]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
sched: Make newidle_balance() static again
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
771b53d0 19#include "../../fs/io-wq.h"
29d5e047 20#include "../smpboot.h"
6e0534f2 21
91c27493
VG
22#include "pelt.h"
23
a8d154b0 24#define CREATE_TRACE_POINTS
ad8d75ff 25#include <trace/events/sched.h>
a8d154b0 26
a056a5be
QY
27/*
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
30 */
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37
029632fb 38DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 39
e9666d10 40#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
41/*
42 * Debugging: various feature bits
765cc3a4
PB
43 *
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
bf5c91ba 47 */
f00b45c1
PZ
48#define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 50const_debug unsigned int sysctl_sched_features =
391e43da 51#include "features.h"
f00b45c1 52 0;
f00b45c1 53#undef SCHED_FEAT
765cc3a4 54#endif
f00b45c1 55
b82d9fdd
PZ
56/*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
fa85ae24 62/*
d1ccc66d 63 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
64 * default: 1s
65 */
9f0c1e56 66unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 67
029632fb 68__read_mostly int scheduler_running;
6892b75e 69
9f0c1e56
PZ
70/*
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
73 */
74int sysctl_sched_rt_runtime = 950000;
fa85ae24 75
3e71a462
PZ
76/*
77 * __task_rq_lock - lock the rq @p resides on.
78 */
eb580751 79struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
80 __acquires(rq->lock)
81{
82 struct rq *rq;
83
84 lockdep_assert_held(&p->pi_lock);
85
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 90 rq_pin_lock(rq, rf);
3e71a462
PZ
91 return rq;
92 }
93 raw_spin_unlock(&rq->lock);
94
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
97 }
98}
99
100/*
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 */
eb580751 103struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
106{
107 struct rq *rq;
108
109 for (;;) {
eb580751 110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
113 /*
114 * move_queued_task() task_rq_lock()
115 *
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
122 *
c546951d 123 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
124 * the old rq->lock will fully serialize against the stores.
125 *
c546951d
AP
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
129 */
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 131 rq_pin_lock(rq, rf);
3e71a462
PZ
132 return rq;
133 }
134 raw_spin_unlock(&rq->lock);
eb580751 135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
136
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
139 }
140}
141
535b9552
IM
142/*
143 * RQ-clock updating methods:
144 */
145
146static void update_rq_clock_task(struct rq *rq, s64 delta)
147{
148/*
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
151 */
11d4afd4
VG
152 s64 __maybe_unused steal = 0, irq_delta = 0;
153
535b9552
IM
154#ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156
157 /*
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
161 *
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
166 *
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
171 */
172 if (irq_delta > delta)
173 irq_delta = delta;
174
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177#endif
178#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((&paravirt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
182
183 if (unlikely(steal > delta))
184 steal = delta;
185
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
188 }
189#endif
190
191 rq->clock_task += delta;
192
11d4afd4 193#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 195 update_irq_load_avg(rq, irq_delta + steal);
535b9552 196#endif
23127296 197 update_rq_clock_pelt(rq, delta);
535b9552
IM
198}
199
200void update_rq_clock(struct rq *rq)
201{
202 s64 delta;
203
204 lockdep_assert_held(&rq->lock);
205
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
208
209#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
212 rq->clock_update_flags |= RQCF_UPDATED;
213#endif
26ae58d2 214
535b9552
IM
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
220}
221
222
8f4d37ec
PZ
223#ifdef CONFIG_SCHED_HRTICK
224/*
225 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 226 */
8f4d37ec 227
8f4d37ec
PZ
228static void hrtick_clear(struct rq *rq)
229{
230 if (hrtimer_active(&rq->hrtick_timer))
231 hrtimer_cancel(&rq->hrtick_timer);
232}
233
8f4d37ec
PZ
234/*
235 * High-resolution timer tick.
236 * Runs from hardirq context with interrupts disabled.
237 */
238static enum hrtimer_restart hrtick(struct hrtimer *timer)
239{
240 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 241 struct rq_flags rf;
8f4d37ec
PZ
242
243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244
8a8c69c3 245 rq_lock(rq, &rf);
3e51f33f 246 update_rq_clock(rq);
8f4d37ec 247 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 248 rq_unlock(rq, &rf);
8f4d37ec
PZ
249
250 return HRTIMER_NORESTART;
251}
252
95e904c7 253#ifdef CONFIG_SMP
971ee28c 254
4961b6e1 255static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
256{
257 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 258
d5096aa6 259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
260}
261
31656519
PZ
262/*
263 * called from hardirq (IPI) context
264 */
265static void __hrtick_start(void *arg)
b328ca18 266{
31656519 267 struct rq *rq = arg;
8a8c69c3 268 struct rq_flags rf;
b328ca18 269
8a8c69c3 270 rq_lock(rq, &rf);
971ee28c 271 __hrtick_restart(rq);
8a8c69c3 272 rq_unlock(rq, &rf);
b328ca18
PZ
273}
274
31656519
PZ
275/*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
029632fb 280void hrtick_start(struct rq *rq, u64 delay)
b328ca18 281{
31656519 282 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 292
cc584b21 293 hrtimer_set_expires(timer, time);
31656519 294
fd3eafda 295 if (rq == this_rq())
971ee28c 296 __hrtick_restart(rq);
fd3eafda 297 else
c46fff2a 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
299}
300
31656519
PZ
301#else
302/*
303 * Called to set the hrtick timer state.
304 *
305 * called with rq->lock held and irqs disabled
306 */
029632fb 307void hrtick_start(struct rq *rq, u64 delay)
31656519 308{
86893335
WL
309 /*
310 * Don't schedule slices shorter than 10000ns, that just
311 * doesn't make sense. Rely on vruntime for fairness.
312 */
313 delay = max_t(u64, delay, 10000LL);
4961b6e1 314 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 315 HRTIMER_MODE_REL_PINNED_HARD);
31656519 316}
31656519 317#endif /* CONFIG_SMP */
8f4d37ec 318
77a021be 319static void hrtick_rq_init(struct rq *rq)
8f4d37ec 320{
31656519 321#ifdef CONFIG_SMP
31656519
PZ
322 rq->hrtick_csd.flags = 0;
323 rq->hrtick_csd.func = __hrtick_start;
324 rq->hrtick_csd.info = rq;
325#endif
8f4d37ec 326
d5096aa6 327 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 328 rq->hrtick_timer.function = hrtick;
8f4d37ec 329}
006c75f1 330#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
331static inline void hrtick_clear(struct rq *rq)
332{
333}
334
77a021be 335static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
336{
337}
006c75f1 338#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 339
5529578a
FW
340/*
341 * cmpxchg based fetch_or, macro so it works for different integer types
342 */
343#define fetch_or(ptr, mask) \
344 ({ \
345 typeof(ptr) _ptr = (ptr); \
346 typeof(mask) _mask = (mask); \
347 typeof(*_ptr) _old, _val = *_ptr; \
348 \
349 for (;;) { \
350 _old = cmpxchg(_ptr, _val, _val | _mask); \
351 if (_old == _val) \
352 break; \
353 _val = _old; \
354 } \
355 _old; \
356})
357
e3baac47 358#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
359/*
360 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
361 * this avoids any races wrt polling state changes and thereby avoids
362 * spurious IPIs.
363 */
364static bool set_nr_and_not_polling(struct task_struct *p)
365{
366 struct thread_info *ti = task_thread_info(p);
367 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
368}
e3baac47
PZ
369
370/*
371 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
372 *
373 * If this returns true, then the idle task promises to call
374 * sched_ttwu_pending() and reschedule soon.
375 */
376static bool set_nr_if_polling(struct task_struct *p)
377{
378 struct thread_info *ti = task_thread_info(p);
316c1608 379 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
380
381 for (;;) {
382 if (!(val & _TIF_POLLING_NRFLAG))
383 return false;
384 if (val & _TIF_NEED_RESCHED)
385 return true;
386 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
387 if (old == val)
388 break;
389 val = old;
390 }
391 return true;
392}
393
fd99f91a
PZ
394#else
395static bool set_nr_and_not_polling(struct task_struct *p)
396{
397 set_tsk_need_resched(p);
398 return true;
399}
e3baac47
PZ
400
401#ifdef CONFIG_SMP
402static bool set_nr_if_polling(struct task_struct *p)
403{
404 return false;
405}
406#endif
fd99f91a
PZ
407#endif
408
07879c6a 409static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
410{
411 struct wake_q_node *node = &task->wake_q;
412
413 /*
414 * Atomically grab the task, if ->wake_q is !nil already it means
415 * its already queued (either by us or someone else) and will get the
416 * wakeup due to that.
417 *
4c4e3731
PZ
418 * In order to ensure that a pending wakeup will observe our pending
419 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 420 */
4c4e3731 421 smp_mb__before_atomic();
87ff19cb 422 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 423 return false;
76751049
PZ
424
425 /*
426 * The head is context local, there can be no concurrency.
427 */
428 *head->lastp = node;
429 head->lastp = &node->next;
07879c6a
DB
430 return true;
431}
432
433/**
434 * wake_q_add() - queue a wakeup for 'later' waking.
435 * @head: the wake_q_head to add @task to
436 * @task: the task to queue for 'later' wakeup
437 *
438 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
439 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
440 * instantly.
441 *
442 * This function must be used as-if it were wake_up_process(); IOW the task
443 * must be ready to be woken at this location.
444 */
445void wake_q_add(struct wake_q_head *head, struct task_struct *task)
446{
447 if (__wake_q_add(head, task))
448 get_task_struct(task);
449}
450
451/**
452 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
453 * @head: the wake_q_head to add @task to
454 * @task: the task to queue for 'later' wakeup
455 *
456 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
457 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
458 * instantly.
459 *
460 * This function must be used as-if it were wake_up_process(); IOW the task
461 * must be ready to be woken at this location.
462 *
463 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
464 * that already hold reference to @task can call the 'safe' version and trust
465 * wake_q to do the right thing depending whether or not the @task is already
466 * queued for wakeup.
467 */
468void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
469{
470 if (!__wake_q_add(head, task))
471 put_task_struct(task);
76751049
PZ
472}
473
474void wake_up_q(struct wake_q_head *head)
475{
476 struct wake_q_node *node = head->first;
477
478 while (node != WAKE_Q_TAIL) {
479 struct task_struct *task;
480
481 task = container_of(node, struct task_struct, wake_q);
482 BUG_ON(!task);
d1ccc66d 483 /* Task can safely be re-inserted now: */
76751049
PZ
484 node = node->next;
485 task->wake_q.next = NULL;
486
487 /*
7696f991
AP
488 * wake_up_process() executes a full barrier, which pairs with
489 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
490 */
491 wake_up_process(task);
492 put_task_struct(task);
493 }
494}
495
c24d20db 496/*
8875125e 497 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
8875125e 503void resched_curr(struct rq *rq)
c24d20db 504{
8875125e 505 struct task_struct *curr = rq->curr;
c24d20db
IM
506 int cpu;
507
8875125e 508 lockdep_assert_held(&rq->lock);
c24d20db 509
8875125e 510 if (test_tsk_need_resched(curr))
c24d20db
IM
511 return;
512
8875125e 513 cpu = cpu_of(rq);
fd99f91a 514
f27dde8d 515 if (cpu == smp_processor_id()) {
8875125e 516 set_tsk_need_resched(curr);
f27dde8d 517 set_preempt_need_resched();
c24d20db 518 return;
f27dde8d 519 }
c24d20db 520
8875125e 521 if (set_nr_and_not_polling(curr))
c24d20db 522 smp_send_reschedule(cpu);
dfc68f29
AL
523 else
524 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
525}
526
029632fb 527void resched_cpu(int cpu)
c24d20db
IM
528{
529 struct rq *rq = cpu_rq(cpu);
530 unsigned long flags;
531
7c2102e5 532 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
533 if (cpu_online(cpu) || cpu == smp_processor_id())
534 resched_curr(rq);
05fa785c 535 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 536}
06d8308c 537
b021fe3e 538#ifdef CONFIG_SMP
3451d024 539#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 540/*
d1ccc66d
IM
541 * In the semi idle case, use the nearest busy CPU for migrating timers
542 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
543 *
544 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
545 * selecting an idle CPU will add more delays to the timers than intended
546 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 547 */
bc7a34b8 548int get_nohz_timer_target(void)
83cd4fe2 549{
e938b9c9 550 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
551 struct sched_domain *sd;
552
e938b9c9
WL
553 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
554 if (!idle_cpu(cpu))
555 return cpu;
556 default_cpu = cpu;
557 }
6201b4d6 558
057f3fad 559 rcu_read_lock();
83cd4fe2 560 for_each_domain(cpu, sd) {
e938b9c9
WL
561 for_each_cpu_and(i, sched_domain_span(sd),
562 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
563 if (cpu == i)
564 continue;
565
e938b9c9 566 if (!idle_cpu(i)) {
057f3fad
PZ
567 cpu = i;
568 goto unlock;
569 }
570 }
83cd4fe2 571 }
9642d18e 572
e938b9c9
WL
573 if (default_cpu == -1)
574 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 cpu = default_cpu;
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
d1ccc66d 580
06d8308c
TG
581/*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
1c20091e 591static void wake_up_idle_cpu(int cpu)
06d8308c
TG
592{
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
67b9ca70 598 if (set_nr_and_not_polling(rq->idle))
06d8308c 599 smp_send_reschedule(cpu);
dfc68f29
AL
600 else
601 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
602}
603
c5bfece2 604static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 605{
53c5fa16
FW
606 /*
607 * We just need the target to call irq_exit() and re-evaluate
608 * the next tick. The nohz full kick at least implies that.
609 * If needed we can still optimize that later with an
610 * empty IRQ.
611 */
379d9ecb
PM
612 if (cpu_is_offline(cpu))
613 return true; /* Don't try to wake offline CPUs. */
c5bfece2 614 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
615 if (cpu != smp_processor_id() ||
616 tick_nohz_tick_stopped())
53c5fa16 617 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
618 return true;
619 }
620
621 return false;
622}
623
379d9ecb
PM
624/*
625 * Wake up the specified CPU. If the CPU is going offline, it is the
626 * caller's responsibility to deal with the lost wakeup, for example,
627 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628 */
1c20091e
FW
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65 638
b7031a02 639 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
b7031a02 649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38 662#ifdef CONFIG_NO_HZ_FULL
76d92ac3 663bool sched_can_stop_tick(struct rq *rq)
ce831b38 664{
76d92ac3
FW
665 int fifo_nr_running;
666
667 /* Deadline tasks, even if single, need the tick */
668 if (rq->dl.dl_nr_running)
669 return false;
670
1e78cdbd 671 /*
2548d546
PZ
672 * If there are more than one RR tasks, we need the tick to effect the
673 * actual RR behaviour.
1e78cdbd 674 */
76d92ac3
FW
675 if (rq->rt.rr_nr_running) {
676 if (rq->rt.rr_nr_running == 1)
677 return true;
678 else
679 return false;
1e78cdbd
RR
680 }
681
2548d546
PZ
682 /*
683 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 * forced preemption between FIFO tasks.
685 */
686 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 if (fifo_nr_running)
688 return true;
689
690 /*
691 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 * if there's more than one we need the tick for involuntary
693 * preemption.
694 */
695 if (rq->nr_running > 1)
541b8264 696 return false;
ce831b38 697
541b8264 698 return true;
ce831b38
FW
699}
700#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 701#endif /* CONFIG_SMP */
18d95a28 702
a790de99
PT
703#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 705/*
8277434e
PT
706 * Iterate task_group tree rooted at *from, calling @down when first entering a
707 * node and @up when leaving it for the final time.
708 *
709 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 710 */
029632fb 711int walk_tg_tree_from(struct task_group *from,
8277434e 712 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
713{
714 struct task_group *parent, *child;
eb755805 715 int ret;
c09595f6 716
8277434e
PT
717 parent = from;
718
c09595f6 719down:
eb755805
PZ
720 ret = (*down)(parent, data);
721 if (ret)
8277434e 722 goto out;
c09595f6
PZ
723 list_for_each_entry_rcu(child, &parent->children, siblings) {
724 parent = child;
725 goto down;
726
727up:
728 continue;
729 }
eb755805 730 ret = (*up)(parent, data);
8277434e
PT
731 if (ret || parent == from)
732 goto out;
c09595f6
PZ
733
734 child = parent;
735 parent = parent->parent;
736 if (parent)
737 goto up;
8277434e 738out:
eb755805 739 return ret;
c09595f6
PZ
740}
741
029632fb 742int tg_nop(struct task_group *tg, void *data)
eb755805 743{
e2b245f8 744 return 0;
eb755805 745}
18d95a28
PZ
746#endif
747
9059393e 748static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 749{
f05998d4
NR
750 int prio = p->static_prio - MAX_RT_PRIO;
751 struct load_weight *load = &p->se.load;
752
dd41f596
IM
753 /*
754 * SCHED_IDLE tasks get minimal weight:
755 */
1da1843f 756 if (task_has_idle_policy(p)) {
c8b28116 757 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 758 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
759 return;
760 }
71f8bd46 761
9059393e
VG
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
771 }
71f8bd46
IM
772}
773
69842cba 774#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
775/*
776 * Serializes updates of utilization clamp values
777 *
778 * The (slow-path) user-space triggers utilization clamp value updates which
779 * can require updates on (fast-path) scheduler's data structures used to
780 * support enqueue/dequeue operations.
781 * While the per-CPU rq lock protects fast-path update operations, user-space
782 * requests are serialized using a mutex to reduce the risk of conflicting
783 * updates or API abuses.
784 */
785static DEFINE_MUTEX(uclamp_mutex);
786
e8f14172
PB
787/* Max allowed minimum utilization */
788unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
789
790/* Max allowed maximum utilization */
791unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
792
793/* All clamps are required to be less or equal than these values */
794static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba
PB
795
796/* Integer rounded range for each bucket */
797#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
798
799#define for_each_clamp_id(clamp_id) \
800 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
801
802static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
803{
804 return clamp_value / UCLAMP_BUCKET_DELTA;
805}
806
60daf9c1
PB
807static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
808{
809 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
810}
811
7763baac 812static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
813{
814 if (clamp_id == UCLAMP_MIN)
815 return 0;
816 return SCHED_CAPACITY_SCALE;
817}
818
a509a7cd
PB
819static inline void uclamp_se_set(struct uclamp_se *uc_se,
820 unsigned int value, bool user_defined)
69842cba
PB
821{
822 uc_se->value = value;
823 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 824 uc_se->user_defined = user_defined;
69842cba
PB
825}
826
e496187d 827static inline unsigned int
0413d7f3 828uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
829 unsigned int clamp_value)
830{
831 /*
832 * Avoid blocked utilization pushing up the frequency when we go
833 * idle (which drops the max-clamp) by retaining the last known
834 * max-clamp.
835 */
836 if (clamp_id == UCLAMP_MAX) {
837 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
838 return clamp_value;
839 }
840
841 return uclamp_none(UCLAMP_MIN);
842}
843
0413d7f3 844static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
845 unsigned int clamp_value)
846{
847 /* Reset max-clamp retention only on idle exit */
848 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
849 return;
850
851 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
852}
853
69842cba 854static inline
7763baac 855unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 856 unsigned int clamp_value)
69842cba
PB
857{
858 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
859 int bucket_id = UCLAMP_BUCKETS - 1;
860
861 /*
862 * Since both min and max clamps are max aggregated, find the
863 * top most bucket with tasks in.
864 */
865 for ( ; bucket_id >= 0; bucket_id--) {
866 if (!bucket[bucket_id].tasks)
867 continue;
868 return bucket[bucket_id].value;
869 }
870
871 /* No tasks -- default clamp values */
e496187d 872 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
873}
874
3eac870a 875static inline struct uclamp_se
0413d7f3 876uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
877{
878 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
879#ifdef CONFIG_UCLAMP_TASK_GROUP
880 struct uclamp_se uc_max;
881
882 /*
883 * Tasks in autogroups or root task group will be
884 * restricted by system defaults.
885 */
886 if (task_group_is_autogroup(task_group(p)))
887 return uc_req;
888 if (task_group(p) == &root_task_group)
889 return uc_req;
890
891 uc_max = task_group(p)->uclamp[clamp_id];
892 if (uc_req.value > uc_max.value || !uc_req.user_defined)
893 return uc_max;
894#endif
895
896 return uc_req;
897}
898
e8f14172
PB
899/*
900 * The effective clamp bucket index of a task depends on, by increasing
901 * priority:
902 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
903 * - the task group effective clamp value, for tasks not either in the root
904 * group or in an autogroup
e8f14172
PB
905 * - the system default clamp value, defined by the sysadmin
906 */
907static inline struct uclamp_se
0413d7f3 908uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 909{
3eac870a 910 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
911 struct uclamp_se uc_max = uclamp_default[clamp_id];
912
913 /* System default restrictions always apply */
914 if (unlikely(uc_req.value > uc_max.value))
915 return uc_max;
916
917 return uc_req;
918}
919
686516b5 920unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
921{
922 struct uclamp_se uc_eff;
923
924 /* Task currently refcounted: use back-annotated (effective) value */
925 if (p->uclamp[clamp_id].active)
686516b5 926 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
927
928 uc_eff = uclamp_eff_get(p, clamp_id);
929
686516b5 930 return (unsigned long)uc_eff.value;
9d20ad7d
PB
931}
932
69842cba
PB
933/*
934 * When a task is enqueued on a rq, the clamp bucket currently defined by the
935 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
936 * updates the rq's clamp value if required.
60daf9c1
PB
937 *
938 * Tasks can have a task-specific value requested from user-space, track
939 * within each bucket the maximum value for tasks refcounted in it.
940 * This "local max aggregation" allows to track the exact "requested" value
941 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
942 */
943static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 944 enum uclamp_id clamp_id)
69842cba
PB
945{
946 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
947 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
948 struct uclamp_bucket *bucket;
949
950 lockdep_assert_held(&rq->lock);
951
e8f14172
PB
952 /* Update task effective clamp */
953 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
954
69842cba
PB
955 bucket = &uc_rq->bucket[uc_se->bucket_id];
956 bucket->tasks++;
e8f14172 957 uc_se->active = true;
69842cba 958
e496187d
PB
959 uclamp_idle_reset(rq, clamp_id, uc_se->value);
960
60daf9c1
PB
961 /*
962 * Local max aggregation: rq buckets always track the max
963 * "requested" clamp value of its RUNNABLE tasks.
964 */
965 if (bucket->tasks == 1 || uc_se->value > bucket->value)
966 bucket->value = uc_se->value;
967
69842cba 968 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 969 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
970}
971
972/*
973 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
974 * is released. If this is the last task reference counting the rq's max
975 * active clamp value, then the rq's clamp value is updated.
976 *
977 * Both refcounted tasks and rq's cached clamp values are expected to be
978 * always valid. If it's detected they are not, as defensive programming,
979 * enforce the expected state and warn.
980 */
981static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 982 enum uclamp_id clamp_id)
69842cba
PB
983{
984 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
985 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
986 struct uclamp_bucket *bucket;
e496187d 987 unsigned int bkt_clamp;
69842cba
PB
988 unsigned int rq_clamp;
989
990 lockdep_assert_held(&rq->lock);
991
992 bucket = &uc_rq->bucket[uc_se->bucket_id];
993 SCHED_WARN_ON(!bucket->tasks);
994 if (likely(bucket->tasks))
995 bucket->tasks--;
e8f14172 996 uc_se->active = false;
69842cba 997
60daf9c1
PB
998 /*
999 * Keep "local max aggregation" simple and accept to (possibly)
1000 * overboost some RUNNABLE tasks in the same bucket.
1001 * The rq clamp bucket value is reset to its base value whenever
1002 * there are no more RUNNABLE tasks refcounting it.
1003 */
69842cba
PB
1004 if (likely(bucket->tasks))
1005 return;
1006
1007 rq_clamp = READ_ONCE(uc_rq->value);
1008 /*
1009 * Defensive programming: this should never happen. If it happens,
1010 * e.g. due to future modification, warn and fixup the expected value.
1011 */
1012 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1013 if (bucket->value >= rq_clamp) {
1014 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1015 WRITE_ONCE(uc_rq->value, bkt_clamp);
1016 }
69842cba
PB
1017}
1018
1019static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1020{
0413d7f3 1021 enum uclamp_id clamp_id;
69842cba
PB
1022
1023 if (unlikely(!p->sched_class->uclamp_enabled))
1024 return;
1025
1026 for_each_clamp_id(clamp_id)
1027 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1028
1029 /* Reset clamp idle holding when there is one RUNNABLE task */
1030 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1031 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1032}
1033
1034static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1035{
0413d7f3 1036 enum uclamp_id clamp_id;
69842cba
PB
1037
1038 if (unlikely(!p->sched_class->uclamp_enabled))
1039 return;
1040
1041 for_each_clamp_id(clamp_id)
1042 uclamp_rq_dec_id(rq, p, clamp_id);
1043}
1044
babbe170 1045static inline void
0413d7f3 1046uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1047{
1048 struct rq_flags rf;
1049 struct rq *rq;
1050
1051 /*
1052 * Lock the task and the rq where the task is (or was) queued.
1053 *
1054 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1055 * price to pay to safely serialize util_{min,max} updates with
1056 * enqueues, dequeues and migration operations.
1057 * This is the same locking schema used by __set_cpus_allowed_ptr().
1058 */
1059 rq = task_rq_lock(p, &rf);
1060
1061 /*
1062 * Setting the clamp bucket is serialized by task_rq_lock().
1063 * If the task is not yet RUNNABLE and its task_struct is not
1064 * affecting a valid clamp bucket, the next time it's enqueued,
1065 * it will already see the updated clamp bucket value.
1066 */
6e1ff077 1067 if (p->uclamp[clamp_id].active) {
babbe170
PB
1068 uclamp_rq_dec_id(rq, p, clamp_id);
1069 uclamp_rq_inc_id(rq, p, clamp_id);
1070 }
1071
1072 task_rq_unlock(rq, p, &rf);
1073}
1074
e3b8b6a0 1075#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1076static inline void
1077uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1078 unsigned int clamps)
1079{
0413d7f3 1080 enum uclamp_id clamp_id;
babbe170
PB
1081 struct css_task_iter it;
1082 struct task_struct *p;
babbe170
PB
1083
1084 css_task_iter_start(css, 0, &it);
1085 while ((p = css_task_iter_next(&it))) {
1086 for_each_clamp_id(clamp_id) {
1087 if ((0x1 << clamp_id) & clamps)
1088 uclamp_update_active(p, clamp_id);
1089 }
1090 }
1091 css_task_iter_end(&it);
1092}
1093
7274a5c1
PB
1094static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1095static void uclamp_update_root_tg(void)
1096{
1097 struct task_group *tg = &root_task_group;
1098
1099 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1100 sysctl_sched_uclamp_util_min, false);
1101 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1102 sysctl_sched_uclamp_util_max, false);
1103
1104 rcu_read_lock();
1105 cpu_util_update_eff(&root_task_group.css);
1106 rcu_read_unlock();
1107}
1108#else
1109static void uclamp_update_root_tg(void) { }
1110#endif
1111
e8f14172
PB
1112int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1113 void __user *buffer, size_t *lenp,
1114 loff_t *ppos)
1115{
7274a5c1 1116 bool update_root_tg = false;
e8f14172 1117 int old_min, old_max;
e8f14172
PB
1118 int result;
1119
2480c093 1120 mutex_lock(&uclamp_mutex);
e8f14172
PB
1121 old_min = sysctl_sched_uclamp_util_min;
1122 old_max = sysctl_sched_uclamp_util_max;
1123
1124 result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 if (result)
1126 goto undo;
1127 if (!write)
1128 goto done;
1129
1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 result = -EINVAL;
1133 goto undo;
1134 }
1135
1136 if (old_min != sysctl_sched_uclamp_util_min) {
1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1138 sysctl_sched_uclamp_util_min, false);
7274a5c1 1139 update_root_tg = true;
e8f14172
PB
1140 }
1141 if (old_max != sysctl_sched_uclamp_util_max) {
1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1143 sysctl_sched_uclamp_util_max, false);
7274a5c1 1144 update_root_tg = true;
e8f14172
PB
1145 }
1146
7274a5c1
PB
1147 if (update_root_tg)
1148 uclamp_update_root_tg();
1149
e8f14172 1150 /*
7274a5c1
PB
1151 * We update all RUNNABLE tasks only when task groups are in use.
1152 * Otherwise, keep it simple and do just a lazy update at each next
1153 * task enqueue time.
e8f14172 1154 */
7274a5c1 1155
e8f14172
PB
1156 goto done;
1157
1158undo:
1159 sysctl_sched_uclamp_util_min = old_min;
1160 sysctl_sched_uclamp_util_max = old_max;
1161done:
2480c093 1162 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1163
1164 return result;
1165}
1166
a509a7cd
PB
1167static int uclamp_validate(struct task_struct *p,
1168 const struct sched_attr *attr)
1169{
1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1172
1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 lower_bound = attr->sched_util_min;
1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 upper_bound = attr->sched_util_max;
1177
1178 if (lower_bound > upper_bound)
1179 return -EINVAL;
1180 if (upper_bound > SCHED_CAPACITY_SCALE)
1181 return -EINVAL;
1182
1183 return 0;
1184}
1185
1186static void __setscheduler_uclamp(struct task_struct *p,
1187 const struct sched_attr *attr)
1188{
0413d7f3 1189 enum uclamp_id clamp_id;
1a00d999
PB
1190
1191 /*
1192 * On scheduling class change, reset to default clamps for tasks
1193 * without a task-specific value.
