]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
kcov: prefault the kcov_area
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
325ea10c 8#include "sched.h"
1da177e4 9
85f1abe0 10#include <linux/kthread.h>
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
96f951ed 13#include <asm/switch_to.h>
5517d86b 14#include <asm/tlb.h>
1da177e4 15
ea138446 16#include "../workqueue_internal.h"
29d5e047 17#include "../smpboot.h"
6e0534f2 18
a8d154b0 19#define CREATE_TRACE_POINTS
ad8d75ff 20#include <trace/events/sched.h>
a8d154b0 21
029632fb 22DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 23
765cc3a4 24#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
bf5c91ba
IM
25/*
26 * Debugging: various feature bits
765cc3a4
PB
27 *
28 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
29 * sysctl_sched_features, defined in sched.h, to allow constants propagation
30 * at compile time and compiler optimization based on features default.
bf5c91ba 31 */
f00b45c1
PZ
32#define SCHED_FEAT(name, enabled) \
33 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 34const_debug unsigned int sysctl_sched_features =
391e43da 35#include "features.h"
f00b45c1 36 0;
f00b45c1 37#undef SCHED_FEAT
765cc3a4 38#endif
f00b45c1 39
b82d9fdd
PZ
40/*
41 * Number of tasks to iterate in a single balance run.
42 * Limited because this is done with IRQs disabled.
43 */
44const_debug unsigned int sysctl_sched_nr_migrate = 32;
45
e9e9250b
PZ
46/*
47 * period over which we average the RT time consumption, measured
48 * in ms.
49 *
50 * default: 1s
51 */
52const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
53
fa85ae24 54/*
d1ccc66d 55 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
56 * default: 1s
57 */
9f0c1e56 58unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 59
029632fb 60__read_mostly int scheduler_running;
6892b75e 61
9f0c1e56
PZ
62/*
63 * part of the period that we allow rt tasks to run in us.
64 * default: 0.95s
65 */
66int sysctl_sched_rt_runtime = 950000;
fa85ae24 67
3e71a462
PZ
68/*
69 * __task_rq_lock - lock the rq @p resides on.
70 */
eb580751 71struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
72 __acquires(rq->lock)
73{
74 struct rq *rq;
75
76 lockdep_assert_held(&p->pi_lock);
77
78 for (;;) {
79 rq = task_rq(p);
80 raw_spin_lock(&rq->lock);
81 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 82 rq_pin_lock(rq, rf);
3e71a462
PZ
83 return rq;
84 }
85 raw_spin_unlock(&rq->lock);
86
87 while (unlikely(task_on_rq_migrating(p)))
88 cpu_relax();
89 }
90}
91
92/*
93 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
94 */
eb580751 95struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
96 __acquires(p->pi_lock)
97 __acquires(rq->lock)
98{
99 struct rq *rq;
100
101 for (;;) {
eb580751 102 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
103 rq = task_rq(p);
104 raw_spin_lock(&rq->lock);
105 /*
106 * move_queued_task() task_rq_lock()
107 *
108 * ACQUIRE (rq->lock)
109 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
110 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
111 * [S] ->cpu = new_cpu [L] task_rq()
112 * [L] ->on_rq
113 * RELEASE (rq->lock)
114 *
97fb7a0a 115 * If we observe the old CPU in task_rq_lock, the acquire of
3e71a462
PZ
116 * the old rq->lock will fully serialize against the stores.
117 *
d1ccc66d 118 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
119 * pair with the WMB to ensure we must then also see migrating.
120 */
121 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 122 rq_pin_lock(rq, rf);
3e71a462
PZ
123 return rq;
124 }
125 raw_spin_unlock(&rq->lock);
eb580751 126 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
127
128 while (unlikely(task_on_rq_migrating(p)))
129 cpu_relax();
130 }
131}
132
535b9552
IM
133/*
134 * RQ-clock updating methods:
135 */
136
137static void update_rq_clock_task(struct rq *rq, s64 delta)
138{
139/*
140 * In theory, the compile should just see 0 here, and optimize out the call
141 * to sched_rt_avg_update. But I don't trust it...
142 */
143#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
144 s64 steal = 0, irq_delta = 0;
145#endif
146#ifdef CONFIG_IRQ_TIME_ACCOUNTING
147 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
148
149 /*
150 * Since irq_time is only updated on {soft,}irq_exit, we might run into
151 * this case when a previous update_rq_clock() happened inside a
152 * {soft,}irq region.
153 *
154 * When this happens, we stop ->clock_task and only update the
155 * prev_irq_time stamp to account for the part that fit, so that a next
156 * update will consume the rest. This ensures ->clock_task is
157 * monotonic.
158 *
159 * It does however cause some slight miss-attribution of {soft,}irq
160 * time, a more accurate solution would be to update the irq_time using
161 * the current rq->clock timestamp, except that would require using
162 * atomic ops.
163 */
164 if (irq_delta > delta)
165 irq_delta = delta;
166
167 rq->prev_irq_time += irq_delta;
168 delta -= irq_delta;
169#endif
170#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
171 if (static_key_false((&paravirt_steal_rq_enabled))) {
172 steal = paravirt_steal_clock(cpu_of(rq));
173 steal -= rq->prev_steal_time_rq;
174
175 if (unlikely(steal > delta))
176 steal = delta;
177
178 rq->prev_steal_time_rq += steal;
179 delta -= steal;
180 }
181#endif
182
183 rq->clock_task += delta;
184
185#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
186 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
187 sched_rt_avg_update(rq, irq_delta + steal);
188#endif
189}
190
191void update_rq_clock(struct rq *rq)
192{
193 s64 delta;
194
195 lockdep_assert_held(&rq->lock);
196
197 if (rq->clock_update_flags & RQCF_ACT_SKIP)
198 return;
199
200#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
201 if (sched_feat(WARN_DOUBLE_CLOCK))
202 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
203 rq->clock_update_flags |= RQCF_UPDATED;
204#endif
26ae58d2 205
535b9552
IM
206 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
207 if (delta < 0)
208 return;
209 rq->clock += delta;
210 update_rq_clock_task(rq, delta);
211}
212
213
8f4d37ec
PZ
214#ifdef CONFIG_SCHED_HRTICK
215/*
216 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 217 */
8f4d37ec 218
8f4d37ec
PZ
219static void hrtick_clear(struct rq *rq)
220{
221 if (hrtimer_active(&rq->hrtick_timer))
222 hrtimer_cancel(&rq->hrtick_timer);
223}
224
8f4d37ec
PZ
225/*
226 * High-resolution timer tick.
227 * Runs from hardirq context with interrupts disabled.
228 */
229static enum hrtimer_restart hrtick(struct hrtimer *timer)
230{
231 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 232 struct rq_flags rf;
8f4d37ec
PZ
233
234 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
235
8a8c69c3 236 rq_lock(rq, &rf);
3e51f33f 237 update_rq_clock(rq);
8f4d37ec 238 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 239 rq_unlock(rq, &rf);
8f4d37ec
PZ
240
241 return HRTIMER_NORESTART;
242}
243
95e904c7 244#ifdef CONFIG_SMP
971ee28c 245
4961b6e1 246static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
247{
248 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 249
4961b6e1 250 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
251}
252
31656519
PZ
253/*
254 * called from hardirq (IPI) context
255 */
256static void __hrtick_start(void *arg)
b328ca18 257{
31656519 258 struct rq *rq = arg;
8a8c69c3 259 struct rq_flags rf;
b328ca18 260
8a8c69c3 261 rq_lock(rq, &rf);
971ee28c 262 __hrtick_restart(rq);
31656519 263 rq->hrtick_csd_pending = 0;
8a8c69c3 264 rq_unlock(rq, &rf);
b328ca18
PZ
265}
266
31656519
PZ
267/*
268 * Called to set the hrtick timer state.
269 *
270 * called with rq->lock held and irqs disabled
271 */
029632fb 272void hrtick_start(struct rq *rq, u64 delay)
b328ca18 273{
31656519 274 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 275 ktime_t time;
276 s64 delta;
277
278 /*
279 * Don't schedule slices shorter than 10000ns, that just
280 * doesn't make sense and can cause timer DoS.
281 */
282 delta = max_t(s64, delay, 10000LL);
283 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 284
cc584b21 285 hrtimer_set_expires(timer, time);
31656519
PZ
286
287 if (rq == this_rq()) {
971ee28c 288 __hrtick_restart(rq);
31656519 289 } else if (!rq->hrtick_csd_pending) {
c46fff2a 290 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
291 rq->hrtick_csd_pending = 1;
292 }
b328ca18
PZ
293}
294
31656519
PZ
295#else
296/*
297 * Called to set the hrtick timer state.
298 *
299 * called with rq->lock held and irqs disabled
300 */
029632fb 301void hrtick_start(struct rq *rq, u64 delay)
31656519 302{
86893335
WL
303 /*
304 * Don't schedule slices shorter than 10000ns, that just
305 * doesn't make sense. Rely on vruntime for fairness.
306 */
307 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
308 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
309 HRTIMER_MODE_REL_PINNED);
31656519 310}
31656519 311#endif /* CONFIG_SMP */
8f4d37ec 312
77a021be 313static void hrtick_rq_init(struct rq *rq)
8f4d37ec 314{
31656519
PZ
315#ifdef CONFIG_SMP
316 rq->hrtick_csd_pending = 0;
8f4d37ec 317
31656519
PZ
318 rq->hrtick_csd.flags = 0;
319 rq->hrtick_csd.func = __hrtick_start;
320 rq->hrtick_csd.info = rq;
321#endif
8f4d37ec 322
31656519
PZ
323 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
324 rq->hrtick_timer.function = hrtick;
8f4d37ec 325}
006c75f1 326#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
327static inline void hrtick_clear(struct rq *rq)
328{
329}
330
77a021be 331static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
332{
333}
006c75f1 334#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 335
5529578a
FW
336/*
337 * cmpxchg based fetch_or, macro so it works for different integer types
338 */
339#define fetch_or(ptr, mask) \
340 ({ \
341 typeof(ptr) _ptr = (ptr); \
342 typeof(mask) _mask = (mask); \
343 typeof(*_ptr) _old, _val = *_ptr; \
344 \
345 for (;;) { \
346 _old = cmpxchg(_ptr, _val, _val | _mask); \
347 if (_old == _val) \
348 break; \
349 _val = _old; \
350 } \
351 _old; \
352})
353
e3baac47 354#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
355/*
356 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
357 * this avoids any races wrt polling state changes and thereby avoids
358 * spurious IPIs.
359 */
360static bool set_nr_and_not_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
363 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
364}
e3baac47
PZ
365
366/*
367 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
368 *
369 * If this returns true, then the idle task promises to call
370 * sched_ttwu_pending() and reschedule soon.
371 */
372static bool set_nr_if_polling(struct task_struct *p)
373{
374 struct thread_info *ti = task_thread_info(p);
316c1608 375 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
376
377 for (;;) {
378 if (!(val & _TIF_POLLING_NRFLAG))
379 return false;
380 if (val & _TIF_NEED_RESCHED)
381 return true;
382 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
383 if (old == val)
384 break;
385 val = old;
386 }
387 return true;
388}
389
fd99f91a
PZ
390#else
391static bool set_nr_and_not_polling(struct task_struct *p)
392{
393 set_tsk_need_resched(p);
394 return true;
395}
e3baac47
PZ
396
397#ifdef CONFIG_SMP
398static bool set_nr_if_polling(struct task_struct *p)
399{
400 return false;
401}
402#endif
fd99f91a
PZ
403#endif
404
76751049
PZ
405void wake_q_add(struct wake_q_head *head, struct task_struct *task)
406{
407 struct wake_q_node *node = &task->wake_q;
408
409 /*
410 * Atomically grab the task, if ->wake_q is !nil already it means
411 * its already queued (either by us or someone else) and will get the
412 * wakeup due to that.
413 *
414 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 415 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
416 */
417 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
418 return;
419
420 get_task_struct(task);
421
422 /*
423 * The head is context local, there can be no concurrency.
424 */
425 *head->lastp = node;
426 head->lastp = &node->next;
427}
428
429void wake_up_q(struct wake_q_head *head)
430{
431 struct wake_q_node *node = head->first;
432
433 while (node != WAKE_Q_TAIL) {
434 struct task_struct *task;
435
436 task = container_of(node, struct task_struct, wake_q);
437 BUG_ON(!task);
d1ccc66d 438 /* Task can safely be re-inserted now: */
76751049
PZ
439 node = node->next;
440 task->wake_q.next = NULL;
441
442 /*
443 * wake_up_process() implies a wmb() to pair with the queueing
444 * in wake_q_add() so as not to miss wakeups.
445 */
446 wake_up_process(task);
447 put_task_struct(task);
448 }
449}
450
c24d20db 451/*
8875125e 452 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
453 *
454 * On UP this means the setting of the need_resched flag, on SMP it
455 * might also involve a cross-CPU call to trigger the scheduler on
456 * the target CPU.
457 */
8875125e 458void resched_curr(struct rq *rq)
c24d20db 459{
8875125e 460 struct task_struct *curr = rq->curr;
c24d20db
IM
461 int cpu;
462
8875125e 463 lockdep_assert_held(&rq->lock);
c24d20db 464
8875125e 465 if (test_tsk_need_resched(curr))
c24d20db
IM
466 return;
467
8875125e 468 cpu = cpu_of(rq);
fd99f91a 469
f27dde8d 470 if (cpu == smp_processor_id()) {
8875125e 471 set_tsk_need_resched(curr);
f27dde8d 472 set_preempt_need_resched();
c24d20db 473 return;
f27dde8d 474 }
c24d20db 475
8875125e 476 if (set_nr_and_not_polling(curr))
c24d20db 477 smp_send_reschedule(cpu);
dfc68f29
AL
478 else
479 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
480}
481
029632fb 482void resched_cpu(int cpu)
c24d20db
IM
483{
484 struct rq *rq = cpu_rq(cpu);
485 unsigned long flags;
486
7c2102e5 487 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
488 if (cpu_online(cpu) || cpu == smp_processor_id())
489 resched_curr(rq);
05fa785c 490 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 491}
06d8308c 492
b021fe3e 493#ifdef CONFIG_SMP
3451d024 494#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 495/*
d1ccc66d
IM
496 * In the semi idle case, use the nearest busy CPU for migrating timers
497 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
498 *
499 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
500 * selecting an idle CPU will add more delays to the timers than intended
501 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 502 */
bc7a34b8 503int get_nohz_timer_target(void)
83cd4fe2 504{
bc7a34b8 505 int i, cpu = smp_processor_id();
83cd4fe2
VP
506 struct sched_domain *sd;
507
de201559 508 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
509 return cpu;
510
057f3fad 511 rcu_read_lock();
83cd4fe2 512 for_each_domain(cpu, sd) {
057f3fad 513 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
514 if (cpu == i)
515 continue;
516
de201559 517 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
518 cpu = i;
519 goto unlock;
520 }
521 }
83cd4fe2 522 }
9642d18e 523
de201559
FW
524 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
525 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
526unlock:
527 rcu_read_unlock();
83cd4fe2
VP
528 return cpu;
529}
d1ccc66d 530
06d8308c
TG
531/*
532 * When add_timer_on() enqueues a timer into the timer wheel of an
533 * idle CPU then this timer might expire before the next timer event
534 * which is scheduled to wake up that CPU. In case of a completely
535 * idle system the next event might even be infinite time into the
536 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
537 * leaves the inner idle loop so the newly added timer is taken into
538 * account when the CPU goes back to idle and evaluates the timer
539 * wheel for the next timer event.
540 */
1c20091e 541static void wake_up_idle_cpu(int cpu)
06d8308c
TG
542{
543 struct rq *rq = cpu_rq(cpu);
544
545 if (cpu == smp_processor_id())
546 return;
547
67b9ca70 548 if (set_nr_and_not_polling(rq->idle))
06d8308c 549 smp_send_reschedule(cpu);
dfc68f29
AL
550 else
551 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
552}
553
c5bfece2 554static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 555{
53c5fa16
FW
556 /*
557 * We just need the target to call irq_exit() and re-evaluate
558 * the next tick. The nohz full kick at least implies that.
559 * If needed we can still optimize that later with an
560 * empty IRQ.
561 */
379d9ecb
PM
562 if (cpu_is_offline(cpu))
563 return true; /* Don't try to wake offline CPUs. */
c5bfece2 564 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
565 if (cpu != smp_processor_id() ||
566 tick_nohz_tick_stopped())
53c5fa16 567 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
568 return true;
569 }
570
571 return false;
572}
573
379d9ecb
PM
574/*
575 * Wake up the specified CPU. If the CPU is going offline, it is the
576 * caller's responsibility to deal with the lost wakeup, for example,
577 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
578 */
1c20091e
FW
579void wake_up_nohz_cpu(int cpu)
580{
c5bfece2 581 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
582 wake_up_idle_cpu(cpu);
583}
584
ca38062e 585static inline bool got_nohz_idle_kick(void)
45bf76df 586{
1c792db7 587 int cpu = smp_processor_id();
873b4c65 588
b7031a02 589 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
590 return false;
591
592 if (idle_cpu(cpu) && !need_resched())
593 return true;
594
595 /*
596 * We can't run Idle Load Balance on this CPU for this time so we
597 * cancel it and clear NOHZ_BALANCE_KICK
598 */
b7031a02 599 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 600 return false;
45bf76df
IM
601}
602
3451d024 603#else /* CONFIG_NO_HZ_COMMON */
45bf76df 604
ca38062e 605static inline bool got_nohz_idle_kick(void)
2069dd75 606{
ca38062e 607 return false;
2069dd75
PZ
608}
609
3451d024 610#endif /* CONFIG_NO_HZ_COMMON */
d842de87 611
ce831b38 612#ifdef CONFIG_NO_HZ_FULL
76d92ac3 613bool sched_can_stop_tick(struct rq *rq)
ce831b38 614{
76d92ac3
FW
615 int fifo_nr_running;
616
617 /* Deadline tasks, even if single, need the tick */
618 if (rq->dl.dl_nr_running)
619 return false;
620
1e78cdbd 621 /*
2548d546
PZ
622 * If there are more than one RR tasks, we need the tick to effect the
623 * actual RR behaviour.
1e78cdbd 624 */
76d92ac3
FW
625 if (rq->rt.rr_nr_running) {
626 if (rq->rt.rr_nr_running == 1)
627 return true;
628 else
629 return false;
1e78cdbd
RR
630 }
631
2548d546
PZ
632 /*
633 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
634 * forced preemption between FIFO tasks.
635 */
636 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
637 if (fifo_nr_running)
638 return true;
639
640 /*
641 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
642 * if there's more than one we need the tick for involuntary
643 * preemption.
644 */
645 if (rq->nr_running > 1)
541b8264 646 return false;
ce831b38 647
541b8264 648 return true;
ce831b38
FW
649}
650#endif /* CONFIG_NO_HZ_FULL */
d842de87 651
029632fb 652void sched_avg_update(struct rq *rq)
18d95a28 653{
e9e9250b
PZ
654 s64 period = sched_avg_period();
655
78becc27 656 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
657 /*
658 * Inline assembly required to prevent the compiler
659 * optimising this loop into a divmod call.
660 * See __iter_div_u64_rem() for another example of this.
661 */
662 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
663 rq->age_stamp += period;
664 rq->rt_avg /= 2;
665 }
18d95a28
PZ
666}
667
6d6bc0ad 668#endif /* CONFIG_SMP */
18d95a28 669
a790de99
PT
670#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
671 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 672/*
8277434e
PT
673 * Iterate task_group tree rooted at *from, calling @down when first entering a
674 * node and @up when leaving it for the final time.
675 *
676 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 677 */
029632fb 678int walk_tg_tree_from(struct task_group *from,
8277434e 679 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
680{
681 struct task_group *parent, *child;
eb755805 682 int ret;
c09595f6 683
8277434e
PT
684 parent = from;
685
c09595f6 686down:
eb755805
PZ
687 ret = (*down)(parent, data);
688 if (ret)
8277434e 689 goto out;
c09595f6
PZ
690 list_for_each_entry_rcu(child, &parent->children, siblings) {
691 parent = child;
692 goto down;
693
694up:
695 continue;
696 }
eb755805 697 ret = (*up)(parent, data);
8277434e
PT
698 if (ret || parent == from)
699 goto out;
c09595f6
PZ
700
701 child = parent;
702 parent = parent->parent;
703 if (parent)
704 goto up;
8277434e 705out:
eb755805 706 return ret;
c09595f6
PZ
707}
708
029632fb 709int tg_nop(struct task_group *tg, void *data)
eb755805 710{
e2b245f8 711 return 0;
eb755805 712}
18d95a28
PZ
713#endif
714
9059393e 715static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 716{
f05998d4
NR
717 int prio = p->static_prio - MAX_RT_PRIO;
718 struct load_weight *load = &p->se.load;
719
dd41f596
IM
720 /*
721 * SCHED_IDLE tasks get minimal weight:
722 */
20f9cd2a 723 if (idle_policy(p->policy)) {
c8b28116 724 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 725 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
726 return;
727 }
71f8bd46 728
9059393e
VG
729 /*
730 * SCHED_OTHER tasks have to update their load when changing their
731 * weight
732 */
733 if (update_load && p->sched_class == &fair_sched_class) {
734 reweight_task(p, prio);
735 } else {
736 load->weight = scale_load(sched_prio_to_weight[prio]);
737 load->inv_weight = sched_prio_to_wmult[prio];
738 }
71f8bd46
IM
739}
740
1de64443 741static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 742{
0a67d1ee
PZ
743 if (!(flags & ENQUEUE_NOCLOCK))
744 update_rq_clock(rq);
745
1de64443
PZ
746 if (!(flags & ENQUEUE_RESTORE))
747 sched_info_queued(rq, p);
0a67d1ee 748
371fd7e7 749 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
750}
751
1de64443 752static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 753{
0a67d1ee
PZ
754 if (!(flags & DEQUEUE_NOCLOCK))
755 update_rq_clock(rq);
756
1de64443
PZ
757 if (!(flags & DEQUEUE_SAVE))
758 sched_info_dequeued(rq, p);
0a67d1ee 759
371fd7e7 760 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
761}
762
029632fb 763void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
764{
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
371fd7e7 768 enqueue_task(rq, p, flags);
1e3c88bd
PZ
769}
770
029632fb 771void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
371fd7e7 776 dequeue_task(rq, p, flags);
1e3c88bd
PZ
777}
778
14531189 779/*
dd41f596 780 * __normal_prio - return the priority that is based on the static prio
14531189 781 */
14531189
IM
782static inline int __normal_prio(struct task_struct *p)
783{
dd41f596 784 return p->static_prio;
14531189
IM
785}
786
b29739f9
IM
787/*
788 * Calculate the expected normal priority: i.e. priority
789 * without taking RT-inheritance into account. Might be
790 * boosted by interactivity modifiers. Changes upon fork,
791 * setprio syscalls, and whenever the interactivity
792 * estimator recalculates.
793 */
36c8b586 794static inline int normal_prio(struct task_struct *p)
b29739f9
IM
795{
796 int prio;
797
aab03e05
DF
798 if (task_has_dl_policy(p))
799 prio = MAX_DL_PRIO-1;
800 else if (task_has_rt_policy(p))
b29739f9
IM
801 prio = MAX_RT_PRIO-1 - p->rt_priority;
802 else
803 prio = __normal_prio(p);
804 return prio;
805}
806
807/*
808 * Calculate the current priority, i.e. the priority
809 * taken into account by the scheduler. This value might
810 * be boosted by RT tasks, or might be boosted by
811 * interactivity modifiers. Will be RT if the task got
812 * RT-boosted. If not then it returns p->normal_prio.
813 */
36c8b586 814static int effective_prio(struct task_struct *p)
b29739f9
IM
815{
816 p->normal_prio = normal_prio(p);
817 /*
818 * If we are RT tasks or we were boosted to RT priority,
819 * keep the priority unchanged. Otherwise, update priority
820 * to the normal priority:
821 */
822 if (!rt_prio(p->prio))
823 return p->normal_prio;
824 return p->prio;
825}
826
1da177e4
LT
827/**
828 * task_curr - is this task currently executing on a CPU?
829 * @p: the task in question.
e69f6186
YB
830 *
831 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 832 */
36c8b586 833inline int task_curr(const struct task_struct *p)
1da177e4
LT
834{
835 return cpu_curr(task_cpu(p)) == p;
836}
837
67dfa1b7 838/*
4c9a4bc8
PZ
839 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
840 * use the balance_callback list if you want balancing.
841 *
842 * this means any call to check_class_changed() must be followed by a call to
843 * balance_callback().
67dfa1b7 844 */
cb469845
SR
845static inline void check_class_changed(struct rq *rq, struct task_struct *p,
846 const struct sched_class *prev_class,
da7a735e 847 int oldprio)
cb469845
SR
848{
849 if (prev_class != p->sched_class) {
850 if (prev_class->switched_from)
da7a735e 851 prev_class->switched_from(rq, p);
4c9a4bc8 852
da7a735e 853 p->sched_class->switched_to(rq, p);
2d3d891d 854 } else if (oldprio != p->prio || dl_task(p))
da7a735e 855 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
856}
857
029632fb 858void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
859{
860 const struct sched_class *class;
861
862 if (p->sched_class == rq->curr->sched_class) {
863 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
864 } else {
865 for_each_class(class) {
866 if (class == rq->curr->sched_class)
867 break;
868 if (class == p->sched_class) {
8875125e 869 resched_curr(rq);
1e5a7405
PZ
870 break;
871 }
872 }
873 }
874
875 /*
876 * A queue event has occurred, and we're going to schedule. In
877 * this case, we can save a useless back to back clock update.
878 */
da0c1e65 879 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 880 rq_clock_skip_update(rq);
1e5a7405
PZ
881}
882
1da177e4 883#ifdef CONFIG_SMP
175f0e25
PZ
884
885static inline bool is_per_cpu_kthread(struct task_struct *p)
886{
887 if (!(p->flags & PF_KTHREAD))
888 return false;
889
890 if (p->nr_cpus_allowed != 1)
891 return false;
892
893 return true;
894}
895
896/*
897 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
898 * __set_cpus_allowed_ptr() and select_fallback_rq().
899 */
900static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
901{
902 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
903 return false;
904
905 if (is_per_cpu_kthread(p))
906 return cpu_online(cpu);
907
908 return cpu_active(cpu);
909}
910
5cc389bc
PZ
911/*
912 * This is how migration works:
913 *
914 * 1) we invoke migration_cpu_stop() on the target CPU using
915 * stop_one_cpu().
916 * 2) stopper starts to run (implicitly forcing the migrated thread
917 * off the CPU)
918 * 3) it checks whether the migrated task is still in the wrong runqueue.
919 * 4) if it's in the wrong runqueue then the migration thread removes
920 * it and puts it into the right queue.
921 * 5) stopper completes and stop_one_cpu() returns and the migration
922 * is done.
923 */
924
925/*
926 * move_queued_task - move a queued task to new rq.
927 *
928 * Returns (locked) new rq. Old rq's lock is released.
929 */
8a8c69c3
PZ
930static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
931 struct task_struct *p, int new_cpu)
5cc389bc 932{
5cc389bc
PZ
933 lockdep_assert_held(&rq->lock);
934
5cc389bc 935 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 936 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 937 set_task_cpu(p, new_cpu);
8a8c69c3 938 rq_unlock(rq, rf);
5cc389bc
PZ
939
940 rq = cpu_rq(new_cpu);
941
8a8c69c3 942 rq_lock(rq, rf);
5cc389bc 943 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 944 enqueue_task(rq, p, 0);
3ea94de1 945 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
946 check_preempt_curr(rq, p, 0);
947
948 return rq;
949}
950
951struct migration_arg {
952 struct task_struct *task;
953 int dest_cpu;
954};
955
956/*
d1ccc66d 957 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
958 * this because either it can't run here any more (set_cpus_allowed()
959 * away from this CPU, or CPU going down), or because we're
960 * attempting to rebalance this task on exec (sched_exec).
961 *
962 * So we race with normal scheduler movements, but that's OK, as long
963 * as the task is no longer on this CPU.
5cc389bc 964 */
8a8c69c3
PZ
965static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
966 struct task_struct *p, int dest_cpu)
5cc389bc 967{
5cc389bc 968 /* Affinity changed (again). */
175f0e25 969 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 970 return rq;
5cc389bc 971
15ff991e 972 update_rq_clock(rq);
8a8c69c3 973 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
974
975 return rq;
5cc389bc
PZ
976}
977
978/*
979 * migration_cpu_stop - this will be executed by a highprio stopper thread
980 * and performs thread migration by bumping thread off CPU then
981 * 'pushing' onto another runqueue.
