]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched/core: Simplify update_rq_clock() in __schedule()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
004172bd 8#include <linux/sched.h>
e6017571 9#include <linux/sched/clock.h>
ae7e81c0 10#include <uapi/linux/sched/types.h>
4f17722c 11#include <linux/sched/loadavg.h>
ef8bd77f 12#include <linux/sched/hotplug.h>
1da177e4 13#include <linux/cpuset.h>
0ff92245 14#include <linux/delayacct.h>
f1c6f1a7 15#include <linux/init_task.h>
91d1aa43 16#include <linux/context_tracking.h>
f9411ebe 17#include <linux/rcupdate_wait.h>
004172bd
IM
18
19#include <linux/blkdev.h>
20#include <linux/kprobes.h>
21#include <linux/mmu_context.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
6075620b 24#include <linux/prefetch.h>
004172bd
IM
25#include <linux/profile.h>
26#include <linux/security.h>
27#include <linux/syscalls.h>
1da177e4 28
96f951ed 29#include <asm/switch_to.h>
5517d86b 30#include <asm/tlb.h>
fd4a61e0
MB
31#ifdef CONFIG_PARAVIRT
32#include <asm/paravirt.h>
33#endif
1da177e4 34
029632fb 35#include "sched.h"
ea138446 36#include "../workqueue_internal.h"
29d5e047 37#include "../smpboot.h"
6e0534f2 38
a8d154b0 39#define CREATE_TRACE_POINTS
ad8d75ff 40#include <trace/events/sched.h>
a8d154b0 41
029632fb 42DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 43
bf5c91ba
IM
44/*
45 * Debugging: various feature bits
46 */
f00b45c1 47
f00b45c1
PZ
48#define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50
bf5c91ba 51const_debug unsigned int sysctl_sched_features =
391e43da 52#include "features.h"
f00b45c1
PZ
53 0;
54
55#undef SCHED_FEAT
56
b82d9fdd
PZ
57/*
58 * Number of tasks to iterate in a single balance run.
59 * Limited because this is done with IRQs disabled.
60 */
61const_debug unsigned int sysctl_sched_nr_migrate = 32;
62
e9e9250b
PZ
63/*
64 * period over which we average the RT time consumption, measured
65 * in ms.
66 *
67 * default: 1s
68 */
69const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
70
fa85ae24 71/*
d1ccc66d 72 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
73 * default: 1s
74 */
9f0c1e56 75unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 76
029632fb 77__read_mostly int scheduler_running;
6892b75e 78
9f0c1e56
PZ
79/*
80 * part of the period that we allow rt tasks to run in us.
81 * default: 0.95s
82 */
83int sysctl_sched_rt_runtime = 950000;
fa85ae24 84
d1ccc66d 85/* CPUs with isolated domains */
3fa0818b
RR
86cpumask_var_t cpu_isolated_map;
87
3e71a462
PZ
88/*
89 * __task_rq_lock - lock the rq @p resides on.
90 */
eb580751 91struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
92 __acquires(rq->lock)
93{
94 struct rq *rq;
95
96 lockdep_assert_held(&p->pi_lock);
97
98 for (;;) {
99 rq = task_rq(p);
100 raw_spin_lock(&rq->lock);
101 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 102 rq_pin_lock(rq, rf);
3e71a462
PZ
103 return rq;
104 }
105 raw_spin_unlock(&rq->lock);
106
107 while (unlikely(task_on_rq_migrating(p)))
108 cpu_relax();
109 }
110}
111
112/*
113 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
114 */
eb580751 115struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
116 __acquires(p->pi_lock)
117 __acquires(rq->lock)
118{
119 struct rq *rq;
120
121 for (;;) {
eb580751 122 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
123 rq = task_rq(p);
124 raw_spin_lock(&rq->lock);
125 /*
126 * move_queued_task() task_rq_lock()
127 *
128 * ACQUIRE (rq->lock)
129 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
130 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
131 * [S] ->cpu = new_cpu [L] task_rq()
132 * [L] ->on_rq
133 * RELEASE (rq->lock)
134 *
135 * If we observe the old cpu in task_rq_lock, the acquire of
136 * the old rq->lock will fully serialize against the stores.
137 *
d1ccc66d 138 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
139 * pair with the WMB to ensure we must then also see migrating.
140 */
141 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 142 rq_pin_lock(rq, rf);
3e71a462
PZ
143 return rq;
144 }
145 raw_spin_unlock(&rq->lock);
eb580751 146 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
147
148 while (unlikely(task_on_rq_migrating(p)))
149 cpu_relax();
150 }
151}
152
535b9552
IM
153/*
154 * RQ-clock updating methods:
155 */
156
157static void update_rq_clock_task(struct rq *rq, s64 delta)
158{
159/*
160 * In theory, the compile should just see 0 here, and optimize out the call
161 * to sched_rt_avg_update. But I don't trust it...
162 */
163#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
164 s64 steal = 0, irq_delta = 0;
165#endif
166#ifdef CONFIG_IRQ_TIME_ACCOUNTING
167 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
168
169 /*
170 * Since irq_time is only updated on {soft,}irq_exit, we might run into
171 * this case when a previous update_rq_clock() happened inside a
172 * {soft,}irq region.
173 *
174 * When this happens, we stop ->clock_task and only update the
175 * prev_irq_time stamp to account for the part that fit, so that a next
176 * update will consume the rest. This ensures ->clock_task is
177 * monotonic.
178 *
179 * It does however cause some slight miss-attribution of {soft,}irq
180 * time, a more accurate solution would be to update the irq_time using
181 * the current rq->clock timestamp, except that would require using
182 * atomic ops.
183 */
184 if (irq_delta > delta)
185 irq_delta = delta;
186
187 rq->prev_irq_time += irq_delta;
188 delta -= irq_delta;
189#endif
190#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
191 if (static_key_false((&paravirt_steal_rq_enabled))) {
192 steal = paravirt_steal_clock(cpu_of(rq));
193 steal -= rq->prev_steal_time_rq;
194
195 if (unlikely(steal > delta))
196 steal = delta;
197
198 rq->prev_steal_time_rq += steal;
199 delta -= steal;
200 }
201#endif
202
203 rq->clock_task += delta;
204
205#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
206 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
207 sched_rt_avg_update(rq, irq_delta + steal);
208#endif
209}
210
211void update_rq_clock(struct rq *rq)
212{
213 s64 delta;
214
215 lockdep_assert_held(&rq->lock);
216
217 if (rq->clock_update_flags & RQCF_ACT_SKIP)
218 return;
219
220#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
221 if (sched_feat(WARN_DOUBLE_CLOCK))
222 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
223 rq->clock_update_flags |= RQCF_UPDATED;
224#endif
26ae58d2 225
535b9552
IM
226 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
227 if (delta < 0)
228 return;
229 rq->clock += delta;
230 update_rq_clock_task(rq, delta);
231}
232
233
8f4d37ec
PZ
234#ifdef CONFIG_SCHED_HRTICK
235/*
236 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 237 */
8f4d37ec 238
8f4d37ec
PZ
239static void hrtick_clear(struct rq *rq)
240{
241 if (hrtimer_active(&rq->hrtick_timer))
242 hrtimer_cancel(&rq->hrtick_timer);
243}
244
8f4d37ec
PZ
245/*
246 * High-resolution timer tick.
247 * Runs from hardirq context with interrupts disabled.
248 */
249static enum hrtimer_restart hrtick(struct hrtimer *timer)
250{
251 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 252 struct rq_flags rf;
8f4d37ec
PZ
253
254 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
255
8a8c69c3 256 rq_lock(rq, &rf);
3e51f33f 257 update_rq_clock(rq);
8f4d37ec 258 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 259 rq_unlock(rq, &rf);
8f4d37ec
PZ
260
261 return HRTIMER_NORESTART;
262}
263
95e904c7 264#ifdef CONFIG_SMP
971ee28c 265
4961b6e1 266static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
267{
268 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 269
4961b6e1 270 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
271}
272
31656519
PZ
273/*
274 * called from hardirq (IPI) context
275 */
276static void __hrtick_start(void *arg)
b328ca18 277{
31656519 278 struct rq *rq = arg;
8a8c69c3 279 struct rq_flags rf;
b328ca18 280
8a8c69c3 281 rq_lock(rq, &rf);
971ee28c 282 __hrtick_restart(rq);
31656519 283 rq->hrtick_csd_pending = 0;
8a8c69c3 284 rq_unlock(rq, &rf);
b328ca18
PZ
285}
286
31656519
PZ
287/*
288 * Called to set the hrtick timer state.
289 *
290 * called with rq->lock held and irqs disabled
291 */
029632fb 292void hrtick_start(struct rq *rq, u64 delay)
b328ca18 293{
31656519 294 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 295 ktime_t time;
296 s64 delta;
297
298 /*
299 * Don't schedule slices shorter than 10000ns, that just
300 * doesn't make sense and can cause timer DoS.
301 */
302 delta = max_t(s64, delay, 10000LL);
303 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 304
cc584b21 305 hrtimer_set_expires(timer, time);
31656519
PZ
306
307 if (rq == this_rq()) {
971ee28c 308 __hrtick_restart(rq);
31656519 309 } else if (!rq->hrtick_csd_pending) {
c46fff2a 310 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
311 rq->hrtick_csd_pending = 1;
312 }
b328ca18
PZ
313}
314
31656519
PZ
315#else
316/*
317 * Called to set the hrtick timer state.
318 *
319 * called with rq->lock held and irqs disabled
320 */
029632fb 321void hrtick_start(struct rq *rq, u64 delay)
31656519 322{
86893335
WL
323 /*
324 * Don't schedule slices shorter than 10000ns, that just
325 * doesn't make sense. Rely on vruntime for fairness.
326 */
327 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
328 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
329 HRTIMER_MODE_REL_PINNED);
31656519 330}
31656519 331#endif /* CONFIG_SMP */
8f4d37ec 332
31656519 333static void init_rq_hrtick(struct rq *rq)
8f4d37ec 334{
31656519
PZ
335#ifdef CONFIG_SMP
336 rq->hrtick_csd_pending = 0;
8f4d37ec 337
31656519
PZ
338 rq->hrtick_csd.flags = 0;
339 rq->hrtick_csd.func = __hrtick_start;
340 rq->hrtick_csd.info = rq;
341#endif
8f4d37ec 342
31656519
PZ
343 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
344 rq->hrtick_timer.function = hrtick;
8f4d37ec 345}
006c75f1 346#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
347static inline void hrtick_clear(struct rq *rq)
348{
349}
350
8f4d37ec
PZ
351static inline void init_rq_hrtick(struct rq *rq)
352{
353}
006c75f1 354#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 355
5529578a
FW
356/*
357 * cmpxchg based fetch_or, macro so it works for different integer types
358 */
359#define fetch_or(ptr, mask) \
360 ({ \
361 typeof(ptr) _ptr = (ptr); \
362 typeof(mask) _mask = (mask); \
363 typeof(*_ptr) _old, _val = *_ptr; \
364 \
365 for (;;) { \
366 _old = cmpxchg(_ptr, _val, _val | _mask); \
367 if (_old == _val) \
368 break; \
369 _val = _old; \
370 } \
371 _old; \
372})
373
e3baac47 374#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
375/*
376 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
377 * this avoids any races wrt polling state changes and thereby avoids
378 * spurious IPIs.
379 */
380static bool set_nr_and_not_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
383 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
384}
e3baac47
PZ
385
386/*
387 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
388 *
389 * If this returns true, then the idle task promises to call
390 * sched_ttwu_pending() and reschedule soon.
391 */
392static bool set_nr_if_polling(struct task_struct *p)
393{
394 struct thread_info *ti = task_thread_info(p);
316c1608 395 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
396
397 for (;;) {
398 if (!(val & _TIF_POLLING_NRFLAG))
399 return false;
400 if (val & _TIF_NEED_RESCHED)
401 return true;
402 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
403 if (old == val)
404 break;
405 val = old;
406 }
407 return true;
408}
409
fd99f91a
PZ
410#else
411static bool set_nr_and_not_polling(struct task_struct *p)
412{
413 set_tsk_need_resched(p);
414 return true;
415}
e3baac47
PZ
416
417#ifdef CONFIG_SMP
418static bool set_nr_if_polling(struct task_struct *p)
419{
420 return false;
421}
422#endif
fd99f91a
PZ
423#endif
424
76751049
PZ
425void wake_q_add(struct wake_q_head *head, struct task_struct *task)
426{
427 struct wake_q_node *node = &task->wake_q;
428
429 /*
430 * Atomically grab the task, if ->wake_q is !nil already it means
431 * its already queued (either by us or someone else) and will get the
432 * wakeup due to that.
433 *
434 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 435 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
436 */
437 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
438 return;
439
440 get_task_struct(task);
441
442 /*
443 * The head is context local, there can be no concurrency.
444 */
445 *head->lastp = node;
446 head->lastp = &node->next;
447}
448
449void wake_up_q(struct wake_q_head *head)
450{
451 struct wake_q_node *node = head->first;
452
453 while (node != WAKE_Q_TAIL) {
454 struct task_struct *task;
455
456 task = container_of(node, struct task_struct, wake_q);
457 BUG_ON(!task);
d1ccc66d 458 /* Task can safely be re-inserted now: */
76751049
PZ
459 node = node->next;
460 task->wake_q.next = NULL;
461
462 /*
463 * wake_up_process() implies a wmb() to pair with the queueing
464 * in wake_q_add() so as not to miss wakeups.
465 */
466 wake_up_process(task);
467 put_task_struct(task);
468 }
469}
470
c24d20db 471/*
8875125e 472 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
473 *
474 * On UP this means the setting of the need_resched flag, on SMP it
475 * might also involve a cross-CPU call to trigger the scheduler on
476 * the target CPU.
477 */
8875125e 478void resched_curr(struct rq *rq)
c24d20db 479{
8875125e 480 struct task_struct *curr = rq->curr;
c24d20db
IM
481 int cpu;
482
8875125e 483 lockdep_assert_held(&rq->lock);
c24d20db 484
8875125e 485 if (test_tsk_need_resched(curr))
c24d20db
IM
486 return;
487
8875125e 488 cpu = cpu_of(rq);
fd99f91a 489
f27dde8d 490 if (cpu == smp_processor_id()) {
8875125e 491 set_tsk_need_resched(curr);
f27dde8d 492 set_preempt_need_resched();
c24d20db 493 return;
f27dde8d 494 }
c24d20db 495
8875125e 496 if (set_nr_and_not_polling(curr))
c24d20db 497 smp_send_reschedule(cpu);
dfc68f29
AL
498 else
499 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
500}
501
029632fb 502void resched_cpu(int cpu)
c24d20db
IM
503{
504 struct rq *rq = cpu_rq(cpu);
505 unsigned long flags;
506
05fa785c 507 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 508 return;
8875125e 509 resched_curr(rq);
05fa785c 510 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 511}
06d8308c 512
b021fe3e 513#ifdef CONFIG_SMP
3451d024 514#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 515/*
d1ccc66d
IM
516 * In the semi idle case, use the nearest busy CPU for migrating timers
517 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
518 *
519 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
520 * selecting an idle CPU will add more delays to the timers than intended
521 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 522 */
bc7a34b8 523int get_nohz_timer_target(void)
83cd4fe2 524{
bc7a34b8 525 int i, cpu = smp_processor_id();
83cd4fe2
VP
526 struct sched_domain *sd;
527
9642d18e 528 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
529 return cpu;
530
057f3fad 531 rcu_read_lock();
83cd4fe2 532 for_each_domain(cpu, sd) {
057f3fad 533 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
534 if (cpu == i)
535 continue;
536
537 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
538 cpu = i;
539 goto unlock;
540 }
541 }
83cd4fe2 542 }
9642d18e
VH
543
544 if (!is_housekeeping_cpu(cpu))
545 cpu = housekeeping_any_cpu();
057f3fad
PZ
546unlock:
547 rcu_read_unlock();
83cd4fe2
VP
548 return cpu;
549}
d1ccc66d 550
06d8308c
TG
551/*
552 * When add_timer_on() enqueues a timer into the timer wheel of an
553 * idle CPU then this timer might expire before the next timer event
554 * which is scheduled to wake up that CPU. In case of a completely
555 * idle system the next event might even be infinite time into the
556 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
557 * leaves the inner idle loop so the newly added timer is taken into
558 * account when the CPU goes back to idle and evaluates the timer
559 * wheel for the next timer event.
560 */
1c20091e 561static void wake_up_idle_cpu(int cpu)
06d8308c
TG
562{
563 struct rq *rq = cpu_rq(cpu);
564
565 if (cpu == smp_processor_id())
566 return;
567
67b9ca70 568 if (set_nr_and_not_polling(rq->idle))
06d8308c 569 smp_send_reschedule(cpu);
dfc68f29
AL
570 else
571 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
572}
573
c5bfece2 574static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 575{
53c5fa16
FW
576 /*
577 * We just need the target to call irq_exit() and re-evaluate
578 * the next tick. The nohz full kick at least implies that.
579 * If needed we can still optimize that later with an
580 * empty IRQ.
581 */
379d9ecb
PM
582 if (cpu_is_offline(cpu))
583 return true; /* Don't try to wake offline CPUs. */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
379d9ecb
PM
594/*
595 * Wake up the specified CPU. If the CPU is going offline, it is the
596 * caller's responsibility to deal with the lost wakeup, for example,
597 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
598 */
1c20091e
FW
599void wake_up_nohz_cpu(int cpu)
600{
c5bfece2 601 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
602 wake_up_idle_cpu(cpu);
603}
604
ca38062e 605static inline bool got_nohz_idle_kick(void)
45bf76df 606{
1c792db7 607 int cpu = smp_processor_id();
873b4c65
VG
608
609 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
610 return false;
611
612 if (idle_cpu(cpu) && !need_resched())
613 return true;
614
615 /*
616 * We can't run Idle Load Balance on this CPU for this time so we
617 * cancel it and clear NOHZ_BALANCE_KICK
618 */
619 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
620 return false;
45bf76df
IM
621}
622
3451d024 623#else /* CONFIG_NO_HZ_COMMON */
45bf76df 624
ca38062e 625static inline bool got_nohz_idle_kick(void)
2069dd75 626{
ca38062e 627 return false;
2069dd75
PZ
628}
629
3451d024 630#endif /* CONFIG_NO_HZ_COMMON */
d842de87 631
ce831b38 632#ifdef CONFIG_NO_HZ_FULL
76d92ac3 633bool sched_can_stop_tick(struct rq *rq)
ce831b38 634{
76d92ac3
FW
635 int fifo_nr_running;
636
637 /* Deadline tasks, even if single, need the tick */
638 if (rq->dl.dl_nr_running)
639 return false;
640
1e78cdbd 641 /*
2548d546
PZ
642 * If there are more than one RR tasks, we need the tick to effect the
643 * actual RR behaviour.
1e78cdbd 644 */
76d92ac3
FW
645 if (rq->rt.rr_nr_running) {
646 if (rq->rt.rr_nr_running == 1)
647 return true;
648 else
649 return false;
1e78cdbd
RR
650 }
651
2548d546
PZ
652 /*
653 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
654 * forced preemption between FIFO tasks.
655 */
656 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
657 if (fifo_nr_running)
658 return true;
659
660 /*
661 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
662 * if there's more than one we need the tick for involuntary
663 * preemption.
664 */
665 if (rq->nr_running > 1)
541b8264 666 return false;
ce831b38 667
541b8264 668 return true;
ce831b38
FW
669}
670#endif /* CONFIG_NO_HZ_FULL */
d842de87 671
029632fb 672void sched_avg_update(struct rq *rq)
18d95a28 673{
e9e9250b
PZ
674 s64 period = sched_avg_period();
675
78becc27 676 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
677 /*
678 * Inline assembly required to prevent the compiler
679 * optimising this loop into a divmod call.
680 * See __iter_div_u64_rem() for another example of this.
681 */
682 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
683 rq->age_stamp += period;
684 rq->rt_avg /= 2;
685 }
18d95a28
PZ
686}
687
6d6bc0ad 688#endif /* CONFIG_SMP */
18d95a28 689
a790de99
PT
690#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 692/*
8277434e
PT
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
695 *
696 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 697 */
029632fb 698int walk_tg_tree_from(struct task_group *from,
8277434e 699 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
700{
701 struct task_group *parent, *child;
eb755805 702 int ret;
c09595f6 703
8277434e
PT
704 parent = from;
705
c09595f6 706down:
eb755805
PZ
707 ret = (*down)(parent, data);
708 if (ret)
8277434e 709 goto out;
c09595f6
PZ
710 list_for_each_entry_rcu(child, &parent->children, siblings) {
711 parent = child;
712 goto down;
713
714up:
715 continue;
716 }
eb755805 717 ret = (*up)(parent, data);
8277434e
PT
718 if (ret || parent == from)
719 goto out;
c09595f6
PZ
720
721 child = parent;
722 parent = parent->parent;
723 if (parent)
724 goto up;
8277434e 725out:
eb755805 726 return ret;
c09595f6
PZ
727}
728
029632fb 729int tg_nop(struct task_group *tg, void *data)
eb755805 730{
e2b245f8 731 return 0;
eb755805 732}
18d95a28
PZ
733#endif
734
45bf76df
IM
735static void set_load_weight(struct task_struct *p)
736{
f05998d4
NR
737 int prio = p->static_prio - MAX_RT_PRIO;
738 struct load_weight *load = &p->se.load;
739
dd41f596
IM
740 /*
741 * SCHED_IDLE tasks get minimal weight:
742 */
20f9cd2a 743 if (idle_policy(p->policy)) {
c8b28116 744 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 745 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
746 return;
747 }
71f8bd46 748
ed82b8a1
AK
749 load->weight = scale_load(sched_prio_to_weight[prio]);
750 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
751}
752
1de64443 753static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 754{
0a67d1ee
PZ
755 if (!(flags & ENQUEUE_NOCLOCK))
756 update_rq_clock(rq);
757
1de64443
PZ
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
0a67d1ee 760
371fd7e7 761 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
762}
763
1de64443 764static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 765{
0a67d1ee
PZ
766 if (!(flags & DEQUEUE_NOCLOCK))
767 update_rq_clock(rq);
768
1de64443
PZ
769 if (!(flags & DEQUEUE_SAVE))
770 sched_info_dequeued(rq, p);
0a67d1ee 771
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
34f971f6
PZ
791void sched_set_stop_task(int cpu, struct task_struct *stop)
792{
793 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
794 struct task_struct *old_stop = cpu_rq(cpu)->stop;
795
796 if (stop) {
797 /*
798 * Make it appear like a SCHED_FIFO task, its something
799 * userspace knows about and won't get confused about.
800 *
801 * Also, it will make PI more or less work without too
802 * much confusion -- but then, stop work should not
803 * rely on PI working anyway.
804 */
805 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
806
807 stop->sched_class = &stop_sched_class;
808 }
809
810 cpu_rq(cpu)->stop = stop;
811
812 if (old_stop) {
813 /*
814 * Reset it back to a normal scheduling class so that
815 * it can die in pieces.
816 */
817 old_stop->sched_class = &rt_sched_class;
818 }
819}
820
14531189 821/*
dd41f596 822 * __normal_prio - return the priority that is based on the static prio
14531189 823 */
14531189
IM
824static inline int __normal_prio(struct task_struct *p)
825{
dd41f596 826 return p->static_prio;
14531189
IM
827}
828
b29739f9
IM
829/*
830 * Calculate the expected normal priority: i.e. priority
831 * without taking RT-inheritance into account. Might be
832 * boosted by interactivity modifiers. Changes upon fork,
833 * setprio syscalls, and whenever the interactivity
834 * estimator recalculates.
835 */
36c8b586 836static inline int normal_prio(struct task_struct *p)
b29739f9
IM
837{
838 int prio;
839
aab03e05
DF
840 if (task_has_dl_policy(p))
841 prio = MAX_DL_PRIO-1;
842 else if (task_has_rt_policy(p))
b29739f9
IM
843 prio = MAX_RT_PRIO-1 - p->rt_priority;
844 else
845 prio = __normal_prio(p);
846 return prio;
847}
848
849/*
850 * Calculate the current priority, i.e. the priority
851 * taken into account by the scheduler. This value might
852 * be boosted by RT tasks, or might be boosted by
853 * interactivity modifiers. Will be RT if the task got
854 * RT-boosted. If not then it returns p->normal_prio.
855 */
36c8b586 856static int effective_prio(struct task_struct *p)
b29739f9
IM
857{
858 p->normal_prio = normal_prio(p);
859 /*
860 * If we are RT tasks or we were boosted to RT priority,
861 * keep the priority unchanged. Otherwise, update priority
862 * to the normal priority:
863 */
864 if (!rt_prio(p->prio))
865 return p->normal_prio;
866 return p->prio;
867}
868
1da177e4
LT
869/**
870 * task_curr - is this task currently executing on a CPU?
871 * @p: the task in question.
e69f6186
YB
872 *
873 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 874 */
36c8b586 875inline int task_curr(const struct task_struct *p)
1da177e4
LT
876{
877 return cpu_curr(task_cpu(p)) == p;
878}
879
67dfa1b7 880/*
4c9a4bc8
PZ
881 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
882 * use the balance_callback list if you want balancing.
883 *
884 * this means any call to check_class_changed() must be followed by a call to
885 * balance_callback().
67dfa1b7 886 */
cb469845
SR
887static inline void check_class_changed(struct rq *rq, struct task_struct *p,
888 const struct sched_class *prev_class,
da7a735e 889 int oldprio)
cb469845
SR
890{
891 if (prev_class != p->sched_class) {
892 if (prev_class->switched_from)
da7a735e 893 prev_class->switched_from(rq, p);
4c9a4bc8 894
da7a735e 895 p->sched_class->switched_to(rq, p);
2d3d891d 896 } else if (oldprio != p->prio || dl_task(p))
da7a735e 897 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
898}
899
029632fb 900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
901{
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
8875125e 911 resched_curr(rq);
1e5a7405
PZ
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
da0c1e65 921 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 922 rq_clock_skip_update(rq, true);
1e5a7405
PZ
923}
924
1da177e4 925#ifdef CONFIG_SMP
5cc389bc
PZ
926/*
927 * This is how migration works:
928 *
929 * 1) we invoke migration_cpu_stop() on the target CPU using
930 * stop_one_cpu().
931 * 2) stopper starts to run (implicitly forcing the migrated thread
932 * off the CPU)
933 * 3) it checks whether the migrated task is still in the wrong runqueue.
934 * 4) if it's in the wrong runqueue then the migration thread removes
935 * it and puts it into the right queue.
936 * 5) stopper completes and stop_one_cpu() returns and the migration
937 * is done.
938 */
939
940/*
941 * move_queued_task - move a queued task to new rq.
942 *
943 * Returns (locked) new rq. Old rq's lock is released.
944 */
8a8c69c3
PZ
945static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
946 struct task_struct *p, int new_cpu)
5cc389bc 947{
5cc389bc
PZ
948 lockdep_assert_held(&rq->lock);
949
5cc389bc 950 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 951 dequeue_task(rq, p, 0);
5cc389bc 952 set_task_cpu(p, new_cpu);
8a8c69c3 953 rq_unlock(rq, rf);
5cc389bc
PZ
954
955 rq = cpu_rq(new_cpu);
956
8a8c69c3 957 rq_lock(rq, rf);
5cc389bc 958 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 959 enqueue_task(rq, p, 0);
3ea94de1 960 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
961 check_preempt_curr(rq, p, 0);
962
963 return rq;
964}
965
966struct migration_arg {
967 struct task_struct *task;
968 int dest_cpu;
969};
970
971/*
d1ccc66d 972 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
973 * this because either it can't run here any more (set_cpus_allowed()
974 * away from this CPU, or CPU going down), or because we're
975 * attempting to rebalance this task on exec (sched_exec).
976 *
977 * So we race with normal scheduler movements, but that's OK, as long
978 * as the task is no longer on this CPU.
5cc389bc 979 */
8a8c69c3
PZ
980static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
981 struct task_struct *p, int dest_cpu)
5cc389bc 982{
5cc389bc 983 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 984 return rq;
5cc389bc
PZ
985
986 /* Affinity changed (again). */
0c98d344 987 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 988 return rq;
5cc389bc 989
8a8c69c3 990 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
991
992 return rq;
5cc389bc
PZ
993}
994
995/*
996 * migration_cpu_stop - this will be executed by a highprio stopper thread
997 * and performs thread migration by bumping thread off CPU then
998 * 'pushing' onto another runqueue.
999 */
1000static int migration_cpu_stop(void *data)
1001{
1002 struct migration_arg *arg = data;
5e16bbc2
PZ
1003 struct task_struct *p = arg->task;
1004 struct rq *rq = this_rq();
8a8c69c3 1005 struct rq_flags rf;
5cc389bc
PZ
1006
1007 /*
d1ccc66d
IM
1008 * The original target CPU might have gone down and we might
1009 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1010 */
1011 local_irq_disable();
1012 /*
1013 * We need to explicitly wake pending tasks before running
1014 * __migrate_task() such that we will not miss enforcing cpus_allowed
1015 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1016 */
1017 sched_ttwu_pending();
5e16bbc2
PZ
1018
1019 raw_spin_lock(&p->pi_lock);
8a8c69c3 1020 rq_lock(rq, &rf);
5e16bbc2
PZ
1021 /*
1022 * If task_rq(p) != rq, it cannot be migrated here, because we're
1023 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1024 * we're holding p->pi_lock.
