]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/sched/core.c
sched/cpuset: Only offer CONFIG_CPUSETS if SMP is enabled
[mirror_ubuntu-eoan-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
004172bd 8#include <linux/sched.h>
e6017571 9#include <linux/sched/clock.h>
ae7e81c0 10#include <uapi/linux/sched/types.h>
4f17722c 11#include <linux/sched/loadavg.h>
ef8bd77f 12#include <linux/sched/hotplug.h>
5822a454 13#include <linux/wait_bit.h>
1da177e4 14#include <linux/cpuset.h>
0ff92245 15#include <linux/delayacct.h>
f1c6f1a7 16#include <linux/init_task.h>
91d1aa43 17#include <linux/context_tracking.h>
f9411ebe 18#include <linux/rcupdate_wait.h>
004172bd
IM
19
20#include <linux/blkdev.h>
21#include <linux/kprobes.h>
22#include <linux/mmu_context.h>
23#include <linux/module.h>
24#include <linux/nmi.h>
6075620b 25#include <linux/prefetch.h>
004172bd
IM
26#include <linux/profile.h>
27#include <linux/security.h>
28#include <linux/syscalls.h>
1da177e4 29
96f951ed 30#include <asm/switch_to.h>
5517d86b 31#include <asm/tlb.h>
fd4a61e0
MB
32#ifdef CONFIG_PARAVIRT
33#include <asm/paravirt.h>
34#endif
1da177e4 35
029632fb 36#include "sched.h"
ea138446 37#include "../workqueue_internal.h"
29d5e047 38#include "../smpboot.h"
6e0534f2 39
a8d154b0 40#define CREATE_TRACE_POINTS
ad8d75ff 41#include <trace/events/sched.h>
a8d154b0 42
029632fb 43DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 44
bf5c91ba
IM
45/*
46 * Debugging: various feature bits
47 */
f00b45c1 48
f00b45c1
PZ
49#define SCHED_FEAT(name, enabled) \
50 (1UL << __SCHED_FEAT_##name) * enabled |
51
bf5c91ba 52const_debug unsigned int sysctl_sched_features =
391e43da 53#include "features.h"
f00b45c1
PZ
54 0;
55
56#undef SCHED_FEAT
57
b82d9fdd
PZ
58/*
59 * Number of tasks to iterate in a single balance run.
60 * Limited because this is done with IRQs disabled.
61 */
62const_debug unsigned int sysctl_sched_nr_migrate = 32;
63
e9e9250b
PZ
64/*
65 * period over which we average the RT time consumption, measured
66 * in ms.
67 *
68 * default: 1s
69 */
70const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
71
fa85ae24 72/*
d1ccc66d 73 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
74 * default: 1s
75 */
9f0c1e56 76unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 77
029632fb 78__read_mostly int scheduler_running;
6892b75e 79
9f0c1e56
PZ
80/*
81 * part of the period that we allow rt tasks to run in us.
82 * default: 0.95s
83 */
84int sysctl_sched_rt_runtime = 950000;
fa85ae24 85
d1ccc66d 86/* CPUs with isolated domains */
3fa0818b
RR
87cpumask_var_t cpu_isolated_map;
88
3e71a462
PZ
89/*
90 * __task_rq_lock - lock the rq @p resides on.
91 */
eb580751 92struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
93 __acquires(rq->lock)
94{
95 struct rq *rq;
96
97 lockdep_assert_held(&p->pi_lock);
98
99 for (;;) {
100 rq = task_rq(p);
101 raw_spin_lock(&rq->lock);
102 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 103 rq_pin_lock(rq, rf);
3e71a462
PZ
104 return rq;
105 }
106 raw_spin_unlock(&rq->lock);
107
108 while (unlikely(task_on_rq_migrating(p)))
109 cpu_relax();
110 }
111}
112
113/*
114 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
115 */
eb580751 116struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
117 __acquires(p->pi_lock)
118 __acquires(rq->lock)
119{
120 struct rq *rq;
121
122 for (;;) {
eb580751 123 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
124 rq = task_rq(p);
125 raw_spin_lock(&rq->lock);
126 /*
127 * move_queued_task() task_rq_lock()
128 *
129 * ACQUIRE (rq->lock)
130 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
131 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
132 * [S] ->cpu = new_cpu [L] task_rq()
133 * [L] ->on_rq
134 * RELEASE (rq->lock)
135 *
136 * If we observe the old cpu in task_rq_lock, the acquire of
137 * the old rq->lock will fully serialize against the stores.
138 *
d1ccc66d 139 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
140 * pair with the WMB to ensure we must then also see migrating.
141 */
142 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 143 rq_pin_lock(rq, rf);
3e71a462
PZ
144 return rq;
145 }
146 raw_spin_unlock(&rq->lock);
eb580751 147 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
148
149 while (unlikely(task_on_rq_migrating(p)))
150 cpu_relax();
151 }
152}
153
535b9552
IM
154/*
155 * RQ-clock updating methods:
156 */
157
158static void update_rq_clock_task(struct rq *rq, s64 delta)
159{
160/*
161 * In theory, the compile should just see 0 here, and optimize out the call
162 * to sched_rt_avg_update. But I don't trust it...
163 */
164#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
165 s64 steal = 0, irq_delta = 0;
166#endif
167#ifdef CONFIG_IRQ_TIME_ACCOUNTING
168 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
169
170 /*
171 * Since irq_time is only updated on {soft,}irq_exit, we might run into
172 * this case when a previous update_rq_clock() happened inside a
173 * {soft,}irq region.
174 *
175 * When this happens, we stop ->clock_task and only update the
176 * prev_irq_time stamp to account for the part that fit, so that a next
177 * update will consume the rest. This ensures ->clock_task is
178 * monotonic.
179 *
180 * It does however cause some slight miss-attribution of {soft,}irq
181 * time, a more accurate solution would be to update the irq_time using
182 * the current rq->clock timestamp, except that would require using
183 * atomic ops.
184 */
185 if (irq_delta > delta)
186 irq_delta = delta;
187
188 rq->prev_irq_time += irq_delta;
189 delta -= irq_delta;
190#endif
191#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
192 if (static_key_false((&paravirt_steal_rq_enabled))) {
193 steal = paravirt_steal_clock(cpu_of(rq));
194 steal -= rq->prev_steal_time_rq;
195
196 if (unlikely(steal > delta))
197 steal = delta;
198
199 rq->prev_steal_time_rq += steal;
200 delta -= steal;
201 }
202#endif
203
204 rq->clock_task += delta;
205
206#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
207 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
208 sched_rt_avg_update(rq, irq_delta + steal);
209#endif
210}
211
212void update_rq_clock(struct rq *rq)
213{
214 s64 delta;
215
216 lockdep_assert_held(&rq->lock);
217
218 if (rq->clock_update_flags & RQCF_ACT_SKIP)
219 return;
220
221#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
222 if (sched_feat(WARN_DOUBLE_CLOCK))
223 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
224 rq->clock_update_flags |= RQCF_UPDATED;
225#endif
26ae58d2 226
535b9552
IM
227 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
228 if (delta < 0)
229 return;
230 rq->clock += delta;
231 update_rq_clock_task(rq, delta);
232}
233
234
8f4d37ec
PZ
235#ifdef CONFIG_SCHED_HRTICK
236/*
237 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 238 */
8f4d37ec 239
8f4d37ec
PZ
240static void hrtick_clear(struct rq *rq)
241{
242 if (hrtimer_active(&rq->hrtick_timer))
243 hrtimer_cancel(&rq->hrtick_timer);
244}
245
8f4d37ec
PZ
246/*
247 * High-resolution timer tick.
248 * Runs from hardirq context with interrupts disabled.
249 */
250static enum hrtimer_restart hrtick(struct hrtimer *timer)
251{
252 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 253 struct rq_flags rf;
8f4d37ec
PZ
254
255 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
256
8a8c69c3 257 rq_lock(rq, &rf);
3e51f33f 258 update_rq_clock(rq);
8f4d37ec 259 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 260 rq_unlock(rq, &rf);
8f4d37ec
PZ
261
262 return HRTIMER_NORESTART;
263}
264
95e904c7 265#ifdef CONFIG_SMP
971ee28c 266
4961b6e1 267static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
268{
269 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 270
4961b6e1 271 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
272}
273
31656519
PZ
274/*
275 * called from hardirq (IPI) context
276 */
277static void __hrtick_start(void *arg)
b328ca18 278{
31656519 279 struct rq *rq = arg;
8a8c69c3 280 struct rq_flags rf;
b328ca18 281
8a8c69c3 282 rq_lock(rq, &rf);
971ee28c 283 __hrtick_restart(rq);
31656519 284 rq->hrtick_csd_pending = 0;
8a8c69c3 285 rq_unlock(rq, &rf);
b328ca18
PZ
286}
287
31656519
PZ
288/*
289 * Called to set the hrtick timer state.
290 *
291 * called with rq->lock held and irqs disabled
292 */
029632fb 293void hrtick_start(struct rq *rq, u64 delay)
b328ca18 294{
31656519 295 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 296 ktime_t time;
297 s64 delta;
298
299 /*
300 * Don't schedule slices shorter than 10000ns, that just
301 * doesn't make sense and can cause timer DoS.
302 */
303 delta = max_t(s64, delay, 10000LL);
304 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 305
cc584b21 306 hrtimer_set_expires(timer, time);
31656519
PZ
307
308 if (rq == this_rq()) {
971ee28c 309 __hrtick_restart(rq);
31656519 310 } else if (!rq->hrtick_csd_pending) {
c46fff2a 311 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
312 rq->hrtick_csd_pending = 1;
313 }
b328ca18
PZ
314}
315
31656519
PZ
316#else
317/*
318 * Called to set the hrtick timer state.
319 *
320 * called with rq->lock held and irqs disabled
321 */
029632fb 322void hrtick_start(struct rq *rq, u64 delay)
31656519 323{
86893335
WL
324 /*
325 * Don't schedule slices shorter than 10000ns, that just
326 * doesn't make sense. Rely on vruntime for fairness.
327 */
328 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
329 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
330 HRTIMER_MODE_REL_PINNED);
31656519 331}
31656519 332#endif /* CONFIG_SMP */
8f4d37ec 333
31656519 334static void init_rq_hrtick(struct rq *rq)
8f4d37ec 335{
31656519
PZ
336#ifdef CONFIG_SMP
337 rq->hrtick_csd_pending = 0;
8f4d37ec 338
31656519
PZ
339 rq->hrtick_csd.flags = 0;
340 rq->hrtick_csd.func = __hrtick_start;
341 rq->hrtick_csd.info = rq;
342#endif
8f4d37ec 343
31656519
PZ
344 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
345 rq->hrtick_timer.function = hrtick;
8f4d37ec 346}
006c75f1 347#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
348static inline void hrtick_clear(struct rq *rq)
349{
350}
351
8f4d37ec
PZ
352static inline void init_rq_hrtick(struct rq *rq)
353{
354}
006c75f1 355#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 356
5529578a
FW
357/*
358 * cmpxchg based fetch_or, macro so it works for different integer types
359 */
360#define fetch_or(ptr, mask) \
361 ({ \
362 typeof(ptr) _ptr = (ptr); \
363 typeof(mask) _mask = (mask); \
364 typeof(*_ptr) _old, _val = *_ptr; \
365 \
366 for (;;) { \
367 _old = cmpxchg(_ptr, _val, _val | _mask); \
368 if (_old == _val) \
369 break; \
370 _val = _old; \
371 } \
372 _old; \
373})
374
e3baac47 375#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
376/*
377 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
378 * this avoids any races wrt polling state changes and thereby avoids
379 * spurious IPIs.
380 */
381static bool set_nr_and_not_polling(struct task_struct *p)
382{
383 struct thread_info *ti = task_thread_info(p);
384 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
385}
e3baac47
PZ
386
387/*
388 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
389 *
390 * If this returns true, then the idle task promises to call
391 * sched_ttwu_pending() and reschedule soon.
392 */
393static bool set_nr_if_polling(struct task_struct *p)
394{
395 struct thread_info *ti = task_thread_info(p);
316c1608 396 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
397
398 for (;;) {
399 if (!(val & _TIF_POLLING_NRFLAG))
400 return false;
401 if (val & _TIF_NEED_RESCHED)
402 return true;
403 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
404 if (old == val)
405 break;
406 val = old;
407 }
408 return true;
409}
410
fd99f91a
PZ
411#else
412static bool set_nr_and_not_polling(struct task_struct *p)
413{
414 set_tsk_need_resched(p);
415 return true;
416}
e3baac47
PZ
417
418#ifdef CONFIG_SMP
419static bool set_nr_if_polling(struct task_struct *p)
420{
421 return false;
422}
423#endif
fd99f91a
PZ
424#endif
425
76751049
PZ
426void wake_q_add(struct wake_q_head *head, struct task_struct *task)
427{
428 struct wake_q_node *node = &task->wake_q;
429
430 /*
431 * Atomically grab the task, if ->wake_q is !nil already it means
432 * its already queued (either by us or someone else) and will get the
433 * wakeup due to that.
434 *
435 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 436 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
437 */
438 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
439 return;
440
441 get_task_struct(task);
442
443 /*
444 * The head is context local, there can be no concurrency.
445 */
446 *head->lastp = node;
447 head->lastp = &node->next;
448}
449
450void wake_up_q(struct wake_q_head *head)
451{
452 struct wake_q_node *node = head->first;
453
454 while (node != WAKE_Q_TAIL) {
455 struct task_struct *task;
456
457 task = container_of(node, struct task_struct, wake_q);
458 BUG_ON(!task);
d1ccc66d 459 /* Task can safely be re-inserted now: */
76751049
PZ
460 node = node->next;
461 task->wake_q.next = NULL;
462
463 /*
464 * wake_up_process() implies a wmb() to pair with the queueing
465 * in wake_q_add() so as not to miss wakeups.
466 */
467 wake_up_process(task);
468 put_task_struct(task);
469 }
470}
471
c24d20db 472/*
8875125e 473 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
474 *
475 * On UP this means the setting of the need_resched flag, on SMP it
476 * might also involve a cross-CPU call to trigger the scheduler on
477 * the target CPU.
478 */
8875125e 479void resched_curr(struct rq *rq)
c24d20db 480{
8875125e 481 struct task_struct *curr = rq->curr;
c24d20db
IM
482 int cpu;
483
8875125e 484 lockdep_assert_held(&rq->lock);
c24d20db 485
8875125e 486 if (test_tsk_need_resched(curr))
c24d20db
IM
487 return;
488
8875125e 489 cpu = cpu_of(rq);
fd99f91a 490
f27dde8d 491 if (cpu == smp_processor_id()) {
8875125e 492 set_tsk_need_resched(curr);
f27dde8d 493 set_preempt_need_resched();
c24d20db 494 return;
f27dde8d 495 }
c24d20db 496
8875125e 497 if (set_nr_and_not_polling(curr))
c24d20db 498 smp_send_reschedule(cpu);
dfc68f29
AL
499 else
500 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
501}
502
029632fb 503void resched_cpu(int cpu)
c24d20db
IM
504{
505 struct rq *rq = cpu_rq(cpu);
506 unsigned long flags;
507
05fa785c 508 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 509 return;
8875125e 510 resched_curr(rq);
05fa785c 511 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 512}
06d8308c 513
b021fe3e 514#ifdef CONFIG_SMP
3451d024 515#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 516/*
d1ccc66d
IM
517 * In the semi idle case, use the nearest busy CPU for migrating timers
518 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
519 *
520 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
521 * selecting an idle CPU will add more delays to the timers than intended
522 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 523 */
bc7a34b8 524int get_nohz_timer_target(void)
83cd4fe2 525{
bc7a34b8 526 int i, cpu = smp_processor_id();
83cd4fe2
VP
527 struct sched_domain *sd;
528
9642d18e 529 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
530 return cpu;
531
057f3fad 532 rcu_read_lock();
83cd4fe2 533 for_each_domain(cpu, sd) {
057f3fad 534 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
535 if (cpu == i)
536 continue;
537
538 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
539 cpu = i;
540 goto unlock;
541 }
542 }
83cd4fe2 543 }
9642d18e
VH
544
545 if (!is_housekeeping_cpu(cpu))
546 cpu = housekeeping_any_cpu();
057f3fad
PZ
547unlock:
548 rcu_read_unlock();
83cd4fe2
VP
549 return cpu;
550}
d1ccc66d 551
06d8308c
TG
552/*
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
561 */
1c20091e 562static void wake_up_idle_cpu(int cpu)
06d8308c
TG
563{
564 struct rq *rq = cpu_rq(cpu);
565
566 if (cpu == smp_processor_id())
567 return;
568
67b9ca70 569 if (set_nr_and_not_polling(rq->idle))
06d8308c 570 smp_send_reschedule(cpu);
dfc68f29
AL
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
573}
574
c5bfece2 575static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 576{
53c5fa16
FW
577 /*
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
581 * empty IRQ.
582 */
379d9ecb
PM
583 if (cpu_is_offline(cpu))
584 return true; /* Don't try to wake offline CPUs. */
c5bfece2 585 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
586 if (cpu != smp_processor_id() ||
587 tick_nohz_tick_stopped())
53c5fa16 588 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
589 return true;
590 }
591
592 return false;
593}
594
379d9ecb
PM
595/*
596 * Wake up the specified CPU. If the CPU is going offline, it is the
597 * caller's responsibility to deal with the lost wakeup, for example,
598 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
599 */
1c20091e
FW
600void wake_up_nohz_cpu(int cpu)
601{
c5bfece2 602 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
603 wake_up_idle_cpu(cpu);
604}
605
ca38062e 606static inline bool got_nohz_idle_kick(void)
45bf76df 607{
1c792db7 608 int cpu = smp_processor_id();
873b4c65
VG
609
610 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
611 return false;
612
613 if (idle_cpu(cpu) && !need_resched())
614 return true;
615
616 /*
617 * We can't run Idle Load Balance on this CPU for this time so we
618 * cancel it and clear NOHZ_BALANCE_KICK
619 */
620 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
621 return false;
45bf76df
IM
622}
623
3451d024 624#else /* CONFIG_NO_HZ_COMMON */
45bf76df 625
ca38062e 626static inline bool got_nohz_idle_kick(void)
2069dd75 627{
ca38062e 628 return false;
2069dd75
PZ
629}
630
3451d024 631#endif /* CONFIG_NO_HZ_COMMON */
d842de87 632
ce831b38 633#ifdef CONFIG_NO_HZ_FULL
76d92ac3 634bool sched_can_stop_tick(struct rq *rq)
ce831b38 635{
76d92ac3
FW
636 int fifo_nr_running;
637
638 /* Deadline tasks, even if single, need the tick */
639 if (rq->dl.dl_nr_running)
640 return false;
641
1e78cdbd 642 /*
2548d546
PZ
643 * If there are more than one RR tasks, we need the tick to effect the
644 * actual RR behaviour.
1e78cdbd 645 */
76d92ac3
FW
646 if (rq->rt.rr_nr_running) {
647 if (rq->rt.rr_nr_running == 1)
648 return true;
649 else
650 return false;
1e78cdbd
RR
651 }
652
2548d546
PZ
653 /*
654 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
655 * forced preemption between FIFO tasks.
656 */
657 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
658 if (fifo_nr_running)
659 return true;
660
661 /*
662 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
663 * if there's more than one we need the tick for involuntary
664 * preemption.
665 */
666 if (rq->nr_running > 1)
541b8264 667 return false;
ce831b38 668
541b8264 669 return true;
ce831b38
FW
670}
671#endif /* CONFIG_NO_HZ_FULL */
d842de87 672
029632fb 673void sched_avg_update(struct rq *rq)
18d95a28 674{
e9e9250b
PZ
675 s64 period = sched_avg_period();
676
78becc27 677 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
678 /*
679 * Inline assembly required to prevent the compiler
680 * optimising this loop into a divmod call.
681 * See __iter_div_u64_rem() for another example of this.
682 */
683 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
684 rq->age_stamp += period;
685 rq->rt_avg /= 2;
686 }
18d95a28
PZ
687}
688
6d6bc0ad 689#endif /* CONFIG_SMP */
18d95a28 690
a790de99
PT
691#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
692 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 693/*
8277434e
PT
694 * Iterate task_group tree rooted at *from, calling @down when first entering a
695 * node and @up when leaving it for the final time.
696 *
697 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 698 */
029632fb 699int walk_tg_tree_from(struct task_group *from,
8277434e 700 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
701{
702 struct task_group *parent, *child;
eb755805 703 int ret;
c09595f6 704
8277434e
PT
705 parent = from;
706
c09595f6 707down:
eb755805
PZ
708 ret = (*down)(parent, data);
709 if (ret)
8277434e 710 goto out;
c09595f6
PZ
711 list_for_each_entry_rcu(child, &parent->children, siblings) {
712 parent = child;
713 goto down;
714
715up:
716 continue;
717 }
eb755805 718 ret = (*up)(parent, data);
8277434e
PT
719 if (ret || parent == from)
720 goto out;
c09595f6
PZ
721
722 child = parent;
723 parent = parent->parent;
724 if (parent)
725 goto up;
8277434e 726out:
eb755805 727 return ret;
c09595f6
PZ
728}
729
029632fb 730int tg_nop(struct task_group *tg, void *data)
eb755805 731{
e2b245f8 732 return 0;
eb755805 733}
18d95a28
PZ
734#endif
735
45bf76df
IM
736static void set_load_weight(struct task_struct *p)
737{
f05998d4
NR
738 int prio = p->static_prio - MAX_RT_PRIO;
739 struct load_weight *load = &p->se.load;
740
dd41f596
IM
741 /*
742 * SCHED_IDLE tasks get minimal weight:
743 */
20f9cd2a 744 if (idle_policy(p->policy)) {
c8b28116 745 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 746 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
747 return;
748 }
71f8bd46 749
ed82b8a1
AK
750 load->weight = scale_load(sched_prio_to_weight[prio]);
751 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
752}
753
1de64443 754static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 755{
0a67d1ee
PZ
756 if (!(flags & ENQUEUE_NOCLOCK))
757 update_rq_clock(rq);
758
1de64443
PZ
759 if (!(flags & ENQUEUE_RESTORE))
760 sched_info_queued(rq, p);
0a67d1ee 761
371fd7e7 762 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
763}
764
1de64443 765static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 766{
0a67d1ee
PZ
767 if (!(flags & DEQUEUE_NOCLOCK))
768 update_rq_clock(rq);
769
1de64443
PZ
770 if (!(flags & DEQUEUE_SAVE))
771 sched_info_dequeued(rq, p);
0a67d1ee 772
371fd7e7 773 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
774}
775
029632fb 776void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
777{
778 if (task_contributes_to_load(p))
779 rq->nr_uninterruptible--;
780
371fd7e7 781 enqueue_task(rq, p, flags);
1e3c88bd
PZ
782}
783
029632fb 784void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
785{
786 if (task_contributes_to_load(p))
787 rq->nr_uninterruptible++;
788
371fd7e7 789 dequeue_task(rq, p, flags);
1e3c88bd
PZ
790}
791
14531189 792/*
dd41f596 793 * __normal_prio - return the priority that is based on the static prio
14531189 794 */
14531189
IM
795static inline int __normal_prio(struct task_struct *p)
796{
dd41f596 797 return p->static_prio;
14531189
IM
798}
799
b29739f9
IM
800/*
801 * Calculate the expected normal priority: i.e. priority
802 * without taking RT-inheritance into account. Might be
803 * boosted by interactivity modifiers. Changes upon fork,
804 * setprio syscalls, and whenever the interactivity
805 * estimator recalculates.
806 */
36c8b586 807static inline int normal_prio(struct task_struct *p)
b29739f9
IM
808{
809 int prio;
810
aab03e05
DF
811 if (task_has_dl_policy(p))
812 prio = MAX_DL_PRIO-1;
813 else if (task_has_rt_policy(p))
b29739f9
IM
814 prio = MAX_RT_PRIO-1 - p->rt_priority;
815 else
816 prio = __normal_prio(p);
817 return prio;
818}
819
820/*
821 * Calculate the current priority, i.e. the priority
822 * taken into account by the scheduler. This value might
823 * be boosted by RT tasks, or might be boosted by
824 * interactivity modifiers. Will be RT if the task got
825 * RT-boosted. If not then it returns p->normal_prio.
826 */
36c8b586 827static int effective_prio(struct task_struct *p)
b29739f9
IM
828{
829 p->normal_prio = normal_prio(p);
830 /*
831 * If we are RT tasks or we were boosted to RT priority,
832 * keep the priority unchanged. Otherwise, update priority
833 * to the normal priority:
834 */
835 if (!rt_prio(p->prio))
836 return p->normal_prio;
837 return p->prio;
838}
839
1da177e4
LT
840/**
841 * task_curr - is this task currently executing on a CPU?
842 * @p: the task in question.
e69f6186
YB
843 *
844 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 845 */
36c8b586 846inline int task_curr(const struct task_struct *p)
1da177e4
LT
847{
848 return cpu_curr(task_cpu(p)) == p;
849}
850
67dfa1b7 851/*
4c9a4bc8
PZ
852 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
853 * use the balance_callback list if you want balancing.
854 *
855 * this means any call to check_class_changed() must be followed by a call to
856 * balance_callback().
67dfa1b7 857 */
cb469845
SR
858static inline void check_class_changed(struct rq *rq, struct task_struct *p,
859 const struct sched_class *prev_class,
da7a735e 860 int oldprio)
cb469845
SR
861{
862 if (prev_class != p->sched_class) {
863 if (prev_class->switched_from)
da7a735e 864 prev_class->switched_from(rq, p);
4c9a4bc8 865
da7a735e 866 p->sched_class->switched_to(rq, p);
2d3d891d 867 } else if (oldprio != p->prio || dl_task(p))
da7a735e 868 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
869}
870
029632fb 871void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
872{
873 const struct sched_class *class;
874
875 if (p->sched_class == rq->curr->sched_class) {
876 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
877 } else {
878 for_each_class(class) {
879 if (class == rq->curr->sched_class)
880 break;
881 if (class == p->sched_class) {
8875125e 882 resched_curr(rq);
1e5a7405
PZ
883 break;
884 }
885 }
886 }
887
888 /*
889 * A queue event has occurred, and we're going to schedule. In
890 * this case, we can save a useless back to back clock update.
891 */
da0c1e65 892 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 893 rq_clock_skip_update(rq, true);
1e5a7405
PZ
894}
895
1da177e4 896#ifdef CONFIG_SMP
5cc389bc
PZ
897/*
898 * This is how migration works:
899 *
900 * 1) we invoke migration_cpu_stop() on the target CPU using
901 * stop_one_cpu().
902 * 2) stopper starts to run (implicitly forcing the migrated thread
903 * off the CPU)
904 * 3) it checks whether the migrated task is still in the wrong runqueue.
905 * 4) if it's in the wrong runqueue then the migration thread removes
906 * it and puts it into the right queue.
907 * 5) stopper completes and stop_one_cpu() returns and the migration
908 * is done.
909 */
910
911/*
912 * move_queued_task - move a queued task to new rq.
913 *
914 * Returns (locked) new rq. Old rq's lock is released.
915 */
8a8c69c3
PZ
916static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
917 struct task_struct *p, int new_cpu)
5cc389bc 918{
5cc389bc
PZ
919 lockdep_assert_held(&rq->lock);
920
5cc389bc 921 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 922 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 923 set_task_cpu(p, new_cpu);
8a8c69c3 924 rq_unlock(rq, rf);
5cc389bc
PZ
925
926 rq = cpu_rq(new_cpu);
927
8a8c69c3 928 rq_lock(rq, rf);
5cc389bc 929 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 930 enqueue_task(rq, p, 0);
3ea94de1 931 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
932 check_preempt_curr(rq, p, 0);
933
934 return rq;
935}
936
937struct migration_arg {
938 struct task_struct *task;
939 int dest_cpu;
940};
941
942/*
d1ccc66d 943 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
944 * this because either it can't run here any more (set_cpus_allowed()
945 * away from this CPU, or CPU going down), or because we're
946 * attempting to rebalance this task on exec (sched_exec).
947 *
948 * So we race with normal scheduler movements, but that's OK, as long
949 * as the task is no longer on this CPU.
5cc389bc 950 */
8a8c69c3
PZ
951static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
952 struct task_struct *p, int dest_cpu)
5cc389bc 953{
5cc389bc 954 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 955 return rq;
5cc389bc
PZ
956
957 /* Affinity changed (again). */
0c98d344 958 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 959 return rq;
5cc389bc 960
15ff991e 961 update_rq_clock(rq);
8a8c69c3 962 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
963
964 return rq;
5cc389bc
PZ
965}
966
967/*
968 * migration_cpu_stop - this will be executed by a highprio stopper thread
969 * and performs thread migration by bumping thread off CPU then
970 * 'pushing' onto another runqueue.
971 */
972static int migration_cpu_stop(void *data)
973{
974 struct migration_arg *arg = data;
5e16bbc2
PZ
975 struct task_struct *p = arg->task;
976 struct rq *rq = this_rq();
8a8c69c3 977 struct rq_flags rf;
5cc389bc
PZ
978
979 /*
d1ccc66d
IM
980 * The original target CPU might have gone down and we might
981 * be on another CPU but it doesn't matter.
5cc389bc
PZ
982 */
983 local_irq_disable();
984 /*
985 * We need to explicitly wake pending tasks before running
986 * __migrate_task() such that we will not miss enforcing cpus_allowed
987 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
988 */
989 sched_ttwu_pending();
5e16bbc2
PZ
990
991 raw_spin_lock(&p->pi_lock);
8a8c69c3 992 rq_lock(rq, &rf);
5e16bbc2
PZ
993 /*
994 * If task_rq(p) != rq, it cannot be migrated here, because we're
995 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
996 * we're holding p->pi_lock.
