]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched/uclamp: Add system default clamps
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
29d5e047 19#include "../smpboot.h"
6e0534f2 20
91c27493
VG
21#include "pelt.h"
22
a8d154b0 23#define CREATE_TRACE_POINTS
ad8d75ff 24#include <trace/events/sched.h>
a8d154b0 25
a056a5be
QY
26/*
27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
28 * associated with them) to allow external modules to probe them.
29 */
30EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36
029632fb 37DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 38
e9666d10 39#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
40/*
41 * Debugging: various feature bits
765cc3a4
PB
42 *
43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
45 * at compile time and compiler optimization based on features default.
bf5c91ba 46 */
f00b45c1
PZ
47#define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 49const_debug unsigned int sysctl_sched_features =
391e43da 50#include "features.h"
f00b45c1 51 0;
f00b45c1 52#undef SCHED_FEAT
765cc3a4 53#endif
f00b45c1 54
b82d9fdd
PZ
55/*
56 * Number of tasks to iterate in a single balance run.
57 * Limited because this is done with IRQs disabled.
58 */
59const_debug unsigned int sysctl_sched_nr_migrate = 32;
60
fa85ae24 61/*
d1ccc66d 62 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
63 * default: 1s
64 */
9f0c1e56 65unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 66
029632fb 67__read_mostly int scheduler_running;
6892b75e 68
9f0c1e56
PZ
69/*
70 * part of the period that we allow rt tasks to run in us.
71 * default: 0.95s
72 */
73int sysctl_sched_rt_runtime = 950000;
fa85ae24 74
3e71a462
PZ
75/*
76 * __task_rq_lock - lock the rq @p resides on.
77 */
eb580751 78struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
79 __acquires(rq->lock)
80{
81 struct rq *rq;
82
83 lockdep_assert_held(&p->pi_lock);
84
85 for (;;) {
86 rq = task_rq(p);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 89 rq_pin_lock(rq, rf);
3e71a462
PZ
90 return rq;
91 }
92 raw_spin_unlock(&rq->lock);
93
94 while (unlikely(task_on_rq_migrating(p)))
95 cpu_relax();
96 }
97}
98
99/*
100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101 */
eb580751 102struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
103 __acquires(p->pi_lock)
104 __acquires(rq->lock)
105{
106 struct rq *rq;
107
108 for (;;) {
eb580751 109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112 /*
113 * move_queued_task() task_rq_lock()
114 *
115 * ACQUIRE (rq->lock)
116 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
118 * [S] ->cpu = new_cpu [L] task_rq()
119 * [L] ->on_rq
120 * RELEASE (rq->lock)
121 *
c546951d 122 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
123 * the old rq->lock will fully serialize against the stores.
124 *
c546951d
AP
125 * If we observe the new CPU in task_rq_lock(), the address
126 * dependency headed by '[L] rq = task_rq()' and the acquire
127 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
128 */
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 130 rq_pin_lock(rq, rf);
3e71a462
PZ
131 return rq;
132 }
133 raw_spin_unlock(&rq->lock);
eb580751 134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
135
136 while (unlikely(task_on_rq_migrating(p)))
137 cpu_relax();
138 }
139}
140
535b9552
IM
141/*
142 * RQ-clock updating methods:
143 */
144
145static void update_rq_clock_task(struct rq *rq, s64 delta)
146{
147/*
148 * In theory, the compile should just see 0 here, and optimize out the call
149 * to sched_rt_avg_update. But I don't trust it...
150 */
11d4afd4
VG
151 s64 __maybe_unused steal = 0, irq_delta = 0;
152
535b9552
IM
153#ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155
156 /*
157 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 * this case when a previous update_rq_clock() happened inside a
159 * {soft,}irq region.
160 *
161 * When this happens, we stop ->clock_task and only update the
162 * prev_irq_time stamp to account for the part that fit, so that a next
163 * update will consume the rest. This ensures ->clock_task is
164 * monotonic.
165 *
166 * It does however cause some slight miss-attribution of {soft,}irq
167 * time, a more accurate solution would be to update the irq_time using
168 * the current rq->clock timestamp, except that would require using
169 * atomic ops.
170 */
171 if (irq_delta > delta)
172 irq_delta = delta;
173
174 rq->prev_irq_time += irq_delta;
175 delta -= irq_delta;
176#endif
177#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((&paravirt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
181
182 if (unlikely(steal > delta))
183 steal = delta;
184
185 rq->prev_steal_time_rq += steal;
186 delta -= steal;
187 }
188#endif
189
190 rq->clock_task += delta;
191
11d4afd4 192#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 194 update_irq_load_avg(rq, irq_delta + steal);
535b9552 195#endif
23127296 196 update_rq_clock_pelt(rq, delta);
535b9552
IM
197}
198
199void update_rq_clock(struct rq *rq)
200{
201 s64 delta;
202
203 lockdep_assert_held(&rq->lock);
204
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 return;
207
208#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
211 rq->clock_update_flags |= RQCF_UPDATED;
212#endif
26ae58d2 213
535b9552
IM
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 if (delta < 0)
216 return;
217 rq->clock += delta;
218 update_rq_clock_task(rq, delta);
219}
220
221
8f4d37ec
PZ
222#ifdef CONFIG_SCHED_HRTICK
223/*
224 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 225 */
8f4d37ec 226
8f4d37ec
PZ
227static void hrtick_clear(struct rq *rq)
228{
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
231}
232
8f4d37ec
PZ
233/*
234 * High-resolution timer tick.
235 * Runs from hardirq context with interrupts disabled.
236 */
237static enum hrtimer_restart hrtick(struct hrtimer *timer)
238{
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 240 struct rq_flags rf;
8f4d37ec
PZ
241
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243
8a8c69c3 244 rq_lock(rq, &rf);
3e51f33f 245 update_rq_clock(rq);
8f4d37ec 246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 247 rq_unlock(rq, &rf);
8f4d37ec
PZ
248
249 return HRTIMER_NORESTART;
250}
251
95e904c7 252#ifdef CONFIG_SMP
971ee28c 253
4961b6e1 254static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
255{
256 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 257
4961b6e1 258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
259}
260
31656519
PZ
261/*
262 * called from hardirq (IPI) context
263 */
264static void __hrtick_start(void *arg)
b328ca18 265{
31656519 266 struct rq *rq = arg;
8a8c69c3 267 struct rq_flags rf;
b328ca18 268
8a8c69c3 269 rq_lock(rq, &rf);
971ee28c 270 __hrtick_restart(rq);
31656519 271 rq->hrtick_csd_pending = 0;
8a8c69c3 272 rq_unlock(rq, &rf);
b328ca18
PZ
273}
274
31656519
PZ
275/*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
029632fb 280void hrtick_start(struct rq *rq, u64 delay)
b328ca18 281{
31656519 282 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 292
cc584b21 293 hrtimer_set_expires(timer, time);
31656519
PZ
294
295 if (rq == this_rq()) {
971ee28c 296 __hrtick_restart(rq);
31656519 297 } else if (!rq->hrtick_csd_pending) {
c46fff2a 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
299 rq->hrtick_csd_pending = 1;
300 }
b328ca18
PZ
301}
302
31656519
PZ
303#else
304/*
305 * Called to set the hrtick timer state.
306 *
307 * called with rq->lock held and irqs disabled
308 */
029632fb 309void hrtick_start(struct rq *rq, u64 delay)
31656519 310{
86893335
WL
311 /*
312 * Don't schedule slices shorter than 10000ns, that just
313 * doesn't make sense. Rely on vruntime for fairness.
314 */
315 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED);
31656519 318}
31656519 319#endif /* CONFIG_SMP */
8f4d37ec 320
77a021be 321static void hrtick_rq_init(struct rq *rq)
8f4d37ec 322{
31656519
PZ
323#ifdef CONFIG_SMP
324 rq->hrtick_csd_pending = 0;
8f4d37ec 325
31656519
PZ
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
329#endif
8f4d37ec 330
31656519
PZ
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
332 rq->hrtick_timer.function = hrtick;
8f4d37ec 333}
006c75f1 334#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
335static inline void hrtick_clear(struct rq *rq)
336{
337}
338
77a021be 339static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
340{
341}
006c75f1 342#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 343
5529578a
FW
344/*
345 * cmpxchg based fetch_or, macro so it works for different integer types
346 */
347#define fetch_or(ptr, mask) \
348 ({ \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
352 \
353 for (;;) { \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
355 if (_old == _val) \
356 break; \
357 _val = _old; \
358 } \
359 _old; \
360})
361
e3baac47 362#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
363/*
364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365 * this avoids any races wrt polling state changes and thereby avoids
366 * spurious IPIs.
367 */
368static bool set_nr_and_not_polling(struct task_struct *p)
369{
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372}
e3baac47
PZ
373
374/*
375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376 *
377 * If this returns true, then the idle task promises to call
378 * sched_ttwu_pending() and reschedule soon.
379 */
380static bool set_nr_if_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
316c1608 383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
384
385 for (;;) {
386 if (!(val & _TIF_POLLING_NRFLAG))
387 return false;
388 if (val & _TIF_NEED_RESCHED)
389 return true;
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 if (old == val)
392 break;
393 val = old;
394 }
395 return true;
396}
397
fd99f91a
PZ
398#else
399static bool set_nr_and_not_polling(struct task_struct *p)
400{
401 set_tsk_need_resched(p);
402 return true;
403}
e3baac47
PZ
404
405#ifdef CONFIG_SMP
406static bool set_nr_if_polling(struct task_struct *p)
407{
408 return false;
409}
410#endif
fd99f91a
PZ
411#endif
412
07879c6a 413static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
414{
415 struct wake_q_node *node = &task->wake_q;
416
417 /*
418 * Atomically grab the task, if ->wake_q is !nil already it means
419 * its already queued (either by us or someone else) and will get the
420 * wakeup due to that.
421 *
4c4e3731
PZ
422 * In order to ensure that a pending wakeup will observe our pending
423 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 424 */
4c4e3731 425 smp_mb__before_atomic();
87ff19cb 426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 427 return false;
76751049
PZ
428
429 /*
430 * The head is context local, there can be no concurrency.
431 */
432 *head->lastp = node;
433 head->lastp = &node->next;
07879c6a
DB
434 return true;
435}
436
437/**
438 * wake_q_add() - queue a wakeup for 'later' waking.
439 * @head: the wake_q_head to add @task to
440 * @task: the task to queue for 'later' wakeup
441 *
442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444 * instantly.
445 *
446 * This function must be used as-if it were wake_up_process(); IOW the task
447 * must be ready to be woken at this location.
448 */
449void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450{
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
453}
454
455/**
456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457 * @head: the wake_q_head to add @task to
458 * @task: the task to queue for 'later' wakeup
459 *
460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462 * instantly.
463 *
464 * This function must be used as-if it were wake_up_process(); IOW the task
465 * must be ready to be woken at this location.
466 *
467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468 * that already hold reference to @task can call the 'safe' version and trust
469 * wake_q to do the right thing depending whether or not the @task is already
470 * queued for wakeup.
471 */
472void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473{
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
76751049
PZ
476}
477
478void wake_up_q(struct wake_q_head *head)
479{
480 struct wake_q_node *node = head->first;
481
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
484
485 task = container_of(node, struct task_struct, wake_q);
486 BUG_ON(!task);
d1ccc66d 487 /* Task can safely be re-inserted now: */
76751049
PZ
488 node = node->next;
489 task->wake_q.next = NULL;
490
491 /*
7696f991
AP
492 * wake_up_process() executes a full barrier, which pairs with
493 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
494 */
495 wake_up_process(task);
496 put_task_struct(task);
497 }
498}
499
c24d20db 500/*
8875125e 501 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
502 *
503 * On UP this means the setting of the need_resched flag, on SMP it
504 * might also involve a cross-CPU call to trigger the scheduler on
505 * the target CPU.
506 */
8875125e 507void resched_curr(struct rq *rq)
c24d20db 508{
8875125e 509 struct task_struct *curr = rq->curr;
c24d20db
IM
510 int cpu;
511
8875125e 512 lockdep_assert_held(&rq->lock);
c24d20db 513
8875125e 514 if (test_tsk_need_resched(curr))
c24d20db
IM
515 return;
516
8875125e 517 cpu = cpu_of(rq);
fd99f91a 518
f27dde8d 519 if (cpu == smp_processor_id()) {
8875125e 520 set_tsk_need_resched(curr);
f27dde8d 521 set_preempt_need_resched();
c24d20db 522 return;
f27dde8d 523 }
c24d20db 524
8875125e 525 if (set_nr_and_not_polling(curr))
c24d20db 526 smp_send_reschedule(cpu);
dfc68f29
AL
527 else
528 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
529}
530
029632fb 531void resched_cpu(int cpu)
c24d20db
IM
532{
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
7c2102e5 536 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
537 if (cpu_online(cpu) || cpu == smp_processor_id())
538 resched_curr(rq);
05fa785c 539 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 540}
06d8308c 541
b021fe3e 542#ifdef CONFIG_SMP
3451d024 543#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 544/*
d1ccc66d
IM
545 * In the semi idle case, use the nearest busy CPU for migrating timers
546 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
547 *
548 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
549 * selecting an idle CPU will add more delays to the timers than intended
550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 551 */
bc7a34b8 552int get_nohz_timer_target(void)
83cd4fe2 553{
bc7a34b8 554 int i, cpu = smp_processor_id();
83cd4fe2
VP
555 struct sched_domain *sd;
556
de201559 557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
558 return cpu;
559
057f3fad 560 rcu_read_lock();
83cd4fe2 561 for_each_domain(cpu, sd) {
057f3fad 562 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
563 if (cpu == i)
564 continue;
565
de201559 566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
567 cpu = i;
568 goto unlock;
569 }
570 }
83cd4fe2 571 }
9642d18e 572
de201559
FW
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
d1ccc66d 579
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
1c20091e 590static void wake_up_idle_cpu(int cpu)
06d8308c
TG
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
67b9ca70 597 if (set_nr_and_not_polling(rq->idle))
06d8308c 598 smp_send_reschedule(cpu);
dfc68f29
AL
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
601}
602
c5bfece2 603static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 604{
53c5fa16
FW
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
379d9ecb
PM
611 if (cpu_is_offline(cpu))
612 return true; /* Don't try to wake offline CPUs. */
c5bfece2 613 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
53c5fa16 616 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
617 return true;
618 }
619
620 return false;
621}
622
379d9ecb
PM
623/*
624 * Wake up the specified CPU. If the CPU is going offline, it is the
625 * caller's responsibility to deal with the lost wakeup, for example,
626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627 */
1c20091e
FW
628void wake_up_nohz_cpu(int cpu)
629{
c5bfece2 630 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
631 wake_up_idle_cpu(cpu);
632}
633
ca38062e 634static inline bool got_nohz_idle_kick(void)
45bf76df 635{
1c792db7 636 int cpu = smp_processor_id();
873b4c65 637
b7031a02 638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
639 return false;
640
641 if (idle_cpu(cpu) && !need_resched())
642 return true;
643
644 /*
645 * We can't run Idle Load Balance on this CPU for this time so we
646 * cancel it and clear NOHZ_BALANCE_KICK
647 */
b7031a02 648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 649 return false;
45bf76df
IM
650}
651
3451d024 652#else /* CONFIG_NO_HZ_COMMON */
45bf76df 653
ca38062e 654static inline bool got_nohz_idle_kick(void)
2069dd75 655{
ca38062e 656 return false;
2069dd75
PZ
657}
658
3451d024 659#endif /* CONFIG_NO_HZ_COMMON */
d842de87 660
ce831b38 661#ifdef CONFIG_NO_HZ_FULL
76d92ac3 662bool sched_can_stop_tick(struct rq *rq)
ce831b38 663{
76d92ac3
FW
664 int fifo_nr_running;
665
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
668 return false;
669
1e78cdbd 670 /*
2548d546
PZ
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
1e78cdbd 673 */
76d92ac3
FW
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
1e78cdbd
RR
679 }
680
2548d546
PZ
681 /*
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
684 */
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689 /*
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
692 * preemption.
