]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
sched: Make sched_class::set_cpus_allowed() unconditional
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
c5905afb
IM
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
169}
170
171static void sched_feat_enable(int i)
172{
c5905afb
IM
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
175}
176#else
177static void sched_feat_disable(int i) { };
178static void sched_feat_enable(int i) { };
179#endif /* HAVE_JUMP_LABEL */
180
1a687c2e 181static int sched_feat_set(char *cmp)
f00b45c1 182{
f00b45c1 183 int i;
1a687c2e 184 int neg = 0;
f00b45c1 185
524429c3 186 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
187 neg = 1;
188 cmp += 3;
189 }
190
f8b6d1cc 191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 193 if (neg) {
f00b45c1 194 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
195 sched_feat_disable(i);
196 } else {
f00b45c1 197 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
198 sched_feat_enable(i);
199 }
f00b45c1
PZ
200 break;
201 }
202 }
203
1a687c2e
MG
204 return i;
205}
206
207static ssize_t
208sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210{
211 char buf[64];
212 char *cmp;
213 int i;
5cd08fbf 214 struct inode *inode;
1a687c2e
MG
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
5cd08fbf
JB
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
1a687c2e 228 i = sched_feat_set(cmp);
5cd08fbf 229 mutex_unlock(&inode->i_mutex);
f8b6d1cc 230 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
231 return -EINVAL;
232
42994724 233 *ppos += cnt;
f00b45c1
PZ
234
235 return cnt;
236}
237
34f3a814
LZ
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
828c0950 243static const struct file_operations sched_feat_fops = {
34f3a814
LZ
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
f00b45c1
PZ
249};
250
251static __init int sched_init_debug(void)
252{
f00b45c1
PZ
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
f8b6d1cc 259#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 260
b82d9fdd
PZ
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
e9e9250b
PZ
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
fa85ae24 275/*
9f0c1e56 276 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
277 * default: 1s
278 */
9f0c1e56 279unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 280
029632fb 281__read_mostly int scheduler_running;
6892b75e 282
9f0c1e56
PZ
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
fa85ae24 288
3fa0818b
RR
289/* cpus with isolated domains */
290cpumask_var_t cpu_isolated_map;
291
1da177e4 292/*
cc2a73b5 293 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 294 */
a9957449 295static struct rq *this_rq_lock(void)
1da177e4
LT
296 __acquires(rq->lock)
297{
70b97a7f 298 struct rq *rq;
1da177e4
LT
299
300 local_irq_disable();
301 rq = this_rq();
05fa785c 302 raw_spin_lock(&rq->lock);
1da177e4
LT
303
304 return rq;
305}
306
8f4d37ec
PZ
307#ifdef CONFIG_SCHED_HRTICK
308/*
309 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 310 */
8f4d37ec 311
8f4d37ec
PZ
312static void hrtick_clear(struct rq *rq)
313{
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316}
317
8f4d37ec
PZ
318/*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322static enum hrtimer_restart hrtick(struct hrtimer *timer)
323{
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
05fa785c 328 raw_spin_lock(&rq->lock);
3e51f33f 329 update_rq_clock(rq);
8f4d37ec 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 331 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
332
333 return HRTIMER_NORESTART;
334}
335
95e904c7 336#ifdef CONFIG_SMP
971ee28c 337
4961b6e1 338static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
339{
340 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 341
4961b6e1 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
343}
344
31656519
PZ
345/*
346 * called from hardirq (IPI) context
347 */
348static void __hrtick_start(void *arg)
b328ca18 349{
31656519 350 struct rq *rq = arg;
b328ca18 351
05fa785c 352 raw_spin_lock(&rq->lock);
971ee28c 353 __hrtick_restart(rq);
31656519 354 rq->hrtick_csd_pending = 0;
05fa785c 355 raw_spin_unlock(&rq->lock);
b328ca18
PZ
356}
357
31656519
PZ
358/*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
029632fb 363void hrtick_start(struct rq *rq, u64 delay)
b328ca18 364{
31656519 365 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 375
cc584b21 376 hrtimer_set_expires(timer, time);
31656519
PZ
377
378 if (rq == this_rq()) {
971ee28c 379 __hrtick_restart(rq);
31656519 380 } else if (!rq->hrtick_csd_pending) {
c46fff2a 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
382 rq->hrtick_csd_pending = 1;
383 }
b328ca18
PZ
384}
385
386static int
387hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388{
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
31656519 398 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403}
404
fa748203 405static __init void init_hrtick(void)
b328ca18
PZ
406{
407 hotcpu_notifier(hotplug_hrtick, 0);
408}
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
31656519 424}
b328ca18 425
006c75f1 426static inline void init_hrtick(void)
8f4d37ec 427{
8f4d37ec 428}
31656519 429#endif /* CONFIG_SMP */
8f4d37ec 430
31656519 431static void init_rq_hrtick(struct rq *rq)
8f4d37ec 432{
31656519
PZ
433#ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
8f4d37ec 435
31656519
PZ
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439#endif
8f4d37ec 440
31656519
PZ
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
8f4d37ec 443}
006c75f1 444#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
445static inline void hrtick_clear(struct rq *rq)
446{
447}
448
8f4d37ec
PZ
449static inline void init_rq_hrtick(struct rq *rq)
450{
451}
452
b328ca18
PZ
453static inline void init_hrtick(void)
454{
455}
006c75f1 456#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 457
fd99f91a
PZ
458/*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461#define fetch_or(ptr, val) \
462({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470})
471
e3baac47 472#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
473/*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478static bool set_nr_and_not_polling(struct task_struct *p)
479{
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482}
e3baac47
PZ
483
484/*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490static bool set_nr_if_polling(struct task_struct *p)
491{
492 struct thread_info *ti = task_thread_info(p);
316c1608 493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506}
507
fd99f91a
PZ
508#else
509static bool set_nr_and_not_polling(struct task_struct *p)
510{
511 set_tsk_need_resched(p);
512 return true;
513}
e3baac47
PZ
514
515#ifdef CONFIG_SMP
516static bool set_nr_if_polling(struct task_struct *p)
517{
518 return false;
519}
520#endif
fd99f91a
PZ
521#endif
522
76751049
PZ
523void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524{
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545}
546
547void wake_up_q(struct wake_q_head *head)
548{
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567}
568
c24d20db 569/*
8875125e 570 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
8875125e 576void resched_curr(struct rq *rq)
c24d20db 577{
8875125e 578 struct task_struct *curr = rq->curr;
c24d20db
IM
579 int cpu;
580
8875125e 581 lockdep_assert_held(&rq->lock);
c24d20db 582
8875125e 583 if (test_tsk_need_resched(curr))
c24d20db
IM
584 return;
585
8875125e 586 cpu = cpu_of(rq);
fd99f91a 587
f27dde8d 588 if (cpu == smp_processor_id()) {
8875125e 589 set_tsk_need_resched(curr);
f27dde8d 590 set_preempt_need_resched();
c24d20db 591 return;
f27dde8d 592 }
c24d20db 593
8875125e 594 if (set_nr_and_not_polling(curr))
c24d20db 595 smp_send_reschedule(cpu);
dfc68f29
AL
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
598}
599
029632fb 600void resched_cpu(int cpu)
c24d20db
IM
601{
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
05fa785c 605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 606 return;
8875125e 607 resched_curr(rq);
05fa785c 608 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 609}
06d8308c 610
b021fe3e 611#ifdef CONFIG_SMP
3451d024 612#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
613/*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
bc7a34b8 621int get_nohz_timer_target(void)
83cd4fe2 622{
bc7a34b8 623 int i, cpu = smp_processor_id();
83cd4fe2
VP
624 struct sched_domain *sd;
625
bc7a34b8 626 if (!idle_cpu(cpu))
6201b4d6
VK
627 return cpu;
628
057f3fad 629 rcu_read_lock();
83cd4fe2 630 for_each_domain(cpu, sd) {
057f3fad
PZ
631 for_each_cpu(i, sched_domain_span(sd)) {
632 if (!idle_cpu(i)) {
633 cpu = i;
634 goto unlock;
635 }
636 }
83cd4fe2 637 }
057f3fad
PZ
638unlock:
639 rcu_read_unlock();
83cd4fe2
VP
640 return cpu;
641}
06d8308c
TG
642/*
643 * When add_timer_on() enqueues a timer into the timer wheel of an
644 * idle CPU then this timer might expire before the next timer event
645 * which is scheduled to wake up that CPU. In case of a completely
646 * idle system the next event might even be infinite time into the
647 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
648 * leaves the inner idle loop so the newly added timer is taken into
649 * account when the CPU goes back to idle and evaluates the timer
650 * wheel for the next timer event.
651 */
1c20091e 652static void wake_up_idle_cpu(int cpu)
06d8308c
TG
653{
654 struct rq *rq = cpu_rq(cpu);
655
656 if (cpu == smp_processor_id())
657 return;
658
67b9ca70 659 if (set_nr_and_not_polling(rq->idle))
06d8308c 660 smp_send_reschedule(cpu);
dfc68f29
AL
661 else
662 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
663}
664
c5bfece2 665static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 666{
53c5fa16
FW
667 /*
668 * We just need the target to call irq_exit() and re-evaluate
669 * the next tick. The nohz full kick at least implies that.
670 * If needed we can still optimize that later with an
671 * empty IRQ.
672 */
c5bfece2 673 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
674 if (cpu != smp_processor_id() ||
675 tick_nohz_tick_stopped())
53c5fa16 676 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
677 return true;
678 }
679
680 return false;
681}
682
683void wake_up_nohz_cpu(int cpu)
684{
c5bfece2 685 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
686 wake_up_idle_cpu(cpu);
687}
688
ca38062e 689static inline bool got_nohz_idle_kick(void)
45bf76df 690{
1c792db7 691 int cpu = smp_processor_id();
873b4c65
VG
692
693 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
694 return false;
695
696 if (idle_cpu(cpu) && !need_resched())
697 return true;
698
699 /*
700 * We can't run Idle Load Balance on this CPU for this time so we
701 * cancel it and clear NOHZ_BALANCE_KICK
702 */
703 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
704 return false;
45bf76df
IM
705}
706
3451d024 707#else /* CONFIG_NO_HZ_COMMON */
45bf76df 708
ca38062e 709static inline bool got_nohz_idle_kick(void)
2069dd75 710{
ca38062e 711 return false;
2069dd75
PZ
712}
713
3451d024 714#endif /* CONFIG_NO_HZ_COMMON */
d842de87 715
ce831b38
FW
716#ifdef CONFIG_NO_HZ_FULL
717bool sched_can_stop_tick(void)
718{
1e78cdbd
RR
719 /*
720 * FIFO realtime policy runs the highest priority task. Other runnable
721 * tasks are of a lower priority. The scheduler tick does nothing.
722 */
723 if (current->policy == SCHED_FIFO)
724 return true;
725
726 /*
727 * Round-robin realtime tasks time slice with other tasks at the same
728 * realtime priority. Is this task the only one at this priority?
729 */
730 if (current->policy == SCHED_RR) {
731 struct sched_rt_entity *rt_se = &current->rt;
732
733 return rt_se->run_list.prev == rt_se->run_list.next;
734 }
735
3882ec64
FW
736 /*
737 * More than one running task need preemption.
738 * nr_running update is assumed to be visible
739 * after IPI is sent from wakers.
740 */
541b8264
VK
741 if (this_rq()->nr_running > 1)
742 return false;
ce831b38 743
541b8264 744 return true;
ce831b38
FW
745}
746#endif /* CONFIG_NO_HZ_FULL */
d842de87 747
029632fb 748void sched_avg_update(struct rq *rq)
18d95a28 749{
e9e9250b
PZ
750 s64 period = sched_avg_period();
751
78becc27 752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
753 /*
754 * Inline assembly required to prevent the compiler
755 * optimising this loop into a divmod call.
756 * See __iter_div_u64_rem() for another example of this.
757 */
758 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
759 rq->age_stamp += period;
760 rq->rt_avg /= 2;
761 }
18d95a28
PZ
762}
763
6d6bc0ad 764#endif /* CONFIG_SMP */
18d95a28 765
a790de99
PT
766#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 768/*
8277434e
PT
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
771 *
772 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 773 */
029632fb 774int walk_tg_tree_from(struct task_group *from,
8277434e 775 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
776{
777 struct task_group *parent, *child;
eb755805 778 int ret;
c09595f6 779
8277434e
PT
780 parent = from;
781
c09595f6 782down:
eb755805
PZ
783 ret = (*down)(parent, data);
784 if (ret)
8277434e 785 goto out;
c09595f6
PZ
786 list_for_each_entry_rcu(child, &parent->children, siblings) {
787 parent = child;
788 goto down;
789
790up:
791 continue;
792 }
eb755805 793 ret = (*up)(parent, data);
8277434e
PT
794 if (ret || parent == from)
795 goto out;
c09595f6
PZ
796
797 child = parent;
798 parent = parent->parent;
799 if (parent)
800 goto up;
8277434e 801out:
eb755805 802 return ret;
c09595f6
PZ
803}
804
029632fb 805int tg_nop(struct task_group *tg, void *data)
eb755805 806{
e2b245f8 807 return 0;
eb755805 808}
18d95a28
PZ
809#endif
810
45bf76df
IM
811static void set_load_weight(struct task_struct *p)
812{
f05998d4
NR
813 int prio = p->static_prio - MAX_RT_PRIO;
814 struct load_weight *load = &p->se.load;
815
dd41f596
IM
816 /*
817 * SCHED_IDLE tasks get minimal weight:
818 */
819 if (p->policy == SCHED_IDLE) {
c8b28116 820 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 821 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
822 return;
823 }
71f8bd46 824
c8b28116 825 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 826 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
827}
828
371fd7e7 829static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 830{
a64692a3 831 update_rq_clock(rq);
43148951 832 sched_info_queued(rq, p);
371fd7e7 833 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
834}
835
371fd7e7 836static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 837{
a64692a3 838 update_rq_clock(rq);
43148951 839 sched_info_dequeued(rq, p);
371fd7e7 840 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
841}
842
029632fb 843void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
844{
845 if (task_contributes_to_load(p))
846 rq->nr_uninterruptible--;
847
371fd7e7 848 enqueue_task(rq, p, flags);
1e3c88bd
PZ
849}
850
029632fb 851void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
852{
853 if (task_contributes_to_load(p))
854 rq->nr_uninterruptible++;
855
371fd7e7 856 dequeue_task(rq, p, flags);
1e3c88bd
PZ
857}
858
fe44d621 859static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 860{
095c0aa8
GC
861/*
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
864 */
865#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 s64 steal = 0, irq_delta = 0;
867#endif
868#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
870
871 /*
872 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 * this case when a previous update_rq_clock() happened inside a
874 * {soft,}irq region.
875 *
876 * When this happens, we stop ->clock_task and only update the
877 * prev_irq_time stamp to account for the part that fit, so that a next
878 * update will consume the rest. This ensures ->clock_task is
879 * monotonic.
880 *
881 * It does however cause some slight miss-attribution of {soft,}irq
882 * time, a more accurate solution would be to update the irq_time using
883 * the current rq->clock timestamp, except that would require using
884 * atomic ops.
885 */
886 if (irq_delta > delta)
887 irq_delta = delta;
888
889 rq->prev_irq_time += irq_delta;
890 delta -= irq_delta;
095c0aa8
GC
891#endif
892#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 893 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
894 steal = paravirt_steal_clock(cpu_of(rq));
895 steal -= rq->prev_steal_time_rq;
896
897 if (unlikely(steal > delta))
898 steal = delta;
899
095c0aa8 900 rq->prev_steal_time_rq += steal;
095c0aa8
GC
901 delta -= steal;
902 }
903#endif
904
fe44d621
PZ
905 rq->clock_task += delta;
906
095c0aa8 907#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
909 sched_rt_avg_update(rq, irq_delta + steal);
910#endif
aa483808
VP
911}
912
34f971f6
PZ
913void sched_set_stop_task(int cpu, struct task_struct *stop)
914{
915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 struct task_struct *old_stop = cpu_rq(cpu)->stop;
917
918 if (stop) {
919 /*
920 * Make it appear like a SCHED_FIFO task, its something
921 * userspace knows about and won't get confused about.
922 *
923 * Also, it will make PI more or less work without too
924 * much confusion -- but then, stop work should not
925 * rely on PI working anyway.
926 */
927 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928
929 stop->sched_class = &stop_sched_class;
930 }
931
932 cpu_rq(cpu)->stop = stop;
933
934 if (old_stop) {
935 /*
936 * Reset it back to a normal scheduling class so that
937 * it can die in pieces.
938 */
939 old_stop->sched_class = &rt_sched_class;
940 }
941}
942
14531189 943/*
dd41f596 944 * __normal_prio - return the priority that is based on the static prio
14531189 945 */
14531189
IM
946static inline int __normal_prio(struct task_struct *p)
947{
dd41f596 948 return p->static_prio;
14531189
IM
949}
950
b29739f9
IM
951/*
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
957 */
36c8b586 958static inline int normal_prio(struct task_struct *p)
b29739f9
IM
959{
960 int prio;
961
aab03e05
DF
962 if (task_has_dl_policy(p))
963 prio = MAX_DL_PRIO-1;
964 else if (task_has_rt_policy(p))
b29739f9
IM
965 prio = MAX_RT_PRIO-1 - p->rt_priority;
966 else
967 prio = __normal_prio(p);
968 return prio;
969}
970
971/*
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
977 */
36c8b586 978static int effective_prio(struct task_struct *p)
b29739f9
IM
979{
980 p->normal_prio = normal_prio(p);
981 /*
982 * If we are RT tasks or we were boosted to RT priority,
983 * keep the priority unchanged. Otherwise, update priority
984 * to the normal priority:
985 */
986 if (!rt_prio(p->prio))
987 return p->normal_prio;
988 return p->prio;
989}
990
1da177e4
LT
991/**
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
e69f6186
YB
994 *
995 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 996 */
36c8b586 997inline int task_curr(const struct task_struct *p)
1da177e4
LT
998{
999 return cpu_curr(task_cpu(p)) == p;
1000}
1001
67dfa1b7 1002/*
4c9a4bc8
PZ
1003 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1004 * use the balance_callback list if you want balancing.
1005 *
1006 * this means any call to check_class_changed() must be followed by a call to
1007 * balance_callback().
67dfa1b7 1008 */
cb469845
SR
1009static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010 const struct sched_class *prev_class,
da7a735e 1011 int oldprio)
cb469845
SR
1012{
1013 if (prev_class != p->sched_class) {
1014 if (prev_class->switched_from)
da7a735e 1015 prev_class->switched_from(rq, p);
4c9a4bc8 1016
da7a735e 1017 p->sched_class->switched_to(rq, p);
2d3d891d 1018 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1019 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1020}
1021
029632fb 1022void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1023{
1024 const struct sched_class *class;
1025
1026 if (p->sched_class == rq->curr->sched_class) {
1027 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1028 } else {
1029 for_each_class(class) {
1030 if (class == rq->curr->sched_class)
1031 break;
1032 if (class == p->sched_class) {
8875125e 1033 resched_curr(rq);
1e5a7405
PZ
1034 break;
1035 }
1036 }
1037 }
1038
1039 /*
1040 * A queue event has occurred, and we're going to schedule. In
1041 * this case, we can save a useless back to back clock update.
1042 */
da0c1e65 1043 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1044 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1045}
1046
1da177e4 1047#ifdef CONFIG_SMP
5cc389bc
PZ
1048/*
1049 * This is how migration works:
1050 *
1051 * 1) we invoke migration_cpu_stop() on the target CPU using
1052 * stop_one_cpu().
1053 * 2) stopper starts to run (implicitly forcing the migrated thread
1054 * off the CPU)
1055 * 3) it checks whether the migrated task is still in the wrong runqueue.
1056 * 4) if it's in the wrong runqueue then the migration thread removes
1057 * it and puts it into the right queue.
1058 * 5) stopper completes and stop_one_cpu() returns and the migration
1059 * is done.
1060 */
1061
1062/*
1063 * move_queued_task - move a queued task to new rq.
1064 *
1065 * Returns (locked) new rq. Old rq's lock is released.
1066 */
5e16bbc2 1067static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1068{
5cc389bc
PZ
1069 lockdep_assert_held(&rq->lock);
1070
1071 dequeue_task(rq, p, 0);
1072 p->on_rq = TASK_ON_RQ_MIGRATING;
1073 set_task_cpu(p, new_cpu);
1074 raw_spin_unlock(&rq->lock);
1075
1076 rq = cpu_rq(new_cpu);
1077
1078 raw_spin_lock(&rq->lock);
1079 BUG_ON(task_cpu(p) != new_cpu);
1080 p->on_rq = TASK_ON_RQ_QUEUED;
1081 enqueue_task(rq, p, 0);
1082 check_preempt_curr(rq, p, 0);
1083
1084 return rq;
1085}
1086
1087struct migration_arg {
1088 struct task_struct *task;
1089 int dest_cpu;
1090};
1091
1092/*
1093 * Move (not current) task off this cpu, onto dest cpu. We're doing
1094 * this because either it can't run here any more (set_cpus_allowed()
1095 * away from this CPU, or CPU going down), or because we're
1096 * attempting to rebalance this task on exec (sched_exec).
1097 *
1098 * So we race with normal scheduler movements, but that's OK, as long
1099 * as the task is no longer on this CPU.
5cc389bc 1100 */
5e16bbc2 1101static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1102{
5cc389bc 1103 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1104 return rq;
5cc389bc
PZ
1105
1106 /* Affinity changed (again). */
1107 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1108 return rq;
5cc389bc 1109
5e16bbc2
PZ
1110 rq = move_queued_task(rq, p, dest_cpu);
1111
1112 return rq;
5cc389bc
PZ
1113}
1114
1115/*
1116 * migration_cpu_stop - this will be executed by a highprio stopper thread
1117 * and performs thread migration by bumping thread off CPU then
1118 * 'pushing' onto another runqueue.
1119 */
1120static int migration_cpu_stop(void *data)
1121{
1122 struct migration_arg *arg = data;
5e16bbc2
PZ
1123 struct task_struct *p = arg->task;
1124 struct rq *rq = this_rq();
5cc389bc
PZ
1125
1126 /*
1127 * The original target cpu might have gone down and we might
1128 * be on another cpu but it doesn't matter.
1129 */
1130 local_irq_disable();
1131 /*
1132 * We need to explicitly wake pending tasks before running
1133 * __migrate_task() such that we will not miss enforcing cpus_allowed
1134 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1135 */
1136 sched_ttwu_pending();
5e16bbc2
PZ
1137
1138 raw_spin_lock(&p->pi_lock);
1139 raw_spin_lock(&rq->lock);
1140 /*
1141 * If task_rq(p) != rq, it cannot be migrated here, because we're
1142 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1143 * we're holding p->pi_lock.
1144 */
1145 if (task_rq(p) == rq && task_on_rq_queued(p))
1146 rq = __migrate_task(rq, p, arg->dest_cpu);
1147 raw_spin_unlock(&rq->lock);
1148 raw_spin_unlock(&p->pi_lock);
1149
5cc389bc
PZ
1150 local_irq_enable();
1151 return 0;
1152}
1153
c5b28038
PZ
1154/*
1155 * sched_class::set_cpus_allowed must do the below, but is not required to
1156 * actually call this function.
1157 */
1158void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1159{
5cc389bc
PZ
1160 cpumask_copy(&p->cpus_allowed, new_mask);
1161 p->nr_cpus_allowed = cpumask_weight(new_mask);
1162}
1163
c5b28038
PZ
1164void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1165{
1166 lockdep_assert_held(&p->pi_lock);
1167 p->sched_class->set_cpus_allowed(p, new_mask);
1168}
1169
5cc389bc
PZ
1170/*
1171 * Change a given task's CPU affinity. Migrate the thread to a
1172 * proper CPU and schedule it away if the CPU it's executing on
1173 * is removed from the allowed bitmask.
1174 *
1175 * NOTE: the caller must have a valid reference to the task, the
1176 * task must not exit() & deallocate itself prematurely. The
1177 * call is not atomic; no spinlocks may be held.
1178 */
25834c73
PZ
1179static int __set_cpus_allowed_ptr(struct task_struct *p,
1180 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1181{
1182 unsigned long flags;
1183 struct rq *rq;
1184 unsigned int dest_cpu;
1185 int ret = 0;
1186
1187 rq = task_rq_lock(p, &flags);
1188
25834c73
PZ
1189 /*
1190 * Must re-check here, to close a race against __kthread_bind(),
1191 * sched_setaffinity() is not guaranteed to observe the flag.
1192 */
1193 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1194 ret = -EINVAL;
1195 goto out;
1196 }
1197
5cc389bc
PZ
1198 if (cpumask_equal(&p->cpus_allowed, new_mask))
1199 goto out;
1200
1201 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1202 ret = -EINVAL;
1203 goto out;
1204 }
1205
1206 do_set_cpus_allowed(p, new_mask);
1207
1208 /* Can the task run on the task's current CPU? If so, we're done */
1209 if (cpumask_test_cpu(task_cpu(p), new_mask))
1210 goto out;
1211
1212 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1213 if (task_running(rq, p) || p->state == TASK_WAKING) {
1214 struct migration_arg arg = { p, dest_cpu };
1215 /* Need help from migration thread: drop lock and wait. */
1216 task_rq_unlock(rq, p, &flags);
1217 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1218 tlb_migrate_finish(p->mm);
1219 return 0;
cbce1a68
PZ
1220 } else if (task_on_rq_queued(p)) {
1221 /*
1222 * OK, since we're going to drop the lock immediately
1223 * afterwards anyway.
1224 */
1225 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1226 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1227 lockdep_pin_lock(&rq->lock);
1228 }
5cc389bc
PZ
1229out:
1230 task_rq_unlock(rq, p, &flags);
1231
1232 return ret;
1233}
25834c73
PZ
1234
1235int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1236{
1237 return __set_cpus_allowed_ptr(p, new_mask, false);
1238}
5cc389bc
PZ
1239EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1240
dd41f596 1241void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1242{
e2912009
PZ
1243#ifdef CONFIG_SCHED_DEBUG
1244 /*
1245 * We should never call set_task_cpu() on a blocked task,
1246 * ttwu() will sort out the placement.
1247 */
077614ee 1248 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1249 !p->on_rq);
0122ec5b
PZ
1250
1251#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1252 /*
1253 * The caller should hold either p->pi_lock or rq->lock, when changing
1254 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1255 *
1256 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1257 * see task_group().
6c6c54e1
PZ
1258 *
1259 * Furthermore, all task_rq users should acquire both locks, see
1260 * task_rq_lock().
1261 */
0122ec5b
PZ
1262 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1263 lockdep_is_held(&task_rq(p)->lock)));
1264#endif
e2912009
PZ
1265#endif
1266
de1d7286 1267 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1268
0c69774e 1269 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1270 if (p->sched_class->migrate_task_rq)
1271 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1272 p->se.nr_migrations++;
ff303e66 1273 perf_event_task_migrate(p);
0c69774e 1274 }
dd41f596
IM
1275
1276 __set_task_cpu(p, new_cpu);
c65cc870
IM
1277}
1278
ac66f547
PZ
1279static void __migrate_swap_task(struct task_struct *p, int cpu)
1280{
da0c1e65 1281 if (task_on_rq_queued(p)) {
ac66f547
PZ
1282 struct rq *src_rq, *dst_rq;
1283
1284 src_rq = task_rq(p);
1285 dst_rq = cpu_rq(cpu);
1286
1287 deactivate_task(src_rq, p, 0);
1288 set_task_cpu(p, cpu);
1289 activate_task(dst_rq, p, 0);
1290 check_preempt_curr(dst_rq, p, 0);
1291 } else {
1292 /*
1293 * Task isn't running anymore; make it appear like we migrated
1294 * it before it went to sleep. This means on wakeup we make the
1295 * previous cpu our targer instead of where it really is.
1296 */
1297 p->wake_cpu = cpu;
1298 }
1299}
1300
1301struct migration_swap_arg {
1302 struct task_struct *src_task, *dst_task;
1303 int src_cpu, dst_cpu;
1304};
1305
1306static int migrate_swap_stop(void *data)
1307{
1308 struct migration_swap_arg *arg = data;
1309 struct rq *src_rq, *dst_rq;
1310 int ret = -EAGAIN;
1311
1312 src_rq = cpu_rq(arg->src_cpu);
1313 dst_rq = cpu_rq(arg->dst_cpu);
1314
74602315
PZ
1315 double_raw_lock(&arg->src_task->pi_lock,
1316 &arg->dst_task->pi_lock);
ac66f547
PZ
1317 double_rq_lock(src_rq, dst_rq);
1318 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1319 goto unlock;
1320
1321 if (task_cpu(arg->src_task) != arg->src_cpu)
1322 goto unlock;
1323
1324 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1325 goto unlock;
1326
1327 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1328 goto unlock;
1329
1330 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1331 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1332
1333 ret = 0;
1334
1335unlock:
1336 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1337 raw_spin_unlock(&arg->dst_task->pi_lock);
1338 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1339
1340 return ret;
1341}
1342
1343/*
1344 * Cross migrate two tasks
1345 */
1346int migrate_swap(struct task_struct *cur, struct task_struct *p)
1347{
1348 struct migration_swap_arg arg;
1349 int ret = -EINVAL;
1350
ac66f547
PZ
1351 arg = (struct migration_swap_arg){
1352 .src_task = cur,
1353 .src_cpu = task_cpu(cur),
1354 .dst_task = p,
1355 .dst_cpu = task_cpu(p),
1356 };
1357
1358 if (arg.src_cpu == arg.dst_cpu)
1359 goto out;
1360
6acce3ef
PZ
1361 /*
1362 * These three tests are all lockless; this is OK since all of them
1363 * will be re-checked with proper locks held further down the line.
1364 */
ac66f547
PZ
1365 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1366 goto out;
1367
1368 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1369 goto out;
1370
1371 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1372 goto out;
1373
286549dc 1374 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1375 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1376
1377out:
ac66f547
PZ
1378 return ret;
1379}
1380
1da177e4
LT
1381/*
1382 * wait_task_inactive - wait for a thread to unschedule.
1383 *
85ba2d86
RM
1384 * If @match_state is nonzero, it's the @p->state value just checked and
1385 * not expected to change. If it changes, i.e. @p might have woken up,
1386 * then return zero. When we succeed in waiting for @p to be off its CPU,
1387 * we return a positive number (its total switch count). If a second call
1388 * a short while later returns the same number, the caller can be sure that
1389 * @p has remained unscheduled the whole time.
1390 *
1da177e4
LT
1391 * The caller must ensure that the task *will* unschedule sometime soon,
1392 * else this function might spin for a *long* time. This function can't
1393 * be called with interrupts off, or it may introduce deadlock with
1394 * smp_call_function() if an IPI is sent by the same process we are
1395 * waiting to become inactive.
1396 */
85ba2d86 1397unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1398{
1399 unsigned long flags;
da0c1e65 1400 int running, queued;
85ba2d86 1401 unsigned long ncsw;
70b97a7f 1402 struct rq *rq;
1da177e4 1403
3a5c359a
AK
1404 for (;;) {
1405 /*
1406 * We do the initial early heuristics without holding
1407 * any task-queue locks at all. We'll only try to get
1408 * the runqueue lock when things look like they will
1409 * work out!
1410 */
1411 rq = task_rq(p);
fa490cfd 1412
3a5c359a
AK
1413 /*
1414 * If the task is actively running on another CPU
1415 * still, just relax and busy-wait without holding
1416 * any locks.
1417 *
1418 * NOTE! Since we don't hold any locks, it's not
1419 * even sure that "rq" stays as the right runqueue!
1420 * But we don't care, since "task_running()" will
1421 * return false if the runqueue has changed and p
1422 * is actually now running somewhere else!
1423 */
85ba2d86
RM
1424 while (task_running(rq, p)) {
1425 if (match_state && unlikely(p->state != match_state))
1426 return 0;
3a5c359a 1427 cpu_relax();
85ba2d86 1428 }
fa490cfd 1429
3a5c359a
AK
1430 /*
1431 * Ok, time to look more closely! We need the rq
1432 * lock now, to be *sure*. If we're wrong, we'll
1433 * just go back and repeat.