982 */
983static int migration_cpu_stop(void *data)
984{
985 struct migration_arg *arg = data;
5e16bbc2
PZ
986 struct task_struct *p = arg->task;
987 struct rq *rq = this_rq();
8a8c69c3 988 struct rq_flags rf;
5cc389bc
PZ
989
990 /*
d1ccc66d
IM
991 * The original target CPU might have gone down and we might
992 * be on another CPU but it doesn't matter.
5cc389bc
PZ
993 */
994 local_irq_disable();
995 /*
996 * We need to explicitly wake pending tasks before running
997 * __migrate_task() such that we will not miss enforcing cpus_allowed
998 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
999 */
1000 sched_ttwu_pending();
5e16bbc2
PZ
1001
1002 raw_spin_lock(&p->pi_lock);
8a8c69c3 1003 rq_lock(rq, &rf);
5e16bbc2
PZ
1004 /*
1005 * If task_rq(p) != rq, it cannot be migrated here, because we're
1006 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1007 * we're holding p->pi_lock.
1008 */
bf89a304
CC
1009 if (task_rq(p) == rq) {
1010 if (task_on_rq_queued(p))
8a8c69c3 1011 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1012 else
1013 p->wake_cpu = arg->dest_cpu;
1014 }
8a8c69c3 1015 rq_unlock(rq, &rf);
5e16bbc2
PZ
1016 raw_spin_unlock(&p->pi_lock);
1017
5cc389bc
PZ
1018 local_irq_enable();
1019 return 0;
1020}
1021
c5b28038
PZ
1022/*
1023 * sched_class::set_cpus_allowed must do the below, but is not required to
1024 * actually call this function.
1025 */
1026void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1027{
5cc389bc
PZ
1028 cpumask_copy(&p->cpus_allowed, new_mask);
1029 p->nr_cpus_allowed = cpumask_weight(new_mask);
1030}
1031
c5b28038
PZ
1032void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1033{
6c37067e
PZ
1034 struct rq *rq = task_rq(p);
1035 bool queued, running;
1036
c5b28038 1037 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1038
1039 queued = task_on_rq_queued(p);
1040 running = task_current(rq, p);
1041
1042 if (queued) {
1043 /*
1044 * Because __kthread_bind() calls this on blocked tasks without
1045 * holding rq->lock.
1046 */
1047 lockdep_assert_held(&rq->lock);
7a57f32a 1048 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1049 }
1050 if (running)
1051 put_prev_task(rq, p);
1052
c5b28038 1053 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1054
6c37067e 1055 if (queued)
7134b3e9 1056 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1057 if (running)
b2bf6c31 1058 set_curr_task(rq, p);
c5b28038
PZ
1059}
1060
5cc389bc
PZ
1061/*
1062 * Change a given task's CPU affinity. Migrate the thread to a
1063 * proper CPU and schedule it away if the CPU it's executing on
1064 * is removed from the allowed bitmask.
1065 *
1066 * NOTE: the caller must have a valid reference to the task, the
1067 * task must not exit() & deallocate itself prematurely. The
1068 * call is not atomic; no spinlocks may be held.
1069 */
25834c73
PZ
1070static int __set_cpus_allowed_ptr(struct task_struct *p,
1071 const struct cpumask *new_mask, bool check)
5cc389bc 1072{
e9d867a6 1073 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1074 unsigned int dest_cpu;
eb580751
PZ
1075 struct rq_flags rf;
1076 struct rq *rq;
5cc389bc
PZ
1077 int ret = 0;
1078
eb580751 1079 rq = task_rq_lock(p, &rf);
a499c3ea 1080 update_rq_clock(rq);
5cc389bc 1081
e9d867a6
PZI
1082 if (p->flags & PF_KTHREAD) {
1083 /*
1084 * Kernel threads are allowed on online && !active CPUs
1085 */
1086 cpu_valid_mask = cpu_online_mask;
1087 }
1088
25834c73
PZ
1089 /*
1090 * Must re-check here, to close a race against __kthread_bind(),
1091 * sched_setaffinity() is not guaranteed to observe the flag.
1092 */
1093 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1094 ret = -EINVAL;
1095 goto out;
1096 }
1097
5cc389bc
PZ
1098 if (cpumask_equal(&p->cpus_allowed, new_mask))
1099 goto out;
1100
e9d867a6 1101 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1102 ret = -EINVAL;
1103 goto out;
1104 }
1105
1106 do_set_cpus_allowed(p, new_mask);
1107
e9d867a6
PZI
1108 if (p->flags & PF_KTHREAD) {
1109 /*
1110 * For kernel threads that do indeed end up on online &&
d1ccc66d 1111 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1112 */
1113 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1114 !cpumask_intersects(new_mask, cpu_active_mask) &&
1115 p->nr_cpus_allowed != 1);
1116 }
1117
5cc389bc
PZ
1118 /* Can the task run on the task's current CPU? If so, we're done */
1119 if (cpumask_test_cpu(task_cpu(p), new_mask))
1120 goto out;
1121
e9d867a6 1122 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1123 if (task_running(rq, p) || p->state == TASK_WAKING) {
1124 struct migration_arg arg = { p, dest_cpu };
1125 /* Need help from migration thread: drop lock and wait. */
eb580751 1126 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1127 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1128 tlb_migrate_finish(p->mm);
1129 return 0;
cbce1a68
PZ
1130 } else if (task_on_rq_queued(p)) {
1131 /*
1132 * OK, since we're going to drop the lock immediately
1133 * afterwards anyway.
1134 */
8a8c69c3 1135 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1136 }
5cc389bc 1137out:
eb580751 1138 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1139
1140 return ret;
1141}
25834c73
PZ
1142
1143int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1144{
1145 return __set_cpus_allowed_ptr(p, new_mask, false);
1146}
5cc389bc
PZ
1147EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1148
dd41f596 1149void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1150{
e2912009
PZ
1151#ifdef CONFIG_SCHED_DEBUG
1152 /*
1153 * We should never call set_task_cpu() on a blocked task,
1154 * ttwu() will sort out the placement.
1155 */
077614ee 1156 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1157 !p->on_rq);
0122ec5b 1158
3ea94de1
JP
1159 /*
1160 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1161 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1162 * time relying on p->on_rq.
1163 */
1164 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1165 p->sched_class == &fair_sched_class &&
1166 (p->on_rq && !task_on_rq_migrating(p)));
1167
0122ec5b 1168#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1169 /*
1170 * The caller should hold either p->pi_lock or rq->lock, when changing
1171 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1172 *
1173 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1174 * see task_group().
6c6c54e1
PZ
1175 *
1176 * Furthermore, all task_rq users should acquire both locks, see
1177 * task_rq_lock().
1178 */
0122ec5b
PZ
1179 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1180 lockdep_is_held(&task_rq(p)->lock)));
1181#endif
4ff9083b
PZ
1182 /*
1183 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1184 */
1185 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1186#endif
1187
de1d7286 1188 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1189
0c69774e 1190 if (task_cpu(p) != new_cpu) {
0a74bef8 1191 if (p->sched_class->migrate_task_rq)
5a4fd036 1192 p->sched_class->migrate_task_rq(p);
0c69774e 1193 p->se.nr_migrations++;
d7822b1e 1194 rseq_migrate(p);
ff303e66 1195 perf_event_task_migrate(p);
0c69774e 1196 }
dd41f596
IM
1197
1198 __set_task_cpu(p, new_cpu);
c65cc870
IM
1199}
1200
ac66f547
PZ
1201static void __migrate_swap_task(struct task_struct *p, int cpu)
1202{
da0c1e65 1203 if (task_on_rq_queued(p)) {
ac66f547 1204 struct rq *src_rq, *dst_rq;
8a8c69c3 1205 struct rq_flags srf, drf;
ac66f547
PZ
1206
1207 src_rq = task_rq(p);
1208 dst_rq = cpu_rq(cpu);
1209
8a8c69c3
PZ
1210 rq_pin_lock(src_rq, &srf);
1211 rq_pin_lock(dst_rq, &drf);
1212
3ea94de1 1213 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1214 deactivate_task(src_rq, p, 0);
1215 set_task_cpu(p, cpu);
1216 activate_task(dst_rq, p, 0);
3ea94de1 1217 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1218 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1219
1220 rq_unpin_lock(dst_rq, &drf);
1221 rq_unpin_lock(src_rq, &srf);
1222
ac66f547
PZ
1223 } else {
1224 /*
1225 * Task isn't running anymore; make it appear like we migrated
1226 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1227 * previous CPU our target instead of where it really is.
ac66f547
PZ
1228 */
1229 p->wake_cpu = cpu;
1230 }
1231}
1232
1233struct migration_swap_arg {
1234 struct task_struct *src_task, *dst_task;
1235 int src_cpu, dst_cpu;
1236};
1237
1238static int migrate_swap_stop(void *data)
1239{
1240 struct migration_swap_arg *arg = data;
1241 struct rq *src_rq, *dst_rq;
1242 int ret = -EAGAIN;
1243
62694cd5
PZ
1244 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1245 return -EAGAIN;
1246
ac66f547
PZ
1247 src_rq = cpu_rq(arg->src_cpu);
1248 dst_rq = cpu_rq(arg->dst_cpu);
1249
74602315
PZ
1250 double_raw_lock(&arg->src_task->pi_lock,
1251 &arg->dst_task->pi_lock);
ac66f547 1252 double_rq_lock(src_rq, dst_rq);
62694cd5 1253
ac66f547
PZ
1254 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1255 goto unlock;
1256
1257 if (task_cpu(arg->src_task) != arg->src_cpu)
1258 goto unlock;
1259
0c98d344 1260 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1261 goto unlock;
1262
0c98d344 1263 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1264 goto unlock;
1265
1266 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1267 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1268
1269 ret = 0;
1270
1271unlock:
1272 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1273 raw_spin_unlock(&arg->dst_task->pi_lock);
1274 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1275
1276 return ret;
1277}
1278
1279/*
1280 * Cross migrate two tasks
1281 */
1282int migrate_swap(struct task_struct *cur, struct task_struct *p)
1283{
1284 struct migration_swap_arg arg;
1285 int ret = -EINVAL;
1286
ac66f547
PZ
1287 arg = (struct migration_swap_arg){
1288 .src_task = cur,
1289 .src_cpu = task_cpu(cur),
1290 .dst_task = p,
1291 .dst_cpu = task_cpu(p),
1292 };
1293
1294 if (arg.src_cpu == arg.dst_cpu)
1295 goto out;
1296
6acce3ef
PZ
1297 /*
1298 * These three tests are all lockless; this is OK since all of them
1299 * will be re-checked with proper locks held further down the line.
1300 */
ac66f547
PZ
1301 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1302 goto out;
1303
0c98d344 1304 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1305 goto out;
1306
0c98d344 1307 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1308 goto out;
1309
286549dc 1310 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1311 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1312
1313out:
ac66f547
PZ
1314 return ret;
1315}
1316
1da177e4
LT
1317/*
1318 * wait_task_inactive - wait for a thread to unschedule.
1319 *
85ba2d86
RM
1320 * If @match_state is nonzero, it's the @p->state value just checked and
1321 * not expected to change. If it changes, i.e. @p might have woken up,
1322 * then return zero. When we succeed in waiting for @p to be off its CPU,
1323 * we return a positive number (its total switch count). If a second call
1324 * a short while later returns the same number, the caller can be sure that
1325 * @p has remained unscheduled the whole time.
1326 *
1da177e4
LT
1327 * The caller must ensure that the task *will* unschedule sometime soon,
1328 * else this function might spin for a *long* time. This function can't
1329 * be called with interrupts off, or it may introduce deadlock with
1330 * smp_call_function() if an IPI is sent by the same process we are
1331 * waiting to become inactive.
1332 */
85ba2d86 1333unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1334{
da0c1e65 1335 int running, queued;
eb580751 1336 struct rq_flags rf;
85ba2d86 1337 unsigned long ncsw;
70b97a7f 1338 struct rq *rq;
1da177e4 1339
3a5c359a
AK
1340 for (;;) {
1341 /*
1342 * We do the initial early heuristics without holding
1343 * any task-queue locks at all. We'll only try to get
1344 * the runqueue lock when things look like they will
1345 * work out!
1346 */
1347 rq = task_rq(p);
fa490cfd 1348
3a5c359a
AK
1349 /*
1350 * If the task is actively running on another CPU
1351 * still, just relax and busy-wait without holding
1352 * any locks.
1353 *
1354 * NOTE! Since we don't hold any locks, it's not
1355 * even sure that "rq" stays as the right runqueue!
1356 * But we don't care, since "task_running()" will
1357 * return false if the runqueue has changed and p
1358 * is actually now running somewhere else!
1359 */
85ba2d86
RM
1360 while (task_running(rq, p)) {
1361 if (match_state && unlikely(p->state != match_state))
1362 return 0;
3a5c359a 1363 cpu_relax();
85ba2d86 1364 }
fa490cfd 1365
3a5c359a
AK
1366 /*
1367 * Ok, time to look more closely! We need the rq
1368 * lock now, to be *sure*. If we're wrong, we'll
1369 * just go back and repeat.
1370 */
eb580751 1371 rq = task_rq_lock(p, &rf);
27a9da65 1372 trace_sched_wait_task(p);
3a5c359a 1373 running = task_running(rq, p);
da0c1e65 1374 queued = task_on_rq_queued(p);
85ba2d86 1375 ncsw = 0;
f31e11d8 1376 if (!match_state || p->state == match_state)
93dcf55f 1377 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1378 task_rq_unlock(rq, p, &rf);
fa490cfd 1379
85ba2d86
RM
1380 /*
1381 * If it changed from the expected state, bail out now.
1382 */
1383 if (unlikely(!ncsw))
1384 break;
1385
3a5c359a
AK
1386 /*
1387 * Was it really running after all now that we
1388 * checked with the proper locks actually held?
1389 *
1390 * Oops. Go back and try again..
1391 */
1392 if (unlikely(running)) {
1393 cpu_relax();
1394 continue;
1395 }
fa490cfd 1396
3a5c359a
AK
1397 /*
1398 * It's not enough that it's not actively running,
1399 * it must be off the runqueue _entirely_, and not
1400 * preempted!
1401 *
80dd99b3 1402 * So if it was still runnable (but just not actively
3a5c359a
AK
1403 * running right now), it's preempted, and we should
1404 * yield - it could be a while.
1405 */
da0c1e65 1406 if (unlikely(queued)) {
8b0e1953 1407 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1408
1409 set_current_state(TASK_UNINTERRUPTIBLE);
1410 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1411 continue;
1412 }
fa490cfd 1413
3a5c359a
AK
1414 /*
1415 * Ahh, all good. It wasn't running, and it wasn't
1416 * runnable, which means that it will never become
1417 * running in the future either. We're all done!
1418 */
1419 break;
1420 }
85ba2d86
RM
1421
1422 return ncsw;
1da177e4
LT
1423}
1424
1425/***
1426 * kick_process - kick a running thread to enter/exit the kernel
1427 * @p: the to-be-kicked thread
1428 *
1429 * Cause a process which is running on another CPU to enter
1430 * kernel-mode, without any delay. (to get signals handled.)
1431 *
25985edc 1432 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1433 * because all it wants to ensure is that the remote task enters
1434 * the kernel. If the IPI races and the task has been migrated
1435 * to another CPU then no harm is done and the purpose has been
1436 * achieved as well.
1437 */
36c8b586 1438void kick_process(struct task_struct *p)
1da177e4
LT
1439{
1440 int cpu;
1441
1442 preempt_disable();
1443 cpu = task_cpu(p);
1444 if ((cpu != smp_processor_id()) && task_curr(p))
1445 smp_send_reschedule(cpu);
1446 preempt_enable();
1447}
b43e3521 1448EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1449
30da688e 1450/*
013fdb80 1451 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1452 *
1453 * A few notes on cpu_active vs cpu_online:
1454 *
1455 * - cpu_active must be a subset of cpu_online
1456 *
97fb7a0a 1457 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1458 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1459 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1460 * see it.
1461 *
d1ccc66d 1462 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1463 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1464 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1465 * off.
1466 *
1467 * This means that fallback selection must not select !active CPUs.
1468 * And can assume that any active CPU must be online. Conversely
1469 * select_task_rq() below may allow selection of !active CPUs in order
1470 * to satisfy the above rules.
30da688e 1471 */
5da9a0fb
PZ
1472static int select_fallback_rq(int cpu, struct task_struct *p)
1473{
aa00d89c
TC
1474 int nid = cpu_to_node(cpu);
1475 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1476 enum { cpuset, possible, fail } state = cpuset;
1477 int dest_cpu;
5da9a0fb 1478
aa00d89c 1479 /*
d1ccc66d
IM
1480 * If the node that the CPU is on has been offlined, cpu_to_node()
1481 * will return -1. There is no CPU on the node, and we should
1482 * select the CPU on the other node.
aa00d89c
TC
1483 */
1484 if (nid != -1) {
1485 nodemask = cpumask_of_node(nid);
1486
1487 /* Look for allowed, online CPU in same node. */
1488 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1489 if (!cpu_active(dest_cpu))
1490 continue;
0c98d344 1491 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1492 return dest_cpu;
1493 }
2baab4e9 1494 }
5da9a0fb 1495
2baab4e9
PZ
1496 for (;;) {
1497 /* Any allowed, online CPU? */
0c98d344 1498 for_each_cpu(dest_cpu, &p->cpus_allowed) {
175f0e25 1499 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1500 continue;
175f0e25 1501
2baab4e9
PZ
1502 goto out;
1503 }
5da9a0fb 1504
e73e85f0 1505 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1506 switch (state) {
1507 case cpuset:
e73e85f0
ON
1508 if (IS_ENABLED(CONFIG_CPUSETS)) {
1509 cpuset_cpus_allowed_fallback(p);
1510 state = possible;
1511 break;
1512 }
d1ccc66d 1513 /* Fall-through */
2baab4e9
PZ
1514 case possible:
1515 do_set_cpus_allowed(p, cpu_possible_mask);
1516 state = fail;
1517 break;
1518
1519 case fail:
1520 BUG();
1521 break;
1522 }
1523 }
1524
1525out:
1526 if (state != cpuset) {
1527 /*
1528 * Don't tell them about moving exiting tasks or
1529 * kernel threads (both mm NULL), since they never
1530 * leave kernel.
1531 */
1532 if (p->mm && printk_ratelimit()) {
aac74dc4 1533 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1534 task_pid_nr(p), p->comm, cpu);
1535 }
5da9a0fb
PZ
1536 }
1537
1538 return dest_cpu;
1539}
1540
e2912009 1541/*
013fdb80 1542 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1543 */
970b13ba 1544static inline
ac66f547 1545int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1546{
cbce1a68
PZ
1547 lockdep_assert_held(&p->pi_lock);
1548
4b53a341 1549 if (p->nr_cpus_allowed > 1)
6c1d9410 1550 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1551 else
0c98d344 1552 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1553
1554 /*
1555 * In order not to call set_task_cpu() on a blocking task we need
1556 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1557 * CPU.
e2912009
PZ
1558 *
1559 * Since this is common to all placement strategies, this lives here.
1560 *
1561 * [ this allows ->select_task() to simply return task_cpu(p) and
1562 * not worry about this generic constraint ]
1563 */
7af443ee 1564 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 1565 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1566
1567 return cpu;
970b13ba 1568}
09a40af5
MG
1569
1570static void update_avg(u64 *avg, u64 sample)
1571{
1572 s64 diff = sample - *avg;
1573 *avg += diff >> 3;
1574}
25834c73 1575
f5832c19
NP
1576void sched_set_stop_task(int cpu, struct task_struct *stop)
1577{
1578 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1579 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1580
1581 if (stop) {
1582 /*
1583 * Make it appear like a SCHED_FIFO task, its something
1584 * userspace knows about and won't get confused about.
1585 *
1586 * Also, it will make PI more or less work without too
1587 * much confusion -- but then, stop work should not
1588 * rely on PI working anyway.
1589 */
1590 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1591
1592 stop->sched_class = &stop_sched_class;
1593 }
1594
1595 cpu_rq(cpu)->stop = stop;
1596
1597 if (old_stop) {
1598 /*
1599 * Reset it back to a normal scheduling class so that
1600 * it can die in pieces.
1601 */
1602 old_stop->sched_class = &rt_sched_class;
1603 }
1604}
1605
25834c73
PZ
1606#else
1607
1608static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1609 const struct cpumask *new_mask, bool check)
1610{
1611 return set_cpus_allowed_ptr(p, new_mask);
1612}
1613
5cc389bc 1614#endif /* CONFIG_SMP */
970b13ba 1615
d7c01d27 1616static void
b84cb5df 1617ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1618{
4fa8d299 1619 struct rq *rq;
b84cb5df 1620
4fa8d299
JP
1621 if (!schedstat_enabled())
1622 return;
1623
1624 rq = this_rq();
d7c01d27 1625
4fa8d299
JP
1626#ifdef CONFIG_SMP
1627 if (cpu == rq->cpu) {
b85c8b71
PZ
1628 __schedstat_inc(rq->ttwu_local);
1629 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1630 } else {
1631 struct sched_domain *sd;
1632
b85c8b71 1633 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1634 rcu_read_lock();
4fa8d299 1635 for_each_domain(rq->cpu, sd) {
d7c01d27 1636 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1637 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1638 break;
1639 }
1640 }
057f3fad 1641 rcu_read_unlock();
d7c01d27 1642 }
f339b9dc
PZ
1643
1644 if (wake_flags & WF_MIGRATED)
b85c8b71 1645 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1646#endif /* CONFIG_SMP */
1647
b85c8b71
PZ
1648 __schedstat_inc(rq->ttwu_count);
1649 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1650
1651 if (wake_flags & WF_SYNC)
b85c8b71 1652 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1653}
1654
1de64443 1655static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1656{
9ed3811a 1657 activate_task(rq, p, en_flags);
da0c1e65 1658 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1659
d1ccc66d 1660 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1661 if (p->flags & PF_WQ_WORKER)
1662 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1663}
1664
23f41eeb
PZ
1665/*
1666 * Mark the task runnable and perform wakeup-preemption.
1667 */
e7904a28 1668static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1669 struct rq_flags *rf)
9ed3811a 1670{
9ed3811a 1671 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1672 p->state = TASK_RUNNING;
fbd705a0
PZ
1673 trace_sched_wakeup(p);
1674
9ed3811a 1675#ifdef CONFIG_SMP
4c9a4bc8
PZ
1676 if (p->sched_class->task_woken) {
1677 /*
cbce1a68
PZ
1678 * Our task @p is fully woken up and running; so its safe to
1679 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1680 */
d8ac8971 1681 rq_unpin_lock(rq, rf);
9ed3811a 1682 p->sched_class->task_woken(rq, p);
d8ac8971 1683 rq_repin_lock(rq, rf);
4c9a4bc8 1684 }
9ed3811a 1685
e69c6341 1686 if (rq->idle_stamp) {
78becc27 1687 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1688 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1689
abfafa54
JL
1690 update_avg(&rq->avg_idle, delta);
1691
1692 if (rq->avg_idle > max)
9ed3811a 1693 rq->avg_idle = max;
abfafa54 1694
9ed3811a
TH
1695 rq->idle_stamp = 0;
1696 }
1697#endif
1698}
1699
c05fbafb 1700static void
e7904a28 1701ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1702 struct rq_flags *rf)
c05fbafb 1703{
77558e4d 1704 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1705
cbce1a68
PZ
1706 lockdep_assert_held(&rq->lock);
1707
c05fbafb
PZ
1708#ifdef CONFIG_SMP
1709 if (p->sched_contributes_to_load)
1710 rq->nr_uninterruptible--;
b5179ac7 1711
b5179ac7 1712 if (wake_flags & WF_MIGRATED)
59efa0ba 1713 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1714#endif
1715
b5179ac7 1716 ttwu_activate(rq, p, en_flags);
d8ac8971 1717 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1718}
1719
1720/*
1721 * Called in case the task @p isn't fully descheduled from its runqueue,
1722 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1723 * since all we need to do is flip p->state to TASK_RUNNING, since
1724 * the task is still ->on_rq.
1725 */
1726static int ttwu_remote(struct task_struct *p, int wake_flags)
1727{
eb580751 1728 struct rq_flags rf;
c05fbafb
PZ
1729 struct rq *rq;
1730 int ret = 0;
1731
eb580751 1732 rq = __task_rq_lock(p, &rf);
da0c1e65 1733 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1734 /* check_preempt_curr() may use rq clock */
1735 update_rq_clock(rq);
d8ac8971 1736 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1737 ret = 1;
1738 }
eb580751 1739 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1740
1741 return ret;
1742}
1743
317f3941 1744#ifdef CONFIG_SMP
e3baac47 1745void sched_ttwu_pending(void)
317f3941
PZ
1746{
1747 struct rq *rq = this_rq();
fa14ff4a 1748 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1749 struct task_struct *p, *t;
d8ac8971 1750 struct rq_flags rf;
317f3941 1751
e3baac47
PZ
1752 if (!llist)
1753 return;
1754
8a8c69c3 1755 rq_lock_irqsave(rq, &rf);
77558e4d 1756 update_rq_clock(rq);
317f3941 1757
73215849
BP
1758 llist_for_each_entry_safe(p, t, llist, wake_entry)
1759 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1760
8a8c69c3 1761 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1762}
1763
1764void scheduler_ipi(void)
1765{
f27dde8d
PZ
1766 /*
1767 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1768 * TIF_NEED_RESCHED remotely (for the first time) will also send
1769 * this IPI.
1770 */
8cb75e0c 1771 preempt_fold_need_resched();
f27dde8d 1772
fd2ac4f4 1773 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1774 return;
1775
1776 /*
1777 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1778 * traditionally all their work was done from the interrupt return
1779 * path. Now that we actually do some work, we need to make sure
1780 * we do call them.
1781 *
1782 * Some archs already do call them, luckily irq_enter/exit nest
1783 * properly.
1784 *
1785 * Arguably we should visit all archs and update all handlers,
1786 * however a fair share of IPIs are still resched only so this would
1787 * somewhat pessimize the simple resched case.
1788 */
1789 irq_enter();
fa14ff4a 1790 sched_ttwu_pending();
ca38062e
SS
1791
1792 /*
1793 * Check if someone kicked us for doing the nohz idle load balance.
1794 */
873b4c65 1795 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1796 this_rq()->idle_balance = 1;
ca38062e 1797 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1798 }
c5d753a5 1799 irq_exit();
317f3941
PZ
1800}
1801
b7e7ade3 1802static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1803{
e3baac47
PZ
1804 struct rq *rq = cpu_rq(cpu);
1805
b7e7ade3
PZ
1806 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1807
e3baac47
PZ
1808 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1809 if (!set_nr_if_polling(rq->idle))
1810 smp_send_reschedule(cpu);
1811 else
1812 trace_sched_wake_idle_without_ipi(cpu);
1813 }
317f3941 1814}
d6aa8f85 1815
f6be8af1
CL
1816void wake_up_if_idle(int cpu)
1817{
1818 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1819 struct rq_flags rf;
f6be8af1 1820
fd7de1e8
AL
1821 rcu_read_lock();
1822
1823 if (!is_idle_task(rcu_dereference(rq->curr)))
1824 goto out;
f6be8af1
CL
1825
1826 if (set_nr_if_polling(rq->idle)) {
1827 trace_sched_wake_idle_without_ipi(cpu);
1828 } else {
8a8c69c3 1829 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1830 if (is_idle_task(rq->curr))
1831 smp_send_reschedule(cpu);
d1ccc66d 1832 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1833 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1834 }
fd7de1e8
AL
1835
1836out:
1837 rcu_read_unlock();
f6be8af1
CL
1838}
1839
39be3501 1840bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1841{
1842 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1843}
d6aa8f85 1844#endif /* CONFIG_SMP */
317f3941 1845
b5179ac7 1846static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1847{
1848 struct rq *rq = cpu_rq(cpu);
d8ac8971 1849 struct rq_flags rf;
c05fbafb 1850
17d9f311 1851#if defined(CONFIG_SMP)
39be3501 1852 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1853 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1854 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1855 return;
1856 }
1857#endif
1858
8a8c69c3 1859 rq_lock(rq, &rf);
77558e4d 1860 update_rq_clock(rq);
d8ac8971 1861 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1862 rq_unlock(rq, &rf);
9ed3811a
TH
1863}
1864
8643cda5
PZ
1865/*
1866 * Notes on Program-Order guarantees on SMP systems.