693 */
694 if (rq->nr_running > 1)
541b8264 695 return false;
ce831b38 696
541b8264 697 return true;
ce831b38
FW
698}
699#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 700#endif /* CONFIG_SMP */
18d95a28 701
a790de99
PT
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 704/*
8277434e
PT
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 709 */
029632fb 710int walk_tg_tree_from(struct task_group *from,
8277434e 711 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
712{
713 struct task_group *parent, *child;
eb755805 714 int ret;
c09595f6 715
8277434e
PT
716 parent = from;
717
c09595f6 718down:
eb755805
PZ
719 ret = (*down)(parent, data);
720 if (ret)
8277434e 721 goto out;
c09595f6
PZ
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
eb755805 729 ret = (*up)(parent, data);
8277434e
PT
730 if (ret || parent == from)
731 goto out;
c09595f6
PZ
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
8277434e 737out:
eb755805 738 return ret;
c09595f6
PZ
739}
740
029632fb 741int tg_nop(struct task_group *tg, void *data)
eb755805 742{
e2b245f8 743 return 0;
eb755805 744}
18d95a28
PZ
745#endif
746
9059393e 747static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 748{
f05998d4
NR
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
dd41f596
IM
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
1da1843f 755 if (task_has_idle_policy(p)) {
c8b28116 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 757 load->inv_weight = WMULT_IDLEPRIO;
4a465e3e 758 p->se.runnable_weight = load->weight;
dd41f596
IM
759 return;
760 }
71f8bd46 761
9059393e
VG
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
4a465e3e 771 p->se.runnable_weight = load->weight;
9059393e 772 }
71f8bd46
IM
773}
774
69842cba 775#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
776/* Max allowed minimum utilization */
777unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
778
779/* Max allowed maximum utilization */
780unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
781
782/* All clamps are required to be less or equal than these values */
783static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba
PB
784
785/* Integer rounded range for each bucket */
786#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
787
788#define for_each_clamp_id(clamp_id) \
789 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
790
791static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
792{
793 return clamp_value / UCLAMP_BUCKET_DELTA;
794}
795
60daf9c1
PB
796static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
797{
798 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
799}
800
69842cba
PB
801static inline unsigned int uclamp_none(int clamp_id)
802{
803 if (clamp_id == UCLAMP_MIN)
804 return 0;
805 return SCHED_CAPACITY_SCALE;
806}
807
808static inline void uclamp_se_set(struct uclamp_se *uc_se, unsigned int value)
809{
810 uc_se->value = value;
811 uc_se->bucket_id = uclamp_bucket_id(value);
812}
813
e496187d
PB
814static inline unsigned int
815uclamp_idle_value(struct rq *rq, unsigned int clamp_id,
816 unsigned int clamp_value)
817{
818 /*
819 * Avoid blocked utilization pushing up the frequency when we go
820 * idle (which drops the max-clamp) by retaining the last known
821 * max-clamp.
822 */
823 if (clamp_id == UCLAMP_MAX) {
824 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
825 return clamp_value;
826 }
827
828 return uclamp_none(UCLAMP_MIN);
829}
830
831static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id,
832 unsigned int clamp_value)
833{
834 /* Reset max-clamp retention only on idle exit */
835 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
836 return;
837
838 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
839}
840
69842cba 841static inline
e496187d
PB
842unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id,
843 unsigned int clamp_value)
69842cba
PB
844{
845 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
846 int bucket_id = UCLAMP_BUCKETS - 1;
847
848 /*
849 * Since both min and max clamps are max aggregated, find the
850 * top most bucket with tasks in.
851 */
852 for ( ; bucket_id >= 0; bucket_id--) {
853 if (!bucket[bucket_id].tasks)
854 continue;
855 return bucket[bucket_id].value;
856 }
857
858 /* No tasks -- default clamp values */
e496187d 859 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
860}
861
e8f14172
PB
862/*
863 * The effective clamp bucket index of a task depends on, by increasing
864 * priority:
865 * - the task specific clamp value, when explicitly requested from userspace
866 * - the system default clamp value, defined by the sysadmin
867 */
868static inline struct uclamp_se
869uclamp_eff_get(struct task_struct *p, unsigned int clamp_id)
870{
871 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
872 struct uclamp_se uc_max = uclamp_default[clamp_id];
873
874 /* System default restrictions always apply */
875 if (unlikely(uc_req.value > uc_max.value))
876 return uc_max;
877
878 return uc_req;
879}
880
69842cba
PB
881/*
882 * When a task is enqueued on a rq, the clamp bucket currently defined by the
883 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
884 * updates the rq's clamp value if required.
60daf9c1
PB
885 *
886 * Tasks can have a task-specific value requested from user-space, track
887 * within each bucket the maximum value for tasks refcounted in it.
888 * This "local max aggregation" allows to track the exact "requested" value
889 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
890 */
891static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
892 unsigned int clamp_id)
893{
894 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
895 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
896 struct uclamp_bucket *bucket;
897
898 lockdep_assert_held(&rq->lock);
899
e8f14172
PB
900 /* Update task effective clamp */
901 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
902
69842cba
PB
903 bucket = &uc_rq->bucket[uc_se->bucket_id];
904 bucket->tasks++;
e8f14172 905 uc_se->active = true;
69842cba 906
e496187d
PB
907 uclamp_idle_reset(rq, clamp_id, uc_se->value);
908
60daf9c1
PB
909 /*
910 * Local max aggregation: rq buckets always track the max
911 * "requested" clamp value of its RUNNABLE tasks.
912 */
913 if (bucket->tasks == 1 || uc_se->value > bucket->value)
914 bucket->value = uc_se->value;
915
69842cba 916 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 917 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
918}
919
920/*
921 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
922 * is released. If this is the last task reference counting the rq's max
923 * active clamp value, then the rq's clamp value is updated.
924 *
925 * Both refcounted tasks and rq's cached clamp values are expected to be
926 * always valid. If it's detected they are not, as defensive programming,
927 * enforce the expected state and warn.
928 */
929static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
930 unsigned int clamp_id)
931{
932 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
933 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
934 struct uclamp_bucket *bucket;
e496187d 935 unsigned int bkt_clamp;
69842cba
PB
936 unsigned int rq_clamp;
937
938 lockdep_assert_held(&rq->lock);
939
940 bucket = &uc_rq->bucket[uc_se->bucket_id];
941 SCHED_WARN_ON(!bucket->tasks);
942 if (likely(bucket->tasks))
943 bucket->tasks--;
e8f14172 944 uc_se->active = false;
69842cba 945
60daf9c1
PB
946 /*
947 * Keep "local max aggregation" simple and accept to (possibly)
948 * overboost some RUNNABLE tasks in the same bucket.
949 * The rq clamp bucket value is reset to its base value whenever
950 * there are no more RUNNABLE tasks refcounting it.
951 */
69842cba
PB
952 if (likely(bucket->tasks))
953 return;
954
955 rq_clamp = READ_ONCE(uc_rq->value);
956 /*
957 * Defensive programming: this should never happen. If it happens,
958 * e.g. due to future modification, warn and fixup the expected value.
959 */
960 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
961 if (bucket->value >= rq_clamp) {
962 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
963 WRITE_ONCE(uc_rq->value, bkt_clamp);
964 }
69842cba
PB
965}
966
967static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
968{
969 unsigned int clamp_id;
970
971 if (unlikely(!p->sched_class->uclamp_enabled))
972 return;
973
974 for_each_clamp_id(clamp_id)
975 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
976
977 /* Reset clamp idle holding when there is one RUNNABLE task */
978 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
979 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
980}
981
982static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
983{
984 unsigned int clamp_id;
985
986 if (unlikely(!p->sched_class->uclamp_enabled))
987 return;
988
989 for_each_clamp_id(clamp_id)
990 uclamp_rq_dec_id(rq, p, clamp_id);
991}
992
e8f14172
PB
993int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
994 void __user *buffer, size_t *lenp,
995 loff_t *ppos)
996{
997 int old_min, old_max;
998 static DEFINE_MUTEX(mutex);
999 int result;
1000
1001 mutex_lock(&mutex);
1002 old_min = sysctl_sched_uclamp_util_min;
1003 old_max = sysctl_sched_uclamp_util_max;
1004
1005 result = proc_dointvec(table, write, buffer, lenp, ppos);
1006 if (result)
1007 goto undo;
1008 if (!write)
1009 goto done;
1010
1011 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1012 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1013 result = -EINVAL;
1014 goto undo;
1015 }
1016
1017 if (old_min != sysctl_sched_uclamp_util_min) {
1018 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1019 sysctl_sched_uclamp_util_min);
1020 }
1021 if (old_max != sysctl_sched_uclamp_util_max) {
1022 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1023 sysctl_sched_uclamp_util_max);
1024 }
1025
1026 /*
1027 * Updating all the RUNNABLE task is expensive, keep it simple and do
1028 * just a lazy update at each next enqueue time.
1029 */
1030 goto done;
1031
1032undo:
1033 sysctl_sched_uclamp_util_min = old_min;
1034 sysctl_sched_uclamp_util_max = old_max;
1035done:
1036 mutex_unlock(&mutex);
1037
1038 return result;
1039}
1040
1041static void uclamp_fork(struct task_struct *p)
1042{
1043 unsigned int clamp_id;
1044
1045 for_each_clamp_id(clamp_id)
1046 p->uclamp[clamp_id].active = false;
1047}
1048
69842cba
PB
1049static void __init init_uclamp(void)
1050{
e8f14172 1051 struct uclamp_se uc_max = {};
69842cba
PB
1052 unsigned int clamp_id;
1053 int cpu;
1054
e496187d 1055 for_each_possible_cpu(cpu) {
69842cba 1056 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
e496187d
PB
1057 cpu_rq(cpu)->uclamp_flags = 0;
1058 }
69842cba 1059
69842cba 1060 for_each_clamp_id(clamp_id) {
e8f14172 1061 uclamp_se_set(&init_task.uclamp_req[clamp_id],
69842cba
PB
1062 uclamp_none(clamp_id));
1063 }
e8f14172
PB
1064
1065 /* System defaults allow max clamp values for both indexes */
1066 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX));
1067 for_each_clamp_id(clamp_id)
1068 uclamp_default[clamp_id] = uc_max;
69842cba
PB
1069}
1070
1071#else /* CONFIG_UCLAMP_TASK */
1072static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1073static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
e8f14172 1074static inline void uclamp_fork(struct task_struct *p) { }
69842cba
PB
1075static inline void init_uclamp(void) { }
1076#endif /* CONFIG_UCLAMP_TASK */
1077
1de64443 1078static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1079{
0a67d1ee
PZ
1080 if (!(flags & ENQUEUE_NOCLOCK))
1081 update_rq_clock(rq);
1082
eb414681 1083 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1084 sched_info_queued(rq, p);
eb414681
JW
1085 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1086 }
0a67d1ee 1087
69842cba 1088 uclamp_rq_inc(rq, p);
371fd7e7 1089 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1090}
1091
1de64443 1092static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1093{
0a67d1ee
PZ
1094 if (!(flags & DEQUEUE_NOCLOCK))
1095 update_rq_clock(rq);
1096
eb414681 1097 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1098 sched_info_dequeued(rq, p);
eb414681
JW
1099 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1100 }
0a67d1ee 1101
69842cba 1102 uclamp_rq_dec(rq, p);
371fd7e7 1103 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1104}
1105
029632fb 1106void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1107{
1108 if (task_contributes_to_load(p))
1109 rq->nr_uninterruptible--;
1110
371fd7e7 1111 enqueue_task(rq, p, flags);
7dd77884
PZ
1112
1113 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1114}
1115
029632fb 1116void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1117{
7dd77884
PZ
1118 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1119
1e3c88bd
PZ
1120 if (task_contributes_to_load(p))
1121 rq->nr_uninterruptible++;
1122
371fd7e7 1123 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1124}
1125
14531189 1126/*
dd41f596 1127 * __normal_prio - return the priority that is based on the static prio
14531189 1128 */
14531189
IM
1129static inline int __normal_prio(struct task_struct *p)
1130{
dd41f596 1131 return p->static_prio;
14531189
IM
1132}
1133
b29739f9
IM
1134/*
1135 * Calculate the expected normal priority: i.e. priority
1136 * without taking RT-inheritance into account. Might be
1137 * boosted by interactivity modifiers. Changes upon fork,
1138 * setprio syscalls, and whenever the interactivity
1139 * estimator recalculates.
1140 */
36c8b586 1141static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1142{
1143 int prio;
1144
aab03e05
DF
1145 if (task_has_dl_policy(p))
1146 prio = MAX_DL_PRIO-1;
1147 else if (task_has_rt_policy(p))
b29739f9
IM
1148 prio = MAX_RT_PRIO-1 - p->rt_priority;
1149 else
1150 prio = __normal_prio(p);
1151 return prio;
1152}
1153
1154/*
1155 * Calculate the current priority, i.e. the priority
1156 * taken into account by the scheduler. This value might
1157 * be boosted by RT tasks, or might be boosted by
1158 * interactivity modifiers. Will be RT if the task got
1159 * RT-boosted. If not then it returns p->normal_prio.
1160 */
36c8b586 1161static int effective_prio(struct task_struct *p)
b29739f9
IM
1162{
1163 p->normal_prio = normal_prio(p);
1164 /*
1165 * If we are RT tasks or we were boosted to RT priority,
1166 * keep the priority unchanged. Otherwise, update priority
1167 * to the normal priority:
1168 */
1169 if (!rt_prio(p->prio))
1170 return p->normal_prio;
1171 return p->prio;
1172}
1173
1da177e4
LT
1174/**
1175 * task_curr - is this task currently executing on a CPU?
1176 * @p: the task in question.
e69f6186
YB
1177 *
1178 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1179 */
36c8b586 1180inline int task_curr(const struct task_struct *p)
1da177e4
LT
1181{
1182 return cpu_curr(task_cpu(p)) == p;
1183}
1184
67dfa1b7 1185/*
4c9a4bc8
PZ
1186 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1187 * use the balance_callback list if you want balancing.
1188 *
1189 * this means any call to check_class_changed() must be followed by a call to
1190 * balance_callback().
67dfa1b7 1191 */
cb469845
SR
1192static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1193 const struct sched_class *prev_class,
da7a735e 1194 int oldprio)
cb469845
SR
1195{
1196 if (prev_class != p->sched_class) {
1197 if (prev_class->switched_from)
da7a735e 1198 prev_class->switched_from(rq, p);
4c9a4bc8 1199
da7a735e 1200 p->sched_class->switched_to(rq, p);
2d3d891d 1201 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1202 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1203}
1204
029632fb 1205void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1206{
1207 const struct sched_class *class;
1208
1209 if (p->sched_class == rq->curr->sched_class) {
1210 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1211 } else {
1212 for_each_class(class) {
1213 if (class == rq->curr->sched_class)
1214 break;
1215 if (class == p->sched_class) {
8875125e 1216 resched_curr(rq);
1e5a7405
PZ
1217 break;
1218 }
1219 }
1220 }
1221
1222 /*
1223 * A queue event has occurred, and we're going to schedule. In
1224 * this case, we can save a useless back to back clock update.
1225 */
da0c1e65 1226 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1227 rq_clock_skip_update(rq);
1e5a7405
PZ
1228}
1229
1da177e4 1230#ifdef CONFIG_SMP
175f0e25
PZ
1231
1232static inline bool is_per_cpu_kthread(struct task_struct *p)
1233{
1234 if (!(p->flags & PF_KTHREAD))
1235 return false;
1236
1237 if (p->nr_cpus_allowed != 1)
1238 return false;
1239
1240 return true;
1241}
1242
1243/*
bee98539 1244 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1245 * __set_cpus_allowed_ptr() and select_fallback_rq().
1246 */
1247static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1248{
3bd37062 1249 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1250 return false;
1251
1252 if (is_per_cpu_kthread(p))
1253 return cpu_online(cpu);
1254
1255 return cpu_active(cpu);
1256}
1257
5cc389bc
PZ
1258/*
1259 * This is how migration works:
1260 *
1261 * 1) we invoke migration_cpu_stop() on the target CPU using
1262 * stop_one_cpu().
1263 * 2) stopper starts to run (implicitly forcing the migrated thread
1264 * off the CPU)
1265 * 3) it checks whether the migrated task is still in the wrong runqueue.
1266 * 4) if it's in the wrong runqueue then the migration thread removes
1267 * it and puts it into the right queue.
1268 * 5) stopper completes and stop_one_cpu() returns and the migration
1269 * is done.
1270 */
1271
1272/*
1273 * move_queued_task - move a queued task to new rq.
1274 *
1275 * Returns (locked) new rq. Old rq's lock is released.