1434 */
1435 rq = task_rq_lock(p, &flags);
27a9da65 1436 trace_sched_wait_task(p);
3a5c359a 1437 running = task_running(rq, p);
da0c1e65 1438 queued = task_on_rq_queued(p);
85ba2d86 1439 ncsw = 0;
f31e11d8 1440 if (!match_state || p->state == match_state)
93dcf55f 1441 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1442 task_rq_unlock(rq, p, &flags);
fa490cfd 1443
85ba2d86
RM
1444 /*
1445 * If it changed from the expected state, bail out now.
1446 */
1447 if (unlikely(!ncsw))
1448 break;
1449
3a5c359a
AK
1450 /*
1451 * Was it really running after all now that we
1452 * checked with the proper locks actually held?
1453 *
1454 * Oops. Go back and try again..
1455 */
1456 if (unlikely(running)) {
1457 cpu_relax();
1458 continue;
1459 }
fa490cfd 1460
3a5c359a
AK
1461 /*
1462 * It's not enough that it's not actively running,
1463 * it must be off the runqueue _entirely_, and not
1464 * preempted!
1465 *
80dd99b3 1466 * So if it was still runnable (but just not actively
3a5c359a
AK
1467 * running right now), it's preempted, and we should
1468 * yield - it could be a while.
1469 */
da0c1e65 1470 if (unlikely(queued)) {
8eb90c30
TG
1471 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1472
1473 set_current_state(TASK_UNINTERRUPTIBLE);
1474 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1475 continue;
1476 }
fa490cfd 1477
3a5c359a
AK
1478 /*
1479 * Ahh, all good. It wasn't running, and it wasn't
1480 * runnable, which means that it will never become
1481 * running in the future either. We're all done!
1482 */
1483 break;
1484 }
85ba2d86
RM
1485
1486 return ncsw;
1da177e4
LT
1487}
1488
1489/***
1490 * kick_process - kick a running thread to enter/exit the kernel
1491 * @p: the to-be-kicked thread
1492 *
1493 * Cause a process which is running on another CPU to enter
1494 * kernel-mode, without any delay. (to get signals handled.)
1495 *
25985edc 1496 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1497 * because all it wants to ensure is that the remote task enters
1498 * the kernel. If the IPI races and the task has been migrated
1499 * to another CPU then no harm is done and the purpose has been
1500 * achieved as well.
1501 */
36c8b586 1502void kick_process(struct task_struct *p)
1da177e4
LT
1503{
1504 int cpu;
1505
1506 preempt_disable();
1507 cpu = task_cpu(p);
1508 if ((cpu != smp_processor_id()) && task_curr(p))
1509 smp_send_reschedule(cpu);
1510 preempt_enable();
1511}
b43e3521 1512EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1513
30da688e 1514/*
013fdb80 1515 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1516 */
5da9a0fb
PZ
1517static int select_fallback_rq(int cpu, struct task_struct *p)
1518{
aa00d89c
TC
1519 int nid = cpu_to_node(cpu);
1520 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1521 enum { cpuset, possible, fail } state = cpuset;
1522 int dest_cpu;
5da9a0fb 1523
aa00d89c
TC
1524 /*
1525 * If the node that the cpu is on has been offlined, cpu_to_node()
1526 * will return -1. There is no cpu on the node, and we should
1527 * select the cpu on the other node.
1528 */
1529 if (nid != -1) {
1530 nodemask = cpumask_of_node(nid);
1531
1532 /* Look for allowed, online CPU in same node. */
1533 for_each_cpu(dest_cpu, nodemask) {
1534 if (!cpu_online(dest_cpu))
1535 continue;
1536 if (!cpu_active(dest_cpu))
1537 continue;
1538 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1539 return dest_cpu;
1540 }
2baab4e9 1541 }
5da9a0fb 1542
2baab4e9
PZ
1543 for (;;) {
1544 /* Any allowed, online CPU? */
e3831edd 1545 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1546 if (!cpu_online(dest_cpu))
1547 continue;
1548 if (!cpu_active(dest_cpu))
1549 continue;
1550 goto out;
1551 }
5da9a0fb 1552
2baab4e9
PZ
1553 switch (state) {
1554 case cpuset:
1555 /* No more Mr. Nice Guy. */
1556 cpuset_cpus_allowed_fallback(p);
1557 state = possible;
1558 break;
1559
1560 case possible:
1561 do_set_cpus_allowed(p, cpu_possible_mask);
1562 state = fail;
1563 break;
1564
1565 case fail:
1566 BUG();
1567 break;
1568 }
1569 }
1570
1571out:
1572 if (state != cpuset) {
1573 /*
1574 * Don't tell them about moving exiting tasks or
1575 * kernel threads (both mm NULL), since they never
1576 * leave kernel.
1577 */
1578 if (p->mm && printk_ratelimit()) {
aac74dc4 1579 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1580 task_pid_nr(p), p->comm, cpu);
1581 }
5da9a0fb
PZ
1582 }
1583
1584 return dest_cpu;
1585}
1586
e2912009 1587/*
013fdb80 1588 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1589 */
970b13ba 1590static inline
ac66f547 1591int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1592{
cbce1a68
PZ
1593 lockdep_assert_held(&p->pi_lock);
1594
6c1d9410
WL
1595 if (p->nr_cpus_allowed > 1)
1596 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1597
1598 /*
1599 * In order not to call set_task_cpu() on a blocking task we need
1600 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1601 * cpu.
1602 *
1603 * Since this is common to all placement strategies, this lives here.
1604 *
1605 * [ this allows ->select_task() to simply return task_cpu(p) and
1606 * not worry about this generic constraint ]
1607 */
fa17b507 1608 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1609 !cpu_online(cpu)))
5da9a0fb 1610 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1611
1612 return cpu;
970b13ba 1613}
09a40af5
MG
1614
1615static void update_avg(u64 *avg, u64 sample)
1616{
1617 s64 diff = sample - *avg;
1618 *avg += diff >> 3;
1619}
25834c73
PZ
1620
1621#else
1622
1623static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1624 const struct cpumask *new_mask, bool check)
1625{
1626 return set_cpus_allowed_ptr(p, new_mask);
1627}
1628
5cc389bc 1629#endif /* CONFIG_SMP */
970b13ba 1630
d7c01d27 1631static void
b84cb5df 1632ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1633{
d7c01d27 1634#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1635 struct rq *rq = this_rq();
1636
d7c01d27
PZ
1637#ifdef CONFIG_SMP
1638 int this_cpu = smp_processor_id();
1639
1640 if (cpu == this_cpu) {
1641 schedstat_inc(rq, ttwu_local);
1642 schedstat_inc(p, se.statistics.nr_wakeups_local);
1643 } else {
1644 struct sched_domain *sd;
1645
1646 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1647 rcu_read_lock();
d7c01d27
PZ
1648 for_each_domain(this_cpu, sd) {
1649 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1650 schedstat_inc(sd, ttwu_wake_remote);
1651 break;
1652 }
1653 }
057f3fad 1654 rcu_read_unlock();
d7c01d27 1655 }
f339b9dc
PZ
1656
1657 if (wake_flags & WF_MIGRATED)
1658 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1659
d7c01d27
PZ
1660#endif /* CONFIG_SMP */
1661
1662 schedstat_inc(rq, ttwu_count);
9ed3811a 1663 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1664
1665 if (wake_flags & WF_SYNC)
9ed3811a 1666 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1667
d7c01d27
PZ
1668#endif /* CONFIG_SCHEDSTATS */
1669}
1670
1671static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1672{
9ed3811a 1673 activate_task(rq, p, en_flags);
da0c1e65 1674 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1675
1676 /* if a worker is waking up, notify workqueue */
1677 if (p->flags & PF_WQ_WORKER)
1678 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1679}
1680
23f41eeb
PZ
1681/*
1682 * Mark the task runnable and perform wakeup-preemption.
1683 */
89363381 1684static void
23f41eeb 1685ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1686{
9ed3811a 1687 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1688 p->state = TASK_RUNNING;
fbd705a0
PZ
1689 trace_sched_wakeup(p);
1690
9ed3811a 1691#ifdef CONFIG_SMP
4c9a4bc8
PZ
1692 if (p->sched_class->task_woken) {
1693 /*
cbce1a68
PZ
1694 * Our task @p is fully woken up and running; so its safe to
1695 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1696 */
cbce1a68 1697 lockdep_unpin_lock(&rq->lock);
9ed3811a 1698 p->sched_class->task_woken(rq, p);
cbce1a68 1699 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1700 }
9ed3811a 1701
e69c6341 1702 if (rq->idle_stamp) {
78becc27 1703 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1704 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1705
abfafa54
JL
1706 update_avg(&rq->avg_idle, delta);
1707
1708 if (rq->avg_idle > max)
9ed3811a 1709 rq->avg_idle = max;
abfafa54 1710
9ed3811a
TH
1711 rq->idle_stamp = 0;
1712 }
1713#endif
1714}
1715
c05fbafb
PZ
1716static void
1717ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1718{
cbce1a68
PZ
1719 lockdep_assert_held(&rq->lock);
1720
c05fbafb
PZ
1721#ifdef CONFIG_SMP
1722 if (p->sched_contributes_to_load)
1723 rq->nr_uninterruptible--;
1724#endif
1725
1726 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1727 ttwu_do_wakeup(rq, p, wake_flags);
1728}
1729
1730/*
1731 * Called in case the task @p isn't fully descheduled from its runqueue,
1732 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1733 * since all we need to do is flip p->state to TASK_RUNNING, since
1734 * the task is still ->on_rq.
1735 */
1736static int ttwu_remote(struct task_struct *p, int wake_flags)
1737{
1738 struct rq *rq;
1739 int ret = 0;
1740
1741 rq = __task_rq_lock(p);
da0c1e65 1742 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1743 /* check_preempt_curr() may use rq clock */
1744 update_rq_clock(rq);
c05fbafb
PZ
1745 ttwu_do_wakeup(rq, p, wake_flags);
1746 ret = 1;
1747 }
1748 __task_rq_unlock(rq);
1749
1750 return ret;
1751}
1752
317f3941 1753#ifdef CONFIG_SMP
e3baac47 1754void sched_ttwu_pending(void)
317f3941
PZ
1755{
1756 struct rq *rq = this_rq();
fa14ff4a
PZ
1757 struct llist_node *llist = llist_del_all(&rq->wake_list);
1758 struct task_struct *p;
e3baac47 1759 unsigned long flags;
317f3941 1760
e3baac47
PZ
1761 if (!llist)
1762 return;
1763
1764 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1765 lockdep_pin_lock(&rq->lock);
317f3941 1766
fa14ff4a
PZ
1767 while (llist) {
1768 p = llist_entry(llist, struct task_struct, wake_entry);
1769 llist = llist_next(llist);
317f3941
PZ
1770 ttwu_do_activate(rq, p, 0);
1771 }
1772
cbce1a68 1773 lockdep_unpin_lock(&rq->lock);
e3baac47 1774 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1775}
1776
1777void scheduler_ipi(void)
1778{
f27dde8d
PZ
1779 /*
1780 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1781 * TIF_NEED_RESCHED remotely (for the first time) will also send
1782 * this IPI.
1783 */
8cb75e0c 1784 preempt_fold_need_resched();
f27dde8d 1785
fd2ac4f4 1786 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1787 return;
1788
1789 /*
1790 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1791 * traditionally all their work was done from the interrupt return
1792 * path. Now that we actually do some work, we need to make sure
1793 * we do call them.
1794 *
1795 * Some archs already do call them, luckily irq_enter/exit nest
1796 * properly.
1797 *
1798 * Arguably we should visit all archs and update all handlers,
1799 * however a fair share of IPIs are still resched only so this would
1800 * somewhat pessimize the simple resched case.
1801 */
1802 irq_enter();
fa14ff4a 1803 sched_ttwu_pending();
ca38062e
SS
1804
1805 /*
1806 * Check if someone kicked us for doing the nohz idle load balance.
1807 */
873b4c65 1808 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1809 this_rq()->idle_balance = 1;
ca38062e 1810 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1811 }
c5d753a5 1812 irq_exit();
317f3941
PZ
1813}
1814
1815static void ttwu_queue_remote(struct task_struct *p, int cpu)
1816{
e3baac47
PZ
1817 struct rq *rq = cpu_rq(cpu);
1818
1819 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1820 if (!set_nr_if_polling(rq->idle))
1821 smp_send_reschedule(cpu);
1822 else
1823 trace_sched_wake_idle_without_ipi(cpu);
1824 }
317f3941 1825}
d6aa8f85 1826
f6be8af1
CL
1827void wake_up_if_idle(int cpu)
1828{
1829 struct rq *rq = cpu_rq(cpu);
1830 unsigned long flags;
1831
fd7de1e8
AL
1832 rcu_read_lock();
1833
1834 if (!is_idle_task(rcu_dereference(rq->curr)))
1835 goto out;
f6be8af1
CL
1836
1837 if (set_nr_if_polling(rq->idle)) {
1838 trace_sched_wake_idle_without_ipi(cpu);
1839 } else {
1840 raw_spin_lock_irqsave(&rq->lock, flags);
1841 if (is_idle_task(rq->curr))
1842 smp_send_reschedule(cpu);
1843 /* Else cpu is not in idle, do nothing here */
1844 raw_spin_unlock_irqrestore(&rq->lock, flags);
1845 }
fd7de1e8
AL
1846
1847out:
1848 rcu_read_unlock();
f6be8af1
CL
1849}
1850
39be3501 1851bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1852{
1853 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1854}
d6aa8f85 1855#endif /* CONFIG_SMP */
317f3941 1856
c05fbafb
PZ
1857static void ttwu_queue(struct task_struct *p, int cpu)
1858{
1859 struct rq *rq = cpu_rq(cpu);
1860
17d9f311 1861#if defined(CONFIG_SMP)
39be3501 1862 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1863 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1864 ttwu_queue_remote(p, cpu);
1865 return;
1866 }
1867#endif
1868
c05fbafb 1869 raw_spin_lock(&rq->lock);
cbce1a68 1870 lockdep_pin_lock(&rq->lock);
c05fbafb 1871 ttwu_do_activate(rq, p, 0);
cbce1a68 1872 lockdep_unpin_lock(&rq->lock);
c05fbafb 1873 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1874}
1875
1876/**
1da177e4 1877 * try_to_wake_up - wake up a thread
9ed3811a 1878 * @p: the thread to be awakened
1da177e4 1879 * @state: the mask of task states that can be woken
9ed3811a 1880 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1881 *
1882 * Put it on the run-queue if it's not already there. The "current"
1883 * thread is always on the run-queue (except when the actual
1884 * re-schedule is in progress), and as such you're allowed to do
1885 * the simpler "current->state = TASK_RUNNING" to mark yourself
1886 * runnable without the overhead of this.
1887 *
e69f6186 1888 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1889 * or @state didn't match @p's state.
1da177e4 1890 */
e4a52bcb
PZ
1891static int
1892try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1893{
1da177e4 1894 unsigned long flags;
c05fbafb 1895 int cpu, success = 0;
2398f2c6 1896
e0acd0a6
ON
1897 /*
1898 * If we are going to wake up a thread waiting for CONDITION we
1899 * need to ensure that CONDITION=1 done by the caller can not be
1900 * reordered with p->state check below. This pairs with mb() in
1901 * set_current_state() the waiting thread does.
1902 */
1903 smp_mb__before_spinlock();
013fdb80 1904 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1905 if (!(p->state & state))
1da177e4
LT
1906 goto out;
1907
fbd705a0
PZ
1908 trace_sched_waking(p);
1909
c05fbafb 1910 success = 1; /* we're going to change ->state */
1da177e4 1911 cpu = task_cpu(p);
1da177e4 1912
c05fbafb
PZ
1913 if (p->on_rq && ttwu_remote(p, wake_flags))
1914 goto stat;
1da177e4 1915
1da177e4 1916#ifdef CONFIG_SMP
e9c84311 1917 /*
c05fbafb
PZ
1918 * If the owning (remote) cpu is still in the middle of schedule() with
1919 * this task as prev, wait until its done referencing the task.
e9c84311 1920 */
f3e94786 1921 while (p->on_cpu)
e4a52bcb 1922 cpu_relax();
0970d299 1923 /*
e4a52bcb 1924 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1925 */
e4a52bcb 1926 smp_rmb();
1da177e4 1927
a8e4f2ea 1928 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1929 p->state = TASK_WAKING;
e7693a36 1930
e4a52bcb 1931 if (p->sched_class->task_waking)
74f8e4b2 1932 p->sched_class->task_waking(p);
efbbd05a 1933
ac66f547 1934 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1935 if (task_cpu(p) != cpu) {
1936 wake_flags |= WF_MIGRATED;
e4a52bcb 1937 set_task_cpu(p, cpu);
f339b9dc 1938 }
1da177e4 1939#endif /* CONFIG_SMP */
1da177e4 1940
c05fbafb
PZ
1941 ttwu_queue(p, cpu);
1942stat:
b84cb5df 1943 ttwu_stat(p, cpu, wake_flags);
1da177e4 1944out:
013fdb80 1945 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1946
1947 return success;
1948}
1949
21aa9af0
TH
1950/**
1951 * try_to_wake_up_local - try to wake up a local task with rq lock held
1952 * @p: the thread to be awakened
1953 *
2acca55e 1954 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1955 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1956 * the current task.
21aa9af0
TH
1957 */
1958static void try_to_wake_up_local(struct task_struct *p)
1959{
1960 struct rq *rq = task_rq(p);
21aa9af0 1961
383efcd0
TH
1962 if (WARN_ON_ONCE(rq != this_rq()) ||
1963 WARN_ON_ONCE(p == current))
1964 return;
1965
21aa9af0
TH
1966 lockdep_assert_held(&rq->lock);
1967
2acca55e 1968 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1969 /*
1970 * This is OK, because current is on_cpu, which avoids it being
1971 * picked for load-balance and preemption/IRQs are still
1972 * disabled avoiding further scheduler activity on it and we've
1973 * not yet picked a replacement task.
1974 */
1975 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
1976 raw_spin_unlock(&rq->lock);
1977 raw_spin_lock(&p->pi_lock);
1978 raw_spin_lock(&rq->lock);
cbce1a68 1979 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
1980 }
1981
21aa9af0 1982 if (!(p->state & TASK_NORMAL))
2acca55e 1983 goto out;
21aa9af0 1984
fbd705a0
PZ
1985 trace_sched_waking(p);
1986
da0c1e65 1987 if (!task_on_rq_queued(p))
d7c01d27
PZ
1988 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1989
23f41eeb 1990 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1991 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1992out:
1993 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1994}
1995
50fa610a
DH
1996/**
1997 * wake_up_process - Wake up a specific process
1998 * @p: The process to be woken up.
1999 *
2000 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2001 * processes.
2002 *
2003 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2004 *
2005 * It may be assumed that this function implies a write memory barrier before
2006 * changing the task state if and only if any tasks are woken up.
2007 */
7ad5b3a5 2008int wake_up_process(struct task_struct *p)
1da177e4 2009{
9067ac85
ON
2010 WARN_ON(task_is_stopped_or_traced(p));
2011 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2012}
1da177e4
LT
2013EXPORT_SYMBOL(wake_up_process);
2014
7ad5b3a5 2015int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2016{
2017 return try_to_wake_up(p, state, 0);
2018}
2019
a5e7be3b
JL
2020/*
2021 * This function clears the sched_dl_entity static params.
2022 */
2023void __dl_clear_params(struct task_struct *p)
2024{
2025 struct sched_dl_entity *dl_se = &p->dl;
2026
2027 dl_se->dl_runtime = 0;
2028 dl_se->dl_deadline = 0;
2029 dl_se->dl_period = 0;
2030 dl_se->flags = 0;
2031 dl_se->dl_bw = 0;
40767b0d
PZ
2032
2033 dl_se->dl_throttled = 0;
2034 dl_se->dl_new = 1;
2035 dl_se->dl_yielded = 0;
a5e7be3b
JL
2036}
2037
1da177e4
LT
2038/*
2039 * Perform scheduler related setup for a newly forked process p.
2040 * p is forked by current.
dd41f596
IM
2041 *
2042 * __sched_fork() is basic setup used by init_idle() too:
2043 */
5e1576ed 2044static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2045{
fd2f4419
PZ
2046 p->on_rq = 0;
2047
2048 p->se.on_rq = 0;
dd41f596
IM
2049 p->se.exec_start = 0;
2050 p->se.sum_exec_runtime = 0;
f6cf891c 2051 p->se.prev_sum_exec_runtime = 0;
6c594c21 2052 p->se.nr_migrations = 0;
da7a735e 2053 p->se.vruntime = 0;
fd2f4419 2054 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2055
2056#ifdef CONFIG_SCHEDSTATS
41acab88 2057 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2058#endif
476d139c 2059
aab03e05 2060 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2061 init_dl_task_timer(&p->dl);
a5e7be3b 2062 __dl_clear_params(p);
aab03e05 2063
fa717060 2064 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2065
e107be36
AK
2066#ifdef CONFIG_PREEMPT_NOTIFIERS
2067 INIT_HLIST_HEAD(&p->preempt_notifiers);
2068#endif
cbee9f88
PZ
2069
2070#ifdef CONFIG_NUMA_BALANCING
2071 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2072 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2073 p->mm->numa_scan_seq = 0;
2074 }
2075
5e1576ed
RR
2076 if (clone_flags & CLONE_VM)
2077 p->numa_preferred_nid = current->numa_preferred_nid;
2078 else
2079 p->numa_preferred_nid = -1;
2080
cbee9f88
PZ
2081 p->node_stamp = 0ULL;
2082 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2083 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2084 p->numa_work.next = &p->numa_work;
44dba3d5 2085 p->numa_faults = NULL;
7e2703e6
RR
2086 p->last_task_numa_placement = 0;
2087 p->last_sum_exec_runtime = 0;
8c8a743c 2088
8c8a743c 2089 p->numa_group = NULL;
cbee9f88 2090#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2091}
2092
1a687c2e 2093#ifdef CONFIG_NUMA_BALANCING
3105b86a 2094#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
2095void set_numabalancing_state(bool enabled)
2096{
2097 if (enabled)
2098 sched_feat_set("NUMA");
2099 else
2100 sched_feat_set("NO_NUMA");
2101}
3105b86a
MG
2102#else
2103__read_mostly bool numabalancing_enabled;
2104
2105void set_numabalancing_state(bool enabled)
2106{
2107 numabalancing_enabled = enabled;
dd41f596 2108}
3105b86a 2109#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
2110
2111#ifdef CONFIG_PROC_SYSCTL
2112int sysctl_numa_balancing(struct ctl_table *table, int write,
2113 void __user *buffer, size_t *lenp, loff_t *ppos)
2114{
2115 struct ctl_table t;
2116 int err;
2117 int state = numabalancing_enabled;
2118
2119 if (write && !capable(CAP_SYS_ADMIN))
2120 return -EPERM;
2121
2122 t = *table;
2123 t.data = &state;
2124 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2125 if (err < 0)
2126 return err;
2127 if (write)
2128 set_numabalancing_state(state);
2129 return err;
2130}
2131#endif
2132#endif
dd41f596
IM
2133
2134/*
2135 * fork()/clone()-time setup:
2136 */
aab03e05 2137int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2138{
0122ec5b 2139 unsigned long flags;
dd41f596
IM
2140 int cpu = get_cpu();
2141
5e1576ed 2142 __sched_fork(clone_flags, p);
06b83b5f 2143 /*
0017d735 2144 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2145 * nobody will actually run it, and a signal or other external
2146 * event cannot wake it up and insert it on the runqueue either.
2147 */
0017d735 2148 p->state = TASK_RUNNING;
dd41f596 2149
c350a04e
MG
2150 /*
2151 * Make sure we do not leak PI boosting priority to the child.
2152 */
2153 p->prio = current->normal_prio;
2154
b9dc29e7
MG
2155 /*
2156 * Revert to default priority/policy on fork if requested.
2157 */
2158 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2159 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2160 p->policy = SCHED_NORMAL;
6c697bdf 2161 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2162 p->rt_priority = 0;
2163 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2164 p->static_prio = NICE_TO_PRIO(0);
2165
2166 p->prio = p->normal_prio = __normal_prio(p);
2167 set_load_weight(p);
6c697bdf 2168
b9dc29e7
MG
2169 /*
2170 * We don't need the reset flag anymore after the fork. It has
2171 * fulfilled its duty:
2172 */
2173 p->sched_reset_on_fork = 0;
2174 }
ca94c442 2175
aab03e05
DF
2176 if (dl_prio(p->prio)) {
2177 put_cpu();
2178 return -EAGAIN;
2179 } else if (rt_prio(p->prio)) {
2180 p->sched_class = &rt_sched_class;
2181 } else {
2ddbf952 2182 p->sched_class = &fair_sched_class;
aab03e05 2183 }
b29739f9 2184
cd29fe6f
PZ
2185 if (p->sched_class->task_fork)
2186 p->sched_class->task_fork(p);
2187
86951599
PZ
2188 /*
2189 * The child is not yet in the pid-hash so no cgroup attach races,
2190 * and the cgroup is pinned to this child due to cgroup_fork()
2191 * is ran before sched_fork().
2192 *
2193 * Silence PROVE_RCU.
2194 */
0122ec5b 2195 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2196 set_task_cpu(p, cpu);
0122ec5b 2197 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2198
f6db8347 2199#ifdef CONFIG_SCHED_INFO
dd41f596 2200 if (likely(sched_info_on()))
52f17b6c 2201 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2202#endif
3ca7a440
PZ
2203#if defined(CONFIG_SMP)
2204 p->on_cpu = 0;
4866cde0 2205#endif
01028747 2206 init_task_preempt_count(p);
806c09a7 2207#ifdef CONFIG_SMP
917b627d 2208 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2209 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2210#endif
917b627d 2211
476d139c 2212 put_cpu();
aab03e05 2213 return 0;
1da177e4
LT
2214}
2215
332ac17e
DF
2216unsigned long to_ratio(u64 period, u64 runtime)
2217{
2218 if (runtime == RUNTIME_INF)
2219 return 1ULL << 20;
2220
2221 /*
2222 * Doing this here saves a lot of checks in all
2223 * the calling paths, and returning zero seems
2224 * safe for them anyway.
2225 */
2226 if (period == 0)
2227 return 0;
2228
2229 return div64_u64(runtime << 20, period);
2230}
2231
2232#ifdef CONFIG_SMP
2233inline struct dl_bw *dl_bw_of(int i)
2234{
66339c31
KT
2235 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2236 "sched RCU must be held");
332ac17e
DF
2237 return &cpu_rq(i)->rd->dl_bw;
2238}
2239
de212f18 2240static inline int dl_bw_cpus(int i)
332ac17e 2241{
de212f18
PZ
2242 struct root_domain *rd = cpu_rq(i)->rd;
2243 int cpus = 0;
2244
66339c31
KT
2245 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2246 "sched RCU must be held");
de212f18
PZ
2247 for_each_cpu_and(i, rd->span, cpu_active_mask)
2248 cpus++;
2249
2250 return cpus;
332ac17e
DF
2251}
2252#else
2253inline struct dl_bw *dl_bw_of(int i)
2254{
2255 return &cpu_rq(i)->dl.dl_bw;
2256}
2257
de212f18 2258static inline int dl_bw_cpus(int i)
332ac17e
DF
2259{
2260 return 1;
2261}
2262#endif
2263
332ac17e
DF
2264/*
2265 * We must be sure that accepting a new task (or allowing changing the
2266 * parameters of an existing one) is consistent with the bandwidth
2267 * constraints. If yes, this function also accordingly updates the currently
2268 * allocated bandwidth to reflect the new situation.
2269 *
2270 * This function is called while holding p's rq->lock.
40767b0d
PZ
2271 *
2272 * XXX we should delay bw change until the task's 0-lag point, see
2273 * __setparam_dl().
332ac17e
DF
2274 */
2275static int dl_overflow(struct task_struct *p, int policy,
2276 const struct sched_attr *attr)
2277{
2278
2279 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2280 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2281 u64 runtime = attr->sched_runtime;
2282 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2283 int cpus, err = -1;
332ac17e
DF
2284
2285 if (new_bw == p->dl.dl_bw)
2286 return 0;
2287
2288 /*
2289 * Either if a task, enters, leave, or stays -deadline but changes
2290 * its parameters, we may need to update accordingly the total
2291 * allocated bandwidth of the container.
2292 */
2293 raw_spin_lock(&dl_b->lock);
de212f18 2294 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2295 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2296 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2297 __dl_add(dl_b, new_bw);
2298 err = 0;
2299 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2300 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2301 __dl_clear(dl_b, p->dl.dl_bw);
2302 __dl_add(dl_b, new_bw);
2303 err = 0;
2304 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2305 __dl_clear(dl_b, p->dl.dl_bw);
2306 err = 0;
2307 }
2308 raw_spin_unlock(&dl_b->lock);
2309
2310 return err;
2311}
2312
2313extern void init_dl_bw(struct dl_bw *dl_b);
2314
1da177e4
LT
2315/*
2316 * wake_up_new_task - wake up a newly created task for the first time.
2317 *
2318 * This function will do some initial scheduler statistics housekeeping
2319 * that must be done for every newly created context, then puts the task
2320 * on the runqueue and wakes it.
2321 */
3e51e3ed 2322void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2323{
2324 unsigned long flags;
dd41f596 2325 struct rq *rq;
fabf318e 2326
ab2515c4 2327 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2328#ifdef CONFIG_SMP
2329 /*
2330 * Fork balancing, do it here and not earlier because:
2331 * - cpus_allowed can change in the fork path
2332 * - any previously selected cpu might disappear through hotplug
fabf318e 2333 */
ac66f547 2334 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2335#endif
2336
a75cdaa9 2337 /* Initialize new task's runnable average */
540247fb 2338 init_entity_runnable_average(&p->se);
ab2515c4 2339 rq = __task_rq_lock(p);
cd29fe6f 2340 activate_task(rq, p, 0);
da0c1e65 2341 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2342 trace_sched_wakeup_new(p);
a7558e01 2343 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2344#ifdef CONFIG_SMP
efbbd05a
PZ
2345 if (p->sched_class->task_woken)
2346 p->sched_class->task_woken(rq, p);
9a897c5a 2347#endif
0122ec5b 2348 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2349}
2350
e107be36
AK
2351#ifdef CONFIG_PREEMPT_NOTIFIERS
2352
1cde2930
PZ
2353static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2354
2ecd9d29
PZ
2355void preempt_notifier_inc(void)
2356{
2357 static_key_slow_inc(&preempt_notifier_key);
2358}
2359EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2360
2361void preempt_notifier_dec(void)
2362{
2363 static_key_slow_dec(&preempt_notifier_key);
2364}
2365EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2366
e107be36 2367/**
80dd99b3 2368 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2369 * @notifier: notifier struct to register
e107be36
AK
2370 */
2371void preempt_notifier_register(struct preempt_notifier *notifier)
2372{
2ecd9d29
PZ
2373 if (!static_key_false(&preempt_notifier_key))
2374 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2375
e107be36
AK
2376 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2377}
2378EXPORT_SYMBOL_GPL(preempt_notifier_register);
2379
2380/**
2381 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2382 * @notifier: notifier struct to unregister
e107be36 2383 *
d84525a8 2384 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2385 */
2386void preempt_notifier_unregister(struct preempt_notifier *notifier)
2387{
2388 hlist_del(&notifier->link);
2389}
2390EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2391
1cde2930 2392static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2393{
2394 struct preempt_notifier *notifier;
e107be36 2395
b67bfe0d 2396 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2397 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2398}
2399
1cde2930
PZ
2400static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2401{
2402 if (static_key_false(&preempt_notifier_key))
2403 __fire_sched_in_preempt_notifiers(curr);
2404}
2405
e107be36 2406static void
1cde2930
PZ
2407__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2408 struct task_struct *next)
e107be36
AK
2409{
2410 struct preempt_notifier *notifier;
e107be36 2411
b67bfe0d 2412 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2413 notifier->ops->sched_out(notifier, next);
2414}
2415
1cde2930
PZ
2416static __always_inline void
2417fire_sched_out_preempt_notifiers(struct task_struct *curr,
2418 struct task_struct *next)
2419{
2420 if (static_key_false(&preempt_notifier_key))
2421 __fire_sched_out_preempt_notifiers(curr, next);
2422}
2423
6d6bc0ad 2424#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2425
1cde2930 2426static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2427{
2428}
2429
1cde2930 2430static inline void
e107be36
AK
2431fire_sched_out_preempt_notifiers(struct task_struct *curr,
2432 struct task_struct *next)
2433{
2434}
2435
6d6bc0ad 2436#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2437
4866cde0
NP
2438/**
2439 * prepare_task_switch - prepare to switch tasks
2440 * @rq: the runqueue preparing to switch
421cee29 2441 * @prev: the current task that is being switched out
4866cde0
NP
2442 * @next: the task we are going to switch to.