1194 */
1195 for_each_clamp_id(clamp_id) {
1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 unsigned int clamp_value = uclamp_none(clamp_id);
1198
1199 /* Keep using defined clamps across class changes */
1200 if (uc_se->user_defined)
1201 continue;
1202
1203 /* By default, RT tasks always get 100% boost */
1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 clamp_value = uclamp_none(UCLAMP_MAX);
1206
1207 uclamp_se_set(uc_se, clamp_value, false);
1208 }
1209
a509a7cd
PB
1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 return;
1212
1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 attr->sched_util_min, true);
1216 }
1217
1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 attr->sched_util_max, true);
1221 }
1222}
1223
e8f14172
PB
1224static void uclamp_fork(struct task_struct *p)
1225{
0413d7f3 1226 enum uclamp_id clamp_id;
e8f14172
PB
1227
1228 for_each_clamp_id(clamp_id)
1229 p->uclamp[clamp_id].active = false;
a87498ac
PB
1230
1231 if (likely(!p->sched_reset_on_fork))
1232 return;
1233
1234 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1235 uclamp_se_set(&p->uclamp_req[clamp_id],
1236 uclamp_none(clamp_id), false);
a87498ac 1237 }
e8f14172
PB
1238}
1239
69842cba
PB
1240static void __init init_uclamp(void)
1241{
e8f14172 1242 struct uclamp_se uc_max = {};
0413d7f3 1243 enum uclamp_id clamp_id;
69842cba
PB
1244 int cpu;
1245
2480c093
PB
1246 mutex_init(&uclamp_mutex);
1247
e496187d 1248 for_each_possible_cpu(cpu) {
dcd6dffb
LG
1249 memset(&cpu_rq(cpu)->uclamp, 0,
1250 sizeof(struct uclamp_rq)*UCLAMP_CNT);
e496187d
PB
1251 cpu_rq(cpu)->uclamp_flags = 0;
1252 }
69842cba 1253
69842cba 1254 for_each_clamp_id(clamp_id) {
e8f14172 1255 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1256 uclamp_none(clamp_id), false);
69842cba 1257 }
e8f14172
PB
1258
1259 /* System defaults allow max clamp values for both indexes */
a509a7cd 1260 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1261 for_each_clamp_id(clamp_id) {
e8f14172 1262 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1263#ifdef CONFIG_UCLAMP_TASK_GROUP
1264 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1265 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1266#endif
1267 }
69842cba
PB
1268}
1269
1270#else /* CONFIG_UCLAMP_TASK */
1271static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1272static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1273static inline int uclamp_validate(struct task_struct *p,
1274 const struct sched_attr *attr)
1275{
1276 return -EOPNOTSUPP;
1277}
1278static void __setscheduler_uclamp(struct task_struct *p,
1279 const struct sched_attr *attr) { }
e8f14172 1280static inline void uclamp_fork(struct task_struct *p) { }
69842cba
PB
1281static inline void init_uclamp(void) { }
1282#endif /* CONFIG_UCLAMP_TASK */
1283
1de64443 1284static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1285{
0a67d1ee
PZ
1286 if (!(flags & ENQUEUE_NOCLOCK))
1287 update_rq_clock(rq);
1288
eb414681 1289 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1290 sched_info_queued(rq, p);
eb414681
JW
1291 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1292 }
0a67d1ee 1293
69842cba 1294 uclamp_rq_inc(rq, p);
371fd7e7 1295 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1296}
1297
1de64443 1298static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1299{
0a67d1ee
PZ
1300 if (!(flags & DEQUEUE_NOCLOCK))
1301 update_rq_clock(rq);
1302
eb414681 1303 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1304 sched_info_dequeued(rq, p);
eb414681
JW
1305 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1306 }
0a67d1ee 1307
69842cba 1308 uclamp_rq_dec(rq, p);
371fd7e7 1309 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1310}
1311
029632fb 1312void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1313{
1314 if (task_contributes_to_load(p))
1315 rq->nr_uninterruptible--;
1316
371fd7e7 1317 enqueue_task(rq, p, flags);
7dd77884
PZ
1318
1319 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1320}
1321
029632fb 1322void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1323{
7dd77884
PZ
1324 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1325
1e3c88bd
PZ
1326 if (task_contributes_to_load(p))
1327 rq->nr_uninterruptible++;
1328
371fd7e7 1329 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1330}
1331
14531189 1332/*
dd41f596 1333 * __normal_prio - return the priority that is based on the static prio
14531189 1334 */
14531189
IM
1335static inline int __normal_prio(struct task_struct *p)
1336{
dd41f596 1337 return p->static_prio;
14531189
IM
1338}
1339
b29739f9
IM
1340/*
1341 * Calculate the expected normal priority: i.e. priority
1342 * without taking RT-inheritance into account. Might be
1343 * boosted by interactivity modifiers. Changes upon fork,
1344 * setprio syscalls, and whenever the interactivity
1345 * estimator recalculates.
1346 */
36c8b586 1347static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1348{
1349 int prio;
1350
aab03e05
DF
1351 if (task_has_dl_policy(p))
1352 prio = MAX_DL_PRIO-1;
1353 else if (task_has_rt_policy(p))
b29739f9
IM
1354 prio = MAX_RT_PRIO-1 - p->rt_priority;
1355 else
1356 prio = __normal_prio(p);
1357 return prio;
1358}
1359
1360/*
1361 * Calculate the current priority, i.e. the priority
1362 * taken into account by the scheduler. This value might
1363 * be boosted by RT tasks, or might be boosted by
1364 * interactivity modifiers. Will be RT if the task got
1365 * RT-boosted. If not then it returns p->normal_prio.
1366 */
36c8b586 1367static int effective_prio(struct task_struct *p)
b29739f9
IM
1368{
1369 p->normal_prio = normal_prio(p);
1370 /*
1371 * If we are RT tasks or we were boosted to RT priority,
1372 * keep the priority unchanged. Otherwise, update priority
1373 * to the normal priority:
1374 */
1375 if (!rt_prio(p->prio))
1376 return p->normal_prio;
1377 return p->prio;
1378}
1379
1da177e4
LT
1380/**
1381 * task_curr - is this task currently executing on a CPU?
1382 * @p: the task in question.
e69f6186
YB
1383 *
1384 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1385 */
36c8b586 1386inline int task_curr(const struct task_struct *p)
1da177e4
LT
1387{
1388 return cpu_curr(task_cpu(p)) == p;
1389}
1390
67dfa1b7 1391/*
4c9a4bc8
PZ
1392 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1393 * use the balance_callback list if you want balancing.
1394 *
1395 * this means any call to check_class_changed() must be followed by a call to
1396 * balance_callback().
67dfa1b7 1397 */
cb469845
SR
1398static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1399 const struct sched_class *prev_class,
da7a735e 1400 int oldprio)
cb469845
SR
1401{
1402 if (prev_class != p->sched_class) {
1403 if (prev_class->switched_from)
da7a735e 1404 prev_class->switched_from(rq, p);
4c9a4bc8 1405
da7a735e 1406 p->sched_class->switched_to(rq, p);
2d3d891d 1407 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1408 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1409}
1410
029632fb 1411void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1412{
1413 const struct sched_class *class;
1414
1415 if (p->sched_class == rq->curr->sched_class) {
1416 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1417 } else {
1418 for_each_class(class) {
1419 if (class == rq->curr->sched_class)
1420 break;
1421 if (class == p->sched_class) {
8875125e 1422 resched_curr(rq);
1e5a7405
PZ
1423 break;
1424 }
1425 }
1426 }
1427
1428 /*
1429 * A queue event has occurred, and we're going to schedule. In
1430 * this case, we can save a useless back to back clock update.
1431 */
da0c1e65 1432 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1433 rq_clock_skip_update(rq);
1e5a7405
PZ
1434}
1435
1da177e4 1436#ifdef CONFIG_SMP
175f0e25 1437
175f0e25 1438/*
bee98539 1439 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1440 * __set_cpus_allowed_ptr() and select_fallback_rq().
1441 */
1442static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1443{
3bd37062 1444 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1445 return false;
1446
1447 if (is_per_cpu_kthread(p))
1448 return cpu_online(cpu);
1449
1450 return cpu_active(cpu);
1451}
1452
5cc389bc
PZ
1453/*
1454 * This is how migration works:
1455 *
1456 * 1) we invoke migration_cpu_stop() on the target CPU using
1457 * stop_one_cpu().
1458 * 2) stopper starts to run (implicitly forcing the migrated thread
1459 * off the CPU)
1460 * 3) it checks whether the migrated task is still in the wrong runqueue.
1461 * 4) if it's in the wrong runqueue then the migration thread removes
1462 * it and puts it into the right queue.
1463 * 5) stopper completes and stop_one_cpu() returns and the migration
1464 * is done.
1465 */
1466
1467/*
1468 * move_queued_task - move a queued task to new rq.
1469 *
1470 * Returns (locked) new rq. Old rq's lock is released.
1471 */
8a8c69c3
PZ
1472static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1473 struct task_struct *p, int new_cpu)
5cc389bc 1474{
5cc389bc
PZ
1475 lockdep_assert_held(&rq->lock);
1476
c546951d 1477 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 1478 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1479 set_task_cpu(p, new_cpu);
8a8c69c3 1480 rq_unlock(rq, rf);
5cc389bc
PZ
1481
1482 rq = cpu_rq(new_cpu);
1483
8a8c69c3 1484 rq_lock(rq, rf);
5cc389bc 1485 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1486 enqueue_task(rq, p, 0);
3ea94de1 1487 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1488 check_preempt_curr(rq, p, 0);
1489
1490 return rq;
1491}
1492
1493struct migration_arg {
1494 struct task_struct *task;
1495 int dest_cpu;
1496};
1497
1498/*
d1ccc66d 1499 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1500 * this because either it can't run here any more (set_cpus_allowed()
1501 * away from this CPU, or CPU going down), or because we're
1502 * attempting to rebalance this task on exec (sched_exec).
1503 *
1504 * So we race with normal scheduler movements, but that's OK, as long
1505 * as the task is no longer on this CPU.
5cc389bc 1506 */
8a8c69c3
PZ
1507static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1508 struct task_struct *p, int dest_cpu)
5cc389bc 1509{
5cc389bc 1510 /* Affinity changed (again). */
175f0e25 1511 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1512 return rq;
5cc389bc 1513
15ff991e 1514 update_rq_clock(rq);
8a8c69c3 1515 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1516
1517 return rq;
5cc389bc
PZ
1518}
1519
1520/*
1521 * migration_cpu_stop - this will be executed by a highprio stopper thread
1522 * and performs thread migration by bumping thread off CPU then
1523 * 'pushing' onto another runqueue.
1524 */
1525static int migration_cpu_stop(void *data)
1526{
1527 struct migration_arg *arg = data;
5e16bbc2
PZ
1528 struct task_struct *p = arg->task;
1529 struct rq *rq = this_rq();
8a8c69c3 1530 struct rq_flags rf;
5cc389bc
PZ
1531
1532 /*
d1ccc66d
IM
1533 * The original target CPU might have gone down and we might
1534 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1535 */
1536 local_irq_disable();
1537 /*
1538 * We need to explicitly wake pending tasks before running
3bd37062 1539 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1540 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1541 */
1542 sched_ttwu_pending();
5e16bbc2
PZ
1543
1544 raw_spin_lock(&p->pi_lock);
8a8c69c3 1545 rq_lock(rq, &rf);
5e16bbc2
PZ
1546 /*
1547 * If task_rq(p) != rq, it cannot be migrated here, because we're
1548 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1549 * we're holding p->pi_lock.
1550 */
bf89a304
CC
1551 if (task_rq(p) == rq) {
1552 if (task_on_rq_queued(p))
8a8c69c3 1553 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1554 else
1555 p->wake_cpu = arg->dest_cpu;
1556 }
8a8c69c3 1557 rq_unlock(rq, &rf);
5e16bbc2
PZ
1558 raw_spin_unlock(&p->pi_lock);
1559
5cc389bc
PZ
1560 local_irq_enable();
1561 return 0;
1562}
1563
c5b28038
PZ
1564/*
1565 * sched_class::set_cpus_allowed must do the below, but is not required to
1566 * actually call this function.
1567 */
1568void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1569{
3bd37062 1570 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1571 p->nr_cpus_allowed = cpumask_weight(new_mask);
1572}
1573
c5b28038
PZ
1574void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1575{
6c37067e
PZ
1576 struct rq *rq = task_rq(p);
1577 bool queued, running;
1578
c5b28038 1579 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1580
1581 queued = task_on_rq_queued(p);
1582 running = task_current(rq, p);
1583
1584 if (queued) {
1585 /*
1586 * Because __kthread_bind() calls this on blocked tasks without
1587 * holding rq->lock.
1588 */
1589 lockdep_assert_held(&rq->lock);
7a57f32a 1590 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1591 }
1592 if (running)
1593 put_prev_task(rq, p);
1594
c5b28038 1595 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1596
6c37067e 1597 if (queued)
7134b3e9 1598 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1599 if (running)
03b7fad1 1600 set_next_task(rq, p);
c5b28038
PZ
1601}
1602
5cc389bc
PZ
1603/*
1604 * Change a given task's CPU affinity. Migrate the thread to a
1605 * proper CPU and schedule it away if the CPU it's executing on
1606 * is removed from the allowed bitmask.
1607 *
1608 * NOTE: the caller must have a valid reference to the task, the
1609 * task must not exit() & deallocate itself prematurely. The
1610 * call is not atomic; no spinlocks may be held.
1611 */
25834c73
PZ
1612static int __set_cpus_allowed_ptr(struct task_struct *p,
1613 const struct cpumask *new_mask, bool check)
5cc389bc 1614{
e9d867a6 1615 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1616 unsigned int dest_cpu;
eb580751
PZ
1617 struct rq_flags rf;
1618 struct rq *rq;
5cc389bc
PZ
1619 int ret = 0;
1620
eb580751 1621 rq = task_rq_lock(p, &rf);
a499c3ea 1622 update_rq_clock(rq);
5cc389bc 1623
e9d867a6
PZI
1624 if (p->flags & PF_KTHREAD) {
1625 /*
1626 * Kernel threads are allowed on online && !active CPUs
1627 */
1628 cpu_valid_mask = cpu_online_mask;
1629 }
1630
25834c73
PZ
1631 /*
1632 * Must re-check here, to close a race against __kthread_bind(),
1633 * sched_setaffinity() is not guaranteed to observe the flag.
1634 */
1635 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1636 ret = -EINVAL;
1637 goto out;
1638 }
1639
3bd37062 1640 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1641 goto out;
1642
46a87b38
PT
1643 /*
1644 * Picking a ~random cpu helps in cases where we are changing affinity
1645 * for groups of tasks (ie. cpuset), so that load balancing is not
1646 * immediately required to distribute the tasks within their new mask.
1647 */
1648 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 1649 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
1650 ret = -EINVAL;
1651 goto out;
1652 }
1653
1654 do_set_cpus_allowed(p, new_mask);
1655
e9d867a6
PZI
1656 if (p->flags & PF_KTHREAD) {
1657 /*
1658 * For kernel threads that do indeed end up on online &&
d1ccc66d 1659 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1660 */
1661 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1662 !cpumask_intersects(new_mask, cpu_active_mask) &&
1663 p->nr_cpus_allowed != 1);
1664 }
1665
5cc389bc
PZ
1666 /* Can the task run on the task's current CPU? If so, we're done */
1667 if (cpumask_test_cpu(task_cpu(p), new_mask))
1668 goto out;
1669
5cc389bc
PZ
1670 if (task_running(rq, p) || p->state == TASK_WAKING) {
1671 struct migration_arg arg = { p, dest_cpu };
1672 /* Need help from migration thread: drop lock and wait. */
eb580751 1673 task_rq_unlock(rq, p, &rf);
5cc389bc 1674 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1675 return 0;
cbce1a68
PZ
1676 } else if (task_on_rq_queued(p)) {
1677 /*
1678 * OK, since we're going to drop the lock immediately
1679 * afterwards anyway.
1680 */
8a8c69c3 1681 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1682 }
5cc389bc 1683out:
eb580751 1684 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1685
1686 return ret;
1687}
25834c73
PZ
1688
1689int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1690{
1691 return __set_cpus_allowed_ptr(p, new_mask, false);
1692}
5cc389bc
PZ
1693EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1694
dd41f596 1695void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1696{
e2912009
PZ
1697#ifdef CONFIG_SCHED_DEBUG
1698 /*
1699 * We should never call set_task_cpu() on a blocked task,
1700 * ttwu() will sort out the placement.
1701 */
077614ee 1702 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1703 !p->on_rq);
0122ec5b 1704
3ea94de1
JP
1705 /*
1706 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1707 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1708 * time relying on p->on_rq.
1709 */
1710 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1711 p->sched_class == &fair_sched_class &&
1712 (p->on_rq && !task_on_rq_migrating(p)));
1713
0122ec5b 1714#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1715 /*
1716 * The caller should hold either p->pi_lock or rq->lock, when changing
1717 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1718 *
1719 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1720 * see task_group().
6c6c54e1
PZ
1721 *
1722 * Furthermore, all task_rq users should acquire both locks, see
1723 * task_rq_lock().
1724 */
0122ec5b
PZ
1725 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1726 lockdep_is_held(&task_rq(p)->lock)));
1727#endif
4ff9083b
PZ
1728 /*
1729 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1730 */
1731 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1732#endif
1733
de1d7286 1734 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1735
0c69774e 1736 if (task_cpu(p) != new_cpu) {
0a74bef8 1737 if (p->sched_class->migrate_task_rq)
1327237a 1738 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1739 p->se.nr_migrations++;
d7822b1e 1740 rseq_migrate(p);
ff303e66 1741 perf_event_task_migrate(p);
0c69774e 1742 }
dd41f596
IM
1743
1744 __set_task_cpu(p, new_cpu);
c65cc870
IM
1745}
1746
0ad4e3df 1747#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1748static void __migrate_swap_task(struct task_struct *p, int cpu)
1749{
da0c1e65 1750 if (task_on_rq_queued(p)) {
ac66f547 1751 struct rq *src_rq, *dst_rq;
8a8c69c3 1752 struct rq_flags srf, drf;
ac66f547
PZ
1753
1754 src_rq = task_rq(p);
1755 dst_rq = cpu_rq(cpu);
1756
8a8c69c3
PZ
1757 rq_pin_lock(src_rq, &srf);
1758 rq_pin_lock(dst_rq, &drf);
1759
ac66f547
PZ
1760 deactivate_task(src_rq, p, 0);
1761 set_task_cpu(p, cpu);
1762 activate_task(dst_rq, p, 0);
1763 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1764
1765 rq_unpin_lock(dst_rq, &drf);
1766 rq_unpin_lock(src_rq, &srf);
1767
ac66f547
PZ
1768 } else {
1769 /*
1770 * Task isn't running anymore; make it appear like we migrated
1771 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1772 * previous CPU our target instead of where it really is.
ac66f547
PZ
1773 */
1774 p->wake_cpu = cpu;
1775 }
1776}
1777
1778struct migration_swap_arg {
1779 struct task_struct *src_task, *dst_task;
1780 int src_cpu, dst_cpu;
1781};
1782
1783static int migrate_swap_stop(void *data)
1784{
1785 struct migration_swap_arg *arg = data;
1786 struct rq *src_rq, *dst_rq;
1787 int ret = -EAGAIN;
1788
62694cd5
PZ
1789 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1790 return -EAGAIN;
1791
ac66f547
PZ
1792 src_rq = cpu_rq(arg->src_cpu);
1793 dst_rq = cpu_rq(arg->dst_cpu);
1794
74602315
PZ
1795 double_raw_lock(&arg->src_task->pi_lock,
1796 &arg->dst_task->pi_lock);
ac66f547 1797 double_rq_lock(src_rq, dst_rq);
62694cd5 1798
ac66f547
PZ
1799 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1800 goto unlock;
1801
1802 if (task_cpu(arg->src_task) != arg->src_cpu)
1803 goto unlock;
1804
3bd37062 1805 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1806 goto unlock;
1807
3bd37062 1808 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1809 goto unlock;
1810
1811 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1812 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1813
1814 ret = 0;
1815
1816unlock:
1817 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1818 raw_spin_unlock(&arg->dst_task->pi_lock);
1819 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1820
1821 return ret;
1822}
1823
1824/*
1825 * Cross migrate two tasks
1826 */
0ad4e3df
SD
1827int migrate_swap(struct task_struct *cur, struct task_struct *p,
1828 int target_cpu, int curr_cpu)
ac66f547
PZ
1829{
1830 struct migration_swap_arg arg;
1831 int ret = -EINVAL;
1832
ac66f547
PZ
1833 arg = (struct migration_swap_arg){
1834 .src_task = cur,
0ad4e3df 1835 .src_cpu = curr_cpu,
ac66f547 1836 .dst_task = p,
0ad4e3df 1837 .dst_cpu = target_cpu,
ac66f547
PZ
1838 };
1839
1840 if (arg.src_cpu == arg.dst_cpu)
1841 goto out;
1842
6acce3ef
PZ
1843 /*
1844 * These three tests are all lockless; this is OK since all of them
1845 * will be re-checked with proper locks held further down the line.
1846 */
ac66f547
PZ
1847 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1848 goto out;
1849
3bd37062 1850 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1851 goto out;
1852
3bd37062 1853 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1854 goto out;
1855
286549dc 1856 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1857 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1858
1859out:
ac66f547
PZ
1860 return ret;
1861}
0ad4e3df 1862#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1863
1da177e4
LT
1864/*
1865 * wait_task_inactive - wait for a thread to unschedule.
1866 *
85ba2d86
RM
1867 * If @match_state is nonzero, it's the @p->state value just checked and
1868 * not expected to change. If it changes, i.e. @p might have woken up,
1869 * then return zero. When we succeed in waiting for @p to be off its CPU,
1870 * we return a positive number (its total switch count). If a second call
1871 * a short while later returns the same number, the caller can be sure that
1872 * @p has remained unscheduled the whole time.
1873 *
1da177e4
LT
1874 * The caller must ensure that the task *will* unschedule sometime soon,
1875 * else this function might spin for a *long* time. This function can't
1876 * be called with interrupts off, or it may introduce deadlock with
1877 * smp_call_function() if an IPI is sent by the same process we are
1878 * waiting to become inactive.
1879 */
85ba2d86 1880unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1881{
da0c1e65 1882 int running, queued;
eb580751 1883 struct rq_flags rf;
85ba2d86 1884 unsigned long ncsw;
70b97a7f 1885 struct rq *rq;
1da177e4 1886
3a5c359a
AK
1887 for (;;) {
1888 /*
1889 * We do the initial early heuristics without holding
1890 * any task-queue locks at all. We'll only try to get
1891 * the runqueue lock when things look like they will
1892 * work out!
1893 */
1894 rq = task_rq(p);
fa490cfd 1895
3a5c359a
AK
1896 /*
1897 * If the task is actively running on another CPU
1898 * still, just relax and busy-wait without holding
1899 * any locks.
1900 *
1901 * NOTE! Since we don't hold any locks, it's not
1902 * even sure that "rq" stays as the right runqueue!
1903 * But we don't care, since "task_running()" will
1904 * return false if the runqueue has changed and p
1905 * is actually now running somewhere else!
1906 */
85ba2d86
RM
1907 while (task_running(rq, p)) {
1908 if (match_state && unlikely(p->state != match_state))
1909 return 0;
3a5c359a 1910 cpu_relax();
85ba2d86 1911 }
fa490cfd 1912
3a5c359a
AK
1913 /*
1914 * Ok, time to look more closely! We need the rq
1915 * lock now, to be *sure*. If we're wrong, we'll
1916 * just go back and repeat.
1917 */
eb580751 1918 rq = task_rq_lock(p, &rf);
27a9da65 1919 trace_sched_wait_task(p);
3a5c359a 1920 running = task_running(rq, p);
da0c1e65 1921 queued = task_on_rq_queued(p);
85ba2d86 1922 ncsw = 0;
f31e11d8 1923 if (!match_state || p->state == match_state)
93dcf55f 1924 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1925 task_rq_unlock(rq, p, &rf);
fa490cfd 1926
85ba2d86
RM
1927 /*
1928 * If it changed from the expected state, bail out now.
1929 */
1930 if (unlikely(!ncsw))
1931 break;
1932
3a5c359a
AK
1933 /*
1934 * Was it really running after all now that we
1935 * checked with the proper locks actually held?
1936 *
1937 * Oops. Go back and try again..
1938 */
1939 if (unlikely(running)) {
1940 cpu_relax();
1941 continue;
1942 }
fa490cfd 1943
3a5c359a
AK
1944 /*
1945 * It's not enough that it's not actively running,
1946 * it must be off the runqueue _entirely_, and not
1947 * preempted!
1948 *
80dd99b3 1949 * So if it was still runnable (but just not actively
3a5c359a
AK
1950 * running right now), it's preempted, and we should
1951 * yield - it could be a while.
1952 */
da0c1e65 1953 if (unlikely(queued)) {
8b0e1953 1954 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1955
1956 set_current_state(TASK_UNINTERRUPTIBLE);
1957 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1958 continue;
1959 }
fa490cfd 1960
3a5c359a
AK
1961 /*
1962 * Ahh, all good. It wasn't running, and it wasn't
1963 * runnable, which means that it will never become
1964 * running in the future either. We're all done!
1965 */
1966 break;
1967 }
85ba2d86
RM
1968
1969 return ncsw;
1da177e4
LT
1970}
1971
1972/***
1973 * kick_process - kick a running thread to enter/exit the kernel
1974 * @p: the to-be-kicked thread
1975 *
1976 * Cause a process which is running on another CPU to enter
1977 * kernel-mode, without any delay. (to get signals handled.)
1978 *
25985edc 1979 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1980 * because all it wants to ensure is that the remote task enters
1981 * the kernel. If the IPI races and the task has been migrated
1982 * to another CPU then no harm is done and the purpose has been
1983 * achieved as well.
1984 */
36c8b586 1985void kick_process(struct task_struct *p)
1da177e4
LT
1986{
1987 int cpu;
1988
1989 preempt_disable();
1990 cpu = task_cpu(p);
1991 if ((cpu != smp_processor_id()) && task_curr(p))
1992 smp_send_reschedule(cpu);
1993 preempt_enable();
1994}
b43e3521 1995EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1996
30da688e 1997/*
3bd37062 1998 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1999 *
2000 * A few notes on cpu_active vs cpu_online:
2001 *
2002 * - cpu_active must be a subset of cpu_online
2003 *
97fb7a0a 2004 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2005 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2006 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2007 * see it.
2008 *
d1ccc66d 2009 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2010 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2011 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2012 * off.
2013 *
2014 * This means that fallback selection must not select !active CPUs.
2015 * And can assume that any active CPU must be online. Conversely
2016 * select_task_rq() below may allow selection of !active CPUs in order
2017 * to satisfy the above rules.
30da688e 2018 */
5da9a0fb
PZ
2019static int select_fallback_rq(int cpu, struct task_struct *p)
2020{
aa00d89c
TC
2021 int nid = cpu_to_node(cpu);
2022 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2023 enum { cpuset, possible, fail } state = cpuset;
2024 int dest_cpu;
5da9a0fb 2025
aa00d89c 2026 /*
d1ccc66d
IM
2027 * If the node that the CPU is on has been offlined, cpu_to_node()
2028 * will return -1. There is no CPU on the node, and we should
2029 * select the CPU on the other node.
aa00d89c
TC
2030 */
2031 if (nid != -1) {
2032 nodemask = cpumask_of_node(nid);
2033
2034 /* Look for allowed, online CPU in same node. */
2035 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2036 if (!cpu_active(dest_cpu))
2037 continue;
3bd37062 2038 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2039 return dest_cpu;
2040 }
2baab4e9 2041 }
5da9a0fb 2042
2baab4e9
PZ
2043 for (;;) {
2044 /* Any allowed, online CPU? */
3bd37062 2045 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2046 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2047 continue;
175f0e25 2048
2baab4e9
PZ
2049 goto out;
2050 }
5da9a0fb 2051
e73e85f0 2052 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2053 switch (state) {
2054 case cpuset:
e73e85f0
ON
2055 if (IS_ENABLED(CONFIG_CPUSETS)) {
2056 cpuset_cpus_allowed_fallback(p);
2057 state = possible;
2058 break;
2059 }
d1ccc66d 2060 /* Fall-through */
2baab4e9
PZ
2061 case possible:
2062 do_set_cpus_allowed(p, cpu_possible_mask);
2063 state = fail;
2064 break;
2065
2066 case fail:
2067 BUG();
2068 break;
2069 }
2070 }
2071
2072out:
2073 if (state != cpuset) {
2074 /*
2075 * Don't tell them about moving exiting tasks or
2076 * kernel threads (both mm NULL), since they never
2077 * leave kernel.
2078 */
2079 if (p->mm && printk_ratelimit()) {
aac74dc4 2080 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2081 task_pid_nr(p), p->comm, cpu);
2082 }
5da9a0fb
PZ
2083 }
2084
2085 return dest_cpu;
2086}
2087
e2912009 2088/*
3bd37062 2089 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2090 */
970b13ba 2091static inline
ac66f547 2092int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 2093{
cbce1a68
PZ
2094 lockdep_assert_held(&p->pi_lock);
2095
4b53a341 2096 if (p->nr_cpus_allowed > 1)
6c1d9410 2097 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 2098 else
3bd37062 2099 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2100
2101 /*
2102 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2103 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2104 * CPU.
e2912009
PZ
2105 *
2106 * Since this is common to all placement strategies, this lives here.
2107 *
2108 * [ this allows ->select_task() to simply return task_cpu(p) and
2109 * not worry about this generic constraint ]
2110 */
7af443ee 2111 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2112 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2113
2114 return cpu;
970b13ba 2115}
09a40af5 2116
f5832c19
NP
2117void sched_set_stop_task(int cpu, struct task_struct *stop)
2118{
2119 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2120 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2121
2122 if (stop) {
2123 /*
2124 * Make it appear like a SCHED_FIFO task, its something
2125 * userspace knows about and won't get confused about.
2126 *
2127 * Also, it will make PI more or less work without too
2128 * much confusion -- but then, stop work should not
2129 * rely on PI working anyway.
2130 */
2131 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2132
2133 stop->sched_class = &stop_sched_class;
2134 }
2135
2136 cpu_rq(cpu)->stop = stop;
2137
2138 if (old_stop) {
2139 /*
2140 * Reset it back to a normal scheduling class so that
2141 * it can die in pieces.
2142 */
2143 old_stop->sched_class = &rt_sched_class;
2144 }
2145}
2146
25834c73
PZ
2147#else
2148
2149static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2150 const struct cpumask *new_mask, bool check)
2151{
2152 return set_cpus_allowed_ptr(p, new_mask);
2153}
2154
5cc389bc 2155#endif /* CONFIG_SMP */
970b13ba 2156
d7c01d27 2157static void
b84cb5df 2158ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2159{
4fa8d299 2160 struct rq *rq;
b84cb5df 2161
4fa8d299
JP
2162 if (!schedstat_enabled())
2163 return;
2164
2165 rq = this_rq();
d7c01d27 2166
4fa8d299
JP
2167#ifdef CONFIG_SMP
2168 if (cpu == rq->cpu) {
b85c8b71
PZ
2169 __schedstat_inc(rq->ttwu_local);
2170 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2171 } else {
2172 struct sched_domain *sd;
2173
b85c8b71 2174 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2175 rcu_read_lock();
4fa8d299 2176 for_each_domain(rq->cpu, sd) {
d7c01d27 2177 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2178 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2179 break;
2180 }
2181 }
057f3fad 2182 rcu_read_unlock();
d7c01d27 2183 }
f339b9dc
PZ
2184
2185 if (wake_flags & WF_MIGRATED)
b85c8b71 2186 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2187#endif /* CONFIG_SMP */
2188
b85c8b71
PZ
2189 __schedstat_inc(rq->ttwu_count);
2190 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2191
2192 if (wake_flags & WF_SYNC)
b85c8b71 2193 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2194}
2195
23f41eeb
PZ
2196/*
2197 * Mark the task runnable and perform wakeup-preemption.