1276 */
8a8c69c3
PZ
1277static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1278 struct task_struct *p, int new_cpu)
5cc389bc 1279{
5cc389bc
PZ
1280 lockdep_assert_held(&rq->lock);
1281
c546951d 1282 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 1283 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1284 set_task_cpu(p, new_cpu);
8a8c69c3 1285 rq_unlock(rq, rf);
5cc389bc
PZ
1286
1287 rq = cpu_rq(new_cpu);
1288
8a8c69c3 1289 rq_lock(rq, rf);
5cc389bc 1290 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1291 enqueue_task(rq, p, 0);
3ea94de1 1292 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1293 check_preempt_curr(rq, p, 0);
1294
1295 return rq;
1296}
1297
1298struct migration_arg {
1299 struct task_struct *task;
1300 int dest_cpu;
1301};
1302
1303/*
d1ccc66d 1304 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1305 * this because either it can't run here any more (set_cpus_allowed()
1306 * away from this CPU, or CPU going down), or because we're
1307 * attempting to rebalance this task on exec (sched_exec).
1308 *
1309 * So we race with normal scheduler movements, but that's OK, as long
1310 * as the task is no longer on this CPU.
5cc389bc 1311 */
8a8c69c3
PZ
1312static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1313 struct task_struct *p, int dest_cpu)
5cc389bc 1314{
5cc389bc 1315 /* Affinity changed (again). */
175f0e25 1316 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1317 return rq;
5cc389bc 1318
15ff991e 1319 update_rq_clock(rq);
8a8c69c3 1320 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1321
1322 return rq;
5cc389bc
PZ
1323}
1324
1325/*
1326 * migration_cpu_stop - this will be executed by a highprio stopper thread
1327 * and performs thread migration by bumping thread off CPU then
1328 * 'pushing' onto another runqueue.
1329 */
1330static int migration_cpu_stop(void *data)
1331{
1332 struct migration_arg *arg = data;
5e16bbc2
PZ
1333 struct task_struct *p = arg->task;
1334 struct rq *rq = this_rq();
8a8c69c3 1335 struct rq_flags rf;
5cc389bc
PZ
1336
1337 /*
d1ccc66d
IM
1338 * The original target CPU might have gone down and we might
1339 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1340 */
1341 local_irq_disable();
1342 /*
1343 * We need to explicitly wake pending tasks before running
3bd37062 1344 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1345 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1346 */
1347 sched_ttwu_pending();
5e16bbc2
PZ
1348
1349 raw_spin_lock(&p->pi_lock);
8a8c69c3 1350 rq_lock(rq, &rf);
5e16bbc2
PZ
1351 /*
1352 * If task_rq(p) != rq, it cannot be migrated here, because we're
1353 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1354 * we're holding p->pi_lock.
1355 */
bf89a304
CC
1356 if (task_rq(p) == rq) {
1357 if (task_on_rq_queued(p))
8a8c69c3 1358 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1359 else
1360 p->wake_cpu = arg->dest_cpu;
1361 }
8a8c69c3 1362 rq_unlock(rq, &rf);
5e16bbc2
PZ
1363 raw_spin_unlock(&p->pi_lock);
1364
5cc389bc
PZ
1365 local_irq_enable();
1366 return 0;
1367}
1368
c5b28038
PZ
1369/*
1370 * sched_class::set_cpus_allowed must do the below, but is not required to
1371 * actually call this function.
1372 */
1373void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1374{
3bd37062 1375 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1376 p->nr_cpus_allowed = cpumask_weight(new_mask);
1377}
1378
c5b28038
PZ
1379void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1380{
6c37067e
PZ
1381 struct rq *rq = task_rq(p);
1382 bool queued, running;
1383
c5b28038 1384 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1385
1386 queued = task_on_rq_queued(p);
1387 running = task_current(rq, p);
1388
1389 if (queued) {
1390 /*
1391 * Because __kthread_bind() calls this on blocked tasks without
1392 * holding rq->lock.
1393 */
1394 lockdep_assert_held(&rq->lock);
7a57f32a 1395 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1396 }
1397 if (running)
1398 put_prev_task(rq, p);
1399
c5b28038 1400 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1401
6c37067e 1402 if (queued)
7134b3e9 1403 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1404 if (running)
b2bf6c31 1405 set_curr_task(rq, p);
c5b28038
PZ
1406}
1407
5cc389bc
PZ
1408/*
1409 * Change a given task's CPU affinity. Migrate the thread to a
1410 * proper CPU and schedule it away if the CPU it's executing on
1411 * is removed from the allowed bitmask.
1412 *
1413 * NOTE: the caller must have a valid reference to the task, the
1414 * task must not exit() & deallocate itself prematurely. The
1415 * call is not atomic; no spinlocks may be held.
1416 */
25834c73
PZ
1417static int __set_cpus_allowed_ptr(struct task_struct *p,
1418 const struct cpumask *new_mask, bool check)
5cc389bc 1419{
e9d867a6 1420 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1421 unsigned int dest_cpu;
eb580751
PZ
1422 struct rq_flags rf;
1423 struct rq *rq;
5cc389bc
PZ
1424 int ret = 0;
1425
eb580751 1426 rq = task_rq_lock(p, &rf);
a499c3ea 1427 update_rq_clock(rq);
5cc389bc 1428
e9d867a6
PZI
1429 if (p->flags & PF_KTHREAD) {
1430 /*
1431 * Kernel threads are allowed on online && !active CPUs
1432 */
1433 cpu_valid_mask = cpu_online_mask;
1434 }
1435
25834c73
PZ
1436 /*
1437 * Must re-check here, to close a race against __kthread_bind(),
1438 * sched_setaffinity() is not guaranteed to observe the flag.
1439 */
1440 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1441 ret = -EINVAL;
1442 goto out;
1443 }
1444
3bd37062 1445 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1446 goto out;
1447
e9d867a6 1448 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1449 ret = -EINVAL;
1450 goto out;
1451 }
1452
1453 do_set_cpus_allowed(p, new_mask);
1454
e9d867a6
PZI
1455 if (p->flags & PF_KTHREAD) {
1456 /*
1457 * For kernel threads that do indeed end up on online &&
d1ccc66d 1458 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1459 */
1460 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1461 !cpumask_intersects(new_mask, cpu_active_mask) &&
1462 p->nr_cpus_allowed != 1);
1463 }
1464
5cc389bc
PZ
1465 /* Can the task run on the task's current CPU? If so, we're done */
1466 if (cpumask_test_cpu(task_cpu(p), new_mask))
1467 goto out;
1468
e9d867a6 1469 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1470 if (task_running(rq, p) || p->state == TASK_WAKING) {
1471 struct migration_arg arg = { p, dest_cpu };
1472 /* Need help from migration thread: drop lock and wait. */
eb580751 1473 task_rq_unlock(rq, p, &rf);
5cc389bc 1474 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1475 return 0;
cbce1a68
PZ
1476 } else if (task_on_rq_queued(p)) {
1477 /*
1478 * OK, since we're going to drop the lock immediately
1479 * afterwards anyway.
1480 */
8a8c69c3 1481 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1482 }
5cc389bc 1483out:
eb580751 1484 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1485
1486 return ret;
1487}
25834c73
PZ
1488
1489int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1490{
1491 return __set_cpus_allowed_ptr(p, new_mask, false);
1492}
5cc389bc
PZ
1493EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1494
dd41f596 1495void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1496{
e2912009
PZ
1497#ifdef CONFIG_SCHED_DEBUG
1498 /*
1499 * We should never call set_task_cpu() on a blocked task,
1500 * ttwu() will sort out the placement.
1501 */
077614ee 1502 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1503 !p->on_rq);
0122ec5b 1504
3ea94de1
JP
1505 /*
1506 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1507 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1508 * time relying on p->on_rq.
1509 */
1510 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1511 p->sched_class == &fair_sched_class &&
1512 (p->on_rq && !task_on_rq_migrating(p)));
1513
0122ec5b 1514#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1515 /*
1516 * The caller should hold either p->pi_lock or rq->lock, when changing
1517 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1518 *
1519 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1520 * see task_group().
6c6c54e1
PZ
1521 *
1522 * Furthermore, all task_rq users should acquire both locks, see
1523 * task_rq_lock().
1524 */
0122ec5b
PZ
1525 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1526 lockdep_is_held(&task_rq(p)->lock)));
1527#endif
4ff9083b
PZ
1528 /*
1529 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1530 */
1531 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1532#endif
1533
de1d7286 1534 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1535
0c69774e 1536 if (task_cpu(p) != new_cpu) {
0a74bef8 1537 if (p->sched_class->migrate_task_rq)
1327237a 1538 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1539 p->se.nr_migrations++;
d7822b1e 1540 rseq_migrate(p);
ff303e66 1541 perf_event_task_migrate(p);
0c69774e 1542 }
dd41f596
IM
1543
1544 __set_task_cpu(p, new_cpu);
c65cc870
IM
1545}
1546
0ad4e3df 1547#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1548static void __migrate_swap_task(struct task_struct *p, int cpu)
1549{
da0c1e65 1550 if (task_on_rq_queued(p)) {
ac66f547 1551 struct rq *src_rq, *dst_rq;
8a8c69c3 1552 struct rq_flags srf, drf;
ac66f547
PZ
1553
1554 src_rq = task_rq(p);
1555 dst_rq = cpu_rq(cpu);
1556
8a8c69c3
PZ
1557 rq_pin_lock(src_rq, &srf);
1558 rq_pin_lock(dst_rq, &drf);
1559
ac66f547
PZ
1560 deactivate_task(src_rq, p, 0);
1561 set_task_cpu(p, cpu);
1562 activate_task(dst_rq, p, 0);
1563 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1564
1565 rq_unpin_lock(dst_rq, &drf);
1566 rq_unpin_lock(src_rq, &srf);
1567
ac66f547
PZ
1568 } else {
1569 /*
1570 * Task isn't running anymore; make it appear like we migrated
1571 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1572 * previous CPU our target instead of where it really is.
ac66f547
PZ
1573 */
1574 p->wake_cpu = cpu;
1575 }
1576}
1577
1578struct migration_swap_arg {
1579 struct task_struct *src_task, *dst_task;
1580 int src_cpu, dst_cpu;
1581};
1582
1583static int migrate_swap_stop(void *data)
1584{
1585 struct migration_swap_arg *arg = data;
1586 struct rq *src_rq, *dst_rq;
1587 int ret = -EAGAIN;
1588
62694cd5
PZ
1589 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1590 return -EAGAIN;
1591
ac66f547
PZ
1592 src_rq = cpu_rq(arg->src_cpu);
1593 dst_rq = cpu_rq(arg->dst_cpu);
1594
74602315
PZ
1595 double_raw_lock(&arg->src_task->pi_lock,
1596 &arg->dst_task->pi_lock);
ac66f547 1597 double_rq_lock(src_rq, dst_rq);
62694cd5 1598
ac66f547
PZ
1599 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1600 goto unlock;
1601
1602 if (task_cpu(arg->src_task) != arg->src_cpu)
1603 goto unlock;
1604
3bd37062 1605 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1606 goto unlock;
1607
3bd37062 1608 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1609 goto unlock;
1610
1611 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1612 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1613
1614 ret = 0;
1615
1616unlock:
1617 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1618 raw_spin_unlock(&arg->dst_task->pi_lock);
1619 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1620
1621 return ret;
1622}
1623
1624/*
1625 * Cross migrate two tasks
1626 */
0ad4e3df
SD
1627int migrate_swap(struct task_struct *cur, struct task_struct *p,
1628 int target_cpu, int curr_cpu)
ac66f547
PZ
1629{
1630 struct migration_swap_arg arg;
1631 int ret = -EINVAL;
1632
ac66f547
PZ
1633 arg = (struct migration_swap_arg){
1634 .src_task = cur,
0ad4e3df 1635 .src_cpu = curr_cpu,
ac66f547 1636 .dst_task = p,
0ad4e3df 1637 .dst_cpu = target_cpu,
ac66f547
PZ
1638 };
1639
1640 if (arg.src_cpu == arg.dst_cpu)
1641 goto out;
1642
6acce3ef
PZ
1643 /*
1644 * These three tests are all lockless; this is OK since all of them
1645 * will be re-checked with proper locks held further down the line.
1646 */
ac66f547
PZ
1647 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1648 goto out;
1649
3bd37062 1650 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1651 goto out;
1652
3bd37062 1653 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1654 goto out;
1655
286549dc 1656 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1657 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1658
1659out:
ac66f547
PZ
1660 return ret;
1661}
0ad4e3df 1662#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1663
1da177e4
LT
1664/*
1665 * wait_task_inactive - wait for a thread to unschedule.
1666 *
85ba2d86
RM
1667 * If @match_state is nonzero, it's the @p->state value just checked and
1668 * not expected to change. If it changes, i.e. @p might have woken up,
1669 * then return zero. When we succeed in waiting for @p to be off its CPU,
1670 * we return a positive number (its total switch count). If a second call
1671 * a short while later returns the same number, the caller can be sure that
1672 * @p has remained unscheduled the whole time.
1673 *
1da177e4
LT
1674 * The caller must ensure that the task *will* unschedule sometime soon,
1675 * else this function might spin for a *long* time. This function can't
1676 * be called with interrupts off, or it may introduce deadlock with
1677 * smp_call_function() if an IPI is sent by the same process we are
1678 * waiting to become inactive.
1679 */
85ba2d86 1680unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1681{
da0c1e65 1682 int running, queued;
eb580751 1683 struct rq_flags rf;
85ba2d86 1684 unsigned long ncsw;
70b97a7f 1685 struct rq *rq;
1da177e4 1686
3a5c359a
AK
1687 for (;;) {
1688 /*
1689 * We do the initial early heuristics without holding
1690 * any task-queue locks at all. We'll only try to get
1691 * the runqueue lock when things look like they will
1692 * work out!
1693 */
1694 rq = task_rq(p);
fa490cfd 1695
3a5c359a
AK
1696 /*
1697 * If the task is actively running on another CPU
1698 * still, just relax and busy-wait without holding
1699 * any locks.
1700 *
1701 * NOTE! Since we don't hold any locks, it's not
1702 * even sure that "rq" stays as the right runqueue!
1703 * But we don't care, since "task_running()" will
1704 * return false if the runqueue has changed and p
1705 * is actually now running somewhere else!
1706 */
85ba2d86
RM
1707 while (task_running(rq, p)) {
1708 if (match_state && unlikely(p->state != match_state))
1709 return 0;
3a5c359a 1710 cpu_relax();
85ba2d86 1711 }
fa490cfd 1712
3a5c359a
AK
1713 /*
1714 * Ok, time to look more closely! We need the rq
1715 * lock now, to be *sure*. If we're wrong, we'll
1716 * just go back and repeat.
1717 */
eb580751 1718 rq = task_rq_lock(p, &rf);
27a9da65 1719 trace_sched_wait_task(p);
3a5c359a 1720 running = task_running(rq, p);
da0c1e65 1721 queued = task_on_rq_queued(p);
85ba2d86 1722 ncsw = 0;
f31e11d8 1723 if (!match_state || p->state == match_state)
93dcf55f 1724 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1725 task_rq_unlock(rq, p, &rf);
fa490cfd 1726
85ba2d86
RM
1727 /*
1728 * If it changed from the expected state, bail out now.
1729 */
1730 if (unlikely(!ncsw))
1731 break;
1732
3a5c359a
AK
1733 /*
1734 * Was it really running after all now that we
1735 * checked with the proper locks actually held?
1736 *
1737 * Oops. Go back and try again..
1738 */
1739 if (unlikely(running)) {
1740 cpu_relax();
1741 continue;
1742 }
fa490cfd 1743
3a5c359a
AK
1744 /*
1745 * It's not enough that it's not actively running,
1746 * it must be off the runqueue _entirely_, and not
1747 * preempted!
1748 *
80dd99b3 1749 * So if it was still runnable (but just not actively
3a5c359a
AK
1750 * running right now), it's preempted, and we should
1751 * yield - it could be a while.
1752 */
da0c1e65 1753 if (unlikely(queued)) {
8b0e1953 1754 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1755
1756 set_current_state(TASK_UNINTERRUPTIBLE);
1757 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1758 continue;
1759 }
fa490cfd 1760
3a5c359a
AK
1761 /*
1762 * Ahh, all good. It wasn't running, and it wasn't
1763 * runnable, which means that it will never become
1764 * running in the future either. We're all done!
1765 */
1766 break;
1767 }
85ba2d86
RM
1768
1769 return ncsw;
1da177e4
LT
1770}
1771
1772/***
1773 * kick_process - kick a running thread to enter/exit the kernel
1774 * @p: the to-be-kicked thread
1775 *
1776 * Cause a process which is running on another CPU to enter
1777 * kernel-mode, without any delay. (to get signals handled.)
1778 *
25985edc 1779 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1780 * because all it wants to ensure is that the remote task enters
1781 * the kernel. If the IPI races and the task has been migrated
1782 * to another CPU then no harm is done and the purpose has been
1783 * achieved as well.