1025 */
bf89a304
CC
1026 if (task_rq(p) == rq) {
1027 if (task_on_rq_queued(p))
8a8c69c3 1028 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1029 else
1030 p->wake_cpu = arg->dest_cpu;
1031 }
8a8c69c3 1032 rq_unlock(rq, &rf);
5e16bbc2
PZ
1033 raw_spin_unlock(&p->pi_lock);
1034
5cc389bc
PZ
1035 local_irq_enable();
1036 return 0;
1037}
1038
c5b28038
PZ
1039/*
1040 * sched_class::set_cpus_allowed must do the below, but is not required to
1041 * actually call this function.
1042 */
1043void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1044{
5cc389bc
PZ
1045 cpumask_copy(&p->cpus_allowed, new_mask);
1046 p->nr_cpus_allowed = cpumask_weight(new_mask);
1047}
1048
c5b28038
PZ
1049void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1050{
6c37067e
PZ
1051 struct rq *rq = task_rq(p);
1052 bool queued, running;
1053
c5b28038 1054 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1055
1056 queued = task_on_rq_queued(p);
1057 running = task_current(rq, p);
1058
1059 if (queued) {
1060 /*
1061 * Because __kthread_bind() calls this on blocked tasks without
1062 * holding rq->lock.
1063 */
1064 lockdep_assert_held(&rq->lock);
1de64443 1065 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1066 }
1067 if (running)
1068 put_prev_task(rq, p);
1069
c5b28038 1070 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1071
6c37067e 1072 if (queued)
7134b3e9 1073 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1074 if (running)
b2bf6c31 1075 set_curr_task(rq, p);
c5b28038
PZ
1076}
1077
5cc389bc
PZ
1078/*
1079 * Change a given task's CPU affinity. Migrate the thread to a
1080 * proper CPU and schedule it away if the CPU it's executing on
1081 * is removed from the allowed bitmask.
1082 *
1083 * NOTE: the caller must have a valid reference to the task, the
1084 * task must not exit() & deallocate itself prematurely. The
1085 * call is not atomic; no spinlocks may be held.
1086 */
25834c73
PZ
1087static int __set_cpus_allowed_ptr(struct task_struct *p,
1088 const struct cpumask *new_mask, bool check)
5cc389bc 1089{
e9d867a6 1090 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1091 unsigned int dest_cpu;
eb580751
PZ
1092 struct rq_flags rf;
1093 struct rq *rq;
5cc389bc
PZ
1094 int ret = 0;
1095
eb580751 1096 rq = task_rq_lock(p, &rf);
a499c3ea 1097 update_rq_clock(rq);
5cc389bc 1098
e9d867a6
PZI
1099 if (p->flags & PF_KTHREAD) {
1100 /*
1101 * Kernel threads are allowed on online && !active CPUs
1102 */
1103 cpu_valid_mask = cpu_online_mask;
1104 }
1105
25834c73
PZ
1106 /*
1107 * Must re-check here, to close a race against __kthread_bind(),
1108 * sched_setaffinity() is not guaranteed to observe the flag.
1109 */
1110 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1111 ret = -EINVAL;
1112 goto out;
1113 }
1114
5cc389bc
PZ
1115 if (cpumask_equal(&p->cpus_allowed, new_mask))
1116 goto out;
1117
e9d867a6 1118 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1119 ret = -EINVAL;
1120 goto out;
1121 }
1122
1123 do_set_cpus_allowed(p, new_mask);
1124
e9d867a6
PZI
1125 if (p->flags & PF_KTHREAD) {
1126 /*
1127 * For kernel threads that do indeed end up on online &&
d1ccc66d 1128 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1129 */
1130 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1131 !cpumask_intersects(new_mask, cpu_active_mask) &&
1132 p->nr_cpus_allowed != 1);
1133 }
1134
5cc389bc
PZ
1135 /* Can the task run on the task's current CPU? If so, we're done */
1136 if (cpumask_test_cpu(task_cpu(p), new_mask))
1137 goto out;
1138
e9d867a6 1139 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1140 if (task_running(rq, p) || p->state == TASK_WAKING) {
1141 struct migration_arg arg = { p, dest_cpu };
1142 /* Need help from migration thread: drop lock and wait. */
eb580751 1143 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1144 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1145 tlb_migrate_finish(p->mm);
1146 return 0;
cbce1a68
PZ
1147 } else if (task_on_rq_queued(p)) {
1148 /*
1149 * OK, since we're going to drop the lock immediately
1150 * afterwards anyway.
1151 */
8a8c69c3 1152 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1153 }
5cc389bc 1154out:
eb580751 1155 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1156
1157 return ret;
1158}
25834c73
PZ
1159
1160int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1161{
1162 return __set_cpus_allowed_ptr(p, new_mask, false);
1163}
5cc389bc
PZ
1164EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1165
dd41f596 1166void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1167{
e2912009
PZ
1168#ifdef CONFIG_SCHED_DEBUG
1169 /*
1170 * We should never call set_task_cpu() on a blocked task,
1171 * ttwu() will sort out the placement.
1172 */
077614ee 1173 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1174 !p->on_rq);
0122ec5b 1175
3ea94de1
JP
1176 /*
1177 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1178 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1179 * time relying on p->on_rq.
1180 */
1181 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1182 p->sched_class == &fair_sched_class &&
1183 (p->on_rq && !task_on_rq_migrating(p)));
1184
0122ec5b 1185#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1186 /*
1187 * The caller should hold either p->pi_lock or rq->lock, when changing
1188 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1189 *
1190 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1191 * see task_group().
6c6c54e1
PZ
1192 *
1193 * Furthermore, all task_rq users should acquire both locks, see
1194 * task_rq_lock().
1195 */
0122ec5b
PZ
1196 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1197 lockdep_is_held(&task_rq(p)->lock)));
1198#endif
e2912009
PZ
1199#endif
1200
de1d7286 1201 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1202
0c69774e 1203 if (task_cpu(p) != new_cpu) {
0a74bef8 1204 if (p->sched_class->migrate_task_rq)
5a4fd036 1205 p->sched_class->migrate_task_rq(p);
0c69774e 1206 p->se.nr_migrations++;
ff303e66 1207 perf_event_task_migrate(p);
0c69774e 1208 }
dd41f596
IM
1209
1210 __set_task_cpu(p, new_cpu);
c65cc870
IM
1211}
1212
ac66f547
PZ
1213static void __migrate_swap_task(struct task_struct *p, int cpu)
1214{
da0c1e65 1215 if (task_on_rq_queued(p)) {
ac66f547 1216 struct rq *src_rq, *dst_rq;
8a8c69c3 1217 struct rq_flags srf, drf;
ac66f547
PZ
1218
1219 src_rq = task_rq(p);
1220 dst_rq = cpu_rq(cpu);
1221
8a8c69c3
PZ
1222 rq_pin_lock(src_rq, &srf);
1223 rq_pin_lock(dst_rq, &drf);
1224
3ea94de1 1225 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1226 deactivate_task(src_rq, p, 0);
1227 set_task_cpu(p, cpu);
1228 activate_task(dst_rq, p, 0);
3ea94de1 1229 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1230 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1231
1232 rq_unpin_lock(dst_rq, &drf);
1233 rq_unpin_lock(src_rq, &srf);
1234
ac66f547
PZ
1235 } else {
1236 /*
1237 * Task isn't running anymore; make it appear like we migrated
1238 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1239 * previous CPU our target instead of where it really is.
ac66f547
PZ
1240 */
1241 p->wake_cpu = cpu;
1242 }
1243}
1244
1245struct migration_swap_arg {
1246 struct task_struct *src_task, *dst_task;
1247 int src_cpu, dst_cpu;
1248};
1249
1250static int migrate_swap_stop(void *data)
1251{
1252 struct migration_swap_arg *arg = data;
1253 struct rq *src_rq, *dst_rq;
1254 int ret = -EAGAIN;
1255
62694cd5
PZ
1256 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1257 return -EAGAIN;
1258
ac66f547
PZ
1259 src_rq = cpu_rq(arg->src_cpu);
1260 dst_rq = cpu_rq(arg->dst_cpu);
1261
74602315
PZ
1262 double_raw_lock(&arg->src_task->pi_lock,
1263 &arg->dst_task->pi_lock);
ac66f547 1264 double_rq_lock(src_rq, dst_rq);
62694cd5 1265
ac66f547
PZ
1266 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1267 goto unlock;
1268
1269 if (task_cpu(arg->src_task) != arg->src_cpu)
1270 goto unlock;
1271
0c98d344 1272 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1273 goto unlock;
1274
0c98d344 1275 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1276 goto unlock;
1277
1278 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1279 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1280
1281 ret = 0;
1282
1283unlock:
1284 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1285 raw_spin_unlock(&arg->dst_task->pi_lock);
1286 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1287
1288 return ret;
1289}
1290
1291/*
1292 * Cross migrate two tasks
1293 */
1294int migrate_swap(struct task_struct *cur, struct task_struct *p)
1295{
1296 struct migration_swap_arg arg;
1297 int ret = -EINVAL;
1298
ac66f547
PZ
1299 arg = (struct migration_swap_arg){
1300 .src_task = cur,
1301 .src_cpu = task_cpu(cur),
1302 .dst_task = p,
1303 .dst_cpu = task_cpu(p),
1304 };
1305
1306 if (arg.src_cpu == arg.dst_cpu)
1307 goto out;
1308
6acce3ef
PZ
1309 /*
1310 * These three tests are all lockless; this is OK since all of them
1311 * will be re-checked with proper locks held further down the line.
1312 */
ac66f547
PZ
1313 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1314 goto out;
1315
0c98d344 1316 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1317 goto out;
1318
0c98d344 1319 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1320 goto out;
1321
286549dc 1322 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1323 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1324
1325out:
ac66f547
PZ
1326 return ret;
1327}
1328
1da177e4
LT
1329/*
1330 * wait_task_inactive - wait for a thread to unschedule.
1331 *
85ba2d86
RM
1332 * If @match_state is nonzero, it's the @p->state value just checked and
1333 * not expected to change. If it changes, i.e. @p might have woken up,
1334 * then return zero. When we succeed in waiting for @p to be off its CPU,
1335 * we return a positive number (its total switch count). If a second call
1336 * a short while later returns the same number, the caller can be sure that
1337 * @p has remained unscheduled the whole time.
1338 *
1da177e4
LT
1339 * The caller must ensure that the task *will* unschedule sometime soon,
1340 * else this function might spin for a *long* time. This function can't
1341 * be called with interrupts off, or it may introduce deadlock with
1342 * smp_call_function() if an IPI is sent by the same process we are
1343 * waiting to become inactive.
1344 */
85ba2d86 1345unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1346{
da0c1e65 1347 int running, queued;
eb580751 1348 struct rq_flags rf;
85ba2d86 1349 unsigned long ncsw;
70b97a7f 1350 struct rq *rq;
1da177e4 1351
3a5c359a
AK
1352 for (;;) {
1353 /*
1354 * We do the initial early heuristics without holding
1355 * any task-queue locks at all. We'll only try to get
1356 * the runqueue lock when things look like they will
1357 * work out!
1358 */
1359 rq = task_rq(p);
fa490cfd 1360
3a5c359a
AK
1361 /*
1362 * If the task is actively running on another CPU
1363 * still, just relax and busy-wait without holding
1364 * any locks.
1365 *
1366 * NOTE! Since we don't hold any locks, it's not
1367 * even sure that "rq" stays as the right runqueue!
1368 * But we don't care, since "task_running()" will
1369 * return false if the runqueue has changed and p
1370 * is actually now running somewhere else!
1371 */
85ba2d86
RM
1372 while (task_running(rq, p)) {
1373 if (match_state && unlikely(p->state != match_state))
1374 return 0;
3a5c359a 1375 cpu_relax();
85ba2d86 1376 }
fa490cfd 1377
3a5c359a
AK
1378 /*
1379 * Ok, time to look more closely! We need the rq
1380 * lock now, to be *sure*. If we're wrong, we'll
1381 * just go back and repeat.
1382 */
eb580751 1383 rq = task_rq_lock(p, &rf);
27a9da65 1384 trace_sched_wait_task(p);
3a5c359a 1385 running = task_running(rq, p);
da0c1e65 1386 queued = task_on_rq_queued(p);
85ba2d86 1387 ncsw = 0;
f31e11d8 1388 if (!match_state || p->state == match_state)
93dcf55f 1389 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1390 task_rq_unlock(rq, p, &rf);
fa490cfd 1391
85ba2d86
RM
1392 /*
1393 * If it changed from the expected state, bail out now.
1394 */
1395 if (unlikely(!ncsw))
1396 break;
1397
3a5c359a
AK
1398 /*
1399 * Was it really running after all now that we
1400 * checked with the proper locks actually held?
1401 *
1402 * Oops. Go back and try again..
1403 */
1404 if (unlikely(running)) {
1405 cpu_relax();
1406 continue;
1407 }
fa490cfd 1408
3a5c359a
AK
1409 /*
1410 * It's not enough that it's not actively running,
1411 * it must be off the runqueue _entirely_, and not
1412 * preempted!
1413 *
80dd99b3 1414 * So if it was still runnable (but just not actively
3a5c359a
AK
1415 * running right now), it's preempted, and we should
1416 * yield - it could be a while.
1417 */
da0c1e65 1418 if (unlikely(queued)) {
8b0e1953 1419 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1420
1421 set_current_state(TASK_UNINTERRUPTIBLE);
1422 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1423 continue;
1424 }
fa490cfd 1425
3a5c359a
AK
1426 /*
1427 * Ahh, all good. It wasn't running, and it wasn't
1428 * runnable, which means that it will never become
1429 * running in the future either. We're all done!
1430 */
1431 break;
1432 }
85ba2d86
RM
1433
1434 return ncsw;
1da177e4
LT
1435}
1436
1437/***
1438 * kick_process - kick a running thread to enter/exit the kernel
1439 * @p: the to-be-kicked thread
1440 *
1441 * Cause a process which is running on another CPU to enter
1442 * kernel-mode, without any delay. (to get signals handled.)
1443 *
25985edc 1444 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1445 * because all it wants to ensure is that the remote task enters
1446 * the kernel. If the IPI races and the task has been migrated
1447 * to another CPU then no harm is done and the purpose has been
1448 * achieved as well.
1449 */
36c8b586 1450void kick_process(struct task_struct *p)
1da177e4
LT
1451{
1452 int cpu;
1453
1454 preempt_disable();
1455 cpu = task_cpu(p);
1456 if ((cpu != smp_processor_id()) && task_curr(p))
1457 smp_send_reschedule(cpu);
1458 preempt_enable();
1459}
b43e3521 1460EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1461
30da688e 1462/*
013fdb80 1463 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1464 *
1465 * A few notes on cpu_active vs cpu_online:
1466 *
1467 * - cpu_active must be a subset of cpu_online
1468 *
1469 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1470 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1471 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1472 * see it.
1473 *
d1ccc66d 1474 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1475 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1476 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1477 * off.
1478 *
1479 * This means that fallback selection must not select !active CPUs.
1480 * And can assume that any active CPU must be online. Conversely
1481 * select_task_rq() below may allow selection of !active CPUs in order
1482 * to satisfy the above rules.
30da688e 1483 */
5da9a0fb
PZ
1484static int select_fallback_rq(int cpu, struct task_struct *p)
1485{
aa00d89c
TC
1486 int nid = cpu_to_node(cpu);
1487 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1488 enum { cpuset, possible, fail } state = cpuset;
1489 int dest_cpu;
5da9a0fb 1490
aa00d89c 1491 /*
d1ccc66d
IM
1492 * If the node that the CPU is on has been offlined, cpu_to_node()
1493 * will return -1. There is no CPU on the node, and we should
1494 * select the CPU on the other node.
aa00d89c
TC
1495 */
1496 if (nid != -1) {
1497 nodemask = cpumask_of_node(nid);
1498
1499 /* Look for allowed, online CPU in same node. */
1500 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1501 if (!cpu_active(dest_cpu))
1502 continue;
0c98d344 1503 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1504 return dest_cpu;
1505 }
2baab4e9 1506 }
5da9a0fb 1507
2baab4e9
PZ
1508 for (;;) {
1509 /* Any allowed, online CPU? */
0c98d344 1510 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1511 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1512 continue;
1513 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1514 continue;
1515 goto out;
1516 }
5da9a0fb 1517
e73e85f0 1518 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1519 switch (state) {
1520 case cpuset:
e73e85f0
ON
1521 if (IS_ENABLED(CONFIG_CPUSETS)) {
1522 cpuset_cpus_allowed_fallback(p);
1523 state = possible;
1524 break;
1525 }
d1ccc66d 1526 /* Fall-through */
2baab4e9
PZ
1527 case possible:
1528 do_set_cpus_allowed(p, cpu_possible_mask);
1529 state = fail;
1530 break;
1531
1532 case fail:
1533 BUG();
1534 break;
1535 }
1536 }
1537
1538out:
1539 if (state != cpuset) {
1540 /*
1541 * Don't tell them about moving exiting tasks or
1542 * kernel threads (both mm NULL), since they never
1543 * leave kernel.
1544 */
1545 if (p->mm && printk_ratelimit()) {
aac74dc4 1546 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1547 task_pid_nr(p), p->comm, cpu);
1548 }
5da9a0fb
PZ
1549 }
1550
1551 return dest_cpu;
1552}
1553
e2912009 1554/*
013fdb80 1555 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1556 */
970b13ba 1557static inline
ac66f547 1558int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1559{
cbce1a68
PZ
1560 lockdep_assert_held(&p->pi_lock);
1561
4b53a341 1562 if (p->nr_cpus_allowed > 1)
6c1d9410 1563 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1564 else
0c98d344 1565 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1566
1567 /*
1568 * In order not to call set_task_cpu() on a blocking task we need
1569 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1570 * CPU.
e2912009
PZ
1571 *
1572 * Since this is common to all placement strategies, this lives here.
1573 *
1574 * [ this allows ->select_task() to simply return task_cpu(p) and
1575 * not worry about this generic constraint ]
1576 */
0c98d344 1577 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1578 !cpu_online(cpu)))
5da9a0fb 1579 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1580
1581 return cpu;
970b13ba 1582}
09a40af5
MG
1583
1584static void update_avg(u64 *avg, u64 sample)
1585{
1586 s64 diff = sample - *avg;
1587 *avg += diff >> 3;
1588}
25834c73
PZ
1589
1590#else
1591
1592static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1593 const struct cpumask *new_mask, bool check)
1594{
1595 return set_cpus_allowed_ptr(p, new_mask);
1596}
1597
5cc389bc 1598#endif /* CONFIG_SMP */
970b13ba 1599
d7c01d27 1600static void
b84cb5df 1601ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1602{
4fa8d299 1603 struct rq *rq;
b84cb5df 1604
4fa8d299
JP
1605 if (!schedstat_enabled())
1606 return;
1607
1608 rq = this_rq();
d7c01d27 1609
4fa8d299
JP
1610#ifdef CONFIG_SMP
1611 if (cpu == rq->cpu) {
ae92882e
JP
1612 schedstat_inc(rq->ttwu_local);
1613 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1614 } else {
1615 struct sched_domain *sd;
1616
ae92882e 1617 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1618 rcu_read_lock();
4fa8d299 1619 for_each_domain(rq->cpu, sd) {
d7c01d27 1620 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1621 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1622 break;
1623 }
1624 }
057f3fad 1625 rcu_read_unlock();
d7c01d27 1626 }
f339b9dc
PZ
1627
1628 if (wake_flags & WF_MIGRATED)
ae92882e 1629 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1630#endif /* CONFIG_SMP */
1631
ae92882e
JP
1632 schedstat_inc(rq->ttwu_count);
1633 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1634
1635 if (wake_flags & WF_SYNC)
ae92882e 1636 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1637}
1638
1de64443 1639static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1640{
9ed3811a 1641 activate_task(rq, p, en_flags);
da0c1e65 1642 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1643
d1ccc66d 1644 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1645 if (p->flags & PF_WQ_WORKER)
1646 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1647}
1648
23f41eeb
PZ
1649/*
1650 * Mark the task runnable and perform wakeup-preemption.
1651 */
e7904a28 1652static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1653 struct rq_flags *rf)
9ed3811a 1654{
9ed3811a 1655 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1656 p->state = TASK_RUNNING;
fbd705a0
PZ
1657 trace_sched_wakeup(p);
1658
9ed3811a 1659#ifdef CONFIG_SMP
4c9a4bc8
PZ
1660 if (p->sched_class->task_woken) {
1661 /*
cbce1a68
PZ
1662 * Our task @p is fully woken up and running; so its safe to
1663 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1664 */
d8ac8971 1665 rq_unpin_lock(rq, rf);
9ed3811a 1666 p->sched_class->task_woken(rq, p);
d8ac8971 1667 rq_repin_lock(rq, rf);
4c9a4bc8 1668 }
9ed3811a 1669
e69c6341 1670 if (rq->idle_stamp) {
78becc27 1671 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1672 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1673
abfafa54
JL
1674 update_avg(&rq->avg_idle, delta);
1675
1676 if (rq->avg_idle > max)
9ed3811a 1677 rq->avg_idle = max;
abfafa54 1678
9ed3811a
TH
1679 rq->idle_stamp = 0;
1680 }
1681#endif
1682}
1683
c05fbafb 1684static void
e7904a28 1685ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1686 struct rq_flags *rf)
c05fbafb 1687{
77558e4d 1688 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1689
cbce1a68
PZ
1690 lockdep_assert_held(&rq->lock);
1691
c05fbafb
PZ
1692#ifdef CONFIG_SMP
1693 if (p->sched_contributes_to_load)
1694 rq->nr_uninterruptible--;
b5179ac7 1695
b5179ac7 1696 if (wake_flags & WF_MIGRATED)
59efa0ba 1697 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1698#endif
1699
b5179ac7 1700 ttwu_activate(rq, p, en_flags);
d8ac8971 1701 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1702}
1703
1704/*
1705 * Called in case the task @p isn't fully descheduled from its runqueue,
1706 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1707 * since all we need to do is flip p->state to TASK_RUNNING, since
1708 * the task is still ->on_rq.
1709 */
1710static int ttwu_remote(struct task_struct *p, int wake_flags)
1711{
eb580751 1712 struct rq_flags rf;
c05fbafb
PZ
1713 struct rq *rq;
1714 int ret = 0;
1715
eb580751 1716 rq = __task_rq_lock(p, &rf);
da0c1e65 1717 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1718 /* check_preempt_curr() may use rq clock */
1719 update_rq_clock(rq);
d8ac8971 1720 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1721 ret = 1;
1722 }
eb580751 1723 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1724
1725 return ret;
1726}
1727
317f3941 1728#ifdef CONFIG_SMP
e3baac47 1729void sched_ttwu_pending(void)
317f3941
PZ
1730{
1731 struct rq *rq = this_rq();
fa14ff4a
PZ
1732 struct llist_node *llist = llist_del_all(&rq->wake_list);
1733 struct task_struct *p;
d8ac8971 1734 struct rq_flags rf;
317f3941 1735
e3baac47
PZ
1736 if (!llist)
1737 return;
1738
8a8c69c3 1739 rq_lock_irqsave(rq, &rf);
77558e4d 1740 update_rq_clock(rq);
317f3941 1741
fa14ff4a 1742 while (llist) {
b7e7ade3
PZ
1743 int wake_flags = 0;
1744
fa14ff4a
PZ
1745 p = llist_entry(llist, struct task_struct, wake_entry);
1746 llist = llist_next(llist);
b7e7ade3
PZ
1747
1748 if (p->sched_remote_wakeup)
1749 wake_flags = WF_MIGRATED;
1750
d8ac8971 1751 ttwu_do_activate(rq, p, wake_flags, &rf);
317f3941
PZ
1752 }
1753
8a8c69c3 1754 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1755}
1756
1757void scheduler_ipi(void)
1758{
f27dde8d
PZ
1759 /*
1760 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1761 * TIF_NEED_RESCHED remotely (for the first time) will also send
1762 * this IPI.
1763 */
8cb75e0c 1764 preempt_fold_need_resched();
f27dde8d 1765
fd2ac4f4 1766 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1767 return;
1768
1769 /*
1770 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1771 * traditionally all their work was done from the interrupt return
1772 * path. Now that we actually do some work, we need to make sure
1773 * we do call them.
1774 *
1775 * Some archs already do call them, luckily irq_enter/exit nest
1776 * properly.
1777 *
1778 * Arguably we should visit all archs and update all handlers,
1779 * however a fair share of IPIs are still resched only so this would
1780 * somewhat pessimize the simple resched case.
1781 */
1782 irq_enter();
fa14ff4a 1783 sched_ttwu_pending();
ca38062e
SS
1784
1785 /*
1786 * Check if someone kicked us for doing the nohz idle load balance.
1787 */
873b4c65 1788 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1789 this_rq()->idle_balance = 1;
ca38062e 1790 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1791 }
c5d753a5 1792 irq_exit();
317f3941
PZ
1793}
1794
b7e7ade3 1795static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1796{
e3baac47
PZ
1797 struct rq *rq = cpu_rq(cpu);
1798
b7e7ade3
PZ
1799 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1800
e3baac47
PZ
1801 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1802 if (!set_nr_if_polling(rq->idle))
1803 smp_send_reschedule(cpu);
1804 else
1805 trace_sched_wake_idle_without_ipi(cpu);
1806 }
317f3941 1807}
d6aa8f85 1808
f6be8af1
CL
1809void wake_up_if_idle(int cpu)
1810{
1811 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1812 struct rq_flags rf;
f6be8af1 1813
fd7de1e8
AL
1814 rcu_read_lock();
1815
1816 if (!is_idle_task(rcu_dereference(rq->curr)))
1817 goto out;
f6be8af1
CL
1818
1819 if (set_nr_if_polling(rq->idle)) {
1820 trace_sched_wake_idle_without_ipi(cpu);
1821 } else {
8a8c69c3 1822 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1823 if (is_idle_task(rq->curr))
1824 smp_send_reschedule(cpu);
d1ccc66d 1825 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1826 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1827 }
fd7de1e8
AL
1828
1829out:
1830 rcu_read_unlock();
f6be8af1
CL
1831}
1832
39be3501 1833bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1834{
1835 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1836}
d6aa8f85 1837#endif /* CONFIG_SMP */
317f3941 1838
b5179ac7 1839static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1840{
1841 struct rq *rq = cpu_rq(cpu);
d8ac8971 1842 struct rq_flags rf;
c05fbafb 1843
17d9f311 1844#if defined(CONFIG_SMP)
39be3501 1845 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1846 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1847 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1848 return;
1849 }
1850#endif
1851
8a8c69c3 1852 rq_lock(rq, &rf);
77558e4d 1853 update_rq_clock(rq);
d8ac8971 1854 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1855 rq_unlock(rq, &rf);
9ed3811a
TH
1856}
1857
8643cda5
PZ
1858/*
1859 * Notes on Program-Order guarantees on SMP systems.
1860 *
1861 * MIGRATION
1862 *
1863 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1864 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1865 * execution on its new CPU [c1].
8643cda5
PZ
1866 *
1867 * For migration (of runnable tasks) this is provided by the following means:
1868 *
1869 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1870 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1871 * rq(c1)->lock (if not at the same time, then in that order).
1872 * C) LOCK of the rq(c1)->lock scheduling in task
1873 *
1874 * Transitivity guarantees that B happens after A and C after B.
1875 * Note: we only require RCpc transitivity.
d1ccc66d 1876 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1877 *
1878 * Example:
1879 *
1880 * CPU0 CPU1 CPU2
1881 *
1882 * LOCK rq(0)->lock
1883 * sched-out X
1884 * sched-in Y
1885 * UNLOCK rq(0)->lock
1886 *
1887 * LOCK rq(0)->lock // orders against CPU0
1888 * dequeue X
1889 * UNLOCK rq(0)->lock
1890 *
1891 * LOCK rq(1)->lock
1892 * enqueue X
1893 * UNLOCK rq(1)->lock
1894 *
1895 * LOCK rq(1)->lock // orders against CPU2
1896 * sched-out Z
1897 * sched-in X
1898 * UNLOCK rq(1)->lock
1899 *
1900 *
1901 * BLOCKING -- aka. SLEEP + WAKEUP
1902 *
1903 * For blocking we (obviously) need to provide the same guarantee as for
1904 * migration. However the means are completely different as there is no lock
1905 * chain to provide order. Instead we do:
1906 *
1907 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1908 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1909 *
1910 * Example:
1911 *
1912 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1913 *
1914 * LOCK rq(0)->lock LOCK X->pi_lock
1915 * dequeue X
1916 * sched-out X
1917 * smp_store_release(X->on_cpu, 0);
1918 *
1f03e8d2 1919 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1920 * X->state = WAKING
1921 * set_task_cpu(X,2)
1922 *
1923 * LOCK rq(2)->lock
1924 * enqueue X
1925 * X->state = RUNNING
1926 * UNLOCK rq(2)->lock
1927 *
1928 * LOCK rq(2)->lock // orders against CPU1
1929 * sched-out Z
1930 * sched-in X
1931 * UNLOCK rq(2)->lock
1932 *
1933 * UNLOCK X->pi_lock
1934 * UNLOCK rq(0)->lock
1935 *
1936 *
1937 * However; for wakeups there is a second guarantee we must provide, namely we
1938 * must observe the state that lead to our wakeup. That is, not only must our
1939 * task observe its own prior state, it must also observe the stores prior to
1940 * its wakeup.
