]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched: Defend cfs and rt bandwidth quota against overflow
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
771b53d0 19#include "../../fs/io-wq.h"
29d5e047 20#include "../smpboot.h"
6e0534f2 21
91c27493
VG
22#include "pelt.h"
23
a8d154b0 24#define CREATE_TRACE_POINTS
ad8d75ff 25#include <trace/events/sched.h>
a8d154b0 26
a056a5be
QY
27/*
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
30 */
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37
029632fb 38DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 39
e9666d10 40#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
41/*
42 * Debugging: various feature bits
765cc3a4
PB
43 *
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
bf5c91ba 47 */
f00b45c1
PZ
48#define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 50const_debug unsigned int sysctl_sched_features =
391e43da 51#include "features.h"
f00b45c1 52 0;
f00b45c1 53#undef SCHED_FEAT
765cc3a4 54#endif
f00b45c1 55
b82d9fdd
PZ
56/*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
fa85ae24 62/*
d1ccc66d 63 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
64 * default: 1s
65 */
9f0c1e56 66unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 67
029632fb 68__read_mostly int scheduler_running;
6892b75e 69
9f0c1e56
PZ
70/*
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
73 */
74int sysctl_sched_rt_runtime = 950000;
fa85ae24 75
3e71a462
PZ
76/*
77 * __task_rq_lock - lock the rq @p resides on.
78 */
eb580751 79struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
80 __acquires(rq->lock)
81{
82 struct rq *rq;
83
84 lockdep_assert_held(&p->pi_lock);
85
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 90 rq_pin_lock(rq, rf);
3e71a462
PZ
91 return rq;
92 }
93 raw_spin_unlock(&rq->lock);
94
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
97 }
98}
99
100/*
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 */
eb580751 103struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
106{
107 struct rq *rq;
108
109 for (;;) {
eb580751 110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
113 /*
114 * move_queued_task() task_rq_lock()
115 *
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
122 *
c546951d 123 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
124 * the old rq->lock will fully serialize against the stores.
125 *
c546951d
AP
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
129 */
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 131 rq_pin_lock(rq, rf);
3e71a462
PZ
132 return rq;
133 }
134 raw_spin_unlock(&rq->lock);
eb580751 135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
136
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
139 }
140}
141
535b9552
IM
142/*
143 * RQ-clock updating methods:
144 */
145
146static void update_rq_clock_task(struct rq *rq, s64 delta)
147{
148/*
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
151 */
11d4afd4
VG
152 s64 __maybe_unused steal = 0, irq_delta = 0;
153
535b9552
IM
154#ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156
157 /*
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
161 *
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
166 *
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
171 */
172 if (irq_delta > delta)
173 irq_delta = delta;
174
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177#endif
178#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((&paravirt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
182
183 if (unlikely(steal > delta))
184 steal = delta;
185
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
188 }
189#endif
190
191 rq->clock_task += delta;
192
11d4afd4 193#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 195 update_irq_load_avg(rq, irq_delta + steal);
535b9552 196#endif
23127296 197 update_rq_clock_pelt(rq, delta);
535b9552
IM
198}
199
200void update_rq_clock(struct rq *rq)
201{
202 s64 delta;
203
204 lockdep_assert_held(&rq->lock);
205
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
208
209#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
212 rq->clock_update_flags |= RQCF_UPDATED;
213#endif
26ae58d2 214
535b9552
IM
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
220}
221
90b5363a
PZI
222static inline void
223rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
224{
225 csd->flags = 0;
226 csd->func = func;
227 csd->info = rq;
228}
535b9552 229
8f4d37ec
PZ
230#ifdef CONFIG_SCHED_HRTICK
231/*
232 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 233 */
8f4d37ec 234
8f4d37ec
PZ
235static void hrtick_clear(struct rq *rq)
236{
237 if (hrtimer_active(&rq->hrtick_timer))
238 hrtimer_cancel(&rq->hrtick_timer);
239}
240
8f4d37ec
PZ
241/*
242 * High-resolution timer tick.
243 * Runs from hardirq context with interrupts disabled.
244 */
245static enum hrtimer_restart hrtick(struct hrtimer *timer)
246{
247 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 248 struct rq_flags rf;
8f4d37ec
PZ
249
250 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
251
8a8c69c3 252 rq_lock(rq, &rf);
3e51f33f 253 update_rq_clock(rq);
8f4d37ec 254 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 255 rq_unlock(rq, &rf);
8f4d37ec
PZ
256
257 return HRTIMER_NORESTART;
258}
259
95e904c7 260#ifdef CONFIG_SMP
971ee28c 261
4961b6e1 262static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
263{
264 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 265
d5096aa6 266 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
267}
268
31656519
PZ
269/*
270 * called from hardirq (IPI) context
271 */
272static void __hrtick_start(void *arg)
b328ca18 273{
31656519 274 struct rq *rq = arg;
8a8c69c3 275 struct rq_flags rf;
b328ca18 276
8a8c69c3 277 rq_lock(rq, &rf);
971ee28c 278 __hrtick_restart(rq);
8a8c69c3 279 rq_unlock(rq, &rf);
b328ca18
PZ
280}
281
31656519
PZ
282/*
283 * Called to set the hrtick timer state.
284 *
285 * called with rq->lock held and irqs disabled
286 */
029632fb 287void hrtick_start(struct rq *rq, u64 delay)
b328ca18 288{
31656519 289 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 290 ktime_t time;
291 s64 delta;
292
293 /*
294 * Don't schedule slices shorter than 10000ns, that just
295 * doesn't make sense and can cause timer DoS.
296 */
297 delta = max_t(s64, delay, 10000LL);
298 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 299
cc584b21 300 hrtimer_set_expires(timer, time);
31656519 301
fd3eafda 302 if (rq == this_rq())
971ee28c 303 __hrtick_restart(rq);
fd3eafda 304 else
c46fff2a 305 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
306}
307
31656519
PZ
308#else
309/*
310 * Called to set the hrtick timer state.
311 *
312 * called with rq->lock held and irqs disabled
313 */
029632fb 314void hrtick_start(struct rq *rq, u64 delay)
31656519 315{
86893335
WL
316 /*
317 * Don't schedule slices shorter than 10000ns, that just
318 * doesn't make sense. Rely on vruntime for fairness.
319 */
320 delay = max_t(u64, delay, 10000LL);
4961b6e1 321 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 322 HRTIMER_MODE_REL_PINNED_HARD);
31656519 323}
90b5363a 324
31656519 325#endif /* CONFIG_SMP */
8f4d37ec 326
77a021be 327static void hrtick_rq_init(struct rq *rq)
8f4d37ec 328{
31656519 329#ifdef CONFIG_SMP
90b5363a 330 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
31656519 331#endif
d5096aa6 332 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 333 rq->hrtick_timer.function = hrtick;
8f4d37ec 334}
006c75f1 335#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
336static inline void hrtick_clear(struct rq *rq)
337{
338}
339
77a021be 340static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
341{
342}
006c75f1 343#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 344
5529578a
FW
345/*
346 * cmpxchg based fetch_or, macro so it works for different integer types
347 */
348#define fetch_or(ptr, mask) \
349 ({ \
350 typeof(ptr) _ptr = (ptr); \
351 typeof(mask) _mask = (mask); \
352 typeof(*_ptr) _old, _val = *_ptr; \
353 \
354 for (;;) { \
355 _old = cmpxchg(_ptr, _val, _val | _mask); \
356 if (_old == _val) \
357 break; \
358 _val = _old; \
359 } \
360 _old; \
361})
362
e3baac47 363#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
364/*
365 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
366 * this avoids any races wrt polling state changes and thereby avoids
367 * spurious IPIs.
368 */
369static bool set_nr_and_not_polling(struct task_struct *p)
370{
371 struct thread_info *ti = task_thread_info(p);
372 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
373}
e3baac47
PZ
374
375/*
376 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377 *
378 * If this returns true, then the idle task promises to call
379 * sched_ttwu_pending() and reschedule soon.
380 */
381static bool set_nr_if_polling(struct task_struct *p)
382{
383 struct thread_info *ti = task_thread_info(p);
316c1608 384 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
385
386 for (;;) {
387 if (!(val & _TIF_POLLING_NRFLAG))
388 return false;
389 if (val & _TIF_NEED_RESCHED)
390 return true;
391 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
392 if (old == val)
393 break;
394 val = old;
395 }
396 return true;
397}
398
fd99f91a
PZ
399#else
400static bool set_nr_and_not_polling(struct task_struct *p)
401{
402 set_tsk_need_resched(p);
403 return true;
404}
e3baac47
PZ
405
406#ifdef CONFIG_SMP
407static bool set_nr_if_polling(struct task_struct *p)
408{
409 return false;
410}
411#endif
fd99f91a
PZ
412#endif
413
07879c6a 414static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
415{
416 struct wake_q_node *node = &task->wake_q;
417
418 /*
419 * Atomically grab the task, if ->wake_q is !nil already it means
420 * its already queued (either by us or someone else) and will get the
421 * wakeup due to that.
422 *
4c4e3731
PZ
423 * In order to ensure that a pending wakeup will observe our pending
424 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 425 */
4c4e3731 426 smp_mb__before_atomic();
87ff19cb 427 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 428 return false;
76751049
PZ
429
430 /*
431 * The head is context local, there can be no concurrency.
432 */
433 *head->lastp = node;
434 head->lastp = &node->next;
07879c6a
DB
435 return true;
436}
437
438/**
439 * wake_q_add() - queue a wakeup for 'later' waking.
440 * @head: the wake_q_head to add @task to
441 * @task: the task to queue for 'later' wakeup
442 *
443 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
444 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
445 * instantly.
446 *
447 * This function must be used as-if it were wake_up_process(); IOW the task
448 * must be ready to be woken at this location.
449 */
450void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451{
452 if (__wake_q_add(head, task))
453 get_task_struct(task);
454}
455
456/**
457 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
458 * @head: the wake_q_head to add @task to
459 * @task: the task to queue for 'later' wakeup
460 *
461 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
462 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
463 * instantly.
464 *
465 * This function must be used as-if it were wake_up_process(); IOW the task
466 * must be ready to be woken at this location.
467 *
468 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
469 * that already hold reference to @task can call the 'safe' version and trust
470 * wake_q to do the right thing depending whether or not the @task is already
471 * queued for wakeup.
472 */
473void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474{
475 if (!__wake_q_add(head, task))
476 put_task_struct(task);
76751049
PZ
477}
478
479void wake_up_q(struct wake_q_head *head)
480{
481 struct wake_q_node *node = head->first;
482
483 while (node != WAKE_Q_TAIL) {
484 struct task_struct *task;
485
486 task = container_of(node, struct task_struct, wake_q);
487 BUG_ON(!task);
d1ccc66d 488 /* Task can safely be re-inserted now: */
76751049
PZ
489 node = node->next;
490 task->wake_q.next = NULL;
491
492 /*
7696f991
AP
493 * wake_up_process() executes a full barrier, which pairs with
494 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
495 */
496 wake_up_process(task);
497 put_task_struct(task);
498 }
499}
500
c24d20db 501/*
8875125e 502 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
503 *
504 * On UP this means the setting of the need_resched flag, on SMP it
505 * might also involve a cross-CPU call to trigger the scheduler on
506 * the target CPU.
507 */
8875125e 508void resched_curr(struct rq *rq)
c24d20db 509{
8875125e 510 struct task_struct *curr = rq->curr;
c24d20db
IM
511 int cpu;
512
8875125e 513 lockdep_assert_held(&rq->lock);
c24d20db 514
8875125e 515 if (test_tsk_need_resched(curr))
c24d20db
IM
516 return;
517
8875125e 518 cpu = cpu_of(rq);
fd99f91a 519
f27dde8d 520 if (cpu == smp_processor_id()) {
8875125e 521 set_tsk_need_resched(curr);
f27dde8d 522 set_preempt_need_resched();
c24d20db 523 return;
f27dde8d 524 }
c24d20db 525
8875125e 526 if (set_nr_and_not_polling(curr))
c24d20db 527 smp_send_reschedule(cpu);
dfc68f29
AL
528 else
529 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
7c2102e5 537 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
538 if (cpu_online(cpu) || cpu == smp_processor_id())
539 resched_curr(rq);
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c 542
b021fe3e 543#ifdef CONFIG_SMP
3451d024 544#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 545/*
d1ccc66d
IM
546 * In the semi idle case, use the nearest busy CPU for migrating timers
547 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
548 *
549 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
550 * selecting an idle CPU will add more delays to the timers than intended
551 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 552 */
bc7a34b8 553int get_nohz_timer_target(void)
83cd4fe2 554{
e938b9c9 555 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
556 struct sched_domain *sd;
557
e938b9c9
WL
558 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
559 if (!idle_cpu(cpu))
560 return cpu;
561 default_cpu = cpu;
562 }
6201b4d6 563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
e938b9c9
WL
566 for_each_cpu_and(i, sched_domain_span(sd),
567 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
568 if (cpu == i)
569 continue;
570
e938b9c9 571 if (!idle_cpu(i)) {
057f3fad
PZ
572 cpu = i;
573 goto unlock;
574 }
575 }
83cd4fe2 576 }
9642d18e 577
e938b9c9
WL
578 if (default_cpu == -1)
579 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
580 cpu = default_cpu;
057f3fad
PZ
581unlock:
582 rcu_read_unlock();
83cd4fe2
VP
583 return cpu;
584}
d1ccc66d 585
06d8308c
TG
586/*
587 * When add_timer_on() enqueues a timer into the timer wheel of an
588 * idle CPU then this timer might expire before the next timer event
589 * which is scheduled to wake up that CPU. In case of a completely
590 * idle system the next event might even be infinite time into the
591 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
592 * leaves the inner idle loop so the newly added timer is taken into
593 * account when the CPU goes back to idle and evaluates the timer
594 * wheel for the next timer event.
595 */
1c20091e 596static void wake_up_idle_cpu(int cpu)
06d8308c
TG
597{
598 struct rq *rq = cpu_rq(cpu);
599
600 if (cpu == smp_processor_id())
601 return;
602
67b9ca70 603 if (set_nr_and_not_polling(rq->idle))
06d8308c 604 smp_send_reschedule(cpu);
dfc68f29
AL
605 else
606 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
607}
608
c5bfece2 609static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 610{
53c5fa16
FW
611 /*
612 * We just need the target to call irq_exit() and re-evaluate
613 * the next tick. The nohz full kick at least implies that.
614 * If needed we can still optimize that later with an
615 * empty IRQ.
616 */
379d9ecb
PM
617 if (cpu_is_offline(cpu))
618 return true; /* Don't try to wake offline CPUs. */
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
53c5fa16 622 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
623 return true;
624 }
625
626 return false;
627}
628
379d9ecb
PM
629/*
630 * Wake up the specified CPU. If the CPU is going offline, it is the
631 * caller's responsibility to deal with the lost wakeup, for example,
632 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
633 */
1c20091e
FW
634void wake_up_nohz_cpu(int cpu)
635{
c5bfece2 636 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
637 wake_up_idle_cpu(cpu);
638}
639
ca38062e 640static inline bool got_nohz_idle_kick(void)
45bf76df 641{
1c792db7 642 int cpu = smp_processor_id();
873b4c65 643
b7031a02 644 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
645 return false;
646
647 if (idle_cpu(cpu) && !need_resched())
648 return true;
649
650 /*
651 * We can't run Idle Load Balance on this CPU for this time so we
652 * cancel it and clear NOHZ_BALANCE_KICK
653 */
b7031a02 654 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 655 return false;
45bf76df
IM
656}
657
90b5363a
PZI
658static void nohz_csd_func(void *info)
659{
660 struct rq *rq = info;
661
662 if (got_nohz_idle_kick()) {
663 rq->idle_balance = 1;
664 raise_softirq_irqoff(SCHED_SOFTIRQ);
665 }
666}
667
3451d024 668#else /* CONFIG_NO_HZ_COMMON */
45bf76df 669
ca38062e 670static inline bool got_nohz_idle_kick(void)
2069dd75 671{
ca38062e 672 return false;
2069dd75
PZ
673}
674
3451d024 675#endif /* CONFIG_NO_HZ_COMMON */
d842de87 676
ce831b38 677#ifdef CONFIG_NO_HZ_FULL
76d92ac3 678bool sched_can_stop_tick(struct rq *rq)
ce831b38 679{
76d92ac3
FW
680 int fifo_nr_running;
681
682 /* Deadline tasks, even if single, need the tick */
683 if (rq->dl.dl_nr_running)
684 return false;
685
1e78cdbd 686 /*
2548d546
PZ
687 * If there are more than one RR tasks, we need the tick to effect the
688 * actual RR behaviour.
1e78cdbd 689 */
76d92ac3
FW
690 if (rq->rt.rr_nr_running) {
691 if (rq->rt.rr_nr_running == 1)
692 return true;
693 else
694 return false;
1e78cdbd
RR
695 }
696
2548d546
PZ
697 /*
698 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
699 * forced preemption between FIFO tasks.
700 */
701 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
702 if (fifo_nr_running)
703 return true;
704
705 /*
706 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
707 * if there's more than one we need the tick for involuntary
708 * preemption.
709 */
710 if (rq->nr_running > 1)
541b8264 711 return false;
ce831b38 712
541b8264 713 return true;
ce831b38
FW
714}
715#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 716#endif /* CONFIG_SMP */
18d95a28 717
a790de99
PT
718#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
719 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 720/*
8277434e
PT
721 * Iterate task_group tree rooted at *from, calling @down when first entering a
722 * node and @up when leaving it for the final time.
723 *
724 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 725 */
029632fb 726int walk_tg_tree_from(struct task_group *from,
8277434e 727 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
728{
729 struct task_group *parent, *child;
eb755805 730 int ret;
c09595f6 731
8277434e
PT
732 parent = from;
733
c09595f6 734down:
eb755805
PZ
735 ret = (*down)(parent, data);
736 if (ret)
8277434e 737 goto out;
c09595f6
PZ
738 list_for_each_entry_rcu(child, &parent->children, siblings) {
739 parent = child;
740 goto down;
741
742up:
743 continue;
744 }
eb755805 745 ret = (*up)(parent, data);
8277434e
PT
746 if (ret || parent == from)
747 goto out;
c09595f6
PZ
748
749 child = parent;
750 parent = parent->parent;
751 if (parent)
752 goto up;
8277434e 753out:
eb755805 754 return ret;
c09595f6
PZ
755}
756
029632fb 757int tg_nop(struct task_group *tg, void *data)
eb755805 758{
e2b245f8 759 return 0;
eb755805 760}
18d95a28
PZ
761#endif
762
9059393e 763static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 764{
f05998d4
NR
765 int prio = p->static_prio - MAX_RT_PRIO;
766 struct load_weight *load = &p->se.load;
767
dd41f596
IM
768 /*
769 * SCHED_IDLE tasks get minimal weight:
770 */
1da1843f 771 if (task_has_idle_policy(p)) {
c8b28116 772 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 773 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
774 return;
775 }
71f8bd46 776
9059393e
VG
777 /*
778 * SCHED_OTHER tasks have to update their load when changing their
779 * weight
780 */
781 if (update_load && p->sched_class == &fair_sched_class) {
782 reweight_task(p, prio);
783 } else {
784 load->weight = scale_load(sched_prio_to_weight[prio]);
785 load->inv_weight = sched_prio_to_wmult[prio];
786 }
71f8bd46
IM
787}
788
69842cba 789#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
790/*
791 * Serializes updates of utilization clamp values
792 *
793 * The (slow-path) user-space triggers utilization clamp value updates which
794 * can require updates on (fast-path) scheduler's data structures used to
795 * support enqueue/dequeue operations.
796 * While the per-CPU rq lock protects fast-path update operations, user-space
797 * requests are serialized using a mutex to reduce the risk of conflicting
798 * updates or API abuses.
799 */
800static DEFINE_MUTEX(uclamp_mutex);
801
e8f14172
PB
802/* Max allowed minimum utilization */
803unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
804
805/* Max allowed maximum utilization */
806unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
807
808/* All clamps are required to be less or equal than these values */
809static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba
PB
810
811/* Integer rounded range for each bucket */
812#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
813
814#define for_each_clamp_id(clamp_id) \
815 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
816
817static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
818{
819 return clamp_value / UCLAMP_BUCKET_DELTA;
820}
821
60daf9c1
PB
822static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
823{
824 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
825}
826
7763baac 827static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
828{
829 if (clamp_id == UCLAMP_MIN)
830 return 0;
831 return SCHED_CAPACITY_SCALE;
832}
833
a509a7cd
PB
834static inline void uclamp_se_set(struct uclamp_se *uc_se,
835 unsigned int value, bool user_defined)
69842cba
PB
836{
837 uc_se->value = value;
838 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 839 uc_se->user_defined = user_defined;
69842cba
PB
840}
841
e496187d 842static inline unsigned int
0413d7f3 843uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
844 unsigned int clamp_value)
845{
846 /*
847 * Avoid blocked utilization pushing up the frequency when we go
848 * idle (which drops the max-clamp) by retaining the last known
849 * max-clamp.
850 */
851 if (clamp_id == UCLAMP_MAX) {
852 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
853 return clamp_value;
854 }
855
856 return uclamp_none(UCLAMP_MIN);
857}
858
0413d7f3 859static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
860 unsigned int clamp_value)
861{
862 /* Reset max-clamp retention only on idle exit */
863 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
864 return;
865
866 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
867}
868
69842cba 869static inline
7763baac 870unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 871 unsigned int clamp_value)
69842cba
PB
872{
873 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
874 int bucket_id = UCLAMP_BUCKETS - 1;
875
876 /*
877 * Since both min and max clamps are max aggregated, find the
878 * top most bucket with tasks in.
879 */
880 for ( ; bucket_id >= 0; bucket_id--) {
881 if (!bucket[bucket_id].tasks)
882 continue;
883 return bucket[bucket_id].value;
884 }
885
886 /* No tasks -- default clamp values */
e496187d 887 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
888}
889
3eac870a 890static inline struct uclamp_se
0413d7f3 891uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
892{
893 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
894#ifdef CONFIG_UCLAMP_TASK_GROUP
895 struct uclamp_se uc_max;
896
897 /*
898 * Tasks in autogroups or root task group will be
899 * restricted by system defaults.
900 */
901 if (task_group_is_autogroup(task_group(p)))
902 return uc_req;
903 if (task_group(p) == &root_task_group)
904 return uc_req;
905
906 uc_max = task_group(p)->uclamp[clamp_id];
907 if (uc_req.value > uc_max.value || !uc_req.user_defined)
908 return uc_max;
909#endif
910
911 return uc_req;
912}
913
e8f14172
PB
914/*
915 * The effective clamp bucket index of a task depends on, by increasing
916 * priority:
917 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
918 * - the task group effective clamp value, for tasks not either in the root
919 * group or in an autogroup
e8f14172
PB
920 * - the system default clamp value, defined by the sysadmin
921 */
922static inline struct uclamp_se
0413d7f3 923uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 924{
3eac870a 925 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
926 struct uclamp_se uc_max = uclamp_default[clamp_id];
927
928 /* System default restrictions always apply */
929 if (unlikely(uc_req.value > uc_max.value))
930 return uc_max;
931
932 return uc_req;
933}
934
686516b5 935unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
936{
937 struct uclamp_se uc_eff;
938
939 /* Task currently refcounted: use back-annotated (effective) value */
940 if (p->uclamp[clamp_id].active)
686516b5 941 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
942
943 uc_eff = uclamp_eff_get(p, clamp_id);
944
686516b5 945 return (unsigned long)uc_eff.value;
9d20ad7d
PB
946}
947
69842cba
PB
948/*
949 * When a task is enqueued on a rq, the clamp bucket currently defined by the
950 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
951 * updates the rq's clamp value if required.
60daf9c1
PB
952 *
953 * Tasks can have a task-specific value requested from user-space, track
954 * within each bucket the maximum value for tasks refcounted in it.
955 * This "local max aggregation" allows to track the exact "requested" value
956 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
957 */
958static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 959 enum uclamp_id clamp_id)
69842cba
PB
960{
961 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
962 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
963 struct uclamp_bucket *bucket;
964
965 lockdep_assert_held(&rq->lock);
966
e8f14172
PB
967 /* Update task effective clamp */
968 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
969
69842cba
PB
970 bucket = &uc_rq->bucket[uc_se->bucket_id];
971 bucket->tasks++;
e8f14172 972 uc_se->active = true;
69842cba 973
e496187d
PB
974 uclamp_idle_reset(rq, clamp_id, uc_se->value);
975
60daf9c1
PB
976 /*
977 * Local max aggregation: rq buckets always track the max
978 * "requested" clamp value of its RUNNABLE tasks.
979 */
980 if (bucket->tasks == 1 || uc_se->value > bucket->value)
981 bucket->value = uc_se->value;
982
69842cba 983 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 984 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
985}
986
987/*
988 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
989 * is released. If this is the last task reference counting the rq's max
990 * active clamp value, then the rq's clamp value is updated.
991 *
992 * Both refcounted tasks and rq's cached clamp values are expected to be
993 * always valid. If it's detected they are not, as defensive programming,
994 * enforce the expected state and warn.
995 */
996static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 997 enum uclamp_id clamp_id)
69842cba
PB
998{
999 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1000 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1001 struct uclamp_bucket *bucket;
e496187d 1002 unsigned int bkt_clamp;
69842cba
PB
1003 unsigned int rq_clamp;
1004
1005 lockdep_assert_held(&rq->lock);
1006
1007 bucket = &uc_rq->bucket[uc_se->bucket_id];
1008 SCHED_WARN_ON(!bucket->tasks);
1009 if (likely(bucket->tasks))
1010 bucket->tasks--;
e8f14172 1011 uc_se->active = false;
69842cba 1012
60daf9c1
PB
1013 /*
1014 * Keep "local max aggregation" simple and accept to (possibly)
1015 * overboost some RUNNABLE tasks in the same bucket.
1016 * The rq clamp bucket value is reset to its base value whenever
1017 * there are no more RUNNABLE tasks refcounting it.
1018 */
69842cba
PB
1019 if (likely(bucket->tasks))
1020 return;
1021
1022 rq_clamp = READ_ONCE(uc_rq->value);
1023 /*
1024 * Defensive programming: this should never happen. If it happens,
1025 * e.g. due to future modification, warn and fixup the expected value.
1026 */
1027 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1028 if (bucket->value >= rq_clamp) {
1029 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1030 WRITE_ONCE(uc_rq->value, bkt_clamp);
1031 }
69842cba
PB
1032}
1033
1034static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1035{
0413d7f3 1036 enum uclamp_id clamp_id;
69842cba
PB
1037
1038 if (unlikely(!p->sched_class->uclamp_enabled))
1039 return;
1040
1041 for_each_clamp_id(clamp_id)
1042 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1043
1044 /* Reset clamp idle holding when there is one RUNNABLE task */
1045 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1046 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1047}
1048
1049static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1050{
0413d7f3 1051 enum uclamp_id clamp_id;
69842cba
PB
1052
1053 if (unlikely(!p->sched_class->uclamp_enabled))
1054 return;
1055
1056 for_each_clamp_id(clamp_id)
1057 uclamp_rq_dec_id(rq, p, clamp_id);
1058}
1059
babbe170 1060static inline void
0413d7f3 1061uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1062{
1063 struct rq_flags rf;
1064 struct rq *rq;
1065
1066 /*
1067 * Lock the task and the rq where the task is (or was) queued.
1068 *
1069 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1070 * price to pay to safely serialize util_{min,max} updates with
1071 * enqueues, dequeues and migration operations.
1072 * This is the same locking schema used by __set_cpus_allowed_ptr().
1073 */
1074 rq = task_rq_lock(p, &rf);
1075
1076 /*
1077 * Setting the clamp bucket is serialized by task_rq_lock().
1078 * If the task is not yet RUNNABLE and its task_struct is not
1079 * affecting a valid clamp bucket, the next time it's enqueued,
1080 * it will already see the updated clamp bucket value.
1081 */
6e1ff077 1082 if (p->uclamp[clamp_id].active) {
babbe170
PB
1083 uclamp_rq_dec_id(rq, p, clamp_id);
1084 uclamp_rq_inc_id(rq, p, clamp_id);
1085 }
1086
1087 task_rq_unlock(rq, p, &rf);
1088}
1089
e3b8b6a0 1090#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1091static inline void
1092uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1093 unsigned int clamps)
1094{
0413d7f3 1095 enum uclamp_id clamp_id;
babbe170
PB
1096 struct css_task_iter it;
1097 struct task_struct *p;
babbe170
PB
1098
1099 css_task_iter_start(css, 0, &it);
1100 while ((p = css_task_iter_next(&it))) {
1101 for_each_clamp_id(clamp_id) {
1102 if ((0x1 << clamp_id) & clamps)
1103 uclamp_update_active(p, clamp_id);
1104 }
1105 }
1106 css_task_iter_end(&it);
1107}
1108
7274a5c1
PB
1109static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1110static void uclamp_update_root_tg(void)
1111{
1112 struct task_group *tg = &root_task_group;
1113
1114 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1115 sysctl_sched_uclamp_util_min, false);
1116 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1117 sysctl_sched_uclamp_util_max, false);
1118
1119 rcu_read_lock();
1120 cpu_util_update_eff(&root_task_group.css);
1121 rcu_read_unlock();
1122}
1123#else
1124static void uclamp_update_root_tg(void) { }
1125#endif
1126
e8f14172
PB
1127int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1128 void __user *buffer, size_t *lenp,
1129 loff_t *ppos)
1130{
7274a5c1 1131 bool update_root_tg = false;
e8f14172 1132 int old_min, old_max;
e8f14172
PB
1133 int result;
1134
2480c093 1135 mutex_lock(&uclamp_mutex);
e8f14172
PB
1136 old_min = sysctl_sched_uclamp_util_min;
1137 old_max = sysctl_sched_uclamp_util_max;
1138
1139 result = proc_dointvec(table, write, buffer, lenp, ppos);
1140 if (result)
1141 goto undo;
1142 if (!write)
1143 goto done;
1144
1145 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1146 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1147 result = -EINVAL;
1148 goto undo;
1149 }
1150
1151 if (old_min != sysctl_sched_uclamp_util_min) {
1152 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1153 sysctl_sched_uclamp_util_min, false);
7274a5c1 1154 update_root_tg = true;
e8f14172
PB
1155 }
1156 if (old_max != sysctl_sched_uclamp_util_max) {
1157 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1158 sysctl_sched_uclamp_util_max, false);
7274a5c1 1159 update_root_tg = true;
e8f14172
PB
1160 }
1161
7274a5c1
PB
1162 if (update_root_tg)
1163 uclamp_update_root_tg();
1164
e8f14172 1165 /*
7274a5c1
PB
1166 * We update all RUNNABLE tasks only when task groups are in use.
1167 * Otherwise, keep it simple and do just a lazy update at each next
1168 * task enqueue time.
e8f14172 1169 */
7274a5c1 1170
e8f14172
PB
1171 goto done;
1172
1173undo:
1174 sysctl_sched_uclamp_util_min = old_min;
1175 sysctl_sched_uclamp_util_max = old_max;
1176done:
2480c093 1177 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1178
1179 return result;
1180}
1181
a509a7cd
PB
1182static int uclamp_validate(struct task_struct *p,
1183 const struct sched_attr *attr)
1184{
1185 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1186 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1187
1188 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1189 lower_bound = attr->sched_util_min;
1190 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1191 upper_bound = attr->sched_util_max;
1192
1193 if (lower_bound > upper_bound)
1194 return -EINVAL;
1195 if (upper_bound > SCHED_CAPACITY_SCALE)
1196 return -EINVAL;
1197
1198 return 0;
1199}
1200
1201static void __setscheduler_uclamp(struct task_struct *p,
1202 const struct sched_attr *attr)
1203{
0413d7f3 1204 enum uclamp_id clamp_id;
1a00d999
PB
1205
1206 /*
1207 * On scheduling class change, reset to default clamps for tasks
1208 * without a task-specific value.