2443 *
2444 * This is called with the rq lock held and interrupts off. It must
2445 * be paired with a subsequent finish_task_switch after the context
2446 * switch.
2447 *
2448 * prepare_task_switch sets up locking and calls architecture specific
2449 * hooks.
2450 */
e107be36
AK
2451static inline void
2452prepare_task_switch(struct rq *rq, struct task_struct *prev,
2453 struct task_struct *next)
4866cde0 2454{
895dd92c 2455 trace_sched_switch(prev, next);
43148951 2456 sched_info_switch(rq, prev, next);
fe4b04fa 2457 perf_event_task_sched_out(prev, next);
e107be36 2458 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2459 prepare_lock_switch(rq, next);
2460 prepare_arch_switch(next);
2461}
2462
1da177e4
LT
2463/**
2464 * finish_task_switch - clean up after a task-switch
2465 * @prev: the thread we just switched away from.
2466 *
4866cde0
NP
2467 * finish_task_switch must be called after the context switch, paired
2468 * with a prepare_task_switch call before the context switch.
2469 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2470 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2471 *
2472 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2473 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2474 * with the lock held can cause deadlocks; see schedule() for
2475 * details.)
dfa50b60
ON
2476 *
2477 * The context switch have flipped the stack from under us and restored the
2478 * local variables which were saved when this task called schedule() in the
2479 * past. prev == current is still correct but we need to recalculate this_rq
2480 * because prev may have moved to another CPU.
1da177e4 2481 */
dfa50b60 2482static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2483 __releases(rq->lock)
2484{
dfa50b60 2485 struct rq *rq = this_rq();
1da177e4 2486 struct mm_struct *mm = rq->prev_mm;
55a101f8 2487 long prev_state;
1da177e4
LT
2488
2489 rq->prev_mm = NULL;
2490
2491 /*
2492 * A task struct has one reference for the use as "current".
c394cc9f 2493 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2494 * schedule one last time. The schedule call will never return, and
2495 * the scheduled task must drop that reference.
c394cc9f 2496 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2497 * still held, otherwise prev could be scheduled on another cpu, die
2498 * there before we look at prev->state, and then the reference would
2499 * be dropped twice.
2500 * Manfred Spraul <manfred@colorfullife.com>
2501 */
55a101f8 2502 prev_state = prev->state;
bf9fae9f 2503 vtime_task_switch(prev);
a8d757ef 2504 perf_event_task_sched_in(prev, current);
4866cde0 2505 finish_lock_switch(rq, prev);
01f23e16 2506 finish_arch_post_lock_switch();
e8fa1362 2507
e107be36 2508 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2509 if (mm)
2510 mmdrop(mm);
c394cc9f 2511 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2512 if (prev->sched_class->task_dead)
2513 prev->sched_class->task_dead(prev);
2514
c6fd91f0 2515 /*
2516 * Remove function-return probe instances associated with this
2517 * task and put them back on the free list.
9761eea8 2518 */
c6fd91f0 2519 kprobe_flush_task(prev);
1da177e4 2520 put_task_struct(prev);
c6fd91f0 2521 }
99e5ada9
FW
2522
2523 tick_nohz_task_switch(current);
dfa50b60 2524 return rq;
1da177e4
LT
2525}
2526
3f029d3c
GH
2527#ifdef CONFIG_SMP
2528
3f029d3c 2529/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2530static void __balance_callback(struct rq *rq)
3f029d3c 2531{
e3fca9e7
PZ
2532 struct callback_head *head, *next;
2533 void (*func)(struct rq *rq);
2534 unsigned long flags;
3f029d3c 2535
e3fca9e7
PZ
2536 raw_spin_lock_irqsave(&rq->lock, flags);
2537 head = rq->balance_callback;
2538 rq->balance_callback = NULL;
2539 while (head) {
2540 func = (void (*)(struct rq *))head->func;
2541 next = head->next;
2542 head->next = NULL;
2543 head = next;
3f029d3c 2544
e3fca9e7 2545 func(rq);
3f029d3c 2546 }
e3fca9e7
PZ
2547 raw_spin_unlock_irqrestore(&rq->lock, flags);
2548}
2549
2550static inline void balance_callback(struct rq *rq)
2551{
2552 if (unlikely(rq->balance_callback))
2553 __balance_callback(rq);
3f029d3c
GH
2554}
2555
2556#else
da19ab51 2557
e3fca9e7 2558static inline void balance_callback(struct rq *rq)
3f029d3c 2559{
1da177e4
LT
2560}
2561
3f029d3c
GH
2562#endif
2563
1da177e4
LT
2564/**
2565 * schedule_tail - first thing a freshly forked thread must call.
2566 * @prev: the thread we just switched away from.
2567 */
722a9f92 2568asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2569 __releases(rq->lock)
2570{
1a43a14a 2571 struct rq *rq;
da19ab51 2572
1a43a14a
ON
2573 /* finish_task_switch() drops rq->lock and enables preemtion */
2574 preempt_disable();
dfa50b60 2575 rq = finish_task_switch(prev);
e3fca9e7 2576 balance_callback(rq);
1a43a14a 2577 preempt_enable();
70b97a7f 2578
1da177e4 2579 if (current->set_child_tid)
b488893a 2580 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2581}
2582
2583/*
dfa50b60 2584 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2585 */
dfa50b60 2586static inline struct rq *
70b97a7f 2587context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2588 struct task_struct *next)
1da177e4 2589{
dd41f596 2590 struct mm_struct *mm, *oldmm;
1da177e4 2591
e107be36 2592 prepare_task_switch(rq, prev, next);
fe4b04fa 2593
dd41f596
IM
2594 mm = next->mm;
2595 oldmm = prev->active_mm;
9226d125
ZA
2596 /*
2597 * For paravirt, this is coupled with an exit in switch_to to
2598 * combine the page table reload and the switch backend into
2599 * one hypercall.
2600 */
224101ed 2601 arch_start_context_switch(prev);
9226d125 2602
31915ab4 2603 if (!mm) {
1da177e4
LT
2604 next->active_mm = oldmm;
2605 atomic_inc(&oldmm->mm_count);
2606 enter_lazy_tlb(oldmm, next);
2607 } else
2608 switch_mm(oldmm, mm, next);
2609
31915ab4 2610 if (!prev->mm) {
1da177e4 2611 prev->active_mm = NULL;
1da177e4
LT
2612 rq->prev_mm = oldmm;
2613 }
3a5f5e48
IM
2614 /*
2615 * Since the runqueue lock will be released by the next
2616 * task (which is an invalid locking op but in the case
2617 * of the scheduler it's an obvious special-case), so we
2618 * do an early lockdep release here:
2619 */
cbce1a68 2620 lockdep_unpin_lock(&rq->lock);
8a25d5de 2621 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2622
2623 /* Here we just switch the register state and the stack. */
2624 switch_to(prev, next, prev);
dd41f596 2625 barrier();
dfa50b60
ON
2626
2627 return finish_task_switch(prev);
1da177e4
LT
2628}
2629
2630/*
1c3e8264 2631 * nr_running and nr_context_switches:
1da177e4
LT
2632 *
2633 * externally visible scheduler statistics: current number of runnable
1c3e8264 2634 * threads, total number of context switches performed since bootup.
1da177e4
LT
2635 */
2636unsigned long nr_running(void)
2637{
2638 unsigned long i, sum = 0;
2639
2640 for_each_online_cpu(i)
2641 sum += cpu_rq(i)->nr_running;
2642
2643 return sum;
f711f609 2644}
1da177e4 2645
2ee507c4
TC
2646/*
2647 * Check if only the current task is running on the cpu.
2648 */
2649bool single_task_running(void)
2650{
2651 if (cpu_rq(smp_processor_id())->nr_running == 1)
2652 return true;
2653 else
2654 return false;
2655}
2656EXPORT_SYMBOL(single_task_running);
2657
1da177e4 2658unsigned long long nr_context_switches(void)
46cb4b7c 2659{
cc94abfc
SR
2660 int i;
2661 unsigned long long sum = 0;
46cb4b7c 2662
0a945022 2663 for_each_possible_cpu(i)
1da177e4 2664 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2665
1da177e4
LT
2666 return sum;
2667}
483b4ee6 2668
1da177e4
LT
2669unsigned long nr_iowait(void)
2670{
2671 unsigned long i, sum = 0;
483b4ee6 2672
0a945022 2673 for_each_possible_cpu(i)
1da177e4 2674 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2675
1da177e4
LT
2676 return sum;
2677}
483b4ee6 2678
8c215bd3 2679unsigned long nr_iowait_cpu(int cpu)
69d25870 2680{
8c215bd3 2681 struct rq *this = cpu_rq(cpu);
69d25870
AV
2682 return atomic_read(&this->nr_iowait);
2683}
46cb4b7c 2684
372ba8cb
MG
2685void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2686{
3289bdb4
PZ
2687 struct rq *rq = this_rq();
2688 *nr_waiters = atomic_read(&rq->nr_iowait);
2689 *load = rq->load.weight;
372ba8cb
MG
2690}
2691
dd41f596 2692#ifdef CONFIG_SMP
8a0be9ef 2693
46cb4b7c 2694/*
38022906
PZ
2695 * sched_exec - execve() is a valuable balancing opportunity, because at
2696 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2697 */
38022906 2698void sched_exec(void)
46cb4b7c 2699{
38022906 2700 struct task_struct *p = current;
1da177e4 2701 unsigned long flags;
0017d735 2702 int dest_cpu;
46cb4b7c 2703
8f42ced9 2704 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2705 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2706 if (dest_cpu == smp_processor_id())
2707 goto unlock;
38022906 2708
8f42ced9 2709 if (likely(cpu_active(dest_cpu))) {
969c7921 2710 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2711
8f42ced9
PZ
2712 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2713 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2714 return;
2715 }
0017d735 2716unlock:
8f42ced9 2717 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2718}
dd41f596 2719
1da177e4
LT
2720#endif
2721
1da177e4 2722DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2723DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2724
2725EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2726EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2727
c5f8d995
HS
2728/*
2729 * Return accounted runtime for the task.
2730 * In case the task is currently running, return the runtime plus current's
2731 * pending runtime that have not been accounted yet.
2732 */
2733unsigned long long task_sched_runtime(struct task_struct *p)
2734{
2735 unsigned long flags;
2736 struct rq *rq;
6e998916 2737 u64 ns;
c5f8d995 2738
911b2898
PZ
2739#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2740 /*
2741 * 64-bit doesn't need locks to atomically read a 64bit value.
2742 * So we have a optimization chance when the task's delta_exec is 0.
2743 * Reading ->on_cpu is racy, but this is ok.
2744 *
2745 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2746 * If we race with it entering cpu, unaccounted time is 0. This is
2747 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2748 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2749 * been accounted, so we're correct here as well.
911b2898 2750 */
da0c1e65 2751 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2752 return p->se.sum_exec_runtime;
2753#endif
2754
c5f8d995 2755 rq = task_rq_lock(p, &flags);
6e998916
SG
2756 /*
2757 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2758 * project cycles that may never be accounted to this
2759 * thread, breaking clock_gettime().
2760 */
2761 if (task_current(rq, p) && task_on_rq_queued(p)) {
2762 update_rq_clock(rq);
2763 p->sched_class->update_curr(rq);
2764 }
2765 ns = p->se.sum_exec_runtime;
0122ec5b 2766 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2767
2768 return ns;
2769}
48f24c4d 2770
7835b98b
CL
2771/*
2772 * This function gets called by the timer code, with HZ frequency.
2773 * We call it with interrupts disabled.
7835b98b
CL
2774 */
2775void scheduler_tick(void)
2776{
7835b98b
CL
2777 int cpu = smp_processor_id();
2778 struct rq *rq = cpu_rq(cpu);
dd41f596 2779 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2780
2781 sched_clock_tick();
dd41f596 2782
05fa785c 2783 raw_spin_lock(&rq->lock);
3e51f33f 2784 update_rq_clock(rq);
fa85ae24 2785 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2786 update_cpu_load_active(rq);
3289bdb4 2787 calc_global_load_tick(rq);
05fa785c 2788 raw_spin_unlock(&rq->lock);
7835b98b 2789
e9d2b064 2790 perf_event_task_tick();
e220d2dc 2791
e418e1c2 2792#ifdef CONFIG_SMP
6eb57e0d 2793 rq->idle_balance = idle_cpu(cpu);
7caff66f 2794 trigger_load_balance(rq);
e418e1c2 2795#endif
265f22a9 2796 rq_last_tick_reset(rq);
1da177e4
LT
2797}
2798
265f22a9
FW
2799#ifdef CONFIG_NO_HZ_FULL
2800/**
2801 * scheduler_tick_max_deferment
2802 *
2803 * Keep at least one tick per second when a single
2804 * active task is running because the scheduler doesn't
2805 * yet completely support full dynticks environment.
2806 *
2807 * This makes sure that uptime, CFS vruntime, load
2808 * balancing, etc... continue to move forward, even
2809 * with a very low granularity.
e69f6186
YB
2810 *
2811 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2812 */
2813u64 scheduler_tick_max_deferment(void)
2814{
2815 struct rq *rq = this_rq();
316c1608 2816 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2817
2818 next = rq->last_sched_tick + HZ;
2819
2820 if (time_before_eq(next, now))
2821 return 0;
2822
8fe8ff09 2823 return jiffies_to_nsecs(next - now);
1da177e4 2824}
265f22a9 2825#endif
1da177e4 2826
132380a0 2827notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2828{
2829 if (in_lock_functions(addr)) {
2830 addr = CALLER_ADDR2;
2831 if (in_lock_functions(addr))
2832 addr = CALLER_ADDR3;
2833 }
2834 return addr;
2835}
1da177e4 2836
7e49fcce
SR
2837#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2838 defined(CONFIG_PREEMPT_TRACER))
2839
edafe3a5 2840void preempt_count_add(int val)
1da177e4 2841{
6cd8a4bb 2842#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2843 /*
2844 * Underflow?
2845 */
9a11b49a
IM
2846 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2847 return;
6cd8a4bb 2848#endif
bdb43806 2849 __preempt_count_add(val);
6cd8a4bb 2850#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2851 /*
2852 * Spinlock count overflowing soon?
2853 */
33859f7f
MOS
2854 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2855 PREEMPT_MASK - 10);
6cd8a4bb 2856#endif
8f47b187
TG
2857 if (preempt_count() == val) {
2858 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2859#ifdef CONFIG_DEBUG_PREEMPT
2860 current->preempt_disable_ip = ip;
2861#endif
2862 trace_preempt_off(CALLER_ADDR0, ip);
2863 }
1da177e4 2864}
bdb43806 2865EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2866NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2867
edafe3a5 2868void preempt_count_sub(int val)
1da177e4 2869{
6cd8a4bb 2870#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2871 /*
2872 * Underflow?
2873 */
01e3eb82 2874 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2875 return;
1da177e4
LT
2876 /*
2877 * Is the spinlock portion underflowing?
2878 */
9a11b49a
IM
2879 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2880 !(preempt_count() & PREEMPT_MASK)))
2881 return;
6cd8a4bb 2882#endif
9a11b49a 2883
6cd8a4bb
SR
2884 if (preempt_count() == val)
2885 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2886 __preempt_count_sub(val);
1da177e4 2887}
bdb43806 2888EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2889NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2890
2891#endif
2892
2893/*
dd41f596 2894 * Print scheduling while atomic bug:
1da177e4 2895 */
dd41f596 2896static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2897{
664dfa65
DJ
2898 if (oops_in_progress)
2899 return;
2900
3df0fc5b
PZ
2901 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2902 prev->comm, prev->pid, preempt_count());
838225b4 2903
dd41f596 2904 debug_show_held_locks(prev);
e21f5b15 2905 print_modules();
dd41f596
IM
2906 if (irqs_disabled())
2907 print_irqtrace_events(prev);
8f47b187
TG
2908#ifdef CONFIG_DEBUG_PREEMPT
2909 if (in_atomic_preempt_off()) {
2910 pr_err("Preemption disabled at:");
2911 print_ip_sym(current->preempt_disable_ip);
2912 pr_cont("\n");
2913 }
2914#endif
6135fc1e 2915 dump_stack();
373d4d09 2916 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2917}
1da177e4 2918
dd41f596
IM
2919/*
2920 * Various schedule()-time debugging checks and statistics:
2921 */
2922static inline void schedule_debug(struct task_struct *prev)
2923{
0d9e2632
AT
2924#ifdef CONFIG_SCHED_STACK_END_CHECK
2925 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2926#endif
1da177e4 2927 /*
41a2d6cf 2928 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2929 * schedule() atomically, we ignore that path. Otherwise whine
2930 * if we are scheduling when we should not.
1da177e4 2931 */
192301e7 2932 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2933 __schedule_bug(prev);
b3fbab05 2934 rcu_sleep_check();
dd41f596 2935
1da177e4
LT
2936 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2937
2d72376b 2938 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2939}
2940
2941/*
2942 * Pick up the highest-prio task:
2943 */
2944static inline struct task_struct *
606dba2e 2945pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2946{
37e117c0 2947 const struct sched_class *class = &fair_sched_class;
dd41f596 2948 struct task_struct *p;
1da177e4
LT
2949
2950 /*
dd41f596
IM
2951 * Optimization: we know that if all tasks are in
2952 * the fair class we can call that function directly:
1da177e4 2953 */
37e117c0 2954 if (likely(prev->sched_class == class &&
38033c37 2955 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2956 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2957 if (unlikely(p == RETRY_TASK))
2958 goto again;
2959
2960 /* assumes fair_sched_class->next == idle_sched_class */
2961 if (unlikely(!p))
2962 p = idle_sched_class.pick_next_task(rq, prev);
2963
2964 return p;
1da177e4
LT
2965 }
2966
37e117c0 2967again:
34f971f6 2968 for_each_class(class) {
606dba2e 2969 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2970 if (p) {
2971 if (unlikely(p == RETRY_TASK))
2972 goto again;
dd41f596 2973 return p;
37e117c0 2974 }
dd41f596 2975 }
34f971f6
PZ
2976
2977 BUG(); /* the idle class will always have a runnable task */
dd41f596 2978}
1da177e4 2979
dd41f596 2980/*
c259e01a 2981 * __schedule() is the main scheduler function.
edde96ea
PE
2982 *
2983 * The main means of driving the scheduler and thus entering this function are:
2984 *
2985 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2986 *
2987 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2988 * paths. For example, see arch/x86/entry_64.S.
2989 *
2990 * To drive preemption between tasks, the scheduler sets the flag in timer
2991 * interrupt handler scheduler_tick().
2992 *
2993 * 3. Wakeups don't really cause entry into schedule(). They add a
2994 * task to the run-queue and that's it.
2995 *
2996 * Now, if the new task added to the run-queue preempts the current
2997 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2998 * called on the nearest possible occasion:
2999 *
3000 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3001 *
3002 * - in syscall or exception context, at the next outmost
3003 * preempt_enable(). (this might be as soon as the wake_up()'s
3004 * spin_unlock()!)
3005 *
3006 * - in IRQ context, return from interrupt-handler to
3007 * preemptible context
3008 *
3009 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3010 * then at the next:
3011 *
3012 * - cond_resched() call
3013 * - explicit schedule() call
3014 * - return from syscall or exception to user-space
3015 * - return from interrupt-handler to user-space
bfd9b2b5 3016 *
b30f0e3f 3017 * WARNING: must be called with preemption disabled!
dd41f596 3018 */
c259e01a 3019static void __sched __schedule(void)
dd41f596
IM
3020{
3021 struct task_struct *prev, *next;
67ca7bde 3022 unsigned long *switch_count;
dd41f596 3023 struct rq *rq;
31656519 3024 int cpu;
dd41f596 3025
dd41f596
IM
3026 cpu = smp_processor_id();
3027 rq = cpu_rq(cpu);
38200cf2 3028 rcu_note_context_switch();
dd41f596 3029 prev = rq->curr;
dd41f596 3030
dd41f596 3031 schedule_debug(prev);
1da177e4 3032
31656519 3033 if (sched_feat(HRTICK))
f333fdc9 3034 hrtick_clear(rq);
8f4d37ec 3035
e0acd0a6
ON
3036 /*
3037 * Make sure that signal_pending_state()->signal_pending() below
3038 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3039 * done by the caller to avoid the race with signal_wake_up().
3040 */
3041 smp_mb__before_spinlock();
05fa785c 3042 raw_spin_lock_irq(&rq->lock);
cbce1a68 3043 lockdep_pin_lock(&rq->lock);
1da177e4 3044
9edfbfed
PZ
3045 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3046
246d86b5 3047 switch_count = &prev->nivcsw;
1da177e4 3048 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3049 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3050 prev->state = TASK_RUNNING;
21aa9af0 3051 } else {
2acca55e
PZ
3052 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3053 prev->on_rq = 0;
3054
21aa9af0 3055 /*
2acca55e
PZ
3056 * If a worker went to sleep, notify and ask workqueue
3057 * whether it wants to wake up a task to maintain
3058 * concurrency.
21aa9af0
TH
3059 */
3060 if (prev->flags & PF_WQ_WORKER) {
3061 struct task_struct *to_wakeup;
3062
3063 to_wakeup = wq_worker_sleeping(prev, cpu);
3064 if (to_wakeup)
3065 try_to_wake_up_local(to_wakeup);
3066 }
21aa9af0 3067 }
dd41f596 3068 switch_count = &prev->nvcsw;
1da177e4
LT
3069 }
3070
9edfbfed 3071 if (task_on_rq_queued(prev))
606dba2e
PZ
3072 update_rq_clock(rq);
3073
3074 next = pick_next_task(rq, prev);
f26f9aff 3075 clear_tsk_need_resched(prev);
f27dde8d 3076 clear_preempt_need_resched();
9edfbfed 3077 rq->clock_skip_update = 0;
1da177e4 3078
1da177e4 3079 if (likely(prev != next)) {
1da177e4
LT
3080 rq->nr_switches++;
3081 rq->curr = next;
3082 ++*switch_count;
3083
dfa50b60
ON
3084 rq = context_switch(rq, prev, next); /* unlocks the rq */
3085 cpu = cpu_of(rq);
cbce1a68
PZ
3086 } else {
3087 lockdep_unpin_lock(&rq->lock);
05fa785c 3088 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3089 }
1da177e4 3090
e3fca9e7 3091 balance_callback(rq);
1da177e4 3092}
c259e01a 3093
9c40cef2
TG
3094static inline void sched_submit_work(struct task_struct *tsk)
3095{
3c7d5184 3096 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3097 return;
3098 /*
3099 * If we are going to sleep and we have plugged IO queued,
3100 * make sure to submit it to avoid deadlocks.
3101 */
3102 if (blk_needs_flush_plug(tsk))
3103 blk_schedule_flush_plug(tsk);
3104}
3105
722a9f92 3106asmlinkage __visible void __sched schedule(void)
c259e01a 3107{
9c40cef2
TG
3108 struct task_struct *tsk = current;
3109
3110 sched_submit_work(tsk);
bfd9b2b5 3111 do {
b30f0e3f 3112 preempt_disable();
bfd9b2b5 3113 __schedule();
b30f0e3f 3114 sched_preempt_enable_no_resched();
bfd9b2b5 3115 } while (need_resched());
c259e01a 3116}
1da177e4
LT
3117EXPORT_SYMBOL(schedule);
3118
91d1aa43 3119#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3120asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3121{
3122 /*
3123 * If we come here after a random call to set_need_resched(),
3124 * or we have been woken up remotely but the IPI has not yet arrived,
3125 * we haven't yet exited the RCU idle mode. Do it here manually until
3126 * we find a better solution.
7cc78f8f
AL
3127 *
3128 * NB: There are buggy callers of this function. Ideally we
c467ea76 3129 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3130 * too frequently to make sense yet.
20ab65e3 3131 */
7cc78f8f 3132 enum ctx_state prev_state = exception_enter();
20ab65e3 3133 schedule();
7cc78f8f 3134 exception_exit(prev_state);
20ab65e3
FW
3135}
3136#endif
3137
c5491ea7
TG
3138/**
3139 * schedule_preempt_disabled - called with preemption disabled
3140 *
3141 * Returns with preemption disabled. Note: preempt_count must be 1
3142 */
3143void __sched schedule_preempt_disabled(void)
3144{
ba74c144 3145 sched_preempt_enable_no_resched();
c5491ea7
TG
3146 schedule();
3147 preempt_disable();
3148}
3149
06b1f808 3150static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3151{
3152 do {
b30f0e3f 3153 preempt_active_enter();
a18b5d01 3154 __schedule();
b30f0e3f 3155 preempt_active_exit();
a18b5d01
FW
3156
3157 /*
3158 * Check again in case we missed a preemption opportunity
3159 * between schedule and now.
3160 */
a18b5d01
FW
3161 } while (need_resched());
3162}
3163
1da177e4
LT
3164#ifdef CONFIG_PREEMPT
3165/*
2ed6e34f 3166 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3167 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3168 * occur there and call schedule directly.
3169 */
722a9f92 3170asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3171{
1da177e4
LT
3172 /*
3173 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3174 * we do not want to preempt the current task. Just return..
1da177e4 3175 */
fbb00b56 3176 if (likely(!preemptible()))
1da177e4
LT
3177 return;
3178
a18b5d01 3179 preempt_schedule_common();
1da177e4 3180}
376e2424 3181NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3182EXPORT_SYMBOL(preempt_schedule);
009f60e2 3183
009f60e2 3184/**
4eaca0a8 3185 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3186 *
3187 * The tracing infrastructure uses preempt_enable_notrace to prevent
3188 * recursion and tracing preempt enabling caused by the tracing
3189 * infrastructure itself. But as tracing can happen in areas coming
3190 * from userspace or just about to enter userspace, a preempt enable
3191 * can occur before user_exit() is called. This will cause the scheduler
3192 * to be called when the system is still in usermode.
3193 *
3194 * To prevent this, the preempt_enable_notrace will use this function
3195 * instead of preempt_schedule() to exit user context if needed before
3196 * calling the scheduler.
3197 */
4eaca0a8 3198asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3199{
3200 enum ctx_state prev_ctx;
3201
3202 if (likely(!preemptible()))
3203 return;
3204
3205 do {
be690035
FW
3206 /*
3207 * Use raw __prempt_count() ops that don't call function.
3208 * We can't call functions before disabling preemption which
3209 * disarm preemption tracing recursions.
3210 */
3211 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3212 barrier();
009f60e2
ON
3213 /*
3214 * Needs preempt disabled in case user_exit() is traced
3215 * and the tracer calls preempt_enable_notrace() causing
3216 * an infinite recursion.
3217 */
3218 prev_ctx = exception_enter();
3219 __schedule();
3220 exception_exit(prev_ctx);
3221
009f60e2 3222 barrier();
be690035 3223 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
3224 } while (need_resched());
3225}
4eaca0a8 3226EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3227
32e475d7 3228#endif /* CONFIG_PREEMPT */
1da177e4
LT
3229
3230/*
2ed6e34f 3231 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3232 * off of irq context.
3233 * Note, that this is called and return with irqs disabled. This will
3234 * protect us against recursive calling from irq.
3235 */
722a9f92 3236asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3237{
b22366cd 3238 enum ctx_state prev_state;
6478d880 3239
2ed6e34f 3240 /* Catch callers which need to be fixed */
f27dde8d 3241 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3242
b22366cd
FW
3243 prev_state = exception_enter();
3244
3a5c359a 3245 do {
b30f0e3f 3246 preempt_active_enter();
3a5c359a 3247 local_irq_enable();
c259e01a 3248 __schedule();
3a5c359a 3249 local_irq_disable();
b30f0e3f 3250 preempt_active_exit();
5ed0cec0 3251 } while (need_resched());
b22366cd
FW
3252
3253 exception_exit(prev_state);
1da177e4
LT
3254}
3255
63859d4f 3256int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3257 void *key)
1da177e4 3258{
63859d4f 3259 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3260}
1da177e4
LT
3261EXPORT_SYMBOL(default_wake_function);
3262
b29739f9
IM
3263#ifdef CONFIG_RT_MUTEXES
3264
3265/*
3266 * rt_mutex_setprio - set the current priority of a task
3267 * @p: task
3268 * @prio: prio value (kernel-internal form)
3269 *
3270 * This function changes the 'effective' priority of a task. It does
3271 * not touch ->normal_prio like __setscheduler().
3272 *
c365c292
TG
3273 * Used by the rt_mutex code to implement priority inheritance
3274 * logic. Call site only calls if the priority of the task changed.
b29739f9 3275 */
36c8b586 3276void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3277{
da0c1e65 3278 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3279 struct rq *rq;
83ab0aa0 3280 const struct sched_class *prev_class;
b29739f9 3281
aab03e05 3282 BUG_ON(prio > MAX_PRIO);
b29739f9 3283
0122ec5b 3284 rq = __task_rq_lock(p);
b29739f9 3285
1c4dd99b
TG
3286 /*
3287 * Idle task boosting is a nono in general. There is one
3288 * exception, when PREEMPT_RT and NOHZ is active:
3289 *
3290 * The idle task calls get_next_timer_interrupt() and holds
3291 * the timer wheel base->lock on the CPU and another CPU wants
3292 * to access the timer (probably to cancel it). We can safely
3293 * ignore the boosting request, as the idle CPU runs this code
3294 * with interrupts disabled and will complete the lock
3295 * protected section without being interrupted. So there is no
3296 * real need to boost.
3297 */
3298 if (unlikely(p == rq->idle)) {
3299 WARN_ON(p != rq->curr);
3300 WARN_ON(p->pi_blocked_on);
3301 goto out_unlock;
3302 }
3303
a8027073 3304 trace_sched_pi_setprio(p, prio);
d5f9f942 3305 oldprio = p->prio;
83ab0aa0 3306 prev_class = p->sched_class;
da0c1e65 3307 queued = task_on_rq_queued(p);
051a1d1a 3308 running = task_current(rq, p);
da0c1e65 3309 if (queued)
69be72c1 3310 dequeue_task(rq, p, 0);
0e1f3483 3311 if (running)
f3cd1c4e 3312 put_prev_task(rq, p);
dd41f596 3313
2d3d891d
DF
3314 /*
3315 * Boosting condition are:
3316 * 1. -rt task is running and holds mutex A
3317 * --> -dl task blocks on mutex A
3318 *
3319 * 2. -dl task is running and holds mutex A
3320 * --> -dl task blocks on mutex A and could preempt the
3321 * running task
3322 */
3323 if (dl_prio(prio)) {
466af29b
ON
3324 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3325 if (!dl_prio(p->normal_prio) ||
3326 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3327 p->dl.dl_boosted = 1;
2d3d891d
DF
3328 enqueue_flag = ENQUEUE_REPLENISH;
3329 } else
3330 p->dl.dl_boosted = 0;
aab03e05 3331 p->sched_class = &dl_sched_class;
2d3d891d
DF
3332 } else if (rt_prio(prio)) {
3333 if (dl_prio(oldprio))
3334 p->dl.dl_boosted = 0;
3335 if (oldprio < prio)
3336 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3337 p->sched_class = &rt_sched_class;
2d3d891d
DF
3338 } else {
3339 if (dl_prio(oldprio))
3340 p->dl.dl_boosted = 0;
746db944
BS
3341 if (rt_prio(oldprio))
3342 p->rt.timeout = 0;
dd41f596 3343 p->sched_class = &fair_sched_class;
2d3d891d 3344 }
dd41f596 3345
b29739f9
IM
3346 p->prio = prio;
3347
0e1f3483
HS
3348 if (running)
3349 p->sched_class->set_curr_task(rq);
da0c1e65 3350 if (queued)
2d3d891d 3351 enqueue_task(rq, p, enqueue_flag);
cb469845 3352
da7a735e 3353 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3354out_unlock:
4c9a4bc8 3355 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3356 __task_rq_unlock(rq);
4c9a4bc8
PZ
3357
3358 balance_callback(rq);
3359 preempt_enable();
b29739f9 3360}
b29739f9 3361#endif
d50dde5a 3362
36c8b586 3363void set_user_nice(struct task_struct *p, long nice)
1da177e4 3364{
da0c1e65 3365 int old_prio, delta, queued;
1da177e4 3366 unsigned long flags;
70b97a7f 3367 struct rq *rq;
1da177e4 3368
75e45d51 3369 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3370 return;
3371 /*
3372 * We have to be careful, if called from sys_setpriority(),
3373 * the task might be in the middle of scheduling on another CPU.