1941 *
1942 * This means that any means of doing remote wakeups must order the CPU doing
1943 * the wakeup against the CPU the task is going to end up running on. This,
1944 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1945 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1946 *
1947 */
1948
9ed3811a 1949/**
1da177e4 1950 * try_to_wake_up - wake up a thread
9ed3811a 1951 * @p: the thread to be awakened
1da177e4 1952 * @state: the mask of task states that can be woken
9ed3811a 1953 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1954 *
a2250238 1955 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1956 *
a2250238
PZ
1957 * If the task was not queued/runnable, also place it back on a runqueue.
1958 *
1959 * Atomic against schedule() which would dequeue a task, also see
1960 * set_current_state().
1961 *
1962 * Return: %true if @p->state changes (an actual wakeup was done),
1963 * %false otherwise.
1da177e4 1964 */
e4a52bcb
PZ
1965static int
1966try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1967{
1da177e4 1968 unsigned long flags;
c05fbafb 1969 int cpu, success = 0;
2398f2c6 1970
e0acd0a6
ON
1971 /*
1972 * If we are going to wake up a thread waiting for CONDITION we
1973 * need to ensure that CONDITION=1 done by the caller can not be
1974 * reordered with p->state check below. This pairs with mb() in
1975 * set_current_state() the waiting thread does.
1976 */
1977 smp_mb__before_spinlock();
013fdb80 1978 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1979 if (!(p->state & state))
1da177e4
LT
1980 goto out;
1981
fbd705a0
PZ
1982 trace_sched_waking(p);
1983
d1ccc66d
IM
1984 /* We're going to change ->state: */
1985 success = 1;
1da177e4 1986 cpu = task_cpu(p);
1da177e4 1987
135e8c92
BS
1988 /*
1989 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1990 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1991 * in smp_cond_load_acquire() below.
1992 *
1993 * sched_ttwu_pending() try_to_wake_up()
1994 * [S] p->on_rq = 1; [L] P->state
1995 * UNLOCK rq->lock -----.
1996 * \
1997 * +--- RMB
1998 * schedule() /
1999 * LOCK rq->lock -----'
2000 * UNLOCK rq->lock
2001 *
2002 * [task p]
2003 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2004 *
2005 * Pairs with the UNLOCK+LOCK on rq->lock from the
2006 * last wakeup of our task and the schedule that got our task
2007 * current.
2008 */
2009 smp_rmb();
c05fbafb
PZ
2010 if (p->on_rq && ttwu_remote(p, wake_flags))
2011 goto stat;
1da177e4 2012
1da177e4 2013#ifdef CONFIG_SMP
ecf7d01c
PZ
2014 /*
2015 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2016 * possible to, falsely, observe p->on_cpu == 0.
2017 *
2018 * One must be running (->on_cpu == 1) in order to remove oneself
2019 * from the runqueue.
2020 *
2021 * [S] ->on_cpu = 1; [L] ->on_rq
2022 * UNLOCK rq->lock
2023 * RMB
2024 * LOCK rq->lock
2025 * [S] ->on_rq = 0; [L] ->on_cpu
2026 *
2027 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2028 * from the consecutive calls to schedule(); the first switching to our
2029 * task, the second putting it to sleep.
2030 */
2031 smp_rmb();
2032
e9c84311 2033 /*
d1ccc66d 2034 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2035 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2036 *
2037 * Pairs with the smp_store_release() in finish_lock_switch().
2038 *
2039 * This ensures that tasks getting woken will be fully ordered against
2040 * their previous state and preserve Program Order.
0970d299 2041 */
1f03e8d2 2042 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2043
a8e4f2ea 2044 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2045 p->state = TASK_WAKING;
e7693a36 2046
e33a9bba
TH
2047 if (p->in_iowait) {
2048 delayacct_blkio_end();
2049 atomic_dec(&task_rq(p)->nr_iowait);
2050 }
2051
ac66f547 2052 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2053 if (task_cpu(p) != cpu) {
2054 wake_flags |= WF_MIGRATED;
e4a52bcb 2055 set_task_cpu(p, cpu);
f339b9dc 2056 }
e33a9bba
TH
2057
2058#else /* CONFIG_SMP */
2059
2060 if (p->in_iowait) {
2061 delayacct_blkio_end();
2062 atomic_dec(&task_rq(p)->nr_iowait);
2063 }
2064
1da177e4 2065#endif /* CONFIG_SMP */
1da177e4 2066
b5179ac7 2067 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2068stat:
4fa8d299 2069 ttwu_stat(p, cpu, wake_flags);
1da177e4 2070out:
013fdb80 2071 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2072
2073 return success;
2074}
2075
21aa9af0
TH
2076/**
2077 * try_to_wake_up_local - try to wake up a local task with rq lock held
2078 * @p: the thread to be awakened
9279e0d2 2079 * @cookie: context's cookie for pinning
21aa9af0 2080 *
2acca55e 2081 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2082 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2083 * the current task.
21aa9af0 2084 */
d8ac8971 2085static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2086{
2087 struct rq *rq = task_rq(p);
21aa9af0 2088
383efcd0
TH
2089 if (WARN_ON_ONCE(rq != this_rq()) ||
2090 WARN_ON_ONCE(p == current))
2091 return;
2092
21aa9af0
TH
2093 lockdep_assert_held(&rq->lock);
2094
2acca55e 2095 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2096 /*
2097 * This is OK, because current is on_cpu, which avoids it being
2098 * picked for load-balance and preemption/IRQs are still
2099 * disabled avoiding further scheduler activity on it and we've
2100 * not yet picked a replacement task.
2101 */
8a8c69c3 2102 rq_unlock(rq, rf);
2acca55e 2103 raw_spin_lock(&p->pi_lock);
8a8c69c3 2104 rq_relock(rq, rf);
2acca55e
PZ
2105 }
2106
21aa9af0 2107 if (!(p->state & TASK_NORMAL))
2acca55e 2108 goto out;
21aa9af0 2109
fbd705a0
PZ
2110 trace_sched_waking(p);
2111
e33a9bba
TH
2112 if (!task_on_rq_queued(p)) {
2113 if (p->in_iowait) {
2114 delayacct_blkio_end();
2115 atomic_dec(&rq->nr_iowait);
2116 }
bce4dc80 2117 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2118 }
d7c01d27 2119
d8ac8971 2120 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2121 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2122out:
2123 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2124}
2125
50fa610a
DH
2126/**
2127 * wake_up_process - Wake up a specific process
2128 * @p: The process to be woken up.
2129 *
2130 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2131 * processes.
2132 *
2133 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2134 *
2135 * It may be assumed that this function implies a write memory barrier before
2136 * changing the task state if and only if any tasks are woken up.
2137 */
7ad5b3a5 2138int wake_up_process(struct task_struct *p)
1da177e4 2139{
9067ac85 2140 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2141}
1da177e4
LT
2142EXPORT_SYMBOL(wake_up_process);
2143
7ad5b3a5 2144int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2145{
2146 return try_to_wake_up(p, state, 0);
2147}
2148
a5e7be3b
JL
2149/*
2150 * This function clears the sched_dl_entity static params.
2151 */
2152void __dl_clear_params(struct task_struct *p)
2153{
2154 struct sched_dl_entity *dl_se = &p->dl;
2155
2156 dl_se->dl_runtime = 0;
2157 dl_se->dl_deadline = 0;
2158 dl_se->dl_period = 0;
2159 dl_se->flags = 0;
2160 dl_se->dl_bw = 0;
40767b0d
PZ
2161
2162 dl_se->dl_throttled = 0;
40767b0d 2163 dl_se->dl_yielded = 0;
a5e7be3b
JL
2164}
2165
1da177e4
LT
2166/*
2167 * Perform scheduler related setup for a newly forked process p.
2168 * p is forked by current.
dd41f596
IM
2169 *
2170 * __sched_fork() is basic setup used by init_idle() too:
2171 */
5e1576ed 2172static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2173{
fd2f4419
PZ
2174 p->on_rq = 0;
2175
2176 p->se.on_rq = 0;
dd41f596
IM
2177 p->se.exec_start = 0;
2178 p->se.sum_exec_runtime = 0;
f6cf891c 2179 p->se.prev_sum_exec_runtime = 0;
6c594c21 2180 p->se.nr_migrations = 0;
da7a735e 2181 p->se.vruntime = 0;
fd2f4419 2182 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2183
ad936d86
BP
2184#ifdef CONFIG_FAIR_GROUP_SCHED
2185 p->se.cfs_rq = NULL;
2186#endif
2187
6cfb0d5d 2188#ifdef CONFIG_SCHEDSTATS
cb251765 2189 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2190 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2191#endif
476d139c 2192
aab03e05 2193 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2194 init_dl_task_timer(&p->dl);
a5e7be3b 2195 __dl_clear_params(p);
aab03e05 2196
fa717060 2197 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2198 p->rt.timeout = 0;
2199 p->rt.time_slice = sched_rr_timeslice;
2200 p->rt.on_rq = 0;
2201 p->rt.on_list = 0;
476d139c 2202
e107be36
AK
2203#ifdef CONFIG_PREEMPT_NOTIFIERS
2204 INIT_HLIST_HEAD(&p->preempt_notifiers);
2205#endif
cbee9f88
PZ
2206
2207#ifdef CONFIG_NUMA_BALANCING
2208 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2209 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2210 p->mm->numa_scan_seq = 0;
2211 }
2212
5e1576ed
RR
2213 if (clone_flags & CLONE_VM)
2214 p->numa_preferred_nid = current->numa_preferred_nid;
2215 else
2216 p->numa_preferred_nid = -1;
2217
cbee9f88
PZ
2218 p->node_stamp = 0ULL;
2219 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2220 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2221 p->numa_work.next = &p->numa_work;
44dba3d5 2222 p->numa_faults = NULL;
7e2703e6
RR
2223 p->last_task_numa_placement = 0;
2224 p->last_sum_exec_runtime = 0;
8c8a743c 2225
8c8a743c 2226 p->numa_group = NULL;
cbee9f88 2227#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2228}
2229
2a595721
SD
2230DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2231
1a687c2e 2232#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2233
1a687c2e
MG
2234void set_numabalancing_state(bool enabled)
2235{
2236 if (enabled)
2a595721 2237 static_branch_enable(&sched_numa_balancing);
1a687c2e 2238 else
2a595721 2239 static_branch_disable(&sched_numa_balancing);
1a687c2e 2240}
54a43d54
AK
2241
2242#ifdef CONFIG_PROC_SYSCTL
2243int sysctl_numa_balancing(struct ctl_table *table, int write,
2244 void __user *buffer, size_t *lenp, loff_t *ppos)
2245{
2246 struct ctl_table t;
2247 int err;
2a595721 2248 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2249
2250 if (write && !capable(CAP_SYS_ADMIN))
2251 return -EPERM;
2252
2253 t = *table;
2254 t.data = &state;
2255 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2256 if (err < 0)
2257 return err;
2258 if (write)
2259 set_numabalancing_state(state);
2260 return err;
2261}
2262#endif
2263#endif
dd41f596 2264
4698f88c
JP
2265#ifdef CONFIG_SCHEDSTATS
2266
cb251765 2267DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2268static bool __initdata __sched_schedstats = false;
cb251765 2269
cb251765
MG
2270static void set_schedstats(bool enabled)
2271{
2272 if (enabled)
2273 static_branch_enable(&sched_schedstats);
2274 else
2275 static_branch_disable(&sched_schedstats);
2276}
2277
2278void force_schedstat_enabled(void)
2279{
2280 if (!schedstat_enabled()) {
2281 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2282 static_branch_enable(&sched_schedstats);
2283 }
2284}
2285
2286static int __init setup_schedstats(char *str)
2287{
2288 int ret = 0;
2289 if (!str)
2290 goto out;
2291
4698f88c
JP
2292 /*
2293 * This code is called before jump labels have been set up, so we can't
2294 * change the static branch directly just yet. Instead set a temporary
2295 * variable so init_schedstats() can do it later.
2296 */
cb251765 2297 if (!strcmp(str, "enable")) {
4698f88c 2298 __sched_schedstats = true;
cb251765
MG
2299 ret = 1;
2300 } else if (!strcmp(str, "disable")) {
4698f88c 2301 __sched_schedstats = false;
cb251765
MG
2302 ret = 1;
2303 }
2304out:
2305 if (!ret)
2306 pr_warn("Unable to parse schedstats=\n");
2307
2308 return ret;
2309}
2310__setup("schedstats=", setup_schedstats);
2311
4698f88c
JP
2312static void __init init_schedstats(void)
2313{
2314 set_schedstats(__sched_schedstats);
2315}
2316
cb251765
MG
2317#ifdef CONFIG_PROC_SYSCTL
2318int sysctl_schedstats(struct ctl_table *table, int write,
2319 void __user *buffer, size_t *lenp, loff_t *ppos)
2320{
2321 struct ctl_table t;
2322 int err;
2323 int state = static_branch_likely(&sched_schedstats);
2324
2325 if (write && !capable(CAP_SYS_ADMIN))
2326 return -EPERM;
2327
2328 t = *table;
2329 t.data = &state;
2330 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2331 if (err < 0)
2332 return err;
2333 if (write)
2334 set_schedstats(state);
2335 return err;
2336}
4698f88c
JP
2337#endif /* CONFIG_PROC_SYSCTL */
2338#else /* !CONFIG_SCHEDSTATS */
2339static inline void init_schedstats(void) {}
2340#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2341
2342/*
2343 * fork()/clone()-time setup:
2344 */
aab03e05 2345int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2346{
0122ec5b 2347 unsigned long flags;
dd41f596
IM
2348 int cpu = get_cpu();
2349
5e1576ed 2350 __sched_fork(clone_flags, p);
06b83b5f 2351 /*
7dc603c9 2352 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2353 * nobody will actually run it, and a signal or other external
2354 * event cannot wake it up and insert it on the runqueue either.
2355 */
7dc603c9 2356 p->state = TASK_NEW;
dd41f596 2357
c350a04e
MG
2358 /*
2359 * Make sure we do not leak PI boosting priority to the child.
2360 */
2361 p->prio = current->normal_prio;
2362
b9dc29e7
MG
2363 /*
2364 * Revert to default priority/policy on fork if requested.
2365 */
2366 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2367 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2368 p->policy = SCHED_NORMAL;
6c697bdf 2369 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2370 p->rt_priority = 0;
2371 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2372 p->static_prio = NICE_TO_PRIO(0);
2373
2374 p->prio = p->normal_prio = __normal_prio(p);
2375 set_load_weight(p);
6c697bdf 2376
b9dc29e7
MG
2377 /*
2378 * We don't need the reset flag anymore after the fork. It has
2379 * fulfilled its duty:
2380 */
2381 p->sched_reset_on_fork = 0;
2382 }
ca94c442 2383
aab03e05
DF
2384 if (dl_prio(p->prio)) {
2385 put_cpu();
2386 return -EAGAIN;
2387 } else if (rt_prio(p->prio)) {
2388 p->sched_class = &rt_sched_class;
2389 } else {
2ddbf952 2390 p->sched_class = &fair_sched_class;
aab03e05 2391 }
b29739f9 2392
7dc603c9 2393 init_entity_runnable_average(&p->se);
cd29fe6f 2394
86951599
PZ
2395 /*
2396 * The child is not yet in the pid-hash so no cgroup attach races,
2397 * and the cgroup is pinned to this child due to cgroup_fork()
2398 * is ran before sched_fork().
2399 *
2400 * Silence PROVE_RCU.
2401 */
0122ec5b 2402 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2403 /*
d1ccc66d 2404 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2405 * so use __set_task_cpu().
2406 */
2407 __set_task_cpu(p, cpu);
2408 if (p->sched_class->task_fork)
2409 p->sched_class->task_fork(p);
0122ec5b 2410 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2411
f6db8347 2412#ifdef CONFIG_SCHED_INFO
dd41f596 2413 if (likely(sched_info_on()))
52f17b6c 2414 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2415#endif
3ca7a440
PZ
2416#if defined(CONFIG_SMP)
2417 p->on_cpu = 0;
4866cde0 2418#endif
01028747 2419 init_task_preempt_count(p);
806c09a7 2420#ifdef CONFIG_SMP
917b627d 2421 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2422 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2423#endif
917b627d 2424
476d139c 2425 put_cpu();
aab03e05 2426 return 0;
1da177e4
LT
2427}
2428
332ac17e
DF
2429unsigned long to_ratio(u64 period, u64 runtime)
2430{
2431 if (runtime == RUNTIME_INF)
2432 return 1ULL << 20;
2433
2434 /*
2435 * Doing this here saves a lot of checks in all
2436 * the calling paths, and returning zero seems
2437 * safe for them anyway.
2438 */
2439 if (period == 0)
2440 return 0;
2441
2442 return div64_u64(runtime << 20, period);
2443}
2444
2445#ifdef CONFIG_SMP
2446inline struct dl_bw *dl_bw_of(int i)
2447{
f78f5b90
PM
2448 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2449 "sched RCU must be held");
332ac17e
DF
2450 return &cpu_rq(i)->rd->dl_bw;
2451}
2452
de212f18 2453static inline int dl_bw_cpus(int i)
332ac17e 2454{
de212f18
PZ
2455 struct root_domain *rd = cpu_rq(i)->rd;
2456 int cpus = 0;
2457
f78f5b90
PM
2458 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2459 "sched RCU must be held");
de212f18
PZ
2460 for_each_cpu_and(i, rd->span, cpu_active_mask)
2461 cpus++;
2462
2463 return cpus;
332ac17e
DF
2464}
2465#else
2466inline struct dl_bw *dl_bw_of(int i)
2467{
2468 return &cpu_rq(i)->dl.dl_bw;
2469}
2470
de212f18 2471static inline int dl_bw_cpus(int i)
332ac17e
DF
2472{
2473 return 1;
2474}
2475#endif
2476
332ac17e
DF
2477/*
2478 * We must be sure that accepting a new task (or allowing changing the
2479 * parameters of an existing one) is consistent with the bandwidth
2480 * constraints. If yes, this function also accordingly updates the currently
2481 * allocated bandwidth to reflect the new situation.
2482 *
2483 * This function is called while holding p's rq->lock.
40767b0d
PZ
2484 *
2485 * XXX we should delay bw change until the task's 0-lag point, see
2486 * __setparam_dl().
332ac17e
DF
2487 */
2488static int dl_overflow(struct task_struct *p, int policy,
2489 const struct sched_attr *attr)
2490{
2491
2492 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2493 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2494 u64 runtime = attr->sched_runtime;
2495 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2496 int cpus, err = -1;
332ac17e 2497
fec148c0
XP
2498 /* !deadline task may carry old deadline bandwidth */
2499 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2500 return 0;
2501
2502 /*
2503 * Either if a task, enters, leave, or stays -deadline but changes
2504 * its parameters, we may need to update accordingly the total
2505 * allocated bandwidth of the container.
2506 */
2507 raw_spin_lock(&dl_b->lock);
de212f18 2508 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2509 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2510 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2511 __dl_add(dl_b, new_bw);
2512 err = 0;
2513 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2514 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2515 __dl_clear(dl_b, p->dl.dl_bw);
2516 __dl_add(dl_b, new_bw);
2517 err = 0;
2518 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2519 __dl_clear(dl_b, p->dl.dl_bw);
2520 err = 0;
2521 }
2522 raw_spin_unlock(&dl_b->lock);
2523
2524 return err;
2525}
2526
2527extern void init_dl_bw(struct dl_bw *dl_b);
2528
1da177e4
LT
2529/*
2530 * wake_up_new_task - wake up a newly created task for the first time.
2531 *
2532 * This function will do some initial scheduler statistics housekeeping
2533 * that must be done for every newly created context, then puts the task
2534 * on the runqueue and wakes it.
2535 */
3e51e3ed 2536void wake_up_new_task(struct task_struct *p)
1da177e4 2537{
eb580751 2538 struct rq_flags rf;
dd41f596 2539 struct rq *rq;
fabf318e 2540
eb580751 2541 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2542 p->state = TASK_RUNNING;
fabf318e
PZ
2543#ifdef CONFIG_SMP
2544 /*
2545 * Fork balancing, do it here and not earlier because:
2546 * - cpus_allowed can change in the fork path
d1ccc66d 2547 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2548 *
2549 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2550 * as we're not fully set-up yet.
fabf318e 2551 */
e210bffd 2552 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2553#endif
b7fa30c9 2554 rq = __task_rq_lock(p, &rf);
4126bad6 2555 update_rq_clock(rq);
2b8c41da 2556 post_init_entity_util_avg(&p->se);
0017d735 2557
cd29fe6f 2558 activate_task(rq, p, 0);
da0c1e65 2559 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2560 trace_sched_wakeup_new(p);
a7558e01 2561 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2562#ifdef CONFIG_SMP
0aaafaab
PZ
2563 if (p->sched_class->task_woken) {
2564 /*
2565 * Nothing relies on rq->lock after this, so its fine to
2566 * drop it.
2567 */
d8ac8971 2568 rq_unpin_lock(rq, &rf);
efbbd05a 2569 p->sched_class->task_woken(rq, p);
d8ac8971 2570 rq_repin_lock(rq, &rf);
0aaafaab 2571 }
9a897c5a 2572#endif
eb580751 2573 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2574}
2575
e107be36
AK
2576#ifdef CONFIG_PREEMPT_NOTIFIERS
2577
1cde2930
PZ
2578static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2579
2ecd9d29
PZ
2580void preempt_notifier_inc(void)
2581{
2582 static_key_slow_inc(&preempt_notifier_key);
2583}
2584EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2585
2586void preempt_notifier_dec(void)
2587{
2588 static_key_slow_dec(&preempt_notifier_key);
2589}
2590EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2591
e107be36 2592/**
80dd99b3 2593 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2594 * @notifier: notifier struct to register
e107be36
AK
2595 */
2596void preempt_notifier_register(struct preempt_notifier *notifier)
2597{
2ecd9d29
PZ
2598 if (!static_key_false(&preempt_notifier_key))
2599 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2600
e107be36
AK
2601 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2602}
2603EXPORT_SYMBOL_GPL(preempt_notifier_register);
2604
2605/**
2606 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2607 * @notifier: notifier struct to unregister
e107be36 2608 *
d84525a8 2609 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2610 */
2611void preempt_notifier_unregister(struct preempt_notifier *notifier)
2612{
2613 hlist_del(&notifier->link);
2614}
2615EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2616
1cde2930 2617static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2618{
2619 struct preempt_notifier *notifier;
e107be36 2620
b67bfe0d 2621 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2622 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2623}
2624
1cde2930
PZ
2625static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2626{
2627 if (static_key_false(&preempt_notifier_key))
2628 __fire_sched_in_preempt_notifiers(curr);
2629}
2630
e107be36 2631static void
1cde2930
PZ
2632__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2633 struct task_struct *next)
e107be36
AK
2634{
2635 struct preempt_notifier *notifier;
e107be36 2636
b67bfe0d 2637 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2638 notifier->ops->sched_out(notifier, next);
2639}
2640
1cde2930
PZ
2641static __always_inline void
2642fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2644{
2645 if (static_key_false(&preempt_notifier_key))
2646 __fire_sched_out_preempt_notifiers(curr, next);
2647}
2648
6d6bc0ad 2649#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2650
1cde2930 2651static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2652{
2653}
2654
1cde2930 2655static inline void
e107be36
AK
2656fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 struct task_struct *next)
2658{
2659}
2660
6d6bc0ad 2661#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2662
4866cde0
NP
2663/**
2664 * prepare_task_switch - prepare to switch tasks
2665 * @rq: the runqueue preparing to switch
421cee29 2666 * @prev: the current task that is being switched out
4866cde0
NP
2667 * @next: the task we are going to switch to.
2668 *
2669 * This is called with the rq lock held and interrupts off. It must
2670 * be paired with a subsequent finish_task_switch after the context
2671 * switch.
2672 *
2673 * prepare_task_switch sets up locking and calls architecture specific
2674 * hooks.
2675 */
e107be36
AK
2676static inline void
2677prepare_task_switch(struct rq *rq, struct task_struct *prev,
2678 struct task_struct *next)
4866cde0 2679{
43148951 2680 sched_info_switch(rq, prev, next);
fe4b04fa 2681 perf_event_task_sched_out(prev, next);
e107be36 2682 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2683 prepare_lock_switch(rq, next);
2684 prepare_arch_switch(next);
2685}
2686
1da177e4
LT
2687/**
2688 * finish_task_switch - clean up after a task-switch
2689 * @prev: the thread we just switched away from.
2690 *
4866cde0
NP
2691 * finish_task_switch must be called after the context switch, paired
2692 * with a prepare_task_switch call before the context switch.
2693 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2694 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2695 *
2696 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2697 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2698 * with the lock held can cause deadlocks; see schedule() for
2699 * details.)
dfa50b60
ON
2700 *
2701 * The context switch have flipped the stack from under us and restored the
2702 * local variables which were saved when this task called schedule() in the
2703 * past. prev == current is still correct but we need to recalculate this_rq
2704 * because prev may have moved to another CPU.
1da177e4 2705 */
dfa50b60 2706static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2707 __releases(rq->lock)
2708{
dfa50b60 2709 struct rq *rq = this_rq();
1da177e4 2710 struct mm_struct *mm = rq->prev_mm;
55a101f8 2711 long prev_state;
1da177e4 2712
609ca066
PZ
2713 /*
2714 * The previous task will have left us with a preempt_count of 2
2715 * because it left us after:
2716 *
2717 * schedule()
2718 * preempt_disable(); // 1
2719 * __schedule()
2720 * raw_spin_lock_irq(&rq->lock) // 2
2721 *
2722 * Also, see FORK_PREEMPT_COUNT.
2723 */
e2bf1c4b
PZ
2724 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2725 "corrupted preempt_count: %s/%d/0x%x\n",
2726 current->comm, current->pid, preempt_count()))
2727 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2728
1da177e4
LT
2729 rq->prev_mm = NULL;
2730
2731 /*
2732 * A task struct has one reference for the use as "current".
c394cc9f 2733 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2734 * schedule one last time. The schedule call will never return, and
2735 * the scheduled task must drop that reference.
95913d97
PZ
2736 *
2737 * We must observe prev->state before clearing prev->on_cpu (in
2738 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2739 * running on another CPU and we could rave with its RUNNING -> DEAD
2740 * transition, resulting in a double drop.
1da177e4 2741 */
55a101f8 2742 prev_state = prev->state;
bf9fae9f 2743 vtime_task_switch(prev);
a8d757ef 2744 perf_event_task_sched_in(prev, current);
4866cde0 2745 finish_lock_switch(rq, prev);
01f23e16 2746 finish_arch_post_lock_switch();
e8fa1362 2747
e107be36 2748 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2749 if (mm)
2750 mmdrop(mm);
c394cc9f 2751 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2752 if (prev->sched_class->task_dead)
2753 prev->sched_class->task_dead(prev);
2754
c6fd91f0 2755 /*
2756 * Remove function-return probe instances associated with this
2757 * task and put them back on the free list.
9761eea8 2758 */
c6fd91f0 2759 kprobe_flush_task(prev);
68f24b08
AL
2760
2761 /* Task is done with its stack. */
2762 put_task_stack(prev);
2763
1da177e4 2764 put_task_struct(prev);
c6fd91f0 2765 }
99e5ada9 2766
de734f89 2767 tick_nohz_task_switch();
dfa50b60 2768 return rq;
1da177e4
LT
2769}
2770
3f029d3c
GH
2771#ifdef CONFIG_SMP
2772
3f029d3c 2773/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2774static void __balance_callback(struct rq *rq)
3f029d3c 2775{
e3fca9e7
PZ
2776 struct callback_head *head, *next;
2777 void (*func)(struct rq *rq);
8a8c69c3 2778 struct rq_flags rf;
3f029d3c 2779
8a8c69c3 2780 rq_lock_irqsave(rq, &rf);
e3fca9e7
PZ
2781 head = rq->balance_callback;
2782 rq->balance_callback = NULL;
2783 while (head) {
2784 func = (void (*)(struct rq *))head->func;
2785 next = head->next;
2786 head->next = NULL;
2787 head = next;
3f029d3c 2788
e3fca9e7 2789 func(rq);
3f029d3c 2790 }
8a8c69c3 2791 rq_unlock_irqrestore(rq, &rf);
e3fca9e7
PZ
2792}
2793
2794static inline void balance_callback(struct rq *rq)
2795{
2796 if (unlikely(rq->balance_callback))
2797 __balance_callback(rq);
3f029d3c
GH
2798}
2799
2800#else
da19ab51 2801
e3fca9e7 2802static inline void balance_callback(struct rq *rq)
3f029d3c 2803{
1da177e4
LT
2804}
2805
3f029d3c
GH
2806#endif
2807
1da177e4
LT
2808/**
2809 * schedule_tail - first thing a freshly forked thread must call.
2810 * @prev: the thread we just switched away from.
