0
TH
1460 */
1461static void try_to_wake_up_local(struct task_struct *p)
1462{
1463 struct rq *rq = task_rq(p);
21aa9af0
TH
1464
1465 BUG_ON(rq != this_rq());
1466 BUG_ON(p == current);
1467 lockdep_assert_held(&rq->lock);
1468
2acca55e
PZ
1469 if (!raw_spin_trylock(&p->pi_lock)) {
1470 raw_spin_unlock(&rq->lock);
1471 raw_spin_lock(&p->pi_lock);
1472 raw_spin_lock(&rq->lock);
1473 }
1474
21aa9af0 1475 if (!(p->state & TASK_NORMAL))
2acca55e 1476 goto out;
21aa9af0 1477
fd2f4419 1478 if (!p->on_rq)
d7c01d27
PZ
1479 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1480
23f41eeb 1481 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1482 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1483out:
1484 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1485}
1486
50fa610a
DH
1487/**
1488 * wake_up_process - Wake up a specific process
1489 * @p: The process to be woken up.
1490 *
1491 * Attempt to wake up the nominated process and move it to the set of runnable
1492 * processes. Returns 1 if the process was woken up, 0 if it was already
1493 * running.
1494 *
1495 * It may be assumed that this function implies a write memory barrier before
1496 * changing the task state if and only if any tasks are woken up.
1497 */
7ad5b3a5 1498int wake_up_process(struct task_struct *p)
1da177e4 1499{
d9514f6c 1500 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1501}
1da177e4
LT
1502EXPORT_SYMBOL(wake_up_process);
1503
7ad5b3a5 1504int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1505{
1506 return try_to_wake_up(p, state, 0);
1507}
1508
1da177e4
LT
1509/*
1510 * Perform scheduler related setup for a newly forked process p.
1511 * p is forked by current.
dd41f596
IM
1512 *
1513 * __sched_fork() is basic setup used by init_idle() too:
1514 */
1515static void __sched_fork(struct task_struct *p)
1516{
fd2f4419
PZ
1517 p->on_rq = 0;
1518
1519 p->se.on_rq = 0;
dd41f596
IM
1520 p->se.exec_start = 0;
1521 p->se.sum_exec_runtime = 0;
f6cf891c 1522 p->se.prev_sum_exec_runtime = 0;
6c594c21 1523 p->se.nr_migrations = 0;
da7a735e 1524 p->se.vruntime = 0;
fd2f4419 1525 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1526
1527#ifdef CONFIG_SCHEDSTATS
41acab88 1528 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1529#endif
476d139c 1530
fa717060 1531 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1532
e107be36
AK
1533#ifdef CONFIG_PREEMPT_NOTIFIERS
1534 INIT_HLIST_HEAD(&p->preempt_notifiers);
1535#endif
dd41f596
IM
1536}
1537
1538/*
1539 * fork()/clone()-time setup:
1540 */
3e51e3ed 1541void sched_fork(struct task_struct *p)
dd41f596 1542{
0122ec5b 1543 unsigned long flags;
dd41f596
IM
1544 int cpu = get_cpu();
1545
1546 __sched_fork(p);
06b83b5f 1547 /*
0017d735 1548 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1549 * nobody will actually run it, and a signal or other external
1550 * event cannot wake it up and insert it on the runqueue either.
1551 */
0017d735 1552 p->state = TASK_RUNNING;
dd41f596 1553
c350a04e
MG
1554 /*
1555 * Make sure we do not leak PI boosting priority to the child.
1556 */
1557 p->prio = current->normal_prio;
1558
b9dc29e7
MG
1559 /*
1560 * Revert to default priority/policy on fork if requested.
1561 */
1562 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1563 if (task_has_rt_policy(p)) {
b9dc29e7 1564 p->policy = SCHED_NORMAL;
6c697bdf 1565 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1566 p->rt_priority = 0;
1567 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1568 p->static_prio = NICE_TO_PRIO(0);
1569
1570 p->prio = p->normal_prio = __normal_prio(p);
1571 set_load_weight(p);
6c697bdf 1572
b9dc29e7
MG
1573 /*
1574 * We don't need the reset flag anymore after the fork. It has
1575 * fulfilled its duty:
1576 */
1577 p->sched_reset_on_fork = 0;
1578 }
ca94c442 1579
2ddbf952
HS
1580 if (!rt_prio(p->prio))
1581 p->sched_class = &fair_sched_class;
b29739f9 1582
cd29fe6f
PZ
1583 if (p->sched_class->task_fork)
1584 p->sched_class->task_fork(p);
1585
86951599
PZ
1586 /*
1587 * The child is not yet in the pid-hash so no cgroup attach races,
1588 * and the cgroup is pinned to this child due to cgroup_fork()
1589 * is ran before sched_fork().
1590 *
1591 * Silence PROVE_RCU.
1592 */
0122ec5b 1593 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1594 set_task_cpu(p, cpu);
0122ec5b 1595 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1596
52f17b6c 1597#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1598 if (likely(sched_info_on()))
52f17b6c 1599 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1600#endif
3ca7a440
PZ
1601#if defined(CONFIG_SMP)
1602 p->on_cpu = 0;
4866cde0 1603#endif
bdd4e85d 1604#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1605 /* Want to start with kernel preemption disabled. */
a1261f54 1606 task_thread_info(p)->preempt_count = 1;
1da177e4 1607#endif
806c09a7 1608#ifdef CONFIG_SMP
917b627d 1609 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1610#endif
917b627d 1611
476d139c 1612 put_cpu();
1da177e4
LT
1613}
1614
1615/*
1616 * wake_up_new_task - wake up a newly created task for the first time.
1617 *
1618 * This function will do some initial scheduler statistics housekeeping
1619 * that must be done for every newly created context, then puts the task
1620 * on the runqueue and wakes it.
1621 */
3e51e3ed 1622void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1623{
1624 unsigned long flags;
dd41f596 1625 struct rq *rq;
fabf318e 1626
ab2515c4 1627 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1628#ifdef CONFIG_SMP
1629 /*
1630 * Fork balancing, do it here and not earlier because:
1631 * - cpus_allowed can change in the fork path
1632 * - any previously selected cpu might disappear through hotplug
fabf318e 1633 */
ab2515c4 1634 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1635#endif
1636
ab2515c4 1637 rq = __task_rq_lock(p);
cd29fe6f 1638 activate_task(rq, p, 0);
fd2f4419 1639 p->on_rq = 1;
89363381 1640 trace_sched_wakeup_new(p, true);
a7558e01 1641 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1642#ifdef CONFIG_SMP
efbbd05a
PZ
1643 if (p->sched_class->task_woken)
1644 p->sched_class->task_woken(rq, p);
9a897c5a 1645#endif
0122ec5b 1646 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1647}
1648
e107be36
AK
1649#ifdef CONFIG_PREEMPT_NOTIFIERS
1650
1651/**
80dd99b3 1652 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1653 * @notifier: notifier struct to register
e107be36
AK
1654 */
1655void preempt_notifier_register(struct preempt_notifier *notifier)
1656{
1657 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1658}
1659EXPORT_SYMBOL_GPL(preempt_notifier_register);
1660
1661/**
1662 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1663 * @notifier: notifier struct to unregister
e107be36
AK
1664 *
1665 * This is safe to call from within a preemption notifier.
1666 */
1667void preempt_notifier_unregister(struct preempt_notifier *notifier)
1668{
1669 hlist_del(&notifier->link);
1670}
1671EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1672
1673static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1674{
1675 struct preempt_notifier *notifier;
1676 struct hlist_node *node;
1677
1678 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1679 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1680}
1681
1682static void
1683fire_sched_out_preempt_notifiers(struct task_struct *curr,
1684 struct task_struct *next)
1685{
1686 struct preempt_notifier *notifier;
1687 struct hlist_node *node;
1688
1689 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1690 notifier->ops->sched_out(notifier, next);
1691}
1692
6d6bc0ad 1693#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1694
1695static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1696{
1697}
1698
1699static void
1700fire_sched_out_preempt_notifiers(struct task_struct *curr,
1701 struct task_struct *next)
1702{
1703}
1704
6d6bc0ad 1705#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1706
4866cde0
NP
1707/**
1708 * prepare_task_switch - prepare to switch tasks
1709 * @rq: the runqueue preparing to switch
421cee29 1710 * @prev: the current task that is being switched out
4866cde0
NP
1711 * @next: the task we are going to switch to.
1712 *
1713 * This is called with the rq lock held and interrupts off. It must
1714 * be paired with a subsequent finish_task_switch after the context
1715 * switch.
1716 *
1717 * prepare_task_switch sets up locking and calls architecture specific
1718 * hooks.
1719 */
e107be36
AK
1720static inline void
1721prepare_task_switch(struct rq *rq, struct task_struct *prev,
1722 struct task_struct *next)
4866cde0 1723{
895dd92c 1724 trace_sched_switch(prev, next);
fe4b04fa
PZ
1725 sched_info_switch(prev, next);
1726 perf_event_task_sched_out(prev, next);
e107be36 1727 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1728 prepare_lock_switch(rq, next);
1729 prepare_arch_switch(next);
1730}
1731
1da177e4
LT
1732/**
1733 * finish_task_switch - clean up after a task-switch
344babaa 1734 * @rq: runqueue associated with task-switch
1da177e4
LT
1735 * @prev: the thread we just switched away from.
1736 *
4866cde0
NP
1737 * finish_task_switch must be called after the context switch, paired
1738 * with a prepare_task_switch call before the context switch.
1739 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1740 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1741 *
1742 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1743 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1744 * with the lock held can cause deadlocks; see schedule() for
1745 * details.)
1746 */
a9957449 1747static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1748 __releases(rq->lock)
1749{
1da177e4 1750 struct mm_struct *mm = rq->prev_mm;
55a101f8 1751 long prev_state;
1da177e4
LT
1752
1753 rq->prev_mm = NULL;
1754
1755 /*
1756 * A task struct has one reference for the use as "current".
c394cc9f 1757 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1758 * schedule one last time. The schedule call will never return, and
1759 * the scheduled task must drop that reference.
c394cc9f 1760 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1761 * still held, otherwise prev could be scheduled on another cpu, die
1762 * there before we look at prev->state, and then the reference would
1763 * be dropped twice.
1764 * Manfred Spraul <manfred@colorfullife.com>
1765 */
55a101f8 1766 prev_state = prev->state;
baa36046 1767 account_switch_vtime(prev);
4866cde0 1768 finish_arch_switch(prev);
a8d757ef 1769 perf_event_task_sched_in(prev, current);
4866cde0 1770 finish_lock_switch(rq, prev);
01f23e16 1771 finish_arch_post_lock_switch();
e8fa1362 1772
e107be36 1773 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1774 if (mm)
1775 mmdrop(mm);
c394cc9f 1776 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1777 /*
1778 * Remove function-return probe instances associated with this
1779 * task and put them back on the free list.
9761eea8 1780 */
c6fd91f0 1781 kprobe_flush_task(prev);
1da177e4 1782 put_task_struct(prev);
c6fd91f0 1783 }
1da177e4
LT
1784}
1785
3f029d3c
GH
1786#ifdef CONFIG_SMP
1787
1788/* assumes rq->lock is held */
1789static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1790{
1791 if (prev->sched_class->pre_schedule)
1792 prev->sched_class->pre_schedule(rq, prev);
1793}
1794
1795/* rq->lock is NOT held, but preemption is disabled */
1796static inline void post_schedule(struct rq *rq)
1797{
1798 if (rq->post_schedule) {
1799 unsigned long flags;
1800
05fa785c 1801 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1802 if (rq->curr->sched_class->post_schedule)
1803 rq->curr->sched_class->post_schedule(rq);
05fa785c 1804 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1805
1806 rq->post_schedule = 0;
1807 }
1808}
1809
1810#else
da19ab51 1811
3f029d3c
GH
1812static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1813{
1814}
1815
1816static inline void post_schedule(struct rq *rq)
1817{
1da177e4
LT
1818}
1819
3f029d3c
GH
1820#endif
1821
1da177e4
LT
1822/**
1823 * schedule_tail - first thing a freshly forked thread must call.
1824 * @prev: the thread we just switched away from.
1825 */
36c8b586 1826asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1827 __releases(rq->lock)
1828{
70b97a7f
IM
1829 struct rq *rq = this_rq();
1830
4866cde0 1831 finish_task_switch(rq, prev);
da19ab51 1832
3f029d3c
GH
1833 /*
1834 * FIXME: do we need to worry about rq being invalidated by the
1835 * task_switch?
1836 */
1837 post_schedule(rq);
70b97a7f 1838
4866cde0
NP
1839#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1840 /* In this case, finish_task_switch does not reenable preemption */
1841 preempt_enable();
1842#endif
1da177e4 1843 if (current->set_child_tid)
b488893a 1844 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1845}
1846
1847/*
1848 * context_switch - switch to the new MM and the new
1849 * thread's register state.
1850 */
dd41f596 1851static inline void
70b97a7f 1852context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1853 struct task_struct *next)
1da177e4 1854{
dd41f596 1855 struct mm_struct *mm, *oldmm;
1da177e4 1856
e107be36 1857 prepare_task_switch(rq, prev, next);
fe4b04fa 1858
dd41f596
IM
1859 mm = next->mm;
1860 oldmm = prev->active_mm;
9226d125
ZA
1861 /*
1862 * For paravirt, this is coupled with an exit in switch_to to
1863 * combine the page table reload and the switch backend into
1864 * one hypercall.
1865 */
224101ed 1866 arch_start_context_switch(prev);
9226d125 1867
31915ab4 1868 if (!mm) {
1da177e4
LT
1869 next->active_mm = oldmm;
1870 atomic_inc(&oldmm->mm_count);
1871 enter_lazy_tlb(oldmm, next);
1872 } else
1873 switch_mm(oldmm, mm, next);
1874
31915ab4 1875 if (!prev->mm) {
1da177e4 1876 prev->active_mm = NULL;
1da177e4
LT
1877 rq->prev_mm = oldmm;
1878 }
3a5f5e48
IM
1879 /*
1880 * Since the runqueue lock will be released by the next
1881 * task (which is an invalid locking op but in the case
1882 * of the scheduler it's an obvious special-case), so we
1883 * do an early lockdep release here:
1884 */
1885#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1886 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1887#endif
1da177e4
LT
1888
1889 /* Here we just switch the register state and the stack. */
1890 switch_to(prev, next, prev);
1891
dd41f596
IM
1892 barrier();
1893 /*
1894 * this_rq must be evaluated again because prev may have moved
1895 * CPUs since it called schedule(), thus the 'rq' on its stack
1896 * frame will be invalid.
1897 */
1898 finish_task_switch(this_rq(), prev);
1da177e4
LT
1899}
1900
1901/*
1902 * nr_running, nr_uninterruptible and nr_context_switches:
1903 *
1904 * externally visible scheduler statistics: current number of runnable
1905 * threads, current number of uninterruptible-sleeping threads, total
1906 * number of context switches performed since bootup.
1907 */
1908unsigned long nr_running(void)
1909{
1910 unsigned long i, sum = 0;
1911
1912 for_each_online_cpu(i)
1913 sum += cpu_rq(i)->nr_running;
1914
1915 return sum;
f711f609 1916}
1da177e4
LT
1917
1918unsigned long nr_uninterruptible(void)
f711f609 1919{
1da177e4 1920 unsigned long i, sum = 0;
f711f609 1921
0a945022 1922 for_each_possible_cpu(i)
1da177e4 1923 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
1924
1925 /*
1da177e4
LT
1926 * Since we read the counters lockless, it might be slightly
1927 * inaccurate. Do not allow it to go below zero though:
f711f609 1928 */
1da177e4
LT
1929 if (unlikely((long)sum < 0))
1930 sum = 0;
f711f609 1931
1da177e4 1932 return sum;
f711f609 1933}
f711f609 1934
1da177e4 1935unsigned long long nr_context_switches(void)
46cb4b7c 1936{
cc94abfc
SR
1937 int i;
1938 unsigned long long sum = 0;
46cb4b7c 1939
0a945022 1940 for_each_possible_cpu(i)
1da177e4 1941 sum += cpu_rq(i)->nr_switches;
46cb4b7c 1942
1da177e4
LT
1943 return sum;
1944}
483b4ee6 1945
1da177e4
LT
1946unsigned long nr_iowait(void)
1947{
1948 unsigned long i, sum = 0;
483b4ee6 1949
0a945022 1950 for_each_possible_cpu(i)
1da177e4 1951 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 1952
1da177e4
LT
1953 return sum;
1954}
483b4ee6 1955
8c215bd3 1956unsigned long nr_iowait_cpu(int cpu)
69d25870 1957{
8c215bd3 1958 struct rq *this = cpu_rq(cpu);
69d25870
AV
1959 return atomic_read(&this->nr_iowait);
1960}
46cb4b7c 1961
69d25870
AV
1962unsigned long this_cpu_load(void)
1963{
1964 struct rq *this = this_rq();
1965 return this->cpu_load[0];
1966}
e790fb0b 1967
46cb4b7c 1968
5167e8d5
PZ
1969/*
1970 * Global load-average calculations
1971 *
1972 * We take a distributed and async approach to calculating the global load-avg
1973 * in order to minimize overhead.
1974 *
1975 * The global load average is an exponentially decaying average of nr_running +
1976 * nr_uninterruptible.
1977 *
1978 * Once every LOAD_FREQ:
1979 *
1980 * nr_active = 0;
1981 * for_each_possible_cpu(cpu)
1982 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
1983 *
1984 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
1985 *
1986 * Due to a number of reasons the above turns in the mess below:
1987 *
1988 * - for_each_possible_cpu() is prohibitively expensive on machines with
1989 * serious number of cpus, therefore we need to take a distributed approach
1990 * to calculating nr_active.
1991 *
1992 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
1993 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
1994 *
1995 * So assuming nr_active := 0 when we start out -- true per definition, we
1996 * can simply take per-cpu deltas and fold those into a global accumulate
1997 * to obtain the same result. See calc_load_fold_active().
1998 *
1999 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2000 * across the machine, we assume 10 ticks is sufficient time for every
2001 * cpu to have completed this task.
2002 *
2003 * This places an upper-bound on the IRQ-off latency of the machine. Then
2004 * again, being late doesn't loose the delta, just wrecks the sample.
2005 *
2006 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2007 * this would add another cross-cpu cacheline miss and atomic operation
2008 * to the wakeup path. Instead we increment on whatever cpu the task ran
2009 * when it went into uninterruptible state and decrement on whatever cpu
2010 * did the wakeup. This means that only the sum of nr_uninterruptible over
2011 * all cpus yields the correct result.
2012 *
2013 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2014 */
2015
dce48a84
TG
2016/* Variables and functions for calc_load */
2017static atomic_long_t calc_load_tasks;
2018static unsigned long calc_load_update;
2019unsigned long avenrun[3];
5167e8d5
PZ
2020EXPORT_SYMBOL(avenrun); /* should be removed */
2021
2022/**
2023 * get_avenrun - get the load average array
2024 * @loads: pointer to dest load array
2025 * @offset: offset to add
2026 * @shift: shift count to shift the result left
2027 *
2028 * These values are estimates at best, so no need for locking.
2029 */
2030void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2031{
2032 loads[0] = (avenrun[0] + offset) << shift;
2033 loads[1] = (avenrun[1] + offset) << shift;
2034 loads[2] = (avenrun[2] + offset) << shift;
2035}
46cb4b7c 2036
74f5187a
PZ
2037static long calc_load_fold_active(struct rq *this_rq)
2038{
2039 long nr_active, delta = 0;
2040
2041 nr_active = this_rq->nr_running;
2042 nr_active += (long) this_rq->nr_uninterruptible;
2043
2044 if (nr_active != this_rq->calc_load_active) {
2045 delta = nr_active - this_rq->calc_load_active;
2046 this_rq->calc_load_active = nr_active;
2047 }
2048
2049 return delta;
2050}
2051
5167e8d5
PZ
2052/*
2053 * a1 = a0 * e + a * (1 - e)
2054 */
0f004f5a
PZ
2055static unsigned long
2056calc_load(unsigned long load, unsigned long exp, unsigned long active)
2057{
2058 load *= exp;
2059 load += active * (FIXED_1 - exp);
2060 load += 1UL << (FSHIFT - 1);
2061 return load >> FSHIFT;
2062}
2063
74f5187a
PZ
2064#ifdef CONFIG_NO_HZ
2065/*
5167e8d5
PZ
2066 * Handle NO_HZ for the global load-average.
2067 *
2068 * Since the above described distributed algorithm to compute the global
2069 * load-average relies on per-cpu sampling from the tick, it is affected by
2070 * NO_HZ.
2071 *
2072 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2073 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2074 * when we read the global state.
2075 *
2076 * Obviously reality has to ruin such a delightfully simple scheme:
2077 *
2078 * - When we go NO_HZ idle during the window, we can negate our sample
2079 * contribution, causing under-accounting.
2080 *
2081 * We avoid this by keeping two idle-delta counters and flipping them
2082 * when the window starts, thus separating old and new NO_HZ load.
2083 *
2084 * The only trick is the slight shift in index flip for read vs write.
2085 *
2086 * 0s 5s 10s 15s
2087 * +10 +10 +10 +10
2088 * |-|-----------|-|-----------|-|-----------|-|
2089 * r:0 0 1 1 0 0 1 1 0
2090 * w:0 1 1 0 0 1 1 0 0
2091 *
2092 * This ensures we'll fold the old idle contribution in this window while
2093 * accumlating the new one.
2094 *
2095 * - When we wake up from NO_HZ idle during the window, we push up our
2096 * contribution, since we effectively move our sample point to a known
2097 * busy state.
2098 *
2099 * This is solved by pushing the window forward, and thus skipping the
2100 * sample, for this cpu (effectively using the idle-delta for this cpu which
2101 * was in effect at the time the window opened). This also solves the issue
2102 * of having to deal with a cpu having been in NOHZ idle for multiple
2103 * LOAD_FREQ intervals.
74f5187a
PZ
2104 *
2105 * When making the ILB scale, we should try to pull this in as well.
2106 */
5167e8d5
PZ
2107static atomic_long_t calc_load_idle[2];
2108static int calc_load_idx;
74f5187a 2109
5167e8d5 2110static inline int calc_load_write_idx(void)
74f5187a 2111{
5167e8d5
PZ
2112 int idx = calc_load_idx;
2113
2114 /*
2115 * See calc_global_nohz(), if we observe the new index, we also
2116 * need to observe the new update time.
2117 */
2118 smp_rmb();
2119
2120 /*
2121 * If the folding window started, make sure we start writing in the
2122 * next idle-delta.
2123 */
2124 if (!time_before(jiffies, calc_load_update))
2125 idx++;
2126
2127 return idx & 1;
2128}
2129
2130static inline int calc_load_read_idx(void)
2131{
2132 return calc_load_idx & 1;
2133}
2134
2135void calc_load_enter_idle(void)
2136{
2137 struct rq *this_rq = this_rq();
74f5187a
PZ
2138 long delta;
2139
5167e8d5
PZ
2140 /*
2141 * We're going into NOHZ mode, if there's any pending delta, fold it
2142 * into the pending idle delta.
2143 */
74f5187a 2144 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2145 if (delta) {
2146 int idx = calc_load_write_idx();
2147 atomic_long_add(delta, &calc_load_idle[idx]);
2148 }
74f5187a
PZ
2149}
2150
5167e8d5 2151void calc_load_exit_idle(void)
74f5187a 2152{
5167e8d5
PZ
2153 struct rq *this_rq = this_rq();
2154
2155 /*
2156 * If we're still before the sample window, we're done.
2157 */
2158 if (time_before(jiffies, this_rq->calc_load_update))
2159 return;
74f5187a
PZ
2160
2161 /*
5167e8d5
PZ
2162 * We woke inside or after the sample window, this means we're already
2163 * accounted through the nohz accounting, so skip the entire deal and
2164 * sync up for the next window.
74f5187a 2165 */
5167e8d5
PZ
2166 this_rq->calc_load_update = calc_load_update;
2167 if (time_before(jiffies, this_rq->calc_load_update + 10))
2168 this_rq->calc_load_update += LOAD_FREQ;
2169}
2170
2171static long calc_load_fold_idle(void)
2172{
2173 int idx = calc_load_read_idx();
2174 long delta = 0;
2175
2176 if (atomic_long_read(&calc_load_idle[idx]))
2177 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2178
2179 return delta;
2180}
0f004f5a
PZ
2181
2182/**
2183 * fixed_power_int - compute: x^n, in O(log n) time
2184 *
2185 * @x: base of the power
2186 * @frac_bits: fractional bits of @x
2187 * @n: power to raise @x to.
2188 *
2189 * By exploiting the relation between the definition of the natural power
2190 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2191 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2192 * (where: n_i \elem {0, 1}, the binary vector representing n),
2193 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2194 * of course trivially computable in O(log_2 n), the length of our binary
2195 * vector.
2196 */
2197static unsigned long
2198fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2199{
2200 unsigned long result = 1UL << frac_bits;
2201
2202 if (n) for (;;) {
2203 if (n & 1) {
2204 result *= x;
2205 result += 1UL << (frac_bits - 1);
2206 result >>= frac_bits;
2207 }
2208 n >>= 1;
2209 if (!n)
2210 break;
2211 x *= x;
2212 x += 1UL << (frac_bits - 1);
2213 x >>= frac_bits;
2214 }
2215
2216 return result;
2217}
2218
2219/*
2220 * a1 = a0 * e + a * (1 - e)
2221 *
2222 * a2 = a1 * e + a * (1 - e)
2223 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2224 * = a0 * e^2 + a * (1 - e) * (1 + e)
2225 *
2226 * a3 = a2 * e + a * (1 - e)
2227 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2228 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2229 *
2230 * ...