1867 *
1868 * MIGRATION
1869 *
1870 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1871 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1872 * execution on its new CPU [c1].
8643cda5
PZ
1873 *
1874 * For migration (of runnable tasks) this is provided by the following means:
1875 *
1876 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1877 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1878 * rq(c1)->lock (if not at the same time, then in that order).
1879 * C) LOCK of the rq(c1)->lock scheduling in task
1880 *
1881 * Transitivity guarantees that B happens after A and C after B.
1882 * Note: we only require RCpc transitivity.
d1ccc66d 1883 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1884 *
1885 * Example:
1886 *
1887 * CPU0 CPU1 CPU2
1888 *
1889 * LOCK rq(0)->lock
1890 * sched-out X
1891 * sched-in Y
1892 * UNLOCK rq(0)->lock
1893 *
1894 * LOCK rq(0)->lock // orders against CPU0
1895 * dequeue X
1896 * UNLOCK rq(0)->lock
1897 *
1898 * LOCK rq(1)->lock
1899 * enqueue X
1900 * UNLOCK rq(1)->lock
1901 *
1902 * LOCK rq(1)->lock // orders against CPU2
1903 * sched-out Z
1904 * sched-in X
1905 * UNLOCK rq(1)->lock
1906 *
1907 *
1908 * BLOCKING -- aka. SLEEP + WAKEUP
1909 *
1910 * For blocking we (obviously) need to provide the same guarantee as for
1911 * migration. However the means are completely different as there is no lock
1912 * chain to provide order. Instead we do:
1913 *
1914 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1915 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1916 *
1917 * Example:
1918 *
1919 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1920 *
1921 * LOCK rq(0)->lock LOCK X->pi_lock
1922 * dequeue X
1923 * sched-out X
1924 * smp_store_release(X->on_cpu, 0);
1925 *
1f03e8d2 1926 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1927 * X->state = WAKING
1928 * set_task_cpu(X,2)
1929 *
1930 * LOCK rq(2)->lock
1931 * enqueue X
1932 * X->state = RUNNING
1933 * UNLOCK rq(2)->lock
1934 *
1935 * LOCK rq(2)->lock // orders against CPU1
1936 * sched-out Z
1937 * sched-in X
1938 * UNLOCK rq(2)->lock
1939 *
1940 * UNLOCK X->pi_lock
1941 * UNLOCK rq(0)->lock
1942 *
1943 *
1944 * However; for wakeups there is a second guarantee we must provide, namely we
1945 * must observe the state that lead to our wakeup. That is, not only must our
1946 * task observe its own prior state, it must also observe the stores prior to
1947 * its wakeup.
1948 *
1949 * This means that any means of doing remote wakeups must order the CPU doing
1950 * the wakeup against the CPU the task is going to end up running on. This,
1951 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1952 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1953 *
1954 */
1955
9ed3811a 1956/**
1da177e4 1957 * try_to_wake_up - wake up a thread
9ed3811a 1958 * @p: the thread to be awakened
1da177e4 1959 * @state: the mask of task states that can be woken
9ed3811a 1960 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1961 *
a2250238 1962 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1963 *
a2250238
PZ
1964 * If the task was not queued/runnable, also place it back on a runqueue.
1965 *
1966 * Atomic against schedule() which would dequeue a task, also see
1967 * set_current_state().
1968 *
1969 * Return: %true if @p->state changes (an actual wakeup was done),
1970 * %false otherwise.
1da177e4 1971 */
e4a52bcb
PZ
1972static int
1973try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1974{
1da177e4 1975 unsigned long flags;
c05fbafb 1976 int cpu, success = 0;
2398f2c6 1977
e0acd0a6
ON
1978 /*
1979 * If we are going to wake up a thread waiting for CONDITION we
1980 * need to ensure that CONDITION=1 done by the caller can not be
1981 * reordered with p->state check below. This pairs with mb() in
1982 * set_current_state() the waiting thread does.
1983 */
013fdb80 1984 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 1985 smp_mb__after_spinlock();
e9c84311 1986 if (!(p->state & state))
1da177e4
LT
1987 goto out;
1988
fbd705a0
PZ
1989 trace_sched_waking(p);
1990
d1ccc66d
IM
1991 /* We're going to change ->state: */
1992 success = 1;
1da177e4 1993 cpu = task_cpu(p);
1da177e4 1994
135e8c92
BS
1995 /*
1996 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1997 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1998 * in smp_cond_load_acquire() below.
1999 *
2000 * sched_ttwu_pending() try_to_wake_up()
2001 * [S] p->on_rq = 1; [L] P->state
2002 * UNLOCK rq->lock -----.
2003 * \
2004 * +--- RMB
2005 * schedule() /
2006 * LOCK rq->lock -----'
2007 * UNLOCK rq->lock
2008 *
2009 * [task p]
2010 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2011 *
2012 * Pairs with the UNLOCK+LOCK on rq->lock from the
2013 * last wakeup of our task and the schedule that got our task
2014 * current.
2015 */
2016 smp_rmb();
c05fbafb
PZ
2017 if (p->on_rq && ttwu_remote(p, wake_flags))
2018 goto stat;
1da177e4 2019
1da177e4 2020#ifdef CONFIG_SMP
ecf7d01c
PZ
2021 /*
2022 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2023 * possible to, falsely, observe p->on_cpu == 0.
2024 *
2025 * One must be running (->on_cpu == 1) in order to remove oneself
2026 * from the runqueue.
2027 *
2028 * [S] ->on_cpu = 1; [L] ->on_rq
2029 * UNLOCK rq->lock
2030 * RMB
2031 * LOCK rq->lock
2032 * [S] ->on_rq = 0; [L] ->on_cpu
2033 *
2034 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2035 * from the consecutive calls to schedule(); the first switching to our
2036 * task, the second putting it to sleep.
2037 */
2038 smp_rmb();
2039
e9c84311 2040 /*
d1ccc66d 2041 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2042 * this task as prev, wait until its done referencing the task.
b75a2253 2043 *
31cb1bc0 2044 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2045 *
2046 * This ensures that tasks getting woken will be fully ordered against
2047 * their previous state and preserve Program Order.
0970d299 2048 */
1f03e8d2 2049 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2050
a8e4f2ea 2051 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2052 p->state = TASK_WAKING;
e7693a36 2053
e33a9bba 2054 if (p->in_iowait) {
c96f5471 2055 delayacct_blkio_end(p);
e33a9bba
TH
2056 atomic_dec(&task_rq(p)->nr_iowait);
2057 }
2058
ac66f547 2059 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2060 if (task_cpu(p) != cpu) {
2061 wake_flags |= WF_MIGRATED;
e4a52bcb 2062 set_task_cpu(p, cpu);
f339b9dc 2063 }
e33a9bba
TH
2064
2065#else /* CONFIG_SMP */
2066
2067 if (p->in_iowait) {
c96f5471 2068 delayacct_blkio_end(p);
e33a9bba
TH
2069 atomic_dec(&task_rq(p)->nr_iowait);
2070 }
2071
1da177e4 2072#endif /* CONFIG_SMP */
1da177e4 2073
b5179ac7 2074 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2075stat:
4fa8d299 2076 ttwu_stat(p, cpu, wake_flags);
1da177e4 2077out:
013fdb80 2078 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2079
2080 return success;
2081}
2082
21aa9af0
TH
2083/**
2084 * try_to_wake_up_local - try to wake up a local task with rq lock held
2085 * @p: the thread to be awakened
bf50f0e8 2086 * @rf: request-queue flags for pinning
21aa9af0 2087 *
2acca55e 2088 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2089 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2090 * the current task.
21aa9af0 2091 */
d8ac8971 2092static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2093{
2094 struct rq *rq = task_rq(p);
21aa9af0 2095
383efcd0
TH
2096 if (WARN_ON_ONCE(rq != this_rq()) ||
2097 WARN_ON_ONCE(p == current))
2098 return;
2099
21aa9af0
TH
2100 lockdep_assert_held(&rq->lock);
2101
2acca55e 2102 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2103 /*
2104 * This is OK, because current is on_cpu, which avoids it being
2105 * picked for load-balance and preemption/IRQs are still
2106 * disabled avoiding further scheduler activity on it and we've
2107 * not yet picked a replacement task.
2108 */
8a8c69c3 2109 rq_unlock(rq, rf);
2acca55e 2110 raw_spin_lock(&p->pi_lock);
8a8c69c3 2111 rq_relock(rq, rf);
2acca55e
PZ
2112 }
2113
21aa9af0 2114 if (!(p->state & TASK_NORMAL))
2acca55e 2115 goto out;
21aa9af0 2116
fbd705a0
PZ
2117 trace_sched_waking(p);
2118
e33a9bba
TH
2119 if (!task_on_rq_queued(p)) {
2120 if (p->in_iowait) {
c96f5471 2121 delayacct_blkio_end(p);
e33a9bba
TH
2122 atomic_dec(&rq->nr_iowait);
2123 }
bce4dc80 2124 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2125 }
d7c01d27 2126
d8ac8971 2127 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2128 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2129out:
2130 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2131}
2132
50fa610a
DH
2133/**
2134 * wake_up_process - Wake up a specific process
2135 * @p: The process to be woken up.
2136 *
2137 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2138 * processes.
2139 *
2140 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2141 *
2142 * It may be assumed that this function implies a write memory barrier before
2143 * changing the task state if and only if any tasks are woken up.
2144 */
7ad5b3a5 2145int wake_up_process(struct task_struct *p)
1da177e4 2146{
9067ac85 2147 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2148}
1da177e4
LT
2149EXPORT_SYMBOL(wake_up_process);
2150
7ad5b3a5 2151int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2152{
2153 return try_to_wake_up(p, state, 0);
2154}
2155
1da177e4
LT
2156/*
2157 * Perform scheduler related setup for a newly forked process p.
2158 * p is forked by current.
dd41f596
IM
2159 *
2160 * __sched_fork() is basic setup used by init_idle() too:
2161 */
5e1576ed 2162static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2163{
fd2f4419
PZ
2164 p->on_rq = 0;
2165
2166 p->se.on_rq = 0;
dd41f596
IM
2167 p->se.exec_start = 0;
2168 p->se.sum_exec_runtime = 0;
f6cf891c 2169 p->se.prev_sum_exec_runtime = 0;
6c594c21 2170 p->se.nr_migrations = 0;
da7a735e 2171 p->se.vruntime = 0;
fd2f4419 2172 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2173
ad936d86
BP
2174#ifdef CONFIG_FAIR_GROUP_SCHED
2175 p->se.cfs_rq = NULL;
2176#endif
2177
6cfb0d5d 2178#ifdef CONFIG_SCHEDSTATS
cb251765 2179 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2180 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2181#endif
476d139c 2182
aab03e05 2183 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2184 init_dl_task_timer(&p->dl);
209a0cbd 2185 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2186 __dl_clear_params(p);
aab03e05 2187
fa717060 2188 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2189 p->rt.timeout = 0;
2190 p->rt.time_slice = sched_rr_timeslice;
2191 p->rt.on_rq = 0;
2192 p->rt.on_list = 0;
476d139c 2193
e107be36
AK
2194#ifdef CONFIG_PREEMPT_NOTIFIERS
2195 INIT_HLIST_HEAD(&p->preempt_notifiers);
2196#endif
cbee9f88 2197
13784475 2198 init_numa_balancing(clone_flags, p);
dd41f596
IM
2199}
2200
2a595721
SD
2201DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2202
1a687c2e 2203#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2204
1a687c2e
MG
2205void set_numabalancing_state(bool enabled)
2206{
2207 if (enabled)
2a595721 2208 static_branch_enable(&sched_numa_balancing);
1a687c2e 2209 else
2a595721 2210 static_branch_disable(&sched_numa_balancing);
1a687c2e 2211}
54a43d54
AK
2212
2213#ifdef CONFIG_PROC_SYSCTL
2214int sysctl_numa_balancing(struct ctl_table *table, int write,
2215 void __user *buffer, size_t *lenp, loff_t *ppos)
2216{
2217 struct ctl_table t;
2218 int err;
2a595721 2219 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2220
2221 if (write && !capable(CAP_SYS_ADMIN))
2222 return -EPERM;
2223
2224 t = *table;
2225 t.data = &state;
2226 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2227 if (err < 0)
2228 return err;
2229 if (write)
2230 set_numabalancing_state(state);
2231 return err;
2232}
2233#endif
2234#endif
dd41f596 2235
4698f88c
JP
2236#ifdef CONFIG_SCHEDSTATS
2237
cb251765 2238DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2239static bool __initdata __sched_schedstats = false;
cb251765 2240
cb251765
MG
2241static void set_schedstats(bool enabled)
2242{
2243 if (enabled)
2244 static_branch_enable(&sched_schedstats);
2245 else
2246 static_branch_disable(&sched_schedstats);
2247}
2248
2249void force_schedstat_enabled(void)
2250{
2251 if (!schedstat_enabled()) {
2252 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2253 static_branch_enable(&sched_schedstats);
2254 }
2255}
2256
2257static int __init setup_schedstats(char *str)
2258{
2259 int ret = 0;
2260 if (!str)
2261 goto out;
2262
4698f88c
JP
2263 /*
2264 * This code is called before jump labels have been set up, so we can't
2265 * change the static branch directly just yet. Instead set a temporary
2266 * variable so init_schedstats() can do it later.
2267 */
cb251765 2268 if (!strcmp(str, "enable")) {
4698f88c 2269 __sched_schedstats = true;
cb251765
MG
2270 ret = 1;
2271 } else if (!strcmp(str, "disable")) {
4698f88c 2272 __sched_schedstats = false;
cb251765
MG
2273 ret = 1;
2274 }
2275out:
2276 if (!ret)
2277 pr_warn("Unable to parse schedstats=\n");
2278
2279 return ret;
2280}
2281__setup("schedstats=", setup_schedstats);
2282
4698f88c
JP
2283static void __init init_schedstats(void)
2284{
2285 set_schedstats(__sched_schedstats);
2286}
2287
cb251765
MG
2288#ifdef CONFIG_PROC_SYSCTL
2289int sysctl_schedstats(struct ctl_table *table, int write,
2290 void __user *buffer, size_t *lenp, loff_t *ppos)
2291{
2292 struct ctl_table t;
2293 int err;
2294 int state = static_branch_likely(&sched_schedstats);
2295
2296 if (write && !capable(CAP_SYS_ADMIN))
2297 return -EPERM;
2298
2299 t = *table;
2300 t.data = &state;
2301 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2302 if (err < 0)
2303 return err;
2304 if (write)
2305 set_schedstats(state);
2306 return err;
2307}
4698f88c
JP
2308#endif /* CONFIG_PROC_SYSCTL */
2309#else /* !CONFIG_SCHEDSTATS */
2310static inline void init_schedstats(void) {}
2311#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2312
2313/*
2314 * fork()/clone()-time setup:
2315 */
aab03e05 2316int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2317{
0122ec5b 2318 unsigned long flags;
dd41f596
IM
2319 int cpu = get_cpu();
2320
5e1576ed 2321 __sched_fork(clone_flags, p);
06b83b5f 2322 /*
7dc603c9 2323 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2324 * nobody will actually run it, and a signal or other external
2325 * event cannot wake it up and insert it on the runqueue either.
2326 */
7dc603c9 2327 p->state = TASK_NEW;
dd41f596 2328
c350a04e
MG
2329 /*
2330 * Make sure we do not leak PI boosting priority to the child.
2331 */
2332 p->prio = current->normal_prio;
2333
b9dc29e7
MG
2334 /*
2335 * Revert to default priority/policy on fork if requested.
2336 */
2337 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2338 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2339 p->policy = SCHED_NORMAL;
6c697bdf 2340 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2341 p->rt_priority = 0;
2342 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2343 p->static_prio = NICE_TO_PRIO(0);
2344
2345 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2346 set_load_weight(p, false);
6c697bdf 2347
b9dc29e7
MG
2348 /*
2349 * We don't need the reset flag anymore after the fork. It has
2350 * fulfilled its duty:
2351 */
2352 p->sched_reset_on_fork = 0;
2353 }
ca94c442 2354
aab03e05
DF
2355 if (dl_prio(p->prio)) {
2356 put_cpu();
2357 return -EAGAIN;
2358 } else if (rt_prio(p->prio)) {
2359 p->sched_class = &rt_sched_class;
2360 } else {
2ddbf952 2361 p->sched_class = &fair_sched_class;
aab03e05 2362 }
b29739f9 2363
7dc603c9 2364 init_entity_runnable_average(&p->se);
cd29fe6f 2365
86951599
PZ
2366 /*
2367 * The child is not yet in the pid-hash so no cgroup attach races,
2368 * and the cgroup is pinned to this child due to cgroup_fork()
2369 * is ran before sched_fork().
2370 *
2371 * Silence PROVE_RCU.
2372 */
0122ec5b 2373 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2374 /*
d1ccc66d 2375 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2376 * so use __set_task_cpu().
2377 */
2378 __set_task_cpu(p, cpu);
2379 if (p->sched_class->task_fork)
2380 p->sched_class->task_fork(p);
0122ec5b 2381 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2382
f6db8347 2383#ifdef CONFIG_SCHED_INFO
dd41f596 2384 if (likely(sched_info_on()))
52f17b6c 2385 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2386#endif
3ca7a440
PZ
2387#if defined(CONFIG_SMP)
2388 p->on_cpu = 0;
4866cde0 2389#endif
01028747 2390 init_task_preempt_count(p);
806c09a7 2391#ifdef CONFIG_SMP
917b627d 2392 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2393 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2394#endif
917b627d 2395
476d139c 2396 put_cpu();
aab03e05 2397 return 0;
1da177e4
LT
2398}
2399
332ac17e
DF
2400unsigned long to_ratio(u64 period, u64 runtime)
2401{
2402 if (runtime == RUNTIME_INF)
c52f14d3 2403 return BW_UNIT;
332ac17e
DF
2404
2405 /*
2406 * Doing this here saves a lot of checks in all
2407 * the calling paths, and returning zero seems
2408 * safe for them anyway.
2409 */
2410 if (period == 0)
2411 return 0;
2412
c52f14d3 2413 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2414}
2415
1da177e4
LT
2416/*
2417 * wake_up_new_task - wake up a newly created task for the first time.
2418 *
2419 * This function will do some initial scheduler statistics housekeeping
2420 * that must be done for every newly created context, then puts the task
2421 * on the runqueue and wakes it.
2422 */
3e51e3ed 2423void wake_up_new_task(struct task_struct *p)
1da177e4 2424{
eb580751 2425 struct rq_flags rf;
dd41f596 2426 struct rq *rq;
fabf318e 2427
eb580751 2428 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2429 p->state = TASK_RUNNING;
fabf318e
PZ
2430#ifdef CONFIG_SMP
2431 /*
2432 * Fork balancing, do it here and not earlier because:
2433 * - cpus_allowed can change in the fork path
d1ccc66d 2434 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2435 *
2436 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2437 * as we're not fully set-up yet.
fabf318e 2438 */
32e839dd 2439 p->recent_used_cpu = task_cpu(p);
e210bffd 2440 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2441#endif
b7fa30c9 2442 rq = __task_rq_lock(p, &rf);
4126bad6 2443 update_rq_clock(rq);
2b8c41da 2444 post_init_entity_util_avg(&p->se);
0017d735 2445
7a57f32a 2446 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2447 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2448 trace_sched_wakeup_new(p);
a7558e01 2449 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2450#ifdef CONFIG_SMP
0aaafaab
PZ
2451 if (p->sched_class->task_woken) {
2452 /*
2453 * Nothing relies on rq->lock after this, so its fine to
2454 * drop it.
2455 */
d8ac8971 2456 rq_unpin_lock(rq, &rf);
efbbd05a 2457 p->sched_class->task_woken(rq, p);
d8ac8971 2458 rq_repin_lock(rq, &rf);
0aaafaab 2459 }
9a897c5a 2460#endif
eb580751 2461 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2462}
2463
e107be36
AK
2464#ifdef CONFIG_PREEMPT_NOTIFIERS
2465
b7203428 2466static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2467
2ecd9d29
PZ
2468void preempt_notifier_inc(void)
2469{
b7203428 2470 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2471}
2472EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2473
2474void preempt_notifier_dec(void)
2475{
b7203428 2476 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2477}
2478EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2479
e107be36 2480/**
80dd99b3 2481 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2482 * @notifier: notifier struct to register
e107be36
AK
2483 */
2484void preempt_notifier_register(struct preempt_notifier *notifier)
2485{
b7203428 2486 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2487 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2488
e107be36
AK
2489 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2490}
2491EXPORT_SYMBOL_GPL(preempt_notifier_register);
2492
2493/**
2494 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2495 * @notifier: notifier struct to unregister
e107be36 2496 *
d84525a8 2497 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2498 */
2499void preempt_notifier_unregister(struct preempt_notifier *notifier)
2500{
2501 hlist_del(&notifier->link);
2502}
2503EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2504
1cde2930 2505static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2506{
2507 struct preempt_notifier *notifier;
e107be36 2508
b67bfe0d 2509 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2510 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2511}
2512
1cde2930
PZ
2513static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2514{
b7203428 2515 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2516 __fire_sched_in_preempt_notifiers(curr);
2517}
2518
e107be36 2519static void
1cde2930
PZ
2520__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 struct task_struct *next)
e107be36
AK
2522{
2523 struct preempt_notifier *notifier;
e107be36 2524
b67bfe0d 2525 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2526 notifier->ops->sched_out(notifier, next);
2527}
2528
1cde2930
PZ
2529static __always_inline void
2530fire_sched_out_preempt_notifiers(struct task_struct *curr,
2531 struct task_struct *next)
2532{
b7203428 2533 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2534 __fire_sched_out_preempt_notifiers(curr, next);
2535}
2536
6d6bc0ad 2537#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2538
1cde2930 2539static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2540{
2541}
2542
1cde2930 2543static inline void
e107be36
AK
2544fire_sched_out_preempt_notifiers(struct task_struct *curr,
2545 struct task_struct *next)
2546{
2547}
2548
6d6bc0ad 2549#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2550
31cb1bc0 2551static inline void prepare_task(struct task_struct *next)
2552{
2553#ifdef CONFIG_SMP
2554 /*
2555 * Claim the task as running, we do this before switching to it
2556 * such that any running task will have this set.
2557 */
2558 next->on_cpu = 1;
2559#endif
2560}
2561
2562static inline void finish_task(struct task_struct *prev)
2563{
2564#ifdef CONFIG_SMP
2565 /*
2566 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2567 * We must ensure this doesn't happen until the switch is completely
2568 * finished.
2569 *
2570 * In particular, the load of prev->state in finish_task_switch() must
2571 * happen before this.
2572 *
2573 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2574 */
2575 smp_store_release(&prev->on_cpu, 0);
2576#endif
2577}
2578
269d5992
PZ
2579static inline void
2580prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2581{
269d5992
PZ
2582 /*
2583 * Since the runqueue lock will be released by the next
2584 * task (which is an invalid locking op but in the case
2585 * of the scheduler it's an obvious special-case), so we
2586 * do an early lockdep release here:
2587 */
2588 rq_unpin_lock(rq, rf);
2589 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2590#ifdef CONFIG_DEBUG_SPINLOCK
2591 /* this is a valid case when another task releases the spinlock */
269d5992 2592 rq->lock.owner = next;
31cb1bc0 2593#endif
269d5992
PZ
2594}
2595
2596static inline void finish_lock_switch(struct rq *rq)
2597{
31cb1bc0 2598 /*
2599 * If we are tracking spinlock dependencies then we have to
2600 * fix up the runqueue lock - which gets 'carried over' from
2601 * prev into current:
2602 */
2603 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2604 raw_spin_unlock_irq(&rq->lock);
2605}
2606
325ea10c
IM
2607/*
2608 * NOP if the arch has not defined these:
2609 */
2610
2611#ifndef prepare_arch_switch
2612# define prepare_arch_switch(next) do { } while (0)
2613#endif
2614
2615#ifndef finish_arch_post_lock_switch
2616# define finish_arch_post_lock_switch() do { } while (0)
2617#endif
2618
4866cde0
NP
2619/**
2620 * prepare_task_switch - prepare to switch tasks
2621 * @rq: the runqueue preparing to switch
421cee29 2622 * @prev: the current task that is being switched out
4866cde0
NP
2623 * @next: the task we are going to switch to.
2624 *
2625 * This is called with the rq lock held and interrupts off. It must
2626 * be paired with a subsequent finish_task_switch after the context
2627 * switch.
2628 *
2629 * prepare_task_switch sets up locking and calls architecture specific
2630 * hooks.
2631 */
e107be36
AK
2632static inline void
2633prepare_task_switch(struct rq *rq, struct task_struct *prev,
2634 struct task_struct *next)
4866cde0 2635{
43148951 2636 sched_info_switch(rq, prev, next);
fe4b04fa 2637 perf_event_task_sched_out(prev, next);
d7822b1e 2638 rseq_preempt(prev);
e107be36 2639 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2640 prepare_task(next);
4866cde0
NP
2641 prepare_arch_switch(next);
2642}
2643
1da177e4
LT
2644/**
2645 * finish_task_switch - clean up after a task-switch
2646 * @prev: the thread we just switched away from.
2647 *
4866cde0
NP
2648 * finish_task_switch must be called after the context switch, paired
2649 * with a prepare_task_switch call before the context switch.
2650 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2651 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2652 *
2653 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2654 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2655 * with the lock held can cause deadlocks; see schedule() for
2656 * details.)
dfa50b60
ON
2657 *
2658 * The context switch have flipped the stack from under us and restored the
2659 * local variables which were saved when this task called schedule() in the
2660 * past. prev == current is still correct but we need to recalculate this_rq
2661 * because prev may have moved to another CPU.
1da177e4 2662 */
dfa50b60 2663static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2664 __releases(rq->lock)
2665{
dfa50b60 2666 struct rq *rq = this_rq();
1da177e4 2667 struct mm_struct *mm = rq->prev_mm;
55a101f8 2668 long prev_state;
1da177e4 2669
609ca066
PZ
2670 /*
2671 * The previous task will have left us with a preempt_count of 2
2672 * because it left us after:
2673 *
2674 * schedule()
2675 * preempt_disable(); // 1
2676 * __schedule()
2677 * raw_spin_lock_irq(&rq->lock) // 2
2678 *
2679 * Also, see FORK_PREEMPT_COUNT.
2680 */
e2bf1c4b
PZ
2681 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2682 "corrupted preempt_count: %s/%d/0x%x\n",
2683 current->comm, current->pid, preempt_count()))
2684 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2685
1da177e4
LT
2686 rq->prev_mm = NULL;
2687
2688 /*
2689 * A task struct has one reference for the use as "current".
c394cc9f 2690 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2691 * schedule one last time. The schedule call will never return, and
2692 * the scheduled task must drop that reference.
95913d97
PZ
2693 *
2694 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2695 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2696 * running on another CPU and we could rave with its RUNNING -> DEAD
2697 * transition, resulting in a double drop.
1da177e4 2698 */
55a101f8 2699 prev_state = prev->state;
bf9fae9f 2700 vtime_task_switch(prev);
a8d757ef 2701 perf_event_task_sched_in(prev, current);
31cb1bc0 2702 finish_task(prev);
2703 finish_lock_switch(rq);
01f23e16 2704 finish_arch_post_lock_switch();
e8fa1362 2705
e107be36 2706 fire_sched_in_preempt_notifiers(current);
306e0604 2707 /*
70216e18
MD
2708 * When switching through a kernel thread, the loop in
2709 * membarrier_{private,global}_expedited() may have observed that
2710 * kernel thread and not issued an IPI. It is therefore possible to
2711 * schedule between user->kernel->user threads without passing though
2712 * switch_mm(). Membarrier requires a barrier after storing to
2713 * rq->curr, before returning to userspace, so provide them here:
2714 *
2715 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2716 * provided by mmdrop(),
2717 * - a sync_core for SYNC_CORE.
306e0604 2718 */
70216e18
MD
2719 if (mm) {
2720 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2721 mmdrop(mm);
70216e18 2722 }
85f1abe0
PZ
2723 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2724 switch (prev_state) {
2725 case TASK_DEAD:
2726 if (prev->sched_class->task_dead)
2727 prev->sched_class->task_dead(prev);
2728
2729 /*
2730 * Remove function-return probe instances associated with this
2731 * task and put them back on the free list.