2198 */
e7904a28 2199static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2200 struct rq_flags *rf)
9ed3811a 2201{
9ed3811a 2202 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2203 p->state = TASK_RUNNING;
fbd705a0
PZ
2204 trace_sched_wakeup(p);
2205
9ed3811a 2206#ifdef CONFIG_SMP
4c9a4bc8
PZ
2207 if (p->sched_class->task_woken) {
2208 /*
cbce1a68
PZ
2209 * Our task @p is fully woken up and running; so its safe to
2210 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2211 */
d8ac8971 2212 rq_unpin_lock(rq, rf);
9ed3811a 2213 p->sched_class->task_woken(rq, p);
d8ac8971 2214 rq_repin_lock(rq, rf);
4c9a4bc8 2215 }
9ed3811a 2216
e69c6341 2217 if (rq->idle_stamp) {
78becc27 2218 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2219 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2220
abfafa54
JL
2221 update_avg(&rq->avg_idle, delta);
2222
2223 if (rq->avg_idle > max)
9ed3811a 2224 rq->avg_idle = max;
abfafa54 2225
9ed3811a
TH
2226 rq->idle_stamp = 0;
2227 }
2228#endif
2229}
2230
c05fbafb 2231static void
e7904a28 2232ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2233 struct rq_flags *rf)
c05fbafb 2234{
77558e4d 2235 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2236
cbce1a68
PZ
2237 lockdep_assert_held(&rq->lock);
2238
c05fbafb
PZ
2239#ifdef CONFIG_SMP
2240 if (p->sched_contributes_to_load)
2241 rq->nr_uninterruptible--;
b5179ac7 2242
b5179ac7 2243 if (wake_flags & WF_MIGRATED)
59efa0ba 2244 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2245#endif
2246
1b174a2c 2247 activate_task(rq, p, en_flags);
d8ac8971 2248 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2249}
2250
2251/*
2252 * Called in case the task @p isn't fully descheduled from its runqueue,
2253 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2254 * since all we need to do is flip p->state to TASK_RUNNING, since
2255 * the task is still ->on_rq.
2256 */
2257static int ttwu_remote(struct task_struct *p, int wake_flags)
2258{
eb580751 2259 struct rq_flags rf;
c05fbafb
PZ
2260 struct rq *rq;
2261 int ret = 0;
2262
eb580751 2263 rq = __task_rq_lock(p, &rf);
da0c1e65 2264 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2265 /* check_preempt_curr() may use rq clock */
2266 update_rq_clock(rq);
d8ac8971 2267 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2268 ret = 1;
2269 }
eb580751 2270 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2271
2272 return ret;
2273}
2274
317f3941 2275#ifdef CONFIG_SMP
e3baac47 2276void sched_ttwu_pending(void)
317f3941
PZ
2277{
2278 struct rq *rq = this_rq();
fa14ff4a 2279 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 2280 struct task_struct *p, *t;
d8ac8971 2281 struct rq_flags rf;
317f3941 2282
e3baac47
PZ
2283 if (!llist)
2284 return;
2285
8a8c69c3 2286 rq_lock_irqsave(rq, &rf);
77558e4d 2287 update_rq_clock(rq);
317f3941 2288
73215849
BP
2289 llist_for_each_entry_safe(p, t, llist, wake_entry)
2290 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 2291
8a8c69c3 2292 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2293}
2294
2295void scheduler_ipi(void)
2296{
f27dde8d
PZ
2297 /*
2298 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2299 * TIF_NEED_RESCHED remotely (for the first time) will also send
2300 * this IPI.
2301 */
8cb75e0c 2302 preempt_fold_need_resched();
f27dde8d 2303
fd2ac4f4 2304 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2305 return;
2306
2307 /*
2308 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2309 * traditionally all their work was done from the interrupt return
2310 * path. Now that we actually do some work, we need to make sure
2311 * we do call them.
2312 *
2313 * Some archs already do call them, luckily irq_enter/exit nest
2314 * properly.
2315 *
2316 * Arguably we should visit all archs and update all handlers,
2317 * however a fair share of IPIs are still resched only so this would
2318 * somewhat pessimize the simple resched case.
2319 */
2320 irq_enter();
fa14ff4a 2321 sched_ttwu_pending();
ca38062e
SS
2322
2323 /*
2324 * Check if someone kicked us for doing the nohz idle load balance.
2325 */
873b4c65 2326 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 2327 this_rq()->idle_balance = 1;
ca38062e 2328 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2329 }
c5d753a5 2330 irq_exit();
317f3941
PZ
2331}
2332
b7e7ade3 2333static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 2334{
e3baac47
PZ
2335 struct rq *rq = cpu_rq(cpu);
2336
b7e7ade3
PZ
2337 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2338
e3baac47
PZ
2339 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2340 if (!set_nr_if_polling(rq->idle))
2341 smp_send_reschedule(cpu);
2342 else
2343 trace_sched_wake_idle_without_ipi(cpu);
2344 }
317f3941 2345}
d6aa8f85 2346
f6be8af1
CL
2347void wake_up_if_idle(int cpu)
2348{
2349 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2350 struct rq_flags rf;
f6be8af1 2351
fd7de1e8
AL
2352 rcu_read_lock();
2353
2354 if (!is_idle_task(rcu_dereference(rq->curr)))
2355 goto out;
f6be8af1
CL
2356
2357 if (set_nr_if_polling(rq->idle)) {
2358 trace_sched_wake_idle_without_ipi(cpu);
2359 } else {
8a8c69c3 2360 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2361 if (is_idle_task(rq->curr))
2362 smp_send_reschedule(cpu);
d1ccc66d 2363 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2364 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2365 }
fd7de1e8
AL
2366
2367out:
2368 rcu_read_unlock();
f6be8af1
CL
2369}
2370
39be3501 2371bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2372{
2373 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2374}
d6aa8f85 2375#endif /* CONFIG_SMP */
317f3941 2376
b5179ac7 2377static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2378{
2379 struct rq *rq = cpu_rq(cpu);
d8ac8971 2380 struct rq_flags rf;
c05fbafb 2381
17d9f311 2382#if defined(CONFIG_SMP)
39be3501 2383 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 2384 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 2385 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
2386 return;
2387 }
2388#endif
2389
8a8c69c3 2390 rq_lock(rq, &rf);
77558e4d 2391 update_rq_clock(rq);
d8ac8971 2392 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2393 rq_unlock(rq, &rf);
9ed3811a
TH
2394}
2395
8643cda5
PZ
2396/*
2397 * Notes on Program-Order guarantees on SMP systems.
2398 *
2399 * MIGRATION
2400 *
2401 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2402 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2403 * execution on its new CPU [c1].
8643cda5
PZ
2404 *
2405 * For migration (of runnable tasks) this is provided by the following means:
2406 *
2407 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2408 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2409 * rq(c1)->lock (if not at the same time, then in that order).
2410 * C) LOCK of the rq(c1)->lock scheduling in task
2411 *
7696f991 2412 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2413 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2414 *
2415 * Example:
2416 *
2417 * CPU0 CPU1 CPU2
2418 *
2419 * LOCK rq(0)->lock
2420 * sched-out X
2421 * sched-in Y
2422 * UNLOCK rq(0)->lock
2423 *
2424 * LOCK rq(0)->lock // orders against CPU0
2425 * dequeue X
2426 * UNLOCK rq(0)->lock
2427 *
2428 * LOCK rq(1)->lock
2429 * enqueue X
2430 * UNLOCK rq(1)->lock
2431 *
2432 * LOCK rq(1)->lock // orders against CPU2
2433 * sched-out Z
2434 * sched-in X
2435 * UNLOCK rq(1)->lock
2436 *
2437 *
2438 * BLOCKING -- aka. SLEEP + WAKEUP
2439 *
2440 * For blocking we (obviously) need to provide the same guarantee as for
2441 * migration. However the means are completely different as there is no lock
2442 * chain to provide order. Instead we do:
2443 *
2444 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 2445 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
2446 *
2447 * Example:
2448 *
2449 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2450 *
2451 * LOCK rq(0)->lock LOCK X->pi_lock
2452 * dequeue X
2453 * sched-out X
2454 * smp_store_release(X->on_cpu, 0);
2455 *
1f03e8d2 2456 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2457 * X->state = WAKING
2458 * set_task_cpu(X,2)
2459 *
2460 * LOCK rq(2)->lock
2461 * enqueue X
2462 * X->state = RUNNING
2463 * UNLOCK rq(2)->lock
2464 *
2465 * LOCK rq(2)->lock // orders against CPU1
2466 * sched-out Z
2467 * sched-in X
2468 * UNLOCK rq(2)->lock
2469 *
2470 * UNLOCK X->pi_lock
2471 * UNLOCK rq(0)->lock
2472 *
2473 *
7696f991
AP
2474 * However, for wakeups there is a second guarantee we must provide, namely we
2475 * must ensure that CONDITION=1 done by the caller can not be reordered with
2476 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2477 */
2478
9ed3811a 2479/**
1da177e4 2480 * try_to_wake_up - wake up a thread
9ed3811a 2481 * @p: the thread to be awakened
1da177e4 2482 * @state: the mask of task states that can be woken
9ed3811a 2483 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2484 *
a2250238 2485 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2486 *
a2250238
PZ
2487 * If the task was not queued/runnable, also place it back on a runqueue.
2488 *
2489 * Atomic against schedule() which would dequeue a task, also see
2490 * set_current_state().
2491 *
7696f991
AP
2492 * This function executes a full memory barrier before accessing the task
2493 * state; see set_current_state().
2494 *
a2250238
PZ
2495 * Return: %true if @p->state changes (an actual wakeup was done),
2496 * %false otherwise.
1da177e4 2497 */
e4a52bcb
PZ
2498static int
2499try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2500{
1da177e4 2501 unsigned long flags;
c05fbafb 2502 int cpu, success = 0;
2398f2c6 2503
e3d85487 2504 preempt_disable();
aacedf26
PZ
2505 if (p == current) {
2506 /*
2507 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2508 * == smp_processor_id()'. Together this means we can special
2509 * case the whole 'p->on_rq && ttwu_remote()' case below
2510 * without taking any locks.
2511 *
2512 * In particular:
2513 * - we rely on Program-Order guarantees for all the ordering,
2514 * - we're serialized against set_special_state() by virtue of
2515 * it disabling IRQs (this allows not taking ->pi_lock).
2516 */
2517 if (!(p->state & state))
e3d85487 2518 goto out;
aacedf26
PZ
2519
2520 success = 1;
2521 cpu = task_cpu(p);
2522 trace_sched_waking(p);
2523 p->state = TASK_RUNNING;
2524 trace_sched_wakeup(p);
2525 goto out;
2526 }
2527
e0acd0a6
ON
2528 /*
2529 * If we are going to wake up a thread waiting for CONDITION we
2530 * need to ensure that CONDITION=1 done by the caller can not be
2531 * reordered with p->state check below. This pairs with mb() in
2532 * set_current_state() the waiting thread does.
2533 */
013fdb80 2534 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2535 smp_mb__after_spinlock();
e9c84311 2536 if (!(p->state & state))
aacedf26 2537 goto unlock;
1da177e4 2538
fbd705a0
PZ
2539 trace_sched_waking(p);
2540
d1ccc66d
IM
2541 /* We're going to change ->state: */
2542 success = 1;
1da177e4 2543 cpu = task_cpu(p);
1da177e4 2544
135e8c92
BS
2545 /*
2546 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2547 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2548 * in smp_cond_load_acquire() below.
2549 *
3d85b270
AP
2550 * sched_ttwu_pending() try_to_wake_up()
2551 * STORE p->on_rq = 1 LOAD p->state
2552 * UNLOCK rq->lock
2553 *
2554 * __schedule() (switch to task 'p')
2555 * LOCK rq->lock smp_rmb();
2556 * smp_mb__after_spinlock();
2557 * UNLOCK rq->lock
135e8c92
BS
2558 *
2559 * [task p]
3d85b270 2560 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2561 *
3d85b270
AP
2562 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2563 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2564 */
2565 smp_rmb();
c05fbafb 2566 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2567 goto unlock;
1da177e4 2568
1da177e4 2569#ifdef CONFIG_SMP
ecf7d01c
PZ
2570 /*
2571 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2572 * possible to, falsely, observe p->on_cpu == 0.
2573 *
2574 * One must be running (->on_cpu == 1) in order to remove oneself
2575 * from the runqueue.
2576 *
3d85b270
AP
2577 * __schedule() (switch to task 'p') try_to_wake_up()
2578 * STORE p->on_cpu = 1 LOAD p->on_rq
2579 * UNLOCK rq->lock
2580 *
2581 * __schedule() (put 'p' to sleep)
2582 * LOCK rq->lock smp_rmb();
2583 * smp_mb__after_spinlock();
2584 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2585 *
3d85b270
AP
2586 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2587 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2588 */
2589 smp_rmb();
2590
e9c84311 2591 /*
d1ccc66d 2592 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2593 * this task as prev, wait until its done referencing the task.
b75a2253 2594 *
31cb1bc0 2595 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2596 *
2597 * This ensures that tasks getting woken will be fully ordered against
2598 * their previous state and preserve Program Order.
0970d299 2599 */
1f03e8d2 2600 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2601
a8e4f2ea 2602 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2603 p->state = TASK_WAKING;
e7693a36 2604
e33a9bba 2605 if (p->in_iowait) {
c96f5471 2606 delayacct_blkio_end(p);
e33a9bba
TH
2607 atomic_dec(&task_rq(p)->nr_iowait);
2608 }
2609
ac66f547 2610 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2611 if (task_cpu(p) != cpu) {
2612 wake_flags |= WF_MIGRATED;
eb414681 2613 psi_ttwu_dequeue(p);
e4a52bcb 2614 set_task_cpu(p, cpu);
f339b9dc 2615 }
e33a9bba
TH
2616
2617#else /* CONFIG_SMP */
2618
2619 if (p->in_iowait) {
c96f5471 2620 delayacct_blkio_end(p);
e33a9bba
TH
2621 atomic_dec(&task_rq(p)->nr_iowait);
2622 }
2623
1da177e4 2624#endif /* CONFIG_SMP */
1da177e4 2625
b5179ac7 2626 ttwu_queue(p, cpu, wake_flags);
aacedf26 2627unlock:
013fdb80 2628 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2629out:
2630 if (success)
2631 ttwu_stat(p, cpu, wake_flags);
e3d85487 2632 preempt_enable();
1da177e4
LT
2633
2634 return success;
2635}
2636
50fa610a
DH
2637/**
2638 * wake_up_process - Wake up a specific process
2639 * @p: The process to be woken up.
2640 *
2641 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2642 * processes.
2643 *
2644 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2645 *
7696f991 2646 * This function executes a full memory barrier before accessing the task state.
50fa610a 2647 */
7ad5b3a5 2648int wake_up_process(struct task_struct *p)
1da177e4 2649{
9067ac85 2650 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2651}
1da177e4
LT
2652EXPORT_SYMBOL(wake_up_process);
2653
7ad5b3a5 2654int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2655{
2656 return try_to_wake_up(p, state, 0);
2657}
2658
1da177e4
LT
2659/*
2660 * Perform scheduler related setup for a newly forked process p.
2661 * p is forked by current.
dd41f596
IM
2662 *
2663 * __sched_fork() is basic setup used by init_idle() too:
2664 */
5e1576ed 2665static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2666{
fd2f4419
PZ
2667 p->on_rq = 0;
2668
2669 p->se.on_rq = 0;
dd41f596
IM
2670 p->se.exec_start = 0;
2671 p->se.sum_exec_runtime = 0;
f6cf891c 2672 p->se.prev_sum_exec_runtime = 0;
6c594c21 2673 p->se.nr_migrations = 0;
da7a735e 2674 p->se.vruntime = 0;
fd2f4419 2675 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2676
ad936d86
BP
2677#ifdef CONFIG_FAIR_GROUP_SCHED
2678 p->se.cfs_rq = NULL;
2679#endif
2680
6cfb0d5d 2681#ifdef CONFIG_SCHEDSTATS
cb251765 2682 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2683 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2684#endif
476d139c 2685
aab03e05 2686 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2687 init_dl_task_timer(&p->dl);
209a0cbd 2688 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2689 __dl_clear_params(p);
aab03e05 2690
fa717060 2691 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2692 p->rt.timeout = 0;
2693 p->rt.time_slice = sched_rr_timeslice;
2694 p->rt.on_rq = 0;
2695 p->rt.on_list = 0;
476d139c 2696
e107be36
AK
2697#ifdef CONFIG_PREEMPT_NOTIFIERS
2698 INIT_HLIST_HEAD(&p->preempt_notifiers);
2699#endif
cbee9f88 2700
5e1f0f09
MG
2701#ifdef CONFIG_COMPACTION
2702 p->capture_control = NULL;
2703#endif
13784475 2704 init_numa_balancing(clone_flags, p);
dd41f596
IM
2705}
2706
2a595721
SD
2707DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2708
1a687c2e 2709#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2710
1a687c2e
MG
2711void set_numabalancing_state(bool enabled)
2712{
2713 if (enabled)
2a595721 2714 static_branch_enable(&sched_numa_balancing);
1a687c2e 2715 else
2a595721 2716 static_branch_disable(&sched_numa_balancing);
1a687c2e 2717}
54a43d54
AK
2718
2719#ifdef CONFIG_PROC_SYSCTL
2720int sysctl_numa_balancing(struct ctl_table *table, int write,
2721 void __user *buffer, size_t *lenp, loff_t *ppos)
2722{
2723 struct ctl_table t;
2724 int err;
2a595721 2725 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2726
2727 if (write && !capable(CAP_SYS_ADMIN))
2728 return -EPERM;
2729
2730 t = *table;
2731 t.data = &state;
2732 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2733 if (err < 0)
2734 return err;
2735 if (write)
2736 set_numabalancing_state(state);
2737 return err;
2738}
2739#endif
2740#endif
dd41f596 2741
4698f88c
JP
2742#ifdef CONFIG_SCHEDSTATS
2743
cb251765 2744DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2745static bool __initdata __sched_schedstats = false;
cb251765 2746
cb251765
MG
2747static void set_schedstats(bool enabled)
2748{
2749 if (enabled)
2750 static_branch_enable(&sched_schedstats);
2751 else
2752 static_branch_disable(&sched_schedstats);
2753}
2754
2755void force_schedstat_enabled(void)
2756{
2757 if (!schedstat_enabled()) {
2758 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2759 static_branch_enable(&sched_schedstats);
2760 }
2761}
2762
2763static int __init setup_schedstats(char *str)
2764{
2765 int ret = 0;
2766 if (!str)
2767 goto out;
2768
4698f88c
JP
2769 /*
2770 * This code is called before jump labels have been set up, so we can't
2771 * change the static branch directly just yet. Instead set a temporary
2772 * variable so init_schedstats() can do it later.
2773 */
cb251765 2774 if (!strcmp(str, "enable")) {
4698f88c 2775 __sched_schedstats = true;
cb251765
MG
2776 ret = 1;
2777 } else if (!strcmp(str, "disable")) {
4698f88c 2778 __sched_schedstats = false;
cb251765
MG
2779 ret = 1;
2780 }
2781out:
2782 if (!ret)
2783 pr_warn("Unable to parse schedstats=\n");
2784
2785 return ret;
2786}
2787__setup("schedstats=", setup_schedstats);
2788
4698f88c
JP
2789static void __init init_schedstats(void)
2790{
2791 set_schedstats(__sched_schedstats);
2792}
2793
cb251765
MG
2794#ifdef CONFIG_PROC_SYSCTL
2795int sysctl_schedstats(struct ctl_table *table, int write,
2796 void __user *buffer, size_t *lenp, loff_t *ppos)
2797{
2798 struct ctl_table t;
2799 int err;
2800 int state = static_branch_likely(&sched_schedstats);
2801
2802 if (write && !capable(CAP_SYS_ADMIN))
2803 return -EPERM;
2804
2805 t = *table;
2806 t.data = &state;
2807 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2808 if (err < 0)
2809 return err;
2810 if (write)
2811 set_schedstats(state);
2812 return err;
2813}
4698f88c
JP
2814#endif /* CONFIG_PROC_SYSCTL */
2815#else /* !CONFIG_SCHEDSTATS */
2816static inline void init_schedstats(void) {}
2817#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2818
2819/*
2820 * fork()/clone()-time setup:
2821 */
aab03e05 2822int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2823{
0122ec5b 2824 unsigned long flags;
dd41f596 2825
5e1576ed 2826 __sched_fork(clone_flags, p);
06b83b5f 2827 /*
7dc603c9 2828 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2829 * nobody will actually run it, and a signal or other external
2830 * event cannot wake it up and insert it on the runqueue either.
2831 */
7dc603c9 2832 p->state = TASK_NEW;
dd41f596 2833
c350a04e
MG
2834 /*
2835 * Make sure we do not leak PI boosting priority to the child.
2836 */
2837 p->prio = current->normal_prio;
2838
e8f14172
PB
2839 uclamp_fork(p);
2840
b9dc29e7
MG
2841 /*
2842 * Revert to default priority/policy on fork if requested.
2843 */
2844 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2845 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2846 p->policy = SCHED_NORMAL;
6c697bdf 2847 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2848 p->rt_priority = 0;
2849 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2850 p->static_prio = NICE_TO_PRIO(0);
2851
2852 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2853 set_load_weight(p, false);
6c697bdf 2854
b9dc29e7
MG
2855 /*
2856 * We don't need the reset flag anymore after the fork. It has
2857 * fulfilled its duty:
2858 */
2859 p->sched_reset_on_fork = 0;
2860 }
ca94c442 2861
af0fffd9 2862 if (dl_prio(p->prio))
aab03e05 2863 return -EAGAIN;
af0fffd9 2864 else if (rt_prio(p->prio))
aab03e05 2865 p->sched_class = &rt_sched_class;
af0fffd9 2866 else
2ddbf952 2867 p->sched_class = &fair_sched_class;
b29739f9 2868
7dc603c9 2869 init_entity_runnable_average(&p->se);
cd29fe6f 2870
86951599
PZ
2871 /*
2872 * The child is not yet in the pid-hash so no cgroup attach races,
2873 * and the cgroup is pinned to this child due to cgroup_fork()
2874 * is ran before sched_fork().
2875 *
2876 * Silence PROVE_RCU.
2877 */
0122ec5b 2878 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2879 /*
d1ccc66d 2880 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2881 * so use __set_task_cpu().
2882 */
af0fffd9 2883 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2884 if (p->sched_class->task_fork)
2885 p->sched_class->task_fork(p);
0122ec5b 2886 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2887
f6db8347 2888#ifdef CONFIG_SCHED_INFO
dd41f596 2889 if (likely(sched_info_on()))
52f17b6c 2890 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2891#endif
3ca7a440
PZ
2892#if defined(CONFIG_SMP)
2893 p->on_cpu = 0;
4866cde0 2894#endif
01028747 2895 init_task_preempt_count(p);
806c09a7 2896#ifdef CONFIG_SMP
917b627d 2897 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2898 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2899#endif
aab03e05 2900 return 0;
1da177e4
LT
2901}
2902
332ac17e
DF
2903unsigned long to_ratio(u64 period, u64 runtime)
2904{
2905 if (runtime == RUNTIME_INF)
c52f14d3 2906 return BW_UNIT;
332ac17e
DF
2907
2908 /*
2909 * Doing this here saves a lot of checks in all
2910 * the calling paths, and returning zero seems
2911 * safe for them anyway.
2912 */
2913 if (period == 0)
2914 return 0;
2915
c52f14d3 2916 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2917}
2918
1da177e4
LT
2919/*
2920 * wake_up_new_task - wake up a newly created task for the first time.
2921 *
2922 * This function will do some initial scheduler statistics housekeeping
2923 * that must be done for every newly created context, then puts the task
2924 * on the runqueue and wakes it.
2925 */
3e51e3ed 2926void wake_up_new_task(struct task_struct *p)
1da177e4 2927{
eb580751 2928 struct rq_flags rf;
dd41f596 2929 struct rq *rq;
fabf318e 2930
eb580751 2931 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2932 p->state = TASK_RUNNING;
fabf318e
PZ
2933#ifdef CONFIG_SMP
2934 /*
2935 * Fork balancing, do it here and not earlier because:
3bd37062 2936 * - cpus_ptr can change in the fork path
d1ccc66d 2937 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2938 *
2939 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2940 * as we're not fully set-up yet.
fabf318e 2941 */
32e839dd 2942 p->recent_used_cpu = task_cpu(p);
e210bffd 2943 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2944#endif
b7fa30c9 2945 rq = __task_rq_lock(p, &rf);
4126bad6 2946 update_rq_clock(rq);
d0fe0b9c 2947 post_init_entity_util_avg(p);
0017d735 2948
7a57f32a 2949 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2950 trace_sched_wakeup_new(p);
a7558e01 2951 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2952#ifdef CONFIG_SMP
0aaafaab
PZ
2953 if (p->sched_class->task_woken) {
2954 /*
2955 * Nothing relies on rq->lock after this, so its fine to
2956 * drop it.
2957 */
d8ac8971 2958 rq_unpin_lock(rq, &rf);
efbbd05a 2959 p->sched_class->task_woken(rq, p);
d8ac8971 2960 rq_repin_lock(rq, &rf);
0aaafaab 2961 }
9a897c5a 2962#endif
eb580751 2963 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2964}
2965
e107be36
AK
2966#ifdef CONFIG_PREEMPT_NOTIFIERS
2967
b7203428 2968static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2969
2ecd9d29
PZ
2970void preempt_notifier_inc(void)
2971{
b7203428 2972 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2973}
2974EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2975
2976void preempt_notifier_dec(void)
2977{
b7203428 2978 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2979}
2980EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2981
e107be36 2982/**
80dd99b3 2983 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2984 * @notifier: notifier struct to register
e107be36
AK
2985 */
2986void preempt_notifier_register(struct preempt_notifier *notifier)
2987{
b7203428 2988 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2989 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2990
e107be36
AK
2991 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2992}
2993EXPORT_SYMBOL_GPL(preempt_notifier_register);
2994
2995/**
2996 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2997 * @notifier: notifier struct to unregister
e107be36 2998 *
d84525a8 2999 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3000 */
3001void preempt_notifier_unregister(struct preempt_notifier *notifier)
3002{
3003 hlist_del(&notifier->link);
3004}
3005EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3006
1cde2930 3007static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3008{
3009 struct preempt_notifier *notifier;
e107be36 3010
b67bfe0d 3011 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3012 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3013}
3014
1cde2930
PZ
3015static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3016{
b7203428 3017 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3018 __fire_sched_in_preempt_notifiers(curr);
3019}
3020
e107be36 3021static void
1cde2930
PZ
3022__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3023 struct task_struct *next)
e107be36
AK
3024{
3025 struct preempt_notifier *notifier;
e107be36 3026
b67bfe0d 3027 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3028 notifier->ops->sched_out(notifier, next);
3029}
3030
1cde2930
PZ
3031static __always_inline void
3032fire_sched_out_preempt_notifiers(struct task_struct *curr,
3033 struct task_struct *next)
3034{
b7203428 3035 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3036 __fire_sched_out_preempt_notifiers(curr, next);
3037}
3038
6d6bc0ad 3039#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3040
1cde2930 3041static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3042{
3043}
3044
1cde2930 3045static inline void
e107be36
AK
3046fire_sched_out_preempt_notifiers(struct task_struct *curr,
3047 struct task_struct *next)
3048{
3049}
3050
6d6bc0ad 3051#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3052
31cb1bc0 3053static inline void prepare_task(struct task_struct *next)
3054{
3055#ifdef CONFIG_SMP
3056 /*
3057 * Claim the task as running, we do this before switching to it
3058 * such that any running task will have this set.
3059 */
3060 next->on_cpu = 1;
3061#endif
3062}
3063
3064static inline void finish_task(struct task_struct *prev)
3065{
3066#ifdef CONFIG_SMP
3067 /*
3068 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3069 * We must ensure this doesn't happen until the switch is completely
3070 * finished.
3071 *
3072 * In particular, the load of prev->state in finish_task_switch() must
3073 * happen before this.
3074 *
3075 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3076 */
3077 smp_store_release(&prev->on_cpu, 0);
3078#endif
3079}
3080
269d5992
PZ
3081static inline void
3082prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 3083{
269d5992
PZ
3084 /*
3085 * Since the runqueue lock will be released by the next
3086 * task (which is an invalid locking op but in the case
3087 * of the scheduler it's an obvious special-case), so we
3088 * do an early lockdep release here:
3089 */
3090 rq_unpin_lock(rq, rf);
5facae4f 3091 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 3092#ifdef CONFIG_DEBUG_SPINLOCK
3093 /* this is a valid case when another task releases the spinlock */
269d5992 3094 rq->lock.owner = next;
31cb1bc0 3095#endif
269d5992
PZ
3096}
3097
3098static inline void finish_lock_switch(struct rq *rq)
3099{
31cb1bc0 3100 /*
3101 * If we are tracking spinlock dependencies then we have to
3102 * fix up the runqueue lock - which gets 'carried over' from
3103 * prev into current:
3104 */
3105 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 3106 raw_spin_unlock_irq(&rq->lock);
3107}
3108
325ea10c
IM
3109/*
3110 * NOP if the arch has not defined these:
3111 */
3112
3113#ifndef prepare_arch_switch
3114# define prepare_arch_switch(next) do { } while (0)
3115#endif
3116
3117#ifndef finish_arch_post_lock_switch
3118# define finish_arch_post_lock_switch() do { } while (0)
3119#endif
3120
4866cde0
NP
3121/**
3122 * prepare_task_switch - prepare to switch tasks
3123 * @rq: the runqueue preparing to switch
421cee29 3124 * @prev: the current task that is being switched out
4866cde0
NP
3125 * @next: the task we are going to switch to.
3126 *
3127 * This is called with the rq lock held and interrupts off. It must
3128 * be paired with a subsequent finish_task_switch after the context
3129 * switch.
3130 *
3131 * prepare_task_switch sets up locking and calls architecture specific
3132 * hooks.
3133 */
e107be36
AK
3134static inline void
3135prepare_task_switch(struct rq *rq, struct task_struct *prev,
3136 struct task_struct *next)
4866cde0 3137{
0ed557aa 3138 kcov_prepare_switch(prev);
43148951 3139 sched_info_switch(rq, prev, next);
fe4b04fa 3140 perf_event_task_sched_out(prev, next);
d7822b1e 3141 rseq_preempt(prev);
e107be36 3142 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3143 prepare_task(next);
4866cde0
NP
3144 prepare_arch_switch(next);
3145}
3146
1da177e4
LT
3147/**
3148 * finish_task_switch - clean up after a task-switch
3149 * @prev: the thread we just switched away from.
3150 *
4866cde0
NP
3151 * finish_task_switch must be called after the context switch, paired
3152 * with a prepare_task_switch call before the context switch.
3153 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3154 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3155 *
3156 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3157 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3158 * with the lock held can cause deadlocks; see schedule() for
3159 * details.)
dfa50b60
ON
3160 *
3161 * The context switch have flipped the stack from under us and restored the
3162 * local variables which were saved when this task called schedule() in the
3163 * past. prev == current is still correct but we need to recalculate this_rq
3164 * because prev may have moved to another CPU.
1da177e4 3165 */
dfa50b60 3166static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3167 __releases(rq->lock)
3168{
dfa50b60 3169 struct rq *rq = this_rq();
1da177e4 3170 struct mm_struct *mm = rq->prev_mm;
55a101f8 3171 long prev_state;
1da177e4 3172
609ca066
PZ
3173 /*
3174 * The previous task will have left us with a preempt_count of 2
3175 * because it left us after:
3176 *
3177 * schedule()
3178 * preempt_disable(); // 1
3179 * __schedule()
3180 * raw_spin_lock_irq(&rq->lock) // 2
3181 *
3182 * Also, see FORK_PREEMPT_COUNT.
3183 */
e2bf1c4b
PZ
3184 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3185 "corrupted preempt_count: %s/%d/0x%x\n",
3186 current->comm, current->pid, preempt_count()))
3187 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3188
1da177e4
LT
3189 rq->prev_mm = NULL;
3190
3191 /*
3192 * A task struct has one reference for the use as "current".
c394cc9f 3193 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3194 * schedule one last time. The schedule call will never return, and
3195 * the scheduled task must drop that reference.