2231 *
2232 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2233 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2234 * = a0 * e^n + a * (1 - e^n)
2235 *
2236 * [1] application of the geometric series:
2237 *
2238 * n 1 - x^(n+1)
2239 * S_n := \Sum x^i = -------------
2240 * i=0 1 - x
2241 */
2242static unsigned long
2243calc_load_n(unsigned long load, unsigned long exp,
2244 unsigned long active, unsigned int n)
2245{
2246
2247 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2248}
2249
2250/*
2251 * NO_HZ can leave us missing all per-cpu ticks calling
2252 * calc_load_account_active(), but since an idle CPU folds its delta into
2253 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2254 * in the pending idle delta if our idle period crossed a load cycle boundary.
2255 *
2256 * Once we've updated the global active value, we need to apply the exponential
2257 * weights adjusted to the number of cycles missed.
2258 */
c308b56b 2259static void calc_global_nohz(void)
0f004f5a
PZ
2260{
2261 long delta, active, n;
2262
5167e8d5
PZ
2263 if (!time_before(jiffies, calc_load_update + 10)) {
2264 /*
2265 * Catch-up, fold however many we are behind still
2266 */
2267 delta = jiffies - calc_load_update - 10;
2268 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2269
5167e8d5
PZ
2270 active = atomic_long_read(&calc_load_tasks);
2271 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2272
5167e8d5
PZ
2273 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2274 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2275 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2276
5167e8d5
PZ
2277 calc_load_update += n * LOAD_FREQ;
2278 }
74f5187a 2279
5167e8d5
PZ
2280 /*
2281 * Flip the idle index...
2282 *
2283 * Make sure we first write the new time then flip the index, so that
2284 * calc_load_write_idx() will see the new time when it reads the new
2285 * index, this avoids a double flip messing things up.
2286 */
2287 smp_wmb();
2288 calc_load_idx++;
74f5187a 2289}
5167e8d5 2290#else /* !CONFIG_NO_HZ */
0f004f5a 2291
5167e8d5
PZ
2292static inline long calc_load_fold_idle(void) { return 0; }
2293static inline void calc_global_nohz(void) { }
74f5187a 2294
5167e8d5 2295#endif /* CONFIG_NO_HZ */
46cb4b7c 2296
46cb4b7c 2297/*
dce48a84
TG
2298 * calc_load - update the avenrun load estimates 10 ticks after the
2299 * CPUs have updated calc_load_tasks.
7835b98b 2300 */
0f004f5a 2301void calc_global_load(unsigned long ticks)
7835b98b 2302{
5167e8d5 2303 long active, delta;
1da177e4 2304
0f004f5a 2305 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2306 return;
1da177e4 2307
5167e8d5
PZ
2308 /*
2309 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2310 */
2311 delta = calc_load_fold_idle();
2312 if (delta)
2313 atomic_long_add(delta, &calc_load_tasks);
2314
dce48a84
TG
2315 active = atomic_long_read(&calc_load_tasks);
2316 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2317
dce48a84
TG
2318 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2319 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2320 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2321
dce48a84 2322 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2323
2324 /*
5167e8d5 2325 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2326 */
2327 calc_global_nohz();
dce48a84 2328}
1da177e4 2329
dce48a84 2330/*
74f5187a
PZ
2331 * Called from update_cpu_load() to periodically update this CPU's
2332 * active count.
dce48a84
TG
2333 */
2334static void calc_load_account_active(struct rq *this_rq)
2335{
74f5187a 2336 long delta;
08c183f3 2337
74f5187a
PZ
2338 if (time_before(jiffies, this_rq->calc_load_update))
2339 return;
783609c6 2340
74f5187a 2341 delta = calc_load_fold_active(this_rq);
74f5187a 2342 if (delta)
dce48a84 2343 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2344
2345 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2346}
2347
5167e8d5
PZ
2348/*
2349 * End of global load-average stuff
2350 */
2351
fdf3e95d
VP
2352/*
2353 * The exact cpuload at various idx values, calculated at every tick would be
2354 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2355 *
2356 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2357 * on nth tick when cpu may be busy, then we have:
2358 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2359 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2360 *
2361 * decay_load_missed() below does efficient calculation of
2362 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2363 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2364 *
2365 * The calculation is approximated on a 128 point scale.
2366 * degrade_zero_ticks is the number of ticks after which load at any
2367 * particular idx is approximated to be zero.
2368 * degrade_factor is a precomputed table, a row for each load idx.
2369 * Each column corresponds to degradation factor for a power of two ticks,
2370 * based on 128 point scale.
2371 * Example:
2372 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2373 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2374 *
2375 * With this power of 2 load factors, we can degrade the load n times
2376 * by looking at 1 bits in n and doing as many mult/shift instead of
2377 * n mult/shifts needed by the exact degradation.
2378 */
2379#define DEGRADE_SHIFT 7
2380static const unsigned char
2381 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2382static const unsigned char
2383 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2384 {0, 0, 0, 0, 0, 0, 0, 0},
2385 {64, 32, 8, 0, 0, 0, 0, 0},
2386 {96, 72, 40, 12, 1, 0, 0},
2387 {112, 98, 75, 43, 15, 1, 0},
2388 {120, 112, 98, 76, 45, 16, 2} };
2389
2390/*
2391 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2392 * would be when CPU is idle and so we just decay the old load without
2393 * adding any new load.
2394 */
2395static unsigned long
2396decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2397{
2398 int j = 0;
2399
2400 if (!missed_updates)
2401 return load;
2402
2403 if (missed_updates >= degrade_zero_ticks[idx])
2404 return 0;
2405
2406 if (idx == 1)
2407 return load >> missed_updates;
2408
2409 while (missed_updates) {
2410 if (missed_updates % 2)
2411 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2412
2413 missed_updates >>= 1;
2414 j++;
2415 }
2416 return load;
2417}
2418
46cb4b7c 2419/*
dd41f596 2420 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2421 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2422 * every tick. We fix it up based on jiffies.
46cb4b7c 2423 */
556061b0
PZ
2424static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2425 unsigned long pending_updates)
46cb4b7c 2426{
dd41f596 2427 int i, scale;
46cb4b7c 2428
dd41f596 2429 this_rq->nr_load_updates++;
46cb4b7c 2430
dd41f596 2431 /* Update our load: */
fdf3e95d
VP
2432 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2433 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2434 unsigned long old_load, new_load;
7d1e6a9b 2435
dd41f596 2436 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2437
dd41f596 2438 old_load = this_rq->cpu_load[i];
fdf3e95d 2439 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2440 new_load = this_load;
a25707f3
IM
2441 /*
2442 * Round up the averaging division if load is increasing. This
2443 * prevents us from getting stuck on 9 if the load is 10, for
2444 * example.
2445 */
2446 if (new_load > old_load)
fdf3e95d
VP
2447 new_load += scale - 1;
2448
2449 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2450 }
da2b71ed
SS
2451
2452 sched_avg_update(this_rq);
fdf3e95d
VP
2453}
2454
5aaa0b7a
PZ
2455#ifdef CONFIG_NO_HZ
2456/*
2457 * There is no sane way to deal with nohz on smp when using jiffies because the
2458 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2459 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2460 *
2461 * Therefore we cannot use the delta approach from the regular tick since that
2462 * would seriously skew the load calculation. However we'll make do for those
2463 * updates happening while idle (nohz_idle_balance) or coming out of idle
2464 * (tick_nohz_idle_exit).
2465 *
2466 * This means we might still be one tick off for nohz periods.
2467 */
2468
556061b0
PZ
2469/*
2470 * Called from nohz_idle_balance() to update the load ratings before doing the
2471 * idle balance.
2472 */
2473void update_idle_cpu_load(struct rq *this_rq)
2474{
5aaa0b7a 2475 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2476 unsigned long load = this_rq->load.weight;
2477 unsigned long pending_updates;
2478
2479 /*
5aaa0b7a 2480 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2481 */
2482 if (load || curr_jiffies == this_rq->last_load_update_tick)
2483 return;
2484
2485 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2486 this_rq->last_load_update_tick = curr_jiffies;
2487
2488 __update_cpu_load(this_rq, load, pending_updates);
2489}
2490
5aaa0b7a
PZ
2491/*
2492 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2493 */
2494void update_cpu_load_nohz(void)
2495{
2496 struct rq *this_rq = this_rq();
2497 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2498 unsigned long pending_updates;
2499
2500 if (curr_jiffies == this_rq->last_load_update_tick)
2501 return;
2502
2503 raw_spin_lock(&this_rq->lock);
2504 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2505 if (pending_updates) {
2506 this_rq->last_load_update_tick = curr_jiffies;
2507 /*
2508 * We were idle, this means load 0, the current load might be
2509 * !0 due to remote wakeups and the sort.
2510 */
2511 __update_cpu_load(this_rq, 0, pending_updates);
2512 }
2513 raw_spin_unlock(&this_rq->lock);
2514}
2515#endif /* CONFIG_NO_HZ */
2516
556061b0
PZ
2517/*
2518 * Called from scheduler_tick()
2519 */
fdf3e95d
VP
2520static void update_cpu_load_active(struct rq *this_rq)
2521{
556061b0 2522 /*
5aaa0b7a 2523 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2524 */
2525 this_rq->last_load_update_tick = jiffies;
2526 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2527
74f5187a 2528 calc_load_account_active(this_rq);
46cb4b7c
SS
2529}
2530
dd41f596 2531#ifdef CONFIG_SMP
8a0be9ef 2532
46cb4b7c 2533/*
38022906
PZ
2534 * sched_exec - execve() is a valuable balancing opportunity, because at
2535 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2536 */
38022906 2537void sched_exec(void)
46cb4b7c 2538{
38022906 2539 struct task_struct *p = current;
1da177e4 2540 unsigned long flags;
0017d735 2541 int dest_cpu;
46cb4b7c 2542
8f42ced9 2543 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2544 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2545 if (dest_cpu == smp_processor_id())
2546 goto unlock;
38022906 2547
8f42ced9 2548 if (likely(cpu_active(dest_cpu))) {
969c7921 2549 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2550
8f42ced9
PZ
2551 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2552 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2553 return;
2554 }
0017d735 2555unlock:
8f42ced9 2556 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2557}
dd41f596 2558
1da177e4
LT
2559#endif
2560
1da177e4 2561DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2562DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2563
2564EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2565EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2566
2567/*
c5f8d995 2568 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2569 * @p in case that task is currently running.
c5f8d995
HS
2570 *
2571 * Called with task_rq_lock() held on @rq.
1da177e4 2572 */
c5f8d995
HS
2573static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2574{
2575 u64 ns = 0;
2576
2577 if (task_current(rq, p)) {
2578 update_rq_clock(rq);
305e6835 2579 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2580 if ((s64)ns < 0)
2581 ns = 0;
2582 }
2583
2584 return ns;
2585}
2586
bb34d92f 2587unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2588{
1da177e4 2589 unsigned long flags;
41b86e9c 2590 struct rq *rq;
bb34d92f 2591 u64 ns = 0;
48f24c4d 2592
41b86e9c 2593 rq = task_rq_lock(p, &flags);
c5f8d995 2594 ns = do_task_delta_exec(p, rq);
0122ec5b 2595 task_rq_unlock(rq, p, &flags);
1508487e 2596
c5f8d995
HS
2597 return ns;
2598}
f06febc9 2599
c5f8d995
HS
2600/*
2601 * Return accounted runtime for the task.
2602 * In case the task is currently running, return the runtime plus current's
2603 * pending runtime that have not been accounted yet.
2604 */
2605unsigned long long task_sched_runtime(struct task_struct *p)
2606{
2607 unsigned long flags;
2608 struct rq *rq;
2609 u64 ns = 0;
2610
2611 rq = task_rq_lock(p, &flags);
2612 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2613 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2614
2615 return ns;
2616}
48f24c4d 2617
7835b98b
CL
2618/*
2619 * This function gets called by the timer code, with HZ frequency.
2620 * We call it with interrupts disabled.
7835b98b
CL
2621 */
2622void scheduler_tick(void)
2623{
7835b98b
CL
2624 int cpu = smp_processor_id();
2625 struct rq *rq = cpu_rq(cpu);
dd41f596 2626 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2627
2628 sched_clock_tick();
dd41f596 2629
05fa785c 2630 raw_spin_lock(&rq->lock);
3e51f33f 2631 update_rq_clock(rq);
fdf3e95d 2632 update_cpu_load_active(rq);
fa85ae24 2633 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2634 raw_spin_unlock(&rq->lock);
7835b98b 2635
e9d2b064 2636 perf_event_task_tick();
e220d2dc 2637
e418e1c2 2638#ifdef CONFIG_SMP
6eb57e0d 2639 rq->idle_balance = idle_cpu(cpu);
dd41f596 2640 trigger_load_balance(rq, cpu);
e418e1c2 2641#endif
1da177e4
LT
2642}
2643
132380a0 2644notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2645{
2646 if (in_lock_functions(addr)) {
2647 addr = CALLER_ADDR2;
2648 if (in_lock_functions(addr))
2649 addr = CALLER_ADDR3;
2650 }
2651 return addr;
2652}
1da177e4 2653
7e49fcce
SR
2654#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2655 defined(CONFIG_PREEMPT_TRACER))
2656
43627582 2657void __kprobes add_preempt_count(int val)
1da177e4 2658{
6cd8a4bb 2659#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2660 /*
2661 * Underflow?
2662 */
9a11b49a
IM
2663 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2664 return;
6cd8a4bb 2665#endif
1da177e4 2666 preempt_count() += val;
6cd8a4bb 2667#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2668 /*
2669 * Spinlock count overflowing soon?
2670 */
33859f7f
MOS
2671 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2672 PREEMPT_MASK - 10);
6cd8a4bb
SR
2673#endif
2674 if (preempt_count() == val)
2675 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2676}
2677EXPORT_SYMBOL(add_preempt_count);
2678
43627582 2679void __kprobes sub_preempt_count(int val)
1da177e4 2680{
6cd8a4bb 2681#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2682 /*
2683 * Underflow?
2684 */
01e3eb82 2685 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2686 return;
1da177e4
LT
2687 /*
2688 * Is the spinlock portion underflowing?
2689 */
9a11b49a
IM
2690 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2691 !(preempt_count() & PREEMPT_MASK)))
2692 return;
6cd8a4bb 2693#endif
9a11b49a 2694
6cd8a4bb
SR
2695 if (preempt_count() == val)
2696 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2697 preempt_count() -= val;
2698}
2699EXPORT_SYMBOL(sub_preempt_count);
2700
2701#endif
2702
2703/*
dd41f596 2704 * Print scheduling while atomic bug:
1da177e4 2705 */
dd41f596 2706static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2707{
664dfa65
DJ
2708 if (oops_in_progress)
2709 return;
2710
3df0fc5b
PZ
2711 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2712 prev->comm, prev->pid, preempt_count());
838225b4 2713
dd41f596 2714 debug_show_held_locks(prev);
e21f5b15 2715 print_modules();
dd41f596
IM
2716 if (irqs_disabled())
2717 print_irqtrace_events(prev);
6135fc1e 2718 dump_stack();
1c2927f1 2719 add_taint(TAINT_WARN);
dd41f596 2720}
1da177e4 2721
dd41f596
IM
2722/*
2723 * Various schedule()-time debugging checks and statistics:
2724 */
2725static inline void schedule_debug(struct task_struct *prev)
2726{
1da177e4 2727 /*
41a2d6cf 2728 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2729 * schedule() atomically, we ignore that path for now.
2730 * Otherwise, whine if we are scheduling when we should not be.
2731 */
3f33a7ce 2732 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2733 __schedule_bug(prev);
b3fbab05 2734 rcu_sleep_check();
dd41f596 2735
1da177e4
LT
2736 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2737
2d72376b 2738 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2739}
2740
6cecd084 2741static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2742{
61eadef6 2743 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2744 update_rq_clock(rq);
6cecd084 2745 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2746}
2747
dd41f596
IM
2748/*
2749 * Pick up the highest-prio task:
2750 */
2751static inline struct task_struct *
b67802ea 2752pick_next_task(struct rq *rq)
dd41f596 2753{
5522d5d5 2754 const struct sched_class *class;
dd41f596 2755 struct task_struct *p;
1da177e4
LT
2756
2757 /*
dd41f596
IM
2758 * Optimization: we know that if all tasks are in
2759 * the fair class we can call that function directly:
1da177e4 2760 */
953bfcd1 2761 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2762 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2763 if (likely(p))
2764 return p;
1da177e4
LT
2765 }
2766
34f971f6 2767 for_each_class(class) {
fb8d4724 2768 p = class->pick_next_task(rq);
dd41f596
IM
2769 if (p)
2770 return p;
dd41f596 2771 }
34f971f6
PZ
2772
2773 BUG(); /* the idle class will always have a runnable task */
dd41f596 2774}
1da177e4 2775
dd41f596 2776/*
c259e01a 2777 * __schedule() is the main scheduler function.
edde96ea
PE
2778 *
2779 * The main means of driving the scheduler and thus entering this function are:
2780 *
2781 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2782 *
2783 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2784 * paths. For example, see arch/x86/entry_64.S.
2785 *
2786 * To drive preemption between tasks, the scheduler sets the flag in timer
2787 * interrupt handler scheduler_tick().
2788 *
2789 * 3. Wakeups don't really cause entry into schedule(). They add a
2790 * task to the run-queue and that's it.
2791 *
2792 * Now, if the new task added to the run-queue preempts the current
2793 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2794 * called on the nearest possible occasion:
2795 *
2796 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2797 *
2798 * - in syscall or exception context, at the next outmost
2799 * preempt_enable(). (this might be as soon as the wake_up()'s
2800 * spin_unlock()!)
2801 *
2802 * - in IRQ context, return from interrupt-handler to
2803 * preemptible context
2804 *
2805 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2806 * then at the next:
2807 *
2808 * - cond_resched() call
2809 * - explicit schedule() call
2810 * - return from syscall or exception to user-space
2811 * - return from interrupt-handler to user-space
dd41f596 2812 */
c259e01a 2813static void __sched __schedule(void)
dd41f596
IM
2814{
2815 struct task_struct *prev, *next;
67ca7bde 2816 unsigned long *switch_count;
dd41f596 2817 struct rq *rq;
31656519 2818 int cpu;
dd41f596 2819
ff743345
PZ
2820need_resched:
2821 preempt_disable();
dd41f596
IM
2822 cpu = smp_processor_id();
2823 rq = cpu_rq(cpu);
25502a6c 2824 rcu_note_context_switch(cpu);
dd41f596 2825 prev = rq->curr;
dd41f596 2826
dd41f596 2827 schedule_debug(prev);
1da177e4 2828
31656519 2829 if (sched_feat(HRTICK))
f333fdc9 2830 hrtick_clear(rq);
8f4d37ec 2831
05fa785c 2832 raw_spin_lock_irq(&rq->lock);
1da177e4 2833
246d86b5 2834 switch_count = &prev->nivcsw;
1da177e4 2835 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2836 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2837 prev->state = TASK_RUNNING;
21aa9af0 2838 } else {
2acca55e
PZ
2839 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2840 prev->on_rq = 0;
2841
21aa9af0 2842 /*
2acca55e
PZ
2843 * If a worker went to sleep, notify and ask workqueue
2844 * whether it wants to wake up a task to maintain
2845 * concurrency.
21aa9af0
TH
2846 */
2847 if (prev->flags & PF_WQ_WORKER) {
2848 struct task_struct *to_wakeup;
2849
2850 to_wakeup = wq_worker_sleeping(prev, cpu);
2851 if (to_wakeup)
2852 try_to_wake_up_local(to_wakeup);
2853 }
21aa9af0 2854 }
dd41f596 2855 switch_count = &prev->nvcsw;
1da177e4
LT
2856 }
2857
3f029d3c 2858 pre_schedule(rq, prev);
f65eda4f 2859
dd41f596 2860 if (unlikely(!rq->nr_running))
1da177e4 2861 idle_balance(cpu, rq);
1da177e4 2862
df1c99d4 2863 put_prev_task(rq, prev);
b67802ea 2864 next = pick_next_task(rq);
f26f9aff
MG
2865 clear_tsk_need_resched(prev);
2866 rq->skip_clock_update = 0;
1da177e4 2867
1da177e4 2868 if (likely(prev != next)) {
1da177e4
LT
2869 rq->nr_switches++;
2870 rq->curr = next;
2871 ++*switch_count;
2872
dd41f596 2873 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2874 /*
246d86b5
ON
2875 * The context switch have flipped the stack from under us
2876 * and restored the local variables which were saved when
2877 * this task called schedule() in the past. prev == current
2878 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2879 */
2880 cpu = smp_processor_id();
2881 rq = cpu_rq(cpu);
1da177e4 2882 } else
05fa785c 2883 raw_spin_unlock_irq(&rq->lock);
1da177e4 2884
3f029d3c 2885 post_schedule(rq);
1da177e4 2886
ba74c144 2887 sched_preempt_enable_no_resched();
ff743345 2888 if (need_resched())
1da177e4
LT
2889 goto need_resched;
2890}
c259e01a 2891
9c40cef2
TG
2892static inline void sched_submit_work(struct task_struct *tsk)
2893{
3c7d5184 2894 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2895 return;
2896 /*
2897 * If we are going to sleep and we have plugged IO queued,
2898 * make sure to submit it to avoid deadlocks.
2899 */
2900 if (blk_needs_flush_plug(tsk))
2901 blk_schedule_flush_plug(tsk);
2902}
2903
6ebbe7a0 2904asmlinkage void __sched schedule(void)
c259e01a 2905{
9c40cef2
TG
2906 struct task_struct *tsk = current;
2907
2908 sched_submit_work(tsk);
c259e01a
TG
2909 __schedule();
2910}
1da177e4
LT
2911EXPORT_SYMBOL(schedule);
2912
c5491ea7
TG
2913/**
2914 * schedule_preempt_disabled - called with preemption disabled
2915 *
2916 * Returns with preemption disabled. Note: preempt_count must be 1
2917 */
2918void __sched schedule_preempt_disabled(void)
2919{
ba74c144 2920 sched_preempt_enable_no_resched();
c5491ea7
TG
2921 schedule();
2922 preempt_disable();
2923}
2924
c08f7829 2925#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 2926
c6eb3dda
PZ
2927static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2928{
c6eb3dda 2929 if (lock->owner != owner)
307bf980 2930 return false;
0d66bf6d
PZ
2931
2932 /*
c6eb3dda
PZ
2933 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2934 * lock->owner still matches owner, if that fails, owner might
2935 * point to free()d memory, if it still matches, the rcu_read_lock()
2936 * ensures the memory stays valid.
0d66bf6d 2937 */
c6eb3dda 2938 barrier();
0d66bf6d 2939
307bf980 2940 return owner->on_cpu;
c6eb3dda 2941}
0d66bf6d 2942
c6eb3dda
PZ
2943/*
2944 * Look out! "owner" is an entirely speculative pointer
2945 * access and not reliable.
2946 */
2947int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2948{
2949 if (!sched_feat(OWNER_SPIN))
2950 return 0;
0d66bf6d 2951
307bf980 2952 rcu_read_lock();
c6eb3dda
PZ
2953 while (owner_running(lock, owner)) {
2954 if (need_resched())
307bf980 2955 break;
0d66bf6d 2956
335d7afb 2957 arch_mutex_cpu_relax();
0d66bf6d 2958 }
307bf980 2959 rcu_read_unlock();
4b402210 2960
c6eb3dda 2961 /*
307bf980
TG
2962 * We break out the loop above on need_resched() and when the
2963 * owner changed, which is a sign for heavy contention. Return
2964 * success only when lock->owner is NULL.
c6eb3dda 2965 */
307bf980 2966 return lock->owner == NULL;
0d66bf6d
PZ
2967}
2968#endif
2969
1da177e4
LT
2970#ifdef CONFIG_PREEMPT
2971/*
2ed6e34f 2972 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2973 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2974 * occur there and call schedule directly.
2975 */
d1f74e20 2976asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
2977{
2978 struct thread_info *ti = current_thread_info();
6478d880 2979
1da177e4
LT
2980 /*
2981 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2982 * we do not want to preempt the current task. Just return..
1da177e4 2983 */
beed33a8 2984 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
2985 return;
2986
3a5c359a 2987 do {
d1f74e20 2988 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 2989 __schedule();
d1f74e20 2990 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 2991
3a5c359a
AK
2992 /*
2993 * Check again in case we missed a preemption opportunity
2994 * between schedule and now.
2995 */
2996 barrier();
5ed0cec0 2997 } while (need_resched());
1da177e4 2998}
1da177e4
LT
2999EXPORT_SYMBOL(preempt_schedule);
3000
3001/*
2ed6e34f 3002 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3003 * off of irq context.
3004 * Note, that this is called and return with irqs disabled. This will
3005 * protect us against recursive calling from irq.
3006 */
3007asmlinkage void __sched preempt_schedule_irq(void)
3008{
3009 struct thread_info *ti = current_thread_info();
6478d880 3010
2ed6e34f 3011 /* Catch callers which need to be fixed */
1da177e4
LT
3012 BUG_ON(ti->preempt_count || !irqs_disabled());
3013
3a5c359a
AK
3014 do {
3015 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3016 local_irq_enable();
c259e01a 3017 __schedule();
3a5c359a 3018 local_irq_disable();
3a5c359a 3019 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3020
3a5c359a
AK
3021 /*
3022 * Check again in case we missed a preemption opportunity
3023 * between schedule and now.