1784 */
36c8b586 1785void kick_process(struct task_struct *p)
1da177e4
LT
1786{
1787 int cpu;
1788
1789 preempt_disable();
1790 cpu = task_cpu(p);
1791 if ((cpu != smp_processor_id()) && task_curr(p))
1792 smp_send_reschedule(cpu);
1793 preempt_enable();
1794}
b43e3521 1795EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1796
30da688e 1797/*
3bd37062 1798 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1799 *
1800 * A few notes on cpu_active vs cpu_online:
1801 *
1802 * - cpu_active must be a subset of cpu_online
1803 *
97fb7a0a 1804 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1805 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1806 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1807 * see it.
1808 *
d1ccc66d 1809 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1810 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1811 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1812 * off.
1813 *
1814 * This means that fallback selection must not select !active CPUs.
1815 * And can assume that any active CPU must be online. Conversely
1816 * select_task_rq() below may allow selection of !active CPUs in order
1817 * to satisfy the above rules.
30da688e 1818 */
5da9a0fb
PZ
1819static int select_fallback_rq(int cpu, struct task_struct *p)
1820{
aa00d89c
TC
1821 int nid = cpu_to_node(cpu);
1822 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1823 enum { cpuset, possible, fail } state = cpuset;
1824 int dest_cpu;
5da9a0fb 1825
aa00d89c 1826 /*
d1ccc66d
IM
1827 * If the node that the CPU is on has been offlined, cpu_to_node()
1828 * will return -1. There is no CPU on the node, and we should
1829 * select the CPU on the other node.
aa00d89c
TC
1830 */
1831 if (nid != -1) {
1832 nodemask = cpumask_of_node(nid);
1833
1834 /* Look for allowed, online CPU in same node. */
1835 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1836 if (!cpu_active(dest_cpu))
1837 continue;
3bd37062 1838 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
1839 return dest_cpu;
1840 }
2baab4e9 1841 }
5da9a0fb 1842
2baab4e9
PZ
1843 for (;;) {
1844 /* Any allowed, online CPU? */
3bd37062 1845 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 1846 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1847 continue;
175f0e25 1848
2baab4e9
PZ
1849 goto out;
1850 }
5da9a0fb 1851
e73e85f0 1852 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1853 switch (state) {
1854 case cpuset:
e73e85f0
ON
1855 if (IS_ENABLED(CONFIG_CPUSETS)) {
1856 cpuset_cpus_allowed_fallback(p);
1857 state = possible;
1858 break;
1859 }
d1ccc66d 1860 /* Fall-through */
2baab4e9
PZ
1861 case possible:
1862 do_set_cpus_allowed(p, cpu_possible_mask);
1863 state = fail;
1864 break;
1865
1866 case fail:
1867 BUG();
1868 break;
1869 }
1870 }
1871
1872out:
1873 if (state != cpuset) {
1874 /*
1875 * Don't tell them about moving exiting tasks or
1876 * kernel threads (both mm NULL), since they never
1877 * leave kernel.
1878 */
1879 if (p->mm && printk_ratelimit()) {
aac74dc4 1880 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1881 task_pid_nr(p), p->comm, cpu);
1882 }
5da9a0fb
PZ
1883 }
1884
1885 return dest_cpu;
1886}
1887
e2912009 1888/*
3bd37062 1889 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 1890 */
970b13ba 1891static inline
ac66f547 1892int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1893{
cbce1a68
PZ
1894 lockdep_assert_held(&p->pi_lock);
1895
4b53a341 1896 if (p->nr_cpus_allowed > 1)
6c1d9410 1897 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1898 else
3bd37062 1899 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
1900
1901 /*
1902 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 1903 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 1904 * CPU.
e2912009
PZ
1905 *
1906 * Since this is common to all placement strategies, this lives here.
1907 *
1908 * [ this allows ->select_task() to simply return task_cpu(p) and
1909 * not worry about this generic constraint ]
1910 */
7af443ee 1911 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 1912 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1913
1914 return cpu;
970b13ba 1915}
09a40af5
MG
1916
1917static void update_avg(u64 *avg, u64 sample)
1918{
1919 s64 diff = sample - *avg;
1920 *avg += diff >> 3;
1921}
25834c73 1922
f5832c19
NP
1923void sched_set_stop_task(int cpu, struct task_struct *stop)
1924{
1925 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1926 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1927
1928 if (stop) {
1929 /*
1930 * Make it appear like a SCHED_FIFO task, its something
1931 * userspace knows about and won't get confused about.
1932 *
1933 * Also, it will make PI more or less work without too
1934 * much confusion -- but then, stop work should not
1935 * rely on PI working anyway.
1936 */
1937 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1938
1939 stop->sched_class = &stop_sched_class;
1940 }
1941
1942 cpu_rq(cpu)->stop = stop;
1943
1944 if (old_stop) {
1945 /*
1946 * Reset it back to a normal scheduling class so that
1947 * it can die in pieces.
1948 */
1949 old_stop->sched_class = &rt_sched_class;
1950 }
1951}
1952
25834c73
PZ
1953#else
1954
1955static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1956 const struct cpumask *new_mask, bool check)
1957{
1958 return set_cpus_allowed_ptr(p, new_mask);
1959}
1960
5cc389bc 1961#endif /* CONFIG_SMP */
970b13ba 1962
d7c01d27 1963static void
b84cb5df 1964ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1965{
4fa8d299 1966 struct rq *rq;
b84cb5df 1967
4fa8d299
JP
1968 if (!schedstat_enabled())
1969 return;
1970
1971 rq = this_rq();
d7c01d27 1972
4fa8d299
JP
1973#ifdef CONFIG_SMP
1974 if (cpu == rq->cpu) {
b85c8b71
PZ
1975 __schedstat_inc(rq->ttwu_local);
1976 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1977 } else {
1978 struct sched_domain *sd;
1979
b85c8b71 1980 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1981 rcu_read_lock();
4fa8d299 1982 for_each_domain(rq->cpu, sd) {
d7c01d27 1983 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1984 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1985 break;
1986 }
1987 }
057f3fad 1988 rcu_read_unlock();
d7c01d27 1989 }
f339b9dc
PZ
1990
1991 if (wake_flags & WF_MIGRATED)
b85c8b71 1992 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1993#endif /* CONFIG_SMP */
1994
b85c8b71
PZ
1995 __schedstat_inc(rq->ttwu_count);
1996 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1997
1998 if (wake_flags & WF_SYNC)
b85c8b71 1999 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2000}
2001
23f41eeb
PZ
2002/*
2003 * Mark the task runnable and perform wakeup-preemption.
2004 */
e7904a28 2005static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2006 struct rq_flags *rf)
9ed3811a 2007{
9ed3811a 2008 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2009 p->state = TASK_RUNNING;
fbd705a0
PZ
2010 trace_sched_wakeup(p);
2011
9ed3811a 2012#ifdef CONFIG_SMP
4c9a4bc8
PZ
2013 if (p->sched_class->task_woken) {
2014 /*
cbce1a68
PZ
2015 * Our task @p is fully woken up and running; so its safe to
2016 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2017 */
d8ac8971 2018 rq_unpin_lock(rq, rf);
9ed3811a 2019 p->sched_class->task_woken(rq, p);
d8ac8971 2020 rq_repin_lock(rq, rf);
4c9a4bc8 2021 }
9ed3811a 2022
e69c6341 2023 if (rq->idle_stamp) {
78becc27 2024 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2025 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2026
abfafa54
JL
2027 update_avg(&rq->avg_idle, delta);
2028
2029 if (rq->avg_idle > max)
9ed3811a 2030 rq->avg_idle = max;
abfafa54 2031
9ed3811a
TH
2032 rq->idle_stamp = 0;
2033 }
2034#endif
2035}
2036
c05fbafb 2037static void
e7904a28 2038ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2039 struct rq_flags *rf)
c05fbafb 2040{
77558e4d 2041 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2042
cbce1a68
PZ
2043 lockdep_assert_held(&rq->lock);
2044
c05fbafb
PZ
2045#ifdef CONFIG_SMP
2046 if (p->sched_contributes_to_load)
2047 rq->nr_uninterruptible--;
b5179ac7 2048
b5179ac7 2049 if (wake_flags & WF_MIGRATED)
59efa0ba 2050 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2051#endif
2052
1b174a2c 2053 activate_task(rq, p, en_flags);
d8ac8971 2054 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2055}
2056
2057/*
2058 * Called in case the task @p isn't fully descheduled from its runqueue,
2059 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2060 * since all we need to do is flip p->state to TASK_RUNNING, since
2061 * the task is still ->on_rq.
2062 */
2063static int ttwu_remote(struct task_struct *p, int wake_flags)
2064{
eb580751 2065 struct rq_flags rf;
c05fbafb
PZ
2066 struct rq *rq;
2067 int ret = 0;
2068
eb580751 2069 rq = __task_rq_lock(p, &rf);
da0c1e65 2070 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2071 /* check_preempt_curr() may use rq clock */
2072 update_rq_clock(rq);
d8ac8971 2073 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2074 ret = 1;
2075 }
eb580751 2076 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2077
2078 return ret;
2079}
2080
317f3941 2081#ifdef CONFIG_SMP
e3baac47 2082void sched_ttwu_pending(void)
317f3941
PZ
2083{
2084 struct rq *rq = this_rq();
fa14ff4a 2085 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 2086 struct task_struct *p, *t;
d8ac8971 2087 struct rq_flags rf;
317f3941 2088
e3baac47
PZ
2089 if (!llist)
2090 return;
2091
8a8c69c3 2092 rq_lock_irqsave(rq, &rf);
77558e4d 2093 update_rq_clock(rq);
317f3941 2094
73215849
BP
2095 llist_for_each_entry_safe(p, t, llist, wake_entry)
2096 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 2097
8a8c69c3 2098 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2099}
2100
2101void scheduler_ipi(void)
2102{
f27dde8d
PZ
2103 /*
2104 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2105 * TIF_NEED_RESCHED remotely (for the first time) will also send
2106 * this IPI.
2107 */
8cb75e0c 2108 preempt_fold_need_resched();
f27dde8d 2109
fd2ac4f4 2110 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2111 return;
2112
2113 /*
2114 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2115 * traditionally all their work was done from the interrupt return
2116 * path. Now that we actually do some work, we need to make sure
2117 * we do call them.
2118 *
2119 * Some archs already do call them, luckily irq_enter/exit nest
2120 * properly.
2121 *
2122 * Arguably we should visit all archs and update all handlers,
2123 * however a fair share of IPIs are still resched only so this would
2124 * somewhat pessimize the simple resched case.
2125 */
2126 irq_enter();
fa14ff4a 2127 sched_ttwu_pending();
ca38062e
SS
2128
2129 /*
2130 * Check if someone kicked us for doing the nohz idle load balance.
2131 */
873b4c65 2132 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 2133 this_rq()->idle_balance = 1;
ca38062e 2134 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2135 }
c5d753a5 2136 irq_exit();
317f3941
PZ
2137}
2138
b7e7ade3 2139static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 2140{
e3baac47
PZ
2141 struct rq *rq = cpu_rq(cpu);
2142
b7e7ade3
PZ
2143 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2144
e3baac47
PZ
2145 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2146 if (!set_nr_if_polling(rq->idle))
2147 smp_send_reschedule(cpu);
2148 else
2149 trace_sched_wake_idle_without_ipi(cpu);
2150 }
317f3941 2151}
d6aa8f85 2152
f6be8af1
CL
2153void wake_up_if_idle(int cpu)
2154{
2155 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2156 struct rq_flags rf;
f6be8af1 2157
fd7de1e8
AL
2158 rcu_read_lock();
2159
2160 if (!is_idle_task(rcu_dereference(rq->curr)))
2161 goto out;
f6be8af1
CL
2162
2163 if (set_nr_if_polling(rq->idle)) {
2164 trace_sched_wake_idle_without_ipi(cpu);
2165 } else {
8a8c69c3 2166 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2167 if (is_idle_task(rq->curr))
2168 smp_send_reschedule(cpu);
d1ccc66d 2169 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2170 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2171 }
fd7de1e8
AL
2172
2173out:
2174 rcu_read_unlock();
f6be8af1
CL
2175}
2176
39be3501 2177bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2178{
2179 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2180}
d6aa8f85 2181#endif /* CONFIG_SMP */
317f3941 2182
b5179ac7 2183static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2184{
2185 struct rq *rq = cpu_rq(cpu);
d8ac8971 2186 struct rq_flags rf;
c05fbafb 2187
17d9f311 2188#if defined(CONFIG_SMP)
39be3501 2189 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 2190 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 2191 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
2192 return;
2193 }
2194#endif
2195
8a8c69c3 2196 rq_lock(rq, &rf);
77558e4d 2197 update_rq_clock(rq);
d8ac8971 2198 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2199 rq_unlock(rq, &rf);
9ed3811a
TH
2200}
2201
8643cda5
PZ
2202/*
2203 * Notes on Program-Order guarantees on SMP systems.
2204 *
2205 * MIGRATION
2206 *
2207 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2208 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2209 * execution on its new CPU [c1].
8643cda5
PZ
2210 *
2211 * For migration (of runnable tasks) this is provided by the following means:
2212 *
2213 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2214 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2215 * rq(c1)->lock (if not at the same time, then in that order).
2216 * C) LOCK of the rq(c1)->lock scheduling in task
2217 *
7696f991 2218 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2219 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2220 *
2221 * Example:
2222 *
2223 * CPU0 CPU1 CPU2
2224 *
2225 * LOCK rq(0)->lock
2226 * sched-out X
2227 * sched-in Y
2228 * UNLOCK rq(0)->lock
2229 *
2230 * LOCK rq(0)->lock // orders against CPU0
2231 * dequeue X
2232 * UNLOCK rq(0)->lock
2233 *
2234 * LOCK rq(1)->lock
2235 * enqueue X
2236 * UNLOCK rq(1)->lock
2237 *
2238 * LOCK rq(1)->lock // orders against CPU2
2239 * sched-out Z
2240 * sched-in X
2241 * UNLOCK rq(1)->lock
2242 *
2243 *
2244 * BLOCKING -- aka. SLEEP + WAKEUP
2245 *
2246 * For blocking we (obviously) need to provide the same guarantee as for
2247 * migration. However the means are completely different as there is no lock
2248 * chain to provide order. Instead we do:
2249 *
2250 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 2251 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
2252 *
2253 * Example:
2254 *
2255 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2256 *
2257 * LOCK rq(0)->lock LOCK X->pi_lock
2258 * dequeue X
2259 * sched-out X
2260 * smp_store_release(X->on_cpu, 0);
2261 *
1f03e8d2 2262 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2263 * X->state = WAKING
2264 * set_task_cpu(X,2)
2265 *
2266 * LOCK rq(2)->lock
2267 * enqueue X
2268 * X->state = RUNNING
2269 * UNLOCK rq(2)->lock
2270 *
2271 * LOCK rq(2)->lock // orders against CPU1
2272 * sched-out Z
2273 * sched-in X
2274 * UNLOCK rq(2)->lock
2275 *
2276 * UNLOCK X->pi_lock
2277 * UNLOCK rq(0)->lock
2278 *
2279 *
7696f991
AP
2280 * However, for wakeups there is a second guarantee we must provide, namely we
2281 * must ensure that CONDITION=1 done by the caller can not be reordered with
2282 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2283 */
2284
9ed3811a 2285/**
1da177e4 2286 * try_to_wake_up - wake up a thread
9ed3811a 2287 * @p: the thread to be awakened
1da177e4 2288 * @state: the mask of task states that can be woken
9ed3811a 2289 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2290 *
a2250238 2291 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2292 *
a2250238
PZ
2293 * If the task was not queued/runnable, also place it back on a runqueue.
2294 *
2295 * Atomic against schedule() which would dequeue a task, also see
2296 * set_current_state().
2297 *
7696f991
AP
2298 * This function executes a full memory barrier before accessing the task
2299 * state; see set_current_state().
2300 *
a2250238
PZ
2301 * Return: %true if @p->state changes (an actual wakeup was done),
2302 * %false otherwise.
1da177e4 2303 */
e4a52bcb
PZ
2304static int
2305try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2306{
1da177e4 2307 unsigned long flags;
c05fbafb 2308 int cpu, success = 0;
2398f2c6 2309
aacedf26
PZ
2310 if (p == current) {
2311 /*
2312 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2313 * == smp_processor_id()'. Together this means we can special
2314 * case the whole 'p->on_rq && ttwu_remote()' case below
2315 * without taking any locks.
2316 *
2317 * In particular:
2318 * - we rely on Program-Order guarantees for all the ordering,
2319 * - we're serialized against set_special_state() by virtue of
2320 * it disabling IRQs (this allows not taking ->pi_lock).