997 */
bf89a304
CC
998 if (task_rq(p) == rq) {
999 if (task_on_rq_queued(p))
8a8c69c3 1000 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1001 else
1002 p->wake_cpu = arg->dest_cpu;
1003 }
8a8c69c3 1004 rq_unlock(rq, &rf);
5e16bbc2
PZ
1005 raw_spin_unlock(&p->pi_lock);
1006
5cc389bc
PZ
1007 local_irq_enable();
1008 return 0;
1009}
1010
c5b28038
PZ
1011/*
1012 * sched_class::set_cpus_allowed must do the below, but is not required to
1013 * actually call this function.
1014 */
1015void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1016{
5cc389bc
PZ
1017 cpumask_copy(&p->cpus_allowed, new_mask);
1018 p->nr_cpus_allowed = cpumask_weight(new_mask);
1019}
1020
c5b28038
PZ
1021void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1022{
6c37067e
PZ
1023 struct rq *rq = task_rq(p);
1024 bool queued, running;
1025
c5b28038 1026 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1027
1028 queued = task_on_rq_queued(p);
1029 running = task_current(rq, p);
1030
1031 if (queued) {
1032 /*
1033 * Because __kthread_bind() calls this on blocked tasks without
1034 * holding rq->lock.
1035 */
1036 lockdep_assert_held(&rq->lock);
7a57f32a 1037 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1038 }
1039 if (running)
1040 put_prev_task(rq, p);
1041
c5b28038 1042 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1043
6c37067e 1044 if (queued)
7134b3e9 1045 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1046 if (running)
b2bf6c31 1047 set_curr_task(rq, p);
c5b28038
PZ
1048}
1049
5cc389bc
PZ
1050/*
1051 * Change a given task's CPU affinity. Migrate the thread to a
1052 * proper CPU and schedule it away if the CPU it's executing on
1053 * is removed from the allowed bitmask.
1054 *
1055 * NOTE: the caller must have a valid reference to the task, the
1056 * task must not exit() & deallocate itself prematurely. The
1057 * call is not atomic; no spinlocks may be held.
1058 */
25834c73
PZ
1059static int __set_cpus_allowed_ptr(struct task_struct *p,
1060 const struct cpumask *new_mask, bool check)
5cc389bc 1061{
e9d867a6 1062 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1063 unsigned int dest_cpu;
eb580751
PZ
1064 struct rq_flags rf;
1065 struct rq *rq;
5cc389bc
PZ
1066 int ret = 0;
1067
eb580751 1068 rq = task_rq_lock(p, &rf);
a499c3ea 1069 update_rq_clock(rq);
5cc389bc 1070
e9d867a6
PZI
1071 if (p->flags & PF_KTHREAD) {
1072 /*
1073 * Kernel threads are allowed on online && !active CPUs
1074 */
1075 cpu_valid_mask = cpu_online_mask;
1076 }
1077
25834c73
PZ
1078 /*
1079 * Must re-check here, to close a race against __kthread_bind(),
1080 * sched_setaffinity() is not guaranteed to observe the flag.
1081 */
1082 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
5cc389bc
PZ
1087 if (cpumask_equal(&p->cpus_allowed, new_mask))
1088 goto out;
1089
e9d867a6 1090 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 do_set_cpus_allowed(p, new_mask);
1096
e9d867a6
PZI
1097 if (p->flags & PF_KTHREAD) {
1098 /*
1099 * For kernel threads that do indeed end up on online &&
d1ccc66d 1100 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1101 */
1102 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1103 !cpumask_intersects(new_mask, cpu_active_mask) &&
1104 p->nr_cpus_allowed != 1);
1105 }
1106
5cc389bc
PZ
1107 /* Can the task run on the task's current CPU? If so, we're done */
1108 if (cpumask_test_cpu(task_cpu(p), new_mask))
1109 goto out;
1110
e9d867a6 1111 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1112 if (task_running(rq, p) || p->state == TASK_WAKING) {
1113 struct migration_arg arg = { p, dest_cpu };
1114 /* Need help from migration thread: drop lock and wait. */
eb580751 1115 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1116 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1117 tlb_migrate_finish(p->mm);
1118 return 0;
cbce1a68
PZ
1119 } else if (task_on_rq_queued(p)) {
1120 /*
1121 * OK, since we're going to drop the lock immediately
1122 * afterwards anyway.
1123 */
8a8c69c3 1124 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1125 }
5cc389bc 1126out:
eb580751 1127 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1128
1129 return ret;
1130}
25834c73
PZ
1131
1132int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1133{
1134 return __set_cpus_allowed_ptr(p, new_mask, false);
1135}
5cc389bc
PZ
1136EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1137
dd41f596 1138void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1139{
e2912009
PZ
1140#ifdef CONFIG_SCHED_DEBUG
1141 /*
1142 * We should never call set_task_cpu() on a blocked task,
1143 * ttwu() will sort out the placement.
1144 */
077614ee 1145 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1146 !p->on_rq);
0122ec5b 1147
3ea94de1
JP
1148 /*
1149 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1150 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1151 * time relying on p->on_rq.
1152 */
1153 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1154 p->sched_class == &fair_sched_class &&
1155 (p->on_rq && !task_on_rq_migrating(p)));
1156
0122ec5b 1157#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1158 /*
1159 * The caller should hold either p->pi_lock or rq->lock, when changing
1160 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1161 *
1162 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1163 * see task_group().
6c6c54e1
PZ
1164 *
1165 * Furthermore, all task_rq users should acquire both locks, see
1166 * task_rq_lock().
1167 */
0122ec5b
PZ
1168 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1169 lockdep_is_held(&task_rq(p)->lock)));
1170#endif
e2912009
PZ
1171#endif
1172
de1d7286 1173 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1174
0c69774e 1175 if (task_cpu(p) != new_cpu) {
0a74bef8 1176 if (p->sched_class->migrate_task_rq)
5a4fd036 1177 p->sched_class->migrate_task_rq(p);
0c69774e 1178 p->se.nr_migrations++;
ff303e66 1179 perf_event_task_migrate(p);
0c69774e 1180 }
dd41f596
IM
1181
1182 __set_task_cpu(p, new_cpu);
c65cc870
IM
1183}
1184
ac66f547
PZ
1185static void __migrate_swap_task(struct task_struct *p, int cpu)
1186{
da0c1e65 1187 if (task_on_rq_queued(p)) {
ac66f547 1188 struct rq *src_rq, *dst_rq;
8a8c69c3 1189 struct rq_flags srf, drf;
ac66f547
PZ
1190
1191 src_rq = task_rq(p);
1192 dst_rq = cpu_rq(cpu);
1193
8a8c69c3
PZ
1194 rq_pin_lock(src_rq, &srf);
1195 rq_pin_lock(dst_rq, &drf);
1196
3ea94de1 1197 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1198 deactivate_task(src_rq, p, 0);
1199 set_task_cpu(p, cpu);
1200 activate_task(dst_rq, p, 0);
3ea94de1 1201 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1202 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1203
1204 rq_unpin_lock(dst_rq, &drf);
1205 rq_unpin_lock(src_rq, &srf);
1206
ac66f547
PZ
1207 } else {
1208 /*
1209 * Task isn't running anymore; make it appear like we migrated
1210 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1211 * previous CPU our target instead of where it really is.
ac66f547
PZ
1212 */
1213 p->wake_cpu = cpu;
1214 }
1215}
1216
1217struct migration_swap_arg {
1218 struct task_struct *src_task, *dst_task;
1219 int src_cpu, dst_cpu;
1220};
1221
1222static int migrate_swap_stop(void *data)
1223{
1224 struct migration_swap_arg *arg = data;
1225 struct rq *src_rq, *dst_rq;
1226 int ret = -EAGAIN;
1227
62694cd5
PZ
1228 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1229 return -EAGAIN;
1230
ac66f547
PZ
1231 src_rq = cpu_rq(arg->src_cpu);
1232 dst_rq = cpu_rq(arg->dst_cpu);
1233
74602315
PZ
1234 double_raw_lock(&arg->src_task->pi_lock,
1235 &arg->dst_task->pi_lock);
ac66f547 1236 double_rq_lock(src_rq, dst_rq);
62694cd5 1237
ac66f547
PZ
1238 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1239 goto unlock;
1240
1241 if (task_cpu(arg->src_task) != arg->src_cpu)
1242 goto unlock;
1243
0c98d344 1244 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1245 goto unlock;
1246
0c98d344 1247 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1248 goto unlock;
1249
1250 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1251 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1252
1253 ret = 0;
1254
1255unlock:
1256 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1257 raw_spin_unlock(&arg->dst_task->pi_lock);
1258 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1259
1260 return ret;
1261}
1262
1263/*
1264 * Cross migrate two tasks
1265 */
1266int migrate_swap(struct task_struct *cur, struct task_struct *p)
1267{
1268 struct migration_swap_arg arg;
1269 int ret = -EINVAL;
1270
ac66f547
PZ
1271 arg = (struct migration_swap_arg){
1272 .src_task = cur,
1273 .src_cpu = task_cpu(cur),
1274 .dst_task = p,
1275 .dst_cpu = task_cpu(p),
1276 };
1277
1278 if (arg.src_cpu == arg.dst_cpu)
1279 goto out;
1280
6acce3ef
PZ
1281 /*
1282 * These three tests are all lockless; this is OK since all of them
1283 * will be re-checked with proper locks held further down the line.
1284 */
ac66f547
PZ
1285 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1286 goto out;
1287
0c98d344 1288 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1289 goto out;
1290
0c98d344 1291 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1292 goto out;
1293
286549dc 1294 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1295 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1296
1297out:
ac66f547
PZ
1298 return ret;
1299}
1300
1da177e4
LT
1301/*
1302 * wait_task_inactive - wait for a thread to unschedule.
1303 *
85ba2d86
RM
1304 * If @match_state is nonzero, it's the @p->state value just checked and
1305 * not expected to change. If it changes, i.e. @p might have woken up,
1306 * then return zero. When we succeed in waiting for @p to be off its CPU,
1307 * we return a positive number (its total switch count). If a second call
1308 * a short while later returns the same number, the caller can be sure that
1309 * @p has remained unscheduled the whole time.
1310 *
1da177e4
LT
1311 * The caller must ensure that the task *will* unschedule sometime soon,
1312 * else this function might spin for a *long* time. This function can't
1313 * be called with interrupts off, or it may introduce deadlock with
1314 * smp_call_function() if an IPI is sent by the same process we are
1315 * waiting to become inactive.
1316 */
85ba2d86 1317unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1318{
da0c1e65 1319 int running, queued;
eb580751 1320 struct rq_flags rf;
85ba2d86 1321 unsigned long ncsw;
70b97a7f 1322 struct rq *rq;
1da177e4 1323
3a5c359a
AK
1324 for (;;) {
1325 /*
1326 * We do the initial early heuristics without holding
1327 * any task-queue locks at all. We'll only try to get
1328 * the runqueue lock when things look like they will
1329 * work out!
1330 */
1331 rq = task_rq(p);
fa490cfd 1332
3a5c359a
AK
1333 /*
1334 * If the task is actively running on another CPU
1335 * still, just relax and busy-wait without holding
1336 * any locks.
1337 *
1338 * NOTE! Since we don't hold any locks, it's not
1339 * even sure that "rq" stays as the right runqueue!
1340 * But we don't care, since "task_running()" will
1341 * return false if the runqueue has changed and p
1342 * is actually now running somewhere else!
1343 */
85ba2d86
RM
1344 while (task_running(rq, p)) {
1345 if (match_state && unlikely(p->state != match_state))
1346 return 0;
3a5c359a 1347 cpu_relax();
85ba2d86 1348 }
fa490cfd 1349
3a5c359a
AK
1350 /*
1351 * Ok, time to look more closely! We need the rq
1352 * lock now, to be *sure*. If we're wrong, we'll
1353 * just go back and repeat.
1354 */
eb580751 1355 rq = task_rq_lock(p, &rf);
27a9da65 1356 trace_sched_wait_task(p);
3a5c359a 1357 running = task_running(rq, p);
da0c1e65 1358 queued = task_on_rq_queued(p);
85ba2d86 1359 ncsw = 0;
f31e11d8 1360 if (!match_state || p->state == match_state)
93dcf55f 1361 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1362 task_rq_unlock(rq, p, &rf);
fa490cfd 1363
85ba2d86
RM
1364 /*
1365 * If it changed from the expected state, bail out now.
1366 */
1367 if (unlikely(!ncsw))
1368 break;
1369
3a5c359a
AK
1370 /*
1371 * Was it really running after all now that we
1372 * checked with the proper locks actually held?
1373 *
1374 * Oops. Go back and try again..
1375 */
1376 if (unlikely(running)) {
1377 cpu_relax();
1378 continue;
1379 }
fa490cfd 1380
3a5c359a
AK
1381 /*
1382 * It's not enough that it's not actively running,
1383 * it must be off the runqueue _entirely_, and not
1384 * preempted!
1385 *
80dd99b3 1386 * So if it was still runnable (but just not actively
3a5c359a
AK
1387 * running right now), it's preempted, and we should
1388 * yield - it could be a while.
1389 */
da0c1e65 1390 if (unlikely(queued)) {
8b0e1953 1391 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1392
1393 set_current_state(TASK_UNINTERRUPTIBLE);
1394 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1395 continue;
1396 }
fa490cfd 1397
3a5c359a
AK
1398 /*
1399 * Ahh, all good. It wasn't running, and it wasn't
1400 * runnable, which means that it will never become
1401 * running in the future either. We're all done!
1402 */
1403 break;
1404 }
85ba2d86
RM
1405
1406 return ncsw;
1da177e4
LT
1407}
1408
1409/***
1410 * kick_process - kick a running thread to enter/exit the kernel
1411 * @p: the to-be-kicked thread
1412 *
1413 * Cause a process which is running on another CPU to enter
1414 * kernel-mode, without any delay. (to get signals handled.)
1415 *
25985edc 1416 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1417 * because all it wants to ensure is that the remote task enters
1418 * the kernel. If the IPI races and the task has been migrated
1419 * to another CPU then no harm is done and the purpose has been
1420 * achieved as well.
1421 */
36c8b586 1422void kick_process(struct task_struct *p)
1da177e4
LT
1423{
1424 int cpu;
1425
1426 preempt_disable();
1427 cpu = task_cpu(p);
1428 if ((cpu != smp_processor_id()) && task_curr(p))
1429 smp_send_reschedule(cpu);
1430 preempt_enable();
1431}
b43e3521 1432EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1433
30da688e 1434/*
013fdb80 1435 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1436 *
1437 * A few notes on cpu_active vs cpu_online:
1438 *
1439 * - cpu_active must be a subset of cpu_online
1440 *
1441 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1442 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1443 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1444 * see it.
1445 *
d1ccc66d 1446 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1447 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1448 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1449 * off.
1450 *
1451 * This means that fallback selection must not select !active CPUs.
1452 * And can assume that any active CPU must be online. Conversely
1453 * select_task_rq() below may allow selection of !active CPUs in order
1454 * to satisfy the above rules.
30da688e 1455 */
5da9a0fb
PZ
1456static int select_fallback_rq(int cpu, struct task_struct *p)
1457{
aa00d89c
TC
1458 int nid = cpu_to_node(cpu);
1459 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1460 enum { cpuset, possible, fail } state = cpuset;
1461 int dest_cpu;
5da9a0fb 1462
aa00d89c 1463 /*
d1ccc66d
IM
1464 * If the node that the CPU is on has been offlined, cpu_to_node()
1465 * will return -1. There is no CPU on the node, and we should
1466 * select the CPU on the other node.
aa00d89c
TC
1467 */
1468 if (nid != -1) {
1469 nodemask = cpumask_of_node(nid);
1470
1471 /* Look for allowed, online CPU in same node. */
1472 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1473 if (!cpu_active(dest_cpu))
1474 continue;
0c98d344 1475 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1476 return dest_cpu;
1477 }
2baab4e9 1478 }
5da9a0fb 1479
2baab4e9
PZ
1480 for (;;) {
1481 /* Any allowed, online CPU? */
0c98d344 1482 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1483 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1484 continue;
1485 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1486 continue;
1487 goto out;
1488 }
5da9a0fb 1489
e73e85f0 1490 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1491 switch (state) {
1492 case cpuset:
e73e85f0
ON
1493 if (IS_ENABLED(CONFIG_CPUSETS)) {
1494 cpuset_cpus_allowed_fallback(p);
1495 state = possible;
1496 break;
1497 }
d1ccc66d 1498 /* Fall-through */
2baab4e9
PZ
1499 case possible:
1500 do_set_cpus_allowed(p, cpu_possible_mask);
1501 state = fail;
1502 break;
1503
1504 case fail:
1505 BUG();
1506 break;
1507 }
1508 }
1509
1510out:
1511 if (state != cpuset) {
1512 /*
1513 * Don't tell them about moving exiting tasks or
1514 * kernel threads (both mm NULL), since they never
1515 * leave kernel.
1516 */
1517 if (p->mm && printk_ratelimit()) {
aac74dc4 1518 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1519 task_pid_nr(p), p->comm, cpu);
1520 }
5da9a0fb
PZ
1521 }
1522
1523 return dest_cpu;
1524}
1525
e2912009 1526/*
013fdb80 1527 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1528 */
970b13ba 1529static inline
ac66f547 1530int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1531{
cbce1a68
PZ
1532 lockdep_assert_held(&p->pi_lock);
1533
4b53a341 1534 if (p->nr_cpus_allowed > 1)
6c1d9410 1535 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1536 else
0c98d344 1537 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1538
1539 /*
1540 * In order not to call set_task_cpu() on a blocking task we need
1541 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1542 * CPU.
e2912009
PZ
1543 *
1544 * Since this is common to all placement strategies, this lives here.
1545 *
1546 * [ this allows ->select_task() to simply return task_cpu(p) and
1547 * not worry about this generic constraint ]
1548 */
0c98d344 1549 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1550 !cpu_online(cpu)))
5da9a0fb 1551 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1552
1553 return cpu;
970b13ba 1554}
09a40af5
MG
1555
1556static void update_avg(u64 *avg, u64 sample)
1557{
1558 s64 diff = sample - *avg;
1559 *avg += diff >> 3;
1560}
25834c73 1561
f5832c19
NP
1562void sched_set_stop_task(int cpu, struct task_struct *stop)
1563{
1564 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1565 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1566
1567 if (stop) {
1568 /*
1569 * Make it appear like a SCHED_FIFO task, its something
1570 * userspace knows about and won't get confused about.
1571 *
1572 * Also, it will make PI more or less work without too
1573 * much confusion -- but then, stop work should not
1574 * rely on PI working anyway.
1575 */
1576 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1577
1578 stop->sched_class = &stop_sched_class;
1579 }
1580
1581 cpu_rq(cpu)->stop = stop;
1582
1583 if (old_stop) {
1584 /*
1585 * Reset it back to a normal scheduling class so that
1586 * it can die in pieces.
1587 */
1588 old_stop->sched_class = &rt_sched_class;
1589 }
1590}
1591
25834c73
PZ
1592#else
1593
1594static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1595 const struct cpumask *new_mask, bool check)
1596{
1597 return set_cpus_allowed_ptr(p, new_mask);
1598}
1599
5cc389bc 1600#endif /* CONFIG_SMP */
970b13ba 1601
d7c01d27 1602static void
b84cb5df 1603ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1604{
4fa8d299 1605 struct rq *rq;
b84cb5df 1606
4fa8d299
JP
1607 if (!schedstat_enabled())
1608 return;
1609
1610 rq = this_rq();
d7c01d27 1611
4fa8d299
JP
1612#ifdef CONFIG_SMP
1613 if (cpu == rq->cpu) {
ae92882e
JP
1614 schedstat_inc(rq->ttwu_local);
1615 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1616 } else {
1617 struct sched_domain *sd;
1618
ae92882e 1619 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1620 rcu_read_lock();
4fa8d299 1621 for_each_domain(rq->cpu, sd) {
d7c01d27 1622 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1623 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1624 break;
1625 }
1626 }
057f3fad 1627 rcu_read_unlock();
d7c01d27 1628 }
f339b9dc
PZ
1629
1630 if (wake_flags & WF_MIGRATED)
ae92882e 1631 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1632#endif /* CONFIG_SMP */
1633
ae92882e
JP
1634 schedstat_inc(rq->ttwu_count);
1635 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1636
1637 if (wake_flags & WF_SYNC)
ae92882e 1638 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1639}
1640
1de64443 1641static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1642{
9ed3811a 1643 activate_task(rq, p, en_flags);
da0c1e65 1644 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1645
d1ccc66d 1646 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1647 if (p->flags & PF_WQ_WORKER)
1648 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1649}
1650
23f41eeb
PZ
1651/*
1652 * Mark the task runnable and perform wakeup-preemption.
1653 */
e7904a28 1654static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1655 struct rq_flags *rf)
9ed3811a 1656{
9ed3811a 1657 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1658 p->state = TASK_RUNNING;
fbd705a0
PZ
1659 trace_sched_wakeup(p);
1660
9ed3811a 1661#ifdef CONFIG_SMP
4c9a4bc8
PZ
1662 if (p->sched_class->task_woken) {
1663 /*
cbce1a68
PZ
1664 * Our task @p is fully woken up and running; so its safe to
1665 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1666 */
d8ac8971 1667 rq_unpin_lock(rq, rf);
9ed3811a 1668 p->sched_class->task_woken(rq, p);
d8ac8971 1669 rq_repin_lock(rq, rf);
4c9a4bc8 1670 }
9ed3811a 1671
e69c6341 1672 if (rq->idle_stamp) {
78becc27 1673 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1674 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1675
abfafa54
JL
1676 update_avg(&rq->avg_idle, delta);
1677
1678 if (rq->avg_idle > max)
9ed3811a 1679 rq->avg_idle = max;
abfafa54 1680
9ed3811a
TH
1681 rq->idle_stamp = 0;
1682 }
1683#endif
1684}
1685
c05fbafb 1686static void
e7904a28 1687ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1688 struct rq_flags *rf)
c05fbafb 1689{
77558e4d 1690 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1691
cbce1a68
PZ
1692 lockdep_assert_held(&rq->lock);
1693
c05fbafb
PZ
1694#ifdef CONFIG_SMP
1695 if (p->sched_contributes_to_load)
1696 rq->nr_uninterruptible--;
b5179ac7 1697
b5179ac7 1698 if (wake_flags & WF_MIGRATED)
59efa0ba 1699 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1700#endif
1701
b5179ac7 1702 ttwu_activate(rq, p, en_flags);
d8ac8971 1703 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1704}
1705
1706/*
1707 * Called in case the task @p isn't fully descheduled from its runqueue,
1708 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1709 * since all we need to do is flip p->state to TASK_RUNNING, since
1710 * the task is still ->on_rq.
1711 */
1712static int ttwu_remote(struct task_struct *p, int wake_flags)
1713{
eb580751 1714 struct rq_flags rf;
c05fbafb
PZ
1715 struct rq *rq;
1716 int ret = 0;
1717
eb580751 1718 rq = __task_rq_lock(p, &rf);
da0c1e65 1719 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1720 /* check_preempt_curr() may use rq clock */
1721 update_rq_clock(rq);
d8ac8971 1722 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1723 ret = 1;
1724 }
eb580751 1725 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1726
1727 return ret;
1728}
1729
317f3941 1730#ifdef CONFIG_SMP
e3baac47 1731void sched_ttwu_pending(void)
317f3941
PZ
1732{
1733 struct rq *rq = this_rq();
fa14ff4a 1734 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1735 struct task_struct *p, *t;
d8ac8971 1736 struct rq_flags rf;
317f3941 1737
e3baac47
PZ
1738 if (!llist)
1739 return;
1740
8a8c69c3 1741 rq_lock_irqsave(rq, &rf);
77558e4d 1742 update_rq_clock(rq);
317f3941 1743
73215849
BP
1744 llist_for_each_entry_safe(p, t, llist, wake_entry)
1745 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1746
8a8c69c3 1747 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1748}
1749
1750void scheduler_ipi(void)
1751{
f27dde8d
PZ
1752 /*
1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 * TIF_NEED_RESCHED remotely (for the first time) will also send
1755 * this IPI.
1756 */
8cb75e0c 1757 preempt_fold_need_resched();
f27dde8d 1758
fd2ac4f4 1759 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1760 return;
1761
1762 /*
1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 * traditionally all their work was done from the interrupt return
1765 * path. Now that we actually do some work, we need to make sure
1766 * we do call them.
1767 *
1768 * Some archs already do call them, luckily irq_enter/exit nest
1769 * properly.
1770 *
1771 * Arguably we should visit all archs and update all handlers,
1772 * however a fair share of IPIs are still resched only so this would
1773 * somewhat pessimize the simple resched case.
1774 */
1775 irq_enter();
fa14ff4a 1776 sched_ttwu_pending();
ca38062e
SS
1777
1778 /*
1779 * Check if someone kicked us for doing the nohz idle load balance.
1780 */
873b4c65 1781 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1782 this_rq()->idle_balance = 1;
ca38062e 1783 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1784 }
c5d753a5 1785 irq_exit();
317f3941
PZ
1786}
1787
b7e7ade3 1788static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1789{
e3baac47
PZ
1790 struct rq *rq = cpu_rq(cpu);
1791
b7e7ade3
PZ
1792 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1793
e3baac47
PZ
1794 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1795 if (!set_nr_if_polling(rq->idle))
1796 smp_send_reschedule(cpu);
1797 else
1798 trace_sched_wake_idle_without_ipi(cpu);
1799 }
317f3941 1800}
d6aa8f85 1801
f6be8af1
CL
1802void wake_up_if_idle(int cpu)
1803{
1804 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1805 struct rq_flags rf;
f6be8af1 1806
fd7de1e8
AL
1807 rcu_read_lock();
1808
1809 if (!is_idle_task(rcu_dereference(rq->curr)))
1810 goto out;
f6be8af1
CL
1811
1812 if (set_nr_if_polling(rq->idle)) {
1813 trace_sched_wake_idle_without_ipi(cpu);
1814 } else {
8a8c69c3 1815 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1816 if (is_idle_task(rq->curr))
1817 smp_send_reschedule(cpu);
d1ccc66d 1818 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1819 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1820 }
fd7de1e8
AL
1821
1822out:
1823 rcu_read_unlock();
f6be8af1
CL
1824}
1825
39be3501 1826bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1827{
1828 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1829}
d6aa8f85 1830#endif /* CONFIG_SMP */
317f3941 1831
b5179ac7 1832static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1833{
1834 struct rq *rq = cpu_rq(cpu);
d8ac8971 1835 struct rq_flags rf;
c05fbafb 1836
17d9f311 1837#if defined(CONFIG_SMP)
39be3501 1838 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1839 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1840 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1841 return;
1842 }
1843#endif
1844
8a8c69c3 1845 rq_lock(rq, &rf);
77558e4d 1846 update_rq_clock(rq);
d8ac8971 1847 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1848 rq_unlock(rq, &rf);
9ed3811a
TH
1849}
1850
8643cda5
PZ
1851/*
1852 * Notes on Program-Order guarantees on SMP systems.
1853 *
1854 * MIGRATION
1855 *
1856 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1857 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1858 * execution on its new CPU [c1].
8643cda5
PZ
1859 *
1860 * For migration (of runnable tasks) this is provided by the following means:
1861 *
1862 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1863 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1864 * rq(c1)->lock (if not at the same time, then in that order).
1865 * C) LOCK of the rq(c1)->lock scheduling in task
1866 *
1867 * Transitivity guarantees that B happens after A and C after B.
1868 * Note: we only require RCpc transitivity.
d1ccc66d 1869 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1870 *
1871 * Example:
1872 *
1873 * CPU0 CPU1 CPU2
1874 *
1875 * LOCK rq(0)->lock
1876 * sched-out X
1877 * sched-in Y
1878 * UNLOCK rq(0)->lock
1879 *
1880 * LOCK rq(0)->lock // orders against CPU0
1881 * dequeue X
1882 * UNLOCK rq(0)->lock
1883 *
1884 * LOCK rq(1)->lock
1885 * enqueue X
1886 * UNLOCK rq(1)->lock
1887 *
1888 * LOCK rq(1)->lock // orders against CPU2
1889 * sched-out Z
1890 * sched-in X
1891 * UNLOCK rq(1)->lock
1892 *
1893 *
1894 * BLOCKING -- aka. SLEEP + WAKEUP
1895 *
1896 * For blocking we (obviously) need to provide the same guarantee as for
1897 * migration. However the means are completely different as there is no lock
1898 * chain to provide order. Instead we do:
1899 *
1900 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1901 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1902 *
1903 * Example:
1904 *
1905 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1906 *
1907 * LOCK rq(0)->lock LOCK X->pi_lock
1908 * dequeue X
1909 * sched-out X
1910 * smp_store_release(X->on_cpu, 0);
1911 *
1f03e8d2 1912 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1913 * X->state = WAKING
1914 * set_task_cpu(X,2)
1915 *
1916 * LOCK rq(2)->lock
1917 * enqueue X
1918 * X->state = RUNNING
1919 * UNLOCK rq(2)->lock
1920 *
1921 * LOCK rq(2)->lock // orders against CPU1
1922 * sched-out Z
1923 * sched-in X
1924 * UNLOCK rq(2)->lock
1925 *
1926 * UNLOCK X->pi_lock
1927 * UNLOCK rq(0)->lock
1928 *
1929 *
1930 * However; for wakeups there is a second guarantee we must provide, namely we
1931 * must observe the state that lead to our wakeup. That is, not only must our
1932 * task observe its own prior state, it must also observe the stores prior to
1933 * its wakeup.