1209 */
1210 for_each_clamp_id(clamp_id) {
1211 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1212 unsigned int clamp_value = uclamp_none(clamp_id);
1213
1214 /* Keep using defined clamps across class changes */
1215 if (uc_se->user_defined)
1216 continue;
1217
1218 /* By default, RT tasks always get 100% boost */
1219 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1220 clamp_value = uclamp_none(UCLAMP_MAX);
1221
1222 uclamp_se_set(uc_se, clamp_value, false);
1223 }
1224
a509a7cd
PB
1225 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1226 return;
1227
1228 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1229 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1230 attr->sched_util_min, true);
1231 }
1232
1233 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1234 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1235 attr->sched_util_max, true);
1236 }
1237}
1238
e8f14172
PB
1239static void uclamp_fork(struct task_struct *p)
1240{
0413d7f3 1241 enum uclamp_id clamp_id;
e8f14172
PB
1242
1243 for_each_clamp_id(clamp_id)
1244 p->uclamp[clamp_id].active = false;
a87498ac
PB
1245
1246 if (likely(!p->sched_reset_on_fork))
1247 return;
1248
1249 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1250 uclamp_se_set(&p->uclamp_req[clamp_id],
1251 uclamp_none(clamp_id), false);
a87498ac 1252 }
e8f14172
PB
1253}
1254
69842cba
PB
1255static void __init init_uclamp(void)
1256{
e8f14172 1257 struct uclamp_se uc_max = {};
0413d7f3 1258 enum uclamp_id clamp_id;
69842cba
PB
1259 int cpu;
1260
2480c093
PB
1261 mutex_init(&uclamp_mutex);
1262
e496187d 1263 for_each_possible_cpu(cpu) {
dcd6dffb
LG
1264 memset(&cpu_rq(cpu)->uclamp, 0,
1265 sizeof(struct uclamp_rq)*UCLAMP_CNT);
e496187d
PB
1266 cpu_rq(cpu)->uclamp_flags = 0;
1267 }
69842cba 1268
69842cba 1269 for_each_clamp_id(clamp_id) {
e8f14172 1270 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1271 uclamp_none(clamp_id), false);
69842cba 1272 }
e8f14172
PB
1273
1274 /* System defaults allow max clamp values for both indexes */
a509a7cd 1275 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1276 for_each_clamp_id(clamp_id) {
e8f14172 1277 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1278#ifdef CONFIG_UCLAMP_TASK_GROUP
1279 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1280 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1281#endif
1282 }
69842cba
PB
1283}
1284
1285#else /* CONFIG_UCLAMP_TASK */
1286static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1287static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1288static inline int uclamp_validate(struct task_struct *p,
1289 const struct sched_attr *attr)
1290{
1291 return -EOPNOTSUPP;
1292}
1293static void __setscheduler_uclamp(struct task_struct *p,
1294 const struct sched_attr *attr) { }
e8f14172 1295static inline void uclamp_fork(struct task_struct *p) { }
69842cba
PB
1296static inline void init_uclamp(void) { }
1297#endif /* CONFIG_UCLAMP_TASK */
1298
1de64443 1299static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1300{
0a67d1ee
PZ
1301 if (!(flags & ENQUEUE_NOCLOCK))
1302 update_rq_clock(rq);
1303
eb414681 1304 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1305 sched_info_queued(rq, p);
eb414681
JW
1306 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1307 }
0a67d1ee 1308
69842cba 1309 uclamp_rq_inc(rq, p);
371fd7e7 1310 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1311}
1312
1de64443 1313static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1314{
0a67d1ee
PZ
1315 if (!(flags & DEQUEUE_NOCLOCK))
1316 update_rq_clock(rq);
1317
eb414681 1318 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1319 sched_info_dequeued(rq, p);
eb414681
JW
1320 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1321 }
0a67d1ee 1322
69842cba 1323 uclamp_rq_dec(rq, p);
371fd7e7 1324 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1325}
1326
029632fb 1327void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1328{
1329 if (task_contributes_to_load(p))
1330 rq->nr_uninterruptible--;
1331
371fd7e7 1332 enqueue_task(rq, p, flags);
7dd77884
PZ
1333
1334 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1335}
1336
029632fb 1337void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1338{
7dd77884
PZ
1339 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1340
1e3c88bd
PZ
1341 if (task_contributes_to_load(p))
1342 rq->nr_uninterruptible++;
1343
371fd7e7 1344 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1345}
1346
14531189 1347/*
dd41f596 1348 * __normal_prio - return the priority that is based on the static prio
14531189 1349 */
14531189
IM
1350static inline int __normal_prio(struct task_struct *p)
1351{
dd41f596 1352 return p->static_prio;
14531189
IM
1353}
1354
b29739f9
IM
1355/*
1356 * Calculate the expected normal priority: i.e. priority
1357 * without taking RT-inheritance into account. Might be
1358 * boosted by interactivity modifiers. Changes upon fork,
1359 * setprio syscalls, and whenever the interactivity
1360 * estimator recalculates.
1361 */
36c8b586 1362static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1363{
1364 int prio;
1365
aab03e05
DF
1366 if (task_has_dl_policy(p))
1367 prio = MAX_DL_PRIO-1;
1368 else if (task_has_rt_policy(p))
b29739f9
IM
1369 prio = MAX_RT_PRIO-1 - p->rt_priority;
1370 else
1371 prio = __normal_prio(p);
1372 return prio;
1373}
1374
1375/*
1376 * Calculate the current priority, i.e. the priority
1377 * taken into account by the scheduler. This value might
1378 * be boosted by RT tasks, or might be boosted by
1379 * interactivity modifiers. Will be RT if the task got
1380 * RT-boosted. If not then it returns p->normal_prio.
1381 */
36c8b586 1382static int effective_prio(struct task_struct *p)
b29739f9
IM
1383{
1384 p->normal_prio = normal_prio(p);
1385 /*
1386 * If we are RT tasks or we were boosted to RT priority,
1387 * keep the priority unchanged. Otherwise, update priority
1388 * to the normal priority:
1389 */
1390 if (!rt_prio(p->prio))
1391 return p->normal_prio;
1392 return p->prio;
1393}
1394
1da177e4
LT
1395/**
1396 * task_curr - is this task currently executing on a CPU?
1397 * @p: the task in question.
e69f6186
YB
1398 *
1399 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1400 */
36c8b586 1401inline int task_curr(const struct task_struct *p)
1da177e4
LT
1402{
1403 return cpu_curr(task_cpu(p)) == p;
1404}
1405
67dfa1b7 1406/*
4c9a4bc8
PZ
1407 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1408 * use the balance_callback list if you want balancing.
1409 *
1410 * this means any call to check_class_changed() must be followed by a call to
1411 * balance_callback().
67dfa1b7 1412 */
cb469845
SR
1413static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1414 const struct sched_class *prev_class,
da7a735e 1415 int oldprio)
cb469845
SR
1416{
1417 if (prev_class != p->sched_class) {
1418 if (prev_class->switched_from)
da7a735e 1419 prev_class->switched_from(rq, p);
4c9a4bc8 1420
da7a735e 1421 p->sched_class->switched_to(rq, p);
2d3d891d 1422 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1423 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1424}
1425
029632fb 1426void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1427{
1428 const struct sched_class *class;
1429
1430 if (p->sched_class == rq->curr->sched_class) {
1431 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1432 } else {
1433 for_each_class(class) {
1434 if (class == rq->curr->sched_class)
1435 break;
1436 if (class == p->sched_class) {
8875125e 1437 resched_curr(rq);
1e5a7405
PZ
1438 break;
1439 }
1440 }
1441 }
1442
1443 /*
1444 * A queue event has occurred, and we're going to schedule. In
1445 * this case, we can save a useless back to back clock update.
1446 */
da0c1e65 1447 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1448 rq_clock_skip_update(rq);
1e5a7405
PZ
1449}
1450
1da177e4 1451#ifdef CONFIG_SMP
175f0e25 1452
175f0e25 1453/*
bee98539 1454 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1455 * __set_cpus_allowed_ptr() and select_fallback_rq().
1456 */
1457static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1458{
3bd37062 1459 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1460 return false;
1461
1462 if (is_per_cpu_kthread(p))
1463 return cpu_online(cpu);
1464
1465 return cpu_active(cpu);
1466}
1467
5cc389bc
PZ
1468/*
1469 * This is how migration works:
1470 *
1471 * 1) we invoke migration_cpu_stop() on the target CPU using
1472 * stop_one_cpu().
1473 * 2) stopper starts to run (implicitly forcing the migrated thread
1474 * off the CPU)
1475 * 3) it checks whether the migrated task is still in the wrong runqueue.
1476 * 4) if it's in the wrong runqueue then the migration thread removes
1477 * it and puts it into the right queue.
1478 * 5) stopper completes and stop_one_cpu() returns and the migration
1479 * is done.
1480 */
1481
1482/*
1483 * move_queued_task - move a queued task to new rq.
1484 *
1485 * Returns (locked) new rq. Old rq's lock is released.
1486 */
8a8c69c3
PZ
1487static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1488 struct task_struct *p, int new_cpu)
5cc389bc 1489{
5cc389bc
PZ
1490 lockdep_assert_held(&rq->lock);
1491
c546951d 1492 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 1493 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1494 set_task_cpu(p, new_cpu);
8a8c69c3 1495 rq_unlock(rq, rf);
5cc389bc
PZ
1496
1497 rq = cpu_rq(new_cpu);
1498
8a8c69c3 1499 rq_lock(rq, rf);
5cc389bc 1500 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1501 enqueue_task(rq, p, 0);
3ea94de1 1502 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1503 check_preempt_curr(rq, p, 0);
1504
1505 return rq;
1506}
1507
1508struct migration_arg {
1509 struct task_struct *task;
1510 int dest_cpu;
1511};
1512
1513/*
d1ccc66d 1514 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1515 * this because either it can't run here any more (set_cpus_allowed()
1516 * away from this CPU, or CPU going down), or because we're
1517 * attempting to rebalance this task on exec (sched_exec).
1518 *
1519 * So we race with normal scheduler movements, but that's OK, as long
1520 * as the task is no longer on this CPU.
5cc389bc 1521 */
8a8c69c3
PZ
1522static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1523 struct task_struct *p, int dest_cpu)
5cc389bc 1524{
5cc389bc 1525 /* Affinity changed (again). */
175f0e25 1526 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1527 return rq;
5cc389bc 1528
15ff991e 1529 update_rq_clock(rq);
8a8c69c3 1530 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1531
1532 return rq;
5cc389bc
PZ
1533}
1534
1535/*
1536 * migration_cpu_stop - this will be executed by a highprio stopper thread
1537 * and performs thread migration by bumping thread off CPU then
1538 * 'pushing' onto another runqueue.
1539 */
1540static int migration_cpu_stop(void *data)
1541{
1542 struct migration_arg *arg = data;
5e16bbc2
PZ
1543 struct task_struct *p = arg->task;
1544 struct rq *rq = this_rq();
8a8c69c3 1545 struct rq_flags rf;
5cc389bc
PZ
1546
1547 /*
d1ccc66d
IM
1548 * The original target CPU might have gone down and we might
1549 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1550 */
1551 local_irq_disable();
1552 /*
1553 * We need to explicitly wake pending tasks before running
3bd37062 1554 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1555 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1556 */
1557 sched_ttwu_pending();
5e16bbc2
PZ
1558
1559 raw_spin_lock(&p->pi_lock);
8a8c69c3 1560 rq_lock(rq, &rf);
5e16bbc2
PZ
1561 /*
1562 * If task_rq(p) != rq, it cannot be migrated here, because we're
1563 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1564 * we're holding p->pi_lock.
1565 */
bf89a304
CC
1566 if (task_rq(p) == rq) {
1567 if (task_on_rq_queued(p))
8a8c69c3 1568 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1569 else
1570 p->wake_cpu = arg->dest_cpu;
1571 }
8a8c69c3 1572 rq_unlock(rq, &rf);
5e16bbc2
PZ
1573 raw_spin_unlock(&p->pi_lock);
1574
5cc389bc
PZ
1575 local_irq_enable();
1576 return 0;
1577}
1578
c5b28038
PZ
1579/*
1580 * sched_class::set_cpus_allowed must do the below, but is not required to
1581 * actually call this function.
1582 */
1583void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1584{
3bd37062 1585 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1586 p->nr_cpus_allowed = cpumask_weight(new_mask);
1587}
1588
c5b28038
PZ
1589void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1590{
6c37067e
PZ
1591 struct rq *rq = task_rq(p);
1592 bool queued, running;
1593
c5b28038 1594 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1595
1596 queued = task_on_rq_queued(p);
1597 running = task_current(rq, p);
1598
1599 if (queued) {
1600 /*
1601 * Because __kthread_bind() calls this on blocked tasks without
1602 * holding rq->lock.
1603 */
1604 lockdep_assert_held(&rq->lock);
7a57f32a 1605 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1606 }
1607 if (running)
1608 put_prev_task(rq, p);
1609
c5b28038 1610 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1611
6c37067e 1612 if (queued)
7134b3e9 1613 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1614 if (running)
03b7fad1 1615 set_next_task(rq, p);
c5b28038
PZ
1616}
1617
5cc389bc
PZ
1618/*
1619 * Change a given task's CPU affinity. Migrate the thread to a
1620 * proper CPU and schedule it away if the CPU it's executing on
1621 * is removed from the allowed bitmask.
1622 *
1623 * NOTE: the caller must have a valid reference to the task, the
1624 * task must not exit() & deallocate itself prematurely. The
1625 * call is not atomic; no spinlocks may be held.
1626 */
25834c73
PZ
1627static int __set_cpus_allowed_ptr(struct task_struct *p,
1628 const struct cpumask *new_mask, bool check)
5cc389bc 1629{
e9d867a6 1630 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1631 unsigned int dest_cpu;
eb580751
PZ
1632 struct rq_flags rf;
1633 struct rq *rq;
5cc389bc
PZ
1634 int ret = 0;
1635
eb580751 1636 rq = task_rq_lock(p, &rf);
a499c3ea 1637 update_rq_clock(rq);
5cc389bc 1638
e9d867a6
PZI
1639 if (p->flags & PF_KTHREAD) {
1640 /*
1641 * Kernel threads are allowed on online && !active CPUs
1642 */
1643 cpu_valid_mask = cpu_online_mask;
1644 }
1645
25834c73
PZ
1646 /*
1647 * Must re-check here, to close a race against __kthread_bind(),
1648 * sched_setaffinity() is not guaranteed to observe the flag.
1649 */
1650 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1651 ret = -EINVAL;
1652 goto out;
1653 }
1654
3bd37062 1655 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1656 goto out;
1657
46a87b38
PT
1658 /*
1659 * Picking a ~random cpu helps in cases where we are changing affinity
1660 * for groups of tasks (ie. cpuset), so that load balancing is not
1661 * immediately required to distribute the tasks within their new mask.
1662 */
1663 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 1664 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
1665 ret = -EINVAL;
1666 goto out;
1667 }
1668
1669 do_set_cpus_allowed(p, new_mask);
1670
e9d867a6
PZI
1671 if (p->flags & PF_KTHREAD) {
1672 /*
1673 * For kernel threads that do indeed end up on online &&
d1ccc66d 1674 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1675 */
1676 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1677 !cpumask_intersects(new_mask, cpu_active_mask) &&
1678 p->nr_cpus_allowed != 1);
1679 }
1680
5cc389bc
PZ
1681 /* Can the task run on the task's current CPU? If so, we're done */
1682 if (cpumask_test_cpu(task_cpu(p), new_mask))
1683 goto out;
1684
5cc389bc
PZ
1685 if (task_running(rq, p) || p->state == TASK_WAKING) {
1686 struct migration_arg arg = { p, dest_cpu };
1687 /* Need help from migration thread: drop lock and wait. */
eb580751 1688 task_rq_unlock(rq, p, &rf);
5cc389bc 1689 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1690 return 0;
cbce1a68
PZ
1691 } else if (task_on_rq_queued(p)) {
1692 /*
1693 * OK, since we're going to drop the lock immediately
1694 * afterwards anyway.
1695 */
8a8c69c3 1696 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1697 }
5cc389bc 1698out:
eb580751 1699 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1700
1701 return ret;
1702}
25834c73
PZ
1703
1704int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1705{
1706 return __set_cpus_allowed_ptr(p, new_mask, false);
1707}
5cc389bc
PZ
1708EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1709
dd41f596 1710void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1711{
e2912009
PZ
1712#ifdef CONFIG_SCHED_DEBUG
1713 /*
1714 * We should never call set_task_cpu() on a blocked task,
1715 * ttwu() will sort out the placement.
1716 */
077614ee 1717 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1718 !p->on_rq);
0122ec5b 1719
3ea94de1
JP
1720 /*
1721 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1722 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1723 * time relying on p->on_rq.
1724 */
1725 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1726 p->sched_class == &fair_sched_class &&
1727 (p->on_rq && !task_on_rq_migrating(p)));
1728
0122ec5b 1729#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1730 /*
1731 * The caller should hold either p->pi_lock or rq->lock, when changing
1732 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1733 *
1734 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1735 * see task_group().
6c6c54e1
PZ
1736 *
1737 * Furthermore, all task_rq users should acquire both locks, see
1738 * task_rq_lock().
1739 */
0122ec5b
PZ
1740 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1741 lockdep_is_held(&task_rq(p)->lock)));
1742#endif
4ff9083b
PZ
1743 /*
1744 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1745 */
1746 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1747#endif
1748
de1d7286 1749 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1750
0c69774e 1751 if (task_cpu(p) != new_cpu) {
0a74bef8 1752 if (p->sched_class->migrate_task_rq)
1327237a 1753 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1754 p->se.nr_migrations++;
d7822b1e 1755 rseq_migrate(p);
ff303e66 1756 perf_event_task_migrate(p);
0c69774e 1757 }
dd41f596
IM
1758
1759 __set_task_cpu(p, new_cpu);
c65cc870
IM
1760}
1761
0ad4e3df 1762#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1763static void __migrate_swap_task(struct task_struct *p, int cpu)
1764{
da0c1e65 1765 if (task_on_rq_queued(p)) {
ac66f547 1766 struct rq *src_rq, *dst_rq;
8a8c69c3 1767 struct rq_flags srf, drf;
ac66f547
PZ
1768
1769 src_rq = task_rq(p);
1770 dst_rq = cpu_rq(cpu);
1771
8a8c69c3
PZ
1772 rq_pin_lock(src_rq, &srf);
1773 rq_pin_lock(dst_rq, &drf);
1774
ac66f547
PZ
1775 deactivate_task(src_rq, p, 0);
1776 set_task_cpu(p, cpu);
1777 activate_task(dst_rq, p, 0);
1778 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1779
1780 rq_unpin_lock(dst_rq, &drf);
1781 rq_unpin_lock(src_rq, &srf);
1782
ac66f547
PZ
1783 } else {
1784 /*
1785 * Task isn't running anymore; make it appear like we migrated
1786 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1787 * previous CPU our target instead of where it really is.
ac66f547
PZ
1788 */
1789 p->wake_cpu = cpu;
1790 }
1791}
1792
1793struct migration_swap_arg {
1794 struct task_struct *src_task, *dst_task;
1795 int src_cpu, dst_cpu;
1796};
1797
1798static int migrate_swap_stop(void *data)
1799{
1800 struct migration_swap_arg *arg = data;
1801 struct rq *src_rq, *dst_rq;
1802 int ret = -EAGAIN;
1803
62694cd5
PZ
1804 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1805 return -EAGAIN;
1806
ac66f547
PZ
1807 src_rq = cpu_rq(arg->src_cpu);
1808 dst_rq = cpu_rq(arg->dst_cpu);
1809
74602315
PZ
1810 double_raw_lock(&arg->src_task->pi_lock,
1811 &arg->dst_task->pi_lock);
ac66f547 1812 double_rq_lock(src_rq, dst_rq);
62694cd5 1813
ac66f547
PZ
1814 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1815 goto unlock;
1816
1817 if (task_cpu(arg->src_task) != arg->src_cpu)
1818 goto unlock;
1819
3bd37062 1820 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1821 goto unlock;
1822
3bd37062 1823 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1824 goto unlock;
1825
1826 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1827 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1828
1829 ret = 0;
1830
1831unlock:
1832 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1833 raw_spin_unlock(&arg->dst_task->pi_lock);
1834 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1835
1836 return ret;
1837}
1838
1839/*
1840 * Cross migrate two tasks
1841 */
0ad4e3df
SD
1842int migrate_swap(struct task_struct *cur, struct task_struct *p,
1843 int target_cpu, int curr_cpu)
ac66f547
PZ
1844{
1845 struct migration_swap_arg arg;
1846 int ret = -EINVAL;
1847
ac66f547
PZ
1848 arg = (struct migration_swap_arg){
1849 .src_task = cur,
0ad4e3df 1850 .src_cpu = curr_cpu,
ac66f547 1851 .dst_task = p,
0ad4e3df 1852 .dst_cpu = target_cpu,
ac66f547
PZ
1853 };
1854
1855 if (arg.src_cpu == arg.dst_cpu)
1856 goto out;
1857
6acce3ef
PZ
1858 /*
1859 * These three tests are all lockless; this is OK since all of them
1860 * will be re-checked with proper locks held further down the line.
1861 */
ac66f547
PZ
1862 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1863 goto out;
1864
3bd37062 1865 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1866 goto out;
1867
3bd37062 1868 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1869 goto out;
1870
286549dc 1871 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1872 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1873
1874out:
ac66f547
PZ
1875 return ret;
1876}
0ad4e3df 1877#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1878
1da177e4
LT
1879/*
1880 * wait_task_inactive - wait for a thread to unschedule.
1881 *
85ba2d86
RM
1882 * If @match_state is nonzero, it's the @p->state value just checked and
1883 * not expected to change. If it changes, i.e. @p might have woken up,
1884 * then return zero. When we succeed in waiting for @p to be off its CPU,
1885 * we return a positive number (its total switch count). If a second call
1886 * a short while later returns the same number, the caller can be sure that
1887 * @p has remained unscheduled the whole time.
1888 *
1da177e4
LT
1889 * The caller must ensure that the task *will* unschedule sometime soon,
1890 * else this function might spin for a *long* time. This function can't
1891 * be called with interrupts off, or it may introduce deadlock with
1892 * smp_call_function() if an IPI is sent by the same process we are
1893 * waiting to become inactive.
1894 */
85ba2d86 1895unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1896{
da0c1e65 1897 int running, queued;
eb580751 1898 struct rq_flags rf;
85ba2d86 1899 unsigned long ncsw;
70b97a7f 1900 struct rq *rq;
1da177e4 1901
3a5c359a
AK
1902 for (;;) {
1903 /*
1904 * We do the initial early heuristics without holding
1905 * any task-queue locks at all. We'll only try to get
1906 * the runqueue lock when things look like they will
1907 * work out!
1908 */
1909 rq = task_rq(p);
fa490cfd 1910
3a5c359a
AK
1911 /*
1912 * If the task is actively running on another CPU
1913 * still, just relax and busy-wait without holding
1914 * any locks.
1915 *
1916 * NOTE! Since we don't hold any locks, it's not
1917 * even sure that "rq" stays as the right runqueue!
1918 * But we don't care, since "task_running()" will
1919 * return false if the runqueue has changed and p
1920 * is actually now running somewhere else!
1921 */
85ba2d86
RM
1922 while (task_running(rq, p)) {
1923 if (match_state && unlikely(p->state != match_state))
1924 return 0;
3a5c359a 1925 cpu_relax();
85ba2d86 1926 }
fa490cfd 1927
3a5c359a
AK
1928 /*
1929 * Ok, time to look more closely! We need the rq
1930 * lock now, to be *sure*. If we're wrong, we'll
1931 * just go back and repeat.
1932 */
eb580751 1933 rq = task_rq_lock(p, &rf);
27a9da65 1934 trace_sched_wait_task(p);
3a5c359a 1935 running = task_running(rq, p);
da0c1e65 1936 queued = task_on_rq_queued(p);
85ba2d86 1937 ncsw = 0;
f31e11d8 1938 if (!match_state || p->state == match_state)
93dcf55f 1939 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1940 task_rq_unlock(rq, p, &rf);
fa490cfd 1941
85ba2d86
RM
1942 /*
1943 * If it changed from the expected state, bail out now.
1944 */
1945 if (unlikely(!ncsw))
1946 break;
1947
3a5c359a
AK
1948 /*
1949 * Was it really running after all now that we
1950 * checked with the proper locks actually held?
1951 *
1952 * Oops. Go back and try again..
1953 */
1954 if (unlikely(running)) {
1955 cpu_relax();
1956 continue;
1957 }
fa490cfd 1958
3a5c359a
AK
1959 /*
1960 * It's not enough that it's not actively running,
1961 * it must be off the runqueue _entirely_, and not
1962 * preempted!
1963 *
80dd99b3 1964 * So if it was still runnable (but just not actively
3a5c359a
AK
1965 * running right now), it's preempted, and we should
1966 * yield - it could be a while.
1967 */
da0c1e65 1968 if (unlikely(queued)) {
8b0e1953 1969 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1970
1971 set_current_state(TASK_UNINTERRUPTIBLE);
1972 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1973 continue;
1974 }
fa490cfd 1975
3a5c359a
AK
1976 /*
1977 * Ahh, all good. It wasn't running, and it wasn't
1978 * runnable, which means that it will never become
1979 * running in the future either. We're all done!
1980 */
1981 break;
1982 }
85ba2d86
RM
1983
1984 return ncsw;
1da177e4
LT
1985}
1986
1987/***
1988 * kick_process - kick a running thread to enter/exit the kernel
1989 * @p: the to-be-kicked thread
1990 *
1991 * Cause a process which is running on another CPU to enter
1992 * kernel-mode, without any delay. (to get signals handled.)
1993 *
25985edc 1994 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1995 * because all it wants to ensure is that the remote task enters
1996 * the kernel. If the IPI races and the task has been migrated
1997 * to another CPU then no harm is done and the purpose has been
1998 * achieved as well.
1999 */
36c8b586 2000void kick_process(struct task_struct *p)
1da177e4
LT
2001{
2002 int cpu;
2003
2004 preempt_disable();
2005 cpu = task_cpu(p);
2006 if ((cpu != smp_processor_id()) && task_curr(p))
2007 smp_send_reschedule(cpu);
2008 preempt_enable();
2009}
b43e3521 2010EXPORT_SYMBOL_GPL(kick_process);
1da177e4 2011
30da688e 2012/*
3bd37062 2013 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2014 *
2015 * A few notes on cpu_active vs cpu_online:
2016 *
2017 * - cpu_active must be a subset of cpu_online
2018 *
97fb7a0a 2019 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2020 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2021 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2022 * see it.
2023 *
d1ccc66d 2024 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2025 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2026 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2027 * off.
2028 *
2029 * This means that fallback selection must not select !active CPUs.
2030 * And can assume that any active CPU must be online. Conversely
2031 * select_task_rq() below may allow selection of !active CPUs in order
2032 * to satisfy the above rules.
30da688e 2033 */
5da9a0fb
PZ
2034static int select_fallback_rq(int cpu, struct task_struct *p)
2035{
aa00d89c
TC
2036 int nid = cpu_to_node(cpu);
2037 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2038 enum { cpuset, possible, fail } state = cpuset;
2039 int dest_cpu;
5da9a0fb 2040
aa00d89c 2041 /*
d1ccc66d
IM
2042 * If the node that the CPU is on has been offlined, cpu_to_node()
2043 * will return -1. There is no CPU on the node, and we should
2044 * select the CPU on the other node.
aa00d89c
TC
2045 */
2046 if (nid != -1) {
2047 nodemask = cpumask_of_node(nid);
2048
2049 /* Look for allowed, online CPU in same node. */
2050 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2051 if (!cpu_active(dest_cpu))
2052 continue;
3bd37062 2053 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2054 return dest_cpu;
2055 }
2baab4e9 2056 }
5da9a0fb 2057
2baab4e9
PZ
2058 for (;;) {
2059 /* Any allowed, online CPU? */
3bd37062 2060 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2061 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2062 continue;
175f0e25 2063
2baab4e9
PZ
2064 goto out;
2065 }
5da9a0fb 2066
e73e85f0 2067 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2068 switch (state) {
2069 case cpuset:
e73e85f0
ON
2070 if (IS_ENABLED(CONFIG_CPUSETS)) {
2071 cpuset_cpus_allowed_fallback(p);
2072 state = possible;
2073 break;
2074 }
d1ccc66d 2075 /* Fall-through */
2baab4e9
PZ
2076 case possible:
2077 do_set_cpus_allowed(p, cpu_possible_mask);
2078 state = fail;
2079 break;
2080
2081 case fail:
2082 BUG();
2083 break;
2084 }
2085 }
2086
2087out:
2088 if (state != cpuset) {
2089 /*
2090 * Don't tell them about moving exiting tasks or
2091 * kernel threads (both mm NULL), since they never
2092 * leave kernel.
2093 */
2094 if (p->mm && printk_ratelimit()) {
aac74dc4 2095 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2096 task_pid_nr(p), p->comm, cpu);
2097 }
5da9a0fb
PZ
2098 }
2099
2100 return dest_cpu;
2101}
2102
e2912009 2103/*
3bd37062 2104 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2105 */
970b13ba 2106static inline
ac66f547 2107int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 2108{
cbce1a68
PZ
2109 lockdep_assert_held(&p->pi_lock);
2110
4b53a341 2111 if (p->nr_cpus_allowed > 1)
6c1d9410 2112 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 2113 else
3bd37062 2114 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2115
2116 /*
2117 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2118 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2119 * CPU.
e2912009
PZ
2120 *
2121 * Since this is common to all placement strategies, this lives here.
2122 *
2123 * [ this allows ->select_task() to simply return task_cpu(p) and
2124 * not worry about this generic constraint ]
2125 */
7af443ee 2126 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2127 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2128
2129 return cpu;
970b13ba 2130}
09a40af5 2131
f5832c19
NP
2132void sched_set_stop_task(int cpu, struct task_struct *stop)
2133{
2134 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2135 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2136
2137 if (stop) {
2138 /*
2139 * Make it appear like a SCHED_FIFO task, its something
2140 * userspace knows about and won't get confused about.
2141 *
2142 * Also, it will make PI more or less work without too
2143 * much confusion -- but then, stop work should not
2144 * rely on PI working anyway.
2145 */
2146 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2147
2148 stop->sched_class = &stop_sched_class;
2149 }
2150
2151 cpu_rq(cpu)->stop = stop;
2152
2153 if (old_stop) {
2154 /*
2155 * Reset it back to a normal scheduling class so that
2156 * it can die in pieces.