2321 */
2322 if (!(p->state & state))
2323 return false;
2324
2325 success = 1;
2326 cpu = task_cpu(p);
2327 trace_sched_waking(p);
2328 p->state = TASK_RUNNING;
2329 trace_sched_wakeup(p);
2330 goto out;
2331 }
2332
e0acd0a6
ON
2333 /*
2334 * If we are going to wake up a thread waiting for CONDITION we
2335 * need to ensure that CONDITION=1 done by the caller can not be
2336 * reordered with p->state check below. This pairs with mb() in
2337 * set_current_state() the waiting thread does.
2338 */
013fdb80 2339 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2340 smp_mb__after_spinlock();
e9c84311 2341 if (!(p->state & state))
aacedf26 2342 goto unlock;
1da177e4 2343
fbd705a0
PZ
2344 trace_sched_waking(p);
2345
d1ccc66d
IM
2346 /* We're going to change ->state: */
2347 success = 1;
1da177e4 2348 cpu = task_cpu(p);
1da177e4 2349
135e8c92
BS
2350 /*
2351 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2352 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2353 * in smp_cond_load_acquire() below.
2354 *
3d85b270
AP
2355 * sched_ttwu_pending() try_to_wake_up()
2356 * STORE p->on_rq = 1 LOAD p->state
2357 * UNLOCK rq->lock
2358 *
2359 * __schedule() (switch to task 'p')
2360 * LOCK rq->lock smp_rmb();
2361 * smp_mb__after_spinlock();
2362 * UNLOCK rq->lock
135e8c92
BS
2363 *
2364 * [task p]
3d85b270 2365 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2366 *
3d85b270
AP
2367 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2368 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2369 */
2370 smp_rmb();
c05fbafb 2371 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2372 goto unlock;
1da177e4 2373
1da177e4 2374#ifdef CONFIG_SMP
ecf7d01c
PZ
2375 /*
2376 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2377 * possible to, falsely, observe p->on_cpu == 0.
2378 *
2379 * One must be running (->on_cpu == 1) in order to remove oneself
2380 * from the runqueue.
2381 *
3d85b270
AP
2382 * __schedule() (switch to task 'p') try_to_wake_up()
2383 * STORE p->on_cpu = 1 LOAD p->on_rq
2384 * UNLOCK rq->lock
2385 *
2386 * __schedule() (put 'p' to sleep)
2387 * LOCK rq->lock smp_rmb();
2388 * smp_mb__after_spinlock();
2389 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2390 *
3d85b270
AP
2391 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2392 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2393 */
2394 smp_rmb();
2395
e9c84311 2396 /*
d1ccc66d 2397 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2398 * this task as prev, wait until its done referencing the task.
b75a2253 2399 *
31cb1bc0 2400 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2401 *
2402 * This ensures that tasks getting woken will be fully ordered against
2403 * their previous state and preserve Program Order.
0970d299 2404 */
1f03e8d2 2405 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2406
a8e4f2ea 2407 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2408 p->state = TASK_WAKING;
e7693a36 2409
e33a9bba 2410 if (p->in_iowait) {
c96f5471 2411 delayacct_blkio_end(p);
e33a9bba
TH
2412 atomic_dec(&task_rq(p)->nr_iowait);
2413 }
2414
ac66f547 2415 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2416 if (task_cpu(p) != cpu) {
2417 wake_flags |= WF_MIGRATED;
eb414681 2418 psi_ttwu_dequeue(p);
e4a52bcb 2419 set_task_cpu(p, cpu);
f339b9dc 2420 }
e33a9bba
TH
2421
2422#else /* CONFIG_SMP */
2423
2424 if (p->in_iowait) {
c96f5471 2425 delayacct_blkio_end(p);
e33a9bba
TH
2426 atomic_dec(&task_rq(p)->nr_iowait);
2427 }
2428
1da177e4 2429#endif /* CONFIG_SMP */
1da177e4 2430
b5179ac7 2431 ttwu_queue(p, cpu, wake_flags);
aacedf26 2432unlock:
013fdb80 2433 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2434out:
2435 if (success)
2436 ttwu_stat(p, cpu, wake_flags);
1da177e4
LT
2437
2438 return success;
2439}
2440
50fa610a
DH
2441/**
2442 * wake_up_process - Wake up a specific process
2443 * @p: The process to be woken up.
2444 *
2445 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2446 * processes.
2447 *
2448 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2449 *
7696f991 2450 * This function executes a full memory barrier before accessing the task state.
50fa610a 2451 */
7ad5b3a5 2452int wake_up_process(struct task_struct *p)
1da177e4 2453{
9067ac85 2454 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2455}
1da177e4
LT
2456EXPORT_SYMBOL(wake_up_process);
2457
7ad5b3a5 2458int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2459{
2460 return try_to_wake_up(p, state, 0);
2461}
2462
1da177e4
LT
2463/*
2464 * Perform scheduler related setup for a newly forked process p.
2465 * p is forked by current.
dd41f596
IM
2466 *
2467 * __sched_fork() is basic setup used by init_idle() too:
2468 */
5e1576ed 2469static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2470{
fd2f4419
PZ
2471 p->on_rq = 0;
2472
2473 p->se.on_rq = 0;
dd41f596
IM
2474 p->se.exec_start = 0;
2475 p->se.sum_exec_runtime = 0;
f6cf891c 2476 p->se.prev_sum_exec_runtime = 0;
6c594c21 2477 p->se.nr_migrations = 0;
da7a735e 2478 p->se.vruntime = 0;
fd2f4419 2479 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2480
ad936d86
BP
2481#ifdef CONFIG_FAIR_GROUP_SCHED
2482 p->se.cfs_rq = NULL;
2483#endif
2484
6cfb0d5d 2485#ifdef CONFIG_SCHEDSTATS
cb251765 2486 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2487 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2488#endif
476d139c 2489
aab03e05 2490 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2491 init_dl_task_timer(&p->dl);
209a0cbd 2492 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2493 __dl_clear_params(p);
aab03e05 2494
fa717060 2495 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2496 p->rt.timeout = 0;
2497 p->rt.time_slice = sched_rr_timeslice;
2498 p->rt.on_rq = 0;
2499 p->rt.on_list = 0;
476d139c 2500
e107be36
AK
2501#ifdef CONFIG_PREEMPT_NOTIFIERS
2502 INIT_HLIST_HEAD(&p->preempt_notifiers);
2503#endif
cbee9f88 2504
5e1f0f09
MG
2505#ifdef CONFIG_COMPACTION
2506 p->capture_control = NULL;
2507#endif
13784475 2508 init_numa_balancing(clone_flags, p);
dd41f596
IM
2509}
2510
2a595721
SD
2511DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2512
1a687c2e 2513#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2514
1a687c2e
MG
2515void set_numabalancing_state(bool enabled)
2516{
2517 if (enabled)
2a595721 2518 static_branch_enable(&sched_numa_balancing);
1a687c2e 2519 else
2a595721 2520 static_branch_disable(&sched_numa_balancing);
1a687c2e 2521}
54a43d54
AK
2522
2523#ifdef CONFIG_PROC_SYSCTL
2524int sysctl_numa_balancing(struct ctl_table *table, int write,
2525 void __user *buffer, size_t *lenp, loff_t *ppos)
2526{
2527 struct ctl_table t;
2528 int err;
2a595721 2529 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2530
2531 if (write && !capable(CAP_SYS_ADMIN))
2532 return -EPERM;
2533
2534 t = *table;
2535 t.data = &state;
2536 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2537 if (err < 0)
2538 return err;
2539 if (write)
2540 set_numabalancing_state(state);
2541 return err;
2542}
2543#endif
2544#endif
dd41f596 2545
4698f88c
JP
2546#ifdef CONFIG_SCHEDSTATS
2547
cb251765 2548DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2549static bool __initdata __sched_schedstats = false;
cb251765 2550
cb251765
MG
2551static void set_schedstats(bool enabled)
2552{
2553 if (enabled)
2554 static_branch_enable(&sched_schedstats);
2555 else
2556 static_branch_disable(&sched_schedstats);
2557}
2558
2559void force_schedstat_enabled(void)
2560{
2561 if (!schedstat_enabled()) {
2562 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2563 static_branch_enable(&sched_schedstats);
2564 }
2565}
2566
2567static int __init setup_schedstats(char *str)
2568{
2569 int ret = 0;
2570 if (!str)
2571 goto out;
2572
4698f88c
JP
2573 /*
2574 * This code is called before jump labels have been set up, so we can't
2575 * change the static branch directly just yet. Instead set a temporary
2576 * variable so init_schedstats() can do it later.
2577 */
cb251765 2578 if (!strcmp(str, "enable")) {
4698f88c 2579 __sched_schedstats = true;
cb251765
MG
2580 ret = 1;
2581 } else if (!strcmp(str, "disable")) {
4698f88c 2582 __sched_schedstats = false;
cb251765
MG
2583 ret = 1;
2584 }
2585out:
2586 if (!ret)
2587 pr_warn("Unable to parse schedstats=\n");
2588
2589 return ret;
2590}
2591__setup("schedstats=", setup_schedstats);
2592
4698f88c
JP
2593static void __init init_schedstats(void)
2594{
2595 set_schedstats(__sched_schedstats);
2596}
2597
cb251765
MG
2598#ifdef CONFIG_PROC_SYSCTL
2599int sysctl_schedstats(struct ctl_table *table, int write,
2600 void __user *buffer, size_t *lenp, loff_t *ppos)
2601{
2602 struct ctl_table t;
2603 int err;
2604 int state = static_branch_likely(&sched_schedstats);
2605
2606 if (write && !capable(CAP_SYS_ADMIN))
2607 return -EPERM;
2608
2609 t = *table;
2610 t.data = &state;
2611 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2612 if (err < 0)
2613 return err;
2614 if (write)
2615 set_schedstats(state);
2616 return err;
2617}
4698f88c
JP
2618#endif /* CONFIG_PROC_SYSCTL */
2619#else /* !CONFIG_SCHEDSTATS */
2620static inline void init_schedstats(void) {}
2621#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2622
2623/*
2624 * fork()/clone()-time setup:
2625 */
aab03e05 2626int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2627{
0122ec5b 2628 unsigned long flags;
dd41f596 2629
5e1576ed 2630 __sched_fork(clone_flags, p);
06b83b5f 2631 /*
7dc603c9 2632 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2633 * nobody will actually run it, and a signal or other external
2634 * event cannot wake it up and insert it on the runqueue either.
2635 */
7dc603c9 2636 p->state = TASK_NEW;
dd41f596 2637
c350a04e
MG
2638 /*
2639 * Make sure we do not leak PI boosting priority to the child.
2640 */
2641 p->prio = current->normal_prio;
2642
e8f14172
PB
2643 uclamp_fork(p);
2644
b9dc29e7
MG
2645 /*
2646 * Revert to default priority/policy on fork if requested.
2647 */
2648 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2649 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2650 p->policy = SCHED_NORMAL;
6c697bdf 2651 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2652 p->rt_priority = 0;
2653 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2654 p->static_prio = NICE_TO_PRIO(0);
2655
2656 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2657 set_load_weight(p, false);
6c697bdf 2658
b9dc29e7
MG
2659 /*
2660 * We don't need the reset flag anymore after the fork. It has
2661 * fulfilled its duty:
2662 */
2663 p->sched_reset_on_fork = 0;
2664 }
ca94c442 2665
af0fffd9 2666 if (dl_prio(p->prio))
aab03e05 2667 return -EAGAIN;
af0fffd9 2668 else if (rt_prio(p->prio))
aab03e05 2669 p->sched_class = &rt_sched_class;
af0fffd9 2670 else
2ddbf952 2671 p->sched_class = &fair_sched_class;
b29739f9 2672
7dc603c9 2673 init_entity_runnable_average(&p->se);
cd29fe6f 2674
86951599
PZ
2675 /*
2676 * The child is not yet in the pid-hash so no cgroup attach races,
2677 * and the cgroup is pinned to this child due to cgroup_fork()
2678 * is ran before sched_fork().
2679 *
2680 * Silence PROVE_RCU.
2681 */
0122ec5b 2682 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2683 /*
d1ccc66d 2684 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2685 * so use __set_task_cpu().
2686 */
af0fffd9 2687 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2688 if (p->sched_class->task_fork)
2689 p->sched_class->task_fork(p);
0122ec5b 2690 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2691
f6db8347 2692#ifdef CONFIG_SCHED_INFO
dd41f596 2693 if (likely(sched_info_on()))
52f17b6c 2694 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2695#endif
3ca7a440
PZ
2696#if defined(CONFIG_SMP)
2697 p->on_cpu = 0;
4866cde0 2698#endif
01028747 2699 init_task_preempt_count(p);
806c09a7 2700#ifdef CONFIG_SMP
917b627d 2701 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2702 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2703#endif
aab03e05 2704 return 0;
1da177e4
LT
2705}
2706
332ac17e
DF
2707unsigned long to_ratio(u64 period, u64 runtime)
2708{
2709 if (runtime == RUNTIME_INF)
c52f14d3 2710 return BW_UNIT;
332ac17e
DF
2711
2712 /*
2713 * Doing this here saves a lot of checks in all
2714 * the calling paths, and returning zero seems
2715 * safe for them anyway.
2716 */
2717 if (period == 0)
2718 return 0;
2719
c52f14d3 2720 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2721}
2722
1da177e4
LT
2723/*
2724 * wake_up_new_task - wake up a newly created task for the first time.
2725 *
2726 * This function will do some initial scheduler statistics housekeeping
2727 * that must be done for every newly created context, then puts the task
2728 * on the runqueue and wakes it.
2729 */
3e51e3ed 2730void wake_up_new_task(struct task_struct *p)
1da177e4 2731{
eb580751 2732 struct rq_flags rf;
dd41f596 2733 struct rq *rq;
fabf318e 2734
eb580751 2735 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2736 p->state = TASK_RUNNING;
fabf318e
PZ
2737#ifdef CONFIG_SMP
2738 /*
2739 * Fork balancing, do it here and not earlier because:
3bd37062 2740 * - cpus_ptr can change in the fork path
d1ccc66d 2741 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2742 *
2743 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2744 * as we're not fully set-up yet.
fabf318e 2745 */
32e839dd 2746 p->recent_used_cpu = task_cpu(p);
e210bffd 2747 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2748#endif
b7fa30c9 2749 rq = __task_rq_lock(p, &rf);
4126bad6 2750 update_rq_clock(rq);
d0fe0b9c 2751 post_init_entity_util_avg(p);
0017d735 2752
7a57f32a 2753 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2754 trace_sched_wakeup_new(p);
a7558e01 2755 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2756#ifdef CONFIG_SMP
0aaafaab
PZ
2757 if (p->sched_class->task_woken) {
2758 /*
2759 * Nothing relies on rq->lock after this, so its fine to
2760 * drop it.
2761 */
d8ac8971 2762 rq_unpin_lock(rq, &rf);
efbbd05a 2763 p->sched_class->task_woken(rq, p);
d8ac8971 2764 rq_repin_lock(rq, &rf);
0aaafaab 2765 }
9a897c5a 2766#endif
eb580751 2767 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2768}
2769
e107be36
AK
2770#ifdef CONFIG_PREEMPT_NOTIFIERS
2771
b7203428 2772static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2773
2ecd9d29
PZ
2774void preempt_notifier_inc(void)
2775{
b7203428 2776 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2777}
2778EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2779
2780void preempt_notifier_dec(void)
2781{
b7203428 2782 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2783}
2784EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2785
e107be36 2786/**
80dd99b3 2787 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2788 * @notifier: notifier struct to register
e107be36
AK
2789 */
2790void preempt_notifier_register(struct preempt_notifier *notifier)
2791{
b7203428 2792 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2793 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2794
e107be36
AK
2795 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2796}
2797EXPORT_SYMBOL_GPL(preempt_notifier_register);
2798
2799/**
2800 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2801 * @notifier: notifier struct to unregister
e107be36 2802 *
d84525a8 2803 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2804 */
2805void preempt_notifier_unregister(struct preempt_notifier *notifier)
2806{
2807 hlist_del(&notifier->link);
2808}
2809EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2810
1cde2930 2811static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2812{
2813 struct preempt_notifier *notifier;
e107be36 2814
b67bfe0d 2815 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2816 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2817}
2818
1cde2930
PZ
2819static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2820{
b7203428 2821 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2822 __fire_sched_in_preempt_notifiers(curr);
2823}
2824
e107be36 2825static void
1cde2930
PZ
2826__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2827 struct task_struct *next)
e107be36
AK
2828{
2829 struct preempt_notifier *notifier;
e107be36 2830
b67bfe0d 2831 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2832 notifier->ops->sched_out(notifier, next);
2833}
2834
1cde2930
PZ
2835static __always_inline void
2836fire_sched_out_preempt_notifiers(struct task_struct *curr,
2837 struct task_struct *next)
2838{
b7203428 2839 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2840 __fire_sched_out_preempt_notifiers(curr, next);
2841}
2842
6d6bc0ad 2843#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2844
1cde2930 2845static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2846{
2847}
2848
1cde2930 2849static inline void
e107be36
AK
2850fire_sched_out_preempt_notifiers(struct task_struct *curr,
2851 struct task_struct *next)
2852{
2853}
2854
6d6bc0ad 2855#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2856
31cb1bc0 2857static inline void prepare_task(struct task_struct *next)
2858{
2859#ifdef CONFIG_SMP
2860 /*
2861 * Claim the task as running, we do this before switching to it
2862 * such that any running task will have this set.