3024 */
3025 barrier();
5ed0cec0 3026 } while (need_resched());
1da177e4
LT
3027}
3028
3029#endif /* CONFIG_PREEMPT */
3030
63859d4f 3031int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3032 void *key)
1da177e4 3033{
63859d4f 3034 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3035}
1da177e4
LT
3036EXPORT_SYMBOL(default_wake_function);
3037
3038/*
41a2d6cf
IM
3039 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3040 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3041 * number) then we wake all the non-exclusive tasks and one exclusive task.
3042 *
3043 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3044 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3045 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3046 */
78ddb08f 3047static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3048 int nr_exclusive, int wake_flags, void *key)
1da177e4 3049{
2e45874c 3050 wait_queue_t *curr, *next;
1da177e4 3051
2e45874c 3052 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3053 unsigned flags = curr->flags;
3054
63859d4f 3055 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3056 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3057 break;
3058 }
3059}
3060
3061/**
3062 * __wake_up - wake up threads blocked on a waitqueue.
3063 * @q: the waitqueue
3064 * @mode: which threads
3065 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3066 * @key: is directly passed to the wakeup function
50fa610a
DH
3067 *
3068 * It may be assumed that this function implies a write memory barrier before
3069 * changing the task state if and only if any tasks are woken up.
1da177e4 3070 */
7ad5b3a5 3071void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3072 int nr_exclusive, void *key)
1da177e4
LT
3073{
3074 unsigned long flags;
3075
3076 spin_lock_irqsave(&q->lock, flags);
3077 __wake_up_common(q, mode, nr_exclusive, 0, key);
3078 spin_unlock_irqrestore(&q->lock, flags);
3079}
1da177e4
LT
3080EXPORT_SYMBOL(__wake_up);
3081
3082/*
3083 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3084 */
63b20011 3085void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3086{
63b20011 3087 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3088}
22c43c81 3089EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3090
4ede816a
DL
3091void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3092{
3093 __wake_up_common(q, mode, 1, 0, key);
3094}
bf294b41 3095EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3096
1da177e4 3097/**
4ede816a 3098 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3099 * @q: the waitqueue
3100 * @mode: which threads
3101 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3102 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3103 *
3104 * The sync wakeup differs that the waker knows that it will schedule
3105 * away soon, so while the target thread will be woken up, it will not
3106 * be migrated to another CPU - ie. the two threads are 'synchronized'
3107 * with each other. This can prevent needless bouncing between CPUs.
3108 *
3109 * On UP it can prevent extra preemption.
50fa610a
DH
3110 *
3111 * It may be assumed that this function implies a write memory barrier before
3112 * changing the task state if and only if any tasks are woken up.
1da177e4 3113 */
4ede816a
DL
3114void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3115 int nr_exclusive, void *key)
1da177e4
LT
3116{
3117 unsigned long flags;
7d478721 3118 int wake_flags = WF_SYNC;
1da177e4
LT
3119
3120 if (unlikely(!q))
3121 return;
3122
3123 if (unlikely(!nr_exclusive))
7d478721 3124 wake_flags = 0;
1da177e4
LT
3125
3126 spin_lock_irqsave(&q->lock, flags);
7d478721 3127 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3128 spin_unlock_irqrestore(&q->lock, flags);
3129}
4ede816a
DL
3130EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3131
3132/*
3133 * __wake_up_sync - see __wake_up_sync_key()
3134 */
3135void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3136{
3137 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3138}
1da177e4
LT
3139EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3140
65eb3dc6
KD
3141/**
3142 * complete: - signals a single thread waiting on this completion
3143 * @x: holds the state of this particular completion
3144 *
3145 * This will wake up a single thread waiting on this completion. Threads will be
3146 * awakened in the same order in which they were queued.
3147 *
3148 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3149 *
3150 * It may be assumed that this function implies a write memory barrier before
3151 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3152 */
b15136e9 3153void complete(struct completion *x)
1da177e4
LT
3154{
3155 unsigned long flags;
3156
3157 spin_lock_irqsave(&x->wait.lock, flags);
3158 x->done++;
d9514f6c 3159 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3160 spin_unlock_irqrestore(&x->wait.lock, flags);
3161}
3162EXPORT_SYMBOL(complete);
3163
65eb3dc6
KD
3164/**
3165 * complete_all: - signals all threads waiting on this completion
3166 * @x: holds the state of this particular completion
3167 *
3168 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3169 *
3170 * It may be assumed that this function implies a write memory barrier before
3171 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3172 */
b15136e9 3173void complete_all(struct completion *x)
1da177e4
LT
3174{
3175 unsigned long flags;
3176
3177 spin_lock_irqsave(&x->wait.lock, flags);
3178 x->done += UINT_MAX/2;
d9514f6c 3179 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3180 spin_unlock_irqrestore(&x->wait.lock, flags);
3181}
3182EXPORT_SYMBOL(complete_all);
3183
8cbbe86d
AK
3184static inline long __sched
3185do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3186{
1da177e4
LT
3187 if (!x->done) {
3188 DECLARE_WAITQUEUE(wait, current);
3189
a93d2f17 3190 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3191 do {
94d3d824 3192 if (signal_pending_state(state, current)) {
ea71a546
ON
3193 timeout = -ERESTARTSYS;
3194 break;
8cbbe86d
AK
3195 }
3196 __set_current_state(state);
1da177e4
LT
3197 spin_unlock_irq(&x->wait.lock);
3198 timeout = schedule_timeout(timeout);
3199 spin_lock_irq(&x->wait.lock);
ea71a546 3200 } while (!x->done && timeout);
1da177e4 3201 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3202 if (!x->done)
3203 return timeout;
1da177e4
LT
3204 }
3205 x->done--;
ea71a546 3206 return timeout ?: 1;
1da177e4 3207}
1da177e4 3208
8cbbe86d
AK
3209static long __sched
3210wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3211{
1da177e4
LT
3212 might_sleep();
3213
3214 spin_lock_irq(&x->wait.lock);
8cbbe86d 3215 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3216 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3217 return timeout;
3218}
1da177e4 3219
65eb3dc6
KD
3220/**
3221 * wait_for_completion: - waits for completion of a task
3222 * @x: holds the state of this particular completion
3223 *
3224 * This waits to be signaled for completion of a specific task. It is NOT
3225 * interruptible and there is no timeout.
3226 *
3227 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3228 * and interrupt capability. Also see complete().
3229 */
b15136e9 3230void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3231{
3232 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3233}
8cbbe86d 3234EXPORT_SYMBOL(wait_for_completion);
1da177e4 3235
65eb3dc6
KD
3236/**
3237 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3238 * @x: holds the state of this particular completion
3239 * @timeout: timeout value in jiffies
3240 *
3241 * This waits for either a completion of a specific task to be signaled or for a
3242 * specified timeout to expire. The timeout is in jiffies. It is not
3243 * interruptible.
c6dc7f05
BF
3244 *
3245 * The return value is 0 if timed out, and positive (at least 1, or number of
3246 * jiffies left till timeout) if completed.
65eb3dc6 3247 */
b15136e9 3248unsigned long __sched
8cbbe86d 3249wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3250{
8cbbe86d 3251 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3252}
8cbbe86d 3253EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3254
65eb3dc6
KD
3255/**
3256 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3257 * @x: holds the state of this particular completion
3258 *
3259 * This waits for completion of a specific task to be signaled. It is
3260 * interruptible.
c6dc7f05
BF
3261 *
3262 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3263 */
8cbbe86d 3264int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3265{
51e97990
AK
3266 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3267 if (t == -ERESTARTSYS)
3268 return t;
3269 return 0;
0fec171c 3270}
8cbbe86d 3271EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3272
65eb3dc6
KD
3273/**
3274 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3275 * @x: holds the state of this particular completion
3276 * @timeout: timeout value in jiffies
3277 *
3278 * This waits for either a completion of a specific task to be signaled or for a
3279 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3280 *
3281 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3282 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3283 */
6bf41237 3284long __sched
8cbbe86d
AK
3285wait_for_completion_interruptible_timeout(struct completion *x,
3286 unsigned long timeout)
0fec171c 3287{
8cbbe86d 3288 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3289}
8cbbe86d 3290EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3291
65eb3dc6
KD
3292/**
3293 * wait_for_completion_killable: - waits for completion of a task (killable)
3294 * @x: holds the state of this particular completion
3295 *
3296 * This waits to be signaled for completion of a specific task. It can be
3297 * interrupted by a kill signal.
c6dc7f05
BF
3298 *
3299 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3300 */
009e577e
MW
3301int __sched wait_for_completion_killable(struct completion *x)
3302{
3303 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3304 if (t == -ERESTARTSYS)
3305 return t;
3306 return 0;
3307}
3308EXPORT_SYMBOL(wait_for_completion_killable);
3309
0aa12fb4
SW
3310/**
3311 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3312 * @x: holds the state of this particular completion
3313 * @timeout: timeout value in jiffies
3314 *
3315 * This waits for either a completion of a specific task to be
3316 * signaled or for a specified timeout to expire. It can be
3317 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3318 *
3319 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3320 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3321 */
6bf41237 3322long __sched
0aa12fb4
SW
3323wait_for_completion_killable_timeout(struct completion *x,
3324 unsigned long timeout)
3325{
3326 return wait_for_common(x, timeout, TASK_KILLABLE);
3327}
3328EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3329
be4de352
DC
3330/**
3331 * try_wait_for_completion - try to decrement a completion without blocking
3332 * @x: completion structure
3333 *
3334 * Returns: 0 if a decrement cannot be done without blocking
3335 * 1 if a decrement succeeded.
3336 *
3337 * If a completion is being used as a counting completion,
3338 * attempt to decrement the counter without blocking. This
3339 * enables us to avoid waiting if the resource the completion
3340 * is protecting is not available.
3341 */
3342bool try_wait_for_completion(struct completion *x)
3343{
7539a3b3 3344 unsigned long flags;
be4de352
DC
3345 int ret = 1;
3346
7539a3b3 3347 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3348 if (!x->done)
3349 ret = 0;
3350 else
3351 x->done--;
7539a3b3 3352 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3353 return ret;
3354}
3355EXPORT_SYMBOL(try_wait_for_completion);
3356
3357/**
3358 * completion_done - Test to see if a completion has any waiters
3359 * @x: completion structure
3360 *
3361 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3362 * 1 if there are no waiters.
3363 *
3364 */
3365bool completion_done(struct completion *x)
3366{
7539a3b3 3367 unsigned long flags;
be4de352
DC
3368 int ret = 1;
3369
7539a3b3 3370 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3371 if (!x->done)
3372 ret = 0;
7539a3b3 3373 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3374 return ret;
3375}
3376EXPORT_SYMBOL(completion_done);
3377
8cbbe86d
AK
3378static long __sched
3379sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3380{
0fec171c
IM
3381 unsigned long flags;
3382 wait_queue_t wait;
3383
3384 init_waitqueue_entry(&wait, current);
1da177e4 3385
8cbbe86d 3386 __set_current_state(state);
1da177e4 3387
8cbbe86d
AK
3388 spin_lock_irqsave(&q->lock, flags);
3389 __add_wait_queue(q, &wait);
3390 spin_unlock(&q->lock);
3391 timeout = schedule_timeout(timeout);
3392 spin_lock_irq(&q->lock);
3393 __remove_wait_queue(q, &wait);
3394 spin_unlock_irqrestore(&q->lock, flags);
3395
3396 return timeout;
3397}
3398
3399void __sched interruptible_sleep_on(wait_queue_head_t *q)
3400{
3401 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3402}
1da177e4
LT
3403EXPORT_SYMBOL(interruptible_sleep_on);
3404
0fec171c 3405long __sched
95cdf3b7 3406interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3407{
8cbbe86d 3408 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3409}
1da177e4
LT
3410EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3411
0fec171c 3412void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3413{
8cbbe86d 3414 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3415}
1da177e4
LT
3416EXPORT_SYMBOL(sleep_on);
3417
0fec171c 3418long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3419{
8cbbe86d 3420 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3421}
1da177e4
LT
3422EXPORT_SYMBOL(sleep_on_timeout);
3423
b29739f9
IM
3424#ifdef CONFIG_RT_MUTEXES
3425
3426/*
3427 * rt_mutex_setprio - set the current priority of a task
3428 * @p: task
3429 * @prio: prio value (kernel-internal form)
3430 *
3431 * This function changes the 'effective' priority of a task. It does
3432 * not touch ->normal_prio like __setscheduler().
3433 *
3434 * Used by the rt_mutex code to implement priority inheritance logic.
3435 */
36c8b586 3436void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3437{
83b699ed 3438 int oldprio, on_rq, running;
70b97a7f 3439 struct rq *rq;
83ab0aa0 3440 const struct sched_class *prev_class;
b29739f9
IM
3441
3442 BUG_ON(prio < 0 || prio > MAX_PRIO);
3443
0122ec5b 3444 rq = __task_rq_lock(p);
b29739f9 3445
1c4dd99b
TG
3446 /*
3447 * Idle task boosting is a nono in general. There is one
3448 * exception, when PREEMPT_RT and NOHZ is active:
3449 *
3450 * The idle task calls get_next_timer_interrupt() and holds
3451 * the timer wheel base->lock on the CPU and another CPU wants
3452 * to access the timer (probably to cancel it). We can safely
3453 * ignore the boosting request, as the idle CPU runs this code
3454 * with interrupts disabled and will complete the lock
3455 * protected section without being interrupted. So there is no
3456 * real need to boost.
3457 */
3458 if (unlikely(p == rq->idle)) {
3459 WARN_ON(p != rq->curr);
3460 WARN_ON(p->pi_blocked_on);
3461 goto out_unlock;
3462 }
3463
a8027073 3464 trace_sched_pi_setprio(p, prio);
d5f9f942 3465 oldprio = p->prio;
83ab0aa0 3466 prev_class = p->sched_class;
fd2f4419 3467 on_rq = p->on_rq;
051a1d1a 3468 running = task_current(rq, p);
0e1f3483 3469 if (on_rq)
69be72c1 3470 dequeue_task(rq, p, 0);
0e1f3483
HS
3471 if (running)
3472 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3473
3474 if (rt_prio(prio))
3475 p->sched_class = &rt_sched_class;
3476 else
3477 p->sched_class = &fair_sched_class;
3478
b29739f9
IM
3479 p->prio = prio;
3480
0e1f3483
HS
3481 if (running)
3482 p->sched_class->set_curr_task(rq);
da7a735e 3483 if (on_rq)
371fd7e7 3484 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3485
da7a735e 3486 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3487out_unlock:
0122ec5b 3488 __task_rq_unlock(rq);
b29739f9 3489}
b29739f9 3490#endif
36c8b586 3491void set_user_nice(struct task_struct *p, long nice)
1da177e4 3492{
dd41f596 3493 int old_prio, delta, on_rq;
1da177e4 3494 unsigned long flags;
70b97a7f 3495 struct rq *rq;
1da177e4
LT
3496
3497 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3498 return;
3499 /*
3500 * We have to be careful, if called from sys_setpriority(),
3501 * the task might be in the middle of scheduling on another CPU.
3502 */
3503 rq = task_rq_lock(p, &flags);
3504 /*
3505 * The RT priorities are set via sched_setscheduler(), but we still
3506 * allow the 'normal' nice value to be set - but as expected
3507 * it wont have any effect on scheduling until the task is
dd41f596 3508 * SCHED_FIFO/SCHED_RR:
1da177e4 3509 */
e05606d3 3510 if (task_has_rt_policy(p)) {
1da177e4
LT
3511 p->static_prio = NICE_TO_PRIO(nice);
3512 goto out_unlock;
3513 }
fd2f4419 3514 on_rq = p->on_rq;
c09595f6 3515 if (on_rq)
69be72c1 3516 dequeue_task(rq, p, 0);
1da177e4 3517
1da177e4 3518 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3519 set_load_weight(p);
b29739f9
IM
3520 old_prio = p->prio;
3521 p->prio = effective_prio(p);
3522 delta = p->prio - old_prio;
1da177e4 3523
dd41f596 3524 if (on_rq) {
371fd7e7 3525 enqueue_task(rq, p, 0);
1da177e4 3526 /*
d5f9f942
AM
3527 * If the task increased its priority or is running and
3528 * lowered its priority, then reschedule its CPU:
1da177e4 3529 */
d5f9f942 3530 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3531 resched_task(rq->curr);
3532 }
3533out_unlock:
0122ec5b 3534 task_rq_unlock(rq, p, &flags);
1da177e4 3535}
1da177e4
LT
3536EXPORT_SYMBOL(set_user_nice);
3537
e43379f1
MM
3538/*
3539 * can_nice - check if a task can reduce its nice value
3540 * @p: task
3541 * @nice: nice value
3542 */
36c8b586 3543int can_nice(const struct task_struct *p, const int nice)
e43379f1 3544{
024f4747
MM
3545 /* convert nice value [19,-20] to rlimit style value [1,40] */
3546 int nice_rlim = 20 - nice;
48f24c4d 3547
78d7d407 3548 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3549 capable(CAP_SYS_NICE));
3550}
3551
1da177e4
LT
3552#ifdef __ARCH_WANT_SYS_NICE
3553
3554/*
3555 * sys_nice - change the priority of the current process.
3556 * @increment: priority increment
3557 *
3558 * sys_setpriority is a more generic, but much slower function that
3559 * does similar things.
3560 */
5add95d4 3561SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3562{
48f24c4d 3563 long nice, retval;
1da177e4
LT
3564
3565 /*
3566 * Setpriority might change our priority at the same moment.
3567 * We don't have to worry. Conceptually one call occurs first
3568 * and we have a single winner.
3569 */
e43379f1
MM
3570 if (increment < -40)
3571 increment = -40;
1da177e4
LT
3572 if (increment > 40)
3573 increment = 40;
3574
2b8f836f 3575 nice = TASK_NICE(current) + increment;
1da177e4
LT
3576 if (nice < -20)
3577 nice = -20;
3578 if (nice > 19)
3579 nice = 19;
3580
e43379f1
MM
3581 if (increment < 0 && !can_nice(current, nice))
3582 return -EPERM;
3583
1da177e4
LT
3584 retval = security_task_setnice(current, nice);
3585 if (retval)
3586 return retval;
3587
3588 set_user_nice(current, nice);
3589 return 0;
3590}
3591
3592#endif
3593
3594/**
3595 * task_prio - return the priority value of a given task.
3596 * @p: the task in question.
3597 *
3598 * This is the priority value as seen by users in /proc.
3599 * RT tasks are offset by -200. Normal tasks are centered
3600 * around 0, value goes from -16 to +15.
3601 */
36c8b586 3602int task_prio(const struct task_struct *p)
1da177e4
LT
3603{
3604 return p->prio - MAX_RT_PRIO;
3605}
3606
3607/**
3608 * task_nice - return the nice value of a given task.
3609 * @p: the task in question.
3610 */
36c8b586 3611int task_nice(const struct task_struct *p)
1da177e4
LT
3612{
3613 return TASK_NICE(p);
3614}
150d8bed 3615EXPORT_SYMBOL(task_nice);
1da177e4
LT
3616
3617/**
3618 * idle_cpu - is a given cpu idle currently?
3619 * @cpu: the processor in question.
3620 */
3621int idle_cpu(int cpu)
3622{
908a3283
TG
3623 struct rq *rq = cpu_rq(cpu);
3624
3625 if (rq->curr != rq->idle)
3626 return 0;
3627
3628 if (rq->nr_running)
3629 return 0;
3630
3631#ifdef CONFIG_SMP
3632 if (!llist_empty(&rq->wake_list))
3633 return 0;
3634#endif
3635
3636 return 1;
1da177e4
LT
3637}
3638
1da177e4
LT
3639/**
3640 * idle_task - return the idle task for a given cpu.
3641 * @cpu: the processor in question.
3642 */
36c8b586 3643struct task_struct *idle_task(int cpu)
1da177e4
LT
3644{
3645 return cpu_rq(cpu)->idle;
3646}
3647
3648/**
3649 * find_process_by_pid - find a process with a matching PID value.
3650 * @pid: the pid in question.
3651 */
a9957449 3652static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3653{
228ebcbe 3654 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3655}
3656
3657/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3658static void
3659__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3660{
1da177e4
LT
3661 p->policy = policy;
3662 p->rt_priority = prio;
b29739f9
IM
3663 p->normal_prio = normal_prio(p);
3664 /* we are holding p->pi_lock already */
3665 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3666 if (rt_prio(p->prio))
3667 p->sched_class = &rt_sched_class;
3668 else
3669 p->sched_class = &fair_sched_class;
2dd73a4f 3670 set_load_weight(p);
1da177e4
LT
3671}
3672
c69e8d9c
DH
3673/*
3674 * check the target process has a UID that matches the current process's
3675 */
3676static bool check_same_owner(struct task_struct *p)
3677{
3678 const struct cred *cred = current_cred(), *pcred;
3679 bool match;
3680
3681 rcu_read_lock();
3682 pcred = __task_cred(p);
9c806aa0
EB
3683 match = (uid_eq(cred->euid, pcred->euid) ||
3684 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3685 rcu_read_unlock();
3686 return match;
3687}
3688
961ccddd 3689static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3690 const struct sched_param *param, bool user)
1da177e4 3691{
83b699ed 3692 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3693 unsigned long flags;
83ab0aa0 3694 const struct sched_class *prev_class;
70b97a7f 3695 struct rq *rq;
ca94c442 3696 int reset_on_fork;
1da177e4 3697
66e5393a
SR
3698 /* may grab non-irq protected spin_locks */
3699 BUG_ON(in_interrupt());
1da177e4
LT
3700recheck:
3701 /* double check policy once rq lock held */
ca94c442
LP
3702 if (policy < 0) {
3703 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3704 policy = oldpolicy = p->policy;
ca94c442
LP
3705 } else {
3706 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3707 policy &= ~SCHED_RESET_ON_FORK;
3708
3709 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3710 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3711 policy != SCHED_IDLE)
3712 return -EINVAL;
3713 }
3714
1da177e4
LT
3715 /*
3716 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3717 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3718 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3719 */
3720 if (param->sched_priority < 0 ||
95cdf3b7 3721 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3722 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3723 return -EINVAL;
e05606d3 3724 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3725 return -EINVAL;
3726
37e4ab3f
OC
3727 /*
3728 * Allow unprivileged RT tasks to decrease priority:
3729 */
961ccddd 3730 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3731 if (rt_policy(policy)) {
a44702e8
ON
3732 unsigned long rlim_rtprio =
3733 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3734
3735 /* can't set/change the rt policy */
3736 if (policy != p->policy && !rlim_rtprio)
3737 return -EPERM;
3738
3739 /* can't increase priority */
3740 if (param->sched_priority > p->rt_priority &&
3741 param->sched_priority > rlim_rtprio)
3742 return -EPERM;
3743 }
c02aa73b 3744
dd41f596 3745 /*
c02aa73b
DH
3746 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3747 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3748 */
c02aa73b
DH
3749 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3750 if (!can_nice(p, TASK_NICE(p)))
3751 return -EPERM;
3752 }
5fe1d75f 3753
37e4ab3f 3754 /* can't change other user's priorities */
c69e8d9c 3755 if (!check_same_owner(p))
37e4ab3f 3756 return -EPERM;
ca94c442
LP
3757
3758 /* Normal users shall not reset the sched_reset_on_fork flag */
3759 if (p->sched_reset_on_fork && !reset_on_fork)
3760 return -EPERM;
37e4ab3f 3761 }
1da177e4 3762
725aad24 3763 if (user) {
b0ae1981 3764 retval = security_task_setscheduler(p);
725aad24
JF
3765 if (retval)
3766 return retval;
3767 }
3768
b29739f9
IM
3769 /*
3770 * make sure no PI-waiters arrive (or leave) while we are
3771 * changing the priority of the task:
0122ec5b 3772 *
25985edc 3773 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3774 * runqueue lock must be held.
3775 */
0122ec5b 3776 rq = task_rq_lock(p, &flags);
dc61b1d6 3777
34f971f6
PZ
3778 /*
3779 * Changing the policy of the stop threads its a very bad idea
3780 */
3781 if (p == rq->stop) {
0122ec5b 3782 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3783 return -EINVAL;
3784 }
3785
a51e9198
DF
3786 /*
3787 * If not changing anything there's no need to proceed further:
3788 */
3789 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3790 param->sched_priority == p->rt_priority))) {
45afb173 3791 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3792 return 0;
3793 }
3794
dc61b1d6
PZ
3795#ifdef CONFIG_RT_GROUP_SCHED
3796 if (user) {
3797 /*
3798 * Do not allow realtime tasks into groups that have no runtime
3799 * assigned.
3800 */
3801 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3802 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3803 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3804 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3805 return -EPERM;
3806 }
3807 }
3808#endif
3809
1da177e4
LT
3810 /* recheck policy now with rq lock held */
3811 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3812 policy = oldpolicy = -1;
0122ec5b 3813 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3814 goto recheck;
3815 }
fd2f4419 3816 on_rq = p->on_rq;
051a1d1a 3817 running = task_current(rq, p);
0e1f3483 3818 if (on_rq)
4ca9b72b 3819 dequeue_task(rq, p, 0);
0e1f3483
HS
3820 if (running)
3821 p->sched_class->put_prev_task(rq, p);
f6b53205 3822
ca94c442
LP
3823 p->sched_reset_on_fork = reset_on_fork;
3824
1da177e4 3825 oldprio = p->prio;
83ab0aa0 3826 prev_class = p->sched_class;
dd41f596 3827 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3828
0e1f3483
HS
3829 if (running)
3830 p->sched_class->set_curr_task(rq);
da7a735e 3831 if (on_rq)
4ca9b72b 3832 enqueue_task(rq, p, 0);
cb469845 3833
da7a735e 3834 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3835 task_rq_unlock(rq, p, &flags);
b29739f9 3836
95e02ca9
TG
3837 rt_mutex_adjust_pi(p);
3838
1da177e4
LT
3839 return 0;
3840}
961ccddd
RR
3841
3842/**
3843 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3844 * @p: the task in question.