1934 *
1935 * This means that any means of doing remote wakeups must order the CPU doing
1936 * the wakeup against the CPU the task is going to end up running on. This,
1937 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1938 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1939 *
1940 */
1941
9ed3811a 1942/**
1da177e4 1943 * try_to_wake_up - wake up a thread
9ed3811a 1944 * @p: the thread to be awakened
1da177e4 1945 * @state: the mask of task states that can be woken
9ed3811a 1946 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1947 *
a2250238 1948 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1949 *
a2250238
PZ
1950 * If the task was not queued/runnable, also place it back on a runqueue.
1951 *
1952 * Atomic against schedule() which would dequeue a task, also see
1953 * set_current_state().
1954 *
1955 * Return: %true if @p->state changes (an actual wakeup was done),
1956 * %false otherwise.
1da177e4 1957 */
e4a52bcb
PZ
1958static int
1959try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1960{
1da177e4 1961 unsigned long flags;
c05fbafb 1962 int cpu, success = 0;
2398f2c6 1963
e0acd0a6
ON
1964 /*
1965 * If we are going to wake up a thread waiting for CONDITION we
1966 * need to ensure that CONDITION=1 done by the caller can not be
1967 * reordered with p->state check below. This pairs with mb() in
1968 * set_current_state() the waiting thread does.
1969 */
1970 smp_mb__before_spinlock();
013fdb80 1971 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1972 if (!(p->state & state))
1da177e4
LT
1973 goto out;
1974
fbd705a0
PZ
1975 trace_sched_waking(p);
1976
d1ccc66d
IM
1977 /* We're going to change ->state: */
1978 success = 1;
1da177e4 1979 cpu = task_cpu(p);
1da177e4 1980
135e8c92
BS
1981 /*
1982 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1983 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1984 * in smp_cond_load_acquire() below.
1985 *
1986 * sched_ttwu_pending() try_to_wake_up()
1987 * [S] p->on_rq = 1; [L] P->state
1988 * UNLOCK rq->lock -----.
1989 * \
1990 * +--- RMB
1991 * schedule() /
1992 * LOCK rq->lock -----'
1993 * UNLOCK rq->lock
1994 *
1995 * [task p]
1996 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1997 *
1998 * Pairs with the UNLOCK+LOCK on rq->lock from the
1999 * last wakeup of our task and the schedule that got our task
2000 * current.
2001 */
2002 smp_rmb();
c05fbafb
PZ
2003 if (p->on_rq && ttwu_remote(p, wake_flags))
2004 goto stat;
1da177e4 2005
1da177e4 2006#ifdef CONFIG_SMP
ecf7d01c
PZ
2007 /*
2008 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2009 * possible to, falsely, observe p->on_cpu == 0.
2010 *
2011 * One must be running (->on_cpu == 1) in order to remove oneself
2012 * from the runqueue.
2013 *
2014 * [S] ->on_cpu = 1; [L] ->on_rq
2015 * UNLOCK rq->lock
2016 * RMB
2017 * LOCK rq->lock
2018 * [S] ->on_rq = 0; [L] ->on_cpu
2019 *
2020 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2021 * from the consecutive calls to schedule(); the first switching to our
2022 * task, the second putting it to sleep.
2023 */
2024 smp_rmb();
2025
e9c84311 2026 /*
d1ccc66d 2027 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2028 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2029 *
2030 * Pairs with the smp_store_release() in finish_lock_switch().
2031 *
2032 * This ensures that tasks getting woken will be fully ordered against
2033 * their previous state and preserve Program Order.
0970d299 2034 */
1f03e8d2 2035 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2036
a8e4f2ea 2037 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2038 p->state = TASK_WAKING;
e7693a36 2039
e33a9bba
TH
2040 if (p->in_iowait) {
2041 delayacct_blkio_end();
2042 atomic_dec(&task_rq(p)->nr_iowait);
2043 }
2044
ac66f547 2045 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2046 if (task_cpu(p) != cpu) {
2047 wake_flags |= WF_MIGRATED;
e4a52bcb 2048 set_task_cpu(p, cpu);
f339b9dc 2049 }
e33a9bba
TH
2050
2051#else /* CONFIG_SMP */
2052
2053 if (p->in_iowait) {
2054 delayacct_blkio_end();
2055 atomic_dec(&task_rq(p)->nr_iowait);
2056 }
2057
1da177e4 2058#endif /* CONFIG_SMP */
1da177e4 2059
b5179ac7 2060 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2061stat:
4fa8d299 2062 ttwu_stat(p, cpu, wake_flags);
1da177e4 2063out:
013fdb80 2064 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2065
2066 return success;
2067}
2068
21aa9af0
TH
2069/**
2070 * try_to_wake_up_local - try to wake up a local task with rq lock held
2071 * @p: the thread to be awakened
9279e0d2 2072 * @cookie: context's cookie for pinning
21aa9af0 2073 *
2acca55e 2074 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2075 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2076 * the current task.
21aa9af0 2077 */
d8ac8971 2078static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2079{
2080 struct rq *rq = task_rq(p);
21aa9af0 2081
383efcd0
TH
2082 if (WARN_ON_ONCE(rq != this_rq()) ||
2083 WARN_ON_ONCE(p == current))
2084 return;
2085
21aa9af0
TH
2086 lockdep_assert_held(&rq->lock);
2087
2acca55e 2088 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2089 /*
2090 * This is OK, because current is on_cpu, which avoids it being
2091 * picked for load-balance and preemption/IRQs are still
2092 * disabled avoiding further scheduler activity on it and we've
2093 * not yet picked a replacement task.
2094 */
8a8c69c3 2095 rq_unlock(rq, rf);
2acca55e 2096 raw_spin_lock(&p->pi_lock);
8a8c69c3 2097 rq_relock(rq, rf);
2acca55e
PZ
2098 }
2099
21aa9af0 2100 if (!(p->state & TASK_NORMAL))
2acca55e 2101 goto out;
21aa9af0 2102
fbd705a0
PZ
2103 trace_sched_waking(p);
2104
e33a9bba
TH
2105 if (!task_on_rq_queued(p)) {
2106 if (p->in_iowait) {
2107 delayacct_blkio_end();
2108 atomic_dec(&rq->nr_iowait);
2109 }
bce4dc80 2110 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2111 }
d7c01d27 2112
d8ac8971 2113 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2114 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2115out:
2116 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2117}
2118
50fa610a
DH
2119/**
2120 * wake_up_process - Wake up a specific process
2121 * @p: The process to be woken up.
2122 *
2123 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2124 * processes.
2125 *
2126 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2127 *
2128 * It may be assumed that this function implies a write memory barrier before
2129 * changing the task state if and only if any tasks are woken up.
2130 */
7ad5b3a5 2131int wake_up_process(struct task_struct *p)
1da177e4 2132{
9067ac85 2133 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2134}
1da177e4
LT
2135EXPORT_SYMBOL(wake_up_process);
2136
7ad5b3a5 2137int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2138{
2139 return try_to_wake_up(p, state, 0);
2140}
2141
a5e7be3b
JL
2142/*
2143 * This function clears the sched_dl_entity static params.
2144 */
2145void __dl_clear_params(struct task_struct *p)
2146{
2147 struct sched_dl_entity *dl_se = &p->dl;
2148
2149 dl_se->dl_runtime = 0;
2150 dl_se->dl_deadline = 0;
2151 dl_se->dl_period = 0;
2152 dl_se->flags = 0;
2153 dl_se->dl_bw = 0;
3effcb42 2154 dl_se->dl_density = 0;
40767b0d
PZ
2155
2156 dl_se->dl_throttled = 0;
40767b0d 2157 dl_se->dl_yielded = 0;
209a0cbd 2158 dl_se->dl_non_contending = 0;
a5e7be3b
JL
2159}
2160
1da177e4
LT
2161/*
2162 * Perform scheduler related setup for a newly forked process p.
2163 * p is forked by current.
dd41f596
IM
2164 *
2165 * __sched_fork() is basic setup used by init_idle() too:
2166 */
5e1576ed 2167static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2168{
fd2f4419
PZ
2169 p->on_rq = 0;
2170
2171 p->se.on_rq = 0;
dd41f596
IM
2172 p->se.exec_start = 0;
2173 p->se.sum_exec_runtime = 0;
f6cf891c 2174 p->se.prev_sum_exec_runtime = 0;
6c594c21 2175 p->se.nr_migrations = 0;
da7a735e 2176 p->se.vruntime = 0;
fd2f4419 2177 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2178
ad936d86
BP
2179#ifdef CONFIG_FAIR_GROUP_SCHED
2180 p->se.cfs_rq = NULL;
2181#endif
2182
6cfb0d5d 2183#ifdef CONFIG_SCHEDSTATS
cb251765 2184 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2186#endif
476d139c 2187
aab03e05 2188 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2189 init_dl_task_timer(&p->dl);
209a0cbd 2190 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2191 __dl_clear_params(p);
aab03e05 2192
fa717060 2193 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2194 p->rt.timeout = 0;
2195 p->rt.time_slice = sched_rr_timeslice;
2196 p->rt.on_rq = 0;
2197 p->rt.on_list = 0;
476d139c 2198
e107be36
AK
2199#ifdef CONFIG_PREEMPT_NOTIFIERS
2200 INIT_HLIST_HEAD(&p->preempt_notifiers);
2201#endif
cbee9f88
PZ
2202
2203#ifdef CONFIG_NUMA_BALANCING
2204 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2205 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2206 p->mm->numa_scan_seq = 0;
2207 }
2208
5e1576ed
RR
2209 if (clone_flags & CLONE_VM)
2210 p->numa_preferred_nid = current->numa_preferred_nid;
2211 else
2212 p->numa_preferred_nid = -1;
2213
cbee9f88
PZ
2214 p->node_stamp = 0ULL;
2215 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2216 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2217 p->numa_work.next = &p->numa_work;
44dba3d5 2218 p->numa_faults = NULL;
7e2703e6
RR
2219 p->last_task_numa_placement = 0;
2220 p->last_sum_exec_runtime = 0;
8c8a743c 2221
8c8a743c 2222 p->numa_group = NULL;
cbee9f88 2223#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2224}
2225
2a595721
SD
2226DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2227
1a687c2e 2228#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2229
1a687c2e
MG
2230void set_numabalancing_state(bool enabled)
2231{
2232 if (enabled)
2a595721 2233 static_branch_enable(&sched_numa_balancing);
1a687c2e 2234 else
2a595721 2235 static_branch_disable(&sched_numa_balancing);
1a687c2e 2236}
54a43d54
AK
2237
2238#ifdef CONFIG_PROC_SYSCTL
2239int sysctl_numa_balancing(struct ctl_table *table, int write,
2240 void __user *buffer, size_t *lenp, loff_t *ppos)
2241{
2242 struct ctl_table t;
2243 int err;
2a595721 2244 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2245
2246 if (write && !capable(CAP_SYS_ADMIN))
2247 return -EPERM;
2248
2249 t = *table;
2250 t.data = &state;
2251 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2252 if (err < 0)
2253 return err;
2254 if (write)
2255 set_numabalancing_state(state);
2256 return err;
2257}
2258#endif
2259#endif
dd41f596 2260
4698f88c
JP
2261#ifdef CONFIG_SCHEDSTATS
2262
cb251765 2263DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2264static bool __initdata __sched_schedstats = false;
cb251765 2265
cb251765
MG
2266static void set_schedstats(bool enabled)
2267{
2268 if (enabled)
2269 static_branch_enable(&sched_schedstats);
2270 else
2271 static_branch_disable(&sched_schedstats);
2272}
2273
2274void force_schedstat_enabled(void)
2275{
2276 if (!schedstat_enabled()) {
2277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2278 static_branch_enable(&sched_schedstats);
2279 }
2280}
2281
2282static int __init setup_schedstats(char *str)
2283{
2284 int ret = 0;
2285 if (!str)
2286 goto out;
2287
4698f88c
JP
2288 /*
2289 * This code is called before jump labels have been set up, so we can't
2290 * change the static branch directly just yet. Instead set a temporary
2291 * variable so init_schedstats() can do it later.
2292 */
cb251765 2293 if (!strcmp(str, "enable")) {
4698f88c 2294 __sched_schedstats = true;
cb251765
MG
2295 ret = 1;
2296 } else if (!strcmp(str, "disable")) {
4698f88c 2297 __sched_schedstats = false;
cb251765
MG
2298 ret = 1;
2299 }
2300out:
2301 if (!ret)
2302 pr_warn("Unable to parse schedstats=\n");
2303
2304 return ret;
2305}
2306__setup("schedstats=", setup_schedstats);
2307
4698f88c
JP
2308static void __init init_schedstats(void)
2309{
2310 set_schedstats(__sched_schedstats);
2311}
2312
cb251765
MG
2313#ifdef CONFIG_PROC_SYSCTL
2314int sysctl_schedstats(struct ctl_table *table, int write,
2315 void __user *buffer, size_t *lenp, loff_t *ppos)
2316{
2317 struct ctl_table t;
2318 int err;
2319 int state = static_branch_likely(&sched_schedstats);
2320
2321 if (write && !capable(CAP_SYS_ADMIN))
2322 return -EPERM;
2323
2324 t = *table;
2325 t.data = &state;
2326 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2327 if (err < 0)
2328 return err;
2329 if (write)
2330 set_schedstats(state);
2331 return err;
2332}
4698f88c
JP
2333#endif /* CONFIG_PROC_SYSCTL */
2334#else /* !CONFIG_SCHEDSTATS */
2335static inline void init_schedstats(void) {}
2336#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2337
2338/*
2339 * fork()/clone()-time setup:
2340 */
aab03e05 2341int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2342{
0122ec5b 2343 unsigned long flags;
dd41f596
IM
2344 int cpu = get_cpu();
2345
5e1576ed 2346 __sched_fork(clone_flags, p);
06b83b5f 2347 /*
7dc603c9 2348 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2349 * nobody will actually run it, and a signal or other external
2350 * event cannot wake it up and insert it on the runqueue either.
2351 */
7dc603c9 2352 p->state = TASK_NEW;
dd41f596 2353
c350a04e
MG
2354 /*
2355 * Make sure we do not leak PI boosting priority to the child.
2356 */
2357 p->prio = current->normal_prio;
2358
b9dc29e7
MG
2359 /*
2360 * Revert to default priority/policy on fork if requested.
2361 */
2362 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2363 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2364 p->policy = SCHED_NORMAL;
6c697bdf 2365 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2366 p->rt_priority = 0;
2367 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2368 p->static_prio = NICE_TO_PRIO(0);
2369
2370 p->prio = p->normal_prio = __normal_prio(p);
2371 set_load_weight(p);
6c697bdf 2372
b9dc29e7
MG
2373 /*
2374 * We don't need the reset flag anymore after the fork. It has
2375 * fulfilled its duty:
2376 */
2377 p->sched_reset_on_fork = 0;
2378 }
ca94c442 2379
aab03e05
DF
2380 if (dl_prio(p->prio)) {
2381 put_cpu();
2382 return -EAGAIN;
2383 } else if (rt_prio(p->prio)) {
2384 p->sched_class = &rt_sched_class;
2385 } else {
2ddbf952 2386 p->sched_class = &fair_sched_class;
aab03e05 2387 }
b29739f9 2388
7dc603c9 2389 init_entity_runnable_average(&p->se);
cd29fe6f 2390
86951599
PZ
2391 /*
2392 * The child is not yet in the pid-hash so no cgroup attach races,
2393 * and the cgroup is pinned to this child due to cgroup_fork()
2394 * is ran before sched_fork().
2395 *
2396 * Silence PROVE_RCU.
2397 */
0122ec5b 2398 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2399 /*
d1ccc66d 2400 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2401 * so use __set_task_cpu().
2402 */
2403 __set_task_cpu(p, cpu);
2404 if (p->sched_class->task_fork)
2405 p->sched_class->task_fork(p);
0122ec5b 2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2407
f6db8347 2408#ifdef CONFIG_SCHED_INFO
dd41f596 2409 if (likely(sched_info_on()))
52f17b6c 2410 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2411#endif
3ca7a440
PZ
2412#if defined(CONFIG_SMP)
2413 p->on_cpu = 0;
4866cde0 2414#endif
01028747 2415 init_task_preempt_count(p);
806c09a7 2416#ifdef CONFIG_SMP
917b627d 2417 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2418 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2419#endif
917b627d 2420
476d139c 2421 put_cpu();
aab03e05 2422 return 0;
1da177e4
LT
2423}
2424
332ac17e
DF
2425unsigned long to_ratio(u64 period, u64 runtime)
2426{
2427 if (runtime == RUNTIME_INF)
c52f14d3 2428 return BW_UNIT;
332ac17e
DF
2429
2430 /*
2431 * Doing this here saves a lot of checks in all
2432 * the calling paths, and returning zero seems
2433 * safe for them anyway.
2434 */
2435 if (period == 0)
2436 return 0;
2437
c52f14d3 2438 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2439}
2440
2441#ifdef CONFIG_SMP
2442inline struct dl_bw *dl_bw_of(int i)
2443{
f78f5b90
PM
2444 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2445 "sched RCU must be held");
332ac17e
DF
2446 return &cpu_rq(i)->rd->dl_bw;
2447}
2448
daec5798 2449inline int dl_bw_cpus(int i)
332ac17e 2450{
de212f18
PZ
2451 struct root_domain *rd = cpu_rq(i)->rd;
2452 int cpus = 0;
2453
f78f5b90
PM
2454 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2455 "sched RCU must be held");
de212f18
PZ
2456 for_each_cpu_and(i, rd->span, cpu_active_mask)
2457 cpus++;
2458
2459 return cpus;
332ac17e
DF
2460}
2461#else
2462inline struct dl_bw *dl_bw_of(int i)
2463{
2464 return &cpu_rq(i)->dl.dl_bw;
2465}
2466
daec5798 2467inline int dl_bw_cpus(int i)
332ac17e
DF
2468{
2469 return 1;
2470}
2471#endif
2472
332ac17e
DF
2473/*
2474 * We must be sure that accepting a new task (or allowing changing the
2475 * parameters of an existing one) is consistent with the bandwidth
2476 * constraints. If yes, this function also accordingly updates the currently
2477 * allocated bandwidth to reflect the new situation.
2478 *
2479 * This function is called while holding p's rq->lock.
2480 */
2481static int dl_overflow(struct task_struct *p, int policy,
2482 const struct sched_attr *attr)
2483{
2484
2485 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2486 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2487 u64 runtime = attr->sched_runtime;
2488 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2489 int cpus, err = -1;
332ac17e 2490
fec148c0
XP
2491 /* !deadline task may carry old deadline bandwidth */
2492 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2493 return 0;
2494
2495 /*
2496 * Either if a task, enters, leave, or stays -deadline but changes
2497 * its parameters, we may need to update accordingly the total
2498 * allocated bandwidth of the container.
2499 */
2500 raw_spin_lock(&dl_b->lock);
de212f18 2501 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2502 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2503 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
387e3130 2504 if (hrtimer_active(&p->dl.inactive_timer))
daec5798
LA
2505 __dl_clear(dl_b, p->dl.dl_bw, cpus);
2506 __dl_add(dl_b, new_bw, cpus);
332ac17e
DF
2507 err = 0;
2508 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2509 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
387e3130
LA
2510 /*
2511 * XXX this is slightly incorrect: when the task
2512 * utilization decreases, we should delay the total
2513 * utilization change until the task's 0-lag point.
2514 * But this would require to set the task's "inactive
2515 * timer" when the task is not inactive.
2516 */
daec5798
LA
2517 __dl_clear(dl_b, p->dl.dl_bw, cpus);
2518 __dl_add(dl_b, new_bw, cpus);
209a0cbd 2519 dl_change_utilization(p, new_bw);
332ac17e
DF
2520 err = 0;
2521 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
387e3130
LA
2522 /*
2523 * Do not decrease the total deadline utilization here,
2524 * switched_from_dl() will take care to do it at the correct
2525 * (0-lag) time.
2526 */
332ac17e
DF
2527 err = 0;
2528 }
2529 raw_spin_unlock(&dl_b->lock);
2530
2531 return err;
2532}
2533
2534extern void init_dl_bw(struct dl_bw *dl_b);
2535
1da177e4
LT
2536/*
2537 * wake_up_new_task - wake up a newly created task for the first time.
2538 *
2539 * This function will do some initial scheduler statistics housekeeping
2540 * that must be done for every newly created context, then puts the task
2541 * on the runqueue and wakes it.
2542 */
3e51e3ed 2543void wake_up_new_task(struct task_struct *p)
1da177e4 2544{
eb580751 2545 struct rq_flags rf;
dd41f596 2546 struct rq *rq;
fabf318e 2547
eb580751 2548 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2549 p->state = TASK_RUNNING;
fabf318e
PZ
2550#ifdef CONFIG_SMP
2551 /*
2552 * Fork balancing, do it here and not earlier because:
2553 * - cpus_allowed can change in the fork path
d1ccc66d 2554 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2555 *
2556 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2557 * as we're not fully set-up yet.
fabf318e 2558 */
e210bffd 2559 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2560#endif
b7fa30c9 2561 rq = __task_rq_lock(p, &rf);
4126bad6 2562 update_rq_clock(rq);
2b8c41da 2563 post_init_entity_util_avg(&p->se);
0017d735 2564
7a57f32a 2565 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2566 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2567 trace_sched_wakeup_new(p);
a7558e01 2568 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2569#ifdef CONFIG_SMP
0aaafaab
PZ
2570 if (p->sched_class->task_woken) {
2571 /*
2572 * Nothing relies on rq->lock after this, so its fine to
2573 * drop it.
2574 */
d8ac8971 2575 rq_unpin_lock(rq, &rf);
efbbd05a 2576 p->sched_class->task_woken(rq, p);
d8ac8971 2577 rq_repin_lock(rq, &rf);
0aaafaab 2578 }
9a897c5a 2579#endif
eb580751 2580 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2581}
2582
e107be36
AK
2583#ifdef CONFIG_PREEMPT_NOTIFIERS
2584
1cde2930
PZ
2585static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2586
2ecd9d29
PZ
2587void preempt_notifier_inc(void)
2588{
2589 static_key_slow_inc(&preempt_notifier_key);
2590}
2591EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2592
2593void preempt_notifier_dec(void)
2594{
2595 static_key_slow_dec(&preempt_notifier_key);
2596}
2597EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2598
e107be36 2599/**
80dd99b3 2600 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2601 * @notifier: notifier struct to register
e107be36
AK
2602 */
2603void preempt_notifier_register(struct preempt_notifier *notifier)
2604{
2ecd9d29
PZ
2605 if (!static_key_false(&preempt_notifier_key))
2606 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2607
e107be36
AK
2608 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2609}
2610EXPORT_SYMBOL_GPL(preempt_notifier_register);
2611
2612/**
2613 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2614 * @notifier: notifier struct to unregister
e107be36 2615 *
d84525a8 2616 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2617 */
2618void preempt_notifier_unregister(struct preempt_notifier *notifier)
2619{
2620 hlist_del(&notifier->link);
2621}
2622EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2623
1cde2930 2624static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2625{
2626 struct preempt_notifier *notifier;
e107be36 2627
b67bfe0d 2628 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2629 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2630}
2631
1cde2930
PZ
2632static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2633{
2634 if (static_key_false(&preempt_notifier_key))
2635 __fire_sched_in_preempt_notifiers(curr);
2636}
2637
e107be36 2638static void
1cde2930
PZ
2639__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2640 struct task_struct *next)
e107be36
AK
2641{
2642 struct preempt_notifier *notifier;
e107be36 2643
b67bfe0d 2644 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2645 notifier->ops->sched_out(notifier, next);
2646}
2647
1cde2930
PZ
2648static __always_inline void
2649fire_sched_out_preempt_notifiers(struct task_struct *curr,
2650 struct task_struct *next)
2651{
2652 if (static_key_false(&preempt_notifier_key))
2653 __fire_sched_out_preempt_notifiers(curr, next);
2654}
2655
6d6bc0ad 2656#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2657
1cde2930 2658static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2659{
2660}
2661
1cde2930 2662static inline void
e107be36
AK
2663fire_sched_out_preempt_notifiers(struct task_struct *curr,
2664 struct task_struct *next)
2665{
2666}
2667
6d6bc0ad 2668#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2669
4866cde0
NP
2670/**
2671 * prepare_task_switch - prepare to switch tasks
2672 * @rq: the runqueue preparing to switch
421cee29 2673 * @prev: the current task that is being switched out
4866cde0
NP
2674 * @next: the task we are going to switch to.
2675 *
2676 * This is called with the rq lock held and interrupts off. It must
2677 * be paired with a subsequent finish_task_switch after the context
2678 * switch.
2679 *
2680 * prepare_task_switch sets up locking and calls architecture specific
2681 * hooks.
2682 */
e107be36
AK
2683static inline void
2684prepare_task_switch(struct rq *rq, struct task_struct *prev,
2685 struct task_struct *next)
4866cde0 2686{
43148951 2687 sched_info_switch(rq, prev, next);
fe4b04fa 2688 perf_event_task_sched_out(prev, next);
e107be36 2689 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2690 prepare_lock_switch(rq, next);
2691 prepare_arch_switch(next);
2692}
2693
1da177e4
LT
2694/**
2695 * finish_task_switch - clean up after a task-switch
2696 * @prev: the thread we just switched away from.
2697 *
4866cde0
NP
2698 * finish_task_switch must be called after the context switch, paired
2699 * with a prepare_task_switch call before the context switch.
2700 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2701 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2702 *
2703 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2704 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2705 * with the lock held can cause deadlocks; see schedule() for
2706 * details.)
dfa50b60
ON
2707 *
2708 * The context switch have flipped the stack from under us and restored the
2709 * local variables which were saved when this task called schedule() in the
2710 * past. prev == current is still correct but we need to recalculate this_rq
2711 * because prev may have moved to another CPU.
1da177e4 2712 */
dfa50b60 2713static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2714 __releases(rq->lock)
2715{
dfa50b60 2716 struct rq *rq = this_rq();
1da177e4 2717 struct mm_struct *mm = rq->prev_mm;
55a101f8 2718 long prev_state;
1da177e4 2719
609ca066
PZ
2720 /*
2721 * The previous task will have left us with a preempt_count of 2
2722 * because it left us after:
2723 *
2724 * schedule()
2725 * preempt_disable(); // 1
2726 * __schedule()
2727 * raw_spin_lock_irq(&rq->lock) // 2
2728 *
2729 * Also, see FORK_PREEMPT_COUNT.
2730 */
e2bf1c4b
PZ
2731 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2732 "corrupted preempt_count: %s/%d/0x%x\n",
2733 current->comm, current->pid, preempt_count()))
2734 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2735
1da177e4
LT
2736 rq->prev_mm = NULL;
2737
2738 /*
2739 * A task struct has one reference for the use as "current".
c394cc9f 2740 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2741 * schedule one last time. The schedule call will never return, and
2742 * the scheduled task must drop that reference.
95913d97
PZ
2743 *
2744 * We must observe prev->state before clearing prev->on_cpu (in
2745 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2746 * running on another CPU and we could rave with its RUNNING -> DEAD
2747 * transition, resulting in a double drop.
1da177e4 2748 */
55a101f8 2749 prev_state = prev->state;
bf9fae9f 2750 vtime_task_switch(prev);
a8d757ef 2751 perf_event_task_sched_in(prev, current);
4866cde0 2752 finish_lock_switch(rq, prev);
01f23e16 2753 finish_arch_post_lock_switch();
e8fa1362 2754
e107be36 2755 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2756 if (mm)
2757 mmdrop(mm);
c394cc9f 2758 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2759 if (prev->sched_class->task_dead)
2760 prev->sched_class->task_dead(prev);
2761
c6fd91f0 2762 /*
2763 * Remove function-return probe instances associated with this
2764 * task and put them back on the free list.
9761eea8 2765 */
c6fd91f0 2766 kprobe_flush_task(prev);
68f24b08
AL
2767
2768 /* Task is done with its stack. */
2769 put_task_stack(prev);
2770
1da177e4 2771 put_task_struct(prev);
c6fd91f0 2772 }
99e5ada9 2773
de734f89 2774 tick_nohz_task_switch();
dfa50b60 2775 return rq;
1da177e4
LT
2776}
2777
3f029d3c
GH
2778#ifdef CONFIG_SMP
2779
3f029d3c 2780/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2781static void __balance_callback(struct rq *rq)
3f029d3c 2782{
e3fca9e7
PZ
2783 struct callback_head *head, *next;
2784 void (*func)(struct rq *rq);
2785 unsigned long flags;
3f029d3c 2786
e3fca9e7
PZ
2787 raw_spin_lock_irqsave(&rq->lock, flags);
2788 head = rq->balance_callback;
2789 rq->balance_callback = NULL;
2790 while (head) {
2791 func = (void (*)(struct rq *))head->func;
2792 next = head->next;
2793 head->next = NULL;
2794 head = next;
3f029d3c 2795
e3fca9e7 2796 func(rq);
3f029d3c 2797 }
e3fca9e7
PZ
2798 raw_spin_unlock_irqrestore(&rq->lock, flags);
2799}
2800
2801static inline void balance_callback(struct rq *rq)
2802{
2803 if (unlikely(rq->balance_callback))
2804 __balance_callback(rq);
3f029d3c
GH
2805}
2806
2807#else
da19ab51 2808
e3fca9e7 2809static inline void balance_callback(struct rq *rq)
3f029d3c 2810{
1da177e4
LT
2811}
2812
3f029d3c
GH
2813#endif
2814
1da177e4
LT
2815/**
2816 * schedule_tail - first thing a freshly forked thread must call.