95913d97
PZ
3196 *
3197 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3198 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3199 * running on another CPU and we could rave with its RUNNING -> DEAD
3200 * transition, resulting in a double drop.
1da177e4 3201 */
55a101f8 3202 prev_state = prev->state;
bf9fae9f 3203 vtime_task_switch(prev);
a8d757ef 3204 perf_event_task_sched_in(prev, current);
31cb1bc0 3205 finish_task(prev);
3206 finish_lock_switch(rq);
01f23e16 3207 finish_arch_post_lock_switch();
0ed557aa 3208 kcov_finish_switch(current);
e8fa1362 3209
e107be36 3210 fire_sched_in_preempt_notifiers(current);
306e0604 3211 /*
70216e18
MD
3212 * When switching through a kernel thread, the loop in
3213 * membarrier_{private,global}_expedited() may have observed that
3214 * kernel thread and not issued an IPI. It is therefore possible to
3215 * schedule between user->kernel->user threads without passing though
3216 * switch_mm(). Membarrier requires a barrier after storing to
3217 * rq->curr, before returning to userspace, so provide them here:
3218 *
3219 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3220 * provided by mmdrop(),
3221 * - a sync_core for SYNC_CORE.
306e0604 3222 */
70216e18
MD
3223 if (mm) {
3224 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3225 mmdrop(mm);
70216e18 3226 }
1cef1150
PZ
3227 if (unlikely(prev_state == TASK_DEAD)) {
3228 if (prev->sched_class->task_dead)
3229 prev->sched_class->task_dead(prev);
68f24b08 3230
1cef1150
PZ
3231 /*
3232 * Remove function-return probe instances associated with this
3233 * task and put them back on the free list.
3234 */
3235 kprobe_flush_task(prev);
3236
3237 /* Task is done with its stack. */
3238 put_task_stack(prev);
3239
0ff7b2cf 3240 put_task_struct_rcu_user(prev);
c6fd91f0 3241 }
99e5ada9 3242
de734f89 3243 tick_nohz_task_switch();
dfa50b60 3244 return rq;
1da177e4
LT
3245}
3246
3f029d3c
GH
3247#ifdef CONFIG_SMP
3248
3f029d3c 3249/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3250static void __balance_callback(struct rq *rq)
3f029d3c 3251{
e3fca9e7
PZ
3252 struct callback_head *head, *next;
3253 void (*func)(struct rq *rq);
3254 unsigned long flags;
3f029d3c 3255
e3fca9e7
PZ
3256 raw_spin_lock_irqsave(&rq->lock, flags);
3257 head = rq->balance_callback;
3258 rq->balance_callback = NULL;
3259 while (head) {
3260 func = (void (*)(struct rq *))head->func;
3261 next = head->next;
3262 head->next = NULL;
3263 head = next;
3f029d3c 3264
e3fca9e7 3265 func(rq);
3f029d3c 3266 }
e3fca9e7
PZ
3267 raw_spin_unlock_irqrestore(&rq->lock, flags);
3268}
3269
3270static inline void balance_callback(struct rq *rq)
3271{
3272 if (unlikely(rq->balance_callback))
3273 __balance_callback(rq);
3f029d3c
GH
3274}
3275
3276#else
da19ab51 3277
e3fca9e7 3278static inline void balance_callback(struct rq *rq)
3f029d3c 3279{
1da177e4
LT
3280}
3281
3f029d3c
GH
3282#endif
3283
1da177e4
LT
3284/**
3285 * schedule_tail - first thing a freshly forked thread must call.
3286 * @prev: the thread we just switched away from.
3287 */
722a9f92 3288asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3289 __releases(rq->lock)
3290{
1a43a14a 3291 struct rq *rq;
da19ab51 3292
609ca066
PZ
3293 /*
3294 * New tasks start with FORK_PREEMPT_COUNT, see there and
3295 * finish_task_switch() for details.
3296 *
3297 * finish_task_switch() will drop rq->lock() and lower preempt_count
3298 * and the preempt_enable() will end up enabling preemption (on
3299 * PREEMPT_COUNT kernels).
3300 */
3301
dfa50b60 3302 rq = finish_task_switch(prev);
e3fca9e7 3303 balance_callback(rq);
1a43a14a 3304 preempt_enable();
70b97a7f 3305
1da177e4 3306 if (current->set_child_tid)
b488893a 3307 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3308
3309 calculate_sigpending();
1da177e4
LT
3310}
3311
3312/*
dfa50b60 3313 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3314 */
04936948 3315static __always_inline struct rq *
70b97a7f 3316context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3317 struct task_struct *next, struct rq_flags *rf)
1da177e4 3318{
e107be36 3319 prepare_task_switch(rq, prev, next);
fe4b04fa 3320
9226d125
ZA
3321 /*
3322 * For paravirt, this is coupled with an exit in switch_to to
3323 * combine the page table reload and the switch backend into
3324 * one hypercall.
3325 */
224101ed 3326 arch_start_context_switch(prev);
9226d125 3327
306e0604 3328 /*
139d025c
PZ
3329 * kernel -> kernel lazy + transfer active
3330 * user -> kernel lazy + mmgrab() active
3331 *
3332 * kernel -> user switch + mmdrop() active
3333 * user -> user switch
306e0604 3334 */
139d025c
PZ
3335 if (!next->mm) { // to kernel
3336 enter_lazy_tlb(prev->active_mm, next);
3337
3338 next->active_mm = prev->active_mm;
3339 if (prev->mm) // from user
3340 mmgrab(prev->active_mm);
3341 else
3342 prev->active_mm = NULL;
3343 } else { // to user
227a4aad 3344 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
3345 /*
3346 * sys_membarrier() requires an smp_mb() between setting
227a4aad 3347 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
3348 *
3349 * The below provides this either through switch_mm(), or in
3350 * case 'prev->active_mm == next->mm' through
3351 * finish_task_switch()'s mmdrop().
3352 */
139d025c 3353 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 3354
139d025c
PZ
3355 if (!prev->mm) { // from kernel
3356 /* will mmdrop() in finish_task_switch(). */
3357 rq->prev_mm = prev->active_mm;
3358 prev->active_mm = NULL;
3359 }
1da177e4 3360 }
92509b73 3361
cb42c9a3 3362 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3363
269d5992 3364 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3365
3366 /* Here we just switch the register state and the stack. */
3367 switch_to(prev, next, prev);
dd41f596 3368 barrier();
dfa50b60
ON
3369
3370 return finish_task_switch(prev);
1da177e4
LT
3371}
3372
3373/*
1c3e8264 3374 * nr_running and nr_context_switches:
1da177e4
LT
3375 *
3376 * externally visible scheduler statistics: current number of runnable
1c3e8264 3377 * threads, total number of context switches performed since bootup.
1da177e4
LT
3378 */
3379unsigned long nr_running(void)
3380{
3381 unsigned long i, sum = 0;
3382
3383 for_each_online_cpu(i)
3384 sum += cpu_rq(i)->nr_running;
3385
3386 return sum;
f711f609 3387}
1da177e4 3388
2ee507c4 3389/*
d1ccc66d 3390 * Check if only the current task is running on the CPU.
00cc1633
DD
3391 *
3392 * Caution: this function does not check that the caller has disabled
3393 * preemption, thus the result might have a time-of-check-to-time-of-use
3394 * race. The caller is responsible to use it correctly, for example:
3395 *
dfcb245e 3396 * - from a non-preemptible section (of course)
00cc1633
DD
3397 *
3398 * - from a thread that is bound to a single CPU
3399 *
3400 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3401 */
3402bool single_task_running(void)
3403{
00cc1633 3404 return raw_rq()->nr_running == 1;
2ee507c4
TC
3405}
3406EXPORT_SYMBOL(single_task_running);
3407
1da177e4 3408unsigned long long nr_context_switches(void)
46cb4b7c 3409{
cc94abfc
SR
3410 int i;
3411 unsigned long long sum = 0;
46cb4b7c 3412
0a945022 3413 for_each_possible_cpu(i)
1da177e4 3414 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3415
1da177e4
LT
3416 return sum;
3417}
483b4ee6 3418
145d952a
DL
3419/*
3420 * Consumers of these two interfaces, like for example the cpuidle menu
3421 * governor, are using nonsensical data. Preferring shallow idle state selection
3422 * for a CPU that has IO-wait which might not even end up running the task when
3423 * it does become runnable.
3424 */
3425
3426unsigned long nr_iowait_cpu(int cpu)
3427{
3428 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3429}
3430
e33a9bba
TH
3431/*
3432 * IO-wait accounting, and how its mostly bollocks (on SMP).
3433 *
3434 * The idea behind IO-wait account is to account the idle time that we could
3435 * have spend running if it were not for IO. That is, if we were to improve the
3436 * storage performance, we'd have a proportional reduction in IO-wait time.
3437 *
3438 * This all works nicely on UP, where, when a task blocks on IO, we account
3439 * idle time as IO-wait, because if the storage were faster, it could've been
3440 * running and we'd not be idle.
3441 *
3442 * This has been extended to SMP, by doing the same for each CPU. This however
3443 * is broken.
3444 *
3445 * Imagine for instance the case where two tasks block on one CPU, only the one
3446 * CPU will have IO-wait accounted, while the other has regular idle. Even
3447 * though, if the storage were faster, both could've ran at the same time,
3448 * utilising both CPUs.
3449 *
3450 * This means, that when looking globally, the current IO-wait accounting on
3451 * SMP is a lower bound, by reason of under accounting.
3452 *
3453 * Worse, since the numbers are provided per CPU, they are sometimes
3454 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3455 * associated with any one particular CPU, it can wake to another CPU than it
3456 * blocked on. This means the per CPU IO-wait number is meaningless.
3457 *
3458 * Task CPU affinities can make all that even more 'interesting'.
3459 */
3460
1da177e4
LT
3461unsigned long nr_iowait(void)
3462{
3463 unsigned long i, sum = 0;
483b4ee6 3464
0a945022 3465 for_each_possible_cpu(i)
145d952a 3466 sum += nr_iowait_cpu(i);
46cb4b7c 3467
1da177e4
LT
3468 return sum;
3469}
483b4ee6 3470
dd41f596 3471#ifdef CONFIG_SMP
8a0be9ef 3472
46cb4b7c 3473/*
38022906
PZ
3474 * sched_exec - execve() is a valuable balancing opportunity, because at
3475 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3476 */
38022906 3477void sched_exec(void)
46cb4b7c 3478{
38022906 3479 struct task_struct *p = current;
1da177e4 3480 unsigned long flags;
0017d735 3481 int dest_cpu;
46cb4b7c 3482
8f42ced9 3483 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3484 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3485 if (dest_cpu == smp_processor_id())
3486 goto unlock;
38022906 3487
8f42ced9 3488 if (likely(cpu_active(dest_cpu))) {
969c7921 3489 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3490
8f42ced9
PZ
3491 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3492 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3493 return;
3494 }
0017d735 3495unlock:
8f42ced9 3496 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3497}
dd41f596 3498
1da177e4
LT
3499#endif
3500
1da177e4 3501DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3502DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3503
3504EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3505EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3506
6075620b
GG
3507/*
3508 * The function fair_sched_class.update_curr accesses the struct curr
3509 * and its field curr->exec_start; when called from task_sched_runtime(),
3510 * we observe a high rate of cache misses in practice.
3511 * Prefetching this data results in improved performance.
3512 */
3513static inline void prefetch_curr_exec_start(struct task_struct *p)
3514{
3515#ifdef CONFIG_FAIR_GROUP_SCHED
3516 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3517#else
3518 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3519#endif
3520 prefetch(curr);
3521 prefetch(&curr->exec_start);
3522}
3523
c5f8d995
HS
3524/*
3525 * Return accounted runtime for the task.
3526 * In case the task is currently running, return the runtime plus current's
3527 * pending runtime that have not been accounted yet.
3528 */
3529unsigned long long task_sched_runtime(struct task_struct *p)
3530{
eb580751 3531 struct rq_flags rf;
c5f8d995 3532 struct rq *rq;
6e998916 3533 u64 ns;
c5f8d995 3534
911b2898
PZ
3535#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3536 /*
97fb7a0a 3537 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3538 * So we have a optimization chance when the task's delta_exec is 0.
3539 * Reading ->on_cpu is racy, but this is ok.
3540 *
d1ccc66d
IM
3541 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3542 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3543 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3544 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3545 * been accounted, so we're correct here as well.
911b2898 3546 */
da0c1e65 3547 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3548 return p->se.sum_exec_runtime;
3549#endif
3550
eb580751 3551 rq = task_rq_lock(p, &rf);
6e998916
SG
3552 /*
3553 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3554 * project cycles that may never be accounted to this
3555 * thread, breaking clock_gettime().
3556 */
3557 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3558 prefetch_curr_exec_start(p);
6e998916
SG
3559 update_rq_clock(rq);
3560 p->sched_class->update_curr(rq);
3561 }
3562 ns = p->se.sum_exec_runtime;
eb580751 3563 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3564
3565 return ns;
3566}
48f24c4d 3567
14533a16
IM
3568DEFINE_PER_CPU(unsigned long, thermal_pressure);
3569
3570void arch_set_thermal_pressure(struct cpumask *cpus,
3571 unsigned long th_pressure)
3572{
3573 int cpu;
3574
3575 for_each_cpu(cpu, cpus)
3576 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3577}
3578
7835b98b
CL
3579/*
3580 * This function gets called by the timer code, with HZ frequency.
3581 * We call it with interrupts disabled.
7835b98b
CL
3582 */
3583void scheduler_tick(void)
3584{
7835b98b
CL
3585 int cpu = smp_processor_id();
3586 struct rq *rq = cpu_rq(cpu);
dd41f596 3587 struct task_struct *curr = rq->curr;
8a8c69c3 3588 struct rq_flags rf;
b4eccf5f 3589 unsigned long thermal_pressure;
3e51f33f 3590
1567c3e3 3591 arch_scale_freq_tick();
3e51f33f 3592 sched_clock_tick();
dd41f596 3593
8a8c69c3
PZ
3594 rq_lock(rq, &rf);
3595
3e51f33f 3596 update_rq_clock(rq);
b4eccf5f 3597 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 3598 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 3599 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3600 calc_global_load_tick(rq);
eb414681 3601 psi_task_tick(rq);
8a8c69c3
PZ
3602
3603 rq_unlock(rq, &rf);
7835b98b 3604
e9d2b064 3605 perf_event_task_tick();
e220d2dc 3606
e418e1c2 3607#ifdef CONFIG_SMP
6eb57e0d 3608 rq->idle_balance = idle_cpu(cpu);
7caff66f 3609 trigger_load_balance(rq);
e418e1c2 3610#endif
1da177e4
LT
3611}
3612
265f22a9 3613#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3614
3615struct tick_work {
3616 int cpu;
b55bd585 3617 atomic_t state;
d84b3131
FW
3618 struct delayed_work work;
3619};
b55bd585
PM
3620/* Values for ->state, see diagram below. */
3621#define TICK_SCHED_REMOTE_OFFLINE 0
3622#define TICK_SCHED_REMOTE_OFFLINING 1
3623#define TICK_SCHED_REMOTE_RUNNING 2
3624
3625/*
3626 * State diagram for ->state:
3627 *
3628 *
3629 * TICK_SCHED_REMOTE_OFFLINE
3630 * | ^
3631 * | |
3632 * | | sched_tick_remote()
3633 * | |
3634 * | |
3635 * +--TICK_SCHED_REMOTE_OFFLINING
3636 * | ^
3637 * | |
3638 * sched_tick_start() | | sched_tick_stop()
3639 * | |
3640 * V |
3641 * TICK_SCHED_REMOTE_RUNNING
3642 *
3643 *
3644 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3645 * and sched_tick_start() are happy to leave the state in RUNNING.
3646 */
d84b3131
FW
3647
3648static struct tick_work __percpu *tick_work_cpu;
3649
3650static void sched_tick_remote(struct work_struct *work)
3651{
3652 struct delayed_work *dwork = to_delayed_work(work);
3653 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3654 int cpu = twork->cpu;
3655 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3656 struct task_struct *curr;
d84b3131 3657 struct rq_flags rf;
d9c0ffca 3658 u64 delta;
b55bd585 3659 int os;
d84b3131
FW
3660
3661 /*
3662 * Handle the tick only if it appears the remote CPU is running in full
3663 * dynticks mode. The check is racy by nature, but missing a tick or
3664 * having one too much is no big deal because the scheduler tick updates
3665 * statistics and checks timeslices in a time-independent way, regardless
3666 * of when exactly it is running.
3667 */
488603b8 3668 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 3669 goto out_requeue;
d84b3131 3670
d9c0ffca
FW
3671 rq_lock_irq(rq, &rf);
3672 curr = rq->curr;
488603b8 3673 if (cpu_is_offline(cpu))
d9c0ffca 3674 goto out_unlock;
d84b3131 3675
d9c0ffca 3676 update_rq_clock(rq);
d9c0ffca 3677
488603b8
SW
3678 if (!is_idle_task(curr)) {
3679 /*
3680 * Make sure the next tick runs within a reasonable
3681 * amount of time.
3682 */
3683 delta = rq_clock_task(rq) - curr->se.exec_start;
3684 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3685 }
d9c0ffca
FW
3686 curr->sched_class->task_tick(rq, curr, 0);
3687
ebc0f83c 3688 calc_load_nohz_remote(rq);
d9c0ffca
FW
3689out_unlock:
3690 rq_unlock_irq(rq, &rf);
d9c0ffca 3691out_requeue:
ebc0f83c 3692
d84b3131
FW
3693 /*
3694 * Run the remote tick once per second (1Hz). This arbitrary
3695 * frequency is large enough to avoid overload but short enough
b55bd585
PM
3696 * to keep scheduler internal stats reasonably up to date. But
3697 * first update state to reflect hotplug activity if required.
d84b3131 3698 */
b55bd585
PM
3699 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3700 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3701 if (os == TICK_SCHED_REMOTE_RUNNING)
3702 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
3703}
3704
3705static void sched_tick_start(int cpu)
3706{
b55bd585 3707 int os;
d84b3131
FW
3708 struct tick_work *twork;
3709
3710 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3711 return;
3712
3713 WARN_ON_ONCE(!tick_work_cpu);
3714
3715 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
3716 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3717 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3718 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3719 twork->cpu = cpu;
3720 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3721 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3722 }
d84b3131
FW
3723}
3724
3725#ifdef CONFIG_HOTPLUG_CPU
3726static void sched_tick_stop(int cpu)
3727{
3728 struct tick_work *twork;
b55bd585 3729 int os;
d84b3131
FW
3730
3731 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3732 return;
3733
3734 WARN_ON_ONCE(!tick_work_cpu);
3735
3736 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
3737 /* There cannot be competing actions, but don't rely on stop-machine. */
3738 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3739 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3740 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
3741}
3742#endif /* CONFIG_HOTPLUG_CPU */
3743
3744int __init sched_tick_offload_init(void)
3745{
3746 tick_work_cpu = alloc_percpu(struct tick_work);
3747 BUG_ON(!tick_work_cpu);
d84b3131
FW
3748 return 0;
3749}
3750
3751#else /* !CONFIG_NO_HZ_FULL */
3752static inline void sched_tick_start(int cpu) { }
3753static inline void sched_tick_stop(int cpu) { }
265f22a9 3754#endif
1da177e4 3755
c1a280b6 3756#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3757 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3758/*
3759 * If the value passed in is equal to the current preempt count
3760 * then we just disabled preemption. Start timing the latency.
3761 */
3762static inline void preempt_latency_start(int val)
3763{
3764 if (preempt_count() == val) {
3765 unsigned long ip = get_lock_parent_ip();
3766#ifdef CONFIG_DEBUG_PREEMPT
3767 current->preempt_disable_ip = ip;
3768#endif
3769 trace_preempt_off(CALLER_ADDR0, ip);
3770 }
3771}
7e49fcce 3772
edafe3a5 3773void preempt_count_add(int val)
1da177e4 3774{
6cd8a4bb 3775#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3776 /*
3777 * Underflow?
3778 */
9a11b49a
IM
3779 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3780 return;
6cd8a4bb 3781#endif
bdb43806 3782 __preempt_count_add(val);
6cd8a4bb 3783#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3784 /*
3785 * Spinlock count overflowing soon?
3786 */
33859f7f
MOS
3787 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3788 PREEMPT_MASK - 10);
6cd8a4bb 3789#endif
47252cfb 3790 preempt_latency_start(val);
1da177e4 3791}
bdb43806 3792EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3793NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3794
47252cfb
SR
3795/*
3796 * If the value passed in equals to the current preempt count
3797 * then we just enabled preemption. Stop timing the latency.
3798 */
3799static inline void preempt_latency_stop(int val)
3800{
3801 if (preempt_count() == val)
3802 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3803}
3804
edafe3a5 3805void preempt_count_sub(int val)
1da177e4 3806{
6cd8a4bb 3807#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3808 /*
3809 * Underflow?
3810 */
01e3eb82 3811 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3812 return;
1da177e4
LT
3813 /*
3814 * Is the spinlock portion underflowing?
3815 */
9a11b49a
IM
3816 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3817 !(preempt_count() & PREEMPT_MASK)))
3818 return;
6cd8a4bb 3819#endif
9a11b49a 3820
47252cfb 3821 preempt_latency_stop(val);
bdb43806 3822 __preempt_count_sub(val);
1da177e4 3823}
bdb43806 3824EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3825NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3826
47252cfb
SR
3827#else
3828static inline void preempt_latency_start(int val) { }
3829static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3830#endif
3831
59ddbcb2
IM
3832static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3833{
3834#ifdef CONFIG_DEBUG_PREEMPT
3835 return p->preempt_disable_ip;
3836#else
3837 return 0;
3838#endif
3839}
3840
1da177e4 3841/*
dd41f596 3842 * Print scheduling while atomic bug:
1da177e4 3843 */
dd41f596 3844static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3845{
d1c6d149
VN
3846 /* Save this before calling printk(), since that will clobber it */
3847 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3848
664dfa65
DJ
3849 if (oops_in_progress)
3850 return;
3851
3df0fc5b
PZ
3852 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3853 prev->comm, prev->pid, preempt_count());
838225b4 3854
dd41f596 3855 debug_show_held_locks(prev);
e21f5b15 3856 print_modules();
dd41f596
IM
3857 if (irqs_disabled())
3858 print_irqtrace_events(prev);
d1c6d149
VN
3859 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3860 && in_atomic_preempt_off()) {
8f47b187 3861 pr_err("Preemption disabled at:");
d1c6d149 3862 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3863 pr_cont("\n");
3864 }
748c7201
DBO
3865 if (panic_on_warn)
3866 panic("scheduling while atomic\n");
3867
6135fc1e 3868 dump_stack();
373d4d09 3869 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3870}
1da177e4 3871
dd41f596
IM
3872/*
3873 * Various schedule()-time debugging checks and statistics:
3874 */
312364f3 3875static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 3876{
0d9e2632 3877#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3878 if (task_stack_end_corrupted(prev))
3879 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3880#endif
b99def8b 3881
312364f3
DV
3882#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3883 if (!preempt && prev->state && prev->non_block_count) {
3884 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3885 prev->comm, prev->pid, prev->non_block_count);
3886 dump_stack();
3887 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3888 }
3889#endif
3890
1dc0fffc 3891 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3892 __schedule_bug(prev);
1dc0fffc
PZ
3893 preempt_count_set(PREEMPT_DISABLED);
3894 }
b3fbab05 3895 rcu_sleep_check();
dd41f596 3896
1da177e4
LT
3897 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3898
ae92882e 3899 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3900}
3901
3902/*
3903 * Pick up the highest-prio task:
3904 */
3905static inline struct task_struct *
d8ac8971 3906pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3907{
49ee5768 3908 const struct sched_class *class;
dd41f596 3909 struct task_struct *p;
1da177e4
LT
3910
3911 /*
0ba87bb2
PZ
3912 * Optimization: we know that if all tasks are in the fair class we can
3913 * call that function directly, but only if the @prev task wasn't of a
3914 * higher scheduling class, because otherwise those loose the
3915 * opportunity to pull in more work from other CPUs.
1da177e4 3916 */
0ba87bb2
PZ
3917 if (likely((prev->sched_class == &idle_sched_class ||
3918 prev->sched_class == &fair_sched_class) &&
3919 rq->nr_running == rq->cfs.h_nr_running)) {
3920
5d7d6056 3921 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 3922 if (unlikely(p == RETRY_TASK))
67692435 3923 goto restart;
6ccdc84b 3924
d1ccc66d 3925 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 3926 if (!p) {
f488e105 3927 put_prev_task(rq, prev);
98c2f700 3928 p = pick_next_task_idle(rq);
f488e105 3929 }
6ccdc84b
PZ
3930
3931 return p;
1da177e4
LT
3932 }
3933
67692435 3934restart:
6e2df058 3935#ifdef CONFIG_SMP
67692435 3936 /*
6e2df058
PZ
3937 * We must do the balancing pass before put_next_task(), such
3938 * that when we release the rq->lock the task is in the same
3939 * state as before we took rq->lock.
3940 *
3941 * We can terminate the balance pass as soon as we know there is
3942 * a runnable task of @class priority or higher.
67692435 3943 */
6e2df058
PZ
3944 for_class_range(class, prev->sched_class, &idle_sched_class) {
3945 if (class->balance(rq, prev, rf))
3946 break;
3947 }
3948#endif
3949
3950 put_prev_task(rq, prev);
67692435 3951
34f971f6 3952 for_each_class(class) {
98c2f700 3953 p = class->pick_next_task(rq);
67692435 3954 if (p)
dd41f596 3955 return p;
dd41f596 3956 }
34f971f6 3957
d1ccc66d
IM
3958 /* The idle class should always have a runnable task: */
3959 BUG();
dd41f596 3960}
1da177e4 3961
dd41f596 3962/*
c259e01a 3963 * __schedule() is the main scheduler function.
edde96ea
PE
3964 *
3965 * The main means of driving the scheduler and thus entering this function are:
3966 *
3967 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3968 *
3969 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3970 * paths. For example, see arch/x86/entry_64.S.
3971 *
3972 * To drive preemption between tasks, the scheduler sets the flag in timer
3973 * interrupt handler scheduler_tick().
3974 *
3975 * 3. Wakeups don't really cause entry into schedule(). They add a
3976 * task to the run-queue and that's it.
3977 *
3978 * Now, if the new task added to the run-queue preempts the current
3979 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3980 * called on the nearest possible occasion:
3981 *
c1a280b6 3982 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
3983 *
3984 * - in syscall or exception context, at the next outmost
3985 * preempt_enable(). (this might be as soon as the wake_up()'s
3986 * spin_unlock()!)
3987 *
3988 * - in IRQ context, return from interrupt-handler to
3989 * preemptible context
3990 *
c1a280b6 3991 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
3992 * then at the next:
3993 *
3994 * - cond_resched() call
3995 * - explicit schedule() call
3996 * - return from syscall or exception to user-space
3997 * - return from interrupt-handler to user-space
bfd9b2b5 3998 *
b30f0e3f 3999 * WARNING: must be called with preemption disabled!
dd41f596 4000 */
499d7955 4001static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4002{
4003 struct task_struct *prev, *next;
67ca7bde 4004 unsigned long *switch_count;
d8ac8971 4005 struct rq_flags rf;
dd41f596 4006 struct rq *rq;
31656519 4007 int cpu;
dd41f596 4008
dd41f596
IM
4009 cpu = smp_processor_id();
4010 rq = cpu_rq(cpu);
dd41f596 4011 prev = rq->curr;
dd41f596 4012
312364f3 4013 schedule_debug(prev, preempt);
1da177e4 4014
31656519 4015 if (sched_feat(HRTICK))
f333fdc9 4016 hrtick_clear(rq);
8f4d37ec 4017
46a5d164 4018 local_irq_disable();
bcbfdd01 4019 rcu_note_context_switch(preempt);
46a5d164 4020
e0acd0a6
ON
4021 /*
4022 * Make sure that signal_pending_state()->signal_pending() below
4023 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4024 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
4025 *
4026 * The membarrier system call requires a full memory barrier
4027 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4028 */
8a8c69c3 4029 rq_lock(rq, &rf);
d89e588c 4030 smp_mb__after_spinlock();
1da177e4 4031
d1ccc66d
IM
4032 /* Promote REQ to ACT */
4033 rq->clock_update_flags <<= 1;
bce4dc80 4034 update_rq_clock(rq);
9edfbfed 4035
246d86b5 4036 switch_count = &prev->nivcsw;
fc13aeba 4037 if (!preempt && prev->state) {
34ec35ad 4038 if (signal_pending_state(prev->state, prev)) {
1da177e4 4039 prev->state = TASK_RUNNING;
21aa9af0 4040 } else {
bce4dc80 4041 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 4042
e33a9bba
TH
4043 if (prev->in_iowait) {
4044 atomic_inc(&rq->nr_iowait);
4045 delayacct_blkio_start();
4046 }
21aa9af0 4047 }
dd41f596 4048 switch_count = &prev->nvcsw;
1da177e4
LT
4049 }
4050
d8ac8971 4051 next = pick_next_task(rq, prev, &rf);
f26f9aff 4052 clear_tsk_need_resched(prev);
f27dde8d 4053 clear_preempt_need_resched();
1da177e4 4054
1da177e4 4055 if (likely(prev != next)) {
1da177e4 4056 rq->nr_switches++;
5311a98f
EB
4057 /*
4058 * RCU users of rcu_dereference(rq->curr) may not see
4059 * changes to task_struct made by pick_next_task().
4060 */
4061 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
4062 /*
4063 * The membarrier system call requires each architecture
4064 * to have a full memory barrier after updating
306e0604
MD
4065 * rq->curr, before returning to user-space.
4066 *
4067 * Here are the schemes providing that barrier on the
4068 * various architectures:
4069 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4070 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4071 * - finish_lock_switch() for weakly-ordered
4072 * architectures where spin_unlock is a full barrier,
4073 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4074 * is a RELEASE barrier),
22e4ebb9 4075 */
1da177e4
LT
4076 ++*switch_count;
4077
b05e75d6
JW
4078 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4079
c73464b1 4080 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
4081
4082 /* Also unlocks the rq: */
4083 rq = context_switch(rq, prev, next, &rf);
cbce1a68 4084 } else {
cb42c9a3 4085 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 4086 rq_unlock_irq(rq, &rf);
cbce1a68 4087 }
1da177e4 4088
e3fca9e7 4089 balance_callback(rq);
1da177e4 4090}
c259e01a 4091
9af6528e
PZ
4092void __noreturn do_task_dead(void)
4093{
d1ccc66d 4094 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 4095 set_special_state(TASK_DEAD);
d1ccc66d
IM
4096
4097 /* Tell freezer to ignore us: */
4098 current->flags |= PF_NOFREEZE;
4099
9af6528e
PZ
4100 __schedule(false);
4101 BUG();
d1ccc66d
IM
4102
4103 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 4104 for (;;)
d1ccc66d 4105 cpu_relax();
9af6528e
PZ
4106}
4107
9c40cef2
TG
4108static inline void sched_submit_work(struct task_struct *tsk)
4109{
b0fdc013 4110 if (!tsk->state)
9c40cef2 4111 return;
6d25be57
TG
4112
4113 /*
4114 * If a worker went to sleep, notify and ask workqueue whether
4115 * it wants to wake up a task to maintain concurrency.