3845 * @policy: new policy.
3846 * @param: structure containing the new RT priority.
3847 *
3848 * NOTE that the task may be already dead.
3849 */
3850int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3851 const struct sched_param *param)
961ccddd
RR
3852{
3853 return __sched_setscheduler(p, policy, param, true);
3854}
1da177e4
LT
3855EXPORT_SYMBOL_GPL(sched_setscheduler);
3856
961ccddd
RR
3857/**
3858 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3859 * @p: the task in question.
3860 * @policy: new policy.
3861 * @param: structure containing the new RT priority.
3862 *
3863 * Just like sched_setscheduler, only don't bother checking if the
3864 * current context has permission. For example, this is needed in
3865 * stop_machine(): we create temporary high priority worker threads,
3866 * but our caller might not have that capability.
3867 */
3868int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3869 const struct sched_param *param)
961ccddd
RR
3870{
3871 return __sched_setscheduler(p, policy, param, false);
3872}
3873
95cdf3b7
IM
3874static int
3875do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3876{
1da177e4
LT
3877 struct sched_param lparam;
3878 struct task_struct *p;
36c8b586 3879 int retval;
1da177e4
LT
3880
3881 if (!param || pid < 0)
3882 return -EINVAL;
3883 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3884 return -EFAULT;
5fe1d75f
ON
3885
3886 rcu_read_lock();
3887 retval = -ESRCH;
1da177e4 3888 p = find_process_by_pid(pid);
5fe1d75f
ON
3889 if (p != NULL)
3890 retval = sched_setscheduler(p, policy, &lparam);
3891 rcu_read_unlock();
36c8b586 3892
1da177e4
LT
3893 return retval;
3894}
3895
3896/**
3897 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3898 * @pid: the pid in question.
3899 * @policy: new policy.
3900 * @param: structure containing the new RT priority.
3901 */
5add95d4
HC
3902SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3903 struct sched_param __user *, param)
1da177e4 3904{
c21761f1
JB
3905 /* negative values for policy are not valid */
3906 if (policy < 0)
3907 return -EINVAL;
3908
1da177e4
LT
3909 return do_sched_setscheduler(pid, policy, param);
3910}
3911
3912/**
3913 * sys_sched_setparam - set/change the RT priority of a thread
3914 * @pid: the pid in question.
3915 * @param: structure containing the new RT priority.
3916 */
5add95d4 3917SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3918{
3919 return do_sched_setscheduler(pid, -1, param);
3920}
3921
3922/**
3923 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3924 * @pid: the pid in question.
3925 */
5add95d4 3926SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3927{
36c8b586 3928 struct task_struct *p;
3a5c359a 3929 int retval;
1da177e4
LT
3930
3931 if (pid < 0)
3a5c359a 3932 return -EINVAL;
1da177e4
LT
3933
3934 retval = -ESRCH;
5fe85be0 3935 rcu_read_lock();
1da177e4
LT
3936 p = find_process_by_pid(pid);
3937 if (p) {
3938 retval = security_task_getscheduler(p);
3939 if (!retval)
ca94c442
LP
3940 retval = p->policy
3941 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3942 }
5fe85be0 3943 rcu_read_unlock();
1da177e4
LT
3944 return retval;
3945}
3946
3947/**
ca94c442 3948 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3949 * @pid: the pid in question.
3950 * @param: structure containing the RT priority.
3951 */
5add95d4 3952SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3953{
3954 struct sched_param lp;
36c8b586 3955 struct task_struct *p;
3a5c359a 3956 int retval;
1da177e4
LT
3957
3958 if (!param || pid < 0)
3a5c359a 3959 return -EINVAL;
1da177e4 3960
5fe85be0 3961 rcu_read_lock();
1da177e4
LT
3962 p = find_process_by_pid(pid);
3963 retval = -ESRCH;
3964 if (!p)
3965 goto out_unlock;
3966
3967 retval = security_task_getscheduler(p);
3968 if (retval)
3969 goto out_unlock;
3970
3971 lp.sched_priority = p->rt_priority;
5fe85be0 3972 rcu_read_unlock();
1da177e4
LT
3973
3974 /*
3975 * This one might sleep, we cannot do it with a spinlock held ...
3976 */
3977 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3978
1da177e4
LT
3979 return retval;
3980
3981out_unlock:
5fe85be0 3982 rcu_read_unlock();
1da177e4
LT
3983 return retval;
3984}
3985
96f874e2 3986long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3987{
5a16f3d3 3988 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3989 struct task_struct *p;
3990 int retval;
1da177e4 3991
95402b38 3992 get_online_cpus();
23f5d142 3993 rcu_read_lock();
1da177e4
LT
3994
3995 p = find_process_by_pid(pid);
3996 if (!p) {
23f5d142 3997 rcu_read_unlock();
95402b38 3998 put_online_cpus();
1da177e4
LT
3999 return -ESRCH;
4000 }
4001
23f5d142 4002 /* Prevent p going away */
1da177e4 4003 get_task_struct(p);
23f5d142 4004 rcu_read_unlock();
1da177e4 4005
5a16f3d3
RR
4006 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4007 retval = -ENOMEM;
4008 goto out_put_task;
4009 }
4010 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4011 retval = -ENOMEM;
4012 goto out_free_cpus_allowed;
4013 }
1da177e4 4014 retval = -EPERM;
f1c84dae 4015 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4016 goto out_unlock;
4017
b0ae1981 4018 retval = security_task_setscheduler(p);
e7834f8f
DQ
4019 if (retval)
4020 goto out_unlock;
4021
5a16f3d3
RR
4022 cpuset_cpus_allowed(p, cpus_allowed);
4023 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4024again:
5a16f3d3 4025 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4026
8707d8b8 4027 if (!retval) {
5a16f3d3
RR
4028 cpuset_cpus_allowed(p, cpus_allowed);
4029 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4030 /*
4031 * We must have raced with a concurrent cpuset
4032 * update. Just reset the cpus_allowed to the
4033 * cpuset's cpus_allowed
4034 */
5a16f3d3 4035 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4036 goto again;
4037 }
4038 }
1da177e4 4039out_unlock:
5a16f3d3
RR
4040 free_cpumask_var(new_mask);
4041out_free_cpus_allowed:
4042 free_cpumask_var(cpus_allowed);
4043out_put_task:
1da177e4 4044 put_task_struct(p);
95402b38 4045 put_online_cpus();
1da177e4
LT
4046 return retval;
4047}
4048
4049static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4050 struct cpumask *new_mask)
1da177e4 4051{
96f874e2
RR
4052 if (len < cpumask_size())
4053 cpumask_clear(new_mask);
4054 else if (len > cpumask_size())
4055 len = cpumask_size();
4056
1da177e4
LT
4057 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4058}
4059
4060/**
4061 * sys_sched_setaffinity - set the cpu affinity of a process
4062 * @pid: pid of the process
4063 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4064 * @user_mask_ptr: user-space pointer to the new cpu mask
4065 */
5add95d4
HC
4066SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4067 unsigned long __user *, user_mask_ptr)
1da177e4 4068{
5a16f3d3 4069 cpumask_var_t new_mask;
1da177e4
LT
4070 int retval;
4071
5a16f3d3
RR
4072 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4073 return -ENOMEM;
1da177e4 4074
5a16f3d3
RR
4075 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4076 if (retval == 0)
4077 retval = sched_setaffinity(pid, new_mask);
4078 free_cpumask_var(new_mask);
4079 return retval;
1da177e4
LT
4080}
4081
96f874e2 4082long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4083{
36c8b586 4084 struct task_struct *p;
31605683 4085 unsigned long flags;
1da177e4 4086 int retval;
1da177e4 4087
95402b38 4088 get_online_cpus();
23f5d142 4089 rcu_read_lock();
1da177e4
LT
4090
4091 retval = -ESRCH;
4092 p = find_process_by_pid(pid);
4093 if (!p)
4094 goto out_unlock;
4095
e7834f8f
DQ
4096 retval = security_task_getscheduler(p);
4097 if (retval)
4098 goto out_unlock;
4099
013fdb80 4100 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4101 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4102 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4103
4104out_unlock:
23f5d142 4105 rcu_read_unlock();
95402b38 4106 put_online_cpus();
1da177e4 4107
9531b62f 4108 return retval;
1da177e4
LT
4109}
4110
4111/**
4112 * sys_sched_getaffinity - get the cpu affinity of a process
4113 * @pid: pid of the process
4114 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4115 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4116 */
5add95d4
HC
4117SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4118 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4119{
4120 int ret;
f17c8607 4121 cpumask_var_t mask;
1da177e4 4122
84fba5ec 4123 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4124 return -EINVAL;
4125 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4126 return -EINVAL;
4127
f17c8607
RR
4128 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4129 return -ENOMEM;
1da177e4 4130
f17c8607
RR
4131 ret = sched_getaffinity(pid, mask);
4132 if (ret == 0) {
8bc037fb 4133 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4134
4135 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4136 ret = -EFAULT;
4137 else
cd3d8031 4138 ret = retlen;
f17c8607
RR
4139 }
4140 free_cpumask_var(mask);
1da177e4 4141
f17c8607 4142 return ret;
1da177e4
LT
4143}
4144
4145/**
4146 * sys_sched_yield - yield the current processor to other threads.
4147 *
dd41f596
IM
4148 * This function yields the current CPU to other tasks. If there are no
4149 * other threads running on this CPU then this function will return.
1da177e4 4150 */
5add95d4 4151SYSCALL_DEFINE0(sched_yield)
1da177e4 4152{
70b97a7f 4153 struct rq *rq = this_rq_lock();
1da177e4 4154
2d72376b 4155 schedstat_inc(rq, yld_count);
4530d7ab 4156 current->sched_class->yield_task(rq);
1da177e4
LT
4157
4158 /*
4159 * Since we are going to call schedule() anyway, there's
4160 * no need to preempt or enable interrupts:
4161 */
4162 __release(rq->lock);
8a25d5de 4163 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4164 do_raw_spin_unlock(&rq->lock);
ba74c144 4165 sched_preempt_enable_no_resched();
1da177e4
LT
4166
4167 schedule();
4168
4169 return 0;
4170}
4171
d86ee480
PZ
4172static inline int should_resched(void)
4173{
4174 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4175}
4176
e7b38404 4177static void __cond_resched(void)
1da177e4 4178{
e7aaaa69 4179 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4180 __schedule();
e7aaaa69 4181 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4182}
4183
02b67cc3 4184int __sched _cond_resched(void)
1da177e4 4185{
d86ee480 4186 if (should_resched()) {
1da177e4
LT
4187 __cond_resched();
4188 return 1;
4189 }
4190 return 0;
4191}
02b67cc3 4192EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4193
4194/*
613afbf8 4195 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4196 * call schedule, and on return reacquire the lock.
4197 *
41a2d6cf 4198 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4199 * operations here to prevent schedule() from being called twice (once via
4200 * spin_unlock(), once by hand).
4201 */
613afbf8 4202int __cond_resched_lock(spinlock_t *lock)
1da177e4 4203{
d86ee480 4204 int resched = should_resched();
6df3cecb
JK
4205 int ret = 0;
4206
f607c668
PZ
4207 lockdep_assert_held(lock);
4208
95c354fe 4209 if (spin_needbreak(lock) || resched) {
1da177e4 4210 spin_unlock(lock);
d86ee480 4211 if (resched)
95c354fe
NP
4212 __cond_resched();
4213 else
4214 cpu_relax();
6df3cecb 4215 ret = 1;
1da177e4 4216 spin_lock(lock);
1da177e4 4217 }
6df3cecb 4218 return ret;
1da177e4 4219}
613afbf8 4220EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4221
613afbf8 4222int __sched __cond_resched_softirq(void)
1da177e4
LT
4223{
4224 BUG_ON(!in_softirq());
4225
d86ee480 4226 if (should_resched()) {
98d82567 4227 local_bh_enable();
1da177e4
LT
4228 __cond_resched();
4229 local_bh_disable();
4230 return 1;
4231 }
4232 return 0;
4233}
613afbf8 4234EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4235
1da177e4
LT
4236/**
4237 * yield - yield the current processor to other threads.
4238 *
8e3fabfd
PZ
4239 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4240 *
4241 * The scheduler is at all times free to pick the calling task as the most
4242 * eligible task to run, if removing the yield() call from your code breaks
4243 * it, its already broken.
4244 *
4245 * Typical broken usage is:
4246 *
4247 * while (!event)
4248 * yield();
4249 *
4250 * where one assumes that yield() will let 'the other' process run that will
4251 * make event true. If the current task is a SCHED_FIFO task that will never
4252 * happen. Never use yield() as a progress guarantee!!
4253 *
4254 * If you want to use yield() to wait for something, use wait_event().
4255 * If you want to use yield() to be 'nice' for others, use cond_resched().
4256 * If you still want to use yield(), do not!
1da177e4
LT
4257 */
4258void __sched yield(void)
4259{
4260 set_current_state(TASK_RUNNING);
4261 sys_sched_yield();
4262}
1da177e4
LT
4263EXPORT_SYMBOL(yield);
4264
d95f4122
MG
4265/**
4266 * yield_to - yield the current processor to another thread in
4267 * your thread group, or accelerate that thread toward the
4268 * processor it's on.
16addf95
RD
4269 * @p: target task
4270 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4271 *
4272 * It's the caller's job to ensure that the target task struct
4273 * can't go away on us before we can do any checks.
4274 *
4275 * Returns true if we indeed boosted the target task.
4276 */
4277bool __sched yield_to(struct task_struct *p, bool preempt)
4278{
4279 struct task_struct *curr = current;
4280 struct rq *rq, *p_rq;
4281 unsigned long flags;
4282 bool yielded = 0;
4283
4284 local_irq_save(flags);
4285 rq = this_rq();
4286
4287again:
4288 p_rq = task_rq(p);
4289 double_rq_lock(rq, p_rq);
4290 while (task_rq(p) != p_rq) {
4291 double_rq_unlock(rq, p_rq);
4292 goto again;
4293 }
4294
4295 if (!curr->sched_class->yield_to_task)
4296 goto out;
4297
4298 if (curr->sched_class != p->sched_class)
4299 goto out;
4300
4301 if (task_running(p_rq, p) || p->state)
4302 goto out;
4303
4304 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4305 if (yielded) {
d95f4122 4306 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4307 /*
4308 * Make p's CPU reschedule; pick_next_entity takes care of
4309 * fairness.
4310 */
4311 if (preempt && rq != p_rq)
4312 resched_task(p_rq->curr);
4313 }
d95f4122
MG
4314
4315out:
4316 double_rq_unlock(rq, p_rq);
4317 local_irq_restore(flags);
4318
4319 if (yielded)
4320 schedule();
4321
4322 return yielded;
4323}
4324EXPORT_SYMBOL_GPL(yield_to);
4325
1da177e4 4326/*
41a2d6cf 4327 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4328 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4329 */
4330void __sched io_schedule(void)
4331{
54d35f29 4332 struct rq *rq = raw_rq();
1da177e4 4333
0ff92245 4334 delayacct_blkio_start();
1da177e4 4335 atomic_inc(&rq->nr_iowait);
73c10101 4336 blk_flush_plug(current);
8f0dfc34 4337 current->in_iowait = 1;
1da177e4 4338 schedule();
8f0dfc34 4339 current->in_iowait = 0;
1da177e4 4340 atomic_dec(&rq->nr_iowait);
0ff92245 4341 delayacct_blkio_end();
1da177e4 4342}
1da177e4
LT
4343EXPORT_SYMBOL(io_schedule);
4344
4345long __sched io_schedule_timeout(long timeout)
4346{
54d35f29 4347 struct rq *rq = raw_rq();
1da177e4
LT
4348 long ret;
4349
0ff92245 4350 delayacct_blkio_start();
1da177e4 4351 atomic_inc(&rq->nr_iowait);
73c10101 4352 blk_flush_plug(current);
8f0dfc34 4353 current->in_iowait = 1;
1da177e4 4354 ret = schedule_timeout(timeout);
8f0dfc34 4355 current->in_iowait = 0;
1da177e4 4356 atomic_dec(&rq->nr_iowait);
0ff92245 4357 delayacct_blkio_end();
1da177e4
LT
4358 return ret;
4359}
4360
4361/**
4362 * sys_sched_get_priority_max - return maximum RT priority.
4363 * @policy: scheduling class.
4364 *
4365 * this syscall returns the maximum rt_priority that can be used
4366 * by a given scheduling class.
4367 */
5add95d4 4368SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4369{
4370 int ret = -EINVAL;
4371
4372 switch (policy) {
4373 case SCHED_FIFO:
4374 case SCHED_RR:
4375 ret = MAX_USER_RT_PRIO-1;
4376 break;
4377 case SCHED_NORMAL:
b0a9499c 4378 case SCHED_BATCH:
dd41f596 4379 case SCHED_IDLE:
1da177e4
LT
4380 ret = 0;
4381 break;
4382 }
4383 return ret;
4384}
4385
4386/**
4387 * sys_sched_get_priority_min - return minimum RT priority.
4388 * @policy: scheduling class.
4389 *
4390 * this syscall returns the minimum rt_priority that can be used
4391 * by a given scheduling class.
4392 */
5add95d4 4393SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4394{
4395 int ret = -EINVAL;
4396
4397 switch (policy) {
4398 case SCHED_FIFO:
4399 case SCHED_RR:
4400 ret = 1;
4401 break;
4402 case SCHED_NORMAL:
b0a9499c 4403 case SCHED_BATCH:
dd41f596 4404 case SCHED_IDLE:
1da177e4
LT
4405 ret = 0;
4406 }
4407 return ret;
4408}
4409
4410/**
4411 * sys_sched_rr_get_interval - return the default timeslice of a process.
4412 * @pid: pid of the process.
4413 * @interval: userspace pointer to the timeslice value.
4414 *
4415 * this syscall writes the default timeslice value of a given process
4416 * into the user-space timespec buffer. A value of '0' means infinity.
4417 */
17da2bd9 4418SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4419 struct timespec __user *, interval)
1da177e4 4420{
36c8b586 4421 struct task_struct *p;
a4ec24b4 4422 unsigned int time_slice;
dba091b9
TG
4423 unsigned long flags;
4424 struct rq *rq;
3a5c359a 4425 int retval;
1da177e4 4426 struct timespec t;
1da177e4
LT
4427
4428 if (pid < 0)
3a5c359a 4429 return -EINVAL;
1da177e4
LT
4430
4431 retval = -ESRCH;
1a551ae7 4432 rcu_read_lock();
1da177e4
LT
4433 p = find_process_by_pid(pid);
4434 if (!p)
4435 goto out_unlock;
4436
4437 retval = security_task_getscheduler(p);
4438 if (retval)
4439 goto out_unlock;
4440
dba091b9
TG
4441 rq = task_rq_lock(p, &flags);
4442 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4443 task_rq_unlock(rq, p, &flags);
a4ec24b4 4444
1a551ae7 4445 rcu_read_unlock();
a4ec24b4 4446 jiffies_to_timespec(time_slice, &t);
1da177e4 4447 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4448 return retval;
3a5c359a 4449
1da177e4 4450out_unlock:
1a551ae7 4451 rcu_read_unlock();
1da177e4
LT
4452 return retval;
4453}
4454
7c731e0a 4455static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4456
82a1fcb9 4457void sched_show_task(struct task_struct *p)
1da177e4 4458{
1da177e4 4459 unsigned long free = 0;
36c8b586 4460 unsigned state;
1da177e4 4461
1da177e4 4462 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4463 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4464 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4465#if BITS_PER_LONG == 32
1da177e4 4466 if (state == TASK_RUNNING)
3df0fc5b 4467 printk(KERN_CONT " running ");
1da177e4 4468 else
3df0fc5b 4469 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4470#else
4471 if (state == TASK_RUNNING)
3df0fc5b 4472 printk(KERN_CONT " running task ");
1da177e4 4473 else
3df0fc5b 4474 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4475#endif
4476#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4477 free = stack_not_used(p);
1da177e4 4478#endif
3df0fc5b 4479 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4480 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4481 (unsigned long)task_thread_info(p)->flags);
1da177e4 4482
5fb5e6de 4483 show_stack(p, NULL);
1da177e4
LT
4484}
4485
e59e2ae2 4486void show_state_filter(unsigned long state_filter)
1da177e4 4487{
36c8b586 4488 struct task_struct *g, *p;
1da177e4 4489
4bd77321 4490#if BITS_PER_LONG == 32
3df0fc5b
PZ
4491 printk(KERN_INFO
4492 " task PC stack pid father\n");
1da177e4 4493#else
3df0fc5b
PZ
4494 printk(KERN_INFO
4495 " task PC stack pid father\n");
1da177e4 4496#endif
510f5acc 4497 rcu_read_lock();
1da177e4
LT
4498 do_each_thread(g, p) {
4499 /*
4500 * reset the NMI-timeout, listing all files on a slow
25985edc 4501 * console might take a lot of time:
1da177e4
LT
4502 */
4503 touch_nmi_watchdog();
39bc89fd 4504 if (!state_filter || (p->state & state_filter))
82a1fcb9 4505 sched_show_task(p);
1da177e4
LT
4506 } while_each_thread(g, p);
4507
04c9167f
JF
4508 touch_all_softlockup_watchdogs();
4509
dd41f596
IM
4510#ifdef CONFIG_SCHED_DEBUG
4511 sysrq_sched_debug_show();
4512#endif
510f5acc 4513 rcu_read_unlock();
e59e2ae2
IM
4514 /*
4515 * Only show locks if all tasks are dumped:
4516 */
93335a21 4517 if (!state_filter)
e59e2ae2 4518 debug_show_all_locks();
1da177e4
LT
4519}
4520
1df21055
IM
4521void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4522{
dd41f596 4523 idle->sched_class = &idle_sched_class;
1df21055
IM
4524}
4525
f340c0d1
IM
4526/**
4527 * init_idle - set up an idle thread for a given CPU
4528 * @idle: task in question
4529 * @cpu: cpu the idle task belongs to
4530 *
4531 * NOTE: this function does not set the idle thread's NEED_RESCHED
4532 * flag, to make booting more robust.
4533 */
5c1e1767 4534void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4535{
70b97a7f 4536 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4537 unsigned long flags;
4538
05fa785c 4539 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4540
dd41f596 4541 __sched_fork(idle);
06b83b5f 4542 idle->state = TASK_RUNNING;
dd41f596
IM
4543 idle->se.exec_start = sched_clock();
4544
1e1b6c51 4545 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4546 /*
4547 * We're having a chicken and egg problem, even though we are
4548 * holding rq->lock, the cpu isn't yet set to this cpu so the
4549 * lockdep check in task_group() will fail.
4550 *
4551 * Similar case to sched_fork(). / Alternatively we could
4552 * use task_rq_lock() here and obtain the other rq->lock.
4553 *
4554 * Silence PROVE_RCU
4555 */
4556 rcu_read_lock();
dd41f596 4557 __set_task_cpu(idle, cpu);
6506cf6c 4558 rcu_read_unlock();
1da177e4 4559
1da177e4 4560 rq->curr = rq->idle = idle;
3ca7a440
PZ
4561#if defined(CONFIG_SMP)
4562 idle->on_cpu = 1;
4866cde0 4563#endif
05fa785c 4564 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4565
4566 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4567 task_thread_info(idle)->preempt_count = 0;
55cd5340 4568
dd41f596
IM
4569 /*
4570 * The idle tasks have their own, simple scheduling class:
4571 */
4572 idle->sched_class = &idle_sched_class;
868baf07 4573 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4574#if defined(CONFIG_SMP)
4575 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4576#endif
19978ca6
IM
4577}
4578
1da177e4 4579#ifdef CONFIG_SMP
1e1b6c51
KM
4580void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4581{
4582 if (p->sched_class && p->sched_class->set_cpus_allowed)
4583 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4584
4585 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4586 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4587}
4588
1da177e4
LT
4589/*
4590 * This is how migration works:
4591 *
969c7921
TH
4592 * 1) we invoke migration_cpu_stop() on the target CPU using
4593 * stop_one_cpu().
4594 * 2) stopper starts to run (implicitly forcing the migrated thread
4595 * off the CPU)
4596 * 3) it checks whether the migrated task is still in the wrong runqueue.
4597 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4598 * it and puts it into the right queue.
969c7921
TH
4599 * 5) stopper completes and stop_one_cpu() returns and the migration
4600 * is done.
1da177e4
LT
4601 */
4602
4603/*
4604 * Change a given task's CPU affinity. Migrate the thread to a
4605 * proper CPU and schedule it away if the CPU it's executing on
4606 * is removed from the allowed bitmask.
4607 *
4608 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4609 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4610 * call is not atomic; no spinlocks may be held.
4611 */
96f874e2 4612int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4613{
4614 unsigned long flags;
70b97a7f 4615 struct rq *rq;
969c7921 4616 unsigned int dest_cpu;
48f24c4d 4617 int ret = 0;
1da177e4
LT
4618
4619 rq = task_rq_lock(p, &flags);
e2912009 4620
db44fc01
YZ
4621 if (cpumask_equal(&p->cpus_allowed, new_mask))
4622 goto out;
4623
6ad4c188 4624 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4625 ret = -EINVAL;
4626 goto out;
4627 }
4628
db44fc01 4629 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4630 ret = -EINVAL;
4631 goto out;
4632 }
4633
1e1b6c51 4634 do_set_cpus_allowed(p, new_mask);
73fe6aae 4635
1da177e4 4636 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4637 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4638 goto out;
4639
969c7921 4640 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4641 if (p->on_rq) {
969c7921 4642 struct migration_arg arg = { p, dest_cpu };
1da177e4 4643 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4644 task_rq_unlock(rq, p, &flags);
969c7921 4645 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4646 tlb_migrate_finish(p->mm);
4647 return 0;
4648 }
4649out:
0122ec5b 4650 task_rq_unlock(rq, p, &flags);
48f24c4d 4651
1da177e4
LT
4652 return ret;
4653}
cd8ba7cd 4654EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4655
4656/*
41a2d6cf 4657 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4658 * this because either it can't run here any more (set_cpus_allowed()
4659 * away from this CPU, or CPU going down), or because we're
4660 * attempting to rebalance this task on exec (sched_exec).