2732 */
2733 kprobe_flush_task(prev);
2734
2735 /* Task is done with its stack. */
2736 put_task_stack(prev);
2737
2738 put_task_struct(prev);
2739 break;
68f24b08 2740
85f1abe0
PZ
2741 case TASK_PARKED:
2742 kthread_park_complete(prev);
2743 break;
2744 }
c6fd91f0 2745 }
99e5ada9 2746
de734f89 2747 tick_nohz_task_switch();
dfa50b60 2748 return rq;
1da177e4
LT
2749}
2750
3f029d3c
GH
2751#ifdef CONFIG_SMP
2752
3f029d3c 2753/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2754static void __balance_callback(struct rq *rq)
3f029d3c 2755{
e3fca9e7
PZ
2756 struct callback_head *head, *next;
2757 void (*func)(struct rq *rq);
2758 unsigned long flags;
3f029d3c 2759
e3fca9e7
PZ
2760 raw_spin_lock_irqsave(&rq->lock, flags);
2761 head = rq->balance_callback;
2762 rq->balance_callback = NULL;
2763 while (head) {
2764 func = (void (*)(struct rq *))head->func;
2765 next = head->next;
2766 head->next = NULL;
2767 head = next;
3f029d3c 2768
e3fca9e7 2769 func(rq);
3f029d3c 2770 }
e3fca9e7
PZ
2771 raw_spin_unlock_irqrestore(&rq->lock, flags);
2772}
2773
2774static inline void balance_callback(struct rq *rq)
2775{
2776 if (unlikely(rq->balance_callback))
2777 __balance_callback(rq);
3f029d3c
GH
2778}
2779
2780#else
da19ab51 2781
e3fca9e7 2782static inline void balance_callback(struct rq *rq)
3f029d3c 2783{
1da177e4
LT
2784}
2785
3f029d3c
GH
2786#endif
2787
1da177e4
LT
2788/**
2789 * schedule_tail - first thing a freshly forked thread must call.
2790 * @prev: the thread we just switched away from.
2791 */
722a9f92 2792asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2793 __releases(rq->lock)
2794{
1a43a14a 2795 struct rq *rq;
da19ab51 2796
609ca066
PZ
2797 /*
2798 * New tasks start with FORK_PREEMPT_COUNT, see there and
2799 * finish_task_switch() for details.
2800 *
2801 * finish_task_switch() will drop rq->lock() and lower preempt_count
2802 * and the preempt_enable() will end up enabling preemption (on
2803 * PREEMPT_COUNT kernels).
2804 */
2805
dfa50b60 2806 rq = finish_task_switch(prev);
e3fca9e7 2807 balance_callback(rq);
1a43a14a 2808 preempt_enable();
70b97a7f 2809
1da177e4 2810 if (current->set_child_tid)
b488893a 2811 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2812}
2813
2814/*
dfa50b60 2815 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2816 */
04936948 2817static __always_inline struct rq *
70b97a7f 2818context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2819 struct task_struct *next, struct rq_flags *rf)
1da177e4 2820{
dd41f596 2821 struct mm_struct *mm, *oldmm;
1da177e4 2822
e107be36 2823 prepare_task_switch(rq, prev, next);
fe4b04fa 2824
dd41f596
IM
2825 mm = next->mm;
2826 oldmm = prev->active_mm;
9226d125
ZA
2827 /*
2828 * For paravirt, this is coupled with an exit in switch_to to
2829 * combine the page table reload and the switch backend into
2830 * one hypercall.
2831 */
224101ed 2832 arch_start_context_switch(prev);
9226d125 2833
306e0604
MD
2834 /*
2835 * If mm is non-NULL, we pass through switch_mm(). If mm is
2836 * NULL, we will pass through mmdrop() in finish_task_switch().
2837 * Both of these contain the full memory barrier required by
2838 * membarrier after storing to rq->curr, before returning to
2839 * user-space.
2840 */
31915ab4 2841 if (!mm) {
1da177e4 2842 next->active_mm = oldmm;
f1f10076 2843 mmgrab(oldmm);
1da177e4
LT
2844 enter_lazy_tlb(oldmm, next);
2845 } else
f98db601 2846 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2847
31915ab4 2848 if (!prev->mm) {
1da177e4 2849 prev->active_mm = NULL;
1da177e4
LT
2850 rq->prev_mm = oldmm;
2851 }
92509b73 2852
cb42c9a3 2853 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2854
269d5992 2855 prepare_lock_switch(rq, next, rf);
1da177e4
LT
2856
2857 /* Here we just switch the register state and the stack. */
2858 switch_to(prev, next, prev);
dd41f596 2859 barrier();
dfa50b60
ON
2860
2861 return finish_task_switch(prev);
1da177e4
LT
2862}
2863
2864/*
1c3e8264 2865 * nr_running and nr_context_switches:
1da177e4
LT
2866 *
2867 * externally visible scheduler statistics: current number of runnable
1c3e8264 2868 * threads, total number of context switches performed since bootup.
1da177e4
LT
2869 */
2870unsigned long nr_running(void)
2871{
2872 unsigned long i, sum = 0;
2873
2874 for_each_online_cpu(i)
2875 sum += cpu_rq(i)->nr_running;
2876
2877 return sum;
f711f609 2878}
1da177e4 2879
2ee507c4 2880/*
d1ccc66d 2881 * Check if only the current task is running on the CPU.
00cc1633
DD
2882 *
2883 * Caution: this function does not check that the caller has disabled
2884 * preemption, thus the result might have a time-of-check-to-time-of-use
2885 * race. The caller is responsible to use it correctly, for example:
2886 *
2887 * - from a non-preemptable section (of course)
2888 *
2889 * - from a thread that is bound to a single CPU
2890 *
2891 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2892 */
2893bool single_task_running(void)
2894{
00cc1633 2895 return raw_rq()->nr_running == 1;
2ee507c4
TC
2896}
2897EXPORT_SYMBOL(single_task_running);
2898
1da177e4 2899unsigned long long nr_context_switches(void)
46cb4b7c 2900{
cc94abfc
SR
2901 int i;
2902 unsigned long long sum = 0;
46cb4b7c 2903
0a945022 2904 for_each_possible_cpu(i)
1da177e4 2905 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2906
1da177e4
LT
2907 return sum;
2908}
483b4ee6 2909
e33a9bba
TH
2910/*
2911 * IO-wait accounting, and how its mostly bollocks (on SMP).
2912 *
2913 * The idea behind IO-wait account is to account the idle time that we could
2914 * have spend running if it were not for IO. That is, if we were to improve the
2915 * storage performance, we'd have a proportional reduction in IO-wait time.
2916 *
2917 * This all works nicely on UP, where, when a task blocks on IO, we account
2918 * idle time as IO-wait, because if the storage were faster, it could've been
2919 * running and we'd not be idle.
2920 *
2921 * This has been extended to SMP, by doing the same for each CPU. This however
2922 * is broken.
2923 *
2924 * Imagine for instance the case where two tasks block on one CPU, only the one
2925 * CPU will have IO-wait accounted, while the other has regular idle. Even
2926 * though, if the storage were faster, both could've ran at the same time,
2927 * utilising both CPUs.
2928 *
2929 * This means, that when looking globally, the current IO-wait accounting on
2930 * SMP is a lower bound, by reason of under accounting.
2931 *
2932 * Worse, since the numbers are provided per CPU, they are sometimes
2933 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2934 * associated with any one particular CPU, it can wake to another CPU than it
2935 * blocked on. This means the per CPU IO-wait number is meaningless.
2936 *
2937 * Task CPU affinities can make all that even more 'interesting'.
2938 */
2939
1da177e4
LT
2940unsigned long nr_iowait(void)
2941{
2942 unsigned long i, sum = 0;
483b4ee6 2943
0a945022 2944 for_each_possible_cpu(i)
1da177e4 2945 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2946
1da177e4
LT
2947 return sum;
2948}
483b4ee6 2949
e33a9bba
TH
2950/*
2951 * Consumers of these two interfaces, like for example the cpufreq menu
2952 * governor are using nonsensical data. Boosting frequency for a CPU that has
2953 * IO-wait which might not even end up running the task when it does become
2954 * runnable.
2955 */
2956
8c215bd3 2957unsigned long nr_iowait_cpu(int cpu)
69d25870 2958{
8c215bd3 2959 struct rq *this = cpu_rq(cpu);
69d25870
AV
2960 return atomic_read(&this->nr_iowait);
2961}
46cb4b7c 2962
372ba8cb
MG
2963void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2964{
3289bdb4
PZ
2965 struct rq *rq = this_rq();
2966 *nr_waiters = atomic_read(&rq->nr_iowait);
2967 *load = rq->load.weight;
372ba8cb
MG
2968}
2969
dd41f596 2970#ifdef CONFIG_SMP
8a0be9ef 2971
46cb4b7c 2972/*
38022906
PZ
2973 * sched_exec - execve() is a valuable balancing opportunity, because at
2974 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2975 */
38022906 2976void sched_exec(void)
46cb4b7c 2977{
38022906 2978 struct task_struct *p = current;
1da177e4 2979 unsigned long flags;
0017d735 2980 int dest_cpu;
46cb4b7c 2981
8f42ced9 2982 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2983 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2984 if (dest_cpu == smp_processor_id())
2985 goto unlock;
38022906 2986
8f42ced9 2987 if (likely(cpu_active(dest_cpu))) {
969c7921 2988 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2989
8f42ced9
PZ
2990 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2991 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2992 return;
2993 }
0017d735 2994unlock:
8f42ced9 2995 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2996}
dd41f596 2997
1da177e4
LT
2998#endif
2999
1da177e4 3000DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3001DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3002
3003EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3004EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3005
6075620b
GG
3006/*
3007 * The function fair_sched_class.update_curr accesses the struct curr
3008 * and its field curr->exec_start; when called from task_sched_runtime(),
3009 * we observe a high rate of cache misses in practice.
3010 * Prefetching this data results in improved performance.
3011 */
3012static inline void prefetch_curr_exec_start(struct task_struct *p)
3013{
3014#ifdef CONFIG_FAIR_GROUP_SCHED
3015 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3016#else
3017 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3018#endif
3019 prefetch(curr);
3020 prefetch(&curr->exec_start);
3021}
3022
c5f8d995
HS
3023/*
3024 * Return accounted runtime for the task.
3025 * In case the task is currently running, return the runtime plus current's
3026 * pending runtime that have not been accounted yet.
3027 */
3028unsigned long long task_sched_runtime(struct task_struct *p)
3029{
eb580751 3030 struct rq_flags rf;
c5f8d995 3031 struct rq *rq;
6e998916 3032 u64 ns;
c5f8d995 3033
911b2898
PZ
3034#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3035 /*
97fb7a0a 3036 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3037 * So we have a optimization chance when the task's delta_exec is 0.
3038 * Reading ->on_cpu is racy, but this is ok.
3039 *
d1ccc66d
IM
3040 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3041 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3042 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3043 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3044 * been accounted, so we're correct here as well.
911b2898 3045 */
da0c1e65 3046 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3047 return p->se.sum_exec_runtime;
3048#endif
3049
eb580751 3050 rq = task_rq_lock(p, &rf);
6e998916
SG
3051 /*
3052 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3053 * project cycles that may never be accounted to this
3054 * thread, breaking clock_gettime().
3055 */
3056 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3057 prefetch_curr_exec_start(p);
6e998916
SG
3058 update_rq_clock(rq);
3059 p->sched_class->update_curr(rq);
3060 }
3061 ns = p->se.sum_exec_runtime;
eb580751 3062 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3063
3064 return ns;
3065}
48f24c4d 3066
7835b98b
CL
3067/*
3068 * This function gets called by the timer code, with HZ frequency.
3069 * We call it with interrupts disabled.
7835b98b
CL
3070 */
3071void scheduler_tick(void)
3072{
7835b98b
CL
3073 int cpu = smp_processor_id();
3074 struct rq *rq = cpu_rq(cpu);
dd41f596 3075 struct task_struct *curr = rq->curr;
8a8c69c3 3076 struct rq_flags rf;
3e51f33f
PZ
3077
3078 sched_clock_tick();
dd41f596 3079
8a8c69c3
PZ
3080 rq_lock(rq, &rf);
3081
3e51f33f 3082 update_rq_clock(rq);
fa85ae24 3083 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3084 cpu_load_update_active(rq);
3289bdb4 3085 calc_global_load_tick(rq);
8a8c69c3
PZ
3086
3087 rq_unlock(rq, &rf);
7835b98b 3088
e9d2b064 3089 perf_event_task_tick();
e220d2dc 3090
e418e1c2 3091#ifdef CONFIG_SMP
6eb57e0d 3092 rq->idle_balance = idle_cpu(cpu);
7caff66f 3093 trigger_load_balance(rq);
e418e1c2 3094#endif
1da177e4
LT
3095}
3096
265f22a9 3097#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3098
3099struct tick_work {
3100 int cpu;
3101 struct delayed_work work;
3102};
3103
3104static struct tick_work __percpu *tick_work_cpu;
3105
3106static void sched_tick_remote(struct work_struct *work)
3107{
3108 struct delayed_work *dwork = to_delayed_work(work);
3109 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3110 int cpu = twork->cpu;
3111 struct rq *rq = cpu_rq(cpu);
3112 struct rq_flags rf;
3113
3114 /*
3115 * Handle the tick only if it appears the remote CPU is running in full
3116 * dynticks mode. The check is racy by nature, but missing a tick or
3117 * having one too much is no big deal because the scheduler tick updates
3118 * statistics and checks timeslices in a time-independent way, regardless
3119 * of when exactly it is running.
3120 */
3121 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3122 struct task_struct *curr;
3123 u64 delta;
3124
3125 rq_lock_irq(rq, &rf);
3126 update_rq_clock(rq);
3127 curr = rq->curr;
3128 delta = rq_clock_task(rq) - curr->se.exec_start;
3129
3130 /*
3131 * Make sure the next tick runs within a reasonable
3132 * amount of time.
3133 */
3134 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3135 curr->sched_class->task_tick(rq, curr, 0);
3136 rq_unlock_irq(rq, &rf);
3137 }
3138
3139 /*
3140 * Run the remote tick once per second (1Hz). This arbitrary
3141 * frequency is large enough to avoid overload but short enough
3142 * to keep scheduler internal stats reasonably up to date.
3143 */
3144 queue_delayed_work(system_unbound_wq, dwork, HZ);
3145}
3146
3147static void sched_tick_start(int cpu)
3148{
3149 struct tick_work *twork;
3150
3151 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3152 return;
3153
3154 WARN_ON_ONCE(!tick_work_cpu);
3155
3156 twork = per_cpu_ptr(tick_work_cpu, cpu);
3157 twork->cpu = cpu;
3158 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3159 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3160}
3161
3162#ifdef CONFIG_HOTPLUG_CPU
3163static void sched_tick_stop(int cpu)
3164{
3165 struct tick_work *twork;
3166
3167 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3168 return;
3169
3170 WARN_ON_ONCE(!tick_work_cpu);
3171
3172 twork = per_cpu_ptr(tick_work_cpu, cpu);
3173 cancel_delayed_work_sync(&twork->work);
3174}
3175#endif /* CONFIG_HOTPLUG_CPU */
3176
3177int __init sched_tick_offload_init(void)
3178{
3179 tick_work_cpu = alloc_percpu(struct tick_work);
3180 BUG_ON(!tick_work_cpu);
3181
3182 return 0;
3183}
3184
3185#else /* !CONFIG_NO_HZ_FULL */
3186static inline void sched_tick_start(int cpu) { }
3187static inline void sched_tick_stop(int cpu) { }
265f22a9 3188#endif
1da177e4 3189
7e49fcce
SR
3190#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3191 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3192/*
3193 * If the value passed in is equal to the current preempt count
3194 * then we just disabled preemption. Start timing the latency.
3195 */
3196static inline void preempt_latency_start(int val)
3197{
3198 if (preempt_count() == val) {
3199 unsigned long ip = get_lock_parent_ip();
3200#ifdef CONFIG_DEBUG_PREEMPT
3201 current->preempt_disable_ip = ip;
3202#endif
3203 trace_preempt_off(CALLER_ADDR0, ip);
3204 }
3205}
7e49fcce 3206
edafe3a5 3207void preempt_count_add(int val)
1da177e4 3208{
6cd8a4bb 3209#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3210 /*
3211 * Underflow?
3212 */
9a11b49a
IM
3213 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3214 return;
6cd8a4bb 3215#endif
bdb43806 3216 __preempt_count_add(val);
6cd8a4bb 3217#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3218 /*
3219 * Spinlock count overflowing soon?
3220 */
33859f7f
MOS
3221 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3222 PREEMPT_MASK - 10);
6cd8a4bb 3223#endif
47252cfb 3224 preempt_latency_start(val);
1da177e4 3225}
bdb43806 3226EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3227NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3228
47252cfb
SR
3229/*
3230 * If the value passed in equals to the current preempt count
3231 * then we just enabled preemption. Stop timing the latency.
3232 */
3233static inline void preempt_latency_stop(int val)
3234{
3235 if (preempt_count() == val)
3236 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3237}
3238
edafe3a5 3239void preempt_count_sub(int val)
1da177e4 3240{
6cd8a4bb 3241#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3242 /*
3243 * Underflow?
3244 */
01e3eb82 3245 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3246 return;
1da177e4
LT
3247 /*
3248 * Is the spinlock portion underflowing?
3249 */
9a11b49a
IM
3250 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3251 !(preempt_count() & PREEMPT_MASK)))
3252 return;
6cd8a4bb 3253#endif
9a11b49a 3254
47252cfb 3255 preempt_latency_stop(val);
bdb43806 3256 __preempt_count_sub(val);
1da177e4 3257}
bdb43806 3258EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3259NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3260
47252cfb
SR
3261#else
3262static inline void preempt_latency_start(int val) { }
3263static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3264#endif
3265
59ddbcb2
IM
3266static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3267{
3268#ifdef CONFIG_DEBUG_PREEMPT
3269 return p->preempt_disable_ip;
3270#else
3271 return 0;
3272#endif
3273}
3274
1da177e4 3275/*
dd41f596 3276 * Print scheduling while atomic bug:
1da177e4 3277 */
dd41f596 3278static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3279{
d1c6d149
VN
3280 /* Save this before calling printk(), since that will clobber it */
3281 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3282
664dfa65
DJ
3283 if (oops_in_progress)
3284 return;
3285
3df0fc5b
PZ
3286 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3287 prev->comm, prev->pid, preempt_count());
838225b4 3288
dd41f596 3289 debug_show_held_locks(prev);
e21f5b15 3290 print_modules();
dd41f596
IM
3291 if (irqs_disabled())
3292 print_irqtrace_events(prev);
d1c6d149
VN
3293 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3294 && in_atomic_preempt_off()) {
8f47b187 3295 pr_err("Preemption disabled at:");
d1c6d149 3296 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3297 pr_cont("\n");
3298 }
748c7201
DBO
3299 if (panic_on_warn)
3300 panic("scheduling while atomic\n");
3301
6135fc1e 3302 dump_stack();
373d4d09 3303 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3304}
1da177e4 3305
dd41f596
IM
3306/*
3307 * Various schedule()-time debugging checks and statistics:
3308 */
3309static inline void schedule_debug(struct task_struct *prev)
3310{
0d9e2632 3311#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3312 if (task_stack_end_corrupted(prev))
3313 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3314#endif
b99def8b 3315
1dc0fffc 3316 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3317 __schedule_bug(prev);
1dc0fffc
PZ
3318 preempt_count_set(PREEMPT_DISABLED);
3319 }
b3fbab05 3320 rcu_sleep_check();
dd41f596 3321
1da177e4
LT
3322 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3323
ae92882e 3324 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3325}
3326
3327/*
3328 * Pick up the highest-prio task:
3329 */
3330static inline struct task_struct *
d8ac8971 3331pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3332{
49ee5768 3333 const struct sched_class *class;
dd41f596 3334 struct task_struct *p;
1da177e4
LT
3335
3336 /*
0ba87bb2
PZ
3337 * Optimization: we know that if all tasks are in the fair class we can
3338 * call that function directly, but only if the @prev task wasn't of a
3339 * higher scheduling class, because otherwise those loose the
3340 * opportunity to pull in more work from other CPUs.
1da177e4 3341 */
0ba87bb2
PZ
3342 if (likely((prev->sched_class == &idle_sched_class ||
3343 prev->sched_class == &fair_sched_class) &&
3344 rq->nr_running == rq->cfs.h_nr_running)) {
3345
d8ac8971 3346 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3347 if (unlikely(p == RETRY_TASK))
3348 goto again;
3349
d1ccc66d 3350 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3351 if (unlikely(!p))
d8ac8971 3352 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3353
3354 return p;
1da177e4
LT
3355 }
3356
37e117c0 3357again:
34f971f6 3358 for_each_class(class) {
d8ac8971 3359 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3360 if (p) {
3361 if (unlikely(p == RETRY_TASK))
3362 goto again;
dd41f596 3363 return p;
37e117c0 3364 }
dd41f596 3365 }
34f971f6 3366
d1ccc66d
IM
3367 /* The idle class should always have a runnable task: */
3368 BUG();
dd41f596 3369}
1da177e4 3370
dd41f596 3371/*
c259e01a 3372 * __schedule() is the main scheduler function.
edde96ea
PE
3373 *
3374 * The main means of driving the scheduler and thus entering this function are:
3375 *
3376 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3377 *
3378 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3379 * paths. For example, see arch/x86/entry_64.S.
3380 *
3381 * To drive preemption between tasks, the scheduler sets the flag in timer
3382 * interrupt handler scheduler_tick().
3383 *
3384 * 3. Wakeups don't really cause entry into schedule(). They add a
3385 * task to the run-queue and that's it.
3386 *
3387 * Now, if the new task added to the run-queue preempts the current
3388 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3389 * called on the nearest possible occasion:
3390 *
3391 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3392 *
3393 * - in syscall or exception context, at the next outmost
3394 * preempt_enable(). (this might be as soon as the wake_up()'s
3395 * spin_unlock()!)
3396 *
3397 * - in IRQ context, return from interrupt-handler to
3398 * preemptible context
3399 *
3400 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3401 * then at the next:
3402 *
3403 * - cond_resched() call
3404 * - explicit schedule() call
3405 * - return from syscall or exception to user-space
3406 * - return from interrupt-handler to user-space
bfd9b2b5 3407 *
b30f0e3f 3408 * WARNING: must be called with preemption disabled!
dd41f596 3409 */
499d7955 3410static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3411{
3412 struct task_struct *prev, *next;
67ca7bde 3413 unsigned long *switch_count;
d8ac8971 3414 struct rq_flags rf;
dd41f596 3415 struct rq *rq;
31656519 3416 int cpu;
dd41f596 3417
dd41f596
IM
3418 cpu = smp_processor_id();
3419 rq = cpu_rq(cpu);
dd41f596 3420 prev = rq->curr;
dd41f596 3421
dd41f596 3422 schedule_debug(prev);
1da177e4 3423
31656519 3424 if (sched_feat(HRTICK))
f333fdc9 3425 hrtick_clear(rq);
8f4d37ec 3426
46a5d164 3427 local_irq_disable();
bcbfdd01 3428 rcu_note_context_switch(preempt);
46a5d164 3429
e0acd0a6
ON
3430 /*
3431 * Make sure that signal_pending_state()->signal_pending() below
3432 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3433 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3434 *
3435 * The membarrier system call requires a full memory barrier
3436 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3437 */
8a8c69c3 3438 rq_lock(rq, &rf);
d89e588c 3439 smp_mb__after_spinlock();
1da177e4 3440
d1ccc66d
IM
3441 /* Promote REQ to ACT */
3442 rq->clock_update_flags <<= 1;
bce4dc80 3443 update_rq_clock(rq);
9edfbfed 3444
246d86b5 3445 switch_count = &prev->nivcsw;
fc13aeba 3446 if (!preempt && prev->state) {
21aa9af0 3447 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3448 prev->state = TASK_RUNNING;
21aa9af0 3449 } else {
bce4dc80 3450 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3451 prev->on_rq = 0;
3452
e33a9bba
TH
3453 if (prev->in_iowait) {
3454 atomic_inc(&rq->nr_iowait);
3455 delayacct_blkio_start();
3456 }
3457
21aa9af0 3458 /*
2acca55e
PZ
3459 * If a worker went to sleep, notify and ask workqueue
3460 * whether it wants to wake up a task to maintain
3461 * concurrency.
21aa9af0
TH
3462 */
3463 if (prev->flags & PF_WQ_WORKER) {
3464 struct task_struct *to_wakeup;
3465
9b7f6597 3466 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3467 if (to_wakeup)
d8ac8971 3468 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3469 }
21aa9af0 3470 }
dd41f596 3471 switch_count = &prev->nvcsw;
1da177e4
LT
3472 }
3473
d8ac8971 3474 next = pick_next_task(rq, prev, &rf);
f26f9aff 3475 clear_tsk_need_resched(prev);
f27dde8d 3476 clear_preempt_need_resched();
1da177e4 3477
1da177e4 3478 if (likely(prev != next)) {
1da177e4
LT
3479 rq->nr_switches++;
3480 rq->curr = next;
22e4ebb9
MD
3481 /*
3482 * The membarrier system call requires each architecture
3483 * to have a full memory barrier after updating
306e0604
MD
3484 * rq->curr, before returning to user-space.
3485 *
3486 * Here are the schemes providing that barrier on the
3487 * various architectures:
3488 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3489 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3490 * - finish_lock_switch() for weakly-ordered
3491 * architectures where spin_unlock is a full barrier,
3492 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3493 * is a RELEASE barrier),
22e4ebb9 3494 */
1da177e4
LT
3495 ++*switch_count;
3496
c73464b1 3497 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3498
3499 /* Also unlocks the rq: */
3500 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3501 } else {
cb42c9a3 3502 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3503 rq_unlock_irq(rq, &rf);
cbce1a68 3504 }
1da177e4 3505
e3fca9e7 3506 balance_callback(rq);
1da177e4 3507}
c259e01a 3508
9af6528e
PZ
3509void __noreturn do_task_dead(void)
3510{
d1ccc66d 3511 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3512 set_special_state(TASK_DEAD);
d1ccc66d
IM
3513
3514 /* Tell freezer to ignore us: */
3515 current->flags |= PF_NOFREEZE;
3516
9af6528e
PZ
3517 __schedule(false);
3518 BUG();
d1ccc66d
IM
3519
3520 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3521 for (;;)
d1ccc66d 3522 cpu_relax();
9af6528e
PZ
3523}
3524
9c40cef2
TG
3525static inline void sched_submit_work(struct task_struct *tsk)
3526{
3c7d5184 3527 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3528 return;
3529 /*
3530 * If we are going to sleep and we have plugged IO queued,
3531 * make sure to submit it to avoid deadlocks.
3532 */
3533 if (blk_needs_flush_plug(tsk))
3534 blk_schedule_flush_plug(tsk);
3535}
3536
722a9f92 3537asmlinkage __visible void __sched schedule(void)
c259e01a 3538{
9c40cef2
TG
3539 struct task_struct *tsk = current;
3540
3541 sched_submit_work(tsk);
bfd9b2b5 3542 do {
b30f0e3f 3543 preempt_disable();
fc13aeba 3544 __schedule(false);
b30f0e3f 3545 sched_preempt_enable_no_resched();
bfd9b2b5 3546 } while (need_resched());
c259e01a 3547}
1da177e4
LT
3548EXPORT_SYMBOL(schedule);
3549
8663effb
SRV
3550/*
3551 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3552 * state (have scheduled out non-voluntarily) by making sure that all
3553 * tasks have either left the run queue or have gone into user space.
3554 * As idle tasks do not do either, they must not ever be preempted
3555 * (schedule out non-voluntarily).
3556 *
3557 * schedule_idle() is similar to schedule_preempt_disable() except that it
3558 * never enables preemption because it does not call sched_submit_work().
3559 */
3560void __sched schedule_idle(void)
3561{
3562 /*
3563 * As this skips calling sched_submit_work(), which the idle task does
3564 * regardless because that function is a nop when the task is in a
3565 * TASK_RUNNING state, make sure this isn't used someplace that the
3566 * current task can be in any other state. Note, idle is always in the
3567 * TASK_RUNNING state.