2811 */
722a9f92 2812asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2813 __releases(rq->lock)
2814{
1a43a14a 2815 struct rq *rq;
da19ab51 2816
609ca066
PZ
2817 /*
2818 * New tasks start with FORK_PREEMPT_COUNT, see there and
2819 * finish_task_switch() for details.
2820 *
2821 * finish_task_switch() will drop rq->lock() and lower preempt_count
2822 * and the preempt_enable() will end up enabling preemption (on
2823 * PREEMPT_COUNT kernels).
2824 */
2825
dfa50b60 2826 rq = finish_task_switch(prev);
e3fca9e7 2827 balance_callback(rq);
1a43a14a 2828 preempt_enable();
70b97a7f 2829
1da177e4 2830 if (current->set_child_tid)
b488893a 2831 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2832}
2833
2834/*
dfa50b60 2835 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2836 */
04936948 2837static __always_inline struct rq *
70b97a7f 2838context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2839 struct task_struct *next, struct rq_flags *rf)
1da177e4 2840{
dd41f596 2841 struct mm_struct *mm, *oldmm;
1da177e4 2842
e107be36 2843 prepare_task_switch(rq, prev, next);
fe4b04fa 2844
dd41f596
IM
2845 mm = next->mm;
2846 oldmm = prev->active_mm;
9226d125
ZA
2847 /*
2848 * For paravirt, this is coupled with an exit in switch_to to
2849 * combine the page table reload and the switch backend into
2850 * one hypercall.
2851 */
224101ed 2852 arch_start_context_switch(prev);
9226d125 2853
31915ab4 2854 if (!mm) {
1da177e4 2855 next->active_mm = oldmm;
f1f10076 2856 mmgrab(oldmm);
1da177e4
LT
2857 enter_lazy_tlb(oldmm, next);
2858 } else
f98db601 2859 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2860
31915ab4 2861 if (!prev->mm) {
1da177e4 2862 prev->active_mm = NULL;
1da177e4
LT
2863 rq->prev_mm = oldmm;
2864 }
92509b73 2865
cb42c9a3 2866 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2867
3a5f5e48
IM
2868 /*
2869 * Since the runqueue lock will be released by the next
2870 * task (which is an invalid locking op but in the case
2871 * of the scheduler it's an obvious special-case), so we
2872 * do an early lockdep release here:
2873 */
d8ac8971 2874 rq_unpin_lock(rq, rf);
8a25d5de 2875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2876
2877 /* Here we just switch the register state and the stack. */
2878 switch_to(prev, next, prev);
dd41f596 2879 barrier();
dfa50b60
ON
2880
2881 return finish_task_switch(prev);
1da177e4
LT
2882}
2883
2884/*
1c3e8264 2885 * nr_running and nr_context_switches:
1da177e4
LT
2886 *
2887 * externally visible scheduler statistics: current number of runnable
1c3e8264 2888 * threads, total number of context switches performed since bootup.
1da177e4
LT
2889 */
2890unsigned long nr_running(void)
2891{
2892 unsigned long i, sum = 0;
2893
2894 for_each_online_cpu(i)
2895 sum += cpu_rq(i)->nr_running;
2896
2897 return sum;
f711f609 2898}
1da177e4 2899
2ee507c4 2900/*
d1ccc66d 2901 * Check if only the current task is running on the CPU.
00cc1633
DD
2902 *
2903 * Caution: this function does not check that the caller has disabled
2904 * preemption, thus the result might have a time-of-check-to-time-of-use
2905 * race. The caller is responsible to use it correctly, for example:
2906 *
2907 * - from a non-preemptable section (of course)
2908 *
2909 * - from a thread that is bound to a single CPU
2910 *
2911 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2912 */
2913bool single_task_running(void)
2914{
00cc1633 2915 return raw_rq()->nr_running == 1;
2ee507c4
TC
2916}
2917EXPORT_SYMBOL(single_task_running);
2918
1da177e4 2919unsigned long long nr_context_switches(void)
46cb4b7c 2920{
cc94abfc
SR
2921 int i;
2922 unsigned long long sum = 0;
46cb4b7c 2923
0a945022 2924 for_each_possible_cpu(i)
1da177e4 2925 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2926
1da177e4
LT
2927 return sum;
2928}
483b4ee6 2929
e33a9bba
TH
2930/*
2931 * IO-wait accounting, and how its mostly bollocks (on SMP).
2932 *
2933 * The idea behind IO-wait account is to account the idle time that we could
2934 * have spend running if it were not for IO. That is, if we were to improve the
2935 * storage performance, we'd have a proportional reduction in IO-wait time.
2936 *
2937 * This all works nicely on UP, where, when a task blocks on IO, we account
2938 * idle time as IO-wait, because if the storage were faster, it could've been
2939 * running and we'd not be idle.
2940 *
2941 * This has been extended to SMP, by doing the same for each CPU. This however
2942 * is broken.
2943 *
2944 * Imagine for instance the case where two tasks block on one CPU, only the one
2945 * CPU will have IO-wait accounted, while the other has regular idle. Even
2946 * though, if the storage were faster, both could've ran at the same time,
2947 * utilising both CPUs.
2948 *
2949 * This means, that when looking globally, the current IO-wait accounting on
2950 * SMP is a lower bound, by reason of under accounting.
2951 *
2952 * Worse, since the numbers are provided per CPU, they are sometimes
2953 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2954 * associated with any one particular CPU, it can wake to another CPU than it
2955 * blocked on. This means the per CPU IO-wait number is meaningless.
2956 *
2957 * Task CPU affinities can make all that even more 'interesting'.
2958 */
2959
1da177e4
LT
2960unsigned long nr_iowait(void)
2961{
2962 unsigned long i, sum = 0;
483b4ee6 2963
0a945022 2964 for_each_possible_cpu(i)
1da177e4 2965 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2966
1da177e4
LT
2967 return sum;
2968}
483b4ee6 2969
e33a9bba
TH
2970/*
2971 * Consumers of these two interfaces, like for example the cpufreq menu
2972 * governor are using nonsensical data. Boosting frequency for a CPU that has
2973 * IO-wait which might not even end up running the task when it does become
2974 * runnable.
2975 */
2976
8c215bd3 2977unsigned long nr_iowait_cpu(int cpu)
69d25870 2978{
8c215bd3 2979 struct rq *this = cpu_rq(cpu);
69d25870
AV
2980 return atomic_read(&this->nr_iowait);
2981}
46cb4b7c 2982
372ba8cb
MG
2983void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2984{
3289bdb4
PZ
2985 struct rq *rq = this_rq();
2986 *nr_waiters = atomic_read(&rq->nr_iowait);
2987 *load = rq->load.weight;
372ba8cb
MG
2988}
2989
dd41f596 2990#ifdef CONFIG_SMP
8a0be9ef 2991
46cb4b7c 2992/*
38022906
PZ
2993 * sched_exec - execve() is a valuable balancing opportunity, because at
2994 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2995 */
38022906 2996void sched_exec(void)
46cb4b7c 2997{
38022906 2998 struct task_struct *p = current;
1da177e4 2999 unsigned long flags;
0017d735 3000 int dest_cpu;
46cb4b7c 3001
8f42ced9 3002 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3003 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3004 if (dest_cpu == smp_processor_id())
3005 goto unlock;
38022906 3006
8f42ced9 3007 if (likely(cpu_active(dest_cpu))) {
969c7921 3008 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3009
8f42ced9
PZ
3010 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3011 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3012 return;
3013 }
0017d735 3014unlock:
8f42ced9 3015 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3016}
dd41f596 3017
1da177e4
LT
3018#endif
3019
1da177e4 3020DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3021DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3022
3023EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3024EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3025
6075620b
GG
3026/*
3027 * The function fair_sched_class.update_curr accesses the struct curr
3028 * and its field curr->exec_start; when called from task_sched_runtime(),
3029 * we observe a high rate of cache misses in practice.
3030 * Prefetching this data results in improved performance.
3031 */
3032static inline void prefetch_curr_exec_start(struct task_struct *p)
3033{
3034#ifdef CONFIG_FAIR_GROUP_SCHED
3035 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3036#else
3037 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3038#endif
3039 prefetch(curr);
3040 prefetch(&curr->exec_start);
3041}
3042
c5f8d995
HS
3043/*
3044 * Return accounted runtime for the task.
3045 * In case the task is currently running, return the runtime plus current's
3046 * pending runtime that have not been accounted yet.
3047 */
3048unsigned long long task_sched_runtime(struct task_struct *p)
3049{
eb580751 3050 struct rq_flags rf;
c5f8d995 3051 struct rq *rq;
6e998916 3052 u64 ns;
c5f8d995 3053
911b2898
PZ
3054#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3055 /*
3056 * 64-bit doesn't need locks to atomically read a 64bit value.
3057 * So we have a optimization chance when the task's delta_exec is 0.
3058 * Reading ->on_cpu is racy, but this is ok.
3059 *
d1ccc66d
IM
3060 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3061 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3062 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3063 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3064 * been accounted, so we're correct here as well.
911b2898 3065 */
da0c1e65 3066 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3067 return p->se.sum_exec_runtime;
3068#endif
3069
eb580751 3070 rq = task_rq_lock(p, &rf);
6e998916
SG
3071 /*
3072 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3073 * project cycles that may never be accounted to this
3074 * thread, breaking clock_gettime().
3075 */
3076 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3077 prefetch_curr_exec_start(p);
6e998916
SG
3078 update_rq_clock(rq);
3079 p->sched_class->update_curr(rq);
3080 }
3081 ns = p->se.sum_exec_runtime;
eb580751 3082 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3083
3084 return ns;
3085}
48f24c4d 3086
7835b98b
CL
3087/*
3088 * This function gets called by the timer code, with HZ frequency.
3089 * We call it with interrupts disabled.
7835b98b
CL
3090 */
3091void scheduler_tick(void)
3092{
7835b98b
CL
3093 int cpu = smp_processor_id();
3094 struct rq *rq = cpu_rq(cpu);
dd41f596 3095 struct task_struct *curr = rq->curr;
8a8c69c3 3096 struct rq_flags rf;
3e51f33f
PZ
3097
3098 sched_clock_tick();
dd41f596 3099
8a8c69c3
PZ
3100 rq_lock(rq, &rf);
3101
3e51f33f 3102 update_rq_clock(rq);
fa85ae24 3103 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3104 cpu_load_update_active(rq);
3289bdb4 3105 calc_global_load_tick(rq);
8a8c69c3
PZ
3106
3107 rq_unlock(rq, &rf);
7835b98b 3108
e9d2b064 3109 perf_event_task_tick();
e220d2dc 3110
e418e1c2 3111#ifdef CONFIG_SMP
6eb57e0d 3112 rq->idle_balance = idle_cpu(cpu);
7caff66f 3113 trigger_load_balance(rq);
e418e1c2 3114#endif
265f22a9 3115 rq_last_tick_reset(rq);
1da177e4
LT
3116}
3117
265f22a9
FW
3118#ifdef CONFIG_NO_HZ_FULL
3119/**
3120 * scheduler_tick_max_deferment
3121 *
3122 * Keep at least one tick per second when a single
3123 * active task is running because the scheduler doesn't
3124 * yet completely support full dynticks environment.
3125 *
3126 * This makes sure that uptime, CFS vruntime, load
3127 * balancing, etc... continue to move forward, even
3128 * with a very low granularity.
e69f6186
YB
3129 *
3130 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3131 */
3132u64 scheduler_tick_max_deferment(void)
3133{
3134 struct rq *rq = this_rq();
316c1608 3135 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3136
3137 next = rq->last_sched_tick + HZ;
3138
3139 if (time_before_eq(next, now))
3140 return 0;
3141
8fe8ff09 3142 return jiffies_to_nsecs(next - now);
1da177e4 3143}
265f22a9 3144#endif
1da177e4 3145
7e49fcce
SR
3146#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3147 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3148/*
3149 * If the value passed in is equal to the current preempt count
3150 * then we just disabled preemption. Start timing the latency.
3151 */
3152static inline void preempt_latency_start(int val)
3153{
3154 if (preempt_count() == val) {
3155 unsigned long ip = get_lock_parent_ip();
3156#ifdef CONFIG_DEBUG_PREEMPT
3157 current->preempt_disable_ip = ip;
3158#endif
3159 trace_preempt_off(CALLER_ADDR0, ip);
3160 }
3161}
7e49fcce 3162
edafe3a5 3163void preempt_count_add(int val)
1da177e4 3164{
6cd8a4bb 3165#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3166 /*
3167 * Underflow?
3168 */
9a11b49a
IM
3169 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3170 return;
6cd8a4bb 3171#endif
bdb43806 3172 __preempt_count_add(val);
6cd8a4bb 3173#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3174 /*
3175 * Spinlock count overflowing soon?
3176 */
33859f7f
MOS
3177 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3178 PREEMPT_MASK - 10);
6cd8a4bb 3179#endif
47252cfb 3180 preempt_latency_start(val);
1da177e4 3181}
bdb43806 3182EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3183NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3184
47252cfb
SR
3185/*
3186 * If the value passed in equals to the current preempt count
3187 * then we just enabled preemption. Stop timing the latency.
3188 */
3189static inline void preempt_latency_stop(int val)
3190{
3191 if (preempt_count() == val)
3192 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3193}
3194
edafe3a5 3195void preempt_count_sub(int val)
1da177e4 3196{
6cd8a4bb 3197#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3198 /*
3199 * Underflow?
3200 */
01e3eb82 3201 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3202 return;
1da177e4
LT
3203 /*
3204 * Is the spinlock portion underflowing?
3205 */
9a11b49a
IM
3206 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3207 !(preempt_count() & PREEMPT_MASK)))
3208 return;
6cd8a4bb 3209#endif
9a11b49a 3210
47252cfb 3211 preempt_latency_stop(val);
bdb43806 3212 __preempt_count_sub(val);
1da177e4 3213}
bdb43806 3214EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3215NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3216
47252cfb
SR
3217#else
3218static inline void preempt_latency_start(int val) { }
3219static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3220#endif
3221
59ddbcb2
IM
3222static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3223{
3224#ifdef CONFIG_DEBUG_PREEMPT
3225 return p->preempt_disable_ip;
3226#else
3227 return 0;
3228#endif
3229}
3230
1da177e4 3231/*
dd41f596 3232 * Print scheduling while atomic bug:
1da177e4 3233 */
dd41f596 3234static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3235{
d1c6d149
VN
3236 /* Save this before calling printk(), since that will clobber it */
3237 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3238
664dfa65
DJ
3239 if (oops_in_progress)
3240 return;
3241
3df0fc5b
PZ
3242 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3243 prev->comm, prev->pid, preempt_count());
838225b4 3244
dd41f596 3245 debug_show_held_locks(prev);
e21f5b15 3246 print_modules();
dd41f596
IM
3247 if (irqs_disabled())
3248 print_irqtrace_events(prev);
d1c6d149
VN
3249 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3250 && in_atomic_preempt_off()) {
8f47b187 3251 pr_err("Preemption disabled at:");
d1c6d149 3252 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3253 pr_cont("\n");
3254 }
748c7201
DBO
3255 if (panic_on_warn)
3256 panic("scheduling while atomic\n");
3257
6135fc1e 3258 dump_stack();
373d4d09 3259 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3260}
1da177e4 3261
dd41f596
IM
3262/*
3263 * Various schedule()-time debugging checks and statistics:
3264 */
3265static inline void schedule_debug(struct task_struct *prev)
3266{
0d9e2632 3267#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3268 if (task_stack_end_corrupted(prev))
3269 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3270#endif
b99def8b 3271
1dc0fffc 3272 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3273 __schedule_bug(prev);
1dc0fffc
PZ
3274 preempt_count_set(PREEMPT_DISABLED);
3275 }
b3fbab05 3276 rcu_sleep_check();
dd41f596 3277
1da177e4
LT
3278 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3279
ae92882e 3280 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3281}
3282
3283/*
3284 * Pick up the highest-prio task:
3285 */
3286static inline struct task_struct *
d8ac8971 3287pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3288{
49ee5768 3289 const struct sched_class *class;
dd41f596 3290 struct task_struct *p;
1da177e4
LT
3291
3292 /*
0ba87bb2
PZ
3293 * Optimization: we know that if all tasks are in the fair class we can
3294 * call that function directly, but only if the @prev task wasn't of a
3295 * higher scheduling class, because otherwise those loose the
3296 * opportunity to pull in more work from other CPUs.
1da177e4 3297 */
0ba87bb2
PZ
3298 if (likely((prev->sched_class == &idle_sched_class ||
3299 prev->sched_class == &fair_sched_class) &&
3300 rq->nr_running == rq->cfs.h_nr_running)) {
3301
d8ac8971 3302 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3303 if (unlikely(p == RETRY_TASK))
3304 goto again;
3305
d1ccc66d 3306 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3307 if (unlikely(!p))
d8ac8971 3308 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3309
3310 return p;
1da177e4
LT
3311 }
3312
37e117c0 3313again:
34f971f6 3314 for_each_class(class) {
d8ac8971 3315 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3316 if (p) {
3317 if (unlikely(p == RETRY_TASK))
3318 goto again;
dd41f596 3319 return p;
37e117c0 3320 }
dd41f596 3321 }
34f971f6 3322
d1ccc66d
IM
3323 /* The idle class should always have a runnable task: */
3324 BUG();
dd41f596 3325}
1da177e4 3326
dd41f596 3327/*
c259e01a 3328 * __schedule() is the main scheduler function.
edde96ea
PE
3329 *
3330 * The main means of driving the scheduler and thus entering this function are:
3331 *
3332 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3333 *
3334 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3335 * paths. For example, see arch/x86/entry_64.S.
3336 *
3337 * To drive preemption between tasks, the scheduler sets the flag in timer
3338 * interrupt handler scheduler_tick().
3339 *
3340 * 3. Wakeups don't really cause entry into schedule(). They add a
3341 * task to the run-queue and that's it.
3342 *
3343 * Now, if the new task added to the run-queue preempts the current
3344 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3345 * called on the nearest possible occasion:
3346 *
3347 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3348 *
3349 * - in syscall or exception context, at the next outmost
3350 * preempt_enable(). (this might be as soon as the wake_up()'s
3351 * spin_unlock()!)
3352 *
3353 * - in IRQ context, return from interrupt-handler to
3354 * preemptible context
3355 *
3356 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3357 * then at the next:
3358 *
3359 * - cond_resched() call
3360 * - explicit schedule() call
3361 * - return from syscall or exception to user-space
3362 * - return from interrupt-handler to user-space
bfd9b2b5 3363 *
b30f0e3f 3364 * WARNING: must be called with preemption disabled!
dd41f596 3365 */
499d7955 3366static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3367{
3368 struct task_struct *prev, *next;
67ca7bde 3369 unsigned long *switch_count;
d8ac8971 3370 struct rq_flags rf;
dd41f596 3371 struct rq *rq;
31656519 3372 int cpu;
dd41f596 3373
dd41f596
IM
3374 cpu = smp_processor_id();
3375 rq = cpu_rq(cpu);
dd41f596 3376 prev = rq->curr;
dd41f596 3377
dd41f596 3378 schedule_debug(prev);
1da177e4 3379
31656519 3380 if (sched_feat(HRTICK))
f333fdc9 3381 hrtick_clear(rq);
8f4d37ec 3382
46a5d164
PM
3383 local_irq_disable();
3384 rcu_note_context_switch();
3385
e0acd0a6
ON
3386 /*
3387 * Make sure that signal_pending_state()->signal_pending() below
3388 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3389 * done by the caller to avoid the race with signal_wake_up().
3390 */
3391 smp_mb__before_spinlock();
8a8c69c3 3392 rq_lock(rq, &rf);
1da177e4 3393
d1ccc66d
IM
3394 /* Promote REQ to ACT */
3395 rq->clock_update_flags <<= 1;
bce4dc80 3396 update_rq_clock(rq);
9edfbfed 3397
246d86b5 3398 switch_count = &prev->nivcsw;
fc13aeba 3399 if (!preempt && prev->state) {
21aa9af0 3400 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3401 prev->state = TASK_RUNNING;
21aa9af0 3402 } else {
bce4dc80 3403 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3404 prev->on_rq = 0;
3405
e33a9bba
TH
3406 if (prev->in_iowait) {
3407 atomic_inc(&rq->nr_iowait);
3408 delayacct_blkio_start();
3409 }
3410
21aa9af0 3411 /*
2acca55e
PZ
3412 * If a worker went to sleep, notify and ask workqueue
3413 * whether it wants to wake up a task to maintain
3414 * concurrency.
21aa9af0
TH
3415 */
3416 if (prev->flags & PF_WQ_WORKER) {
3417 struct task_struct *to_wakeup;
3418
9b7f6597 3419 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3420 if (to_wakeup)
d8ac8971 3421 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3422 }
21aa9af0 3423 }
dd41f596 3424 switch_count = &prev->nvcsw;
1da177e4
LT
3425 }
3426
d8ac8971 3427 next = pick_next_task(rq, prev, &rf);
f26f9aff 3428 clear_tsk_need_resched(prev);
f27dde8d 3429 clear_preempt_need_resched();
1da177e4 3430
1da177e4 3431 if (likely(prev != next)) {
1da177e4
LT
3432 rq->nr_switches++;
3433 rq->curr = next;
3434 ++*switch_count;
3435
c73464b1 3436 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3437
3438 /* Also unlocks the rq: */
3439 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3440 } else {
cb42c9a3 3441 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3442 rq_unlock_irq(rq, &rf);
cbce1a68 3443 }
1da177e4 3444
e3fca9e7 3445 balance_callback(rq);
1da177e4 3446}
c259e01a 3447
9af6528e
PZ
3448void __noreturn do_task_dead(void)
3449{
3450 /*
3451 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3452 * when the following two conditions become true.
3453 * - There is race condition of mmap_sem (It is acquired by
3454 * exit_mm()), and
3455 * - SMI occurs before setting TASK_RUNINNG.
3456 * (or hypervisor of virtual machine switches to other guest)
3457 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3458 *
3459 * To avoid it, we have to wait for releasing tsk->pi_lock which
3460 * is held by try_to_wake_up()
3461 */
3462 smp_mb();
3463 raw_spin_unlock_wait(&current->pi_lock);
3464
d1ccc66d 3465 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3466 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3467
3468 /* Tell freezer to ignore us: */
3469 current->flags |= PF_NOFREEZE;
3470
9af6528e
PZ
3471 __schedule(false);
3472 BUG();
d1ccc66d
IM
3473
3474 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3475 for (;;)
d1ccc66d 3476 cpu_relax();
9af6528e
PZ
3477}
3478
9c40cef2
TG
3479static inline void sched_submit_work(struct task_struct *tsk)
3480{
3c7d5184 3481 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3482 return;
3483 /*
3484 * If we are going to sleep and we have plugged IO queued,
3485 * make sure to submit it to avoid deadlocks.
3486 */
3487 if (blk_needs_flush_plug(tsk))
3488 blk_schedule_flush_plug(tsk);
3489}
3490
722a9f92 3491asmlinkage __visible void __sched schedule(void)
c259e01a 3492{
9c40cef2
TG
3493 struct task_struct *tsk = current;
3494
3495 sched_submit_work(tsk);
bfd9b2b5 3496 do {
b30f0e3f 3497 preempt_disable();
fc13aeba 3498 __schedule(false);
b30f0e3f 3499 sched_preempt_enable_no_resched();
bfd9b2b5 3500 } while (need_resched());
c259e01a 3501}
1da177e4
LT
3502EXPORT_SYMBOL(schedule);
3503
91d1aa43 3504#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3505asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3506{
3507 /*
3508 * If we come here after a random call to set_need_resched(),
3509 * or we have been woken up remotely but the IPI has not yet arrived,
3510 * we haven't yet exited the RCU idle mode. Do it here manually until
3511 * we find a better solution.
7cc78f8f
AL
3512 *
3513 * NB: There are buggy callers of this function. Ideally we
c467ea76 3514 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3515 * too frequently to make sense yet.
20ab65e3 3516 */
7cc78f8f 3517 enum ctx_state prev_state = exception_enter();
20ab65e3 3518 schedule();
7cc78f8f 3519 exception_exit(prev_state);
20ab65e3
FW
3520}
3521#endif
3522
c5491ea7
TG
3523/**
3524 * schedule_preempt_disabled - called with preemption disabled
3525 *
3526 * Returns with preemption disabled. Note: preempt_count must be 1
3527 */
3528void __sched schedule_preempt_disabled(void)
3529{
ba74c144 3530 sched_preempt_enable_no_resched();
c5491ea7
TG
3531 schedule();
3532 preempt_disable();
3533}
3534
06b1f808 3535static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3536{
3537 do {
47252cfb
SR
3538 /*
3539 * Because the function tracer can trace preempt_count_sub()
3540 * and it also uses preempt_enable/disable_notrace(), if
3541 * NEED_RESCHED is set, the preempt_enable_notrace() called
3542 * by the function tracer will call this function again and
3543 * cause infinite recursion.
3544 *
3545 * Preemption must be disabled here before the function
3546 * tracer can trace. Break up preempt_disable() into two
3547 * calls. One to disable preemption without fear of being
3548 * traced. The other to still record the preemption latency,
3549 * which can also be traced by the function tracer.
3550 */
499d7955 3551 preempt_disable_notrace();
47252cfb 3552 preempt_latency_start(1);
fc13aeba 3553 __schedule(true);
47252cfb 3554 preempt_latency_stop(1);
499d7955 3555 preempt_enable_no_resched_notrace();
a18b5d01
FW
3556
3557 /*
3558 * Check again in case we missed a preemption opportunity
3559 * between schedule and now.
3560 */
a18b5d01
FW
3561 } while (need_resched());
3562}
3563
1da177e4
LT
3564#ifdef CONFIG_PREEMPT
3565/*
2ed6e34f 3566 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3567 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3568 * occur there and call schedule directly.
3569 */
722a9f92 3570asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3571{
1da177e4
LT
3572 /*
3573 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3574 * we do not want to preempt the current task. Just return..
1da177e4 3575 */
fbb00b56 3576 if (likely(!preemptible()))
1da177e4
LT
3577 return;
3578
a18b5d01 3579 preempt_schedule_common();
1da177e4 3580}
376e2424 3581NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3582EXPORT_SYMBOL(preempt_schedule);
009f60e2 3583
009f60e2 3584/**
4eaca0a8 3585 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3586 *
3587 * The tracing infrastructure uses preempt_enable_notrace to prevent
3588 * recursion and tracing preempt enabling caused by the tracing
3589 * infrastructure itself. But as tracing can happen in areas coming
3590 * from userspace or just about to enter userspace, a preempt enable
3591 * can occur before user_exit() is called. This will cause the scheduler
3592 * to be called when the system is still in usermode.
3593 *
3594 * To prevent this, the preempt_enable_notrace will use this function
3595 * instead of preempt_schedule() to exit user context if needed before
3596 * calling the scheduler.
3597 */
4eaca0a8 3598asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3599{
3600 enum ctx_state prev_ctx;
3601
3602 if (likely(!preemptible()))
3603 return;
3604
3605 do {
47252cfb
SR
3606 /*
3607 * Because the function tracer can trace preempt_count_sub()
3608 * and it also uses preempt_enable/disable_notrace(), if
3609 * NEED_RESCHED is set, the preempt_enable_notrace() called
3610 * by the function tracer will call this function again and
3611 * cause infinite recursion.
3612 *
3613 * Preemption must be disabled here before the function
3614 * tracer can trace. Break up preempt_disable() into two
3615 * calls. One to disable preemption without fear of being
3616 * traced. The other to still record the preemption latency,
3617 * which can also be traced by the function tracer.
3618 */
3d8f74dd 3619 preempt_disable_notrace();
47252cfb 3620 preempt_latency_start(1);
009f60e2
ON
3621 /*
3622 * Needs preempt disabled in case user_exit() is traced
3623 * and the tracer calls preempt_enable_notrace() causing
3624 * an infinite recursion.
3625 */
3626 prev_ctx = exception_enter();
fc13aeba 3627 __schedule(true);
009f60e2
ON
3628 exception_exit(prev_ctx);
3629
47252cfb 3630 preempt_latency_stop(1);
3d8f74dd 3631 preempt_enable_no_resched_notrace();
009f60e2
ON
3632 } while (need_resched());
3633}
4eaca0a8 3634EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3635
32e475d7 3636#endif /* CONFIG_PREEMPT */
1da177e4
LT
3637
3638/*
2ed6e34f 3639 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3640 * off of irq context.
3641 * Note, that this is called and return with irqs disabled. This will
3642 * protect us against recursive calling from irq.
3643 */
722a9f92 3644asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3645{
b22366cd 3646 enum ctx_state prev_state;
6478d880 3647
2ed6e34f 3648 /* Catch callers which need to be fixed */
f27dde8d 3649 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3650
b22366cd
FW
3651 prev_state = exception_enter();
3652
3a5c359a 3653 do {
3d8f74dd 3654 preempt_disable();
3a5c359a 3655 local_irq_enable();
fc13aeba 3656 __schedule(true);
3a5c359a 3657 local_irq_disable();
3d8f74dd 3658 sched_preempt_enable_no_resched();
5ed0cec0 3659 } while (need_resched());
b22366cd
FW
3660
3661 exception_exit(prev_state);
1da177e4
LT
3662}
3663
63859d4f 3664int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3665 void *key)
1da177e4 3666{
63859d4f 3667 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3668}
1da177e4
LT
3669EXPORT_SYMBOL(default_wake_function);
3670
b29739f9
IM
3671#ifdef CONFIG_RT_MUTEXES
3672
3673/*
3674 * rt_mutex_setprio - set the current priority of a task
3675 * @p: task
3676 * @prio: prio value (kernel-internal form)
3677 *
3678 * This function changes the 'effective' priority of a task. It does
3679 * not touch ->normal_prio like __setscheduler().