4661 *
4662 * So we race with normal scheduler movements, but that's OK, as long
4663 * as the task is no longer on this CPU.
efc30814
KK
4664 *
4665 * Returns non-zero if task was successfully migrated.
1da177e4 4666 */
efc30814 4667static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4668{
70b97a7f 4669 struct rq *rq_dest, *rq_src;
e2912009 4670 int ret = 0;
1da177e4 4671
e761b772 4672 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4673 return ret;
1da177e4
LT
4674
4675 rq_src = cpu_rq(src_cpu);
4676 rq_dest = cpu_rq(dest_cpu);
4677
0122ec5b 4678 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4679 double_rq_lock(rq_src, rq_dest);
4680 /* Already moved. */
4681 if (task_cpu(p) != src_cpu)
b1e38734 4682 goto done;
1da177e4 4683 /* Affinity changed (again). */
fa17b507 4684 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4685 goto fail;
1da177e4 4686
e2912009
PZ
4687 /*
4688 * If we're not on a rq, the next wake-up will ensure we're
4689 * placed properly.
4690 */
fd2f4419 4691 if (p->on_rq) {
4ca9b72b 4692 dequeue_task(rq_src, p, 0);
e2912009 4693 set_task_cpu(p, dest_cpu);
4ca9b72b 4694 enqueue_task(rq_dest, p, 0);
15afe09b 4695 check_preempt_curr(rq_dest, p, 0);
1da177e4 4696 }
b1e38734 4697done:
efc30814 4698 ret = 1;
b1e38734 4699fail:
1da177e4 4700 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4701 raw_spin_unlock(&p->pi_lock);
efc30814 4702 return ret;
1da177e4
LT
4703}
4704
4705/*
969c7921
TH
4706 * migration_cpu_stop - this will be executed by a highprio stopper thread
4707 * and performs thread migration by bumping thread off CPU then
4708 * 'pushing' onto another runqueue.
1da177e4 4709 */
969c7921 4710static int migration_cpu_stop(void *data)
1da177e4 4711{
969c7921 4712 struct migration_arg *arg = data;
f7b4cddc 4713
969c7921
TH
4714 /*
4715 * The original target cpu might have gone down and we might
4716 * be on another cpu but it doesn't matter.
4717 */
f7b4cddc 4718 local_irq_disable();
969c7921 4719 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4720 local_irq_enable();
1da177e4 4721 return 0;
f7b4cddc
ON
4722}
4723
1da177e4 4724#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4725
054b9108 4726/*
48c5ccae
PZ
4727 * Ensures that the idle task is using init_mm right before its cpu goes
4728 * offline.
054b9108 4729 */
48c5ccae 4730void idle_task_exit(void)
1da177e4 4731{
48c5ccae 4732 struct mm_struct *mm = current->active_mm;
e76bd8d9 4733
48c5ccae 4734 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4735
48c5ccae
PZ
4736 if (mm != &init_mm)
4737 switch_mm(mm, &init_mm, current);
4738 mmdrop(mm);
1da177e4
LT
4739}
4740
4741/*
f319da0c
PZ
4742 * Since this CPU is going 'away' for a while, fold any nr_active delta
4743 * we might have. Assumes we're called after migrate_tasks() so that the
4744 * nr_active count is stable.
4745 *
4746 * Also see the comment "Global load-average calculations".
1da177e4 4747 */
f319da0c 4748static void calc_load_migrate(struct rq *rq)
1da177e4 4749{
f319da0c
PZ
4750 long delta = calc_load_fold_active(rq);
4751 if (delta)
4752 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4753}
4754
48f24c4d 4755/*
48c5ccae
PZ
4756 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4757 * try_to_wake_up()->select_task_rq().
4758 *
4759 * Called with rq->lock held even though we'er in stop_machine() and
4760 * there's no concurrency possible, we hold the required locks anyway
4761 * because of lock validation efforts.
1da177e4 4762 */
48c5ccae 4763static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4764{
70b97a7f 4765 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4766 struct task_struct *next, *stop = rq->stop;
4767 int dest_cpu;
1da177e4
LT
4768
4769 /*
48c5ccae
PZ
4770 * Fudge the rq selection such that the below task selection loop
4771 * doesn't get stuck on the currently eligible stop task.
4772 *
4773 * We're currently inside stop_machine() and the rq is either stuck
4774 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4775 * either way we should never end up calling schedule() until we're
4776 * done here.
1da177e4 4777 */
48c5ccae 4778 rq->stop = NULL;
48f24c4d 4779
dd41f596 4780 for ( ; ; ) {
48c5ccae
PZ
4781 /*
4782 * There's this thread running, bail when that's the only
4783 * remaining thread.
4784 */
4785 if (rq->nr_running == 1)
dd41f596 4786 break;
48c5ccae 4787
b67802ea 4788 next = pick_next_task(rq);
48c5ccae 4789 BUG_ON(!next);
79c53799 4790 next->sched_class->put_prev_task(rq, next);
e692ab53 4791
48c5ccae
PZ
4792 /* Find suitable destination for @next, with force if needed. */
4793 dest_cpu = select_fallback_rq(dead_cpu, next);
4794 raw_spin_unlock(&rq->lock);
4795
4796 __migrate_task(next, dead_cpu, dest_cpu);
4797
4798 raw_spin_lock(&rq->lock);
1da177e4 4799 }
dce48a84 4800
48c5ccae 4801 rq->stop = stop;
dce48a84 4802}
48c5ccae 4803
1da177e4
LT
4804#endif /* CONFIG_HOTPLUG_CPU */
4805
e692ab53
NP
4806#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4807
4808static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4809 {
4810 .procname = "sched_domain",
c57baf1e 4811 .mode = 0555,
e0361851 4812 },
56992309 4813 {}
e692ab53
NP
4814};
4815
4816static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4817 {
4818 .procname = "kernel",
c57baf1e 4819 .mode = 0555,
e0361851
AD
4820 .child = sd_ctl_dir,
4821 },
56992309 4822 {}
e692ab53
NP
4823};
4824
4825static struct ctl_table *sd_alloc_ctl_entry(int n)
4826{
4827 struct ctl_table *entry =
5cf9f062 4828 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4829
e692ab53
NP
4830 return entry;
4831}
4832
6382bc90
MM
4833static void sd_free_ctl_entry(struct ctl_table **tablep)
4834{
cd790076 4835 struct ctl_table *entry;
6382bc90 4836
cd790076
MM
4837 /*
4838 * In the intermediate directories, both the child directory and
4839 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4840 * will always be set. In the lowest directory the names are
cd790076
MM
4841 * static strings and all have proc handlers.
4842 */
4843 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4844 if (entry->child)
4845 sd_free_ctl_entry(&entry->child);
cd790076
MM
4846 if (entry->proc_handler == NULL)
4847 kfree(entry->procname);
4848 }
6382bc90
MM
4849
4850 kfree(*tablep);
4851 *tablep = NULL;
4852}
4853
201c373e
NK
4854static int min_load_idx = 0;
4855static int max_load_idx = CPU_LOAD_IDX_MAX;
4856
e692ab53 4857static void
e0361851 4858set_table_entry(struct ctl_table *entry,
e692ab53 4859 const char *procname, void *data, int maxlen,
201c373e
NK
4860 umode_t mode, proc_handler *proc_handler,
4861 bool load_idx)
e692ab53 4862{
e692ab53
NP
4863 entry->procname = procname;
4864 entry->data = data;
4865 entry->maxlen = maxlen;
4866 entry->mode = mode;
4867 entry->proc_handler = proc_handler;
201c373e
NK
4868
4869 if (load_idx) {
4870 entry->extra1 = &min_load_idx;
4871 entry->extra2 = &max_load_idx;
4872 }
e692ab53
NP
4873}
4874
4875static struct ctl_table *
4876sd_alloc_ctl_domain_table(struct sched_domain *sd)
4877{
a5d8c348 4878 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4879
ad1cdc1d
MM
4880 if (table == NULL)
4881 return NULL;
4882
e0361851 4883 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4884 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4885 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4886 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4887 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4888 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4889 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4890 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4891 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4892 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4893 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4894 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4895 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4896 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4897 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4898 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4899 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4900 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4901 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4902 &sd->cache_nice_tries,
201c373e 4903 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4904 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4905 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4906 set_table_entry(&table[11], "name", sd->name,
201c373e 4907 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4908 /* &table[12] is terminator */
e692ab53
NP
4909
4910 return table;
4911}
4912
9a4e7159 4913static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4914{
4915 struct ctl_table *entry, *table;
4916 struct sched_domain *sd;
4917 int domain_num = 0, i;
4918 char buf[32];
4919
4920 for_each_domain(cpu, sd)
4921 domain_num++;
4922 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4923 if (table == NULL)
4924 return NULL;
e692ab53
NP
4925
4926 i = 0;
4927 for_each_domain(cpu, sd) {
4928 snprintf(buf, 32, "domain%d", i);
e692ab53 4929 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4930 entry->mode = 0555;
e692ab53
NP
4931 entry->child = sd_alloc_ctl_domain_table(sd);
4932 entry++;
4933 i++;
4934 }
4935 return table;
4936}
4937
4938static struct ctl_table_header *sd_sysctl_header;
6382bc90 4939static void register_sched_domain_sysctl(void)
e692ab53 4940{
6ad4c188 4941 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4942 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4943 char buf[32];
4944
7378547f
MM
4945 WARN_ON(sd_ctl_dir[0].child);
4946 sd_ctl_dir[0].child = entry;
4947
ad1cdc1d
MM
4948 if (entry == NULL)
4949 return;
4950
6ad4c188 4951 for_each_possible_cpu(i) {
e692ab53 4952 snprintf(buf, 32, "cpu%d", i);
e692ab53 4953 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4954 entry->mode = 0555;
e692ab53 4955 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4956 entry++;
e692ab53 4957 }
7378547f
MM
4958
4959 WARN_ON(sd_sysctl_header);
e692ab53
NP
4960 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4961}
6382bc90 4962
7378547f 4963/* may be called multiple times per register */
6382bc90
MM
4964static void unregister_sched_domain_sysctl(void)
4965{
7378547f
MM
4966 if (sd_sysctl_header)
4967 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4968 sd_sysctl_header = NULL;
7378547f
MM
4969 if (sd_ctl_dir[0].child)
4970 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4971}
e692ab53 4972#else
6382bc90
MM
4973static void register_sched_domain_sysctl(void)
4974{
4975}
4976static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4977{
4978}
4979#endif
4980
1f11eb6a
GH
4981static void set_rq_online(struct rq *rq)
4982{
4983 if (!rq->online) {
4984 const struct sched_class *class;
4985
c6c4927b 4986 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4987 rq->online = 1;
4988
4989 for_each_class(class) {
4990 if (class->rq_online)
4991 class->rq_online(rq);
4992 }
4993 }
4994}
4995
4996static void set_rq_offline(struct rq *rq)
4997{
4998 if (rq->online) {
4999 const struct sched_class *class;
5000
5001 for_each_class(class) {
5002 if (class->rq_offline)
5003 class->rq_offline(rq);
5004 }
5005
c6c4927b 5006 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5007 rq->online = 0;
5008 }
5009}
5010
1da177e4
LT
5011/*
5012 * migration_call - callback that gets triggered when a CPU is added.
5013 * Here we can start up the necessary migration thread for the new CPU.
5014 */
48f24c4d
IM
5015static int __cpuinit
5016migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5017{
48f24c4d 5018 int cpu = (long)hcpu;
1da177e4 5019 unsigned long flags;
969c7921 5020 struct rq *rq = cpu_rq(cpu);
1da177e4 5021
48c5ccae 5022 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5023
1da177e4 5024 case CPU_UP_PREPARE:
a468d389 5025 rq->calc_load_update = calc_load_update;
1da177e4 5026 break;
48f24c4d 5027
1da177e4 5028 case CPU_ONLINE:
1f94ef59 5029 /* Update our root-domain */
05fa785c 5030 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5031 if (rq->rd) {
c6c4927b 5032 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5033
5034 set_rq_online(rq);
1f94ef59 5035 }
05fa785c 5036 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5037 break;
48f24c4d 5038
1da177e4 5039#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5040 case CPU_DYING:
317f3941 5041 sched_ttwu_pending();
57d885fe 5042 /* Update our root-domain */
05fa785c 5043 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5044 if (rq->rd) {
c6c4927b 5045 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5046 set_rq_offline(rq);
57d885fe 5047 }
48c5ccae
PZ
5048 migrate_tasks(cpu);
5049 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5050 raw_spin_unlock_irqrestore(&rq->lock, flags);
08bedae1 5051 break;
48c5ccae 5052
08bedae1 5053 case CPU_DEAD:
f319da0c 5054 calc_load_migrate(rq);
57d885fe 5055 break;
1da177e4
LT
5056#endif
5057 }
49c022e6
PZ
5058
5059 update_max_interval();
5060
1da177e4
LT
5061 return NOTIFY_OK;
5062}
5063
f38b0820
PM
5064/*
5065 * Register at high priority so that task migration (migrate_all_tasks)
5066 * happens before everything else. This has to be lower priority than
cdd6c482 5067 * the notifier in the perf_event subsystem, though.
1da177e4 5068 */
26c2143b 5069static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5070 .notifier_call = migration_call,
50a323b7 5071 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5072};
5073
3a101d05
TH
5074static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5075 unsigned long action, void *hcpu)
5076{
5077 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5078 case CPU_STARTING:
3a101d05
TH
5079 case CPU_DOWN_FAILED:
5080 set_cpu_active((long)hcpu, true);
5081 return NOTIFY_OK;
5082 default:
5083 return NOTIFY_DONE;
5084 }
5085}
5086
5087static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5088 unsigned long action, void *hcpu)
5089{
5090 switch (action & ~CPU_TASKS_FROZEN) {
5091 case CPU_DOWN_PREPARE:
5092 set_cpu_active((long)hcpu, false);
5093 return NOTIFY_OK;
5094 default:
5095 return NOTIFY_DONE;
5096 }
5097}
5098
7babe8db 5099static int __init migration_init(void)
1da177e4
LT
5100{
5101 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5102 int err;
48f24c4d 5103
3a101d05 5104 /* Initialize migration for the boot CPU */
07dccf33
AM
5105 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5106 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5107 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5108 register_cpu_notifier(&migration_notifier);
7babe8db 5109
3a101d05
TH
5110 /* Register cpu active notifiers */
5111 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5112 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5113
a004cd42 5114 return 0;
1da177e4 5115}
7babe8db 5116early_initcall(migration_init);
1da177e4
LT
5117#endif
5118
5119#ifdef CONFIG_SMP
476f3534 5120
4cb98839
PZ
5121static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5122
3e9830dc 5123#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5124
d039ac60 5125static __read_mostly int sched_debug_enabled;
f6630114 5126
d039ac60 5127static int __init sched_debug_setup(char *str)
f6630114 5128{
d039ac60 5129 sched_debug_enabled = 1;
f6630114
MT
5130
5131 return 0;
5132}
d039ac60
PZ
5133early_param("sched_debug", sched_debug_setup);
5134
5135static inline bool sched_debug(void)
5136{
5137 return sched_debug_enabled;
5138}
f6630114 5139
7c16ec58 5140static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5141 struct cpumask *groupmask)
1da177e4 5142{
4dcf6aff 5143 struct sched_group *group = sd->groups;
434d53b0 5144 char str[256];
1da177e4 5145
968ea6d8 5146 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5147 cpumask_clear(groupmask);
4dcf6aff
IM
5148
5149 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5150
5151 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5152 printk("does not load-balance\n");
4dcf6aff 5153 if (sd->parent)
3df0fc5b
PZ
5154 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5155 " has parent");
4dcf6aff 5156 return -1;
41c7ce9a
NP
5157 }
5158
3df0fc5b 5159 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5160
758b2cdc 5161 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5162 printk(KERN_ERR "ERROR: domain->span does not contain "
5163 "CPU%d\n", cpu);
4dcf6aff 5164 }
758b2cdc 5165 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5166 printk(KERN_ERR "ERROR: domain->groups does not contain"
5167 " CPU%d\n", cpu);
4dcf6aff 5168 }
1da177e4 5169
4dcf6aff 5170 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5171 do {
4dcf6aff 5172 if (!group) {
3df0fc5b
PZ
5173 printk("\n");
5174 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5175 break;
5176 }
5177
c3decf0d
PZ
5178 /*
5179 * Even though we initialize ->power to something semi-sane,
5180 * we leave power_orig unset. This allows us to detect if
5181 * domain iteration is still funny without causing /0 traps.
5182 */
5183 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5184 printk(KERN_CONT "\n");
5185 printk(KERN_ERR "ERROR: domain->cpu_power not "
5186 "set\n");
4dcf6aff
IM
5187 break;
5188 }
1da177e4 5189
758b2cdc 5190 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5191 printk(KERN_CONT "\n");
5192 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5193 break;
5194 }
1da177e4 5195
cb83b629
PZ
5196 if (!(sd->flags & SD_OVERLAP) &&
5197 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5198 printk(KERN_CONT "\n");
5199 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5200 break;
5201 }
1da177e4 5202
758b2cdc 5203 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5204
968ea6d8 5205 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5206
3df0fc5b 5207 printk(KERN_CONT " %s", str);
9c3f75cb 5208 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5209 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5210 group->sgp->power);
381512cf 5211 }
1da177e4 5212
4dcf6aff
IM
5213 group = group->next;
5214 } while (group != sd->groups);
3df0fc5b 5215 printk(KERN_CONT "\n");
1da177e4 5216
758b2cdc 5217 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5218 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5219
758b2cdc
RR
5220 if (sd->parent &&
5221 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5222 printk(KERN_ERR "ERROR: parent span is not a superset "
5223 "of domain->span\n");
4dcf6aff
IM
5224 return 0;
5225}
1da177e4 5226
4dcf6aff
IM
5227static void sched_domain_debug(struct sched_domain *sd, int cpu)
5228{
5229 int level = 0;
1da177e4 5230
d039ac60 5231 if (!sched_debug_enabled)
f6630114
MT
5232 return;
5233
4dcf6aff
IM
5234 if (!sd) {
5235 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5236 return;
5237 }
1da177e4 5238
4dcf6aff
IM
5239 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5240
5241 for (;;) {
4cb98839 5242 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5243 break;
1da177e4
LT
5244 level++;
5245 sd = sd->parent;
33859f7f 5246 if (!sd)
4dcf6aff
IM
5247 break;
5248 }
1da177e4 5249}
6d6bc0ad 5250#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5251# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5252static inline bool sched_debug(void)
5253{
5254 return false;
5255}
6d6bc0ad 5256#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5257
1a20ff27 5258static int sd_degenerate(struct sched_domain *sd)
245af2c7 5259{
758b2cdc 5260 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5261 return 1;
5262
5263 /* Following flags need at least 2 groups */
5264 if (sd->flags & (SD_LOAD_BALANCE |
5265 SD_BALANCE_NEWIDLE |
5266 SD_BALANCE_FORK |
89c4710e
SS
5267 SD_BALANCE_EXEC |
5268 SD_SHARE_CPUPOWER |
5269 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5270 if (sd->groups != sd->groups->next)
5271 return 0;
5272 }
5273
5274 /* Following flags don't use groups */
c88d5910 5275 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5276 return 0;
5277
5278 return 1;
5279}
5280
48f24c4d
IM
5281static int
5282sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5283{
5284 unsigned long cflags = sd->flags, pflags = parent->flags;
5285
5286 if (sd_degenerate(parent))
5287 return 1;
5288
758b2cdc 5289 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5290 return 0;
5291
245af2c7
SS
5292 /* Flags needing groups don't count if only 1 group in parent */
5293 if (parent->groups == parent->groups->next) {
5294 pflags &= ~(SD_LOAD_BALANCE |
5295 SD_BALANCE_NEWIDLE |
5296 SD_BALANCE_FORK |
89c4710e
SS
5297 SD_BALANCE_EXEC |
5298 SD_SHARE_CPUPOWER |
5299 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5300 if (nr_node_ids == 1)
5301 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5302 }
5303 if (~cflags & pflags)
5304 return 0;
5305
5306 return 1;
5307}
5308
dce840a0 5309static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5310{
dce840a0 5311 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5312
68e74568 5313 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5314 free_cpumask_var(rd->rto_mask);
5315 free_cpumask_var(rd->online);
5316 free_cpumask_var(rd->span);
5317 kfree(rd);
5318}
5319
57d885fe
GH
5320static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5321{
a0490fa3 5322 struct root_domain *old_rd = NULL;
57d885fe 5323 unsigned long flags;
57d885fe 5324
05fa785c 5325 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5326
5327 if (rq->rd) {
a0490fa3 5328 old_rd = rq->rd;
57d885fe 5329
c6c4927b 5330 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5331 set_rq_offline(rq);
57d885fe 5332
c6c4927b 5333 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5334
a0490fa3
IM
5335 /*
5336 * If we dont want to free the old_rt yet then
5337 * set old_rd to NULL to skip the freeing later
5338 * in this function:
5339 */
5340 if (!atomic_dec_and_test(&old_rd->refcount))
5341 old_rd = NULL;
57d885fe
GH
5342 }
5343
5344 atomic_inc(&rd->refcount);
5345 rq->rd = rd;
5346
c6c4927b 5347 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5348 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5349 set_rq_online(rq);
57d885fe 5350
05fa785c 5351 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5352
5353 if (old_rd)
dce840a0 5354 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5355}
5356
68c38fc3 5357static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5358{
5359 memset(rd, 0, sizeof(*rd));
5360
68c38fc3 5361 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5362 goto out;
68c38fc3 5363 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5364 goto free_span;
68c38fc3 5365 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5366 goto free_online;
6e0534f2 5367
68c38fc3 5368 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5369 goto free_rto_mask;
c6c4927b 5370 return 0;
6e0534f2 5371
68e74568
RR
5372free_rto_mask:
5373 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5374free_online:
5375 free_cpumask_var(rd->online);
5376free_span:
5377 free_cpumask_var(rd->span);
0c910d28 5378out:
c6c4927b 5379 return -ENOMEM;
57d885fe
GH
5380}
5381
029632fb
PZ
5382/*
5383 * By default the system creates a single root-domain with all cpus as
5384 * members (mimicking the global state we have today).
5385 */
5386struct root_domain def_root_domain;
5387
57d885fe
GH
5388static void init_defrootdomain(void)
5389{
68c38fc3 5390 init_rootdomain(&def_root_domain);
c6c4927b 5391
57d885fe
GH
5392 atomic_set(&def_root_domain.refcount, 1);
5393}
5394
dc938520 5395static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5396{
5397 struct root_domain *rd;
5398
5399 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5400 if (!rd)
5401 return NULL;
5402
68c38fc3 5403 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5404 kfree(rd);
5405 return NULL;
5406 }
57d885fe
GH
5407
5408 return rd;
5409}
5410
e3589f6c
PZ
5411static void free_sched_groups(struct sched_group *sg, int free_sgp)
5412{
5413 struct sched_group *tmp, *first;
5414
5415 if (!sg)
5416 return;
5417
5418 first = sg;
5419 do {
5420 tmp = sg->next;
5421
5422 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5423 kfree(sg->sgp);
5424
5425 kfree(sg);
5426 sg = tmp;
5427 } while (sg != first);
5428}
5429
dce840a0
PZ
5430static void free_sched_domain(struct rcu_head *rcu)
5431{
5432 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5433
5434 /*
5435 * If its an overlapping domain it has private groups, iterate and
5436 * nuke them all.
5437 */
5438 if (sd->flags & SD_OVERLAP) {
5439 free_sched_groups(sd->groups, 1);
5440 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5441 kfree(sd->groups->sgp);
dce840a0 5442 kfree(sd->groups);
9c3f75cb 5443 }
dce840a0
PZ
5444 kfree(sd);
5445}
5446
5447static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5448{
5449 call_rcu(&sd->rcu, free_sched_domain);
5450}
5451
5452static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5453{
5454 for (; sd; sd = sd->parent)
5455 destroy_sched_domain(sd, cpu);
5456}
5457
518cd623
PZ
5458/*
5459 * Keep a special pointer to the highest sched_domain that has
5460 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5461 * allows us to avoid some pointer chasing select_idle_sibling().
5462 *
970e1789
MG
5463 * Iterate domains and sched_groups downward, assigning CPUs to be
5464 * select_idle_sibling() hw buddy. Cross-wiring hw makes bouncing
5465 * due to random perturbation self canceling, ie sw buddies pull
5466 * their counterpart to their CPU's hw counterpart.
5467 *
518cd623
PZ
5468 * Also keep a unique ID per domain (we use the first cpu number in
5469 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5470 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5471 */
5472DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5473DEFINE_PER_CPU(int, sd_llc_id);
5474
5475static void update_top_cache_domain(int cpu)
5476{
5477 struct sched_domain *sd;
5478 int id = cpu;
5479
5480 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
970e1789
MG
5481 if (sd) {
5482 struct sched_domain *tmp = sd;
5483 struct sched_group *sg, *prev;
5484 bool right;
5485
5486 /*
5487 * Traverse to first CPU in group, and count hops
5488 * to cpu from there, switching direction on each
5489 * hop, never ever pointing the last CPU rightward.