2157 */
2158 old_stop->sched_class = &rt_sched_class;
2159 }
2160}
2161
25834c73
PZ
2162#else
2163
2164static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2165 const struct cpumask *new_mask, bool check)
2166{
2167 return set_cpus_allowed_ptr(p, new_mask);
2168}
2169
5cc389bc 2170#endif /* CONFIG_SMP */
970b13ba 2171
d7c01d27 2172static void
b84cb5df 2173ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2174{
4fa8d299 2175 struct rq *rq;
b84cb5df 2176
4fa8d299
JP
2177 if (!schedstat_enabled())
2178 return;
2179
2180 rq = this_rq();
d7c01d27 2181
4fa8d299
JP
2182#ifdef CONFIG_SMP
2183 if (cpu == rq->cpu) {
b85c8b71
PZ
2184 __schedstat_inc(rq->ttwu_local);
2185 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2186 } else {
2187 struct sched_domain *sd;
2188
b85c8b71 2189 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2190 rcu_read_lock();
4fa8d299 2191 for_each_domain(rq->cpu, sd) {
d7c01d27 2192 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2193 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2194 break;
2195 }
2196 }
057f3fad 2197 rcu_read_unlock();
d7c01d27 2198 }
f339b9dc
PZ
2199
2200 if (wake_flags & WF_MIGRATED)
b85c8b71 2201 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2202#endif /* CONFIG_SMP */
2203
b85c8b71
PZ
2204 __schedstat_inc(rq->ttwu_count);
2205 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2206
2207 if (wake_flags & WF_SYNC)
b85c8b71 2208 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2209}
2210
23f41eeb
PZ
2211/*
2212 * Mark the task runnable and perform wakeup-preemption.
2213 */
e7904a28 2214static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2215 struct rq_flags *rf)
9ed3811a 2216{
9ed3811a 2217 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2218 p->state = TASK_RUNNING;
fbd705a0
PZ
2219 trace_sched_wakeup(p);
2220
9ed3811a 2221#ifdef CONFIG_SMP
4c9a4bc8
PZ
2222 if (p->sched_class->task_woken) {
2223 /*
cbce1a68
PZ
2224 * Our task @p is fully woken up and running; so its safe to
2225 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2226 */
d8ac8971 2227 rq_unpin_lock(rq, rf);
9ed3811a 2228 p->sched_class->task_woken(rq, p);
d8ac8971 2229 rq_repin_lock(rq, rf);
4c9a4bc8 2230 }
9ed3811a 2231
e69c6341 2232 if (rq->idle_stamp) {
78becc27 2233 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2234 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2235
abfafa54
JL
2236 update_avg(&rq->avg_idle, delta);
2237
2238 if (rq->avg_idle > max)
9ed3811a 2239 rq->avg_idle = max;
abfafa54 2240
9ed3811a
TH
2241 rq->idle_stamp = 0;
2242 }
2243#endif
2244}
2245
c05fbafb 2246static void
e7904a28 2247ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2248 struct rq_flags *rf)
c05fbafb 2249{
77558e4d 2250 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2251
cbce1a68
PZ
2252 lockdep_assert_held(&rq->lock);
2253
c05fbafb
PZ
2254#ifdef CONFIG_SMP
2255 if (p->sched_contributes_to_load)
2256 rq->nr_uninterruptible--;
b5179ac7 2257
b5179ac7 2258 if (wake_flags & WF_MIGRATED)
59efa0ba 2259 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2260#endif
2261
1b174a2c 2262 activate_task(rq, p, en_flags);
d8ac8971 2263 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2264}
2265
2266/*
2267 * Called in case the task @p isn't fully descheduled from its runqueue,
2268 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2269 * since all we need to do is flip p->state to TASK_RUNNING, since
2270 * the task is still ->on_rq.
2271 */
2272static int ttwu_remote(struct task_struct *p, int wake_flags)
2273{
eb580751 2274 struct rq_flags rf;
c05fbafb
PZ
2275 struct rq *rq;
2276 int ret = 0;
2277
eb580751 2278 rq = __task_rq_lock(p, &rf);
da0c1e65 2279 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2280 /* check_preempt_curr() may use rq clock */
2281 update_rq_clock(rq);
d8ac8971 2282 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2283 ret = 1;
2284 }
eb580751 2285 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2286
2287 return ret;
2288}
2289
317f3941 2290#ifdef CONFIG_SMP
e3baac47 2291void sched_ttwu_pending(void)
317f3941
PZ
2292{
2293 struct rq *rq = this_rq();
fa14ff4a 2294 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 2295 struct task_struct *p, *t;
d8ac8971 2296 struct rq_flags rf;
317f3941 2297
e3baac47
PZ
2298 if (!llist)
2299 return;
2300
8a8c69c3 2301 rq_lock_irqsave(rq, &rf);
77558e4d 2302 update_rq_clock(rq);
317f3941 2303
73215849
BP
2304 llist_for_each_entry_safe(p, t, llist, wake_entry)
2305 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 2306
8a8c69c3 2307 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2308}
2309
90b5363a
PZI
2310static void wake_csd_func(void *info)
2311{
2312 sched_ttwu_pending();
2313}
2314
b7e7ade3 2315static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 2316{
e3baac47
PZ
2317 struct rq *rq = cpu_rq(cpu);
2318
b7e7ade3
PZ
2319 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2320
90b5363a 2321 if (llist_add(&p->wake_entry, &rq->wake_list)) {
e3baac47 2322 if (!set_nr_if_polling(rq->idle))
90b5363a 2323 smp_call_function_single_async(cpu, &rq->wake_csd);
e3baac47
PZ
2324 else
2325 trace_sched_wake_idle_without_ipi(cpu);
2326 }
317f3941 2327}
d6aa8f85 2328
f6be8af1
CL
2329void wake_up_if_idle(int cpu)
2330{
2331 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2332 struct rq_flags rf;
f6be8af1 2333
fd7de1e8
AL
2334 rcu_read_lock();
2335
2336 if (!is_idle_task(rcu_dereference(rq->curr)))
2337 goto out;
f6be8af1
CL
2338
2339 if (set_nr_if_polling(rq->idle)) {
2340 trace_sched_wake_idle_without_ipi(cpu);
2341 } else {
8a8c69c3 2342 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2343 if (is_idle_task(rq->curr))
2344 smp_send_reschedule(cpu);
d1ccc66d 2345 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2346 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2347 }
fd7de1e8
AL
2348
2349out:
2350 rcu_read_unlock();
f6be8af1
CL
2351}
2352
39be3501 2353bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2354{
2355 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2356}
d6aa8f85 2357#endif /* CONFIG_SMP */
317f3941 2358
b5179ac7 2359static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2360{
2361 struct rq *rq = cpu_rq(cpu);
d8ac8971 2362 struct rq_flags rf;
c05fbafb 2363
17d9f311 2364#if defined(CONFIG_SMP)
39be3501 2365 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 2366 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 2367 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
2368 return;
2369 }
2370#endif
2371
8a8c69c3 2372 rq_lock(rq, &rf);
77558e4d 2373 update_rq_clock(rq);
d8ac8971 2374 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2375 rq_unlock(rq, &rf);
9ed3811a
TH
2376}
2377
8643cda5
PZ
2378/*
2379 * Notes on Program-Order guarantees on SMP systems.
2380 *
2381 * MIGRATION
2382 *
2383 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2384 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2385 * execution on its new CPU [c1].
8643cda5
PZ
2386 *
2387 * For migration (of runnable tasks) this is provided by the following means:
2388 *
2389 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2390 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2391 * rq(c1)->lock (if not at the same time, then in that order).
2392 * C) LOCK of the rq(c1)->lock scheduling in task
2393 *
7696f991 2394 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2395 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2396 *
2397 * Example:
2398 *
2399 * CPU0 CPU1 CPU2
2400 *
2401 * LOCK rq(0)->lock
2402 * sched-out X
2403 * sched-in Y
2404 * UNLOCK rq(0)->lock
2405 *
2406 * LOCK rq(0)->lock // orders against CPU0
2407 * dequeue X
2408 * UNLOCK rq(0)->lock
2409 *
2410 * LOCK rq(1)->lock
2411 * enqueue X
2412 * UNLOCK rq(1)->lock
2413 *
2414 * LOCK rq(1)->lock // orders against CPU2
2415 * sched-out Z
2416 * sched-in X
2417 * UNLOCK rq(1)->lock
2418 *
2419 *
2420 * BLOCKING -- aka. SLEEP + WAKEUP
2421 *
2422 * For blocking we (obviously) need to provide the same guarantee as for
2423 * migration. However the means are completely different as there is no lock
2424 * chain to provide order. Instead we do:
2425 *
2426 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 2427 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
2428 *
2429 * Example:
2430 *
2431 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2432 *
2433 * LOCK rq(0)->lock LOCK X->pi_lock
2434 * dequeue X
2435 * sched-out X
2436 * smp_store_release(X->on_cpu, 0);
2437 *
1f03e8d2 2438 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2439 * X->state = WAKING
2440 * set_task_cpu(X,2)
2441 *
2442 * LOCK rq(2)->lock
2443 * enqueue X
2444 * X->state = RUNNING
2445 * UNLOCK rq(2)->lock
2446 *
2447 * LOCK rq(2)->lock // orders against CPU1
2448 * sched-out Z
2449 * sched-in X
2450 * UNLOCK rq(2)->lock
2451 *
2452 * UNLOCK X->pi_lock
2453 * UNLOCK rq(0)->lock
2454 *
2455 *
7696f991
AP
2456 * However, for wakeups there is a second guarantee we must provide, namely we
2457 * must ensure that CONDITION=1 done by the caller can not be reordered with
2458 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2459 */
2460
9ed3811a 2461/**
1da177e4 2462 * try_to_wake_up - wake up a thread
9ed3811a 2463 * @p: the thread to be awakened
1da177e4 2464 * @state: the mask of task states that can be woken
9ed3811a 2465 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2466 *
a2250238 2467 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2468 *
a2250238
PZ
2469 * If the task was not queued/runnable, also place it back on a runqueue.
2470 *
2471 * Atomic against schedule() which would dequeue a task, also see
2472 * set_current_state().
2473 *
7696f991
AP
2474 * This function executes a full memory barrier before accessing the task
2475 * state; see set_current_state().
2476 *
a2250238
PZ
2477 * Return: %true if @p->state changes (an actual wakeup was done),
2478 * %false otherwise.
1da177e4 2479 */
e4a52bcb
PZ
2480static int
2481try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2482{
1da177e4 2483 unsigned long flags;
c05fbafb 2484 int cpu, success = 0;
2398f2c6 2485
e3d85487 2486 preempt_disable();
aacedf26
PZ
2487 if (p == current) {
2488 /*
2489 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2490 * == smp_processor_id()'. Together this means we can special
2491 * case the whole 'p->on_rq && ttwu_remote()' case below
2492 * without taking any locks.
2493 *
2494 * In particular:
2495 * - we rely on Program-Order guarantees for all the ordering,
2496 * - we're serialized against set_special_state() by virtue of
2497 * it disabling IRQs (this allows not taking ->pi_lock).
2498 */
2499 if (!(p->state & state))
e3d85487 2500 goto out;
aacedf26
PZ
2501
2502 success = 1;
2503 cpu = task_cpu(p);
2504 trace_sched_waking(p);
2505 p->state = TASK_RUNNING;
2506 trace_sched_wakeup(p);
2507 goto out;
2508 }
2509
e0acd0a6
ON
2510 /*
2511 * If we are going to wake up a thread waiting for CONDITION we
2512 * need to ensure that CONDITION=1 done by the caller can not be
2513 * reordered with p->state check below. This pairs with mb() in
2514 * set_current_state() the waiting thread does.
2515 */
013fdb80 2516 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2517 smp_mb__after_spinlock();
e9c84311 2518 if (!(p->state & state))
aacedf26 2519 goto unlock;
1da177e4 2520
fbd705a0
PZ
2521 trace_sched_waking(p);
2522
d1ccc66d
IM
2523 /* We're going to change ->state: */
2524 success = 1;
1da177e4 2525 cpu = task_cpu(p);
1da177e4 2526
135e8c92
BS
2527 /*
2528 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2529 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2530 * in smp_cond_load_acquire() below.
2531 *
3d85b270
AP
2532 * sched_ttwu_pending() try_to_wake_up()
2533 * STORE p->on_rq = 1 LOAD p->state
2534 * UNLOCK rq->lock
2535 *
2536 * __schedule() (switch to task 'p')
2537 * LOCK rq->lock smp_rmb();
2538 * smp_mb__after_spinlock();
2539 * UNLOCK rq->lock
135e8c92
BS
2540 *
2541 * [task p]
3d85b270 2542 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2543 *
3d85b270
AP
2544 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2545 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2546 */
2547 smp_rmb();
c05fbafb 2548 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2549 goto unlock;
1da177e4 2550
1da177e4 2551#ifdef CONFIG_SMP
ecf7d01c
PZ
2552 /*
2553 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2554 * possible to, falsely, observe p->on_cpu == 0.
2555 *
2556 * One must be running (->on_cpu == 1) in order to remove oneself
2557 * from the runqueue.
2558 *
3d85b270
AP
2559 * __schedule() (switch to task 'p') try_to_wake_up()
2560 * STORE p->on_cpu = 1 LOAD p->on_rq
2561 * UNLOCK rq->lock
2562 *
2563 * __schedule() (put 'p' to sleep)
2564 * LOCK rq->lock smp_rmb();
2565 * smp_mb__after_spinlock();
2566 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2567 *
3d85b270
AP
2568 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2569 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2570 */
2571 smp_rmb();
2572
e9c84311 2573 /*
d1ccc66d 2574 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2575 * this task as prev, wait until its done referencing the task.
b75a2253 2576 *
31cb1bc0 2577 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2578 *
2579 * This ensures that tasks getting woken will be fully ordered against
2580 * their previous state and preserve Program Order.
0970d299 2581 */
1f03e8d2 2582 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2583
a8e4f2ea 2584 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2585 p->state = TASK_WAKING;
e7693a36 2586
e33a9bba 2587 if (p->in_iowait) {
c96f5471 2588 delayacct_blkio_end(p);
e33a9bba
TH
2589 atomic_dec(&task_rq(p)->nr_iowait);
2590 }
2591
ac66f547 2592 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2593 if (task_cpu(p) != cpu) {
2594 wake_flags |= WF_MIGRATED;
eb414681 2595 psi_ttwu_dequeue(p);
e4a52bcb 2596 set_task_cpu(p, cpu);
f339b9dc 2597 }
e33a9bba
TH
2598
2599#else /* CONFIG_SMP */
2600
2601 if (p->in_iowait) {
c96f5471 2602 delayacct_blkio_end(p);
e33a9bba
TH
2603 atomic_dec(&task_rq(p)->nr_iowait);
2604 }
2605
1da177e4 2606#endif /* CONFIG_SMP */
1da177e4 2607
b5179ac7 2608 ttwu_queue(p, cpu, wake_flags);
aacedf26 2609unlock:
013fdb80 2610 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2611out:
2612 if (success)
2613 ttwu_stat(p, cpu, wake_flags);
e3d85487 2614 preempt_enable();
1da177e4
LT
2615
2616 return success;
2617}
2618
50fa610a
DH
2619/**
2620 * wake_up_process - Wake up a specific process
2621 * @p: The process to be woken up.
2622 *
2623 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2624 * processes.
2625 *
2626 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2627 *
7696f991 2628 * This function executes a full memory barrier before accessing the task state.
50fa610a 2629 */
7ad5b3a5 2630int wake_up_process(struct task_struct *p)
1da177e4 2631{
9067ac85 2632 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2633}
1da177e4
LT
2634EXPORT_SYMBOL(wake_up_process);
2635
7ad5b3a5 2636int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2637{
2638 return try_to_wake_up(p, state, 0);
2639}
2640
1da177e4
LT
2641/*
2642 * Perform scheduler related setup for a newly forked process p.
2643 * p is forked by current.
dd41f596
IM
2644 *
2645 * __sched_fork() is basic setup used by init_idle() too:
2646 */
5e1576ed 2647static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2648{
fd2f4419
PZ
2649 p->on_rq = 0;
2650
2651 p->se.on_rq = 0;
dd41f596
IM
2652 p->se.exec_start = 0;
2653 p->se.sum_exec_runtime = 0;
f6cf891c 2654 p->se.prev_sum_exec_runtime = 0;
6c594c21 2655 p->se.nr_migrations = 0;
da7a735e 2656 p->se.vruntime = 0;
fd2f4419 2657 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2658
ad936d86
BP
2659#ifdef CONFIG_FAIR_GROUP_SCHED
2660 p->se.cfs_rq = NULL;
2661#endif
2662
6cfb0d5d 2663#ifdef CONFIG_SCHEDSTATS
cb251765 2664 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2665 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2666#endif
476d139c 2667
aab03e05 2668 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2669 init_dl_task_timer(&p->dl);
209a0cbd 2670 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2671 __dl_clear_params(p);
aab03e05 2672
fa717060 2673 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2674 p->rt.timeout = 0;
2675 p->rt.time_slice = sched_rr_timeslice;
2676 p->rt.on_rq = 0;
2677 p->rt.on_list = 0;
476d139c 2678
e107be36
AK
2679#ifdef CONFIG_PREEMPT_NOTIFIERS
2680 INIT_HLIST_HEAD(&p->preempt_notifiers);
2681#endif
cbee9f88 2682
5e1f0f09
MG
2683#ifdef CONFIG_COMPACTION
2684 p->capture_control = NULL;
2685#endif
13784475 2686 init_numa_balancing(clone_flags, p);
dd41f596
IM
2687}
2688
2a595721
SD
2689DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2690
1a687c2e 2691#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2692
1a687c2e
MG
2693void set_numabalancing_state(bool enabled)
2694{
2695 if (enabled)
2a595721 2696 static_branch_enable(&sched_numa_balancing);
1a687c2e 2697 else
2a595721 2698 static_branch_disable(&sched_numa_balancing);
1a687c2e 2699}
54a43d54
AK
2700
2701#ifdef CONFIG_PROC_SYSCTL
2702int sysctl_numa_balancing(struct ctl_table *table, int write,
2703 void __user *buffer, size_t *lenp, loff_t *ppos)
2704{
2705 struct ctl_table t;
2706 int err;
2a595721 2707 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2708
2709 if (write && !capable(CAP_SYS_ADMIN))
2710 return -EPERM;
2711
2712 t = *table;
2713 t.data = &state;
2714 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2715 if (err < 0)
2716 return err;
2717 if (write)
2718 set_numabalancing_state(state);
2719 return err;
2720}
2721#endif
2722#endif
dd41f596 2723
4698f88c
JP
2724#ifdef CONFIG_SCHEDSTATS
2725
cb251765 2726DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2727static bool __initdata __sched_schedstats = false;
cb251765 2728
cb251765
MG
2729static void set_schedstats(bool enabled)
2730{
2731 if (enabled)
2732 static_branch_enable(&sched_schedstats);
2733 else
2734 static_branch_disable(&sched_schedstats);
2735}
2736
2737void force_schedstat_enabled(void)
2738{
2739 if (!schedstat_enabled()) {
2740 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2741 static_branch_enable(&sched_schedstats);
2742 }
2743}
2744
2745static int __init setup_schedstats(char *str)
2746{
2747 int ret = 0;
2748 if (!str)
2749 goto out;
2750
4698f88c
JP
2751 /*
2752 * This code is called before jump labels have been set up, so we can't
2753 * change the static branch directly just yet. Instead set a temporary
2754 * variable so init_schedstats() can do it later.
2755 */
cb251765 2756 if (!strcmp(str, "enable")) {
4698f88c 2757 __sched_schedstats = true;
cb251765
MG
2758 ret = 1;
2759 } else if (!strcmp(str, "disable")) {
4698f88c 2760 __sched_schedstats = false;
cb251765
MG
2761 ret = 1;
2762 }
2763out:
2764 if (!ret)
2765 pr_warn("Unable to parse schedstats=\n");
2766
2767 return ret;
2768}
2769__setup("schedstats=", setup_schedstats);
2770
4698f88c
JP
2771static void __init init_schedstats(void)
2772{
2773 set_schedstats(__sched_schedstats);
2774}
2775
cb251765
MG
2776#ifdef CONFIG_PROC_SYSCTL
2777int sysctl_schedstats(struct ctl_table *table, int write,
2778 void __user *buffer, size_t *lenp, loff_t *ppos)
2779{
2780 struct ctl_table t;
2781 int err;
2782 int state = static_branch_likely(&sched_schedstats);
2783
2784 if (write && !capable(CAP_SYS_ADMIN))
2785 return -EPERM;
2786
2787 t = *table;
2788 t.data = &state;
2789 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2790 if (err < 0)
2791 return err;
2792 if (write)
2793 set_schedstats(state);
2794 return err;
2795}
4698f88c
JP
2796#endif /* CONFIG_PROC_SYSCTL */
2797#else /* !CONFIG_SCHEDSTATS */
2798static inline void init_schedstats(void) {}
2799#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2800
2801/*
2802 * fork()/clone()-time setup:
2803 */
aab03e05 2804int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2805{
0122ec5b 2806 unsigned long flags;
dd41f596 2807
5e1576ed 2808 __sched_fork(clone_flags, p);
06b83b5f 2809 /*
7dc603c9 2810 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2811 * nobody will actually run it, and a signal or other external
2812 * event cannot wake it up and insert it on the runqueue either.
2813 */
7dc603c9 2814 p->state = TASK_NEW;
dd41f596 2815
c350a04e
MG
2816 /*
2817 * Make sure we do not leak PI boosting priority to the child.
2818 */
2819 p->prio = current->normal_prio;
2820
e8f14172
PB
2821 uclamp_fork(p);
2822
b9dc29e7
MG
2823 /*
2824 * Revert to default priority/policy on fork if requested.
2825 */
2826 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2827 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2828 p->policy = SCHED_NORMAL;
6c697bdf 2829 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2830 p->rt_priority = 0;
2831 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2832 p->static_prio = NICE_TO_PRIO(0);
2833
2834 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2835 set_load_weight(p, false);
6c697bdf 2836
b9dc29e7
MG
2837 /*
2838 * We don't need the reset flag anymore after the fork. It has
2839 * fulfilled its duty:
2840 */
2841 p->sched_reset_on_fork = 0;
2842 }
ca94c442 2843
af0fffd9 2844 if (dl_prio(p->prio))
aab03e05 2845 return -EAGAIN;
af0fffd9 2846 else if (rt_prio(p->prio))
aab03e05 2847 p->sched_class = &rt_sched_class;
af0fffd9 2848 else
2ddbf952 2849 p->sched_class = &fair_sched_class;
b29739f9 2850
7dc603c9 2851 init_entity_runnable_average(&p->se);
cd29fe6f 2852
86951599
PZ
2853 /*
2854 * The child is not yet in the pid-hash so no cgroup attach races,
2855 * and the cgroup is pinned to this child due to cgroup_fork()
2856 * is ran before sched_fork().
2857 *
2858 * Silence PROVE_RCU.
2859 */
0122ec5b 2860 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2861 /*
d1ccc66d 2862 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2863 * so use __set_task_cpu().
2864 */
af0fffd9 2865 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2866 if (p->sched_class->task_fork)
2867 p->sched_class->task_fork(p);
0122ec5b 2868 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2869
f6db8347 2870#ifdef CONFIG_SCHED_INFO
dd41f596 2871 if (likely(sched_info_on()))
52f17b6c 2872 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2873#endif
3ca7a440
PZ
2874#if defined(CONFIG_SMP)
2875 p->on_cpu = 0;
4866cde0 2876#endif
01028747 2877 init_task_preempt_count(p);
806c09a7 2878#ifdef CONFIG_SMP
917b627d 2879 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2880 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2881#endif
aab03e05 2882 return 0;
1da177e4
LT
2883}
2884
332ac17e
DF
2885unsigned long to_ratio(u64 period, u64 runtime)
2886{
2887 if (runtime == RUNTIME_INF)
c52f14d3 2888 return BW_UNIT;
332ac17e
DF
2889
2890 /*
2891 * Doing this here saves a lot of checks in all
2892 * the calling paths, and returning zero seems
2893 * safe for them anyway.
2894 */
2895 if (period == 0)
2896 return 0;
2897
c52f14d3 2898 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2899}
2900
1da177e4
LT
2901/*
2902 * wake_up_new_task - wake up a newly created task for the first time.
2903 *
2904 * This function will do some initial scheduler statistics housekeeping
2905 * that must be done for every newly created context, then puts the task
2906 * on the runqueue and wakes it.
2907 */
3e51e3ed 2908void wake_up_new_task(struct task_struct *p)
1da177e4 2909{
eb580751 2910 struct rq_flags rf;
dd41f596 2911 struct rq *rq;
fabf318e 2912
eb580751 2913 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2914 p->state = TASK_RUNNING;
fabf318e
PZ
2915#ifdef CONFIG_SMP
2916 /*
2917 * Fork balancing, do it here and not earlier because:
3bd37062 2918 * - cpus_ptr can change in the fork path
d1ccc66d 2919 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2920 *
2921 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2922 * as we're not fully set-up yet.
fabf318e 2923 */
32e839dd 2924 p->recent_used_cpu = task_cpu(p);
e210bffd 2925 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2926#endif
b7fa30c9 2927 rq = __task_rq_lock(p, &rf);
4126bad6 2928 update_rq_clock(rq);
d0fe0b9c 2929 post_init_entity_util_avg(p);
0017d735 2930
7a57f32a 2931 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2932 trace_sched_wakeup_new(p);
a7558e01 2933 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2934#ifdef CONFIG_SMP
0aaafaab
PZ
2935 if (p->sched_class->task_woken) {
2936 /*
2937 * Nothing relies on rq->lock after this, so its fine to
2938 * drop it.
2939 */
d8ac8971 2940 rq_unpin_lock(rq, &rf);
efbbd05a 2941 p->sched_class->task_woken(rq, p);
d8ac8971 2942 rq_repin_lock(rq, &rf);
0aaafaab 2943 }
9a897c5a 2944#endif
eb580751 2945 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2946}
2947
e107be36
AK
2948#ifdef CONFIG_PREEMPT_NOTIFIERS
2949
b7203428 2950static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2951
2ecd9d29
PZ
2952void preempt_notifier_inc(void)
2953{
b7203428 2954 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2955}
2956EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2957
2958void preempt_notifier_dec(void)
2959{
b7203428 2960 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2961}
2962EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2963
e107be36 2964/**
80dd99b3 2965 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2966 * @notifier: notifier struct to register
e107be36
AK
2967 */
2968void preempt_notifier_register(struct preempt_notifier *notifier)
2969{
b7203428 2970 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2971 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2972
e107be36
AK
2973 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2974}
2975EXPORT_SYMBOL_GPL(preempt_notifier_register);
2976
2977/**
2978 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2979 * @notifier: notifier struct to unregister
e107be36 2980 *
d84525a8 2981 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2982 */
2983void preempt_notifier_unregister(struct preempt_notifier *notifier)
2984{
2985 hlist_del(&notifier->link);
2986}
2987EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2988
1cde2930 2989static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2990{
2991 struct preempt_notifier *notifier;
e107be36 2992
b67bfe0d 2993 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2994 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2995}
2996
1cde2930
PZ
2997static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2998{
b7203428 2999 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3000 __fire_sched_in_preempt_notifiers(curr);
3001}
3002
e107be36 3003static void
1cde2930
PZ
3004__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3005 struct task_struct *next)
e107be36
AK
3006{
3007 struct preempt_notifier *notifier;
e107be36 3008
b67bfe0d 3009 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3010 notifier->ops->sched_out(notifier, next);
3011}
3012
1cde2930
PZ
3013static __always_inline void
3014fire_sched_out_preempt_notifiers(struct task_struct *curr,
3015 struct task_struct *next)
3016{
b7203428 3017 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3018 __fire_sched_out_preempt_notifiers(curr, next);
3019}
3020
6d6bc0ad 3021#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3022
1cde2930 3023static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3024{
3025}
3026
1cde2930 3027static inline void
e107be36
AK
3028fire_sched_out_preempt_notifiers(struct task_struct *curr,
3029 struct task_struct *next)
3030{
3031}
3032
6d6bc0ad 3033#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3034
31cb1bc0 3035static inline void prepare_task(struct task_struct *next)
3036{
3037#ifdef CONFIG_SMP
3038 /*
3039 * Claim the task as running, we do this before switching to it
3040 * such that any running task will have this set.
3041 */
3042 next->on_cpu = 1;
3043#endif
3044}
3045
3046static inline void finish_task(struct task_struct *prev)
3047{
3048#ifdef CONFIG_SMP
3049 /*
3050 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3051 * We must ensure this doesn't happen until the switch is completely
3052 * finished.
3053 *
3054 * In particular, the load of prev->state in finish_task_switch() must
3055 * happen before this.
3056 *
3057 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3058 */
3059 smp_store_release(&prev->on_cpu, 0);
3060#endif
3061}
3062
269d5992
PZ
3063static inline void
3064prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 3065{
269d5992
PZ
3066 /*
3067 * Since the runqueue lock will be released by the next
3068 * task (which is an invalid locking op but in the case
3069 * of the scheduler it's an obvious special-case), so we
3070 * do an early lockdep release here:
3071 */
3072 rq_unpin_lock(rq, rf);
5facae4f 3073 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 3074#ifdef CONFIG_DEBUG_SPINLOCK
3075 /* this is a valid case when another task releases the spinlock */
269d5992 3076 rq->lock.owner = next;
31cb1bc0 3077#endif
269d5992
PZ
3078}
3079
3080static inline void finish_lock_switch(struct rq *rq)
3081{
31cb1bc0 3082 /*
3083 * If we are tracking spinlock dependencies then we have to
3084 * fix up the runqueue lock - which gets 'carried over' from
3085 * prev into current:
3086 */
3087 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 3088 raw_spin_unlock_irq(&rq->lock);
3089}
3090
325ea10c
IM
3091/*
3092 * NOP if the arch has not defined these:
3093 */
3094
3095#ifndef prepare_arch_switch
3096# define prepare_arch_switch(next) do { } while (0)
3097#endif
3098
3099#ifndef finish_arch_post_lock_switch
3100# define finish_arch_post_lock_switch() do { } while (0)
3101#endif
3102
4866cde0
NP
3103/**
3104 * prepare_task_switch - prepare to switch tasks
3105 * @rq: the runqueue preparing to switch
421cee29 3106 * @prev: the current task that is being switched out
4866cde0
NP
3107 * @next: the task we are going to switch to.
3108 *
3109 * This is called with the rq lock held and interrupts off. It must
3110 * be paired with a subsequent finish_task_switch after the context
3111 * switch.
3112 *
3113 * prepare_task_switch sets up locking and calls architecture specific
3114 * hooks.
3115 */
e107be36
AK
3116static inline void
3117prepare_task_switch(struct rq *rq, struct task_struct *prev,
3118 struct task_struct *next)
4866cde0 3119{
0ed557aa 3120 kcov_prepare_switch(prev);
43148951 3121 sched_info_switch(rq, prev, next);
fe4b04fa 3122 perf_event_task_sched_out(prev, next);
d7822b1e 3123 rseq_preempt(prev);
e107be36 3124 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3125 prepare_task(next);
4866cde0
NP
3126 prepare_arch_switch(next);
3127}
3128
1da177e4
LT
3129/**
3130 * finish_task_switch - clean up after a task-switch
3131 * @prev: the thread we just switched away from.
3132 *
4866cde0
NP
3133 * finish_task_switch must be called after the context switch, paired
3134 * with a prepare_task_switch call before the context switch.
3135 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3136 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3137 *
3138 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3139 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3140 * with the lock held can cause deadlocks; see schedule() for
3141 * details.)
dfa50b60
ON
3142 *
3143 * The context switch have flipped the stack from under us and restored the
3144 * local variables which were saved when this task called schedule() in the
3145 * past. prev == current is still correct but we need to recalculate this_rq
3146 * because prev may have moved to another CPU.