3568 */
3569 WARN_ON_ONCE(current->state);
3570 do {
3571 __schedule(false);
3572 } while (need_resched());
3573}
3574
91d1aa43 3575#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3576asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3577{
3578 /*
3579 * If we come here after a random call to set_need_resched(),
3580 * or we have been woken up remotely but the IPI has not yet arrived,
3581 * we haven't yet exited the RCU idle mode. Do it here manually until
3582 * we find a better solution.
7cc78f8f
AL
3583 *
3584 * NB: There are buggy callers of this function. Ideally we
c467ea76 3585 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3586 * too frequently to make sense yet.
20ab65e3 3587 */
7cc78f8f 3588 enum ctx_state prev_state = exception_enter();
20ab65e3 3589 schedule();
7cc78f8f 3590 exception_exit(prev_state);
20ab65e3
FW
3591}
3592#endif
3593
c5491ea7
TG
3594/**
3595 * schedule_preempt_disabled - called with preemption disabled
3596 *
3597 * Returns with preemption disabled. Note: preempt_count must be 1
3598 */
3599void __sched schedule_preempt_disabled(void)
3600{
ba74c144 3601 sched_preempt_enable_no_resched();
c5491ea7
TG
3602 schedule();
3603 preempt_disable();
3604}
3605
06b1f808 3606static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3607{
3608 do {
47252cfb
SR
3609 /*
3610 * Because the function tracer can trace preempt_count_sub()
3611 * and it also uses preempt_enable/disable_notrace(), if
3612 * NEED_RESCHED is set, the preempt_enable_notrace() called
3613 * by the function tracer will call this function again and
3614 * cause infinite recursion.
3615 *
3616 * Preemption must be disabled here before the function
3617 * tracer can trace. Break up preempt_disable() into two
3618 * calls. One to disable preemption without fear of being
3619 * traced. The other to still record the preemption latency,
3620 * which can also be traced by the function tracer.
3621 */
499d7955 3622 preempt_disable_notrace();
47252cfb 3623 preempt_latency_start(1);
fc13aeba 3624 __schedule(true);
47252cfb 3625 preempt_latency_stop(1);
499d7955 3626 preempt_enable_no_resched_notrace();
a18b5d01
FW
3627
3628 /*
3629 * Check again in case we missed a preemption opportunity
3630 * between schedule and now.
3631 */
a18b5d01
FW
3632 } while (need_resched());
3633}
3634
1da177e4
LT
3635#ifdef CONFIG_PREEMPT
3636/*
2ed6e34f 3637 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3638 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3639 * occur there and call schedule directly.
3640 */
722a9f92 3641asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3642{
1da177e4
LT
3643 /*
3644 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3645 * we do not want to preempt the current task. Just return..
1da177e4 3646 */
fbb00b56 3647 if (likely(!preemptible()))
1da177e4
LT
3648 return;
3649
a18b5d01 3650 preempt_schedule_common();
1da177e4 3651}
376e2424 3652NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3653EXPORT_SYMBOL(preempt_schedule);
009f60e2 3654
009f60e2 3655/**
4eaca0a8 3656 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3657 *
3658 * The tracing infrastructure uses preempt_enable_notrace to prevent
3659 * recursion and tracing preempt enabling caused by the tracing
3660 * infrastructure itself. But as tracing can happen in areas coming
3661 * from userspace or just about to enter userspace, a preempt enable
3662 * can occur before user_exit() is called. This will cause the scheduler
3663 * to be called when the system is still in usermode.
3664 *
3665 * To prevent this, the preempt_enable_notrace will use this function
3666 * instead of preempt_schedule() to exit user context if needed before
3667 * calling the scheduler.
3668 */
4eaca0a8 3669asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3670{
3671 enum ctx_state prev_ctx;
3672
3673 if (likely(!preemptible()))
3674 return;
3675
3676 do {
47252cfb
SR
3677 /*
3678 * Because the function tracer can trace preempt_count_sub()
3679 * and it also uses preempt_enable/disable_notrace(), if
3680 * NEED_RESCHED is set, the preempt_enable_notrace() called
3681 * by the function tracer will call this function again and
3682 * cause infinite recursion.
3683 *
3684 * Preemption must be disabled here before the function
3685 * tracer can trace. Break up preempt_disable() into two
3686 * calls. One to disable preemption without fear of being
3687 * traced. The other to still record the preemption latency,
3688 * which can also be traced by the function tracer.
3689 */
3d8f74dd 3690 preempt_disable_notrace();
47252cfb 3691 preempt_latency_start(1);
009f60e2
ON
3692 /*
3693 * Needs preempt disabled in case user_exit() is traced
3694 * and the tracer calls preempt_enable_notrace() causing
3695 * an infinite recursion.
3696 */
3697 prev_ctx = exception_enter();
fc13aeba 3698 __schedule(true);
009f60e2
ON
3699 exception_exit(prev_ctx);
3700
47252cfb 3701 preempt_latency_stop(1);
3d8f74dd 3702 preempt_enable_no_resched_notrace();
009f60e2
ON
3703 } while (need_resched());
3704}
4eaca0a8 3705EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3706
32e475d7 3707#endif /* CONFIG_PREEMPT */
1da177e4
LT
3708
3709/*
2ed6e34f 3710 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3711 * off of irq context.
3712 * Note, that this is called and return with irqs disabled. This will
3713 * protect us against recursive calling from irq.
3714 */
722a9f92 3715asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3716{
b22366cd 3717 enum ctx_state prev_state;
6478d880 3718
2ed6e34f 3719 /* Catch callers which need to be fixed */
f27dde8d 3720 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3721
b22366cd
FW
3722 prev_state = exception_enter();
3723
3a5c359a 3724 do {
3d8f74dd 3725 preempt_disable();
3a5c359a 3726 local_irq_enable();
fc13aeba 3727 __schedule(true);
3a5c359a 3728 local_irq_disable();
3d8f74dd 3729 sched_preempt_enable_no_resched();
5ed0cec0 3730 } while (need_resched());
b22366cd
FW
3731
3732 exception_exit(prev_state);
1da177e4
LT
3733}
3734
ac6424b9 3735int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3736 void *key)
1da177e4 3737{
63859d4f 3738 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3739}
1da177e4
LT
3740EXPORT_SYMBOL(default_wake_function);
3741
b29739f9
IM
3742#ifdef CONFIG_RT_MUTEXES
3743
acd58620
PZ
3744static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3745{
3746 if (pi_task)
3747 prio = min(prio, pi_task->prio);
3748
3749 return prio;
3750}
3751
3752static inline int rt_effective_prio(struct task_struct *p, int prio)
3753{
3754 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3755
3756 return __rt_effective_prio(pi_task, prio);
3757}
3758
b29739f9
IM
3759/*
3760 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3761 * @p: task to boost
3762 * @pi_task: donor task
b29739f9
IM
3763 *
3764 * This function changes the 'effective' priority of a task. It does
3765 * not touch ->normal_prio like __setscheduler().
3766 *
c365c292
TG
3767 * Used by the rt_mutex code to implement priority inheritance
3768 * logic. Call site only calls if the priority of the task changed.
b29739f9 3769 */
acd58620 3770void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3771{
acd58620 3772 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3773 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3774 const struct sched_class *prev_class;
eb580751
PZ
3775 struct rq_flags rf;
3776 struct rq *rq;
b29739f9 3777
acd58620
PZ
3778 /* XXX used to be waiter->prio, not waiter->task->prio */
3779 prio = __rt_effective_prio(pi_task, p->normal_prio);
3780
3781 /*
3782 * If nothing changed; bail early.
3783 */
3784 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3785 return;
b29739f9 3786
eb580751 3787 rq = __task_rq_lock(p, &rf);
80f5c1b8 3788 update_rq_clock(rq);
acd58620
PZ
3789 /*
3790 * Set under pi_lock && rq->lock, such that the value can be used under
3791 * either lock.
3792 *
3793 * Note that there is loads of tricky to make this pointer cache work
3794 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3795 * ensure a task is de-boosted (pi_task is set to NULL) before the
3796 * task is allowed to run again (and can exit). This ensures the pointer
3797 * points to a blocked task -- which guaratees the task is present.
3798 */
3799 p->pi_top_task = pi_task;
3800
3801 /*
3802 * For FIFO/RR we only need to set prio, if that matches we're done.
3803 */
3804 if (prio == p->prio && !dl_prio(prio))
3805 goto out_unlock;
b29739f9 3806
1c4dd99b
TG
3807 /*
3808 * Idle task boosting is a nono in general. There is one
3809 * exception, when PREEMPT_RT and NOHZ is active:
3810 *
3811 * The idle task calls get_next_timer_interrupt() and holds
3812 * the timer wheel base->lock on the CPU and another CPU wants
3813 * to access the timer (probably to cancel it). We can safely
3814 * ignore the boosting request, as the idle CPU runs this code
3815 * with interrupts disabled and will complete the lock
3816 * protected section without being interrupted. So there is no
3817 * real need to boost.
3818 */
3819 if (unlikely(p == rq->idle)) {
3820 WARN_ON(p != rq->curr);
3821 WARN_ON(p->pi_blocked_on);
3822 goto out_unlock;
3823 }
3824
b91473ff 3825 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3826 oldprio = p->prio;
ff77e468
PZ
3827
3828 if (oldprio == prio)
3829 queue_flag &= ~DEQUEUE_MOVE;
3830
83ab0aa0 3831 prev_class = p->sched_class;
da0c1e65 3832 queued = task_on_rq_queued(p);
051a1d1a 3833 running = task_current(rq, p);
da0c1e65 3834 if (queued)
ff77e468 3835 dequeue_task(rq, p, queue_flag);
0e1f3483 3836 if (running)
f3cd1c4e 3837 put_prev_task(rq, p);
dd41f596 3838
2d3d891d
DF
3839 /*
3840 * Boosting condition are:
3841 * 1. -rt task is running and holds mutex A
3842 * --> -dl task blocks on mutex A
3843 *
3844 * 2. -dl task is running and holds mutex A
3845 * --> -dl task blocks on mutex A and could preempt the
3846 * running task
3847 */
3848 if (dl_prio(prio)) {
466af29b
ON
3849 if (!dl_prio(p->normal_prio) ||
3850 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3851 p->dl.dl_boosted = 1;
ff77e468 3852 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3853 } else
3854 p->dl.dl_boosted = 0;
aab03e05 3855 p->sched_class = &dl_sched_class;
2d3d891d
DF
3856 } else if (rt_prio(prio)) {
3857 if (dl_prio(oldprio))
3858 p->dl.dl_boosted = 0;
3859 if (oldprio < prio)
ff77e468 3860 queue_flag |= ENQUEUE_HEAD;
dd41f596 3861 p->sched_class = &rt_sched_class;
2d3d891d
DF
3862 } else {
3863 if (dl_prio(oldprio))
3864 p->dl.dl_boosted = 0;
746db944
BS
3865 if (rt_prio(oldprio))
3866 p->rt.timeout = 0;
dd41f596 3867 p->sched_class = &fair_sched_class;
2d3d891d 3868 }
dd41f596 3869
b29739f9
IM
3870 p->prio = prio;
3871
da0c1e65 3872 if (queued)
ff77e468 3873 enqueue_task(rq, p, queue_flag);
a399d233 3874 if (running)
b2bf6c31 3875 set_curr_task(rq, p);
cb469845 3876
da7a735e 3877 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3878out_unlock:
d1ccc66d
IM
3879 /* Avoid rq from going away on us: */
3880 preempt_disable();
eb580751 3881 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3882
3883 balance_callback(rq);
3884 preempt_enable();
b29739f9 3885}
acd58620
PZ
3886#else
3887static inline int rt_effective_prio(struct task_struct *p, int prio)
3888{
3889 return prio;
3890}
b29739f9 3891#endif
d50dde5a 3892
36c8b586 3893void set_user_nice(struct task_struct *p, long nice)
1da177e4 3894{
49bd21ef
PZ
3895 bool queued, running;
3896 int old_prio, delta;
eb580751 3897 struct rq_flags rf;
70b97a7f 3898 struct rq *rq;
1da177e4 3899
75e45d51 3900 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3901 return;
3902 /*
3903 * We have to be careful, if called from sys_setpriority(),
3904 * the task might be in the middle of scheduling on another CPU.
3905 */
eb580751 3906 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3907 update_rq_clock(rq);
3908
1da177e4
LT
3909 /*
3910 * The RT priorities are set via sched_setscheduler(), but we still
3911 * allow the 'normal' nice value to be set - but as expected
3912 * it wont have any effect on scheduling until the task is
aab03e05 3913 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3914 */
aab03e05 3915 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3916 p->static_prio = NICE_TO_PRIO(nice);
3917 goto out_unlock;
3918 }
da0c1e65 3919 queued = task_on_rq_queued(p);
49bd21ef 3920 running = task_current(rq, p);
da0c1e65 3921 if (queued)
7a57f32a 3922 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3923 if (running)
3924 put_prev_task(rq, p);
1da177e4 3925
1da177e4 3926 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3927 set_load_weight(p, true);
b29739f9
IM
3928 old_prio = p->prio;
3929 p->prio = effective_prio(p);
3930 delta = p->prio - old_prio;
1da177e4 3931
da0c1e65 3932 if (queued) {
7134b3e9 3933 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3934 /*
d5f9f942
AM
3935 * If the task increased its priority or is running and
3936 * lowered its priority, then reschedule its CPU:
1da177e4 3937 */
d5f9f942 3938 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3939 resched_curr(rq);
1da177e4 3940 }
49bd21ef
PZ
3941 if (running)
3942 set_curr_task(rq, p);
1da177e4 3943out_unlock:
eb580751 3944 task_rq_unlock(rq, p, &rf);
1da177e4 3945}
1da177e4
LT
3946EXPORT_SYMBOL(set_user_nice);
3947
e43379f1
MM
3948/*
3949 * can_nice - check if a task can reduce its nice value
3950 * @p: task
3951 * @nice: nice value
3952 */
36c8b586 3953int can_nice(const struct task_struct *p, const int nice)
e43379f1 3954{
d1ccc66d 3955 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3956 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3957
78d7d407 3958 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3959 capable(CAP_SYS_NICE));
3960}
3961
1da177e4
LT
3962#ifdef __ARCH_WANT_SYS_NICE
3963
3964/*
3965 * sys_nice - change the priority of the current process.
3966 * @increment: priority increment
3967 *
3968 * sys_setpriority is a more generic, but much slower function that
3969 * does similar things.
3970 */
5add95d4 3971SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3972{
48f24c4d 3973 long nice, retval;
1da177e4
LT
3974
3975 /*
3976 * Setpriority might change our priority at the same moment.
3977 * We don't have to worry. Conceptually one call occurs first
3978 * and we have a single winner.
3979 */
a9467fa3 3980 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3981 nice = task_nice(current) + increment;
1da177e4 3982
a9467fa3 3983 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3984 if (increment < 0 && !can_nice(current, nice))
3985 return -EPERM;
3986
1da177e4
LT
3987 retval = security_task_setnice(current, nice);
3988 if (retval)
3989 return retval;
3990
3991 set_user_nice(current, nice);
3992 return 0;
3993}
3994
3995#endif
3996
3997/**
3998 * task_prio - return the priority value of a given task.
3999 * @p: the task in question.
4000 *
e69f6186 4001 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4002 * RT tasks are offset by -200. Normal tasks are centered
4003 * around 0, value goes from -16 to +15.
4004 */
36c8b586 4005int task_prio(const struct task_struct *p)
1da177e4
LT
4006{
4007 return p->prio - MAX_RT_PRIO;
4008}
4009
1da177e4 4010/**
d1ccc66d 4011 * idle_cpu - is a given CPU idle currently?
1da177e4 4012 * @cpu: the processor in question.
e69f6186
YB
4013 *
4014 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4015 */
4016int idle_cpu(int cpu)
4017{
908a3283
TG
4018 struct rq *rq = cpu_rq(cpu);
4019
4020 if (rq->curr != rq->idle)
4021 return 0;
4022
4023 if (rq->nr_running)
4024 return 0;
4025
4026#ifdef CONFIG_SMP
4027 if (!llist_empty(&rq->wake_list))
4028 return 0;
4029#endif
4030
4031 return 1;
1da177e4
LT
4032}
4033
943d355d
RJ
4034/**
4035 * available_idle_cpu - is a given CPU idle for enqueuing work.
4036 * @cpu: the CPU in question.
4037 *
4038 * Return: 1 if the CPU is currently idle. 0 otherwise.
4039 */
4040int available_idle_cpu(int cpu)
4041{
4042 if (!idle_cpu(cpu))
4043 return 0;
4044
247f2f6f
RJ
4045 if (vcpu_is_preempted(cpu))
4046 return 0;
4047
908a3283 4048 return 1;
1da177e4
LT
4049}
4050
1da177e4 4051/**
d1ccc66d 4052 * idle_task - return the idle task for a given CPU.
1da177e4 4053 * @cpu: the processor in question.
e69f6186 4054 *
d1ccc66d 4055 * Return: The idle task for the CPU @cpu.
1da177e4 4056 */
36c8b586 4057struct task_struct *idle_task(int cpu)
1da177e4
LT
4058{
4059 return cpu_rq(cpu)->idle;
4060}
4061
4062/**
4063 * find_process_by_pid - find a process with a matching PID value.
4064 * @pid: the pid in question.
e69f6186
YB
4065 *
4066 * The task of @pid, if found. %NULL otherwise.
1da177e4 4067 */
a9957449 4068static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4069{
228ebcbe 4070 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4071}
4072
c13db6b1
SR
4073/*
4074 * sched_setparam() passes in -1 for its policy, to let the functions
4075 * it calls know not to change it.
4076 */
4077#define SETPARAM_POLICY -1
4078
c365c292
TG
4079static void __setscheduler_params(struct task_struct *p,
4080 const struct sched_attr *attr)
1da177e4 4081{
d50dde5a
DF
4082 int policy = attr->sched_policy;
4083
c13db6b1 4084 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4085 policy = p->policy;
4086
1da177e4 4087 p->policy = policy;
d50dde5a 4088
aab03e05
DF
4089 if (dl_policy(policy))
4090 __setparam_dl(p, attr);
39fd8fd2 4091 else if (fair_policy(policy))
d50dde5a
DF
4092 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4093
39fd8fd2
PZ
4094 /*
4095 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4096 * !rt_policy. Always setting this ensures that things like
4097 * getparam()/getattr() don't report silly values for !rt tasks.
4098 */
4099 p->rt_priority = attr->sched_priority;
383afd09 4100 p->normal_prio = normal_prio(p);
9059393e 4101 set_load_weight(p, true);
c365c292 4102}
39fd8fd2 4103
c365c292
TG
4104/* Actually do priority change: must hold pi & rq lock. */
4105static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4106 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4107{
4108 __setscheduler_params(p, attr);
d50dde5a 4109
383afd09 4110 /*
0782e63b
TG
4111 * Keep a potential priority boosting if called from
4112 * sched_setscheduler().
383afd09 4113 */
acd58620 4114 p->prio = normal_prio(p);
0782e63b 4115 if (keep_boost)
acd58620 4116 p->prio = rt_effective_prio(p, p->prio);
383afd09 4117
aab03e05
DF
4118 if (dl_prio(p->prio))
4119 p->sched_class = &dl_sched_class;
4120 else if (rt_prio(p->prio))
ffd44db5
PZ
4121 p->sched_class = &rt_sched_class;
4122 else
4123 p->sched_class = &fair_sched_class;
1da177e4 4124}
aab03e05 4125
c69e8d9c 4126/*
d1ccc66d 4127 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4128 */
4129static bool check_same_owner(struct task_struct *p)
4130{
4131 const struct cred *cred = current_cred(), *pcred;
4132 bool match;
4133
4134 rcu_read_lock();
4135 pcred = __task_cred(p);
9c806aa0
EB
4136 match = (uid_eq(cred->euid, pcred->euid) ||
4137 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4138 rcu_read_unlock();
4139 return match;
4140}
4141
d50dde5a
DF
4142static int __sched_setscheduler(struct task_struct *p,
4143 const struct sched_attr *attr,
dbc7f069 4144 bool user, bool pi)
1da177e4 4145{
383afd09
SR
4146 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4147 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4148 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4149 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4150 const struct sched_class *prev_class;
eb580751 4151 struct rq_flags rf;
ca94c442 4152 int reset_on_fork;
7a57f32a 4153 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4154 struct rq *rq;
1da177e4 4155
896bbb25
SRV
4156 /* The pi code expects interrupts enabled */
4157 BUG_ON(pi && in_interrupt());
1da177e4 4158recheck:
d1ccc66d 4159 /* Double check policy once rq lock held: */
ca94c442
LP
4160 if (policy < 0) {
4161 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4162 policy = oldpolicy = p->policy;
ca94c442 4163 } else {
7479f3c9 4164 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4165
20f9cd2a 4166 if (!valid_policy(policy))
ca94c442
LP
4167 return -EINVAL;
4168 }
4169
794a56eb 4170 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4171 return -EINVAL;
4172
1da177e4
LT
4173 /*
4174 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4175 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4176 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4177 */
0bb040a4 4178 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4179 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4180 return -EINVAL;
aab03e05
DF
4181 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4182 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4183 return -EINVAL;
4184
37e4ab3f
OC
4185 /*
4186 * Allow unprivileged RT tasks to decrease priority:
4187 */
961ccddd 4188 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4189 if (fair_policy(policy)) {
d0ea0268 4190 if (attr->sched_nice < task_nice(p) &&
eaad4513 4191 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4192 return -EPERM;
4193 }
4194
e05606d3 4195 if (rt_policy(policy)) {
a44702e8
ON
4196 unsigned long rlim_rtprio =
4197 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4198
d1ccc66d 4199 /* Can't set/change the rt policy: */
8dc3e909
ON
4200 if (policy != p->policy && !rlim_rtprio)
4201 return -EPERM;
4202
d1ccc66d 4203 /* Can't increase priority: */
d50dde5a
DF
4204 if (attr->sched_priority > p->rt_priority &&
4205 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4206 return -EPERM;
4207 }
c02aa73b 4208
d44753b8
JL
4209 /*
4210 * Can't set/change SCHED_DEADLINE policy at all for now
4211 * (safest behavior); in the future we would like to allow
4212 * unprivileged DL tasks to increase their relative deadline
4213 * or reduce their runtime (both ways reducing utilization)
4214 */
4215 if (dl_policy(policy))
4216 return -EPERM;
4217
dd41f596 4218 /*
c02aa73b
DH
4219 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4220 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4221 */
20f9cd2a 4222 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4223 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4224 return -EPERM;
4225 }
5fe1d75f 4226
d1ccc66d 4227 /* Can't change other user's priorities: */
c69e8d9c 4228 if (!check_same_owner(p))
37e4ab3f 4229 return -EPERM;
ca94c442 4230
d1ccc66d 4231 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4232 if (p->sched_reset_on_fork && !reset_on_fork)
4233 return -EPERM;
37e4ab3f 4234 }
1da177e4 4235
725aad24 4236 if (user) {
794a56eb
JL
4237 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4238 return -EINVAL;
4239
b0ae1981 4240 retval = security_task_setscheduler(p);
725aad24
JF
4241 if (retval)
4242 return retval;
4243 }
4244
b29739f9 4245 /*
d1ccc66d 4246 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4247 * changing the priority of the task:
0122ec5b 4248 *
25985edc 4249 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4250 * runqueue lock must be held.
4251 */
eb580751 4252 rq = task_rq_lock(p, &rf);
80f5c1b8 4253 update_rq_clock(rq);
dc61b1d6 4254
34f971f6 4255 /*
d1ccc66d 4256 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4257 */
4258 if (p == rq->stop) {
eb580751 4259 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4260 return -EINVAL;
4261 }
4262
a51e9198 4263 /*
d6b1e911
TG
4264 * If not changing anything there's no need to proceed further,
4265 * but store a possible modification of reset_on_fork.
a51e9198 4266 */
d50dde5a 4267 if (unlikely(policy == p->policy)) {
d0ea0268 4268 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4269 goto change;
4270 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4271 goto change;
75381608 4272 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4273 goto change;
d50dde5a 4274
d6b1e911 4275 p->sched_reset_on_fork = reset_on_fork;
eb580751 4276 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4277 return 0;
4278 }
d50dde5a 4279change:
a51e9198 4280
dc61b1d6 4281 if (user) {
332ac17e 4282#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4283 /*
4284 * Do not allow realtime tasks into groups that have no runtime
4285 * assigned.
4286 */
4287 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4288 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4289 !task_group_is_autogroup(task_group(p))) {
eb580751 4290 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4291 return -EPERM;
4292 }
dc61b1d6 4293#endif
332ac17e 4294#ifdef CONFIG_SMP
794a56eb
JL
4295 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4296 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4297 cpumask_t *span = rq->rd->span;
332ac17e
DF
4298
4299 /*
4300 * Don't allow tasks with an affinity mask smaller than
4301 * the entire root_domain to become SCHED_DEADLINE. We
4302 * will also fail if there's no bandwidth available.
4303 */
e4099a5e
PZ
4304 if (!cpumask_subset(span, &p->cpus_allowed) ||
4305 rq->rd->dl_bw.bw == 0) {
eb580751 4306 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4307 return -EPERM;
4308 }
4309 }
4310#endif
4311 }
dc61b1d6 4312
d1ccc66d 4313 /* Re-check policy now with rq lock held: */
1da177e4
LT
4314 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4315 policy = oldpolicy = -1;
eb580751 4316 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4317 goto recheck;
4318 }
332ac17e
DF
4319
4320 /*
4321 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4322 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4323 * is available.
4324 */
06a76fe0 4325 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4326 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4327 return -EBUSY;
4328 }
4329
c365c292
TG
4330 p->sched_reset_on_fork = reset_on_fork;
4331 oldprio = p->prio;
4332
dbc7f069
PZ
4333 if (pi) {
4334 /*
4335 * Take priority boosted tasks into account. If the new
4336 * effective priority is unchanged, we just store the new
4337 * normal parameters and do not touch the scheduler class and
4338 * the runqueue. This will be done when the task deboost
4339 * itself.
4340 */
acd58620 4341 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4342 if (new_effective_prio == oldprio)
4343 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4344 }
4345
da0c1e65 4346 queued = task_on_rq_queued(p);
051a1d1a 4347 running = task_current(rq, p);
da0c1e65 4348 if (queued)
ff77e468 4349 dequeue_task(rq, p, queue_flags);
0e1f3483 4350 if (running)
f3cd1c4e 4351 put_prev_task(rq, p);
f6b53205 4352
83ab0aa0 4353 prev_class = p->sched_class;
dbc7f069 4354 __setscheduler(rq, p, attr, pi);
f6b53205 4355
da0c1e65 4356 if (queued) {
81a44c54
TG
4357 /*
4358 * We enqueue to tail when the priority of a task is
4359 * increased (user space view).
4360 */
ff77e468
PZ
4361 if (oldprio < p->prio)
4362 queue_flags |= ENQUEUE_HEAD;
1de64443 4363
ff77e468 4364 enqueue_task(rq, p, queue_flags);
81a44c54 4365 }
a399d233 4366 if (running)
b2bf6c31 4367 set_curr_task(rq, p);
cb469845 4368
da7a735e 4369 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4370
4371 /* Avoid rq from going away on us: */
4372 preempt_disable();
eb580751 4373 task_rq_unlock(rq, p, &rf);
b29739f9 4374
dbc7f069
PZ
4375 if (pi)
4376 rt_mutex_adjust_pi(p);
95e02ca9 4377
d1ccc66d 4378 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4379 balance_callback(rq);
4380 preempt_enable();
95e02ca9 4381
1da177e4
LT
4382 return 0;
4383}
961ccddd 4384
7479f3c9
PZ
4385static int _sched_setscheduler(struct task_struct *p, int policy,
4386 const struct sched_param *param, bool check)
4387{
4388 struct sched_attr attr = {
4389 .sched_policy = policy,
4390 .sched_priority = param->sched_priority,
4391 .sched_nice = PRIO_TO_NICE(p->static_prio),
4392 };
4393
c13db6b1
SR
4394 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4395 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4396 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4397 policy &= ~SCHED_RESET_ON_FORK;
4398 attr.sched_policy = policy;
4399 }
4400
dbc7f069 4401 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4402}
961ccddd
RR
4403/**
4404 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4405 * @p: the task in question.
4406 * @policy: new policy.