2817 * @prev: the thread we just switched away from.
2818 */
722a9f92 2819asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2820 __releases(rq->lock)
2821{
1a43a14a 2822 struct rq *rq;
da19ab51 2823
609ca066
PZ
2824 /*
2825 * New tasks start with FORK_PREEMPT_COUNT, see there and
2826 * finish_task_switch() for details.
2827 *
2828 * finish_task_switch() will drop rq->lock() and lower preempt_count
2829 * and the preempt_enable() will end up enabling preemption (on
2830 * PREEMPT_COUNT kernels).
2831 */
2832
dfa50b60 2833 rq = finish_task_switch(prev);
e3fca9e7 2834 balance_callback(rq);
1a43a14a 2835 preempt_enable();
70b97a7f 2836
1da177e4 2837 if (current->set_child_tid)
b488893a 2838 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2839}
2840
2841/*
dfa50b60 2842 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2843 */
04936948 2844static __always_inline struct rq *
70b97a7f 2845context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2846 struct task_struct *next, struct rq_flags *rf)
1da177e4 2847{
dd41f596 2848 struct mm_struct *mm, *oldmm;
1da177e4 2849
e107be36 2850 prepare_task_switch(rq, prev, next);
fe4b04fa 2851
dd41f596
IM
2852 mm = next->mm;
2853 oldmm = prev->active_mm;
9226d125
ZA
2854 /*
2855 * For paravirt, this is coupled with an exit in switch_to to
2856 * combine the page table reload and the switch backend into
2857 * one hypercall.
2858 */
224101ed 2859 arch_start_context_switch(prev);
9226d125 2860
31915ab4 2861 if (!mm) {
1da177e4 2862 next->active_mm = oldmm;
f1f10076 2863 mmgrab(oldmm);
1da177e4
LT
2864 enter_lazy_tlb(oldmm, next);
2865 } else
f98db601 2866 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2867
31915ab4 2868 if (!prev->mm) {
1da177e4 2869 prev->active_mm = NULL;
1da177e4
LT
2870 rq->prev_mm = oldmm;
2871 }
92509b73 2872
cb42c9a3 2873 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2874
3a5f5e48
IM
2875 /*
2876 * Since the runqueue lock will be released by the next
2877 * task (which is an invalid locking op but in the case
2878 * of the scheduler it's an obvious special-case), so we
2879 * do an early lockdep release here:
2880 */
d8ac8971 2881 rq_unpin_lock(rq, rf);
8a25d5de 2882 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2883
2884 /* Here we just switch the register state and the stack. */
2885 switch_to(prev, next, prev);
dd41f596 2886 barrier();
dfa50b60
ON
2887
2888 return finish_task_switch(prev);
1da177e4
LT
2889}
2890
2891/*
1c3e8264 2892 * nr_running and nr_context_switches:
1da177e4
LT
2893 *
2894 * externally visible scheduler statistics: current number of runnable
1c3e8264 2895 * threads, total number of context switches performed since bootup.
1da177e4
LT
2896 */
2897unsigned long nr_running(void)
2898{
2899 unsigned long i, sum = 0;
2900
2901 for_each_online_cpu(i)
2902 sum += cpu_rq(i)->nr_running;
2903
2904 return sum;
f711f609 2905}
1da177e4 2906
2ee507c4 2907/*
d1ccc66d 2908 * Check if only the current task is running on the CPU.
00cc1633
DD
2909 *
2910 * Caution: this function does not check that the caller has disabled
2911 * preemption, thus the result might have a time-of-check-to-time-of-use
2912 * race. The caller is responsible to use it correctly, for example:
2913 *
2914 * - from a non-preemptable section (of course)
2915 *
2916 * - from a thread that is bound to a single CPU
2917 *
2918 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2919 */
2920bool single_task_running(void)
2921{
00cc1633 2922 return raw_rq()->nr_running == 1;
2ee507c4
TC
2923}
2924EXPORT_SYMBOL(single_task_running);
2925
1da177e4 2926unsigned long long nr_context_switches(void)
46cb4b7c 2927{
cc94abfc
SR
2928 int i;
2929 unsigned long long sum = 0;
46cb4b7c 2930
0a945022 2931 for_each_possible_cpu(i)
1da177e4 2932 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2933
1da177e4
LT
2934 return sum;
2935}
483b4ee6 2936
e33a9bba
TH
2937/*
2938 * IO-wait accounting, and how its mostly bollocks (on SMP).
2939 *
2940 * The idea behind IO-wait account is to account the idle time that we could
2941 * have spend running if it were not for IO. That is, if we were to improve the
2942 * storage performance, we'd have a proportional reduction in IO-wait time.
2943 *
2944 * This all works nicely on UP, where, when a task blocks on IO, we account
2945 * idle time as IO-wait, because if the storage were faster, it could've been
2946 * running and we'd not be idle.
2947 *
2948 * This has been extended to SMP, by doing the same for each CPU. This however
2949 * is broken.
2950 *
2951 * Imagine for instance the case where two tasks block on one CPU, only the one
2952 * CPU will have IO-wait accounted, while the other has regular idle. Even
2953 * though, if the storage were faster, both could've ran at the same time,
2954 * utilising both CPUs.
2955 *
2956 * This means, that when looking globally, the current IO-wait accounting on
2957 * SMP is a lower bound, by reason of under accounting.
2958 *
2959 * Worse, since the numbers are provided per CPU, they are sometimes
2960 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2961 * associated with any one particular CPU, it can wake to another CPU than it
2962 * blocked on. This means the per CPU IO-wait number is meaningless.
2963 *
2964 * Task CPU affinities can make all that even more 'interesting'.
2965 */
2966
1da177e4
LT
2967unsigned long nr_iowait(void)
2968{
2969 unsigned long i, sum = 0;
483b4ee6 2970
0a945022 2971 for_each_possible_cpu(i)
1da177e4 2972 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2973
1da177e4
LT
2974 return sum;
2975}
483b4ee6 2976
e33a9bba
TH
2977/*
2978 * Consumers of these two interfaces, like for example the cpufreq menu
2979 * governor are using nonsensical data. Boosting frequency for a CPU that has
2980 * IO-wait which might not even end up running the task when it does become
2981 * runnable.
2982 */
2983
8c215bd3 2984unsigned long nr_iowait_cpu(int cpu)
69d25870 2985{
8c215bd3 2986 struct rq *this = cpu_rq(cpu);
69d25870
AV
2987 return atomic_read(&this->nr_iowait);
2988}
46cb4b7c 2989
372ba8cb
MG
2990void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2991{
3289bdb4
PZ
2992 struct rq *rq = this_rq();
2993 *nr_waiters = atomic_read(&rq->nr_iowait);
2994 *load = rq->load.weight;
372ba8cb
MG
2995}
2996
dd41f596 2997#ifdef CONFIG_SMP
8a0be9ef 2998
46cb4b7c 2999/*
38022906
PZ
3000 * sched_exec - execve() is a valuable balancing opportunity, because at
3001 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3002 */
38022906 3003void sched_exec(void)
46cb4b7c 3004{
38022906 3005 struct task_struct *p = current;
1da177e4 3006 unsigned long flags;
0017d735 3007 int dest_cpu;
46cb4b7c 3008
8f42ced9 3009 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3010 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3011 if (dest_cpu == smp_processor_id())
3012 goto unlock;
38022906 3013
8f42ced9 3014 if (likely(cpu_active(dest_cpu))) {
969c7921 3015 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3016
8f42ced9
PZ
3017 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3018 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3019 return;
3020 }
0017d735 3021unlock:
8f42ced9 3022 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3023}
dd41f596 3024
1da177e4
LT
3025#endif
3026
1da177e4 3027DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3028DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3029
3030EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3031EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3032
6075620b
GG
3033/*
3034 * The function fair_sched_class.update_curr accesses the struct curr
3035 * and its field curr->exec_start; when called from task_sched_runtime(),
3036 * we observe a high rate of cache misses in practice.
3037 * Prefetching this data results in improved performance.
3038 */
3039static inline void prefetch_curr_exec_start(struct task_struct *p)
3040{
3041#ifdef CONFIG_FAIR_GROUP_SCHED
3042 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3043#else
3044 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3045#endif
3046 prefetch(curr);
3047 prefetch(&curr->exec_start);
3048}
3049
c5f8d995
HS
3050/*
3051 * Return accounted runtime for the task.
3052 * In case the task is currently running, return the runtime plus current's
3053 * pending runtime that have not been accounted yet.
3054 */
3055unsigned long long task_sched_runtime(struct task_struct *p)
3056{
eb580751 3057 struct rq_flags rf;
c5f8d995 3058 struct rq *rq;
6e998916 3059 u64 ns;
c5f8d995 3060
911b2898
PZ
3061#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3062 /*
3063 * 64-bit doesn't need locks to atomically read a 64bit value.
3064 * So we have a optimization chance when the task's delta_exec is 0.
3065 * Reading ->on_cpu is racy, but this is ok.
3066 *
d1ccc66d
IM
3067 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3068 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3069 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3070 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3071 * been accounted, so we're correct here as well.
911b2898 3072 */
da0c1e65 3073 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3074 return p->se.sum_exec_runtime;
3075#endif
3076
eb580751 3077 rq = task_rq_lock(p, &rf);
6e998916
SG
3078 /*
3079 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3080 * project cycles that may never be accounted to this
3081 * thread, breaking clock_gettime().
3082 */
3083 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3084 prefetch_curr_exec_start(p);
6e998916
SG
3085 update_rq_clock(rq);
3086 p->sched_class->update_curr(rq);
3087 }
3088 ns = p->se.sum_exec_runtime;
eb580751 3089 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3090
3091 return ns;
3092}
48f24c4d 3093
7835b98b
CL
3094/*
3095 * This function gets called by the timer code, with HZ frequency.
3096 * We call it with interrupts disabled.
7835b98b
CL
3097 */
3098void scheduler_tick(void)
3099{
7835b98b
CL
3100 int cpu = smp_processor_id();
3101 struct rq *rq = cpu_rq(cpu);
dd41f596 3102 struct task_struct *curr = rq->curr;
8a8c69c3 3103 struct rq_flags rf;
3e51f33f
PZ
3104
3105 sched_clock_tick();
dd41f596 3106
8a8c69c3
PZ
3107 rq_lock(rq, &rf);
3108
3e51f33f 3109 update_rq_clock(rq);
fa85ae24 3110 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3111 cpu_load_update_active(rq);
3289bdb4 3112 calc_global_load_tick(rq);
8a8c69c3
PZ
3113
3114 rq_unlock(rq, &rf);
7835b98b 3115
e9d2b064 3116 perf_event_task_tick();
e220d2dc 3117
e418e1c2 3118#ifdef CONFIG_SMP
6eb57e0d 3119 rq->idle_balance = idle_cpu(cpu);
7caff66f 3120 trigger_load_balance(rq);
e418e1c2 3121#endif
265f22a9 3122 rq_last_tick_reset(rq);
1da177e4
LT
3123}
3124
265f22a9
FW
3125#ifdef CONFIG_NO_HZ_FULL
3126/**
3127 * scheduler_tick_max_deferment
3128 *
3129 * Keep at least one tick per second when a single
3130 * active task is running because the scheduler doesn't
3131 * yet completely support full dynticks environment.
3132 *
3133 * This makes sure that uptime, CFS vruntime, load
3134 * balancing, etc... continue to move forward, even
3135 * with a very low granularity.
e69f6186
YB
3136 *
3137 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3138 */
3139u64 scheduler_tick_max_deferment(void)
3140{
3141 struct rq *rq = this_rq();
316c1608 3142 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3143
3144 next = rq->last_sched_tick + HZ;
3145
3146 if (time_before_eq(next, now))
3147 return 0;
3148
8fe8ff09 3149 return jiffies_to_nsecs(next - now);
1da177e4 3150}
265f22a9 3151#endif
1da177e4 3152
7e49fcce
SR
3153#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3154 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3155/*
3156 * If the value passed in is equal to the current preempt count
3157 * then we just disabled preemption. Start timing the latency.
3158 */
3159static inline void preempt_latency_start(int val)
3160{
3161 if (preempt_count() == val) {
3162 unsigned long ip = get_lock_parent_ip();
3163#ifdef CONFIG_DEBUG_PREEMPT
3164 current->preempt_disable_ip = ip;
3165#endif
3166 trace_preempt_off(CALLER_ADDR0, ip);
3167 }
3168}
7e49fcce 3169
edafe3a5 3170void preempt_count_add(int val)
1da177e4 3171{
6cd8a4bb 3172#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3173 /*
3174 * Underflow?
3175 */
9a11b49a
IM
3176 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3177 return;
6cd8a4bb 3178#endif
bdb43806 3179 __preempt_count_add(val);
6cd8a4bb 3180#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3181 /*
3182 * Spinlock count overflowing soon?
3183 */
33859f7f
MOS
3184 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3185 PREEMPT_MASK - 10);
6cd8a4bb 3186#endif
47252cfb 3187 preempt_latency_start(val);
1da177e4 3188}
bdb43806 3189EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3190NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3191
47252cfb
SR
3192/*
3193 * If the value passed in equals to the current preempt count
3194 * then we just enabled preemption. Stop timing the latency.
3195 */
3196static inline void preempt_latency_stop(int val)
3197{
3198 if (preempt_count() == val)
3199 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3200}
3201
edafe3a5 3202void preempt_count_sub(int val)
1da177e4 3203{
6cd8a4bb 3204#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3205 /*
3206 * Underflow?
3207 */
01e3eb82 3208 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3209 return;
1da177e4
LT
3210 /*
3211 * Is the spinlock portion underflowing?
3212 */
9a11b49a
IM
3213 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3214 !(preempt_count() & PREEMPT_MASK)))
3215 return;
6cd8a4bb 3216#endif
9a11b49a 3217
47252cfb 3218 preempt_latency_stop(val);
bdb43806 3219 __preempt_count_sub(val);
1da177e4 3220}
bdb43806 3221EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3222NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3223
47252cfb
SR
3224#else
3225static inline void preempt_latency_start(int val) { }
3226static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3227#endif
3228
59ddbcb2
IM
3229static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3230{
3231#ifdef CONFIG_DEBUG_PREEMPT
3232 return p->preempt_disable_ip;
3233#else
3234 return 0;
3235#endif
3236}
3237
1da177e4 3238/*
dd41f596 3239 * Print scheduling while atomic bug:
1da177e4 3240 */
dd41f596 3241static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3242{
d1c6d149
VN
3243 /* Save this before calling printk(), since that will clobber it */
3244 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3245
664dfa65
DJ
3246 if (oops_in_progress)
3247 return;
3248
3df0fc5b
PZ
3249 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3250 prev->comm, prev->pid, preempt_count());
838225b4 3251
dd41f596 3252 debug_show_held_locks(prev);
e21f5b15 3253 print_modules();
dd41f596
IM
3254 if (irqs_disabled())
3255 print_irqtrace_events(prev);
d1c6d149
VN
3256 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3257 && in_atomic_preempt_off()) {
8f47b187 3258 pr_err("Preemption disabled at:");
d1c6d149 3259 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3260 pr_cont("\n");
3261 }
748c7201
DBO
3262 if (panic_on_warn)
3263 panic("scheduling while atomic\n");
3264
6135fc1e 3265 dump_stack();
373d4d09 3266 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3267}
1da177e4 3268
dd41f596
IM
3269/*
3270 * Various schedule()-time debugging checks and statistics:
3271 */
3272static inline void schedule_debug(struct task_struct *prev)
3273{
0d9e2632 3274#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3275 if (task_stack_end_corrupted(prev))
3276 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3277#endif
b99def8b 3278
1dc0fffc 3279 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3280 __schedule_bug(prev);
1dc0fffc
PZ
3281 preempt_count_set(PREEMPT_DISABLED);
3282 }
b3fbab05 3283 rcu_sleep_check();
dd41f596 3284
1da177e4
LT
3285 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3286
ae92882e 3287 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3288}
3289
3290/*
3291 * Pick up the highest-prio task:
3292 */
3293static inline struct task_struct *
d8ac8971 3294pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3295{
49ee5768 3296 const struct sched_class *class;
dd41f596 3297 struct task_struct *p;
1da177e4
LT
3298
3299 /*
0ba87bb2
PZ
3300 * Optimization: we know that if all tasks are in the fair class we can
3301 * call that function directly, but only if the @prev task wasn't of a
3302 * higher scheduling class, because otherwise those loose the
3303 * opportunity to pull in more work from other CPUs.
1da177e4 3304 */
0ba87bb2
PZ
3305 if (likely((prev->sched_class == &idle_sched_class ||
3306 prev->sched_class == &fair_sched_class) &&
3307 rq->nr_running == rq->cfs.h_nr_running)) {
3308
d8ac8971 3309 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3310 if (unlikely(p == RETRY_TASK))
3311 goto again;
3312
d1ccc66d 3313 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3314 if (unlikely(!p))
d8ac8971 3315 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3316
3317 return p;
1da177e4
LT
3318 }
3319
37e117c0 3320again:
34f971f6 3321 for_each_class(class) {
d8ac8971 3322 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3323 if (p) {
3324 if (unlikely(p == RETRY_TASK))
3325 goto again;
dd41f596 3326 return p;
37e117c0 3327 }
dd41f596 3328 }
34f971f6 3329
d1ccc66d
IM
3330 /* The idle class should always have a runnable task: */
3331 BUG();
dd41f596 3332}
1da177e4 3333
dd41f596 3334/*
c259e01a 3335 * __schedule() is the main scheduler function.
edde96ea
PE
3336 *
3337 * The main means of driving the scheduler and thus entering this function are:
3338 *
3339 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3340 *
3341 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3342 * paths. For example, see arch/x86/entry_64.S.
3343 *
3344 * To drive preemption between tasks, the scheduler sets the flag in timer
3345 * interrupt handler scheduler_tick().
3346 *
3347 * 3. Wakeups don't really cause entry into schedule(). They add a
3348 * task to the run-queue and that's it.
3349 *
3350 * Now, if the new task added to the run-queue preempts the current
3351 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3352 * called on the nearest possible occasion:
3353 *
3354 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3355 *
3356 * - in syscall or exception context, at the next outmost
3357 * preempt_enable(). (this might be as soon as the wake_up()'s
3358 * spin_unlock()!)
3359 *
3360 * - in IRQ context, return from interrupt-handler to
3361 * preemptible context
3362 *
3363 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3364 * then at the next:
3365 *
3366 * - cond_resched() call
3367 * - explicit schedule() call
3368 * - return from syscall or exception to user-space
3369 * - return from interrupt-handler to user-space
bfd9b2b5 3370 *
b30f0e3f 3371 * WARNING: must be called with preemption disabled!
dd41f596 3372 */
499d7955 3373static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3374{
3375 struct task_struct *prev, *next;
67ca7bde 3376 unsigned long *switch_count;
d8ac8971 3377 struct rq_flags rf;
dd41f596 3378 struct rq *rq;
31656519 3379 int cpu;
dd41f596 3380
dd41f596
IM
3381 cpu = smp_processor_id();
3382 rq = cpu_rq(cpu);
dd41f596 3383 prev = rq->curr;
dd41f596 3384
dd41f596 3385 schedule_debug(prev);
1da177e4 3386
31656519 3387 if (sched_feat(HRTICK))
f333fdc9 3388 hrtick_clear(rq);
8f4d37ec 3389
46a5d164 3390 local_irq_disable();
bcbfdd01 3391 rcu_note_context_switch(preempt);
46a5d164 3392
e0acd0a6
ON
3393 /*
3394 * Make sure that signal_pending_state()->signal_pending() below
3395 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3396 * done by the caller to avoid the race with signal_wake_up().
3397 */
3398 smp_mb__before_spinlock();
8a8c69c3 3399 rq_lock(rq, &rf);
1da177e4 3400
d1ccc66d
IM
3401 /* Promote REQ to ACT */
3402 rq->clock_update_flags <<= 1;
bce4dc80 3403 update_rq_clock(rq);
9edfbfed 3404
246d86b5 3405 switch_count = &prev->nivcsw;
fc13aeba 3406 if (!preempt && prev->state) {
21aa9af0 3407 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3408 prev->state = TASK_RUNNING;
21aa9af0 3409 } else {
bce4dc80 3410 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3411 prev->on_rq = 0;
3412
e33a9bba
TH
3413 if (prev->in_iowait) {
3414 atomic_inc(&rq->nr_iowait);
3415 delayacct_blkio_start();
3416 }
3417
21aa9af0 3418 /*
2acca55e
PZ
3419 * If a worker went to sleep, notify and ask workqueue
3420 * whether it wants to wake up a task to maintain
3421 * concurrency.
21aa9af0
TH
3422 */
3423 if (prev->flags & PF_WQ_WORKER) {
3424 struct task_struct *to_wakeup;
3425
9b7f6597 3426 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3427 if (to_wakeup)
d8ac8971 3428 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3429 }
21aa9af0 3430 }
dd41f596 3431 switch_count = &prev->nvcsw;
1da177e4
LT
3432 }
3433
d8ac8971 3434 next = pick_next_task(rq, prev, &rf);
f26f9aff 3435 clear_tsk_need_resched(prev);
f27dde8d 3436 clear_preempt_need_resched();
1da177e4 3437
1da177e4 3438 if (likely(prev != next)) {
1da177e4
LT
3439 rq->nr_switches++;
3440 rq->curr = next;
3441 ++*switch_count;
3442
c73464b1 3443 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3444
3445 /* Also unlocks the rq: */
3446 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3447 } else {
cb42c9a3 3448 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3449 rq_unlock_irq(rq, &rf);
cbce1a68 3450 }
1da177e4 3451
e3fca9e7 3452 balance_callback(rq);
1da177e4 3453}
c259e01a 3454
9af6528e
PZ
3455void __noreturn do_task_dead(void)
3456{
3457 /*
3458 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3459 * when the following two conditions become true.
3460 * - There is race condition of mmap_sem (It is acquired by
3461 * exit_mm()), and
3462 * - SMI occurs before setting TASK_RUNINNG.
3463 * (or hypervisor of virtual machine switches to other guest)
3464 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3465 *
3466 * To avoid it, we have to wait for releasing tsk->pi_lock which
3467 * is held by try_to_wake_up()
3468 */
3469 smp_mb();
3470 raw_spin_unlock_wait(&current->pi_lock);
3471
d1ccc66d 3472 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3473 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3474
3475 /* Tell freezer to ignore us: */
3476 current->flags |= PF_NOFREEZE;
3477
9af6528e
PZ
3478 __schedule(false);
3479 BUG();
d1ccc66d
IM
3480
3481 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3482 for (;;)
d1ccc66d 3483 cpu_relax();
9af6528e
PZ
3484}
3485
9c40cef2
TG
3486static inline void sched_submit_work(struct task_struct *tsk)
3487{
3c7d5184 3488 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3489 return;
3490 /*
3491 * If we are going to sleep and we have plugged IO queued,
3492 * make sure to submit it to avoid deadlocks.
3493 */
3494 if (blk_needs_flush_plug(tsk))
3495 blk_schedule_flush_plug(tsk);
3496}
3497
722a9f92 3498asmlinkage __visible void __sched schedule(void)
c259e01a 3499{
9c40cef2
TG
3500 struct task_struct *tsk = current;
3501
3502 sched_submit_work(tsk);
bfd9b2b5 3503 do {
b30f0e3f 3504 preempt_disable();
fc13aeba 3505 __schedule(false);
b30f0e3f 3506 sched_preempt_enable_no_resched();
bfd9b2b5 3507 } while (need_resched());
c259e01a 3508}
1da177e4
LT
3509EXPORT_SYMBOL(schedule);
3510
8663effb
SRV
3511/*
3512 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3513 * state (have scheduled out non-voluntarily) by making sure that all
3514 * tasks have either left the run queue or have gone into user space.
3515 * As idle tasks do not do either, they must not ever be preempted
3516 * (schedule out non-voluntarily).
3517 *
3518 * schedule_idle() is similar to schedule_preempt_disable() except that it
3519 * never enables preemption because it does not call sched_submit_work().
3520 */
3521void __sched schedule_idle(void)
3522{
3523 /*
3524 * As this skips calling sched_submit_work(), which the idle task does
3525 * regardless because that function is a nop when the task is in a
3526 * TASK_RUNNING state, make sure this isn't used someplace that the
3527 * current task can be in any other state. Note, idle is always in the
3528 * TASK_RUNNING state.
3529 */
3530 WARN_ON_ONCE(current->state);
3531 do {
3532 __schedule(false);
3533 } while (need_resched());
3534}
3535
91d1aa43 3536#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3537asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3538{
3539 /*
3540 * If we come here after a random call to set_need_resched(),
3541 * or we have been woken up remotely but the IPI has not yet arrived,
3542 * we haven't yet exited the RCU idle mode. Do it here manually until
3543 * we find a better solution.
7cc78f8f
AL
3544 *
3545 * NB: There are buggy callers of this function. Ideally we
c467ea76 3546 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3547 * too frequently to make sense yet.
20ab65e3 3548 */
7cc78f8f 3549 enum ctx_state prev_state = exception_enter();
20ab65e3 3550 schedule();
7cc78f8f 3551 exception_exit(prev_state);
20ab65e3
FW
3552}
3553#endif
3554
c5491ea7
TG
3555/**
3556 * schedule_preempt_disabled - called with preemption disabled
3557 *
3558 * Returns with preemption disabled. Note: preempt_count must be 1
3559 */
3560void __sched schedule_preempt_disabled(void)
3561{
ba74c144 3562 sched_preempt_enable_no_resched();
c5491ea7
TG
3563 schedule();
3564 preempt_disable();
3565}
3566
06b1f808 3567static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3568{
3569 do {
47252cfb
SR
3570 /*
3571 * Because the function tracer can trace preempt_count_sub()
3572 * and it also uses preempt_enable/disable_notrace(), if
3573 * NEED_RESCHED is set, the preempt_enable_notrace() called
3574 * by the function tracer will call this function again and
3575 * cause infinite recursion.
3576 *
3577 * Preemption must be disabled here before the function
3578 * tracer can trace. Break up preempt_disable() into two
3579 * calls. One to disable preemption without fear of being
3580 * traced. The other to still record the preemption latency,
3581 * which can also be traced by the function tracer.
3582 */
499d7955 3583 preempt_disable_notrace();
47252cfb 3584 preempt_latency_start(1);
fc13aeba 3585 __schedule(true);
47252cfb 3586 preempt_latency_stop(1);
499d7955 3587 preempt_enable_no_resched_notrace();
a18b5d01
FW
3588
3589 /*
3590 * Check again in case we missed a preemption opportunity
3591 * between schedule and now.
3592 */
a18b5d01
FW
3593 } while (need_resched());
3594}
3595
1da177e4
LT
3596#ifdef CONFIG_PREEMPT
3597/*
2ed6e34f 3598 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3599 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3600 * occur there and call schedule directly.
3601 */
722a9f92 3602asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3603{
1da177e4
LT
3604 /*
3605 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3606 * we do not want to preempt the current task. Just return..
1da177e4 3607 */
fbb00b56 3608 if (likely(!preemptible()))
1da177e4
LT
3609 return;
3610
a18b5d01 3611 preempt_schedule_common();
1da177e4 3612}
376e2424 3613NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3614EXPORT_SYMBOL(preempt_schedule);
009f60e2 3615
009f60e2 3616/**
4eaca0a8 3617 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3618 *
3619 * The tracing infrastructure uses preempt_enable_notrace to prevent
3620 * recursion and tracing preempt enabling caused by the tracing
3621 * infrastructure itself. But as tracing can happen in areas coming
3622 * from userspace or just about to enter userspace, a preempt enable
3623 * can occur before user_exit() is called. This will cause the scheduler
3624 * to be called when the system is still in usermode.
3625 *
3626 * To prevent this, the preempt_enable_notrace will use this function
3627 * instead of preempt_schedule() to exit user context if needed before
3628 * calling the scheduler.
3629 */
4eaca0a8 3630asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3631{
3632 enum ctx_state prev_ctx;
3633
3634 if (likely(!preemptible()))
3635 return;
3636
3637 do {
47252cfb
SR
3638 /*
3639 * Because the function tracer can trace preempt_count_sub()
3640 * and it also uses preempt_enable/disable_notrace(), if
3641 * NEED_RESCHED is set, the preempt_enable_notrace() called
3642 * by the function tracer will call this function again and
3643 * cause infinite recursion.
3644 *
3645 * Preemption must be disabled here before the function
3646 * tracer can trace. Break up preempt_disable() into two
3647 * calls. One to disable preemption without fear of being
3648 * traced. The other to still record the preemption latency,
3649 * which can also be traced by the function tracer.
3650 */
3d8f74dd 3651 preempt_disable_notrace();
47252cfb 3652 preempt_latency_start(1);
009f60e2
ON
3653 /*
3654 * Needs preempt disabled in case user_exit() is traced
3655 * and the tracer calls preempt_enable_notrace() causing
3656 * an infinite recursion.
3657 */
3658 prev_ctx = exception_enter();
fc13aeba 3659 __schedule(true);
009f60e2
ON
3660 exception_exit(prev_ctx);
3661
47252cfb 3662 preempt_latency_stop(1);
3d8f74dd 3663 preempt_enable_no_resched_notrace();
009f60e2
ON
3664 } while (need_resched());
3665}
4eaca0a8 3666EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3667
32e475d7 3668#endif /* CONFIG_PREEMPT */
1da177e4
LT
3669
3670/*
2ed6e34f 3671 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3672 * off of irq context.
3673 * Note, that this is called and return with irqs disabled. This will
3674 * protect us against recursive calling from irq.