1da177e4 3147 */
dfa50b60 3148static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3149 __releases(rq->lock)
3150{
dfa50b60 3151 struct rq *rq = this_rq();
1da177e4 3152 struct mm_struct *mm = rq->prev_mm;
55a101f8 3153 long prev_state;
1da177e4 3154
609ca066
PZ
3155 /*
3156 * The previous task will have left us with a preempt_count of 2
3157 * because it left us after:
3158 *
3159 * schedule()
3160 * preempt_disable(); // 1
3161 * __schedule()
3162 * raw_spin_lock_irq(&rq->lock) // 2
3163 *
3164 * Also, see FORK_PREEMPT_COUNT.
3165 */
e2bf1c4b
PZ
3166 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3167 "corrupted preempt_count: %s/%d/0x%x\n",
3168 current->comm, current->pid, preempt_count()))
3169 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3170
1da177e4
LT
3171 rq->prev_mm = NULL;
3172
3173 /*
3174 * A task struct has one reference for the use as "current".
c394cc9f 3175 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3176 * schedule one last time. The schedule call will never return, and
3177 * the scheduled task must drop that reference.
95913d97
PZ
3178 *
3179 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3180 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3181 * running on another CPU and we could rave with its RUNNING -> DEAD
3182 * transition, resulting in a double drop.
1da177e4 3183 */
55a101f8 3184 prev_state = prev->state;
bf9fae9f 3185 vtime_task_switch(prev);
a8d757ef 3186 perf_event_task_sched_in(prev, current);
31cb1bc0 3187 finish_task(prev);
3188 finish_lock_switch(rq);
01f23e16 3189 finish_arch_post_lock_switch();
0ed557aa 3190 kcov_finish_switch(current);
e8fa1362 3191
e107be36 3192 fire_sched_in_preempt_notifiers(current);
306e0604 3193 /*
70216e18
MD
3194 * When switching through a kernel thread, the loop in
3195 * membarrier_{private,global}_expedited() may have observed that
3196 * kernel thread and not issued an IPI. It is therefore possible to
3197 * schedule between user->kernel->user threads without passing though
3198 * switch_mm(). Membarrier requires a barrier after storing to
3199 * rq->curr, before returning to userspace, so provide them here:
3200 *
3201 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3202 * provided by mmdrop(),
3203 * - a sync_core for SYNC_CORE.
306e0604 3204 */
70216e18
MD
3205 if (mm) {
3206 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3207 mmdrop(mm);
70216e18 3208 }
1cef1150
PZ
3209 if (unlikely(prev_state == TASK_DEAD)) {
3210 if (prev->sched_class->task_dead)
3211 prev->sched_class->task_dead(prev);
68f24b08 3212
1cef1150
PZ
3213 /*
3214 * Remove function-return probe instances associated with this
3215 * task and put them back on the free list.
3216 */
3217 kprobe_flush_task(prev);
3218
3219 /* Task is done with its stack. */
3220 put_task_stack(prev);
3221
0ff7b2cf 3222 put_task_struct_rcu_user(prev);
c6fd91f0 3223 }
99e5ada9 3224
de734f89 3225 tick_nohz_task_switch();
dfa50b60 3226 return rq;
1da177e4
LT
3227}
3228
3f029d3c
GH
3229#ifdef CONFIG_SMP
3230
3f029d3c 3231/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3232static void __balance_callback(struct rq *rq)
3f029d3c 3233{
e3fca9e7
PZ
3234 struct callback_head *head, *next;
3235 void (*func)(struct rq *rq);
3236 unsigned long flags;
3f029d3c 3237
e3fca9e7
PZ
3238 raw_spin_lock_irqsave(&rq->lock, flags);
3239 head = rq->balance_callback;
3240 rq->balance_callback = NULL;
3241 while (head) {
3242 func = (void (*)(struct rq *))head->func;
3243 next = head->next;
3244 head->next = NULL;
3245 head = next;
3f029d3c 3246
e3fca9e7 3247 func(rq);
3f029d3c 3248 }
e3fca9e7
PZ
3249 raw_spin_unlock_irqrestore(&rq->lock, flags);
3250}
3251
3252static inline void balance_callback(struct rq *rq)
3253{
3254 if (unlikely(rq->balance_callback))
3255 __balance_callback(rq);
3f029d3c
GH
3256}
3257
3258#else
da19ab51 3259
e3fca9e7 3260static inline void balance_callback(struct rq *rq)
3f029d3c 3261{
1da177e4
LT
3262}
3263
3f029d3c
GH
3264#endif
3265
1da177e4
LT
3266/**
3267 * schedule_tail - first thing a freshly forked thread must call.
3268 * @prev: the thread we just switched away from.
3269 */
722a9f92 3270asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3271 __releases(rq->lock)
3272{
1a43a14a 3273 struct rq *rq;
da19ab51 3274
609ca066
PZ
3275 /*
3276 * New tasks start with FORK_PREEMPT_COUNT, see there and
3277 * finish_task_switch() for details.
3278 *
3279 * finish_task_switch() will drop rq->lock() and lower preempt_count
3280 * and the preempt_enable() will end up enabling preemption (on
3281 * PREEMPT_COUNT kernels).
3282 */
3283
dfa50b60 3284 rq = finish_task_switch(prev);
e3fca9e7 3285 balance_callback(rq);
1a43a14a 3286 preempt_enable();
70b97a7f 3287
1da177e4 3288 if (current->set_child_tid)
b488893a 3289 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3290
3291 calculate_sigpending();
1da177e4
LT
3292}
3293
3294/*
dfa50b60 3295 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3296 */
04936948 3297static __always_inline struct rq *
70b97a7f 3298context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3299 struct task_struct *next, struct rq_flags *rf)
1da177e4 3300{
e107be36 3301 prepare_task_switch(rq, prev, next);
fe4b04fa 3302
9226d125
ZA
3303 /*
3304 * For paravirt, this is coupled with an exit in switch_to to
3305 * combine the page table reload and the switch backend into
3306 * one hypercall.
3307 */
224101ed 3308 arch_start_context_switch(prev);
9226d125 3309
306e0604 3310 /*
139d025c
PZ
3311 * kernel -> kernel lazy + transfer active
3312 * user -> kernel lazy + mmgrab() active
3313 *
3314 * kernel -> user switch + mmdrop() active
3315 * user -> user switch
306e0604 3316 */
139d025c
PZ
3317 if (!next->mm) { // to kernel
3318 enter_lazy_tlb(prev->active_mm, next);
3319
3320 next->active_mm = prev->active_mm;
3321 if (prev->mm) // from user
3322 mmgrab(prev->active_mm);
3323 else
3324 prev->active_mm = NULL;
3325 } else { // to user
227a4aad 3326 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
3327 /*
3328 * sys_membarrier() requires an smp_mb() between setting
227a4aad 3329 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
3330 *
3331 * The below provides this either through switch_mm(), or in
3332 * case 'prev->active_mm == next->mm' through
3333 * finish_task_switch()'s mmdrop().
3334 */
139d025c 3335 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 3336
139d025c
PZ
3337 if (!prev->mm) { // from kernel
3338 /* will mmdrop() in finish_task_switch(). */
3339 rq->prev_mm = prev->active_mm;
3340 prev->active_mm = NULL;
3341 }
1da177e4 3342 }
92509b73 3343
cb42c9a3 3344 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3345
269d5992 3346 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3347
3348 /* Here we just switch the register state and the stack. */
3349 switch_to(prev, next, prev);
dd41f596 3350 barrier();
dfa50b60
ON
3351
3352 return finish_task_switch(prev);
1da177e4
LT
3353}
3354
3355/*
1c3e8264 3356 * nr_running and nr_context_switches:
1da177e4
LT
3357 *
3358 * externally visible scheduler statistics: current number of runnable
1c3e8264 3359 * threads, total number of context switches performed since bootup.
1da177e4
LT
3360 */
3361unsigned long nr_running(void)
3362{
3363 unsigned long i, sum = 0;
3364
3365 for_each_online_cpu(i)
3366 sum += cpu_rq(i)->nr_running;
3367
3368 return sum;
f711f609 3369}
1da177e4 3370
2ee507c4 3371/*
d1ccc66d 3372 * Check if only the current task is running on the CPU.
00cc1633
DD
3373 *
3374 * Caution: this function does not check that the caller has disabled
3375 * preemption, thus the result might have a time-of-check-to-time-of-use
3376 * race. The caller is responsible to use it correctly, for example:
3377 *
dfcb245e 3378 * - from a non-preemptible section (of course)
00cc1633
DD
3379 *
3380 * - from a thread that is bound to a single CPU
3381 *
3382 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3383 */
3384bool single_task_running(void)
3385{
00cc1633 3386 return raw_rq()->nr_running == 1;
2ee507c4
TC
3387}
3388EXPORT_SYMBOL(single_task_running);
3389
1da177e4 3390unsigned long long nr_context_switches(void)
46cb4b7c 3391{
cc94abfc
SR
3392 int i;
3393 unsigned long long sum = 0;
46cb4b7c 3394
0a945022 3395 for_each_possible_cpu(i)
1da177e4 3396 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3397
1da177e4
LT
3398 return sum;
3399}
483b4ee6 3400
145d952a
DL
3401/*
3402 * Consumers of these two interfaces, like for example the cpuidle menu
3403 * governor, are using nonsensical data. Preferring shallow idle state selection
3404 * for a CPU that has IO-wait which might not even end up running the task when
3405 * it does become runnable.
3406 */
3407
3408unsigned long nr_iowait_cpu(int cpu)
3409{
3410 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3411}
3412
e33a9bba
TH
3413/*
3414 * IO-wait accounting, and how its mostly bollocks (on SMP).
3415 *
3416 * The idea behind IO-wait account is to account the idle time that we could
3417 * have spend running if it were not for IO. That is, if we were to improve the
3418 * storage performance, we'd have a proportional reduction in IO-wait time.
3419 *
3420 * This all works nicely on UP, where, when a task blocks on IO, we account
3421 * idle time as IO-wait, because if the storage were faster, it could've been
3422 * running and we'd not be idle.
3423 *
3424 * This has been extended to SMP, by doing the same for each CPU. This however
3425 * is broken.
3426 *
3427 * Imagine for instance the case where two tasks block on one CPU, only the one
3428 * CPU will have IO-wait accounted, while the other has regular idle. Even
3429 * though, if the storage were faster, both could've ran at the same time,
3430 * utilising both CPUs.
3431 *
3432 * This means, that when looking globally, the current IO-wait accounting on
3433 * SMP is a lower bound, by reason of under accounting.
3434 *
3435 * Worse, since the numbers are provided per CPU, they are sometimes
3436 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3437 * associated with any one particular CPU, it can wake to another CPU than it
3438 * blocked on. This means the per CPU IO-wait number is meaningless.
3439 *
3440 * Task CPU affinities can make all that even more 'interesting'.
3441 */
3442
1da177e4
LT
3443unsigned long nr_iowait(void)
3444{
3445 unsigned long i, sum = 0;
483b4ee6 3446
0a945022 3447 for_each_possible_cpu(i)
145d952a 3448 sum += nr_iowait_cpu(i);
46cb4b7c 3449
1da177e4
LT
3450 return sum;
3451}
483b4ee6 3452
dd41f596 3453#ifdef CONFIG_SMP
8a0be9ef 3454
46cb4b7c 3455/*
38022906
PZ
3456 * sched_exec - execve() is a valuable balancing opportunity, because at
3457 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3458 */
38022906 3459void sched_exec(void)
46cb4b7c 3460{
38022906 3461 struct task_struct *p = current;
1da177e4 3462 unsigned long flags;
0017d735 3463 int dest_cpu;
46cb4b7c 3464
8f42ced9 3465 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3466 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3467 if (dest_cpu == smp_processor_id())
3468 goto unlock;
38022906 3469
8f42ced9 3470 if (likely(cpu_active(dest_cpu))) {
969c7921 3471 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3472
8f42ced9
PZ
3473 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3474 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3475 return;
3476 }
0017d735 3477unlock:
8f42ced9 3478 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3479}
dd41f596 3480
1da177e4
LT
3481#endif
3482
1da177e4 3483DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3484DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3485
3486EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3487EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3488
6075620b
GG
3489/*
3490 * The function fair_sched_class.update_curr accesses the struct curr
3491 * and its field curr->exec_start; when called from task_sched_runtime(),
3492 * we observe a high rate of cache misses in practice.
3493 * Prefetching this data results in improved performance.
3494 */
3495static inline void prefetch_curr_exec_start(struct task_struct *p)
3496{
3497#ifdef CONFIG_FAIR_GROUP_SCHED
3498 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3499#else
3500 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3501#endif
3502 prefetch(curr);
3503 prefetch(&curr->exec_start);
3504}
3505
c5f8d995
HS
3506/*
3507 * Return accounted runtime for the task.
3508 * In case the task is currently running, return the runtime plus current's
3509 * pending runtime that have not been accounted yet.
3510 */
3511unsigned long long task_sched_runtime(struct task_struct *p)
3512{
eb580751 3513 struct rq_flags rf;
c5f8d995 3514 struct rq *rq;
6e998916 3515 u64 ns;
c5f8d995 3516
911b2898
PZ
3517#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3518 /*
97fb7a0a 3519 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3520 * So we have a optimization chance when the task's delta_exec is 0.
3521 * Reading ->on_cpu is racy, but this is ok.
3522 *
d1ccc66d
IM
3523 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3524 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3525 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3526 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3527 * been accounted, so we're correct here as well.
911b2898 3528 */
da0c1e65 3529 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3530 return p->se.sum_exec_runtime;
3531#endif
3532
eb580751 3533 rq = task_rq_lock(p, &rf);
6e998916
SG
3534 /*
3535 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3536 * project cycles that may never be accounted to this
3537 * thread, breaking clock_gettime().
3538 */
3539 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3540 prefetch_curr_exec_start(p);
6e998916
SG
3541 update_rq_clock(rq);
3542 p->sched_class->update_curr(rq);
3543 }
3544 ns = p->se.sum_exec_runtime;
eb580751 3545 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3546
3547 return ns;
3548}
48f24c4d 3549
14533a16
IM
3550DEFINE_PER_CPU(unsigned long, thermal_pressure);
3551
3552void arch_set_thermal_pressure(struct cpumask *cpus,
3553 unsigned long th_pressure)
3554{
3555 int cpu;
3556
3557 for_each_cpu(cpu, cpus)
3558 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3559}
3560
7835b98b
CL
3561/*
3562 * This function gets called by the timer code, with HZ frequency.
3563 * We call it with interrupts disabled.
7835b98b
CL
3564 */
3565void scheduler_tick(void)
3566{
7835b98b
CL
3567 int cpu = smp_processor_id();
3568 struct rq *rq = cpu_rq(cpu);
dd41f596 3569 struct task_struct *curr = rq->curr;
8a8c69c3 3570 struct rq_flags rf;
b4eccf5f 3571 unsigned long thermal_pressure;
3e51f33f 3572
1567c3e3 3573 arch_scale_freq_tick();
3e51f33f 3574 sched_clock_tick();
dd41f596 3575
8a8c69c3
PZ
3576 rq_lock(rq, &rf);
3577
3e51f33f 3578 update_rq_clock(rq);
b4eccf5f 3579 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 3580 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 3581 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3582 calc_global_load_tick(rq);
eb414681 3583 psi_task_tick(rq);
8a8c69c3
PZ
3584
3585 rq_unlock(rq, &rf);
7835b98b 3586
e9d2b064 3587 perf_event_task_tick();
e220d2dc 3588
e418e1c2 3589#ifdef CONFIG_SMP
6eb57e0d 3590 rq->idle_balance = idle_cpu(cpu);
7caff66f 3591 trigger_load_balance(rq);
e418e1c2 3592#endif
1da177e4
LT
3593}
3594
265f22a9 3595#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3596
3597struct tick_work {
3598 int cpu;
b55bd585 3599 atomic_t state;
d84b3131
FW
3600 struct delayed_work work;
3601};
b55bd585
PM
3602/* Values for ->state, see diagram below. */
3603#define TICK_SCHED_REMOTE_OFFLINE 0
3604#define TICK_SCHED_REMOTE_OFFLINING 1
3605#define TICK_SCHED_REMOTE_RUNNING 2
3606
3607/*
3608 * State diagram for ->state:
3609 *
3610 *
3611 * TICK_SCHED_REMOTE_OFFLINE
3612 * | ^
3613 * | |
3614 * | | sched_tick_remote()
3615 * | |
3616 * | |
3617 * +--TICK_SCHED_REMOTE_OFFLINING
3618 * | ^
3619 * | |
3620 * sched_tick_start() | | sched_tick_stop()
3621 * | |
3622 * V |
3623 * TICK_SCHED_REMOTE_RUNNING
3624 *
3625 *
3626 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3627 * and sched_tick_start() are happy to leave the state in RUNNING.
3628 */
d84b3131
FW
3629
3630static struct tick_work __percpu *tick_work_cpu;
3631
3632static void sched_tick_remote(struct work_struct *work)
3633{
3634 struct delayed_work *dwork = to_delayed_work(work);
3635 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3636 int cpu = twork->cpu;
3637 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3638 struct task_struct *curr;
d84b3131 3639 struct rq_flags rf;
d9c0ffca 3640 u64 delta;
b55bd585 3641 int os;
d84b3131
FW
3642
3643 /*
3644 * Handle the tick only if it appears the remote CPU is running in full
3645 * dynticks mode. The check is racy by nature, but missing a tick or
3646 * having one too much is no big deal because the scheduler tick updates
3647 * statistics and checks timeslices in a time-independent way, regardless
3648 * of when exactly it is running.
3649 */
488603b8 3650 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 3651 goto out_requeue;
d84b3131 3652
d9c0ffca
FW
3653 rq_lock_irq(rq, &rf);
3654 curr = rq->curr;
488603b8 3655 if (cpu_is_offline(cpu))
d9c0ffca 3656 goto out_unlock;
d84b3131 3657
d9c0ffca 3658 update_rq_clock(rq);
d9c0ffca 3659
488603b8
SW
3660 if (!is_idle_task(curr)) {
3661 /*
3662 * Make sure the next tick runs within a reasonable
3663 * amount of time.
3664 */
3665 delta = rq_clock_task(rq) - curr->se.exec_start;
3666 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3667 }
d9c0ffca
FW
3668 curr->sched_class->task_tick(rq, curr, 0);
3669
ebc0f83c 3670 calc_load_nohz_remote(rq);
d9c0ffca
FW
3671out_unlock:
3672 rq_unlock_irq(rq, &rf);
d9c0ffca 3673out_requeue:
ebc0f83c 3674
d84b3131
FW
3675 /*
3676 * Run the remote tick once per second (1Hz). This arbitrary
3677 * frequency is large enough to avoid overload but short enough
b55bd585
PM
3678 * to keep scheduler internal stats reasonably up to date. But
3679 * first update state to reflect hotplug activity if required.
d84b3131 3680 */
b55bd585
PM
3681 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3682 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3683 if (os == TICK_SCHED_REMOTE_RUNNING)
3684 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
3685}
3686
3687static void sched_tick_start(int cpu)
3688{
b55bd585 3689 int os;
d84b3131
FW
3690 struct tick_work *twork;
3691
3692 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3693 return;
3694
3695 WARN_ON_ONCE(!tick_work_cpu);
3696
3697 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
3698 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3699 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3700 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3701 twork->cpu = cpu;
3702 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3703 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3704 }
d84b3131
FW
3705}
3706
3707#ifdef CONFIG_HOTPLUG_CPU
3708static void sched_tick_stop(int cpu)
3709{
3710 struct tick_work *twork;
b55bd585 3711 int os;
d84b3131
FW
3712
3713 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3714 return;
3715
3716 WARN_ON_ONCE(!tick_work_cpu);
3717
3718 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
3719 /* There cannot be competing actions, but don't rely on stop-machine. */
3720 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3721 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3722 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
3723}
3724#endif /* CONFIG_HOTPLUG_CPU */
3725
3726int __init sched_tick_offload_init(void)
3727{
3728 tick_work_cpu = alloc_percpu(struct tick_work);
3729 BUG_ON(!tick_work_cpu);
d84b3131
FW
3730 return 0;
3731}
3732
3733#else /* !CONFIG_NO_HZ_FULL */
3734static inline void sched_tick_start(int cpu) { }
3735static inline void sched_tick_stop(int cpu) { }
265f22a9 3736#endif
1da177e4 3737
c1a280b6 3738#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3739 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3740/*
3741 * If the value passed in is equal to the current preempt count
3742 * then we just disabled preemption. Start timing the latency.
3743 */
3744static inline void preempt_latency_start(int val)
3745{
3746 if (preempt_count() == val) {
3747 unsigned long ip = get_lock_parent_ip();
3748#ifdef CONFIG_DEBUG_PREEMPT
3749 current->preempt_disable_ip = ip;
3750#endif
3751 trace_preempt_off(CALLER_ADDR0, ip);
3752 }
3753}
7e49fcce 3754
edafe3a5 3755void preempt_count_add(int val)
1da177e4 3756{
6cd8a4bb 3757#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3758 /*
3759 * Underflow?
3760 */
9a11b49a
IM
3761 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3762 return;
6cd8a4bb 3763#endif
bdb43806 3764 __preempt_count_add(val);
6cd8a4bb 3765#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3766 /*
3767 * Spinlock count overflowing soon?
3768 */
33859f7f
MOS
3769 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3770 PREEMPT_MASK - 10);
6cd8a4bb 3771#endif
47252cfb 3772 preempt_latency_start(val);
1da177e4 3773}
bdb43806 3774EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3775NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3776
47252cfb
SR
3777/*
3778 * If the value passed in equals to the current preempt count
3779 * then we just enabled preemption. Stop timing the latency.
3780 */
3781static inline void preempt_latency_stop(int val)
3782{
3783 if (preempt_count() == val)
3784 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3785}
3786
edafe3a5 3787void preempt_count_sub(int val)
1da177e4 3788{
6cd8a4bb 3789#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3790 /*
3791 * Underflow?
3792 */
01e3eb82 3793 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3794 return;
1da177e4
LT
3795 /*
3796 * Is the spinlock portion underflowing?
3797 */
9a11b49a
IM
3798 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3799 !(preempt_count() & PREEMPT_MASK)))
3800 return;
6cd8a4bb 3801#endif
9a11b49a 3802
47252cfb 3803 preempt_latency_stop(val);
bdb43806 3804 __preempt_count_sub(val);
1da177e4 3805}
bdb43806 3806EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3807NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3808
47252cfb
SR
3809#else
3810static inline void preempt_latency_start(int val) { }
3811static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3812#endif
3813
59ddbcb2
IM
3814static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3815{
3816#ifdef CONFIG_DEBUG_PREEMPT
3817 return p->preempt_disable_ip;
3818#else
3819 return 0;
3820#endif
3821}
3822
1da177e4 3823/*
dd41f596 3824 * Print scheduling while atomic bug:
1da177e4 3825 */
dd41f596 3826static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3827{
d1c6d149
VN
3828 /* Save this before calling printk(), since that will clobber it */
3829 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3830
664dfa65
DJ
3831 if (oops_in_progress)
3832 return;
3833
3df0fc5b
PZ
3834 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3835 prev->comm, prev->pid, preempt_count());
838225b4 3836
dd41f596 3837 debug_show_held_locks(prev);
e21f5b15 3838 print_modules();
dd41f596
IM
3839 if (irqs_disabled())
3840 print_irqtrace_events(prev);
d1c6d149
VN
3841 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3842 && in_atomic_preempt_off()) {
8f47b187 3843 pr_err("Preemption disabled at:");
d1c6d149 3844 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3845 pr_cont("\n");
3846 }
748c7201
DBO
3847 if (panic_on_warn)
3848 panic("scheduling while atomic\n");
3849
6135fc1e 3850 dump_stack();
373d4d09 3851 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3852}
1da177e4 3853
dd41f596
IM
3854/*
3855 * Various schedule()-time debugging checks and statistics:
3856 */
312364f3 3857static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 3858{
0d9e2632 3859#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3860 if (task_stack_end_corrupted(prev))
3861 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3862#endif
b99def8b 3863
312364f3
DV
3864#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3865 if (!preempt && prev->state && prev->non_block_count) {
3866 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3867 prev->comm, prev->pid, prev->non_block_count);
3868 dump_stack();
3869 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3870 }
3871#endif
3872
1dc0fffc 3873 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3874 __schedule_bug(prev);
1dc0fffc
PZ
3875 preempt_count_set(PREEMPT_DISABLED);
3876 }
b3fbab05 3877 rcu_sleep_check();
dd41f596 3878
1da177e4
LT
3879 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3880
ae92882e 3881 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3882}
3883
457d1f46
CY
3884static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
3885 struct rq_flags *rf)
3886{
3887#ifdef CONFIG_SMP
3888 const struct sched_class *class;
3889 /*
3890 * We must do the balancing pass before put_prev_task(), such
3891 * that when we release the rq->lock the task is in the same
3892 * state as before we took rq->lock.
3893 *
3894 * We can terminate the balance pass as soon as we know there is
3895 * a runnable task of @class priority or higher.
3896 */
3897 for_class_range(class, prev->sched_class, &idle_sched_class) {
3898 if (class->balance(rq, prev, rf))
3899 break;
3900 }
3901#endif
3902
3903 put_prev_task(rq, prev);
3904}
3905
dd41f596
IM
3906/*
3907 * Pick up the highest-prio task:
3908 */
3909static inline struct task_struct *
d8ac8971 3910pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3911{
49ee5768 3912 const struct sched_class *class;
dd41f596 3913 struct task_struct *p;
1da177e4
LT
3914
3915 /*
0ba87bb2
PZ
3916 * Optimization: we know that if all tasks are in the fair class we can
3917 * call that function directly, but only if the @prev task wasn't of a
3918 * higher scheduling class, because otherwise those loose the
3919 * opportunity to pull in more work from other CPUs.
1da177e4 3920 */
0ba87bb2
PZ
3921 if (likely((prev->sched_class == &idle_sched_class ||
3922 prev->sched_class == &fair_sched_class) &&
3923 rq->nr_running == rq->cfs.h_nr_running)) {
3924
5d7d6056 3925 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 3926 if (unlikely(p == RETRY_TASK))
67692435 3927 goto restart;
6ccdc84b 3928
d1ccc66d 3929 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 3930 if (!p) {
f488e105 3931 put_prev_task(rq, prev);
98c2f700 3932 p = pick_next_task_idle(rq);
f488e105 3933 }
6ccdc84b
PZ
3934
3935 return p;
1da177e4
LT
3936 }
3937
67692435 3938restart:
457d1f46 3939 put_prev_task_balance(rq, prev, rf);
67692435 3940
34f971f6 3941 for_each_class(class) {
98c2f700 3942 p = class->pick_next_task(rq);
67692435 3943 if (p)
dd41f596 3944 return p;
dd41f596 3945 }
34f971f6 3946
d1ccc66d
IM
3947 /* The idle class should always have a runnable task: */
3948 BUG();
dd41f596 3949}
1da177e4 3950
dd41f596 3951/*
c259e01a 3952 * __schedule() is the main scheduler function.
edde96ea
PE
3953 *
3954 * The main means of driving the scheduler and thus entering this function are:
3955 *
3956 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3957 *
3958 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3959 * paths. For example, see arch/x86/entry_64.S.
3960 *
3961 * To drive preemption between tasks, the scheduler sets the flag in timer
3962 * interrupt handler scheduler_tick().
3963 *
3964 * 3. Wakeups don't really cause entry into schedule(). They add a
3965 * task to the run-queue and that's it.
3966 *
3967 * Now, if the new task added to the run-queue preempts the current
3968 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3969 * called on the nearest possible occasion:
3970 *
c1a280b6 3971 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
3972 *
3973 * - in syscall or exception context, at the next outmost
3974 * preempt_enable(). (this might be as soon as the wake_up()'s
3975 * spin_unlock()!)
3976 *
3977 * - in IRQ context, return from interrupt-handler to
3978 * preemptible context
3979 *
c1a280b6 3980 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
3981 * then at the next:
3982 *
3983 * - cond_resched() call
3984 * - explicit schedule() call
3985 * - return from syscall or exception to user-space
3986 * - return from interrupt-handler to user-space
bfd9b2b5 3987 *
b30f0e3f 3988 * WARNING: must be called with preemption disabled!
dd41f596 3989 */
499d7955 3990static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3991{
3992 struct task_struct *prev, *next;
67ca7bde 3993 unsigned long *switch_count;
d8ac8971 3994 struct rq_flags rf;
dd41f596 3995 struct rq *rq;
31656519 3996 int cpu;
dd41f596 3997
dd41f596
IM
3998 cpu = smp_processor_id();
3999 rq = cpu_rq(cpu);
dd41f596 4000 prev = rq->curr;
dd41f596 4001
312364f3 4002 schedule_debug(prev, preempt);
1da177e4 4003
31656519 4004 if (sched_feat(HRTICK))
f333fdc9 4005 hrtick_clear(rq);
8f4d37ec 4006
46a5d164 4007 local_irq_disable();
bcbfdd01 4008 rcu_note_context_switch(preempt);
46a5d164 4009
e0acd0a6
ON
4010 /*
4011 * Make sure that signal_pending_state()->signal_pending() below
4012 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4013 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
4014 *
4015 * The membarrier system call requires a full memory barrier
4016 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4017 */
8a8c69c3 4018 rq_lock(rq, &rf);
d89e588c 4019 smp_mb__after_spinlock();
1da177e4 4020
d1ccc66d
IM
4021 /* Promote REQ to ACT */
4022 rq->clock_update_flags <<= 1;
bce4dc80 4023 update_rq_clock(rq);
9edfbfed 4024
246d86b5 4025 switch_count = &prev->nivcsw;
fc13aeba 4026 if (!preempt && prev->state) {
34ec35ad 4027 if (signal_pending_state(prev->state, prev)) {
1da177e4 4028 prev->state = TASK_RUNNING;
21aa9af0 4029 } else {
bce4dc80 4030 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 4031
e33a9bba
TH
4032 if (prev->in_iowait) {
4033 atomic_inc(&rq->nr_iowait);
4034 delayacct_blkio_start();
4035 }
21aa9af0 4036 }
dd41f596 4037 switch_count = &prev->nvcsw;
1da177e4
LT
4038 }
4039
d8ac8971 4040 next = pick_next_task(rq, prev, &rf);
f26f9aff 4041 clear_tsk_need_resched(prev);
f27dde8d 4042 clear_preempt_need_resched();
1da177e4 4043
1da177e4 4044 if (likely(prev != next)) {
1da177e4 4045 rq->nr_switches++;
5311a98f
EB
4046 /*
4047 * RCU users of rcu_dereference(rq->curr) may not see
4048 * changes to task_struct made by pick_next_task().
4049 */
4050 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
4051 /*
4052 * The membarrier system call requires each architecture
4053 * to have a full memory barrier after updating
306e0604
MD
4054 * rq->curr, before returning to user-space.
4055 *
4056 * Here are the schemes providing that barrier on the
4057 * various architectures:
4058 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4059 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4060 * - finish_lock_switch() for weakly-ordered
4061 * architectures where spin_unlock is a full barrier,
4062 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4063 * is a RELEASE barrier),
22e4ebb9 4064 */
1da177e4
LT
4065 ++*switch_count;
4066
b05e75d6
JW
4067 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4068
c73464b1 4069 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
4070
4071 /* Also unlocks the rq: */
4072 rq = context_switch(rq, prev, next, &rf);
cbce1a68 4073 } else {
cb42c9a3 4074 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 4075 rq_unlock_irq(rq, &rf);
cbce1a68 4076 }
1da177e4 4077
e3fca9e7 4078 balance_callback(rq);
1da177e4 4079}
c259e01a 4080
9af6528e
PZ
4081void __noreturn do_task_dead(void)
4082{
d1ccc66d 4083 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 4084 set_special_state(TASK_DEAD);
d1ccc66d
IM
4085
4086 /* Tell freezer to ignore us: */
4087 current->flags |= PF_NOFREEZE;
4088
9af6528e
PZ
4089 __schedule(false);
4090 BUG();
d1ccc66d
IM
4091
4092 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 4093 for (;;)
d1ccc66d 4094 cpu_relax();
9af6528e
PZ
4095}
4096
9c40cef2
TG
4097static inline void sched_submit_work(struct task_struct *tsk)
4098{
b0fdc013 4099 if (!tsk->state)
9c40cef2 4100 return;
6d25be57
TG
4101
4102 /*
4103 * If a worker went to sleep, notify and ask workqueue whether
4104 * it wants to wake up a task to maintain concurrency.