4407 * @param: structure containing the new RT priority.
4408 *
e69f6186
YB
4409 * Return: 0 on success. An error code otherwise.
4410 *
961ccddd
RR
4411 * NOTE that the task may be already dead.
4412 */
4413int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4414 const struct sched_param *param)
961ccddd 4415{
7479f3c9 4416 return _sched_setscheduler(p, policy, param, true);
961ccddd 4417}
1da177e4
LT
4418EXPORT_SYMBOL_GPL(sched_setscheduler);
4419
d50dde5a
DF
4420int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4421{
dbc7f069 4422 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4423}
4424EXPORT_SYMBOL_GPL(sched_setattr);
4425
794a56eb
JL
4426int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4427{
4428 return __sched_setscheduler(p, attr, false, true);
4429}
4430
961ccddd
RR
4431/**
4432 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4433 * @p: the task in question.
4434 * @policy: new policy.
4435 * @param: structure containing the new RT priority.
4436 *
4437 * Just like sched_setscheduler, only don't bother checking if the
4438 * current context has permission. For example, this is needed in
4439 * stop_machine(): we create temporary high priority worker threads,
4440 * but our caller might not have that capability.
e69f6186
YB
4441 *
4442 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4443 */
4444int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4445 const struct sched_param *param)
961ccddd 4446{
7479f3c9 4447 return _sched_setscheduler(p, policy, param, false);
961ccddd 4448}
84778472 4449EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4450
95cdf3b7
IM
4451static int
4452do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4453{
1da177e4
LT
4454 struct sched_param lparam;
4455 struct task_struct *p;
36c8b586 4456 int retval;
1da177e4
LT
4457
4458 if (!param || pid < 0)
4459 return -EINVAL;
4460 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4461 return -EFAULT;
5fe1d75f
ON
4462
4463 rcu_read_lock();
4464 retval = -ESRCH;
1da177e4 4465 p = find_process_by_pid(pid);
5fe1d75f
ON
4466 if (p != NULL)
4467 retval = sched_setscheduler(p, policy, &lparam);
4468 rcu_read_unlock();
36c8b586 4469
1da177e4
LT
4470 return retval;
4471}
4472
d50dde5a
DF
4473/*
4474 * Mimics kernel/events/core.c perf_copy_attr().
4475 */
d1ccc66d 4476static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4477{
4478 u32 size;
4479 int ret;
4480
4481 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4482 return -EFAULT;
4483
d1ccc66d 4484 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4485 memset(attr, 0, sizeof(*attr));
4486
4487 ret = get_user(size, &uattr->size);
4488 if (ret)
4489 return ret;
4490
d1ccc66d
IM
4491 /* Bail out on silly large: */
4492 if (size > PAGE_SIZE)
d50dde5a
DF
4493 goto err_size;
4494
d1ccc66d
IM
4495 /* ABI compatibility quirk: */
4496 if (!size)
d50dde5a
DF
4497 size = SCHED_ATTR_SIZE_VER0;
4498
4499 if (size < SCHED_ATTR_SIZE_VER0)
4500 goto err_size;
4501
4502 /*
4503 * If we're handed a bigger struct than we know of,
4504 * ensure all the unknown bits are 0 - i.e. new
4505 * user-space does not rely on any kernel feature
4506 * extensions we dont know about yet.
4507 */
4508 if (size > sizeof(*attr)) {
4509 unsigned char __user *addr;
4510 unsigned char __user *end;
4511 unsigned char val;
4512
4513 addr = (void __user *)uattr + sizeof(*attr);
4514 end = (void __user *)uattr + size;
4515
4516 for (; addr < end; addr++) {
4517 ret = get_user(val, addr);
4518 if (ret)
4519 return ret;
4520 if (val)
4521 goto err_size;
4522 }
4523 size = sizeof(*attr);
4524 }
4525
4526 ret = copy_from_user(attr, uattr, size);
4527 if (ret)
4528 return -EFAULT;
4529
4530 /*
d1ccc66d 4531 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4532 * to be strict and return an error on out-of-bounds values?
4533 */
75e45d51 4534 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4535
e78c7bca 4536 return 0;
d50dde5a
DF
4537
4538err_size:
4539 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4540 return -E2BIG;
d50dde5a
DF
4541}
4542
1da177e4
LT
4543/**
4544 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4545 * @pid: the pid in question.
4546 * @policy: new policy.
4547 * @param: structure containing the new RT priority.
e69f6186
YB
4548 *
4549 * Return: 0 on success. An error code otherwise.
1da177e4 4550 */
d1ccc66d 4551SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4552{
c21761f1
JB
4553 if (policy < 0)
4554 return -EINVAL;
4555
1da177e4
LT
4556 return do_sched_setscheduler(pid, policy, param);
4557}
4558
4559/**
4560 * sys_sched_setparam - set/change the RT priority of a thread
4561 * @pid: the pid in question.
4562 * @param: structure containing the new RT priority.
e69f6186
YB
4563 *
4564 * Return: 0 on success. An error code otherwise.
1da177e4 4565 */
5add95d4 4566SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4567{
c13db6b1 4568 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4569}
4570
d50dde5a
DF
4571/**
4572 * sys_sched_setattr - same as above, but with extended sched_attr
4573 * @pid: the pid in question.
5778fccf 4574 * @uattr: structure containing the extended parameters.
db66d756 4575 * @flags: for future extension.
d50dde5a 4576 */
6d35ab48
PZ
4577SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4578 unsigned int, flags)
d50dde5a
DF
4579{
4580 struct sched_attr attr;
4581 struct task_struct *p;
4582 int retval;
4583
6d35ab48 4584 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4585 return -EINVAL;
4586
143cf23d
MK
4587 retval = sched_copy_attr(uattr, &attr);
4588 if (retval)
4589 return retval;
d50dde5a 4590
b14ed2c2 4591 if ((int)attr.sched_policy < 0)
dbdb2275 4592 return -EINVAL;
d50dde5a
DF
4593
4594 rcu_read_lock();
4595 retval = -ESRCH;
4596 p = find_process_by_pid(pid);
4597 if (p != NULL)
4598 retval = sched_setattr(p, &attr);
4599 rcu_read_unlock();
4600
4601 return retval;
4602}
4603
1da177e4
LT
4604/**
4605 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4606 * @pid: the pid in question.
e69f6186
YB
4607 *
4608 * Return: On success, the policy of the thread. Otherwise, a negative error
4609 * code.
1da177e4 4610 */
5add95d4 4611SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4612{
36c8b586 4613 struct task_struct *p;
3a5c359a 4614 int retval;
1da177e4
LT
4615
4616 if (pid < 0)
3a5c359a 4617 return -EINVAL;
1da177e4
LT
4618
4619 retval = -ESRCH;
5fe85be0 4620 rcu_read_lock();
1da177e4
LT
4621 p = find_process_by_pid(pid);
4622 if (p) {
4623 retval = security_task_getscheduler(p);
4624 if (!retval)
ca94c442
LP
4625 retval = p->policy
4626 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4627 }
5fe85be0 4628 rcu_read_unlock();
1da177e4
LT
4629 return retval;
4630}
4631
4632/**
ca94c442 4633 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4634 * @pid: the pid in question.
4635 * @param: structure containing the RT priority.
e69f6186
YB
4636 *
4637 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4638 * code.
1da177e4 4639 */
5add95d4 4640SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4641{
ce5f7f82 4642 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4643 struct task_struct *p;
3a5c359a 4644 int retval;
1da177e4
LT
4645
4646 if (!param || pid < 0)
3a5c359a 4647 return -EINVAL;
1da177e4 4648
5fe85be0 4649 rcu_read_lock();
1da177e4
LT
4650 p = find_process_by_pid(pid);
4651 retval = -ESRCH;
4652 if (!p)
4653 goto out_unlock;
4654
4655 retval = security_task_getscheduler(p);
4656 if (retval)
4657 goto out_unlock;
4658
ce5f7f82
PZ
4659 if (task_has_rt_policy(p))
4660 lp.sched_priority = p->rt_priority;
5fe85be0 4661 rcu_read_unlock();
1da177e4
LT
4662
4663 /*
4664 * This one might sleep, we cannot do it with a spinlock held ...
4665 */
4666 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4667
1da177e4
LT
4668 return retval;
4669
4670out_unlock:
5fe85be0 4671 rcu_read_unlock();
1da177e4
LT
4672 return retval;
4673}
4674
d50dde5a
DF
4675static int sched_read_attr(struct sched_attr __user *uattr,
4676 struct sched_attr *attr,
4677 unsigned int usize)
4678{
4679 int ret;
4680
4681 if (!access_ok(VERIFY_WRITE, uattr, usize))
4682 return -EFAULT;
4683
4684 /*
4685 * If we're handed a smaller struct than we know of,
4686 * ensure all the unknown bits are 0 - i.e. old
4687 * user-space does not get uncomplete information.
4688 */
4689 if (usize < sizeof(*attr)) {
4690 unsigned char *addr;
4691 unsigned char *end;
4692
4693 addr = (void *)attr + usize;
4694 end = (void *)attr + sizeof(*attr);
4695
4696 for (; addr < end; addr++) {
4697 if (*addr)
22400674 4698 return -EFBIG;
d50dde5a
DF
4699 }
4700
4701 attr->size = usize;
4702 }
4703
4efbc454 4704 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4705 if (ret)
4706 return -EFAULT;
4707
22400674 4708 return 0;
d50dde5a
DF
4709}
4710
4711/**
aab03e05 4712 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4713 * @pid: the pid in question.
5778fccf 4714 * @uattr: structure containing the extended parameters.
d50dde5a 4715 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4716 * @flags: for future extension.
d50dde5a 4717 */
6d35ab48
PZ
4718SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4719 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4720{
4721 struct sched_attr attr = {
4722 .size = sizeof(struct sched_attr),
4723 };
4724 struct task_struct *p;
4725 int retval;
4726
4727 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4728 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4729 return -EINVAL;
4730
4731 rcu_read_lock();
4732 p = find_process_by_pid(pid);
4733 retval = -ESRCH;
4734 if (!p)
4735 goto out_unlock;
4736
4737 retval = security_task_getscheduler(p);
4738 if (retval)
4739 goto out_unlock;
4740
4741 attr.sched_policy = p->policy;
7479f3c9
PZ
4742 if (p->sched_reset_on_fork)
4743 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4744 if (task_has_dl_policy(p))
4745 __getparam_dl(p, &attr);
4746 else if (task_has_rt_policy(p))
d50dde5a
DF
4747 attr.sched_priority = p->rt_priority;
4748 else
d0ea0268 4749 attr.sched_nice = task_nice(p);
d50dde5a
DF
4750
4751 rcu_read_unlock();
4752
4753 retval = sched_read_attr(uattr, &attr, size);
4754 return retval;
4755
4756out_unlock:
4757 rcu_read_unlock();
4758 return retval;
4759}
4760
96f874e2 4761long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4762{
5a16f3d3 4763 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4764 struct task_struct *p;
4765 int retval;
1da177e4 4766
23f5d142 4767 rcu_read_lock();
1da177e4
LT
4768
4769 p = find_process_by_pid(pid);
4770 if (!p) {
23f5d142 4771 rcu_read_unlock();
1da177e4
LT
4772 return -ESRCH;
4773 }
4774
23f5d142 4775 /* Prevent p going away */
1da177e4 4776 get_task_struct(p);
23f5d142 4777 rcu_read_unlock();
1da177e4 4778
14a40ffc
TH
4779 if (p->flags & PF_NO_SETAFFINITY) {
4780 retval = -EINVAL;
4781 goto out_put_task;
4782 }
5a16f3d3
RR
4783 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4784 retval = -ENOMEM;
4785 goto out_put_task;
4786 }
4787 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4788 retval = -ENOMEM;
4789 goto out_free_cpus_allowed;
4790 }
1da177e4 4791 retval = -EPERM;
4c44aaaf
EB
4792 if (!check_same_owner(p)) {
4793 rcu_read_lock();
4794 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4795 rcu_read_unlock();
16303ab2 4796 goto out_free_new_mask;
4c44aaaf
EB
4797 }
4798 rcu_read_unlock();
4799 }
1da177e4 4800
b0ae1981 4801 retval = security_task_setscheduler(p);
e7834f8f 4802 if (retval)
16303ab2 4803 goto out_free_new_mask;
e7834f8f 4804
e4099a5e
PZ
4805
4806 cpuset_cpus_allowed(p, cpus_allowed);
4807 cpumask_and(new_mask, in_mask, cpus_allowed);
4808
332ac17e
DF
4809 /*
4810 * Since bandwidth control happens on root_domain basis,
4811 * if admission test is enabled, we only admit -deadline
4812 * tasks allowed to run on all the CPUs in the task's
4813 * root_domain.
4814 */
4815#ifdef CONFIG_SMP
f1e3a093
KT
4816 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4817 rcu_read_lock();
4818 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4819 retval = -EBUSY;
f1e3a093 4820 rcu_read_unlock();
16303ab2 4821 goto out_free_new_mask;
332ac17e 4822 }
f1e3a093 4823 rcu_read_unlock();
332ac17e
DF
4824 }
4825#endif
49246274 4826again:
25834c73 4827 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4828
8707d8b8 4829 if (!retval) {
5a16f3d3
RR
4830 cpuset_cpus_allowed(p, cpus_allowed);
4831 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4832 /*
4833 * We must have raced with a concurrent cpuset
4834 * update. Just reset the cpus_allowed to the
4835 * cpuset's cpus_allowed
4836 */
5a16f3d3 4837 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4838 goto again;
4839 }
4840 }
16303ab2 4841out_free_new_mask:
5a16f3d3
RR
4842 free_cpumask_var(new_mask);
4843out_free_cpus_allowed:
4844 free_cpumask_var(cpus_allowed);
4845out_put_task:
1da177e4 4846 put_task_struct(p);
1da177e4
LT
4847 return retval;
4848}
4849
4850static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4851 struct cpumask *new_mask)
1da177e4 4852{
96f874e2
RR
4853 if (len < cpumask_size())
4854 cpumask_clear(new_mask);
4855 else if (len > cpumask_size())
4856 len = cpumask_size();
4857
1da177e4
LT
4858 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4859}
4860
4861/**
d1ccc66d 4862 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4863 * @pid: pid of the process
4864 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4865 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4866 *
4867 * Return: 0 on success. An error code otherwise.
1da177e4 4868 */
5add95d4
HC
4869SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4870 unsigned long __user *, user_mask_ptr)
1da177e4 4871{
5a16f3d3 4872 cpumask_var_t new_mask;
1da177e4
LT
4873 int retval;
4874
5a16f3d3
RR
4875 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4876 return -ENOMEM;
1da177e4 4877
5a16f3d3
RR
4878 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4879 if (retval == 0)
4880 retval = sched_setaffinity(pid, new_mask);
4881 free_cpumask_var(new_mask);
4882 return retval;
1da177e4
LT
4883}
4884
96f874e2 4885long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4886{
36c8b586 4887 struct task_struct *p;
31605683 4888 unsigned long flags;
1da177e4 4889 int retval;
1da177e4 4890
23f5d142 4891 rcu_read_lock();
1da177e4
LT
4892
4893 retval = -ESRCH;
4894 p = find_process_by_pid(pid);
4895 if (!p)
4896 goto out_unlock;
4897
e7834f8f
DQ
4898 retval = security_task_getscheduler(p);
4899 if (retval)
4900 goto out_unlock;
4901
013fdb80 4902 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4903 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4904 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4905
4906out_unlock:
23f5d142 4907 rcu_read_unlock();
1da177e4 4908
9531b62f 4909 return retval;
1da177e4
LT
4910}
4911
4912/**
d1ccc66d 4913 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4914 * @pid: pid of the process
4915 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4916 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4917 *
599b4840
ZW
4918 * Return: size of CPU mask copied to user_mask_ptr on success. An
4919 * error code otherwise.
1da177e4 4920 */
5add95d4
HC
4921SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4922 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4923{
4924 int ret;
f17c8607 4925 cpumask_var_t mask;
1da177e4 4926
84fba5ec 4927 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4928 return -EINVAL;
4929 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4930 return -EINVAL;
4931
f17c8607
RR
4932 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4933 return -ENOMEM;
1da177e4 4934
f17c8607
RR
4935 ret = sched_getaffinity(pid, mask);
4936 if (ret == 0) {
4de373a1 4937 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
4938
4939 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4940 ret = -EFAULT;
4941 else
cd3d8031 4942 ret = retlen;
f17c8607
RR
4943 }
4944 free_cpumask_var(mask);
1da177e4 4945
f17c8607 4946 return ret;
1da177e4
LT
4947}
4948
4949/**
4950 * sys_sched_yield - yield the current processor to other threads.
4951 *
dd41f596
IM
4952 * This function yields the current CPU to other tasks. If there are no
4953 * other threads running on this CPU then this function will return.
e69f6186
YB
4954 *
4955 * Return: 0.
1da177e4 4956 */
7d4dd4f1 4957static void do_sched_yield(void)
1da177e4 4958{
8a8c69c3
PZ
4959 struct rq_flags rf;
4960 struct rq *rq;
4961
4962 local_irq_disable();
4963 rq = this_rq();
4964 rq_lock(rq, &rf);
1da177e4 4965
ae92882e 4966 schedstat_inc(rq->yld_count);
4530d7ab 4967 current->sched_class->yield_task(rq);
1da177e4
LT
4968
4969 /*
4970 * Since we are going to call schedule() anyway, there's
4971 * no need to preempt or enable interrupts:
4972 */
8a8c69c3
PZ
4973 preempt_disable();
4974 rq_unlock(rq, &rf);
ba74c144 4975 sched_preempt_enable_no_resched();
1da177e4
LT
4976
4977 schedule();
7d4dd4f1 4978}
1da177e4 4979
7d4dd4f1
DB
4980SYSCALL_DEFINE0(sched_yield)
4981{
4982 do_sched_yield();
1da177e4
LT
4983 return 0;
4984}
4985
35a773a0 4986#ifndef CONFIG_PREEMPT
02b67cc3 4987int __sched _cond_resched(void)
1da177e4 4988{
fe32d3cd 4989 if (should_resched(0)) {
a18b5d01 4990 preempt_schedule_common();
1da177e4
LT
4991 return 1;
4992 }
f79c3ad6 4993 rcu_all_qs();
1da177e4
LT
4994 return 0;
4995}
02b67cc3 4996EXPORT_SYMBOL(_cond_resched);
35a773a0 4997#endif
1da177e4
LT
4998
4999/*
613afbf8 5000 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5001 * call schedule, and on return reacquire the lock.
5002 *
41a2d6cf 5003 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5004 * operations here to prevent schedule() from being called twice (once via
5005 * spin_unlock(), once by hand).
5006 */
613afbf8 5007int __cond_resched_lock(spinlock_t *lock)
1da177e4 5008{
fe32d3cd 5009 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5010 int ret = 0;
5011
f607c668
PZ
5012 lockdep_assert_held(lock);
5013
4a81e832 5014 if (spin_needbreak(lock) || resched) {
1da177e4 5015 spin_unlock(lock);
d86ee480 5016 if (resched)
a18b5d01 5017 preempt_schedule_common();
95c354fe
NP
5018 else
5019 cpu_relax();
6df3cecb 5020 ret = 1;
1da177e4 5021 spin_lock(lock);
1da177e4 5022 }
6df3cecb 5023 return ret;
1da177e4 5024}
613afbf8 5025EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5026
1da177e4
LT
5027/**
5028 * yield - yield the current processor to other threads.
5029 *
8e3fabfd
PZ
5030 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5031 *
5032 * The scheduler is at all times free to pick the calling task as the most
5033 * eligible task to run, if removing the yield() call from your code breaks
5034 * it, its already broken.
5035 *
5036 * Typical broken usage is:
5037 *
5038 * while (!event)
d1ccc66d 5039 * yield();
8e3fabfd
PZ
5040 *
5041 * where one assumes that yield() will let 'the other' process run that will
5042 * make event true. If the current task is a SCHED_FIFO task that will never
5043 * happen. Never use yield() as a progress guarantee!!
5044 *
5045 * If you want to use yield() to wait for something, use wait_event().
5046 * If you want to use yield() to be 'nice' for others, use cond_resched().
5047 * If you still want to use yield(), do not!
1da177e4
LT
5048 */
5049void __sched yield(void)
5050{
5051 set_current_state(TASK_RUNNING);
7d4dd4f1 5052 do_sched_yield();
1da177e4 5053}
1da177e4
LT
5054EXPORT_SYMBOL(yield);
5055
d95f4122
MG
5056/**
5057 * yield_to - yield the current processor to another thread in
5058 * your thread group, or accelerate that thread toward the
5059 * processor it's on.
16addf95
RD
5060 * @p: target task
5061 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5062 *
5063 * It's the caller's job to ensure that the target task struct
5064 * can't go away on us before we can do any checks.
5065 *
e69f6186 5066 * Return:
7b270f60
PZ
5067 * true (>0) if we indeed boosted the target task.
5068 * false (0) if we failed to boost the target.
5069 * -ESRCH if there's no task to yield to.
d95f4122 5070 */
fa93384f 5071int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5072{
5073 struct task_struct *curr = current;
5074 struct rq *rq, *p_rq;
5075 unsigned long flags;
c3c18640 5076 int yielded = 0;
d95f4122
MG
5077
5078 local_irq_save(flags);
5079 rq = this_rq();
5080
5081again:
5082 p_rq = task_rq(p);
7b270f60
PZ
5083 /*
5084 * If we're the only runnable task on the rq and target rq also
5085 * has only one task, there's absolutely no point in yielding.
5086 */
5087 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5088 yielded = -ESRCH;
5089 goto out_irq;
5090 }
5091
d95f4122 5092 double_rq_lock(rq, p_rq);
39e24d8f 5093 if (task_rq(p) != p_rq) {
d95f4122
MG
5094 double_rq_unlock(rq, p_rq);
5095 goto again;
5096 }
5097
5098 if (!curr->sched_class->yield_to_task)
7b270f60 5099 goto out_unlock;
d95f4122
MG
5100
5101 if (curr->sched_class != p->sched_class)
7b270f60 5102 goto out_unlock;
d95f4122
MG
5103
5104 if (task_running(p_rq, p) || p->state)
7b270f60 5105 goto out_unlock;
d95f4122
MG
5106
5107 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5108 if (yielded) {
ae92882e 5109 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5110 /*
5111 * Make p's CPU reschedule; pick_next_entity takes care of
5112 * fairness.
5113 */
5114 if (preempt && rq != p_rq)
8875125e 5115 resched_curr(p_rq);
6d1cafd8 5116 }
d95f4122 5117
7b270f60 5118out_unlock:
d95f4122 5119 double_rq_unlock(rq, p_rq);
7b270f60 5120out_irq:
d95f4122
MG
5121 local_irq_restore(flags);
5122
7b270f60 5123 if (yielded > 0)
d95f4122
MG
5124 schedule();
5125
5126 return yielded;
5127}
5128EXPORT_SYMBOL_GPL(yield_to);
5129
10ab5643
TH
5130int io_schedule_prepare(void)
5131{
5132 int old_iowait = current->in_iowait;
5133
5134 current->in_iowait = 1;
5135 blk_schedule_flush_plug(current);
5136
5137 return old_iowait;
5138}
5139
5140void io_schedule_finish(int token)
5141{
5142 current->in_iowait = token;
5143}
5144
1da177e4 5145/*
41a2d6cf 5146 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5147 * that process accounting knows that this is a task in IO wait state.
1da177e4 5148 */
1da177e4
LT
5149long __sched io_schedule_timeout(long timeout)
5150{
10ab5643 5151 int token;
1da177e4
LT
5152 long ret;
5153
10ab5643 5154 token = io_schedule_prepare();
1da177e4 5155 ret = schedule_timeout(timeout);
10ab5643 5156 io_schedule_finish(token);
9cff8ade 5157
1da177e4
LT
5158 return ret;
5159}
9cff8ade 5160EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5161
10ab5643
TH
5162void io_schedule(void)
5163{
5164 int token;
5165
5166 token = io_schedule_prepare();
5167 schedule();
5168 io_schedule_finish(token);
5169}
5170EXPORT_SYMBOL(io_schedule);
5171
1da177e4
LT
5172/**
5173 * sys_sched_get_priority_max - return maximum RT priority.
5174 * @policy: scheduling class.
5175 *
e69f6186
YB
5176 * Return: On success, this syscall returns the maximum
5177 * rt_priority that can be used by a given scheduling class.
5178 * On failure, a negative error code is returned.
1da177e4 5179 */
5add95d4 5180SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5181{
5182 int ret = -EINVAL;
5183
5184 switch (policy) {
5185 case SCHED_FIFO:
5186 case SCHED_RR:
5187 ret = MAX_USER_RT_PRIO-1;
5188 break;
aab03e05 5189 case SCHED_DEADLINE:
1da177e4 5190 case SCHED_NORMAL:
b0a9499c 5191 case SCHED_BATCH:
dd41f596 5192 case SCHED_IDLE:
1da177e4
LT
5193 ret = 0;
5194 break;
5195 }
5196 return ret;
5197}
5198
5199/**
5200 * sys_sched_get_priority_min - return minimum RT priority.
5201 * @policy: scheduling class.
5202 *
e69f6186
YB
5203 * Return: On success, this syscall returns the minimum
5204 * rt_priority that can be used by a given scheduling class.
5205 * On failure, a negative error code is returned.
1da177e4 5206 */
5add95d4 5207SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5208{
5209 int ret = -EINVAL;
5210
5211 switch (policy) {
5212 case SCHED_FIFO:
5213 case SCHED_RR:
5214 ret = 1;
5215 break;
aab03e05 5216 case SCHED_DEADLINE:
1da177e4 5217 case SCHED_NORMAL:
b0a9499c 5218 case SCHED_BATCH:
dd41f596 5219 case SCHED_IDLE:
1da177e4
LT
5220 ret = 0;
5221 }
5222 return ret;
5223}
5224
abca5fc5 5225static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5226{
36c8b586 5227 struct task_struct *p;
a4ec24b4 5228 unsigned int time_slice;
eb580751 5229 struct rq_flags rf;
dba091b9 5230 struct rq *rq;
3a5c359a 5231 int retval;
1da177e4
LT
5232
5233 if (pid < 0)
3a5c359a 5234 return -EINVAL;
1da177e4
LT
5235
5236 retval = -ESRCH;
1a551ae7 5237 rcu_read_lock();
1da177e4
LT
5238 p = find_process_by_pid(pid);
5239 if (!p)
5240 goto out_unlock;
5241
5242 retval = security_task_getscheduler(p);
5243 if (retval)
5244 goto out_unlock;
5245
eb580751 5246 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5247 time_slice = 0;
5248 if (p->sched_class->get_rr_interval)
5249 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5250 task_rq_unlock(rq, p, &rf);
a4ec24b4 5251
1a551ae7 5252 rcu_read_unlock();
abca5fc5
AV
5253 jiffies_to_timespec64(time_slice, t);
5254 return 0;
3a5c359a 5255
1da177e4 5256out_unlock:
1a551ae7 5257 rcu_read_unlock();
1da177e4
LT
5258 return retval;
5259}
5260
2064a5ab
RD
5261/**
5262 * sys_sched_rr_get_interval - return the default timeslice of a process.
5263 * @pid: pid of the process.
5264 * @interval: userspace pointer to the timeslice value.
5265 *
5266 * this syscall writes the default timeslice value of a given process
5267 * into the user-space timespec buffer. A value of '0' means infinity.
5268 *
5269 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5270 * an error code.