3675 */
722a9f92 3676asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3677{
b22366cd 3678 enum ctx_state prev_state;
6478d880 3679
2ed6e34f 3680 /* Catch callers which need to be fixed */
f27dde8d 3681 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3682
b22366cd
FW
3683 prev_state = exception_enter();
3684
3a5c359a 3685 do {
3d8f74dd 3686 preempt_disable();
3a5c359a 3687 local_irq_enable();
fc13aeba 3688 __schedule(true);
3a5c359a 3689 local_irq_disable();
3d8f74dd 3690 sched_preempt_enable_no_resched();
5ed0cec0 3691 } while (need_resched());
b22366cd
FW
3692
3693 exception_exit(prev_state);
1da177e4
LT
3694}
3695
ac6424b9 3696int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3697 void *key)
1da177e4 3698{
63859d4f 3699 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3700}
1da177e4
LT
3701EXPORT_SYMBOL(default_wake_function);
3702
b29739f9
IM
3703#ifdef CONFIG_RT_MUTEXES
3704
acd58620
PZ
3705static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3706{
3707 if (pi_task)
3708 prio = min(prio, pi_task->prio);
3709
3710 return prio;
3711}
3712
3713static inline int rt_effective_prio(struct task_struct *p, int prio)
3714{
3715 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3716
3717 return __rt_effective_prio(pi_task, prio);
3718}
3719
b29739f9
IM
3720/*
3721 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3722 * @p: task to boost
3723 * @pi_task: donor task
b29739f9
IM
3724 *
3725 * This function changes the 'effective' priority of a task. It does
3726 * not touch ->normal_prio like __setscheduler().
3727 *
c365c292
TG
3728 * Used by the rt_mutex code to implement priority inheritance
3729 * logic. Call site only calls if the priority of the task changed.
b29739f9 3730 */
acd58620 3731void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3732{
acd58620 3733 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3734 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3735 const struct sched_class *prev_class;
eb580751
PZ
3736 struct rq_flags rf;
3737 struct rq *rq;
b29739f9 3738
acd58620
PZ
3739 /* XXX used to be waiter->prio, not waiter->task->prio */
3740 prio = __rt_effective_prio(pi_task, p->normal_prio);
3741
3742 /*
3743 * If nothing changed; bail early.
3744 */
3745 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3746 return;
b29739f9 3747
eb580751 3748 rq = __task_rq_lock(p, &rf);
80f5c1b8 3749 update_rq_clock(rq);
acd58620
PZ
3750 /*
3751 * Set under pi_lock && rq->lock, such that the value can be used under
3752 * either lock.
3753 *
3754 * Note that there is loads of tricky to make this pointer cache work
3755 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3756 * ensure a task is de-boosted (pi_task is set to NULL) before the
3757 * task is allowed to run again (and can exit). This ensures the pointer
3758 * points to a blocked task -- which guaratees the task is present.
3759 */
3760 p->pi_top_task = pi_task;
3761
3762 /*
3763 * For FIFO/RR we only need to set prio, if that matches we're done.
3764 */
3765 if (prio == p->prio && !dl_prio(prio))
3766 goto out_unlock;
b29739f9 3767
1c4dd99b
TG
3768 /*
3769 * Idle task boosting is a nono in general. There is one
3770 * exception, when PREEMPT_RT and NOHZ is active:
3771 *
3772 * The idle task calls get_next_timer_interrupt() and holds
3773 * the timer wheel base->lock on the CPU and another CPU wants
3774 * to access the timer (probably to cancel it). We can safely
3775 * ignore the boosting request, as the idle CPU runs this code
3776 * with interrupts disabled and will complete the lock
3777 * protected section without being interrupted. So there is no
3778 * real need to boost.
3779 */
3780 if (unlikely(p == rq->idle)) {
3781 WARN_ON(p != rq->curr);
3782 WARN_ON(p->pi_blocked_on);
3783 goto out_unlock;
3784 }
3785
b91473ff 3786 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3787 oldprio = p->prio;
ff77e468
PZ
3788
3789 if (oldprio == prio)
3790 queue_flag &= ~DEQUEUE_MOVE;
3791
83ab0aa0 3792 prev_class = p->sched_class;
da0c1e65 3793 queued = task_on_rq_queued(p);
051a1d1a 3794 running = task_current(rq, p);
da0c1e65 3795 if (queued)
ff77e468 3796 dequeue_task(rq, p, queue_flag);
0e1f3483 3797 if (running)
f3cd1c4e 3798 put_prev_task(rq, p);
dd41f596 3799
2d3d891d
DF
3800 /*
3801 * Boosting condition are:
3802 * 1. -rt task is running and holds mutex A
3803 * --> -dl task blocks on mutex A
3804 *
3805 * 2. -dl task is running and holds mutex A
3806 * --> -dl task blocks on mutex A and could preempt the
3807 * running task
3808 */
3809 if (dl_prio(prio)) {
466af29b
ON
3810 if (!dl_prio(p->normal_prio) ||
3811 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3812 p->dl.dl_boosted = 1;
ff77e468 3813 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3814 } else
3815 p->dl.dl_boosted = 0;
aab03e05 3816 p->sched_class = &dl_sched_class;
2d3d891d
DF
3817 } else if (rt_prio(prio)) {
3818 if (dl_prio(oldprio))
3819 p->dl.dl_boosted = 0;
3820 if (oldprio < prio)
ff77e468 3821 queue_flag |= ENQUEUE_HEAD;
dd41f596 3822 p->sched_class = &rt_sched_class;
2d3d891d
DF
3823 } else {
3824 if (dl_prio(oldprio))
3825 p->dl.dl_boosted = 0;
746db944
BS
3826 if (rt_prio(oldprio))
3827 p->rt.timeout = 0;
dd41f596 3828 p->sched_class = &fair_sched_class;
2d3d891d 3829 }
dd41f596 3830
b29739f9
IM
3831 p->prio = prio;
3832
da0c1e65 3833 if (queued)
ff77e468 3834 enqueue_task(rq, p, queue_flag);
a399d233 3835 if (running)
b2bf6c31 3836 set_curr_task(rq, p);
cb469845 3837
da7a735e 3838 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3839out_unlock:
d1ccc66d
IM
3840 /* Avoid rq from going away on us: */
3841 preempt_disable();
eb580751 3842 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3843
3844 balance_callback(rq);
3845 preempt_enable();
b29739f9 3846}
acd58620
PZ
3847#else
3848static inline int rt_effective_prio(struct task_struct *p, int prio)
3849{
3850 return prio;
3851}
b29739f9 3852#endif
d50dde5a 3853
36c8b586 3854void set_user_nice(struct task_struct *p, long nice)
1da177e4 3855{
49bd21ef
PZ
3856 bool queued, running;
3857 int old_prio, delta;
eb580751 3858 struct rq_flags rf;
70b97a7f 3859 struct rq *rq;
1da177e4 3860
75e45d51 3861 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3862 return;
3863 /*
3864 * We have to be careful, if called from sys_setpriority(),
3865 * the task might be in the middle of scheduling on another CPU.
3866 */
eb580751 3867 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3868 update_rq_clock(rq);
3869
1da177e4
LT
3870 /*
3871 * The RT priorities are set via sched_setscheduler(), but we still
3872 * allow the 'normal' nice value to be set - but as expected
3873 * it wont have any effect on scheduling until the task is
aab03e05 3874 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3875 */
aab03e05 3876 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3877 p->static_prio = NICE_TO_PRIO(nice);
3878 goto out_unlock;
3879 }
da0c1e65 3880 queued = task_on_rq_queued(p);
49bd21ef 3881 running = task_current(rq, p);
da0c1e65 3882 if (queued)
7a57f32a 3883 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3884 if (running)
3885 put_prev_task(rq, p);
1da177e4 3886
1da177e4 3887 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3888 set_load_weight(p);
b29739f9
IM
3889 old_prio = p->prio;
3890 p->prio = effective_prio(p);
3891 delta = p->prio - old_prio;
1da177e4 3892
da0c1e65 3893 if (queued) {
7134b3e9 3894 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3895 /*
d5f9f942
AM
3896 * If the task increased its priority or is running and
3897 * lowered its priority, then reschedule its CPU:
1da177e4 3898 */
d5f9f942 3899 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3900 resched_curr(rq);
1da177e4 3901 }
49bd21ef
PZ
3902 if (running)
3903 set_curr_task(rq, p);
1da177e4 3904out_unlock:
eb580751 3905 task_rq_unlock(rq, p, &rf);
1da177e4 3906}
1da177e4
LT
3907EXPORT_SYMBOL(set_user_nice);
3908
e43379f1
MM
3909/*
3910 * can_nice - check if a task can reduce its nice value
3911 * @p: task
3912 * @nice: nice value
3913 */
36c8b586 3914int can_nice(const struct task_struct *p, const int nice)
e43379f1 3915{
d1ccc66d 3916 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3917 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3918
78d7d407 3919 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3920 capable(CAP_SYS_NICE));
3921}
3922
1da177e4
LT
3923#ifdef __ARCH_WANT_SYS_NICE
3924
3925/*
3926 * sys_nice - change the priority of the current process.
3927 * @increment: priority increment
3928 *
3929 * sys_setpriority is a more generic, but much slower function that
3930 * does similar things.
3931 */
5add95d4 3932SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3933{
48f24c4d 3934 long nice, retval;
1da177e4
LT
3935
3936 /*
3937 * Setpriority might change our priority at the same moment.
3938 * We don't have to worry. Conceptually one call occurs first
3939 * and we have a single winner.
3940 */
a9467fa3 3941 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3942 nice = task_nice(current) + increment;
1da177e4 3943
a9467fa3 3944 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3945 if (increment < 0 && !can_nice(current, nice))
3946 return -EPERM;
3947
1da177e4
LT
3948 retval = security_task_setnice(current, nice);
3949 if (retval)
3950 return retval;
3951
3952 set_user_nice(current, nice);
3953 return 0;
3954}
3955
3956#endif
3957
3958/**
3959 * task_prio - return the priority value of a given task.
3960 * @p: the task in question.
3961 *
e69f6186 3962 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3963 * RT tasks are offset by -200. Normal tasks are centered
3964 * around 0, value goes from -16 to +15.
3965 */
36c8b586 3966int task_prio(const struct task_struct *p)
1da177e4
LT
3967{
3968 return p->prio - MAX_RT_PRIO;
3969}
3970
1da177e4 3971/**
d1ccc66d 3972 * idle_cpu - is a given CPU idle currently?
1da177e4 3973 * @cpu: the processor in question.
e69f6186
YB
3974 *
3975 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3976 */
3977int idle_cpu(int cpu)
3978{
908a3283
TG
3979 struct rq *rq = cpu_rq(cpu);
3980
3981 if (rq->curr != rq->idle)
3982 return 0;
3983
3984 if (rq->nr_running)
3985 return 0;
3986
3987#ifdef CONFIG_SMP
3988 if (!llist_empty(&rq->wake_list))
3989 return 0;
3990#endif
3991
3992 return 1;
1da177e4
LT
3993}
3994
1da177e4 3995/**
d1ccc66d 3996 * idle_task - return the idle task for a given CPU.
1da177e4 3997 * @cpu: the processor in question.
e69f6186 3998 *
d1ccc66d 3999 * Return: The idle task for the CPU @cpu.
1da177e4 4000 */
36c8b586 4001struct task_struct *idle_task(int cpu)
1da177e4
LT
4002{
4003 return cpu_rq(cpu)->idle;
4004}
4005
4006/**
4007 * find_process_by_pid - find a process with a matching PID value.
4008 * @pid: the pid in question.
e69f6186
YB
4009 *
4010 * The task of @pid, if found. %NULL otherwise.
1da177e4 4011 */
a9957449 4012static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4013{
228ebcbe 4014 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4015}
4016
aab03e05
DF
4017/*
4018 * This function initializes the sched_dl_entity of a newly becoming
4019 * SCHED_DEADLINE task.
4020 *
4021 * Only the static values are considered here, the actual runtime and the
4022 * absolute deadline will be properly calculated when the task is enqueued
4023 * for the first time with its new policy.
4024 */
4025static void
4026__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
4027{
4028 struct sched_dl_entity *dl_se = &p->dl;
4029
aab03e05
DF
4030 dl_se->dl_runtime = attr->sched_runtime;
4031 dl_se->dl_deadline = attr->sched_deadline;
755378a4 4032 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 4033 dl_se->flags = attr->sched_flags;
332ac17e 4034 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3effcb42 4035 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
aab03e05
DF
4036}
4037
c13db6b1
SR
4038/*
4039 * sched_setparam() passes in -1 for its policy, to let the functions
4040 * it calls know not to change it.
4041 */
4042#define SETPARAM_POLICY -1
4043
c365c292
TG
4044static void __setscheduler_params(struct task_struct *p,
4045 const struct sched_attr *attr)
1da177e4 4046{
d50dde5a
DF
4047 int policy = attr->sched_policy;
4048
c13db6b1 4049 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4050 policy = p->policy;
4051
1da177e4 4052 p->policy = policy;
d50dde5a 4053
aab03e05
DF
4054 if (dl_policy(policy))
4055 __setparam_dl(p, attr);
39fd8fd2 4056 else if (fair_policy(policy))
d50dde5a
DF
4057 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4058
39fd8fd2
PZ
4059 /*
4060 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4061 * !rt_policy. Always setting this ensures that things like
4062 * getparam()/getattr() don't report silly values for !rt tasks.
4063 */
4064 p->rt_priority = attr->sched_priority;
383afd09 4065 p->normal_prio = normal_prio(p);
c365c292
TG
4066 set_load_weight(p);
4067}
39fd8fd2 4068
c365c292
TG
4069/* Actually do priority change: must hold pi & rq lock. */
4070static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4071 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4072{
4073 __setscheduler_params(p, attr);
d50dde5a 4074
383afd09 4075 /*
0782e63b
TG
4076 * Keep a potential priority boosting if called from
4077 * sched_setscheduler().
383afd09 4078 */
acd58620 4079 p->prio = normal_prio(p);
0782e63b 4080 if (keep_boost)
acd58620 4081 p->prio = rt_effective_prio(p, p->prio);
383afd09 4082
aab03e05
DF
4083 if (dl_prio(p->prio))
4084 p->sched_class = &dl_sched_class;
4085 else if (rt_prio(p->prio))
ffd44db5
PZ
4086 p->sched_class = &rt_sched_class;
4087 else
4088 p->sched_class = &fair_sched_class;
1da177e4 4089}
aab03e05
DF
4090
4091static void
4092__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4093{
4094 struct sched_dl_entity *dl_se = &p->dl;
4095
4096 attr->sched_priority = p->rt_priority;
4097 attr->sched_runtime = dl_se->dl_runtime;
4098 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4099 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4100 attr->sched_flags = dl_se->flags;
4101}
4102
4103/*
4104 * This function validates the new parameters of a -deadline task.
4105 * We ask for the deadline not being zero, and greater or equal
755378a4 4106 * than the runtime, as well as the period of being zero or
332ac17e 4107 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4108 * user parameters are above the internal resolution of 1us (we
4109 * check sched_runtime only since it is always the smaller one) and
4110 * below 2^63 ns (we have to check both sched_deadline and
4111 * sched_period, as the latter can be zero).
aab03e05
DF
4112 */
4113static bool
4114__checkparam_dl(const struct sched_attr *attr)
4115{
b0827819
JL
4116 /* deadline != 0 */
4117 if (attr->sched_deadline == 0)
4118 return false;
4119
4120 /*
4121 * Since we truncate DL_SCALE bits, make sure we're at least
4122 * that big.
4123 */
4124 if (attr->sched_runtime < (1ULL << DL_SCALE))
4125 return false;
4126
4127 /*
4128 * Since we use the MSB for wrap-around and sign issues, make
4129 * sure it's not set (mind that period can be equal to zero).
4130 */
4131 if (attr->sched_deadline & (1ULL << 63) ||
4132 attr->sched_period & (1ULL << 63))
4133 return false;
4134
4135 /* runtime <= deadline <= period (if period != 0) */
4136 if ((attr->sched_period != 0 &&
4137 attr->sched_period < attr->sched_deadline) ||
4138 attr->sched_deadline < attr->sched_runtime)
4139 return false;
4140
4141 return true;
aab03e05
DF
4142}
4143
c69e8d9c 4144/*
d1ccc66d 4145 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4146 */
4147static bool check_same_owner(struct task_struct *p)
4148{
4149 const struct cred *cred = current_cred(), *pcred;
4150 bool match;
4151
4152 rcu_read_lock();
4153 pcred = __task_cred(p);
9c806aa0
EB
4154 match = (uid_eq(cred->euid, pcred->euid) ||
4155 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4156 rcu_read_unlock();
4157 return match;
4158}
4159
d1ccc66d 4160static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
75381608
WL
4161{
4162 struct sched_dl_entity *dl_se = &p->dl;
4163
4164 if (dl_se->dl_runtime != attr->sched_runtime ||
4165 dl_se->dl_deadline != attr->sched_deadline ||
4166 dl_se->dl_period != attr->sched_period ||
4167 dl_se->flags != attr->sched_flags)
4168 return true;
4169
4170 return false;
4171}
4172
d50dde5a
DF
4173static int __sched_setscheduler(struct task_struct *p,
4174 const struct sched_attr *attr,
dbc7f069 4175 bool user, bool pi)
1da177e4 4176{
383afd09
SR
4177 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4178 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4179 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4180 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4181 const struct sched_class *prev_class;
eb580751 4182 struct rq_flags rf;
ca94c442 4183 int reset_on_fork;
7a57f32a 4184 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4185 struct rq *rq;
1da177e4 4186
896bbb25
SRV
4187 /* The pi code expects interrupts enabled */
4188 BUG_ON(pi && in_interrupt());
1da177e4 4189recheck:
d1ccc66d 4190 /* Double check policy once rq lock held: */
ca94c442
LP
4191 if (policy < 0) {
4192 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4193 policy = oldpolicy = p->policy;
ca94c442 4194 } else {
7479f3c9 4195 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4196
20f9cd2a 4197 if (!valid_policy(policy))
ca94c442
LP
4198 return -EINVAL;
4199 }
4200
2d4283e9
LA
4201 if (attr->sched_flags &
4202 ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
7479f3c9
PZ
4203 return -EINVAL;
4204
1da177e4
LT
4205 /*
4206 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4207 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4208 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4209 */
0bb040a4 4210 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4211 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4212 return -EINVAL;
aab03e05
DF
4213 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4214 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4215 return -EINVAL;
4216
37e4ab3f
OC
4217 /*
4218 * Allow unprivileged RT tasks to decrease priority:
4219 */
961ccddd 4220 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4221 if (fair_policy(policy)) {
d0ea0268 4222 if (attr->sched_nice < task_nice(p) &&
eaad4513 4223 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4224 return -EPERM;
4225 }
4226
e05606d3 4227 if (rt_policy(policy)) {
a44702e8
ON
4228 unsigned long rlim_rtprio =
4229 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4230
d1ccc66d 4231 /* Can't set/change the rt policy: */
8dc3e909
ON
4232 if (policy != p->policy && !rlim_rtprio)
4233 return -EPERM;
4234
d1ccc66d 4235 /* Can't increase priority: */
d50dde5a
DF
4236 if (attr->sched_priority > p->rt_priority &&
4237 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4238 return -EPERM;
4239 }
c02aa73b 4240
d44753b8
JL
4241 /*
4242 * Can't set/change SCHED_DEADLINE policy at all for now
4243 * (safest behavior); in the future we would like to allow
4244 * unprivileged DL tasks to increase their relative deadline
4245 * or reduce their runtime (both ways reducing utilization)
4246 */
4247 if (dl_policy(policy))
4248 return -EPERM;
4249
dd41f596 4250 /*
c02aa73b
DH
4251 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4252 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4253 */
20f9cd2a 4254 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4255 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4256 return -EPERM;
4257 }
5fe1d75f 4258
d1ccc66d 4259 /* Can't change other user's priorities: */
c69e8d9c 4260 if (!check_same_owner(p))
37e4ab3f 4261 return -EPERM;
ca94c442 4262
d1ccc66d 4263 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4264 if (p->sched_reset_on_fork && !reset_on_fork)
4265 return -EPERM;
37e4ab3f 4266 }
1da177e4 4267
725aad24 4268 if (user) {
b0ae1981 4269 retval = security_task_setscheduler(p);
725aad24
JF
4270 if (retval)
4271 return retval;
4272 }
4273
b29739f9 4274 /*
d1ccc66d 4275 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4276 * changing the priority of the task:
0122ec5b 4277 *
25985edc 4278 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4279 * runqueue lock must be held.
4280 */
eb580751 4281 rq = task_rq_lock(p, &rf);
80f5c1b8 4282 update_rq_clock(rq);
dc61b1d6 4283
34f971f6 4284 /*
d1ccc66d 4285 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4286 */
4287 if (p == rq->stop) {
eb580751 4288 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4289 return -EINVAL;
4290 }
4291
a51e9198 4292 /*
d6b1e911
TG
4293 * If not changing anything there's no need to proceed further,
4294 * but store a possible modification of reset_on_fork.
a51e9198 4295 */
d50dde5a 4296 if (unlikely(policy == p->policy)) {
d0ea0268 4297 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4298 goto change;
4299 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4300 goto change;
75381608 4301 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4302 goto change;
d50dde5a 4303
d6b1e911 4304 p->sched_reset_on_fork = reset_on_fork;
eb580751 4305 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4306 return 0;
4307 }
d50dde5a 4308change:
a51e9198 4309
dc61b1d6 4310 if (user) {
332ac17e 4311#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4312 /*
4313 * Do not allow realtime tasks into groups that have no runtime
4314 * assigned.
4315 */
4316 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4317 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4318 !task_group_is_autogroup(task_group(p))) {
eb580751 4319 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4320 return -EPERM;
4321 }
dc61b1d6 4322#endif
332ac17e
DF
4323#ifdef CONFIG_SMP
4324 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4325 cpumask_t *span = rq->rd->span;
332ac17e
DF
4326
4327 /*
4328 * Don't allow tasks with an affinity mask smaller than
4329 * the entire root_domain to become SCHED_DEADLINE. We
4330 * will also fail if there's no bandwidth available.
4331 */
e4099a5e
PZ
4332 if (!cpumask_subset(span, &p->cpus_allowed) ||
4333 rq->rd->dl_bw.bw == 0) {
eb580751 4334 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4335 return -EPERM;
4336 }
4337 }
4338#endif
4339 }
dc61b1d6 4340
d1ccc66d 4341 /* Re-check policy now with rq lock held: */
1da177e4
LT
4342 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4343 policy = oldpolicy = -1;
eb580751 4344 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4345 goto recheck;
4346 }
332ac17e
DF
4347
4348 /*
4349 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4350 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4351 * is available.
4352 */
e4099a5e 4353 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4354 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4355 return -EBUSY;
4356 }
4357
c365c292
TG
4358 p->sched_reset_on_fork = reset_on_fork;
4359 oldprio = p->prio;
4360
dbc7f069
PZ
4361 if (pi) {
4362 /*
4363 * Take priority boosted tasks into account. If the new
4364 * effective priority is unchanged, we just store the new
4365 * normal parameters and do not touch the scheduler class and
4366 * the runqueue. This will be done when the task deboost
4367 * itself.
4368 */
acd58620 4369 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4370 if (new_effective_prio == oldprio)
4371 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4372 }
4373
da0c1e65 4374 queued = task_on_rq_queued(p);
051a1d1a 4375 running = task_current(rq, p);
da0c1e65 4376 if (queued)
ff77e468 4377 dequeue_task(rq, p, queue_flags);
0e1f3483 4378 if (running)
f3cd1c4e 4379 put_prev_task(rq, p);
f6b53205 4380
83ab0aa0 4381 prev_class = p->sched_class;
dbc7f069 4382 __setscheduler(rq, p, attr, pi);
f6b53205 4383
da0c1e65 4384 if (queued) {
81a44c54
TG
4385 /*
4386 * We enqueue to tail when the priority of a task is
4387 * increased (user space view).
4388 */
ff77e468
PZ
4389 if (oldprio < p->prio)
4390 queue_flags |= ENQUEUE_HEAD;
1de64443 4391
ff77e468 4392 enqueue_task(rq, p, queue_flags);
81a44c54 4393 }
a399d233 4394 if (running)
b2bf6c31 4395 set_curr_task(rq, p);
cb469845 4396
da7a735e 4397 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4398
4399 /* Avoid rq from going away on us: */
4400 preempt_disable();
eb580751 4401 task_rq_unlock(rq, p, &rf);
b29739f9 4402
dbc7f069
PZ
4403 if (pi)
4404 rt_mutex_adjust_pi(p);
95e02ca9 4405
d1ccc66d 4406 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4407 balance_callback(rq);
4408 preempt_enable();
95e02ca9 4409
1da177e4
LT
4410 return 0;
4411}
961ccddd 4412
7479f3c9
PZ
4413static int _sched_setscheduler(struct task_struct *p, int policy,
4414 const struct sched_param *param, bool check)
4415{
4416 struct sched_attr attr = {
4417 .sched_policy = policy,
4418 .sched_priority = param->sched_priority,
4419 .sched_nice = PRIO_TO_NICE(p->static_prio),
4420 };
4421
c13db6b1
SR
4422 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4423 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4424 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4425 policy &= ~SCHED_RESET_ON_FORK;
4426 attr.sched_policy = policy;
4427 }
4428
dbc7f069 4429 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4430}
961ccddd
RR
4431/**
4432 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4433 * @p: the task in question.
4434 * @policy: new policy.
4435 * @param: structure containing the new RT priority.
4436 *
e69f6186
YB
4437 * Return: 0 on success. An error code otherwise.
4438 *
961ccddd
RR
4439 * NOTE that the task may be already dead.
4440 */
4441int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4442 const struct sched_param *param)
961ccddd 4443{
7479f3c9 4444 return _sched_setscheduler(p, policy, param, true);
961ccddd 4445}
1da177e4
LT
4446EXPORT_SYMBOL_GPL(sched_setscheduler);
4447
d50dde5a
DF
4448int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4449{
dbc7f069 4450 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4451}
4452EXPORT_SYMBOL_GPL(sched_setattr);
4453
961ccddd
RR
4454/**
4455 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4456 * @p: the task in question.
4457 * @policy: new policy.
4458 * @param: structure containing the new RT priority.
4459 *
4460 * Just like sched_setscheduler, only don't bother checking if the
4461 * current context has permission. For example, this is needed in
4462 * stop_machine(): we create temporary high priority worker threads,
4463 * but our caller might not have that capability.
e69f6186
YB
4464 *
4465 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4466 */
4467int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4468 const struct sched_param *param)
961ccddd 4469{
7479f3c9 4470 return _sched_setscheduler(p, policy, param, false);
961ccddd 4471}
84778472 4472EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4473
95cdf3b7
IM
4474static int
4475do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4476{
1da177e4
LT
4477 struct sched_param lparam;
4478 struct task_struct *p;
36c8b586 4479 int retval;
1da177e4
LT
4480
4481 if (!param || pid < 0)
4482 return -EINVAL;
4483 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4484 return -EFAULT;
5fe1d75f
ON
4485
4486 rcu_read_lock();
4487 retval = -ESRCH;
1da177e4 4488 p = find_process_by_pid(pid);
5fe1d75f
ON
4489 if (p != NULL)
4490 retval = sched_setscheduler(p, policy, &lparam);
4491 rcu_read_unlock();
36c8b586 4492
1da177e4
LT
4493 return retval;
4494}
4495
d50dde5a
DF
4496/*
4497 * Mimics kernel/events/core.c perf_copy_attr().
4498 */
d1ccc66d 4499static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4500{
4501 u32 size;
4502 int ret;
4503
4504 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4505 return -EFAULT;
4506
d1ccc66d 4507 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4508 memset(attr, 0, sizeof(*attr));
4509
4510 ret = get_user(size, &uattr->size);
4511 if (ret)
4512 return ret;
4513
d1ccc66d
IM
4514 /* Bail out on silly large: */
4515 if (size > PAGE_SIZE)
d50dde5a
DF
4516 goto err_size;
4517
d1ccc66d
IM
4518 /* ABI compatibility quirk: */
4519 if (!size)
d50dde5a
DF
4520 size = SCHED_ATTR_SIZE_VER0;
4521
4522 if (size < SCHED_ATTR_SIZE_VER0)
4523 goto err_size;
4524
4525 /*
4526 * If we're handed a bigger struct than we know of,
4527 * ensure all the unknown bits are 0 - i.e. new
4528 * user-space does not rely on any kernel feature
4529 * extensions we dont know about yet.
4530 */
4531 if (size > sizeof(*attr)) {
4532 unsigned char __user *addr;
4533 unsigned char __user *end;
4534 unsigned char val;
4535
4536 addr = (void __user *)uattr + sizeof(*attr);
4537 end = (void __user *)uattr + size;
4538
4539 for (; addr < end; addr++) {
4540 ret = get_user(val, addr);
4541 if (ret)
4542 return ret;
4543 if (val)
4544 goto err_size;
4545 }
4546 size = sizeof(*attr);
4547 }
4548
4549 ret = copy_from_user(attr, uattr, size);
4550 if (ret)
4551 return -EFAULT;
4552
4553 /*
d1ccc66d 4554 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4555 * to be strict and return an error on out-of-bounds values?
4556 */
75e45d51 4557 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4558
e78c7bca 4559 return 0;
d50dde5a
DF
4560
4561err_size:
4562 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4563 return -E2BIG;
d50dde5a
DF
4564}
4565
1da177e4
LT
4566/**
4567 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4568 * @pid: the pid in question.