3374 */
3375 rq = task_rq_lock(p, &flags);
3376 /*
3377 * The RT priorities are set via sched_setscheduler(), but we still
3378 * allow the 'normal' nice value to be set - but as expected
3379 * it wont have any effect on scheduling until the task is
aab03e05 3380 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3381 */
aab03e05 3382 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3383 p->static_prio = NICE_TO_PRIO(nice);
3384 goto out_unlock;
3385 }
da0c1e65
KT
3386 queued = task_on_rq_queued(p);
3387 if (queued)
69be72c1 3388 dequeue_task(rq, p, 0);
1da177e4 3389
1da177e4 3390 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3391 set_load_weight(p);
b29739f9
IM
3392 old_prio = p->prio;
3393 p->prio = effective_prio(p);
3394 delta = p->prio - old_prio;
1da177e4 3395
da0c1e65 3396 if (queued) {
371fd7e7 3397 enqueue_task(rq, p, 0);
1da177e4 3398 /*
d5f9f942
AM
3399 * If the task increased its priority or is running and
3400 * lowered its priority, then reschedule its CPU:
1da177e4 3401 */
d5f9f942 3402 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3403 resched_curr(rq);
1da177e4
LT
3404 }
3405out_unlock:
0122ec5b 3406 task_rq_unlock(rq, p, &flags);
1da177e4 3407}
1da177e4
LT
3408EXPORT_SYMBOL(set_user_nice);
3409
e43379f1
MM
3410/*
3411 * can_nice - check if a task can reduce its nice value
3412 * @p: task
3413 * @nice: nice value
3414 */
36c8b586 3415int can_nice(const struct task_struct *p, const int nice)
e43379f1 3416{
024f4747 3417 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3418 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3419
78d7d407 3420 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3421 capable(CAP_SYS_NICE));
3422}
3423
1da177e4
LT
3424#ifdef __ARCH_WANT_SYS_NICE
3425
3426/*
3427 * sys_nice - change the priority of the current process.
3428 * @increment: priority increment
3429 *
3430 * sys_setpriority is a more generic, but much slower function that
3431 * does similar things.
3432 */
5add95d4 3433SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3434{
48f24c4d 3435 long nice, retval;
1da177e4
LT
3436
3437 /*
3438 * Setpriority might change our priority at the same moment.
3439 * We don't have to worry. Conceptually one call occurs first
3440 * and we have a single winner.
3441 */
a9467fa3 3442 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3443 nice = task_nice(current) + increment;
1da177e4 3444
a9467fa3 3445 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3446 if (increment < 0 && !can_nice(current, nice))
3447 return -EPERM;
3448
1da177e4
LT
3449 retval = security_task_setnice(current, nice);
3450 if (retval)
3451 return retval;
3452
3453 set_user_nice(current, nice);
3454 return 0;
3455}
3456
3457#endif
3458
3459/**
3460 * task_prio - return the priority value of a given task.
3461 * @p: the task in question.
3462 *
e69f6186 3463 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3464 * RT tasks are offset by -200. Normal tasks are centered
3465 * around 0, value goes from -16 to +15.
3466 */
36c8b586 3467int task_prio(const struct task_struct *p)
1da177e4
LT
3468{
3469 return p->prio - MAX_RT_PRIO;
3470}
3471
1da177e4
LT
3472/**
3473 * idle_cpu - is a given cpu idle currently?
3474 * @cpu: the processor in question.
e69f6186
YB
3475 *
3476 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3477 */
3478int idle_cpu(int cpu)
3479{
908a3283
TG
3480 struct rq *rq = cpu_rq(cpu);
3481
3482 if (rq->curr != rq->idle)
3483 return 0;
3484
3485 if (rq->nr_running)
3486 return 0;
3487
3488#ifdef CONFIG_SMP
3489 if (!llist_empty(&rq->wake_list))
3490 return 0;
3491#endif
3492
3493 return 1;
1da177e4
LT
3494}
3495
1da177e4
LT
3496/**
3497 * idle_task - return the idle task for a given cpu.
3498 * @cpu: the processor in question.
e69f6186
YB
3499 *
3500 * Return: The idle task for the cpu @cpu.
1da177e4 3501 */
36c8b586 3502struct task_struct *idle_task(int cpu)
1da177e4
LT
3503{
3504 return cpu_rq(cpu)->idle;
3505}
3506
3507/**
3508 * find_process_by_pid - find a process with a matching PID value.
3509 * @pid: the pid in question.
e69f6186
YB
3510 *
3511 * The task of @pid, if found. %NULL otherwise.
1da177e4 3512 */
a9957449 3513static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3514{
228ebcbe 3515 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3516}
3517
aab03e05
DF
3518/*
3519 * This function initializes the sched_dl_entity of a newly becoming
3520 * SCHED_DEADLINE task.
3521 *
3522 * Only the static values are considered here, the actual runtime and the
3523 * absolute deadline will be properly calculated when the task is enqueued
3524 * for the first time with its new policy.
3525 */
3526static void
3527__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3528{
3529 struct sched_dl_entity *dl_se = &p->dl;
3530
aab03e05
DF
3531 dl_se->dl_runtime = attr->sched_runtime;
3532 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3533 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3534 dl_se->flags = attr->sched_flags;
332ac17e 3535 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3536
3537 /*
3538 * Changing the parameters of a task is 'tricky' and we're not doing
3539 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3540 *
3541 * What we SHOULD do is delay the bandwidth release until the 0-lag
3542 * point. This would include retaining the task_struct until that time
3543 * and change dl_overflow() to not immediately decrement the current
3544 * amount.
3545 *
3546 * Instead we retain the current runtime/deadline and let the new
3547 * parameters take effect after the current reservation period lapses.
3548 * This is safe (albeit pessimistic) because the 0-lag point is always
3549 * before the current scheduling deadline.
3550 *
3551 * We can still have temporary overloads because we do not delay the
3552 * change in bandwidth until that time; so admission control is
3553 * not on the safe side. It does however guarantee tasks will never
3554 * consume more than promised.
3555 */
aab03e05
DF
3556}
3557
c13db6b1
SR
3558/*
3559 * sched_setparam() passes in -1 for its policy, to let the functions
3560 * it calls know not to change it.
3561 */
3562#define SETPARAM_POLICY -1
3563
c365c292
TG
3564static void __setscheduler_params(struct task_struct *p,
3565 const struct sched_attr *attr)
1da177e4 3566{
d50dde5a
DF
3567 int policy = attr->sched_policy;
3568
c13db6b1 3569 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3570 policy = p->policy;
3571
1da177e4 3572 p->policy = policy;
d50dde5a 3573
aab03e05
DF
3574 if (dl_policy(policy))
3575 __setparam_dl(p, attr);
39fd8fd2 3576 else if (fair_policy(policy))
d50dde5a
DF
3577 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3578
39fd8fd2
PZ
3579 /*
3580 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3581 * !rt_policy. Always setting this ensures that things like
3582 * getparam()/getattr() don't report silly values for !rt tasks.
3583 */
3584 p->rt_priority = attr->sched_priority;
383afd09 3585 p->normal_prio = normal_prio(p);
c365c292
TG
3586 set_load_weight(p);
3587}
39fd8fd2 3588
c365c292
TG
3589/* Actually do priority change: must hold pi & rq lock. */
3590static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3591 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3592{
3593 __setscheduler_params(p, attr);
d50dde5a 3594
383afd09 3595 /*
0782e63b
TG
3596 * Keep a potential priority boosting if called from
3597 * sched_setscheduler().
383afd09 3598 */
0782e63b
TG
3599 if (keep_boost)
3600 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3601 else
3602 p->prio = normal_prio(p);
383afd09 3603
aab03e05
DF
3604 if (dl_prio(p->prio))
3605 p->sched_class = &dl_sched_class;
3606 else if (rt_prio(p->prio))
ffd44db5
PZ
3607 p->sched_class = &rt_sched_class;
3608 else
3609 p->sched_class = &fair_sched_class;
1da177e4 3610}
aab03e05
DF
3611
3612static void
3613__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3614{
3615 struct sched_dl_entity *dl_se = &p->dl;
3616
3617 attr->sched_priority = p->rt_priority;
3618 attr->sched_runtime = dl_se->dl_runtime;
3619 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3620 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3621 attr->sched_flags = dl_se->flags;
3622}
3623
3624/*
3625 * This function validates the new parameters of a -deadline task.
3626 * We ask for the deadline not being zero, and greater or equal
755378a4 3627 * than the runtime, as well as the period of being zero or
332ac17e 3628 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3629 * user parameters are above the internal resolution of 1us (we
3630 * check sched_runtime only since it is always the smaller one) and
3631 * below 2^63 ns (we have to check both sched_deadline and
3632 * sched_period, as the latter can be zero).
aab03e05
DF
3633 */
3634static bool
3635__checkparam_dl(const struct sched_attr *attr)
3636{
b0827819
JL
3637 /* deadline != 0 */
3638 if (attr->sched_deadline == 0)
3639 return false;
3640
3641 /*
3642 * Since we truncate DL_SCALE bits, make sure we're at least
3643 * that big.
3644 */
3645 if (attr->sched_runtime < (1ULL << DL_SCALE))
3646 return false;
3647
3648 /*
3649 * Since we use the MSB for wrap-around and sign issues, make
3650 * sure it's not set (mind that period can be equal to zero).
3651 */
3652 if (attr->sched_deadline & (1ULL << 63) ||
3653 attr->sched_period & (1ULL << 63))
3654 return false;
3655
3656 /* runtime <= deadline <= period (if period != 0) */
3657 if ((attr->sched_period != 0 &&
3658 attr->sched_period < attr->sched_deadline) ||
3659 attr->sched_deadline < attr->sched_runtime)
3660 return false;
3661
3662 return true;
aab03e05
DF
3663}
3664
c69e8d9c
DH
3665/*
3666 * check the target process has a UID that matches the current process's
3667 */
3668static bool check_same_owner(struct task_struct *p)
3669{
3670 const struct cred *cred = current_cred(), *pcred;
3671 bool match;
3672
3673 rcu_read_lock();
3674 pcred = __task_cred(p);
9c806aa0
EB
3675 match = (uid_eq(cred->euid, pcred->euid) ||
3676 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3677 rcu_read_unlock();
3678 return match;
3679}
3680
75381608
WL
3681static bool dl_param_changed(struct task_struct *p,
3682 const struct sched_attr *attr)
3683{
3684 struct sched_dl_entity *dl_se = &p->dl;
3685
3686 if (dl_se->dl_runtime != attr->sched_runtime ||
3687 dl_se->dl_deadline != attr->sched_deadline ||
3688 dl_se->dl_period != attr->sched_period ||
3689 dl_se->flags != attr->sched_flags)
3690 return true;
3691
3692 return false;
3693}
3694
d50dde5a
DF
3695static int __sched_setscheduler(struct task_struct *p,
3696 const struct sched_attr *attr,
dbc7f069 3697 bool user, bool pi)
1da177e4 3698{
383afd09
SR
3699 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3700 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3701 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3702 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3703 unsigned long flags;
83ab0aa0 3704 const struct sched_class *prev_class;
70b97a7f 3705 struct rq *rq;
ca94c442 3706 int reset_on_fork;
1da177e4 3707
66e5393a
SR
3708 /* may grab non-irq protected spin_locks */
3709 BUG_ON(in_interrupt());
1da177e4
LT
3710recheck:
3711 /* double check policy once rq lock held */
ca94c442
LP
3712 if (policy < 0) {
3713 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3714 policy = oldpolicy = p->policy;
ca94c442 3715 } else {
7479f3c9 3716 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3717
aab03e05
DF
3718 if (policy != SCHED_DEADLINE &&
3719 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3720 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3721 policy != SCHED_IDLE)
3722 return -EINVAL;
3723 }
3724
7479f3c9
PZ
3725 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3726 return -EINVAL;
3727
1da177e4
LT
3728 /*
3729 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3730 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3731 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3732 */
0bb040a4 3733 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3734 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3735 return -EINVAL;
aab03e05
DF
3736 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3737 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3738 return -EINVAL;
3739
37e4ab3f
OC
3740 /*
3741 * Allow unprivileged RT tasks to decrease priority:
3742 */
961ccddd 3743 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3744 if (fair_policy(policy)) {
d0ea0268 3745 if (attr->sched_nice < task_nice(p) &&
eaad4513 3746 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3747 return -EPERM;
3748 }
3749
e05606d3 3750 if (rt_policy(policy)) {
a44702e8
ON
3751 unsigned long rlim_rtprio =
3752 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3753
3754 /* can't set/change the rt policy */
3755 if (policy != p->policy && !rlim_rtprio)
3756 return -EPERM;
3757
3758 /* can't increase priority */
d50dde5a
DF
3759 if (attr->sched_priority > p->rt_priority &&
3760 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3761 return -EPERM;
3762 }
c02aa73b 3763
d44753b8
JL
3764 /*
3765 * Can't set/change SCHED_DEADLINE policy at all for now
3766 * (safest behavior); in the future we would like to allow
3767 * unprivileged DL tasks to increase their relative deadline
3768 * or reduce their runtime (both ways reducing utilization)
3769 */
3770 if (dl_policy(policy))
3771 return -EPERM;
3772
dd41f596 3773 /*
c02aa73b
DH
3774 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3775 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3776 */
c02aa73b 3777 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3778 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3779 return -EPERM;
3780 }
5fe1d75f 3781
37e4ab3f 3782 /* can't change other user's priorities */
c69e8d9c 3783 if (!check_same_owner(p))
37e4ab3f 3784 return -EPERM;
ca94c442
LP
3785
3786 /* Normal users shall not reset the sched_reset_on_fork flag */
3787 if (p->sched_reset_on_fork && !reset_on_fork)
3788 return -EPERM;
37e4ab3f 3789 }
1da177e4 3790
725aad24 3791 if (user) {
b0ae1981 3792 retval = security_task_setscheduler(p);
725aad24
JF
3793 if (retval)
3794 return retval;
3795 }
3796
b29739f9
IM
3797 /*
3798 * make sure no PI-waiters arrive (or leave) while we are
3799 * changing the priority of the task:
0122ec5b 3800 *
25985edc 3801 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3802 * runqueue lock must be held.
3803 */
0122ec5b 3804 rq = task_rq_lock(p, &flags);
dc61b1d6 3805
34f971f6
PZ
3806 /*
3807 * Changing the policy of the stop threads its a very bad idea
3808 */
3809 if (p == rq->stop) {
0122ec5b 3810 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3811 return -EINVAL;
3812 }
3813
a51e9198 3814 /*
d6b1e911
TG
3815 * If not changing anything there's no need to proceed further,
3816 * but store a possible modification of reset_on_fork.
a51e9198 3817 */
d50dde5a 3818 if (unlikely(policy == p->policy)) {
d0ea0268 3819 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3820 goto change;
3821 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3822 goto change;
75381608 3823 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3824 goto change;
d50dde5a 3825
d6b1e911 3826 p->sched_reset_on_fork = reset_on_fork;
45afb173 3827 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3828 return 0;
3829 }
d50dde5a 3830change:
a51e9198 3831
dc61b1d6 3832 if (user) {
332ac17e 3833#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3834 /*
3835 * Do not allow realtime tasks into groups that have no runtime
3836 * assigned.
3837 */
3838 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3839 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3840 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3841 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3842 return -EPERM;
3843 }
dc61b1d6 3844#endif
332ac17e
DF
3845#ifdef CONFIG_SMP
3846 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3847 cpumask_t *span = rq->rd->span;
332ac17e
DF
3848
3849 /*
3850 * Don't allow tasks with an affinity mask smaller than
3851 * the entire root_domain to become SCHED_DEADLINE. We
3852 * will also fail if there's no bandwidth available.
3853 */
e4099a5e
PZ
3854 if (!cpumask_subset(span, &p->cpus_allowed) ||
3855 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3856 task_rq_unlock(rq, p, &flags);
3857 return -EPERM;
3858 }
3859 }
3860#endif
3861 }
dc61b1d6 3862
1da177e4
LT
3863 /* recheck policy now with rq lock held */
3864 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3865 policy = oldpolicy = -1;
0122ec5b 3866 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3867 goto recheck;
3868 }
332ac17e
DF
3869
3870 /*
3871 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3872 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3873 * is available.
3874 */
e4099a5e 3875 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3876 task_rq_unlock(rq, p, &flags);
3877 return -EBUSY;
3878 }
3879
c365c292
TG
3880 p->sched_reset_on_fork = reset_on_fork;
3881 oldprio = p->prio;
3882
dbc7f069
PZ
3883 if (pi) {
3884 /*
3885 * Take priority boosted tasks into account. If the new
3886 * effective priority is unchanged, we just store the new
3887 * normal parameters and do not touch the scheduler class and
3888 * the runqueue. This will be done when the task deboost
3889 * itself.
3890 */
3891 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3892 if (new_effective_prio == oldprio) {
3893 __setscheduler_params(p, attr);
3894 task_rq_unlock(rq, p, &flags);
3895 return 0;
3896 }
c365c292
TG
3897 }
3898
da0c1e65 3899 queued = task_on_rq_queued(p);
051a1d1a 3900 running = task_current(rq, p);
da0c1e65 3901 if (queued)
4ca9b72b 3902 dequeue_task(rq, p, 0);
0e1f3483 3903 if (running)
f3cd1c4e 3904 put_prev_task(rq, p);
f6b53205 3905
83ab0aa0 3906 prev_class = p->sched_class;
dbc7f069 3907 __setscheduler(rq, p, attr, pi);
f6b53205 3908
0e1f3483
HS
3909 if (running)
3910 p->sched_class->set_curr_task(rq);
da0c1e65 3911 if (queued) {
81a44c54
TG
3912 /*
3913 * We enqueue to tail when the priority of a task is
3914 * increased (user space view).
3915 */
3916 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3917 }
cb469845 3918
da7a735e 3919 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3920 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3921 task_rq_unlock(rq, p, &flags);
b29739f9 3922
dbc7f069
PZ
3923 if (pi)
3924 rt_mutex_adjust_pi(p);
95e02ca9 3925
4c9a4bc8
PZ
3926 /*
3927 * Run balance callbacks after we've adjusted the PI chain.
3928 */
3929 balance_callback(rq);
3930 preempt_enable();
95e02ca9 3931
1da177e4
LT
3932 return 0;
3933}
961ccddd 3934
7479f3c9
PZ
3935static int _sched_setscheduler(struct task_struct *p, int policy,
3936 const struct sched_param *param, bool check)
3937{
3938 struct sched_attr attr = {
3939 .sched_policy = policy,
3940 .sched_priority = param->sched_priority,
3941 .sched_nice = PRIO_TO_NICE(p->static_prio),
3942 };
3943
c13db6b1
SR
3944 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3945 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3946 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3947 policy &= ~SCHED_RESET_ON_FORK;
3948 attr.sched_policy = policy;
3949 }
3950
dbc7f069 3951 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3952}
961ccddd
RR
3953/**
3954 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3955 * @p: the task in question.
3956 * @policy: new policy.
3957 * @param: structure containing the new RT priority.
3958 *
e69f6186
YB
3959 * Return: 0 on success. An error code otherwise.
3960 *
961ccddd
RR
3961 * NOTE that the task may be already dead.
3962 */
3963int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3964 const struct sched_param *param)
961ccddd 3965{
7479f3c9 3966 return _sched_setscheduler(p, policy, param, true);
961ccddd 3967}
1da177e4
LT
3968EXPORT_SYMBOL_GPL(sched_setscheduler);
3969
d50dde5a
DF
3970int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3971{
dbc7f069 3972 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
3973}
3974EXPORT_SYMBOL_GPL(sched_setattr);
3975
961ccddd
RR
3976/**
3977 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3978 * @p: the task in question.
3979 * @policy: new policy.
3980 * @param: structure containing the new RT priority.
3981 *
3982 * Just like sched_setscheduler, only don't bother checking if the
3983 * current context has permission. For example, this is needed in
3984 * stop_machine(): we create temporary high priority worker threads,
3985 * but our caller might not have that capability.
e69f6186
YB
3986 *
3987 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3988 */
3989int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3990 const struct sched_param *param)
961ccddd 3991{
7479f3c9 3992 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3993}
3994
95cdf3b7
IM
3995static int
3996do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3997{
1da177e4
LT
3998 struct sched_param lparam;
3999 struct task_struct *p;
36c8b586 4000 int retval;
1da177e4
LT
4001
4002 if (!param || pid < 0)
4003 return -EINVAL;
4004 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4005 return -EFAULT;
5fe1d75f
ON
4006
4007 rcu_read_lock();
4008 retval = -ESRCH;
1da177e4 4009 p = find_process_by_pid(pid);
5fe1d75f
ON
4010 if (p != NULL)
4011 retval = sched_setscheduler(p, policy, &lparam);
4012 rcu_read_unlock();
36c8b586 4013
1da177e4
LT
4014 return retval;
4015}
4016
d50dde5a
DF
4017/*
4018 * Mimics kernel/events/core.c perf_copy_attr().
4019 */
4020static int sched_copy_attr(struct sched_attr __user *uattr,
4021 struct sched_attr *attr)
4022{
4023 u32 size;
4024 int ret;
4025
4026 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4027 return -EFAULT;
4028
4029 /*
4030 * zero the full structure, so that a short copy will be nice.
4031 */
4032 memset(attr, 0, sizeof(*attr));
4033
4034 ret = get_user(size, &uattr->size);
4035 if (ret)
4036 return ret;
4037
4038 if (size > PAGE_SIZE) /* silly large */
4039 goto err_size;
4040
4041 if (!size) /* abi compat */
4042 size = SCHED_ATTR_SIZE_VER0;
4043
4044 if (size < SCHED_ATTR_SIZE_VER0)
4045 goto err_size;
4046
4047 /*
4048 * If we're handed a bigger struct than we know of,
4049 * ensure all the unknown bits are 0 - i.e. new
4050 * user-space does not rely on any kernel feature
4051 * extensions we dont know about yet.
4052 */
4053 if (size > sizeof(*attr)) {
4054 unsigned char __user *addr;
4055 unsigned char __user *end;
4056 unsigned char val;
4057
4058 addr = (void __user *)uattr + sizeof(*attr);
4059 end = (void __user *)uattr + size;
4060
4061 for (; addr < end; addr++) {
4062 ret = get_user(val, addr);
4063 if (ret)
4064 return ret;
4065 if (val)
4066 goto err_size;
4067 }
4068 size = sizeof(*attr);
4069 }
4070
4071 ret = copy_from_user(attr, uattr, size);
4072 if (ret)
4073 return -EFAULT;
4074
4075 /*
4076 * XXX: do we want to be lenient like existing syscalls; or do we want
4077 * to be strict and return an error on out-of-bounds values?
4078 */
75e45d51 4079 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4080
e78c7bca 4081 return 0;
d50dde5a
DF
4082
4083err_size:
4084 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4085 return -E2BIG;
d50dde5a
DF
4086}
4087
1da177e4
LT
4088/**
4089 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4090 * @pid: the pid in question.
4091 * @policy: new policy.
4092 * @param: structure containing the new RT priority.
e69f6186
YB
4093 *
4094 * Return: 0 on success. An error code otherwise.
1da177e4 4095 */
5add95d4
HC
4096SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4097 struct sched_param __user *, param)
1da177e4 4098{
c21761f1
JB
4099 /* negative values for policy are not valid */
4100 if (policy < 0)
4101 return -EINVAL;
4102
1da177e4
LT
4103 return do_sched_setscheduler(pid, policy, param);
4104}
4105
4106/**
4107 * sys_sched_setparam - set/change the RT priority of a thread
4108 * @pid: the pid in question.
4109 * @param: structure containing the new RT priority.
e69f6186
YB
4110 *
4111 * Return: 0 on success. An error code otherwise.
1da177e4 4112 */
5add95d4 4113SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4114{
c13db6b1 4115 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4116}
4117
d50dde5a
DF
4118/**
4119 * sys_sched_setattr - same as above, but with extended sched_attr
4120 * @pid: the pid in question.
5778fccf 4121 * @uattr: structure containing the extended parameters.
db66d756 4122 * @flags: for future extension.
d50dde5a 4123 */
6d35ab48
PZ
4124SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4125 unsigned int, flags)
d50dde5a
DF
4126{
4127 struct sched_attr attr;
4128 struct task_struct *p;
4129 int retval;
4130
6d35ab48 4131 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4132 return -EINVAL;
4133
143cf23d
MK
4134 retval = sched_copy_attr(uattr, &attr);
4135 if (retval)
4136 return retval;
d50dde5a 4137
b14ed2c2 4138 if ((int)attr.sched_policy < 0)
dbdb2275 4139 return -EINVAL;
d50dde5a
DF
4140
4141 rcu_read_lock();
4142 retval = -ESRCH;
4143 p = find_process_by_pid(pid);
4144 if (p != NULL)
4145 retval = sched_setattr(p, &attr);
4146 rcu_read_unlock();
4147
4148 return retval;
4149}
4150
1da177e4
LT
4151/**
4152 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4153 * @pid: the pid in question.
e69f6186
YB
4154 *
4155 * Return: On success, the policy of the thread. Otherwise, a negative error
4156 * code.
1da177e4 4157 */
5add95d4 4158SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4159{
36c8b586 4160 struct task_struct *p;
3a5c359a 4161 int retval;
1da177e4
LT
4162
4163 if (pid < 0)
3a5c359a 4164 return -EINVAL;
1da177e4
LT
4165
4166 retval = -ESRCH;
5fe85be0 4167 rcu_read_lock();
1da177e4
LT
4168 p = find_process_by_pid(pid);
4169 if (p) {
4170 retval = security_task_getscheduler(p);
4171 if (!retval)
ca94c442
LP
4172 retval = p->policy
4173 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4174 }
5fe85be0 4175 rcu_read_unlock();
1da177e4
LT
4176 return retval;
4177}
4178
4179/**
ca94c442 4180 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4181 * @pid: the pid in question.
4182 * @param: structure containing the RT priority.
e69f6186
YB
4183 *
4184 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4185 * code.
1da177e4 4186 */
5add95d4 4187SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4188{
ce5f7f82 4189 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4190 struct task_struct *p;
3a5c359a 4191 int retval;
1da177e4
LT
4192
4193 if (!param || pid < 0)
3a5c359a 4194 return -EINVAL;
1da177e4 4195
5fe85be0 4196 rcu_read_lock();
1da177e4
LT
4197 p = find_process_by_pid(pid);
4198 retval = -ESRCH;
4199 if (!p)
4200 goto out_unlock;
4201
4202 retval = security_task_getscheduler(p);
4203 if (retval)
4204 goto out_unlock;
4205
ce5f7f82
PZ
4206 if (task_has_rt_policy(p))
4207 lp.sched_priority = p->rt_priority;
5fe85be0 4208 rcu_read_unlock();
1da177e4
LT
4209
4210 /*
4211 * This one might sleep, we cannot do it with a spinlock held ...
4212 */
4213 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4214
1da177e4
LT
4215 return retval;
4216
4217out_unlock:
5fe85be0 4218 rcu_read_unlock();
1da177e4
LT
4219 return retval;
4220}
4221
d50dde5a
DF
4222static int sched_read_attr(struct sched_attr __user *uattr,
4223 struct sched_attr *attr,
4224 unsigned int usize)
4225{
4226 int ret;
4227
4228 if (!access_ok(VERIFY_WRITE, uattr, usize))
4229 return -EFAULT;
4230
4231 /*
4232 * If we're handed a smaller struct than we know of,
4233 * ensure all the unknown bits are 0 - i.e. old
4234 * user-space does not get uncomplete information.
4235 */
4236 if (usize < sizeof(*attr)) {
4237 unsigned char *addr;
4238 unsigned char *end;
4239
4240 addr = (void *)attr + usize;
4241 end = (void *)attr + sizeof(*attr);
4242
4243 for (; addr < end; addr++) {
4244 if (*addr)
22400674 4245 return -EFBIG;
d50dde5a
DF
4246 }
4247
4248 attr->size = usize;
4249 }
4250
4efbc454 4251 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4252 if (ret)
4253 return -EFAULT;
4254
22400674 4255 return 0;
d50dde5a
DF
4256}
4257
4258/**
aab03e05 4259 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4260 * @pid: the pid in question.
5778fccf 4261 * @uattr: structure containing the extended parameters.
d50dde5a 4262 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4263 * @flags: for future extension.
d50dde5a 4264 */
6d35ab48
PZ
4265SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4266 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4267{
4268 struct sched_attr attr = {
4269 .size = sizeof(struct sched_attr),
4270 };
4271 struct task_struct *p;
4272 int retval;
4273
4274 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4275 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4276 return -EINVAL;
4277
4278 rcu_read_lock();
4279 p = find_process_by_pid(pid);
4280 retval = -ESRCH;
4281 if (!p)
4282 goto out_unlock;
4283
4284 retval = security_task_getscheduler(p);
4285 if (retval)
4286 goto out_unlock;
4287
4288 attr.sched_policy = p->policy;
7479f3c9
PZ
4289 if (p->sched_reset_on_fork)
4290 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4291 if (task_has_dl_policy(p))
4292 __getparam_dl(p, &attr);
4293 else if (task_has_rt_policy(p))
d50dde5a
DF
4294 attr.sched_priority = p->rt_priority;
4295 else
d0ea0268 4296 attr.sched_nice = task_nice(p);
d50dde5a
DF
4297
4298 rcu_read_unlock();
4299
4300 retval = sched_read_attr(uattr, &attr, size);
4301 return retval;
4302
4303out_unlock:
4304 rcu_read_unlock();
4305 return retval;
4306}
4307
96f874e2 4308long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4309{
5a16f3d3 4310 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4311 struct task_struct *p;
4312 int retval;
1da177e4 4313
23f5d142 4314 rcu_read_lock();
1da177e4
LT
4315
4316 p = find_process_by_pid(pid);
4317 if (!p) {
23f5d142 4318 rcu_read_unlock();
1da177e4
LT
4319 return -ESRCH;
4320 }
4321
23f5d142 4322 /* Prevent p going away */
1da177e4 4323 get_task_struct(p);
23f5d142 4324 rcu_read_unlock();
1da177e4 4325
14a40ffc
TH
4326 if (p->flags & PF_NO_SETAFFINITY) {
4327 retval = -EINVAL;
4328 goto out_put_task;
4329 }
5a16f3d3
RR
4330 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4331 retval = -ENOMEM;
4332 goto out_put_task;
4333 }
4334 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4335 retval = -ENOMEM;
4336 goto out_free_cpus_allowed;
4337 }
1da177e4 4338 retval = -EPERM;
4c44aaaf
EB
4339 if (!check_same_owner(p)) {
4340 rcu_read_lock();
4341 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4342 rcu_read_unlock();
16303ab2 4343 goto out_free_new_mask;
4c44aaaf
EB
4344 }
4345 rcu_read_unlock();
4346 }
1da177e4 4347
b0ae1981 4348 retval = security_task_setscheduler(p);
e7834f8f 4349 if (retval)
16303ab2 4350 goto out_free_new_mask;
e7834f8f 4351
e4099a5e
PZ
4352
4353 cpuset_cpus_allowed(p, cpus_allowed);
4354 cpumask_and(new_mask, in_mask, cpus_allowed);
4355
332ac17e
DF
4356 /*
4357 * Since bandwidth control happens on root_domain basis,
4358 * if admission test is enabled, we only admit -deadline
4359 * tasks allowed to run on all the CPUs in the task's
4360 * root_domain.