5271 */
abca5fc5
AV
5272SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5273 struct timespec __user *, interval)
5274{
5275 struct timespec64 t;
5276 int retval = sched_rr_get_interval(pid, &t);
5277
5278 if (retval == 0)
5279 retval = put_timespec64(&t, interval);
5280
5281 return retval;
5282}
5283
5284#ifdef CONFIG_COMPAT
5285COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5286 compat_pid_t, pid,
5287 struct compat_timespec __user *, interval)
5288{
5289 struct timespec64 t;
5290 int retval = sched_rr_get_interval(pid, &t);
5291
5292 if (retval == 0)
5293 retval = compat_put_timespec64(&t, interval);
5294 return retval;
5295}
5296#endif
5297
82a1fcb9 5298void sched_show_task(struct task_struct *p)
1da177e4 5299{
1da177e4 5300 unsigned long free = 0;
4e79752c 5301 int ppid;
c930b2c0 5302
38200502
TH
5303 if (!try_get_task_stack(p))
5304 return;
20435d84
XX
5305
5306 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5307
5308 if (p->state == TASK_RUNNING)
3df0fc5b 5309 printk(KERN_CONT " running task ");
1da177e4 5310#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5311 free = stack_not_used(p);
1da177e4 5312#endif
a90e984c 5313 ppid = 0;
4e79752c 5314 rcu_read_lock();
a90e984c
ON
5315 if (pid_alive(p))
5316 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5317 rcu_read_unlock();
3df0fc5b 5318 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5319 task_pid_nr(p), ppid,
aa47b7e0 5320 (unsigned long)task_thread_info(p)->flags);
1da177e4 5321
3d1cb205 5322 print_worker_info(KERN_INFO, p);
5fb5e6de 5323 show_stack(p, NULL);
38200502 5324 put_task_stack(p);
1da177e4 5325}
0032f4e8 5326EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5327
5d68cc95
PZ
5328static inline bool
5329state_filter_match(unsigned long state_filter, struct task_struct *p)
5330{
5331 /* no filter, everything matches */
5332 if (!state_filter)
5333 return true;
5334
5335 /* filter, but doesn't match */
5336 if (!(p->state & state_filter))
5337 return false;
5338
5339 /*
5340 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5341 * TASK_KILLABLE).
5342 */
5343 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5344 return false;
5345
5346 return true;
5347}
5348
5349
e59e2ae2 5350void show_state_filter(unsigned long state_filter)
1da177e4 5351{
36c8b586 5352 struct task_struct *g, *p;
1da177e4 5353
4bd77321 5354#if BITS_PER_LONG == 32
3df0fc5b
PZ
5355 printk(KERN_INFO
5356 " task PC stack pid father\n");
1da177e4 5357#else
3df0fc5b
PZ
5358 printk(KERN_INFO
5359 " task PC stack pid father\n");
1da177e4 5360#endif
510f5acc 5361 rcu_read_lock();
5d07f420 5362 for_each_process_thread(g, p) {
1da177e4
LT
5363 /*
5364 * reset the NMI-timeout, listing all files on a slow
25985edc 5365 * console might take a lot of time:
57675cb9
AR
5366 * Also, reset softlockup watchdogs on all CPUs, because
5367 * another CPU might be blocked waiting for us to process
5368 * an IPI.
1da177e4
LT
5369 */
5370 touch_nmi_watchdog();
57675cb9 5371 touch_all_softlockup_watchdogs();
5d68cc95 5372 if (state_filter_match(state_filter, p))
82a1fcb9 5373 sched_show_task(p);
5d07f420 5374 }
1da177e4 5375
dd41f596 5376#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5377 if (!state_filter)
5378 sysrq_sched_debug_show();
dd41f596 5379#endif
510f5acc 5380 rcu_read_unlock();
e59e2ae2
IM
5381 /*
5382 * Only show locks if all tasks are dumped:
5383 */
93335a21 5384 if (!state_filter)
e59e2ae2 5385 debug_show_all_locks();
1da177e4
LT
5386}
5387
f340c0d1
IM
5388/**
5389 * init_idle - set up an idle thread for a given CPU
5390 * @idle: task in question
d1ccc66d 5391 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5392 *
5393 * NOTE: this function does not set the idle thread's NEED_RESCHED
5394 * flag, to make booting more robust.
5395 */
0db0628d 5396void init_idle(struct task_struct *idle, int cpu)
1da177e4 5397{
70b97a7f 5398 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5399 unsigned long flags;
5400
25834c73
PZ
5401 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5402 raw_spin_lock(&rq->lock);
5cbd54ef 5403
5e1576ed 5404 __sched_fork(0, idle);
06b83b5f 5405 idle->state = TASK_RUNNING;
dd41f596 5406 idle->se.exec_start = sched_clock();
c1de45ca 5407 idle->flags |= PF_IDLE;
dd41f596 5408
e1b77c92
MR
5409 kasan_unpoison_task_stack(idle);
5410
de9b8f5d
PZ
5411#ifdef CONFIG_SMP
5412 /*
5413 * Its possible that init_idle() gets called multiple times on a task,
5414 * in that case do_set_cpus_allowed() will not do the right thing.
5415 *
5416 * And since this is boot we can forgo the serialization.
5417 */
5418 set_cpus_allowed_common(idle, cpumask_of(cpu));
5419#endif
6506cf6c
PZ
5420 /*
5421 * We're having a chicken and egg problem, even though we are
d1ccc66d 5422 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5423 * lockdep check in task_group() will fail.
5424 *
5425 * Similar case to sched_fork(). / Alternatively we could
5426 * use task_rq_lock() here and obtain the other rq->lock.
5427 *
5428 * Silence PROVE_RCU
5429 */
5430 rcu_read_lock();
dd41f596 5431 __set_task_cpu(idle, cpu);
6506cf6c 5432 rcu_read_unlock();
1da177e4 5433
1da177e4 5434 rq->curr = rq->idle = idle;
da0c1e65 5435 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5436#ifdef CONFIG_SMP
3ca7a440 5437 idle->on_cpu = 1;
4866cde0 5438#endif
25834c73
PZ
5439 raw_spin_unlock(&rq->lock);
5440 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5441
5442 /* Set the preempt count _outside_ the spinlocks! */
01028747 5443 init_idle_preempt_count(idle, cpu);
55cd5340 5444
dd41f596
IM
5445 /*
5446 * The idle tasks have their own, simple scheduling class:
5447 */
5448 idle->sched_class = &idle_sched_class;
868baf07 5449 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5450 vtime_init_idle(idle, cpu);
de9b8f5d 5451#ifdef CONFIG_SMP
f1c6f1a7
CE
5452 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5453#endif
19978ca6
IM
5454}
5455
e1d4eeec
NP
5456#ifdef CONFIG_SMP
5457
f82f8042
JL
5458int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5459 const struct cpumask *trial)
5460{
06a76fe0 5461 int ret = 1;
f82f8042 5462
bb2bc55a
MG
5463 if (!cpumask_weight(cur))
5464 return ret;
5465
06a76fe0 5466 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5467
5468 return ret;
5469}
5470
7f51412a
JL
5471int task_can_attach(struct task_struct *p,
5472 const struct cpumask *cs_cpus_allowed)
5473{
5474 int ret = 0;
5475
5476 /*
5477 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5478 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5479 * affinity and isolating such threads by their set of
5480 * allowed nodes is unnecessary. Thus, cpusets are not
5481 * applicable for such threads. This prevents checking for
5482 * success of set_cpus_allowed_ptr() on all attached tasks
5483 * before cpus_allowed may be changed.
5484 */
5485 if (p->flags & PF_NO_SETAFFINITY) {
5486 ret = -EINVAL;
5487 goto out;
5488 }
5489
7f51412a 5490 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5491 cs_cpus_allowed))
5492 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5493
7f51412a
JL
5494out:
5495 return ret;
5496}
5497
f2cb1360 5498bool sched_smp_initialized __read_mostly;
e26fbffd 5499
e6628d5b
MG
5500#ifdef CONFIG_NUMA_BALANCING
5501/* Migrate current task p to target_cpu */
5502int migrate_task_to(struct task_struct *p, int target_cpu)
5503{
5504 struct migration_arg arg = { p, target_cpu };
5505 int curr_cpu = task_cpu(p);
5506
5507 if (curr_cpu == target_cpu)
5508 return 0;
5509
0c98d344 5510 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5511 return -EINVAL;
5512
5513 /* TODO: This is not properly updating schedstats */
5514
286549dc 5515 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5516 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5517}
0ec8aa00
PZ
5518
5519/*
5520 * Requeue a task on a given node and accurately track the number of NUMA
5521 * tasks on the runqueues
5522 */
5523void sched_setnuma(struct task_struct *p, int nid)
5524{
da0c1e65 5525 bool queued, running;
eb580751
PZ
5526 struct rq_flags rf;
5527 struct rq *rq;
0ec8aa00 5528
eb580751 5529 rq = task_rq_lock(p, &rf);
da0c1e65 5530 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5531 running = task_current(rq, p);
5532
da0c1e65 5533 if (queued)
1de64443 5534 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5535 if (running)
f3cd1c4e 5536 put_prev_task(rq, p);
0ec8aa00
PZ
5537
5538 p->numa_preferred_nid = nid;
0ec8aa00 5539
da0c1e65 5540 if (queued)
7134b3e9 5541 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5542 if (running)
b2bf6c31 5543 set_curr_task(rq, p);
eb580751 5544 task_rq_unlock(rq, p, &rf);
0ec8aa00 5545}
5cc389bc 5546#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5547
1da177e4 5548#ifdef CONFIG_HOTPLUG_CPU
054b9108 5549/*
d1ccc66d 5550 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5551 * offline.
054b9108 5552 */
48c5ccae 5553void idle_task_exit(void)
1da177e4 5554{
48c5ccae 5555 struct mm_struct *mm = current->active_mm;
e76bd8d9 5556
48c5ccae 5557 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5558
a53efe5f 5559 if (mm != &init_mm) {
252d2a41 5560 switch_mm(mm, &init_mm, current);
3eda69c9 5561 current->active_mm = &init_mm;
a53efe5f
MS
5562 finish_arch_post_lock_switch();
5563 }
48c5ccae 5564 mmdrop(mm);
1da177e4
LT
5565}
5566
5567/*
5d180232
PZ
5568 * Since this CPU is going 'away' for a while, fold any nr_active delta
5569 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5570 * nr_active count is stable. We need to take the teardown thread which
5571 * is calling this into account, so we hand in adjust = 1 to the load
5572 * calculation.
5d180232
PZ
5573 *
5574 * Also see the comment "Global load-average calculations".
1da177e4 5575 */
5d180232 5576static void calc_load_migrate(struct rq *rq)
1da177e4 5577{
d60585c5 5578 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5579 if (delta)
5580 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5581}
5582
3f1d2a31
PZ
5583static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5584{
5585}
5586
5587static const struct sched_class fake_sched_class = {
5588 .put_prev_task = put_prev_task_fake,
5589};
5590
5591static struct task_struct fake_task = {
5592 /*
5593 * Avoid pull_{rt,dl}_task()
5594 */
5595 .prio = MAX_PRIO + 1,
5596 .sched_class = &fake_sched_class,
5597};
5598
48f24c4d 5599/*
48c5ccae
PZ
5600 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5601 * try_to_wake_up()->select_task_rq().
5602 *
5603 * Called with rq->lock held even though we'er in stop_machine() and
5604 * there's no concurrency possible, we hold the required locks anyway
5605 * because of lock validation efforts.
1da177e4 5606 */
8a8c69c3 5607static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5608{
5e16bbc2 5609 struct rq *rq = dead_rq;
48c5ccae 5610 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5611 struct rq_flags orf = *rf;
48c5ccae 5612 int dest_cpu;
1da177e4
LT
5613
5614 /*
48c5ccae
PZ
5615 * Fudge the rq selection such that the below task selection loop
5616 * doesn't get stuck on the currently eligible stop task.
5617 *
5618 * We're currently inside stop_machine() and the rq is either stuck
5619 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5620 * either way we should never end up calling schedule() until we're
5621 * done here.
1da177e4 5622 */
48c5ccae 5623 rq->stop = NULL;
48f24c4d 5624
77bd3970
FW
5625 /*
5626 * put_prev_task() and pick_next_task() sched
5627 * class method both need to have an up-to-date
5628 * value of rq->clock[_task]
5629 */
5630 update_rq_clock(rq);
5631
5e16bbc2 5632 for (;;) {
48c5ccae
PZ
5633 /*
5634 * There's this thread running, bail when that's the only
d1ccc66d 5635 * remaining thread:
48c5ccae
PZ
5636 */
5637 if (rq->nr_running == 1)
dd41f596 5638 break;
48c5ccae 5639
cbce1a68 5640 /*
d1ccc66d 5641 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5642 */
8a8c69c3 5643 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5644 BUG_ON(!next);
5b713a3d 5645 put_prev_task(rq, next);
e692ab53 5646
5473e0cc
WL
5647 /*
5648 * Rules for changing task_struct::cpus_allowed are holding
5649 * both pi_lock and rq->lock, such that holding either
5650 * stabilizes the mask.
5651 *
5652 * Drop rq->lock is not quite as disastrous as it usually is
5653 * because !cpu_active at this point, which means load-balance
5654 * will not interfere. Also, stop-machine.
5655 */
8a8c69c3 5656 rq_unlock(rq, rf);
5473e0cc 5657 raw_spin_lock(&next->pi_lock);
8a8c69c3 5658 rq_relock(rq, rf);
5473e0cc
WL
5659
5660 /*
5661 * Since we're inside stop-machine, _nothing_ should have
5662 * changed the task, WARN if weird stuff happened, because in
5663 * that case the above rq->lock drop is a fail too.
5664 */
5665 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5666 raw_spin_unlock(&next->pi_lock);
5667 continue;
5668 }
5669
48c5ccae 5670 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5671 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5672 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5673 if (rq != dead_rq) {
8a8c69c3 5674 rq_unlock(rq, rf);
5e16bbc2 5675 rq = dead_rq;
8a8c69c3
PZ
5676 *rf = orf;
5677 rq_relock(rq, rf);
5e16bbc2 5678 }
5473e0cc 5679 raw_spin_unlock(&next->pi_lock);
1da177e4 5680 }
dce48a84 5681
48c5ccae 5682 rq->stop = stop;
dce48a84 5683}
1da177e4
LT
5684#endif /* CONFIG_HOTPLUG_CPU */
5685
f2cb1360 5686void set_rq_online(struct rq *rq)
1f11eb6a
GH
5687{
5688 if (!rq->online) {
5689 const struct sched_class *class;
5690
c6c4927b 5691 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5692 rq->online = 1;
5693
5694 for_each_class(class) {
5695 if (class->rq_online)
5696 class->rq_online(rq);
5697 }
5698 }
5699}
5700
f2cb1360 5701void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5702{
5703 if (rq->online) {
5704 const struct sched_class *class;
5705
5706 for_each_class(class) {
5707 if (class->rq_offline)
5708 class->rq_offline(rq);
5709 }
5710
c6c4927b 5711 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5712 rq->online = 0;
5713 }
5714}
5715
9cf7243d 5716static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5717{
969c7921 5718 struct rq *rq = cpu_rq(cpu);
1da177e4 5719
a803f026
CM
5720 rq->age_stamp = sched_clock_cpu(cpu);
5721}
5722
d1ccc66d
IM
5723/*
5724 * used to mark begin/end of suspend/resume:
5725 */
5726static int num_cpus_frozen;
d35be8ba 5727
1da177e4 5728/*
3a101d05
TH
5729 * Update cpusets according to cpu_active mask. If cpusets are
5730 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5731 * around partition_sched_domains().
d35be8ba
SB
5732 *
5733 * If we come here as part of a suspend/resume, don't touch cpusets because we
5734 * want to restore it back to its original state upon resume anyway.
1da177e4 5735 */
40190a78 5736static void cpuset_cpu_active(void)
e761b772 5737{
40190a78 5738 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5739 /*
5740 * num_cpus_frozen tracks how many CPUs are involved in suspend
5741 * resume sequence. As long as this is not the last online
5742 * operation in the resume sequence, just build a single sched
5743 * domain, ignoring cpusets.
5744 */
50e76632
PZ
5745 partition_sched_domains(1, NULL, NULL);
5746 if (--num_cpus_frozen)
135fb3e1 5747 return;
d35be8ba
SB
5748 /*
5749 * This is the last CPU online operation. So fall through and
5750 * restore the original sched domains by considering the
5751 * cpuset configurations.
5752 */
50e76632 5753 cpuset_force_rebuild();
3a101d05 5754 }
30e03acd 5755 cpuset_update_active_cpus();
3a101d05 5756}
e761b772 5757
40190a78 5758static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5759{
40190a78 5760 if (!cpuhp_tasks_frozen) {
06a76fe0 5761 if (dl_cpu_busy(cpu))
135fb3e1 5762 return -EBUSY;
30e03acd 5763 cpuset_update_active_cpus();
135fb3e1 5764 } else {
d35be8ba
SB
5765 num_cpus_frozen++;
5766 partition_sched_domains(1, NULL, NULL);
e761b772 5767 }
135fb3e1 5768 return 0;
e761b772 5769}
e761b772 5770
40190a78 5771int sched_cpu_activate(unsigned int cpu)
135fb3e1 5772{
7d976699 5773 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5774 struct rq_flags rf;
7d976699 5775
40190a78 5776 set_cpu_active(cpu, true);
135fb3e1 5777
40190a78 5778 if (sched_smp_initialized) {
135fb3e1 5779 sched_domains_numa_masks_set(cpu);
40190a78 5780 cpuset_cpu_active();
e761b772 5781 }
7d976699
TG
5782
5783 /*
5784 * Put the rq online, if not already. This happens:
5785 *
5786 * 1) In the early boot process, because we build the real domains
d1ccc66d 5787 * after all CPUs have been brought up.
7d976699
TG
5788 *
5789 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5790 * domains.
5791 */
8a8c69c3 5792 rq_lock_irqsave(rq, &rf);
7d976699
TG
5793 if (rq->rd) {
5794 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5795 set_rq_online(rq);
5796 }
8a8c69c3 5797 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5798
5799 update_max_interval();
5800
40190a78 5801 return 0;
135fb3e1
TG
5802}
5803
40190a78 5804int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5805{
135fb3e1
TG
5806 int ret;
5807
40190a78 5808 set_cpu_active(cpu, false);
b2454caa
PZ
5809 /*
5810 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5811 * users of this state to go away such that all new such users will
5812 * observe it.
5813 *
b2454caa
PZ
5814 * Do sync before park smpboot threads to take care the rcu boost case.
5815 */
d7d34d5e 5816 synchronize_rcu_mult(call_rcu, call_rcu_sched);
40190a78
TG
5817
5818 if (!sched_smp_initialized)
5819 return 0;
5820
5821 ret = cpuset_cpu_inactive(cpu);
5822 if (ret) {
5823 set_cpu_active(cpu, true);
5824 return ret;
135fb3e1 5825 }
40190a78
TG
5826 sched_domains_numa_masks_clear(cpu);
5827 return 0;
135fb3e1
TG
5828}
5829
94baf7a5
TG
5830static void sched_rq_cpu_starting(unsigned int cpu)
5831{
5832 struct rq *rq = cpu_rq(cpu);
5833
5834 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5835 update_max_interval();
5836}
5837
135fb3e1
TG
5838int sched_cpu_starting(unsigned int cpu)
5839{
5840 set_cpu_rq_start_time(cpu);
94baf7a5 5841 sched_rq_cpu_starting(cpu);
d84b3131 5842 sched_tick_start(cpu);
135fb3e1 5843 return 0;
e761b772 5844}
e761b772 5845
f2785ddb
TG
5846#ifdef CONFIG_HOTPLUG_CPU
5847int sched_cpu_dying(unsigned int cpu)
5848{
5849 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5850 struct rq_flags rf;
f2785ddb
TG
5851
5852 /* Handle pending wakeups and then migrate everything off */
5853 sched_ttwu_pending();
d84b3131 5854 sched_tick_stop(cpu);
8a8c69c3
PZ
5855
5856 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5857 if (rq->rd) {
5858 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5859 set_rq_offline(rq);
5860 }
8a8c69c3 5861 migrate_tasks(rq, &rf);
f2785ddb 5862 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5863 rq_unlock_irqrestore(rq, &rf);
5864
f2785ddb
TG
5865 calc_load_migrate(rq);
5866 update_max_interval();
00357f5e 5867 nohz_balance_exit_idle(rq);
e5ef27d0 5868 hrtick_clear(rq);
f2785ddb
TG
5869 return 0;
5870}
5871#endif
5872
1b568f0a
PZ
5873#ifdef CONFIG_SCHED_SMT
5874DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5875
5876static void sched_init_smt(void)
5877{
5878 /*
5879 * We've enumerated all CPUs and will assume that if any CPU
5880 * has SMT siblings, CPU0 will too.
5881 */
5882 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5883 static_branch_enable(&sched_smt_present);
5884}
5885#else
5886static inline void sched_init_smt(void) { }
5887#endif
5888
1da177e4
LT
5889void __init sched_init_smp(void)
5890{
cb83b629
PZ
5891 sched_init_numa();
5892
6acce3ef
PZ
5893 /*
5894 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5895 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5896 * happen.
5897 */
712555ee 5898 mutex_lock(&sched_domains_mutex);
8d5dc512 5899 sched_init_domains(cpu_active_mask);
712555ee 5900 mutex_unlock(&sched_domains_mutex);
e761b772 5901
5c1e1767 5902 /* Move init over to a non-isolated CPU */
edb93821 5903 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5904 BUG();
19978ca6 5905 sched_init_granularity();
4212823f 5906
0e3900e6 5907 init_sched_rt_class();
1baca4ce 5908 init_sched_dl_class();
1b568f0a
PZ
5909
5910 sched_init_smt();
5911
e26fbffd 5912 sched_smp_initialized = true;
1da177e4 5913}
e26fbffd
TG
5914
5915static int __init migration_init(void)
5916{
94baf7a5 5917 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5918 return 0;
1da177e4 5919}
e26fbffd
TG
5920early_initcall(migration_init);
5921
1da177e4
LT
5922#else
5923void __init sched_init_smp(void)
5924{
19978ca6 5925 sched_init_granularity();
1da177e4
LT
5926}
5927#endif /* CONFIG_SMP */
5928
5929int in_sched_functions(unsigned long addr)
5930{
1da177e4
LT
5931 return in_lock_functions(addr) ||
5932 (addr >= (unsigned long)__sched_text_start
5933 && addr < (unsigned long)__sched_text_end);
5934}
5935
029632fb 5936#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5937/*
5938 * Default task group.
5939 * Every task in system belongs to this group at bootup.
5940 */
029632fb 5941struct task_group root_task_group;
35cf4e50 5942LIST_HEAD(task_groups);
b0367629
WL
5943
5944/* Cacheline aligned slab cache for task_group */
5945static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5946#endif
6f505b16 5947
e6252c3e 5948DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5949DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5950
1da177e4
LT
5951void __init sched_init(void)
5952{
dd41f596 5953 int i, j;
434d53b0
MT
5954 unsigned long alloc_size = 0, ptr;
5955
9881b024 5956 sched_clock_init();
5822a454 5957 wait_bit_init();
9dcb8b68 5958
434d53b0
MT
5959#ifdef CONFIG_FAIR_GROUP_SCHED
5960 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5961#endif
5962#ifdef CONFIG_RT_GROUP_SCHED
5963 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5964#endif
434d53b0 5965 if (alloc_size) {
36b7b6d4 5966 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5967
5968#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5969 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5970 ptr += nr_cpu_ids * sizeof(void **);
5971
07e06b01 5972 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5973 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5974
6d6bc0ad 5975#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5976#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5977 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5978 ptr += nr_cpu_ids * sizeof(void **);
5979
07e06b01 5980 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5981 ptr += nr_cpu_ids * sizeof(void **);
5982
6d6bc0ad 5983#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5984 }
df7c8e84 5985#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5986 for_each_possible_cpu(i) {
5987 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5988 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5989 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5990 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 5991 }
b74e6278 5992#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 5993
d1ccc66d
IM
5994 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5995 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 5996
57d885fe
GH
5997#ifdef CONFIG_SMP
5998 init_defrootdomain();
5999#endif
6000
d0b27fa7 6001#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6002 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6003 global_rt_period(), global_rt_runtime());
6d6bc0ad 6004#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6005
7c941438 6006#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6007 task_group_cache = KMEM_CACHE(task_group, 0);
6008
07e06b01
YZ
6009 list_add(&root_task_group.list, &task_groups);
6010 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6011 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6012 autogroup_init(&init_task);
7c941438 6013#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6014
0a945022 6015 for_each_possible_cpu(i) {
70b97a7f 6016 struct rq *rq;
1da177e4
LT
6017
6018 rq = cpu_rq(i);
05fa785c 6019 raw_spin_lock_init(&rq->lock);
7897986b 6020 rq->nr_running = 0;
dce48a84
TG
6021 rq->calc_load_active = 0;
6022 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6023 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6024 init_rt_rq(&rq->rt);
6025 init_dl_rq(&rq->dl);
dd41f596 6026#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6027 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6028 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6029 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6030 /*
d1ccc66d 6031 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6032 *
6033 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6034 * gets 100% of the CPU resources in the system. This overall
6035 * system CPU resource is divided among the tasks of
07e06b01 6036 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6037 * based on each entity's (task or task-group's) weight
6038 * (se->load.weight).
6039 *
07e06b01 6040 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6041 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6042 * then A0's share of the CPU resource is:
354d60c2 6043 *
0d905bca 6044 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6045 *
07e06b01
YZ
6046 * We achieve this by letting root_task_group's tasks sit
6047 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6048 */
ab84d31e 6049 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6050 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6051#endif /* CONFIG_FAIR_GROUP_SCHED */
6052
6053 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6054#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6055 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6056#endif
1da177e4 6057
dd41f596
IM
6058 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6059 rq->cpu_load[j] = 0;
fdf3e95d 6060
1da177e4 6061#ifdef CONFIG_SMP
41c7ce9a 6062 rq->sd = NULL;
57d885fe 6063 rq->rd = NULL;
ca6d75e6 6064 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6065 rq->balance_callback = NULL;
1da177e4 6066 rq->active_balance = 0;
dd41f596 6067 rq->next_balance = jiffies;
1da177e4 6068 rq->push_cpu = 0;
0a2966b4 6069 rq->cpu = i;
1f11eb6a 6070 rq->online = 0;
eae0c9df
MG
6071 rq->idle_stamp = 0;
6072 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6073 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6074
6075 INIT_LIST_HEAD(&rq->cfs_tasks);
6076
dc938520 6077 rq_attach_root(rq, &def_root_domain);
3451d024 6078#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6079 rq->last_load_update_tick = jiffies;
e022e0d3 6080 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6081 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6082#endif
9fd81dd5 6083#endif /* CONFIG_SMP */
77a021be 6084 hrtick_rq_init(rq);
1da177e4 6085 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6086 }
6087
9059393e 6088 set_load_weight(&init_task, false);
b50f60ce 6089
1da177e4
LT
6090 /*
6091 * The boot idle thread does lazy MMU switching as well:
6092 */
f1f10076 6093 mmgrab(&init_mm);
1da177e4
LT
6094 enter_lazy_tlb(&init_mm, current);
6095
6096 /*
6097 * Make us the idle thread. Technically, schedule() should not be
6098 * called from this thread, however somewhere below it might be,
6099 * but because we are the idle thread, we just pick up running again
6100 * when this runqueue becomes "idle".
6101 */
6102 init_idle(current, smp_processor_id());
dce48a84
TG
6103
6104 calc_load_update = jiffies + LOAD_FREQ;
6105
bf4d83f6 6106#ifdef CONFIG_SMP
29d5e047 6107 idle_thread_set_boot_cpu();
9cf7243d 6108 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6109#endif
6110 init_sched_fair_class();
6a7b3dc3 6111
4698f88c
JP
6112 init_schedstats();
6113
6892b75e 6114 scheduler_running = 1;
1da177e4
LT
6115}
6116
d902db1e 6117#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6118static inline int preempt_count_equals(int preempt_offset)
6119{
da7142e2 6120 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6121
4ba8216c 6122 return (nested == preempt_offset);
e4aafea2
FW
6123}
6124
d894837f 6125void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6126{
8eb23b9f
PZ
6127 /*
6128 * Blocking primitives will set (and therefore destroy) current->state,
6129 * since we will exit with TASK_RUNNING make sure we enter with it,
6130 * otherwise we will destroy state.