5490 */
5491 do {
5492 id = cpumask_first(sched_domain_span(tmp));
5493 prev = sg = tmp->groups;
5494 right = 1;
5495
5496 while (cpumask_first(sched_group_cpus(sg)) != id)
5497 sg = sg->next;
5498
5499 while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
5500 prev = sg;
5501 sg = sg->next;
5502 right = !right;
5503 }
5504
5505 /* A CPU went down, never point back to domain start. */
5506 if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
5507 right = false;
5508
5509 sg = right ? sg->next : prev;
5510 tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
5511 } while ((tmp = tmp->child));
5512
518cd623 5513 id = cpumask_first(sched_domain_span(sd));
970e1789 5514 }
518cd623
PZ
5515
5516 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5517 per_cpu(sd_llc_id, cpu) = id;
5518}
5519
1da177e4 5520/*
0eab9146 5521 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5522 * hold the hotplug lock.
5523 */
0eab9146
IM
5524static void
5525cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5526{
70b97a7f 5527 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5528 struct sched_domain *tmp;
5529
5530 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5531 for (tmp = sd; tmp; ) {
245af2c7
SS
5532 struct sched_domain *parent = tmp->parent;
5533 if (!parent)
5534 break;
f29c9b1c 5535
1a848870 5536 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5537 tmp->parent = parent->parent;
1a848870
SS
5538 if (parent->parent)
5539 parent->parent->child = tmp;
dce840a0 5540 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5541 } else
5542 tmp = tmp->parent;
245af2c7
SS
5543 }
5544
1a848870 5545 if (sd && sd_degenerate(sd)) {
dce840a0 5546 tmp = sd;
245af2c7 5547 sd = sd->parent;
dce840a0 5548 destroy_sched_domain(tmp, cpu);
1a848870
SS
5549 if (sd)
5550 sd->child = NULL;
5551 }
1da177e4 5552
4cb98839 5553 sched_domain_debug(sd, cpu);
1da177e4 5554
57d885fe 5555 rq_attach_root(rq, rd);
dce840a0 5556 tmp = rq->sd;
674311d5 5557 rcu_assign_pointer(rq->sd, sd);
dce840a0 5558 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5559
5560 update_top_cache_domain(cpu);
1da177e4
LT
5561}
5562
5563/* cpus with isolated domains */
dcc30a35 5564static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5565
5566/* Setup the mask of cpus configured for isolated domains */
5567static int __init isolated_cpu_setup(char *str)
5568{
bdddd296 5569 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5570 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5571 return 1;
5572}
5573
8927f494 5574__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5575
d3081f52
PZ
5576static const struct cpumask *cpu_cpu_mask(int cpu)
5577{
5578 return cpumask_of_node(cpu_to_node(cpu));
5579}
5580
dce840a0
PZ
5581struct sd_data {
5582 struct sched_domain **__percpu sd;
5583 struct sched_group **__percpu sg;
9c3f75cb 5584 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5585};
5586
49a02c51 5587struct s_data {
21d42ccf 5588 struct sched_domain ** __percpu sd;
49a02c51
AH
5589 struct root_domain *rd;
5590};
5591
2109b99e 5592enum s_alloc {
2109b99e 5593 sa_rootdomain,
21d42ccf 5594 sa_sd,
dce840a0 5595 sa_sd_storage,
2109b99e
AH
5596 sa_none,
5597};
5598
54ab4ff4
PZ
5599struct sched_domain_topology_level;
5600
5601typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5602typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5603
e3589f6c
PZ
5604#define SDTL_OVERLAP 0x01
5605
eb7a74e6 5606struct sched_domain_topology_level {
2c402dc3
PZ
5607 sched_domain_init_f init;
5608 sched_domain_mask_f mask;
e3589f6c 5609 int flags;
cb83b629 5610 int numa_level;
54ab4ff4 5611 struct sd_data data;
eb7a74e6
PZ
5612};
5613
c1174876
PZ
5614/*
5615 * Build an iteration mask that can exclude certain CPUs from the upwards
5616 * domain traversal.
5617 *
5618 * Asymmetric node setups can result in situations where the domain tree is of
5619 * unequal depth, make sure to skip domains that already cover the entire
5620 * range.
5621 *
5622 * In that case build_sched_domains() will have terminated the iteration early
5623 * and our sibling sd spans will be empty. Domains should always include the
5624 * cpu they're built on, so check that.
5625 *
5626 */
5627static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5628{
5629 const struct cpumask *span = sched_domain_span(sd);
5630 struct sd_data *sdd = sd->private;
5631 struct sched_domain *sibling;
5632 int i;
5633
5634 for_each_cpu(i, span) {
5635 sibling = *per_cpu_ptr(sdd->sd, i);
5636 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5637 continue;
5638
5639 cpumask_set_cpu(i, sched_group_mask(sg));
5640 }
5641}
5642
5643/*
5644 * Return the canonical balance cpu for this group, this is the first cpu
5645 * of this group that's also in the iteration mask.
5646 */
5647int group_balance_cpu(struct sched_group *sg)
5648{
5649 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5650}
5651
e3589f6c
PZ
5652static int
5653build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5654{
5655 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5656 const struct cpumask *span = sched_domain_span(sd);
5657 struct cpumask *covered = sched_domains_tmpmask;
5658 struct sd_data *sdd = sd->private;
5659 struct sched_domain *child;
5660 int i;
5661
5662 cpumask_clear(covered);
5663
5664 for_each_cpu(i, span) {
5665 struct cpumask *sg_span;
5666
5667 if (cpumask_test_cpu(i, covered))
5668 continue;
5669
c1174876
PZ
5670 child = *per_cpu_ptr(sdd->sd, i);
5671
5672 /* See the comment near build_group_mask(). */
5673 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5674 continue;
5675
e3589f6c 5676 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5677 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5678
5679 if (!sg)
5680 goto fail;
5681
5682 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5683 if (child->child) {
5684 child = child->child;
5685 cpumask_copy(sg_span, sched_domain_span(child));
5686 } else
5687 cpumask_set_cpu(i, sg_span);
5688
5689 cpumask_or(covered, covered, sg_span);
5690
74a5ce20 5691 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5692 if (atomic_inc_return(&sg->sgp->ref) == 1)
5693 build_group_mask(sd, sg);
5694
c3decf0d
PZ
5695 /*
5696 * Initialize sgp->power such that even if we mess up the
5697 * domains and no possible iteration will get us here, we won't
5698 * die on a /0 trap.
5699 */
5700 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5701
c1174876
PZ
5702 /*
5703 * Make sure the first group of this domain contains the
5704 * canonical balance cpu. Otherwise the sched_domain iteration
5705 * breaks. See update_sg_lb_stats().
5706 */
74a5ce20 5707 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5708 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5709 groups = sg;
5710
5711 if (!first)
5712 first = sg;
5713 if (last)
5714 last->next = sg;
5715 last = sg;
5716 last->next = first;
5717 }
5718 sd->groups = groups;
5719
5720 return 0;
5721
5722fail:
5723 free_sched_groups(first, 0);
5724
5725 return -ENOMEM;
5726}
5727
dce840a0 5728static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5729{
dce840a0
PZ
5730 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5731 struct sched_domain *child = sd->child;
1da177e4 5732
dce840a0
PZ
5733 if (child)
5734 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5735
9c3f75cb 5736 if (sg) {
dce840a0 5737 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5738 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5739 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5740 }
dce840a0
PZ
5741
5742 return cpu;
1e9f28fa 5743}
1e9f28fa 5744
01a08546 5745/*
dce840a0
PZ
5746 * build_sched_groups will build a circular linked list of the groups
5747 * covered by the given span, and will set each group's ->cpumask correctly,
5748 * and ->cpu_power to 0.
e3589f6c
PZ
5749 *
5750 * Assumes the sched_domain tree is fully constructed
01a08546 5751 */
e3589f6c
PZ
5752static int
5753build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5754{
dce840a0
PZ
5755 struct sched_group *first = NULL, *last = NULL;
5756 struct sd_data *sdd = sd->private;
5757 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5758 struct cpumask *covered;
dce840a0 5759 int i;
9c1cfda2 5760
e3589f6c
PZ
5761 get_group(cpu, sdd, &sd->groups);
5762 atomic_inc(&sd->groups->ref);
5763
5764 if (cpu != cpumask_first(sched_domain_span(sd)))
5765 return 0;
5766
f96225fd
PZ
5767 lockdep_assert_held(&sched_domains_mutex);
5768 covered = sched_domains_tmpmask;
5769
dce840a0 5770 cpumask_clear(covered);
6711cab4 5771
dce840a0
PZ
5772 for_each_cpu(i, span) {
5773 struct sched_group *sg;
5774 int group = get_group(i, sdd, &sg);
5775 int j;
6711cab4 5776
dce840a0
PZ
5777 if (cpumask_test_cpu(i, covered))
5778 continue;
6711cab4 5779
dce840a0 5780 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5781 sg->sgp->power = 0;
c1174876 5782 cpumask_setall(sched_group_mask(sg));
0601a88d 5783
dce840a0
PZ
5784 for_each_cpu(j, span) {
5785 if (get_group(j, sdd, NULL) != group)
5786 continue;
0601a88d 5787
dce840a0
PZ
5788 cpumask_set_cpu(j, covered);
5789 cpumask_set_cpu(j, sched_group_cpus(sg));
5790 }
0601a88d 5791
dce840a0
PZ
5792 if (!first)
5793 first = sg;
5794 if (last)
5795 last->next = sg;
5796 last = sg;
5797 }
5798 last->next = first;
e3589f6c
PZ
5799
5800 return 0;
0601a88d 5801}
51888ca2 5802
89c4710e
SS
5803/*
5804 * Initialize sched groups cpu_power.
5805 *
5806 * cpu_power indicates the capacity of sched group, which is used while
5807 * distributing the load between different sched groups in a sched domain.
5808 * Typically cpu_power for all the groups in a sched domain will be same unless
5809 * there are asymmetries in the topology. If there are asymmetries, group
5810 * having more cpu_power will pickup more load compared to the group having
5811 * less cpu_power.
89c4710e
SS
5812 */
5813static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5814{
e3589f6c 5815 struct sched_group *sg = sd->groups;
89c4710e 5816
e3589f6c
PZ
5817 WARN_ON(!sd || !sg);
5818
5819 do {
5820 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5821 sg = sg->next;
5822 } while (sg != sd->groups);
89c4710e 5823
c1174876 5824 if (cpu != group_balance_cpu(sg))
e3589f6c 5825 return;
aae6d3dd 5826
d274cb30 5827 update_group_power(sd, cpu);
69e1e811 5828 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5829}
5830
029632fb
PZ
5831int __weak arch_sd_sibling_asym_packing(void)
5832{
5833 return 0*SD_ASYM_PACKING;
89c4710e
SS
5834}
5835
7c16ec58
MT
5836/*
5837 * Initializers for schedule domains
5838 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5839 */
5840
a5d8c348
IM
5841#ifdef CONFIG_SCHED_DEBUG
5842# define SD_INIT_NAME(sd, type) sd->name = #type
5843#else
5844# define SD_INIT_NAME(sd, type) do { } while (0)
5845#endif
5846
54ab4ff4
PZ
5847#define SD_INIT_FUNC(type) \
5848static noinline struct sched_domain * \
5849sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5850{ \
5851 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5852 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5853 SD_INIT_NAME(sd, type); \
5854 sd->private = &tl->data; \
5855 return sd; \
7c16ec58
MT
5856}
5857
5858SD_INIT_FUNC(CPU)
7c16ec58
MT
5859#ifdef CONFIG_SCHED_SMT
5860 SD_INIT_FUNC(SIBLING)
5861#endif
5862#ifdef CONFIG_SCHED_MC
5863 SD_INIT_FUNC(MC)
5864#endif
01a08546
HC
5865#ifdef CONFIG_SCHED_BOOK
5866 SD_INIT_FUNC(BOOK)
5867#endif
7c16ec58 5868
1d3504fc 5869static int default_relax_domain_level = -1;
60495e77 5870int sched_domain_level_max;
1d3504fc
HS
5871
5872static int __init setup_relax_domain_level(char *str)
5873{
a841f8ce
DS
5874 if (kstrtoint(str, 0, &default_relax_domain_level))
5875 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5876
1d3504fc
HS
5877 return 1;
5878}
5879__setup("relax_domain_level=", setup_relax_domain_level);
5880
5881static void set_domain_attribute(struct sched_domain *sd,
5882 struct sched_domain_attr *attr)
5883{
5884 int request;
5885
5886 if (!attr || attr->relax_domain_level < 0) {
5887 if (default_relax_domain_level < 0)
5888 return;
5889 else
5890 request = default_relax_domain_level;
5891 } else
5892 request = attr->relax_domain_level;
5893 if (request < sd->level) {
5894 /* turn off idle balance on this domain */
c88d5910 5895 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5896 } else {
5897 /* turn on idle balance on this domain */
c88d5910 5898 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5899 }
5900}
5901
54ab4ff4
PZ
5902static void __sdt_free(const struct cpumask *cpu_map);
5903static int __sdt_alloc(const struct cpumask *cpu_map);
5904
2109b99e
AH
5905static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5906 const struct cpumask *cpu_map)
5907{
5908 switch (what) {
2109b99e 5909 case sa_rootdomain:
822ff793
PZ
5910 if (!atomic_read(&d->rd->refcount))
5911 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5912 case sa_sd:
5913 free_percpu(d->sd); /* fall through */
dce840a0 5914 case sa_sd_storage:
54ab4ff4 5915 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5916 case sa_none:
5917 break;
5918 }
5919}
3404c8d9 5920
2109b99e
AH
5921static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5922 const struct cpumask *cpu_map)
5923{
dce840a0
PZ
5924 memset(d, 0, sizeof(*d));
5925
54ab4ff4
PZ
5926 if (__sdt_alloc(cpu_map))
5927 return sa_sd_storage;
dce840a0
PZ
5928 d->sd = alloc_percpu(struct sched_domain *);
5929 if (!d->sd)
5930 return sa_sd_storage;
2109b99e 5931 d->rd = alloc_rootdomain();
dce840a0 5932 if (!d->rd)
21d42ccf 5933 return sa_sd;
2109b99e
AH
5934 return sa_rootdomain;
5935}
57d885fe 5936
dce840a0
PZ
5937/*
5938 * NULL the sd_data elements we've used to build the sched_domain and
5939 * sched_group structure so that the subsequent __free_domain_allocs()
5940 * will not free the data we're using.
5941 */
5942static void claim_allocations(int cpu, struct sched_domain *sd)
5943{
5944 struct sd_data *sdd = sd->private;
dce840a0
PZ
5945
5946 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5947 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5948
e3589f6c 5949 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5950 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5951
5952 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5953 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5954}
5955
2c402dc3
PZ
5956#ifdef CONFIG_SCHED_SMT
5957static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5958{
2c402dc3 5959 return topology_thread_cpumask(cpu);
3bd65a80 5960}
2c402dc3 5961#endif
7f4588f3 5962
d069b916
PZ
5963/*
5964 * Topology list, bottom-up.
5965 */
2c402dc3 5966static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5967#ifdef CONFIG_SCHED_SMT
5968 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5969#endif
1e9f28fa 5970#ifdef CONFIG_SCHED_MC
2c402dc3 5971 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5972#endif
d069b916
PZ
5973#ifdef CONFIG_SCHED_BOOK
5974 { sd_init_BOOK, cpu_book_mask, },
5975#endif
5976 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5977 { NULL, },
5978};
5979
5980static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5981
cb83b629
PZ
5982#ifdef CONFIG_NUMA
5983
5984static int sched_domains_numa_levels;
cb83b629
PZ
5985static int *sched_domains_numa_distance;
5986static struct cpumask ***sched_domains_numa_masks;
5987static int sched_domains_curr_level;
5988
cb83b629
PZ
5989static inline int sd_local_flags(int level)
5990{
10717dcd 5991 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5992 return 0;
5993
5994 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5995}
5996
5997static struct sched_domain *
5998sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5999{
6000 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6001 int level = tl->numa_level;
6002 int sd_weight = cpumask_weight(
6003 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6004
6005 *sd = (struct sched_domain){
6006 .min_interval = sd_weight,
6007 .max_interval = 2*sd_weight,
6008 .busy_factor = 32,
870a0bb5 6009 .imbalance_pct = 125,
cb83b629
PZ
6010 .cache_nice_tries = 2,
6011 .busy_idx = 3,
6012 .idle_idx = 2,
6013 .newidle_idx = 0,
6014 .wake_idx = 0,
6015 .forkexec_idx = 0,
6016
6017 .flags = 1*SD_LOAD_BALANCE
6018 | 1*SD_BALANCE_NEWIDLE
6019 | 0*SD_BALANCE_EXEC
6020 | 0*SD_BALANCE_FORK
6021 | 0*SD_BALANCE_WAKE
6022 | 0*SD_WAKE_AFFINE
cb83b629 6023 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6024 | 0*SD_SHARE_PKG_RESOURCES
6025 | 1*SD_SERIALIZE
6026 | 0*SD_PREFER_SIBLING
6027 | sd_local_flags(level)
6028 ,
6029 .last_balance = jiffies,
6030 .balance_interval = sd_weight,
6031 };
6032 SD_INIT_NAME(sd, NUMA);
6033 sd->private = &tl->data;
6034
6035 /*
6036 * Ugly hack to pass state to sd_numa_mask()...
6037 */
6038 sched_domains_curr_level = tl->numa_level;
6039
6040 return sd;
6041}
6042
6043static const struct cpumask *sd_numa_mask(int cpu)
6044{
6045 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6046}
6047
d039ac60
PZ
6048static void sched_numa_warn(const char *str)
6049{
6050 static int done = false;
6051 int i,j;
6052
6053 if (done)
6054 return;
6055
6056 done = true;
6057
6058 printk(KERN_WARNING "ERROR: %s\n\n", str);
6059
6060 for (i = 0; i < nr_node_ids; i++) {
6061 printk(KERN_WARNING " ");
6062 for (j = 0; j < nr_node_ids; j++)
6063 printk(KERN_CONT "%02d ", node_distance(i,j));
6064 printk(KERN_CONT "\n");
6065 }
6066 printk(KERN_WARNING "\n");
6067}
6068
6069static bool find_numa_distance(int distance)
6070{
6071 int i;
6072
6073 if (distance == node_distance(0, 0))
6074 return true;
6075
6076 for (i = 0; i < sched_domains_numa_levels; i++) {
6077 if (sched_domains_numa_distance[i] == distance)
6078 return true;
6079 }
6080
6081 return false;
6082}
6083
cb83b629
PZ
6084static void sched_init_numa(void)
6085{
6086 int next_distance, curr_distance = node_distance(0, 0);
6087 struct sched_domain_topology_level *tl;
6088 int level = 0;
6089 int i, j, k;
6090
cb83b629
PZ
6091 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6092 if (!sched_domains_numa_distance)
6093 return;
6094
6095 /*
6096 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6097 * unique distances in the node_distance() table.
6098 *
6099 * Assumes node_distance(0,j) includes all distances in
6100 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6101 */
6102 next_distance = curr_distance;
6103 for (i = 0; i < nr_node_ids; i++) {
6104 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6105 for (k = 0; k < nr_node_ids; k++) {
6106 int distance = node_distance(i, k);
6107
6108 if (distance > curr_distance &&
6109 (distance < next_distance ||
6110 next_distance == curr_distance))
6111 next_distance = distance;
6112
6113 /*
6114 * While not a strong assumption it would be nice to know
6115 * about cases where if node A is connected to B, B is not
6116 * equally connected to A.
6117 */
6118 if (sched_debug() && node_distance(k, i) != distance)
6119 sched_numa_warn("Node-distance not symmetric");
6120
6121 if (sched_debug() && i && !find_numa_distance(distance))
6122 sched_numa_warn("Node-0 not representative");
6123 }
6124 if (next_distance != curr_distance) {
6125 sched_domains_numa_distance[level++] = next_distance;
6126 sched_domains_numa_levels = level;
6127 curr_distance = next_distance;
6128 } else break;
cb83b629 6129 }
d039ac60
PZ
6130
6131 /*
6132 * In case of sched_debug() we verify the above assumption.
6133 */
6134 if (!sched_debug())
6135 break;
cb83b629
PZ
6136 }
6137 /*
6138 * 'level' contains the number of unique distances, excluding the
6139 * identity distance node_distance(i,i).
6140 *
6141 * The sched_domains_nume_distance[] array includes the actual distance
6142 * numbers.
6143 */
6144
6145 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6146 if (!sched_domains_numa_masks)
6147 return;
6148
6149 /*
6150 * Now for each level, construct a mask per node which contains all
6151 * cpus of nodes that are that many hops away from us.
6152 */
6153 for (i = 0; i < level; i++) {
6154 sched_domains_numa_masks[i] =
6155 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6156 if (!sched_domains_numa_masks[i])
6157 return;
6158
6159 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6160 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6161 if (!mask)
6162 return;
6163
6164 sched_domains_numa_masks[i][j] = mask;
6165
6166 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6167 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6168 continue;
6169
6170 cpumask_or(mask, mask, cpumask_of_node(k));
6171 }
6172 }
6173 }
6174
6175 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6176 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6177 if (!tl)
6178 return;
6179
6180 /*
6181 * Copy the default topology bits..
6182 */
6183 for (i = 0; default_topology[i].init; i++)
6184 tl[i] = default_topology[i];
6185
6186 /*
6187 * .. and append 'j' levels of NUMA goodness.
6188 */
6189 for (j = 0; j < level; i++, j++) {
6190 tl[i] = (struct sched_domain_topology_level){
6191 .init = sd_numa_init,
6192 .mask = sd_numa_mask,
6193 .flags = SDTL_OVERLAP,
6194 .numa_level = j,
6195 };
6196 }
6197
6198 sched_domain_topology = tl;
6199}
6200#else
6201static inline void sched_init_numa(void)
6202{
6203}
6204#endif /* CONFIG_NUMA */
6205
54ab4ff4
PZ
6206static int __sdt_alloc(const struct cpumask *cpu_map)
6207{
6208 struct sched_domain_topology_level *tl;
6209 int j;
6210
6211 for (tl = sched_domain_topology; tl->init; tl++) {
6212 struct sd_data *sdd = &tl->data;
6213
6214 sdd->sd = alloc_percpu(struct sched_domain *);
6215 if (!sdd->sd)
6216 return -ENOMEM;
6217
6218 sdd->sg = alloc_percpu(struct sched_group *);
6219 if (!sdd->sg)
6220 return -ENOMEM;
6221
9c3f75cb
PZ
6222 sdd->sgp = alloc_percpu(struct sched_group_power *);
6223 if (!sdd->sgp)
6224 return -ENOMEM;
6225
54ab4ff4
PZ
6226 for_each_cpu(j, cpu_map) {
6227 struct sched_domain *sd;
6228 struct sched_group *sg;
9c3f75cb 6229 struct sched_group_power *sgp;
54ab4ff4
PZ
6230
6231 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6232 GFP_KERNEL, cpu_to_node(j));
6233 if (!sd)
6234 return -ENOMEM;
6235
6236 *per_cpu_ptr(sdd->sd, j) = sd;
6237
6238 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6239 GFP_KERNEL, cpu_to_node(j));
6240 if (!sg)
6241 return -ENOMEM;
6242
30b4e9eb
IM
6243 sg->next = sg;
6244
54ab4ff4 6245 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6246
c1174876 6247 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6248 GFP_KERNEL, cpu_to_node(j));
6249 if (!sgp)
6250 return -ENOMEM;
6251
6252 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6253 }
6254 }
6255
6256 return 0;
6257}
6258
6259static void __sdt_free(const struct cpumask *cpu_map)
6260{
6261 struct sched_domain_topology_level *tl;
6262 int j;
6263
6264 for (tl = sched_domain_topology; tl->init; tl++) {
6265 struct sd_data *sdd = &tl->data;
6266
6267 for_each_cpu(j, cpu_map) {
fb2cf2c6 6268 struct sched_domain *sd;
6269
6270 if (sdd->sd) {
6271 sd = *per_cpu_ptr(sdd->sd, j);
6272 if (sd && (sd->flags & SD_OVERLAP))
6273 free_sched_groups(sd->groups, 0);
6274 kfree(*per_cpu_ptr(sdd->sd, j));
6275 }
6276
6277 if (sdd->sg)
6278 kfree(*per_cpu_ptr(sdd->sg, j));
6279 if (sdd->sgp)
6280 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6281 }
6282 free_percpu(sdd->sd);
fb2cf2c6 6283 sdd->sd = NULL;
54ab4ff4 6284 free_percpu(sdd->sg);
fb2cf2c6 6285 sdd->sg = NULL;
9c3f75cb 6286 free_percpu(sdd->sgp);
fb2cf2c6 6287 sdd->sgp = NULL;
54ab4ff4
PZ
6288 }
6289}
6290
2c402dc3
PZ
6291struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6292 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6293 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6294 int cpu)
6295{
54ab4ff4 6296 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6297 if (!sd)
d069b916 6298 return child;
2c402dc3 6299
2c402dc3 6300 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6301 if (child) {
6302 sd->level = child->level + 1;
6303 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6304 child->parent = sd;
60495e77 6305 }
d069b916 6306 sd->child = child;
a841f8ce 6307 set_domain_attribute(sd, attr);
2c402dc3
PZ
6308
6309 return sd;
6310}
6311
2109b99e
AH
6312/*
6313 * Build sched domains for a given set of cpus and attach the sched domains
6314 * to the individual cpus
6315 */
dce840a0
PZ
6316static int build_sched_domains(const struct cpumask *cpu_map,
6317 struct sched_domain_attr *attr)
2109b99e
AH
6318{
6319 enum s_alloc alloc_state = sa_none;
dce840a0 6320 struct sched_domain *sd;
2109b99e 6321 struct s_data d;
822ff793 6322 int i, ret = -ENOMEM;
9c1cfda2 6323
2109b99e
AH
6324 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6325 if (alloc_state != sa_rootdomain)
6326 goto error;
9c1cfda2 6327
dce840a0 6328 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6329 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6330 struct sched_domain_topology_level *tl;
6331
3bd65a80 6332 sd = NULL;
e3589f6c 6333 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6334 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6335 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6336 sd->flags |= SD_OVERLAP;
d110235d
PZ
6337 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6338 break;
e3589f6c 6339 }
d274cb30 6340
d069b916
PZ
6341 while (sd->child)
6342 sd = sd->child;
6343
21d42ccf 6344 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6345 }
6346
6347 /* Build the groups for the domains */
6348 for_each_cpu(i, cpu_map) {
6349 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6350 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6351 if (sd->flags & SD_OVERLAP) {
6352 if (build_overlap_sched_groups(sd, i))
6353 goto error;
6354 } else {
6355 if (build_sched_groups(sd, i))
6356 goto error;
6357 }
1cf51902 6358 }
a06dadbe 6359 }
9c1cfda2 6360
1da177e4 6361 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6362 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6363 if (!cpumask_test_cpu(i, cpu_map))
6364 continue;
9c1cfda2 6365
dce840a0
PZ
6366 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6367 claim_allocations(i, sd);
cd4ea6ae 6368 init_sched_groups_power(i, sd);
dce840a0 6369 }
f712c0c7 6370 }
9c1cfda2 6371
1da177e4 6372 /* Attach the domains */
dce840a0 6373 rcu_read_lock();
abcd083a 6374 for_each_cpu(i, cpu_map) {
21d42ccf 6375 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6376 cpu_attach_domain(sd, d.rd, i);
1da177e4 6377 }
dce840a0 6378 rcu_read_unlock();
51888ca2 6379
822ff793 6380 ret = 0;
51888ca2 6381error:
2109b99e 6382 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6383 return ret;
1da177e4 6384}
029190c5 6385
acc3f5d7 6386static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6387static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6388static struct sched_domain_attr *dattr_cur;
6389 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6390
6391/*
6392 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6393 * cpumask) fails, then fallback to a single sched domain,
6394 * as determined by the single cpumask fallback_doms.