4361 */
4362#ifdef CONFIG_SMP
f1e3a093
KT
4363 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4364 rcu_read_lock();
4365 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4366 retval = -EBUSY;
f1e3a093 4367 rcu_read_unlock();
16303ab2 4368 goto out_free_new_mask;
332ac17e 4369 }
f1e3a093 4370 rcu_read_unlock();
332ac17e
DF
4371 }
4372#endif
49246274 4373again:
25834c73 4374 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4375
8707d8b8 4376 if (!retval) {
5a16f3d3
RR
4377 cpuset_cpus_allowed(p, cpus_allowed);
4378 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4379 /*
4380 * We must have raced with a concurrent cpuset
4381 * update. Just reset the cpus_allowed to the
4382 * cpuset's cpus_allowed
4383 */
5a16f3d3 4384 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4385 goto again;
4386 }
4387 }
16303ab2 4388out_free_new_mask:
5a16f3d3
RR
4389 free_cpumask_var(new_mask);
4390out_free_cpus_allowed:
4391 free_cpumask_var(cpus_allowed);
4392out_put_task:
1da177e4 4393 put_task_struct(p);
1da177e4
LT
4394 return retval;
4395}
4396
4397static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4398 struct cpumask *new_mask)
1da177e4 4399{
96f874e2
RR
4400 if (len < cpumask_size())
4401 cpumask_clear(new_mask);
4402 else if (len > cpumask_size())
4403 len = cpumask_size();
4404
1da177e4
LT
4405 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4406}
4407
4408/**
4409 * sys_sched_setaffinity - set the cpu affinity of a process
4410 * @pid: pid of the process
4411 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4412 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4413 *
4414 * Return: 0 on success. An error code otherwise.
1da177e4 4415 */
5add95d4
HC
4416SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4417 unsigned long __user *, user_mask_ptr)
1da177e4 4418{
5a16f3d3 4419 cpumask_var_t new_mask;
1da177e4
LT
4420 int retval;
4421
5a16f3d3
RR
4422 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4423 return -ENOMEM;
1da177e4 4424
5a16f3d3
RR
4425 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4426 if (retval == 0)
4427 retval = sched_setaffinity(pid, new_mask);
4428 free_cpumask_var(new_mask);
4429 return retval;
1da177e4
LT
4430}
4431
96f874e2 4432long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4433{
36c8b586 4434 struct task_struct *p;
31605683 4435 unsigned long flags;
1da177e4 4436 int retval;
1da177e4 4437
23f5d142 4438 rcu_read_lock();
1da177e4
LT
4439
4440 retval = -ESRCH;
4441 p = find_process_by_pid(pid);
4442 if (!p)
4443 goto out_unlock;
4444
e7834f8f
DQ
4445 retval = security_task_getscheduler(p);
4446 if (retval)
4447 goto out_unlock;
4448
013fdb80 4449 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4450 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4451 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4452
4453out_unlock:
23f5d142 4454 rcu_read_unlock();
1da177e4 4455
9531b62f 4456 return retval;
1da177e4
LT
4457}
4458
4459/**
4460 * sys_sched_getaffinity - get the cpu affinity of a process
4461 * @pid: pid of the process
4462 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4463 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4464 *
4465 * Return: 0 on success. An error code otherwise.
1da177e4 4466 */
5add95d4
HC
4467SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4468 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4469{
4470 int ret;
f17c8607 4471 cpumask_var_t mask;
1da177e4 4472
84fba5ec 4473 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4474 return -EINVAL;
4475 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4476 return -EINVAL;
4477
f17c8607
RR
4478 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4479 return -ENOMEM;
1da177e4 4480
f17c8607
RR
4481 ret = sched_getaffinity(pid, mask);
4482 if (ret == 0) {
8bc037fb 4483 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4484
4485 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4486 ret = -EFAULT;
4487 else
cd3d8031 4488 ret = retlen;
f17c8607
RR
4489 }
4490 free_cpumask_var(mask);
1da177e4 4491
f17c8607 4492 return ret;
1da177e4
LT
4493}
4494
4495/**
4496 * sys_sched_yield - yield the current processor to other threads.
4497 *
dd41f596
IM
4498 * This function yields the current CPU to other tasks. If there are no
4499 * other threads running on this CPU then this function will return.
e69f6186
YB
4500 *
4501 * Return: 0.
1da177e4 4502 */
5add95d4 4503SYSCALL_DEFINE0(sched_yield)
1da177e4 4504{
70b97a7f 4505 struct rq *rq = this_rq_lock();
1da177e4 4506
2d72376b 4507 schedstat_inc(rq, yld_count);
4530d7ab 4508 current->sched_class->yield_task(rq);
1da177e4
LT
4509
4510 /*
4511 * Since we are going to call schedule() anyway, there's
4512 * no need to preempt or enable interrupts:
4513 */
4514 __release(rq->lock);
8a25d5de 4515 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4516 do_raw_spin_unlock(&rq->lock);
ba74c144 4517 sched_preempt_enable_no_resched();
1da177e4
LT
4518
4519 schedule();
4520
4521 return 0;
4522}
4523
02b67cc3 4524int __sched _cond_resched(void)
1da177e4 4525{
fe32d3cd 4526 if (should_resched(0)) {
a18b5d01 4527 preempt_schedule_common();
1da177e4
LT
4528 return 1;
4529 }
4530 return 0;
4531}
02b67cc3 4532EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4533
4534/*
613afbf8 4535 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4536 * call schedule, and on return reacquire the lock.
4537 *
41a2d6cf 4538 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4539 * operations here to prevent schedule() from being called twice (once via
4540 * spin_unlock(), once by hand).
4541 */
613afbf8 4542int __cond_resched_lock(spinlock_t *lock)
1da177e4 4543{
fe32d3cd 4544 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4545 int ret = 0;
4546
f607c668
PZ
4547 lockdep_assert_held(lock);
4548
4a81e832 4549 if (spin_needbreak(lock) || resched) {
1da177e4 4550 spin_unlock(lock);
d86ee480 4551 if (resched)
a18b5d01 4552 preempt_schedule_common();
95c354fe
NP
4553 else
4554 cpu_relax();
6df3cecb 4555 ret = 1;
1da177e4 4556 spin_lock(lock);
1da177e4 4557 }
6df3cecb 4558 return ret;
1da177e4 4559}
613afbf8 4560EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4561
613afbf8 4562int __sched __cond_resched_softirq(void)
1da177e4
LT
4563{
4564 BUG_ON(!in_softirq());
4565
fe32d3cd 4566 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4567 local_bh_enable();
a18b5d01 4568 preempt_schedule_common();
1da177e4
LT
4569 local_bh_disable();
4570 return 1;
4571 }
4572 return 0;
4573}
613afbf8 4574EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4575
1da177e4
LT
4576/**
4577 * yield - yield the current processor to other threads.
4578 *
8e3fabfd
PZ
4579 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4580 *
4581 * The scheduler is at all times free to pick the calling task as the most
4582 * eligible task to run, if removing the yield() call from your code breaks
4583 * it, its already broken.
4584 *
4585 * Typical broken usage is:
4586 *
4587 * while (!event)
4588 * yield();
4589 *
4590 * where one assumes that yield() will let 'the other' process run that will
4591 * make event true. If the current task is a SCHED_FIFO task that will never
4592 * happen. Never use yield() as a progress guarantee!!
4593 *
4594 * If you want to use yield() to wait for something, use wait_event().
4595 * If you want to use yield() to be 'nice' for others, use cond_resched().
4596 * If you still want to use yield(), do not!
1da177e4
LT
4597 */
4598void __sched yield(void)
4599{
4600 set_current_state(TASK_RUNNING);
4601 sys_sched_yield();
4602}
1da177e4
LT
4603EXPORT_SYMBOL(yield);
4604
d95f4122
MG
4605/**
4606 * yield_to - yield the current processor to another thread in
4607 * your thread group, or accelerate that thread toward the
4608 * processor it's on.
16addf95
RD
4609 * @p: target task
4610 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4611 *
4612 * It's the caller's job to ensure that the target task struct
4613 * can't go away on us before we can do any checks.
4614 *
e69f6186 4615 * Return:
7b270f60
PZ
4616 * true (>0) if we indeed boosted the target task.
4617 * false (0) if we failed to boost the target.
4618 * -ESRCH if there's no task to yield to.
d95f4122 4619 */
fa93384f 4620int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4621{
4622 struct task_struct *curr = current;
4623 struct rq *rq, *p_rq;
4624 unsigned long flags;
c3c18640 4625 int yielded = 0;
d95f4122
MG
4626
4627 local_irq_save(flags);
4628 rq = this_rq();
4629
4630again:
4631 p_rq = task_rq(p);
7b270f60
PZ
4632 /*
4633 * If we're the only runnable task on the rq and target rq also
4634 * has only one task, there's absolutely no point in yielding.
4635 */
4636 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4637 yielded = -ESRCH;
4638 goto out_irq;
4639 }
4640
d95f4122 4641 double_rq_lock(rq, p_rq);
39e24d8f 4642 if (task_rq(p) != p_rq) {
d95f4122
MG
4643 double_rq_unlock(rq, p_rq);
4644 goto again;
4645 }
4646
4647 if (!curr->sched_class->yield_to_task)
7b270f60 4648 goto out_unlock;
d95f4122
MG
4649
4650 if (curr->sched_class != p->sched_class)
7b270f60 4651 goto out_unlock;
d95f4122
MG
4652
4653 if (task_running(p_rq, p) || p->state)
7b270f60 4654 goto out_unlock;
d95f4122
MG
4655
4656 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4657 if (yielded) {
d95f4122 4658 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4659 /*
4660 * Make p's CPU reschedule; pick_next_entity takes care of
4661 * fairness.
4662 */
4663 if (preempt && rq != p_rq)
8875125e 4664 resched_curr(p_rq);
6d1cafd8 4665 }
d95f4122 4666
7b270f60 4667out_unlock:
d95f4122 4668 double_rq_unlock(rq, p_rq);
7b270f60 4669out_irq:
d95f4122
MG
4670 local_irq_restore(flags);
4671
7b270f60 4672 if (yielded > 0)
d95f4122
MG
4673 schedule();
4674
4675 return yielded;
4676}
4677EXPORT_SYMBOL_GPL(yield_to);
4678
1da177e4 4679/*
41a2d6cf 4680 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4681 * that process accounting knows that this is a task in IO wait state.
1da177e4 4682 */
1da177e4
LT
4683long __sched io_schedule_timeout(long timeout)
4684{
9cff8ade
N
4685 int old_iowait = current->in_iowait;
4686 struct rq *rq;
1da177e4
LT
4687 long ret;
4688
9cff8ade 4689 current->in_iowait = 1;
10d784ea 4690 blk_schedule_flush_plug(current);
9cff8ade 4691
0ff92245 4692 delayacct_blkio_start();
9cff8ade 4693 rq = raw_rq();
1da177e4
LT
4694 atomic_inc(&rq->nr_iowait);
4695 ret = schedule_timeout(timeout);
9cff8ade 4696 current->in_iowait = old_iowait;
1da177e4 4697 atomic_dec(&rq->nr_iowait);
0ff92245 4698 delayacct_blkio_end();
9cff8ade 4699
1da177e4
LT
4700 return ret;
4701}
9cff8ade 4702EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4703
4704/**
4705 * sys_sched_get_priority_max - return maximum RT priority.
4706 * @policy: scheduling class.
4707 *
e69f6186
YB
4708 * Return: On success, this syscall returns the maximum
4709 * rt_priority that can be used by a given scheduling class.
4710 * On failure, a negative error code is returned.
1da177e4 4711 */
5add95d4 4712SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4713{
4714 int ret = -EINVAL;
4715
4716 switch (policy) {
4717 case SCHED_FIFO:
4718 case SCHED_RR:
4719 ret = MAX_USER_RT_PRIO-1;
4720 break;
aab03e05 4721 case SCHED_DEADLINE:
1da177e4 4722 case SCHED_NORMAL:
b0a9499c 4723 case SCHED_BATCH:
dd41f596 4724 case SCHED_IDLE:
1da177e4
LT
4725 ret = 0;
4726 break;
4727 }
4728 return ret;
4729}
4730
4731/**
4732 * sys_sched_get_priority_min - return minimum RT priority.
4733 * @policy: scheduling class.
4734 *
e69f6186
YB
4735 * Return: On success, this syscall returns the minimum
4736 * rt_priority that can be used by a given scheduling class.
4737 * On failure, a negative error code is returned.
1da177e4 4738 */
5add95d4 4739SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4740{
4741 int ret = -EINVAL;
4742
4743 switch (policy) {
4744 case SCHED_FIFO:
4745 case SCHED_RR:
4746 ret = 1;
4747 break;
aab03e05 4748 case SCHED_DEADLINE:
1da177e4 4749 case SCHED_NORMAL:
b0a9499c 4750 case SCHED_BATCH:
dd41f596 4751 case SCHED_IDLE:
1da177e4
LT
4752 ret = 0;
4753 }
4754 return ret;
4755}
4756
4757/**
4758 * sys_sched_rr_get_interval - return the default timeslice of a process.
4759 * @pid: pid of the process.
4760 * @interval: userspace pointer to the timeslice value.
4761 *
4762 * this syscall writes the default timeslice value of a given process
4763 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4764 *
4765 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4766 * an error code.
1da177e4 4767 */
17da2bd9 4768SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4769 struct timespec __user *, interval)
1da177e4 4770{
36c8b586 4771 struct task_struct *p;
a4ec24b4 4772 unsigned int time_slice;
dba091b9
TG
4773 unsigned long flags;
4774 struct rq *rq;
3a5c359a 4775 int retval;
1da177e4 4776 struct timespec t;
1da177e4
LT
4777
4778 if (pid < 0)
3a5c359a 4779 return -EINVAL;
1da177e4
LT
4780
4781 retval = -ESRCH;
1a551ae7 4782 rcu_read_lock();
1da177e4
LT
4783 p = find_process_by_pid(pid);
4784 if (!p)
4785 goto out_unlock;
4786
4787 retval = security_task_getscheduler(p);
4788 if (retval)
4789 goto out_unlock;
4790
dba091b9 4791 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4792 time_slice = 0;
4793 if (p->sched_class->get_rr_interval)
4794 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4795 task_rq_unlock(rq, p, &flags);
a4ec24b4 4796
1a551ae7 4797 rcu_read_unlock();
a4ec24b4 4798 jiffies_to_timespec(time_slice, &t);
1da177e4 4799 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4800 return retval;
3a5c359a 4801
1da177e4 4802out_unlock:
1a551ae7 4803 rcu_read_unlock();
1da177e4
LT
4804 return retval;
4805}
4806
7c731e0a 4807static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4808
82a1fcb9 4809void sched_show_task(struct task_struct *p)
1da177e4 4810{
1da177e4 4811 unsigned long free = 0;
4e79752c 4812 int ppid;
1f8a7633 4813 unsigned long state = p->state;
1da177e4 4814
1f8a7633
TH
4815 if (state)
4816 state = __ffs(state) + 1;
28d0686c 4817 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4818 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4819#if BITS_PER_LONG == 32
1da177e4 4820 if (state == TASK_RUNNING)
3df0fc5b 4821 printk(KERN_CONT " running ");
1da177e4 4822 else
3df0fc5b 4823 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4824#else
4825 if (state == TASK_RUNNING)
3df0fc5b 4826 printk(KERN_CONT " running task ");
1da177e4 4827 else
3df0fc5b 4828 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4829#endif
4830#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4831 free = stack_not_used(p);
1da177e4 4832#endif
a90e984c 4833 ppid = 0;
4e79752c 4834 rcu_read_lock();
a90e984c
ON
4835 if (pid_alive(p))
4836 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4837 rcu_read_unlock();
3df0fc5b 4838 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4839 task_pid_nr(p), ppid,
aa47b7e0 4840 (unsigned long)task_thread_info(p)->flags);
1da177e4 4841
3d1cb205 4842 print_worker_info(KERN_INFO, p);
5fb5e6de 4843 show_stack(p, NULL);
1da177e4
LT
4844}
4845
e59e2ae2 4846void show_state_filter(unsigned long state_filter)
1da177e4 4847{
36c8b586 4848 struct task_struct *g, *p;
1da177e4 4849
4bd77321 4850#if BITS_PER_LONG == 32
3df0fc5b
PZ
4851 printk(KERN_INFO
4852 " task PC stack pid father\n");
1da177e4 4853#else
3df0fc5b
PZ
4854 printk(KERN_INFO
4855 " task PC stack pid father\n");
1da177e4 4856#endif
510f5acc 4857 rcu_read_lock();
5d07f420 4858 for_each_process_thread(g, p) {
1da177e4
LT
4859 /*
4860 * reset the NMI-timeout, listing all files on a slow
25985edc 4861 * console might take a lot of time:
1da177e4
LT
4862 */
4863 touch_nmi_watchdog();
39bc89fd 4864 if (!state_filter || (p->state & state_filter))
82a1fcb9 4865 sched_show_task(p);
5d07f420 4866 }
1da177e4 4867
04c9167f
JF
4868 touch_all_softlockup_watchdogs();
4869
dd41f596
IM
4870#ifdef CONFIG_SCHED_DEBUG
4871 sysrq_sched_debug_show();
4872#endif
510f5acc 4873 rcu_read_unlock();
e59e2ae2
IM
4874 /*
4875 * Only show locks if all tasks are dumped:
4876 */
93335a21 4877 if (!state_filter)
e59e2ae2 4878 debug_show_all_locks();
1da177e4
LT
4879}
4880
0db0628d 4881void init_idle_bootup_task(struct task_struct *idle)
1df21055 4882{
dd41f596 4883 idle->sched_class = &idle_sched_class;
1df21055
IM
4884}
4885
f340c0d1
IM
4886/**
4887 * init_idle - set up an idle thread for a given CPU
4888 * @idle: task in question
4889 * @cpu: cpu the idle task belongs to
4890 *
4891 * NOTE: this function does not set the idle thread's NEED_RESCHED
4892 * flag, to make booting more robust.
4893 */
0db0628d 4894void init_idle(struct task_struct *idle, int cpu)
1da177e4 4895{
70b97a7f 4896 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4897 unsigned long flags;
4898
25834c73
PZ
4899 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4900 raw_spin_lock(&rq->lock);
5cbd54ef 4901
5e1576ed 4902 __sched_fork(0, idle);
06b83b5f 4903 idle->state = TASK_RUNNING;
dd41f596
IM
4904 idle->se.exec_start = sched_clock();
4905
1e1b6c51 4906 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4907 /*
4908 * We're having a chicken and egg problem, even though we are
4909 * holding rq->lock, the cpu isn't yet set to this cpu so the
4910 * lockdep check in task_group() will fail.
4911 *
4912 * Similar case to sched_fork(). / Alternatively we could
4913 * use task_rq_lock() here and obtain the other rq->lock.
4914 *
4915 * Silence PROVE_RCU
4916 */
4917 rcu_read_lock();
dd41f596 4918 __set_task_cpu(idle, cpu);
6506cf6c 4919 rcu_read_unlock();
1da177e4 4920
1da177e4 4921 rq->curr = rq->idle = idle;
da0c1e65 4922 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4923#if defined(CONFIG_SMP)
4924 idle->on_cpu = 1;
4866cde0 4925#endif
25834c73
PZ
4926 raw_spin_unlock(&rq->lock);
4927 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
4928
4929 /* Set the preempt count _outside_ the spinlocks! */
01028747 4930 init_idle_preempt_count(idle, cpu);
55cd5340 4931
dd41f596
IM
4932 /*
4933 * The idle tasks have their own, simple scheduling class:
4934 */
4935 idle->sched_class = &idle_sched_class;
868baf07 4936 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4937 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4938#if defined(CONFIG_SMP)
4939 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4940#endif
19978ca6
IM
4941}
4942
f82f8042
JL
4943int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4944 const struct cpumask *trial)
4945{
4946 int ret = 1, trial_cpus;
4947 struct dl_bw *cur_dl_b;
4948 unsigned long flags;
4949
bb2bc55a
MG
4950 if (!cpumask_weight(cur))
4951 return ret;
4952
75e23e49 4953 rcu_read_lock_sched();
f82f8042
JL
4954 cur_dl_b = dl_bw_of(cpumask_any(cur));
4955 trial_cpus = cpumask_weight(trial);
4956
4957 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4958 if (cur_dl_b->bw != -1 &&
4959 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4960 ret = 0;
4961 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4962 rcu_read_unlock_sched();
f82f8042
JL
4963
4964 return ret;
4965}
4966
7f51412a
JL
4967int task_can_attach(struct task_struct *p,
4968 const struct cpumask *cs_cpus_allowed)
4969{
4970 int ret = 0;
4971
4972 /*
4973 * Kthreads which disallow setaffinity shouldn't be moved
4974 * to a new cpuset; we don't want to change their cpu
4975 * affinity and isolating such threads by their set of
4976 * allowed nodes is unnecessary. Thus, cpusets are not
4977 * applicable for such threads. This prevents checking for
4978 * success of set_cpus_allowed_ptr() on all attached tasks
4979 * before cpus_allowed may be changed.
4980 */
4981 if (p->flags & PF_NO_SETAFFINITY) {
4982 ret = -EINVAL;
4983 goto out;
4984 }
4985
4986#ifdef CONFIG_SMP
4987 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4988 cs_cpus_allowed)) {
4989 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4990 cs_cpus_allowed);
75e23e49 4991 struct dl_bw *dl_b;
7f51412a
JL
4992 bool overflow;
4993 int cpus;
4994 unsigned long flags;
4995
75e23e49
JL
4996 rcu_read_lock_sched();
4997 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4998 raw_spin_lock_irqsave(&dl_b->lock, flags);
4999 cpus = dl_bw_cpus(dest_cpu);
5000 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5001 if (overflow)
5002 ret = -EBUSY;
5003 else {
5004 /*
5005 * We reserve space for this task in the destination
5006 * root_domain, as we can't fail after this point.
5007 * We will free resources in the source root_domain
5008 * later on (see set_cpus_allowed_dl()).
5009 */
5010 __dl_add(dl_b, p->dl.dl_bw);
5011 }
5012 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5013 rcu_read_unlock_sched();
7f51412a
JL
5014
5015 }
5016#endif
5017out:
5018 return ret;
5019}
5020
1da177e4 5021#ifdef CONFIG_SMP
1da177e4 5022
e6628d5b
MG
5023#ifdef CONFIG_NUMA_BALANCING
5024/* Migrate current task p to target_cpu */
5025int migrate_task_to(struct task_struct *p, int target_cpu)
5026{
5027 struct migration_arg arg = { p, target_cpu };
5028 int curr_cpu = task_cpu(p);
5029
5030 if (curr_cpu == target_cpu)
5031 return 0;
5032
5033 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5034 return -EINVAL;
5035
5036 /* TODO: This is not properly updating schedstats */
5037
286549dc 5038 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5039 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5040}
0ec8aa00
PZ
5041
5042/*
5043 * Requeue a task on a given node and accurately track the number of NUMA
5044 * tasks on the runqueues
5045 */
5046void sched_setnuma(struct task_struct *p, int nid)
5047{
5048 struct rq *rq;
5049 unsigned long flags;
da0c1e65 5050 bool queued, running;
0ec8aa00
PZ
5051
5052 rq = task_rq_lock(p, &flags);
da0c1e65 5053 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5054 running = task_current(rq, p);
5055
da0c1e65 5056 if (queued)
0ec8aa00
PZ
5057 dequeue_task(rq, p, 0);
5058 if (running)
f3cd1c4e 5059 put_prev_task(rq, p);
0ec8aa00
PZ
5060
5061 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5062
5063 if (running)
5064 p->sched_class->set_curr_task(rq);
da0c1e65 5065 if (queued)
0ec8aa00
PZ
5066 enqueue_task(rq, p, 0);
5067 task_rq_unlock(rq, p, &flags);
5068}
5cc389bc 5069#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5070
1da177e4 5071#ifdef CONFIG_HOTPLUG_CPU
054b9108 5072/*
48c5ccae
PZ
5073 * Ensures that the idle task is using init_mm right before its cpu goes
5074 * offline.
054b9108 5075 */
48c5ccae 5076void idle_task_exit(void)
1da177e4 5077{
48c5ccae 5078 struct mm_struct *mm = current->active_mm;
e76bd8d9 5079
48c5ccae 5080 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5081
a53efe5f 5082 if (mm != &init_mm) {
48c5ccae 5083 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5084 finish_arch_post_lock_switch();
5085 }
48c5ccae 5086 mmdrop(mm);
1da177e4
LT
5087}
5088
5089/*
5d180232
PZ
5090 * Since this CPU is going 'away' for a while, fold any nr_active delta
5091 * we might have. Assumes we're called after migrate_tasks() so that the
5092 * nr_active count is stable.
5093 *
5094 * Also see the comment "Global load-average calculations".
1da177e4 5095 */
5d180232 5096static void calc_load_migrate(struct rq *rq)
1da177e4 5097{
5d180232
PZ
5098 long delta = calc_load_fold_active(rq);
5099 if (delta)
5100 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5101}
5102
3f1d2a31
PZ
5103static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5104{
5105}
5106
5107static const struct sched_class fake_sched_class = {
5108 .put_prev_task = put_prev_task_fake,
5109};
5110
5111static struct task_struct fake_task = {
5112 /*
5113 * Avoid pull_{rt,dl}_task()
5114 */
5115 .prio = MAX_PRIO + 1,
5116 .sched_class = &fake_sched_class,
5117};
5118
48f24c4d 5119/*
48c5ccae
PZ
5120 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5121 * try_to_wake_up()->select_task_rq().
5122 *
5123 * Called with rq->lock held even though we'er in stop_machine() and
5124 * there's no concurrency possible, we hold the required locks anyway
5125 * because of lock validation efforts.
1da177e4 5126 */
5e16bbc2 5127static void migrate_tasks(struct rq *dead_rq)
1da177e4 5128{
5e16bbc2 5129 struct rq *rq = dead_rq;
48c5ccae
PZ
5130 struct task_struct *next, *stop = rq->stop;
5131 int dest_cpu;
1da177e4
LT
5132
5133 /*
48c5ccae
PZ
5134 * Fudge the rq selection such that the below task selection loop
5135 * doesn't get stuck on the currently eligible stop task.
5136 *
5137 * We're currently inside stop_machine() and the rq is either stuck
5138 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5139 * either way we should never end up calling schedule() until we're
5140 * done here.
1da177e4 5141 */
48c5ccae 5142 rq->stop = NULL;
48f24c4d 5143
77bd3970
FW
5144 /*
5145 * put_prev_task() and pick_next_task() sched
5146 * class method both need to have an up-to-date
5147 * value of rq->clock[_task]
5148 */
5149 update_rq_clock(rq);
5150
5e16bbc2 5151 for (;;) {
48c5ccae
PZ
5152 /*
5153 * There's this thread running, bail when that's the only
5154 * remaining thread.
5155 */
5156 if (rq->nr_running == 1)
dd41f596 5157 break;
48c5ccae 5158
cbce1a68
PZ
5159 /*
5160 * Ensure rq->lock covers the entire task selection
5161 * until the migration.
5162 */
5163 lockdep_pin_lock(&rq->lock);
3f1d2a31 5164 next = pick_next_task(rq, &fake_task);
48c5ccae 5165 BUG_ON(!next);
79c53799 5166 next->sched_class->put_prev_task(rq, next);
e692ab53 5167
48c5ccae 5168 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5169 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5170
cbce1a68 5171 lockdep_unpin_lock(&rq->lock);
5e16bbc2
PZ
5172 rq = __migrate_task(rq, next, dest_cpu);
5173 if (rq != dead_rq) {
5174 raw_spin_unlock(&rq->lock);
5175 rq = dead_rq;
5176 raw_spin_lock(&rq->lock);
5177 }
1da177e4 5178 }
dce48a84 5179
48c5ccae 5180 rq->stop = stop;
dce48a84 5181}
1da177e4
LT
5182#endif /* CONFIG_HOTPLUG_CPU */
5183
e692ab53
NP
5184#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5185
5186static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5187 {
5188 .procname = "sched_domain",
c57baf1e 5189 .mode = 0555,
e0361851 5190 },
56992309 5191 {}
e692ab53
NP
5192};
5193
5194static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5195 {
5196 .procname = "kernel",
c57baf1e 5197 .mode = 0555,
e0361851
AD
5198 .child = sd_ctl_dir,
5199 },
56992309 5200 {}
e692ab53
NP
5201};
5202
5203static struct ctl_table *sd_alloc_ctl_entry(int n)
5204{
5205 struct ctl_table *entry =
5cf9f062 5206 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5207
e692ab53
NP
5208 return entry;
5209}
5210
6382bc90
MM
5211static void sd_free_ctl_entry(struct ctl_table **tablep)
5212{
cd790076 5213 struct ctl_table *entry;
6382bc90 5214
cd790076
MM
5215 /*
5216 * In the intermediate directories, both the child directory and
5217 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5218 * will always be set. In the lowest directory the names are
cd790076
MM
5219 * static strings and all have proc handlers.
5220 */
5221 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5222 if (entry->child)
5223 sd_free_ctl_entry(&entry->child);
cd790076
MM
5224 if (entry->proc_handler == NULL)
5225 kfree(entry->procname);
5226 }
6382bc90
MM
5227
5228 kfree(*tablep);
5229 *tablep = NULL;
5230}
5231
201c373e 5232static int min_load_idx = 0;
fd9b86d3 5233static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5234
e692ab53 5235static void
e0361851 5236set_table_entry(struct ctl_table *entry,
e692ab53 5237 const char *procname, void *data, int maxlen,
201c373e
NK
5238 umode_t mode, proc_handler *proc_handler,
5239 bool load_idx)
e692ab53 5240{
e692ab53
NP
5241 entry->procname = procname;
5242 entry->data = data;
5243 entry->maxlen = maxlen;
5244 entry->mode = mode;
5245 entry->proc_handler = proc_handler;
201c373e
NK
5246
5247 if (load_idx) {
5248 entry->extra1 = &min_load_idx;
5249 entry->extra2 = &max_load_idx;
5250 }
e692ab53
NP
5251}
5252
5253static struct ctl_table *
5254sd_alloc_ctl_domain_table(struct sched_domain *sd)
5255{
37e6bae8 5256 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5257
ad1cdc1d
MM
5258 if (table == NULL)
5259 return NULL;
5260
e0361851 5261 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5262 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5263 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5264 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5265 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5266 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5267 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5268 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5269 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5270 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5271 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5272 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5273 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5274 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5275 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5276 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5277 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5278 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5279 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5280 &sd->cache_nice_tries,
201c373e 5281 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5282 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5283 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5284 set_table_entry(&table[11], "max_newidle_lb_cost",
5285 &sd->max_newidle_lb_cost,
5286 sizeof(long), 0644, proc_doulongvec_minmax, false);
5287 set_table_entry(&table[12], "name", sd->name,
201c373e 5288 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5289 /* &table[13] is terminator */
e692ab53
NP
5290
5291 return table;
5292}
5293
be7002e6 5294static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5295{
5296 struct ctl_table *entry, *table;
5297 struct sched_domain *sd;
5298 int domain_num = 0, i;
5299 char buf[32];
5300
5301 for_each_domain(cpu, sd)
5302 domain_num++;
5303 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5304 if (table == NULL)
5305 return NULL;
e692ab53
NP
5306
5307 i = 0;
5308 for_each_domain(cpu, sd) {
5309 snprintf(buf, 32, "domain%d", i);
e692ab53 5310 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5311 entry->mode = 0555;
e692ab53
NP
5312 entry->child = sd_alloc_ctl_domain_table(sd);
5313 entry++;
5314 i++;
5315 }
5316 return table;
5317}
5318
5319static struct ctl_table_header *sd_sysctl_header;
6382bc90 5320static void register_sched_domain_sysctl(void)
e692ab53 5321{
6ad4c188 5322 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5323 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5324 char buf[32];
5325
7378547f
MM
5326 WARN_ON(sd_ctl_dir[0].child);
5327 sd_ctl_dir[0].child = entry;
5328
ad1cdc1d
MM
5329 if (entry == NULL)
5330 return;
5331
6ad4c188 5332 for_each_possible_cpu(i) {
e692ab53 5333 snprintf(buf, 32, "cpu%d", i);
e692ab53 5334 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5335 entry->mode = 0555;
e692ab53 5336 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5337 entry++;
e692ab53 5338 }
7378547f
MM
5339
5340 WARN_ON(sd_sysctl_header);
e692ab53
NP
5341 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5342}
6382bc90 5343
7378547f 5344/* may be called multiple times per register */
6382bc90
MM
5345static void unregister_sched_domain_sysctl(void)
5346{
781b0203 5347 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5348 sd_sysctl_header = NULL;
7378547f
MM
5349 if (sd_ctl_dir[0].child)
5350 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5351}
e692ab53 5352#else
6382bc90
MM
5353static void register_sched_domain_sysctl(void)
5354{
5355}
5356static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5357{
5358}
5cc389bc 5359#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5360
1f11eb6a
GH
5361static void set_rq_online(struct rq *rq)
5362{
5363 if (!rq->online) {
5364 const struct sched_class *class;
5365
c6c4927b 5366 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5367 rq->online = 1;
5368
5369 for_each_class(class) {
5370 if (class->rq_online)
5371 class->rq_online(rq);
5372 }
5373 }
5374}
5375
5376static void set_rq_offline(struct rq *rq)
5377{
5378 if (rq->online) {
5379 const struct sched_class *class;
5380
5381 for_each_class(class) {
5382 if (class->rq_offline)
5383 class->rq_offline(rq);
5384 }
5385
c6c4927b 5386 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5387 rq->online = 0;
5388 }
5389}
5390
1da177e4
LT
5391/*
5392 * migration_call - callback that gets triggered when a CPU is added.