4569 * @policy: new policy.
4570 * @param: structure containing the new RT priority.
e69f6186
YB
4571 *
4572 * Return: 0 on success. An error code otherwise.
1da177e4 4573 */
d1ccc66d 4574SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4575{
c21761f1
JB
4576 if (policy < 0)
4577 return -EINVAL;
4578
1da177e4
LT
4579 return do_sched_setscheduler(pid, policy, param);
4580}
4581
4582/**
4583 * sys_sched_setparam - set/change the RT priority of a thread
4584 * @pid: the pid in question.
4585 * @param: structure containing the new RT priority.
e69f6186
YB
4586 *
4587 * Return: 0 on success. An error code otherwise.
1da177e4 4588 */
5add95d4 4589SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4590{
c13db6b1 4591 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4592}
4593
d50dde5a
DF
4594/**
4595 * sys_sched_setattr - same as above, but with extended sched_attr
4596 * @pid: the pid in question.
5778fccf 4597 * @uattr: structure containing the extended parameters.
db66d756 4598 * @flags: for future extension.
d50dde5a 4599 */
6d35ab48
PZ
4600SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4601 unsigned int, flags)
d50dde5a
DF
4602{
4603 struct sched_attr attr;
4604 struct task_struct *p;
4605 int retval;
4606
6d35ab48 4607 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4608 return -EINVAL;
4609
143cf23d
MK
4610 retval = sched_copy_attr(uattr, &attr);
4611 if (retval)
4612 return retval;
d50dde5a 4613
b14ed2c2 4614 if ((int)attr.sched_policy < 0)
dbdb2275 4615 return -EINVAL;
d50dde5a
DF
4616
4617 rcu_read_lock();
4618 retval = -ESRCH;
4619 p = find_process_by_pid(pid);
4620 if (p != NULL)
4621 retval = sched_setattr(p, &attr);
4622 rcu_read_unlock();
4623
4624 return retval;
4625}
4626
1da177e4
LT
4627/**
4628 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4629 * @pid: the pid in question.
e69f6186
YB
4630 *
4631 * Return: On success, the policy of the thread. Otherwise, a negative error
4632 * code.
1da177e4 4633 */
5add95d4 4634SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4635{
36c8b586 4636 struct task_struct *p;
3a5c359a 4637 int retval;
1da177e4
LT
4638
4639 if (pid < 0)
3a5c359a 4640 return -EINVAL;
1da177e4
LT
4641
4642 retval = -ESRCH;
5fe85be0 4643 rcu_read_lock();
1da177e4
LT
4644 p = find_process_by_pid(pid);
4645 if (p) {
4646 retval = security_task_getscheduler(p);
4647 if (!retval)
ca94c442
LP
4648 retval = p->policy
4649 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4650 }
5fe85be0 4651 rcu_read_unlock();
1da177e4
LT
4652 return retval;
4653}
4654
4655/**
ca94c442 4656 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4657 * @pid: the pid in question.
4658 * @param: structure containing the RT priority.
e69f6186
YB
4659 *
4660 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4661 * code.
1da177e4 4662 */
5add95d4 4663SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4664{
ce5f7f82 4665 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4666 struct task_struct *p;
3a5c359a 4667 int retval;
1da177e4
LT
4668
4669 if (!param || pid < 0)
3a5c359a 4670 return -EINVAL;
1da177e4 4671
5fe85be0 4672 rcu_read_lock();
1da177e4
LT
4673 p = find_process_by_pid(pid);
4674 retval = -ESRCH;
4675 if (!p)
4676 goto out_unlock;
4677
4678 retval = security_task_getscheduler(p);
4679 if (retval)
4680 goto out_unlock;
4681
ce5f7f82
PZ
4682 if (task_has_rt_policy(p))
4683 lp.sched_priority = p->rt_priority;
5fe85be0 4684 rcu_read_unlock();
1da177e4
LT
4685
4686 /*
4687 * This one might sleep, we cannot do it with a spinlock held ...
4688 */
4689 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4690
1da177e4
LT
4691 return retval;
4692
4693out_unlock:
5fe85be0 4694 rcu_read_unlock();
1da177e4
LT
4695 return retval;
4696}
4697
d50dde5a
DF
4698static int sched_read_attr(struct sched_attr __user *uattr,
4699 struct sched_attr *attr,
4700 unsigned int usize)
4701{
4702 int ret;
4703
4704 if (!access_ok(VERIFY_WRITE, uattr, usize))
4705 return -EFAULT;
4706
4707 /*
4708 * If we're handed a smaller struct than we know of,
4709 * ensure all the unknown bits are 0 - i.e. old
4710 * user-space does not get uncomplete information.
4711 */
4712 if (usize < sizeof(*attr)) {
4713 unsigned char *addr;
4714 unsigned char *end;
4715
4716 addr = (void *)attr + usize;
4717 end = (void *)attr + sizeof(*attr);
4718
4719 for (; addr < end; addr++) {
4720 if (*addr)
22400674 4721 return -EFBIG;
d50dde5a
DF
4722 }
4723
4724 attr->size = usize;
4725 }
4726
4efbc454 4727 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4728 if (ret)
4729 return -EFAULT;
4730
22400674 4731 return 0;
d50dde5a
DF
4732}
4733
4734/**
aab03e05 4735 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4736 * @pid: the pid in question.
5778fccf 4737 * @uattr: structure containing the extended parameters.
d50dde5a 4738 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4739 * @flags: for future extension.
d50dde5a 4740 */
6d35ab48
PZ
4741SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4742 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4743{
4744 struct sched_attr attr = {
4745 .size = sizeof(struct sched_attr),
4746 };
4747 struct task_struct *p;
4748 int retval;
4749
4750 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4751 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4752 return -EINVAL;
4753
4754 rcu_read_lock();
4755 p = find_process_by_pid(pid);
4756 retval = -ESRCH;
4757 if (!p)
4758 goto out_unlock;
4759
4760 retval = security_task_getscheduler(p);
4761 if (retval)
4762 goto out_unlock;
4763
4764 attr.sched_policy = p->policy;
7479f3c9
PZ
4765 if (p->sched_reset_on_fork)
4766 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4767 if (task_has_dl_policy(p))
4768 __getparam_dl(p, &attr);
4769 else if (task_has_rt_policy(p))
d50dde5a
DF
4770 attr.sched_priority = p->rt_priority;
4771 else
d0ea0268 4772 attr.sched_nice = task_nice(p);
d50dde5a
DF
4773
4774 rcu_read_unlock();
4775
4776 retval = sched_read_attr(uattr, &attr, size);
4777 return retval;
4778
4779out_unlock:
4780 rcu_read_unlock();
4781 return retval;
4782}
4783
96f874e2 4784long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4785{
5a16f3d3 4786 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4787 struct task_struct *p;
4788 int retval;
1da177e4 4789
23f5d142 4790 rcu_read_lock();
1da177e4
LT
4791
4792 p = find_process_by_pid(pid);
4793 if (!p) {
23f5d142 4794 rcu_read_unlock();
1da177e4
LT
4795 return -ESRCH;
4796 }
4797
23f5d142 4798 /* Prevent p going away */
1da177e4 4799 get_task_struct(p);
23f5d142 4800 rcu_read_unlock();
1da177e4 4801
14a40ffc
TH
4802 if (p->flags & PF_NO_SETAFFINITY) {
4803 retval = -EINVAL;
4804 goto out_put_task;
4805 }
5a16f3d3
RR
4806 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4807 retval = -ENOMEM;
4808 goto out_put_task;
4809 }
4810 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4811 retval = -ENOMEM;
4812 goto out_free_cpus_allowed;
4813 }
1da177e4 4814 retval = -EPERM;
4c44aaaf
EB
4815 if (!check_same_owner(p)) {
4816 rcu_read_lock();
4817 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4818 rcu_read_unlock();
16303ab2 4819 goto out_free_new_mask;
4c44aaaf
EB
4820 }
4821 rcu_read_unlock();
4822 }
1da177e4 4823
b0ae1981 4824 retval = security_task_setscheduler(p);
e7834f8f 4825 if (retval)
16303ab2 4826 goto out_free_new_mask;
e7834f8f 4827
e4099a5e
PZ
4828
4829 cpuset_cpus_allowed(p, cpus_allowed);
4830 cpumask_and(new_mask, in_mask, cpus_allowed);
4831
332ac17e
DF
4832 /*
4833 * Since bandwidth control happens on root_domain basis,
4834 * if admission test is enabled, we only admit -deadline
4835 * tasks allowed to run on all the CPUs in the task's
4836 * root_domain.
4837 */
4838#ifdef CONFIG_SMP
f1e3a093
KT
4839 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4840 rcu_read_lock();
4841 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4842 retval = -EBUSY;
f1e3a093 4843 rcu_read_unlock();
16303ab2 4844 goto out_free_new_mask;
332ac17e 4845 }
f1e3a093 4846 rcu_read_unlock();
332ac17e
DF
4847 }
4848#endif
49246274 4849again:
25834c73 4850 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4851
8707d8b8 4852 if (!retval) {
5a16f3d3
RR
4853 cpuset_cpus_allowed(p, cpus_allowed);
4854 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4855 /*
4856 * We must have raced with a concurrent cpuset
4857 * update. Just reset the cpus_allowed to the
4858 * cpuset's cpus_allowed
4859 */
5a16f3d3 4860 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4861 goto again;
4862 }
4863 }
16303ab2 4864out_free_new_mask:
5a16f3d3
RR
4865 free_cpumask_var(new_mask);
4866out_free_cpus_allowed:
4867 free_cpumask_var(cpus_allowed);
4868out_put_task:
1da177e4 4869 put_task_struct(p);
1da177e4
LT
4870 return retval;
4871}
4872
4873static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4874 struct cpumask *new_mask)
1da177e4 4875{
96f874e2
RR
4876 if (len < cpumask_size())
4877 cpumask_clear(new_mask);
4878 else if (len > cpumask_size())
4879 len = cpumask_size();
4880
1da177e4
LT
4881 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4882}
4883
4884/**
d1ccc66d 4885 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4886 * @pid: pid of the process
4887 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4888 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4889 *
4890 * Return: 0 on success. An error code otherwise.
1da177e4 4891 */
5add95d4
HC
4892SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4893 unsigned long __user *, user_mask_ptr)
1da177e4 4894{
5a16f3d3 4895 cpumask_var_t new_mask;
1da177e4
LT
4896 int retval;
4897
5a16f3d3
RR
4898 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4899 return -ENOMEM;
1da177e4 4900
5a16f3d3
RR
4901 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4902 if (retval == 0)
4903 retval = sched_setaffinity(pid, new_mask);
4904 free_cpumask_var(new_mask);
4905 return retval;
1da177e4
LT
4906}
4907
96f874e2 4908long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4909{
36c8b586 4910 struct task_struct *p;
31605683 4911 unsigned long flags;
1da177e4 4912 int retval;
1da177e4 4913
23f5d142 4914 rcu_read_lock();
1da177e4
LT
4915
4916 retval = -ESRCH;
4917 p = find_process_by_pid(pid);
4918 if (!p)
4919 goto out_unlock;
4920
e7834f8f
DQ
4921 retval = security_task_getscheduler(p);
4922 if (retval)
4923 goto out_unlock;
4924
013fdb80 4925 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4926 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4927 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4928
4929out_unlock:
23f5d142 4930 rcu_read_unlock();
1da177e4 4931
9531b62f 4932 return retval;
1da177e4
LT
4933}
4934
4935/**
d1ccc66d 4936 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4937 * @pid: pid of the process
4938 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4939 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4940 *
599b4840
ZW
4941 * Return: size of CPU mask copied to user_mask_ptr on success. An
4942 * error code otherwise.
1da177e4 4943 */
5add95d4
HC
4944SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4945 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4946{
4947 int ret;
f17c8607 4948 cpumask_var_t mask;
1da177e4 4949
84fba5ec 4950 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4951 return -EINVAL;
4952 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4953 return -EINVAL;
4954
f17c8607
RR
4955 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4956 return -ENOMEM;
1da177e4 4957
f17c8607
RR
4958 ret = sched_getaffinity(pid, mask);
4959 if (ret == 0) {
8bc037fb 4960 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4961
4962 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4963 ret = -EFAULT;
4964 else
cd3d8031 4965 ret = retlen;
f17c8607
RR
4966 }
4967 free_cpumask_var(mask);
1da177e4 4968
f17c8607 4969 return ret;
1da177e4
LT
4970}
4971
4972/**
4973 * sys_sched_yield - yield the current processor to other threads.
4974 *
dd41f596
IM
4975 * This function yields the current CPU to other tasks. If there are no
4976 * other threads running on this CPU then this function will return.
e69f6186
YB
4977 *
4978 * Return: 0.
1da177e4 4979 */
5add95d4 4980SYSCALL_DEFINE0(sched_yield)
1da177e4 4981{
8a8c69c3
PZ
4982 struct rq_flags rf;
4983 struct rq *rq;
4984
4985 local_irq_disable();
4986 rq = this_rq();
4987 rq_lock(rq, &rf);
1da177e4 4988
ae92882e 4989 schedstat_inc(rq->yld_count);
4530d7ab 4990 current->sched_class->yield_task(rq);
1da177e4
LT
4991
4992 /*
4993 * Since we are going to call schedule() anyway, there's
4994 * no need to preempt or enable interrupts:
4995 */
8a8c69c3
PZ
4996 preempt_disable();
4997 rq_unlock(rq, &rf);
ba74c144 4998 sched_preempt_enable_no_resched();
1da177e4
LT
4999
5000 schedule();
5001
5002 return 0;
5003}
5004
35a773a0 5005#ifndef CONFIG_PREEMPT
02b67cc3 5006int __sched _cond_resched(void)
1da177e4 5007{
fe32d3cd 5008 if (should_resched(0)) {
a18b5d01 5009 preempt_schedule_common();
1da177e4
LT
5010 return 1;
5011 }
5012 return 0;
5013}
02b67cc3 5014EXPORT_SYMBOL(_cond_resched);
35a773a0 5015#endif
1da177e4
LT
5016
5017/*
613afbf8 5018 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5019 * call schedule, and on return reacquire the lock.
5020 *
41a2d6cf 5021 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5022 * operations here to prevent schedule() from being called twice (once via
5023 * spin_unlock(), once by hand).
5024 */
613afbf8 5025int __cond_resched_lock(spinlock_t *lock)
1da177e4 5026{
fe32d3cd 5027 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5028 int ret = 0;
5029
f607c668
PZ
5030 lockdep_assert_held(lock);
5031
4a81e832 5032 if (spin_needbreak(lock) || resched) {
1da177e4 5033 spin_unlock(lock);
d86ee480 5034 if (resched)
a18b5d01 5035 preempt_schedule_common();
95c354fe
NP
5036 else
5037 cpu_relax();
6df3cecb 5038 ret = 1;
1da177e4 5039 spin_lock(lock);
1da177e4 5040 }
6df3cecb 5041 return ret;
1da177e4 5042}
613afbf8 5043EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5044
613afbf8 5045int __sched __cond_resched_softirq(void)
1da177e4
LT
5046{
5047 BUG_ON(!in_softirq());
5048
fe32d3cd 5049 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 5050 local_bh_enable();
a18b5d01 5051 preempt_schedule_common();
1da177e4
LT
5052 local_bh_disable();
5053 return 1;
5054 }
5055 return 0;
5056}
613afbf8 5057EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5058
1da177e4
LT
5059/**
5060 * yield - yield the current processor to other threads.
5061 *
8e3fabfd
PZ
5062 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5063 *
5064 * The scheduler is at all times free to pick the calling task as the most
5065 * eligible task to run, if removing the yield() call from your code breaks
5066 * it, its already broken.
5067 *
5068 * Typical broken usage is:
5069 *
5070 * while (!event)
d1ccc66d 5071 * yield();
8e3fabfd
PZ
5072 *
5073 * where one assumes that yield() will let 'the other' process run that will
5074 * make event true. If the current task is a SCHED_FIFO task that will never
5075 * happen. Never use yield() as a progress guarantee!!
5076 *
5077 * If you want to use yield() to wait for something, use wait_event().
5078 * If you want to use yield() to be 'nice' for others, use cond_resched().
5079 * If you still want to use yield(), do not!
1da177e4
LT
5080 */
5081void __sched yield(void)
5082{
5083 set_current_state(TASK_RUNNING);
5084 sys_sched_yield();
5085}
1da177e4
LT
5086EXPORT_SYMBOL(yield);
5087
d95f4122
MG
5088/**
5089 * yield_to - yield the current processor to another thread in
5090 * your thread group, or accelerate that thread toward the
5091 * processor it's on.
16addf95
RD
5092 * @p: target task
5093 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5094 *
5095 * It's the caller's job to ensure that the target task struct
5096 * can't go away on us before we can do any checks.
5097 *
e69f6186 5098 * Return:
7b270f60
PZ
5099 * true (>0) if we indeed boosted the target task.
5100 * false (0) if we failed to boost the target.
5101 * -ESRCH if there's no task to yield to.
d95f4122 5102 */
fa93384f 5103int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5104{
5105 struct task_struct *curr = current;
5106 struct rq *rq, *p_rq;
5107 unsigned long flags;
c3c18640 5108 int yielded = 0;
d95f4122
MG
5109
5110 local_irq_save(flags);
5111 rq = this_rq();
5112
5113again:
5114 p_rq = task_rq(p);
7b270f60
PZ
5115 /*
5116 * If we're the only runnable task on the rq and target rq also
5117 * has only one task, there's absolutely no point in yielding.
5118 */
5119 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5120 yielded = -ESRCH;
5121 goto out_irq;
5122 }
5123
d95f4122 5124 double_rq_lock(rq, p_rq);
39e24d8f 5125 if (task_rq(p) != p_rq) {
d95f4122
MG
5126 double_rq_unlock(rq, p_rq);
5127 goto again;
5128 }
5129
5130 if (!curr->sched_class->yield_to_task)
7b270f60 5131 goto out_unlock;
d95f4122
MG
5132
5133 if (curr->sched_class != p->sched_class)
7b270f60 5134 goto out_unlock;
d95f4122
MG
5135
5136 if (task_running(p_rq, p) || p->state)
7b270f60 5137 goto out_unlock;
d95f4122
MG
5138
5139 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5140 if (yielded) {
ae92882e 5141 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5142 /*
5143 * Make p's CPU reschedule; pick_next_entity takes care of
5144 * fairness.
5145 */
5146 if (preempt && rq != p_rq)
8875125e 5147 resched_curr(p_rq);
6d1cafd8 5148 }
d95f4122 5149
7b270f60 5150out_unlock:
d95f4122 5151 double_rq_unlock(rq, p_rq);
7b270f60 5152out_irq:
d95f4122
MG
5153 local_irq_restore(flags);
5154
7b270f60 5155 if (yielded > 0)
d95f4122
MG
5156 schedule();
5157
5158 return yielded;
5159}
5160EXPORT_SYMBOL_GPL(yield_to);
5161
10ab5643
TH
5162int io_schedule_prepare(void)
5163{
5164 int old_iowait = current->in_iowait;
5165
5166 current->in_iowait = 1;
5167 blk_schedule_flush_plug(current);
5168
5169 return old_iowait;
5170}
5171
5172void io_schedule_finish(int token)
5173{
5174 current->in_iowait = token;
5175}
5176
1da177e4 5177/*
41a2d6cf 5178 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5179 * that process accounting knows that this is a task in IO wait state.
1da177e4 5180 */
1da177e4
LT
5181long __sched io_schedule_timeout(long timeout)
5182{
10ab5643 5183 int token;
1da177e4
LT
5184 long ret;
5185
10ab5643 5186 token = io_schedule_prepare();
1da177e4 5187 ret = schedule_timeout(timeout);
10ab5643 5188 io_schedule_finish(token);
9cff8ade 5189
1da177e4
LT
5190 return ret;
5191}
9cff8ade 5192EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5193
10ab5643
TH
5194void io_schedule(void)
5195{
5196 int token;
5197
5198 token = io_schedule_prepare();
5199 schedule();
5200 io_schedule_finish(token);
5201}
5202EXPORT_SYMBOL(io_schedule);
5203
1da177e4
LT
5204/**
5205 * sys_sched_get_priority_max - return maximum RT priority.
5206 * @policy: scheduling class.
5207 *
e69f6186
YB
5208 * Return: On success, this syscall returns the maximum
5209 * rt_priority that can be used by a given scheduling class.
5210 * On failure, a negative error code is returned.
1da177e4 5211 */
5add95d4 5212SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5213{
5214 int ret = -EINVAL;
5215
5216 switch (policy) {
5217 case SCHED_FIFO:
5218 case SCHED_RR:
5219 ret = MAX_USER_RT_PRIO-1;
5220 break;
aab03e05 5221 case SCHED_DEADLINE:
1da177e4 5222 case SCHED_NORMAL:
b0a9499c 5223 case SCHED_BATCH:
dd41f596 5224 case SCHED_IDLE:
1da177e4
LT
5225 ret = 0;
5226 break;
5227 }
5228 return ret;
5229}
5230
5231/**
5232 * sys_sched_get_priority_min - return minimum RT priority.
5233 * @policy: scheduling class.
5234 *
e69f6186
YB
5235 * Return: On success, this syscall returns the minimum
5236 * rt_priority that can be used by a given scheduling class.
5237 * On failure, a negative error code is returned.
1da177e4 5238 */
5add95d4 5239SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5240{
5241 int ret = -EINVAL;
5242
5243 switch (policy) {
5244 case SCHED_FIFO:
5245 case SCHED_RR:
5246 ret = 1;
5247 break;
aab03e05 5248 case SCHED_DEADLINE:
1da177e4 5249 case SCHED_NORMAL:
b0a9499c 5250 case SCHED_BATCH:
dd41f596 5251 case SCHED_IDLE:
1da177e4
LT
5252 ret = 0;
5253 }
5254 return ret;
5255}
5256
5257/**
5258 * sys_sched_rr_get_interval - return the default timeslice of a process.
5259 * @pid: pid of the process.
5260 * @interval: userspace pointer to the timeslice value.
5261 *
5262 * this syscall writes the default timeslice value of a given process
5263 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5264 *
5265 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5266 * an error code.
1da177e4 5267 */
17da2bd9 5268SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5269 struct timespec __user *, interval)
1da177e4 5270{
36c8b586 5271 struct task_struct *p;
a4ec24b4 5272 unsigned int time_slice;
eb580751
PZ
5273 struct rq_flags rf;
5274 struct timespec t;
dba091b9 5275 struct rq *rq;
3a5c359a 5276 int retval;
1da177e4
LT
5277
5278 if (pid < 0)
3a5c359a 5279 return -EINVAL;
1da177e4
LT
5280
5281 retval = -ESRCH;
1a551ae7 5282 rcu_read_lock();
1da177e4
LT
5283 p = find_process_by_pid(pid);
5284 if (!p)
5285 goto out_unlock;
5286
5287 retval = security_task_getscheduler(p);
5288 if (retval)
5289 goto out_unlock;
5290
eb580751 5291 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5292 time_slice = 0;
5293 if (p->sched_class->get_rr_interval)
5294 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5295 task_rq_unlock(rq, p, &rf);
a4ec24b4 5296
1a551ae7 5297 rcu_read_unlock();
a4ec24b4 5298 jiffies_to_timespec(time_slice, &t);
1da177e4 5299 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5300 return retval;
3a5c359a 5301
1da177e4 5302out_unlock:
1a551ae7 5303 rcu_read_unlock();
1da177e4
LT
5304 return retval;
5305}
5306
7c731e0a 5307static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5308
82a1fcb9 5309void sched_show_task(struct task_struct *p)
1da177e4 5310{
1da177e4 5311 unsigned long free = 0;
4e79752c 5312 int ppid;
1f8a7633 5313 unsigned long state = p->state;
1da177e4 5314
c930b2c0
IM
5315 /* Make sure the string lines up properly with the number of task states: */
5316 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5317
38200502
TH
5318 if (!try_get_task_stack(p))
5319 return;
1f8a7633
TH
5320 if (state)
5321 state = __ffs(state) + 1;
28d0686c 5322 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5323 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5324 if (state == TASK_RUNNING)
3df0fc5b 5325 printk(KERN_CONT " running task ");
1da177e4 5326#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5327 free = stack_not_used(p);
1da177e4 5328#endif
a90e984c 5329 ppid = 0;
4e79752c 5330 rcu_read_lock();
a90e984c
ON
5331 if (pid_alive(p))
5332 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5333 rcu_read_unlock();
3df0fc5b 5334 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5335 task_pid_nr(p), ppid,
aa47b7e0 5336 (unsigned long)task_thread_info(p)->flags);
1da177e4 5337
3d1cb205 5338 print_worker_info(KERN_INFO, p);
5fb5e6de 5339 show_stack(p, NULL);
38200502 5340 put_task_stack(p);
1da177e4
LT
5341}
5342
e59e2ae2 5343void show_state_filter(unsigned long state_filter)
1da177e4 5344{
36c8b586 5345 struct task_struct *g, *p;
1da177e4 5346
4bd77321 5347#if BITS_PER_LONG == 32
3df0fc5b
PZ
5348 printk(KERN_INFO
5349 " task PC stack pid father\n");
1da177e4 5350#else
3df0fc5b
PZ
5351 printk(KERN_INFO
5352 " task PC stack pid father\n");
1da177e4 5353#endif
510f5acc 5354 rcu_read_lock();
5d07f420 5355 for_each_process_thread(g, p) {
1da177e4
LT
5356 /*
5357 * reset the NMI-timeout, listing all files on a slow
25985edc 5358 * console might take a lot of time:
57675cb9
AR
5359 * Also, reset softlockup watchdogs on all CPUs, because
5360 * another CPU might be blocked waiting for us to process
5361 * an IPI.
1da177e4
LT
5362 */
5363 touch_nmi_watchdog();
57675cb9 5364 touch_all_softlockup_watchdogs();
39bc89fd 5365 if (!state_filter || (p->state & state_filter))
82a1fcb9 5366 sched_show_task(p);
5d07f420 5367 }
1da177e4 5368
dd41f596 5369#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5370 if (!state_filter)
5371 sysrq_sched_debug_show();
dd41f596 5372#endif
510f5acc 5373 rcu_read_unlock();
e59e2ae2
IM
5374 /*
5375 * Only show locks if all tasks are dumped:
5376 */
93335a21 5377 if (!state_filter)
e59e2ae2 5378 debug_show_all_locks();
1da177e4
LT
5379}
5380
0db0628d 5381void init_idle_bootup_task(struct task_struct *idle)
1df21055 5382{
dd41f596 5383 idle->sched_class = &idle_sched_class;
1df21055
IM
5384}
5385
f340c0d1
IM
5386/**
5387 * init_idle - set up an idle thread for a given CPU
5388 * @idle: task in question
d1ccc66d 5389 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5390 *
5391 * NOTE: this function does not set the idle thread's NEED_RESCHED
5392 * flag, to make booting more robust.
5393 */
0db0628d 5394void init_idle(struct task_struct *idle, int cpu)
1da177e4 5395{
70b97a7f 5396 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5397 unsigned long flags;
5398
25834c73
PZ
5399 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5400 raw_spin_lock(&rq->lock);
5cbd54ef 5401
5e1576ed 5402 __sched_fork(0, idle);
06b83b5f 5403 idle->state = TASK_RUNNING;
dd41f596 5404 idle->se.exec_start = sched_clock();
c1de45ca 5405 idle->flags |= PF_IDLE;
dd41f596 5406
e1b77c92
MR
5407 kasan_unpoison_task_stack(idle);
5408
de9b8f5d
PZ
5409#ifdef CONFIG_SMP
5410 /*
5411 * Its possible that init_idle() gets called multiple times on a task,
5412 * in that case do_set_cpus_allowed() will not do the right thing.
5413 *
5414 * And since this is boot we can forgo the serialization.
5415 */
5416 set_cpus_allowed_common(idle, cpumask_of(cpu));
5417#endif
6506cf6c
PZ
5418 /*
5419 * We're having a chicken and egg problem, even though we are
d1ccc66d 5420 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5421 * lockdep check in task_group() will fail.
5422 *
5423 * Similar case to sched_fork(). / Alternatively we could
5424 * use task_rq_lock() here and obtain the other rq->lock.
5425 *
5426 * Silence PROVE_RCU
5427 */
5428 rcu_read_lock();
dd41f596 5429 __set_task_cpu(idle, cpu);
6506cf6c 5430 rcu_read_unlock();
1da177e4 5431
1da177e4 5432 rq->curr = rq->idle = idle;
da0c1e65 5433 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5434#ifdef CONFIG_SMP
3ca7a440 5435 idle->on_cpu = 1;
4866cde0 5436#endif
25834c73
PZ
5437 raw_spin_unlock(&rq->lock);
5438 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5439
5440 /* Set the preempt count _outside_ the spinlocks! */
01028747 5441 init_idle_preempt_count(idle, cpu);
55cd5340 5442
dd41f596
IM
5443 /*
5444 * The idle tasks have their own, simple scheduling class:
5445 */
5446 idle->sched_class = &idle_sched_class;
868baf07 5447 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5448 vtime_init_idle(idle, cpu);
de9b8f5d 5449#ifdef CONFIG_SMP
f1c6f1a7
CE
5450 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5451#endif
19978ca6
IM
5452}
5453
e1d4eeec
NP
5454#ifdef CONFIG_SMP
5455
f82f8042
JL
5456int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5457 const struct cpumask *trial)
5458{
5459 int ret = 1, trial_cpus;
5460 struct dl_bw *cur_dl_b;
5461 unsigned long flags;
5462
bb2bc55a
MG
5463 if (!cpumask_weight(cur))
5464 return ret;
5465
75e23e49 5466 rcu_read_lock_sched();
f82f8042
JL
5467 cur_dl_b = dl_bw_of(cpumask_any(cur));
5468 trial_cpus = cpumask_weight(trial);
5469
5470 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5471 if (cur_dl_b->bw != -1 &&
5472 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5473 ret = 0;
5474 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5475 rcu_read_unlock_sched();
f82f8042
JL
5476
5477 return ret;
5478}
5479
7f51412a
JL
5480int task_can_attach(struct task_struct *p,
5481 const struct cpumask *cs_cpus_allowed)
5482{
5483 int ret = 0;
5484
5485 /*
5486 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5487 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5488 * affinity and isolating such threads by their set of
5489 * allowed nodes is unnecessary. Thus, cpusets are not
5490 * applicable for such threads. This prevents checking for
5491 * success of set_cpus_allowed_ptr() on all attached tasks
5492 * before cpus_allowed may be changed.