029190c5 6395 */
4212823f 6396static cpumask_var_t fallback_doms;
029190c5 6397
ee79d1bd
HC
6398/*
6399 * arch_update_cpu_topology lets virtualized architectures update the
6400 * cpu core maps. It is supposed to return 1 if the topology changed
6401 * or 0 if it stayed the same.
6402 */
6403int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6404{
ee79d1bd 6405 return 0;
22e52b07
HC
6406}
6407
acc3f5d7
RR
6408cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6409{
6410 int i;
6411 cpumask_var_t *doms;
6412
6413 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6414 if (!doms)
6415 return NULL;
6416 for (i = 0; i < ndoms; i++) {
6417 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6418 free_sched_domains(doms, i);
6419 return NULL;
6420 }
6421 }
6422 return doms;
6423}
6424
6425void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6426{
6427 unsigned int i;
6428 for (i = 0; i < ndoms; i++)
6429 free_cpumask_var(doms[i]);
6430 kfree(doms);
6431}
6432
1a20ff27 6433/*
41a2d6cf 6434 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6435 * For now this just excludes isolated cpus, but could be used to
6436 * exclude other special cases in the future.
1a20ff27 6437 */
c4a8849a 6438static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6439{
7378547f
MM
6440 int err;
6441
22e52b07 6442 arch_update_cpu_topology();
029190c5 6443 ndoms_cur = 1;
acc3f5d7 6444 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6445 if (!doms_cur)
acc3f5d7
RR
6446 doms_cur = &fallback_doms;
6447 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6448 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6449 register_sched_domain_sysctl();
7378547f
MM
6450
6451 return err;
1a20ff27
DG
6452}
6453
1a20ff27
DG
6454/*
6455 * Detach sched domains from a group of cpus specified in cpu_map
6456 * These cpus will now be attached to the NULL domain
6457 */
96f874e2 6458static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6459{
6460 int i;
6461
dce840a0 6462 rcu_read_lock();
abcd083a 6463 for_each_cpu(i, cpu_map)
57d885fe 6464 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6465 rcu_read_unlock();
1a20ff27
DG
6466}
6467
1d3504fc
HS
6468/* handle null as "default" */
6469static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6470 struct sched_domain_attr *new, int idx_new)
6471{
6472 struct sched_domain_attr tmp;
6473
6474 /* fast path */
6475 if (!new && !cur)
6476 return 1;
6477
6478 tmp = SD_ATTR_INIT;
6479 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6480 new ? (new + idx_new) : &tmp,
6481 sizeof(struct sched_domain_attr));
6482}
6483
029190c5
PJ
6484/*
6485 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6486 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6487 * doms_new[] to the current sched domain partitioning, doms_cur[].
6488 * It destroys each deleted domain and builds each new domain.
6489 *
acc3f5d7 6490 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6491 * The masks don't intersect (don't overlap.) We should setup one
6492 * sched domain for each mask. CPUs not in any of the cpumasks will
6493 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6494 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6495 * it as it is.
6496 *
acc3f5d7
RR
6497 * The passed in 'doms_new' should be allocated using
6498 * alloc_sched_domains. This routine takes ownership of it and will
6499 * free_sched_domains it when done with it. If the caller failed the
6500 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6501 * and partition_sched_domains() will fallback to the single partition
6502 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6503 *
96f874e2 6504 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6505 * ndoms_new == 0 is a special case for destroying existing domains,
6506 * and it will not create the default domain.
dfb512ec 6507 *
029190c5
PJ
6508 * Call with hotplug lock held
6509 */
acc3f5d7 6510void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6511 struct sched_domain_attr *dattr_new)
029190c5 6512{
dfb512ec 6513 int i, j, n;
d65bd5ec 6514 int new_topology;
029190c5 6515
712555ee 6516 mutex_lock(&sched_domains_mutex);
a1835615 6517
7378547f
MM
6518 /* always unregister in case we don't destroy any domains */
6519 unregister_sched_domain_sysctl();
6520
d65bd5ec
HC
6521 /* Let architecture update cpu core mappings. */
6522 new_topology = arch_update_cpu_topology();
6523
dfb512ec 6524 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6525
6526 /* Destroy deleted domains */
6527 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6528 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6529 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6530 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6531 goto match1;
6532 }
6533 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6534 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6535match1:
6536 ;
6537 }
6538
e761b772
MK
6539 if (doms_new == NULL) {
6540 ndoms_cur = 0;
acc3f5d7 6541 doms_new = &fallback_doms;
6ad4c188 6542 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6543 WARN_ON_ONCE(dattr_new);
e761b772
MK
6544 }
6545
029190c5
PJ
6546 /* Build new domains */
6547 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6548 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6549 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6550 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6551 goto match2;
6552 }
6553 /* no match - add a new doms_new */
dce840a0 6554 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6555match2:
6556 ;
6557 }
6558
6559 /* Remember the new sched domains */
acc3f5d7
RR
6560 if (doms_cur != &fallback_doms)
6561 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6562 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6563 doms_cur = doms_new;
1d3504fc 6564 dattr_cur = dattr_new;
029190c5 6565 ndoms_cur = ndoms_new;
7378547f
MM
6566
6567 register_sched_domain_sysctl();
a1835615 6568
712555ee 6569 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6570}
6571
d35be8ba
SB
6572static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6573
1da177e4 6574/*
3a101d05
TH
6575 * Update cpusets according to cpu_active mask. If cpusets are
6576 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6577 * around partition_sched_domains().
d35be8ba
SB
6578 *
6579 * If we come here as part of a suspend/resume, don't touch cpusets because we
6580 * want to restore it back to its original state upon resume anyway.
1da177e4 6581 */
0b2e918a
TH
6582static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6583 void *hcpu)
e761b772 6584{
d35be8ba
SB
6585 switch (action) {
6586 case CPU_ONLINE_FROZEN:
6587 case CPU_DOWN_FAILED_FROZEN:
6588
6589 /*
6590 * num_cpus_frozen tracks how many CPUs are involved in suspend
6591 * resume sequence. As long as this is not the last online
6592 * operation in the resume sequence, just build a single sched
6593 * domain, ignoring cpusets.
6594 */
6595 num_cpus_frozen--;
6596 if (likely(num_cpus_frozen)) {
6597 partition_sched_domains(1, NULL, NULL);
6598 break;
6599 }
6600
6601 /*
6602 * This is the last CPU online operation. So fall through and
6603 * restore the original sched domains by considering the
6604 * cpuset configurations.
6605 */
6606
e761b772 6607 case CPU_ONLINE:
6ad4c188 6608 case CPU_DOWN_FAILED:
7ddf96b0 6609 cpuset_update_active_cpus(true);
d35be8ba 6610 break;
3a101d05
TH
6611 default:
6612 return NOTIFY_DONE;
6613 }
d35be8ba 6614 return NOTIFY_OK;
3a101d05 6615}
e761b772 6616
0b2e918a
TH
6617static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6618 void *hcpu)
3a101d05 6619{
d35be8ba 6620 switch (action) {
3a101d05 6621 case CPU_DOWN_PREPARE:
7ddf96b0 6622 cpuset_update_active_cpus(false);
d35be8ba
SB
6623 break;
6624 case CPU_DOWN_PREPARE_FROZEN:
6625 num_cpus_frozen++;
6626 partition_sched_domains(1, NULL, NULL);
6627 break;
e761b772
MK
6628 default:
6629 return NOTIFY_DONE;
6630 }
d35be8ba 6631 return NOTIFY_OK;
e761b772 6632}
e761b772 6633
1da177e4
LT
6634void __init sched_init_smp(void)
6635{
dcc30a35
RR
6636 cpumask_var_t non_isolated_cpus;
6637
6638 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6639 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6640
cb83b629
PZ
6641 sched_init_numa();
6642
95402b38 6643 get_online_cpus();
712555ee 6644 mutex_lock(&sched_domains_mutex);
c4a8849a 6645 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6646 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6647 if (cpumask_empty(non_isolated_cpus))
6648 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6649 mutex_unlock(&sched_domains_mutex);
95402b38 6650 put_online_cpus();
e761b772 6651
3a101d05
TH
6652 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6653 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6654
6655 /* RT runtime code needs to handle some hotplug events */
6656 hotcpu_notifier(update_runtime, 0);
6657
b328ca18 6658 init_hrtick();
5c1e1767
NP
6659
6660 /* Move init over to a non-isolated CPU */
dcc30a35 6661 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6662 BUG();
19978ca6 6663 sched_init_granularity();
dcc30a35 6664 free_cpumask_var(non_isolated_cpus);
4212823f 6665
0e3900e6 6666 init_sched_rt_class();
1da177e4
LT
6667}
6668#else
6669void __init sched_init_smp(void)
6670{
19978ca6 6671 sched_init_granularity();
1da177e4
LT
6672}
6673#endif /* CONFIG_SMP */
6674
cd1bb94b
AB
6675const_debug unsigned int sysctl_timer_migration = 1;
6676
1da177e4
LT
6677int in_sched_functions(unsigned long addr)
6678{
1da177e4
LT
6679 return in_lock_functions(addr) ||
6680 (addr >= (unsigned long)__sched_text_start
6681 && addr < (unsigned long)__sched_text_end);
6682}
6683
029632fb
PZ
6684#ifdef CONFIG_CGROUP_SCHED
6685struct task_group root_task_group;
35cf4e50 6686LIST_HEAD(task_groups);
052f1dc7 6687#endif
6f505b16 6688
029632fb 6689DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6690
1da177e4
LT
6691void __init sched_init(void)
6692{
dd41f596 6693 int i, j;
434d53b0
MT
6694 unsigned long alloc_size = 0, ptr;
6695
6696#ifdef CONFIG_FAIR_GROUP_SCHED
6697 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6698#endif
6699#ifdef CONFIG_RT_GROUP_SCHED
6700 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6701#endif
df7c8e84 6702#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6703 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6704#endif
434d53b0 6705 if (alloc_size) {
36b7b6d4 6706 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6707
6708#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6709 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6710 ptr += nr_cpu_ids * sizeof(void **);
6711
07e06b01 6712 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6713 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6714
6d6bc0ad 6715#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6716#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6717 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6718 ptr += nr_cpu_ids * sizeof(void **);
6719
07e06b01 6720 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6721 ptr += nr_cpu_ids * sizeof(void **);
6722
6d6bc0ad 6723#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6724#ifdef CONFIG_CPUMASK_OFFSTACK
6725 for_each_possible_cpu(i) {
6726 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6727 ptr += cpumask_size();
6728 }
6729#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6730 }
dd41f596 6731
57d885fe
GH
6732#ifdef CONFIG_SMP
6733 init_defrootdomain();
6734#endif
6735
d0b27fa7
PZ
6736 init_rt_bandwidth(&def_rt_bandwidth,
6737 global_rt_period(), global_rt_runtime());
6738
6739#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6740 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6741 global_rt_period(), global_rt_runtime());
6d6bc0ad 6742#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6743
7c941438 6744#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6745 list_add(&root_task_group.list, &task_groups);
6746 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6747 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6748 autogroup_init(&init_task);
54c707e9 6749
7c941438 6750#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6751
54c707e9
GC
6752#ifdef CONFIG_CGROUP_CPUACCT
6753 root_cpuacct.cpustat = &kernel_cpustat;
6754 root_cpuacct.cpuusage = alloc_percpu(u64);
6755 /* Too early, not expected to fail */
6756 BUG_ON(!root_cpuacct.cpuusage);
6757#endif
0a945022 6758 for_each_possible_cpu(i) {
70b97a7f 6759 struct rq *rq;
1da177e4
LT
6760
6761 rq = cpu_rq(i);
05fa785c 6762 raw_spin_lock_init(&rq->lock);
7897986b 6763 rq->nr_running = 0;
dce48a84
TG
6764 rq->calc_load_active = 0;
6765 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6766 init_cfs_rq(&rq->cfs);
6f505b16 6767 init_rt_rq(&rq->rt, rq);
dd41f596 6768#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6769 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6770 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6771 /*
07e06b01 6772 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6773 *
6774 * In case of task-groups formed thr' the cgroup filesystem, it
6775 * gets 100% of the cpu resources in the system. This overall
6776 * system cpu resource is divided among the tasks of
07e06b01 6777 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6778 * based on each entity's (task or task-group's) weight
6779 * (se->load.weight).
6780 *
07e06b01 6781 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6782 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6783 * then A0's share of the cpu resource is:
6784 *
0d905bca 6785 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6786 *
07e06b01
YZ
6787 * We achieve this by letting root_task_group's tasks sit
6788 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6789 */
ab84d31e 6790 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6791 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6792#endif /* CONFIG_FAIR_GROUP_SCHED */
6793
6794 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6795#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6796 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6797 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6798#endif
1da177e4 6799
dd41f596
IM
6800 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6801 rq->cpu_load[j] = 0;
fdf3e95d
VP
6802
6803 rq->last_load_update_tick = jiffies;
6804
1da177e4 6805#ifdef CONFIG_SMP
41c7ce9a 6806 rq->sd = NULL;
57d885fe 6807 rq->rd = NULL;
1399fa78 6808 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6809 rq->post_schedule = 0;
1da177e4 6810 rq->active_balance = 0;
dd41f596 6811 rq->next_balance = jiffies;
1da177e4 6812 rq->push_cpu = 0;
0a2966b4 6813 rq->cpu = i;
1f11eb6a 6814 rq->online = 0;
eae0c9df
MG
6815 rq->idle_stamp = 0;
6816 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6817
6818 INIT_LIST_HEAD(&rq->cfs_tasks);
6819
dc938520 6820 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6821#ifdef CONFIG_NO_HZ
1c792db7 6822 rq->nohz_flags = 0;
83cd4fe2 6823#endif
1da177e4 6824#endif
8f4d37ec 6825 init_rq_hrtick(rq);
1da177e4 6826 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6827 }
6828
2dd73a4f 6829 set_load_weight(&init_task);
b50f60ce 6830
e107be36
AK
6831#ifdef CONFIG_PREEMPT_NOTIFIERS
6832 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6833#endif
6834
b50f60ce 6835#ifdef CONFIG_RT_MUTEXES
732375c6 6836 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6837#endif
6838
1da177e4
LT
6839 /*
6840 * The boot idle thread does lazy MMU switching as well:
6841 */
6842 atomic_inc(&init_mm.mm_count);
6843 enter_lazy_tlb(&init_mm, current);
6844
6845 /*
6846 * Make us the idle thread. Technically, schedule() should not be
6847 * called from this thread, however somewhere below it might be,
6848 * but because we are the idle thread, we just pick up running again
6849 * when this runqueue becomes "idle".
6850 */
6851 init_idle(current, smp_processor_id());
dce48a84
TG
6852
6853 calc_load_update = jiffies + LOAD_FREQ;
6854
dd41f596
IM
6855 /*
6856 * During early bootup we pretend to be a normal task:
6857 */
6858 current->sched_class = &fair_sched_class;
6892b75e 6859
bf4d83f6 6860#ifdef CONFIG_SMP
4cb98839 6861 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6862 /* May be allocated at isolcpus cmdline parse time */
6863 if (cpu_isolated_map == NULL)
6864 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6865 idle_thread_set_boot_cpu();
029632fb
PZ
6866#endif
6867 init_sched_fair_class();
6a7b3dc3 6868
6892b75e 6869 scheduler_running = 1;
1da177e4
LT
6870}
6871
d902db1e 6872#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6873static inline int preempt_count_equals(int preempt_offset)
6874{
234da7bc 6875 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6876
4ba8216c 6877 return (nested == preempt_offset);
e4aafea2
FW
6878}
6879
d894837f 6880void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6881{
1da177e4
LT
6882 static unsigned long prev_jiffy; /* ratelimiting */
6883
b3fbab05 6884 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6885 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6886 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6887 return;
6888 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6889 return;
6890 prev_jiffy = jiffies;
6891
3df0fc5b
PZ
6892 printk(KERN_ERR
6893 "BUG: sleeping function called from invalid context at %s:%d\n",
6894 file, line);
6895 printk(KERN_ERR
6896 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6897 in_atomic(), irqs_disabled(),
6898 current->pid, current->comm);
aef745fc
IM
6899
6900 debug_show_held_locks(current);
6901 if (irqs_disabled())
6902 print_irqtrace_events(current);
6903 dump_stack();
1da177e4
LT
6904}
6905EXPORT_SYMBOL(__might_sleep);
6906#endif
6907
6908#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6909static void normalize_task(struct rq *rq, struct task_struct *p)
6910{
da7a735e
PZ
6911 const struct sched_class *prev_class = p->sched_class;
6912 int old_prio = p->prio;
3a5e4dc1 6913 int on_rq;
3e51f33f 6914
fd2f4419 6915 on_rq = p->on_rq;
3a5e4dc1 6916 if (on_rq)
4ca9b72b 6917 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6918 __setscheduler(rq, p, SCHED_NORMAL, 0);
6919 if (on_rq) {
4ca9b72b 6920 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6921 resched_task(rq->curr);
6922 }
da7a735e
PZ
6923
6924 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6925}
6926
1da177e4
LT
6927void normalize_rt_tasks(void)
6928{
a0f98a1c 6929 struct task_struct *g, *p;
1da177e4 6930 unsigned long flags;
70b97a7f 6931 struct rq *rq;
1da177e4 6932
4cf5d77a 6933 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6934 do_each_thread(g, p) {
178be793
IM
6935 /*
6936 * Only normalize user tasks:
6937 */
6938 if (!p->mm)
6939 continue;
6940
6cfb0d5d 6941 p->se.exec_start = 0;
6cfb0d5d 6942#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6943 p->se.statistics.wait_start = 0;
6944 p->se.statistics.sleep_start = 0;
6945 p->se.statistics.block_start = 0;
6cfb0d5d 6946#endif
dd41f596
IM
6947
6948 if (!rt_task(p)) {
6949 /*
6950 * Renice negative nice level userspace
6951 * tasks back to 0:
6952 */
6953 if (TASK_NICE(p) < 0 && p->mm)
6954 set_user_nice(p, 0);
1da177e4 6955 continue;
dd41f596 6956 }
1da177e4 6957
1d615482 6958 raw_spin_lock(&p->pi_lock);
b29739f9 6959 rq = __task_rq_lock(p);
1da177e4 6960
178be793 6961 normalize_task(rq, p);
3a5e4dc1 6962
b29739f9 6963 __task_rq_unlock(rq);
1d615482 6964 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6965 } while_each_thread(g, p);
6966
4cf5d77a 6967 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6968}
6969
6970#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6971
67fc4e0c 6972#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6973/*
67fc4e0c 6974 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6975 *
6976 * They can only be called when the whole system has been
6977 * stopped - every CPU needs to be quiescent, and no scheduling
6978 * activity can take place. Using them for anything else would
6979 * be a serious bug, and as a result, they aren't even visible
6980 * under any other configuration.
6981 */
6982
6983/**
6984 * curr_task - return the current task for a given cpu.
6985 * @cpu: the processor in question.
6986 *
6987 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6988 */
36c8b586 6989struct task_struct *curr_task(int cpu)
1df5c10a
LT
6990{
6991 return cpu_curr(cpu);
6992}
6993
67fc4e0c
JW
6994#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6995
6996#ifdef CONFIG_IA64
1df5c10a
LT
6997/**
6998 * set_curr_task - set the current task for a given cpu.
6999 * @cpu: the processor in question.
7000 * @p: the task pointer to set.
7001 *
7002 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7003 * are serviced on a separate stack. It allows the architecture to switch the
7004 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7005 * must be called with all CPU's synchronized, and interrupts disabled, the
7006 * and caller must save the original value of the current task (see
7007 * curr_task() above) and restore that value before reenabling interrupts and
7008 * re-starting the system.
7009 *
7010 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7011 */
36c8b586 7012void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7013{
7014 cpu_curr(cpu) = p;
7015}
7016
7017#endif
29f59db3 7018
7c941438 7019#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7020/* task_group_lock serializes the addition/removal of task groups */
7021static DEFINE_SPINLOCK(task_group_lock);
7022
bccbe08a
PZ
7023static void free_sched_group(struct task_group *tg)
7024{
7025 free_fair_sched_group(tg);
7026 free_rt_sched_group(tg);
e9aa1dd1 7027 autogroup_free(tg);
bccbe08a
PZ
7028 kfree(tg);
7029}
7030
7031/* allocate runqueue etc for a new task group */
ec7dc8ac 7032struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7033{
7034 struct task_group *tg;
7035 unsigned long flags;
bccbe08a
PZ
7036
7037 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7038 if (!tg)
7039 return ERR_PTR(-ENOMEM);
7040
ec7dc8ac 7041 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7042 goto err;
7043
ec7dc8ac 7044 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7045 goto err;
7046
8ed36996 7047 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7048 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7049
7050 WARN_ON(!parent); /* root should already exist */
7051
7052 tg->parent = parent;
f473aa5e 7053 INIT_LIST_HEAD(&tg->children);
09f2724a 7054 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7055 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7056
9b5b7751 7057 return tg;
29f59db3
SV
7058
7059err:
6f505b16 7060 free_sched_group(tg);
29f59db3
SV
7061 return ERR_PTR(-ENOMEM);
7062}
7063
9b5b7751 7064/* rcu callback to free various structures associated with a task group */
6f505b16 7065static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7066{
29f59db3 7067 /* now it should be safe to free those cfs_rqs */
6f505b16 7068 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7069}
7070
9b5b7751 7071/* Destroy runqueue etc associated with a task group */
4cf86d77 7072void sched_destroy_group(struct task_group *tg)
29f59db3 7073{
8ed36996 7074 unsigned long flags;
9b5b7751 7075 int i;
29f59db3 7076
3d4b47b4
PZ
7077 /* end participation in shares distribution */
7078 for_each_possible_cpu(i)
bccbe08a 7079 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7080
7081 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7082 list_del_rcu(&tg->list);
f473aa5e 7083 list_del_rcu(&tg->siblings);
8ed36996 7084 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7085
9b5b7751 7086 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7087 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7088}
7089
9b5b7751 7090/* change task's runqueue when it moves between groups.
3a252015
IM
7091 * The caller of this function should have put the task in its new group
7092 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7093 * reflect its new group.
9b5b7751
SV
7094 */
7095void sched_move_task(struct task_struct *tsk)
29f59db3 7096{
8323f26c 7097 struct task_group *tg;
29f59db3
SV
7098 int on_rq, running;
7099 unsigned long flags;
7100 struct rq *rq;
7101
7102 rq = task_rq_lock(tsk, &flags);
7103
051a1d1a 7104 running = task_current(rq, tsk);
fd2f4419 7105 on_rq = tsk->on_rq;
29f59db3 7106
0e1f3483 7107 if (on_rq)
29f59db3 7108 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7109 if (unlikely(running))
7110 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7111
8323f26c
PZ
7112 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7113 lockdep_is_held(&tsk->sighand->siglock)),
7114 struct task_group, css);
7115 tg = autogroup_task_group(tsk, tg);
7116 tsk->sched_task_group = tg;
7117
810b3817 7118#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7119 if (tsk->sched_class->task_move_group)
7120 tsk->sched_class->task_move_group(tsk, on_rq);
7121 else
810b3817 7122#endif
b2b5ce02 7123 set_task_rq(tsk, task_cpu(tsk));
810b3817 7124
0e1f3483
HS
7125 if (unlikely(running))
7126 tsk->sched_class->set_curr_task(rq);
7127 if (on_rq)
371fd7e7 7128 enqueue_task(rq, tsk, 0);
29f59db3 7129
0122ec5b 7130 task_rq_unlock(rq, tsk, &flags);
29f59db3 7131}
7c941438 7132#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7133
a790de99 7134#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7135static unsigned long to_ratio(u64 period, u64 runtime)
7136{
7137 if (runtime == RUNTIME_INF)
9a7e0b18 7138 return 1ULL << 20;
9f0c1e56 7139
9a7e0b18 7140 return div64_u64(runtime << 20, period);
9f0c1e56 7141}
a790de99
PT
7142#endif
7143
7144#ifdef CONFIG_RT_GROUP_SCHED
7145/*
7146 * Ensure that the real time constraints are schedulable.