5393 * Here we can start up the necessary migration thread for the new CPU.
5394 */
0db0628d 5395static int
48f24c4d 5396migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5397{
48f24c4d 5398 int cpu = (long)hcpu;
1da177e4 5399 unsigned long flags;
969c7921 5400 struct rq *rq = cpu_rq(cpu);
1da177e4 5401
48c5ccae 5402 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5403
1da177e4 5404 case CPU_UP_PREPARE:
a468d389 5405 rq->calc_load_update = calc_load_update;
1da177e4 5406 break;
48f24c4d 5407
1da177e4 5408 case CPU_ONLINE:
1f94ef59 5409 /* Update our root-domain */
05fa785c 5410 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5411 if (rq->rd) {
c6c4927b 5412 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5413
5414 set_rq_online(rq);
1f94ef59 5415 }
05fa785c 5416 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5417 break;
48f24c4d 5418
1da177e4 5419#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5420 case CPU_DYING:
317f3941 5421 sched_ttwu_pending();
57d885fe 5422 /* Update our root-domain */
05fa785c 5423 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5424 if (rq->rd) {
c6c4927b 5425 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5426 set_rq_offline(rq);
57d885fe 5427 }
5e16bbc2 5428 migrate_tasks(rq);
48c5ccae 5429 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5430 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5431 break;
48c5ccae 5432
5d180232 5433 case CPU_DEAD:
f319da0c 5434 calc_load_migrate(rq);
57d885fe 5435 break;
1da177e4
LT
5436#endif
5437 }
49c022e6
PZ
5438
5439 update_max_interval();
5440
1da177e4
LT
5441 return NOTIFY_OK;
5442}
5443
f38b0820
PM
5444/*
5445 * Register at high priority so that task migration (migrate_all_tasks)
5446 * happens before everything else. This has to be lower priority than
cdd6c482 5447 * the notifier in the perf_event subsystem, though.
1da177e4 5448 */
0db0628d 5449static struct notifier_block migration_notifier = {
1da177e4 5450 .notifier_call = migration_call,
50a323b7 5451 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5452};
5453
6a82b60d 5454static void set_cpu_rq_start_time(void)
a803f026
CM
5455{
5456 int cpu = smp_processor_id();
5457 struct rq *rq = cpu_rq(cpu);
5458 rq->age_stamp = sched_clock_cpu(cpu);
5459}
5460
0db0628d 5461static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5462 unsigned long action, void *hcpu)
5463{
5464 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5465 case CPU_STARTING:
5466 set_cpu_rq_start_time();
5467 return NOTIFY_OK;
3a101d05
TH
5468 case CPU_DOWN_FAILED:
5469 set_cpu_active((long)hcpu, true);
5470 return NOTIFY_OK;
5471 default:
5472 return NOTIFY_DONE;
5473 }
5474}
5475
0db0628d 5476static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5477 unsigned long action, void *hcpu)
5478{
5479 switch (action & ~CPU_TASKS_FROZEN) {
5480 case CPU_DOWN_PREPARE:
3c18d447 5481 set_cpu_active((long)hcpu, false);
3a101d05 5482 return NOTIFY_OK;
3c18d447
JL
5483 default:
5484 return NOTIFY_DONE;
3a101d05
TH
5485 }
5486}
5487
7babe8db 5488static int __init migration_init(void)
1da177e4
LT
5489{
5490 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5491 int err;
48f24c4d 5492
3a101d05 5493 /* Initialize migration for the boot CPU */
07dccf33
AM
5494 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5495 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5496 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5497 register_cpu_notifier(&migration_notifier);
7babe8db 5498
3a101d05
TH
5499 /* Register cpu active notifiers */
5500 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5501 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5502
a004cd42 5503 return 0;
1da177e4 5504}
7babe8db 5505early_initcall(migration_init);
476f3534 5506
4cb98839
PZ
5507static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5508
3e9830dc 5509#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5510
d039ac60 5511static __read_mostly int sched_debug_enabled;
f6630114 5512
d039ac60 5513static int __init sched_debug_setup(char *str)
f6630114 5514{
d039ac60 5515 sched_debug_enabled = 1;
f6630114
MT
5516
5517 return 0;
5518}
d039ac60
PZ
5519early_param("sched_debug", sched_debug_setup);
5520
5521static inline bool sched_debug(void)
5522{
5523 return sched_debug_enabled;
5524}
f6630114 5525
7c16ec58 5526static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5527 struct cpumask *groupmask)
1da177e4 5528{
4dcf6aff 5529 struct sched_group *group = sd->groups;
1da177e4 5530
96f874e2 5531 cpumask_clear(groupmask);
4dcf6aff
IM
5532
5533 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5534
5535 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5536 printk("does not load-balance\n");
4dcf6aff 5537 if (sd->parent)
3df0fc5b
PZ
5538 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5539 " has parent");
4dcf6aff 5540 return -1;
41c7ce9a
NP
5541 }
5542
333470ee
TH
5543 printk(KERN_CONT "span %*pbl level %s\n",
5544 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5545
758b2cdc 5546 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5547 printk(KERN_ERR "ERROR: domain->span does not contain "
5548 "CPU%d\n", cpu);
4dcf6aff 5549 }
758b2cdc 5550 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5551 printk(KERN_ERR "ERROR: domain->groups does not contain"
5552 " CPU%d\n", cpu);
4dcf6aff 5553 }
1da177e4 5554
4dcf6aff 5555 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5556 do {
4dcf6aff 5557 if (!group) {
3df0fc5b
PZ
5558 printk("\n");
5559 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5560 break;
5561 }
5562
758b2cdc 5563 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5564 printk(KERN_CONT "\n");
5565 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5566 break;
5567 }
1da177e4 5568
cb83b629
PZ
5569 if (!(sd->flags & SD_OVERLAP) &&
5570 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5571 printk(KERN_CONT "\n");
5572 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5573 break;
5574 }
1da177e4 5575
758b2cdc 5576 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5577
333470ee
TH
5578 printk(KERN_CONT " %*pbl",
5579 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5580 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5581 printk(KERN_CONT " (cpu_capacity = %d)",
5582 group->sgc->capacity);
381512cf 5583 }
1da177e4 5584
4dcf6aff
IM
5585 group = group->next;
5586 } while (group != sd->groups);
3df0fc5b 5587 printk(KERN_CONT "\n");
1da177e4 5588
758b2cdc 5589 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5590 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5591
758b2cdc
RR
5592 if (sd->parent &&
5593 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5594 printk(KERN_ERR "ERROR: parent span is not a superset "
5595 "of domain->span\n");
4dcf6aff
IM
5596 return 0;
5597}
1da177e4 5598
4dcf6aff
IM
5599static void sched_domain_debug(struct sched_domain *sd, int cpu)
5600{
5601 int level = 0;
1da177e4 5602
d039ac60 5603 if (!sched_debug_enabled)
f6630114
MT
5604 return;
5605
4dcf6aff
IM
5606 if (!sd) {
5607 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5608 return;
5609 }
1da177e4 5610
4dcf6aff
IM
5611 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5612
5613 for (;;) {
4cb98839 5614 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5615 break;
1da177e4
LT
5616 level++;
5617 sd = sd->parent;
33859f7f 5618 if (!sd)
4dcf6aff
IM
5619 break;
5620 }
1da177e4 5621}
6d6bc0ad 5622#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5623# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5624static inline bool sched_debug(void)
5625{
5626 return false;
5627}
6d6bc0ad 5628#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5629
1a20ff27 5630static int sd_degenerate(struct sched_domain *sd)
245af2c7 5631{
758b2cdc 5632 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5633 return 1;
5634
5635 /* Following flags need at least 2 groups */
5636 if (sd->flags & (SD_LOAD_BALANCE |
5637 SD_BALANCE_NEWIDLE |
5638 SD_BALANCE_FORK |
89c4710e 5639 SD_BALANCE_EXEC |
5d4dfddd 5640 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5641 SD_SHARE_PKG_RESOURCES |
5642 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5643 if (sd->groups != sd->groups->next)
5644 return 0;
5645 }
5646
5647 /* Following flags don't use groups */
c88d5910 5648 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5649 return 0;
5650
5651 return 1;
5652}
5653
48f24c4d
IM
5654static int
5655sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5656{
5657 unsigned long cflags = sd->flags, pflags = parent->flags;
5658
5659 if (sd_degenerate(parent))
5660 return 1;
5661
758b2cdc 5662 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5663 return 0;
5664
245af2c7
SS
5665 /* Flags needing groups don't count if only 1 group in parent */
5666 if (parent->groups == parent->groups->next) {
5667 pflags &= ~(SD_LOAD_BALANCE |
5668 SD_BALANCE_NEWIDLE |
5669 SD_BALANCE_FORK |
89c4710e 5670 SD_BALANCE_EXEC |
5d4dfddd 5671 SD_SHARE_CPUCAPACITY |
10866e62 5672 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5673 SD_PREFER_SIBLING |
5674 SD_SHARE_POWERDOMAIN);
5436499e
KC
5675 if (nr_node_ids == 1)
5676 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5677 }
5678 if (~cflags & pflags)
5679 return 0;
5680
5681 return 1;
5682}
5683
dce840a0 5684static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5685{
dce840a0 5686 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5687
68e74568 5688 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5689 cpudl_cleanup(&rd->cpudl);
1baca4ce 5690 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5691 free_cpumask_var(rd->rto_mask);
5692 free_cpumask_var(rd->online);
5693 free_cpumask_var(rd->span);
5694 kfree(rd);
5695}
5696
57d885fe
GH
5697static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5698{
a0490fa3 5699 struct root_domain *old_rd = NULL;
57d885fe 5700 unsigned long flags;
57d885fe 5701
05fa785c 5702 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5703
5704 if (rq->rd) {
a0490fa3 5705 old_rd = rq->rd;
57d885fe 5706
c6c4927b 5707 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5708 set_rq_offline(rq);
57d885fe 5709
c6c4927b 5710 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5711
a0490fa3 5712 /*
0515973f 5713 * If we dont want to free the old_rd yet then
a0490fa3
IM
5714 * set old_rd to NULL to skip the freeing later
5715 * in this function:
5716 */
5717 if (!atomic_dec_and_test(&old_rd->refcount))
5718 old_rd = NULL;
57d885fe
GH
5719 }
5720
5721 atomic_inc(&rd->refcount);
5722 rq->rd = rd;
5723
c6c4927b 5724 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5725 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5726 set_rq_online(rq);
57d885fe 5727
05fa785c 5728 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5729
5730 if (old_rd)
dce840a0 5731 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5732}
5733
68c38fc3 5734static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5735{
5736 memset(rd, 0, sizeof(*rd));
5737
68c38fc3 5738 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5739 goto out;
68c38fc3 5740 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5741 goto free_span;
1baca4ce 5742 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5743 goto free_online;
1baca4ce
JL
5744 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5745 goto free_dlo_mask;
6e0534f2 5746
332ac17e 5747 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5748 if (cpudl_init(&rd->cpudl) != 0)
5749 goto free_dlo_mask;
332ac17e 5750
68c38fc3 5751 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5752 goto free_rto_mask;
c6c4927b 5753 return 0;
6e0534f2 5754
68e74568
RR
5755free_rto_mask:
5756 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5757free_dlo_mask:
5758 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5759free_online:
5760 free_cpumask_var(rd->online);
5761free_span:
5762 free_cpumask_var(rd->span);
0c910d28 5763out:
c6c4927b 5764 return -ENOMEM;
57d885fe
GH
5765}
5766
029632fb
PZ
5767/*
5768 * By default the system creates a single root-domain with all cpus as
5769 * members (mimicking the global state we have today).
5770 */
5771struct root_domain def_root_domain;
5772
57d885fe
GH
5773static void init_defrootdomain(void)
5774{
68c38fc3 5775 init_rootdomain(&def_root_domain);
c6c4927b 5776
57d885fe
GH
5777 atomic_set(&def_root_domain.refcount, 1);
5778}
5779
dc938520 5780static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5781{
5782 struct root_domain *rd;
5783
5784 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5785 if (!rd)
5786 return NULL;
5787
68c38fc3 5788 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5789 kfree(rd);
5790 return NULL;
5791 }
57d885fe
GH
5792
5793 return rd;
5794}
5795
63b2ca30 5796static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5797{
5798 struct sched_group *tmp, *first;
5799
5800 if (!sg)
5801 return;
5802
5803 first = sg;
5804 do {
5805 tmp = sg->next;
5806
63b2ca30
NP
5807 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5808 kfree(sg->sgc);
e3589f6c
PZ
5809
5810 kfree(sg);
5811 sg = tmp;
5812 } while (sg != first);
5813}
5814
dce840a0
PZ
5815static void free_sched_domain(struct rcu_head *rcu)
5816{
5817 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5818
5819 /*
5820 * If its an overlapping domain it has private groups, iterate and
5821 * nuke them all.
5822 */
5823 if (sd->flags & SD_OVERLAP) {
5824 free_sched_groups(sd->groups, 1);
5825 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5826 kfree(sd->groups->sgc);
dce840a0 5827 kfree(sd->groups);
9c3f75cb 5828 }
dce840a0
PZ
5829 kfree(sd);
5830}
5831
5832static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5833{
5834 call_rcu(&sd->rcu, free_sched_domain);
5835}
5836
5837static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5838{
5839 for (; sd; sd = sd->parent)
5840 destroy_sched_domain(sd, cpu);
5841}
5842
518cd623
PZ
5843/*
5844 * Keep a special pointer to the highest sched_domain that has
5845 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5846 * allows us to avoid some pointer chasing select_idle_sibling().
5847 *
5848 * Also keep a unique ID per domain (we use the first cpu number in
5849 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5850 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5851 */
5852DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5853DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5854DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5855DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5856DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5857DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5858
5859static void update_top_cache_domain(int cpu)
5860{
5861 struct sched_domain *sd;
5d4cf996 5862 struct sched_domain *busy_sd = NULL;
518cd623 5863 int id = cpu;
7d9ffa89 5864 int size = 1;
518cd623
PZ
5865
5866 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5867 if (sd) {
518cd623 5868 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5869 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5870 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5871 }
5d4cf996 5872 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5873
5874 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5875 per_cpu(sd_llc_size, cpu) = size;
518cd623 5876 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5877
5878 sd = lowest_flag_domain(cpu, SD_NUMA);
5879 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5880
5881 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5882 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5883}
5884
1da177e4 5885/*
0eab9146 5886 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5887 * hold the hotplug lock.
5888 */
0eab9146
IM
5889static void
5890cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5891{
70b97a7f 5892 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5893 struct sched_domain *tmp;
5894
5895 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5896 for (tmp = sd; tmp; ) {
245af2c7
SS
5897 struct sched_domain *parent = tmp->parent;
5898 if (!parent)
5899 break;
f29c9b1c 5900
1a848870 5901 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5902 tmp->parent = parent->parent;
1a848870
SS
5903 if (parent->parent)
5904 parent->parent->child = tmp;
10866e62
PZ
5905 /*
5906 * Transfer SD_PREFER_SIBLING down in case of a
5907 * degenerate parent; the spans match for this
5908 * so the property transfers.
5909 */
5910 if (parent->flags & SD_PREFER_SIBLING)
5911 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5912 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5913 } else
5914 tmp = tmp->parent;
245af2c7
SS
5915 }
5916
1a848870 5917 if (sd && sd_degenerate(sd)) {
dce840a0 5918 tmp = sd;
245af2c7 5919 sd = sd->parent;
dce840a0 5920 destroy_sched_domain(tmp, cpu);
1a848870
SS
5921 if (sd)
5922 sd->child = NULL;
5923 }
1da177e4 5924
4cb98839 5925 sched_domain_debug(sd, cpu);
1da177e4 5926
57d885fe 5927 rq_attach_root(rq, rd);
dce840a0 5928 tmp = rq->sd;
674311d5 5929 rcu_assign_pointer(rq->sd, sd);
dce840a0 5930 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5931
5932 update_top_cache_domain(cpu);
1da177e4
LT
5933}
5934
1da177e4
LT
5935/* Setup the mask of cpus configured for isolated domains */
5936static int __init isolated_cpu_setup(char *str)
5937{
bdddd296 5938 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5939 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5940 return 1;
5941}
5942
8927f494 5943__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5944
49a02c51 5945struct s_data {
21d42ccf 5946 struct sched_domain ** __percpu sd;
49a02c51
AH
5947 struct root_domain *rd;
5948};
5949
2109b99e 5950enum s_alloc {
2109b99e 5951 sa_rootdomain,
21d42ccf 5952 sa_sd,
dce840a0 5953 sa_sd_storage,
2109b99e
AH
5954 sa_none,
5955};
5956
c1174876
PZ
5957/*
5958 * Build an iteration mask that can exclude certain CPUs from the upwards
5959 * domain traversal.
5960 *
5961 * Asymmetric node setups can result in situations where the domain tree is of
5962 * unequal depth, make sure to skip domains that already cover the entire
5963 * range.
5964 *
5965 * In that case build_sched_domains() will have terminated the iteration early
5966 * and our sibling sd spans will be empty. Domains should always include the
5967 * cpu they're built on, so check that.
5968 *
5969 */
5970static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5971{
5972 const struct cpumask *span = sched_domain_span(sd);
5973 struct sd_data *sdd = sd->private;
5974 struct sched_domain *sibling;
5975 int i;
5976
5977 for_each_cpu(i, span) {
5978 sibling = *per_cpu_ptr(sdd->sd, i);
5979 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5980 continue;
5981
5982 cpumask_set_cpu(i, sched_group_mask(sg));
5983 }
5984}
5985
5986/*
5987 * Return the canonical balance cpu for this group, this is the first cpu
5988 * of this group that's also in the iteration mask.
5989 */
5990int group_balance_cpu(struct sched_group *sg)
5991{
5992 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5993}
5994
e3589f6c
PZ
5995static int
5996build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5997{
5998 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5999 const struct cpumask *span = sched_domain_span(sd);
6000 struct cpumask *covered = sched_domains_tmpmask;
6001 struct sd_data *sdd = sd->private;
aaecac4a 6002 struct sched_domain *sibling;
e3589f6c
PZ
6003 int i;
6004
6005 cpumask_clear(covered);
6006
6007 for_each_cpu(i, span) {
6008 struct cpumask *sg_span;
6009
6010 if (cpumask_test_cpu(i, covered))
6011 continue;
6012
aaecac4a 6013 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6014
6015 /* See the comment near build_group_mask(). */
aaecac4a 6016 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6017 continue;
6018
e3589f6c 6019 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6020 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6021
6022 if (!sg)
6023 goto fail;
6024
6025 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6026 if (sibling->child)
6027 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6028 else
e3589f6c
PZ
6029 cpumask_set_cpu(i, sg_span);
6030
6031 cpumask_or(covered, covered, sg_span);
6032
63b2ca30
NP
6033 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6034 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6035 build_group_mask(sd, sg);
6036
c3decf0d 6037 /*
63b2ca30 6038 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6039 * domains and no possible iteration will get us here, we won't
6040 * die on a /0 trap.
6041 */
ca8ce3d0 6042 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6043
c1174876
PZ
6044 /*
6045 * Make sure the first group of this domain contains the
6046 * canonical balance cpu. Otherwise the sched_domain iteration
6047 * breaks. See update_sg_lb_stats().
6048 */
74a5ce20 6049 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6050 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6051 groups = sg;
6052
6053 if (!first)
6054 first = sg;
6055 if (last)
6056 last->next = sg;
6057 last = sg;
6058 last->next = first;
6059 }
6060 sd->groups = groups;
6061
6062 return 0;
6063
6064fail:
6065 free_sched_groups(first, 0);
6066
6067 return -ENOMEM;
6068}
6069
dce840a0 6070static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6071{
dce840a0
PZ
6072 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6073 struct sched_domain *child = sd->child;
1da177e4 6074
dce840a0
PZ
6075 if (child)
6076 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6077
9c3f75cb 6078 if (sg) {
dce840a0 6079 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6080 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6081 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6082 }
dce840a0
PZ
6083
6084 return cpu;
1e9f28fa 6085}
1e9f28fa 6086
01a08546 6087/*
dce840a0
PZ
6088 * build_sched_groups will build a circular linked list of the groups
6089 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6090 * and ->cpu_capacity to 0.
e3589f6c
PZ
6091 *
6092 * Assumes the sched_domain tree is fully constructed
01a08546 6093 */
e3589f6c
PZ
6094static int
6095build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6096{
dce840a0
PZ
6097 struct sched_group *first = NULL, *last = NULL;
6098 struct sd_data *sdd = sd->private;
6099 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6100 struct cpumask *covered;
dce840a0 6101 int i;
9c1cfda2 6102
e3589f6c
PZ
6103 get_group(cpu, sdd, &sd->groups);
6104 atomic_inc(&sd->groups->ref);
6105
0936629f 6106 if (cpu != cpumask_first(span))
e3589f6c
PZ
6107 return 0;
6108
f96225fd
PZ
6109 lockdep_assert_held(&sched_domains_mutex);
6110 covered = sched_domains_tmpmask;
6111
dce840a0 6112 cpumask_clear(covered);
6711cab4 6113
dce840a0
PZ
6114 for_each_cpu(i, span) {
6115 struct sched_group *sg;
cd08e923 6116 int group, j;
6711cab4 6117
dce840a0
PZ
6118 if (cpumask_test_cpu(i, covered))
6119 continue;
6711cab4 6120
cd08e923 6121 group = get_group(i, sdd, &sg);
c1174876 6122 cpumask_setall(sched_group_mask(sg));
0601a88d 6123
dce840a0
PZ
6124 for_each_cpu(j, span) {
6125 if (get_group(j, sdd, NULL) != group)
6126 continue;
0601a88d 6127
dce840a0
PZ
6128 cpumask_set_cpu(j, covered);
6129 cpumask_set_cpu(j, sched_group_cpus(sg));
6130 }
0601a88d 6131
dce840a0
PZ
6132 if (!first)
6133 first = sg;
6134 if (last)
6135 last->next = sg;
6136 last = sg;
6137 }
6138 last->next = first;
e3589f6c
PZ
6139
6140 return 0;
0601a88d 6141}
51888ca2 6142
89c4710e 6143/*
63b2ca30 6144 * Initialize sched groups cpu_capacity.
89c4710e 6145 *
63b2ca30 6146 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6147 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6148 * Typically cpu_capacity for all the groups in a sched domain will be same
6149 * unless there are asymmetries in the topology. If there are asymmetries,
6150 * group having more cpu_capacity will pickup more load compared to the
6151 * group having less cpu_capacity.
89c4710e 6152 */
63b2ca30 6153static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6154{
e3589f6c 6155 struct sched_group *sg = sd->groups;
89c4710e 6156
94c95ba6 6157 WARN_ON(!sg);
e3589f6c
PZ
6158
6159 do {
6160 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6161 sg = sg->next;
6162 } while (sg != sd->groups);
89c4710e 6163
c1174876 6164 if (cpu != group_balance_cpu(sg))
e3589f6c 6165 return;
aae6d3dd 6166
63b2ca30
NP
6167 update_group_capacity(sd, cpu);
6168 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6169}
6170
7c16ec58
MT
6171/*
6172 * Initializers for schedule domains
6173 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6174 */
6175
1d3504fc 6176static int default_relax_domain_level = -1;
60495e77 6177int sched_domain_level_max;
1d3504fc
HS
6178
6179static int __init setup_relax_domain_level(char *str)
6180{
a841f8ce
DS
6181 if (kstrtoint(str, 0, &default_relax_domain_level))
6182 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6183
1d3504fc
HS
6184 return 1;
6185}
6186__setup("relax_domain_level=", setup_relax_domain_level);
6187
6188static void set_domain_attribute(struct sched_domain *sd,
6189 struct sched_domain_attr *attr)
6190{
6191 int request;
6192
6193 if (!attr || attr->relax_domain_level < 0) {
6194 if (default_relax_domain_level < 0)
6195 return;
6196 else
6197 request = default_relax_domain_level;
6198 } else
6199 request = attr->relax_domain_level;
6200 if (request < sd->level) {
6201 /* turn off idle balance on this domain */
c88d5910 6202 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6203 } else {
6204 /* turn on idle balance on this domain */
c88d5910 6205 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6206 }
6207}
6208
54ab4ff4
PZ
6209static void __sdt_free(const struct cpumask *cpu_map);
6210static int __sdt_alloc(const struct cpumask *cpu_map);
6211
2109b99e
AH
6212static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6213 const struct cpumask *cpu_map)
6214{
6215 switch (what) {
2109b99e 6216 case sa_rootdomain:
822ff793
PZ
6217 if (!atomic_read(&d->rd->refcount))
6218 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6219 case sa_sd:
6220 free_percpu(d->sd); /* fall through */
dce840a0 6221 case sa_sd_storage:
54ab4ff4 6222 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6223 case sa_none:
6224 break;
6225 }
6226}
3404c8d9 6227
2109b99e
AH
6228static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6229 const struct cpumask *cpu_map)
6230{
dce840a0
PZ
6231 memset(d, 0, sizeof(*d));
6232
54ab4ff4
PZ
6233 if (__sdt_alloc(cpu_map))
6234 return sa_sd_storage;
dce840a0
PZ
6235 d->sd = alloc_percpu(struct sched_domain *);
6236 if (!d->sd)
6237 return sa_sd_storage;
2109b99e 6238 d->rd = alloc_rootdomain();
dce840a0 6239 if (!d->rd)
21d42ccf 6240 return sa_sd;
2109b99e
AH
6241 return sa_rootdomain;
6242}
57d885fe 6243
dce840a0
PZ
6244/*
6245 * NULL the sd_data elements we've used to build the sched_domain and
6246 * sched_group structure so that the subsequent __free_domain_allocs()
6247 * will not free the data we're using.
6248 */
6249static void claim_allocations(int cpu, struct sched_domain *sd)
6250{
6251 struct sd_data *sdd = sd->private;
dce840a0
PZ
6252
6253 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6254 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6255
e3589f6c 6256 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6257 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6258
63b2ca30
NP
6259 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6260 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6261}
6262
cb83b629 6263#ifdef CONFIG_NUMA
cb83b629 6264static int sched_domains_numa_levels;
e3fe70b1 6265enum numa_topology_type sched_numa_topology_type;
cb83b629 6266static int *sched_domains_numa_distance;
9942f79b 6267int sched_max_numa_distance;
cb83b629
PZ
6268static struct cpumask ***sched_domains_numa_masks;
6269static int sched_domains_curr_level;
143e1e28 6270#endif
cb83b629 6271
143e1e28
VG
6272/*
6273 * SD_flags allowed in topology descriptions.
6274 *
5d4dfddd 6275 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6276 * SD_SHARE_PKG_RESOURCES - describes shared caches
6277 * SD_NUMA - describes NUMA topologies
d77b3ed5 6278 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6279 *
6280 * Odd one out:
6281 * SD_ASYM_PACKING - describes SMT quirks
6282 */
6283#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6284 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6285 SD_SHARE_PKG_RESOURCES | \
6286 SD_NUMA | \
d77b3ed5
VG
6287 SD_ASYM_PACKING | \
6288 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6289
6290static struct sched_domain *
143e1e28 6291sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6292{
6293 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6294 int sd_weight, sd_flags = 0;
6295
6296#ifdef CONFIG_NUMA
6297 /*
6298 * Ugly hack to pass state to sd_numa_mask()...
6299 */
6300 sched_domains_curr_level = tl->numa_level;
6301#endif
6302
6303 sd_weight = cpumask_weight(tl->mask(cpu));
6304
6305 if (tl->sd_flags)
6306 sd_flags = (*tl->sd_flags)();
6307 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6308 "wrong sd_flags in topology description\n"))
6309 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6310
6311 *sd = (struct sched_domain){
6312 .min_interval = sd_weight,
6313 .max_interval = 2*sd_weight,
6314 .busy_factor = 32,
870a0bb5 6315 .imbalance_pct = 125,
143e1e28
VG
6316
6317 .cache_nice_tries = 0,
6318 .busy_idx = 0,
6319 .idle_idx = 0,
cb83b629
PZ
6320 .newidle_idx = 0,
6321 .wake_idx = 0,
6322 .forkexec_idx = 0,
6323
6324 .flags = 1*SD_LOAD_BALANCE
6325 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6326 | 1*SD_BALANCE_EXEC
6327 | 1*SD_BALANCE_FORK
cb83b629 6328 | 0*SD_BALANCE_WAKE
143e1e28 6329 | 1*SD_WAKE_AFFINE
5d4dfddd 6330 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6331 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6332 | 0*SD_SERIALIZE
cb83b629 6333 | 0*SD_PREFER_SIBLING
143e1e28
VG
6334 | 0*SD_NUMA
6335 | sd_flags
cb83b629 6336 ,
143e1e28 6337
cb83b629
PZ
6338 .last_balance = jiffies,
6339 .balance_interval = sd_weight,
143e1e28 6340 .smt_gain = 0,
2b4cfe64
JL
6341 .max_newidle_lb_cost = 0,
6342 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6343#ifdef CONFIG_SCHED_DEBUG
6344 .name = tl->name,
6345#endif
cb83b629 6346 };
cb83b629
PZ
6347
6348 /*
143e1e28 6349 * Convert topological properties into behaviour.
cb83b629 6350 */
143e1e28 6351
5d4dfddd 6352 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6353 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6354 sd->imbalance_pct = 110;
6355 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6356
6357 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6358 sd->imbalance_pct = 117;
6359 sd->cache_nice_tries = 1;
6360 sd->busy_idx = 2;
6361
6362#ifdef CONFIG_NUMA
6363 } else if (sd->flags & SD_NUMA) {
6364 sd->cache_nice_tries = 2;
6365 sd->busy_idx = 3;
6366 sd->idle_idx = 2;
6367
6368 sd->flags |= SD_SERIALIZE;
6369 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6370 sd->flags &= ~(SD_BALANCE_EXEC |
6371 SD_BALANCE_FORK |
6372 SD_WAKE_AFFINE);
6373 }
6374
6375#endif
6376 } else {
6377 sd->flags |= SD_PREFER_SIBLING;
6378 sd->cache_nice_tries = 1;
6379 sd->busy_idx = 2;
6380 sd->idle_idx = 1;
6381 }
6382
6383 sd->private = &tl->data;
cb83b629
PZ
6384
6385 return sd;
6386}
6387
143e1e28
VG
6388/*
6389 * Topology list, bottom-up.