4116 * As this function is called inside the schedule() context,
4117 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
4118 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4119 * requires it.
6d25be57 4120 */
771b53d0 4121 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 4122 preempt_disable();
771b53d0
JA
4123 if (tsk->flags & PF_WQ_WORKER)
4124 wq_worker_sleeping(tsk);
4125 else
4126 io_wq_worker_sleeping(tsk);
6d25be57
TG
4127 preempt_enable_no_resched();
4128 }
4129
b0fdc013
SAS
4130 if (tsk_is_pi_blocked(tsk))
4131 return;
4132
9c40cef2
TG
4133 /*
4134 * If we are going to sleep and we have plugged IO queued,
4135 * make sure to submit it to avoid deadlocks.
4136 */
4137 if (blk_needs_flush_plug(tsk))
4138 blk_schedule_flush_plug(tsk);
4139}
4140
6d25be57
TG
4141static void sched_update_worker(struct task_struct *tsk)
4142{
771b53d0
JA
4143 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4144 if (tsk->flags & PF_WQ_WORKER)
4145 wq_worker_running(tsk);
4146 else
4147 io_wq_worker_running(tsk);
4148 }
6d25be57
TG
4149}
4150
722a9f92 4151asmlinkage __visible void __sched schedule(void)
c259e01a 4152{
9c40cef2
TG
4153 struct task_struct *tsk = current;
4154
4155 sched_submit_work(tsk);
bfd9b2b5 4156 do {
b30f0e3f 4157 preempt_disable();
fc13aeba 4158 __schedule(false);
b30f0e3f 4159 sched_preempt_enable_no_resched();
bfd9b2b5 4160 } while (need_resched());
6d25be57 4161 sched_update_worker(tsk);
c259e01a 4162}
1da177e4
LT
4163EXPORT_SYMBOL(schedule);
4164
8663effb
SRV
4165/*
4166 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4167 * state (have scheduled out non-voluntarily) by making sure that all
4168 * tasks have either left the run queue or have gone into user space.
4169 * As idle tasks do not do either, they must not ever be preempted
4170 * (schedule out non-voluntarily).
4171 *
4172 * schedule_idle() is similar to schedule_preempt_disable() except that it
4173 * never enables preemption because it does not call sched_submit_work().
4174 */
4175void __sched schedule_idle(void)
4176{
4177 /*
4178 * As this skips calling sched_submit_work(), which the idle task does
4179 * regardless because that function is a nop when the task is in a
4180 * TASK_RUNNING state, make sure this isn't used someplace that the
4181 * current task can be in any other state. Note, idle is always in the
4182 * TASK_RUNNING state.
4183 */
4184 WARN_ON_ONCE(current->state);
4185 do {
4186 __schedule(false);
4187 } while (need_resched());
4188}
4189
91d1aa43 4190#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 4191asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
4192{
4193 /*
4194 * If we come here after a random call to set_need_resched(),
4195 * or we have been woken up remotely but the IPI has not yet arrived,
4196 * we haven't yet exited the RCU idle mode. Do it here manually until
4197 * we find a better solution.
7cc78f8f
AL
4198 *
4199 * NB: There are buggy callers of this function. Ideally we
c467ea76 4200 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 4201 * too frequently to make sense yet.
20ab65e3 4202 */
7cc78f8f 4203 enum ctx_state prev_state = exception_enter();
20ab65e3 4204 schedule();
7cc78f8f 4205 exception_exit(prev_state);
20ab65e3
FW
4206}
4207#endif
4208
c5491ea7
TG
4209/**
4210 * schedule_preempt_disabled - called with preemption disabled
4211 *
4212 * Returns with preemption disabled. Note: preempt_count must be 1
4213 */
4214void __sched schedule_preempt_disabled(void)
4215{
ba74c144 4216 sched_preempt_enable_no_resched();
c5491ea7
TG
4217 schedule();
4218 preempt_disable();
4219}
4220
06b1f808 4221static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
4222{
4223 do {
47252cfb
SR
4224 /*
4225 * Because the function tracer can trace preempt_count_sub()
4226 * and it also uses preempt_enable/disable_notrace(), if
4227 * NEED_RESCHED is set, the preempt_enable_notrace() called
4228 * by the function tracer will call this function again and
4229 * cause infinite recursion.
4230 *
4231 * Preemption must be disabled here before the function
4232 * tracer can trace. Break up preempt_disable() into two
4233 * calls. One to disable preemption without fear of being
4234 * traced. The other to still record the preemption latency,
4235 * which can also be traced by the function tracer.
4236 */
499d7955 4237 preempt_disable_notrace();
47252cfb 4238 preempt_latency_start(1);
fc13aeba 4239 __schedule(true);
47252cfb 4240 preempt_latency_stop(1);
499d7955 4241 preempt_enable_no_resched_notrace();
a18b5d01
FW
4242
4243 /*
4244 * Check again in case we missed a preemption opportunity
4245 * between schedule and now.
4246 */
a18b5d01
FW
4247 } while (need_resched());
4248}
4249
c1a280b6 4250#ifdef CONFIG_PREEMPTION
1da177e4 4251/*
a49b4f40
VS
4252 * This is the entry point to schedule() from in-kernel preemption
4253 * off of preempt_enable.
1da177e4 4254 */
722a9f92 4255asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 4256{
1da177e4
LT
4257 /*
4258 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4259 * we do not want to preempt the current task. Just return..
1da177e4 4260 */
fbb00b56 4261 if (likely(!preemptible()))
1da177e4
LT
4262 return;
4263
a18b5d01 4264 preempt_schedule_common();
1da177e4 4265}
376e2424 4266NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4267EXPORT_SYMBOL(preempt_schedule);
009f60e2 4268
009f60e2 4269/**
4eaca0a8 4270 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4271 *
4272 * The tracing infrastructure uses preempt_enable_notrace to prevent
4273 * recursion and tracing preempt enabling caused by the tracing
4274 * infrastructure itself. But as tracing can happen in areas coming
4275 * from userspace or just about to enter userspace, a preempt enable
4276 * can occur before user_exit() is called. This will cause the scheduler
4277 * to be called when the system is still in usermode.
4278 *
4279 * To prevent this, the preempt_enable_notrace will use this function
4280 * instead of preempt_schedule() to exit user context if needed before
4281 * calling the scheduler.
4282 */
4eaca0a8 4283asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4284{
4285 enum ctx_state prev_ctx;
4286
4287 if (likely(!preemptible()))
4288 return;
4289
4290 do {
47252cfb
SR
4291 /*
4292 * Because the function tracer can trace preempt_count_sub()
4293 * and it also uses preempt_enable/disable_notrace(), if
4294 * NEED_RESCHED is set, the preempt_enable_notrace() called
4295 * by the function tracer will call this function again and
4296 * cause infinite recursion.
4297 *
4298 * Preemption must be disabled here before the function
4299 * tracer can trace. Break up preempt_disable() into two
4300 * calls. One to disable preemption without fear of being
4301 * traced. The other to still record the preemption latency,
4302 * which can also be traced by the function tracer.
4303 */
3d8f74dd 4304 preempt_disable_notrace();
47252cfb 4305 preempt_latency_start(1);
009f60e2
ON
4306 /*
4307 * Needs preempt disabled in case user_exit() is traced
4308 * and the tracer calls preempt_enable_notrace() causing
4309 * an infinite recursion.
4310 */
4311 prev_ctx = exception_enter();
fc13aeba 4312 __schedule(true);
009f60e2
ON
4313 exception_exit(prev_ctx);
4314
47252cfb 4315 preempt_latency_stop(1);
3d8f74dd 4316 preempt_enable_no_resched_notrace();
009f60e2
ON
4317 } while (need_resched());
4318}
4eaca0a8 4319EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4320
c1a280b6 4321#endif /* CONFIG_PREEMPTION */
1da177e4
LT
4322
4323/*
a49b4f40 4324 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
4325 * off of irq context.
4326 * Note, that this is called and return with irqs disabled. This will
4327 * protect us against recursive calling from irq.
4328 */
722a9f92 4329asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4330{
b22366cd 4331 enum ctx_state prev_state;
6478d880 4332
2ed6e34f 4333 /* Catch callers which need to be fixed */
f27dde8d 4334 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4335
b22366cd
FW
4336 prev_state = exception_enter();
4337
3a5c359a 4338 do {
3d8f74dd 4339 preempt_disable();
3a5c359a 4340 local_irq_enable();
fc13aeba 4341 __schedule(true);
3a5c359a 4342 local_irq_disable();
3d8f74dd 4343 sched_preempt_enable_no_resched();
5ed0cec0 4344 } while (need_resched());
b22366cd
FW
4345
4346 exception_exit(prev_state);
1da177e4
LT
4347}
4348
ac6424b9 4349int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4350 void *key)
1da177e4 4351{
63859d4f 4352 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4353}
1da177e4
LT
4354EXPORT_SYMBOL(default_wake_function);
4355
b29739f9
IM
4356#ifdef CONFIG_RT_MUTEXES
4357
acd58620
PZ
4358static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4359{
4360 if (pi_task)
4361 prio = min(prio, pi_task->prio);
4362
4363 return prio;
4364}
4365
4366static inline int rt_effective_prio(struct task_struct *p, int prio)
4367{
4368 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4369
4370 return __rt_effective_prio(pi_task, prio);
4371}
4372
b29739f9
IM
4373/*
4374 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4375 * @p: task to boost
4376 * @pi_task: donor task
b29739f9
IM
4377 *
4378 * This function changes the 'effective' priority of a task. It does
4379 * not touch ->normal_prio like __setscheduler().
4380 *
c365c292
TG
4381 * Used by the rt_mutex code to implement priority inheritance
4382 * logic. Call site only calls if the priority of the task changed.
b29739f9 4383 */
acd58620 4384void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4385{
acd58620 4386 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4387 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4388 const struct sched_class *prev_class;
eb580751
PZ
4389 struct rq_flags rf;
4390 struct rq *rq;
b29739f9 4391
acd58620
PZ
4392 /* XXX used to be waiter->prio, not waiter->task->prio */
4393 prio = __rt_effective_prio(pi_task, p->normal_prio);
4394
4395 /*
4396 * If nothing changed; bail early.
4397 */
4398 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4399 return;
b29739f9 4400
eb580751 4401 rq = __task_rq_lock(p, &rf);
80f5c1b8 4402 update_rq_clock(rq);
acd58620
PZ
4403 /*
4404 * Set under pi_lock && rq->lock, such that the value can be used under
4405 * either lock.
4406 *
4407 * Note that there is loads of tricky to make this pointer cache work
4408 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4409 * ensure a task is de-boosted (pi_task is set to NULL) before the
4410 * task is allowed to run again (and can exit). This ensures the pointer
4411 * points to a blocked task -- which guaratees the task is present.
4412 */
4413 p->pi_top_task = pi_task;
4414
4415 /*
4416 * For FIFO/RR we only need to set prio, if that matches we're done.
4417 */
4418 if (prio == p->prio && !dl_prio(prio))
4419 goto out_unlock;
b29739f9 4420
1c4dd99b
TG
4421 /*
4422 * Idle task boosting is a nono in general. There is one
4423 * exception, when PREEMPT_RT and NOHZ is active:
4424 *
4425 * The idle task calls get_next_timer_interrupt() and holds
4426 * the timer wheel base->lock on the CPU and another CPU wants
4427 * to access the timer (probably to cancel it). We can safely
4428 * ignore the boosting request, as the idle CPU runs this code
4429 * with interrupts disabled and will complete the lock
4430 * protected section without being interrupted. So there is no
4431 * real need to boost.
4432 */
4433 if (unlikely(p == rq->idle)) {
4434 WARN_ON(p != rq->curr);
4435 WARN_ON(p->pi_blocked_on);
4436 goto out_unlock;
4437 }
4438
b91473ff 4439 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4440 oldprio = p->prio;
ff77e468
PZ
4441
4442 if (oldprio == prio)
4443 queue_flag &= ~DEQUEUE_MOVE;
4444
83ab0aa0 4445 prev_class = p->sched_class;
da0c1e65 4446 queued = task_on_rq_queued(p);
051a1d1a 4447 running = task_current(rq, p);
da0c1e65 4448 if (queued)
ff77e468 4449 dequeue_task(rq, p, queue_flag);
0e1f3483 4450 if (running)
f3cd1c4e 4451 put_prev_task(rq, p);
dd41f596 4452
2d3d891d
DF
4453 /*
4454 * Boosting condition are:
4455 * 1. -rt task is running and holds mutex A
4456 * --> -dl task blocks on mutex A
4457 *
4458 * 2. -dl task is running and holds mutex A
4459 * --> -dl task blocks on mutex A and could preempt the
4460 * running task
4461 */
4462 if (dl_prio(prio)) {
466af29b
ON
4463 if (!dl_prio(p->normal_prio) ||
4464 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4465 p->dl.dl_boosted = 1;
ff77e468 4466 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4467 } else
4468 p->dl.dl_boosted = 0;
aab03e05 4469 p->sched_class = &dl_sched_class;
2d3d891d
DF
4470 } else if (rt_prio(prio)) {
4471 if (dl_prio(oldprio))
4472 p->dl.dl_boosted = 0;
4473 if (oldprio < prio)
ff77e468 4474 queue_flag |= ENQUEUE_HEAD;
dd41f596 4475 p->sched_class = &rt_sched_class;
2d3d891d
DF
4476 } else {
4477 if (dl_prio(oldprio))
4478 p->dl.dl_boosted = 0;
746db944
BS
4479 if (rt_prio(oldprio))
4480 p->rt.timeout = 0;
dd41f596 4481 p->sched_class = &fair_sched_class;
2d3d891d 4482 }
dd41f596 4483
b29739f9
IM
4484 p->prio = prio;
4485
da0c1e65 4486 if (queued)
ff77e468 4487 enqueue_task(rq, p, queue_flag);
a399d233 4488 if (running)
03b7fad1 4489 set_next_task(rq, p);
cb469845 4490
da7a735e 4491 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4492out_unlock:
d1ccc66d
IM
4493 /* Avoid rq from going away on us: */
4494 preempt_disable();
eb580751 4495 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4496
4497 balance_callback(rq);
4498 preempt_enable();
b29739f9 4499}
acd58620
PZ
4500#else
4501static inline int rt_effective_prio(struct task_struct *p, int prio)
4502{
4503 return prio;
4504}
b29739f9 4505#endif
d50dde5a 4506
36c8b586 4507void set_user_nice(struct task_struct *p, long nice)
1da177e4 4508{
49bd21ef 4509 bool queued, running;
53a23364 4510 int old_prio;
eb580751 4511 struct rq_flags rf;
70b97a7f 4512 struct rq *rq;
1da177e4 4513
75e45d51 4514 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4515 return;
4516 /*
4517 * We have to be careful, if called from sys_setpriority(),
4518 * the task might be in the middle of scheduling on another CPU.
4519 */
eb580751 4520 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4521 update_rq_clock(rq);
4522
1da177e4
LT
4523 /*
4524 * The RT priorities are set via sched_setscheduler(), but we still
4525 * allow the 'normal' nice value to be set - but as expected
4526 * it wont have any effect on scheduling until the task is
aab03e05 4527 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4528 */
aab03e05 4529 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4530 p->static_prio = NICE_TO_PRIO(nice);
4531 goto out_unlock;
4532 }
da0c1e65 4533 queued = task_on_rq_queued(p);
49bd21ef 4534 running = task_current(rq, p);
da0c1e65 4535 if (queued)
7a57f32a 4536 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4537 if (running)
4538 put_prev_task(rq, p);
1da177e4 4539
1da177e4 4540 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4541 set_load_weight(p, true);
b29739f9
IM
4542 old_prio = p->prio;
4543 p->prio = effective_prio(p);
1da177e4 4544
5443a0be 4545 if (queued)
7134b3e9 4546 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 4547 if (running)
03b7fad1 4548 set_next_task(rq, p);
5443a0be
FW
4549
4550 /*
4551 * If the task increased its priority or is running and
4552 * lowered its priority, then reschedule its CPU:
4553 */
4554 p->sched_class->prio_changed(rq, p, old_prio);
4555
1da177e4 4556out_unlock:
eb580751 4557 task_rq_unlock(rq, p, &rf);
1da177e4 4558}
1da177e4
LT
4559EXPORT_SYMBOL(set_user_nice);
4560
e43379f1
MM
4561/*
4562 * can_nice - check if a task can reduce its nice value
4563 * @p: task
4564 * @nice: nice value
4565 */
36c8b586 4566int can_nice(const struct task_struct *p, const int nice)
e43379f1 4567{
d1ccc66d 4568 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 4569 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 4570
78d7d407 4571 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4572 capable(CAP_SYS_NICE));
4573}
4574
1da177e4
LT
4575#ifdef __ARCH_WANT_SYS_NICE
4576
4577/*
4578 * sys_nice - change the priority of the current process.
4579 * @increment: priority increment
4580 *
4581 * sys_setpriority is a more generic, but much slower function that
4582 * does similar things.
4583 */
5add95d4 4584SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4585{
48f24c4d 4586 long nice, retval;
1da177e4
LT
4587
4588 /*
4589 * Setpriority might change our priority at the same moment.
4590 * We don't have to worry. Conceptually one call occurs first
4591 * and we have a single winner.
4592 */
a9467fa3 4593 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 4594 nice = task_nice(current) + increment;
1da177e4 4595
a9467fa3 4596 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
4597 if (increment < 0 && !can_nice(current, nice))
4598 return -EPERM;
4599
1da177e4
LT
4600 retval = security_task_setnice(current, nice);
4601 if (retval)
4602 return retval;
4603
4604 set_user_nice(current, nice);
4605 return 0;
4606}
4607
4608#endif
4609
4610/**
4611 * task_prio - return the priority value of a given task.
4612 * @p: the task in question.
4613 *
e69f6186 4614 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4615 * RT tasks are offset by -200. Normal tasks are centered
4616 * around 0, value goes from -16 to +15.
4617 */
36c8b586 4618int task_prio(const struct task_struct *p)
1da177e4
LT
4619{
4620 return p->prio - MAX_RT_PRIO;
4621}
4622
1da177e4 4623/**
d1ccc66d 4624 * idle_cpu - is a given CPU idle currently?
1da177e4 4625 * @cpu: the processor in question.
e69f6186
YB
4626 *
4627 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4628 */
4629int idle_cpu(int cpu)
4630{
908a3283
TG
4631 struct rq *rq = cpu_rq(cpu);
4632
4633 if (rq->curr != rq->idle)
4634 return 0;
4635
4636 if (rq->nr_running)
4637 return 0;
4638
4639#ifdef CONFIG_SMP
4640 if (!llist_empty(&rq->wake_list))
4641 return 0;
4642#endif
4643
4644 return 1;
1da177e4
LT
4645}
4646
943d355d
RJ
4647/**
4648 * available_idle_cpu - is a given CPU idle for enqueuing work.
4649 * @cpu: the CPU in question.
4650 *
4651 * Return: 1 if the CPU is currently idle. 0 otherwise.
4652 */
4653int available_idle_cpu(int cpu)
4654{
4655 if (!idle_cpu(cpu))
4656 return 0;
4657
247f2f6f
RJ
4658 if (vcpu_is_preempted(cpu))
4659 return 0;
4660
908a3283 4661 return 1;
1da177e4
LT
4662}
4663
1da177e4 4664/**
d1ccc66d 4665 * idle_task - return the idle task for a given CPU.
1da177e4 4666 * @cpu: the processor in question.
e69f6186 4667 *
d1ccc66d 4668 * Return: The idle task for the CPU @cpu.
1da177e4 4669 */
36c8b586 4670struct task_struct *idle_task(int cpu)
1da177e4
LT
4671{
4672 return cpu_rq(cpu)->idle;
4673}
4674
4675/**
4676 * find_process_by_pid - find a process with a matching PID value.
4677 * @pid: the pid in question.
e69f6186
YB
4678 *
4679 * The task of @pid, if found. %NULL otherwise.
1da177e4 4680 */
a9957449 4681static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4682{
228ebcbe 4683 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4684}
4685
c13db6b1
SR
4686/*
4687 * sched_setparam() passes in -1 for its policy, to let the functions
4688 * it calls know not to change it.
4689 */
4690#define SETPARAM_POLICY -1
4691
c365c292
TG
4692static void __setscheduler_params(struct task_struct *p,
4693 const struct sched_attr *attr)
1da177e4 4694{
d50dde5a
DF
4695 int policy = attr->sched_policy;
4696
c13db6b1 4697 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4698 policy = p->policy;
4699
1da177e4 4700 p->policy = policy;
d50dde5a 4701
aab03e05
DF
4702 if (dl_policy(policy))
4703 __setparam_dl(p, attr);
39fd8fd2 4704 else if (fair_policy(policy))
d50dde5a
DF
4705 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4706
39fd8fd2
PZ
4707 /*
4708 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4709 * !rt_policy. Always setting this ensures that things like
4710 * getparam()/getattr() don't report silly values for !rt tasks.
4711 */
4712 p->rt_priority = attr->sched_priority;
383afd09 4713 p->normal_prio = normal_prio(p);
9059393e 4714 set_load_weight(p, true);
c365c292 4715}
39fd8fd2 4716
c365c292
TG
4717/* Actually do priority change: must hold pi & rq lock. */
4718static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4719 const struct sched_attr *attr, bool keep_boost)
c365c292 4720{
a509a7cd
PB
4721 /*
4722 * If params can't change scheduling class changes aren't allowed
4723 * either.
4724 */
4725 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4726 return;
4727
c365c292 4728 __setscheduler_params(p, attr);
d50dde5a 4729
383afd09 4730 /*
0782e63b
TG
4731 * Keep a potential priority boosting if called from
4732 * sched_setscheduler().
383afd09 4733 */
acd58620 4734 p->prio = normal_prio(p);
0782e63b 4735 if (keep_boost)
acd58620 4736 p->prio = rt_effective_prio(p, p->prio);
383afd09 4737
aab03e05
DF
4738 if (dl_prio(p->prio))
4739 p->sched_class = &dl_sched_class;
4740 else if (rt_prio(p->prio))
ffd44db5
PZ
4741 p->sched_class = &rt_sched_class;
4742 else
4743 p->sched_class = &fair_sched_class;
1da177e4 4744}
aab03e05 4745
c69e8d9c 4746/*
d1ccc66d 4747 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4748 */
4749static bool check_same_owner(struct task_struct *p)
4750{
4751 const struct cred *cred = current_cred(), *pcred;
4752 bool match;
4753
4754 rcu_read_lock();
4755 pcred = __task_cred(p);
9c806aa0
EB
4756 match = (uid_eq(cred->euid, pcred->euid) ||
4757 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4758 rcu_read_unlock();
4759 return match;
4760}
4761
d50dde5a
DF
4762static int __sched_setscheduler(struct task_struct *p,
4763 const struct sched_attr *attr,
dbc7f069 4764 bool user, bool pi)
1da177e4 4765{
383afd09
SR
4766 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4767 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4768 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4769 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4770 const struct sched_class *prev_class;
eb580751 4771 struct rq_flags rf;
ca94c442 4772 int reset_on_fork;
7a57f32a 4773 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4774 struct rq *rq;
1da177e4 4775
896bbb25
SRV
4776 /* The pi code expects interrupts enabled */
4777 BUG_ON(pi && in_interrupt());
1da177e4 4778recheck:
d1ccc66d 4779 /* Double check policy once rq lock held: */
ca94c442
LP
4780 if (policy < 0) {
4781 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4782 policy = oldpolicy = p->policy;
ca94c442 4783 } else {
7479f3c9 4784 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4785
20f9cd2a 4786 if (!valid_policy(policy))
ca94c442
LP
4787 return -EINVAL;
4788 }
4789
794a56eb 4790 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4791 return -EINVAL;
4792
1da177e4
LT
4793 /*
4794 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4795 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4796 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4797 */
0bb040a4 4798 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4799 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4800 return -EINVAL;
aab03e05
DF
4801 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4802 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4803 return -EINVAL;
4804
37e4ab3f
OC
4805 /*
4806 * Allow unprivileged RT tasks to decrease priority:
4807 */
961ccddd 4808 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4809 if (fair_policy(policy)) {
d0ea0268 4810 if (attr->sched_nice < task_nice(p) &&
eaad4513 4811 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4812 return -EPERM;
4813 }
4814
e05606d3 4815 if (rt_policy(policy)) {
a44702e8
ON
4816 unsigned long rlim_rtprio =
4817 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4818
d1ccc66d 4819 /* Can't set/change the rt policy: */
8dc3e909
ON
4820 if (policy != p->policy && !rlim_rtprio)
4821 return -EPERM;
4822
d1ccc66d 4823 /* Can't increase priority: */
d50dde5a
DF
4824 if (attr->sched_priority > p->rt_priority &&
4825 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4826 return -EPERM;
4827 }
c02aa73b 4828
d44753b8
JL
4829 /*
4830 * Can't set/change SCHED_DEADLINE policy at all for now
4831 * (safest behavior); in the future we would like to allow
4832 * unprivileged DL tasks to increase their relative deadline
4833 * or reduce their runtime (both ways reducing utilization)
4834 */
4835 if (dl_policy(policy))
4836 return -EPERM;
4837
dd41f596 4838 /*
c02aa73b
DH
4839 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4840 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4841 */
1da1843f 4842 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4843 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4844 return -EPERM;
4845 }
5fe1d75f 4846
d1ccc66d 4847 /* Can't change other user's priorities: */
c69e8d9c 4848 if (!check_same_owner(p))
37e4ab3f 4849 return -EPERM;
ca94c442 4850
d1ccc66d 4851 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4852 if (p->sched_reset_on_fork && !reset_on_fork)
4853 return -EPERM;
37e4ab3f 4854 }
1da177e4 4855
725aad24 4856 if (user) {
794a56eb
JL
4857 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4858 return -EINVAL;
4859
b0ae1981 4860 retval = security_task_setscheduler(p);
725aad24
JF
4861 if (retval)
4862 return retval;
4863 }
4864
a509a7cd
PB
4865 /* Update task specific "requested" clamps */
4866 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4867 retval = uclamp_validate(p, attr);
4868 if (retval)
4869 return retval;
4870 }
4871
710da3c8
JL
4872 if (pi)
4873 cpuset_read_lock();
4874
b29739f9 4875 /*
d1ccc66d 4876 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4877 * changing the priority of the task:
0122ec5b 4878 *
25985edc 4879 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4880 * runqueue lock must be held.
4881 */
eb580751 4882 rq = task_rq_lock(p, &rf);
80f5c1b8 4883 update_rq_clock(rq);
dc61b1d6 4884
34f971f6 4885 /*
d1ccc66d 4886 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4887 */
4888 if (p == rq->stop) {
4b211f2b
MP
4889 retval = -EINVAL;
4890 goto unlock;
34f971f6
PZ
4891 }
4892
a51e9198 4893 /*
d6b1e911
TG
4894 * If not changing anything there's no need to proceed further,
4895 * but store a possible modification of reset_on_fork.
a51e9198 4896 */
d50dde5a 4897 if (unlikely(policy == p->policy)) {
d0ea0268 4898 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4899 goto change;
4900 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4901 goto change;
75381608 4902 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4903 goto change;
a509a7cd
PB
4904 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4905 goto change;
d50dde5a 4906
d6b1e911 4907 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
4908 retval = 0;
4909 goto unlock;
a51e9198 4910 }
d50dde5a 4911change:
a51e9198 4912
dc61b1d6 4913 if (user) {
332ac17e 4914#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4915 /*
4916 * Do not allow realtime tasks into groups that have no runtime
4917 * assigned.
4918 */
4919 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4920 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4921 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
4922 retval = -EPERM;
4923 goto unlock;
dc61b1d6 4924 }
dc61b1d6 4925#endif
332ac17e 4926#ifdef CONFIG_SMP
794a56eb
JL
4927 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4928 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4929 cpumask_t *span = rq->rd->span;
332ac17e
DF
4930
4931 /*
4932 * Don't allow tasks with an affinity mask smaller than
4933 * the entire root_domain to become SCHED_DEADLINE. We
4934 * will also fail if there's no bandwidth available.
4935 */
3bd37062 4936 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4937 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
4938 retval = -EPERM;
4939 goto unlock;
332ac17e
DF
4940 }
4941 }
4942#endif
4943 }
dc61b1d6 4944
d1ccc66d 4945 /* Re-check policy now with rq lock held: */
1da177e4
LT
4946 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4947 policy = oldpolicy = -1;
eb580751 4948 task_rq_unlock(rq, p, &rf);
710da3c8
JL
4949 if (pi)
4950 cpuset_read_unlock();
1da177e4
LT
4951 goto recheck;
4952 }
332ac17e
DF
4953
4954 /*
4955 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4956 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4957 * is available.
4958 */
06a76fe0 4959 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
4960 retval = -EBUSY;
4961 goto unlock;
332ac17e
DF
4962 }
4963
c365c292
TG
4964 p->sched_reset_on_fork = reset_on_fork;
4965 oldprio = p->prio;
4966
dbc7f069
PZ
4967 if (pi) {
4968 /*
4969 * Take priority boosted tasks into account. If the new
4970 * effective priority is unchanged, we just store the new
4971 * normal parameters and do not touch the scheduler class and
4972 * the runqueue. This will be done when the task deboost
4973 * itself.
4974 */
acd58620 4975 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4976 if (new_effective_prio == oldprio)
4977 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4978 }
4979
da0c1e65 4980 queued = task_on_rq_queued(p);
051a1d1a 4981 running = task_current(rq, p);
da0c1e65 4982 if (queued)
ff77e468 4983 dequeue_task(rq, p, queue_flags);
0e1f3483 4984 if (running)
f3cd1c4e 4985 put_prev_task(rq, p);
f6b53205 4986
83ab0aa0 4987 prev_class = p->sched_class;
a509a7cd 4988
dbc7f069 4989 __setscheduler(rq, p, attr, pi);
a509a7cd 4990 __setscheduler_uclamp(p, attr);
f6b53205 4991
da0c1e65 4992 if (queued) {
81a44c54
TG
4993 /*
4994 * We enqueue to tail when the priority of a task is
4995 * increased (user space view).
4996 */
ff77e468
PZ
4997 if (oldprio < p->prio)
4998 queue_flags |= ENQUEUE_HEAD;
1de64443 4999
ff77e468 5000 enqueue_task(rq, p, queue_flags);
81a44c54 5001 }
a399d233 5002 if (running)
03b7fad1 5003 set_next_task(rq, p);
cb469845 5004
da7a735e 5005 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
5006
5007 /* Avoid rq from going away on us: */
5008 preempt_disable();
eb580751 5009 task_rq_unlock(rq, p, &rf);
b29739f9 5010
710da3c8
JL
5011 if (pi) {
5012 cpuset_read_unlock();
dbc7f069 5013 rt_mutex_adjust_pi(p);
710da3c8 5014 }
95e02ca9 5015
d1ccc66d 5016 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
5017 balance_callback(rq);
5018 preempt_enable();
95e02ca9 5019
1da177e4 5020 return 0;
4b211f2b
MP
5021
5022unlock:
5023 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5024 if (pi)
5025 cpuset_read_unlock();
4b211f2b 5026 return retval;
1da177e4 5027}
961ccddd 5028
7479f3c9
PZ
5029static int _sched_setscheduler(struct task_struct *p, int policy,
5030 const struct sched_param *param, bool check)
5031{
5032 struct sched_attr attr = {
5033 .sched_policy = policy,
5034 .sched_priority = param->sched_priority,
5035 .sched_nice = PRIO_TO_NICE(p->static_prio),
5036 };
5037
c13db6b1
SR
5038 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5039 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
5040 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5041 policy &= ~SCHED_RESET_ON_FORK;
5042 attr.sched_policy = policy;
5043 }
5044
dbc7f069 5045 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 5046}
961ccddd
RR
5047/**
5048 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5049 * @p: the task in question.