7147 */
7148static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7149
9a7e0b18
PZ
7150/* Must be called with tasklist_lock held */
7151static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7152{
9a7e0b18 7153 struct task_struct *g, *p;
b40b2e8e 7154
9a7e0b18 7155 do_each_thread(g, p) {
029632fb 7156 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7157 return 1;
7158 } while_each_thread(g, p);
b40b2e8e 7159
9a7e0b18
PZ
7160 return 0;
7161}
b40b2e8e 7162
9a7e0b18
PZ
7163struct rt_schedulable_data {
7164 struct task_group *tg;
7165 u64 rt_period;
7166 u64 rt_runtime;
7167};
b40b2e8e 7168
a790de99 7169static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7170{
7171 struct rt_schedulable_data *d = data;
7172 struct task_group *child;
7173 unsigned long total, sum = 0;
7174 u64 period, runtime;
b40b2e8e 7175
9a7e0b18
PZ
7176 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7177 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7178
9a7e0b18
PZ
7179 if (tg == d->tg) {
7180 period = d->rt_period;
7181 runtime = d->rt_runtime;
b40b2e8e 7182 }
b40b2e8e 7183
4653f803
PZ
7184 /*
7185 * Cannot have more runtime than the period.
7186 */
7187 if (runtime > period && runtime != RUNTIME_INF)
7188 return -EINVAL;
6f505b16 7189
4653f803
PZ
7190 /*
7191 * Ensure we don't starve existing RT tasks.
7192 */
9a7e0b18
PZ
7193 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7194 return -EBUSY;
6f505b16 7195
9a7e0b18 7196 total = to_ratio(period, runtime);
6f505b16 7197
4653f803
PZ
7198 /*
7199 * Nobody can have more than the global setting allows.
7200 */
7201 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7202 return -EINVAL;
6f505b16 7203
4653f803
PZ
7204 /*
7205 * The sum of our children's runtime should not exceed our own.
7206 */
9a7e0b18
PZ
7207 list_for_each_entry_rcu(child, &tg->children, siblings) {
7208 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7209 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7210
9a7e0b18
PZ
7211 if (child == d->tg) {
7212 period = d->rt_period;
7213 runtime = d->rt_runtime;
7214 }
6f505b16 7215
9a7e0b18 7216 sum += to_ratio(period, runtime);
9f0c1e56 7217 }
6f505b16 7218
9a7e0b18
PZ
7219 if (sum > total)
7220 return -EINVAL;
7221
7222 return 0;
6f505b16
PZ
7223}
7224
9a7e0b18 7225static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7226{
8277434e
PT
7227 int ret;
7228
9a7e0b18
PZ
7229 struct rt_schedulable_data data = {
7230 .tg = tg,
7231 .rt_period = period,
7232 .rt_runtime = runtime,
7233 };
7234
8277434e
PT
7235 rcu_read_lock();
7236 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7237 rcu_read_unlock();
7238
7239 return ret;
521f1a24
DG
7240}
7241
ab84d31e 7242static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7243 u64 rt_period, u64 rt_runtime)
6f505b16 7244{
ac086bc2 7245 int i, err = 0;
9f0c1e56 7246
9f0c1e56 7247 mutex_lock(&rt_constraints_mutex);
521f1a24 7248 read_lock(&tasklist_lock);
9a7e0b18
PZ
7249 err = __rt_schedulable(tg, rt_period, rt_runtime);
7250 if (err)
9f0c1e56 7251 goto unlock;
ac086bc2 7252
0986b11b 7253 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7254 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7255 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7256
7257 for_each_possible_cpu(i) {
7258 struct rt_rq *rt_rq = tg->rt_rq[i];
7259
0986b11b 7260 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7261 rt_rq->rt_runtime = rt_runtime;
0986b11b 7262 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7263 }
0986b11b 7264 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7265unlock:
521f1a24 7266 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7267 mutex_unlock(&rt_constraints_mutex);
7268
7269 return err;
6f505b16
PZ
7270}
7271
d0b27fa7
PZ
7272int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7273{
7274 u64 rt_runtime, rt_period;
7275
7276 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7277 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7278 if (rt_runtime_us < 0)
7279 rt_runtime = RUNTIME_INF;
7280
ab84d31e 7281 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7282}
7283
9f0c1e56
PZ
7284long sched_group_rt_runtime(struct task_group *tg)
7285{
7286 u64 rt_runtime_us;
7287
d0b27fa7 7288 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7289 return -1;
7290
d0b27fa7 7291 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7292 do_div(rt_runtime_us, NSEC_PER_USEC);
7293 return rt_runtime_us;
7294}
d0b27fa7
PZ
7295
7296int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7297{
7298 u64 rt_runtime, rt_period;
7299
7300 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7301 rt_runtime = tg->rt_bandwidth.rt_runtime;
7302
619b0488
R
7303 if (rt_period == 0)
7304 return -EINVAL;
7305
ab84d31e 7306 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7307}
7308
7309long sched_group_rt_period(struct task_group *tg)
7310{
7311 u64 rt_period_us;
7312
7313 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7314 do_div(rt_period_us, NSEC_PER_USEC);
7315 return rt_period_us;
7316}
7317
7318static int sched_rt_global_constraints(void)
7319{
4653f803 7320 u64 runtime, period;
d0b27fa7
PZ
7321 int ret = 0;
7322
ec5d4989
HS
7323 if (sysctl_sched_rt_period <= 0)
7324 return -EINVAL;
7325
4653f803
PZ
7326 runtime = global_rt_runtime();
7327 period = global_rt_period();
7328
7329 /*
7330 * Sanity check on the sysctl variables.
7331 */
7332 if (runtime > period && runtime != RUNTIME_INF)
7333 return -EINVAL;
10b612f4 7334
d0b27fa7 7335 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7336 read_lock(&tasklist_lock);
4653f803 7337 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7338 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7339 mutex_unlock(&rt_constraints_mutex);
7340
7341 return ret;
7342}
54e99124
DG
7343
7344int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7345{
7346 /* Don't accept realtime tasks when there is no way for them to run */
7347 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7348 return 0;
7349
7350 return 1;
7351}
7352
6d6bc0ad 7353#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7354static int sched_rt_global_constraints(void)
7355{
ac086bc2
PZ
7356 unsigned long flags;
7357 int i;
7358
ec5d4989
HS
7359 if (sysctl_sched_rt_period <= 0)
7360 return -EINVAL;
7361
60aa605d
PZ
7362 /*
7363 * There's always some RT tasks in the root group
7364 * -- migration, kstopmachine etc..
7365 */
7366 if (sysctl_sched_rt_runtime == 0)
7367 return -EBUSY;
7368
0986b11b 7369 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7370 for_each_possible_cpu(i) {
7371 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7372
0986b11b 7373 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7374 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7375 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7376 }
0986b11b 7377 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7378
d0b27fa7
PZ
7379 return 0;
7380}
6d6bc0ad 7381#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7382
7383int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7384 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7385 loff_t *ppos)
7386{
7387 int ret;
7388 int old_period, old_runtime;
7389 static DEFINE_MUTEX(mutex);
7390
7391 mutex_lock(&mutex);
7392 old_period = sysctl_sched_rt_period;
7393 old_runtime = sysctl_sched_rt_runtime;
7394
8d65af78 7395 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7396
7397 if (!ret && write) {
7398 ret = sched_rt_global_constraints();
7399 if (ret) {
7400 sysctl_sched_rt_period = old_period;
7401 sysctl_sched_rt_runtime = old_runtime;
7402 } else {
7403 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7404 def_rt_bandwidth.rt_period =
7405 ns_to_ktime(global_rt_period());
7406 }
7407 }
7408 mutex_unlock(&mutex);
7409
7410 return ret;
7411}
68318b8e 7412
052f1dc7 7413#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7414
7415/* return corresponding task_group object of a cgroup */
2b01dfe3 7416static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7417{
2b01dfe3
PM
7418 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7419 struct task_group, css);
68318b8e
SV
7420}
7421
761b3ef5 7422static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7423{
ec7dc8ac 7424 struct task_group *tg, *parent;
68318b8e 7425
2b01dfe3 7426 if (!cgrp->parent) {
68318b8e 7427 /* This is early initialization for the top cgroup */
07e06b01 7428 return &root_task_group.css;
68318b8e
SV
7429 }
7430
ec7dc8ac
DG
7431 parent = cgroup_tg(cgrp->parent);
7432 tg = sched_create_group(parent);
68318b8e
SV
7433 if (IS_ERR(tg))
7434 return ERR_PTR(-ENOMEM);
7435
68318b8e
SV
7436 return &tg->css;
7437}
7438
761b3ef5 7439static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 7440{
2b01dfe3 7441 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7442
7443 sched_destroy_group(tg);
7444}
7445
761b3ef5 7446static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7447 struct cgroup_taskset *tset)
68318b8e 7448{
bb9d97b6
TH
7449 struct task_struct *task;
7450
7451 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7452#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7453 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7454 return -EINVAL;
b68aa230 7455#else
bb9d97b6
TH
7456 /* We don't support RT-tasks being in separate groups */
7457 if (task->sched_class != &fair_sched_class)
7458 return -EINVAL;
b68aa230 7459#endif
bb9d97b6 7460 }
be367d09
BB
7461 return 0;
7462}
68318b8e 7463
761b3ef5 7464static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7465 struct cgroup_taskset *tset)
68318b8e 7466{
bb9d97b6
TH
7467 struct task_struct *task;
7468
7469 cgroup_taskset_for_each(task, cgrp, tset)
7470 sched_move_task(task);
68318b8e
SV
7471}
7472
068c5cc5 7473static void
761b3ef5
LZ
7474cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7475 struct task_struct *task)
068c5cc5
PZ
7476{
7477 /*
7478 * cgroup_exit() is called in the copy_process() failure path.
7479 * Ignore this case since the task hasn't ran yet, this avoids
7480 * trying to poke a half freed task state from generic code.
7481 */
7482 if (!(task->flags & PF_EXITING))
7483 return;
7484
7485 sched_move_task(task);
7486}
7487
052f1dc7 7488#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7489static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7490 u64 shareval)
68318b8e 7491{
c8b28116 7492 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7493}
7494
f4c753b7 7495static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7496{
2b01dfe3 7497 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7498
c8b28116 7499 return (u64) scale_load_down(tg->shares);
68318b8e 7500}
ab84d31e
PT
7501
7502#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7503static DEFINE_MUTEX(cfs_constraints_mutex);
7504
ab84d31e
PT
7505const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7506const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7507
a790de99
PT
7508static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7509
ab84d31e
PT
7510static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7511{
56f570e5 7512 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7513 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7514
7515 if (tg == &root_task_group)
7516 return -EINVAL;
7517
7518 /*
7519 * Ensure we have at some amount of bandwidth every period. This is
7520 * to prevent reaching a state of large arrears when throttled via
7521 * entity_tick() resulting in prolonged exit starvation.
7522 */
7523 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7524 return -EINVAL;
7525
7526 /*
7527 * Likewise, bound things on the otherside by preventing insane quota
7528 * periods. This also allows us to normalize in computing quota
7529 * feasibility.
7530 */
7531 if (period > max_cfs_quota_period)
7532 return -EINVAL;
7533
a790de99
PT
7534 mutex_lock(&cfs_constraints_mutex);
7535 ret = __cfs_schedulable(tg, period, quota);
7536 if (ret)
7537 goto out_unlock;
7538
58088ad0 7539 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7540 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7541 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7542 raw_spin_lock_irq(&cfs_b->lock);
7543 cfs_b->period = ns_to_ktime(period);
7544 cfs_b->quota = quota;
58088ad0 7545
a9cf55b2 7546 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7547 /* restart the period timer (if active) to handle new period expiry */
7548 if (runtime_enabled && cfs_b->timer_active) {
7549 /* force a reprogram */
7550 cfs_b->timer_active = 0;
7551 __start_cfs_bandwidth(cfs_b);
7552 }
ab84d31e
PT
7553 raw_spin_unlock_irq(&cfs_b->lock);
7554
7555 for_each_possible_cpu(i) {
7556 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7557 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7558
7559 raw_spin_lock_irq(&rq->lock);
58088ad0 7560 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7561 cfs_rq->runtime_remaining = 0;
671fd9da 7562
029632fb 7563 if (cfs_rq->throttled)
671fd9da 7564 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7565 raw_spin_unlock_irq(&rq->lock);
7566 }
a790de99
PT
7567out_unlock:
7568 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7569
a790de99 7570 return ret;
ab84d31e
PT
7571}
7572
7573int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7574{
7575 u64 quota, period;
7576
029632fb 7577 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7578 if (cfs_quota_us < 0)
7579 quota = RUNTIME_INF;
7580 else
7581 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7582
7583 return tg_set_cfs_bandwidth(tg, period, quota);
7584}
7585
7586long tg_get_cfs_quota(struct task_group *tg)
7587{
7588 u64 quota_us;
7589
029632fb 7590 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7591 return -1;
7592
029632fb 7593 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7594 do_div(quota_us, NSEC_PER_USEC);
7595
7596 return quota_us;
7597}
7598
7599int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7600{
7601 u64 quota, period;
7602
7603 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7604 quota = tg->cfs_bandwidth.quota;
ab84d31e 7605
ab84d31e
PT
7606 return tg_set_cfs_bandwidth(tg, period, quota);
7607}
7608
7609long tg_get_cfs_period(struct task_group *tg)
7610{
7611 u64 cfs_period_us;
7612
029632fb 7613 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7614 do_div(cfs_period_us, NSEC_PER_USEC);
7615
7616 return cfs_period_us;
7617}
7618
7619static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7620{
7621 return tg_get_cfs_quota(cgroup_tg(cgrp));
7622}
7623
7624static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7625 s64 cfs_quota_us)
7626{
7627 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7628}
7629
7630static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7631{
7632 return tg_get_cfs_period(cgroup_tg(cgrp));
7633}
7634
7635static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7636 u64 cfs_period_us)
7637{
7638 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7639}
7640
a790de99
PT
7641struct cfs_schedulable_data {
7642 struct task_group *tg;
7643 u64 period, quota;
7644};
7645
7646/*
7647 * normalize group quota/period to be quota/max_period
7648 * note: units are usecs
7649 */
7650static u64 normalize_cfs_quota(struct task_group *tg,
7651 struct cfs_schedulable_data *d)
7652{
7653 u64 quota, period;
7654
7655 if (tg == d->tg) {
7656 period = d->period;
7657 quota = d->quota;
7658 } else {
7659 period = tg_get_cfs_period(tg);
7660 quota = tg_get_cfs_quota(tg);
7661 }
7662
7663 /* note: these should typically be equivalent */
7664 if (quota == RUNTIME_INF || quota == -1)
7665 return RUNTIME_INF;
7666
7667 return to_ratio(period, quota);
7668}
7669
7670static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7671{
7672 struct cfs_schedulable_data *d = data;
029632fb 7673 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7674 s64 quota = 0, parent_quota = -1;
7675
7676 if (!tg->parent) {
7677 quota = RUNTIME_INF;
7678 } else {
029632fb 7679 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7680
7681 quota = normalize_cfs_quota(tg, d);
7682 parent_quota = parent_b->hierarchal_quota;
7683
7684 /*
7685 * ensure max(child_quota) <= parent_quota, inherit when no
7686 * limit is set
7687 */
7688 if (quota == RUNTIME_INF)
7689 quota = parent_quota;
7690 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7691 return -EINVAL;
7692 }
7693 cfs_b->hierarchal_quota = quota;
7694
7695 return 0;
7696}
7697
7698static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7699{
8277434e 7700 int ret;
a790de99
PT
7701 struct cfs_schedulable_data data = {
7702 .tg = tg,
7703 .period = period,
7704 .quota = quota,
7705 };
7706
7707 if (quota != RUNTIME_INF) {
7708 do_div(data.period, NSEC_PER_USEC);
7709 do_div(data.quota, NSEC_PER_USEC);
7710 }
7711
8277434e
PT
7712 rcu_read_lock();
7713 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7714 rcu_read_unlock();
7715
7716 return ret;
a790de99 7717}
e8da1b18
NR
7718
7719static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7720 struct cgroup_map_cb *cb)
7721{
7722 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7723 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7724
7725 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7726 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7727 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7728
7729 return 0;
7730}
ab84d31e 7731#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7732#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7733
052f1dc7 7734#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7735static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7736 s64 val)
6f505b16 7737{
06ecb27c 7738 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7739}
7740
06ecb27c 7741static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7742{
06ecb27c 7743 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7744}
d0b27fa7
PZ
7745
7746static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7747 u64 rt_period_us)
7748{
7749 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7750}
7751
7752static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7753{
7754 return sched_group_rt_period(cgroup_tg(cgrp));
7755}
6d6bc0ad 7756#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7757
fe5c7cc2 7758static struct cftype cpu_files[] = {
052f1dc7 7759#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7760 {
7761 .name = "shares",
f4c753b7
PM
7762 .read_u64 = cpu_shares_read_u64,
7763 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7764 },
052f1dc7 7765#endif
ab84d31e
PT
7766#ifdef CONFIG_CFS_BANDWIDTH
7767 {
7768 .name = "cfs_quota_us",
7769 .read_s64 = cpu_cfs_quota_read_s64,
7770 .write_s64 = cpu_cfs_quota_write_s64,
7771 },
7772 {
7773 .name = "cfs_period_us",
7774 .read_u64 = cpu_cfs_period_read_u64,
7775 .write_u64 = cpu_cfs_period_write_u64,
7776 },
e8da1b18
NR
7777 {
7778 .name = "stat",
7779 .read_map = cpu_stats_show,
7780 },
ab84d31e 7781#endif
052f1dc7 7782#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7783 {
9f0c1e56 7784 .name = "rt_runtime_us",
06ecb27c
PM
7785 .read_s64 = cpu_rt_runtime_read,
7786 .write_s64 = cpu_rt_runtime_write,
6f505b16 7787 },
d0b27fa7
PZ
7788 {
7789 .name = "rt_period_us",
f4c753b7
PM
7790 .read_u64 = cpu_rt_period_read_uint,
7791 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7792 },
052f1dc7 7793#endif
4baf6e33 7794 { } /* terminate */
68318b8e
SV
7795};
7796
68318b8e 7797struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7798 .name = "cpu",
7799 .create = cpu_cgroup_create,
7800 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7801 .can_attach = cpu_cgroup_can_attach,
7802 .attach = cpu_cgroup_attach,
068c5cc5 7803 .exit = cpu_cgroup_exit,
38605cae 7804 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7805 .base_cftypes = cpu_files,
68318b8e
SV
7806 .early_init = 1,
7807};
7808
052f1dc7 7809#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7810
7811#ifdef CONFIG_CGROUP_CPUACCT
7812
7813/*
7814 * CPU accounting code for task groups.
7815 *
7816 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7817 * (balbir@in.ibm.com).
7818 */
7819
73fbec60
FW
7820struct cpuacct root_cpuacct;
7821
d842de87 7822/* create a new cpu accounting group */
761b3ef5 7823static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 7824{
54c707e9 7825 struct cpuacct *ca;
d842de87 7826
54c707e9
GC
7827 if (!cgrp->parent)
7828 return &root_cpuacct.css;
7829
7830 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7831 if (!ca)
ef12fefa 7832 goto out;
d842de87
SV
7833
7834 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7835 if (!ca->cpuusage)
7836 goto out_free_ca;
7837
54c707e9
GC
7838 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7839 if (!ca->cpustat)
7840 goto out_free_cpuusage;
934352f2 7841
d842de87 7842 return &ca->css;
ef12fefa 7843
54c707e9 7844out_free_cpuusage:
ef12fefa
BR
7845 free_percpu(ca->cpuusage);
7846out_free_ca:
7847 kfree(ca);
7848out:
7849 return ERR_PTR(-ENOMEM);
d842de87
SV
7850}
7851
7852/* destroy an existing cpu accounting group */
761b3ef5 7853static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 7854{
32cd756a 7855 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7856
54c707e9 7857 free_percpu(ca->cpustat);
d842de87
SV
7858 free_percpu(ca->cpuusage);
7859 kfree(ca);
7860}
7861
720f5498
KC
7862static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7863{
b36128c8 7864 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7865 u64 data;
7866
7867#ifndef CONFIG_64BIT
7868 /*
7869 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7870 */
05fa785c 7871 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7872 data = *cpuusage;
05fa785c 7873 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7874#else
7875 data = *cpuusage;
7876#endif
7877
7878 return data;
7879}
7880
7881static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7882{
b36128c8 7883 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7884
7885#ifndef CONFIG_64BIT
7886 /*
7887 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7888 */
05fa785c 7889 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7890 *cpuusage = val;
05fa785c 7891 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7892#else
7893 *cpuusage = val;
7894#endif
7895}
7896
d842de87 7897/* return total cpu usage (in nanoseconds) of a group */
32cd756a 7898static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 7899{
32cd756a 7900 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
7901 u64 totalcpuusage = 0;
7902 int i;
7903
720f5498
KC
7904 for_each_present_cpu(i)
7905 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
7906
7907 return totalcpuusage;
7908}
7909
0297b803
DG
7910static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7911 u64 reset)
7912{
7913 struct cpuacct *ca = cgroup_ca(cgrp);
7914 int err = 0;
7915 int i;
7916
7917 if (reset) {
7918 err = -EINVAL;
7919 goto out;
7920 }
7921
720f5498
KC
7922 for_each_present_cpu(i)
7923 cpuacct_cpuusage_write(ca, i, 0);
0297b803 7924
0297b803
DG
7925out:
7926 return err;
7927}
7928
e9515c3c
KC
7929static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7930 struct seq_file *m)
7931{
7932 struct cpuacct *ca = cgroup_ca(cgroup);
7933 u64 percpu;
7934 int i;
7935
7936 for_each_present_cpu(i) {
7937 percpu = cpuacct_cpuusage_read(ca, i);
7938 seq_printf(m, "%llu ", (unsigned long long) percpu);
7939 }
7940 seq_printf(m, "\n");
7941 return 0;
7942}
7943
ef12fefa
BR
7944static const char *cpuacct_stat_desc[] = {
7945 [CPUACCT_STAT_USER] = "user",
7946 [CPUACCT_STAT_SYSTEM] = "system",
7947};
7948
7949static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 7950 struct cgroup_map_cb *cb)
ef12fefa
BR
7951{
7952 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
7953 int cpu;
7954 s64 val = 0;
ef12fefa 7955
54c707e9
GC
7956 for_each_online_cpu(cpu) {
7957 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
7958 val += kcpustat->cpustat[CPUTIME_USER];
7959 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 7960 }
54c707e9
GC
7961 val = cputime64_to_clock_t(val);
7962 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 7963
54c707e9
GC
7964 val = 0;
7965 for_each_online_cpu(cpu) {
7966 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
7967 val += kcpustat->cpustat[CPUTIME_SYSTEM];
7968 val += kcpustat->cpustat[CPUTIME_IRQ];
7969 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 7970 }
54c707e9
GC
7971
7972 val = cputime64_to_clock_t(val);
7973 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
7974
ef12fefa
BR
7975 return 0;
7976}
7977
d842de87
SV
7978static struct cftype files[] = {
7979 {
7980 .name = "usage",
f4c753b7
PM
7981 .read_u64 = cpuusage_read,
7982 .write_u64 = cpuusage_write,
d842de87 7983 },
e9515c3c
KC
7984 {
7985 .name = "usage_percpu",
7986 .read_seq_string = cpuacct_percpu_seq_read,
7987 },
ef12fefa
BR
7988 {
7989 .name = "stat",
7990 .read_map = cpuacct_stats_show,
7991 },
4baf6e33 7992 { } /* terminate */
d842de87
SV
7993};
7994
d842de87
SV
7995/*
7996 * charge this task's execution time to its accounting group.
7997 *
7998 * called with rq->lock held.
7999 */
029632fb 8000void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8001{
8002 struct cpuacct *ca;
934352f2 8003 int cpu;
d842de87 8004
c40c6f85 8005 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8006 return;
8007
934352f2 8008 cpu = task_cpu(tsk);
a18b83b7
BR
8009
8010 rcu_read_lock();
8011
d842de87 8012 ca = task_ca(tsk);
d842de87 8013
44252e42 8014 for (; ca; ca = parent_ca(ca)) {
b36128c8 8015 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8016 *cpuusage += cputime;
8017 }
a18b83b7
BR
8018
8019 rcu_read_unlock();
d842de87
SV
8020}
8021
8022struct cgroup_subsys cpuacct_subsys = {
8023 .name = "cpuacct",
8024 .create = cpuacct_create,
8025 .destroy = cpuacct_destroy,
d842de87 8026 .subsys_id = cpuacct_subsys_id,
4baf6e33 8027 .base_cftypes = files,
d842de87
SV
8028};
8029#endif /* CONFIG_CGROUP_CPUACCT */