4105 * As this function is called inside the schedule() context,
4106 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
4107 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4108 * requires it.
6d25be57 4109 */
771b53d0 4110 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 4111 preempt_disable();
771b53d0
JA
4112 if (tsk->flags & PF_WQ_WORKER)
4113 wq_worker_sleeping(tsk);
4114 else
4115 io_wq_worker_sleeping(tsk);
6d25be57
TG
4116 preempt_enable_no_resched();
4117 }
4118
b0fdc013
SAS
4119 if (tsk_is_pi_blocked(tsk))
4120 return;
4121
9c40cef2
TG
4122 /*
4123 * If we are going to sleep and we have plugged IO queued,
4124 * make sure to submit it to avoid deadlocks.
4125 */
4126 if (blk_needs_flush_plug(tsk))
4127 blk_schedule_flush_plug(tsk);
4128}
4129
6d25be57
TG
4130static void sched_update_worker(struct task_struct *tsk)
4131{
771b53d0
JA
4132 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4133 if (tsk->flags & PF_WQ_WORKER)
4134 wq_worker_running(tsk);
4135 else
4136 io_wq_worker_running(tsk);
4137 }
6d25be57
TG
4138}
4139
722a9f92 4140asmlinkage __visible void __sched schedule(void)
c259e01a 4141{
9c40cef2
TG
4142 struct task_struct *tsk = current;
4143
4144 sched_submit_work(tsk);
bfd9b2b5 4145 do {
b30f0e3f 4146 preempt_disable();
fc13aeba 4147 __schedule(false);
b30f0e3f 4148 sched_preempt_enable_no_resched();
bfd9b2b5 4149 } while (need_resched());
6d25be57 4150 sched_update_worker(tsk);
c259e01a 4151}
1da177e4
LT
4152EXPORT_SYMBOL(schedule);
4153
8663effb
SRV
4154/*
4155 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4156 * state (have scheduled out non-voluntarily) by making sure that all
4157 * tasks have either left the run queue or have gone into user space.
4158 * As idle tasks do not do either, they must not ever be preempted
4159 * (schedule out non-voluntarily).
4160 *
4161 * schedule_idle() is similar to schedule_preempt_disable() except that it
4162 * never enables preemption because it does not call sched_submit_work().
4163 */
4164void __sched schedule_idle(void)
4165{
4166 /*
4167 * As this skips calling sched_submit_work(), which the idle task does
4168 * regardless because that function is a nop when the task is in a
4169 * TASK_RUNNING state, make sure this isn't used someplace that the
4170 * current task can be in any other state. Note, idle is always in the
4171 * TASK_RUNNING state.
4172 */
4173 WARN_ON_ONCE(current->state);
4174 do {
4175 __schedule(false);
4176 } while (need_resched());
4177}
4178
91d1aa43 4179#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 4180asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
4181{
4182 /*
4183 * If we come here after a random call to set_need_resched(),
4184 * or we have been woken up remotely but the IPI has not yet arrived,
4185 * we haven't yet exited the RCU idle mode. Do it here manually until
4186 * we find a better solution.
7cc78f8f
AL
4187 *
4188 * NB: There are buggy callers of this function. Ideally we
c467ea76 4189 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 4190 * too frequently to make sense yet.
20ab65e3 4191 */
7cc78f8f 4192 enum ctx_state prev_state = exception_enter();
20ab65e3 4193 schedule();
7cc78f8f 4194 exception_exit(prev_state);
20ab65e3
FW
4195}
4196#endif
4197
c5491ea7
TG
4198/**
4199 * schedule_preempt_disabled - called with preemption disabled
4200 *
4201 * Returns with preemption disabled. Note: preempt_count must be 1
4202 */
4203void __sched schedule_preempt_disabled(void)
4204{
ba74c144 4205 sched_preempt_enable_no_resched();
c5491ea7
TG
4206 schedule();
4207 preempt_disable();
4208}
4209
06b1f808 4210static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
4211{
4212 do {
47252cfb
SR
4213 /*
4214 * Because the function tracer can trace preempt_count_sub()
4215 * and it also uses preempt_enable/disable_notrace(), if
4216 * NEED_RESCHED is set, the preempt_enable_notrace() called
4217 * by the function tracer will call this function again and
4218 * cause infinite recursion.
4219 *
4220 * Preemption must be disabled here before the function
4221 * tracer can trace. Break up preempt_disable() into two
4222 * calls. One to disable preemption without fear of being
4223 * traced. The other to still record the preemption latency,
4224 * which can also be traced by the function tracer.
4225 */
499d7955 4226 preempt_disable_notrace();
47252cfb 4227 preempt_latency_start(1);
fc13aeba 4228 __schedule(true);
47252cfb 4229 preempt_latency_stop(1);
499d7955 4230 preempt_enable_no_resched_notrace();
a18b5d01
FW
4231
4232 /*
4233 * Check again in case we missed a preemption opportunity
4234 * between schedule and now.
4235 */
a18b5d01
FW
4236 } while (need_resched());
4237}
4238
c1a280b6 4239#ifdef CONFIG_PREEMPTION
1da177e4 4240/*
a49b4f40
VS
4241 * This is the entry point to schedule() from in-kernel preemption
4242 * off of preempt_enable.
1da177e4 4243 */
722a9f92 4244asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 4245{
1da177e4
LT
4246 /*
4247 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4248 * we do not want to preempt the current task. Just return..
1da177e4 4249 */
fbb00b56 4250 if (likely(!preemptible()))
1da177e4
LT
4251 return;
4252
a18b5d01 4253 preempt_schedule_common();
1da177e4 4254}
376e2424 4255NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4256EXPORT_SYMBOL(preempt_schedule);
009f60e2 4257
009f60e2 4258/**
4eaca0a8 4259 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4260 *
4261 * The tracing infrastructure uses preempt_enable_notrace to prevent
4262 * recursion and tracing preempt enabling caused by the tracing
4263 * infrastructure itself. But as tracing can happen in areas coming
4264 * from userspace or just about to enter userspace, a preempt enable
4265 * can occur before user_exit() is called. This will cause the scheduler
4266 * to be called when the system is still in usermode.
4267 *
4268 * To prevent this, the preempt_enable_notrace will use this function
4269 * instead of preempt_schedule() to exit user context if needed before
4270 * calling the scheduler.
4271 */
4eaca0a8 4272asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4273{
4274 enum ctx_state prev_ctx;
4275
4276 if (likely(!preemptible()))
4277 return;
4278
4279 do {
47252cfb
SR
4280 /*
4281 * Because the function tracer can trace preempt_count_sub()
4282 * and it also uses preempt_enable/disable_notrace(), if
4283 * NEED_RESCHED is set, the preempt_enable_notrace() called
4284 * by the function tracer will call this function again and
4285 * cause infinite recursion.
4286 *
4287 * Preemption must be disabled here before the function
4288 * tracer can trace. Break up preempt_disable() into two
4289 * calls. One to disable preemption without fear of being
4290 * traced. The other to still record the preemption latency,
4291 * which can also be traced by the function tracer.
4292 */
3d8f74dd 4293 preempt_disable_notrace();
47252cfb 4294 preempt_latency_start(1);
009f60e2
ON
4295 /*
4296 * Needs preempt disabled in case user_exit() is traced
4297 * and the tracer calls preempt_enable_notrace() causing
4298 * an infinite recursion.
4299 */
4300 prev_ctx = exception_enter();
fc13aeba 4301 __schedule(true);
009f60e2
ON
4302 exception_exit(prev_ctx);
4303
47252cfb 4304 preempt_latency_stop(1);
3d8f74dd 4305 preempt_enable_no_resched_notrace();
009f60e2
ON
4306 } while (need_resched());
4307}
4eaca0a8 4308EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4309
c1a280b6 4310#endif /* CONFIG_PREEMPTION */
1da177e4
LT
4311
4312/*
a49b4f40 4313 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
4314 * off of irq context.
4315 * Note, that this is called and return with irqs disabled. This will
4316 * protect us against recursive calling from irq.
4317 */
722a9f92 4318asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4319{
b22366cd 4320 enum ctx_state prev_state;
6478d880 4321
2ed6e34f 4322 /* Catch callers which need to be fixed */
f27dde8d 4323 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4324
b22366cd
FW
4325 prev_state = exception_enter();
4326
3a5c359a 4327 do {
3d8f74dd 4328 preempt_disable();
3a5c359a 4329 local_irq_enable();
fc13aeba 4330 __schedule(true);
3a5c359a 4331 local_irq_disable();
3d8f74dd 4332 sched_preempt_enable_no_resched();
5ed0cec0 4333 } while (need_resched());
b22366cd
FW
4334
4335 exception_exit(prev_state);
1da177e4
LT
4336}
4337
ac6424b9 4338int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4339 void *key)
1da177e4 4340{
63859d4f 4341 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4342}
1da177e4
LT
4343EXPORT_SYMBOL(default_wake_function);
4344
b29739f9
IM
4345#ifdef CONFIG_RT_MUTEXES
4346
acd58620
PZ
4347static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4348{
4349 if (pi_task)
4350 prio = min(prio, pi_task->prio);
4351
4352 return prio;
4353}
4354
4355static inline int rt_effective_prio(struct task_struct *p, int prio)
4356{
4357 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4358
4359 return __rt_effective_prio(pi_task, prio);
4360}
4361
b29739f9
IM
4362/*
4363 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4364 * @p: task to boost
4365 * @pi_task: donor task
b29739f9
IM
4366 *
4367 * This function changes the 'effective' priority of a task. It does
4368 * not touch ->normal_prio like __setscheduler().
4369 *
c365c292
TG
4370 * Used by the rt_mutex code to implement priority inheritance
4371 * logic. Call site only calls if the priority of the task changed.
b29739f9 4372 */
acd58620 4373void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4374{
acd58620 4375 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4376 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4377 const struct sched_class *prev_class;
eb580751
PZ
4378 struct rq_flags rf;
4379 struct rq *rq;
b29739f9 4380
acd58620
PZ
4381 /* XXX used to be waiter->prio, not waiter->task->prio */
4382 prio = __rt_effective_prio(pi_task, p->normal_prio);
4383
4384 /*
4385 * If nothing changed; bail early.
4386 */
4387 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4388 return;
b29739f9 4389
eb580751 4390 rq = __task_rq_lock(p, &rf);
80f5c1b8 4391 update_rq_clock(rq);
acd58620
PZ
4392 /*
4393 * Set under pi_lock && rq->lock, such that the value can be used under
4394 * either lock.
4395 *
4396 * Note that there is loads of tricky to make this pointer cache work
4397 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4398 * ensure a task is de-boosted (pi_task is set to NULL) before the
4399 * task is allowed to run again (and can exit). This ensures the pointer
4400 * points to a blocked task -- which guaratees the task is present.
4401 */
4402 p->pi_top_task = pi_task;
4403
4404 /*
4405 * For FIFO/RR we only need to set prio, if that matches we're done.
4406 */
4407 if (prio == p->prio && !dl_prio(prio))
4408 goto out_unlock;
b29739f9 4409
1c4dd99b
TG
4410 /*
4411 * Idle task boosting is a nono in general. There is one
4412 * exception, when PREEMPT_RT and NOHZ is active:
4413 *
4414 * The idle task calls get_next_timer_interrupt() and holds
4415 * the timer wheel base->lock on the CPU and another CPU wants
4416 * to access the timer (probably to cancel it). We can safely
4417 * ignore the boosting request, as the idle CPU runs this code
4418 * with interrupts disabled and will complete the lock
4419 * protected section without being interrupted. So there is no
4420 * real need to boost.
4421 */
4422 if (unlikely(p == rq->idle)) {
4423 WARN_ON(p != rq->curr);
4424 WARN_ON(p->pi_blocked_on);
4425 goto out_unlock;
4426 }
4427
b91473ff 4428 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4429 oldprio = p->prio;
ff77e468
PZ
4430
4431 if (oldprio == prio)
4432 queue_flag &= ~DEQUEUE_MOVE;
4433
83ab0aa0 4434 prev_class = p->sched_class;
da0c1e65 4435 queued = task_on_rq_queued(p);
051a1d1a 4436 running = task_current(rq, p);
da0c1e65 4437 if (queued)
ff77e468 4438 dequeue_task(rq, p, queue_flag);
0e1f3483 4439 if (running)
f3cd1c4e 4440 put_prev_task(rq, p);
dd41f596 4441
2d3d891d
DF
4442 /*
4443 * Boosting condition are:
4444 * 1. -rt task is running and holds mutex A
4445 * --> -dl task blocks on mutex A
4446 *
4447 * 2. -dl task is running and holds mutex A
4448 * --> -dl task blocks on mutex A and could preempt the
4449 * running task
4450 */
4451 if (dl_prio(prio)) {
466af29b
ON
4452 if (!dl_prio(p->normal_prio) ||
4453 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4454 p->dl.dl_boosted = 1;
ff77e468 4455 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4456 } else
4457 p->dl.dl_boosted = 0;
aab03e05 4458 p->sched_class = &dl_sched_class;
2d3d891d
DF
4459 } else if (rt_prio(prio)) {
4460 if (dl_prio(oldprio))
4461 p->dl.dl_boosted = 0;
4462 if (oldprio < prio)
ff77e468 4463 queue_flag |= ENQUEUE_HEAD;
dd41f596 4464 p->sched_class = &rt_sched_class;
2d3d891d
DF
4465 } else {
4466 if (dl_prio(oldprio))
4467 p->dl.dl_boosted = 0;
746db944
BS
4468 if (rt_prio(oldprio))
4469 p->rt.timeout = 0;
dd41f596 4470 p->sched_class = &fair_sched_class;
2d3d891d 4471 }
dd41f596 4472
b29739f9
IM
4473 p->prio = prio;
4474
da0c1e65 4475 if (queued)
ff77e468 4476 enqueue_task(rq, p, queue_flag);
a399d233 4477 if (running)
03b7fad1 4478 set_next_task(rq, p);
cb469845 4479
da7a735e 4480 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4481out_unlock:
d1ccc66d
IM
4482 /* Avoid rq from going away on us: */
4483 preempt_disable();
eb580751 4484 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4485
4486 balance_callback(rq);
4487 preempt_enable();
b29739f9 4488}
acd58620
PZ
4489#else
4490static inline int rt_effective_prio(struct task_struct *p, int prio)
4491{
4492 return prio;
4493}
b29739f9 4494#endif
d50dde5a 4495
36c8b586 4496void set_user_nice(struct task_struct *p, long nice)
1da177e4 4497{
49bd21ef 4498 bool queued, running;
53a23364 4499 int old_prio;
eb580751 4500 struct rq_flags rf;
70b97a7f 4501 struct rq *rq;
1da177e4 4502
75e45d51 4503 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4504 return;
4505 /*
4506 * We have to be careful, if called from sys_setpriority(),
4507 * the task might be in the middle of scheduling on another CPU.
4508 */
eb580751 4509 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4510 update_rq_clock(rq);
4511
1da177e4
LT
4512 /*
4513 * The RT priorities are set via sched_setscheduler(), but we still
4514 * allow the 'normal' nice value to be set - but as expected
4515 * it wont have any effect on scheduling until the task is
aab03e05 4516 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4517 */
aab03e05 4518 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4519 p->static_prio = NICE_TO_PRIO(nice);
4520 goto out_unlock;
4521 }
da0c1e65 4522 queued = task_on_rq_queued(p);
49bd21ef 4523 running = task_current(rq, p);
da0c1e65 4524 if (queued)
7a57f32a 4525 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4526 if (running)
4527 put_prev_task(rq, p);
1da177e4 4528
1da177e4 4529 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4530 set_load_weight(p, true);
b29739f9
IM
4531 old_prio = p->prio;
4532 p->prio = effective_prio(p);
1da177e4 4533
5443a0be 4534 if (queued)
7134b3e9 4535 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 4536 if (running)
03b7fad1 4537 set_next_task(rq, p);
5443a0be
FW
4538
4539 /*
4540 * If the task increased its priority or is running and
4541 * lowered its priority, then reschedule its CPU:
4542 */
4543 p->sched_class->prio_changed(rq, p, old_prio);
4544
1da177e4 4545out_unlock:
eb580751 4546 task_rq_unlock(rq, p, &rf);
1da177e4 4547}
1da177e4
LT
4548EXPORT_SYMBOL(set_user_nice);
4549
e43379f1
MM
4550/*
4551 * can_nice - check if a task can reduce its nice value
4552 * @p: task
4553 * @nice: nice value
4554 */
36c8b586 4555int can_nice(const struct task_struct *p, const int nice)
e43379f1 4556{
d1ccc66d 4557 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 4558 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 4559
78d7d407 4560 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4561 capable(CAP_SYS_NICE));
4562}
4563
1da177e4
LT
4564#ifdef __ARCH_WANT_SYS_NICE
4565
4566/*
4567 * sys_nice - change the priority of the current process.
4568 * @increment: priority increment
4569 *
4570 * sys_setpriority is a more generic, but much slower function that
4571 * does similar things.
4572 */
5add95d4 4573SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4574{
48f24c4d 4575 long nice, retval;
1da177e4
LT
4576
4577 /*
4578 * Setpriority might change our priority at the same moment.
4579 * We don't have to worry. Conceptually one call occurs first
4580 * and we have a single winner.
4581 */
a9467fa3 4582 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 4583 nice = task_nice(current) + increment;
1da177e4 4584
a9467fa3 4585 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
4586 if (increment < 0 && !can_nice(current, nice))
4587 return -EPERM;
4588
1da177e4
LT
4589 retval = security_task_setnice(current, nice);
4590 if (retval)
4591 return retval;
4592
4593 set_user_nice(current, nice);
4594 return 0;
4595}
4596
4597#endif
4598
4599/**
4600 * task_prio - return the priority value of a given task.
4601 * @p: the task in question.
4602 *
e69f6186 4603 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4604 * RT tasks are offset by -200. Normal tasks are centered
4605 * around 0, value goes from -16 to +15.
4606 */
36c8b586 4607int task_prio(const struct task_struct *p)
1da177e4
LT
4608{
4609 return p->prio - MAX_RT_PRIO;
4610}
4611
1da177e4 4612/**
d1ccc66d 4613 * idle_cpu - is a given CPU idle currently?
1da177e4 4614 * @cpu: the processor in question.
e69f6186
YB
4615 *
4616 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4617 */
4618int idle_cpu(int cpu)
4619{
908a3283
TG
4620 struct rq *rq = cpu_rq(cpu);
4621
4622 if (rq->curr != rq->idle)
4623 return 0;
4624
4625 if (rq->nr_running)
4626 return 0;
4627
4628#ifdef CONFIG_SMP
4629 if (!llist_empty(&rq->wake_list))
4630 return 0;
4631#endif
4632
4633 return 1;
1da177e4
LT
4634}
4635
943d355d
RJ
4636/**
4637 * available_idle_cpu - is a given CPU idle for enqueuing work.
4638 * @cpu: the CPU in question.
4639 *
4640 * Return: 1 if the CPU is currently idle. 0 otherwise.
4641 */
4642int available_idle_cpu(int cpu)
4643{
4644 if (!idle_cpu(cpu))
4645 return 0;
4646
247f2f6f
RJ
4647 if (vcpu_is_preempted(cpu))
4648 return 0;
4649
908a3283 4650 return 1;
1da177e4
LT
4651}
4652
1da177e4 4653/**
d1ccc66d 4654 * idle_task - return the idle task for a given CPU.
1da177e4 4655 * @cpu: the processor in question.
e69f6186 4656 *
d1ccc66d 4657 * Return: The idle task for the CPU @cpu.
1da177e4 4658 */
36c8b586 4659struct task_struct *idle_task(int cpu)
1da177e4
LT
4660{
4661 return cpu_rq(cpu)->idle;
4662}
4663
4664/**
4665 * find_process_by_pid - find a process with a matching PID value.
4666 * @pid: the pid in question.
e69f6186
YB
4667 *
4668 * The task of @pid, if found. %NULL otherwise.
1da177e4 4669 */
a9957449 4670static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4671{
228ebcbe 4672 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4673}
4674
c13db6b1
SR
4675/*
4676 * sched_setparam() passes in -1 for its policy, to let the functions
4677 * it calls know not to change it.
4678 */
4679#define SETPARAM_POLICY -1
4680
c365c292
TG
4681static void __setscheduler_params(struct task_struct *p,
4682 const struct sched_attr *attr)
1da177e4 4683{
d50dde5a
DF
4684 int policy = attr->sched_policy;
4685
c13db6b1 4686 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4687 policy = p->policy;
4688
1da177e4 4689 p->policy = policy;
d50dde5a 4690
aab03e05
DF
4691 if (dl_policy(policy))
4692 __setparam_dl(p, attr);
39fd8fd2 4693 else if (fair_policy(policy))
d50dde5a
DF
4694 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4695
39fd8fd2
PZ
4696 /*
4697 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4698 * !rt_policy. Always setting this ensures that things like
4699 * getparam()/getattr() don't report silly values for !rt tasks.
4700 */
4701 p->rt_priority = attr->sched_priority;
383afd09 4702 p->normal_prio = normal_prio(p);
9059393e 4703 set_load_weight(p, true);
c365c292 4704}
39fd8fd2 4705
c365c292
TG
4706/* Actually do priority change: must hold pi & rq lock. */
4707static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4708 const struct sched_attr *attr, bool keep_boost)
c365c292 4709{
a509a7cd
PB
4710 /*
4711 * If params can't change scheduling class changes aren't allowed
4712 * either.
4713 */
4714 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4715 return;
4716
c365c292 4717 __setscheduler_params(p, attr);
d50dde5a 4718
383afd09 4719 /*
0782e63b
TG
4720 * Keep a potential priority boosting if called from
4721 * sched_setscheduler().
383afd09 4722 */
acd58620 4723 p->prio = normal_prio(p);
0782e63b 4724 if (keep_boost)
acd58620 4725 p->prio = rt_effective_prio(p, p->prio);
383afd09 4726
aab03e05
DF
4727 if (dl_prio(p->prio))
4728 p->sched_class = &dl_sched_class;
4729 else if (rt_prio(p->prio))
ffd44db5
PZ
4730 p->sched_class = &rt_sched_class;
4731 else
4732 p->sched_class = &fair_sched_class;
1da177e4 4733}
aab03e05 4734
c69e8d9c 4735/*
d1ccc66d 4736 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4737 */
4738static bool check_same_owner(struct task_struct *p)
4739{
4740 const struct cred *cred = current_cred(), *pcred;
4741 bool match;
4742
4743 rcu_read_lock();
4744 pcred = __task_cred(p);
9c806aa0
EB
4745 match = (uid_eq(cred->euid, pcred->euid) ||
4746 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4747 rcu_read_unlock();
4748 return match;
4749}
4750
d50dde5a
DF
4751static int __sched_setscheduler(struct task_struct *p,
4752 const struct sched_attr *attr,
dbc7f069 4753 bool user, bool pi)
1da177e4 4754{
383afd09
SR
4755 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4756 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4757 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4758 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4759 const struct sched_class *prev_class;
eb580751 4760 struct rq_flags rf;
ca94c442 4761 int reset_on_fork;
7a57f32a 4762 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4763 struct rq *rq;
1da177e4 4764
896bbb25
SRV
4765 /* The pi code expects interrupts enabled */
4766 BUG_ON(pi && in_interrupt());
1da177e4 4767recheck:
d1ccc66d 4768 /* Double check policy once rq lock held: */
ca94c442
LP
4769 if (policy < 0) {
4770 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4771 policy = oldpolicy = p->policy;
ca94c442 4772 } else {
7479f3c9 4773 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4774
20f9cd2a 4775 if (!valid_policy(policy))
ca94c442
LP
4776 return -EINVAL;
4777 }
4778
794a56eb 4779 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4780 return -EINVAL;
4781
1da177e4
LT
4782 /*
4783 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4784 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4785 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4786 */
0bb040a4 4787 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4788 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4789 return -EINVAL;
aab03e05
DF
4790 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4791 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4792 return -EINVAL;
4793
37e4ab3f
OC
4794 /*
4795 * Allow unprivileged RT tasks to decrease priority:
4796 */
961ccddd 4797 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4798 if (fair_policy(policy)) {
d0ea0268 4799 if (attr->sched_nice < task_nice(p) &&
eaad4513 4800 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4801 return -EPERM;
4802 }
4803
e05606d3 4804 if (rt_policy(policy)) {
a44702e8
ON
4805 unsigned long rlim_rtprio =
4806 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4807
d1ccc66d 4808 /* Can't set/change the rt policy: */
8dc3e909
ON
4809 if (policy != p->policy && !rlim_rtprio)
4810 return -EPERM;
4811
d1ccc66d 4812 /* Can't increase priority: */
d50dde5a
DF
4813 if (attr->sched_priority > p->rt_priority &&
4814 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4815 return -EPERM;
4816 }
c02aa73b 4817
d44753b8
JL
4818 /*
4819 * Can't set/change SCHED_DEADLINE policy at all for now
4820 * (safest behavior); in the future we would like to allow
4821 * unprivileged DL tasks to increase their relative deadline
4822 * or reduce their runtime (both ways reducing utilization)
4823 */
4824 if (dl_policy(policy))
4825 return -EPERM;
4826
dd41f596 4827 /*
c02aa73b
DH
4828 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4829 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4830 */
1da1843f 4831 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4832 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4833 return -EPERM;
4834 }
5fe1d75f 4835
d1ccc66d 4836 /* Can't change other user's priorities: */
c69e8d9c 4837 if (!check_same_owner(p))
37e4ab3f 4838 return -EPERM;
ca94c442 4839
d1ccc66d 4840 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4841 if (p->sched_reset_on_fork && !reset_on_fork)
4842 return -EPERM;
37e4ab3f 4843 }
1da177e4 4844
725aad24 4845 if (user) {
794a56eb
JL
4846 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4847 return -EINVAL;
4848
b0ae1981 4849 retval = security_task_setscheduler(p);
725aad24
JF
4850 if (retval)
4851 return retval;
4852 }
4853
a509a7cd
PB
4854 /* Update task specific "requested" clamps */
4855 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4856 retval = uclamp_validate(p, attr);
4857 if (retval)
4858 return retval;
4859 }
4860
710da3c8
JL
4861 if (pi)
4862 cpuset_read_lock();
4863
b29739f9 4864 /*
d1ccc66d 4865 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4866 * changing the priority of the task:
0122ec5b 4867 *
25985edc 4868 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4869 * runqueue lock must be held.
4870 */
eb580751 4871 rq = task_rq_lock(p, &rf);
80f5c1b8 4872 update_rq_clock(rq);
dc61b1d6 4873
34f971f6 4874 /*
d1ccc66d 4875 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4876 */
4877 if (p == rq->stop) {
4b211f2b
MP
4878 retval = -EINVAL;
4879 goto unlock;
34f971f6
PZ
4880 }
4881
a51e9198 4882 /*
d6b1e911
TG
4883 * If not changing anything there's no need to proceed further,
4884 * but store a possible modification of reset_on_fork.
a51e9198 4885 */
d50dde5a 4886 if (unlikely(policy == p->policy)) {
d0ea0268 4887 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4888 goto change;
4889 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4890 goto change;
75381608 4891 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4892 goto change;
a509a7cd
PB
4893 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4894 goto change;
d50dde5a 4895
d6b1e911 4896 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
4897 retval = 0;
4898 goto unlock;
a51e9198 4899 }
d50dde5a 4900change:
a51e9198 4901
dc61b1d6 4902 if (user) {
332ac17e 4903#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4904 /*
4905 * Do not allow realtime tasks into groups that have no runtime
4906 * assigned.
4907 */
4908 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4909 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4910 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
4911 retval = -EPERM;
4912 goto unlock;
dc61b1d6 4913 }
dc61b1d6 4914#endif
332ac17e 4915#ifdef CONFIG_SMP
794a56eb
JL
4916 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4917 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4918 cpumask_t *span = rq->rd->span;
332ac17e
DF
4919
4920 /*
4921 * Don't allow tasks with an affinity mask smaller than
4922 * the entire root_domain to become SCHED_DEADLINE. We
4923 * will also fail if there's no bandwidth available.
4924 */
3bd37062 4925 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4926 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
4927 retval = -EPERM;
4928 goto unlock;
332ac17e
DF
4929 }
4930 }
4931#endif
4932 }
dc61b1d6 4933
d1ccc66d 4934 /* Re-check policy now with rq lock held: */
1da177e4
LT
4935 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4936 policy = oldpolicy = -1;
eb580751 4937 task_rq_unlock(rq, p, &rf);
710da3c8
JL
4938 if (pi)
4939 cpuset_read_unlock();
1da177e4
LT
4940 goto recheck;
4941 }
332ac17e
DF
4942
4943 /*
4944 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4945 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4946 * is available.
4947 */
06a76fe0 4948 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
4949 retval = -EBUSY;
4950 goto unlock;
332ac17e
DF
4951 }
4952
c365c292
TG
4953 p->sched_reset_on_fork = reset_on_fork;
4954 oldprio = p->prio;
4955
dbc7f069
PZ
4956 if (pi) {
4957 /*
4958 * Take priority boosted tasks into account. If the new
4959 * effective priority is unchanged, we just store the new
4960 * normal parameters and do not touch the scheduler class and
4961 * the runqueue. This will be done when the task deboost
4962 * itself.
4963 */
acd58620 4964 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4965 if (new_effective_prio == oldprio)
4966 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4967 }
4968
da0c1e65 4969 queued = task_on_rq_queued(p);
051a1d1a 4970 running = task_current(rq, p);
da0c1e65 4971 if (queued)
ff77e468 4972 dequeue_task(rq, p, queue_flags);
0e1f3483 4973 if (running)
f3cd1c4e 4974 put_prev_task(rq, p);
f6b53205 4975
83ab0aa0 4976 prev_class = p->sched_class;
a509a7cd 4977
dbc7f069 4978 __setscheduler(rq, p, attr, pi);
a509a7cd 4979 __setscheduler_uclamp(p, attr);
f6b53205 4980
da0c1e65 4981 if (queued) {
81a44c54
TG
4982 /*
4983 * We enqueue to tail when the priority of a task is
4984 * increased (user space view).