2863 */
2864 next->on_cpu = 1;
2865#endif
2866}
2867
2868static inline void finish_task(struct task_struct *prev)
2869{
2870#ifdef CONFIG_SMP
2871 /*
2872 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2873 * We must ensure this doesn't happen until the switch is completely
2874 * finished.
2875 *
2876 * In particular, the load of prev->state in finish_task_switch() must
2877 * happen before this.
2878 *
2879 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2880 */
2881 smp_store_release(&prev->on_cpu, 0);
2882#endif
2883}
2884
269d5992
PZ
2885static inline void
2886prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2887{
269d5992
PZ
2888 /*
2889 * Since the runqueue lock will be released by the next
2890 * task (which is an invalid locking op but in the case
2891 * of the scheduler it's an obvious special-case), so we
2892 * do an early lockdep release here:
2893 */
2894 rq_unpin_lock(rq, rf);
2895 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2896#ifdef CONFIG_DEBUG_SPINLOCK
2897 /* this is a valid case when another task releases the spinlock */
269d5992 2898 rq->lock.owner = next;
31cb1bc0 2899#endif
269d5992
PZ
2900}
2901
2902static inline void finish_lock_switch(struct rq *rq)
2903{
31cb1bc0 2904 /*
2905 * If we are tracking spinlock dependencies then we have to
2906 * fix up the runqueue lock - which gets 'carried over' from
2907 * prev into current:
2908 */
2909 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2910 raw_spin_unlock_irq(&rq->lock);
2911}
2912
325ea10c
IM
2913/*
2914 * NOP if the arch has not defined these:
2915 */
2916
2917#ifndef prepare_arch_switch
2918# define prepare_arch_switch(next) do { } while (0)
2919#endif
2920
2921#ifndef finish_arch_post_lock_switch
2922# define finish_arch_post_lock_switch() do { } while (0)
2923#endif
2924
4866cde0
NP
2925/**
2926 * prepare_task_switch - prepare to switch tasks
2927 * @rq: the runqueue preparing to switch
421cee29 2928 * @prev: the current task that is being switched out
4866cde0
NP
2929 * @next: the task we are going to switch to.
2930 *
2931 * This is called with the rq lock held and interrupts off. It must
2932 * be paired with a subsequent finish_task_switch after the context
2933 * switch.
2934 *
2935 * prepare_task_switch sets up locking and calls architecture specific
2936 * hooks.
2937 */
e107be36
AK
2938static inline void
2939prepare_task_switch(struct rq *rq, struct task_struct *prev,
2940 struct task_struct *next)
4866cde0 2941{
0ed557aa 2942 kcov_prepare_switch(prev);
43148951 2943 sched_info_switch(rq, prev, next);
fe4b04fa 2944 perf_event_task_sched_out(prev, next);
d7822b1e 2945 rseq_preempt(prev);
e107be36 2946 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2947 prepare_task(next);
4866cde0
NP
2948 prepare_arch_switch(next);
2949}
2950
1da177e4
LT
2951/**
2952 * finish_task_switch - clean up after a task-switch
2953 * @prev: the thread we just switched away from.
2954 *
4866cde0
NP
2955 * finish_task_switch must be called after the context switch, paired
2956 * with a prepare_task_switch call before the context switch.
2957 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2958 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2959 *
2960 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2961 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2962 * with the lock held can cause deadlocks; see schedule() for
2963 * details.)
dfa50b60
ON
2964 *
2965 * The context switch have flipped the stack from under us and restored the
2966 * local variables which were saved when this task called schedule() in the
2967 * past. prev == current is still correct but we need to recalculate this_rq
2968 * because prev may have moved to another CPU.
1da177e4 2969 */
dfa50b60 2970static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2971 __releases(rq->lock)
2972{
dfa50b60 2973 struct rq *rq = this_rq();
1da177e4 2974 struct mm_struct *mm = rq->prev_mm;
55a101f8 2975 long prev_state;
1da177e4 2976
609ca066
PZ
2977 /*
2978 * The previous task will have left us with a preempt_count of 2
2979 * because it left us after:
2980 *
2981 * schedule()
2982 * preempt_disable(); // 1
2983 * __schedule()
2984 * raw_spin_lock_irq(&rq->lock) // 2
2985 *
2986 * Also, see FORK_PREEMPT_COUNT.
2987 */
e2bf1c4b
PZ
2988 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2989 "corrupted preempt_count: %s/%d/0x%x\n",
2990 current->comm, current->pid, preempt_count()))
2991 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2992
1da177e4
LT
2993 rq->prev_mm = NULL;
2994
2995 /*
2996 * A task struct has one reference for the use as "current".
c394cc9f 2997 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2998 * schedule one last time. The schedule call will never return, and
2999 * the scheduled task must drop that reference.
95913d97
PZ
3000 *
3001 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3002 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3003 * running on another CPU and we could rave with its RUNNING -> DEAD
3004 * transition, resulting in a double drop.
1da177e4 3005 */
55a101f8 3006 prev_state = prev->state;
bf9fae9f 3007 vtime_task_switch(prev);
a8d757ef 3008 perf_event_task_sched_in(prev, current);
31cb1bc0 3009 finish_task(prev);
3010 finish_lock_switch(rq);
01f23e16 3011 finish_arch_post_lock_switch();
0ed557aa 3012 kcov_finish_switch(current);
e8fa1362 3013
e107be36 3014 fire_sched_in_preempt_notifiers(current);
306e0604 3015 /*
70216e18
MD
3016 * When switching through a kernel thread, the loop in
3017 * membarrier_{private,global}_expedited() may have observed that
3018 * kernel thread and not issued an IPI. It is therefore possible to
3019 * schedule between user->kernel->user threads without passing though
3020 * switch_mm(). Membarrier requires a barrier after storing to
3021 * rq->curr, before returning to userspace, so provide them here:
3022 *
3023 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3024 * provided by mmdrop(),
3025 * - a sync_core for SYNC_CORE.
306e0604 3026 */
70216e18
MD
3027 if (mm) {
3028 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3029 mmdrop(mm);
70216e18 3030 }
1cef1150
PZ
3031 if (unlikely(prev_state == TASK_DEAD)) {
3032 if (prev->sched_class->task_dead)
3033 prev->sched_class->task_dead(prev);
68f24b08 3034
1cef1150
PZ
3035 /*
3036 * Remove function-return probe instances associated with this
3037 * task and put them back on the free list.
3038 */
3039 kprobe_flush_task(prev);
3040
3041 /* Task is done with its stack. */
3042 put_task_stack(prev);
3043
3044 put_task_struct(prev);
c6fd91f0 3045 }
99e5ada9 3046
de734f89 3047 tick_nohz_task_switch();
dfa50b60 3048 return rq;
1da177e4
LT
3049}
3050
3f029d3c
GH
3051#ifdef CONFIG_SMP
3052
3f029d3c 3053/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3054static void __balance_callback(struct rq *rq)
3f029d3c 3055{
e3fca9e7
PZ
3056 struct callback_head *head, *next;
3057 void (*func)(struct rq *rq);
3058 unsigned long flags;
3f029d3c 3059
e3fca9e7
PZ
3060 raw_spin_lock_irqsave(&rq->lock, flags);
3061 head = rq->balance_callback;
3062 rq->balance_callback = NULL;
3063 while (head) {
3064 func = (void (*)(struct rq *))head->func;
3065 next = head->next;
3066 head->next = NULL;
3067 head = next;
3f029d3c 3068
e3fca9e7 3069 func(rq);
3f029d3c 3070 }
e3fca9e7
PZ
3071 raw_spin_unlock_irqrestore(&rq->lock, flags);
3072}
3073
3074static inline void balance_callback(struct rq *rq)
3075{
3076 if (unlikely(rq->balance_callback))
3077 __balance_callback(rq);
3f029d3c
GH
3078}
3079
3080#else
da19ab51 3081
e3fca9e7 3082static inline void balance_callback(struct rq *rq)
3f029d3c 3083{
1da177e4
LT
3084}
3085
3f029d3c
GH
3086#endif
3087
1da177e4
LT
3088/**
3089 * schedule_tail - first thing a freshly forked thread must call.
3090 * @prev: the thread we just switched away from.
3091 */
722a9f92 3092asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3093 __releases(rq->lock)
3094{
1a43a14a 3095 struct rq *rq;
da19ab51 3096
609ca066
PZ
3097 /*
3098 * New tasks start with FORK_PREEMPT_COUNT, see there and
3099 * finish_task_switch() for details.
3100 *
3101 * finish_task_switch() will drop rq->lock() and lower preempt_count
3102 * and the preempt_enable() will end up enabling preemption (on
3103 * PREEMPT_COUNT kernels).
3104 */
3105
dfa50b60 3106 rq = finish_task_switch(prev);
e3fca9e7 3107 balance_callback(rq);
1a43a14a 3108 preempt_enable();
70b97a7f 3109
1da177e4 3110 if (current->set_child_tid)
b488893a 3111 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3112
3113 calculate_sigpending();
1da177e4
LT
3114}
3115
3116/*
dfa50b60 3117 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3118 */
04936948 3119static __always_inline struct rq *
70b97a7f 3120context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3121 struct task_struct *next, struct rq_flags *rf)
1da177e4 3122{
dd41f596 3123 struct mm_struct *mm, *oldmm;
1da177e4 3124
e107be36 3125 prepare_task_switch(rq, prev, next);
fe4b04fa 3126
dd41f596
IM
3127 mm = next->mm;
3128 oldmm = prev->active_mm;
9226d125
ZA
3129 /*
3130 * For paravirt, this is coupled with an exit in switch_to to
3131 * combine the page table reload and the switch backend into
3132 * one hypercall.
3133 */
224101ed 3134 arch_start_context_switch(prev);
9226d125 3135
306e0604
MD
3136 /*
3137 * If mm is non-NULL, we pass through switch_mm(). If mm is
3138 * NULL, we will pass through mmdrop() in finish_task_switch().
3139 * Both of these contain the full memory barrier required by
3140 * membarrier after storing to rq->curr, before returning to
3141 * user-space.
3142 */
31915ab4 3143 if (!mm) {
1da177e4 3144 next->active_mm = oldmm;
f1f10076 3145 mmgrab(oldmm);
1da177e4
LT
3146 enter_lazy_tlb(oldmm, next);
3147 } else
f98db601 3148 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 3149
31915ab4 3150 if (!prev->mm) {
1da177e4 3151 prev->active_mm = NULL;
1da177e4
LT
3152 rq->prev_mm = oldmm;
3153 }
92509b73 3154
cb42c9a3 3155 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3156
269d5992 3157 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3158
3159 /* Here we just switch the register state and the stack. */
3160 switch_to(prev, next, prev);
dd41f596 3161 barrier();
dfa50b60
ON
3162
3163 return finish_task_switch(prev);
1da177e4
LT
3164}
3165
3166/*
1c3e8264 3167 * nr_running and nr_context_switches:
1da177e4
LT
3168 *
3169 * externally visible scheduler statistics: current number of runnable
1c3e8264 3170 * threads, total number of context switches performed since bootup.
1da177e4
LT
3171 */
3172unsigned long nr_running(void)
3173{
3174 unsigned long i, sum = 0;
3175
3176 for_each_online_cpu(i)
3177 sum += cpu_rq(i)->nr_running;
3178
3179 return sum;
f711f609 3180}
1da177e4 3181
2ee507c4 3182/*
d1ccc66d 3183 * Check if only the current task is running on the CPU.
00cc1633
DD
3184 *
3185 * Caution: this function does not check that the caller has disabled
3186 * preemption, thus the result might have a time-of-check-to-time-of-use
3187 * race. The caller is responsible to use it correctly, for example:
3188 *
dfcb245e 3189 * - from a non-preemptible section (of course)
00cc1633
DD
3190 *
3191 * - from a thread that is bound to a single CPU
3192 *
3193 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3194 */
3195bool single_task_running(void)
3196{
00cc1633 3197 return raw_rq()->nr_running == 1;
2ee507c4
TC
3198}
3199EXPORT_SYMBOL(single_task_running);
3200
1da177e4 3201unsigned long long nr_context_switches(void)
46cb4b7c 3202{
cc94abfc
SR
3203 int i;
3204 unsigned long long sum = 0;
46cb4b7c 3205
0a945022 3206 for_each_possible_cpu(i)
1da177e4 3207 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3208
1da177e4
LT
3209 return sum;
3210}
483b4ee6 3211
145d952a
DL
3212/*
3213 * Consumers of these two interfaces, like for example the cpuidle menu
3214 * governor, are using nonsensical data. Preferring shallow idle state selection
3215 * for a CPU that has IO-wait which might not even end up running the task when
3216 * it does become runnable.
3217 */
3218
3219unsigned long nr_iowait_cpu(int cpu)
3220{
3221 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3222}
3223
e33a9bba
TH
3224/*
3225 * IO-wait accounting, and how its mostly bollocks (on SMP).
3226 *
3227 * The idea behind IO-wait account is to account the idle time that we could
3228 * have spend running if it were not for IO. That is, if we were to improve the
3229 * storage performance, we'd have a proportional reduction in IO-wait time.
3230 *
3231 * This all works nicely on UP, where, when a task blocks on IO, we account
3232 * idle time as IO-wait, because if the storage were faster, it could've been
3233 * running and we'd not be idle.
3234 *
3235 * This has been extended to SMP, by doing the same for each CPU. This however
3236 * is broken.
3237 *
3238 * Imagine for instance the case where two tasks block on one CPU, only the one
3239 * CPU will have IO-wait accounted, while the other has regular idle. Even
3240 * though, if the storage were faster, both could've ran at the same time,
3241 * utilising both CPUs.
3242 *
3243 * This means, that when looking globally, the current IO-wait accounting on
3244 * SMP is a lower bound, by reason of under accounting.
3245 *
3246 * Worse, since the numbers are provided per CPU, they are sometimes
3247 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3248 * associated with any one particular CPU, it can wake to another CPU than it
3249 * blocked on. This means the per CPU IO-wait number is meaningless.
3250 *
3251 * Task CPU affinities can make all that even more 'interesting'.
3252 */
3253
1da177e4
LT
3254unsigned long nr_iowait(void)
3255{
3256 unsigned long i, sum = 0;
483b4ee6 3257
0a945022 3258 for_each_possible_cpu(i)
145d952a 3259 sum += nr_iowait_cpu(i);
46cb4b7c 3260
1da177e4
LT
3261 return sum;
3262}
483b4ee6 3263
dd41f596 3264#ifdef CONFIG_SMP
8a0be9ef 3265
46cb4b7c 3266/*
38022906
PZ
3267 * sched_exec - execve() is a valuable balancing opportunity, because at
3268 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3269 */
38022906 3270void sched_exec(void)
46cb4b7c 3271{
38022906 3272 struct task_struct *p = current;
1da177e4 3273 unsigned long flags;
0017d735 3274 int dest_cpu;
46cb4b7c 3275
8f42ced9 3276 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3277 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3278 if (dest_cpu == smp_processor_id())
3279 goto unlock;
38022906 3280
8f42ced9 3281 if (likely(cpu_active(dest_cpu))) {
969c7921 3282 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3283
8f42ced9
PZ
3284 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3285 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3286 return;
3287 }
0017d735 3288unlock:
8f42ced9 3289 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3290}
dd41f596 3291
1da177e4
LT
3292#endif
3293
1da177e4 3294DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3295DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3296
3297EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3298EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3299
6075620b
GG
3300/*
3301 * The function fair_sched_class.update_curr accesses the struct curr
3302 * and its field curr->exec_start; when called from task_sched_runtime(),
3303 * we observe a high rate of cache misses in practice.
3304 * Prefetching this data results in improved performance.