6131 */
00845eb9 6132 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6133 "do not call blocking ops when !TASK_RUNNING; "
6134 "state=%lx set at [<%p>] %pS\n",
6135 current->state,
6136 (void *)current->task_state_change,
00845eb9 6137 (void *)current->task_state_change);
8eb23b9f 6138
3427445a
PZ
6139 ___might_sleep(file, line, preempt_offset);
6140}
6141EXPORT_SYMBOL(__might_sleep);
6142
6143void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6144{
d1ccc66d
IM
6145 /* Ratelimiting timestamp: */
6146 static unsigned long prev_jiffy;
6147
d1c6d149 6148 unsigned long preempt_disable_ip;
1da177e4 6149
d1ccc66d
IM
6150 /* WARN_ON_ONCE() by default, no rate limit required: */
6151 rcu_sleep_check();
6152
db273be2
TG
6153 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6154 !is_idle_task(current)) ||
1c3c5eab
TG
6155 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6156 oops_in_progress)
aef745fc 6157 return;
1c3c5eab 6158
aef745fc
IM
6159 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6160 return;
6161 prev_jiffy = jiffies;
6162
d1ccc66d 6163 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6164 preempt_disable_ip = get_preempt_disable_ip(current);
6165
3df0fc5b
PZ
6166 printk(KERN_ERR
6167 "BUG: sleeping function called from invalid context at %s:%d\n",
6168 file, line);
6169 printk(KERN_ERR
6170 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6171 in_atomic(), irqs_disabled(),
6172 current->pid, current->comm);
aef745fc 6173
a8b686b3
ES
6174 if (task_stack_end_corrupted(current))
6175 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6176
aef745fc
IM
6177 debug_show_held_locks(current);
6178 if (irqs_disabled())
6179 print_irqtrace_events(current);
d1c6d149
VN
6180 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6181 && !preempt_count_equals(preempt_offset)) {
8f47b187 6182 pr_err("Preemption disabled at:");
d1c6d149 6183 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6184 pr_cont("\n");
6185 }
aef745fc 6186 dump_stack();
f0b22e39 6187 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6188}
3427445a 6189EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6190#endif
6191
6192#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6193void normalize_rt_tasks(void)
3a5e4dc1 6194{
dbc7f069 6195 struct task_struct *g, *p;
d50dde5a
DF
6196 struct sched_attr attr = {
6197 .sched_policy = SCHED_NORMAL,
6198 };
1da177e4 6199
3472eaa1 6200 read_lock(&tasklist_lock);
5d07f420 6201 for_each_process_thread(g, p) {
178be793
IM
6202 /*
6203 * Only normalize user tasks:
6204 */
3472eaa1 6205 if (p->flags & PF_KTHREAD)
178be793
IM
6206 continue;
6207
4fa8d299
JP
6208 p->se.exec_start = 0;
6209 schedstat_set(p->se.statistics.wait_start, 0);
6210 schedstat_set(p->se.statistics.sleep_start, 0);
6211 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6212
aab03e05 6213 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6214 /*
6215 * Renice negative nice level userspace
6216 * tasks back to 0:
6217 */
3472eaa1 6218 if (task_nice(p) < 0)
dd41f596 6219 set_user_nice(p, 0);
1da177e4 6220 continue;
dd41f596 6221 }
1da177e4 6222
dbc7f069 6223 __sched_setscheduler(p, &attr, false, false);
5d07f420 6224 }
3472eaa1 6225 read_unlock(&tasklist_lock);
1da177e4
LT
6226}
6227
6228#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6229
67fc4e0c 6230#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6231/*
67fc4e0c 6232 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6233 *
6234 * They can only be called when the whole system has been
6235 * stopped - every CPU needs to be quiescent, and no scheduling
6236 * activity can take place. Using them for anything else would
6237 * be a serious bug, and as a result, they aren't even visible
6238 * under any other configuration.
6239 */
6240
6241/**
d1ccc66d 6242 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6243 * @cpu: the processor in question.
6244 *
6245 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6246 *
6247 * Return: The current task for @cpu.
1df5c10a 6248 */
36c8b586 6249struct task_struct *curr_task(int cpu)
1df5c10a
LT
6250{
6251 return cpu_curr(cpu);
6252}
6253
67fc4e0c
JW
6254#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6255
6256#ifdef CONFIG_IA64
1df5c10a 6257/**
d1ccc66d 6258 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6259 * @cpu: the processor in question.
6260 * @p: the task pointer to set.
6261 *
6262 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6263 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6264 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6265 * must be called with all CPU's synchronized, and interrupts disabled, the
6266 * and caller must save the original value of the current task (see
6267 * curr_task() above) and restore that value before reenabling interrupts and
6268 * re-starting the system.
6269 *
6270 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6271 */
a458ae2e 6272void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6273{
6274 cpu_curr(cpu) = p;
6275}
6276
6277#endif
29f59db3 6278
7c941438 6279#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6280/* task_group_lock serializes the addition/removal of task groups */
6281static DEFINE_SPINLOCK(task_group_lock);
6282
2f5177f0 6283static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6284{
6285 free_fair_sched_group(tg);
6286 free_rt_sched_group(tg);
e9aa1dd1 6287 autogroup_free(tg);
b0367629 6288 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6289}
6290
6291/* allocate runqueue etc for a new task group */
ec7dc8ac 6292struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6293{
6294 struct task_group *tg;
bccbe08a 6295
b0367629 6296 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6297 if (!tg)
6298 return ERR_PTR(-ENOMEM);
6299
ec7dc8ac 6300 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6301 goto err;
6302
ec7dc8ac 6303 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6304 goto err;
6305
ace783b9
LZ
6306 return tg;
6307
6308err:
2f5177f0 6309 sched_free_group(tg);
ace783b9
LZ
6310 return ERR_PTR(-ENOMEM);
6311}
6312
6313void sched_online_group(struct task_group *tg, struct task_group *parent)
6314{
6315 unsigned long flags;
6316
8ed36996 6317 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6318 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6319
d1ccc66d
IM
6320 /* Root should already exist: */
6321 WARN_ON(!parent);
f473aa5e
PZ
6322
6323 tg->parent = parent;
f473aa5e 6324 INIT_LIST_HEAD(&tg->children);
09f2724a 6325 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6326 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6327
6328 online_fair_sched_group(tg);
29f59db3
SV
6329}
6330
9b5b7751 6331/* rcu callback to free various structures associated with a task group */
2f5177f0 6332static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6333{
d1ccc66d 6334 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6335 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6336}
6337
4cf86d77 6338void sched_destroy_group(struct task_group *tg)
ace783b9 6339{
d1ccc66d 6340 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6341 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6342}
6343
6344void sched_offline_group(struct task_group *tg)
29f59db3 6345{
8ed36996 6346 unsigned long flags;
29f59db3 6347
d1ccc66d 6348 /* End participation in shares distribution: */
6fe1f348 6349 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6350
6351 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6352 list_del_rcu(&tg->list);
f473aa5e 6353 list_del_rcu(&tg->siblings);
8ed36996 6354 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6355}
6356
ea86cb4b 6357static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6358{
8323f26c 6359 struct task_group *tg;
29f59db3 6360
f7b8a47d
KT
6361 /*
6362 * All callers are synchronized by task_rq_lock(); we do not use RCU
6363 * which is pointless here. Thus, we pass "true" to task_css_check()
6364 * to prevent lockdep warnings.
6365 */
6366 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6367 struct task_group, css);
6368 tg = autogroup_task_group(tsk, tg);
6369 tsk->sched_task_group = tg;
6370
810b3817 6371#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6372 if (tsk->sched_class->task_change_group)
6373 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6374 else
810b3817 6375#endif
b2b5ce02 6376 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6377}
6378
6379/*
6380 * Change task's runqueue when it moves between groups.
6381 *
6382 * The caller of this function should have put the task in its new group by
6383 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6384 * its new group.
6385 */
6386void sched_move_task(struct task_struct *tsk)
6387{
7a57f32a
PZ
6388 int queued, running, queue_flags =
6389 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6390 struct rq_flags rf;
6391 struct rq *rq;
6392
6393 rq = task_rq_lock(tsk, &rf);
1b1d6225 6394 update_rq_clock(rq);
ea86cb4b
VG
6395
6396 running = task_current(rq, tsk);
6397 queued = task_on_rq_queued(tsk);
6398
6399 if (queued)
7a57f32a 6400 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6401 if (running)
ea86cb4b
VG
6402 put_prev_task(rq, tsk);
6403
6404 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6405
da0c1e65 6406 if (queued)
7a57f32a 6407 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6408 if (running)
b2bf6c31 6409 set_curr_task(rq, tsk);
29f59db3 6410
eb580751 6411 task_rq_unlock(rq, tsk, &rf);
29f59db3 6412}
68318b8e 6413
a7c6d554 6414static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6415{
a7c6d554 6416 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6417}
6418
eb95419b
TH
6419static struct cgroup_subsys_state *
6420cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6421{
eb95419b
TH
6422 struct task_group *parent = css_tg(parent_css);
6423 struct task_group *tg;
68318b8e 6424
eb95419b 6425 if (!parent) {
68318b8e 6426 /* This is early initialization for the top cgroup */
07e06b01 6427 return &root_task_group.css;
68318b8e
SV
6428 }
6429
ec7dc8ac 6430 tg = sched_create_group(parent);
68318b8e
SV
6431 if (IS_ERR(tg))
6432 return ERR_PTR(-ENOMEM);
6433
68318b8e
SV
6434 return &tg->css;
6435}
6436
96b77745
KK
6437/* Expose task group only after completing cgroup initialization */
6438static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6439{
6440 struct task_group *tg = css_tg(css);
6441 struct task_group *parent = css_tg(css->parent);
6442
6443 if (parent)
6444 sched_online_group(tg, parent);
6445 return 0;
6446}
6447
2f5177f0 6448static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6449{
eb95419b 6450 struct task_group *tg = css_tg(css);
ace783b9 6451
2f5177f0 6452 sched_offline_group(tg);
ace783b9
LZ
6453}
6454
eb95419b 6455static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6456{
eb95419b 6457 struct task_group *tg = css_tg(css);
68318b8e 6458
2f5177f0
PZ
6459 /*
6460 * Relies on the RCU grace period between css_released() and this.
6461 */
6462 sched_free_group(tg);
ace783b9
LZ
6463}
6464
ea86cb4b
VG
6465/*
6466 * This is called before wake_up_new_task(), therefore we really only
6467 * have to set its group bits, all the other stuff does not apply.
6468 */
b53202e6 6469static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6470{
ea86cb4b
VG
6471 struct rq_flags rf;
6472 struct rq *rq;
6473
6474 rq = task_rq_lock(task, &rf);
6475
80f5c1b8 6476 update_rq_clock(rq);
ea86cb4b
VG
6477 sched_change_group(task, TASK_SET_GROUP);
6478
6479 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6480}
6481
1f7dd3e5 6482static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6483{
bb9d97b6 6484 struct task_struct *task;
1f7dd3e5 6485 struct cgroup_subsys_state *css;
7dc603c9 6486 int ret = 0;
bb9d97b6 6487
1f7dd3e5 6488 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6489#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6490 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6491 return -EINVAL;
b68aa230 6492#else
bb9d97b6
TH
6493 /* We don't support RT-tasks being in separate groups */
6494 if (task->sched_class != &fair_sched_class)
6495 return -EINVAL;
b68aa230 6496#endif
7dc603c9
PZ
6497 /*
6498 * Serialize against wake_up_new_task() such that if its
6499 * running, we're sure to observe its full state.
6500 */
6501 raw_spin_lock_irq(&task->pi_lock);
6502 /*
6503 * Avoid calling sched_move_task() before wake_up_new_task()
6504 * has happened. This would lead to problems with PELT, due to
6505 * move wanting to detach+attach while we're not attached yet.
6506 */
6507 if (task->state == TASK_NEW)
6508 ret = -EINVAL;
6509 raw_spin_unlock_irq(&task->pi_lock);
6510
6511 if (ret)
6512 break;
bb9d97b6 6513 }
7dc603c9 6514 return ret;
be367d09 6515}
68318b8e 6516
1f7dd3e5 6517static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6518{
bb9d97b6 6519 struct task_struct *task;
1f7dd3e5 6520 struct cgroup_subsys_state *css;
bb9d97b6 6521
1f7dd3e5 6522 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6523 sched_move_task(task);
68318b8e
SV
6524}
6525
052f1dc7 6526#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6527static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6528 struct cftype *cftype, u64 shareval)
68318b8e 6529{
182446d0 6530 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6531}
6532
182446d0
TH
6533static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6534 struct cftype *cft)
68318b8e 6535{
182446d0 6536 struct task_group *tg = css_tg(css);
68318b8e 6537
c8b28116 6538 return (u64) scale_load_down(tg->shares);
68318b8e 6539}
ab84d31e
PT
6540
6541#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6542static DEFINE_MUTEX(cfs_constraints_mutex);
6543
ab84d31e
PT
6544const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6545const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6546
a790de99
PT
6547static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6548
ab84d31e
PT
6549static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6550{
56f570e5 6551 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6552 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6553
6554 if (tg == &root_task_group)
6555 return -EINVAL;
6556
6557 /*
6558 * Ensure we have at some amount of bandwidth every period. This is
6559 * to prevent reaching a state of large arrears when throttled via
6560 * entity_tick() resulting in prolonged exit starvation.
6561 */
6562 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6563 return -EINVAL;
6564
6565 /*
6566 * Likewise, bound things on the otherside by preventing insane quota
6567 * periods. This also allows us to normalize in computing quota
6568 * feasibility.
6569 */
6570 if (period > max_cfs_quota_period)
6571 return -EINVAL;
6572
0e59bdae
KT
6573 /*
6574 * Prevent race between setting of cfs_rq->runtime_enabled and
6575 * unthrottle_offline_cfs_rqs().
6576 */
6577 get_online_cpus();
a790de99
PT
6578 mutex_lock(&cfs_constraints_mutex);
6579 ret = __cfs_schedulable(tg, period, quota);
6580 if (ret)
6581 goto out_unlock;
6582
58088ad0 6583 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6584 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6585 /*
6586 * If we need to toggle cfs_bandwidth_used, off->on must occur
6587 * before making related changes, and on->off must occur afterwards
6588 */
6589 if (runtime_enabled && !runtime_was_enabled)
6590 cfs_bandwidth_usage_inc();
ab84d31e
PT
6591 raw_spin_lock_irq(&cfs_b->lock);
6592 cfs_b->period = ns_to_ktime(period);
6593 cfs_b->quota = quota;
58088ad0 6594
a9cf55b2 6595 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6596
6597 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6598 if (runtime_enabled)
6599 start_cfs_bandwidth(cfs_b);
d1ccc66d 6600
ab84d31e
PT
6601 raw_spin_unlock_irq(&cfs_b->lock);
6602
0e59bdae 6603 for_each_online_cpu(i) {
ab84d31e 6604 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6605 struct rq *rq = cfs_rq->rq;
8a8c69c3 6606 struct rq_flags rf;
ab84d31e 6607
8a8c69c3 6608 rq_lock_irq(rq, &rf);
58088ad0 6609 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6610 cfs_rq->runtime_remaining = 0;
671fd9da 6611
029632fb 6612 if (cfs_rq->throttled)
671fd9da 6613 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6614 rq_unlock_irq(rq, &rf);
ab84d31e 6615 }
1ee14e6c
BS
6616 if (runtime_was_enabled && !runtime_enabled)
6617 cfs_bandwidth_usage_dec();
a790de99
PT
6618out_unlock:
6619 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6620 put_online_cpus();
ab84d31e 6621
a790de99 6622 return ret;
ab84d31e
PT
6623}
6624
6625int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6626{
6627 u64 quota, period;
6628
029632fb 6629 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6630 if (cfs_quota_us < 0)
6631 quota = RUNTIME_INF;
6632 else
6633 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6634
6635 return tg_set_cfs_bandwidth(tg, period, quota);
6636}
6637
6638long tg_get_cfs_quota(struct task_group *tg)
6639{
6640 u64 quota_us;
6641
029632fb 6642 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6643 return -1;
6644
029632fb 6645 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6646 do_div(quota_us, NSEC_PER_USEC);
6647
6648 return quota_us;
6649}
6650
6651int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6652{
6653 u64 quota, period;
6654
6655 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6656 quota = tg->cfs_bandwidth.quota;
ab84d31e 6657
ab84d31e
PT
6658 return tg_set_cfs_bandwidth(tg, period, quota);
6659}
6660
6661long tg_get_cfs_period(struct task_group *tg)
6662{
6663 u64 cfs_period_us;
6664
029632fb 6665 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6666 do_div(cfs_period_us, NSEC_PER_USEC);
6667
6668 return cfs_period_us;
6669}
6670
182446d0
TH
6671static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6672 struct cftype *cft)
ab84d31e 6673{
182446d0 6674 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6675}
6676
182446d0
TH
6677static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6678 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6679{
182446d0 6680 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6681}
6682
182446d0
TH
6683static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6684 struct cftype *cft)
ab84d31e 6685{
182446d0 6686 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6687}
6688
182446d0
TH
6689static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6690 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6691{
182446d0 6692 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6693}
6694
a790de99
PT
6695struct cfs_schedulable_data {
6696 struct task_group *tg;
6697 u64 period, quota;
6698};
6699
6700/*
6701 * normalize group quota/period to be quota/max_period
6702 * note: units are usecs
6703 */
6704static u64 normalize_cfs_quota(struct task_group *tg,
6705 struct cfs_schedulable_data *d)
6706{
6707 u64 quota, period;
6708
6709 if (tg == d->tg) {
6710 period = d->period;
6711 quota = d->quota;
6712 } else {
6713 period = tg_get_cfs_period(tg);
6714 quota = tg_get_cfs_quota(tg);
6715 }
6716
6717 /* note: these should typically be equivalent */
6718 if (quota == RUNTIME_INF || quota == -1)
6719 return RUNTIME_INF;
6720
6721 return to_ratio(period, quota);
6722}
6723
6724static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6725{
6726 struct cfs_schedulable_data *d = data;
029632fb 6727 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6728 s64 quota = 0, parent_quota = -1;
6729
6730 if (!tg->parent) {
6731 quota = RUNTIME_INF;
6732 } else {
029632fb 6733 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6734
6735 quota = normalize_cfs_quota(tg, d);
9c58c79a 6736 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6737
6738 /*
c53593e5
TH
6739 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6740 * always take the min. On cgroup1, only inherit when no
d1ccc66d 6741 * limit is set:
a790de99 6742 */
c53593e5
TH
6743 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6744 quota = min(quota, parent_quota);
6745 } else {
6746 if (quota == RUNTIME_INF)
6747 quota = parent_quota;
6748 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6749 return -EINVAL;
6750 }
a790de99 6751 }
9c58c79a 6752 cfs_b->hierarchical_quota = quota;
a790de99
PT
6753
6754 return 0;
6755}
6756
6757static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6758{
8277434e 6759 int ret;
a790de99
PT
6760 struct cfs_schedulable_data data = {
6761 .tg = tg,
6762 .period = period,
6763 .quota = quota,
6764 };
6765
6766 if (quota != RUNTIME_INF) {
6767 do_div(data.period, NSEC_PER_USEC);
6768 do_div(data.quota, NSEC_PER_USEC);
6769 }
6770
8277434e
PT
6771 rcu_read_lock();
6772 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6773 rcu_read_unlock();
6774
6775 return ret;
a790de99 6776}
e8da1b18 6777
a1f7164c 6778static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6779{
2da8ca82 6780 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6781 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6782
44ffc75b
TH
6783 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6784 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6785 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
6786
6787 return 0;
6788}
ab84d31e 6789#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6790#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6791
052f1dc7 6792#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6793static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6794 struct cftype *cft, s64 val)
6f505b16 6795{
182446d0 6796 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6797}
6798
182446d0
TH
6799static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6800 struct cftype *cft)
6f505b16 6801{
182446d0 6802 return sched_group_rt_runtime(css_tg(css));
6f505b16 6803}
d0b27fa7 6804
182446d0
TH
6805static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6806 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6807{
182446d0 6808 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6809}
6810
182446d0
TH
6811static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6812 struct cftype *cft)
d0b27fa7 6813{
182446d0 6814 return sched_group_rt_period(css_tg(css));
d0b27fa7 6815}
6d6bc0ad 6816#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6817
a1f7164c 6818static struct cftype cpu_legacy_files[] = {
052f1dc7 6819#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6820 {
6821 .name = "shares",
f4c753b7
PM
6822 .read_u64 = cpu_shares_read_u64,
6823 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6824 },
052f1dc7 6825#endif
ab84d31e
PT
6826#ifdef CONFIG_CFS_BANDWIDTH
6827 {
6828 .name = "cfs_quota_us",
6829 .read_s64 = cpu_cfs_quota_read_s64,
6830 .write_s64 = cpu_cfs_quota_write_s64,
6831 },
6832 {
6833 .name = "cfs_period_us",
6834 .read_u64 = cpu_cfs_period_read_u64,
6835 .write_u64 = cpu_cfs_period_write_u64,
6836 },
e8da1b18
NR
6837 {
6838 .name = "stat",
a1f7164c 6839 .seq_show = cpu_cfs_stat_show,
e8da1b18 6840 },
ab84d31e 6841#endif
052f1dc7 6842#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6843 {
9f0c1e56 6844 .name = "rt_runtime_us",
06ecb27c
PM
6845 .read_s64 = cpu_rt_runtime_read,
6846 .write_s64 = cpu_rt_runtime_write,
6f505b16 6847 },
d0b27fa7
PZ
6848 {
6849 .name = "rt_period_us",
f4c753b7
PM
6850 .read_u64 = cpu_rt_period_read_uint,
6851 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6852 },
052f1dc7 6853#endif
d1ccc66d 6854 { } /* Terminate */
68318b8e
SV
6855};
6856
d41bf8c9
TH
6857static int cpu_extra_stat_show(struct seq_file *sf,
6858 struct cgroup_subsys_state *css)
0d593634 6859{
0d593634
TH
6860#ifdef CONFIG_CFS_BANDWIDTH
6861 {
d41bf8c9 6862 struct task_group *tg = css_tg(css);
0d593634
TH
6863 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6864 u64 throttled_usec;
6865
6866 throttled_usec = cfs_b->throttled_time;
6867 do_div(throttled_usec, NSEC_PER_USEC);
6868
6869 seq_printf(sf, "nr_periods %d\n"
6870 "nr_throttled %d\n"
6871 "throttled_usec %llu\n",
6872 cfs_b->nr_periods, cfs_b->nr_throttled,
6873 throttled_usec);
6874 }
6875#endif
6876 return 0;
6877}
6878
6879#ifdef CONFIG_FAIR_GROUP_SCHED
6880static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6881 struct cftype *cft)
6882{
6883 struct task_group *tg = css_tg(css);
6884 u64 weight = scale_load_down(tg->shares);
6885
6886 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6887}
6888
6889static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6890 struct cftype *cft, u64 weight)
6891{
6892 /*
6893 * cgroup weight knobs should use the common MIN, DFL and MAX
6894 * values which are 1, 100 and 10000 respectively. While it loses
6895 * a bit of range on both ends, it maps pretty well onto the shares
6896 * value used by scheduler and the round-trip conversions preserve
6897 * the original value over the entire range.
6898 */
6899 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6900 return -ERANGE;
6901
6902 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6903
6904 return sched_group_set_shares(css_tg(css), scale_load(weight));
6905}
6906
6907static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6908 struct cftype *cft)
6909{
6910 unsigned long weight = scale_load_down(css_tg(css)->shares);
6911 int last_delta = INT_MAX;
6912 int prio, delta;
6913
6914 /* find the closest nice value to the current weight */
6915 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6916 delta = abs(sched_prio_to_weight[prio] - weight);
6917 if (delta >= last_delta)
6918 break;
6919 last_delta = delta;
6920 }
6921
6922 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6923}
6924
6925static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6926 struct cftype *cft, s64 nice)
6927{
6928 unsigned long weight;
7281c8de 6929 int idx;
0d593634
TH
6930
6931 if (nice < MIN_NICE || nice > MAX_NICE)
6932 return -ERANGE;
6933
7281c8de
PZ
6934 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6935 idx = array_index_nospec(idx, 40);
6936 weight = sched_prio_to_weight[idx];
6937
0d593634
TH
6938 return sched_group_set_shares(css_tg(css), scale_load(weight));
6939}
6940#endif
6941
6942static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6943 long period, long quota)
6944{
6945 if (quota < 0)
6946 seq_puts(sf, "max");
6947 else
6948 seq_printf(sf, "%ld", quota);
6949
6950 seq_printf(sf, " %ld\n", period);
6951}
6952
6953/* caller should put the current value in *@periodp before calling */
6954static int __maybe_unused cpu_period_quota_parse(char *buf,
6955 u64 *periodp, u64 *quotap)
6956{
6957 char tok[21]; /* U64_MAX */
6958
6959 if (!sscanf(buf, "%s %llu", tok, periodp))
6960 return -EINVAL;
6961
6962 *periodp *= NSEC_PER_USEC;
6963
6964 if (sscanf(tok, "%llu", quotap))
6965 *quotap *= NSEC_PER_USEC;
6966 else if (!strcmp(tok, "max"))
6967 *quotap = RUNTIME_INF;
6968 else
6969 return -EINVAL;
6970
6971 return 0;
6972}
6973
6974#ifdef CONFIG_CFS_BANDWIDTH
6975static int cpu_max_show(struct seq_file *sf, void *v)
6976{
6977 struct task_group *tg = css_tg(seq_css(sf));
6978
6979 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6980 return 0;
6981}
6982
6983static ssize_t cpu_max_write(struct kernfs_open_file *of,
6984 char *buf, size_t nbytes, loff_t off)
6985{
6986 struct task_group *tg = css_tg(of_css(of));
6987 u64 period = tg_get_cfs_period(tg);
6988 u64 quota;
6989 int ret;
6990
6991 ret = cpu_period_quota_parse(buf, &period, &quota);
6992 if (!ret)
6993 ret = tg_set_cfs_bandwidth(tg, period, quota);
6994 return ret ?: nbytes;
6995}
6996#endif
6997
6998static struct cftype cpu_files[] = {
0d593634
TH
6999#ifdef CONFIG_FAIR_GROUP_SCHED
7000 {
7001 .name = "weight",
7002 .flags = CFTYPE_NOT_ON_ROOT,
7003 .read_u64 = cpu_weight_read_u64,
7004 .write_u64 = cpu_weight_write_u64,
7005 },
7006 {
7007 .name = "weight.nice",
7008 .flags = CFTYPE_NOT_ON_ROOT,
7009 .read_s64 = cpu_weight_nice_read_s64,
7010 .write_s64 = cpu_weight_nice_write_s64,
7011 },
7012#endif
7013#ifdef CONFIG_CFS_BANDWIDTH
7014 {
7015 .name = "max",
7016 .flags = CFTYPE_NOT_ON_ROOT,
7017 .seq_show = cpu_max_show,
7018 .write = cpu_max_write,
7019 },
7020#endif
7021 { } /* terminate */
7022};
7023
073219e9 7024struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7025 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7026 .css_online = cpu_cgroup_css_online,
2f5177f0 7027 .css_released = cpu_cgroup_css_released,
92fb9748 7028 .css_free = cpu_cgroup_css_free,
d41bf8c9 7029 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7030 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7031 .can_attach = cpu_cgroup_can_attach,
7032 .attach = cpu_cgroup_attach,
a1f7164c 7033 .legacy_cftypes = cpu_legacy_files,
0d593634 7034 .dfl_cftypes = cpu_files,
b38e42e9 7035 .early_init = true,
0d593634 7036 .threaded = true,
68318b8e
SV
7037};
7038
052f1dc7 7039#endif /* CONFIG_CGROUP_SCHED */
d842de87 7040
b637a328
PM
7041void dump_cpu_task(int cpu)
7042{
7043 pr_info("Task dump for CPU %d:\n", cpu);
7044 sched_show_task(cpu_curr(cpu));
7045}
ed82b8a1
AK
7046
7047/*
7048 * Nice levels are multiplicative, with a gentle 10% change for every
7049 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7050 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7051 * that remained on nice 0.
7052 *
7053 * The "10% effect" is relative and cumulative: from _any_ nice level,
7054 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7055 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7056 * If a task goes up by ~10% and another task goes down by ~10% then
7057 * the relative distance between them is ~25%.)
7058 */
7059const int sched_prio_to_weight[40] = {
7060 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7061 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7062 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7063 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7064 /* 0 */ 1024, 820, 655, 526, 423,
7065 /* 5 */ 335, 272, 215, 172, 137,
7066 /* 10 */ 110, 87, 70, 56, 45,
7067 /* 15 */ 36, 29, 23, 18, 15,
7068};
7069
7070/*
7071 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7072 *
7073 * In cases where the weight does not change often, we can use the
7074 * precalculated inverse to speed up arithmetics by turning divisions
7075 * into multiplications:
7076 */
7077const u32 sched_prio_to_wmult[40] = {
7078 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7079 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7080 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7081 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7082 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7083 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7084 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7085 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7086};
14a7405b
IM
7087
7088#undef CREATE_TRACE_POINTS