4985 */
ff77e468
PZ
4986 if (oldprio < p->prio)
4987 queue_flags |= ENQUEUE_HEAD;
1de64443 4988
ff77e468 4989 enqueue_task(rq, p, queue_flags);
81a44c54 4990 }
a399d233 4991 if (running)
03b7fad1 4992 set_next_task(rq, p);
cb469845 4993
da7a735e 4994 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4995
4996 /* Avoid rq from going away on us: */
4997 preempt_disable();
eb580751 4998 task_rq_unlock(rq, p, &rf);
b29739f9 4999
710da3c8
JL
5000 if (pi) {
5001 cpuset_read_unlock();
dbc7f069 5002 rt_mutex_adjust_pi(p);
710da3c8 5003 }
95e02ca9 5004
d1ccc66d 5005 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
5006 balance_callback(rq);
5007 preempt_enable();
95e02ca9 5008
1da177e4 5009 return 0;
4b211f2b
MP
5010
5011unlock:
5012 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5013 if (pi)
5014 cpuset_read_unlock();
4b211f2b 5015 return retval;
1da177e4 5016}
961ccddd 5017
7479f3c9
PZ
5018static int _sched_setscheduler(struct task_struct *p, int policy,
5019 const struct sched_param *param, bool check)
5020{
5021 struct sched_attr attr = {
5022 .sched_policy = policy,
5023 .sched_priority = param->sched_priority,
5024 .sched_nice = PRIO_TO_NICE(p->static_prio),
5025 };
5026
c13db6b1
SR
5027 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5028 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
5029 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5030 policy &= ~SCHED_RESET_ON_FORK;
5031 attr.sched_policy = policy;
5032 }
5033
dbc7f069 5034 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 5035}
961ccddd
RR
5036/**
5037 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5038 * @p: the task in question.
5039 * @policy: new policy.
5040 * @param: structure containing the new RT priority.
5041 *
e69f6186
YB
5042 * Return: 0 on success. An error code otherwise.
5043 *
961ccddd
RR
5044 * NOTE that the task may be already dead.
5045 */
5046int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5047 const struct sched_param *param)
961ccddd 5048{
7479f3c9 5049 return _sched_setscheduler(p, policy, param, true);
961ccddd 5050}
1da177e4
LT
5051EXPORT_SYMBOL_GPL(sched_setscheduler);
5052
d50dde5a
DF
5053int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5054{
dbc7f069 5055 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
5056}
5057EXPORT_SYMBOL_GPL(sched_setattr);
5058
794a56eb
JL
5059int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5060{
5061 return __sched_setscheduler(p, attr, false, true);
5062}
5063
961ccddd
RR
5064/**
5065 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5066 * @p: the task in question.
5067 * @policy: new policy.
5068 * @param: structure containing the new RT priority.
5069 *
5070 * Just like sched_setscheduler, only don't bother checking if the
5071 * current context has permission. For example, this is needed in
5072 * stop_machine(): we create temporary high priority worker threads,
5073 * but our caller might not have that capability.
e69f6186
YB
5074 *
5075 * Return: 0 on success. An error code otherwise.
961ccddd
RR
5076 */
5077int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5078 const struct sched_param *param)
961ccddd 5079{
7479f3c9 5080 return _sched_setscheduler(p, policy, param, false);
961ccddd 5081}
84778472 5082EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 5083
95cdf3b7
IM
5084static int
5085do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5086{
1da177e4
LT
5087 struct sched_param lparam;
5088 struct task_struct *p;
36c8b586 5089 int retval;
1da177e4
LT
5090
5091 if (!param || pid < 0)
5092 return -EINVAL;
5093 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5094 return -EFAULT;
5fe1d75f
ON
5095
5096 rcu_read_lock();
5097 retval = -ESRCH;
1da177e4 5098 p = find_process_by_pid(pid);
710da3c8
JL
5099 if (likely(p))
5100 get_task_struct(p);
5fe1d75f 5101 rcu_read_unlock();
36c8b586 5102
710da3c8
JL
5103 if (likely(p)) {
5104 retval = sched_setscheduler(p, policy, &lparam);
5105 put_task_struct(p);
5106 }
5107
1da177e4
LT
5108 return retval;
5109}
5110
d50dde5a
DF
5111/*
5112 * Mimics kernel/events/core.c perf_copy_attr().
5113 */
d1ccc66d 5114static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
5115{
5116 u32 size;
5117 int ret;
5118
d1ccc66d 5119 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
5120 memset(attr, 0, sizeof(*attr));
5121
5122 ret = get_user(size, &uattr->size);
5123 if (ret)
5124 return ret;
5125
d1ccc66d
IM
5126 /* ABI compatibility quirk: */
5127 if (!size)
d50dde5a 5128 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 5129 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
5130 goto err_size;
5131
dff3a85f
AS
5132 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5133 if (ret) {
5134 if (ret == -E2BIG)
5135 goto err_size;
5136 return ret;
d50dde5a
DF
5137 }
5138
a509a7cd
PB
5139 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5140 size < SCHED_ATTR_SIZE_VER1)
5141 return -EINVAL;
5142
d50dde5a 5143 /*
d1ccc66d 5144 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
5145 * to be strict and return an error on out-of-bounds values?
5146 */
75e45d51 5147 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 5148
e78c7bca 5149 return 0;
d50dde5a
DF
5150
5151err_size:
5152 put_user(sizeof(*attr), &uattr->size);
e78c7bca 5153 return -E2BIG;
d50dde5a
DF
5154}
5155
1da177e4
LT
5156/**
5157 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5158 * @pid: the pid in question.
5159 * @policy: new policy.
5160 * @param: structure containing the new RT priority.
e69f6186
YB
5161 *
5162 * Return: 0 on success. An error code otherwise.
1da177e4 5163 */
d1ccc66d 5164SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 5165{
c21761f1
JB
5166 if (policy < 0)
5167 return -EINVAL;
5168
1da177e4
LT
5169 return do_sched_setscheduler(pid, policy, param);
5170}
5171
5172/**
5173 * sys_sched_setparam - set/change the RT priority of a thread
5174 * @pid: the pid in question.
5175 * @param: structure containing the new RT priority.
e69f6186
YB
5176 *
5177 * Return: 0 on success. An error code otherwise.
1da177e4 5178 */
5add95d4 5179SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5180{
c13db6b1 5181 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
5182}
5183
d50dde5a
DF
5184/**
5185 * sys_sched_setattr - same as above, but with extended sched_attr
5186 * @pid: the pid in question.
5778fccf 5187 * @uattr: structure containing the extended parameters.
db66d756 5188 * @flags: for future extension.
d50dde5a 5189 */
6d35ab48
PZ
5190SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5191 unsigned int, flags)
d50dde5a
DF
5192{
5193 struct sched_attr attr;
5194 struct task_struct *p;
5195 int retval;
5196
6d35ab48 5197 if (!uattr || pid < 0 || flags)
d50dde5a
DF
5198 return -EINVAL;
5199
143cf23d
MK
5200 retval = sched_copy_attr(uattr, &attr);
5201 if (retval)
5202 return retval;
d50dde5a 5203
b14ed2c2 5204 if ((int)attr.sched_policy < 0)
dbdb2275 5205 return -EINVAL;
1d6362fa
PB
5206 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5207 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
5208
5209 rcu_read_lock();
5210 retval = -ESRCH;
5211 p = find_process_by_pid(pid);
a509a7cd
PB
5212 if (likely(p))
5213 get_task_struct(p);
d50dde5a
DF
5214 rcu_read_unlock();
5215
a509a7cd
PB
5216 if (likely(p)) {
5217 retval = sched_setattr(p, &attr);
5218 put_task_struct(p);
5219 }
5220
d50dde5a
DF
5221 return retval;
5222}
5223
1da177e4
LT
5224/**
5225 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5226 * @pid: the pid in question.
e69f6186
YB
5227 *
5228 * Return: On success, the policy of the thread. Otherwise, a negative error
5229 * code.
1da177e4 5230 */
5add95d4 5231SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5232{
36c8b586 5233 struct task_struct *p;
3a5c359a 5234 int retval;
1da177e4
LT
5235
5236 if (pid < 0)
3a5c359a 5237 return -EINVAL;
1da177e4
LT
5238
5239 retval = -ESRCH;
5fe85be0 5240 rcu_read_lock();
1da177e4
LT
5241 p = find_process_by_pid(pid);
5242 if (p) {
5243 retval = security_task_getscheduler(p);
5244 if (!retval)
ca94c442
LP
5245 retval = p->policy
5246 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5247 }
5fe85be0 5248 rcu_read_unlock();
1da177e4
LT
5249 return retval;
5250}
5251
5252/**
ca94c442 5253 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5254 * @pid: the pid in question.
5255 * @param: structure containing the RT priority.
e69f6186
YB
5256 *
5257 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5258 * code.
1da177e4 5259 */
5add95d4 5260SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5261{
ce5f7f82 5262 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5263 struct task_struct *p;
3a5c359a 5264 int retval;
1da177e4
LT
5265
5266 if (!param || pid < 0)
3a5c359a 5267 return -EINVAL;
1da177e4 5268
5fe85be0 5269 rcu_read_lock();
1da177e4
LT
5270 p = find_process_by_pid(pid);
5271 retval = -ESRCH;
5272 if (!p)
5273 goto out_unlock;
5274
5275 retval = security_task_getscheduler(p);
5276 if (retval)
5277 goto out_unlock;
5278
ce5f7f82
PZ
5279 if (task_has_rt_policy(p))
5280 lp.sched_priority = p->rt_priority;
5fe85be0 5281 rcu_read_unlock();
1da177e4
LT
5282
5283 /*
5284 * This one might sleep, we cannot do it with a spinlock held ...
5285 */
5286 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5287
1da177e4
LT
5288 return retval;
5289
5290out_unlock:
5fe85be0 5291 rcu_read_unlock();
1da177e4
LT
5292 return retval;
5293}
5294
1251201c
IM
5295/*
5296 * Copy the kernel size attribute structure (which might be larger
5297 * than what user-space knows about) to user-space.
5298 *
5299 * Note that all cases are valid: user-space buffer can be larger or
5300 * smaller than the kernel-space buffer. The usual case is that both
5301 * have the same size.
5302 */
5303static int
5304sched_attr_copy_to_user(struct sched_attr __user *uattr,
5305 struct sched_attr *kattr,
5306 unsigned int usize)
d50dde5a 5307{
1251201c 5308 unsigned int ksize = sizeof(*kattr);
d50dde5a 5309
96d4f267 5310 if (!access_ok(uattr, usize))
d50dde5a
DF
5311 return -EFAULT;
5312
5313 /*
1251201c
IM
5314 * sched_getattr() ABI forwards and backwards compatibility:
5315 *
5316 * If usize == ksize then we just copy everything to user-space and all is good.
5317 *
5318 * If usize < ksize then we only copy as much as user-space has space for,
5319 * this keeps ABI compatibility as well. We skip the rest.
5320 *
5321 * If usize > ksize then user-space is using a newer version of the ABI,
5322 * which part the kernel doesn't know about. Just ignore it - tooling can
5323 * detect the kernel's knowledge of attributes from the attr->size value
5324 * which is set to ksize in this case.
d50dde5a 5325 */
1251201c 5326 kattr->size = min(usize, ksize);
d50dde5a 5327
1251201c 5328 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
5329 return -EFAULT;
5330
22400674 5331 return 0;
d50dde5a
DF
5332}
5333
5334/**
aab03e05 5335 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5336 * @pid: the pid in question.
5778fccf 5337 * @uattr: structure containing the extended parameters.
dff3a85f 5338 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 5339 * @flags: for future extension.
d50dde5a 5340 */
6d35ab48 5341SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 5342 unsigned int, usize, unsigned int, flags)
d50dde5a 5343{
1251201c 5344 struct sched_attr kattr = { };
d50dde5a
DF
5345 struct task_struct *p;
5346 int retval;
5347
1251201c
IM
5348 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5349 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5350 return -EINVAL;
5351
5352 rcu_read_lock();
5353 p = find_process_by_pid(pid);
5354 retval = -ESRCH;
5355 if (!p)
5356 goto out_unlock;
5357
5358 retval = security_task_getscheduler(p);
5359 if (retval)
5360 goto out_unlock;
5361
1251201c 5362 kattr.sched_policy = p->policy;
7479f3c9 5363 if (p->sched_reset_on_fork)
1251201c 5364 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 5365 if (task_has_dl_policy(p))
1251201c 5366 __getparam_dl(p, &kattr);
aab03e05 5367 else if (task_has_rt_policy(p))
1251201c 5368 kattr.sched_priority = p->rt_priority;
d50dde5a 5369 else
1251201c 5370 kattr.sched_nice = task_nice(p);
d50dde5a 5371
a509a7cd 5372#ifdef CONFIG_UCLAMP_TASK
1251201c
IM
5373 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5374 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
5375#endif
5376
d50dde5a
DF
5377 rcu_read_unlock();
5378
1251201c 5379 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
5380
5381out_unlock:
5382 rcu_read_unlock();
5383 return retval;
5384}
5385
96f874e2 5386long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5387{
5a16f3d3 5388 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5389 struct task_struct *p;
5390 int retval;
1da177e4 5391
23f5d142 5392 rcu_read_lock();
1da177e4
LT
5393
5394 p = find_process_by_pid(pid);
5395 if (!p) {
23f5d142 5396 rcu_read_unlock();
1da177e4
LT
5397 return -ESRCH;
5398 }
5399
23f5d142 5400 /* Prevent p going away */
1da177e4 5401 get_task_struct(p);
23f5d142 5402 rcu_read_unlock();
1da177e4 5403
14a40ffc
TH
5404 if (p->flags & PF_NO_SETAFFINITY) {
5405 retval = -EINVAL;
5406 goto out_put_task;
5407 }
5a16f3d3
RR
5408 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5409 retval = -ENOMEM;
5410 goto out_put_task;
5411 }
5412 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5413 retval = -ENOMEM;
5414 goto out_free_cpus_allowed;
5415 }
1da177e4 5416 retval = -EPERM;
4c44aaaf
EB
5417 if (!check_same_owner(p)) {
5418 rcu_read_lock();
5419 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5420 rcu_read_unlock();
16303ab2 5421 goto out_free_new_mask;
4c44aaaf
EB
5422 }
5423 rcu_read_unlock();
5424 }
1da177e4 5425
b0ae1981 5426 retval = security_task_setscheduler(p);
e7834f8f 5427 if (retval)
16303ab2 5428 goto out_free_new_mask;
e7834f8f 5429
e4099a5e
PZ
5430
5431 cpuset_cpus_allowed(p, cpus_allowed);
5432 cpumask_and(new_mask, in_mask, cpus_allowed);
5433
332ac17e
DF
5434 /*
5435 * Since bandwidth control happens on root_domain basis,
5436 * if admission test is enabled, we only admit -deadline
5437 * tasks allowed to run on all the CPUs in the task's
5438 * root_domain.
5439 */
5440#ifdef CONFIG_SMP
f1e3a093
KT
5441 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5442 rcu_read_lock();
5443 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5444 retval = -EBUSY;
f1e3a093 5445 rcu_read_unlock();
16303ab2 5446 goto out_free_new_mask;
332ac17e 5447 }
f1e3a093 5448 rcu_read_unlock();
332ac17e
DF
5449 }
5450#endif
49246274 5451again:
25834c73 5452 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5453
8707d8b8 5454 if (!retval) {
5a16f3d3
RR
5455 cpuset_cpus_allowed(p, cpus_allowed);
5456 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5457 /*
5458 * We must have raced with a concurrent cpuset
5459 * update. Just reset the cpus_allowed to the
5460 * cpuset's cpus_allowed
5461 */
5a16f3d3 5462 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5463 goto again;
5464 }
5465 }
16303ab2 5466out_free_new_mask:
5a16f3d3
RR
5467 free_cpumask_var(new_mask);
5468out_free_cpus_allowed:
5469 free_cpumask_var(cpus_allowed);
5470out_put_task:
1da177e4 5471 put_task_struct(p);
1da177e4
LT
5472 return retval;
5473}
5474
5475static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5476 struct cpumask *new_mask)
1da177e4 5477{
96f874e2
RR
5478 if (len < cpumask_size())
5479 cpumask_clear(new_mask);
5480 else if (len > cpumask_size())
5481 len = cpumask_size();
5482
1da177e4
LT
5483 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5484}
5485
5486/**
d1ccc66d 5487 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5488 * @pid: pid of the process
5489 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5490 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5491 *
5492 * Return: 0 on success. An error code otherwise.
1da177e4 5493 */
5add95d4
HC
5494SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5495 unsigned long __user *, user_mask_ptr)
1da177e4 5496{
5a16f3d3 5497 cpumask_var_t new_mask;
1da177e4
LT
5498 int retval;
5499
5a16f3d3
RR
5500 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5501 return -ENOMEM;
1da177e4 5502
5a16f3d3
RR
5503 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5504 if (retval == 0)
5505 retval = sched_setaffinity(pid, new_mask);
5506 free_cpumask_var(new_mask);
5507 return retval;
1da177e4
LT
5508}
5509
96f874e2 5510long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5511{
36c8b586 5512 struct task_struct *p;
31605683 5513 unsigned long flags;
1da177e4 5514 int retval;
1da177e4 5515
23f5d142 5516 rcu_read_lock();
1da177e4
LT
5517
5518 retval = -ESRCH;
5519 p = find_process_by_pid(pid);
5520 if (!p)
5521 goto out_unlock;
5522
e7834f8f
DQ
5523 retval = security_task_getscheduler(p);
5524 if (retval)
5525 goto out_unlock;
5526
013fdb80 5527 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 5528 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 5529 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5530
5531out_unlock:
23f5d142 5532 rcu_read_unlock();
1da177e4 5533
9531b62f 5534 return retval;
1da177e4
LT
5535}
5536
5537/**
d1ccc66d 5538 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
5539 * @pid: pid of the process
5540 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5541 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 5542 *
599b4840
ZW
5543 * Return: size of CPU mask copied to user_mask_ptr on success. An
5544 * error code otherwise.
1da177e4 5545 */
5add95d4
HC
5546SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5547 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5548{
5549 int ret;
f17c8607 5550 cpumask_var_t mask;
1da177e4 5551
84fba5ec 5552 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5553 return -EINVAL;
5554 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5555 return -EINVAL;
5556
f17c8607
RR
5557 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5558 return -ENOMEM;
1da177e4 5559
f17c8607
RR
5560 ret = sched_getaffinity(pid, mask);
5561 if (ret == 0) {
4de373a1 5562 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
5563
5564 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5565 ret = -EFAULT;
5566 else
cd3d8031 5567 ret = retlen;
f17c8607
RR
5568 }
5569 free_cpumask_var(mask);
1da177e4 5570
f17c8607 5571 return ret;
1da177e4
LT
5572}
5573
5574/**
5575 * sys_sched_yield - yield the current processor to other threads.
5576 *
dd41f596
IM
5577 * This function yields the current CPU to other tasks. If there are no
5578 * other threads running on this CPU then this function will return.
e69f6186
YB
5579 *
5580 * Return: 0.
1da177e4 5581 */
7d4dd4f1 5582static void do_sched_yield(void)
1da177e4 5583{
8a8c69c3
PZ
5584 struct rq_flags rf;
5585 struct rq *rq;
5586
246b3b33 5587 rq = this_rq_lock_irq(&rf);
1da177e4 5588
ae92882e 5589 schedstat_inc(rq->yld_count);
4530d7ab 5590 current->sched_class->yield_task(rq);
1da177e4
LT
5591
5592 /*
5593 * Since we are going to call schedule() anyway, there's
5594 * no need to preempt or enable interrupts:
5595 */
8a8c69c3
PZ
5596 preempt_disable();
5597 rq_unlock(rq, &rf);
ba74c144 5598 sched_preempt_enable_no_resched();
1da177e4
LT
5599
5600 schedule();
7d4dd4f1 5601}
1da177e4 5602
7d4dd4f1
DB
5603SYSCALL_DEFINE0(sched_yield)
5604{
5605 do_sched_yield();
1da177e4
LT
5606 return 0;
5607}
5608
c1a280b6 5609#ifndef CONFIG_PREEMPTION
02b67cc3 5610int __sched _cond_resched(void)
1da177e4 5611{
fe32d3cd 5612 if (should_resched(0)) {
a18b5d01 5613 preempt_schedule_common();
1da177e4
LT
5614 return 1;
5615 }
f79c3ad6 5616 rcu_all_qs();
1da177e4
LT
5617 return 0;
5618}
02b67cc3 5619EXPORT_SYMBOL(_cond_resched);
35a773a0 5620#endif
1da177e4
LT
5621
5622/*
613afbf8 5623 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5624 * call schedule, and on return reacquire the lock.
5625 *
c1a280b6 5626 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
5627 * operations here to prevent schedule() from being called twice (once via
5628 * spin_unlock(), once by hand).
5629 */
613afbf8 5630int __cond_resched_lock(spinlock_t *lock)
1da177e4 5631{
fe32d3cd 5632 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5633 int ret = 0;
5634
f607c668
PZ
5635 lockdep_assert_held(lock);
5636
4a81e832 5637 if (spin_needbreak(lock) || resched) {
1da177e4 5638 spin_unlock(lock);
d86ee480 5639 if (resched)
a18b5d01 5640 preempt_schedule_common();
95c354fe
NP
5641 else
5642 cpu_relax();
6df3cecb 5643 ret = 1;
1da177e4 5644 spin_lock(lock);
1da177e4 5645 }
6df3cecb 5646 return ret;
1da177e4 5647}
613afbf8 5648EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5649
1da177e4
LT
5650/**
5651 * yield - yield the current processor to other threads.
5652 *
8e3fabfd
PZ
5653 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5654 *
5655 * The scheduler is at all times free to pick the calling task as the most
5656 * eligible task to run, if removing the yield() call from your code breaks
5657 * it, its already broken.
5658 *
5659 * Typical broken usage is:
5660 *
5661 * while (!event)
d1ccc66d 5662 * yield();
8e3fabfd
PZ
5663 *
5664 * where one assumes that yield() will let 'the other' process run that will
5665 * make event true. If the current task is a SCHED_FIFO task that will never
5666 * happen. Never use yield() as a progress guarantee!!
5667 *
5668 * If you want to use yield() to wait for something, use wait_event().
5669 * If you want to use yield() to be 'nice' for others, use cond_resched().
5670 * If you still want to use yield(), do not!
1da177e4
LT
5671 */
5672void __sched yield(void)
5673{
5674 set_current_state(TASK_RUNNING);
7d4dd4f1 5675 do_sched_yield();
1da177e4 5676}
1da177e4
LT
5677EXPORT_SYMBOL(yield);
5678
d95f4122
MG
5679/**
5680 * yield_to - yield the current processor to another thread in
5681 * your thread group, or accelerate that thread toward the
5682 * processor it's on.
16addf95
RD
5683 * @p: target task
5684 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5685 *
5686 * It's the caller's job to ensure that the target task struct
5687 * can't go away on us before we can do any checks.
5688 *
e69f6186 5689 * Return:
7b270f60
PZ
5690 * true (>0) if we indeed boosted the target task.
5691 * false (0) if we failed to boost the target.
5692 * -ESRCH if there's no task to yield to.
d95f4122 5693 */
fa93384f 5694int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5695{
5696 struct task_struct *curr = current;
5697 struct rq *rq, *p_rq;
5698 unsigned long flags;
c3c18640 5699 int yielded = 0;
d95f4122
MG
5700
5701 local_irq_save(flags);
5702 rq = this_rq();
5703
5704again:
5705 p_rq = task_rq(p);
7b270f60
PZ
5706 /*
5707 * If we're the only runnable task on the rq and target rq also
5708 * has only one task, there's absolutely no point in yielding.
5709 */
5710 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5711 yielded = -ESRCH;
5712 goto out_irq;
5713 }
5714
d95f4122 5715 double_rq_lock(rq, p_rq);
39e24d8f 5716 if (task_rq(p) != p_rq) {
d95f4122
MG
5717 double_rq_unlock(rq, p_rq);
5718 goto again;
5719 }
5720
5721 if (!curr->sched_class->yield_to_task)
7b270f60 5722 goto out_unlock;
d95f4122
MG
5723
5724 if (curr->sched_class != p->sched_class)
7b270f60 5725 goto out_unlock;
d95f4122
MG
5726
5727 if (task_running(p_rq, p) || p->state)
7b270f60 5728 goto out_unlock;
d95f4122
MG
5729
5730 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5731 if (yielded) {
ae92882e 5732 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5733 /*
5734 * Make p's CPU reschedule; pick_next_entity takes care of
5735 * fairness.
5736 */
5737 if (preempt && rq != p_rq)
8875125e 5738 resched_curr(p_rq);
6d1cafd8 5739 }
d95f4122 5740
7b270f60 5741out_unlock:
d95f4122 5742 double_rq_unlock(rq, p_rq);
7b270f60 5743out_irq:
d95f4122
MG
5744 local_irq_restore(flags);
5745
7b270f60 5746 if (yielded > 0)
d95f4122
MG
5747 schedule();
5748
5749 return yielded;
5750}
5751EXPORT_SYMBOL_GPL(yield_to);
5752
10ab5643
TH
5753int io_schedule_prepare(void)
5754{
5755 int old_iowait = current->in_iowait;
5756
5757 current->in_iowait = 1;
5758 blk_schedule_flush_plug(current);
5759
5760 return old_iowait;
5761}
5762
5763void io_schedule_finish(int token)
5764{
5765 current->in_iowait = token;
5766}
5767
1da177e4 5768/*
41a2d6cf 5769 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5770 * that process accounting knows that this is a task in IO wait state.
1da177e4 5771 */
1da177e4
LT
5772long __sched io_schedule_timeout(long timeout)
5773{
10ab5643 5774 int token;
1da177e4
LT
5775 long ret;
5776
10ab5643 5777 token = io_schedule_prepare();
1da177e4 5778 ret = schedule_timeout(timeout);
10ab5643 5779 io_schedule_finish(token);
9cff8ade 5780
1da177e4
LT
5781 return ret;
5782}
9cff8ade 5783EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5784
e3b929b0 5785void __sched io_schedule(void)
10ab5643
TH
5786{
5787 int token;
5788
5789 token = io_schedule_prepare();
5790 schedule();
5791 io_schedule_finish(token);
5792}
5793EXPORT_SYMBOL(io_schedule);
5794
1da177e4
LT
5795/**
5796 * sys_sched_get_priority_max - return maximum RT priority.
5797 * @policy: scheduling class.
5798 *
e69f6186
YB
5799 * Return: On success, this syscall returns the maximum
5800 * rt_priority that can be used by a given scheduling class.
5801 * On failure, a negative error code is returned.
1da177e4 5802 */
5add95d4 5803SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5804{
5805 int ret = -EINVAL;
5806
5807 switch (policy) {
5808 case SCHED_FIFO:
5809 case SCHED_RR:
5810 ret = MAX_USER_RT_PRIO-1;
5811 break;
aab03e05 5812 case SCHED_DEADLINE:
1da177e4 5813 case SCHED_NORMAL:
b0a9499c 5814 case SCHED_BATCH:
dd41f596 5815 case SCHED_IDLE:
1da177e4
LT
5816 ret = 0;
5817 break;
5818 }
5819 return ret;
5820}
5821
5822/**
5823 * sys_sched_get_priority_min - return minimum RT priority.
5824 * @policy: scheduling class.
5825 *
e69f6186
YB
5826 * Return: On success, this syscall returns the minimum
5827 * rt_priority that can be used by a given scheduling class.
5828 * On failure, a negative error code is returned.
1da177e4 5829 */
5add95d4 5830SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5831{
5832 int ret = -EINVAL;
5833
5834 switch (policy) {
5835 case SCHED_FIFO:
5836 case SCHED_RR:
5837 ret = 1;
5838 break;
aab03e05 5839 case SCHED_DEADLINE:
1da177e4 5840 case SCHED_NORMAL:
b0a9499c 5841 case SCHED_BATCH:
dd41f596 5842 case SCHED_IDLE:
1da177e4
LT
5843 ret = 0;
5844 }
5845 return ret;
5846}
5847
abca5fc5 5848static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5849{
36c8b586 5850 struct task_struct *p;
a4ec24b4 5851 unsigned int time_slice;
eb580751 5852 struct rq_flags rf;
dba091b9 5853 struct rq *rq;
3a5c359a 5854 int retval;
1da177e4
LT
5855
5856 if (pid < 0)
3a5c359a 5857 return -EINVAL;
1da177e4
LT
5858
5859 retval = -ESRCH;
1a551ae7 5860 rcu_read_lock();
1da177e4
LT
5861 p = find_process_by_pid(pid);
5862 if (!p)
5863 goto out_unlock;
5864
5865 retval = security_task_getscheduler(p);
5866 if (retval)
5867 goto out_unlock;
5868
eb580751 5869 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5870 time_slice = 0;
5871 if (p->sched_class->get_rr_interval)
5872 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5873 task_rq_unlock(rq, p, &rf);
a4ec24b4 5874
1a551ae7 5875 rcu_read_unlock();
abca5fc5
AV
5876 jiffies_to_timespec64(time_slice, t);
5877 return 0;
3a5c359a 5878
1da177e4 5879out_unlock:
1a551ae7 5880 rcu_read_unlock();
1da177e4
LT
5881 return retval;
5882}
5883
2064a5ab
RD
5884/**
5885 * sys_sched_rr_get_interval - return the default timeslice of a process.
5886 * @pid: pid of the process.
5887 * @interval: userspace pointer to the timeslice value.
5888 *
5889 * this syscall writes the default timeslice value of a given process
5890 * into the user-space timespec buffer. A value of '0' means infinity.
5891 *
5892 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5893 * an error code.
5894 */
abca5fc5 5895SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5896 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5897{
5898 struct timespec64 t;
5899 int retval = sched_rr_get_interval(pid, &t);
5900
5901 if (retval == 0)
5902 retval = put_timespec64(&t, interval);
5903
5904 return retval;
5905}
5906
474b9c77 5907#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5908SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5909 struct old_timespec32 __user *, interval)
abca5fc5
AV
5910{
5911 struct timespec64 t;
5912 int retval = sched_rr_get_interval(pid, &t);
5913
5914 if (retval == 0)
9afc5eee 5915 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5916 return retval;
5917}
5918#endif
5919
82a1fcb9 5920void sched_show_task(struct task_struct *p)
1da177e4 5921{
1da177e4 5922 unsigned long free = 0;
4e79752c 5923 int ppid;
c930b2c0 5924
38200502
TH
5925 if (!try_get_task_stack(p))
5926 return;
20435d84
XX
5927
5928 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5929
5930 if (p->state == TASK_RUNNING)
3df0fc5b 5931 printk(KERN_CONT " running task ");
1da177e4 5932#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5933 free = stack_not_used(p);
1da177e4 5934#endif
a90e984c 5935 ppid = 0;
4e79752c 5936 rcu_read_lock();
a90e984c
ON
5937 if (pid_alive(p))
5938 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5939 rcu_read_unlock();
3df0fc5b 5940 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5941 task_pid_nr(p), ppid,
aa47b7e0 5942 (unsigned long)task_thread_info(p)->flags);
1da177e4 5943
3d1cb205 5944 print_worker_info(KERN_INFO, p);
5fb5e6de 5945 show_stack(p, NULL);
38200502 5946 put_task_stack(p);
1da177e4 5947}
0032f4e8 5948EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5949
5d68cc95
PZ
5950static inline bool
5951state_filter_match(unsigned long state_filter, struct task_struct *p)
5952{
5953 /* no filter, everything matches */
5954 if (!state_filter)
5955 return true;
5956
5957 /* filter, but doesn't match */
5958 if (!(p->state & state_filter))
5959 return false;
5960
5961 /*
5962 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5963 * TASK_KILLABLE).
5964 */
5965 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5966 return false;
5967
5968 return true;
5969}
5970
5971
e59e2ae2 5972void show_state_filter(unsigned long state_filter)
1da177e4 5973{
36c8b586 5974 struct task_struct *g, *p;
1da177e4 5975
4bd77321 5976#if BITS_PER_LONG == 32
3df0fc5b
PZ
5977 printk(KERN_INFO
5978 " task PC stack pid father\n");
1da177e4 5979#else
3df0fc5b
PZ
5980 printk(KERN_INFO
5981 " task PC stack pid father\n");
1da177e4 5982#endif
510f5acc 5983 rcu_read_lock();
5d07f420 5984 for_each_process_thread(g, p) {
1da177e4
LT
5985 /*
5986 * reset the NMI-timeout, listing all files on a slow
25985edc 5987 * console might take a lot of time:
57675cb9
AR
5988 * Also, reset softlockup watchdogs on all CPUs, because
5989 * another CPU might be blocked waiting for us to process
5990 * an IPI.