3305 */
3306static inline void prefetch_curr_exec_start(struct task_struct *p)
3307{
3308#ifdef CONFIG_FAIR_GROUP_SCHED
3309 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3310#else
3311 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3312#endif
3313 prefetch(curr);
3314 prefetch(&curr->exec_start);
3315}
3316
c5f8d995
HS
3317/*
3318 * Return accounted runtime for the task.
3319 * In case the task is currently running, return the runtime plus current's
3320 * pending runtime that have not been accounted yet.
3321 */
3322unsigned long long task_sched_runtime(struct task_struct *p)
3323{
eb580751 3324 struct rq_flags rf;
c5f8d995 3325 struct rq *rq;
6e998916 3326 u64 ns;
c5f8d995 3327
911b2898
PZ
3328#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3329 /*
97fb7a0a 3330 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3331 * So we have a optimization chance when the task's delta_exec is 0.
3332 * Reading ->on_cpu is racy, but this is ok.
3333 *
d1ccc66d
IM
3334 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3335 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3336 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3337 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3338 * been accounted, so we're correct here as well.
911b2898 3339 */
da0c1e65 3340 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3341 return p->se.sum_exec_runtime;
3342#endif
3343
eb580751 3344 rq = task_rq_lock(p, &rf);
6e998916
SG
3345 /*
3346 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3347 * project cycles that may never be accounted to this
3348 * thread, breaking clock_gettime().
3349 */
3350 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3351 prefetch_curr_exec_start(p);
6e998916
SG
3352 update_rq_clock(rq);
3353 p->sched_class->update_curr(rq);
3354 }
3355 ns = p->se.sum_exec_runtime;
eb580751 3356 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3357
3358 return ns;
3359}
48f24c4d 3360
7835b98b
CL
3361/*
3362 * This function gets called by the timer code, with HZ frequency.
3363 * We call it with interrupts disabled.
7835b98b
CL
3364 */
3365void scheduler_tick(void)
3366{
7835b98b
CL
3367 int cpu = smp_processor_id();
3368 struct rq *rq = cpu_rq(cpu);
dd41f596 3369 struct task_struct *curr = rq->curr;
8a8c69c3 3370 struct rq_flags rf;
3e51f33f
PZ
3371
3372 sched_clock_tick();
dd41f596 3373
8a8c69c3
PZ
3374 rq_lock(rq, &rf);
3375
3e51f33f 3376 update_rq_clock(rq);
fa85ae24 3377 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3378 calc_global_load_tick(rq);
eb414681 3379 psi_task_tick(rq);
8a8c69c3
PZ
3380
3381 rq_unlock(rq, &rf);
7835b98b 3382
e9d2b064 3383 perf_event_task_tick();
e220d2dc 3384
e418e1c2 3385#ifdef CONFIG_SMP
6eb57e0d 3386 rq->idle_balance = idle_cpu(cpu);
7caff66f 3387 trigger_load_balance(rq);
e418e1c2 3388#endif
1da177e4
LT
3389}
3390
265f22a9 3391#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3392
3393struct tick_work {
3394 int cpu;
3395 struct delayed_work work;
3396};
3397
3398static struct tick_work __percpu *tick_work_cpu;
3399
3400static void sched_tick_remote(struct work_struct *work)
3401{
3402 struct delayed_work *dwork = to_delayed_work(work);
3403 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3404 int cpu = twork->cpu;
3405 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3406 struct task_struct *curr;
d84b3131 3407 struct rq_flags rf;
d9c0ffca 3408 u64 delta;
d84b3131
FW
3409
3410 /*
3411 * Handle the tick only if it appears the remote CPU is running in full
3412 * dynticks mode. The check is racy by nature, but missing a tick or
3413 * having one too much is no big deal because the scheduler tick updates
3414 * statistics and checks timeslices in a time-independent way, regardless
3415 * of when exactly it is running.
3416 */
d9c0ffca
FW
3417 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3418 goto out_requeue;
d84b3131 3419
d9c0ffca
FW
3420 rq_lock_irq(rq, &rf);
3421 curr = rq->curr;
3422 if (is_idle_task(curr))
3423 goto out_unlock;
d84b3131 3424
d9c0ffca
FW
3425 update_rq_clock(rq);
3426 delta = rq_clock_task(rq) - curr->se.exec_start;
3427
3428 /*
3429 * Make sure the next tick runs within a reasonable
3430 * amount of time.
3431 */
3432 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3433 curr->sched_class->task_tick(rq, curr, 0);
3434
3435out_unlock:
3436 rq_unlock_irq(rq, &rf);
d84b3131 3437
d9c0ffca 3438out_requeue:
d84b3131
FW
3439 /*
3440 * Run the remote tick once per second (1Hz). This arbitrary
3441 * frequency is large enough to avoid overload but short enough
3442 * to keep scheduler internal stats reasonably up to date.
3443 */
3444 queue_delayed_work(system_unbound_wq, dwork, HZ);
3445}
3446
3447static void sched_tick_start(int cpu)
3448{
3449 struct tick_work *twork;
3450
3451 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3452 return;
3453
3454 WARN_ON_ONCE(!tick_work_cpu);
3455
3456 twork = per_cpu_ptr(tick_work_cpu, cpu);
3457 twork->cpu = cpu;
3458 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3459 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3460}
3461
3462#ifdef CONFIG_HOTPLUG_CPU
3463static void sched_tick_stop(int cpu)
3464{
3465 struct tick_work *twork;
3466
3467 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3468 return;
3469
3470 WARN_ON_ONCE(!tick_work_cpu);
3471
3472 twork = per_cpu_ptr(tick_work_cpu, cpu);
3473 cancel_delayed_work_sync(&twork->work);
3474}
3475#endif /* CONFIG_HOTPLUG_CPU */
3476
3477int __init sched_tick_offload_init(void)
3478{
3479 tick_work_cpu = alloc_percpu(struct tick_work);
3480 BUG_ON(!tick_work_cpu);
3481
3482 return 0;
3483}
3484
3485#else /* !CONFIG_NO_HZ_FULL */
3486static inline void sched_tick_start(int cpu) { }
3487static inline void sched_tick_stop(int cpu) { }
265f22a9 3488#endif
1da177e4 3489
7e49fcce 3490#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3491 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3492/*
3493 * If the value passed in is equal to the current preempt count
3494 * then we just disabled preemption. Start timing the latency.
3495 */
3496static inline void preempt_latency_start(int val)
3497{
3498 if (preempt_count() == val) {
3499 unsigned long ip = get_lock_parent_ip();
3500#ifdef CONFIG_DEBUG_PREEMPT
3501 current->preempt_disable_ip = ip;
3502#endif
3503 trace_preempt_off(CALLER_ADDR0, ip);
3504 }
3505}
7e49fcce 3506
edafe3a5 3507void preempt_count_add(int val)
1da177e4 3508{
6cd8a4bb 3509#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3510 /*
3511 * Underflow?
3512 */
9a11b49a
IM
3513 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3514 return;
6cd8a4bb 3515#endif
bdb43806 3516 __preempt_count_add(val);
6cd8a4bb 3517#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3518 /*
3519 * Spinlock count overflowing soon?
3520 */
33859f7f
MOS
3521 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3522 PREEMPT_MASK - 10);
6cd8a4bb 3523#endif
47252cfb 3524 preempt_latency_start(val);
1da177e4 3525}
bdb43806 3526EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3527NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3528
47252cfb
SR
3529/*
3530 * If the value passed in equals to the current preempt count
3531 * then we just enabled preemption. Stop timing the latency.
3532 */
3533static inline void preempt_latency_stop(int val)
3534{
3535 if (preempt_count() == val)
3536 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3537}
3538
edafe3a5 3539void preempt_count_sub(int val)
1da177e4 3540{
6cd8a4bb 3541#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3542 /*
3543 * Underflow?
3544 */
01e3eb82 3545 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3546 return;
1da177e4
LT
3547 /*
3548 * Is the spinlock portion underflowing?
3549 */
9a11b49a
IM
3550 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3551 !(preempt_count() & PREEMPT_MASK)))
3552 return;
6cd8a4bb 3553#endif
9a11b49a 3554
47252cfb 3555 preempt_latency_stop(val);
bdb43806 3556 __preempt_count_sub(val);
1da177e4 3557}
bdb43806 3558EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3559NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3560
47252cfb
SR
3561#else
3562static inline void preempt_latency_start(int val) { }
3563static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3564#endif
3565
59ddbcb2
IM
3566static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3567{
3568#ifdef CONFIG_DEBUG_PREEMPT
3569 return p->preempt_disable_ip;
3570#else
3571 return 0;
3572#endif
3573}
3574
1da177e4 3575/*
dd41f596 3576 * Print scheduling while atomic bug:
1da177e4 3577 */
dd41f596 3578static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3579{
d1c6d149
VN
3580 /* Save this before calling printk(), since that will clobber it */
3581 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3582
664dfa65
DJ
3583 if (oops_in_progress)
3584 return;
3585
3df0fc5b
PZ
3586 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3587 prev->comm, prev->pid, preempt_count());
838225b4 3588
dd41f596 3589 debug_show_held_locks(prev);
e21f5b15 3590 print_modules();
dd41f596
IM
3591 if (irqs_disabled())
3592 print_irqtrace_events(prev);
d1c6d149
VN
3593 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3594 && in_atomic_preempt_off()) {
8f47b187 3595 pr_err("Preemption disabled at:");
d1c6d149 3596 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3597 pr_cont("\n");
3598 }
748c7201
DBO
3599 if (panic_on_warn)
3600 panic("scheduling while atomic\n");
3601
6135fc1e 3602 dump_stack();
373d4d09 3603 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3604}
1da177e4 3605
dd41f596
IM
3606/*
3607 * Various schedule()-time debugging checks and statistics:
3608 */
3609static inline void schedule_debug(struct task_struct *prev)
3610{
0d9e2632 3611#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3612 if (task_stack_end_corrupted(prev))
3613 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3614#endif
b99def8b 3615
1dc0fffc 3616 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3617 __schedule_bug(prev);
1dc0fffc
PZ
3618 preempt_count_set(PREEMPT_DISABLED);
3619 }
b3fbab05 3620 rcu_sleep_check();
dd41f596 3621
1da177e4
LT
3622 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3623
ae92882e 3624 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3625}
3626
3627/*
3628 * Pick up the highest-prio task:
3629 */
3630static inline struct task_struct *
d8ac8971 3631pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3632{
49ee5768 3633 const struct sched_class *class;
dd41f596 3634 struct task_struct *p;
1da177e4
LT
3635
3636 /*
0ba87bb2
PZ
3637 * Optimization: we know that if all tasks are in the fair class we can
3638 * call that function directly, but only if the @prev task wasn't of a
3639 * higher scheduling class, because otherwise those loose the
3640 * opportunity to pull in more work from other CPUs.
1da177e4 3641 */
0ba87bb2
PZ
3642 if (likely((prev->sched_class == &idle_sched_class ||
3643 prev->sched_class == &fair_sched_class) &&
3644 rq->nr_running == rq->cfs.h_nr_running)) {
3645
d8ac8971 3646 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3647 if (unlikely(p == RETRY_TASK))
3648 goto again;
3649
d1ccc66d 3650 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3651 if (unlikely(!p))
d8ac8971 3652 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3653
3654 return p;
1da177e4
LT
3655 }
3656
37e117c0 3657again:
34f971f6 3658 for_each_class(class) {
d8ac8971 3659 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3660 if (p) {
3661 if (unlikely(p == RETRY_TASK))
3662 goto again;
dd41f596 3663 return p;
37e117c0 3664 }
dd41f596 3665 }
34f971f6 3666
d1ccc66d
IM
3667 /* The idle class should always have a runnable task: */
3668 BUG();
dd41f596 3669}
1da177e4 3670
dd41f596 3671/*
c259e01a 3672 * __schedule() is the main scheduler function.
edde96ea
PE
3673 *
3674 * The main means of driving the scheduler and thus entering this function are:
3675 *
3676 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3677 *
3678 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3679 * paths. For example, see arch/x86/entry_64.S.
3680 *
3681 * To drive preemption between tasks, the scheduler sets the flag in timer
3682 * interrupt handler scheduler_tick().
3683 *
3684 * 3. Wakeups don't really cause entry into schedule(). They add a
3685 * task to the run-queue and that's it.
3686 *
3687 * Now, if the new task added to the run-queue preempts the current
3688 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3689 * called on the nearest possible occasion:
3690 *
3691 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3692 *
3693 * - in syscall or exception context, at the next outmost
3694 * preempt_enable(). (this might be as soon as the wake_up()'s
3695 * spin_unlock()!)
3696 *
3697 * - in IRQ context, return from interrupt-handler to
3698 * preemptible context
3699 *
3700 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3701 * then at the next:
3702 *
3703 * - cond_resched() call
3704 * - explicit schedule() call
3705 * - return from syscall or exception to user-space
3706 * - return from interrupt-handler to user-space
bfd9b2b5 3707 *
b30f0e3f 3708 * WARNING: must be called with preemption disabled!
dd41f596 3709 */
499d7955 3710static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3711{
3712 struct task_struct *prev, *next;
67ca7bde 3713 unsigned long *switch_count;
d8ac8971 3714 struct rq_flags rf;
dd41f596 3715 struct rq *rq;
31656519 3716 int cpu;
dd41f596 3717
dd41f596
IM
3718 cpu = smp_processor_id();
3719 rq = cpu_rq(cpu);
dd41f596 3720 prev = rq->curr;
dd41f596 3721
dd41f596 3722 schedule_debug(prev);
1da177e4 3723
31656519 3724 if (sched_feat(HRTICK))
f333fdc9 3725 hrtick_clear(rq);
8f4d37ec 3726
46a5d164 3727 local_irq_disable();
bcbfdd01 3728 rcu_note_context_switch(preempt);
46a5d164 3729
e0acd0a6
ON
3730 /*
3731 * Make sure that signal_pending_state()->signal_pending() below
3732 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3733 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3734 *
3735 * The membarrier system call requires a full memory barrier
3736 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3737 */
8a8c69c3 3738 rq_lock(rq, &rf);
d89e588c 3739 smp_mb__after_spinlock();
1da177e4 3740
d1ccc66d
IM
3741 /* Promote REQ to ACT */
3742 rq->clock_update_flags <<= 1;
bce4dc80 3743 update_rq_clock(rq);
9edfbfed 3744
246d86b5 3745 switch_count = &prev->nivcsw;
fc13aeba 3746 if (!preempt && prev->state) {
34ec35ad 3747 if (signal_pending_state(prev->state, prev)) {
1da177e4 3748 prev->state = TASK_RUNNING;
21aa9af0 3749 } else {
bce4dc80 3750 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 3751
e33a9bba
TH
3752 if (prev->in_iowait) {
3753 atomic_inc(&rq->nr_iowait);
3754 delayacct_blkio_start();
3755 }
21aa9af0 3756 }
dd41f596 3757 switch_count = &prev->nvcsw;
1da177e4
LT
3758 }
3759
d8ac8971 3760 next = pick_next_task(rq, prev, &rf);
f26f9aff 3761 clear_tsk_need_resched(prev);
f27dde8d 3762 clear_preempt_need_resched();
1da177e4 3763
1da177e4 3764 if (likely(prev != next)) {
1da177e4
LT
3765 rq->nr_switches++;
3766 rq->curr = next;
22e4ebb9
MD
3767 /*
3768 * The membarrier system call requires each architecture
3769 * to have a full memory barrier after updating
306e0604
MD
3770 * rq->curr, before returning to user-space.
3771 *
3772 * Here are the schemes providing that barrier on the
3773 * various architectures:
3774 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3775 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3776 * - finish_lock_switch() for weakly-ordered
3777 * architectures where spin_unlock is a full barrier,
3778 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3779 * is a RELEASE barrier),
22e4ebb9 3780 */
1da177e4
LT
3781 ++*switch_count;
3782
c73464b1 3783 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3784
3785 /* Also unlocks the rq: */
3786 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3787 } else {
cb42c9a3 3788 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3789 rq_unlock_irq(rq, &rf);
cbce1a68 3790 }
1da177e4 3791
e3fca9e7 3792 balance_callback(rq);
1da177e4 3793}
c259e01a 3794
9af6528e
PZ
3795void __noreturn do_task_dead(void)
3796{
d1ccc66d 3797 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3798 set_special_state(TASK_DEAD);
d1ccc66d
IM
3799
3800 /* Tell freezer to ignore us: */
3801 current->flags |= PF_NOFREEZE;
3802
9af6528e
PZ
3803 __schedule(false);
3804 BUG();
d1ccc66d
IM
3805
3806 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3807 for (;;)
d1ccc66d 3808 cpu_relax();
9af6528e
PZ
3809}
3810
9c40cef2
TG
3811static inline void sched_submit_work(struct task_struct *tsk)
3812{
3c7d5184 3813 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2 3814 return;
6d25be57
TG
3815
3816 /*
3817 * If a worker went to sleep, notify and ask workqueue whether
3818 * it wants to wake up a task to maintain concurrency.