3680 *
c365c292
TG
3681 * Used by the rt_mutex code to implement priority inheritance
3682 * logic. Call site only calls if the priority of the task changed.
b29739f9 3683 */
36c8b586 3684void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3685{
ff77e468 3686 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3687 const struct sched_class *prev_class;
eb580751
PZ
3688 struct rq_flags rf;
3689 struct rq *rq;
b29739f9 3690
aab03e05 3691 BUG_ON(prio > MAX_PRIO);
b29739f9 3692
eb580751 3693 rq = __task_rq_lock(p, &rf);
80f5c1b8 3694 update_rq_clock(rq);
b29739f9 3695
1c4dd99b
TG
3696 /*
3697 * Idle task boosting is a nono in general. There is one
3698 * exception, when PREEMPT_RT and NOHZ is active:
3699 *
3700 * The idle task calls get_next_timer_interrupt() and holds
3701 * the timer wheel base->lock on the CPU and another CPU wants
3702 * to access the timer (probably to cancel it). We can safely
3703 * ignore the boosting request, as the idle CPU runs this code
3704 * with interrupts disabled and will complete the lock
3705 * protected section without being interrupted. So there is no
3706 * real need to boost.
3707 */
3708 if (unlikely(p == rq->idle)) {
3709 WARN_ON(p != rq->curr);
3710 WARN_ON(p->pi_blocked_on);
3711 goto out_unlock;
3712 }
3713
a8027073 3714 trace_sched_pi_setprio(p, prio);
d5f9f942 3715 oldprio = p->prio;
ff77e468
PZ
3716
3717 if (oldprio == prio)
3718 queue_flag &= ~DEQUEUE_MOVE;
3719
83ab0aa0 3720 prev_class = p->sched_class;
da0c1e65 3721 queued = task_on_rq_queued(p);
051a1d1a 3722 running = task_current(rq, p);
da0c1e65 3723 if (queued)
ff77e468 3724 dequeue_task(rq, p, queue_flag);
0e1f3483 3725 if (running)
f3cd1c4e 3726 put_prev_task(rq, p);
dd41f596 3727
2d3d891d
DF
3728 /*
3729 * Boosting condition are:
3730 * 1. -rt task is running and holds mutex A
3731 * --> -dl task blocks on mutex A
3732 *
3733 * 2. -dl task is running and holds mutex A
3734 * --> -dl task blocks on mutex A and could preempt the
3735 * running task
3736 */
3737 if (dl_prio(prio)) {
466af29b
ON
3738 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3739 if (!dl_prio(p->normal_prio) ||
3740 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3741 p->dl.dl_boosted = 1;
ff77e468 3742 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3743 } else
3744 p->dl.dl_boosted = 0;
aab03e05 3745 p->sched_class = &dl_sched_class;
2d3d891d
DF
3746 } else if (rt_prio(prio)) {
3747 if (dl_prio(oldprio))
3748 p->dl.dl_boosted = 0;
3749 if (oldprio < prio)
ff77e468 3750 queue_flag |= ENQUEUE_HEAD;
dd41f596 3751 p->sched_class = &rt_sched_class;
2d3d891d
DF
3752 } else {
3753 if (dl_prio(oldprio))
3754 p->dl.dl_boosted = 0;
746db944
BS
3755 if (rt_prio(oldprio))
3756 p->rt.timeout = 0;
dd41f596 3757 p->sched_class = &fair_sched_class;
2d3d891d 3758 }
dd41f596 3759
b29739f9
IM
3760 p->prio = prio;
3761
da0c1e65 3762 if (queued)
ff77e468 3763 enqueue_task(rq, p, queue_flag);
a399d233 3764 if (running)
b2bf6c31 3765 set_curr_task(rq, p);
cb469845 3766
da7a735e 3767 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3768out_unlock:
d1ccc66d
IM
3769 /* Avoid rq from going away on us: */
3770 preempt_disable();
eb580751 3771 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3772
3773 balance_callback(rq);
3774 preempt_enable();
b29739f9 3775}
b29739f9 3776#endif
d50dde5a 3777
36c8b586 3778void set_user_nice(struct task_struct *p, long nice)
1da177e4 3779{
49bd21ef
PZ
3780 bool queued, running;
3781 int old_prio, delta;
eb580751 3782 struct rq_flags rf;
70b97a7f 3783 struct rq *rq;
1da177e4 3784
75e45d51 3785 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3786 return;
3787 /*
3788 * We have to be careful, if called from sys_setpriority(),
3789 * the task might be in the middle of scheduling on another CPU.
3790 */
eb580751 3791 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3792 update_rq_clock(rq);
3793
1da177e4
LT
3794 /*
3795 * The RT priorities are set via sched_setscheduler(), but we still
3796 * allow the 'normal' nice value to be set - but as expected
3797 * it wont have any effect on scheduling until the task is
aab03e05 3798 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3799 */
aab03e05 3800 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3801 p->static_prio = NICE_TO_PRIO(nice);
3802 goto out_unlock;
3803 }
da0c1e65 3804 queued = task_on_rq_queued(p);
49bd21ef 3805 running = task_current(rq, p);
da0c1e65 3806 if (queued)
1de64443 3807 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3808 if (running)
3809 put_prev_task(rq, p);
1da177e4 3810
1da177e4 3811 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3812 set_load_weight(p);
b29739f9
IM
3813 old_prio = p->prio;
3814 p->prio = effective_prio(p);
3815 delta = p->prio - old_prio;
1da177e4 3816
da0c1e65 3817 if (queued) {
7134b3e9 3818 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3819 /*
d5f9f942
AM
3820 * If the task increased its priority or is running and
3821 * lowered its priority, then reschedule its CPU:
1da177e4 3822 */
d5f9f942 3823 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3824 resched_curr(rq);
1da177e4 3825 }
49bd21ef
PZ
3826 if (running)
3827 set_curr_task(rq, p);
1da177e4 3828out_unlock:
eb580751 3829 task_rq_unlock(rq, p, &rf);
1da177e4 3830}
1da177e4
LT
3831EXPORT_SYMBOL(set_user_nice);
3832
e43379f1
MM
3833/*
3834 * can_nice - check if a task can reduce its nice value
3835 * @p: task
3836 * @nice: nice value
3837 */
36c8b586 3838int can_nice(const struct task_struct *p, const int nice)
e43379f1 3839{
d1ccc66d 3840 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3841 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3842
78d7d407 3843 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3844 capable(CAP_SYS_NICE));
3845}
3846
1da177e4
LT
3847#ifdef __ARCH_WANT_SYS_NICE
3848
3849/*
3850 * sys_nice - change the priority of the current process.
3851 * @increment: priority increment
3852 *
3853 * sys_setpriority is a more generic, but much slower function that
3854 * does similar things.
3855 */
5add95d4 3856SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3857{
48f24c4d 3858 long nice, retval;
1da177e4
LT
3859
3860 /*
3861 * Setpriority might change our priority at the same moment.
3862 * We don't have to worry. Conceptually one call occurs first
3863 * and we have a single winner.
3864 */
a9467fa3 3865 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3866 nice = task_nice(current) + increment;
1da177e4 3867
a9467fa3 3868 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3869 if (increment < 0 && !can_nice(current, nice))
3870 return -EPERM;
3871
1da177e4
LT
3872 retval = security_task_setnice(current, nice);
3873 if (retval)
3874 return retval;
3875
3876 set_user_nice(current, nice);
3877 return 0;
3878}
3879
3880#endif
3881
3882/**
3883 * task_prio - return the priority value of a given task.
3884 * @p: the task in question.
3885 *
e69f6186 3886 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3887 * RT tasks are offset by -200. Normal tasks are centered
3888 * around 0, value goes from -16 to +15.
3889 */
36c8b586 3890int task_prio(const struct task_struct *p)
1da177e4
LT
3891{
3892 return p->prio - MAX_RT_PRIO;
3893}
3894
1da177e4 3895/**
d1ccc66d 3896 * idle_cpu - is a given CPU idle currently?
1da177e4 3897 * @cpu: the processor in question.
e69f6186
YB
3898 *
3899 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3900 */
3901int idle_cpu(int cpu)
3902{
908a3283
TG
3903 struct rq *rq = cpu_rq(cpu);
3904
3905 if (rq->curr != rq->idle)
3906 return 0;
3907
3908 if (rq->nr_running)
3909 return 0;
3910
3911#ifdef CONFIG_SMP
3912 if (!llist_empty(&rq->wake_list))
3913 return 0;
3914#endif
3915
3916 return 1;
1da177e4
LT
3917}
3918
1da177e4 3919/**
d1ccc66d 3920 * idle_task - return the idle task for a given CPU.
1da177e4 3921 * @cpu: the processor in question.
e69f6186 3922 *
d1ccc66d 3923 * Return: The idle task for the CPU @cpu.
1da177e4 3924 */
36c8b586 3925struct task_struct *idle_task(int cpu)
1da177e4
LT
3926{
3927 return cpu_rq(cpu)->idle;
3928}
3929
3930/**
3931 * find_process_by_pid - find a process with a matching PID value.
3932 * @pid: the pid in question.
e69f6186
YB
3933 *
3934 * The task of @pid, if found. %NULL otherwise.
1da177e4 3935 */
a9957449 3936static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3937{
228ebcbe 3938 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3939}
3940
aab03e05
DF
3941/*
3942 * This function initializes the sched_dl_entity of a newly becoming
3943 * SCHED_DEADLINE task.
3944 *
3945 * Only the static values are considered here, the actual runtime and the
3946 * absolute deadline will be properly calculated when the task is enqueued
3947 * for the first time with its new policy.
3948 */
3949static void
3950__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3951{
3952 struct sched_dl_entity *dl_se = &p->dl;
3953
aab03e05
DF
3954 dl_se->dl_runtime = attr->sched_runtime;
3955 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3956 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3957 dl_se->flags = attr->sched_flags;
332ac17e 3958 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3959
3960 /*
3961 * Changing the parameters of a task is 'tricky' and we're not doing
3962 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3963 *
3964 * What we SHOULD do is delay the bandwidth release until the 0-lag
3965 * point. This would include retaining the task_struct until that time
3966 * and change dl_overflow() to not immediately decrement the current
3967 * amount.
3968 *
3969 * Instead we retain the current runtime/deadline and let the new
3970 * parameters take effect after the current reservation period lapses.
3971 * This is safe (albeit pessimistic) because the 0-lag point is always
3972 * before the current scheduling deadline.
3973 *
3974 * We can still have temporary overloads because we do not delay the
3975 * change in bandwidth until that time; so admission control is
3976 * not on the safe side. It does however guarantee tasks will never
3977 * consume more than promised.
3978 */
aab03e05
DF
3979}
3980
c13db6b1
SR
3981/*
3982 * sched_setparam() passes in -1 for its policy, to let the functions
3983 * it calls know not to change it.
3984 */
3985#define SETPARAM_POLICY -1
3986
c365c292
TG
3987static void __setscheduler_params(struct task_struct *p,
3988 const struct sched_attr *attr)
1da177e4 3989{
d50dde5a
DF
3990 int policy = attr->sched_policy;
3991
c13db6b1 3992 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3993 policy = p->policy;
3994
1da177e4 3995 p->policy = policy;
d50dde5a 3996
aab03e05
DF
3997 if (dl_policy(policy))
3998 __setparam_dl(p, attr);
39fd8fd2 3999 else if (fair_policy(policy))
d50dde5a
DF
4000 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4001
39fd8fd2
PZ
4002 /*
4003 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4004 * !rt_policy. Always setting this ensures that things like
4005 * getparam()/getattr() don't report silly values for !rt tasks.
4006 */
4007 p->rt_priority = attr->sched_priority;
383afd09 4008 p->normal_prio = normal_prio(p);
c365c292
TG
4009 set_load_weight(p);
4010}
39fd8fd2 4011
c365c292
TG
4012/* Actually do priority change: must hold pi & rq lock. */
4013static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4014 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4015{
4016 __setscheduler_params(p, attr);
d50dde5a 4017
383afd09 4018 /*
0782e63b
TG
4019 * Keep a potential priority boosting if called from
4020 * sched_setscheduler().
383afd09 4021 */
0782e63b
TG
4022 if (keep_boost)
4023 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4024 else
4025 p->prio = normal_prio(p);
383afd09 4026
aab03e05
DF
4027 if (dl_prio(p->prio))
4028 p->sched_class = &dl_sched_class;
4029 else if (rt_prio(p->prio))
ffd44db5
PZ
4030 p->sched_class = &rt_sched_class;
4031 else
4032 p->sched_class = &fair_sched_class;
1da177e4 4033}
aab03e05
DF
4034
4035static void
4036__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4037{
4038 struct sched_dl_entity *dl_se = &p->dl;
4039
4040 attr->sched_priority = p->rt_priority;
4041 attr->sched_runtime = dl_se->dl_runtime;
4042 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4043 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4044 attr->sched_flags = dl_se->flags;
4045}
4046
4047/*
4048 * This function validates the new parameters of a -deadline task.
4049 * We ask for the deadline not being zero, and greater or equal
755378a4 4050 * than the runtime, as well as the period of being zero or
332ac17e 4051 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4052 * user parameters are above the internal resolution of 1us (we
4053 * check sched_runtime only since it is always the smaller one) and
4054 * below 2^63 ns (we have to check both sched_deadline and
4055 * sched_period, as the latter can be zero).
aab03e05
DF
4056 */
4057static bool
4058__checkparam_dl(const struct sched_attr *attr)
4059{
b0827819
JL
4060 /* deadline != 0 */
4061 if (attr->sched_deadline == 0)
4062 return false;
4063
4064 /*
4065 * Since we truncate DL_SCALE bits, make sure we're at least
4066 * that big.
4067 */
4068 if (attr->sched_runtime < (1ULL << DL_SCALE))
4069 return false;
4070
4071 /*
4072 * Since we use the MSB for wrap-around and sign issues, make
4073 * sure it's not set (mind that period can be equal to zero).
4074 */
4075 if (attr->sched_deadline & (1ULL << 63) ||
4076 attr->sched_period & (1ULL << 63))
4077 return false;
4078
4079 /* runtime <= deadline <= period (if period != 0) */
4080 if ((attr->sched_period != 0 &&
4081 attr->sched_period < attr->sched_deadline) ||
4082 attr->sched_deadline < attr->sched_runtime)
4083 return false;
4084
4085 return true;
aab03e05
DF
4086}
4087
c69e8d9c 4088/*
d1ccc66d 4089 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4090 */
4091static bool check_same_owner(struct task_struct *p)
4092{
4093 const struct cred *cred = current_cred(), *pcred;
4094 bool match;
4095
4096 rcu_read_lock();
4097 pcred = __task_cred(p);
9c806aa0
EB
4098 match = (uid_eq(cred->euid, pcred->euid) ||
4099 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4100 rcu_read_unlock();
4101 return match;
4102}
4103
d1ccc66d 4104static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
75381608
WL
4105{
4106 struct sched_dl_entity *dl_se = &p->dl;
4107
4108 if (dl_se->dl_runtime != attr->sched_runtime ||
4109 dl_se->dl_deadline != attr->sched_deadline ||
4110 dl_se->dl_period != attr->sched_period ||
4111 dl_se->flags != attr->sched_flags)
4112 return true;
4113
4114 return false;
4115}
4116
d50dde5a
DF
4117static int __sched_setscheduler(struct task_struct *p,
4118 const struct sched_attr *attr,
dbc7f069 4119 bool user, bool pi)
1da177e4 4120{
383afd09
SR
4121 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4122 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4123 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4124 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4125 const struct sched_class *prev_class;
eb580751 4126 struct rq_flags rf;
ca94c442 4127 int reset_on_fork;
ff77e468 4128 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4129 struct rq *rq;
1da177e4 4130
d1ccc66d 4131 /* May grab non-irq protected spin_locks: */
66e5393a 4132 BUG_ON(in_interrupt());
1da177e4 4133recheck:
d1ccc66d 4134 /* Double check policy once rq lock held: */
ca94c442
LP
4135 if (policy < 0) {
4136 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4137 policy = oldpolicy = p->policy;
ca94c442 4138 } else {
7479f3c9 4139 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4140
20f9cd2a 4141 if (!valid_policy(policy))
ca94c442
LP
4142 return -EINVAL;
4143 }
4144
7479f3c9
PZ
4145 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4146 return -EINVAL;
4147
1da177e4
LT
4148 /*
4149 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4150 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4151 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4152 */
0bb040a4 4153 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4154 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4155 return -EINVAL;
aab03e05
DF
4156 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4157 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4158 return -EINVAL;
4159
37e4ab3f
OC
4160 /*
4161 * Allow unprivileged RT tasks to decrease priority:
4162 */
961ccddd 4163 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4164 if (fair_policy(policy)) {
d0ea0268 4165 if (attr->sched_nice < task_nice(p) &&
eaad4513 4166 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4167 return -EPERM;
4168 }
4169
e05606d3 4170 if (rt_policy(policy)) {
a44702e8
ON
4171 unsigned long rlim_rtprio =
4172 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4173
d1ccc66d 4174 /* Can't set/change the rt policy: */
8dc3e909
ON
4175 if (policy != p->policy && !rlim_rtprio)
4176 return -EPERM;
4177
d1ccc66d 4178 /* Can't increase priority: */
d50dde5a
DF
4179 if (attr->sched_priority > p->rt_priority &&
4180 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4181 return -EPERM;
4182 }
c02aa73b 4183
d44753b8
JL
4184 /*
4185 * Can't set/change SCHED_DEADLINE policy at all for now
4186 * (safest behavior); in the future we would like to allow
4187 * unprivileged DL tasks to increase their relative deadline
4188 * or reduce their runtime (both ways reducing utilization)
4189 */
4190 if (dl_policy(policy))
4191 return -EPERM;
4192
dd41f596 4193 /*
c02aa73b
DH
4194 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4195 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4196 */
20f9cd2a 4197 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4198 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4199 return -EPERM;
4200 }
5fe1d75f 4201
d1ccc66d 4202 /* Can't change other user's priorities: */
c69e8d9c 4203 if (!check_same_owner(p))
37e4ab3f 4204 return -EPERM;
ca94c442 4205
d1ccc66d 4206 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4207 if (p->sched_reset_on_fork && !reset_on_fork)
4208 return -EPERM;
37e4ab3f 4209 }
1da177e4 4210
725aad24 4211 if (user) {
b0ae1981 4212 retval = security_task_setscheduler(p);
725aad24
JF
4213 if (retval)
4214 return retval;
4215 }
4216
b29739f9 4217 /*
d1ccc66d 4218 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4219 * changing the priority of the task:
0122ec5b 4220 *
25985edc 4221 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4222 * runqueue lock must be held.
4223 */
eb580751 4224 rq = task_rq_lock(p, &rf);
80f5c1b8 4225 update_rq_clock(rq);
dc61b1d6 4226
34f971f6 4227 /*
d1ccc66d 4228 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4229 */
4230 if (p == rq->stop) {
eb580751 4231 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4232 return -EINVAL;
4233 }
4234
a51e9198 4235 /*
d6b1e911
TG
4236 * If not changing anything there's no need to proceed further,
4237 * but store a possible modification of reset_on_fork.
a51e9198 4238 */
d50dde5a 4239 if (unlikely(policy == p->policy)) {
d0ea0268 4240 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4241 goto change;
4242 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4243 goto change;
75381608 4244 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4245 goto change;
d50dde5a 4246
d6b1e911 4247 p->sched_reset_on_fork = reset_on_fork;
eb580751 4248 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4249 return 0;
4250 }
d50dde5a 4251change:
a51e9198 4252
dc61b1d6 4253 if (user) {
332ac17e 4254#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4255 /*
4256 * Do not allow realtime tasks into groups that have no runtime
4257 * assigned.
4258 */
4259 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4260 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4261 !task_group_is_autogroup(task_group(p))) {
eb580751 4262 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4263 return -EPERM;
4264 }
dc61b1d6 4265#endif
332ac17e
DF
4266#ifdef CONFIG_SMP
4267 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4268 cpumask_t *span = rq->rd->span;
332ac17e
DF
4269
4270 /*
4271 * Don't allow tasks with an affinity mask smaller than
4272 * the entire root_domain to become SCHED_DEADLINE. We
4273 * will also fail if there's no bandwidth available.
4274 */
e4099a5e
PZ
4275 if (!cpumask_subset(span, &p->cpus_allowed) ||
4276 rq->rd->dl_bw.bw == 0) {
eb580751 4277 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4278 return -EPERM;
4279 }
4280 }
4281#endif
4282 }
dc61b1d6 4283
d1ccc66d 4284 /* Re-check policy now with rq lock held: */
1da177e4
LT
4285 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4286 policy = oldpolicy = -1;
eb580751 4287 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4288 goto recheck;
4289 }
332ac17e
DF
4290
4291 /*
4292 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4293 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4294 * is available.
4295 */
e4099a5e 4296 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4297 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4298 return -EBUSY;
4299 }
4300
c365c292
TG
4301 p->sched_reset_on_fork = reset_on_fork;
4302 oldprio = p->prio;
4303
dbc7f069
PZ
4304 if (pi) {
4305 /*
4306 * Take priority boosted tasks into account. If the new
4307 * effective priority is unchanged, we just store the new
4308 * normal parameters and do not touch the scheduler class and
4309 * the runqueue. This will be done when the task deboost
4310 * itself.
4311 */
4312 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4313 if (new_effective_prio == oldprio)
4314 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4315 }
4316
da0c1e65 4317 queued = task_on_rq_queued(p);
051a1d1a 4318 running = task_current(rq, p);
da0c1e65 4319 if (queued)
ff77e468 4320 dequeue_task(rq, p, queue_flags);
0e1f3483 4321 if (running)
f3cd1c4e 4322 put_prev_task(rq, p);
f6b53205 4323
83ab0aa0 4324 prev_class = p->sched_class;
dbc7f069 4325 __setscheduler(rq, p, attr, pi);
f6b53205 4326
da0c1e65 4327 if (queued) {
81a44c54
TG
4328 /*
4329 * We enqueue to tail when the priority of a task is
4330 * increased (user space view).
4331 */
ff77e468
PZ
4332 if (oldprio < p->prio)
4333 queue_flags |= ENQUEUE_HEAD;
1de64443 4334
ff77e468 4335 enqueue_task(rq, p, queue_flags);
81a44c54 4336 }
a399d233 4337 if (running)
b2bf6c31 4338 set_curr_task(rq, p);
cb469845 4339
da7a735e 4340 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4341
4342 /* Avoid rq from going away on us: */
4343 preempt_disable();
eb580751 4344 task_rq_unlock(rq, p, &rf);
b29739f9 4345
dbc7f069
PZ
4346 if (pi)
4347 rt_mutex_adjust_pi(p);
95e02ca9 4348
d1ccc66d 4349 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4350 balance_callback(rq);
4351 preempt_enable();
95e02ca9 4352
1da177e4
LT
4353 return 0;
4354}
961ccddd 4355
7479f3c9
PZ
4356static int _sched_setscheduler(struct task_struct *p, int policy,
4357 const struct sched_param *param, bool check)
4358{
4359 struct sched_attr attr = {
4360 .sched_policy = policy,
4361 .sched_priority = param->sched_priority,
4362 .sched_nice = PRIO_TO_NICE(p->static_prio),
4363 };
4364
c13db6b1
SR
4365 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4366 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4367 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4368 policy &= ~SCHED_RESET_ON_FORK;
4369 attr.sched_policy = policy;
4370 }
4371
dbc7f069 4372 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4373}
961ccddd
RR
4374/**
4375 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4376 * @p: the task in question.
4377 * @policy: new policy.
4378 * @param: structure containing the new RT priority.
4379 *
e69f6186
YB
4380 * Return: 0 on success. An error code otherwise.
4381 *
961ccddd
RR
4382 * NOTE that the task may be already dead.
4383 */
4384int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4385 const struct sched_param *param)
961ccddd 4386{
7479f3c9 4387 return _sched_setscheduler(p, policy, param, true);
961ccddd 4388}
1da177e4
LT
4389EXPORT_SYMBOL_GPL(sched_setscheduler);
4390
d50dde5a
DF
4391int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4392{
dbc7f069 4393 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4394}
4395EXPORT_SYMBOL_GPL(sched_setattr);
4396
961ccddd
RR
4397/**
4398 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4399 * @p: the task in question.
4400 * @policy: new policy.
4401 * @param: structure containing the new RT priority.
4402 *
4403 * Just like sched_setscheduler, only don't bother checking if the
4404 * current context has permission. For example, this is needed in
4405 * stop_machine(): we create temporary high priority worker threads,
4406 * but our caller might not have that capability.
e69f6186
YB
4407 *
4408 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4409 */
4410int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4411 const struct sched_param *param)
961ccddd 4412{
7479f3c9 4413 return _sched_setscheduler(p, policy, param, false);
961ccddd 4414}
84778472 4415EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4416
95cdf3b7
IM
4417static int
4418do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4419{
1da177e4
LT
4420 struct sched_param lparam;
4421 struct task_struct *p;
36c8b586 4422 int retval;
1da177e4
LT
4423
4424 if (!param || pid < 0)
4425 return -EINVAL;
4426 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4427 return -EFAULT;
5fe1d75f
ON
4428
4429 rcu_read_lock();
4430 retval = -ESRCH;
1da177e4 4431 p = find_process_by_pid(pid);
5fe1d75f
ON
4432 if (p != NULL)
4433 retval = sched_setscheduler(p, policy, &lparam);
4434 rcu_read_unlock();
36c8b586 4435
1da177e4
LT
4436 return retval;
4437}
4438
d50dde5a
DF
4439/*
4440 * Mimics kernel/events/core.c perf_copy_attr().
4441 */
d1ccc66d 4442static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4443{
4444 u32 size;
4445 int ret;
4446
4447 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4448 return -EFAULT;
4449
d1ccc66d 4450 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4451 memset(attr, 0, sizeof(*attr));
4452
4453 ret = get_user(size, &uattr->size);
4454 if (ret)
4455 return ret;
4456
d1ccc66d
IM
4457 /* Bail out on silly large: */
4458 if (size > PAGE_SIZE)
d50dde5a
DF
4459 goto err_size;
4460
d1ccc66d
IM
4461 /* ABI compatibility quirk: */
4462 if (!size)
d50dde5a
DF
4463 size = SCHED_ATTR_SIZE_VER0;
4464
4465 if (size < SCHED_ATTR_SIZE_VER0)
4466 goto err_size;
4467
4468 /*
4469 * If we're handed a bigger struct than we know of,
4470 * ensure all the unknown bits are 0 - i.e. new
4471 * user-space does not rely on any kernel feature
4472 * extensions we dont know about yet.
4473 */
4474 if (size > sizeof(*attr)) {
4475 unsigned char __user *addr;
4476 unsigned char __user *end;
4477 unsigned char val;
4478
4479 addr = (void __user *)uattr + sizeof(*attr);
4480 end = (void __user *)uattr + size;
4481
4482 for (; addr < end; addr++) {
4483 ret = get_user(val, addr);
4484 if (ret)
4485 return ret;
4486 if (val)
4487 goto err_size;
4488 }
4489 size = sizeof(*attr);
4490 }
4491
4492 ret = copy_from_user(attr, uattr, size);
4493 if (ret)
4494 return -EFAULT;
4495
4496 /*
d1ccc66d 4497 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4498 * to be strict and return an error on out-of-bounds values?
4499 */
75e45d51 4500 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4501
e78c7bca 4502 return 0;
d50dde5a
DF
4503
4504err_size:
4505 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4506 return -E2BIG;
d50dde5a
DF
4507}
4508
1da177e4
LT
4509/**
4510 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4511 * @pid: the pid in question.
4512 * @policy: new policy.
4513 * @param: structure containing the new RT priority.
e69f6186
YB
4514 *
4515 * Return: 0 on success. An error code otherwise.
1da177e4 4516 */
d1ccc66d 4517SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4518{
c21761f1
JB
4519 if (policy < 0)
4520 return -EINVAL;
4521
1da177e4
LT
4522 return do_sched_setscheduler(pid, policy, param);
4523}
4524
4525/**
4526 * sys_sched_setparam - set/change the RT priority of a thread
4527 * @pid: the pid in question.
4528 * @param: structure containing the new RT priority.
e69f6186
YB
4529 *
4530 * Return: 0 on success. An error code otherwise.
1da177e4 4531 */
5add95d4 4532SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4533{
c13db6b1 4534 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4535}
4536
d50dde5a
DF
4537/**
4538 * sys_sched_setattr - same as above, but with extended sched_attr
4539 * @pid: the pid in question.