5493 */
5494 if (p->flags & PF_NO_SETAFFINITY) {
5495 ret = -EINVAL;
5496 goto out;
5497 }
5498
7f51412a
JL
5499 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5500 cs_cpus_allowed)) {
5501 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5502 cs_cpus_allowed);
75e23e49 5503 struct dl_bw *dl_b;
7f51412a
JL
5504 bool overflow;
5505 int cpus;
5506 unsigned long flags;
5507
75e23e49
JL
5508 rcu_read_lock_sched();
5509 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5510 raw_spin_lock_irqsave(&dl_b->lock, flags);
5511 cpus = dl_bw_cpus(dest_cpu);
5512 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5513 if (overflow)
5514 ret = -EBUSY;
5515 else {
5516 /*
5517 * We reserve space for this task in the destination
5518 * root_domain, as we can't fail after this point.
5519 * We will free resources in the source root_domain
5520 * later on (see set_cpus_allowed_dl()).
5521 */
daec5798 5522 __dl_add(dl_b, p->dl.dl_bw, cpus);
7f51412a
JL
5523 }
5524 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5525 rcu_read_unlock_sched();
7f51412a
JL
5526
5527 }
e1d4eeec 5528
7f51412a
JL
5529out:
5530 return ret;
5531}
5532
f2cb1360 5533bool sched_smp_initialized __read_mostly;
e26fbffd 5534
e6628d5b
MG
5535#ifdef CONFIG_NUMA_BALANCING
5536/* Migrate current task p to target_cpu */
5537int migrate_task_to(struct task_struct *p, int target_cpu)
5538{
5539 struct migration_arg arg = { p, target_cpu };
5540 int curr_cpu = task_cpu(p);
5541
5542 if (curr_cpu == target_cpu)
5543 return 0;
5544
0c98d344 5545 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5546 return -EINVAL;
5547
5548 /* TODO: This is not properly updating schedstats */
5549
286549dc 5550 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5551 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5552}
0ec8aa00
PZ
5553
5554/*
5555 * Requeue a task on a given node and accurately track the number of NUMA
5556 * tasks on the runqueues
5557 */
5558void sched_setnuma(struct task_struct *p, int nid)
5559{
da0c1e65 5560 bool queued, running;
eb580751
PZ
5561 struct rq_flags rf;
5562 struct rq *rq;
0ec8aa00 5563
eb580751 5564 rq = task_rq_lock(p, &rf);
da0c1e65 5565 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5566 running = task_current(rq, p);
5567
da0c1e65 5568 if (queued)
1de64443 5569 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5570 if (running)
f3cd1c4e 5571 put_prev_task(rq, p);
0ec8aa00
PZ
5572
5573 p->numa_preferred_nid = nid;
0ec8aa00 5574
da0c1e65 5575 if (queued)
7134b3e9 5576 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5577 if (running)
b2bf6c31 5578 set_curr_task(rq, p);
eb580751 5579 task_rq_unlock(rq, p, &rf);
0ec8aa00 5580}
5cc389bc 5581#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5582
1da177e4 5583#ifdef CONFIG_HOTPLUG_CPU
054b9108 5584/*
d1ccc66d 5585 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5586 * offline.
054b9108 5587 */
48c5ccae 5588void idle_task_exit(void)
1da177e4 5589{
48c5ccae 5590 struct mm_struct *mm = current->active_mm;
e76bd8d9 5591
48c5ccae 5592 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5593
a53efe5f 5594 if (mm != &init_mm) {
252d2a41 5595 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5596 finish_arch_post_lock_switch();
5597 }
48c5ccae 5598 mmdrop(mm);
1da177e4
LT
5599}
5600
5601/*
5d180232
PZ
5602 * Since this CPU is going 'away' for a while, fold any nr_active delta
5603 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5604 * nr_active count is stable. We need to take the teardown thread which
5605 * is calling this into account, so we hand in adjust = 1 to the load
5606 * calculation.
5d180232
PZ
5607 *
5608 * Also see the comment "Global load-average calculations".
1da177e4 5609 */
5d180232 5610static void calc_load_migrate(struct rq *rq)
1da177e4 5611{
d60585c5 5612 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5613 if (delta)
5614 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5615}
5616
3f1d2a31
PZ
5617static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5618{
5619}
5620
5621static const struct sched_class fake_sched_class = {
5622 .put_prev_task = put_prev_task_fake,
5623};
5624
5625static struct task_struct fake_task = {
5626 /*
5627 * Avoid pull_{rt,dl}_task()
5628 */
5629 .prio = MAX_PRIO + 1,
5630 .sched_class = &fake_sched_class,
5631};
5632
48f24c4d 5633/*
48c5ccae
PZ
5634 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5635 * try_to_wake_up()->select_task_rq().
5636 *
5637 * Called with rq->lock held even though we'er in stop_machine() and
5638 * there's no concurrency possible, we hold the required locks anyway
5639 * because of lock validation efforts.
1da177e4 5640 */
8a8c69c3 5641static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5642{
5e16bbc2 5643 struct rq *rq = dead_rq;
48c5ccae 5644 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5645 struct rq_flags orf = *rf;
48c5ccae 5646 int dest_cpu;
1da177e4
LT
5647
5648 /*
48c5ccae
PZ
5649 * Fudge the rq selection such that the below task selection loop
5650 * doesn't get stuck on the currently eligible stop task.
5651 *
5652 * We're currently inside stop_machine() and the rq is either stuck
5653 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5654 * either way we should never end up calling schedule() until we're
5655 * done here.
1da177e4 5656 */
48c5ccae 5657 rq->stop = NULL;
48f24c4d 5658
77bd3970
FW
5659 /*
5660 * put_prev_task() and pick_next_task() sched
5661 * class method both need to have an up-to-date
5662 * value of rq->clock[_task]
5663 */
5664 update_rq_clock(rq);
5665
5e16bbc2 5666 for (;;) {
48c5ccae
PZ
5667 /*
5668 * There's this thread running, bail when that's the only
d1ccc66d 5669 * remaining thread:
48c5ccae
PZ
5670 */
5671 if (rq->nr_running == 1)
dd41f596 5672 break;
48c5ccae 5673
cbce1a68 5674 /*
d1ccc66d 5675 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5676 */
8a8c69c3 5677 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5678 BUG_ON(!next);
79c53799 5679 next->sched_class->put_prev_task(rq, next);
e692ab53 5680
5473e0cc
WL
5681 /*
5682 * Rules for changing task_struct::cpus_allowed are holding
5683 * both pi_lock and rq->lock, such that holding either
5684 * stabilizes the mask.
5685 *
5686 * Drop rq->lock is not quite as disastrous as it usually is
5687 * because !cpu_active at this point, which means load-balance
5688 * will not interfere. Also, stop-machine.
5689 */
8a8c69c3 5690 rq_unlock(rq, rf);
5473e0cc 5691 raw_spin_lock(&next->pi_lock);
8a8c69c3 5692 rq_relock(rq, rf);
5473e0cc
WL
5693
5694 /*
5695 * Since we're inside stop-machine, _nothing_ should have
5696 * changed the task, WARN if weird stuff happened, because in
5697 * that case the above rq->lock drop is a fail too.
5698 */
5699 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5700 raw_spin_unlock(&next->pi_lock);
5701 continue;
5702 }
5703
48c5ccae 5704 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5705 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5706 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5707 if (rq != dead_rq) {
8a8c69c3 5708 rq_unlock(rq, rf);
5e16bbc2 5709 rq = dead_rq;
8a8c69c3
PZ
5710 *rf = orf;
5711 rq_relock(rq, rf);
5e16bbc2 5712 }
5473e0cc 5713 raw_spin_unlock(&next->pi_lock);
1da177e4 5714 }
dce48a84 5715
48c5ccae 5716 rq->stop = stop;
dce48a84 5717}
1da177e4
LT
5718#endif /* CONFIG_HOTPLUG_CPU */
5719
f2cb1360 5720void set_rq_online(struct rq *rq)
1f11eb6a
GH
5721{
5722 if (!rq->online) {
5723 const struct sched_class *class;
5724
c6c4927b 5725 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5726 rq->online = 1;
5727
5728 for_each_class(class) {
5729 if (class->rq_online)
5730 class->rq_online(rq);
5731 }
5732 }
5733}
5734
f2cb1360 5735void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5736{
5737 if (rq->online) {
5738 const struct sched_class *class;
5739
5740 for_each_class(class) {
5741 if (class->rq_offline)
5742 class->rq_offline(rq);
5743 }
5744
c6c4927b 5745 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5746 rq->online = 0;
5747 }
5748}
5749
9cf7243d 5750static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5751{
969c7921 5752 struct rq *rq = cpu_rq(cpu);
1da177e4 5753
a803f026
CM
5754 rq->age_stamp = sched_clock_cpu(cpu);
5755}
5756
d1ccc66d
IM
5757/*
5758 * used to mark begin/end of suspend/resume:
5759 */
5760static int num_cpus_frozen;
d35be8ba 5761
1da177e4 5762/*
3a101d05
TH
5763 * Update cpusets according to cpu_active mask. If cpusets are
5764 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5765 * around partition_sched_domains().
d35be8ba
SB
5766 *
5767 * If we come here as part of a suspend/resume, don't touch cpusets because we
5768 * want to restore it back to its original state upon resume anyway.
1da177e4 5769 */
40190a78 5770static void cpuset_cpu_active(void)
e761b772 5771{
40190a78 5772 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5773 /*
5774 * num_cpus_frozen tracks how many CPUs are involved in suspend
5775 * resume sequence. As long as this is not the last online
5776 * operation in the resume sequence, just build a single sched
5777 * domain, ignoring cpusets.
5778 */
5779 num_cpus_frozen--;
5780 if (likely(num_cpus_frozen)) {
5781 partition_sched_domains(1, NULL, NULL);
135fb3e1 5782 return;
d35be8ba 5783 }
d35be8ba
SB
5784 /*
5785 * This is the last CPU online operation. So fall through and
5786 * restore the original sched domains by considering the
5787 * cpuset configurations.
5788 */
3a101d05 5789 }
30e03acd 5790 cpuset_update_active_cpus();
3a101d05 5791}
e761b772 5792
40190a78 5793static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5794{
3c18d447 5795 unsigned long flags;
3c18d447 5796 struct dl_bw *dl_b;
533445c6
OS
5797 bool overflow;
5798 int cpus;
3c18d447 5799
40190a78 5800 if (!cpuhp_tasks_frozen) {
533445c6
OS
5801 rcu_read_lock_sched();
5802 dl_b = dl_bw_of(cpu);
3c18d447 5803
533445c6
OS
5804 raw_spin_lock_irqsave(&dl_b->lock, flags);
5805 cpus = dl_bw_cpus(cpu);
5806 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5807 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 5808
533445c6 5809 rcu_read_unlock_sched();
3c18d447 5810
533445c6 5811 if (overflow)
135fb3e1 5812 return -EBUSY;
30e03acd 5813 cpuset_update_active_cpus();
135fb3e1 5814 } else {
d35be8ba
SB
5815 num_cpus_frozen++;
5816 partition_sched_domains(1, NULL, NULL);
e761b772 5817 }
135fb3e1 5818 return 0;
e761b772 5819}
e761b772 5820
40190a78 5821int sched_cpu_activate(unsigned int cpu)
135fb3e1 5822{
7d976699 5823 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5824 struct rq_flags rf;
7d976699 5825
40190a78 5826 set_cpu_active(cpu, true);
135fb3e1 5827
40190a78 5828 if (sched_smp_initialized) {
135fb3e1 5829 sched_domains_numa_masks_set(cpu);
40190a78 5830 cpuset_cpu_active();
e761b772 5831 }
7d976699
TG
5832
5833 /*
5834 * Put the rq online, if not already. This happens:
5835 *
5836 * 1) In the early boot process, because we build the real domains
d1ccc66d 5837 * after all CPUs have been brought up.
7d976699
TG
5838 *
5839 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5840 * domains.
5841 */
8a8c69c3 5842 rq_lock_irqsave(rq, &rf);
7d976699
TG
5843 if (rq->rd) {
5844 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5845 set_rq_online(rq);
5846 }
8a8c69c3 5847 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5848
5849 update_max_interval();
5850
40190a78 5851 return 0;
135fb3e1
TG
5852}
5853
40190a78 5854int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5855{
135fb3e1
TG
5856 int ret;
5857
40190a78 5858 set_cpu_active(cpu, false);
b2454caa
PZ
5859 /*
5860 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5861 * users of this state to go away such that all new such users will
5862 * observe it.
5863 *
5864 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5865 * not imply sync_sched(), so wait for both.
5866 *
5867 * Do sync before park smpboot threads to take care the rcu boost case.
5868 */
5869 if (IS_ENABLED(CONFIG_PREEMPT))
5870 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5871 else
5872 synchronize_rcu();
40190a78
TG
5873
5874 if (!sched_smp_initialized)
5875 return 0;
5876
5877 ret = cpuset_cpu_inactive(cpu);
5878 if (ret) {
5879 set_cpu_active(cpu, true);
5880 return ret;
135fb3e1 5881 }
40190a78
TG
5882 sched_domains_numa_masks_clear(cpu);
5883 return 0;
135fb3e1
TG
5884}
5885
94baf7a5
TG
5886static void sched_rq_cpu_starting(unsigned int cpu)
5887{
5888 struct rq *rq = cpu_rq(cpu);
5889
5890 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5891 update_max_interval();
5892}
5893
135fb3e1
TG
5894int sched_cpu_starting(unsigned int cpu)
5895{
5896 set_cpu_rq_start_time(cpu);
94baf7a5 5897 sched_rq_cpu_starting(cpu);
135fb3e1 5898 return 0;
e761b772 5899}
e761b772 5900
f2785ddb
TG
5901#ifdef CONFIG_HOTPLUG_CPU
5902int sched_cpu_dying(unsigned int cpu)
5903{
5904 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5905 struct rq_flags rf;
f2785ddb
TG
5906
5907 /* Handle pending wakeups and then migrate everything off */
5908 sched_ttwu_pending();
8a8c69c3
PZ
5909
5910 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5911 if (rq->rd) {
5912 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5913 set_rq_offline(rq);
5914 }
8a8c69c3 5915 migrate_tasks(rq, &rf);
f2785ddb 5916 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5917 rq_unlock_irqrestore(rq, &rf);
5918
f2785ddb
TG
5919 calc_load_migrate(rq);
5920 update_max_interval();
20a5c8cc 5921 nohz_balance_exit_idle(cpu);
e5ef27d0 5922 hrtick_clear(rq);
f2785ddb
TG
5923 return 0;
5924}
5925#endif
5926
1b568f0a
PZ
5927#ifdef CONFIG_SCHED_SMT
5928DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5929
5930static void sched_init_smt(void)
5931{
5932 /*
5933 * We've enumerated all CPUs and will assume that if any CPU
5934 * has SMT siblings, CPU0 will too.
5935 */
5936 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5937 static_branch_enable(&sched_smt_present);
5938}
5939#else
5940static inline void sched_init_smt(void) { }
5941#endif
5942
1da177e4
LT
5943void __init sched_init_smp(void)
5944{
dcc30a35
RR
5945 cpumask_var_t non_isolated_cpus;
5946
5947 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 5948
cb83b629
PZ
5949 sched_init_numa();
5950
6acce3ef
PZ
5951 /*
5952 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5953 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5954 * happen.
5955 */
712555ee 5956 mutex_lock(&sched_domains_mutex);
8d5dc512 5957 sched_init_domains(cpu_active_mask);
dcc30a35
RR
5958 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5959 if (cpumask_empty(non_isolated_cpus))
5960 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 5961 mutex_unlock(&sched_domains_mutex);
e761b772 5962
5c1e1767 5963 /* Move init over to a non-isolated CPU */
dcc30a35 5964 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 5965 BUG();
19978ca6 5966 sched_init_granularity();
dcc30a35 5967 free_cpumask_var(non_isolated_cpus);
4212823f 5968
0e3900e6 5969 init_sched_rt_class();
1baca4ce 5970 init_sched_dl_class();
1b568f0a
PZ
5971
5972 sched_init_smt();
5973
e26fbffd 5974 sched_smp_initialized = true;
1da177e4 5975}
e26fbffd
TG
5976
5977static int __init migration_init(void)
5978{
94baf7a5 5979 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5980 return 0;
1da177e4 5981}
e26fbffd
TG
5982early_initcall(migration_init);
5983
1da177e4
LT
5984#else
5985void __init sched_init_smp(void)
5986{
19978ca6 5987 sched_init_granularity();
1da177e4
LT
5988}
5989#endif /* CONFIG_SMP */
5990
5991int in_sched_functions(unsigned long addr)
5992{
1da177e4
LT
5993 return in_lock_functions(addr) ||
5994 (addr >= (unsigned long)__sched_text_start
5995 && addr < (unsigned long)__sched_text_end);
5996}
5997
029632fb 5998#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5999/*
6000 * Default task group.
6001 * Every task in system belongs to this group at bootup.
6002 */
029632fb 6003struct task_group root_task_group;
35cf4e50 6004LIST_HEAD(task_groups);
b0367629
WL
6005
6006/* Cacheline aligned slab cache for task_group */
6007static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6008#endif
6f505b16 6009
e6252c3e 6010DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6011DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6012
1da177e4
LT
6013void __init sched_init(void)
6014{
dd41f596 6015 int i, j;
434d53b0
MT
6016 unsigned long alloc_size = 0, ptr;
6017
9881b024 6018 sched_clock_init();
5822a454 6019 wait_bit_init();
9dcb8b68 6020
434d53b0
MT
6021#ifdef CONFIG_FAIR_GROUP_SCHED
6022 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6023#endif
6024#ifdef CONFIG_RT_GROUP_SCHED
6025 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6026#endif
434d53b0 6027 if (alloc_size) {
36b7b6d4 6028 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6029
6030#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6031 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6032 ptr += nr_cpu_ids * sizeof(void **);
6033
07e06b01 6034 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6035 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6036
6d6bc0ad 6037#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6038#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6039 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6040 ptr += nr_cpu_ids * sizeof(void **);
6041
07e06b01 6042 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6043 ptr += nr_cpu_ids * sizeof(void **);
6044
6d6bc0ad 6045#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6046 }
df7c8e84 6047#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6048 for_each_possible_cpu(i) {
6049 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6050 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6051 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6052 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6053 }
b74e6278 6054#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6055
d1ccc66d
IM
6056 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6057 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6058
57d885fe
GH
6059#ifdef CONFIG_SMP
6060 init_defrootdomain();
6061#endif
6062
d0b27fa7 6063#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6064 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6065 global_rt_period(), global_rt_runtime());
6d6bc0ad 6066#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6067
7c941438 6068#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6069 task_group_cache = KMEM_CACHE(task_group, 0);
6070
07e06b01
YZ
6071 list_add(&root_task_group.list, &task_groups);
6072 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6073 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6074 autogroup_init(&init_task);
7c941438 6075#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6076
0a945022 6077 for_each_possible_cpu(i) {
70b97a7f 6078 struct rq *rq;
1da177e4
LT
6079
6080 rq = cpu_rq(i);
05fa785c 6081 raw_spin_lock_init(&rq->lock);
7897986b 6082 rq->nr_running = 0;
dce48a84
TG
6083 rq->calc_load_active = 0;
6084 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6085 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6086 init_rt_rq(&rq->rt);
6087 init_dl_rq(&rq->dl);
dd41f596 6088#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6089 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6090 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6091 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6092 /*
d1ccc66d 6093 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6094 *
6095 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6096 * gets 100% of the CPU resources in the system. This overall
6097 * system CPU resource is divided among the tasks of
07e06b01 6098 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6099 * based on each entity's (task or task-group's) weight
6100 * (se->load.weight).
6101 *
07e06b01 6102 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6103 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6104 * then A0's share of the CPU resource is:
354d60c2 6105 *
0d905bca 6106 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6107 *
07e06b01
YZ
6108 * We achieve this by letting root_task_group's tasks sit
6109 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6110 */
ab84d31e 6111 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6112 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6113#endif /* CONFIG_FAIR_GROUP_SCHED */
6114
6115 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6116#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6117 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6118#endif
1da177e4 6119
dd41f596
IM
6120 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6121 rq->cpu_load[j] = 0;
fdf3e95d 6122
1da177e4 6123#ifdef CONFIG_SMP
41c7ce9a 6124 rq->sd = NULL;
57d885fe 6125 rq->rd = NULL;
ca6d75e6 6126 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6127 rq->balance_callback = NULL;
1da177e4 6128 rq->active_balance = 0;
dd41f596 6129 rq->next_balance = jiffies;
1da177e4 6130 rq->push_cpu = 0;
0a2966b4 6131 rq->cpu = i;
1f11eb6a 6132 rq->online = 0;
eae0c9df
MG
6133 rq->idle_stamp = 0;
6134 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6135 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6136
6137 INIT_LIST_HEAD(&rq->cfs_tasks);
6138
dc938520 6139 rq_attach_root(rq, &def_root_domain);
3451d024 6140#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6141 rq->last_load_update_tick = jiffies;
1c792db7 6142 rq->nohz_flags = 0;
83cd4fe2 6143#endif
265f22a9
FW
6144#ifdef CONFIG_NO_HZ_FULL
6145 rq->last_sched_tick = 0;
6146#endif
9fd81dd5 6147#endif /* CONFIG_SMP */
8f4d37ec 6148 init_rq_hrtick(rq);
1da177e4 6149 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6150 }
6151
2dd73a4f 6152 set_load_weight(&init_task);
b50f60ce 6153
1da177e4
LT
6154 /*
6155 * The boot idle thread does lazy MMU switching as well:
6156 */
f1f10076 6157 mmgrab(&init_mm);
1da177e4
LT
6158 enter_lazy_tlb(&init_mm, current);
6159
6160 /*
6161 * Make us the idle thread. Technically, schedule() should not be
6162 * called from this thread, however somewhere below it might be,
6163 * but because we are the idle thread, we just pick up running again
6164 * when this runqueue becomes "idle".
6165 */
6166 init_idle(current, smp_processor_id());
dce48a84
TG
6167
6168 calc_load_update = jiffies + LOAD_FREQ;
6169
bf4d83f6 6170#ifdef CONFIG_SMP
bdddd296
RR
6171 /* May be allocated at isolcpus cmdline parse time */
6172 if (cpu_isolated_map == NULL)
6173 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6174 idle_thread_set_boot_cpu();
9cf7243d 6175 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6176#endif
6177 init_sched_fair_class();
6a7b3dc3 6178
4698f88c
JP
6179 init_schedstats();
6180
6892b75e 6181 scheduler_running = 1;
1da177e4
LT
6182}
6183
d902db1e 6184#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6185static inline int preempt_count_equals(int preempt_offset)
6186{
da7142e2 6187 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6188
4ba8216c 6189 return (nested == preempt_offset);
e4aafea2
FW
6190}
6191
d894837f 6192void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6193{
8eb23b9f
PZ
6194 /*
6195 * Blocking primitives will set (and therefore destroy) current->state,
6196 * since we will exit with TASK_RUNNING make sure we enter with it,
6197 * otherwise we will destroy state.
6198 */
00845eb9 6199 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6200 "do not call blocking ops when !TASK_RUNNING; "
6201 "state=%lx set at [<%p>] %pS\n",
6202 current->state,
6203 (void *)current->task_state_change,
00845eb9 6204 (void *)current->task_state_change);
8eb23b9f 6205
3427445a
PZ
6206 ___might_sleep(file, line, preempt_offset);
6207}
6208EXPORT_SYMBOL(__might_sleep);
6209
6210void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6211{
d1ccc66d
IM
6212 /* Ratelimiting timestamp: */
6213 static unsigned long prev_jiffy;
6214
d1c6d149 6215 unsigned long preempt_disable_ip;
1da177e4 6216
d1ccc66d
IM
6217 /* WARN_ON_ONCE() by default, no rate limit required: */
6218 rcu_sleep_check();
6219
db273be2
TG
6220 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6221 !is_idle_task(current)) ||
1c3c5eab
TG
6222 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6223 oops_in_progress)
aef745fc 6224 return;
1c3c5eab 6225
aef745fc
IM
6226 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6227 return;
6228 prev_jiffy = jiffies;
6229
d1ccc66d 6230 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6231 preempt_disable_ip = get_preempt_disable_ip(current);
6232
3df0fc5b
PZ
6233 printk(KERN_ERR
6234 "BUG: sleeping function called from invalid context at %s:%d\n",
6235 file, line);
6236 printk(KERN_ERR
6237 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6238 in_atomic(), irqs_disabled(),
6239 current->pid, current->comm);
aef745fc 6240
a8b686b3
ES
6241 if (task_stack_end_corrupted(current))
6242 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6243
aef745fc
IM
6244 debug_show_held_locks(current);
6245 if (irqs_disabled())
6246 print_irqtrace_events(current);
d1c6d149
VN
6247 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6248 && !preempt_count_equals(preempt_offset)) {
8f47b187 6249 pr_err("Preemption disabled at:");
d1c6d149 6250 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6251 pr_cont("\n");
6252 }
aef745fc 6253 dump_stack();
f0b22e39 6254 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6255}
3427445a 6256EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6257#endif
6258
6259#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6260void normalize_rt_tasks(void)
3a5e4dc1 6261{
dbc7f069 6262 struct task_struct *g, *p;
d50dde5a
DF
6263 struct sched_attr attr = {
6264 .sched_policy = SCHED_NORMAL,
6265 };
1da177e4 6266
3472eaa1 6267 read_lock(&tasklist_lock);
5d07f420 6268 for_each_process_thread(g, p) {
178be793
IM
6269 /*
6270 * Only normalize user tasks:
6271 */
3472eaa1 6272 if (p->flags & PF_KTHREAD)
178be793
IM
6273 continue;
6274
4fa8d299
JP
6275 p->se.exec_start = 0;
6276 schedstat_set(p->se.statistics.wait_start, 0);
6277 schedstat_set(p->se.statistics.sleep_start, 0);
6278 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6279
aab03e05 6280 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6281 /*
6282 * Renice negative nice level userspace
6283 * tasks back to 0:
6284 */
3472eaa1 6285 if (task_nice(p) < 0)
dd41f596 6286 set_user_nice(p, 0);
1da177e4 6287 continue;
dd41f596 6288 }
1da177e4 6289
dbc7f069 6290 __sched_setscheduler(p, &attr, false, false);
5d07f420 6291 }
3472eaa1 6292 read_unlock(&tasklist_lock);
1da177e4
LT
6293}
6294
6295#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6296
67fc4e0c 6297#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6298/*
67fc4e0c 6299 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6300 *
6301 * They can only be called when the whole system has been
6302 * stopped - every CPU needs to be quiescent, and no scheduling
6303 * activity can take place. Using them for anything else would
6304 * be a serious bug, and as a result, they aren't even visible
6305 * under any other configuration.
6306 */
6307
6308/**
d1ccc66d 6309 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6310 * @cpu: the processor in question.
6311 *
6312 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6313 *
6314 * Return: The current task for @cpu.
1df5c10a 6315 */
36c8b586 6316struct task_struct *curr_task(int cpu)
1df5c10a
LT
6317{
6318 return cpu_curr(cpu);
6319}
6320
67fc4e0c
JW
6321#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6322
6323#ifdef CONFIG_IA64
1df5c10a 6324/**
d1ccc66d 6325 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6326 * @cpu: the processor in question.
6327 * @p: the task pointer to set.
6328 *
6329 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6330 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6331 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6332 * must be called with all CPU's synchronized, and interrupts disabled, the
6333 * and caller must save the original value of the current task (see
6334 * curr_task() above) and restore that value before reenabling interrupts and
6335 * re-starting the system.