5050 * @policy: new policy.
5051 * @param: structure containing the new RT priority.
5052 *
e69f6186
YB
5053 * Return: 0 on success. An error code otherwise.
5054 *
961ccddd
RR
5055 * NOTE that the task may be already dead.
5056 */
5057int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5058 const struct sched_param *param)
961ccddd 5059{
7479f3c9 5060 return _sched_setscheduler(p, policy, param, true);
961ccddd 5061}
1da177e4
LT
5062EXPORT_SYMBOL_GPL(sched_setscheduler);
5063
d50dde5a
DF
5064int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5065{
dbc7f069 5066 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
5067}
5068EXPORT_SYMBOL_GPL(sched_setattr);
5069
794a56eb
JL
5070int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5071{
5072 return __sched_setscheduler(p, attr, false, true);
5073}
5074
961ccddd
RR
5075/**
5076 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5077 * @p: the task in question.
5078 * @policy: new policy.
5079 * @param: structure containing the new RT priority.
5080 *
5081 * Just like sched_setscheduler, only don't bother checking if the
5082 * current context has permission. For example, this is needed in
5083 * stop_machine(): we create temporary high priority worker threads,
5084 * but our caller might not have that capability.
e69f6186
YB
5085 *
5086 * Return: 0 on success. An error code otherwise.
961ccddd
RR
5087 */
5088int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5089 const struct sched_param *param)
961ccddd 5090{
7479f3c9 5091 return _sched_setscheduler(p, policy, param, false);
961ccddd 5092}
84778472 5093EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 5094
95cdf3b7
IM
5095static int
5096do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5097{
1da177e4
LT
5098 struct sched_param lparam;
5099 struct task_struct *p;
36c8b586 5100 int retval;
1da177e4
LT
5101
5102 if (!param || pid < 0)
5103 return -EINVAL;
5104 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5105 return -EFAULT;
5fe1d75f
ON
5106
5107 rcu_read_lock();
5108 retval = -ESRCH;
1da177e4 5109 p = find_process_by_pid(pid);
710da3c8
JL
5110 if (likely(p))
5111 get_task_struct(p);
5fe1d75f 5112 rcu_read_unlock();
36c8b586 5113
710da3c8
JL
5114 if (likely(p)) {
5115 retval = sched_setscheduler(p, policy, &lparam);
5116 put_task_struct(p);
5117 }
5118
1da177e4
LT
5119 return retval;
5120}
5121
d50dde5a
DF
5122/*
5123 * Mimics kernel/events/core.c perf_copy_attr().
5124 */
d1ccc66d 5125static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
5126{
5127 u32 size;
5128 int ret;
5129
d1ccc66d 5130 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
5131 memset(attr, 0, sizeof(*attr));
5132
5133 ret = get_user(size, &uattr->size);
5134 if (ret)
5135 return ret;
5136
d1ccc66d
IM
5137 /* ABI compatibility quirk: */
5138 if (!size)
d50dde5a 5139 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 5140 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
5141 goto err_size;
5142
dff3a85f
AS
5143 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5144 if (ret) {
5145 if (ret == -E2BIG)
5146 goto err_size;
5147 return ret;
d50dde5a
DF
5148 }
5149
a509a7cd
PB
5150 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5151 size < SCHED_ATTR_SIZE_VER1)
5152 return -EINVAL;
5153
d50dde5a 5154 /*
d1ccc66d 5155 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
5156 * to be strict and return an error on out-of-bounds values?
5157 */
75e45d51 5158 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 5159
e78c7bca 5160 return 0;
d50dde5a
DF
5161
5162err_size:
5163 put_user(sizeof(*attr), &uattr->size);
e78c7bca 5164 return -E2BIG;
d50dde5a
DF
5165}
5166
1da177e4
LT
5167/**
5168 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5169 * @pid: the pid in question.
5170 * @policy: new policy.
5171 * @param: structure containing the new RT priority.
e69f6186
YB
5172 *
5173 * Return: 0 on success. An error code otherwise.
1da177e4 5174 */
d1ccc66d 5175SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 5176{
c21761f1
JB
5177 if (policy < 0)
5178 return -EINVAL;
5179
1da177e4
LT
5180 return do_sched_setscheduler(pid, policy, param);
5181}
5182
5183/**
5184 * sys_sched_setparam - set/change the RT priority of a thread
5185 * @pid: the pid in question.
5186 * @param: structure containing the new RT priority.
e69f6186
YB
5187 *
5188 * Return: 0 on success. An error code otherwise.
1da177e4 5189 */
5add95d4 5190SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5191{
c13db6b1 5192 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
5193}
5194
d50dde5a
DF
5195/**
5196 * sys_sched_setattr - same as above, but with extended sched_attr
5197 * @pid: the pid in question.
5778fccf 5198 * @uattr: structure containing the extended parameters.
db66d756 5199 * @flags: for future extension.
d50dde5a 5200 */
6d35ab48
PZ
5201SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5202 unsigned int, flags)
d50dde5a
DF
5203{
5204 struct sched_attr attr;
5205 struct task_struct *p;
5206 int retval;
5207
6d35ab48 5208 if (!uattr || pid < 0 || flags)
d50dde5a
DF
5209 return -EINVAL;
5210
143cf23d
MK
5211 retval = sched_copy_attr(uattr, &attr);
5212 if (retval)
5213 return retval;
d50dde5a 5214
b14ed2c2 5215 if ((int)attr.sched_policy < 0)
dbdb2275 5216 return -EINVAL;
1d6362fa
PB
5217 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5218 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
5219
5220 rcu_read_lock();
5221 retval = -ESRCH;
5222 p = find_process_by_pid(pid);
a509a7cd
PB
5223 if (likely(p))
5224 get_task_struct(p);
d50dde5a
DF
5225 rcu_read_unlock();
5226
a509a7cd
PB
5227 if (likely(p)) {
5228 retval = sched_setattr(p, &attr);
5229 put_task_struct(p);
5230 }
5231
d50dde5a
DF
5232 return retval;
5233}
5234
1da177e4
LT
5235/**
5236 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5237 * @pid: the pid in question.
e69f6186
YB
5238 *
5239 * Return: On success, the policy of the thread. Otherwise, a negative error
5240 * code.
1da177e4 5241 */
5add95d4 5242SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5243{
36c8b586 5244 struct task_struct *p;
3a5c359a 5245 int retval;
1da177e4
LT
5246
5247 if (pid < 0)
3a5c359a 5248 return -EINVAL;
1da177e4
LT
5249
5250 retval = -ESRCH;
5fe85be0 5251 rcu_read_lock();
1da177e4
LT
5252 p = find_process_by_pid(pid);
5253 if (p) {
5254 retval = security_task_getscheduler(p);
5255 if (!retval)
ca94c442
LP
5256 retval = p->policy
5257 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5258 }
5fe85be0 5259 rcu_read_unlock();
1da177e4
LT
5260 return retval;
5261}
5262
5263/**
ca94c442 5264 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5265 * @pid: the pid in question.
5266 * @param: structure containing the RT priority.
e69f6186
YB
5267 *
5268 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5269 * code.
1da177e4 5270 */
5add95d4 5271SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5272{
ce5f7f82 5273 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5274 struct task_struct *p;
3a5c359a 5275 int retval;
1da177e4
LT
5276
5277 if (!param || pid < 0)
3a5c359a 5278 return -EINVAL;
1da177e4 5279
5fe85be0 5280 rcu_read_lock();
1da177e4
LT
5281 p = find_process_by_pid(pid);
5282 retval = -ESRCH;
5283 if (!p)
5284 goto out_unlock;
5285
5286 retval = security_task_getscheduler(p);
5287 if (retval)
5288 goto out_unlock;
5289
ce5f7f82
PZ
5290 if (task_has_rt_policy(p))
5291 lp.sched_priority = p->rt_priority;
5fe85be0 5292 rcu_read_unlock();
1da177e4
LT
5293
5294 /*
5295 * This one might sleep, we cannot do it with a spinlock held ...
5296 */
5297 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5298
1da177e4
LT
5299 return retval;
5300
5301out_unlock:
5fe85be0 5302 rcu_read_unlock();
1da177e4
LT
5303 return retval;
5304}
5305
1251201c
IM
5306/*
5307 * Copy the kernel size attribute structure (which might be larger
5308 * than what user-space knows about) to user-space.
5309 *
5310 * Note that all cases are valid: user-space buffer can be larger or
5311 * smaller than the kernel-space buffer. The usual case is that both
5312 * have the same size.
5313 */
5314static int
5315sched_attr_copy_to_user(struct sched_attr __user *uattr,
5316 struct sched_attr *kattr,
5317 unsigned int usize)
d50dde5a 5318{
1251201c 5319 unsigned int ksize = sizeof(*kattr);
d50dde5a 5320
96d4f267 5321 if (!access_ok(uattr, usize))
d50dde5a
DF
5322 return -EFAULT;
5323
5324 /*
1251201c
IM
5325 * sched_getattr() ABI forwards and backwards compatibility:
5326 *
5327 * If usize == ksize then we just copy everything to user-space and all is good.
5328 *
5329 * If usize < ksize then we only copy as much as user-space has space for,
5330 * this keeps ABI compatibility as well. We skip the rest.
5331 *
5332 * If usize > ksize then user-space is using a newer version of the ABI,
5333 * which part the kernel doesn't know about. Just ignore it - tooling can
5334 * detect the kernel's knowledge of attributes from the attr->size value
5335 * which is set to ksize in this case.
d50dde5a 5336 */
1251201c 5337 kattr->size = min(usize, ksize);
d50dde5a 5338
1251201c 5339 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
5340 return -EFAULT;
5341
22400674 5342 return 0;
d50dde5a
DF
5343}
5344
5345/**
aab03e05 5346 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5347 * @pid: the pid in question.
5778fccf 5348 * @uattr: structure containing the extended parameters.
dff3a85f 5349 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 5350 * @flags: for future extension.
d50dde5a 5351 */
6d35ab48 5352SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 5353 unsigned int, usize, unsigned int, flags)
d50dde5a 5354{
1251201c 5355 struct sched_attr kattr = { };
d50dde5a
DF
5356 struct task_struct *p;
5357 int retval;
5358
1251201c
IM
5359 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5360 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5361 return -EINVAL;
5362
5363 rcu_read_lock();
5364 p = find_process_by_pid(pid);
5365 retval = -ESRCH;
5366 if (!p)
5367 goto out_unlock;
5368
5369 retval = security_task_getscheduler(p);
5370 if (retval)
5371 goto out_unlock;
5372
1251201c 5373 kattr.sched_policy = p->policy;
7479f3c9 5374 if (p->sched_reset_on_fork)
1251201c 5375 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 5376 if (task_has_dl_policy(p))
1251201c 5377 __getparam_dl(p, &kattr);
aab03e05 5378 else if (task_has_rt_policy(p))
1251201c 5379 kattr.sched_priority = p->rt_priority;
d50dde5a 5380 else
1251201c 5381 kattr.sched_nice = task_nice(p);
d50dde5a 5382
a509a7cd 5383#ifdef CONFIG_UCLAMP_TASK
1251201c
IM
5384 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5385 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
5386#endif
5387
d50dde5a
DF
5388 rcu_read_unlock();
5389
1251201c 5390 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
5391
5392out_unlock:
5393 rcu_read_unlock();
5394 return retval;
5395}
5396
96f874e2 5397long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5398{
5a16f3d3 5399 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5400 struct task_struct *p;
5401 int retval;
1da177e4 5402
23f5d142 5403 rcu_read_lock();
1da177e4
LT
5404
5405 p = find_process_by_pid(pid);
5406 if (!p) {
23f5d142 5407 rcu_read_unlock();
1da177e4
LT
5408 return -ESRCH;
5409 }
5410
23f5d142 5411 /* Prevent p going away */
1da177e4 5412 get_task_struct(p);
23f5d142 5413 rcu_read_unlock();
1da177e4 5414
14a40ffc
TH
5415 if (p->flags & PF_NO_SETAFFINITY) {
5416 retval = -EINVAL;
5417 goto out_put_task;
5418 }
5a16f3d3
RR
5419 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5420 retval = -ENOMEM;
5421 goto out_put_task;
5422 }
5423 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5424 retval = -ENOMEM;
5425 goto out_free_cpus_allowed;
5426 }
1da177e4 5427 retval = -EPERM;
4c44aaaf
EB
5428 if (!check_same_owner(p)) {
5429 rcu_read_lock();
5430 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5431 rcu_read_unlock();
16303ab2 5432 goto out_free_new_mask;
4c44aaaf
EB
5433 }
5434 rcu_read_unlock();
5435 }
1da177e4 5436
b0ae1981 5437 retval = security_task_setscheduler(p);
e7834f8f 5438 if (retval)
16303ab2 5439 goto out_free_new_mask;
e7834f8f 5440
e4099a5e
PZ
5441
5442 cpuset_cpus_allowed(p, cpus_allowed);
5443 cpumask_and(new_mask, in_mask, cpus_allowed);
5444
332ac17e
DF
5445 /*
5446 * Since bandwidth control happens on root_domain basis,
5447 * if admission test is enabled, we only admit -deadline
5448 * tasks allowed to run on all the CPUs in the task's
5449 * root_domain.
5450 */
5451#ifdef CONFIG_SMP
f1e3a093
KT
5452 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5453 rcu_read_lock();
5454 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5455 retval = -EBUSY;
f1e3a093 5456 rcu_read_unlock();
16303ab2 5457 goto out_free_new_mask;
332ac17e 5458 }
f1e3a093 5459 rcu_read_unlock();
332ac17e
DF
5460 }
5461#endif
49246274 5462again:
25834c73 5463 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5464
8707d8b8 5465 if (!retval) {
5a16f3d3
RR
5466 cpuset_cpus_allowed(p, cpus_allowed);
5467 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5468 /*
5469 * We must have raced with a concurrent cpuset
5470 * update. Just reset the cpus_allowed to the
5471 * cpuset's cpus_allowed
5472 */
5a16f3d3 5473 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5474 goto again;
5475 }
5476 }
16303ab2 5477out_free_new_mask:
5a16f3d3
RR
5478 free_cpumask_var(new_mask);
5479out_free_cpus_allowed:
5480 free_cpumask_var(cpus_allowed);
5481out_put_task:
1da177e4 5482 put_task_struct(p);
1da177e4
LT
5483 return retval;
5484}
5485
5486static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5487 struct cpumask *new_mask)
1da177e4 5488{
96f874e2
RR
5489 if (len < cpumask_size())
5490 cpumask_clear(new_mask);
5491 else if (len > cpumask_size())
5492 len = cpumask_size();
5493
1da177e4
LT
5494 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5495}
5496
5497/**
d1ccc66d 5498 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5499 * @pid: pid of the process
5500 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5501 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5502 *
5503 * Return: 0 on success. An error code otherwise.
1da177e4 5504 */
5add95d4
HC
5505SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5506 unsigned long __user *, user_mask_ptr)
1da177e4 5507{
5a16f3d3 5508 cpumask_var_t new_mask;
1da177e4
LT
5509 int retval;
5510
5a16f3d3
RR
5511 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5512 return -ENOMEM;
1da177e4 5513
5a16f3d3
RR
5514 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5515 if (retval == 0)
5516 retval = sched_setaffinity(pid, new_mask);
5517 free_cpumask_var(new_mask);
5518 return retval;
1da177e4
LT
5519}
5520
96f874e2 5521long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5522{
36c8b586 5523 struct task_struct *p;
31605683 5524 unsigned long flags;
1da177e4 5525 int retval;
1da177e4 5526
23f5d142 5527 rcu_read_lock();
1da177e4
LT
5528
5529 retval = -ESRCH;
5530 p = find_process_by_pid(pid);
5531 if (!p)
5532 goto out_unlock;
5533
e7834f8f
DQ
5534 retval = security_task_getscheduler(p);
5535 if (retval)
5536 goto out_unlock;
5537
013fdb80 5538 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 5539 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 5540 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5541
5542out_unlock:
23f5d142 5543 rcu_read_unlock();
1da177e4 5544
9531b62f 5545 return retval;
1da177e4
LT
5546}
5547
5548/**
d1ccc66d 5549 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
5550 * @pid: pid of the process
5551 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5552 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 5553 *
599b4840
ZW
5554 * Return: size of CPU mask copied to user_mask_ptr on success. An
5555 * error code otherwise.
1da177e4 5556 */
5add95d4
HC
5557SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5558 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5559{
5560 int ret;
f17c8607 5561 cpumask_var_t mask;
1da177e4 5562
84fba5ec 5563 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5564 return -EINVAL;
5565 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5566 return -EINVAL;
5567
f17c8607
RR
5568 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5569 return -ENOMEM;
1da177e4 5570
f17c8607
RR
5571 ret = sched_getaffinity(pid, mask);
5572 if (ret == 0) {
4de373a1 5573 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
5574
5575 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5576 ret = -EFAULT;
5577 else
cd3d8031 5578 ret = retlen;
f17c8607
RR
5579 }
5580 free_cpumask_var(mask);
1da177e4 5581
f17c8607 5582 return ret;
1da177e4
LT
5583}
5584
5585/**
5586 * sys_sched_yield - yield the current processor to other threads.
5587 *
dd41f596
IM
5588 * This function yields the current CPU to other tasks. If there are no
5589 * other threads running on this CPU then this function will return.
e69f6186
YB
5590 *
5591 * Return: 0.
1da177e4 5592 */
7d4dd4f1 5593static void do_sched_yield(void)
1da177e4 5594{
8a8c69c3
PZ
5595 struct rq_flags rf;
5596 struct rq *rq;
5597
246b3b33 5598 rq = this_rq_lock_irq(&rf);
1da177e4 5599
ae92882e 5600 schedstat_inc(rq->yld_count);
4530d7ab 5601 current->sched_class->yield_task(rq);
1da177e4
LT
5602
5603 /*
5604 * Since we are going to call schedule() anyway, there's
5605 * no need to preempt or enable interrupts:
5606 */
8a8c69c3
PZ
5607 preempt_disable();
5608 rq_unlock(rq, &rf);
ba74c144 5609 sched_preempt_enable_no_resched();
1da177e4
LT
5610
5611 schedule();
7d4dd4f1 5612}
1da177e4 5613
7d4dd4f1
DB
5614SYSCALL_DEFINE0(sched_yield)
5615{
5616 do_sched_yield();
1da177e4
LT
5617 return 0;
5618}
5619
c1a280b6 5620#ifndef CONFIG_PREEMPTION
02b67cc3 5621int __sched _cond_resched(void)
1da177e4 5622{
fe32d3cd 5623 if (should_resched(0)) {
a18b5d01 5624 preempt_schedule_common();
1da177e4
LT
5625 return 1;
5626 }
f79c3ad6 5627 rcu_all_qs();
1da177e4
LT
5628 return 0;
5629}
02b67cc3 5630EXPORT_SYMBOL(_cond_resched);
35a773a0 5631#endif
1da177e4
LT
5632
5633/*
613afbf8 5634 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5635 * call schedule, and on return reacquire the lock.
5636 *
c1a280b6 5637 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
5638 * operations here to prevent schedule() from being called twice (once via
5639 * spin_unlock(), once by hand).
5640 */
613afbf8 5641int __cond_resched_lock(spinlock_t *lock)
1da177e4 5642{
fe32d3cd 5643 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5644 int ret = 0;
5645
f607c668
PZ
5646 lockdep_assert_held(lock);
5647
4a81e832 5648 if (spin_needbreak(lock) || resched) {
1da177e4 5649 spin_unlock(lock);
d86ee480 5650 if (resched)
a18b5d01 5651 preempt_schedule_common();
95c354fe
NP
5652 else
5653 cpu_relax();
6df3cecb 5654 ret = 1;
1da177e4 5655 spin_lock(lock);
1da177e4 5656 }
6df3cecb 5657 return ret;
1da177e4 5658}
613afbf8 5659EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5660
1da177e4
LT
5661/**
5662 * yield - yield the current processor to other threads.
5663 *
8e3fabfd
PZ
5664 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5665 *
5666 * The scheduler is at all times free to pick the calling task as the most
5667 * eligible task to run, if removing the yield() call from your code breaks
5668 * it, its already broken.
5669 *
5670 * Typical broken usage is:
5671 *
5672 * while (!event)
d1ccc66d 5673 * yield();
8e3fabfd
PZ
5674 *
5675 * where one assumes that yield() will let 'the other' process run that will
5676 * make event true. If the current task is a SCHED_FIFO task that will never
5677 * happen. Never use yield() as a progress guarantee!!
5678 *
5679 * If you want to use yield() to wait for something, use wait_event().
5680 * If you want to use yield() to be 'nice' for others, use cond_resched().
5681 * If you still want to use yield(), do not!
1da177e4
LT
5682 */
5683void __sched yield(void)
5684{
5685 set_current_state(TASK_RUNNING);
7d4dd4f1 5686 do_sched_yield();
1da177e4 5687}
1da177e4
LT
5688EXPORT_SYMBOL(yield);
5689
d95f4122
MG
5690/**
5691 * yield_to - yield the current processor to another thread in
5692 * your thread group, or accelerate that thread toward the
5693 * processor it's on.
16addf95
RD
5694 * @p: target task
5695 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5696 *
5697 * It's the caller's job to ensure that the target task struct
5698 * can't go away on us before we can do any checks.
5699 *
e69f6186 5700 * Return:
7b270f60
PZ
5701 * true (>0) if we indeed boosted the target task.
5702 * false (0) if we failed to boost the target.
5703 * -ESRCH if there's no task to yield to.
d95f4122 5704 */
fa93384f 5705int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5706{
5707 struct task_struct *curr = current;
5708 struct rq *rq, *p_rq;
5709 unsigned long flags;
c3c18640 5710 int yielded = 0;
d95f4122
MG
5711
5712 local_irq_save(flags);
5713 rq = this_rq();
5714
5715again:
5716 p_rq = task_rq(p);
7b270f60
PZ
5717 /*
5718 * If we're the only runnable task on the rq and target rq also
5719 * has only one task, there's absolutely no point in yielding.
5720 */
5721 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5722 yielded = -ESRCH;
5723 goto out_irq;
5724 }
5725
d95f4122 5726 double_rq_lock(rq, p_rq);
39e24d8f 5727 if (task_rq(p) != p_rq) {
d95f4122
MG
5728 double_rq_unlock(rq, p_rq);
5729 goto again;
5730 }
5731
5732 if (!curr->sched_class->yield_to_task)
7b270f60 5733 goto out_unlock;
d95f4122
MG
5734
5735 if (curr->sched_class != p->sched_class)
7b270f60 5736 goto out_unlock;
d95f4122
MG
5737
5738 if (task_running(p_rq, p) || p->state)
7b270f60 5739 goto out_unlock;
d95f4122
MG
5740
5741 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5742 if (yielded) {
ae92882e 5743 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5744 /*
5745 * Make p's CPU reschedule; pick_next_entity takes care of
5746 * fairness.
5747 */
5748 if (preempt && rq != p_rq)
8875125e 5749 resched_curr(p_rq);
6d1cafd8 5750 }
d95f4122 5751
7b270f60 5752out_unlock:
d95f4122 5753 double_rq_unlock(rq, p_rq);
7b270f60 5754out_irq:
d95f4122
MG
5755 local_irq_restore(flags);
5756
7b270f60 5757 if (yielded > 0)
d95f4122
MG
5758 schedule();
5759
5760 return yielded;
5761}
5762EXPORT_SYMBOL_GPL(yield_to);
5763
10ab5643
TH
5764int io_schedule_prepare(void)
5765{
5766 int old_iowait = current->in_iowait;
5767
5768 current->in_iowait = 1;
5769 blk_schedule_flush_plug(current);
5770
5771 return old_iowait;
5772}
5773
5774void io_schedule_finish(int token)
5775{
5776 current->in_iowait = token;
5777}
5778
1da177e4 5779/*
41a2d6cf 5780 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5781 * that process accounting knows that this is a task in IO wait state.
1da177e4 5782 */
1da177e4
LT
5783long __sched io_schedule_timeout(long timeout)
5784{
10ab5643 5785 int token;
1da177e4
LT
5786 long ret;
5787
10ab5643 5788 token = io_schedule_prepare();
1da177e4 5789 ret = schedule_timeout(timeout);
10ab5643 5790 io_schedule_finish(token);
9cff8ade 5791
1da177e4
LT
5792 return ret;
5793}
9cff8ade 5794EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5795
e3b929b0 5796void __sched io_schedule(void)
10ab5643
TH
5797{
5798 int token;
5799
5800 token = io_schedule_prepare();
5801 schedule();
5802 io_schedule_finish(token);
5803}
5804EXPORT_SYMBOL(io_schedule);
5805
1da177e4
LT
5806/**
5807 * sys_sched_get_priority_max - return maximum RT priority.
5808 * @policy: scheduling class.
5809 *
e69f6186
YB
5810 * Return: On success, this syscall returns the maximum
5811 * rt_priority that can be used by a given scheduling class.
5812 * On failure, a negative error code is returned.
1da177e4 5813 */
5add95d4 5814SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5815{
5816 int ret = -EINVAL;
5817
5818 switch (policy) {
5819 case SCHED_FIFO:
5820 case SCHED_RR:
5821 ret = MAX_USER_RT_PRIO-1;
5822 break;
aab03e05 5823 case SCHED_DEADLINE:
1da177e4 5824 case SCHED_NORMAL:
b0a9499c 5825 case SCHED_BATCH:
dd41f596 5826 case SCHED_IDLE:
1da177e4
LT
5827 ret = 0;
5828 break;
5829 }
5830 return ret;
5831}
5832
5833/**
5834 * sys_sched_get_priority_min - return minimum RT priority.
5835 * @policy: scheduling class.
5836 *
e69f6186
YB
5837 * Return: On success, this syscall returns the minimum
5838 * rt_priority that can be used by a given scheduling class.
5839 * On failure, a negative error code is returned.
1da177e4 5840 */
5add95d4 5841SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5842{
5843 int ret = -EINVAL;
5844
5845 switch (policy) {
5846 case SCHED_FIFO:
5847 case SCHED_RR:
5848 ret = 1;
5849 break;
aab03e05 5850 case SCHED_DEADLINE:
1da177e4 5851 case SCHED_NORMAL:
b0a9499c 5852 case SCHED_BATCH:
dd41f596 5853 case SCHED_IDLE:
1da177e4
LT
5854 ret = 0;
5855 }
5856 return ret;
5857}
5858
abca5fc5 5859static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5860{
36c8b586 5861 struct task_struct *p;
a4ec24b4 5862 unsigned int time_slice;
eb580751 5863 struct rq_flags rf;
dba091b9 5864 struct rq *rq;
3a5c359a 5865 int retval;
1da177e4
LT
5866
5867 if (pid < 0)
3a5c359a 5868 return -EINVAL;
1da177e4
LT
5869
5870 retval = -ESRCH;
1a551ae7 5871 rcu_read_lock();
1da177e4
LT
5872 p = find_process_by_pid(pid);
5873 if (!p)
5874 goto out_unlock;
5875
5876 retval = security_task_getscheduler(p);
5877 if (retval)
5878 goto out_unlock;
5879
eb580751 5880 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5881 time_slice = 0;
5882 if (p->sched_class->get_rr_interval)
5883 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5884 task_rq_unlock(rq, p, &rf);
a4ec24b4 5885
1a551ae7 5886 rcu_read_unlock();
abca5fc5
AV
5887 jiffies_to_timespec64(time_slice, t);
5888 return 0;
3a5c359a 5889
1da177e4 5890out_unlock:
1a551ae7 5891 rcu_read_unlock();
1da177e4
LT
5892 return retval;
5893}
5894
2064a5ab
RD
5895/**
5896 * sys_sched_rr_get_interval - return the default timeslice of a process.
5897 * @pid: pid of the process.
5898 * @interval: userspace pointer to the timeslice value.
5899 *
5900 * this syscall writes the default timeslice value of a given process
5901 * into the user-space timespec buffer. A value of '0' means infinity.
5902 *
5903 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5904 * an error code.
5905 */
abca5fc5 5906SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5907 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5908{
5909 struct timespec64 t;
5910 int retval = sched_rr_get_interval(pid, &t);
5911
5912 if (retval == 0)
5913 retval = put_timespec64(&t, interval);
5914
5915 return retval;
5916}
5917
474b9c77 5918#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5919SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5920 struct old_timespec32 __user *, interval)
abca5fc5
AV
5921{
5922 struct timespec64 t;
5923 int retval = sched_rr_get_interval(pid, &t);
5924
5925 if (retval == 0)
9afc5eee 5926 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5927 return retval;
5928}
5929#endif
5930
82a1fcb9 5931void sched_show_task(struct task_struct *p)
1da177e4 5932{
1da177e4 5933 unsigned long free = 0;
4e79752c 5934 int ppid;
c930b2c0 5935
38200502
TH
5936 if (!try_get_task_stack(p))
5937 return;
20435d84
XX
5938
5939 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5940
5941 if (p->state == TASK_RUNNING)
3df0fc5b 5942 printk(KERN_CONT " running task ");
1da177e4 5943#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5944 free = stack_not_used(p);
1da177e4 5945#endif
a90e984c 5946 ppid = 0;
4e79752c 5947 rcu_read_lock();
a90e984c
ON
5948 if (pid_alive(p))
5949 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5950 rcu_read_unlock();
3df0fc5b 5951 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5952 task_pid_nr(p), ppid,
aa47b7e0 5953 (unsigned long)task_thread_info(p)->flags);
1da177e4 5954
3d1cb205 5955 print_worker_info(KERN_INFO, p);
5fb5e6de 5956 show_stack(p, NULL);
38200502 5957 put_task_stack(p);
1da177e4 5958}
0032f4e8 5959EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5960
5d68cc95
PZ
5961static inline bool
5962state_filter_match(unsigned long state_filter, struct task_struct *p)
5963{
5964 /* no filter, everything matches */
5965 if (!state_filter)
5966 return true;
5967
5968 /* filter, but doesn't match */
5969 if (!(p->state & state_filter))
5970 return false;
5971
5972 /*
5973 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5974 * TASK_KILLABLE).
5975 */
5976 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5977 return false;
5978
5979 return true;
5980}
5981
5982
e59e2ae2 5983void show_state_filter(unsigned long state_filter)
1da177e4 5984{
36c8b586 5985 struct task_struct *g, *p;
1da177e4 5986
4bd77321 5987#if BITS_PER_LONG == 32
3df0fc5b
PZ
5988 printk(KERN_INFO
5989 " task PC stack pid father\n");
1da177e4 5990#else
3df0fc5b
PZ
5991 printk(KERN_INFO
5992 " task PC stack pid father\n");
1da177e4 5993#endif
510f5acc 5994 rcu_read_lock();
5d07f420 5995 for_each_process_thread(g, p) {
1da177e4
LT
5996 /*
5997 * reset the NMI-timeout, listing all files on a slow
25985edc 5998 * console might take a lot of time:
57675cb9
AR
5999 * Also, reset softlockup watchdogs on all CPUs, because
6000 * another CPU might be blocked waiting for us to process
6001 * an IPI.