5778fccf 4540 * @uattr: structure containing the extended parameters.
db66d756 4541 * @flags: for future extension.
d50dde5a 4542 */
6d35ab48
PZ
4543SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4544 unsigned int, flags)
d50dde5a
DF
4545{
4546 struct sched_attr attr;
4547 struct task_struct *p;
4548 int retval;
4549
6d35ab48 4550 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4551 return -EINVAL;
4552
143cf23d
MK
4553 retval = sched_copy_attr(uattr, &attr);
4554 if (retval)
4555 return retval;
d50dde5a 4556
b14ed2c2 4557 if ((int)attr.sched_policy < 0)
dbdb2275 4558 return -EINVAL;
d50dde5a
DF
4559
4560 rcu_read_lock();
4561 retval = -ESRCH;
4562 p = find_process_by_pid(pid);
4563 if (p != NULL)
4564 retval = sched_setattr(p, &attr);
4565 rcu_read_unlock();
4566
4567 return retval;
4568}
4569
1da177e4
LT
4570/**
4571 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4572 * @pid: the pid in question.
e69f6186
YB
4573 *
4574 * Return: On success, the policy of the thread. Otherwise, a negative error
4575 * code.
1da177e4 4576 */
5add95d4 4577SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4578{
36c8b586 4579 struct task_struct *p;
3a5c359a 4580 int retval;
1da177e4
LT
4581
4582 if (pid < 0)
3a5c359a 4583 return -EINVAL;
1da177e4
LT
4584
4585 retval = -ESRCH;
5fe85be0 4586 rcu_read_lock();
1da177e4
LT
4587 p = find_process_by_pid(pid);
4588 if (p) {
4589 retval = security_task_getscheduler(p);
4590 if (!retval)
ca94c442
LP
4591 retval = p->policy
4592 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4593 }
5fe85be0 4594 rcu_read_unlock();
1da177e4
LT
4595 return retval;
4596}
4597
4598/**
ca94c442 4599 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4600 * @pid: the pid in question.
4601 * @param: structure containing the RT priority.
e69f6186
YB
4602 *
4603 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4604 * code.
1da177e4 4605 */
5add95d4 4606SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4607{
ce5f7f82 4608 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4609 struct task_struct *p;
3a5c359a 4610 int retval;
1da177e4
LT
4611
4612 if (!param || pid < 0)
3a5c359a 4613 return -EINVAL;
1da177e4 4614
5fe85be0 4615 rcu_read_lock();
1da177e4
LT
4616 p = find_process_by_pid(pid);
4617 retval = -ESRCH;
4618 if (!p)
4619 goto out_unlock;
4620
4621 retval = security_task_getscheduler(p);
4622 if (retval)
4623 goto out_unlock;
4624
ce5f7f82
PZ
4625 if (task_has_rt_policy(p))
4626 lp.sched_priority = p->rt_priority;
5fe85be0 4627 rcu_read_unlock();
1da177e4
LT
4628
4629 /*
4630 * This one might sleep, we cannot do it with a spinlock held ...
4631 */
4632 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4633
1da177e4
LT
4634 return retval;
4635
4636out_unlock:
5fe85be0 4637 rcu_read_unlock();
1da177e4
LT
4638 return retval;
4639}
4640
d50dde5a
DF
4641static int sched_read_attr(struct sched_attr __user *uattr,
4642 struct sched_attr *attr,
4643 unsigned int usize)
4644{
4645 int ret;
4646
4647 if (!access_ok(VERIFY_WRITE, uattr, usize))
4648 return -EFAULT;
4649
4650 /*
4651 * If we're handed a smaller struct than we know of,
4652 * ensure all the unknown bits are 0 - i.e. old
4653 * user-space does not get uncomplete information.
4654 */
4655 if (usize < sizeof(*attr)) {
4656 unsigned char *addr;
4657 unsigned char *end;
4658
4659 addr = (void *)attr + usize;
4660 end = (void *)attr + sizeof(*attr);
4661
4662 for (; addr < end; addr++) {
4663 if (*addr)
22400674 4664 return -EFBIG;
d50dde5a
DF
4665 }
4666
4667 attr->size = usize;
4668 }
4669
4efbc454 4670 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4671 if (ret)
4672 return -EFAULT;
4673
22400674 4674 return 0;
d50dde5a
DF
4675}
4676
4677/**
aab03e05 4678 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4679 * @pid: the pid in question.
5778fccf 4680 * @uattr: structure containing the extended parameters.
d50dde5a 4681 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4682 * @flags: for future extension.
d50dde5a 4683 */
6d35ab48
PZ
4684SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4685 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4686{
4687 struct sched_attr attr = {
4688 .size = sizeof(struct sched_attr),
4689 };
4690 struct task_struct *p;
4691 int retval;
4692
4693 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4694 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4695 return -EINVAL;
4696
4697 rcu_read_lock();
4698 p = find_process_by_pid(pid);
4699 retval = -ESRCH;
4700 if (!p)
4701 goto out_unlock;
4702
4703 retval = security_task_getscheduler(p);
4704 if (retval)
4705 goto out_unlock;
4706
4707 attr.sched_policy = p->policy;
7479f3c9
PZ
4708 if (p->sched_reset_on_fork)
4709 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4710 if (task_has_dl_policy(p))
4711 __getparam_dl(p, &attr);
4712 else if (task_has_rt_policy(p))
d50dde5a
DF
4713 attr.sched_priority = p->rt_priority;
4714 else
d0ea0268 4715 attr.sched_nice = task_nice(p);
d50dde5a
DF
4716
4717 rcu_read_unlock();
4718
4719 retval = sched_read_attr(uattr, &attr, size);
4720 return retval;
4721
4722out_unlock:
4723 rcu_read_unlock();
4724 return retval;
4725}
4726
96f874e2 4727long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4728{
5a16f3d3 4729 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4730 struct task_struct *p;
4731 int retval;
1da177e4 4732
23f5d142 4733 rcu_read_lock();
1da177e4
LT
4734
4735 p = find_process_by_pid(pid);
4736 if (!p) {
23f5d142 4737 rcu_read_unlock();
1da177e4
LT
4738 return -ESRCH;
4739 }
4740
23f5d142 4741 /* Prevent p going away */
1da177e4 4742 get_task_struct(p);
23f5d142 4743 rcu_read_unlock();
1da177e4 4744
14a40ffc
TH
4745 if (p->flags & PF_NO_SETAFFINITY) {
4746 retval = -EINVAL;
4747 goto out_put_task;
4748 }
5a16f3d3
RR
4749 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4750 retval = -ENOMEM;
4751 goto out_put_task;
4752 }
4753 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4754 retval = -ENOMEM;
4755 goto out_free_cpus_allowed;
4756 }
1da177e4 4757 retval = -EPERM;
4c44aaaf
EB
4758 if (!check_same_owner(p)) {
4759 rcu_read_lock();
4760 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4761 rcu_read_unlock();
16303ab2 4762 goto out_free_new_mask;
4c44aaaf
EB
4763 }
4764 rcu_read_unlock();
4765 }
1da177e4 4766
b0ae1981 4767 retval = security_task_setscheduler(p);
e7834f8f 4768 if (retval)
16303ab2 4769 goto out_free_new_mask;
e7834f8f 4770
e4099a5e
PZ
4771
4772 cpuset_cpus_allowed(p, cpus_allowed);
4773 cpumask_and(new_mask, in_mask, cpus_allowed);
4774
332ac17e
DF
4775 /*
4776 * Since bandwidth control happens on root_domain basis,
4777 * if admission test is enabled, we only admit -deadline
4778 * tasks allowed to run on all the CPUs in the task's
4779 * root_domain.
4780 */
4781#ifdef CONFIG_SMP
f1e3a093
KT
4782 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4783 rcu_read_lock();
4784 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4785 retval = -EBUSY;
f1e3a093 4786 rcu_read_unlock();
16303ab2 4787 goto out_free_new_mask;
332ac17e 4788 }
f1e3a093 4789 rcu_read_unlock();
332ac17e
DF
4790 }
4791#endif
49246274 4792again:
25834c73 4793 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4794
8707d8b8 4795 if (!retval) {
5a16f3d3
RR
4796 cpuset_cpus_allowed(p, cpus_allowed);
4797 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4798 /*
4799 * We must have raced with a concurrent cpuset
4800 * update. Just reset the cpus_allowed to the
4801 * cpuset's cpus_allowed
4802 */
5a16f3d3 4803 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4804 goto again;
4805 }
4806 }
16303ab2 4807out_free_new_mask:
5a16f3d3
RR
4808 free_cpumask_var(new_mask);
4809out_free_cpus_allowed:
4810 free_cpumask_var(cpus_allowed);
4811out_put_task:
1da177e4 4812 put_task_struct(p);
1da177e4
LT
4813 return retval;
4814}
4815
4816static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4817 struct cpumask *new_mask)
1da177e4 4818{
96f874e2
RR
4819 if (len < cpumask_size())
4820 cpumask_clear(new_mask);
4821 else if (len > cpumask_size())
4822 len = cpumask_size();
4823
1da177e4
LT
4824 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4825}
4826
4827/**
d1ccc66d 4828 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4829 * @pid: pid of the process
4830 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4831 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4832 *
4833 * Return: 0 on success. An error code otherwise.
1da177e4 4834 */
5add95d4
HC
4835SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4836 unsigned long __user *, user_mask_ptr)
1da177e4 4837{
5a16f3d3 4838 cpumask_var_t new_mask;
1da177e4
LT
4839 int retval;
4840
5a16f3d3
RR
4841 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4842 return -ENOMEM;
1da177e4 4843
5a16f3d3
RR
4844 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4845 if (retval == 0)
4846 retval = sched_setaffinity(pid, new_mask);
4847 free_cpumask_var(new_mask);
4848 return retval;
1da177e4
LT
4849}
4850
96f874e2 4851long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4852{
36c8b586 4853 struct task_struct *p;
31605683 4854 unsigned long flags;
1da177e4 4855 int retval;
1da177e4 4856
23f5d142 4857 rcu_read_lock();
1da177e4
LT
4858
4859 retval = -ESRCH;
4860 p = find_process_by_pid(pid);
4861 if (!p)
4862 goto out_unlock;
4863
e7834f8f
DQ
4864 retval = security_task_getscheduler(p);
4865 if (retval)
4866 goto out_unlock;
4867
013fdb80 4868 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4869 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4870 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4871
4872out_unlock:
23f5d142 4873 rcu_read_unlock();
1da177e4 4874
9531b62f 4875 return retval;
1da177e4
LT
4876}
4877
4878/**
d1ccc66d 4879 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4880 * @pid: pid of the process
4881 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4882 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4883 *
599b4840
ZW
4884 * Return: size of CPU mask copied to user_mask_ptr on success. An
4885 * error code otherwise.
1da177e4 4886 */
5add95d4
HC
4887SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4888 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4889{
4890 int ret;
f17c8607 4891 cpumask_var_t mask;
1da177e4 4892
84fba5ec 4893 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4894 return -EINVAL;
4895 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4896 return -EINVAL;
4897
f17c8607
RR
4898 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4899 return -ENOMEM;
1da177e4 4900
f17c8607
RR
4901 ret = sched_getaffinity(pid, mask);
4902 if (ret == 0) {
8bc037fb 4903 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4904
4905 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4906 ret = -EFAULT;
4907 else
cd3d8031 4908 ret = retlen;
f17c8607
RR
4909 }
4910 free_cpumask_var(mask);
1da177e4 4911
f17c8607 4912 return ret;
1da177e4
LT
4913}
4914
4915/**
4916 * sys_sched_yield - yield the current processor to other threads.
4917 *
dd41f596
IM
4918 * This function yields the current CPU to other tasks. If there are no
4919 * other threads running on this CPU then this function will return.
e69f6186
YB
4920 *
4921 * Return: 0.
1da177e4 4922 */
5add95d4 4923SYSCALL_DEFINE0(sched_yield)
1da177e4 4924{
8a8c69c3
PZ
4925 struct rq_flags rf;
4926 struct rq *rq;
4927
4928 local_irq_disable();
4929 rq = this_rq();
4930 rq_lock(rq, &rf);
1da177e4 4931
ae92882e 4932 schedstat_inc(rq->yld_count);
4530d7ab 4933 current->sched_class->yield_task(rq);
1da177e4
LT
4934
4935 /*
4936 * Since we are going to call schedule() anyway, there's
4937 * no need to preempt or enable interrupts:
4938 */
8a8c69c3
PZ
4939 preempt_disable();
4940 rq_unlock(rq, &rf);
ba74c144 4941 sched_preempt_enable_no_resched();
1da177e4
LT
4942
4943 schedule();
4944
4945 return 0;
4946}
4947
35a773a0 4948#ifndef CONFIG_PREEMPT
02b67cc3 4949int __sched _cond_resched(void)
1da177e4 4950{
fe32d3cd 4951 if (should_resched(0)) {
a18b5d01 4952 preempt_schedule_common();
1da177e4
LT
4953 return 1;
4954 }
4955 return 0;
4956}
02b67cc3 4957EXPORT_SYMBOL(_cond_resched);
35a773a0 4958#endif
1da177e4
LT
4959
4960/*
613afbf8 4961 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4962 * call schedule, and on return reacquire the lock.
4963 *
41a2d6cf 4964 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4965 * operations here to prevent schedule() from being called twice (once via
4966 * spin_unlock(), once by hand).
4967 */
613afbf8 4968int __cond_resched_lock(spinlock_t *lock)
1da177e4 4969{
fe32d3cd 4970 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4971 int ret = 0;
4972
f607c668
PZ
4973 lockdep_assert_held(lock);
4974
4a81e832 4975 if (spin_needbreak(lock) || resched) {
1da177e4 4976 spin_unlock(lock);
d86ee480 4977 if (resched)
a18b5d01 4978 preempt_schedule_common();
95c354fe
NP
4979 else
4980 cpu_relax();
6df3cecb 4981 ret = 1;
1da177e4 4982 spin_lock(lock);
1da177e4 4983 }
6df3cecb 4984 return ret;
1da177e4 4985}
613afbf8 4986EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4987
613afbf8 4988int __sched __cond_resched_softirq(void)
1da177e4
LT
4989{
4990 BUG_ON(!in_softirq());
4991
fe32d3cd 4992 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4993 local_bh_enable();
a18b5d01 4994 preempt_schedule_common();
1da177e4
LT
4995 local_bh_disable();
4996 return 1;
4997 }
4998 return 0;
4999}
613afbf8 5000EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5001
1da177e4
LT
5002/**
5003 * yield - yield the current processor to other threads.
5004 *
8e3fabfd
PZ
5005 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5006 *
5007 * The scheduler is at all times free to pick the calling task as the most
5008 * eligible task to run, if removing the yield() call from your code breaks
5009 * it, its already broken.
5010 *
5011 * Typical broken usage is:
5012 *
5013 * while (!event)
d1ccc66d 5014 * yield();
8e3fabfd
PZ
5015 *
5016 * where one assumes that yield() will let 'the other' process run that will
5017 * make event true. If the current task is a SCHED_FIFO task that will never
5018 * happen. Never use yield() as a progress guarantee!!
5019 *
5020 * If you want to use yield() to wait for something, use wait_event().
5021 * If you want to use yield() to be 'nice' for others, use cond_resched().
5022 * If you still want to use yield(), do not!
1da177e4
LT
5023 */
5024void __sched yield(void)
5025{
5026 set_current_state(TASK_RUNNING);
5027 sys_sched_yield();
5028}
1da177e4
LT
5029EXPORT_SYMBOL(yield);
5030
d95f4122
MG
5031/**
5032 * yield_to - yield the current processor to another thread in
5033 * your thread group, or accelerate that thread toward the
5034 * processor it's on.
16addf95
RD
5035 * @p: target task
5036 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5037 *
5038 * It's the caller's job to ensure that the target task struct
5039 * can't go away on us before we can do any checks.
5040 *
e69f6186 5041 * Return:
7b270f60
PZ
5042 * true (>0) if we indeed boosted the target task.
5043 * false (0) if we failed to boost the target.
5044 * -ESRCH if there's no task to yield to.
d95f4122 5045 */
fa93384f 5046int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5047{
5048 struct task_struct *curr = current;
5049 struct rq *rq, *p_rq;
5050 unsigned long flags;
c3c18640 5051 int yielded = 0;
d95f4122
MG
5052
5053 local_irq_save(flags);
5054 rq = this_rq();
5055
5056again:
5057 p_rq = task_rq(p);
7b270f60
PZ
5058 /*
5059 * If we're the only runnable task on the rq and target rq also
5060 * has only one task, there's absolutely no point in yielding.
5061 */
5062 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5063 yielded = -ESRCH;
5064 goto out_irq;
5065 }
5066
d95f4122 5067 double_rq_lock(rq, p_rq);
39e24d8f 5068 if (task_rq(p) != p_rq) {
d95f4122
MG
5069 double_rq_unlock(rq, p_rq);
5070 goto again;
5071 }
5072
5073 if (!curr->sched_class->yield_to_task)
7b270f60 5074 goto out_unlock;
d95f4122
MG
5075
5076 if (curr->sched_class != p->sched_class)
7b270f60 5077 goto out_unlock;
d95f4122
MG
5078
5079 if (task_running(p_rq, p) || p->state)
7b270f60 5080 goto out_unlock;
d95f4122
MG
5081
5082 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5083 if (yielded) {
ae92882e 5084 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5085 /*
5086 * Make p's CPU reschedule; pick_next_entity takes care of
5087 * fairness.
5088 */
5089 if (preempt && rq != p_rq)
8875125e 5090 resched_curr(p_rq);
6d1cafd8 5091 }
d95f4122 5092
7b270f60 5093out_unlock:
d95f4122 5094 double_rq_unlock(rq, p_rq);
7b270f60 5095out_irq:
d95f4122
MG
5096 local_irq_restore(flags);
5097
7b270f60 5098 if (yielded > 0)
d95f4122
MG
5099 schedule();
5100
5101 return yielded;
5102}
5103EXPORT_SYMBOL_GPL(yield_to);
5104
10ab5643
TH
5105int io_schedule_prepare(void)
5106{
5107 int old_iowait = current->in_iowait;
5108
5109 current->in_iowait = 1;
5110 blk_schedule_flush_plug(current);
5111
5112 return old_iowait;
5113}
5114
5115void io_schedule_finish(int token)
5116{
5117 current->in_iowait = token;
5118}
5119
1da177e4 5120/*
41a2d6cf 5121 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5122 * that process accounting knows that this is a task in IO wait state.
1da177e4 5123 */
1da177e4
LT
5124long __sched io_schedule_timeout(long timeout)
5125{
10ab5643 5126 int token;
1da177e4
LT
5127 long ret;
5128
10ab5643 5129 token = io_schedule_prepare();
1da177e4 5130 ret = schedule_timeout(timeout);
10ab5643 5131 io_schedule_finish(token);
9cff8ade 5132
1da177e4
LT
5133 return ret;
5134}
9cff8ade 5135EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5136
10ab5643
TH
5137void io_schedule(void)
5138{
5139 int token;
5140
5141 token = io_schedule_prepare();
5142 schedule();
5143 io_schedule_finish(token);
5144}
5145EXPORT_SYMBOL(io_schedule);
5146
1da177e4
LT
5147/**
5148 * sys_sched_get_priority_max - return maximum RT priority.
5149 * @policy: scheduling class.
5150 *
e69f6186
YB
5151 * Return: On success, this syscall returns the maximum
5152 * rt_priority that can be used by a given scheduling class.
5153 * On failure, a negative error code is returned.
1da177e4 5154 */
5add95d4 5155SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5156{
5157 int ret = -EINVAL;
5158
5159 switch (policy) {
5160 case SCHED_FIFO:
5161 case SCHED_RR:
5162 ret = MAX_USER_RT_PRIO-1;
5163 break;
aab03e05 5164 case SCHED_DEADLINE:
1da177e4 5165 case SCHED_NORMAL:
b0a9499c 5166 case SCHED_BATCH:
dd41f596 5167 case SCHED_IDLE:
1da177e4
LT
5168 ret = 0;
5169 break;
5170 }
5171 return ret;
5172}
5173
5174/**
5175 * sys_sched_get_priority_min - return minimum RT priority.
5176 * @policy: scheduling class.
5177 *
e69f6186
YB
5178 * Return: On success, this syscall returns the minimum
5179 * rt_priority that can be used by a given scheduling class.
5180 * On failure, a negative error code is returned.
1da177e4 5181 */
5add95d4 5182SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5183{
5184 int ret = -EINVAL;
5185
5186 switch (policy) {
5187 case SCHED_FIFO:
5188 case SCHED_RR:
5189 ret = 1;
5190 break;
aab03e05 5191 case SCHED_DEADLINE:
1da177e4 5192 case SCHED_NORMAL:
b0a9499c 5193 case SCHED_BATCH:
dd41f596 5194 case SCHED_IDLE:
1da177e4
LT
5195 ret = 0;
5196 }
5197 return ret;
5198}
5199
5200/**
5201 * sys_sched_rr_get_interval - return the default timeslice of a process.
5202 * @pid: pid of the process.
5203 * @interval: userspace pointer to the timeslice value.
5204 *
5205 * this syscall writes the default timeslice value of a given process
5206 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5207 *
5208 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5209 * an error code.
1da177e4 5210 */
17da2bd9 5211SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5212 struct timespec __user *, interval)
1da177e4 5213{
36c8b586 5214 struct task_struct *p;
a4ec24b4 5215 unsigned int time_slice;
eb580751
PZ
5216 struct rq_flags rf;
5217 struct timespec t;
dba091b9 5218 struct rq *rq;
3a5c359a 5219 int retval;
1da177e4
LT
5220
5221 if (pid < 0)
3a5c359a 5222 return -EINVAL;
1da177e4
LT
5223
5224 retval = -ESRCH;
1a551ae7 5225 rcu_read_lock();
1da177e4
LT
5226 p = find_process_by_pid(pid);
5227 if (!p)
5228 goto out_unlock;
5229
5230 retval = security_task_getscheduler(p);
5231 if (retval)
5232 goto out_unlock;
5233
eb580751 5234 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5235 time_slice = 0;
5236 if (p->sched_class->get_rr_interval)
5237 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5238 task_rq_unlock(rq, p, &rf);
a4ec24b4 5239
1a551ae7 5240 rcu_read_unlock();
a4ec24b4 5241 jiffies_to_timespec(time_slice, &t);
1da177e4 5242 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5243 return retval;
3a5c359a 5244
1da177e4 5245out_unlock:
1a551ae7 5246 rcu_read_unlock();
1da177e4
LT
5247 return retval;
5248}
5249
7c731e0a 5250static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5251
82a1fcb9 5252void sched_show_task(struct task_struct *p)
1da177e4 5253{
1da177e4 5254 unsigned long free = 0;
4e79752c 5255 int ppid;
1f8a7633 5256 unsigned long state = p->state;
1da177e4 5257
c930b2c0
IM
5258 /* Make sure the string lines up properly with the number of task states: */
5259 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5260
38200502
TH
5261 if (!try_get_task_stack(p))
5262 return;
1f8a7633
TH
5263 if (state)
5264 state = __ffs(state) + 1;
28d0686c 5265 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5266 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5267 if (state == TASK_RUNNING)
3df0fc5b 5268 printk(KERN_CONT " running task ");
1da177e4 5269#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5270 free = stack_not_used(p);
1da177e4 5271#endif
a90e984c 5272 ppid = 0;
4e79752c 5273 rcu_read_lock();
a90e984c
ON
5274 if (pid_alive(p))
5275 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5276 rcu_read_unlock();
3df0fc5b 5277 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5278 task_pid_nr(p), ppid,
aa47b7e0 5279 (unsigned long)task_thread_info(p)->flags);
1da177e4 5280
3d1cb205 5281 print_worker_info(KERN_INFO, p);
5fb5e6de 5282 show_stack(p, NULL);
38200502 5283 put_task_stack(p);
1da177e4
LT
5284}
5285
e59e2ae2 5286void show_state_filter(unsigned long state_filter)
1da177e4 5287{
36c8b586 5288 struct task_struct *g, *p;
1da177e4 5289
4bd77321 5290#if BITS_PER_LONG == 32
3df0fc5b
PZ
5291 printk(KERN_INFO
5292 " task PC stack pid father\n");
1da177e4 5293#else
3df0fc5b
PZ
5294 printk(KERN_INFO
5295 " task PC stack pid father\n");
1da177e4 5296#endif
510f5acc 5297 rcu_read_lock();
5d07f420 5298 for_each_process_thread(g, p) {
1da177e4
LT
5299 /*
5300 * reset the NMI-timeout, listing all files on a slow
25985edc 5301 * console might take a lot of time:
57675cb9
AR
5302 * Also, reset softlockup watchdogs on all CPUs, because
5303 * another CPU might be blocked waiting for us to process
5304 * an IPI.
1da177e4
LT
5305 */
5306 touch_nmi_watchdog();
57675cb9 5307 touch_all_softlockup_watchdogs();
39bc89fd 5308 if (!state_filter || (p->state & state_filter))
82a1fcb9 5309 sched_show_task(p);
5d07f420 5310 }
1da177e4 5311
dd41f596 5312#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5313 if (!state_filter)
5314 sysrq_sched_debug_show();
dd41f596 5315#endif
510f5acc 5316 rcu_read_unlock();
e59e2ae2
IM
5317 /*
5318 * Only show locks if all tasks are dumped:
5319 */
93335a21 5320 if (!state_filter)
e59e2ae2 5321 debug_show_all_locks();
1da177e4
LT
5322}
5323
0db0628d 5324void init_idle_bootup_task(struct task_struct *idle)
1df21055 5325{
dd41f596 5326 idle->sched_class = &idle_sched_class;
1df21055
IM
5327}
5328
f340c0d1
IM
5329/**
5330 * init_idle - set up an idle thread for a given CPU
5331 * @idle: task in question
d1ccc66d 5332 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5333 *
5334 * NOTE: this function does not set the idle thread's NEED_RESCHED
5335 * flag, to make booting more robust.
5336 */
0db0628d 5337void init_idle(struct task_struct *idle, int cpu)
1da177e4 5338{
70b97a7f 5339 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5340 unsigned long flags;
5341
25834c73
PZ
5342 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5343 raw_spin_lock(&rq->lock);
5cbd54ef 5344
5e1576ed 5345 __sched_fork(0, idle);
06b83b5f 5346 idle->state = TASK_RUNNING;
dd41f596 5347 idle->se.exec_start = sched_clock();
c1de45ca 5348 idle->flags |= PF_IDLE;
dd41f596 5349
e1b77c92
MR
5350 kasan_unpoison_task_stack(idle);
5351
de9b8f5d
PZ
5352#ifdef CONFIG_SMP
5353 /*
5354 * Its possible that init_idle() gets called multiple times on a task,
5355 * in that case do_set_cpus_allowed() will not do the right thing.
5356 *
5357 * And since this is boot we can forgo the serialization.
5358 */
5359 set_cpus_allowed_common(idle, cpumask_of(cpu));
5360#endif
6506cf6c
PZ
5361 /*
5362 * We're having a chicken and egg problem, even though we are
d1ccc66d 5363 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5364 * lockdep check in task_group() will fail.
5365 *
5366 * Similar case to sched_fork(). / Alternatively we could
5367 * use task_rq_lock() here and obtain the other rq->lock.
5368 *
5369 * Silence PROVE_RCU
5370 */
5371 rcu_read_lock();
dd41f596 5372 __set_task_cpu(idle, cpu);
6506cf6c 5373 rcu_read_unlock();
1da177e4 5374
1da177e4 5375 rq->curr = rq->idle = idle;
da0c1e65 5376 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5377#ifdef CONFIG_SMP
3ca7a440 5378 idle->on_cpu = 1;
4866cde0 5379#endif
25834c73
PZ
5380 raw_spin_unlock(&rq->lock);
5381 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5382
5383 /* Set the preempt count _outside_ the spinlocks! */
01028747 5384 init_idle_preempt_count(idle, cpu);
55cd5340 5385
dd41f596
IM
5386 /*
5387 * The idle tasks have their own, simple scheduling class:
5388 */
5389 idle->sched_class = &idle_sched_class;
868baf07 5390 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5391 vtime_init_idle(idle, cpu);
de9b8f5d 5392#ifdef CONFIG_SMP
f1c6f1a7
CE
5393 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5394#endif
19978ca6
IM
5395}
5396
f82f8042
JL
5397int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5398 const struct cpumask *trial)
5399{
5400 int ret = 1, trial_cpus;
5401 struct dl_bw *cur_dl_b;
5402 unsigned long flags;
5403
bb2bc55a
MG
5404 if (!cpumask_weight(cur))
5405 return ret;
5406
75e23e49 5407 rcu_read_lock_sched();
f82f8042
JL
5408 cur_dl_b = dl_bw_of(cpumask_any(cur));
5409 trial_cpus = cpumask_weight(trial);
5410
5411 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5412 if (cur_dl_b->bw != -1 &&
5413 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5414 ret = 0;
5415 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5416 rcu_read_unlock_sched();
f82f8042
JL
5417
5418 return ret;
5419}
5420
7f51412a
JL
5421int task_can_attach(struct task_struct *p,
5422 const struct cpumask *cs_cpus_allowed)
5423{
5424 int ret = 0;
5425
5426 /*
5427 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5428 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5429 * affinity and isolating such threads by their set of
5430 * allowed nodes is unnecessary. Thus, cpusets are not
5431 * applicable for such threads. This prevents checking for
5432 * success of set_cpus_allowed_ptr() on all attached tasks
5433 * before cpus_allowed may be changed.