6390 */
6391static struct sched_domain_topology_level default_topology[] = {
6392#ifdef CONFIG_SCHED_SMT
6393 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6394#endif
6395#ifdef CONFIG_SCHED_MC
6396 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6397#endif
6398 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6399 { NULL, },
6400};
6401
6402struct sched_domain_topology_level *sched_domain_topology = default_topology;
6403
6404#define for_each_sd_topology(tl) \
6405 for (tl = sched_domain_topology; tl->mask; tl++)
6406
6407void set_sched_topology(struct sched_domain_topology_level *tl)
6408{
6409 sched_domain_topology = tl;
6410}
6411
6412#ifdef CONFIG_NUMA
6413
cb83b629
PZ
6414static const struct cpumask *sd_numa_mask(int cpu)
6415{
6416 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6417}
6418
d039ac60
PZ
6419static void sched_numa_warn(const char *str)
6420{
6421 static int done = false;
6422 int i,j;
6423
6424 if (done)
6425 return;
6426
6427 done = true;
6428
6429 printk(KERN_WARNING "ERROR: %s\n\n", str);
6430
6431 for (i = 0; i < nr_node_ids; i++) {
6432 printk(KERN_WARNING " ");
6433 for (j = 0; j < nr_node_ids; j++)
6434 printk(KERN_CONT "%02d ", node_distance(i,j));
6435 printk(KERN_CONT "\n");
6436 }
6437 printk(KERN_WARNING "\n");
6438}
6439
9942f79b 6440bool find_numa_distance(int distance)
d039ac60
PZ
6441{
6442 int i;
6443
6444 if (distance == node_distance(0, 0))
6445 return true;
6446
6447 for (i = 0; i < sched_domains_numa_levels; i++) {
6448 if (sched_domains_numa_distance[i] == distance)
6449 return true;
6450 }
6451
6452 return false;
6453}
6454
e3fe70b1
RR
6455/*
6456 * A system can have three types of NUMA topology:
6457 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6458 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6459 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6460 *
6461 * The difference between a glueless mesh topology and a backplane
6462 * topology lies in whether communication between not directly
6463 * connected nodes goes through intermediary nodes (where programs
6464 * could run), or through backplane controllers. This affects
6465 * placement of programs.
6466 *
6467 * The type of topology can be discerned with the following tests:
6468 * - If the maximum distance between any nodes is 1 hop, the system
6469 * is directly connected.
6470 * - If for two nodes A and B, located N > 1 hops away from each other,
6471 * there is an intermediary node C, which is < N hops away from both
6472 * nodes A and B, the system is a glueless mesh.
6473 */
6474static void init_numa_topology_type(void)
6475{
6476 int a, b, c, n;
6477
6478 n = sched_max_numa_distance;
6479
e237882b 6480 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6481 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6482 return;
6483 }
e3fe70b1
RR
6484
6485 for_each_online_node(a) {
6486 for_each_online_node(b) {
6487 /* Find two nodes furthest removed from each other. */
6488 if (node_distance(a, b) < n)
6489 continue;
6490
6491 /* Is there an intermediary node between a and b? */
6492 for_each_online_node(c) {
6493 if (node_distance(a, c) < n &&
6494 node_distance(b, c) < n) {
6495 sched_numa_topology_type =
6496 NUMA_GLUELESS_MESH;
6497 return;
6498 }
6499 }
6500
6501 sched_numa_topology_type = NUMA_BACKPLANE;
6502 return;
6503 }
6504 }
6505}
6506
cb83b629
PZ
6507static void sched_init_numa(void)
6508{
6509 int next_distance, curr_distance = node_distance(0, 0);
6510 struct sched_domain_topology_level *tl;
6511 int level = 0;
6512 int i, j, k;
6513
cb83b629
PZ
6514 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6515 if (!sched_domains_numa_distance)
6516 return;
6517
6518 /*
6519 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6520 * unique distances in the node_distance() table.
6521 *
6522 * Assumes node_distance(0,j) includes all distances in
6523 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6524 */
6525 next_distance = curr_distance;
6526 for (i = 0; i < nr_node_ids; i++) {
6527 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6528 for (k = 0; k < nr_node_ids; k++) {
6529 int distance = node_distance(i, k);
6530
6531 if (distance > curr_distance &&
6532 (distance < next_distance ||
6533 next_distance == curr_distance))
6534 next_distance = distance;
6535
6536 /*
6537 * While not a strong assumption it would be nice to know
6538 * about cases where if node A is connected to B, B is not
6539 * equally connected to A.
6540 */
6541 if (sched_debug() && node_distance(k, i) != distance)
6542 sched_numa_warn("Node-distance not symmetric");
6543
6544 if (sched_debug() && i && !find_numa_distance(distance))
6545 sched_numa_warn("Node-0 not representative");
6546 }
6547 if (next_distance != curr_distance) {
6548 sched_domains_numa_distance[level++] = next_distance;
6549 sched_domains_numa_levels = level;
6550 curr_distance = next_distance;
6551 } else break;
cb83b629 6552 }
d039ac60
PZ
6553
6554 /*
6555 * In case of sched_debug() we verify the above assumption.
6556 */
6557 if (!sched_debug())
6558 break;
cb83b629 6559 }
c123588b
AR
6560
6561 if (!level)
6562 return;
6563
cb83b629
PZ
6564 /*
6565 * 'level' contains the number of unique distances, excluding the
6566 * identity distance node_distance(i,i).
6567 *
28b4a521 6568 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6569 * numbers.
6570 */
6571
5f7865f3
TC
6572 /*
6573 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6574 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6575 * the array will contain less then 'level' members. This could be
6576 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6577 * in other functions.
6578 *
6579 * We reset it to 'level' at the end of this function.
6580 */
6581 sched_domains_numa_levels = 0;
6582
cb83b629
PZ
6583 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6584 if (!sched_domains_numa_masks)
6585 return;
6586
6587 /*
6588 * Now for each level, construct a mask per node which contains all
6589 * cpus of nodes that are that many hops away from us.
6590 */
6591 for (i = 0; i < level; i++) {
6592 sched_domains_numa_masks[i] =
6593 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6594 if (!sched_domains_numa_masks[i])
6595 return;
6596
6597 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6598 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6599 if (!mask)
6600 return;
6601
6602 sched_domains_numa_masks[i][j] = mask;
6603
6604 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6605 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6606 continue;
6607
6608 cpumask_or(mask, mask, cpumask_of_node(k));
6609 }
6610 }
6611 }
6612
143e1e28
VG
6613 /* Compute default topology size */
6614 for (i = 0; sched_domain_topology[i].mask; i++);
6615
c515db8c 6616 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6617 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6618 if (!tl)
6619 return;
6620
6621 /*
6622 * Copy the default topology bits..
6623 */
143e1e28
VG
6624 for (i = 0; sched_domain_topology[i].mask; i++)
6625 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6626
6627 /*
6628 * .. and append 'j' levels of NUMA goodness.
6629 */
6630 for (j = 0; j < level; i++, j++) {
6631 tl[i] = (struct sched_domain_topology_level){
cb83b629 6632 .mask = sd_numa_mask,
143e1e28 6633 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6634 .flags = SDTL_OVERLAP,
6635 .numa_level = j,
143e1e28 6636 SD_INIT_NAME(NUMA)
cb83b629
PZ
6637 };
6638 }
6639
6640 sched_domain_topology = tl;
5f7865f3
TC
6641
6642 sched_domains_numa_levels = level;
9942f79b 6643 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6644
6645 init_numa_topology_type();
cb83b629 6646}
301a5cba
TC
6647
6648static void sched_domains_numa_masks_set(int cpu)
6649{
6650 int i, j;
6651 int node = cpu_to_node(cpu);
6652
6653 for (i = 0; i < sched_domains_numa_levels; i++) {
6654 for (j = 0; j < nr_node_ids; j++) {
6655 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6656 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6657 }
6658 }
6659}
6660
6661static void sched_domains_numa_masks_clear(int cpu)
6662{
6663 int i, j;
6664 for (i = 0; i < sched_domains_numa_levels; i++) {
6665 for (j = 0; j < nr_node_ids; j++)
6666 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6667 }
6668}
6669
6670/*
6671 * Update sched_domains_numa_masks[level][node] array when new cpus
6672 * are onlined.
6673 */
6674static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6675 unsigned long action,
6676 void *hcpu)
6677{
6678 int cpu = (long)hcpu;
6679
6680 switch (action & ~CPU_TASKS_FROZEN) {
6681 case CPU_ONLINE:
6682 sched_domains_numa_masks_set(cpu);
6683 break;
6684
6685 case CPU_DEAD:
6686 sched_domains_numa_masks_clear(cpu);
6687 break;
6688
6689 default:
6690 return NOTIFY_DONE;
6691 }
6692
6693 return NOTIFY_OK;
cb83b629
PZ
6694}
6695#else
6696static inline void sched_init_numa(void)
6697{
6698}
301a5cba
TC
6699
6700static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6701 unsigned long action,
6702 void *hcpu)
6703{
6704 return 0;
6705}
cb83b629
PZ
6706#endif /* CONFIG_NUMA */
6707
54ab4ff4
PZ
6708static int __sdt_alloc(const struct cpumask *cpu_map)
6709{
6710 struct sched_domain_topology_level *tl;
6711 int j;
6712
27723a68 6713 for_each_sd_topology(tl) {
54ab4ff4
PZ
6714 struct sd_data *sdd = &tl->data;
6715
6716 sdd->sd = alloc_percpu(struct sched_domain *);
6717 if (!sdd->sd)
6718 return -ENOMEM;
6719
6720 sdd->sg = alloc_percpu(struct sched_group *);
6721 if (!sdd->sg)
6722 return -ENOMEM;
6723
63b2ca30
NP
6724 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725 if (!sdd->sgc)
9c3f75cb
PZ
6726 return -ENOMEM;
6727
54ab4ff4
PZ
6728 for_each_cpu(j, cpu_map) {
6729 struct sched_domain *sd;
6730 struct sched_group *sg;
63b2ca30 6731 struct sched_group_capacity *sgc;
54ab4ff4 6732
5cc389bc 6733 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6734 GFP_KERNEL, cpu_to_node(j));
6735 if (!sd)
6736 return -ENOMEM;
6737
6738 *per_cpu_ptr(sdd->sd, j) = sd;
6739
6740 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741 GFP_KERNEL, cpu_to_node(j));
6742 if (!sg)
6743 return -ENOMEM;
6744
30b4e9eb
IM
6745 sg->next = sg;
6746
54ab4ff4 6747 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6748
63b2ca30 6749 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6750 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6751 if (!sgc)
9c3f75cb
PZ
6752 return -ENOMEM;
6753
63b2ca30 6754 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6755 }
6756 }
6757
6758 return 0;
6759}
6760
6761static void __sdt_free(const struct cpumask *cpu_map)
6762{
6763 struct sched_domain_topology_level *tl;
6764 int j;
6765
27723a68 6766 for_each_sd_topology(tl) {
54ab4ff4
PZ
6767 struct sd_data *sdd = &tl->data;
6768
6769 for_each_cpu(j, cpu_map) {
fb2cf2c6 6770 struct sched_domain *sd;
6771
6772 if (sdd->sd) {
6773 sd = *per_cpu_ptr(sdd->sd, j);
6774 if (sd && (sd->flags & SD_OVERLAP))
6775 free_sched_groups(sd->groups, 0);
6776 kfree(*per_cpu_ptr(sdd->sd, j));
6777 }
6778
6779 if (sdd->sg)
6780 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6781 if (sdd->sgc)
6782 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6783 }
6784 free_percpu(sdd->sd);
fb2cf2c6 6785 sdd->sd = NULL;
54ab4ff4 6786 free_percpu(sdd->sg);
fb2cf2c6 6787 sdd->sg = NULL;
63b2ca30
NP
6788 free_percpu(sdd->sgc);
6789 sdd->sgc = NULL;
54ab4ff4
PZ
6790 }
6791}
6792
2c402dc3 6793struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6794 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795 struct sched_domain *child, int cpu)
2c402dc3 6796{
143e1e28 6797 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6798 if (!sd)
d069b916 6799 return child;
2c402dc3 6800
2c402dc3 6801 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6802 if (child) {
6803 sd->level = child->level + 1;
6804 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6805 child->parent = sd;
c75e0128 6806 sd->child = child;
6ae72dff
PZ
6807
6808 if (!cpumask_subset(sched_domain_span(child),
6809 sched_domain_span(sd))) {
6810 pr_err("BUG: arch topology borken\n");
6811#ifdef CONFIG_SCHED_DEBUG
6812 pr_err(" the %s domain not a subset of the %s domain\n",
6813 child->name, sd->name);
6814#endif
6815 /* Fixup, ensure @sd has at least @child cpus. */
6816 cpumask_or(sched_domain_span(sd),
6817 sched_domain_span(sd),
6818 sched_domain_span(child));
6819 }
6820
60495e77 6821 }
a841f8ce 6822 set_domain_attribute(sd, attr);
2c402dc3
PZ
6823
6824 return sd;
6825}
6826
2109b99e
AH
6827/*
6828 * Build sched domains for a given set of cpus and attach the sched domains
6829 * to the individual cpus
6830 */
dce840a0
PZ
6831static int build_sched_domains(const struct cpumask *cpu_map,
6832 struct sched_domain_attr *attr)
2109b99e 6833{
1c632169 6834 enum s_alloc alloc_state;
dce840a0 6835 struct sched_domain *sd;
2109b99e 6836 struct s_data d;
822ff793 6837 int i, ret = -ENOMEM;
9c1cfda2 6838
2109b99e
AH
6839 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840 if (alloc_state != sa_rootdomain)
6841 goto error;
9c1cfda2 6842
dce840a0 6843 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6844 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6845 struct sched_domain_topology_level *tl;
6846
3bd65a80 6847 sd = NULL;
27723a68 6848 for_each_sd_topology(tl) {
4a850cbe 6849 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6850 if (tl == sched_domain_topology)
6851 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6852 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853 sd->flags |= SD_OVERLAP;
d110235d
PZ
6854 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855 break;
e3589f6c 6856 }
dce840a0
PZ
6857 }
6858
6859 /* Build the groups for the domains */
6860 for_each_cpu(i, cpu_map) {
6861 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6863 if (sd->flags & SD_OVERLAP) {
6864 if (build_overlap_sched_groups(sd, i))
6865 goto error;
6866 } else {
6867 if (build_sched_groups(sd, i))
6868 goto error;
6869 }
1cf51902 6870 }
a06dadbe 6871 }
9c1cfda2 6872
ced549fa 6873 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6874 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875 if (!cpumask_test_cpu(i, cpu_map))
6876 continue;
9c1cfda2 6877
dce840a0
PZ
6878 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879 claim_allocations(i, sd);
63b2ca30 6880 init_sched_groups_capacity(i, sd);
dce840a0 6881 }
f712c0c7 6882 }
9c1cfda2 6883
1da177e4 6884 /* Attach the domains */
dce840a0 6885 rcu_read_lock();
abcd083a 6886 for_each_cpu(i, cpu_map) {
21d42ccf 6887 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6888 cpu_attach_domain(sd, d.rd, i);
1da177e4 6889 }
dce840a0 6890 rcu_read_unlock();
51888ca2 6891
822ff793 6892 ret = 0;
51888ca2 6893error:
2109b99e 6894 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6895 return ret;
1da177e4 6896}
029190c5 6897
acc3f5d7 6898static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6899static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6900static struct sched_domain_attr *dattr_cur;
6901 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6902
6903/*
6904 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6905 * cpumask) fails, then fallback to a single sched domain,
6906 * as determined by the single cpumask fallback_doms.
029190c5 6907 */
4212823f 6908static cpumask_var_t fallback_doms;
029190c5 6909
ee79d1bd
HC
6910/*
6911 * arch_update_cpu_topology lets virtualized architectures update the
6912 * cpu core maps. It is supposed to return 1 if the topology changed
6913 * or 0 if it stayed the same.
6914 */
52f5684c 6915int __weak arch_update_cpu_topology(void)
22e52b07 6916{
ee79d1bd 6917 return 0;
22e52b07
HC
6918}
6919
acc3f5d7
RR
6920cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921{
6922 int i;
6923 cpumask_var_t *doms;
6924
6925 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926 if (!doms)
6927 return NULL;
6928 for (i = 0; i < ndoms; i++) {
6929 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930 free_sched_domains(doms, i);
6931 return NULL;
6932 }
6933 }
6934 return doms;
6935}
6936
6937void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938{
6939 unsigned int i;
6940 for (i = 0; i < ndoms; i++)
6941 free_cpumask_var(doms[i]);
6942 kfree(doms);
6943}
6944
1a20ff27 6945/*
41a2d6cf 6946 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6947 * For now this just excludes isolated cpus, but could be used to
6948 * exclude other special cases in the future.
1a20ff27 6949 */
c4a8849a 6950static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6951{
7378547f
MM
6952 int err;
6953
22e52b07 6954 arch_update_cpu_topology();
029190c5 6955 ndoms_cur = 1;
acc3f5d7 6956 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6957 if (!doms_cur)
acc3f5d7
RR
6958 doms_cur = &fallback_doms;
6959 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6960 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6961 register_sched_domain_sysctl();
7378547f
MM
6962
6963 return err;
1a20ff27
DG
6964}
6965
1a20ff27
DG
6966/*
6967 * Detach sched domains from a group of cpus specified in cpu_map
6968 * These cpus will now be attached to the NULL domain
6969 */
96f874e2 6970static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6971{
6972 int i;
6973
dce840a0 6974 rcu_read_lock();
abcd083a 6975 for_each_cpu(i, cpu_map)
57d885fe 6976 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6977 rcu_read_unlock();
1a20ff27
DG
6978}
6979
1d3504fc
HS
6980/* handle null as "default" */
6981static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982 struct sched_domain_attr *new, int idx_new)
6983{
6984 struct sched_domain_attr tmp;
6985
6986 /* fast path */
6987 if (!new && !cur)
6988 return 1;
6989
6990 tmp = SD_ATTR_INIT;
6991 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992 new ? (new + idx_new) : &tmp,
6993 sizeof(struct sched_domain_attr));
6994}
6995
029190c5
PJ
6996/*
6997 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6998 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6999 * doms_new[] to the current sched domain partitioning, doms_cur[].
7000 * It destroys each deleted domain and builds each new domain.
7001 *
acc3f5d7 7002 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7003 * The masks don't intersect (don't overlap.) We should setup one
7004 * sched domain for each mask. CPUs not in any of the cpumasks will
7005 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7006 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007 * it as it is.
7008 *
acc3f5d7
RR
7009 * The passed in 'doms_new' should be allocated using
7010 * alloc_sched_domains. This routine takes ownership of it and will
7011 * free_sched_domains it when done with it. If the caller failed the
7012 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013 * and partition_sched_domains() will fallback to the single partition
7014 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7015 *
96f874e2 7016 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7017 * ndoms_new == 0 is a special case for destroying existing domains,
7018 * and it will not create the default domain.
dfb512ec 7019 *
029190c5
PJ
7020 * Call with hotplug lock held
7021 */
acc3f5d7 7022void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7023 struct sched_domain_attr *dattr_new)
029190c5 7024{
dfb512ec 7025 int i, j, n;
d65bd5ec 7026 int new_topology;
029190c5 7027
712555ee 7028 mutex_lock(&sched_domains_mutex);
a1835615 7029
7378547f
MM
7030 /* always unregister in case we don't destroy any domains */
7031 unregister_sched_domain_sysctl();
7032
d65bd5ec
HC
7033 /* Let architecture update cpu core mappings. */
7034 new_topology = arch_update_cpu_topology();
7035
dfb512ec 7036 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7037
7038 /* Destroy deleted domains */
7039 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7040 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7041 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7042 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7043 goto match1;
7044 }
7045 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7046 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7047match1:
7048 ;
7049 }
7050
c8d2d47a 7051 n = ndoms_cur;
e761b772 7052 if (doms_new == NULL) {
c8d2d47a 7053 n = 0;
acc3f5d7 7054 doms_new = &fallback_doms;
6ad4c188 7055 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7056 WARN_ON_ONCE(dattr_new);
e761b772
MK
7057 }
7058
029190c5
PJ
7059 /* Build new domains */
7060 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7061 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7062 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7063 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7064 goto match2;
7065 }
7066 /* no match - add a new doms_new */
dce840a0 7067 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7068match2:
7069 ;
7070 }
7071
7072 /* Remember the new sched domains */
acc3f5d7
RR
7073 if (doms_cur != &fallback_doms)
7074 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7075 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7076 doms_cur = doms_new;
1d3504fc 7077 dattr_cur = dattr_new;
029190c5 7078 ndoms_cur = ndoms_new;
7378547f
MM
7079
7080 register_sched_domain_sysctl();
a1835615 7081
712555ee 7082 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7083}
7084
d35be8ba
SB
7085static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7086
1da177e4 7087/*
3a101d05
TH
7088 * Update cpusets according to cpu_active mask. If cpusets are
7089 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090 * around partition_sched_domains().
d35be8ba
SB
7091 *
7092 * If we come here as part of a suspend/resume, don't touch cpusets because we
7093 * want to restore it back to its original state upon resume anyway.
1da177e4 7094 */
0b2e918a
TH
7095static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7096 void *hcpu)
e761b772 7097{
d35be8ba
SB
7098 switch (action) {
7099 case CPU_ONLINE_FROZEN:
7100 case CPU_DOWN_FAILED_FROZEN:
7101
7102 /*
7103 * num_cpus_frozen tracks how many CPUs are involved in suspend
7104 * resume sequence. As long as this is not the last online
7105 * operation in the resume sequence, just build a single sched
7106 * domain, ignoring cpusets.
7107 */
7108 num_cpus_frozen--;
7109 if (likely(num_cpus_frozen)) {
7110 partition_sched_domains(1, NULL, NULL);
7111 break;
7112 }
7113
7114 /*
7115 * This is the last CPU online operation. So fall through and
7116 * restore the original sched domains by considering the
7117 * cpuset configurations.
7118 */
7119
e761b772 7120 case CPU_ONLINE:
7ddf96b0 7121 cpuset_update_active_cpus(true);
d35be8ba 7122 break;
3a101d05
TH
7123 default:
7124 return NOTIFY_DONE;
7125 }
d35be8ba 7126 return NOTIFY_OK;
3a101d05 7127}
e761b772 7128
0b2e918a
TH
7129static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7130 void *hcpu)
3a101d05 7131{
3c18d447
JL
7132 unsigned long flags;
7133 long cpu = (long)hcpu;
7134 struct dl_bw *dl_b;
533445c6
OS
7135 bool overflow;
7136 int cpus;
3c18d447 7137
533445c6 7138 switch (action) {
3a101d05 7139 case CPU_DOWN_PREPARE:
533445c6
OS
7140 rcu_read_lock_sched();
7141 dl_b = dl_bw_of(cpu);
3c18d447 7142
533445c6
OS
7143 raw_spin_lock_irqsave(&dl_b->lock, flags);
7144 cpus = dl_bw_cpus(cpu);
7145 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7146 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7147
533445c6 7148 rcu_read_unlock_sched();
3c18d447 7149
533445c6
OS
7150 if (overflow)
7151 return notifier_from_errno(-EBUSY);
7ddf96b0 7152 cpuset_update_active_cpus(false);
d35be8ba
SB
7153 break;
7154 case CPU_DOWN_PREPARE_FROZEN:
7155 num_cpus_frozen++;
7156 partition_sched_domains(1, NULL, NULL);
7157 break;
e761b772
MK
7158 default:
7159 return NOTIFY_DONE;
7160 }
d35be8ba 7161 return NOTIFY_OK;
e761b772 7162}
e761b772 7163
1da177e4
LT
7164void __init sched_init_smp(void)
7165{
dcc30a35
RR
7166 cpumask_var_t non_isolated_cpus;
7167
7168 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7169 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7170
8cb9764f
CM
7171 /* nohz_full won't take effect without isolating the cpus. */
7172 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7173
cb83b629
PZ
7174 sched_init_numa();
7175
6acce3ef
PZ
7176 /*
7177 * There's no userspace yet to cause hotplug operations; hence all the
7178 * cpu masks are stable and all blatant races in the below code cannot
7179 * happen.
7180 */
712555ee 7181 mutex_lock(&sched_domains_mutex);
c4a8849a 7182 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7183 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7184 if (cpumask_empty(non_isolated_cpus))
7185 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7186 mutex_unlock(&sched_domains_mutex);
e761b772 7187
301a5cba 7188 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7189 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7190 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7191
b328ca18 7192 init_hrtick();
5c1e1767
NP
7193
7194 /* Move init over to a non-isolated CPU */
dcc30a35 7195 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7196 BUG();
19978ca6 7197 sched_init_granularity();
dcc30a35 7198 free_cpumask_var(non_isolated_cpus);
4212823f 7199
0e3900e6 7200 init_sched_rt_class();
1baca4ce 7201 init_sched_dl_class();
1da177e4
LT
7202}
7203#else
7204void __init sched_init_smp(void)
7205{
19978ca6 7206 sched_init_granularity();
1da177e4
LT
7207}
7208#endif /* CONFIG_SMP */
7209
7210int in_sched_functions(unsigned long addr)
7211{
1da177e4
LT
7212 return in_lock_functions(addr) ||
7213 (addr >= (unsigned long)__sched_text_start
7214 && addr < (unsigned long)__sched_text_end);
7215}
7216
029632fb 7217#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7218/*
7219 * Default task group.
7220 * Every task in system belongs to this group at bootup.
7221 */
029632fb 7222struct task_group root_task_group;
35cf4e50 7223LIST_HEAD(task_groups);
052f1dc7 7224#endif
6f505b16 7225
e6252c3e 7226DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7227
1da177e4
LT
7228void __init sched_init(void)
7229{
dd41f596 7230 int i, j;
434d53b0
MT
7231 unsigned long alloc_size = 0, ptr;
7232
7233#ifdef CONFIG_FAIR_GROUP_SCHED
7234 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235#endif
7236#ifdef CONFIG_RT_GROUP_SCHED
7237 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238#endif
434d53b0 7239 if (alloc_size) {
36b7b6d4 7240 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7241
7242#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7243 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7244 ptr += nr_cpu_ids * sizeof(void **);
7245
07e06b01 7246 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7247 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7248
6d6bc0ad 7249#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7250#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7251 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7252 ptr += nr_cpu_ids * sizeof(void **);
7253
07e06b01 7254 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7255 ptr += nr_cpu_ids * sizeof(void **);
7256
6d6bc0ad 7257#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7258 }
df7c8e84 7259#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7260 for_each_possible_cpu(i) {
7261 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7262 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7263 }
b74e6278 7264#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7265
332ac17e
DF
7266 init_rt_bandwidth(&def_rt_bandwidth,
7267 global_rt_period(), global_rt_runtime());
7268 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7269 global_rt_period(), global_rt_runtime());
332ac17e 7270
57d885fe
GH
7271#ifdef CONFIG_SMP
7272 init_defrootdomain();
7273#endif
7274
d0b27fa7 7275#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7276 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7277 global_rt_period(), global_rt_runtime());
6d6bc0ad 7278#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7279
7c941438 7280#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7281 list_add(&root_task_group.list, &task_groups);
7282 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7283 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7284 autogroup_init(&init_task);
54c707e9 7285
7c941438 7286#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7287
0a945022 7288 for_each_possible_cpu(i) {
70b97a7f 7289 struct rq *rq;
1da177e4
LT
7290
7291 rq = cpu_rq(i);
05fa785c 7292 raw_spin_lock_init(&rq->lock);
7897986b 7293 rq->nr_running = 0;
dce48a84
TG
7294 rq->calc_load_active = 0;
7295 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7296 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7297 init_rt_rq(&rq->rt);
7298 init_dl_rq(&rq->dl);
dd41f596 7299#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7300 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7301 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7302 /*
07e06b01 7303 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7304 *
7305 * In case of task-groups formed thr' the cgroup filesystem, it
7306 * gets 100% of the cpu resources in the system. This overall
7307 * system cpu resource is divided among the tasks of
07e06b01 7308 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7309 * based on each entity's (task or task-group's) weight
7310 * (se->load.weight).
7311 *
07e06b01 7312 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7313 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7314 * then A0's share of the cpu resource is:
7315 *
0d905bca 7316 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7317 *
07e06b01
YZ
7318 * We achieve this by letting root_task_group's tasks sit
7319 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7320 */
ab84d31e 7321 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7322 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7323#endif /* CONFIG_FAIR_GROUP_SCHED */
7324
7325 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7326#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7327 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7328#endif
1da177e4 7329
dd41f596
IM
7330 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7331 rq->cpu_load[j] = 0;
fdf3e95d
VP
7332
7333 rq->last_load_update_tick = jiffies;
7334
1da177e4 7335#ifdef CONFIG_SMP
41c7ce9a 7336 rq->sd = NULL;
57d885fe 7337 rq->rd = NULL;
ca6d75e6 7338 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7339 rq->balance_callback = NULL;
1da177e4 7340 rq->active_balance = 0;
dd41f596 7341 rq->next_balance = jiffies;
1da177e4 7342 rq->push_cpu = 0;
0a2966b4 7343 rq->cpu = i;
1f11eb6a 7344 rq->online = 0;
eae0c9df
MG
7345 rq->idle_stamp = 0;
7346 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7347 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7348
7349 INIT_LIST_HEAD(&rq->cfs_tasks);
7350
dc938520 7351 rq_attach_root(rq, &def_root_domain);
3451d024 7352#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7353 rq->nohz_flags = 0;
83cd4fe2 7354#endif
265f22a9
FW
7355#ifdef CONFIG_NO_HZ_FULL
7356 rq->last_sched_tick = 0;
7357#endif
1da177e4 7358#endif
8f4d37ec 7359 init_rq_hrtick(rq);
1da177e4 7360 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7361 }
7362
2dd73a4f 7363 set_load_weight(&init_task);
b50f60ce 7364
e107be36
AK
7365#ifdef CONFIG_PREEMPT_NOTIFIERS
7366 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7367#endif
7368
1da177e4
LT
7369 /*
7370 * The boot idle thread does lazy MMU switching as well:
7371 */
7372 atomic_inc(&init_mm.mm_count);
7373 enter_lazy_tlb(&init_mm, current);
7374
1b537c7d
YD
7375 /*
7376 * During early bootup we pretend to be a normal task:
7377 */
7378 current->sched_class = &fair_sched_class;
7379
1da177e4
LT
7380 /*
7381 * Make us the idle thread. Technically, schedule() should not be
7382 * called from this thread, however somewhere below it might be,
7383 * but because we are the idle thread, we just pick up running again
7384 * when this runqueue becomes "idle".
7385 */
7386 init_idle(current, smp_processor_id());
dce48a84
TG
7387
7388 calc_load_update = jiffies + LOAD_FREQ;
7389
bf4d83f6 7390#ifdef CONFIG_SMP
4cb98839 7391 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7392 /* May be allocated at isolcpus cmdline parse time */
7393 if (cpu_isolated_map == NULL)
7394 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7395 idle_thread_set_boot_cpu();
a803f026 7396 set_cpu_rq_start_time();
029632fb
PZ
7397#endif
7398 init_sched_fair_class();
6a7b3dc3 7399
6892b75e 7400 scheduler_running = 1;
1da177e4
LT
7401}
7402
d902db1e 7403#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7404static inline int preempt_count_equals(int preempt_offset)
7405{
234da7bc 7406 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7407
4ba8216c 7408 return (nested == preempt_offset);
e4aafea2
FW
7409}
7410
d894837f 7411void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7412{
8eb23b9f
PZ
7413 /*
7414 * Blocking primitives will set (and therefore destroy) current->state,
7415 * since we will exit with TASK_RUNNING make sure we enter with it,
7416 * otherwise we will destroy state.