6336 *
6337 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6338 */
a458ae2e 6339void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6340{
6341 cpu_curr(cpu) = p;
6342}
6343
6344#endif
29f59db3 6345
7c941438 6346#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6347/* task_group_lock serializes the addition/removal of task groups */
6348static DEFINE_SPINLOCK(task_group_lock);
6349
2f5177f0 6350static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6351{
6352 free_fair_sched_group(tg);
6353 free_rt_sched_group(tg);
e9aa1dd1 6354 autogroup_free(tg);
b0367629 6355 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6356}
6357
6358/* allocate runqueue etc for a new task group */
ec7dc8ac 6359struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6360{
6361 struct task_group *tg;
bccbe08a 6362
b0367629 6363 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6364 if (!tg)
6365 return ERR_PTR(-ENOMEM);
6366
ec7dc8ac 6367 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6368 goto err;
6369
ec7dc8ac 6370 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6371 goto err;
6372
ace783b9
LZ
6373 return tg;
6374
6375err:
2f5177f0 6376 sched_free_group(tg);
ace783b9
LZ
6377 return ERR_PTR(-ENOMEM);
6378}
6379
6380void sched_online_group(struct task_group *tg, struct task_group *parent)
6381{
6382 unsigned long flags;
6383
8ed36996 6384 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6385 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6386
d1ccc66d
IM
6387 /* Root should already exist: */
6388 WARN_ON(!parent);
f473aa5e
PZ
6389
6390 tg->parent = parent;
f473aa5e 6391 INIT_LIST_HEAD(&tg->children);
09f2724a 6392 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6393 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6394
6395 online_fair_sched_group(tg);
29f59db3
SV
6396}
6397
9b5b7751 6398/* rcu callback to free various structures associated with a task group */
2f5177f0 6399static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6400{
d1ccc66d 6401 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6402 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6403}
6404
4cf86d77 6405void sched_destroy_group(struct task_group *tg)
ace783b9 6406{
d1ccc66d 6407 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6408 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6409}
6410
6411void sched_offline_group(struct task_group *tg)
29f59db3 6412{
8ed36996 6413 unsigned long flags;
29f59db3 6414
d1ccc66d 6415 /* End participation in shares distribution: */
6fe1f348 6416 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6417
6418 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6419 list_del_rcu(&tg->list);
f473aa5e 6420 list_del_rcu(&tg->siblings);
8ed36996 6421 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6422}
6423
ea86cb4b 6424static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6425{
8323f26c 6426 struct task_group *tg;
29f59db3 6427
f7b8a47d
KT
6428 /*
6429 * All callers are synchronized by task_rq_lock(); we do not use RCU
6430 * which is pointless here. Thus, we pass "true" to task_css_check()
6431 * to prevent lockdep warnings.
6432 */
6433 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6434 struct task_group, css);
6435 tg = autogroup_task_group(tsk, tg);
6436 tsk->sched_task_group = tg;
6437
810b3817 6438#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6439 if (tsk->sched_class->task_change_group)
6440 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6441 else
810b3817 6442#endif
b2b5ce02 6443 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6444}
6445
6446/*
6447 * Change task's runqueue when it moves between groups.
6448 *
6449 * The caller of this function should have put the task in its new group by
6450 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6451 * its new group.
6452 */
6453void sched_move_task(struct task_struct *tsk)
6454{
7a57f32a
PZ
6455 int queued, running, queue_flags =
6456 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6457 struct rq_flags rf;
6458 struct rq *rq;
6459
6460 rq = task_rq_lock(tsk, &rf);
1b1d6225 6461 update_rq_clock(rq);
ea86cb4b
VG
6462
6463 running = task_current(rq, tsk);
6464 queued = task_on_rq_queued(tsk);
6465
6466 if (queued)
7a57f32a 6467 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6468 if (running)
ea86cb4b
VG
6469 put_prev_task(rq, tsk);
6470
6471 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6472
da0c1e65 6473 if (queued)
7a57f32a 6474 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6475 if (running)
b2bf6c31 6476 set_curr_task(rq, tsk);
29f59db3 6477
eb580751 6478 task_rq_unlock(rq, tsk, &rf);
29f59db3 6479}
7c941438 6480#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6481
a790de99
PT
6482#ifdef CONFIG_RT_GROUP_SCHED
6483/*
6484 * Ensure that the real time constraints are schedulable.
6485 */
6486static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6487
9a7e0b18
PZ
6488/* Must be called with tasklist_lock held */
6489static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6490{
9a7e0b18 6491 struct task_struct *g, *p;
b40b2e8e 6492
1fe89e1b
PZ
6493 /*
6494 * Autogroups do not have RT tasks; see autogroup_create().
6495 */
6496 if (task_group_is_autogroup(tg))
6497 return 0;
6498
5d07f420 6499 for_each_process_thread(g, p) {
8651c658 6500 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 6501 return 1;
5d07f420 6502 }
b40b2e8e 6503
9a7e0b18
PZ
6504 return 0;
6505}
b40b2e8e 6506
9a7e0b18
PZ
6507struct rt_schedulable_data {
6508 struct task_group *tg;
6509 u64 rt_period;
6510 u64 rt_runtime;
6511};
b40b2e8e 6512
a790de99 6513static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6514{
6515 struct rt_schedulable_data *d = data;
6516 struct task_group *child;
6517 unsigned long total, sum = 0;
6518 u64 period, runtime;
b40b2e8e 6519
9a7e0b18
PZ
6520 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6521 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6522
9a7e0b18
PZ
6523 if (tg == d->tg) {
6524 period = d->rt_period;
6525 runtime = d->rt_runtime;
b40b2e8e 6526 }
b40b2e8e 6527
4653f803
PZ
6528 /*
6529 * Cannot have more runtime than the period.
6530 */
6531 if (runtime > period && runtime != RUNTIME_INF)
6532 return -EINVAL;
6f505b16 6533
4653f803
PZ
6534 /*
6535 * Ensure we don't starve existing RT tasks.
6536 */
9a7e0b18
PZ
6537 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6538 return -EBUSY;
6f505b16 6539
9a7e0b18 6540 total = to_ratio(period, runtime);
6f505b16 6541
4653f803
PZ
6542 /*
6543 * Nobody can have more than the global setting allows.
6544 */
6545 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6546 return -EINVAL;
6f505b16 6547
4653f803
PZ
6548 /*
6549 * The sum of our children's runtime should not exceed our own.
6550 */
9a7e0b18
PZ
6551 list_for_each_entry_rcu(child, &tg->children, siblings) {
6552 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6553 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6554
9a7e0b18
PZ
6555 if (child == d->tg) {
6556 period = d->rt_period;
6557 runtime = d->rt_runtime;
6558 }
6f505b16 6559
9a7e0b18 6560 sum += to_ratio(period, runtime);
9f0c1e56 6561 }
6f505b16 6562
9a7e0b18
PZ
6563 if (sum > total)
6564 return -EINVAL;
6565
6566 return 0;
6f505b16
PZ
6567}
6568
9a7e0b18 6569static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6570{
8277434e
PT
6571 int ret;
6572
9a7e0b18
PZ
6573 struct rt_schedulable_data data = {
6574 .tg = tg,
6575 .rt_period = period,
6576 .rt_runtime = runtime,
6577 };
6578
8277434e
PT
6579 rcu_read_lock();
6580 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6581 rcu_read_unlock();
6582
6583 return ret;
521f1a24
DG
6584}
6585
ab84d31e 6586static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6587 u64 rt_period, u64 rt_runtime)
6f505b16 6588{
ac086bc2 6589 int i, err = 0;
9f0c1e56 6590
2636ed5f
PZ
6591 /*
6592 * Disallowing the root group RT runtime is BAD, it would disallow the
6593 * kernel creating (and or operating) RT threads.
6594 */
6595 if (tg == &root_task_group && rt_runtime == 0)
6596 return -EINVAL;
6597
6598 /* No period doesn't make any sense. */
6599 if (rt_period == 0)
6600 return -EINVAL;
6601
9f0c1e56 6602 mutex_lock(&rt_constraints_mutex);
521f1a24 6603 read_lock(&tasklist_lock);
9a7e0b18
PZ
6604 err = __rt_schedulable(tg, rt_period, rt_runtime);
6605 if (err)
9f0c1e56 6606 goto unlock;
ac086bc2 6607
0986b11b 6608 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6609 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6610 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6611
6612 for_each_possible_cpu(i) {
6613 struct rt_rq *rt_rq = tg->rt_rq[i];
6614
0986b11b 6615 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6616 rt_rq->rt_runtime = rt_runtime;
0986b11b 6617 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6618 }
0986b11b 6619 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6620unlock:
521f1a24 6621 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6622 mutex_unlock(&rt_constraints_mutex);
6623
6624 return err;
6f505b16
PZ
6625}
6626
25cc7da7 6627static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6628{
6629 u64 rt_runtime, rt_period;
6630
6631 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6632 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6633 if (rt_runtime_us < 0)
6634 rt_runtime = RUNTIME_INF;
6635
ab84d31e 6636 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6637}
6638
25cc7da7 6639static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6640{
6641 u64 rt_runtime_us;
6642
d0b27fa7 6643 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6644 return -1;
6645
d0b27fa7 6646 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6647 do_div(rt_runtime_us, NSEC_PER_USEC);
6648 return rt_runtime_us;
6649}
d0b27fa7 6650
ce2f5fe4 6651static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
6652{
6653 u64 rt_runtime, rt_period;
6654
ce2f5fe4 6655 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
6656 rt_runtime = tg->rt_bandwidth.rt_runtime;
6657
ab84d31e 6658 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6659}
6660
25cc7da7 6661static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6662{
6663 u64 rt_period_us;
6664
6665 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6666 do_div(rt_period_us, NSEC_PER_USEC);
6667 return rt_period_us;
6668}
332ac17e 6669#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6670
332ac17e 6671#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
6672static int sched_rt_global_constraints(void)
6673{
6674 int ret = 0;
6675
6676 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6677 read_lock(&tasklist_lock);
4653f803 6678 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6679 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6680 mutex_unlock(&rt_constraints_mutex);
6681
6682 return ret;
6683}
54e99124 6684
25cc7da7 6685static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6686{
6687 /* Don't accept realtime tasks when there is no way for them to run */
6688 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6689 return 0;
6690
6691 return 1;
6692}
6693
6d6bc0ad 6694#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6695static int sched_rt_global_constraints(void)
6696{
ac086bc2 6697 unsigned long flags;
8c5e9554 6698 int i;
ec5d4989 6699
0986b11b 6700 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
6701 for_each_possible_cpu(i) {
6702 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6703
0986b11b 6704 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6705 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 6706 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6707 }
0986b11b 6708 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 6709
8c5e9554 6710 return 0;
d0b27fa7 6711}
6d6bc0ad 6712#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6713
a1963b81 6714static int sched_dl_global_validate(void)
332ac17e 6715{
1724813d
PZ
6716 u64 runtime = global_rt_runtime();
6717 u64 period = global_rt_period();
332ac17e 6718 u64 new_bw = to_ratio(period, runtime);
f10e00f4 6719 struct dl_bw *dl_b;
1724813d 6720 int cpu, ret = 0;
49516342 6721 unsigned long flags;
332ac17e
DF
6722
6723 /*
6724 * Here we want to check the bandwidth not being set to some
6725 * value smaller than the currently allocated bandwidth in
6726 * any of the root_domains.
6727 *
6728 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6729 * cycling on root_domains... Discussion on different/better
6730 * solutions is welcome!
6731 */
1724813d 6732 for_each_possible_cpu(cpu) {
f10e00f4
KT
6733 rcu_read_lock_sched();
6734 dl_b = dl_bw_of(cpu);
332ac17e 6735
49516342 6736 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
6737 if (new_bw < dl_b->total_bw)
6738 ret = -EBUSY;
49516342 6739 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 6740
f10e00f4
KT
6741 rcu_read_unlock_sched();
6742
1724813d
PZ
6743 if (ret)
6744 break;
332ac17e
DF
6745 }
6746
1724813d 6747 return ret;
332ac17e
DF
6748}
6749
4da3abce
LA
6750void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
6751{
6752 if (global_rt_runtime() == RUNTIME_INF) {
6753 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
daec5798 6754 dl_rq->extra_bw = 1 << BW_SHIFT;
4da3abce
LA
6755 } else {
6756 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
6757 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
daec5798
LA
6758 dl_rq->extra_bw = to_ratio(global_rt_period(),
6759 global_rt_runtime());
4da3abce
LA
6760 }
6761}
6762
1724813d 6763static void sched_dl_do_global(void)
ce0dbbbb 6764{
1724813d 6765 u64 new_bw = -1;
f10e00f4 6766 struct dl_bw *dl_b;
1724813d 6767 int cpu;
49516342 6768 unsigned long flags;
ce0dbbbb 6769
1724813d
PZ
6770 def_dl_bandwidth.dl_period = global_rt_period();
6771 def_dl_bandwidth.dl_runtime = global_rt_runtime();
6772
6773 if (global_rt_runtime() != RUNTIME_INF)
6774 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6775
6776 /*
6777 * FIXME: As above...
6778 */
6779 for_each_possible_cpu(cpu) {
f10e00f4
KT
6780 rcu_read_lock_sched();
6781 dl_b = dl_bw_of(cpu);
1724813d 6782
49516342 6783 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 6784 dl_b->bw = new_bw;
49516342 6785 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
6786
6787 rcu_read_unlock_sched();
4da3abce 6788 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
ce0dbbbb 6789 }
1724813d
PZ
6790}
6791
6792static int sched_rt_global_validate(void)
6793{
6794 if (sysctl_sched_rt_period <= 0)
6795 return -EINVAL;
6796
e9e7cb38
JL
6797 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6798 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
6799 return -EINVAL;
6800
6801 return 0;
6802}
6803
6804static void sched_rt_do_global(void)
6805{
6806 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6807 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
6808}
6809
d0b27fa7 6810int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 6811 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
6812 loff_t *ppos)
6813{
d0b27fa7
PZ
6814 int old_period, old_runtime;
6815 static DEFINE_MUTEX(mutex);
1724813d 6816 int ret;
d0b27fa7
PZ
6817
6818 mutex_lock(&mutex);
6819 old_period = sysctl_sched_rt_period;
6820 old_runtime = sysctl_sched_rt_runtime;
6821
8d65af78 6822 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
6823
6824 if (!ret && write) {
1724813d
PZ
6825 ret = sched_rt_global_validate();
6826 if (ret)
6827 goto undo;
6828
a1963b81 6829 ret = sched_dl_global_validate();
1724813d
PZ
6830 if (ret)
6831 goto undo;
6832
a1963b81 6833 ret = sched_rt_global_constraints();
1724813d
PZ
6834 if (ret)
6835 goto undo;
6836
6837 sched_rt_do_global();
6838 sched_dl_do_global();
6839 }
6840 if (0) {
6841undo:
6842 sysctl_sched_rt_period = old_period;
6843 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
6844 }
6845 mutex_unlock(&mutex);
6846
6847 return ret;
6848}
68318b8e 6849
1724813d 6850int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
6851 void __user *buffer, size_t *lenp,
6852 loff_t *ppos)
6853{
6854 int ret;
332ac17e 6855 static DEFINE_MUTEX(mutex);
332ac17e
DF
6856
6857 mutex_lock(&mutex);
332ac17e 6858 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d1ccc66d
IM
6859 /*
6860 * Make sure that internally we keep jiffies.
6861 * Also, writing zero resets the timeslice to default:
6862 */
332ac17e 6863 if (!ret && write) {
975e155e
SZ
6864 sched_rr_timeslice =
6865 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6866 msecs_to_jiffies(sysctl_sched_rr_timeslice);
332ac17e
DF
6867 }
6868 mutex_unlock(&mutex);
332ac17e
DF
6869 return ret;
6870}
6871
052f1dc7 6872#ifdef CONFIG_CGROUP_SCHED
68318b8e 6873
a7c6d554 6874static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6875{
a7c6d554 6876 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6877}
6878
eb95419b
TH
6879static struct cgroup_subsys_state *
6880cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6881{
eb95419b
TH
6882 struct task_group *parent = css_tg(parent_css);
6883 struct task_group *tg;
68318b8e 6884
eb95419b 6885 if (!parent) {
68318b8e 6886 /* This is early initialization for the top cgroup */
07e06b01 6887 return &root_task_group.css;
68318b8e
SV
6888 }
6889
ec7dc8ac 6890 tg = sched_create_group(parent);
68318b8e
SV
6891 if (IS_ERR(tg))
6892 return ERR_PTR(-ENOMEM);
6893
68318b8e
SV
6894 return &tg->css;
6895}
6896
96b77745
KK
6897/* Expose task group only after completing cgroup initialization */
6898static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6899{
6900 struct task_group *tg = css_tg(css);
6901 struct task_group *parent = css_tg(css->parent);
6902
6903 if (parent)
6904 sched_online_group(tg, parent);
6905 return 0;
6906}
6907
2f5177f0 6908static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6909{
eb95419b 6910 struct task_group *tg = css_tg(css);
ace783b9 6911
2f5177f0 6912 sched_offline_group(tg);
ace783b9
LZ
6913}
6914
eb95419b 6915static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6916{
eb95419b 6917 struct task_group *tg = css_tg(css);
68318b8e 6918
2f5177f0
PZ
6919 /*
6920 * Relies on the RCU grace period between css_released() and this.
6921 */
6922 sched_free_group(tg);
ace783b9
LZ
6923}
6924
ea86cb4b
VG
6925/*
6926 * This is called before wake_up_new_task(), therefore we really only
6927 * have to set its group bits, all the other stuff does not apply.
6928 */
b53202e6 6929static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6930{
ea86cb4b
VG
6931 struct rq_flags rf;
6932 struct rq *rq;
6933
6934 rq = task_rq_lock(task, &rf);
6935
80f5c1b8 6936 update_rq_clock(rq);
ea86cb4b
VG
6937 sched_change_group(task, TASK_SET_GROUP);
6938
6939 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6940}
6941
1f7dd3e5 6942static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6943{
bb9d97b6 6944 struct task_struct *task;
1f7dd3e5 6945 struct cgroup_subsys_state *css;
7dc603c9 6946 int ret = 0;
bb9d97b6 6947
1f7dd3e5 6948 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6949#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6950 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6951 return -EINVAL;
b68aa230 6952#else
bb9d97b6
TH
6953 /* We don't support RT-tasks being in separate groups */
6954 if (task->sched_class != &fair_sched_class)
6955 return -EINVAL;
b68aa230 6956#endif
7dc603c9
PZ
6957 /*
6958 * Serialize against wake_up_new_task() such that if its
6959 * running, we're sure to observe its full state.
6960 */
6961 raw_spin_lock_irq(&task->pi_lock);
6962 /*
6963 * Avoid calling sched_move_task() before wake_up_new_task()
6964 * has happened. This would lead to problems with PELT, due to
6965 * move wanting to detach+attach while we're not attached yet.
6966 */
6967 if (task->state == TASK_NEW)
6968 ret = -EINVAL;
6969 raw_spin_unlock_irq(&task->pi_lock);
6970
6971 if (ret)
6972 break;
bb9d97b6 6973 }
7dc603c9 6974 return ret;
be367d09 6975}
68318b8e 6976
1f7dd3e5 6977static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6978{
bb9d97b6 6979 struct task_struct *task;
1f7dd3e5 6980 struct cgroup_subsys_state *css;
bb9d97b6 6981
1f7dd3e5 6982 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6983 sched_move_task(task);
68318b8e
SV
6984}
6985
052f1dc7 6986#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6987static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6988 struct cftype *cftype, u64 shareval)
68318b8e 6989{
182446d0 6990 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6991}
6992
182446d0
TH
6993static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6994 struct cftype *cft)
68318b8e 6995{
182446d0 6996 struct task_group *tg = css_tg(css);
68318b8e 6997
c8b28116 6998 return (u64) scale_load_down(tg->shares);
68318b8e 6999}
ab84d31e
PT
7000
7001#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7002static DEFINE_MUTEX(cfs_constraints_mutex);
7003
ab84d31e
PT
7004const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7005const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7006
a790de99
PT
7007static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7008
ab84d31e
PT
7009static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7010{
56f570e5 7011 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7012 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7013
7014 if (tg == &root_task_group)
7015 return -EINVAL;
7016
7017 /*
7018 * Ensure we have at some amount of bandwidth every period. This is
7019 * to prevent reaching a state of large arrears when throttled via
7020 * entity_tick() resulting in prolonged exit starvation.
7021 */
7022 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7023 return -EINVAL;
7024
7025 /*
7026 * Likewise, bound things on the otherside by preventing insane quota
7027 * periods. This also allows us to normalize in computing quota
7028 * feasibility.
7029 */
7030 if (period > max_cfs_quota_period)
7031 return -EINVAL;
7032
0e59bdae
KT
7033 /*
7034 * Prevent race between setting of cfs_rq->runtime_enabled and
7035 * unthrottle_offline_cfs_rqs().
7036 */
7037 get_online_cpus();
a790de99
PT
7038 mutex_lock(&cfs_constraints_mutex);
7039 ret = __cfs_schedulable(tg, period, quota);
7040 if (ret)
7041 goto out_unlock;
7042
58088ad0 7043 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7044 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7045 /*
7046 * If we need to toggle cfs_bandwidth_used, off->on must occur
7047 * before making related changes, and on->off must occur afterwards
7048 */
7049 if (runtime_enabled && !runtime_was_enabled)
7050 cfs_bandwidth_usage_inc();
ab84d31e
PT
7051 raw_spin_lock_irq(&cfs_b->lock);
7052 cfs_b->period = ns_to_ktime(period);
7053 cfs_b->quota = quota;
58088ad0 7054
a9cf55b2 7055 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7056
7057 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7058 if (runtime_enabled)
7059 start_cfs_bandwidth(cfs_b);
d1ccc66d 7060
ab84d31e
PT
7061 raw_spin_unlock_irq(&cfs_b->lock);
7062
0e59bdae 7063 for_each_online_cpu(i) {
ab84d31e 7064 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7065 struct rq *rq = cfs_rq->rq;
8a8c69c3 7066 struct rq_flags rf;
ab84d31e 7067
8a8c69c3 7068 rq_lock_irq(rq, &rf);
58088ad0 7069 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7070 cfs_rq->runtime_remaining = 0;
671fd9da 7071
029632fb 7072 if (cfs_rq->throttled)
671fd9da 7073 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7074 rq_unlock_irq(rq, &rf);
ab84d31e 7075 }
1ee14e6c
BS
7076 if (runtime_was_enabled && !runtime_enabled)
7077 cfs_bandwidth_usage_dec();
a790de99
PT
7078out_unlock:
7079 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7080 put_online_cpus();
ab84d31e 7081
a790de99 7082 return ret;
ab84d31e
PT
7083}
7084
7085int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7086{
7087 u64 quota, period;
7088
029632fb 7089 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7090 if (cfs_quota_us < 0)
7091 quota = RUNTIME_INF;
7092 else
7093 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7094
7095 return tg_set_cfs_bandwidth(tg, period, quota);
7096}
7097
7098long tg_get_cfs_quota(struct task_group *tg)
7099{
7100 u64 quota_us;
7101
029632fb 7102 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7103 return -1;
7104
029632fb 7105 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7106 do_div(quota_us, NSEC_PER_USEC);
7107
7108 return quota_us;
7109}
7110
7111int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7112{
7113 u64 quota, period;
7114
7115 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7116 quota = tg->cfs_bandwidth.quota;
ab84d31e 7117
ab84d31e
PT
7118 return tg_set_cfs_bandwidth(tg, period, quota);
7119}
7120
7121long tg_get_cfs_period(struct task_group *tg)
7122{
7123 u64 cfs_period_us;
7124
029632fb 7125 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7126 do_div(cfs_period_us, NSEC_PER_USEC);
7127
7128 return cfs_period_us;
7129}
7130
182446d0
TH
7131static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7132 struct cftype *cft)
ab84d31e 7133{
182446d0 7134 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7135}
7136
182446d0
TH
7137static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7138 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7139{
182446d0 7140 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7141}
7142
182446d0
TH
7143static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7144 struct cftype *cft)
ab84d31e 7145{
182446d0 7146 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7147}
7148
182446d0
TH
7149static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7150 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7151{
182446d0 7152 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7153}
7154
a790de99
PT
7155struct cfs_schedulable_data {
7156 struct task_group *tg;
7157 u64 period, quota;
7158};
7159
7160/*
7161 * normalize group quota/period to be quota/max_period
7162 * note: units are usecs
7163 */
7164static u64 normalize_cfs_quota(struct task_group *tg,
7165 struct cfs_schedulable_data *d)
7166{
7167 u64 quota, period;
7168
7169 if (tg == d->tg) {
7170 period = d->period;
7171 quota = d->quota;
7172 } else {
7173 period = tg_get_cfs_period(tg);
7174 quota = tg_get_cfs_quota(tg);
7175 }
7176
7177 /* note: these should typically be equivalent */
7178 if (quota == RUNTIME_INF || quota == -1)
7179 return RUNTIME_INF;
7180
7181 return to_ratio(period, quota);
7182}
7183
7184static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7185{
7186 struct cfs_schedulable_data *d = data;
029632fb 7187 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7188 s64 quota = 0, parent_quota = -1;
7189
7190 if (!tg->parent) {
7191 quota = RUNTIME_INF;
7192 } else {
029632fb 7193 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7194
7195 quota = normalize_cfs_quota(tg, d);
9c58c79a 7196 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7197
7198 /*
d1ccc66d
IM
7199 * Ensure max(child_quota) <= parent_quota, inherit when no
7200 * limit is set:
a790de99
PT
7201 */
7202 if (quota == RUNTIME_INF)
7203 quota = parent_quota;
7204 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7205 return -EINVAL;
7206 }
9c58c79a 7207 cfs_b->hierarchical_quota = quota;
a790de99
PT
7208
7209 return 0;
7210}
7211
7212static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7213{
8277434e 7214 int ret;
a790de99
PT
7215 struct cfs_schedulable_data data = {
7216 .tg = tg,
7217 .period = period,
7218 .quota = quota,
7219 };
7220
7221 if (quota != RUNTIME_INF) {
7222 do_div(data.period, NSEC_PER_USEC);
7223 do_div(data.quota, NSEC_PER_USEC);
7224 }
7225
8277434e
PT
7226 rcu_read_lock();
7227 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7228 rcu_read_unlock();
7229
7230 return ret;
a790de99 7231}
e8da1b18 7232
2da8ca82 7233static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7234{
2da8ca82 7235 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7236 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7237
44ffc75b
TH
7238 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7239 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7240 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7241
7242 return 0;
7243}
ab84d31e 7244#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7245#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7246
052f1dc7 7247#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7248static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7249 struct cftype *cft, s64 val)
6f505b16 7250{
182446d0 7251 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7252}
7253
182446d0
TH
7254static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7255 struct cftype *cft)
6f505b16 7256{
182446d0 7257 return sched_group_rt_runtime(css_tg(css));
6f505b16 7258}
d0b27fa7 7259
182446d0
TH
7260static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7261 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7262{
182446d0 7263 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7264}
7265
182446d0
TH
7266static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7267 struct cftype *cft)
d0b27fa7 7268{
182446d0 7269 return sched_group_rt_period(css_tg(css));
d0b27fa7 7270}
6d6bc0ad 7271#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7272
fe5c7cc2 7273static struct cftype cpu_files[] = {
052f1dc7 7274#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7275 {
7276 .name = "shares",
f4c753b7
PM
7277 .read_u64 = cpu_shares_read_u64,
7278 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7279 },
052f1dc7 7280#endif
ab84d31e
PT
7281#ifdef CONFIG_CFS_BANDWIDTH
7282 {
7283 .name = "cfs_quota_us",
7284 .read_s64 = cpu_cfs_quota_read_s64,
7285 .write_s64 = cpu_cfs_quota_write_s64,
7286 },
7287 {
7288 .name = "cfs_period_us",
7289 .read_u64 = cpu_cfs_period_read_u64,
7290 .write_u64 = cpu_cfs_period_write_u64,
7291 },
e8da1b18
NR
7292 {
7293 .name = "stat",
2da8ca82 7294 .seq_show = cpu_stats_show,
e8da1b18 7295 },
ab84d31e 7296#endif
052f1dc7 7297#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7298 {
9f0c1e56 7299 .name = "rt_runtime_us",
06ecb27c
PM
7300 .read_s64 = cpu_rt_runtime_read,
7301 .write_s64 = cpu_rt_runtime_write,
6f505b16 7302 },
d0b27fa7
PZ
7303 {
7304 .name = "rt_period_us",
f4c753b7
PM
7305 .read_u64 = cpu_rt_period_read_uint,
7306 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7307 },
052f1dc7 7308#endif
d1ccc66d 7309 { } /* Terminate */
68318b8e
SV
7310};
7311
073219e9 7312struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7313 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7314 .css_online = cpu_cgroup_css_online,
2f5177f0 7315 .css_released = cpu_cgroup_css_released,
92fb9748 7316 .css_free = cpu_cgroup_css_free,
eeb61e53 7317 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7318 .can_attach = cpu_cgroup_can_attach,
7319 .attach = cpu_cgroup_attach,
5577964e 7320 .legacy_cftypes = cpu_files,
b38e42e9 7321 .early_init = true,
68318b8e
SV
7322};
7323
052f1dc7 7324#endif /* CONFIG_CGROUP_SCHED */
d842de87 7325
b637a328
PM
7326void dump_cpu_task(int cpu)
7327{
7328 pr_info("Task dump for CPU %d:\n", cpu);
7329 sched_show_task(cpu_curr(cpu));
7330}
ed82b8a1
AK
7331
7332/*
7333 * Nice levels are multiplicative, with a gentle 10% change for every
7334 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7335 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7336 * that remained on nice 0.
7337 *
7338 * The "10% effect" is relative and cumulative: from _any_ nice level,
7339 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7340 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7341 * If a task goes up by ~10% and another task goes down by ~10% then
7342 * the relative distance between them is ~25%.)
7343 */
7344const int sched_prio_to_weight[40] = {
7345 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7346 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7347 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7348 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7349 /* 0 */ 1024, 820, 655, 526, 423,
7350 /* 5 */ 335, 272, 215, 172, 137,
7351 /* 10 */ 110, 87, 70, 56, 45,
7352 /* 15 */ 36, 29, 23, 18, 15,
7353};
7354
7355/*
7356 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7357 *
7358 * In cases where the weight does not change often, we can use the
7359 * precalculated inverse to speed up arithmetics by turning divisions
7360 * into multiplications:
7361 */
7362const u32 sched_prio_to_wmult[40] = {
7363 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7364 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7365 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7366 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7367 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7368 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7369 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7370 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7371};