1da177e4
LT
5991 */
5992 touch_nmi_watchdog();
57675cb9 5993 touch_all_softlockup_watchdogs();
5d68cc95 5994 if (state_filter_match(state_filter, p))
82a1fcb9 5995 sched_show_task(p);
5d07f420 5996 }
1da177e4 5997
dd41f596 5998#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5999 if (!state_filter)
6000 sysrq_sched_debug_show();
dd41f596 6001#endif
510f5acc 6002 rcu_read_unlock();
e59e2ae2
IM
6003 /*
6004 * Only show locks if all tasks are dumped:
6005 */
93335a21 6006 if (!state_filter)
e59e2ae2 6007 debug_show_all_locks();
1da177e4
LT
6008}
6009
f340c0d1
IM
6010/**
6011 * init_idle - set up an idle thread for a given CPU
6012 * @idle: task in question
d1ccc66d 6013 * @cpu: CPU the idle task belongs to
f340c0d1
IM
6014 *
6015 * NOTE: this function does not set the idle thread's NEED_RESCHED
6016 * flag, to make booting more robust.
6017 */
0db0628d 6018void init_idle(struct task_struct *idle, int cpu)
1da177e4 6019{
70b97a7f 6020 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6021 unsigned long flags;
6022
ff51ff84
PZ
6023 __sched_fork(0, idle);
6024
25834c73
PZ
6025 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6026 raw_spin_lock(&rq->lock);
5cbd54ef 6027
06b83b5f 6028 idle->state = TASK_RUNNING;
dd41f596 6029 idle->se.exec_start = sched_clock();
c1de45ca 6030 idle->flags |= PF_IDLE;
dd41f596 6031
e1b77c92
MR
6032 kasan_unpoison_task_stack(idle);
6033
de9b8f5d
PZ
6034#ifdef CONFIG_SMP
6035 /*
6036 * Its possible that init_idle() gets called multiple times on a task,
6037 * in that case do_set_cpus_allowed() will not do the right thing.
6038 *
6039 * And since this is boot we can forgo the serialization.
6040 */
6041 set_cpus_allowed_common(idle, cpumask_of(cpu));
6042#endif
6506cf6c
PZ
6043 /*
6044 * We're having a chicken and egg problem, even though we are
d1ccc66d 6045 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
6046 * lockdep check in task_group() will fail.
6047 *
6048 * Similar case to sched_fork(). / Alternatively we could
6049 * use task_rq_lock() here and obtain the other rq->lock.
6050 *
6051 * Silence PROVE_RCU
6052 */
6053 rcu_read_lock();
dd41f596 6054 __set_task_cpu(idle, cpu);
6506cf6c 6055 rcu_read_unlock();
1da177e4 6056
5311a98f
EB
6057 rq->idle = idle;
6058 rcu_assign_pointer(rq->curr, idle);
da0c1e65 6059 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 6060#ifdef CONFIG_SMP
3ca7a440 6061 idle->on_cpu = 1;
4866cde0 6062#endif
25834c73
PZ
6063 raw_spin_unlock(&rq->lock);
6064 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
6065
6066 /* Set the preempt count _outside_ the spinlocks! */
01028747 6067 init_idle_preempt_count(idle, cpu);
55cd5340 6068
dd41f596
IM
6069 /*
6070 * The idle tasks have their own, simple scheduling class:
6071 */
6072 idle->sched_class = &idle_sched_class;
868baf07 6073 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 6074 vtime_init_idle(idle, cpu);
de9b8f5d 6075#ifdef CONFIG_SMP
f1c6f1a7
CE
6076 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6077#endif
19978ca6
IM
6078}
6079
e1d4eeec
NP
6080#ifdef CONFIG_SMP
6081
f82f8042
JL
6082int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6083 const struct cpumask *trial)
6084{
06a76fe0 6085 int ret = 1;
f82f8042 6086
bb2bc55a
MG
6087 if (!cpumask_weight(cur))
6088 return ret;
6089
06a76fe0 6090 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
6091
6092 return ret;
6093}
6094
7f51412a
JL
6095int task_can_attach(struct task_struct *p,
6096 const struct cpumask *cs_cpus_allowed)
6097{
6098 int ret = 0;
6099
6100 /*
6101 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 6102 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
6103 * affinity and isolating such threads by their set of
6104 * allowed nodes is unnecessary. Thus, cpusets are not
6105 * applicable for such threads. This prevents checking for
6106 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 6107 * before cpus_mask may be changed.
7f51412a
JL
6108 */
6109 if (p->flags & PF_NO_SETAFFINITY) {
6110 ret = -EINVAL;
6111 goto out;
6112 }
6113
7f51412a 6114 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
6115 cs_cpus_allowed))
6116 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 6117
7f51412a
JL
6118out:
6119 return ret;
6120}
6121
f2cb1360 6122bool sched_smp_initialized __read_mostly;
e26fbffd 6123
e6628d5b
MG
6124#ifdef CONFIG_NUMA_BALANCING
6125/* Migrate current task p to target_cpu */
6126int migrate_task_to(struct task_struct *p, int target_cpu)
6127{
6128 struct migration_arg arg = { p, target_cpu };
6129 int curr_cpu = task_cpu(p);
6130
6131 if (curr_cpu == target_cpu)
6132 return 0;
6133
3bd37062 6134 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
6135 return -EINVAL;
6136
6137 /* TODO: This is not properly updating schedstats */
6138
286549dc 6139 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
6140 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6141}
0ec8aa00
PZ
6142
6143/*
6144 * Requeue a task on a given node and accurately track the number of NUMA
6145 * tasks on the runqueues
6146 */
6147void sched_setnuma(struct task_struct *p, int nid)
6148{
da0c1e65 6149 bool queued, running;
eb580751
PZ
6150 struct rq_flags rf;
6151 struct rq *rq;
0ec8aa00 6152
eb580751 6153 rq = task_rq_lock(p, &rf);
da0c1e65 6154 queued = task_on_rq_queued(p);
0ec8aa00
PZ
6155 running = task_current(rq, p);
6156
da0c1e65 6157 if (queued)
1de64443 6158 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 6159 if (running)
f3cd1c4e 6160 put_prev_task(rq, p);
0ec8aa00
PZ
6161
6162 p->numa_preferred_nid = nid;
0ec8aa00 6163
da0c1e65 6164 if (queued)
7134b3e9 6165 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 6166 if (running)
03b7fad1 6167 set_next_task(rq, p);
eb580751 6168 task_rq_unlock(rq, p, &rf);
0ec8aa00 6169}
5cc389bc 6170#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 6171
1da177e4 6172#ifdef CONFIG_HOTPLUG_CPU
054b9108 6173/*
d1ccc66d 6174 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 6175 * offline.
054b9108 6176 */
48c5ccae 6177void idle_task_exit(void)
1da177e4 6178{
48c5ccae 6179 struct mm_struct *mm = current->active_mm;
e76bd8d9 6180
48c5ccae 6181 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 6182 BUG_ON(current != this_rq()->idle);
e76bd8d9 6183
a53efe5f 6184 if (mm != &init_mm) {
252d2a41 6185 switch_mm(mm, &init_mm, current);
a53efe5f
MS
6186 finish_arch_post_lock_switch();
6187 }
bf2c59fc
PZ
6188
6189 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
6190}
6191
6192/*
5d180232
PZ
6193 * Since this CPU is going 'away' for a while, fold any nr_active delta
6194 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
6195 * nr_active count is stable. We need to take the teardown thread which
6196 * is calling this into account, so we hand in adjust = 1 to the load
6197 * calculation.
5d180232
PZ
6198 *
6199 * Also see the comment "Global load-average calculations".
1da177e4 6200 */
5d180232 6201static void calc_load_migrate(struct rq *rq)
1da177e4 6202{
d60585c5 6203 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
6204 if (delta)
6205 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
6206}
6207
10e7071b 6208static struct task_struct *__pick_migrate_task(struct rq *rq)
3f1d2a31 6209{
10e7071b
PZ
6210 const struct sched_class *class;
6211 struct task_struct *next;
3f1d2a31 6212
10e7071b 6213 for_each_class(class) {
98c2f700 6214 next = class->pick_next_task(rq);
10e7071b 6215 if (next) {
6e2df058 6216 next->sched_class->put_prev_task(rq, next);
10e7071b
PZ
6217 return next;
6218 }
6219 }
3f1d2a31 6220
10e7071b
PZ
6221 /* The idle class should always have a runnable task */
6222 BUG();
6223}
3f1d2a31 6224
48f24c4d 6225/*
48c5ccae
PZ
6226 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6227 * try_to_wake_up()->select_task_rq().
6228 *
6229 * Called with rq->lock held even though we'er in stop_machine() and
6230 * there's no concurrency possible, we hold the required locks anyway
6231 * because of lock validation efforts.
1da177e4 6232 */
8a8c69c3 6233static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 6234{
5e16bbc2 6235 struct rq *rq = dead_rq;
48c5ccae 6236 struct task_struct *next, *stop = rq->stop;
8a8c69c3 6237 struct rq_flags orf = *rf;
48c5ccae 6238 int dest_cpu;
1da177e4
LT
6239
6240 /*
48c5ccae
PZ
6241 * Fudge the rq selection such that the below task selection loop
6242 * doesn't get stuck on the currently eligible stop task.
6243 *
6244 * We're currently inside stop_machine() and the rq is either stuck
6245 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6246 * either way we should never end up calling schedule() until we're
6247 * done here.
1da177e4 6248 */
48c5ccae 6249 rq->stop = NULL;
48f24c4d 6250
77bd3970
FW
6251 /*
6252 * put_prev_task() and pick_next_task() sched
6253 * class method both need to have an up-to-date
6254 * value of rq->clock[_task]
6255 */
6256 update_rq_clock(rq);
6257
5e16bbc2 6258 for (;;) {
48c5ccae
PZ
6259 /*
6260 * There's this thread running, bail when that's the only
d1ccc66d 6261 * remaining thread:
48c5ccae
PZ
6262 */
6263 if (rq->nr_running == 1)
dd41f596 6264 break;
48c5ccae 6265
10e7071b 6266 next = __pick_migrate_task(rq);
e692ab53 6267
5473e0cc 6268 /*
3bd37062 6269 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
6270 * both pi_lock and rq->lock, such that holding either
6271 * stabilizes the mask.
6272 *
6273 * Drop rq->lock is not quite as disastrous as it usually is
6274 * because !cpu_active at this point, which means load-balance
6275 * will not interfere. Also, stop-machine.
6276 */
8a8c69c3 6277 rq_unlock(rq, rf);
5473e0cc 6278 raw_spin_lock(&next->pi_lock);
8a8c69c3 6279 rq_relock(rq, rf);
5473e0cc
WL
6280
6281 /*
6282 * Since we're inside stop-machine, _nothing_ should have
6283 * changed the task, WARN if weird stuff happened, because in
6284 * that case the above rq->lock drop is a fail too.
6285 */
6286 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6287 raw_spin_unlock(&next->pi_lock);
6288 continue;
6289 }
6290
48c5ccae 6291 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 6292 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 6293 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 6294 if (rq != dead_rq) {
8a8c69c3 6295 rq_unlock(rq, rf);
5e16bbc2 6296 rq = dead_rq;
8a8c69c3
PZ
6297 *rf = orf;
6298 rq_relock(rq, rf);
5e16bbc2 6299 }
5473e0cc 6300 raw_spin_unlock(&next->pi_lock);
1da177e4 6301 }
dce48a84 6302
48c5ccae 6303 rq->stop = stop;
dce48a84 6304}
1da177e4
LT
6305#endif /* CONFIG_HOTPLUG_CPU */
6306
f2cb1360 6307void set_rq_online(struct rq *rq)
1f11eb6a
GH
6308{
6309 if (!rq->online) {
6310 const struct sched_class *class;
6311
c6c4927b 6312 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6313 rq->online = 1;
6314
6315 for_each_class(class) {
6316 if (class->rq_online)
6317 class->rq_online(rq);
6318 }
6319 }
6320}
6321
f2cb1360 6322void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6323{
6324 if (rq->online) {
6325 const struct sched_class *class;
6326
6327 for_each_class(class) {
6328 if (class->rq_offline)
6329 class->rq_offline(rq);
6330 }
6331
c6c4927b 6332 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6333 rq->online = 0;
6334 }
6335}
6336
d1ccc66d
IM
6337/*
6338 * used to mark begin/end of suspend/resume:
6339 */
6340static int num_cpus_frozen;
d35be8ba 6341
1da177e4 6342/*
3a101d05
TH
6343 * Update cpusets according to cpu_active mask. If cpusets are
6344 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6345 * around partition_sched_domains().
d35be8ba
SB
6346 *
6347 * If we come here as part of a suspend/resume, don't touch cpusets because we
6348 * want to restore it back to its original state upon resume anyway.
1da177e4 6349 */
40190a78 6350static void cpuset_cpu_active(void)
e761b772 6351{
40190a78 6352 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6353 /*
6354 * num_cpus_frozen tracks how many CPUs are involved in suspend
6355 * resume sequence. As long as this is not the last online
6356 * operation in the resume sequence, just build a single sched
6357 * domain, ignoring cpusets.
6358 */
50e76632
PZ
6359 partition_sched_domains(1, NULL, NULL);
6360 if (--num_cpus_frozen)
135fb3e1 6361 return;
d35be8ba
SB
6362 /*
6363 * This is the last CPU online operation. So fall through and
6364 * restore the original sched domains by considering the
6365 * cpuset configurations.
6366 */
50e76632 6367 cpuset_force_rebuild();
3a101d05 6368 }
30e03acd 6369 cpuset_update_active_cpus();
3a101d05 6370}
e761b772 6371
40190a78 6372static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6373{
40190a78 6374 if (!cpuhp_tasks_frozen) {
06a76fe0 6375 if (dl_cpu_busy(cpu))
135fb3e1 6376 return -EBUSY;
30e03acd 6377 cpuset_update_active_cpus();
135fb3e1 6378 } else {
d35be8ba
SB
6379 num_cpus_frozen++;
6380 partition_sched_domains(1, NULL, NULL);
e761b772 6381 }
135fb3e1 6382 return 0;
e761b772 6383}
e761b772 6384
40190a78 6385int sched_cpu_activate(unsigned int cpu)
135fb3e1 6386{
7d976699 6387 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6388 struct rq_flags rf;
7d976699 6389
ba2591a5
PZ
6390#ifdef CONFIG_SCHED_SMT
6391 /*
c5511d03 6392 * When going up, increment the number of cores with SMT present.
ba2591a5 6393 */
c5511d03
PZI
6394 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6395 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6396#endif
40190a78 6397 set_cpu_active(cpu, true);
135fb3e1 6398
40190a78 6399 if (sched_smp_initialized) {
135fb3e1 6400 sched_domains_numa_masks_set(cpu);
40190a78 6401 cpuset_cpu_active();
e761b772 6402 }
7d976699
TG
6403
6404 /*
6405 * Put the rq online, if not already. This happens:
6406 *
6407 * 1) In the early boot process, because we build the real domains
d1ccc66d 6408 * after all CPUs have been brought up.
7d976699
TG
6409 *
6410 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6411 * domains.
6412 */
8a8c69c3 6413 rq_lock_irqsave(rq, &rf);
7d976699
TG
6414 if (rq->rd) {
6415 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6416 set_rq_online(rq);
6417 }
8a8c69c3 6418 rq_unlock_irqrestore(rq, &rf);
7d976699 6419
40190a78 6420 return 0;
135fb3e1
TG
6421}
6422
40190a78 6423int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6424{
135fb3e1
TG
6425 int ret;
6426
40190a78 6427 set_cpu_active(cpu, false);
b2454caa
PZ
6428 /*
6429 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6430 * users of this state to go away such that all new such users will
6431 * observe it.
6432 *
b2454caa
PZ
6433 * Do sync before park smpboot threads to take care the rcu boost case.
6434 */
309ba859 6435 synchronize_rcu();
40190a78 6436
c5511d03
PZI
6437#ifdef CONFIG_SCHED_SMT
6438 /*
6439 * When going down, decrement the number of cores with SMT present.
6440 */
6441 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6442 static_branch_dec_cpuslocked(&sched_smt_present);
6443#endif
6444
40190a78
TG
6445 if (!sched_smp_initialized)
6446 return 0;
6447
6448 ret = cpuset_cpu_inactive(cpu);
6449 if (ret) {
6450 set_cpu_active(cpu, true);
6451 return ret;
135fb3e1 6452 }
40190a78
TG
6453 sched_domains_numa_masks_clear(cpu);
6454 return 0;
135fb3e1
TG
6455}
6456
94baf7a5
TG
6457static void sched_rq_cpu_starting(unsigned int cpu)
6458{
6459 struct rq *rq = cpu_rq(cpu);
6460
6461 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6462 update_max_interval();
6463}
6464
135fb3e1
TG
6465int sched_cpu_starting(unsigned int cpu)
6466{
94baf7a5 6467 sched_rq_cpu_starting(cpu);
d84b3131 6468 sched_tick_start(cpu);
135fb3e1 6469 return 0;
e761b772 6470}
e761b772 6471
f2785ddb
TG
6472#ifdef CONFIG_HOTPLUG_CPU
6473int sched_cpu_dying(unsigned int cpu)
6474{
6475 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6476 struct rq_flags rf;
f2785ddb
TG
6477
6478 /* Handle pending wakeups and then migrate everything off */
6479 sched_ttwu_pending();
d84b3131 6480 sched_tick_stop(cpu);
8a8c69c3
PZ
6481
6482 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6483 if (rq->rd) {
6484 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6485 set_rq_offline(rq);
6486 }
8a8c69c3 6487 migrate_tasks(rq, &rf);
f2785ddb 6488 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6489 rq_unlock_irqrestore(rq, &rf);
6490
f2785ddb
TG
6491 calc_load_migrate(rq);
6492 update_max_interval();
00357f5e 6493 nohz_balance_exit_idle(rq);
e5ef27d0 6494 hrtick_clear(rq);
f2785ddb
TG
6495 return 0;
6496}
6497#endif
6498
1da177e4
LT
6499void __init sched_init_smp(void)
6500{
cb83b629
PZ
6501 sched_init_numa();
6502
6acce3ef
PZ
6503 /*
6504 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 6505 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 6506 * happen.
6acce3ef 6507 */
712555ee 6508 mutex_lock(&sched_domains_mutex);
8d5dc512 6509 sched_init_domains(cpu_active_mask);
712555ee 6510 mutex_unlock(&sched_domains_mutex);
e761b772 6511
5c1e1767 6512 /* Move init over to a non-isolated CPU */
edb93821 6513 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 6514 BUG();
19978ca6 6515 sched_init_granularity();
4212823f 6516
0e3900e6 6517 init_sched_rt_class();
1baca4ce 6518 init_sched_dl_class();
1b568f0a 6519
e26fbffd 6520 sched_smp_initialized = true;
1da177e4 6521}
e26fbffd
TG
6522
6523static int __init migration_init(void)
6524{
77a5352b 6525 sched_cpu_starting(smp_processor_id());
e26fbffd 6526 return 0;
1da177e4 6527}
e26fbffd
TG
6528early_initcall(migration_init);
6529
1da177e4
LT
6530#else
6531void __init sched_init_smp(void)
6532{
19978ca6 6533 sched_init_granularity();
1da177e4
LT
6534}
6535#endif /* CONFIG_SMP */
6536
6537int in_sched_functions(unsigned long addr)
6538{
1da177e4
LT
6539 return in_lock_functions(addr) ||
6540 (addr >= (unsigned long)__sched_text_start
6541 && addr < (unsigned long)__sched_text_end);
6542}
6543
029632fb 6544#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6545/*
6546 * Default task group.
6547 * Every task in system belongs to this group at bootup.
6548 */
029632fb 6549struct task_group root_task_group;
35cf4e50 6550LIST_HEAD(task_groups);
b0367629
WL
6551
6552/* Cacheline aligned slab cache for task_group */
6553static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6554#endif
6f505b16 6555
e6252c3e 6556DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6557DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6558
1da177e4
LT
6559void __init sched_init(void)
6560{
a1dc0446 6561 unsigned long ptr = 0;
55627e3c 6562 int i;
434d53b0 6563
5822a454 6564 wait_bit_init();
9dcb8b68 6565
434d53b0 6566#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 6567 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
6568#endif
6569#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 6570 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 6571#endif
a1dc0446
QC
6572 if (ptr) {
6573 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
6574
6575#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6576 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6577 ptr += nr_cpu_ids * sizeof(void **);
6578
07e06b01 6579 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6580 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6581
b1d1779e
WY
6582 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6583 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 6584#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6585#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6586 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6587 ptr += nr_cpu_ids * sizeof(void **);
6588
07e06b01 6589 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6590 ptr += nr_cpu_ids * sizeof(void **);
6591
6d6bc0ad 6592#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6593 }
df7c8e84 6594#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6595 for_each_possible_cpu(i) {
6596 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6597 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6598 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6599 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6600 }
b74e6278 6601#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6602
d1ccc66d
IM
6603 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6604 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6605
57d885fe
GH
6606#ifdef CONFIG_SMP
6607 init_defrootdomain();
6608#endif
6609
d0b27fa7 6610#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6611 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6612 global_rt_period(), global_rt_runtime());
6d6bc0ad 6613#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6614
7c941438 6615#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6616 task_group_cache = KMEM_CACHE(task_group, 0);
6617
07e06b01
YZ
6618 list_add(&root_task_group.list, &task_groups);
6619 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6620 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6621 autogroup_init(&init_task);
7c941438 6622#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6623
0a945022 6624 for_each_possible_cpu(i) {
70b97a7f 6625 struct rq *rq;
1da177e4
LT
6626
6627 rq = cpu_rq(i);
05fa785c 6628 raw_spin_lock_init(&rq->lock);
7897986b 6629 rq->nr_running = 0;
dce48a84
TG
6630 rq->calc_load_active = 0;
6631 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6632 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6633 init_rt_rq(&rq->rt);
6634 init_dl_rq(&rq->dl);
dd41f596 6635#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 6636 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6637 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6638 /*
d1ccc66d 6639 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6640 *
6641 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6642 * gets 100% of the CPU resources in the system. This overall
6643 * system CPU resource is divided among the tasks of
07e06b01 6644 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6645 * based on each entity's (task or task-group's) weight
6646 * (se->load.weight).
6647 *
07e06b01 6648 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6649 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6650 * then A0's share of the CPU resource is:
354d60c2 6651 *
0d905bca 6652 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6653 *
07e06b01
YZ
6654 * We achieve this by letting root_task_group's tasks sit
6655 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6656 */
07e06b01 6657 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6658#endif /* CONFIG_FAIR_GROUP_SCHED */
6659
6660 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6661#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6662 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6663#endif
1da177e4 6664#ifdef CONFIG_SMP
41c7ce9a 6665 rq->sd = NULL;
57d885fe 6666 rq->rd = NULL;
ca6d75e6 6667 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6668 rq->balance_callback = NULL;
1da177e4 6669 rq->active_balance = 0;
dd41f596 6670 rq->next_balance = jiffies;
1da177e4 6671 rq->push_cpu = 0;
0a2966b4 6672 rq->cpu = i;
1f11eb6a 6673 rq->online = 0;
eae0c9df
MG
6674 rq->idle_stamp = 0;
6675 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6676 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7 6677
90b5363a
PZI
6678 rq_csd_init(rq, &rq->wake_csd, wake_csd_func);
6679
367456c7
PZ
6680 INIT_LIST_HEAD(&rq->cfs_tasks);
6681
dc938520 6682 rq_attach_root(rq, &def_root_domain);
3451d024 6683#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 6684 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6685 atomic_set(&rq->nohz_flags, 0);
90b5363a
PZI
6686
6687 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
83cd4fe2 6688#endif
9fd81dd5 6689#endif /* CONFIG_SMP */
77a021be 6690 hrtick_rq_init(rq);
1da177e4 6691 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6692 }
6693
9059393e 6694 set_load_weight(&init_task, false);
b50f60ce 6695
1da177e4
LT
6696 /*
6697 * The boot idle thread does lazy MMU switching as well:
6698 */
f1f10076 6699 mmgrab(&init_mm);
1da177e4
LT
6700 enter_lazy_tlb(&init_mm, current);
6701
6702 /*
6703 * Make us the idle thread. Technically, schedule() should not be
6704 * called from this thread, however somewhere below it might be,
6705 * but because we are the idle thread, we just pick up running again
6706 * when this runqueue becomes "idle".
6707 */
6708 init_idle(current, smp_processor_id());
dce48a84
TG
6709
6710 calc_load_update = jiffies + LOAD_FREQ;
6711
bf4d83f6 6712#ifdef CONFIG_SMP
29d5e047 6713 idle_thread_set_boot_cpu();
029632fb
PZ
6714#endif
6715 init_sched_fair_class();
6a7b3dc3 6716
4698f88c
JP
6717 init_schedstats();
6718
eb414681
JW
6719 psi_init();
6720
69842cba
PB
6721 init_uclamp();
6722
6892b75e 6723 scheduler_running = 1;
1da177e4
LT
6724}
6725
d902db1e 6726#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6727static inline int preempt_count_equals(int preempt_offset)
6728{
da7142e2 6729 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6730
4ba8216c 6731 return (nested == preempt_offset);
e4aafea2
FW
6732}
6733
d894837f 6734void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6735{
8eb23b9f
PZ
6736 /*
6737 * Blocking primitives will set (and therefore destroy) current->state,
6738 * since we will exit with TASK_RUNNING make sure we enter with it,
6739 * otherwise we will destroy state.
6740 */
00845eb9 6741 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6742 "do not call blocking ops when !TASK_RUNNING; "
6743 "state=%lx set at [<%p>] %pS\n",
6744 current->state,
6745 (void *)current->task_state_change,
00845eb9 6746 (void *)current->task_state_change);
8eb23b9f 6747
3427445a
PZ
6748 ___might_sleep(file, line, preempt_offset);
6749}
6750EXPORT_SYMBOL(__might_sleep);
6751
6752void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6753{
d1ccc66d
IM
6754 /* Ratelimiting timestamp: */
6755 static unsigned long prev_jiffy;
6756
d1c6d149 6757 unsigned long preempt_disable_ip;
1da177e4 6758
d1ccc66d
IM
6759 /* WARN_ON_ONCE() by default, no rate limit required: */
6760 rcu_sleep_check();
6761
db273be2 6762 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 6763 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
6764 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6765 oops_in_progress)
aef745fc 6766 return;
1c3c5eab 6767
aef745fc
IM
6768 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6769 return;
6770 prev_jiffy = jiffies;
6771
d1ccc66d 6772 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6773 preempt_disable_ip = get_preempt_disable_ip(current);
6774
3df0fc5b
PZ
6775 printk(KERN_ERR
6776 "BUG: sleeping function called from invalid context at %s:%d\n",
6777 file, line);
6778 printk(KERN_ERR
312364f3
DV
6779 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6780 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 6781 current->pid, current->comm);
aef745fc 6782
a8b686b3
ES
6783 if (task_stack_end_corrupted(current))
6784 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6785
aef745fc
IM
6786 debug_show_held_locks(current);
6787 if (irqs_disabled())
6788 print_irqtrace_events(current);
d1c6d149
VN
6789 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6790 && !preempt_count_equals(preempt_offset)) {
8f47b187 6791 pr_err("Preemption disabled at:");
d1c6d149 6792 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6793 pr_cont("\n");
6794 }
aef745fc 6795 dump_stack();
f0b22e39 6796 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6797}
3427445a 6798EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6799
6800void __cant_sleep(const char *file, int line, int preempt_offset)
6801{
6802 static unsigned long prev_jiffy;
6803
6804 if (irqs_disabled())
6805 return;
6806
6807 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6808 return;
6809
6810 if (preempt_count() > preempt_offset)
6811 return;
6812
6813 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6814 return;
6815 prev_jiffy = jiffies;
6816
6817 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6818 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6819 in_atomic(), irqs_disabled(),
6820 current->pid, current->comm);
6821
6822 debug_show_held_locks(current);
6823 dump_stack();
6824 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6825}
6826EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6827#endif
6828
6829#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6830void normalize_rt_tasks(void)
3a5e4dc1 6831{
dbc7f069 6832 struct task_struct *g, *p;
d50dde5a
DF
6833 struct sched_attr attr = {
6834 .sched_policy = SCHED_NORMAL,
6835 };
1da177e4 6836
3472eaa1 6837 read_lock(&tasklist_lock);
5d07f420 6838 for_each_process_thread(g, p) {
178be793
IM
6839 /*
6840 * Only normalize user tasks:
6841 */
3472eaa1 6842 if (p->flags & PF_KTHREAD)
178be793
IM
6843 continue;
6844
4fa8d299
JP
6845 p->se.exec_start = 0;
6846 schedstat_set(p->se.statistics.wait_start, 0);
6847 schedstat_set(p->se.statistics.sleep_start, 0);
6848 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6849
aab03e05 6850 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6851 /*
6852 * Renice negative nice level userspace
6853 * tasks back to 0:
6854 */
3472eaa1 6855 if (task_nice(p) < 0)
dd41f596 6856 set_user_nice(p, 0);
1da177e4 6857 continue;
dd41f596 6858 }
1da177e4 6859
dbc7f069 6860 __sched_setscheduler(p, &attr, false, false);
5d07f420 6861 }
3472eaa1 6862 read_unlock(&tasklist_lock);
1da177e4
LT
6863}
6864
6865#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6866
67fc4e0c 6867#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6868/*
67fc4e0c 6869 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6870 *
6871 * They can only be called when the whole system has been
6872 * stopped - every CPU needs to be quiescent, and no scheduling
6873 * activity can take place. Using them for anything else would
6874 * be a serious bug, and as a result, they aren't even visible
6875 * under any other configuration.
6876 */
6877
6878/**
d1ccc66d 6879 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6880 * @cpu: the processor in question.
6881 *
6882 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6883 *
6884 * Return: The current task for @cpu.
1df5c10a 6885 */
36c8b586 6886struct task_struct *curr_task(int cpu)
1df5c10a
LT
6887{
6888 return cpu_curr(cpu);
6889}
6890
67fc4e0c
JW
6891#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6892
6893#ifdef CONFIG_IA64
1df5c10a 6894/**
5feeb783 6895 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6896 * @cpu: the processor in question.
6897 * @p: the task pointer to set.
6898 *
6899 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6900 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6901 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6902 * must be called with all CPU's synchronized, and interrupts disabled, the
6903 * and caller must save the original value of the current task (see
6904 * curr_task() above) and restore that value before reenabling interrupts and
6905 * re-starting the system.