5434 */
5435 if (p->flags & PF_NO_SETAFFINITY) {
5436 ret = -EINVAL;
5437 goto out;
5438 }
5439
5440#ifdef CONFIG_SMP
5441 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5442 cs_cpus_allowed)) {
5443 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5444 cs_cpus_allowed);
75e23e49 5445 struct dl_bw *dl_b;
7f51412a
JL
5446 bool overflow;
5447 int cpus;
5448 unsigned long flags;
5449
75e23e49
JL
5450 rcu_read_lock_sched();
5451 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5452 raw_spin_lock_irqsave(&dl_b->lock, flags);
5453 cpus = dl_bw_cpus(dest_cpu);
5454 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5455 if (overflow)
5456 ret = -EBUSY;
5457 else {
5458 /*
5459 * We reserve space for this task in the destination
5460 * root_domain, as we can't fail after this point.
5461 * We will free resources in the source root_domain
5462 * later on (see set_cpus_allowed_dl()).
5463 */
5464 __dl_add(dl_b, p->dl.dl_bw);
5465 }
5466 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5467 rcu_read_unlock_sched();
7f51412a
JL
5468
5469 }
5470#endif
5471out:
5472 return ret;
5473}
5474
1da177e4 5475#ifdef CONFIG_SMP
1da177e4 5476
f2cb1360 5477bool sched_smp_initialized __read_mostly;
e26fbffd 5478
e6628d5b
MG
5479#ifdef CONFIG_NUMA_BALANCING
5480/* Migrate current task p to target_cpu */
5481int migrate_task_to(struct task_struct *p, int target_cpu)
5482{
5483 struct migration_arg arg = { p, target_cpu };
5484 int curr_cpu = task_cpu(p);
5485
5486 if (curr_cpu == target_cpu)
5487 return 0;
5488
0c98d344 5489 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5490 return -EINVAL;
5491
5492 /* TODO: This is not properly updating schedstats */
5493
286549dc 5494 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5495 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5496}
0ec8aa00
PZ
5497
5498/*
5499 * Requeue a task on a given node and accurately track the number of NUMA
5500 * tasks on the runqueues
5501 */
5502void sched_setnuma(struct task_struct *p, int nid)
5503{
da0c1e65 5504 bool queued, running;
eb580751
PZ
5505 struct rq_flags rf;
5506 struct rq *rq;
0ec8aa00 5507
eb580751 5508 rq = task_rq_lock(p, &rf);
da0c1e65 5509 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5510 running = task_current(rq, p);
5511
da0c1e65 5512 if (queued)
1de64443 5513 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5514 if (running)
f3cd1c4e 5515 put_prev_task(rq, p);
0ec8aa00
PZ
5516
5517 p->numa_preferred_nid = nid;
0ec8aa00 5518
da0c1e65 5519 if (queued)
7134b3e9 5520 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5521 if (running)
b2bf6c31 5522 set_curr_task(rq, p);
eb580751 5523 task_rq_unlock(rq, p, &rf);
0ec8aa00 5524}
5cc389bc 5525#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5526
1da177e4 5527#ifdef CONFIG_HOTPLUG_CPU
054b9108 5528/*
d1ccc66d 5529 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5530 * offline.
054b9108 5531 */
48c5ccae 5532void idle_task_exit(void)
1da177e4 5533{
48c5ccae 5534 struct mm_struct *mm = current->active_mm;
e76bd8d9 5535
48c5ccae 5536 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5537
a53efe5f 5538 if (mm != &init_mm) {
f98db601 5539 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5540 finish_arch_post_lock_switch();
5541 }
48c5ccae 5542 mmdrop(mm);
1da177e4
LT
5543}
5544
5545/*
5d180232
PZ
5546 * Since this CPU is going 'away' for a while, fold any nr_active delta
5547 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5548 * nr_active count is stable. We need to take the teardown thread which
5549 * is calling this into account, so we hand in adjust = 1 to the load
5550 * calculation.
5d180232
PZ
5551 *
5552 * Also see the comment "Global load-average calculations".
1da177e4 5553 */
5d180232 5554static void calc_load_migrate(struct rq *rq)
1da177e4 5555{
d60585c5 5556 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5557 if (delta)
5558 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5559}
5560
3f1d2a31
PZ
5561static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5562{
5563}
5564
5565static const struct sched_class fake_sched_class = {
5566 .put_prev_task = put_prev_task_fake,
5567};
5568
5569static struct task_struct fake_task = {
5570 /*
5571 * Avoid pull_{rt,dl}_task()
5572 */
5573 .prio = MAX_PRIO + 1,
5574 .sched_class = &fake_sched_class,
5575};
5576
48f24c4d 5577/*
48c5ccae
PZ
5578 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5579 * try_to_wake_up()->select_task_rq().
5580 *
5581 * Called with rq->lock held even though we'er in stop_machine() and
5582 * there's no concurrency possible, we hold the required locks anyway
5583 * because of lock validation efforts.
1da177e4 5584 */
8a8c69c3 5585static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5586{
5e16bbc2 5587 struct rq *rq = dead_rq;
48c5ccae 5588 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5589 struct rq_flags orf = *rf;
48c5ccae 5590 int dest_cpu;
1da177e4
LT
5591
5592 /*
48c5ccae
PZ
5593 * Fudge the rq selection such that the below task selection loop
5594 * doesn't get stuck on the currently eligible stop task.
5595 *
5596 * We're currently inside stop_machine() and the rq is either stuck
5597 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5598 * either way we should never end up calling schedule() until we're
5599 * done here.
1da177e4 5600 */
48c5ccae 5601 rq->stop = NULL;
48f24c4d 5602
77bd3970
FW
5603 /*
5604 * put_prev_task() and pick_next_task() sched
5605 * class method both need to have an up-to-date
5606 * value of rq->clock[_task]
5607 */
5608 update_rq_clock(rq);
5609
5e16bbc2 5610 for (;;) {
48c5ccae
PZ
5611 /*
5612 * There's this thread running, bail when that's the only
d1ccc66d 5613 * remaining thread:
48c5ccae
PZ
5614 */
5615 if (rq->nr_running == 1)
dd41f596 5616 break;
48c5ccae 5617
cbce1a68 5618 /*
d1ccc66d 5619 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5620 */
8a8c69c3 5621 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5622 BUG_ON(!next);
79c53799 5623 next->sched_class->put_prev_task(rq, next);
e692ab53 5624
5473e0cc
WL
5625 /*
5626 * Rules for changing task_struct::cpus_allowed are holding
5627 * both pi_lock and rq->lock, such that holding either
5628 * stabilizes the mask.
5629 *
5630 * Drop rq->lock is not quite as disastrous as it usually is
5631 * because !cpu_active at this point, which means load-balance
5632 * will not interfere. Also, stop-machine.
5633 */
8a8c69c3 5634 rq_unlock(rq, rf);
5473e0cc 5635 raw_spin_lock(&next->pi_lock);
8a8c69c3 5636 rq_relock(rq, rf);
5473e0cc
WL
5637
5638 /*
5639 * Since we're inside stop-machine, _nothing_ should have
5640 * changed the task, WARN if weird stuff happened, because in
5641 * that case the above rq->lock drop is a fail too.
5642 */
5643 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5644 raw_spin_unlock(&next->pi_lock);
5645 continue;
5646 }
5647
48c5ccae 5648 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5649 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5650 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5651 if (rq != dead_rq) {
8a8c69c3 5652 rq_unlock(rq, rf);
5e16bbc2 5653 rq = dead_rq;
8a8c69c3
PZ
5654 *rf = orf;
5655 rq_relock(rq, rf);
5e16bbc2 5656 }
5473e0cc 5657 raw_spin_unlock(&next->pi_lock);
1da177e4 5658 }
dce48a84 5659
48c5ccae 5660 rq->stop = stop;
dce48a84 5661}
1da177e4
LT
5662#endif /* CONFIG_HOTPLUG_CPU */
5663
f2cb1360 5664void set_rq_online(struct rq *rq)
1f11eb6a
GH
5665{
5666 if (!rq->online) {
5667 const struct sched_class *class;
5668
c6c4927b 5669 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5670 rq->online = 1;
5671
5672 for_each_class(class) {
5673 if (class->rq_online)
5674 class->rq_online(rq);
5675 }
5676 }
5677}
5678
f2cb1360 5679void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5680{
5681 if (rq->online) {
5682 const struct sched_class *class;
5683
5684 for_each_class(class) {
5685 if (class->rq_offline)
5686 class->rq_offline(rq);
5687 }
5688
c6c4927b 5689 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5690 rq->online = 0;
5691 }
5692}
5693
9cf7243d 5694static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5695{
969c7921 5696 struct rq *rq = cpu_rq(cpu);
1da177e4 5697
a803f026
CM
5698 rq->age_stamp = sched_clock_cpu(cpu);
5699}
5700
d1ccc66d
IM
5701/*
5702 * used to mark begin/end of suspend/resume:
5703 */
5704static int num_cpus_frozen;
d35be8ba 5705
1da177e4 5706/*
3a101d05
TH
5707 * Update cpusets according to cpu_active mask. If cpusets are
5708 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5709 * around partition_sched_domains().
d35be8ba
SB
5710 *
5711 * If we come here as part of a suspend/resume, don't touch cpusets because we
5712 * want to restore it back to its original state upon resume anyway.
1da177e4 5713 */
40190a78 5714static void cpuset_cpu_active(void)
e761b772 5715{
40190a78 5716 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5717 /*
5718 * num_cpus_frozen tracks how many CPUs are involved in suspend
5719 * resume sequence. As long as this is not the last online
5720 * operation in the resume sequence, just build a single sched
5721 * domain, ignoring cpusets.
5722 */
5723 num_cpus_frozen--;
5724 if (likely(num_cpus_frozen)) {
5725 partition_sched_domains(1, NULL, NULL);
135fb3e1 5726 return;
d35be8ba 5727 }
d35be8ba
SB
5728 /*
5729 * This is the last CPU online operation. So fall through and
5730 * restore the original sched domains by considering the
5731 * cpuset configurations.
5732 */
3a101d05 5733 }
135fb3e1 5734 cpuset_update_active_cpus(true);
3a101d05 5735}
e761b772 5736
40190a78 5737static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5738{
3c18d447 5739 unsigned long flags;
3c18d447 5740 struct dl_bw *dl_b;
533445c6
OS
5741 bool overflow;
5742 int cpus;
3c18d447 5743
40190a78 5744 if (!cpuhp_tasks_frozen) {
533445c6
OS
5745 rcu_read_lock_sched();
5746 dl_b = dl_bw_of(cpu);
3c18d447 5747
533445c6
OS
5748 raw_spin_lock_irqsave(&dl_b->lock, flags);
5749 cpus = dl_bw_cpus(cpu);
5750 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5751 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 5752
533445c6 5753 rcu_read_unlock_sched();
3c18d447 5754
533445c6 5755 if (overflow)
135fb3e1 5756 return -EBUSY;
7ddf96b0 5757 cpuset_update_active_cpus(false);
135fb3e1 5758 } else {
d35be8ba
SB
5759 num_cpus_frozen++;
5760 partition_sched_domains(1, NULL, NULL);
e761b772 5761 }
135fb3e1 5762 return 0;
e761b772 5763}
e761b772 5764
40190a78 5765int sched_cpu_activate(unsigned int cpu)
135fb3e1 5766{
7d976699 5767 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5768 struct rq_flags rf;
7d976699 5769
40190a78 5770 set_cpu_active(cpu, true);
135fb3e1 5771
40190a78 5772 if (sched_smp_initialized) {
135fb3e1 5773 sched_domains_numa_masks_set(cpu);
40190a78 5774 cpuset_cpu_active();
e761b772 5775 }
7d976699
TG
5776
5777 /*
5778 * Put the rq online, if not already. This happens:
5779 *
5780 * 1) In the early boot process, because we build the real domains
d1ccc66d 5781 * after all CPUs have been brought up.
7d976699
TG
5782 *
5783 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5784 * domains.
5785 */
8a8c69c3 5786 rq_lock_irqsave(rq, &rf);
7d976699
TG
5787 if (rq->rd) {
5788 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5789 set_rq_online(rq);
5790 }
8a8c69c3 5791 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5792
5793 update_max_interval();
5794
40190a78 5795 return 0;
135fb3e1
TG
5796}
5797
40190a78 5798int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5799{
135fb3e1
TG
5800 int ret;
5801
40190a78 5802 set_cpu_active(cpu, false);
b2454caa
PZ
5803 /*
5804 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5805 * users of this state to go away such that all new such users will
5806 * observe it.
5807 *
5808 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5809 * not imply sync_sched(), so wait for both.
5810 *
5811 * Do sync before park smpboot threads to take care the rcu boost case.
5812 */
5813 if (IS_ENABLED(CONFIG_PREEMPT))
5814 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5815 else
5816 synchronize_rcu();
40190a78
TG
5817
5818 if (!sched_smp_initialized)
5819 return 0;
5820
5821 ret = cpuset_cpu_inactive(cpu);
5822 if (ret) {
5823 set_cpu_active(cpu, true);
5824 return ret;
135fb3e1 5825 }
40190a78
TG
5826 sched_domains_numa_masks_clear(cpu);
5827 return 0;
135fb3e1
TG
5828}
5829
94baf7a5
TG
5830static void sched_rq_cpu_starting(unsigned int cpu)
5831{
5832 struct rq *rq = cpu_rq(cpu);
5833
5834 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5835 update_max_interval();
5836}
5837
135fb3e1
TG
5838int sched_cpu_starting(unsigned int cpu)
5839{
5840 set_cpu_rq_start_time(cpu);
94baf7a5 5841 sched_rq_cpu_starting(cpu);
135fb3e1 5842 return 0;
e761b772 5843}
e761b772 5844
f2785ddb
TG
5845#ifdef CONFIG_HOTPLUG_CPU
5846int sched_cpu_dying(unsigned int cpu)
5847{
5848 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5849 struct rq_flags rf;
f2785ddb
TG
5850
5851 /* Handle pending wakeups and then migrate everything off */
5852 sched_ttwu_pending();
8a8c69c3
PZ
5853
5854 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5855 if (rq->rd) {
5856 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5857 set_rq_offline(rq);
5858 }
8a8c69c3 5859 migrate_tasks(rq, &rf);
f2785ddb 5860 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5861 rq_unlock_irqrestore(rq, &rf);
5862
f2785ddb
TG
5863 calc_load_migrate(rq);
5864 update_max_interval();
20a5c8cc 5865 nohz_balance_exit_idle(cpu);
e5ef27d0 5866 hrtick_clear(rq);
f2785ddb
TG
5867 return 0;
5868}
5869#endif
5870
1b568f0a
PZ
5871#ifdef CONFIG_SCHED_SMT
5872DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5873
5874static void sched_init_smt(void)
5875{
5876 /*
5877 * We've enumerated all CPUs and will assume that if any CPU
5878 * has SMT siblings, CPU0 will too.
5879 */
5880 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5881 static_branch_enable(&sched_smt_present);
5882}
5883#else
5884static inline void sched_init_smt(void) { }
5885#endif
5886
1da177e4
LT
5887void __init sched_init_smp(void)
5888{
dcc30a35
RR
5889 cpumask_var_t non_isolated_cpus;
5890
5891 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 5892 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 5893
cb83b629
PZ
5894 sched_init_numa();
5895
6acce3ef
PZ
5896 /*
5897 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5898 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5899 * happen.
5900 */
712555ee 5901 mutex_lock(&sched_domains_mutex);
c4a8849a 5902 init_sched_domains(cpu_active_mask);
dcc30a35
RR
5903 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5904 if (cpumask_empty(non_isolated_cpus))
5905 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 5906 mutex_unlock(&sched_domains_mutex);
e761b772 5907
5c1e1767 5908 /* Move init over to a non-isolated CPU */
dcc30a35 5909 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 5910 BUG();
19978ca6 5911 sched_init_granularity();
dcc30a35 5912 free_cpumask_var(non_isolated_cpus);
4212823f 5913
0e3900e6 5914 init_sched_rt_class();
1baca4ce 5915 init_sched_dl_class();
1b568f0a
PZ
5916
5917 sched_init_smt();
9881b024 5918 sched_clock_init_late();
1b568f0a 5919
e26fbffd 5920 sched_smp_initialized = true;
1da177e4 5921}
e26fbffd
TG
5922
5923static int __init migration_init(void)
5924{
94baf7a5 5925 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5926 return 0;
1da177e4 5927}
e26fbffd
TG
5928early_initcall(migration_init);
5929
1da177e4
LT
5930#else
5931void __init sched_init_smp(void)
5932{
19978ca6 5933 sched_init_granularity();
9881b024 5934 sched_clock_init_late();
1da177e4
LT
5935}
5936#endif /* CONFIG_SMP */
5937
5938int in_sched_functions(unsigned long addr)
5939{
1da177e4
LT
5940 return in_lock_functions(addr) ||
5941 (addr >= (unsigned long)__sched_text_start
5942 && addr < (unsigned long)__sched_text_end);
5943}
5944
029632fb 5945#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5946/*
5947 * Default task group.
5948 * Every task in system belongs to this group at bootup.
5949 */
029632fb 5950struct task_group root_task_group;
35cf4e50 5951LIST_HEAD(task_groups);
b0367629
WL
5952
5953/* Cacheline aligned slab cache for task_group */
5954static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5955#endif
6f505b16 5956
e6252c3e 5957DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5958DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5959
9dcb8b68
LT
5960#define WAIT_TABLE_BITS 8
5961#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
5962static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
5963
5964wait_queue_head_t *bit_waitqueue(void *word, int bit)
5965{
5966 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
5967 unsigned long val = (unsigned long)word << shift | bit;
5968
5969 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
5970}
5971EXPORT_SYMBOL(bit_waitqueue);
5972
1da177e4
LT
5973void __init sched_init(void)
5974{
dd41f596 5975 int i, j;
434d53b0
MT
5976 unsigned long alloc_size = 0, ptr;
5977
9881b024
PZ
5978 sched_clock_init();
5979
9dcb8b68
LT
5980 for (i = 0; i < WAIT_TABLE_SIZE; i++)
5981 init_waitqueue_head(bit_wait_table + i);
5982
434d53b0
MT
5983#ifdef CONFIG_FAIR_GROUP_SCHED
5984 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5985#endif
5986#ifdef CONFIG_RT_GROUP_SCHED
5987 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5988#endif
434d53b0 5989 if (alloc_size) {
36b7b6d4 5990 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5991
5992#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5993 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5994 ptr += nr_cpu_ids * sizeof(void **);
5995
07e06b01 5996 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5997 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5998
6d6bc0ad 5999#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6000#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6001 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6002 ptr += nr_cpu_ids * sizeof(void **);
6003
07e06b01 6004 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6005 ptr += nr_cpu_ids * sizeof(void **);
6006
6d6bc0ad 6007#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6008 }
df7c8e84 6009#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6010 for_each_possible_cpu(i) {
6011 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6012 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6013 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6014 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6015 }
b74e6278 6016#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6017
d1ccc66d
IM
6018 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6019 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6020
57d885fe
GH
6021#ifdef CONFIG_SMP
6022 init_defrootdomain();
6023#endif
6024
d0b27fa7 6025#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6026 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6027 global_rt_period(), global_rt_runtime());
6d6bc0ad 6028#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6029
7c941438 6030#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6031 task_group_cache = KMEM_CACHE(task_group, 0);
6032
07e06b01
YZ
6033 list_add(&root_task_group.list, &task_groups);
6034 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6035 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6036 autogroup_init(&init_task);
7c941438 6037#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6038
0a945022 6039 for_each_possible_cpu(i) {
70b97a7f 6040 struct rq *rq;
1da177e4
LT
6041
6042 rq = cpu_rq(i);
05fa785c 6043 raw_spin_lock_init(&rq->lock);
7897986b 6044 rq->nr_running = 0;
dce48a84
TG
6045 rq->calc_load_active = 0;
6046 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6047 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6048 init_rt_rq(&rq->rt);
6049 init_dl_rq(&rq->dl);
dd41f596 6050#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6051 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6052 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6053 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6054 /*
d1ccc66d 6055 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6056 *
6057 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6058 * gets 100% of the CPU resources in the system. This overall
6059 * system CPU resource is divided among the tasks of
07e06b01 6060 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6061 * based on each entity's (task or task-group's) weight
6062 * (se->load.weight).
6063 *
07e06b01 6064 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6065 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6066 * then A0's share of the CPU resource is:
354d60c2 6067 *
0d905bca 6068 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6069 *
07e06b01
YZ
6070 * We achieve this by letting root_task_group's tasks sit
6071 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6072 */
ab84d31e 6073 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6074 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6075#endif /* CONFIG_FAIR_GROUP_SCHED */
6076
6077 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6078#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6079 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6080#endif
1da177e4 6081
dd41f596
IM
6082 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6083 rq->cpu_load[j] = 0;
fdf3e95d 6084
1da177e4 6085#ifdef CONFIG_SMP
41c7ce9a 6086 rq->sd = NULL;
57d885fe 6087 rq->rd = NULL;
ca6d75e6 6088 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6089 rq->balance_callback = NULL;
1da177e4 6090 rq->active_balance = 0;
dd41f596 6091 rq->next_balance = jiffies;
1da177e4 6092 rq->push_cpu = 0;
0a2966b4 6093 rq->cpu = i;
1f11eb6a 6094 rq->online = 0;
eae0c9df
MG
6095 rq->idle_stamp = 0;
6096 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6097 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6098
6099 INIT_LIST_HEAD(&rq->cfs_tasks);
6100
dc938520 6101 rq_attach_root(rq, &def_root_domain);
3451d024 6102#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6103 rq->last_load_update_tick = jiffies;
1c792db7 6104 rq->nohz_flags = 0;
83cd4fe2 6105#endif
265f22a9
FW
6106#ifdef CONFIG_NO_HZ_FULL
6107 rq->last_sched_tick = 0;
6108#endif
9fd81dd5 6109#endif /* CONFIG_SMP */
8f4d37ec 6110 init_rq_hrtick(rq);
1da177e4 6111 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6112 }
6113
2dd73a4f 6114 set_load_weight(&init_task);
b50f60ce 6115
1da177e4
LT
6116 /*
6117 * The boot idle thread does lazy MMU switching as well:
6118 */
f1f10076 6119 mmgrab(&init_mm);
1da177e4
LT
6120 enter_lazy_tlb(&init_mm, current);
6121
6122 /*
6123 * Make us the idle thread. Technically, schedule() should not be
6124 * called from this thread, however somewhere below it might be,
6125 * but because we are the idle thread, we just pick up running again
6126 * when this runqueue becomes "idle".
6127 */
6128 init_idle(current, smp_processor_id());
dce48a84
TG
6129
6130 calc_load_update = jiffies + LOAD_FREQ;
6131
bf4d83f6 6132#ifdef CONFIG_SMP
4cb98839 6133 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6134 /* May be allocated at isolcpus cmdline parse time */
6135 if (cpu_isolated_map == NULL)
6136 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6137 idle_thread_set_boot_cpu();
9cf7243d 6138 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6139#endif
6140 init_sched_fair_class();
6a7b3dc3 6141
4698f88c
JP
6142 init_schedstats();
6143
6892b75e 6144 scheduler_running = 1;
1da177e4
LT
6145}
6146
d902db1e 6147#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6148static inline int preempt_count_equals(int preempt_offset)
6149{
da7142e2 6150 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6151
4ba8216c 6152 return (nested == preempt_offset);
e4aafea2
FW
6153}
6154
d894837f 6155void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6156{
8eb23b9f
PZ
6157 /*
6158 * Blocking primitives will set (and therefore destroy) current->state,
6159 * since we will exit with TASK_RUNNING make sure we enter with it,
6160 * otherwise we will destroy state.
6161 */
00845eb9 6162 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6163 "do not call blocking ops when !TASK_RUNNING; "
6164 "state=%lx set at [<%p>] %pS\n",
6165 current->state,
6166 (void *)current->task_state_change,
00845eb9 6167 (void *)current->task_state_change);
8eb23b9f 6168
3427445a
PZ
6169 ___might_sleep(file, line, preempt_offset);
6170}
6171EXPORT_SYMBOL(__might_sleep);
6172
6173void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6174{
d1ccc66d
IM
6175 /* Ratelimiting timestamp: */
6176 static unsigned long prev_jiffy;
6177
d1c6d149 6178 unsigned long preempt_disable_ip;
1da177e4 6179
d1ccc66d
IM
6180 /* WARN_ON_ONCE() by default, no rate limit required: */
6181 rcu_sleep_check();
6182
db273be2
TG
6183 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6184 !is_idle_task(current)) ||
e4aafea2 6185 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6186 return;
6187 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6188 return;
6189 prev_jiffy = jiffies;
6190
d1ccc66d 6191 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6192 preempt_disable_ip = get_preempt_disable_ip(current);
6193
3df0fc5b
PZ
6194 printk(KERN_ERR
6195 "BUG: sleeping function called from invalid context at %s:%d\n",
6196 file, line);
6197 printk(KERN_ERR
6198 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6199 in_atomic(), irqs_disabled(),
6200 current->pid, current->comm);
aef745fc 6201
a8b686b3
ES
6202 if (task_stack_end_corrupted(current))
6203 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6204
aef745fc
IM
6205 debug_show_held_locks(current);
6206 if (irqs_disabled())
6207 print_irqtrace_events(current);
d1c6d149
VN
6208 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6209 && !preempt_count_equals(preempt_offset)) {
8f47b187 6210 pr_err("Preemption disabled at:");
d1c6d149 6211 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6212 pr_cont("\n");
6213 }
aef745fc 6214 dump_stack();
f0b22e39 6215 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6216}
3427445a 6217EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6218#endif
6219
6220#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6221void normalize_rt_tasks(void)
3a5e4dc1 6222{
dbc7f069 6223 struct task_struct *g, *p;
d50dde5a
DF
6224 struct sched_attr attr = {
6225 .sched_policy = SCHED_NORMAL,
6226 };
1da177e4 6227
3472eaa1 6228 read_lock(&tasklist_lock);
5d07f420 6229 for_each_process_thread(g, p) {
178be793
IM
6230 /*
6231 * Only normalize user tasks:
6232 */
3472eaa1 6233 if (p->flags & PF_KTHREAD)
178be793
IM
6234 continue;
6235
4fa8d299
JP
6236 p->se.exec_start = 0;
6237 schedstat_set(p->se.statistics.wait_start, 0);
6238 schedstat_set(p->se.statistics.sleep_start, 0);
6239 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6240
aab03e05 6241 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6242 /*
6243 * Renice negative nice level userspace
6244 * tasks back to 0:
6245 */
3472eaa1 6246 if (task_nice(p) < 0)
dd41f596 6247 set_user_nice(p, 0);
1da177e4 6248 continue;
dd41f596 6249 }
1da177e4 6250
dbc7f069 6251 __sched_setscheduler(p, &attr, false, false);
5d07f420 6252 }
3472eaa1 6253 read_unlock(&tasklist_lock);
1da177e4
LT
6254}
6255
6256#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6257
67fc4e0c 6258#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6259/*
67fc4e0c 6260 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6261 *
6262 * They can only be called when the whole system has been
6263 * stopped - every CPU needs to be quiescent, and no scheduling
6264 * activity can take place. Using them for anything else would
6265 * be a serious bug, and as a result, they aren't even visible
6266 * under any other configuration.
6267 */
6268
6269/**
d1ccc66d 6270 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6271 * @cpu: the processor in question.
6272 *
6273 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6274 *
6275 * Return: The current task for @cpu.
1df5c10a 6276 */
36c8b586 6277struct task_struct *curr_task(int cpu)
1df5c10a
LT
6278{
6279 return cpu_curr(cpu);
6280}
6281
67fc4e0c
JW
6282#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6283
6284#ifdef CONFIG_IA64
1df5c10a 6285/**
d1ccc66d 6286 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6287 * @cpu: the processor in question.
6288 * @p: the task pointer to set.
6289 *
6290 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6291 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6292 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6293 * must be called with all CPU's synchronized, and interrupts disabled, the
6294 * and caller must save the original value of the current task (see
6295 * curr_task() above) and restore that value before reenabling interrupts and
6296 * re-starting the system.