7417 */
00845eb9 7418 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7419 "do not call blocking ops when !TASK_RUNNING; "
7420 "state=%lx set at [<%p>] %pS\n",
7421 current->state,
7422 (void *)current->task_state_change,
00845eb9 7423 (void *)current->task_state_change);
8eb23b9f 7424
3427445a
PZ
7425 ___might_sleep(file, line, preempt_offset);
7426}
7427EXPORT_SYMBOL(__might_sleep);
7428
7429void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7430{
1da177e4
LT
7431 static unsigned long prev_jiffy; /* ratelimiting */
7432
b3fbab05 7433 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7434 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7435 !is_idle_task(current)) ||
e4aafea2 7436 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7437 return;
7438 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7439 return;
7440 prev_jiffy = jiffies;
7441
3df0fc5b
PZ
7442 printk(KERN_ERR
7443 "BUG: sleeping function called from invalid context at %s:%d\n",
7444 file, line);
7445 printk(KERN_ERR
7446 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7447 in_atomic(), irqs_disabled(),
7448 current->pid, current->comm);
aef745fc 7449
a8b686b3
ES
7450 if (task_stack_end_corrupted(current))
7451 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7452
aef745fc
IM
7453 debug_show_held_locks(current);
7454 if (irqs_disabled())
7455 print_irqtrace_events(current);
8f47b187
TG
7456#ifdef CONFIG_DEBUG_PREEMPT
7457 if (!preempt_count_equals(preempt_offset)) {
7458 pr_err("Preemption disabled at:");
7459 print_ip_sym(current->preempt_disable_ip);
7460 pr_cont("\n");
7461 }
7462#endif
aef745fc 7463 dump_stack();
1da177e4 7464}
3427445a 7465EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7466#endif
7467
7468#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7469void normalize_rt_tasks(void)
3a5e4dc1 7470{
dbc7f069 7471 struct task_struct *g, *p;
d50dde5a
DF
7472 struct sched_attr attr = {
7473 .sched_policy = SCHED_NORMAL,
7474 };
1da177e4 7475
3472eaa1 7476 read_lock(&tasklist_lock);
5d07f420 7477 for_each_process_thread(g, p) {
178be793
IM
7478 /*
7479 * Only normalize user tasks:
7480 */
3472eaa1 7481 if (p->flags & PF_KTHREAD)
178be793
IM
7482 continue;
7483
6cfb0d5d 7484 p->se.exec_start = 0;
6cfb0d5d 7485#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7486 p->se.statistics.wait_start = 0;
7487 p->se.statistics.sleep_start = 0;
7488 p->se.statistics.block_start = 0;
6cfb0d5d 7489#endif
dd41f596 7490
aab03e05 7491 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7492 /*
7493 * Renice negative nice level userspace
7494 * tasks back to 0:
7495 */
3472eaa1 7496 if (task_nice(p) < 0)
dd41f596 7497 set_user_nice(p, 0);
1da177e4 7498 continue;
dd41f596 7499 }
1da177e4 7500
dbc7f069 7501 __sched_setscheduler(p, &attr, false, false);
5d07f420 7502 }
3472eaa1 7503 read_unlock(&tasklist_lock);
1da177e4
LT
7504}
7505
7506#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7507
67fc4e0c 7508#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7509/*
67fc4e0c 7510 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7511 *
7512 * They can only be called when the whole system has been
7513 * stopped - every CPU needs to be quiescent, and no scheduling
7514 * activity can take place. Using them for anything else would
7515 * be a serious bug, and as a result, they aren't even visible
7516 * under any other configuration.
7517 */
7518
7519/**
7520 * curr_task - return the current task for a given cpu.
7521 * @cpu: the processor in question.
7522 *
7523 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7524 *
7525 * Return: The current task for @cpu.
1df5c10a 7526 */
36c8b586 7527struct task_struct *curr_task(int cpu)
1df5c10a
LT
7528{
7529 return cpu_curr(cpu);
7530}
7531
67fc4e0c
JW
7532#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7533
7534#ifdef CONFIG_IA64
1df5c10a
LT
7535/**
7536 * set_curr_task - set the current task for a given cpu.
7537 * @cpu: the processor in question.
7538 * @p: the task pointer to set.
7539 *
7540 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7541 * are serviced on a separate stack. It allows the architecture to switch the
7542 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7543 * must be called with all CPU's synchronized, and interrupts disabled, the
7544 * and caller must save the original value of the current task (see
7545 * curr_task() above) and restore that value before reenabling interrupts and
7546 * re-starting the system.
7547 *
7548 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7549 */
36c8b586 7550void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7551{
7552 cpu_curr(cpu) = p;
7553}
7554
7555#endif
29f59db3 7556
7c941438 7557#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7558/* task_group_lock serializes the addition/removal of task groups */
7559static DEFINE_SPINLOCK(task_group_lock);
7560
bccbe08a
PZ
7561static void free_sched_group(struct task_group *tg)
7562{
7563 free_fair_sched_group(tg);
7564 free_rt_sched_group(tg);
e9aa1dd1 7565 autogroup_free(tg);
bccbe08a
PZ
7566 kfree(tg);
7567}
7568
7569/* allocate runqueue etc for a new task group */
ec7dc8ac 7570struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7571{
7572 struct task_group *tg;
bccbe08a
PZ
7573
7574 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7575 if (!tg)
7576 return ERR_PTR(-ENOMEM);
7577
ec7dc8ac 7578 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7579 goto err;
7580
ec7dc8ac 7581 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7582 goto err;
7583
ace783b9
LZ
7584 return tg;
7585
7586err:
7587 free_sched_group(tg);
7588 return ERR_PTR(-ENOMEM);
7589}
7590
7591void sched_online_group(struct task_group *tg, struct task_group *parent)
7592{
7593 unsigned long flags;
7594
8ed36996 7595 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7596 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7597
7598 WARN_ON(!parent); /* root should already exist */
7599
7600 tg->parent = parent;
f473aa5e 7601 INIT_LIST_HEAD(&tg->children);
09f2724a 7602 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7603 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7604}
7605
9b5b7751 7606/* rcu callback to free various structures associated with a task group */
6f505b16 7607static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7608{
29f59db3 7609 /* now it should be safe to free those cfs_rqs */
6f505b16 7610 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7611}
7612
9b5b7751 7613/* Destroy runqueue etc associated with a task group */
4cf86d77 7614void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7615{
7616 /* wait for possible concurrent references to cfs_rqs complete */
7617 call_rcu(&tg->rcu, free_sched_group_rcu);
7618}
7619
7620void sched_offline_group(struct task_group *tg)
29f59db3 7621{
8ed36996 7622 unsigned long flags;
9b5b7751 7623 int i;
29f59db3 7624
3d4b47b4
PZ
7625 /* end participation in shares distribution */
7626 for_each_possible_cpu(i)
bccbe08a 7627 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7628
7629 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7630 list_del_rcu(&tg->list);
f473aa5e 7631 list_del_rcu(&tg->siblings);
8ed36996 7632 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7633}
7634
9b5b7751 7635/* change task's runqueue when it moves between groups.
3a252015
IM
7636 * The caller of this function should have put the task in its new group
7637 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7638 * reflect its new group.
9b5b7751
SV
7639 */
7640void sched_move_task(struct task_struct *tsk)
29f59db3 7641{
8323f26c 7642 struct task_group *tg;
da0c1e65 7643 int queued, running;
29f59db3
SV
7644 unsigned long flags;
7645 struct rq *rq;
7646
7647 rq = task_rq_lock(tsk, &flags);
7648
051a1d1a 7649 running = task_current(rq, tsk);
da0c1e65 7650 queued = task_on_rq_queued(tsk);
29f59db3 7651
da0c1e65 7652 if (queued)
29f59db3 7653 dequeue_task(rq, tsk, 0);
0e1f3483 7654 if (unlikely(running))
f3cd1c4e 7655 put_prev_task(rq, tsk);
29f59db3 7656
f7b8a47d
KT
7657 /*
7658 * All callers are synchronized by task_rq_lock(); we do not use RCU
7659 * which is pointless here. Thus, we pass "true" to task_css_check()
7660 * to prevent lockdep warnings.
7661 */
7662 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7663 struct task_group, css);
7664 tg = autogroup_task_group(tsk, tg);
7665 tsk->sched_task_group = tg;
7666
810b3817 7667#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7668 if (tsk->sched_class->task_move_group)
da0c1e65 7669 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7670 else
810b3817 7671#endif
b2b5ce02 7672 set_task_rq(tsk, task_cpu(tsk));
810b3817 7673
0e1f3483
HS
7674 if (unlikely(running))
7675 tsk->sched_class->set_curr_task(rq);
da0c1e65 7676 if (queued)
371fd7e7 7677 enqueue_task(rq, tsk, 0);
29f59db3 7678
0122ec5b 7679 task_rq_unlock(rq, tsk, &flags);
29f59db3 7680}
7c941438 7681#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7682
a790de99
PT
7683#ifdef CONFIG_RT_GROUP_SCHED
7684/*
7685 * Ensure that the real time constraints are schedulable.
7686 */
7687static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7688
9a7e0b18
PZ
7689/* Must be called with tasklist_lock held */
7690static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7691{
9a7e0b18 7692 struct task_struct *g, *p;
b40b2e8e 7693
1fe89e1b
PZ
7694 /*
7695 * Autogroups do not have RT tasks; see autogroup_create().
7696 */
7697 if (task_group_is_autogroup(tg))
7698 return 0;
7699
5d07f420 7700 for_each_process_thread(g, p) {
8651c658 7701 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7702 return 1;
5d07f420 7703 }
b40b2e8e 7704
9a7e0b18
PZ
7705 return 0;
7706}
b40b2e8e 7707
9a7e0b18
PZ
7708struct rt_schedulable_data {
7709 struct task_group *tg;
7710 u64 rt_period;
7711 u64 rt_runtime;
7712};
b40b2e8e 7713
a790de99 7714static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7715{
7716 struct rt_schedulable_data *d = data;
7717 struct task_group *child;
7718 unsigned long total, sum = 0;
7719 u64 period, runtime;
b40b2e8e 7720
9a7e0b18
PZ
7721 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7722 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7723
9a7e0b18
PZ
7724 if (tg == d->tg) {
7725 period = d->rt_period;
7726 runtime = d->rt_runtime;
b40b2e8e 7727 }
b40b2e8e 7728
4653f803
PZ
7729 /*
7730 * Cannot have more runtime than the period.
7731 */
7732 if (runtime > period && runtime != RUNTIME_INF)
7733 return -EINVAL;
6f505b16 7734
4653f803
PZ
7735 /*
7736 * Ensure we don't starve existing RT tasks.
7737 */
9a7e0b18
PZ
7738 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7739 return -EBUSY;
6f505b16 7740
9a7e0b18 7741 total = to_ratio(period, runtime);
6f505b16 7742
4653f803
PZ
7743 /*
7744 * Nobody can have more than the global setting allows.
7745 */
7746 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7747 return -EINVAL;
6f505b16 7748
4653f803
PZ
7749 /*
7750 * The sum of our children's runtime should not exceed our own.
7751 */
9a7e0b18
PZ
7752 list_for_each_entry_rcu(child, &tg->children, siblings) {
7753 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7754 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7755
9a7e0b18
PZ
7756 if (child == d->tg) {
7757 period = d->rt_period;
7758 runtime = d->rt_runtime;
7759 }
6f505b16 7760
9a7e0b18 7761 sum += to_ratio(period, runtime);
9f0c1e56 7762 }
6f505b16 7763
9a7e0b18
PZ
7764 if (sum > total)
7765 return -EINVAL;
7766
7767 return 0;
6f505b16
PZ
7768}
7769
9a7e0b18 7770static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7771{
8277434e
PT
7772 int ret;
7773
9a7e0b18
PZ
7774 struct rt_schedulable_data data = {
7775 .tg = tg,
7776 .rt_period = period,
7777 .rt_runtime = runtime,
7778 };
7779
8277434e
PT
7780 rcu_read_lock();
7781 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7782 rcu_read_unlock();
7783
7784 return ret;
521f1a24
DG
7785}
7786
ab84d31e 7787static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7788 u64 rt_period, u64 rt_runtime)
6f505b16 7789{
ac086bc2 7790 int i, err = 0;
9f0c1e56 7791
2636ed5f
PZ
7792 /*
7793 * Disallowing the root group RT runtime is BAD, it would disallow the
7794 * kernel creating (and or operating) RT threads.
7795 */
7796 if (tg == &root_task_group && rt_runtime == 0)
7797 return -EINVAL;
7798
7799 /* No period doesn't make any sense. */
7800 if (rt_period == 0)
7801 return -EINVAL;
7802
9f0c1e56 7803 mutex_lock(&rt_constraints_mutex);
521f1a24 7804 read_lock(&tasklist_lock);
9a7e0b18
PZ
7805 err = __rt_schedulable(tg, rt_period, rt_runtime);
7806 if (err)
9f0c1e56 7807 goto unlock;
ac086bc2 7808
0986b11b 7809 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7810 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7811 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7812
7813 for_each_possible_cpu(i) {
7814 struct rt_rq *rt_rq = tg->rt_rq[i];
7815
0986b11b 7816 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7817 rt_rq->rt_runtime = rt_runtime;
0986b11b 7818 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7819 }
0986b11b 7820 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7821unlock:
521f1a24 7822 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7823 mutex_unlock(&rt_constraints_mutex);
7824
7825 return err;
6f505b16
PZ
7826}
7827
25cc7da7 7828static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7829{
7830 u64 rt_runtime, rt_period;
7831
7832 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7833 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7834 if (rt_runtime_us < 0)
7835 rt_runtime = RUNTIME_INF;
7836
ab84d31e 7837 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7838}
7839
25cc7da7 7840static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7841{
7842 u64 rt_runtime_us;
7843
d0b27fa7 7844 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7845 return -1;
7846
d0b27fa7 7847 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7848 do_div(rt_runtime_us, NSEC_PER_USEC);
7849 return rt_runtime_us;
7850}
d0b27fa7 7851
ce2f5fe4 7852static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7853{
7854 u64 rt_runtime, rt_period;
7855
ce2f5fe4 7856 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7857 rt_runtime = tg->rt_bandwidth.rt_runtime;
7858
ab84d31e 7859 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7860}
7861
25cc7da7 7862static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7863{
7864 u64 rt_period_us;
7865
7866 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7867 do_div(rt_period_us, NSEC_PER_USEC);
7868 return rt_period_us;
7869}
332ac17e 7870#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7871
332ac17e 7872#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7873static int sched_rt_global_constraints(void)
7874{
7875 int ret = 0;
7876
7877 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7878 read_lock(&tasklist_lock);
4653f803 7879 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7880 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7881 mutex_unlock(&rt_constraints_mutex);
7882
7883 return ret;
7884}
54e99124 7885
25cc7da7 7886static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7887{
7888 /* Don't accept realtime tasks when there is no way for them to run */
7889 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7890 return 0;
7891
7892 return 1;
7893}
7894
6d6bc0ad 7895#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7896static int sched_rt_global_constraints(void)
7897{
ac086bc2 7898 unsigned long flags;
332ac17e 7899 int i, ret = 0;
ec5d4989 7900
0986b11b 7901 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7902 for_each_possible_cpu(i) {
7903 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7904
0986b11b 7905 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7906 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7907 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7908 }
0986b11b 7909 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7910
332ac17e 7911 return ret;
d0b27fa7 7912}
6d6bc0ad 7913#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7914
a1963b81 7915static int sched_dl_global_validate(void)
332ac17e 7916{
1724813d
PZ
7917 u64 runtime = global_rt_runtime();
7918 u64 period = global_rt_period();
332ac17e 7919 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7920 struct dl_bw *dl_b;
1724813d 7921 int cpu, ret = 0;
49516342 7922 unsigned long flags;
332ac17e
DF
7923
7924 /*
7925 * Here we want to check the bandwidth not being set to some
7926 * value smaller than the currently allocated bandwidth in
7927 * any of the root_domains.
7928 *
7929 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7930 * cycling on root_domains... Discussion on different/better
7931 * solutions is welcome!
7932 */
1724813d 7933 for_each_possible_cpu(cpu) {
f10e00f4
KT
7934 rcu_read_lock_sched();
7935 dl_b = dl_bw_of(cpu);
332ac17e 7936
49516342 7937 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7938 if (new_bw < dl_b->total_bw)
7939 ret = -EBUSY;
49516342 7940 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7941
f10e00f4
KT
7942 rcu_read_unlock_sched();
7943
1724813d
PZ
7944 if (ret)
7945 break;
332ac17e
DF
7946 }
7947
1724813d 7948 return ret;
332ac17e
DF
7949}
7950
1724813d 7951static void sched_dl_do_global(void)
ce0dbbbb 7952{
1724813d 7953 u64 new_bw = -1;
f10e00f4 7954 struct dl_bw *dl_b;
1724813d 7955 int cpu;
49516342 7956 unsigned long flags;
ce0dbbbb 7957
1724813d
PZ
7958 def_dl_bandwidth.dl_period = global_rt_period();
7959 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7960
7961 if (global_rt_runtime() != RUNTIME_INF)
7962 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7963
7964 /*
7965 * FIXME: As above...
7966 */
7967 for_each_possible_cpu(cpu) {
f10e00f4
KT
7968 rcu_read_lock_sched();
7969 dl_b = dl_bw_of(cpu);
1724813d 7970
49516342 7971 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7972 dl_b->bw = new_bw;
49516342 7973 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7974
7975 rcu_read_unlock_sched();
ce0dbbbb 7976 }
1724813d
PZ
7977}
7978
7979static int sched_rt_global_validate(void)
7980{
7981 if (sysctl_sched_rt_period <= 0)
7982 return -EINVAL;
7983
e9e7cb38
JL
7984 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7985 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7986 return -EINVAL;
7987
7988 return 0;
7989}
7990
7991static void sched_rt_do_global(void)
7992{
7993 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7994 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7995}
7996
d0b27fa7 7997int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7998 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7999 loff_t *ppos)
8000{
d0b27fa7
PZ
8001 int old_period, old_runtime;
8002 static DEFINE_MUTEX(mutex);
1724813d 8003 int ret;
d0b27fa7
PZ
8004
8005 mutex_lock(&mutex);
8006 old_period = sysctl_sched_rt_period;
8007 old_runtime = sysctl_sched_rt_runtime;
8008
8d65af78 8009 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8010
8011 if (!ret && write) {
1724813d
PZ
8012 ret = sched_rt_global_validate();
8013 if (ret)
8014 goto undo;
8015
a1963b81 8016 ret = sched_dl_global_validate();
1724813d
PZ
8017 if (ret)
8018 goto undo;
8019
a1963b81 8020 ret = sched_rt_global_constraints();
1724813d
PZ
8021 if (ret)
8022 goto undo;
8023
8024 sched_rt_do_global();
8025 sched_dl_do_global();
8026 }
8027 if (0) {
8028undo:
8029 sysctl_sched_rt_period = old_period;
8030 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8031 }
8032 mutex_unlock(&mutex);
8033
8034 return ret;
8035}
68318b8e 8036
1724813d 8037int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8038 void __user *buffer, size_t *lenp,
8039 loff_t *ppos)
8040{
8041 int ret;
332ac17e 8042 static DEFINE_MUTEX(mutex);
332ac17e
DF
8043
8044 mutex_lock(&mutex);
332ac17e 8045 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8046 /* make sure that internally we keep jiffies */
8047 /* also, writing zero resets timeslice to default */
332ac17e 8048 if (!ret && write) {
1724813d
PZ
8049 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8050 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8051 }
8052 mutex_unlock(&mutex);
332ac17e
DF
8053 return ret;
8054}
8055
052f1dc7 8056#ifdef CONFIG_CGROUP_SCHED
68318b8e 8057
a7c6d554 8058static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8059{
a7c6d554 8060 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8061}
8062
eb95419b
TH
8063static struct cgroup_subsys_state *
8064cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8065{
eb95419b
TH
8066 struct task_group *parent = css_tg(parent_css);
8067 struct task_group *tg;
68318b8e 8068
eb95419b 8069 if (!parent) {
68318b8e 8070 /* This is early initialization for the top cgroup */
07e06b01 8071 return &root_task_group.css;
68318b8e
SV
8072 }
8073
ec7dc8ac 8074 tg = sched_create_group(parent);
68318b8e
SV
8075 if (IS_ERR(tg))
8076 return ERR_PTR(-ENOMEM);
8077
68318b8e
SV
8078 return &tg->css;
8079}
8080
eb95419b 8081static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8082{
eb95419b 8083 struct task_group *tg = css_tg(css);
5c9d535b 8084 struct task_group *parent = css_tg(css->parent);
ace783b9 8085
63876986
TH
8086 if (parent)
8087 sched_online_group(tg, parent);
ace783b9
LZ
8088 return 0;
8089}
8090
eb95419b 8091static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8092{
eb95419b 8093 struct task_group *tg = css_tg(css);
68318b8e
SV
8094
8095 sched_destroy_group(tg);
8096}
8097
eb95419b 8098static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8099{
eb95419b 8100 struct task_group *tg = css_tg(css);
ace783b9
LZ
8101
8102 sched_offline_group(tg);
8103}
8104
eeb61e53
KT
8105static void cpu_cgroup_fork(struct task_struct *task)
8106{
8107 sched_move_task(task);
8108}
8109
eb95419b 8110static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8111 struct cgroup_taskset *tset)
68318b8e 8112{
bb9d97b6
TH
8113 struct task_struct *task;
8114
924f0d9a 8115 cgroup_taskset_for_each(task, tset) {
b68aa230 8116#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8117 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8118 return -EINVAL;
b68aa230 8119#else
bb9d97b6
TH
8120 /* We don't support RT-tasks being in separate groups */
8121 if (task->sched_class != &fair_sched_class)
8122 return -EINVAL;
b68aa230 8123#endif
bb9d97b6 8124 }
be367d09
BB
8125 return 0;
8126}
68318b8e 8127
eb95419b 8128static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8129 struct cgroup_taskset *tset)
68318b8e 8130{
bb9d97b6
TH
8131 struct task_struct *task;
8132
924f0d9a 8133 cgroup_taskset_for_each(task, tset)
bb9d97b6 8134 sched_move_task(task);
68318b8e
SV
8135}
8136
eb95419b
TH
8137static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8138 struct cgroup_subsys_state *old_css,
8139 struct task_struct *task)
068c5cc5
PZ
8140{
8141 /*
8142 * cgroup_exit() is called in the copy_process() failure path.
8143 * Ignore this case since the task hasn't ran yet, this avoids
8144 * trying to poke a half freed task state from generic code.
8145 */
8146 if (!(task->flags & PF_EXITING))
8147 return;
8148
8149 sched_move_task(task);
8150}
8151
052f1dc7 8152#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8153static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8154 struct cftype *cftype, u64 shareval)
68318b8e 8155{
182446d0 8156 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8157}
8158
182446d0
TH
8159static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8160 struct cftype *cft)
68318b8e 8161{
182446d0 8162 struct task_group *tg = css_tg(css);
68318b8e 8163
c8b28116 8164 return (u64) scale_load_down(tg->shares);
68318b8e 8165}
ab84d31e
PT
8166
8167#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8168static DEFINE_MUTEX(cfs_constraints_mutex);
8169
ab84d31e
PT
8170const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8171const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8172
a790de99
PT
8173static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8174
ab84d31e
PT
8175static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8176{
56f570e5 8177 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8178 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8179
8180 if (tg == &root_task_group)
8181 return -EINVAL;
8182
8183 /*
8184 * Ensure we have at some amount of bandwidth every period. This is
8185 * to prevent reaching a state of large arrears when throttled via
8186 * entity_tick() resulting in prolonged exit starvation.
8187 */
8188 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8189 return -EINVAL;
8190
8191 /*
8192 * Likewise, bound things on the otherside by preventing insane quota
8193 * periods. This also allows us to normalize in computing quota
8194 * feasibility.
8195 */
8196 if (period > max_cfs_quota_period)
8197 return -EINVAL;
8198
0e59bdae
KT
8199 /*
8200 * Prevent race between setting of cfs_rq->runtime_enabled and
8201 * unthrottle_offline_cfs_rqs().
8202 */
8203 get_online_cpus();
a790de99
PT
8204 mutex_lock(&cfs_constraints_mutex);
8205 ret = __cfs_schedulable(tg, period, quota);
8206 if (ret)
8207 goto out_unlock;
8208
58088ad0 8209 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8210 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8211 /*
8212 * If we need to toggle cfs_bandwidth_used, off->on must occur
8213 * before making related changes, and on->off must occur afterwards
8214 */
8215 if (runtime_enabled && !runtime_was_enabled)
8216 cfs_bandwidth_usage_inc();
ab84d31e
PT
8217 raw_spin_lock_irq(&cfs_b->lock);
8218 cfs_b->period = ns_to_ktime(period);
8219 cfs_b->quota = quota;
58088ad0 8220
a9cf55b2 8221 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8222 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8223 if (runtime_enabled)
8224 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8225 raw_spin_unlock_irq(&cfs_b->lock);
8226
0e59bdae 8227 for_each_online_cpu(i) {
ab84d31e 8228 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8229 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8230
8231 raw_spin_lock_irq(&rq->lock);
58088ad0 8232 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8233 cfs_rq->runtime_remaining = 0;
671fd9da 8234
029632fb 8235 if (cfs_rq->throttled)
671fd9da 8236 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8237 raw_spin_unlock_irq(&rq->lock);
8238 }
1ee14e6c
BS
8239 if (runtime_was_enabled && !runtime_enabled)
8240 cfs_bandwidth_usage_dec();
a790de99
PT
8241out_unlock:
8242 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8243 put_online_cpus();
ab84d31e 8244
a790de99 8245 return ret;
ab84d31e
PT
8246}
8247
8248int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8249{
8250 u64 quota, period;
8251
029632fb 8252 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8253 if (cfs_quota_us < 0)
8254 quota = RUNTIME_INF;
8255 else
8256 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8257
8258 return tg_set_cfs_bandwidth(tg, period, quota);
8259}
8260
8261long tg_get_cfs_quota(struct task_group *tg)
8262{
8263 u64 quota_us;
8264
029632fb 8265 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8266 return -1;
8267
029632fb 8268 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8269 do_div(quota_us, NSEC_PER_USEC);
8270
8271 return quota_us;
8272}
8273
8274int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8275{
8276 u64 quota, period;
8277
8278 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8279 quota = tg->cfs_bandwidth.quota;
ab84d31e 8280
ab84d31e
PT
8281 return tg_set_cfs_bandwidth(tg, period, quota);
8282}
8283
8284long tg_get_cfs_period(struct task_group *tg)
8285{
8286 u64 cfs_period_us;
8287
029632fb 8288 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8289 do_div(cfs_period_us, NSEC_PER_USEC);
8290
8291 return cfs_period_us;
8292}
8293
182446d0
TH
8294static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8295 struct cftype *cft)
ab84d31e 8296{
182446d0 8297 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8298}
8299
182446d0
TH
8300static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8301 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8302{
182446d0 8303 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8304}
8305
182446d0
TH
8306static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8307 struct cftype *cft)
ab84d31e 8308{
182446d0 8309 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8310}
8311
182446d0
TH
8312static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8313 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8314{
182446d0 8315 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8316}
8317
a790de99
PT
8318struct cfs_schedulable_data {
8319 struct task_group *tg;
8320 u64 period, quota;
8321};
8322
8323/*
8324 * normalize group quota/period to be quota/max_period
8325 * note: units are usecs
8326 */
8327static u64 normalize_cfs_quota(struct task_group *tg,
8328 struct cfs_schedulable_data *d)
8329{
8330 u64 quota, period;
8331
8332 if (tg == d->tg) {
8333 period = d->period;
8334 quota = d->quota;
8335 } else {
8336 period = tg_get_cfs_period(tg);
8337 quota = tg_get_cfs_quota(tg);
8338 }
8339
8340 /* note: these should typically be equivalent */
8341 if (quota == RUNTIME_INF || quota == -1)
8342 return RUNTIME_INF;
8343
8344 return to_ratio(period, quota);
8345}
8346
8347static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8348{
8349 struct cfs_schedulable_data *d = data;
029632fb 8350 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8351 s64 quota = 0, parent_quota = -1;
8352
8353 if (!tg->parent) {
8354 quota = RUNTIME_INF;
8355 } else {
029632fb 8356 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8357
8358 quota = normalize_cfs_quota(tg, d);
9c58c79a 8359 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8360
8361 /*
8362 * ensure max(child_quota) <= parent_quota, inherit when no
8363 * limit is set
8364 */
8365 if (quota == RUNTIME_INF)
8366 quota = parent_quota;
8367 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8368 return -EINVAL;
8369 }
9c58c79a 8370 cfs_b->hierarchical_quota = quota;
a790de99
PT
8371
8372 return 0;
8373}
8374
8375static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8376{
8277434e 8377 int ret;
a790de99
PT
8378 struct cfs_schedulable_data data = {
8379 .tg = tg,
8380 .period = period,
8381 .quota = quota,
8382 };
8383
8384 if (quota != RUNTIME_INF) {
8385 do_div(data.period, NSEC_PER_USEC);
8386 do_div(data.quota, NSEC_PER_USEC);
8387 }
8388
8277434e
PT
8389 rcu_read_lock();
8390 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8391 rcu_read_unlock();
8392
8393 return ret;
a790de99 8394}
e8da1b18 8395
2da8ca82 8396static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8397{
2da8ca82 8398 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8399 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8400
44ffc75b
TH
8401 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8402 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8403 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8404
8405 return 0;
8406}
ab84d31e 8407#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8408#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8409
052f1dc7 8410#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8411static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8412 struct cftype *cft, s64 val)
6f505b16 8413{
182446d0 8414 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8415}
8416
182446d0
TH
8417static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8418 struct cftype *cft)
6f505b16 8419{
182446d0 8420 return sched_group_rt_runtime(css_tg(css));
6f505b16 8421}
d0b27fa7 8422
182446d0
TH
8423static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8424 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8425{
182446d0 8426 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8427}
8428
182446d0
TH
8429static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8430 struct cftype *cft)
d0b27fa7 8431{
182446d0 8432 return sched_group_rt_period(css_tg(css));
d0b27fa7 8433}
6d6bc0ad 8434#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8435
fe5c7cc2 8436static struct cftype cpu_files[] = {
052f1dc7 8437#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8438 {
8439 .name = "shares",
f4c753b7
PM
8440 .read_u64 = cpu_shares_read_u64,
8441 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8442 },
052f1dc7 8443#endif
ab84d31e
PT
8444#ifdef CONFIG_CFS_BANDWIDTH
8445 {
8446 .name = "cfs_quota_us",
8447 .read_s64 = cpu_cfs_quota_read_s64,
8448 .write_s64 = cpu_cfs_quota_write_s64,
8449 },
8450 {
8451 .name = "cfs_period_us",
8452 .read_u64 = cpu_cfs_period_read_u64,
8453 .write_u64 = cpu_cfs_period_write_u64,
8454 },
e8da1b18
NR
8455 {
8456 .name = "stat",
2da8ca82 8457 .seq_show = cpu_stats_show,
e8da1b18 8458 },
ab84d31e 8459#endif
052f1dc7 8460#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8461 {
9f0c1e56 8462 .name = "rt_runtime_us",
06ecb27c
PM
8463 .read_s64 = cpu_rt_runtime_read,
8464 .write_s64 = cpu_rt_runtime_write,
6f505b16 8465 },
d0b27fa7
PZ
8466 {
8467 .name = "rt_period_us",
f4c753b7
PM
8468 .read_u64 = cpu_rt_period_read_uint,
8469 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8470 },
052f1dc7 8471#endif
4baf6e33 8472 { } /* terminate */
68318b8e
SV
8473};
8474
073219e9 8475struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8476 .css_alloc = cpu_cgroup_css_alloc,
8477 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8478 .css_online = cpu_cgroup_css_online,
8479 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8480 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8481 .can_attach = cpu_cgroup_can_attach,
8482 .attach = cpu_cgroup_attach,
068c5cc5 8483 .exit = cpu_cgroup_exit,
5577964e 8484 .legacy_cftypes = cpu_files,
68318b8e
SV
8485 .early_init = 1,
8486};
8487
052f1dc7 8488#endif /* CONFIG_CGROUP_SCHED */
d842de87 8489
b637a328
PM
8490void dump_cpu_task(int cpu)
8491{
8492 pr_info("Task dump for CPU %d:\n", cpu);
8493 sched_show_task(cpu_curr(cpu));
8494}