1da177e4
LT
6002 */
6003 touch_nmi_watchdog();
57675cb9 6004 touch_all_softlockup_watchdogs();
5d68cc95 6005 if (state_filter_match(state_filter, p))
82a1fcb9 6006 sched_show_task(p);
5d07f420 6007 }
1da177e4 6008
dd41f596 6009#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
6010 if (!state_filter)
6011 sysrq_sched_debug_show();
dd41f596 6012#endif
510f5acc 6013 rcu_read_unlock();
e59e2ae2
IM
6014 /*
6015 * Only show locks if all tasks are dumped:
6016 */
93335a21 6017 if (!state_filter)
e59e2ae2 6018 debug_show_all_locks();
1da177e4
LT
6019}
6020
f340c0d1
IM
6021/**
6022 * init_idle - set up an idle thread for a given CPU
6023 * @idle: task in question
d1ccc66d 6024 * @cpu: CPU the idle task belongs to
f340c0d1
IM
6025 *
6026 * NOTE: this function does not set the idle thread's NEED_RESCHED
6027 * flag, to make booting more robust.
6028 */
0db0628d 6029void init_idle(struct task_struct *idle, int cpu)
1da177e4 6030{
70b97a7f 6031 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6032 unsigned long flags;
6033
ff51ff84
PZ
6034 __sched_fork(0, idle);
6035
25834c73
PZ
6036 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6037 raw_spin_lock(&rq->lock);
5cbd54ef 6038
06b83b5f 6039 idle->state = TASK_RUNNING;
dd41f596 6040 idle->se.exec_start = sched_clock();
c1de45ca 6041 idle->flags |= PF_IDLE;
dd41f596 6042
e1b77c92
MR
6043 kasan_unpoison_task_stack(idle);
6044
de9b8f5d
PZ
6045#ifdef CONFIG_SMP
6046 /*
6047 * Its possible that init_idle() gets called multiple times on a task,
6048 * in that case do_set_cpus_allowed() will not do the right thing.
6049 *
6050 * And since this is boot we can forgo the serialization.
6051 */
6052 set_cpus_allowed_common(idle, cpumask_of(cpu));
6053#endif
6506cf6c
PZ
6054 /*
6055 * We're having a chicken and egg problem, even though we are
d1ccc66d 6056 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
6057 * lockdep check in task_group() will fail.
6058 *
6059 * Similar case to sched_fork(). / Alternatively we could
6060 * use task_rq_lock() here and obtain the other rq->lock.
6061 *
6062 * Silence PROVE_RCU
6063 */
6064 rcu_read_lock();
dd41f596 6065 __set_task_cpu(idle, cpu);
6506cf6c 6066 rcu_read_unlock();
1da177e4 6067
5311a98f
EB
6068 rq->idle = idle;
6069 rcu_assign_pointer(rq->curr, idle);
da0c1e65 6070 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 6071#ifdef CONFIG_SMP
3ca7a440 6072 idle->on_cpu = 1;
4866cde0 6073#endif
25834c73
PZ
6074 raw_spin_unlock(&rq->lock);
6075 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
6076
6077 /* Set the preempt count _outside_ the spinlocks! */
01028747 6078 init_idle_preempt_count(idle, cpu);
55cd5340 6079
dd41f596
IM
6080 /*
6081 * The idle tasks have their own, simple scheduling class:
6082 */
6083 idle->sched_class = &idle_sched_class;
868baf07 6084 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 6085 vtime_init_idle(idle, cpu);
de9b8f5d 6086#ifdef CONFIG_SMP
f1c6f1a7
CE
6087 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6088#endif
19978ca6
IM
6089}
6090
e1d4eeec
NP
6091#ifdef CONFIG_SMP
6092
f82f8042
JL
6093int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6094 const struct cpumask *trial)
6095{
06a76fe0 6096 int ret = 1;
f82f8042 6097
bb2bc55a
MG
6098 if (!cpumask_weight(cur))
6099 return ret;
6100
06a76fe0 6101 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
6102
6103 return ret;
6104}
6105
7f51412a
JL
6106int task_can_attach(struct task_struct *p,
6107 const struct cpumask *cs_cpus_allowed)
6108{
6109 int ret = 0;
6110
6111 /*
6112 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 6113 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
6114 * affinity and isolating such threads by their set of
6115 * allowed nodes is unnecessary. Thus, cpusets are not
6116 * applicable for such threads. This prevents checking for
6117 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 6118 * before cpus_mask may be changed.
7f51412a
JL
6119 */
6120 if (p->flags & PF_NO_SETAFFINITY) {
6121 ret = -EINVAL;
6122 goto out;
6123 }
6124
7f51412a 6125 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
6126 cs_cpus_allowed))
6127 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 6128
7f51412a
JL
6129out:
6130 return ret;
6131}
6132
f2cb1360 6133bool sched_smp_initialized __read_mostly;
e26fbffd 6134
e6628d5b
MG
6135#ifdef CONFIG_NUMA_BALANCING
6136/* Migrate current task p to target_cpu */
6137int migrate_task_to(struct task_struct *p, int target_cpu)
6138{
6139 struct migration_arg arg = { p, target_cpu };
6140 int curr_cpu = task_cpu(p);
6141
6142 if (curr_cpu == target_cpu)
6143 return 0;
6144
3bd37062 6145 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
6146 return -EINVAL;
6147
6148 /* TODO: This is not properly updating schedstats */
6149
286549dc 6150 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
6151 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6152}
0ec8aa00
PZ
6153
6154/*
6155 * Requeue a task on a given node and accurately track the number of NUMA
6156 * tasks on the runqueues
6157 */
6158void sched_setnuma(struct task_struct *p, int nid)
6159{
da0c1e65 6160 bool queued, running;
eb580751
PZ
6161 struct rq_flags rf;
6162 struct rq *rq;
0ec8aa00 6163
eb580751 6164 rq = task_rq_lock(p, &rf);
da0c1e65 6165 queued = task_on_rq_queued(p);
0ec8aa00
PZ
6166 running = task_current(rq, p);
6167
da0c1e65 6168 if (queued)
1de64443 6169 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 6170 if (running)
f3cd1c4e 6171 put_prev_task(rq, p);
0ec8aa00
PZ
6172
6173 p->numa_preferred_nid = nid;
0ec8aa00 6174
da0c1e65 6175 if (queued)
7134b3e9 6176 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 6177 if (running)
03b7fad1 6178 set_next_task(rq, p);
eb580751 6179 task_rq_unlock(rq, p, &rf);
0ec8aa00 6180}
5cc389bc 6181#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 6182
1da177e4 6183#ifdef CONFIG_HOTPLUG_CPU
054b9108 6184/*
d1ccc66d 6185 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 6186 * offline.
054b9108 6187 */
48c5ccae 6188void idle_task_exit(void)
1da177e4 6189{
48c5ccae 6190 struct mm_struct *mm = current->active_mm;
e76bd8d9 6191
48c5ccae 6192 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6193
a53efe5f 6194 if (mm != &init_mm) {
252d2a41 6195 switch_mm(mm, &init_mm, current);
3eda69c9 6196 current->active_mm = &init_mm;
a53efe5f
MS
6197 finish_arch_post_lock_switch();
6198 }
48c5ccae 6199 mmdrop(mm);
1da177e4
LT
6200}
6201
6202/*
5d180232
PZ
6203 * Since this CPU is going 'away' for a while, fold any nr_active delta
6204 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
6205 * nr_active count is stable. We need to take the teardown thread which
6206 * is calling this into account, so we hand in adjust = 1 to the load
6207 * calculation.
5d180232
PZ
6208 *
6209 * Also see the comment "Global load-average calculations".
1da177e4 6210 */
5d180232 6211static void calc_load_migrate(struct rq *rq)
1da177e4 6212{
d60585c5 6213 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
6214 if (delta)
6215 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
6216}
6217
10e7071b 6218static struct task_struct *__pick_migrate_task(struct rq *rq)
3f1d2a31 6219{
10e7071b
PZ
6220 const struct sched_class *class;
6221 struct task_struct *next;
3f1d2a31 6222
10e7071b 6223 for_each_class(class) {
98c2f700 6224 next = class->pick_next_task(rq);
10e7071b 6225 if (next) {
6e2df058 6226 next->sched_class->put_prev_task(rq, next);
10e7071b
PZ
6227 return next;
6228 }
6229 }
3f1d2a31 6230
10e7071b
PZ
6231 /* The idle class should always have a runnable task */
6232 BUG();
6233}
3f1d2a31 6234
48f24c4d 6235/*
48c5ccae
PZ
6236 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6237 * try_to_wake_up()->select_task_rq().
6238 *
6239 * Called with rq->lock held even though we'er in stop_machine() and
6240 * there's no concurrency possible, we hold the required locks anyway
6241 * because of lock validation efforts.
1da177e4 6242 */
8a8c69c3 6243static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 6244{
5e16bbc2 6245 struct rq *rq = dead_rq;
48c5ccae 6246 struct task_struct *next, *stop = rq->stop;
8a8c69c3 6247 struct rq_flags orf = *rf;
48c5ccae 6248 int dest_cpu;
1da177e4
LT
6249
6250 /*
48c5ccae
PZ
6251 * Fudge the rq selection such that the below task selection loop
6252 * doesn't get stuck on the currently eligible stop task.
6253 *
6254 * We're currently inside stop_machine() and the rq is either stuck
6255 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6256 * either way we should never end up calling schedule() until we're
6257 * done here.
1da177e4 6258 */
48c5ccae 6259 rq->stop = NULL;
48f24c4d 6260
77bd3970
FW
6261 /*
6262 * put_prev_task() and pick_next_task() sched
6263 * class method both need to have an up-to-date
6264 * value of rq->clock[_task]
6265 */
6266 update_rq_clock(rq);
6267
5e16bbc2 6268 for (;;) {
48c5ccae
PZ
6269 /*
6270 * There's this thread running, bail when that's the only
d1ccc66d 6271 * remaining thread:
48c5ccae
PZ
6272 */
6273 if (rq->nr_running == 1)
dd41f596 6274 break;
48c5ccae 6275
10e7071b 6276 next = __pick_migrate_task(rq);
e692ab53 6277
5473e0cc 6278 /*
3bd37062 6279 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
6280 * both pi_lock and rq->lock, such that holding either
6281 * stabilizes the mask.
6282 *
6283 * Drop rq->lock is not quite as disastrous as it usually is
6284 * because !cpu_active at this point, which means load-balance
6285 * will not interfere. Also, stop-machine.
6286 */
8a8c69c3 6287 rq_unlock(rq, rf);
5473e0cc 6288 raw_spin_lock(&next->pi_lock);
8a8c69c3 6289 rq_relock(rq, rf);
5473e0cc
WL
6290
6291 /*
6292 * Since we're inside stop-machine, _nothing_ should have
6293 * changed the task, WARN if weird stuff happened, because in
6294 * that case the above rq->lock drop is a fail too.
6295 */
6296 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6297 raw_spin_unlock(&next->pi_lock);
6298 continue;
6299 }
6300
48c5ccae 6301 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 6302 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 6303 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 6304 if (rq != dead_rq) {
8a8c69c3 6305 rq_unlock(rq, rf);
5e16bbc2 6306 rq = dead_rq;
8a8c69c3
PZ
6307 *rf = orf;
6308 rq_relock(rq, rf);
5e16bbc2 6309 }
5473e0cc 6310 raw_spin_unlock(&next->pi_lock);
1da177e4 6311 }
dce48a84 6312
48c5ccae 6313 rq->stop = stop;
dce48a84 6314}
1da177e4
LT
6315#endif /* CONFIG_HOTPLUG_CPU */
6316
f2cb1360 6317void set_rq_online(struct rq *rq)
1f11eb6a
GH
6318{
6319 if (!rq->online) {
6320 const struct sched_class *class;
6321
c6c4927b 6322 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6323 rq->online = 1;
6324
6325 for_each_class(class) {
6326 if (class->rq_online)
6327 class->rq_online(rq);
6328 }
6329 }
6330}
6331
f2cb1360 6332void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6333{
6334 if (rq->online) {
6335 const struct sched_class *class;
6336
6337 for_each_class(class) {
6338 if (class->rq_offline)
6339 class->rq_offline(rq);
6340 }
6341
c6c4927b 6342 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6343 rq->online = 0;
6344 }
6345}
6346
d1ccc66d
IM
6347/*
6348 * used to mark begin/end of suspend/resume:
6349 */
6350static int num_cpus_frozen;
d35be8ba 6351
1da177e4 6352/*
3a101d05
TH
6353 * Update cpusets according to cpu_active mask. If cpusets are
6354 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6355 * around partition_sched_domains().
d35be8ba
SB
6356 *
6357 * If we come here as part of a suspend/resume, don't touch cpusets because we
6358 * want to restore it back to its original state upon resume anyway.
1da177e4 6359 */
40190a78 6360static void cpuset_cpu_active(void)
e761b772 6361{
40190a78 6362 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6363 /*
6364 * num_cpus_frozen tracks how many CPUs are involved in suspend
6365 * resume sequence. As long as this is not the last online
6366 * operation in the resume sequence, just build a single sched
6367 * domain, ignoring cpusets.
6368 */
50e76632
PZ
6369 partition_sched_domains(1, NULL, NULL);
6370 if (--num_cpus_frozen)
135fb3e1 6371 return;
d35be8ba
SB
6372 /*
6373 * This is the last CPU online operation. So fall through and
6374 * restore the original sched domains by considering the
6375 * cpuset configurations.
6376 */
50e76632 6377 cpuset_force_rebuild();
3a101d05 6378 }
30e03acd 6379 cpuset_update_active_cpus();
3a101d05 6380}
e761b772 6381
40190a78 6382static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6383{
40190a78 6384 if (!cpuhp_tasks_frozen) {
06a76fe0 6385 if (dl_cpu_busy(cpu))
135fb3e1 6386 return -EBUSY;
30e03acd 6387 cpuset_update_active_cpus();
135fb3e1 6388 } else {
d35be8ba
SB
6389 num_cpus_frozen++;
6390 partition_sched_domains(1, NULL, NULL);
e761b772 6391 }
135fb3e1 6392 return 0;
e761b772 6393}
e761b772 6394
40190a78 6395int sched_cpu_activate(unsigned int cpu)
135fb3e1 6396{
7d976699 6397 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6398 struct rq_flags rf;
7d976699 6399
ba2591a5
PZ
6400#ifdef CONFIG_SCHED_SMT
6401 /*
c5511d03 6402 * When going up, increment the number of cores with SMT present.
ba2591a5 6403 */
c5511d03
PZI
6404 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6405 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6406#endif
40190a78 6407 set_cpu_active(cpu, true);
135fb3e1 6408
40190a78 6409 if (sched_smp_initialized) {
135fb3e1 6410 sched_domains_numa_masks_set(cpu);
40190a78 6411 cpuset_cpu_active();
e761b772 6412 }
7d976699
TG
6413
6414 /*
6415 * Put the rq online, if not already. This happens:
6416 *
6417 * 1) In the early boot process, because we build the real domains
d1ccc66d 6418 * after all CPUs have been brought up.
7d976699
TG
6419 *
6420 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6421 * domains.
6422 */
8a8c69c3 6423 rq_lock_irqsave(rq, &rf);
7d976699
TG
6424 if (rq->rd) {
6425 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6426 set_rq_online(rq);
6427 }
8a8c69c3 6428 rq_unlock_irqrestore(rq, &rf);
7d976699 6429
40190a78 6430 return 0;
135fb3e1
TG
6431}
6432
40190a78 6433int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6434{
135fb3e1
TG
6435 int ret;
6436
40190a78 6437 set_cpu_active(cpu, false);
b2454caa
PZ
6438 /*
6439 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6440 * users of this state to go away such that all new such users will
6441 * observe it.
6442 *
b2454caa
PZ
6443 * Do sync before park smpboot threads to take care the rcu boost case.
6444 */
309ba859 6445 synchronize_rcu();
40190a78 6446
c5511d03
PZI
6447#ifdef CONFIG_SCHED_SMT
6448 /*
6449 * When going down, decrement the number of cores with SMT present.
6450 */
6451 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6452 static_branch_dec_cpuslocked(&sched_smt_present);
6453#endif
6454
40190a78
TG
6455 if (!sched_smp_initialized)
6456 return 0;
6457
6458 ret = cpuset_cpu_inactive(cpu);
6459 if (ret) {
6460 set_cpu_active(cpu, true);
6461 return ret;
135fb3e1 6462 }
40190a78
TG
6463 sched_domains_numa_masks_clear(cpu);
6464 return 0;
135fb3e1
TG
6465}
6466
94baf7a5
TG
6467static void sched_rq_cpu_starting(unsigned int cpu)
6468{
6469 struct rq *rq = cpu_rq(cpu);
6470
6471 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6472 update_max_interval();
6473}
6474
135fb3e1
TG
6475int sched_cpu_starting(unsigned int cpu)
6476{
94baf7a5 6477 sched_rq_cpu_starting(cpu);
d84b3131 6478 sched_tick_start(cpu);
135fb3e1 6479 return 0;
e761b772 6480}
e761b772 6481
f2785ddb
TG
6482#ifdef CONFIG_HOTPLUG_CPU
6483int sched_cpu_dying(unsigned int cpu)
6484{
6485 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6486 struct rq_flags rf;
f2785ddb
TG
6487
6488 /* Handle pending wakeups and then migrate everything off */
6489 sched_ttwu_pending();
d84b3131 6490 sched_tick_stop(cpu);
8a8c69c3
PZ
6491
6492 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6493 if (rq->rd) {
6494 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6495 set_rq_offline(rq);
6496 }
8a8c69c3 6497 migrate_tasks(rq, &rf);
f2785ddb 6498 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6499 rq_unlock_irqrestore(rq, &rf);
6500
f2785ddb
TG
6501 calc_load_migrate(rq);
6502 update_max_interval();
00357f5e 6503 nohz_balance_exit_idle(rq);
e5ef27d0 6504 hrtick_clear(rq);
f2785ddb
TG
6505 return 0;
6506}
6507#endif
6508
1da177e4
LT
6509void __init sched_init_smp(void)
6510{
cb83b629
PZ
6511 sched_init_numa();
6512
6acce3ef
PZ
6513 /*
6514 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 6515 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 6516 * happen.
6acce3ef 6517 */
712555ee 6518 mutex_lock(&sched_domains_mutex);
8d5dc512 6519 sched_init_domains(cpu_active_mask);
712555ee 6520 mutex_unlock(&sched_domains_mutex);
e761b772 6521
5c1e1767 6522 /* Move init over to a non-isolated CPU */
edb93821 6523 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 6524 BUG();
19978ca6 6525 sched_init_granularity();
4212823f 6526
0e3900e6 6527 init_sched_rt_class();
1baca4ce 6528 init_sched_dl_class();
1b568f0a 6529
e26fbffd 6530 sched_smp_initialized = true;
1da177e4 6531}
e26fbffd
TG
6532
6533static int __init migration_init(void)
6534{
77a5352b 6535 sched_cpu_starting(smp_processor_id());
e26fbffd 6536 return 0;
1da177e4 6537}
e26fbffd
TG
6538early_initcall(migration_init);
6539
1da177e4
LT
6540#else
6541void __init sched_init_smp(void)
6542{
19978ca6 6543 sched_init_granularity();
1da177e4
LT
6544}
6545#endif /* CONFIG_SMP */
6546
6547int in_sched_functions(unsigned long addr)
6548{
1da177e4
LT
6549 return in_lock_functions(addr) ||
6550 (addr >= (unsigned long)__sched_text_start
6551 && addr < (unsigned long)__sched_text_end);
6552}
6553
029632fb 6554#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6555/*
6556 * Default task group.
6557 * Every task in system belongs to this group at bootup.
6558 */
029632fb 6559struct task_group root_task_group;
35cf4e50 6560LIST_HEAD(task_groups);
b0367629
WL
6561
6562/* Cacheline aligned slab cache for task_group */
6563static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6564#endif
6f505b16 6565
e6252c3e 6566DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6567DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6568
1da177e4
LT
6569void __init sched_init(void)
6570{
a1dc0446 6571 unsigned long ptr = 0;
55627e3c 6572 int i;
434d53b0 6573
5822a454 6574 wait_bit_init();
9dcb8b68 6575
434d53b0 6576#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 6577 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
6578#endif
6579#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 6580 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 6581#endif
a1dc0446
QC
6582 if (ptr) {
6583 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
6584
6585#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6586 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6587 ptr += nr_cpu_ids * sizeof(void **);
6588
07e06b01 6589 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6590 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6591
6d6bc0ad 6592#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6593#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6594 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6595 ptr += nr_cpu_ids * sizeof(void **);
6596
07e06b01 6597 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6598 ptr += nr_cpu_ids * sizeof(void **);
6599
6d6bc0ad 6600#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6601 }
df7c8e84 6602#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6603 for_each_possible_cpu(i) {
6604 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6605 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6606 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6607 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6608 }
b74e6278 6609#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6610
d1ccc66d
IM
6611 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6612 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6613
57d885fe
GH
6614#ifdef CONFIG_SMP
6615 init_defrootdomain();
6616#endif
6617
d0b27fa7 6618#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6619 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6620 global_rt_period(), global_rt_runtime());
6d6bc0ad 6621#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6622
7c941438 6623#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6624 task_group_cache = KMEM_CACHE(task_group, 0);
6625
07e06b01
YZ
6626 list_add(&root_task_group.list, &task_groups);
6627 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6628 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6629 autogroup_init(&init_task);
7c941438 6630#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6631
0a945022 6632 for_each_possible_cpu(i) {
70b97a7f 6633 struct rq *rq;
1da177e4
LT
6634
6635 rq = cpu_rq(i);
05fa785c 6636 raw_spin_lock_init(&rq->lock);
7897986b 6637 rq->nr_running = 0;
dce48a84
TG
6638 rq->calc_load_active = 0;
6639 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6640 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6641 init_rt_rq(&rq->rt);
6642 init_dl_rq(&rq->dl);
dd41f596 6643#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6644 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6645 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6646 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6647 /*
d1ccc66d 6648 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6649 *
6650 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6651 * gets 100% of the CPU resources in the system. This overall
6652 * system CPU resource is divided among the tasks of
07e06b01 6653 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6654 * based on each entity's (task or task-group's) weight
6655 * (se->load.weight).
6656 *
07e06b01 6657 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6658 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6659 * then A0's share of the CPU resource is:
354d60c2 6660 *
0d905bca 6661 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6662 *
07e06b01
YZ
6663 * We achieve this by letting root_task_group's tasks sit
6664 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6665 */
ab84d31e 6666 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6667 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6668#endif /* CONFIG_FAIR_GROUP_SCHED */
6669
6670 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6671#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6672 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6673#endif
1da177e4 6674#ifdef CONFIG_SMP
41c7ce9a 6675 rq->sd = NULL;
57d885fe 6676 rq->rd = NULL;
ca6d75e6 6677 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6678 rq->balance_callback = NULL;
1da177e4 6679 rq->active_balance = 0;
dd41f596 6680 rq->next_balance = jiffies;
1da177e4 6681 rq->push_cpu = 0;
0a2966b4 6682 rq->cpu = i;
1f11eb6a 6683 rq->online = 0;
eae0c9df
MG
6684 rq->idle_stamp = 0;
6685 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6686 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6687
6688 INIT_LIST_HEAD(&rq->cfs_tasks);
6689
dc938520 6690 rq_attach_root(rq, &def_root_domain);
3451d024 6691#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 6692 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6693 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6694#endif
9fd81dd5 6695#endif /* CONFIG_SMP */
77a021be 6696 hrtick_rq_init(rq);
1da177e4 6697 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6698 }
6699
9059393e 6700 set_load_weight(&init_task, false);
b50f60ce 6701
1da177e4
LT
6702 /*
6703 * The boot idle thread does lazy MMU switching as well:
6704 */
f1f10076 6705 mmgrab(&init_mm);
1da177e4
LT
6706 enter_lazy_tlb(&init_mm, current);
6707
6708 /*
6709 * Make us the idle thread. Technically, schedule() should not be
6710 * called from this thread, however somewhere below it might be,
6711 * but because we are the idle thread, we just pick up running again
6712 * when this runqueue becomes "idle".
6713 */
6714 init_idle(current, smp_processor_id());
dce48a84
TG
6715
6716 calc_load_update = jiffies + LOAD_FREQ;
6717
bf4d83f6 6718#ifdef CONFIG_SMP
29d5e047 6719 idle_thread_set_boot_cpu();
029632fb
PZ
6720#endif
6721 init_sched_fair_class();
6a7b3dc3 6722
4698f88c
JP
6723 init_schedstats();
6724
eb414681
JW
6725 psi_init();
6726
69842cba
PB
6727 init_uclamp();
6728
6892b75e 6729 scheduler_running = 1;
1da177e4
LT
6730}
6731
d902db1e 6732#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6733static inline int preempt_count_equals(int preempt_offset)
6734{
da7142e2 6735 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6736
4ba8216c 6737 return (nested == preempt_offset);
e4aafea2
FW
6738}
6739
d894837f 6740void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6741{
8eb23b9f
PZ
6742 /*
6743 * Blocking primitives will set (and therefore destroy) current->state,
6744 * since we will exit with TASK_RUNNING make sure we enter with it,
6745 * otherwise we will destroy state.
6746 */
00845eb9 6747 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6748 "do not call blocking ops when !TASK_RUNNING; "
6749 "state=%lx set at [<%p>] %pS\n",
6750 current->state,
6751 (void *)current->task_state_change,
00845eb9 6752 (void *)current->task_state_change);
8eb23b9f 6753
3427445a
PZ
6754 ___might_sleep(file, line, preempt_offset);
6755}
6756EXPORT_SYMBOL(__might_sleep);
6757
6758void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6759{
d1ccc66d
IM
6760 /* Ratelimiting timestamp: */
6761 static unsigned long prev_jiffy;
6762
d1c6d149 6763 unsigned long preempt_disable_ip;
1da177e4 6764
d1ccc66d
IM
6765 /* WARN_ON_ONCE() by default, no rate limit required: */
6766 rcu_sleep_check();
6767
db273be2 6768 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 6769 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
6770 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6771 oops_in_progress)
aef745fc 6772 return;
1c3c5eab 6773
aef745fc
IM
6774 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6775 return;
6776 prev_jiffy = jiffies;
6777
d1ccc66d 6778 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6779 preempt_disable_ip = get_preempt_disable_ip(current);
6780
3df0fc5b
PZ
6781 printk(KERN_ERR
6782 "BUG: sleeping function called from invalid context at %s:%d\n",
6783 file, line);
6784 printk(KERN_ERR
312364f3
DV
6785 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6786 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 6787 current->pid, current->comm);
aef745fc 6788
a8b686b3
ES
6789 if (task_stack_end_corrupted(current))
6790 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6791
aef745fc
IM
6792 debug_show_held_locks(current);
6793 if (irqs_disabled())
6794 print_irqtrace_events(current);
d1c6d149
VN
6795 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6796 && !preempt_count_equals(preempt_offset)) {
8f47b187 6797 pr_err("Preemption disabled at:");
d1c6d149 6798 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6799 pr_cont("\n");
6800 }
aef745fc 6801 dump_stack();
f0b22e39 6802 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6803}
3427445a 6804EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6805
6806void __cant_sleep(const char *file, int line, int preempt_offset)
6807{
6808 static unsigned long prev_jiffy;
6809
6810 if (irqs_disabled())
6811 return;
6812
6813 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6814 return;
6815
6816 if (preempt_count() > preempt_offset)
6817 return;
6818
6819 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6820 return;
6821 prev_jiffy = jiffies;
6822
6823 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6824 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6825 in_atomic(), irqs_disabled(),
6826 current->pid, current->comm);
6827
6828 debug_show_held_locks(current);
6829 dump_stack();
6830 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6831}
6832EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6833#endif
6834
6835#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6836void normalize_rt_tasks(void)
3a5e4dc1 6837{
dbc7f069 6838 struct task_struct *g, *p;
d50dde5a
DF
6839 struct sched_attr attr = {
6840 .sched_policy = SCHED_NORMAL,
6841 };
1da177e4 6842
3472eaa1 6843 read_lock(&tasklist_lock);
5d07f420 6844 for_each_process_thread(g, p) {
178be793
IM
6845 /*
6846 * Only normalize user tasks:
6847 */
3472eaa1 6848 if (p->flags & PF_KTHREAD)
178be793
IM
6849 continue;
6850
4fa8d299
JP
6851 p->se.exec_start = 0;
6852 schedstat_set(p->se.statistics.wait_start, 0);
6853 schedstat_set(p->se.statistics.sleep_start, 0);
6854 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6855
aab03e05 6856 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6857 /*
6858 * Renice negative nice level userspace
6859 * tasks back to 0:
6860 */
3472eaa1 6861 if (task_nice(p) < 0)
dd41f596 6862 set_user_nice(p, 0);
1da177e4 6863 continue;
dd41f596 6864 }
1da177e4 6865
dbc7f069 6866 __sched_setscheduler(p, &attr, false, false);
5d07f420 6867 }
3472eaa1 6868 read_unlock(&tasklist_lock);
1da177e4
LT
6869}
6870
6871#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6872
67fc4e0c 6873#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6874/*
67fc4e0c 6875 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6876 *
6877 * They can only be called when the whole system has been
6878 * stopped - every CPU needs to be quiescent, and no scheduling
6879 * activity can take place. Using them for anything else would
6880 * be a serious bug, and as a result, they aren't even visible
6881 * under any other configuration.
6882 */
6883
6884/**
d1ccc66d 6885 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6886 * @cpu: the processor in question.
6887 *
6888 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6889 *
6890 * Return: The current task for @cpu.
1df5c10a 6891 */
36c8b586 6892struct task_struct *curr_task(int cpu)
1df5c10a
LT
6893{
6894 return cpu_curr(cpu);
6895}
6896
67fc4e0c
JW
6897#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6898
6899#ifdef CONFIG_IA64
1df5c10a 6900/**
5feeb783 6901 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6902 * @cpu: the processor in question.
6903 * @p: the task pointer to set.
6904 *
6905 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6906 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6907 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6908 * must be called with all CPU's synchronized, and interrupts disabled, the
6909 * and caller must save the original value of the current task (see
6910 * curr_task() above) and restore that value before reenabling interrupts and
6911 * re-starting the system.