6297 *
6298 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6299 */
a458ae2e 6300void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6301{
6302 cpu_curr(cpu) = p;
6303}
6304
6305#endif
29f59db3 6306
7c941438 6307#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6308/* task_group_lock serializes the addition/removal of task groups */
6309static DEFINE_SPINLOCK(task_group_lock);
6310
2f5177f0 6311static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6312{
6313 free_fair_sched_group(tg);
6314 free_rt_sched_group(tg);
e9aa1dd1 6315 autogroup_free(tg);
b0367629 6316 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6317}
6318
6319/* allocate runqueue etc for a new task group */
ec7dc8ac 6320struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6321{
6322 struct task_group *tg;
bccbe08a 6323
b0367629 6324 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6325 if (!tg)
6326 return ERR_PTR(-ENOMEM);
6327
ec7dc8ac 6328 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6329 goto err;
6330
ec7dc8ac 6331 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6332 goto err;
6333
ace783b9
LZ
6334 return tg;
6335
6336err:
2f5177f0 6337 sched_free_group(tg);
ace783b9
LZ
6338 return ERR_PTR(-ENOMEM);
6339}
6340
6341void sched_online_group(struct task_group *tg, struct task_group *parent)
6342{
6343 unsigned long flags;
6344
8ed36996 6345 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6346 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6347
d1ccc66d
IM
6348 /* Root should already exist: */
6349 WARN_ON(!parent);
f473aa5e
PZ
6350
6351 tg->parent = parent;
f473aa5e 6352 INIT_LIST_HEAD(&tg->children);
09f2724a 6353 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6354 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6355
6356 online_fair_sched_group(tg);
29f59db3
SV
6357}
6358
9b5b7751 6359/* rcu callback to free various structures associated with a task group */
2f5177f0 6360static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6361{
d1ccc66d 6362 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6363 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6364}
6365
4cf86d77 6366void sched_destroy_group(struct task_group *tg)
ace783b9 6367{
d1ccc66d 6368 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6369 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6370}
6371
6372void sched_offline_group(struct task_group *tg)
29f59db3 6373{
8ed36996 6374 unsigned long flags;
29f59db3 6375
d1ccc66d 6376 /* End participation in shares distribution: */
6fe1f348 6377 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6378
6379 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6380 list_del_rcu(&tg->list);
f473aa5e 6381 list_del_rcu(&tg->siblings);
8ed36996 6382 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6383}
6384
ea86cb4b 6385static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6386{
8323f26c 6387 struct task_group *tg;
29f59db3 6388
f7b8a47d
KT
6389 /*
6390 * All callers are synchronized by task_rq_lock(); we do not use RCU
6391 * which is pointless here. Thus, we pass "true" to task_css_check()
6392 * to prevent lockdep warnings.
6393 */
6394 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6395 struct task_group, css);
6396 tg = autogroup_task_group(tsk, tg);
6397 tsk->sched_task_group = tg;
6398
810b3817 6399#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6400 if (tsk->sched_class->task_change_group)
6401 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6402 else
810b3817 6403#endif
b2b5ce02 6404 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6405}
6406
6407/*
6408 * Change task's runqueue when it moves between groups.
6409 *
6410 * The caller of this function should have put the task in its new group by
6411 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6412 * its new group.
6413 */
6414void sched_move_task(struct task_struct *tsk)
6415{
6416 int queued, running;
6417 struct rq_flags rf;
6418 struct rq *rq;
6419
6420 rq = task_rq_lock(tsk, &rf);
1b1d6225 6421 update_rq_clock(rq);
ea86cb4b
VG
6422
6423 running = task_current(rq, tsk);
6424 queued = task_on_rq_queued(tsk);
6425
6426 if (queued)
6427 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
bb3bac2c 6428 if (running)
ea86cb4b
VG
6429 put_prev_task(rq, tsk);
6430
6431 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6432
da0c1e65 6433 if (queued)
7134b3e9 6434 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE | ENQUEUE_NOCLOCK);
bb3bac2c 6435 if (running)
b2bf6c31 6436 set_curr_task(rq, tsk);
29f59db3 6437
eb580751 6438 task_rq_unlock(rq, tsk, &rf);
29f59db3 6439}
7c941438 6440#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6441
a790de99
PT
6442#ifdef CONFIG_RT_GROUP_SCHED
6443/*
6444 * Ensure that the real time constraints are schedulable.
6445 */
6446static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6447
9a7e0b18
PZ
6448/* Must be called with tasklist_lock held */
6449static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6450{
9a7e0b18 6451 struct task_struct *g, *p;
b40b2e8e 6452
1fe89e1b
PZ
6453 /*
6454 * Autogroups do not have RT tasks; see autogroup_create().
6455 */
6456 if (task_group_is_autogroup(tg))
6457 return 0;
6458
5d07f420 6459 for_each_process_thread(g, p) {
8651c658 6460 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 6461 return 1;
5d07f420 6462 }
b40b2e8e 6463
9a7e0b18
PZ
6464 return 0;
6465}
b40b2e8e 6466
9a7e0b18
PZ
6467struct rt_schedulable_data {
6468 struct task_group *tg;
6469 u64 rt_period;
6470 u64 rt_runtime;
6471};
b40b2e8e 6472
a790de99 6473static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6474{
6475 struct rt_schedulable_data *d = data;
6476 struct task_group *child;
6477 unsigned long total, sum = 0;
6478 u64 period, runtime;
b40b2e8e 6479
9a7e0b18
PZ
6480 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6481 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6482
9a7e0b18
PZ
6483 if (tg == d->tg) {
6484 period = d->rt_period;
6485 runtime = d->rt_runtime;
b40b2e8e 6486 }
b40b2e8e 6487
4653f803
PZ
6488 /*
6489 * Cannot have more runtime than the period.
6490 */
6491 if (runtime > period && runtime != RUNTIME_INF)
6492 return -EINVAL;
6f505b16 6493
4653f803
PZ
6494 /*
6495 * Ensure we don't starve existing RT tasks.
6496 */
9a7e0b18
PZ
6497 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6498 return -EBUSY;
6f505b16 6499
9a7e0b18 6500 total = to_ratio(period, runtime);
6f505b16 6501
4653f803
PZ
6502 /*
6503 * Nobody can have more than the global setting allows.
6504 */
6505 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6506 return -EINVAL;
6f505b16 6507
4653f803
PZ
6508 /*
6509 * The sum of our children's runtime should not exceed our own.
6510 */
9a7e0b18
PZ
6511 list_for_each_entry_rcu(child, &tg->children, siblings) {
6512 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6513 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6514
9a7e0b18
PZ
6515 if (child == d->tg) {
6516 period = d->rt_period;
6517 runtime = d->rt_runtime;
6518 }
6f505b16 6519
9a7e0b18 6520 sum += to_ratio(period, runtime);
9f0c1e56 6521 }
6f505b16 6522
9a7e0b18
PZ
6523 if (sum > total)
6524 return -EINVAL;
6525
6526 return 0;
6f505b16
PZ
6527}
6528
9a7e0b18 6529static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6530{
8277434e
PT
6531 int ret;
6532
9a7e0b18
PZ
6533 struct rt_schedulable_data data = {
6534 .tg = tg,
6535 .rt_period = period,
6536 .rt_runtime = runtime,
6537 };
6538
8277434e
PT
6539 rcu_read_lock();
6540 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6541 rcu_read_unlock();
6542
6543 return ret;
521f1a24
DG
6544}
6545
ab84d31e 6546static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6547 u64 rt_period, u64 rt_runtime)
6f505b16 6548{
ac086bc2 6549 int i, err = 0;
9f0c1e56 6550
2636ed5f
PZ
6551 /*
6552 * Disallowing the root group RT runtime is BAD, it would disallow the
6553 * kernel creating (and or operating) RT threads.
6554 */
6555 if (tg == &root_task_group && rt_runtime == 0)
6556 return -EINVAL;
6557
6558 /* No period doesn't make any sense. */
6559 if (rt_period == 0)
6560 return -EINVAL;
6561
9f0c1e56 6562 mutex_lock(&rt_constraints_mutex);
521f1a24 6563 read_lock(&tasklist_lock);
9a7e0b18
PZ
6564 err = __rt_schedulable(tg, rt_period, rt_runtime);
6565 if (err)
9f0c1e56 6566 goto unlock;
ac086bc2 6567
0986b11b 6568 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6569 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6570 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6571
6572 for_each_possible_cpu(i) {
6573 struct rt_rq *rt_rq = tg->rt_rq[i];
6574
0986b11b 6575 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6576 rt_rq->rt_runtime = rt_runtime;
0986b11b 6577 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6578 }
0986b11b 6579 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6580unlock:
521f1a24 6581 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6582 mutex_unlock(&rt_constraints_mutex);
6583
6584 return err;
6f505b16
PZ
6585}
6586
25cc7da7 6587static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6588{
6589 u64 rt_runtime, rt_period;
6590
6591 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6592 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6593 if (rt_runtime_us < 0)
6594 rt_runtime = RUNTIME_INF;
6595
ab84d31e 6596 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6597}
6598
25cc7da7 6599static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6600{
6601 u64 rt_runtime_us;
6602
d0b27fa7 6603 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6604 return -1;
6605
d0b27fa7 6606 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6607 do_div(rt_runtime_us, NSEC_PER_USEC);
6608 return rt_runtime_us;
6609}
d0b27fa7 6610
ce2f5fe4 6611static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
6612{
6613 u64 rt_runtime, rt_period;
6614
ce2f5fe4 6615 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
6616 rt_runtime = tg->rt_bandwidth.rt_runtime;
6617
ab84d31e 6618 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6619}
6620
25cc7da7 6621static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6622{
6623 u64 rt_period_us;
6624
6625 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6626 do_div(rt_period_us, NSEC_PER_USEC);
6627 return rt_period_us;
6628}
332ac17e 6629#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6630
332ac17e 6631#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
6632static int sched_rt_global_constraints(void)
6633{
6634 int ret = 0;
6635
6636 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6637 read_lock(&tasklist_lock);
4653f803 6638 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6639 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6640 mutex_unlock(&rt_constraints_mutex);
6641
6642 return ret;
6643}
54e99124 6644
25cc7da7 6645static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6646{
6647 /* Don't accept realtime tasks when there is no way for them to run */
6648 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6649 return 0;
6650
6651 return 1;
6652}
6653
6d6bc0ad 6654#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6655static int sched_rt_global_constraints(void)
6656{
ac086bc2 6657 unsigned long flags;
8c5e9554 6658 int i;
ec5d4989 6659
0986b11b 6660 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
6661 for_each_possible_cpu(i) {
6662 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6663
0986b11b 6664 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6665 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 6666 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6667 }
0986b11b 6668 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 6669
8c5e9554 6670 return 0;
d0b27fa7 6671}
6d6bc0ad 6672#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6673
a1963b81 6674static int sched_dl_global_validate(void)
332ac17e 6675{
1724813d
PZ
6676 u64 runtime = global_rt_runtime();
6677 u64 period = global_rt_period();
332ac17e 6678 u64 new_bw = to_ratio(period, runtime);
f10e00f4 6679 struct dl_bw *dl_b;
1724813d 6680 int cpu, ret = 0;
49516342 6681 unsigned long flags;
332ac17e
DF
6682
6683 /*
6684 * Here we want to check the bandwidth not being set to some
6685 * value smaller than the currently allocated bandwidth in
6686 * any of the root_domains.
6687 *
6688 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6689 * cycling on root_domains... Discussion on different/better
6690 * solutions is welcome!
6691 */
1724813d 6692 for_each_possible_cpu(cpu) {
f10e00f4
KT
6693 rcu_read_lock_sched();
6694 dl_b = dl_bw_of(cpu);
332ac17e 6695
49516342 6696 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
6697 if (new_bw < dl_b->total_bw)
6698 ret = -EBUSY;
49516342 6699 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 6700
f10e00f4
KT
6701 rcu_read_unlock_sched();
6702
1724813d
PZ
6703 if (ret)
6704 break;
332ac17e
DF
6705 }
6706
1724813d 6707 return ret;
332ac17e
DF
6708}
6709
1724813d 6710static void sched_dl_do_global(void)
ce0dbbbb 6711{
1724813d 6712 u64 new_bw = -1;
f10e00f4 6713 struct dl_bw *dl_b;
1724813d 6714 int cpu;
49516342 6715 unsigned long flags;
ce0dbbbb 6716
1724813d
PZ
6717 def_dl_bandwidth.dl_period = global_rt_period();
6718 def_dl_bandwidth.dl_runtime = global_rt_runtime();
6719
6720 if (global_rt_runtime() != RUNTIME_INF)
6721 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6722
6723 /*
6724 * FIXME: As above...
6725 */
6726 for_each_possible_cpu(cpu) {
f10e00f4
KT
6727 rcu_read_lock_sched();
6728 dl_b = dl_bw_of(cpu);
1724813d 6729
49516342 6730 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 6731 dl_b->bw = new_bw;
49516342 6732 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
6733
6734 rcu_read_unlock_sched();
ce0dbbbb 6735 }
1724813d
PZ
6736}
6737
6738static int sched_rt_global_validate(void)
6739{
6740 if (sysctl_sched_rt_period <= 0)
6741 return -EINVAL;
6742
e9e7cb38
JL
6743 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6744 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
6745 return -EINVAL;
6746
6747 return 0;
6748}
6749
6750static void sched_rt_do_global(void)
6751{
6752 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6753 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
6754}
6755
d0b27fa7 6756int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 6757 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
6758 loff_t *ppos)
6759{
d0b27fa7
PZ
6760 int old_period, old_runtime;
6761 static DEFINE_MUTEX(mutex);
1724813d 6762 int ret;
d0b27fa7
PZ
6763
6764 mutex_lock(&mutex);
6765 old_period = sysctl_sched_rt_period;
6766 old_runtime = sysctl_sched_rt_runtime;
6767
8d65af78 6768 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
6769
6770 if (!ret && write) {
1724813d
PZ
6771 ret = sched_rt_global_validate();
6772 if (ret)
6773 goto undo;
6774
a1963b81 6775 ret = sched_dl_global_validate();
1724813d
PZ
6776 if (ret)
6777 goto undo;
6778
a1963b81 6779 ret = sched_rt_global_constraints();
1724813d
PZ
6780 if (ret)
6781 goto undo;
6782
6783 sched_rt_do_global();
6784 sched_dl_do_global();
6785 }
6786 if (0) {
6787undo:
6788 sysctl_sched_rt_period = old_period;
6789 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
6790 }
6791 mutex_unlock(&mutex);
6792
6793 return ret;
6794}
68318b8e 6795
1724813d 6796int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
6797 void __user *buffer, size_t *lenp,
6798 loff_t *ppos)
6799{
6800 int ret;
332ac17e 6801 static DEFINE_MUTEX(mutex);
332ac17e
DF
6802
6803 mutex_lock(&mutex);
332ac17e 6804 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d1ccc66d
IM
6805 /*
6806 * Make sure that internally we keep jiffies.
6807 * Also, writing zero resets the timeslice to default:
6808 */
332ac17e 6809 if (!ret && write) {
975e155e
SZ
6810 sched_rr_timeslice =
6811 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6812 msecs_to_jiffies(sysctl_sched_rr_timeslice);
332ac17e
DF
6813 }
6814 mutex_unlock(&mutex);
332ac17e
DF
6815 return ret;
6816}
6817
052f1dc7 6818#ifdef CONFIG_CGROUP_SCHED
68318b8e 6819
a7c6d554 6820static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6821{
a7c6d554 6822 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6823}
6824
eb95419b
TH
6825static struct cgroup_subsys_state *
6826cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6827{
eb95419b
TH
6828 struct task_group *parent = css_tg(parent_css);
6829 struct task_group *tg;
68318b8e 6830
eb95419b 6831 if (!parent) {
68318b8e 6832 /* This is early initialization for the top cgroup */
07e06b01 6833 return &root_task_group.css;
68318b8e
SV
6834 }
6835
ec7dc8ac 6836 tg = sched_create_group(parent);
68318b8e
SV
6837 if (IS_ERR(tg))
6838 return ERR_PTR(-ENOMEM);
6839
68318b8e
SV
6840 return &tg->css;
6841}
6842
96b77745
KK
6843/* Expose task group only after completing cgroup initialization */
6844static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6845{
6846 struct task_group *tg = css_tg(css);
6847 struct task_group *parent = css_tg(css->parent);
6848
6849 if (parent)
6850 sched_online_group(tg, parent);
6851 return 0;
6852}
6853
2f5177f0 6854static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6855{
eb95419b 6856 struct task_group *tg = css_tg(css);
ace783b9 6857
2f5177f0 6858 sched_offline_group(tg);
ace783b9
LZ
6859}
6860
eb95419b 6861static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6862{
eb95419b 6863 struct task_group *tg = css_tg(css);
68318b8e 6864
2f5177f0
PZ
6865 /*
6866 * Relies on the RCU grace period between css_released() and this.
6867 */
6868 sched_free_group(tg);
ace783b9
LZ
6869}
6870
ea86cb4b
VG
6871/*
6872 * This is called before wake_up_new_task(), therefore we really only
6873 * have to set its group bits, all the other stuff does not apply.
6874 */
b53202e6 6875static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6876{
ea86cb4b
VG
6877 struct rq_flags rf;
6878 struct rq *rq;
6879
6880 rq = task_rq_lock(task, &rf);
6881
80f5c1b8 6882 update_rq_clock(rq);
ea86cb4b
VG
6883 sched_change_group(task, TASK_SET_GROUP);
6884
6885 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6886}
6887
1f7dd3e5 6888static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6889{
bb9d97b6 6890 struct task_struct *task;
1f7dd3e5 6891 struct cgroup_subsys_state *css;
7dc603c9 6892 int ret = 0;
bb9d97b6 6893
1f7dd3e5 6894 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6895#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6896 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6897 return -EINVAL;
b68aa230 6898#else
bb9d97b6
TH
6899 /* We don't support RT-tasks being in separate groups */
6900 if (task->sched_class != &fair_sched_class)
6901 return -EINVAL;
b68aa230 6902#endif
7dc603c9
PZ
6903 /*
6904 * Serialize against wake_up_new_task() such that if its
6905 * running, we're sure to observe its full state.
6906 */
6907 raw_spin_lock_irq(&task->pi_lock);
6908 /*
6909 * Avoid calling sched_move_task() before wake_up_new_task()
6910 * has happened. This would lead to problems with PELT, due to
6911 * move wanting to detach+attach while we're not attached yet.
6912 */
6913 if (task->state == TASK_NEW)
6914 ret = -EINVAL;
6915 raw_spin_unlock_irq(&task->pi_lock);
6916
6917 if (ret)
6918 break;
bb9d97b6 6919 }
7dc603c9 6920 return ret;
be367d09 6921}
68318b8e 6922
1f7dd3e5 6923static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6924{
bb9d97b6 6925 struct task_struct *task;
1f7dd3e5 6926 struct cgroup_subsys_state *css;
bb9d97b6 6927
1f7dd3e5 6928 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6929 sched_move_task(task);
68318b8e
SV
6930}
6931
052f1dc7 6932#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6933static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6934 struct cftype *cftype, u64 shareval)
68318b8e 6935{
182446d0 6936 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6937}
6938
182446d0
TH
6939static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6940 struct cftype *cft)
68318b8e 6941{
182446d0 6942 struct task_group *tg = css_tg(css);
68318b8e 6943
c8b28116 6944 return (u64) scale_load_down(tg->shares);
68318b8e 6945}
ab84d31e
PT
6946
6947#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6948static DEFINE_MUTEX(cfs_constraints_mutex);
6949
ab84d31e
PT
6950const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6951const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6952
a790de99
PT
6953static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6954
ab84d31e
PT
6955static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6956{
56f570e5 6957 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6958 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6959
6960 if (tg == &root_task_group)
6961 return -EINVAL;
6962
6963 /*
6964 * Ensure we have at some amount of bandwidth every period. This is
6965 * to prevent reaching a state of large arrears when throttled via
6966 * entity_tick() resulting in prolonged exit starvation.
6967 */
6968 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6969 return -EINVAL;
6970
6971 /*
6972 * Likewise, bound things on the otherside by preventing insane quota
6973 * periods. This also allows us to normalize in computing quota
6974 * feasibility.
6975 */
6976 if (period > max_cfs_quota_period)
6977 return -EINVAL;
6978
0e59bdae
KT
6979 /*
6980 * Prevent race between setting of cfs_rq->runtime_enabled and
6981 * unthrottle_offline_cfs_rqs().
6982 */
6983 get_online_cpus();
a790de99
PT
6984 mutex_lock(&cfs_constraints_mutex);
6985 ret = __cfs_schedulable(tg, period, quota);
6986 if (ret)
6987 goto out_unlock;
6988
58088ad0 6989 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6990 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6991 /*
6992 * If we need to toggle cfs_bandwidth_used, off->on must occur
6993 * before making related changes, and on->off must occur afterwards
6994 */
6995 if (runtime_enabled && !runtime_was_enabled)
6996 cfs_bandwidth_usage_inc();
ab84d31e
PT
6997 raw_spin_lock_irq(&cfs_b->lock);
6998 cfs_b->period = ns_to_ktime(period);
6999 cfs_b->quota = quota;
58088ad0 7000
a9cf55b2 7001 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7002
7003 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7004 if (runtime_enabled)
7005 start_cfs_bandwidth(cfs_b);
d1ccc66d 7006
ab84d31e
PT
7007 raw_spin_unlock_irq(&cfs_b->lock);
7008
0e59bdae 7009 for_each_online_cpu(i) {
ab84d31e 7010 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7011 struct rq *rq = cfs_rq->rq;
8a8c69c3 7012 struct rq_flags rf;
ab84d31e 7013
8a8c69c3 7014 rq_lock_irq(rq, &rf);
58088ad0 7015 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7016 cfs_rq->runtime_remaining = 0;
671fd9da 7017
029632fb 7018 if (cfs_rq->throttled)
671fd9da 7019 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7020 rq_unlock_irq(rq, &rf);
ab84d31e 7021 }
1ee14e6c
BS
7022 if (runtime_was_enabled && !runtime_enabled)
7023 cfs_bandwidth_usage_dec();
a790de99
PT
7024out_unlock:
7025 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7026 put_online_cpus();
ab84d31e 7027
a790de99 7028 return ret;
ab84d31e
PT
7029}
7030
7031int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7032{
7033 u64 quota, period;
7034
029632fb 7035 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7036 if (cfs_quota_us < 0)
7037 quota = RUNTIME_INF;
7038 else
7039 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7040
7041 return tg_set_cfs_bandwidth(tg, period, quota);
7042}
7043
7044long tg_get_cfs_quota(struct task_group *tg)
7045{
7046 u64 quota_us;
7047
029632fb 7048 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7049 return -1;
7050
029632fb 7051 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7052 do_div(quota_us, NSEC_PER_USEC);
7053
7054 return quota_us;
7055}
7056
7057int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7058{
7059 u64 quota, period;
7060
7061 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7062 quota = tg->cfs_bandwidth.quota;
ab84d31e 7063
ab84d31e
PT
7064 return tg_set_cfs_bandwidth(tg, period, quota);
7065}
7066
7067long tg_get_cfs_period(struct task_group *tg)
7068{
7069 u64 cfs_period_us;
7070
029632fb 7071 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7072 do_div(cfs_period_us, NSEC_PER_USEC);
7073
7074 return cfs_period_us;
7075}
7076
182446d0
TH
7077static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7078 struct cftype *cft)
ab84d31e 7079{
182446d0 7080 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7081}
7082
182446d0
TH
7083static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7084 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7085{
182446d0 7086 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7087}
7088
182446d0
TH
7089static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7090 struct cftype *cft)
ab84d31e 7091{
182446d0 7092 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7093}
7094
182446d0
TH
7095static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7096 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7097{
182446d0 7098 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7099}
7100
a790de99
PT
7101struct cfs_schedulable_data {
7102 struct task_group *tg;
7103 u64 period, quota;
7104};
7105
7106/*
7107 * normalize group quota/period to be quota/max_period
7108 * note: units are usecs
7109 */
7110static u64 normalize_cfs_quota(struct task_group *tg,
7111 struct cfs_schedulable_data *d)
7112{
7113 u64 quota, period;
7114
7115 if (tg == d->tg) {
7116 period = d->period;
7117 quota = d->quota;
7118 } else {
7119 period = tg_get_cfs_period(tg);
7120 quota = tg_get_cfs_quota(tg);
7121 }
7122
7123 /* note: these should typically be equivalent */
7124 if (quota == RUNTIME_INF || quota == -1)
7125 return RUNTIME_INF;
7126
7127 return to_ratio(period, quota);
7128}
7129
7130static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7131{
7132 struct cfs_schedulable_data *d = data;
029632fb 7133 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7134 s64 quota = 0, parent_quota = -1;
7135
7136 if (!tg->parent) {
7137 quota = RUNTIME_INF;
7138 } else {
029632fb 7139 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7140
7141 quota = normalize_cfs_quota(tg, d);
9c58c79a 7142 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7143
7144 /*
d1ccc66d
IM
7145 * Ensure max(child_quota) <= parent_quota, inherit when no
7146 * limit is set:
a790de99
PT
7147 */
7148 if (quota == RUNTIME_INF)
7149 quota = parent_quota;
7150 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7151 return -EINVAL;
7152 }
9c58c79a 7153 cfs_b->hierarchical_quota = quota;
a790de99
PT
7154
7155 return 0;
7156}
7157
7158static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7159{
8277434e 7160 int ret;
a790de99
PT
7161 struct cfs_schedulable_data data = {
7162 .tg = tg,
7163 .period = period,
7164 .quota = quota,
7165 };
7166
7167 if (quota != RUNTIME_INF) {
7168 do_div(data.period, NSEC_PER_USEC);
7169 do_div(data.quota, NSEC_PER_USEC);
7170 }
7171
8277434e
PT
7172 rcu_read_lock();
7173 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7174 rcu_read_unlock();
7175
7176 return ret;
a790de99 7177}
e8da1b18 7178
2da8ca82 7179static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7180{
2da8ca82 7181 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7182 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7183
44ffc75b
TH
7184 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7185 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7186 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7187
7188 return 0;
7189}
ab84d31e 7190#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7191#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7192
052f1dc7 7193#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7194static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7195 struct cftype *cft, s64 val)
6f505b16 7196{
182446d0 7197 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7198}
7199
182446d0
TH
7200static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7201 struct cftype *cft)
6f505b16 7202{
182446d0 7203 return sched_group_rt_runtime(css_tg(css));
6f505b16 7204}
d0b27fa7 7205
182446d0
TH
7206static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7207 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7208{
182446d0 7209 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7210}
7211
182446d0
TH
7212static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7213 struct cftype *cft)
d0b27fa7 7214{
182446d0 7215 return sched_group_rt_period(css_tg(css));
d0b27fa7 7216}
6d6bc0ad 7217#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7218
fe5c7cc2 7219static struct cftype cpu_files[] = {
052f1dc7 7220#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7221 {
7222 .name = "shares",
f4c753b7
PM
7223 .read_u64 = cpu_shares_read_u64,
7224 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7225 },
052f1dc7 7226#endif
ab84d31e
PT
7227#ifdef CONFIG_CFS_BANDWIDTH
7228 {
7229 .name = "cfs_quota_us",
7230 .read_s64 = cpu_cfs_quota_read_s64,
7231 .write_s64 = cpu_cfs_quota_write_s64,
7232 },
7233 {
7234 .name = "cfs_period_us",
7235 .read_u64 = cpu_cfs_period_read_u64,
7236 .write_u64 = cpu_cfs_period_write_u64,
7237 },
e8da1b18
NR
7238 {
7239 .name = "stat",
2da8ca82 7240 .seq_show = cpu_stats_show,
e8da1b18 7241 },
ab84d31e 7242#endif
052f1dc7 7243#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7244 {
9f0c1e56 7245 .name = "rt_runtime_us",
06ecb27c
PM
7246 .read_s64 = cpu_rt_runtime_read,
7247 .write_s64 = cpu_rt_runtime_write,
6f505b16 7248 },
d0b27fa7
PZ
7249 {
7250 .name = "rt_period_us",
f4c753b7
PM
7251 .read_u64 = cpu_rt_period_read_uint,
7252 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7253 },
052f1dc7 7254#endif
d1ccc66d 7255 { } /* Terminate */
68318b8e
SV
7256};
7257
073219e9 7258struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7259 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7260 .css_online = cpu_cgroup_css_online,
2f5177f0 7261 .css_released = cpu_cgroup_css_released,
92fb9748 7262 .css_free = cpu_cgroup_css_free,
eeb61e53 7263 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7264 .can_attach = cpu_cgroup_can_attach,
7265 .attach = cpu_cgroup_attach,
5577964e 7266 .legacy_cftypes = cpu_files,
b38e42e9 7267 .early_init = true,
68318b8e
SV
7268};
7269
052f1dc7 7270#endif /* CONFIG_CGROUP_SCHED */
d842de87 7271
b637a328
PM
7272void dump_cpu_task(int cpu)
7273{
7274 pr_info("Task dump for CPU %d:\n", cpu);
7275 sched_show_task(cpu_curr(cpu));
7276}
ed82b8a1
AK
7277
7278/*
7279 * Nice levels are multiplicative, with a gentle 10% change for every
7280 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7281 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7282 * that remained on nice 0.
7283 *
7284 * The "10% effect" is relative and cumulative: from _any_ nice level,
7285 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7286 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7287 * If a task goes up by ~10% and another task goes down by ~10% then
7288 * the relative distance between them is ~25%.)
7289 */
7290const int sched_prio_to_weight[40] = {
7291 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7292 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7293 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7294 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7295 /* 0 */ 1024, 820, 655, 526, 423,
7296 /* 5 */ 335, 272, 215, 172, 137,
7297 /* 10 */ 110, 87, 70, 56, 45,
7298 /* 15 */ 36, 29, 23, 18, 15,
7299};
7300
7301/*
7302 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7303 *
7304 * In cases where the weight does not change often, we can use the
7305 * precalculated inverse to speed up arithmetics by turning divisions
7306 * into multiplications:
7307 */
7308const u32 sched_prio_to_wmult[40] = {
7309 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7310 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7311 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7312 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7313 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7314 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7315 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7316 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7317};