6906 *
6907 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6908 */
a458ae2e 6909void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6910{
6911 cpu_curr(cpu) = p;
6912}
6913
6914#endif
29f59db3 6915
7c941438 6916#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6917/* task_group_lock serializes the addition/removal of task groups */
6918static DEFINE_SPINLOCK(task_group_lock);
6919
2480c093
PB
6920static inline void alloc_uclamp_sched_group(struct task_group *tg,
6921 struct task_group *parent)
6922{
6923#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 6924 enum uclamp_id clamp_id;
2480c093
PB
6925
6926 for_each_clamp_id(clamp_id) {
6927 uclamp_se_set(&tg->uclamp_req[clamp_id],
6928 uclamp_none(clamp_id), false);
0b60ba2d 6929 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
6930 }
6931#endif
6932}
6933
2f5177f0 6934static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6935{
6936 free_fair_sched_group(tg);
6937 free_rt_sched_group(tg);
e9aa1dd1 6938 autogroup_free(tg);
b0367629 6939 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6940}
6941
6942/* allocate runqueue etc for a new task group */
ec7dc8ac 6943struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6944{
6945 struct task_group *tg;
bccbe08a 6946
b0367629 6947 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6948 if (!tg)
6949 return ERR_PTR(-ENOMEM);
6950
ec7dc8ac 6951 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6952 goto err;
6953
ec7dc8ac 6954 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6955 goto err;
6956
2480c093
PB
6957 alloc_uclamp_sched_group(tg, parent);
6958
ace783b9
LZ
6959 return tg;
6960
6961err:
2f5177f0 6962 sched_free_group(tg);
ace783b9
LZ
6963 return ERR_PTR(-ENOMEM);
6964}
6965
6966void sched_online_group(struct task_group *tg, struct task_group *parent)
6967{
6968 unsigned long flags;
6969
8ed36996 6970 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6971 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6972
d1ccc66d
IM
6973 /* Root should already exist: */
6974 WARN_ON(!parent);
f473aa5e
PZ
6975
6976 tg->parent = parent;
f473aa5e 6977 INIT_LIST_HEAD(&tg->children);
09f2724a 6978 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6979 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6980
6981 online_fair_sched_group(tg);
29f59db3
SV
6982}
6983
9b5b7751 6984/* rcu callback to free various structures associated with a task group */
2f5177f0 6985static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6986{
d1ccc66d 6987 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6988 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6989}
6990
4cf86d77 6991void sched_destroy_group(struct task_group *tg)
ace783b9 6992{
d1ccc66d 6993 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6994 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6995}
6996
6997void sched_offline_group(struct task_group *tg)
29f59db3 6998{
8ed36996 6999 unsigned long flags;
29f59db3 7000
d1ccc66d 7001 /* End participation in shares distribution: */
6fe1f348 7002 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7003
7004 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7005 list_del_rcu(&tg->list);
f473aa5e 7006 list_del_rcu(&tg->siblings);
8ed36996 7007 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7008}
7009
ea86cb4b 7010static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7011{
8323f26c 7012 struct task_group *tg;
29f59db3 7013
f7b8a47d
KT
7014 /*
7015 * All callers are synchronized by task_rq_lock(); we do not use RCU
7016 * which is pointless here. Thus, we pass "true" to task_css_check()
7017 * to prevent lockdep warnings.
7018 */
7019 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7020 struct task_group, css);
7021 tg = autogroup_task_group(tsk, tg);
7022 tsk->sched_task_group = tg;
7023
810b3817 7024#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7025 if (tsk->sched_class->task_change_group)
7026 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7027 else
810b3817 7028#endif
b2b5ce02 7029 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7030}
7031
7032/*
7033 * Change task's runqueue when it moves between groups.
7034 *
7035 * The caller of this function should have put the task in its new group by
7036 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7037 * its new group.
7038 */
7039void sched_move_task(struct task_struct *tsk)
7040{
7a57f32a
PZ
7041 int queued, running, queue_flags =
7042 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
7043 struct rq_flags rf;
7044 struct rq *rq;
7045
7046 rq = task_rq_lock(tsk, &rf);
1b1d6225 7047 update_rq_clock(rq);
ea86cb4b
VG
7048
7049 running = task_current(rq, tsk);
7050 queued = task_on_rq_queued(tsk);
7051
7052 if (queued)
7a57f32a 7053 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 7054 if (running)
ea86cb4b
VG
7055 put_prev_task(rq, tsk);
7056
7057 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7058
da0c1e65 7059 if (queued)
7a57f32a 7060 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 7061 if (running) {
03b7fad1 7062 set_next_task(rq, tsk);
2a4b03ff
VG
7063 /*
7064 * After changing group, the running task may have joined a
7065 * throttled one but it's still the running task. Trigger a
7066 * resched to make sure that task can still run.
7067 */
7068 resched_curr(rq);
7069 }
29f59db3 7070
eb580751 7071 task_rq_unlock(rq, tsk, &rf);
29f59db3 7072}
68318b8e 7073
a7c6d554 7074static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7075{
a7c6d554 7076 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7077}
7078
eb95419b
TH
7079static struct cgroup_subsys_state *
7080cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7081{
eb95419b
TH
7082 struct task_group *parent = css_tg(parent_css);
7083 struct task_group *tg;
68318b8e 7084
eb95419b 7085 if (!parent) {
68318b8e 7086 /* This is early initialization for the top cgroup */
07e06b01 7087 return &root_task_group.css;
68318b8e
SV
7088 }
7089
ec7dc8ac 7090 tg = sched_create_group(parent);
68318b8e
SV
7091 if (IS_ERR(tg))
7092 return ERR_PTR(-ENOMEM);
7093
68318b8e
SV
7094 return &tg->css;
7095}
7096
96b77745
KK
7097/* Expose task group only after completing cgroup initialization */
7098static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7099{
7100 struct task_group *tg = css_tg(css);
7101 struct task_group *parent = css_tg(css->parent);
7102
7103 if (parent)
7104 sched_online_group(tg, parent);
7226017a
QY
7105
7106#ifdef CONFIG_UCLAMP_TASK_GROUP
7107 /* Propagate the effective uclamp value for the new group */
7108 cpu_util_update_eff(css);
7109#endif
7110
96b77745
KK
7111 return 0;
7112}
7113
2f5177f0 7114static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 7115{
eb95419b 7116 struct task_group *tg = css_tg(css);
ace783b9 7117
2f5177f0 7118 sched_offline_group(tg);
ace783b9
LZ
7119}
7120
eb95419b 7121static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7122{
eb95419b 7123 struct task_group *tg = css_tg(css);
68318b8e 7124
2f5177f0
PZ
7125 /*
7126 * Relies on the RCU grace period between css_released() and this.
7127 */
7128 sched_free_group(tg);
ace783b9
LZ
7129}
7130
ea86cb4b
VG
7131/*
7132 * This is called before wake_up_new_task(), therefore we really only
7133 * have to set its group bits, all the other stuff does not apply.
7134 */
b53202e6 7135static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 7136{
ea86cb4b
VG
7137 struct rq_flags rf;
7138 struct rq *rq;
7139
7140 rq = task_rq_lock(task, &rf);
7141
80f5c1b8 7142 update_rq_clock(rq);
ea86cb4b
VG
7143 sched_change_group(task, TASK_SET_GROUP);
7144
7145 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
7146}
7147
1f7dd3e5 7148static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 7149{
bb9d97b6 7150 struct task_struct *task;
1f7dd3e5 7151 struct cgroup_subsys_state *css;
7dc603c9 7152 int ret = 0;
bb9d97b6 7153
1f7dd3e5 7154 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7155#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7156 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7157 return -EINVAL;
b68aa230 7158#endif
7dc603c9
PZ
7159 /*
7160 * Serialize against wake_up_new_task() such that if its
7161 * running, we're sure to observe its full state.
7162 */
7163 raw_spin_lock_irq(&task->pi_lock);
7164 /*
7165 * Avoid calling sched_move_task() before wake_up_new_task()
7166 * has happened. This would lead to problems with PELT, due to
7167 * move wanting to detach+attach while we're not attached yet.
7168 */
7169 if (task->state == TASK_NEW)
7170 ret = -EINVAL;
7171 raw_spin_unlock_irq(&task->pi_lock);
7172
7173 if (ret)
7174 break;
bb9d97b6 7175 }
7dc603c9 7176 return ret;
be367d09 7177}
68318b8e 7178
1f7dd3e5 7179static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 7180{
bb9d97b6 7181 struct task_struct *task;
1f7dd3e5 7182 struct cgroup_subsys_state *css;
bb9d97b6 7183
1f7dd3e5 7184 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7185 sched_move_task(task);
68318b8e
SV
7186}
7187
2480c093 7188#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
7189static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7190{
7191 struct cgroup_subsys_state *top_css = css;
7192 struct uclamp_se *uc_parent = NULL;
7193 struct uclamp_se *uc_se = NULL;
7194 unsigned int eff[UCLAMP_CNT];
0413d7f3 7195 enum uclamp_id clamp_id;
0b60ba2d
PB
7196 unsigned int clamps;
7197
7198 css_for_each_descendant_pre(css, top_css) {
7199 uc_parent = css_tg(css)->parent
7200 ? css_tg(css)->parent->uclamp : NULL;
7201
7202 for_each_clamp_id(clamp_id) {
7203 /* Assume effective clamps matches requested clamps */
7204 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7205 /* Cap effective clamps with parent's effective clamps */
7206 if (uc_parent &&
7207 eff[clamp_id] > uc_parent[clamp_id].value) {
7208 eff[clamp_id] = uc_parent[clamp_id].value;
7209 }
7210 }
7211 /* Ensure protection is always capped by limit */
7212 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7213
7214 /* Propagate most restrictive effective clamps */
7215 clamps = 0x0;
7216 uc_se = css_tg(css)->uclamp;
7217 for_each_clamp_id(clamp_id) {
7218 if (eff[clamp_id] == uc_se[clamp_id].value)
7219 continue;
7220 uc_se[clamp_id].value = eff[clamp_id];
7221 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7222 clamps |= (0x1 << clamp_id);
7223 }
babbe170 7224 if (!clamps) {
0b60ba2d 7225 css = css_rightmost_descendant(css);
babbe170
PB
7226 continue;
7227 }
7228
7229 /* Immediately update descendants RUNNABLE tasks */
7230 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
7231 }
7232}
2480c093
PB
7233
7234/*
7235 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7236 * C expression. Since there is no way to convert a macro argument (N) into a
7237 * character constant, use two levels of macros.
7238 */
7239#define _POW10(exp) ((unsigned int)1e##exp)
7240#define POW10(exp) _POW10(exp)
7241
7242struct uclamp_request {
7243#define UCLAMP_PERCENT_SHIFT 2
7244#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7245 s64 percent;
7246 u64 util;
7247 int ret;
7248};
7249
7250static inline struct uclamp_request
7251capacity_from_percent(char *buf)
7252{
7253 struct uclamp_request req = {
7254 .percent = UCLAMP_PERCENT_SCALE,
7255 .util = SCHED_CAPACITY_SCALE,
7256 .ret = 0,
7257 };
7258
7259 buf = strim(buf);
7260 if (strcmp(buf, "max")) {
7261 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7262 &req.percent);
7263 if (req.ret)
7264 return req;
b562d140 7265 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
7266 req.ret = -ERANGE;
7267 return req;
7268 }
7269
7270 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7271 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7272 }
7273
7274 return req;
7275}
7276
7277static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7278 size_t nbytes, loff_t off,
7279 enum uclamp_id clamp_id)
7280{
7281 struct uclamp_request req;
7282 struct task_group *tg;
7283
7284 req = capacity_from_percent(buf);
7285 if (req.ret)
7286 return req.ret;
7287
7288 mutex_lock(&uclamp_mutex);
7289 rcu_read_lock();
7290
7291 tg = css_tg(of_css(of));
7292 if (tg->uclamp_req[clamp_id].value != req.util)
7293 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7294
7295 /*
7296 * Because of not recoverable conversion rounding we keep track of the
7297 * exact requested value
7298 */
7299 tg->uclamp_pct[clamp_id] = req.percent;
7300
0b60ba2d
PB
7301 /* Update effective clamps to track the most restrictive value */
7302 cpu_util_update_eff(of_css(of));
7303
2480c093
PB
7304 rcu_read_unlock();
7305 mutex_unlock(&uclamp_mutex);
7306
7307 return nbytes;
7308}
7309
7310static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7311 char *buf, size_t nbytes,
7312 loff_t off)
7313{
7314 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7315}
7316
7317static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7318 char *buf, size_t nbytes,
7319 loff_t off)
7320{
7321 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7322}
7323
7324static inline void cpu_uclamp_print(struct seq_file *sf,
7325 enum uclamp_id clamp_id)
7326{
7327 struct task_group *tg;
7328 u64 util_clamp;
7329 u64 percent;
7330 u32 rem;
7331
7332 rcu_read_lock();
7333 tg = css_tg(seq_css(sf));
7334 util_clamp = tg->uclamp_req[clamp_id].value;
7335 rcu_read_unlock();
7336
7337 if (util_clamp == SCHED_CAPACITY_SCALE) {
7338 seq_puts(sf, "max\n");
7339 return;
7340 }
7341
7342 percent = tg->uclamp_pct[clamp_id];
7343 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7344 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7345}
7346
7347static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7348{
7349 cpu_uclamp_print(sf, UCLAMP_MIN);
7350 return 0;
7351}
7352
7353static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7354{
7355 cpu_uclamp_print(sf, UCLAMP_MAX);
7356 return 0;
7357}
7358#endif /* CONFIG_UCLAMP_TASK_GROUP */
7359
052f1dc7 7360#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7361static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7362 struct cftype *cftype, u64 shareval)
68318b8e 7363{
5b61d50a
KK
7364 if (shareval > scale_load_down(ULONG_MAX))
7365 shareval = MAX_SHARES;
182446d0 7366 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7367}
7368
182446d0
TH
7369static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7370 struct cftype *cft)
68318b8e 7371{
182446d0 7372 struct task_group *tg = css_tg(css);
68318b8e 7373
c8b28116 7374 return (u64) scale_load_down(tg->shares);
68318b8e 7375}
ab84d31e
PT
7376
7377#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7378static DEFINE_MUTEX(cfs_constraints_mutex);
7379
ab84d31e 7380const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 7381static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
7382/* More than 203 days if BW_SHIFT equals 20. */
7383static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 7384
a790de99
PT
7385static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7386
ab84d31e
PT
7387static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7388{
56f570e5 7389 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7390 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7391
7392 if (tg == &root_task_group)
7393 return -EINVAL;
7394
7395 /*
7396 * Ensure we have at some amount of bandwidth every period. This is
7397 * to prevent reaching a state of large arrears when throttled via
7398 * entity_tick() resulting in prolonged exit starvation.
7399 */
7400 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7401 return -EINVAL;
7402
7403 /*
7404 * Likewise, bound things on the otherside by preventing insane quota
7405 * periods. This also allows us to normalize in computing quota
7406 * feasibility.
7407 */
7408 if (period > max_cfs_quota_period)
7409 return -EINVAL;
7410
d505b8af
HC
7411 /*
7412 * Bound quota to defend quota against overflow during bandwidth shift.
7413 */
7414 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7415 return -EINVAL;
7416
0e59bdae
KT
7417 /*
7418 * Prevent race between setting of cfs_rq->runtime_enabled and
7419 * unthrottle_offline_cfs_rqs().
7420 */
7421 get_online_cpus();
a790de99
PT
7422 mutex_lock(&cfs_constraints_mutex);
7423 ret = __cfs_schedulable(tg, period, quota);
7424 if (ret)
7425 goto out_unlock;
7426
58088ad0 7427 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7428 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7429 /*
7430 * If we need to toggle cfs_bandwidth_used, off->on must occur
7431 * before making related changes, and on->off must occur afterwards
7432 */
7433 if (runtime_enabled && !runtime_was_enabled)
7434 cfs_bandwidth_usage_inc();
ab84d31e
PT
7435 raw_spin_lock_irq(&cfs_b->lock);
7436 cfs_b->period = ns_to_ktime(period);
7437 cfs_b->quota = quota;
58088ad0 7438
a9cf55b2 7439 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7440
7441 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7442 if (runtime_enabled)
7443 start_cfs_bandwidth(cfs_b);
d1ccc66d 7444
ab84d31e
PT
7445 raw_spin_unlock_irq(&cfs_b->lock);
7446
0e59bdae 7447 for_each_online_cpu(i) {
ab84d31e 7448 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7449 struct rq *rq = cfs_rq->rq;
8a8c69c3 7450 struct rq_flags rf;
ab84d31e 7451
8a8c69c3 7452 rq_lock_irq(rq, &rf);
58088ad0 7453 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7454 cfs_rq->runtime_remaining = 0;
671fd9da 7455
029632fb 7456 if (cfs_rq->throttled)
671fd9da 7457 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7458 rq_unlock_irq(rq, &rf);
ab84d31e 7459 }
1ee14e6c
BS
7460 if (runtime_was_enabled && !runtime_enabled)
7461 cfs_bandwidth_usage_dec();
a790de99
PT
7462out_unlock:
7463 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7464 put_online_cpus();
ab84d31e 7465
a790de99 7466 return ret;
ab84d31e
PT
7467}
7468
b1546edc 7469static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
7470{
7471 u64 quota, period;
7472
029632fb 7473 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7474 if (cfs_quota_us < 0)
7475 quota = RUNTIME_INF;
1a8b4540 7476 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 7477 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
7478 else
7479 return -EINVAL;
ab84d31e
PT
7480
7481 return tg_set_cfs_bandwidth(tg, period, quota);
7482}
7483
b1546edc 7484static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
7485{
7486 u64 quota_us;
7487
029632fb 7488 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7489 return -1;
7490
029632fb 7491 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7492 do_div(quota_us, NSEC_PER_USEC);
7493
7494 return quota_us;
7495}
7496
b1546edc 7497static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
7498{
7499 u64 quota, period;
7500
1a8b4540
KK
7501 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7502 return -EINVAL;
7503
ab84d31e 7504 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7505 quota = tg->cfs_bandwidth.quota;
ab84d31e 7506
ab84d31e
PT
7507 return tg_set_cfs_bandwidth(tg, period, quota);
7508}
7509
b1546edc 7510static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
7511{
7512 u64 cfs_period_us;
7513
029632fb 7514 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7515 do_div(cfs_period_us, NSEC_PER_USEC);
7516
7517 return cfs_period_us;
7518}
7519
182446d0
TH
7520static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7521 struct cftype *cft)
ab84d31e 7522{
182446d0 7523 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7524}
7525
182446d0
TH
7526static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7527 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7528{
182446d0 7529 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7530}
7531
182446d0
TH
7532static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7533 struct cftype *cft)
ab84d31e 7534{
182446d0 7535 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7536}
7537
182446d0
TH
7538static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7539 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7540{
182446d0 7541 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7542}
7543
a790de99
PT
7544struct cfs_schedulable_data {
7545 struct task_group *tg;
7546 u64 period, quota;
7547};
7548
7549/*
7550 * normalize group quota/period to be quota/max_period
7551 * note: units are usecs
7552 */
7553static u64 normalize_cfs_quota(struct task_group *tg,
7554 struct cfs_schedulable_data *d)
7555{
7556 u64 quota, period;
7557
7558 if (tg == d->tg) {
7559 period = d->period;
7560 quota = d->quota;
7561 } else {
7562 period = tg_get_cfs_period(tg);
7563 quota = tg_get_cfs_quota(tg);
7564 }
7565
7566 /* note: these should typically be equivalent */
7567 if (quota == RUNTIME_INF || quota == -1)
7568 return RUNTIME_INF;
7569
7570 return to_ratio(period, quota);
7571}
7572
7573static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7574{
7575 struct cfs_schedulable_data *d = data;
029632fb 7576 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7577 s64 quota = 0, parent_quota = -1;
7578
7579 if (!tg->parent) {
7580 quota = RUNTIME_INF;
7581 } else {
029632fb 7582 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7583
7584 quota = normalize_cfs_quota(tg, d);
9c58c79a 7585 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7586
7587 /*
c53593e5
TH
7588 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7589 * always take the min. On cgroup1, only inherit when no
d1ccc66d 7590 * limit is set:
a790de99 7591 */
c53593e5
TH
7592 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7593 quota = min(quota, parent_quota);
7594 } else {
7595 if (quota == RUNTIME_INF)
7596 quota = parent_quota;
7597 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7598 return -EINVAL;
7599 }
a790de99 7600 }
9c58c79a 7601 cfs_b->hierarchical_quota = quota;
a790de99
PT
7602
7603 return 0;
7604}
7605
7606static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7607{
8277434e 7608 int ret;
a790de99
PT
7609 struct cfs_schedulable_data data = {
7610 .tg = tg,
7611 .period = period,
7612 .quota = quota,
7613 };
7614
7615 if (quota != RUNTIME_INF) {
7616 do_div(data.period, NSEC_PER_USEC);
7617 do_div(data.quota, NSEC_PER_USEC);
7618 }
7619
8277434e
PT
7620 rcu_read_lock();
7621 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7622 rcu_read_unlock();
7623
7624 return ret;
a790de99 7625}
e8da1b18 7626
a1f7164c 7627static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 7628{
2da8ca82 7629 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7630 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7631
44ffc75b
TH
7632 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7633 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7634 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 7635
3d6c50c2
YW
7636 if (schedstat_enabled() && tg != &root_task_group) {
7637 u64 ws = 0;
7638 int i;
7639
7640 for_each_possible_cpu(i)
7641 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7642
7643 seq_printf(sf, "wait_sum %llu\n", ws);
7644 }
7645
e8da1b18
NR
7646 return 0;
7647}
ab84d31e 7648#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7649#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7650
052f1dc7 7651#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7652static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7653 struct cftype *cft, s64 val)
6f505b16 7654{
182446d0 7655 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7656}
7657
182446d0
TH
7658static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7659 struct cftype *cft)
6f505b16 7660{
182446d0 7661 return sched_group_rt_runtime(css_tg(css));
6f505b16 7662}
d0b27fa7 7663
182446d0
TH
7664static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7665 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7666{
182446d0 7667 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7668}
7669
182446d0
TH
7670static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7671 struct cftype *cft)
d0b27fa7 7672{
182446d0 7673 return sched_group_rt_period(css_tg(css));
d0b27fa7 7674}
6d6bc0ad 7675#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7676
a1f7164c 7677static struct cftype cpu_legacy_files[] = {
052f1dc7 7678#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7679 {
7680 .name = "shares",
f4c753b7
PM
7681 .read_u64 = cpu_shares_read_u64,
7682 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7683 },
052f1dc7 7684#endif
ab84d31e
PT
7685#ifdef CONFIG_CFS_BANDWIDTH
7686 {
7687 .name = "cfs_quota_us",
7688 .read_s64 = cpu_cfs_quota_read_s64,
7689 .write_s64 = cpu_cfs_quota_write_s64,
7690 },
7691 {
7692 .name = "cfs_period_us",
7693 .read_u64 = cpu_cfs_period_read_u64,
7694 .write_u64 = cpu_cfs_period_write_u64,
7695 },
e8da1b18
NR
7696 {
7697 .name = "stat",
a1f7164c 7698 .seq_show = cpu_cfs_stat_show,
e8da1b18 7699 },
ab84d31e 7700#endif
052f1dc7 7701#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7702 {
9f0c1e56 7703 .name = "rt_runtime_us",
06ecb27c
PM
7704 .read_s64 = cpu_rt_runtime_read,
7705 .write_s64 = cpu_rt_runtime_write,
6f505b16 7706 },
d0b27fa7
PZ
7707 {
7708 .name = "rt_period_us",
f4c753b7
PM
7709 .read_u64 = cpu_rt_period_read_uint,
7710 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7711 },
2480c093
PB
7712#endif
7713#ifdef CONFIG_UCLAMP_TASK_GROUP
7714 {
7715 .name = "uclamp.min",
7716 .flags = CFTYPE_NOT_ON_ROOT,
7717 .seq_show = cpu_uclamp_min_show,
7718 .write = cpu_uclamp_min_write,
7719 },
7720 {
7721 .name = "uclamp.max",
7722 .flags = CFTYPE_NOT_ON_ROOT,
7723 .seq_show = cpu_uclamp_max_show,
7724 .write = cpu_uclamp_max_write,
7725 },
052f1dc7 7726#endif
d1ccc66d 7727 { } /* Terminate */
68318b8e
SV
7728};
7729
d41bf8c9
TH
7730static int cpu_extra_stat_show(struct seq_file *sf,
7731 struct cgroup_subsys_state *css)
0d593634 7732{
0d593634
TH
7733#ifdef CONFIG_CFS_BANDWIDTH
7734 {
d41bf8c9 7735 struct task_group *tg = css_tg(css);
0d593634
TH
7736 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7737 u64 throttled_usec;
7738
7739 throttled_usec = cfs_b->throttled_time;
7740 do_div(throttled_usec, NSEC_PER_USEC);
7741
7742 seq_printf(sf, "nr_periods %d\n"
7743 "nr_throttled %d\n"
7744 "throttled_usec %llu\n",
7745 cfs_b->nr_periods, cfs_b->nr_throttled,
7746 throttled_usec);
7747 }
7748#endif
7749 return 0;
7750}
7751
7752#ifdef CONFIG_FAIR_GROUP_SCHED
7753static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7754 struct cftype *cft)
7755{
7756 struct task_group *tg = css_tg(css);
7757 u64 weight = scale_load_down(tg->shares);
7758
7759 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7760}
7761
7762static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7763 struct cftype *cft, u64 weight)
7764{
7765 /*
7766 * cgroup weight knobs should use the common MIN, DFL and MAX
7767 * values which are 1, 100 and 10000 respectively. While it loses
7768 * a bit of range on both ends, it maps pretty well onto the shares
7769 * value used by scheduler and the round-trip conversions preserve
7770 * the original value over the entire range.
7771 */
7772 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7773 return -ERANGE;
7774
7775 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7776
7777 return sched_group_set_shares(css_tg(css), scale_load(weight));
7778}
7779
7780static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7781 struct cftype *cft)
7782{
7783 unsigned long weight = scale_load_down(css_tg(css)->shares);
7784 int last_delta = INT_MAX;
7785 int prio, delta;
7786
7787 /* find the closest nice value to the current weight */
7788 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7789 delta = abs(sched_prio_to_weight[prio] - weight);
7790 if (delta >= last_delta)
7791 break;
7792 last_delta = delta;
7793 }
7794
7795 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7796}
7797
7798static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7799 struct cftype *cft, s64 nice)
7800{
7801 unsigned long weight;
7281c8de 7802 int idx;
0d593634
TH
7803
7804 if (nice < MIN_NICE || nice > MAX_NICE)
7805 return -ERANGE;
7806
7281c8de
PZ
7807 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7808 idx = array_index_nospec(idx, 40);
7809 weight = sched_prio_to_weight[idx];
7810
0d593634
TH
7811 return sched_group_set_shares(css_tg(css), scale_load(weight));
7812}
7813#endif
7814
7815static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7816 long period, long quota)
7817{
7818 if (quota < 0)
7819 seq_puts(sf, "max");
7820 else
7821 seq_printf(sf, "%ld", quota);
7822
7823 seq_printf(sf, " %ld\n", period);
7824}
7825
7826/* caller should put the current value in *@periodp before calling */
7827static int __maybe_unused cpu_period_quota_parse(char *buf,
7828 u64 *periodp, u64 *quotap)
7829{
7830 char tok[21]; /* U64_MAX */
7831
4c47acd8 7832 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
7833 return -EINVAL;
7834
7835 *periodp *= NSEC_PER_USEC;
7836
7837 if (sscanf(tok, "%llu", quotap))
7838 *quotap *= NSEC_PER_USEC;
7839 else if (!strcmp(tok, "max"))
7840 *quotap = RUNTIME_INF;
7841 else
7842 return -EINVAL;
7843
7844 return 0;
7845}
7846
7847#ifdef CONFIG_CFS_BANDWIDTH
7848static int cpu_max_show(struct seq_file *sf, void *v)
7849{
7850 struct task_group *tg = css_tg(seq_css(sf));
7851
7852 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7853 return 0;
7854}
7855
7856static ssize_t cpu_max_write(struct kernfs_open_file *of,
7857 char *buf, size_t nbytes, loff_t off)
7858{
7859 struct task_group *tg = css_tg(of_css(of));
7860 u64 period = tg_get_cfs_period(tg);
7861 u64 quota;
7862 int ret;
7863
7864 ret = cpu_period_quota_parse(buf, &period, &quota);
7865 if (!ret)
7866 ret = tg_set_cfs_bandwidth(tg, period, quota);
7867 return ret ?: nbytes;
7868}
7869#endif
7870
7871static struct cftype cpu_files[] = {
0d593634
TH
7872#ifdef CONFIG_FAIR_GROUP_SCHED
7873 {
7874 .name = "weight",
7875 .flags = CFTYPE_NOT_ON_ROOT,
7876 .read_u64 = cpu_weight_read_u64,
7877 .write_u64 = cpu_weight_write_u64,
7878 },
7879 {
7880 .name = "weight.nice",
7881 .flags = CFTYPE_NOT_ON_ROOT,
7882 .read_s64 = cpu_weight_nice_read_s64,
7883 .write_s64 = cpu_weight_nice_write_s64,
7884 },
7885#endif
7886#ifdef CONFIG_CFS_BANDWIDTH
7887 {
7888 .name = "max",
7889 .flags = CFTYPE_NOT_ON_ROOT,
7890 .seq_show = cpu_max_show,
7891 .write = cpu_max_write,
7892 },
2480c093
PB
7893#endif
7894#ifdef CONFIG_UCLAMP_TASK_GROUP
7895 {
7896 .name = "uclamp.min",
7897 .flags = CFTYPE_NOT_ON_ROOT,
7898 .seq_show = cpu_uclamp_min_show,
7899 .write = cpu_uclamp_min_write,
7900 },
7901 {
7902 .name = "uclamp.max",
7903 .flags = CFTYPE_NOT_ON_ROOT,
7904 .seq_show = cpu_uclamp_max_show,
7905 .write = cpu_uclamp_max_write,
7906 },
0d593634
TH
7907#endif
7908 { } /* terminate */
7909};
7910
073219e9 7911struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7912 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7913 .css_online = cpu_cgroup_css_online,
2f5177f0 7914 .css_released = cpu_cgroup_css_released,
92fb9748 7915 .css_free = cpu_cgroup_css_free,
d41bf8c9 7916 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7917 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7918 .can_attach = cpu_cgroup_can_attach,
7919 .attach = cpu_cgroup_attach,
a1f7164c 7920 .legacy_cftypes = cpu_legacy_files,
0d593634 7921 .dfl_cftypes = cpu_files,
b38e42e9 7922 .early_init = true,
0d593634 7923 .threaded = true,
68318b8e
SV
7924};
7925
052f1dc7 7926#endif /* CONFIG_CGROUP_SCHED */
d842de87 7927
b637a328
PM
7928void dump_cpu_task(int cpu)
7929{
7930 pr_info("Task dump for CPU %d:\n", cpu);
7931 sched_show_task(cpu_curr(cpu));
7932}
ed82b8a1
AK
7933
7934/*
7935 * Nice levels are multiplicative, with a gentle 10% change for every
7936 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7937 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7938 * that remained on nice 0.
7939 *
7940 * The "10% effect" is relative and cumulative: from _any_ nice level,
7941 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7942 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7943 * If a task goes up by ~10% and another task goes down by ~10% then
7944 * the relative distance between them is ~25%.)
7945 */
7946const int sched_prio_to_weight[40] = {
7947 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7948 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7949 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7950 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7951 /* 0 */ 1024, 820, 655, 526, 423,
7952 /* 5 */ 335, 272, 215, 172, 137,
7953 /* 10 */ 110, 87, 70, 56, 45,
7954 /* 15 */ 36, 29, 23, 18, 15,
7955};
7956
7957/*
7958 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7959 *
7960 * In cases where the weight does not change often, we can use the
7961 * precalculated inverse to speed up arithmetics by turning divisions
7962 * into multiplications:
7963 */
7964const u32 sched_prio_to_wmult[40] = {
7965 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7966 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7967 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7968 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7969 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7970 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7971 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7972 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7973};
14a7405b
IM
7974
7975#undef CREATE_TRACE_POINTS