6912 *
6913 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6914 */
a458ae2e 6915void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6916{
6917 cpu_curr(cpu) = p;
6918}
6919
6920#endif
29f59db3 6921
7c941438 6922#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6923/* task_group_lock serializes the addition/removal of task groups */
6924static DEFINE_SPINLOCK(task_group_lock);
6925
2480c093
PB
6926static inline void alloc_uclamp_sched_group(struct task_group *tg,
6927 struct task_group *parent)
6928{
6929#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 6930 enum uclamp_id clamp_id;
2480c093
PB
6931
6932 for_each_clamp_id(clamp_id) {
6933 uclamp_se_set(&tg->uclamp_req[clamp_id],
6934 uclamp_none(clamp_id), false);
0b60ba2d 6935 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
6936 }
6937#endif
6938}
6939
2f5177f0 6940static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6941{
6942 free_fair_sched_group(tg);
6943 free_rt_sched_group(tg);
e9aa1dd1 6944 autogroup_free(tg);
b0367629 6945 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6946}
6947
6948/* allocate runqueue etc for a new task group */
ec7dc8ac 6949struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6950{
6951 struct task_group *tg;
bccbe08a 6952
b0367629 6953 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6954 if (!tg)
6955 return ERR_PTR(-ENOMEM);
6956
ec7dc8ac 6957 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6958 goto err;
6959
ec7dc8ac 6960 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6961 goto err;
6962
2480c093
PB
6963 alloc_uclamp_sched_group(tg, parent);
6964
ace783b9
LZ
6965 return tg;
6966
6967err:
2f5177f0 6968 sched_free_group(tg);
ace783b9
LZ
6969 return ERR_PTR(-ENOMEM);
6970}
6971
6972void sched_online_group(struct task_group *tg, struct task_group *parent)
6973{
6974 unsigned long flags;
6975
8ed36996 6976 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6977 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6978
d1ccc66d
IM
6979 /* Root should already exist: */
6980 WARN_ON(!parent);
f473aa5e
PZ
6981
6982 tg->parent = parent;
f473aa5e 6983 INIT_LIST_HEAD(&tg->children);
09f2724a 6984 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6985 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6986
6987 online_fair_sched_group(tg);
29f59db3
SV
6988}
6989
9b5b7751 6990/* rcu callback to free various structures associated with a task group */
2f5177f0 6991static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6992{
d1ccc66d 6993 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6994 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6995}
6996
4cf86d77 6997void sched_destroy_group(struct task_group *tg)
ace783b9 6998{
d1ccc66d 6999 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 7000 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7001}
7002
7003void sched_offline_group(struct task_group *tg)
29f59db3 7004{
8ed36996 7005 unsigned long flags;
29f59db3 7006
d1ccc66d 7007 /* End participation in shares distribution: */
6fe1f348 7008 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7009
7010 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7011 list_del_rcu(&tg->list);
f473aa5e 7012 list_del_rcu(&tg->siblings);
8ed36996 7013 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7014}
7015
ea86cb4b 7016static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7017{
8323f26c 7018 struct task_group *tg;
29f59db3 7019
f7b8a47d
KT
7020 /*
7021 * All callers are synchronized by task_rq_lock(); we do not use RCU
7022 * which is pointless here. Thus, we pass "true" to task_css_check()
7023 * to prevent lockdep warnings.
7024 */
7025 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7026 struct task_group, css);
7027 tg = autogroup_task_group(tsk, tg);
7028 tsk->sched_task_group = tg;
7029
810b3817 7030#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7031 if (tsk->sched_class->task_change_group)
7032 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7033 else
810b3817 7034#endif
b2b5ce02 7035 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7036}
7037
7038/*
7039 * Change task's runqueue when it moves between groups.
7040 *
7041 * The caller of this function should have put the task in its new group by
7042 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7043 * its new group.
7044 */
7045void sched_move_task(struct task_struct *tsk)
7046{
7a57f32a
PZ
7047 int queued, running, queue_flags =
7048 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
7049 struct rq_flags rf;
7050 struct rq *rq;
7051
7052 rq = task_rq_lock(tsk, &rf);
1b1d6225 7053 update_rq_clock(rq);
ea86cb4b
VG
7054
7055 running = task_current(rq, tsk);
7056 queued = task_on_rq_queued(tsk);
7057
7058 if (queued)
7a57f32a 7059 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 7060 if (running)
ea86cb4b
VG
7061 put_prev_task(rq, tsk);
7062
7063 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7064
da0c1e65 7065 if (queued)
7a57f32a 7066 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 7067 if (running) {
03b7fad1 7068 set_next_task(rq, tsk);
2a4b03ff
VG
7069 /*
7070 * After changing group, the running task may have joined a
7071 * throttled one but it's still the running task. Trigger a
7072 * resched to make sure that task can still run.
7073 */
7074 resched_curr(rq);
7075 }
29f59db3 7076
eb580751 7077 task_rq_unlock(rq, tsk, &rf);
29f59db3 7078}
68318b8e 7079
a7c6d554 7080static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7081{
a7c6d554 7082 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7083}
7084
eb95419b
TH
7085static struct cgroup_subsys_state *
7086cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7087{
eb95419b
TH
7088 struct task_group *parent = css_tg(parent_css);
7089 struct task_group *tg;
68318b8e 7090
eb95419b 7091 if (!parent) {
68318b8e 7092 /* This is early initialization for the top cgroup */
07e06b01 7093 return &root_task_group.css;
68318b8e
SV
7094 }
7095
ec7dc8ac 7096 tg = sched_create_group(parent);
68318b8e
SV
7097 if (IS_ERR(tg))
7098 return ERR_PTR(-ENOMEM);
7099
68318b8e
SV
7100 return &tg->css;
7101}
7102
96b77745
KK
7103/* Expose task group only after completing cgroup initialization */
7104static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7105{
7106 struct task_group *tg = css_tg(css);
7107 struct task_group *parent = css_tg(css->parent);
7108
7109 if (parent)
7110 sched_online_group(tg, parent);
7226017a
QY
7111
7112#ifdef CONFIG_UCLAMP_TASK_GROUP
7113 /* Propagate the effective uclamp value for the new group */
7114 cpu_util_update_eff(css);
7115#endif
7116
96b77745
KK
7117 return 0;
7118}
7119
2f5177f0 7120static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 7121{
eb95419b 7122 struct task_group *tg = css_tg(css);
ace783b9 7123
2f5177f0 7124 sched_offline_group(tg);
ace783b9
LZ
7125}
7126
eb95419b 7127static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7128{
eb95419b 7129 struct task_group *tg = css_tg(css);
68318b8e 7130
2f5177f0
PZ
7131 /*
7132 * Relies on the RCU grace period between css_released() and this.
7133 */
7134 sched_free_group(tg);
ace783b9
LZ
7135}
7136
ea86cb4b
VG
7137/*
7138 * This is called before wake_up_new_task(), therefore we really only
7139 * have to set its group bits, all the other stuff does not apply.
7140 */
b53202e6 7141static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 7142{
ea86cb4b
VG
7143 struct rq_flags rf;
7144 struct rq *rq;
7145
7146 rq = task_rq_lock(task, &rf);
7147
80f5c1b8 7148 update_rq_clock(rq);
ea86cb4b
VG
7149 sched_change_group(task, TASK_SET_GROUP);
7150
7151 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
7152}
7153
1f7dd3e5 7154static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 7155{
bb9d97b6 7156 struct task_struct *task;
1f7dd3e5 7157 struct cgroup_subsys_state *css;
7dc603c9 7158 int ret = 0;
bb9d97b6 7159
1f7dd3e5 7160 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7161#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7162 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7163 return -EINVAL;
b68aa230 7164#endif
7dc603c9
PZ
7165 /*
7166 * Serialize against wake_up_new_task() such that if its
7167 * running, we're sure to observe its full state.
7168 */
7169 raw_spin_lock_irq(&task->pi_lock);
7170 /*
7171 * Avoid calling sched_move_task() before wake_up_new_task()
7172 * has happened. This would lead to problems with PELT, due to
7173 * move wanting to detach+attach while we're not attached yet.
7174 */
7175 if (task->state == TASK_NEW)
7176 ret = -EINVAL;
7177 raw_spin_unlock_irq(&task->pi_lock);
7178
7179 if (ret)
7180 break;
bb9d97b6 7181 }
7dc603c9 7182 return ret;
be367d09 7183}
68318b8e 7184
1f7dd3e5 7185static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 7186{
bb9d97b6 7187 struct task_struct *task;
1f7dd3e5 7188 struct cgroup_subsys_state *css;
bb9d97b6 7189
1f7dd3e5 7190 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7191 sched_move_task(task);
68318b8e
SV
7192}
7193
2480c093 7194#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
7195static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7196{
7197 struct cgroup_subsys_state *top_css = css;
7198 struct uclamp_se *uc_parent = NULL;
7199 struct uclamp_se *uc_se = NULL;
7200 unsigned int eff[UCLAMP_CNT];
0413d7f3 7201 enum uclamp_id clamp_id;
0b60ba2d
PB
7202 unsigned int clamps;
7203
7204 css_for_each_descendant_pre(css, top_css) {
7205 uc_parent = css_tg(css)->parent
7206 ? css_tg(css)->parent->uclamp : NULL;
7207
7208 for_each_clamp_id(clamp_id) {
7209 /* Assume effective clamps matches requested clamps */
7210 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7211 /* Cap effective clamps with parent's effective clamps */
7212 if (uc_parent &&
7213 eff[clamp_id] > uc_parent[clamp_id].value) {
7214 eff[clamp_id] = uc_parent[clamp_id].value;
7215 }
7216 }
7217 /* Ensure protection is always capped by limit */
7218 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7219
7220 /* Propagate most restrictive effective clamps */
7221 clamps = 0x0;
7222 uc_se = css_tg(css)->uclamp;
7223 for_each_clamp_id(clamp_id) {
7224 if (eff[clamp_id] == uc_se[clamp_id].value)
7225 continue;
7226 uc_se[clamp_id].value = eff[clamp_id];
7227 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7228 clamps |= (0x1 << clamp_id);
7229 }
babbe170 7230 if (!clamps) {
0b60ba2d 7231 css = css_rightmost_descendant(css);
babbe170
PB
7232 continue;
7233 }
7234
7235 /* Immediately update descendants RUNNABLE tasks */
7236 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
7237 }
7238}
2480c093
PB
7239
7240/*
7241 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7242 * C expression. Since there is no way to convert a macro argument (N) into a
7243 * character constant, use two levels of macros.
7244 */
7245#define _POW10(exp) ((unsigned int)1e##exp)
7246#define POW10(exp) _POW10(exp)
7247
7248struct uclamp_request {
7249#define UCLAMP_PERCENT_SHIFT 2
7250#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7251 s64 percent;
7252 u64 util;
7253 int ret;
7254};
7255
7256static inline struct uclamp_request
7257capacity_from_percent(char *buf)
7258{
7259 struct uclamp_request req = {
7260 .percent = UCLAMP_PERCENT_SCALE,
7261 .util = SCHED_CAPACITY_SCALE,
7262 .ret = 0,
7263 };
7264
7265 buf = strim(buf);
7266 if (strcmp(buf, "max")) {
7267 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7268 &req.percent);
7269 if (req.ret)
7270 return req;
b562d140 7271 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
7272 req.ret = -ERANGE;
7273 return req;
7274 }
7275
7276 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7277 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7278 }
7279
7280 return req;
7281}
7282
7283static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7284 size_t nbytes, loff_t off,
7285 enum uclamp_id clamp_id)
7286{
7287 struct uclamp_request req;
7288 struct task_group *tg;
7289
7290 req = capacity_from_percent(buf);
7291 if (req.ret)
7292 return req.ret;
7293
7294 mutex_lock(&uclamp_mutex);
7295 rcu_read_lock();
7296
7297 tg = css_tg(of_css(of));
7298 if (tg->uclamp_req[clamp_id].value != req.util)
7299 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7300
7301 /*
7302 * Because of not recoverable conversion rounding we keep track of the
7303 * exact requested value
7304 */
7305 tg->uclamp_pct[clamp_id] = req.percent;
7306
0b60ba2d
PB
7307 /* Update effective clamps to track the most restrictive value */
7308 cpu_util_update_eff(of_css(of));
7309
2480c093
PB
7310 rcu_read_unlock();
7311 mutex_unlock(&uclamp_mutex);
7312
7313 return nbytes;
7314}
7315
7316static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7317 char *buf, size_t nbytes,
7318 loff_t off)
7319{
7320 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7321}
7322
7323static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7324 char *buf, size_t nbytes,
7325 loff_t off)
7326{
7327 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7328}
7329
7330static inline void cpu_uclamp_print(struct seq_file *sf,
7331 enum uclamp_id clamp_id)
7332{
7333 struct task_group *tg;
7334 u64 util_clamp;
7335 u64 percent;
7336 u32 rem;
7337
7338 rcu_read_lock();
7339 tg = css_tg(seq_css(sf));
7340 util_clamp = tg->uclamp_req[clamp_id].value;
7341 rcu_read_unlock();
7342
7343 if (util_clamp == SCHED_CAPACITY_SCALE) {
7344 seq_puts(sf, "max\n");
7345 return;
7346 }
7347
7348 percent = tg->uclamp_pct[clamp_id];
7349 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7350 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7351}
7352
7353static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7354{
7355 cpu_uclamp_print(sf, UCLAMP_MIN);
7356 return 0;
7357}
7358
7359static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7360{
7361 cpu_uclamp_print(sf, UCLAMP_MAX);
7362 return 0;
7363}
7364#endif /* CONFIG_UCLAMP_TASK_GROUP */
7365
052f1dc7 7366#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7367static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7368 struct cftype *cftype, u64 shareval)
68318b8e 7369{
5b61d50a
KK
7370 if (shareval > scale_load_down(ULONG_MAX))
7371 shareval = MAX_SHARES;
182446d0 7372 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7373}
7374
182446d0
TH
7375static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7376 struct cftype *cft)
68318b8e 7377{
182446d0 7378 struct task_group *tg = css_tg(css);
68318b8e 7379
c8b28116 7380 return (u64) scale_load_down(tg->shares);
68318b8e 7381}
ab84d31e
PT
7382
7383#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7384static DEFINE_MUTEX(cfs_constraints_mutex);
7385
ab84d31e 7386const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 7387static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
ab84d31e 7388
a790de99
PT
7389static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7390
ab84d31e
PT
7391static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7392{
56f570e5 7393 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7394 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7395
7396 if (tg == &root_task_group)
7397 return -EINVAL;
7398
7399 /*
7400 * Ensure we have at some amount of bandwidth every period. This is
7401 * to prevent reaching a state of large arrears when throttled via
7402 * entity_tick() resulting in prolonged exit starvation.
7403 */
7404 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7405 return -EINVAL;
7406
7407 /*
7408 * Likewise, bound things on the otherside by preventing insane quota
7409 * periods. This also allows us to normalize in computing quota
7410 * feasibility.
7411 */
7412 if (period > max_cfs_quota_period)
7413 return -EINVAL;
7414
0e59bdae
KT
7415 /*
7416 * Prevent race between setting of cfs_rq->runtime_enabled and
7417 * unthrottle_offline_cfs_rqs().
7418 */
7419 get_online_cpus();
a790de99
PT
7420 mutex_lock(&cfs_constraints_mutex);
7421 ret = __cfs_schedulable(tg, period, quota);
7422 if (ret)
7423 goto out_unlock;
7424
58088ad0 7425 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7426 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7427 /*
7428 * If we need to toggle cfs_bandwidth_used, off->on must occur
7429 * before making related changes, and on->off must occur afterwards
7430 */
7431 if (runtime_enabled && !runtime_was_enabled)
7432 cfs_bandwidth_usage_inc();
ab84d31e
PT
7433 raw_spin_lock_irq(&cfs_b->lock);
7434 cfs_b->period = ns_to_ktime(period);
7435 cfs_b->quota = quota;
58088ad0 7436
a9cf55b2 7437 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7438
7439 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7440 if (runtime_enabled)
7441 start_cfs_bandwidth(cfs_b);
d1ccc66d 7442
ab84d31e
PT
7443 raw_spin_unlock_irq(&cfs_b->lock);
7444
0e59bdae 7445 for_each_online_cpu(i) {
ab84d31e 7446 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7447 struct rq *rq = cfs_rq->rq;
8a8c69c3 7448 struct rq_flags rf;
ab84d31e 7449
8a8c69c3 7450 rq_lock_irq(rq, &rf);
58088ad0 7451 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7452 cfs_rq->runtime_remaining = 0;
671fd9da 7453
029632fb 7454 if (cfs_rq->throttled)
671fd9da 7455 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7456 rq_unlock_irq(rq, &rf);
ab84d31e 7457 }
1ee14e6c
BS
7458 if (runtime_was_enabled && !runtime_enabled)
7459 cfs_bandwidth_usage_dec();
a790de99
PT
7460out_unlock:
7461 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7462 put_online_cpus();
ab84d31e 7463
a790de99 7464 return ret;
ab84d31e
PT
7465}
7466
b1546edc 7467static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
7468{
7469 u64 quota, period;
7470
029632fb 7471 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7472 if (cfs_quota_us < 0)
7473 quota = RUNTIME_INF;
1a8b4540 7474 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 7475 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
7476 else
7477 return -EINVAL;
ab84d31e
PT
7478
7479 return tg_set_cfs_bandwidth(tg, period, quota);
7480}
7481
b1546edc 7482static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
7483{
7484 u64 quota_us;
7485
029632fb 7486 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7487 return -1;
7488
029632fb 7489 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7490 do_div(quota_us, NSEC_PER_USEC);
7491
7492 return quota_us;
7493}
7494
b1546edc 7495static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
7496{
7497 u64 quota, period;
7498
1a8b4540
KK
7499 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7500 return -EINVAL;
7501
ab84d31e 7502 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7503 quota = tg->cfs_bandwidth.quota;
ab84d31e 7504
ab84d31e
PT
7505 return tg_set_cfs_bandwidth(tg, period, quota);
7506}
7507
b1546edc 7508static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
7509{
7510 u64 cfs_period_us;
7511
029632fb 7512 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7513 do_div(cfs_period_us, NSEC_PER_USEC);
7514
7515 return cfs_period_us;
7516}
7517
182446d0
TH
7518static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7519 struct cftype *cft)
ab84d31e 7520{
182446d0 7521 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7522}
7523
182446d0
TH
7524static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7525 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7526{
182446d0 7527 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7528}
7529
182446d0
TH
7530static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7531 struct cftype *cft)
ab84d31e 7532{
182446d0 7533 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7534}
7535
182446d0
TH
7536static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7537 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7538{
182446d0 7539 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7540}
7541
a790de99
PT
7542struct cfs_schedulable_data {
7543 struct task_group *tg;
7544 u64 period, quota;
7545};
7546
7547/*
7548 * normalize group quota/period to be quota/max_period
7549 * note: units are usecs
7550 */
7551static u64 normalize_cfs_quota(struct task_group *tg,
7552 struct cfs_schedulable_data *d)
7553{
7554 u64 quota, period;
7555
7556 if (tg == d->tg) {
7557 period = d->period;
7558 quota = d->quota;
7559 } else {
7560 period = tg_get_cfs_period(tg);
7561 quota = tg_get_cfs_quota(tg);
7562 }
7563
7564 /* note: these should typically be equivalent */
7565 if (quota == RUNTIME_INF || quota == -1)
7566 return RUNTIME_INF;
7567
7568 return to_ratio(period, quota);
7569}
7570
7571static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7572{
7573 struct cfs_schedulable_data *d = data;
029632fb 7574 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7575 s64 quota = 0, parent_quota = -1;
7576
7577 if (!tg->parent) {
7578 quota = RUNTIME_INF;
7579 } else {
029632fb 7580 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7581
7582 quota = normalize_cfs_quota(tg, d);
9c58c79a 7583 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7584
7585 /*
c53593e5
TH
7586 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7587 * always take the min. On cgroup1, only inherit when no
d1ccc66d 7588 * limit is set:
a790de99 7589 */
c53593e5
TH
7590 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7591 quota = min(quota, parent_quota);
7592 } else {
7593 if (quota == RUNTIME_INF)
7594 quota = parent_quota;
7595 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7596 return -EINVAL;
7597 }
a790de99 7598 }
9c58c79a 7599 cfs_b->hierarchical_quota = quota;
a790de99
PT
7600
7601 return 0;
7602}
7603
7604static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7605{
8277434e 7606 int ret;
a790de99
PT
7607 struct cfs_schedulable_data data = {
7608 .tg = tg,
7609 .period = period,
7610 .quota = quota,
7611 };
7612
7613 if (quota != RUNTIME_INF) {
7614 do_div(data.period, NSEC_PER_USEC);
7615 do_div(data.quota, NSEC_PER_USEC);
7616 }
7617
8277434e
PT
7618 rcu_read_lock();
7619 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7620 rcu_read_unlock();
7621
7622 return ret;
a790de99 7623}
e8da1b18 7624
a1f7164c 7625static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 7626{
2da8ca82 7627 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7628 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7629
44ffc75b
TH
7630 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7631 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7632 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 7633
3d6c50c2
YW
7634 if (schedstat_enabled() && tg != &root_task_group) {
7635 u64 ws = 0;
7636 int i;
7637
7638 for_each_possible_cpu(i)
7639 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7640
7641 seq_printf(sf, "wait_sum %llu\n", ws);
7642 }
7643
e8da1b18
NR
7644 return 0;
7645}
ab84d31e 7646#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7647#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7648
052f1dc7 7649#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7650static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7651 struct cftype *cft, s64 val)
6f505b16 7652{
182446d0 7653 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7654}
7655
182446d0
TH
7656static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7657 struct cftype *cft)
6f505b16 7658{
182446d0 7659 return sched_group_rt_runtime(css_tg(css));
6f505b16 7660}
d0b27fa7 7661
182446d0
TH
7662static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7663 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7664{
182446d0 7665 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7666}
7667
182446d0
TH
7668static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7669 struct cftype *cft)
d0b27fa7 7670{
182446d0 7671 return sched_group_rt_period(css_tg(css));
d0b27fa7 7672}
6d6bc0ad 7673#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7674
a1f7164c 7675static struct cftype cpu_legacy_files[] = {
052f1dc7 7676#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7677 {
7678 .name = "shares",
f4c753b7
PM
7679 .read_u64 = cpu_shares_read_u64,
7680 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7681 },
052f1dc7 7682#endif
ab84d31e
PT
7683#ifdef CONFIG_CFS_BANDWIDTH
7684 {
7685 .name = "cfs_quota_us",
7686 .read_s64 = cpu_cfs_quota_read_s64,
7687 .write_s64 = cpu_cfs_quota_write_s64,
7688 },
7689 {
7690 .name = "cfs_period_us",
7691 .read_u64 = cpu_cfs_period_read_u64,
7692 .write_u64 = cpu_cfs_period_write_u64,
7693 },
e8da1b18
NR
7694 {
7695 .name = "stat",
a1f7164c 7696 .seq_show = cpu_cfs_stat_show,
e8da1b18 7697 },
ab84d31e 7698#endif
052f1dc7 7699#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7700 {
9f0c1e56 7701 .name = "rt_runtime_us",
06ecb27c
PM
7702 .read_s64 = cpu_rt_runtime_read,
7703 .write_s64 = cpu_rt_runtime_write,
6f505b16 7704 },
d0b27fa7
PZ
7705 {
7706 .name = "rt_period_us",
f4c753b7
PM
7707 .read_u64 = cpu_rt_period_read_uint,
7708 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7709 },
2480c093
PB
7710#endif
7711#ifdef CONFIG_UCLAMP_TASK_GROUP
7712 {
7713 .name = "uclamp.min",
7714 .flags = CFTYPE_NOT_ON_ROOT,
7715 .seq_show = cpu_uclamp_min_show,
7716 .write = cpu_uclamp_min_write,
7717 },
7718 {
7719 .name = "uclamp.max",
7720 .flags = CFTYPE_NOT_ON_ROOT,
7721 .seq_show = cpu_uclamp_max_show,
7722 .write = cpu_uclamp_max_write,
7723 },
052f1dc7 7724#endif
d1ccc66d 7725 { } /* Terminate */
68318b8e
SV
7726};
7727
d41bf8c9
TH
7728static int cpu_extra_stat_show(struct seq_file *sf,
7729 struct cgroup_subsys_state *css)
0d593634 7730{
0d593634
TH
7731#ifdef CONFIG_CFS_BANDWIDTH
7732 {
d41bf8c9 7733 struct task_group *tg = css_tg(css);
0d593634
TH
7734 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7735 u64 throttled_usec;
7736
7737 throttled_usec = cfs_b->throttled_time;
7738 do_div(throttled_usec, NSEC_PER_USEC);
7739
7740 seq_printf(sf, "nr_periods %d\n"
7741 "nr_throttled %d\n"
7742 "throttled_usec %llu\n",
7743 cfs_b->nr_periods, cfs_b->nr_throttled,
7744 throttled_usec);
7745 }
7746#endif
7747 return 0;
7748}
7749
7750#ifdef CONFIG_FAIR_GROUP_SCHED
7751static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7752 struct cftype *cft)
7753{
7754 struct task_group *tg = css_tg(css);
7755 u64 weight = scale_load_down(tg->shares);
7756
7757 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7758}
7759
7760static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7761 struct cftype *cft, u64 weight)
7762{
7763 /*
7764 * cgroup weight knobs should use the common MIN, DFL and MAX
7765 * values which are 1, 100 and 10000 respectively. While it loses
7766 * a bit of range on both ends, it maps pretty well onto the shares
7767 * value used by scheduler and the round-trip conversions preserve
7768 * the original value over the entire range.
7769 */
7770 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7771 return -ERANGE;
7772
7773 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7774
7775 return sched_group_set_shares(css_tg(css), scale_load(weight));
7776}
7777
7778static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7779 struct cftype *cft)
7780{
7781 unsigned long weight = scale_load_down(css_tg(css)->shares);
7782 int last_delta = INT_MAX;
7783 int prio, delta;
7784
7785 /* find the closest nice value to the current weight */
7786 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7787 delta = abs(sched_prio_to_weight[prio] - weight);
7788 if (delta >= last_delta)
7789 break;
7790 last_delta = delta;
7791 }
7792
7793 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7794}
7795
7796static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7797 struct cftype *cft, s64 nice)
7798{
7799 unsigned long weight;
7281c8de 7800 int idx;
0d593634
TH
7801
7802 if (nice < MIN_NICE || nice > MAX_NICE)
7803 return -ERANGE;
7804
7281c8de
PZ
7805 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7806 idx = array_index_nospec(idx, 40);
7807 weight = sched_prio_to_weight[idx];
7808
0d593634
TH
7809 return sched_group_set_shares(css_tg(css), scale_load(weight));
7810}
7811#endif
7812
7813static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7814 long period, long quota)
7815{
7816 if (quota < 0)
7817 seq_puts(sf, "max");
7818 else
7819 seq_printf(sf, "%ld", quota);
7820
7821 seq_printf(sf, " %ld\n", period);
7822}
7823
7824/* caller should put the current value in *@periodp before calling */
7825static int __maybe_unused cpu_period_quota_parse(char *buf,
7826 u64 *periodp, u64 *quotap)
7827{
7828 char tok[21]; /* U64_MAX */
7829
4c47acd8 7830 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
7831 return -EINVAL;
7832
7833 *periodp *= NSEC_PER_USEC;
7834
7835 if (sscanf(tok, "%llu", quotap))
7836 *quotap *= NSEC_PER_USEC;
7837 else if (!strcmp(tok, "max"))
7838 *quotap = RUNTIME_INF;
7839 else
7840 return -EINVAL;
7841
7842 return 0;
7843}
7844
7845#ifdef CONFIG_CFS_BANDWIDTH
7846static int cpu_max_show(struct seq_file *sf, void *v)
7847{
7848 struct task_group *tg = css_tg(seq_css(sf));
7849
7850 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7851 return 0;
7852}
7853
7854static ssize_t cpu_max_write(struct kernfs_open_file *of,
7855 char *buf, size_t nbytes, loff_t off)
7856{
7857 struct task_group *tg = css_tg(of_css(of));
7858 u64 period = tg_get_cfs_period(tg);
7859 u64 quota;
7860 int ret;
7861
7862 ret = cpu_period_quota_parse(buf, &period, &quota);
7863 if (!ret)
7864 ret = tg_set_cfs_bandwidth(tg, period, quota);
7865 return ret ?: nbytes;
7866}
7867#endif
7868
7869static struct cftype cpu_files[] = {
0d593634
TH
7870#ifdef CONFIG_FAIR_GROUP_SCHED
7871 {
7872 .name = "weight",
7873 .flags = CFTYPE_NOT_ON_ROOT,
7874 .read_u64 = cpu_weight_read_u64,
7875 .write_u64 = cpu_weight_write_u64,
7876 },
7877 {
7878 .name = "weight.nice",
7879 .flags = CFTYPE_NOT_ON_ROOT,
7880 .read_s64 = cpu_weight_nice_read_s64,
7881 .write_s64 = cpu_weight_nice_write_s64,
7882 },
7883#endif
7884#ifdef CONFIG_CFS_BANDWIDTH
7885 {
7886 .name = "max",
7887 .flags = CFTYPE_NOT_ON_ROOT,
7888 .seq_show = cpu_max_show,
7889 .write = cpu_max_write,
7890 },
2480c093
PB
7891#endif
7892#ifdef CONFIG_UCLAMP_TASK_GROUP
7893 {
7894 .name = "uclamp.min",
7895 .flags = CFTYPE_NOT_ON_ROOT,
7896 .seq_show = cpu_uclamp_min_show,
7897 .write = cpu_uclamp_min_write,
7898 },
7899 {
7900 .name = "uclamp.max",
7901 .flags = CFTYPE_NOT_ON_ROOT,
7902 .seq_show = cpu_uclamp_max_show,
7903 .write = cpu_uclamp_max_write,
7904 },
0d593634
TH
7905#endif
7906 { } /* terminate */
7907};
7908
073219e9 7909struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7910 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7911 .css_online = cpu_cgroup_css_online,
2f5177f0 7912 .css_released = cpu_cgroup_css_released,
92fb9748 7913 .css_free = cpu_cgroup_css_free,
d41bf8c9 7914 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7915 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7916 .can_attach = cpu_cgroup_can_attach,
7917 .attach = cpu_cgroup_attach,
a1f7164c 7918 .legacy_cftypes = cpu_legacy_files,
0d593634 7919 .dfl_cftypes = cpu_files,
b38e42e9 7920 .early_init = true,
0d593634 7921 .threaded = true,
68318b8e
SV
7922};
7923
052f1dc7 7924#endif /* CONFIG_CGROUP_SCHED */
d842de87 7925
b637a328
PM
7926void dump_cpu_task(int cpu)
7927{
7928 pr_info("Task dump for CPU %d:\n", cpu);
7929 sched_show_task(cpu_curr(cpu));
7930}
ed82b8a1
AK
7931
7932/*
7933 * Nice levels are multiplicative, with a gentle 10% change for every
7934 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7935 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7936 * that remained on nice 0.
7937 *
7938 * The "10% effect" is relative and cumulative: from _any_ nice level,
7939 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7940 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7941 * If a task goes up by ~10% and another task goes down by ~10% then
7942 * the relative distance between them is ~25%.)
7943 */
7944const int sched_prio_to_weight[40] = {
7945 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7946 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7947 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7948 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7949 /* 0 */ 1024, 820, 655, 526, 423,
7950 /* 5 */ 335, 272, 215, 172, 137,
7951 /* 10 */ 110, 87, 70, 56, 45,
7952 /* 15 */ 36, 29, 23, 18, 15,
7953};
7954
7955/*
7956 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7957 *
7958 * In cases where the weight does not change often, we can use the
7959 * precalculated inverse to speed up arithmetics by turning divisions
7960 * into multiplications:
7961 */
7962const u32 sched_prio_to_wmult[40] = {
7963 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7964 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7965 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7966 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7967 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7968 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7969 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7970 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7971};
14a7405b
IM
7972
7973#undef CREATE_TRACE_POINTS