3819 * As this function is called inside the schedule() context,
3820 * we disable preemption to avoid it calling schedule() again
3821 * in the possible wakeup of a kworker.
3822 */
3823 if (tsk->flags & PF_WQ_WORKER) {
3824 preempt_disable();
3825 wq_worker_sleeping(tsk);
3826 preempt_enable_no_resched();
3827 }
3828
9c40cef2
TG
3829 /*
3830 * If we are going to sleep and we have plugged IO queued,
3831 * make sure to submit it to avoid deadlocks.
3832 */
3833 if (blk_needs_flush_plug(tsk))
3834 blk_schedule_flush_plug(tsk);
3835}
3836
6d25be57
TG
3837static void sched_update_worker(struct task_struct *tsk)
3838{
3839 if (tsk->flags & PF_WQ_WORKER)
3840 wq_worker_running(tsk);
3841}
3842
722a9f92 3843asmlinkage __visible void __sched schedule(void)
c259e01a 3844{
9c40cef2
TG
3845 struct task_struct *tsk = current;
3846
3847 sched_submit_work(tsk);
bfd9b2b5 3848 do {
b30f0e3f 3849 preempt_disable();
fc13aeba 3850 __schedule(false);
b30f0e3f 3851 sched_preempt_enable_no_resched();
bfd9b2b5 3852 } while (need_resched());
6d25be57 3853 sched_update_worker(tsk);
c259e01a 3854}
1da177e4
LT
3855EXPORT_SYMBOL(schedule);
3856
8663effb
SRV
3857/*
3858 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3859 * state (have scheduled out non-voluntarily) by making sure that all
3860 * tasks have either left the run queue or have gone into user space.
3861 * As idle tasks do not do either, they must not ever be preempted
3862 * (schedule out non-voluntarily).
3863 *
3864 * schedule_idle() is similar to schedule_preempt_disable() except that it
3865 * never enables preemption because it does not call sched_submit_work().
3866 */
3867void __sched schedule_idle(void)
3868{
3869 /*
3870 * As this skips calling sched_submit_work(), which the idle task does
3871 * regardless because that function is a nop when the task is in a
3872 * TASK_RUNNING state, make sure this isn't used someplace that the
3873 * current task can be in any other state. Note, idle is always in the
3874 * TASK_RUNNING state.
3875 */
3876 WARN_ON_ONCE(current->state);
3877 do {
3878 __schedule(false);
3879 } while (need_resched());
3880}
3881
91d1aa43 3882#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3883asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3884{
3885 /*
3886 * If we come here after a random call to set_need_resched(),
3887 * or we have been woken up remotely but the IPI has not yet arrived,
3888 * we haven't yet exited the RCU idle mode. Do it here manually until
3889 * we find a better solution.
7cc78f8f
AL
3890 *
3891 * NB: There are buggy callers of this function. Ideally we
c467ea76 3892 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3893 * too frequently to make sense yet.
20ab65e3 3894 */
7cc78f8f 3895 enum ctx_state prev_state = exception_enter();
20ab65e3 3896 schedule();
7cc78f8f 3897 exception_exit(prev_state);
20ab65e3
FW
3898}
3899#endif
3900
c5491ea7
TG
3901/**
3902 * schedule_preempt_disabled - called with preemption disabled
3903 *
3904 * Returns with preemption disabled. Note: preempt_count must be 1
3905 */
3906void __sched schedule_preempt_disabled(void)
3907{
ba74c144 3908 sched_preempt_enable_no_resched();
c5491ea7
TG
3909 schedule();
3910 preempt_disable();
3911}
3912
06b1f808 3913static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3914{
3915 do {
47252cfb
SR
3916 /*
3917 * Because the function tracer can trace preempt_count_sub()
3918 * and it also uses preempt_enable/disable_notrace(), if
3919 * NEED_RESCHED is set, the preempt_enable_notrace() called
3920 * by the function tracer will call this function again and
3921 * cause infinite recursion.
3922 *
3923 * Preemption must be disabled here before the function
3924 * tracer can trace. Break up preempt_disable() into two
3925 * calls. One to disable preemption without fear of being
3926 * traced. The other to still record the preemption latency,
3927 * which can also be traced by the function tracer.
3928 */
499d7955 3929 preempt_disable_notrace();
47252cfb 3930 preempt_latency_start(1);
fc13aeba 3931 __schedule(true);
47252cfb 3932 preempt_latency_stop(1);
499d7955 3933 preempt_enable_no_resched_notrace();
a18b5d01
FW
3934
3935 /*
3936 * Check again in case we missed a preemption opportunity
3937 * between schedule and now.
3938 */
a18b5d01
FW
3939 } while (need_resched());
3940}
3941
1da177e4
LT
3942#ifdef CONFIG_PREEMPT
3943/*
2ed6e34f 3944 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3945 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3946 * occur there and call schedule directly.
3947 */
722a9f92 3948asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3949{
1da177e4
LT
3950 /*
3951 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3952 * we do not want to preempt the current task. Just return..
1da177e4 3953 */
fbb00b56 3954 if (likely(!preemptible()))
1da177e4
LT
3955 return;
3956
a18b5d01 3957 preempt_schedule_common();
1da177e4 3958}
376e2424 3959NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3960EXPORT_SYMBOL(preempt_schedule);
009f60e2 3961
009f60e2 3962/**
4eaca0a8 3963 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3964 *
3965 * The tracing infrastructure uses preempt_enable_notrace to prevent
3966 * recursion and tracing preempt enabling caused by the tracing
3967 * infrastructure itself. But as tracing can happen in areas coming
3968 * from userspace or just about to enter userspace, a preempt enable
3969 * can occur before user_exit() is called. This will cause the scheduler
3970 * to be called when the system is still in usermode.
3971 *
3972 * To prevent this, the preempt_enable_notrace will use this function
3973 * instead of preempt_schedule() to exit user context if needed before
3974 * calling the scheduler.
3975 */
4eaca0a8 3976asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3977{
3978 enum ctx_state prev_ctx;
3979
3980 if (likely(!preemptible()))
3981 return;
3982
3983 do {
47252cfb
SR
3984 /*
3985 * Because the function tracer can trace preempt_count_sub()
3986 * and it also uses preempt_enable/disable_notrace(), if
3987 * NEED_RESCHED is set, the preempt_enable_notrace() called
3988 * by the function tracer will call this function again and
3989 * cause infinite recursion.
3990 *
3991 * Preemption must be disabled here before the function
3992 * tracer can trace. Break up preempt_disable() into two
3993 * calls. One to disable preemption without fear of being
3994 * traced. The other to still record the preemption latency,
3995 * which can also be traced by the function tracer.
3996 */
3d8f74dd 3997 preempt_disable_notrace();
47252cfb 3998 preempt_latency_start(1);
009f60e2
ON
3999 /*
4000 * Needs preempt disabled in case user_exit() is traced
4001 * and the tracer calls preempt_enable_notrace() causing
4002 * an infinite recursion.
4003 */
4004 prev_ctx = exception_enter();
fc13aeba 4005 __schedule(true);
009f60e2
ON
4006 exception_exit(prev_ctx);
4007
47252cfb 4008 preempt_latency_stop(1);
3d8f74dd 4009 preempt_enable_no_resched_notrace();
009f60e2
ON
4010 } while (need_resched());
4011}
4eaca0a8 4012EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4013
32e475d7 4014#endif /* CONFIG_PREEMPT */
1da177e4
LT
4015
4016/*
2ed6e34f 4017 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4018 * off of irq context.
4019 * Note, that this is called and return with irqs disabled. This will
4020 * protect us against recursive calling from irq.
4021 */
722a9f92 4022asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4023{
b22366cd 4024 enum ctx_state prev_state;
6478d880 4025
2ed6e34f 4026 /* Catch callers which need to be fixed */
f27dde8d 4027 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4028
b22366cd
FW
4029 prev_state = exception_enter();
4030
3a5c359a 4031 do {
3d8f74dd 4032 preempt_disable();
3a5c359a 4033 local_irq_enable();
fc13aeba 4034 __schedule(true);
3a5c359a 4035 local_irq_disable();
3d8f74dd 4036 sched_preempt_enable_no_resched();
5ed0cec0 4037 } while (need_resched());
b22366cd
FW
4038
4039 exception_exit(prev_state);
1da177e4
LT
4040}
4041
ac6424b9 4042int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4043 void *key)
1da177e4 4044{
63859d4f 4045 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4046}
1da177e4
LT
4047EXPORT_SYMBOL(default_wake_function);
4048
b29739f9
IM
4049#ifdef CONFIG_RT_MUTEXES
4050
acd58620
PZ
4051static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4052{
4053 if (pi_task)
4054 prio = min(prio, pi_task->prio);
4055
4056 return prio;
4057}
4058
4059static inline int rt_effective_prio(struct task_struct *p, int prio)
4060{
4061 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4062
4063 return __rt_effective_prio(pi_task, prio);
4064}
4065
b29739f9
IM
4066/*
4067 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4068 * @p: task to boost
4069 * @pi_task: donor task
b29739f9
IM
4070 *
4071 * This function changes the 'effective' priority of a task. It does
4072 * not touch ->normal_prio like __setscheduler().
4073 *
c365c292
TG
4074 * Used by the rt_mutex code to implement priority inheritance
4075 * logic. Call site only calls if the priority of the task changed.
b29739f9 4076 */
acd58620 4077void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4078{
acd58620 4079 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4080 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4081 const struct sched_class *prev_class;
eb580751
PZ
4082 struct rq_flags rf;
4083 struct rq *rq;
b29739f9 4084
acd58620
PZ
4085 /* XXX used to be waiter->prio, not waiter->task->prio */
4086 prio = __rt_effective_prio(pi_task, p->normal_prio);
4087
4088 /*
4089 * If nothing changed; bail early.
4090 */
4091 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4092 return;
b29739f9 4093
eb580751 4094 rq = __task_rq_lock(p, &rf);
80f5c1b8 4095 update_rq_clock(rq);
acd58620
PZ
4096 /*
4097 * Set under pi_lock && rq->lock, such that the value can be used under
4098 * either lock.
4099 *
4100 * Note that there is loads of tricky to make this pointer cache work
4101 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4102 * ensure a task is de-boosted (pi_task is set to NULL) before the
4103 * task is allowed to run again (and can exit). This ensures the pointer
4104 * points to a blocked task -- which guaratees the task is present.
4105 */
4106 p->pi_top_task = pi_task;
4107
4108 /*
4109 * For FIFO/RR we only need to set prio, if that matches we're done.
4110 */
4111 if (prio == p->prio && !dl_prio(prio))
4112 goto out_unlock;
b29739f9 4113
1c4dd99b
TG
4114 /*
4115 * Idle task boosting is a nono in general. There is one
4116 * exception, when PREEMPT_RT and NOHZ is active:
4117 *
4118 * The idle task calls get_next_timer_interrupt() and holds
4119 * the timer wheel base->lock on the CPU and another CPU wants
4120 * to access the timer (probably to cancel it). We can safely
4121 * ignore the boosting request, as the idle CPU runs this code
4122 * with interrupts disabled and will complete the lock
4123 * protected section without being interrupted. So there is no
4124 * real need to boost.
4125 */
4126 if (unlikely(p == rq->idle)) {
4127 WARN_ON(p != rq->curr);
4128 WARN_ON(p->pi_blocked_on);
4129 goto out_unlock;
4130 }
4131
b91473ff 4132 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4133 oldprio = p->prio;
ff77e468
PZ
4134
4135 if (oldprio == prio)
4136 queue_flag &= ~DEQUEUE_MOVE;
4137
83ab0aa0 4138 prev_class = p->sched_class;
da0c1e65 4139 queued = task_on_rq_queued(p);
051a1d1a 4140 running = task_current(rq, p);
da0c1e65 4141 if (queued)
ff77e468 4142 dequeue_task(rq, p, queue_flag);
0e1f3483 4143 if (running)
f3cd1c4e 4144 put_prev_task(rq, p);
dd41f596 4145
2d3d891d
DF
4146 /*
4147 * Boosting condition are:
4148 * 1. -rt task is running and holds mutex A
4149 * --> -dl task blocks on mutex A
4150 *
4151 * 2. -dl task is running and holds mutex A
4152 * --> -dl task blocks on mutex A and could preempt the
4153 * running task
4154 */
4155 if (dl_prio(prio)) {
466af29b
ON
4156 if (!dl_prio(p->normal_prio) ||
4157 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4158 p->dl.dl_boosted = 1;
ff77e468 4159 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4160 } else
4161 p->dl.dl_boosted = 0;
aab03e05 4162 p->sched_class = &dl_sched_class;
2d3d891d
DF
4163 } else if (rt_prio(prio)) {
4164 if (dl_prio(oldprio))
4165 p->dl.dl_boosted = 0;
4166 if (oldprio < prio)
ff77e468 4167 queue_flag |= ENQUEUE_HEAD;
dd41f596 4168 p->sched_class = &rt_sched_class;
2d3d891d
DF
4169 } else {
4170 if (dl_prio(oldprio))
4171 p->dl.dl_boosted = 0;
746db944
BS
4172 if (rt_prio(oldprio))
4173 p->rt.timeout = 0;
dd41f596 4174 p->sched_class = &fair_sched_class;
2d3d891d 4175 }
dd41f596 4176
b29739f9
IM
4177 p->prio = prio;
4178
da0c1e65 4179 if (queued)
ff77e468 4180 enqueue_task(rq, p, queue_flag);
a399d233 4181 if (running)
b2bf6c31 4182 set_curr_task(rq, p);
cb469845 4183
da7a735e 4184 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4185out_unlock:
d1ccc66d
IM
4186 /* Avoid rq from going away on us: */
4187 preempt_disable();
eb580751 4188 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4189
4190 balance_callback(rq);
4191 preempt_enable();
b29739f9 4192}
acd58620
PZ
4193#else
4194static inline int rt_effective_prio(struct task_struct *p, int prio)
4195{
4196 return prio;
4197}
b29739f9 4198#endif
d50dde5a 4199
36c8b586 4200void set_user_nice(struct task_struct *p, long nice)
1da177e4 4201{
49bd21ef
PZ
4202 bool queued, running;
4203 int old_prio, delta;
eb580751 4204 struct rq_flags rf;
70b97a7f 4205 struct rq *rq;
1da177e4 4206
75e45d51 4207 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4208 return;
4209 /*
4210 * We have to be careful, if called from sys_setpriority(),
4211 * the task might be in the middle of scheduling on another CPU.
4212 */
eb580751 4213 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4214 update_rq_clock(rq);
4215
1da177e4
LT
4216 /*
4217 * The RT priorities are set via sched_setscheduler(), but we still
4218 * allow the 'normal' nice value to be set - but as expected
4219 * it wont have any effect on scheduling until the task is
aab03e05 4220 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4221 */
aab03e05 4222 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4223 p->static_prio = NICE_TO_PRIO(nice);
4224 goto out_unlock;
4225 }
da0c1e65 4226 queued = task_on_rq_queued(p);
49bd21ef 4227 running = task_current(rq, p);
da0c1e65 4228 if (queued)
7a57f32a 4229 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4230 if (running)
4231 put_prev_task(rq, p);
1da177e4 4232
1da177e4 4233 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4234 set_load_weight(p, true);
b29739f9
IM
4235 old_prio = p->prio;
4236 p->prio = effective_prio(p);
4237 delta = p->prio - old_prio;
1da177e4 4238
da0c1e65 4239 if (queued) {
7134b3e9 4240 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 4241 /*
d5f9f942
AM
4242 * If the task increased its priority or is running and
4243 * lowered its priority, then reschedule its CPU:
1da177e4 4244 */
d5f9f942 4245 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 4246 resched_curr(rq);
1da177e4 4247 }
49bd21ef
PZ
4248 if (running)
4249 set_curr_task(rq, p);
1da177e4 4250out_unlock:
eb580751 4251 task_rq_unlock(rq, p, &rf);
1da177e4 4252}
1da177e4
LT
4253EXPORT_SYMBOL(set_user_nice);
4254
e43379f1
MM
4255/*
4256 * can_nice - check if a task can reduce its nice value
4257 * @p: task
4258 * @nice: nice value
4259 */
36c8b586 4260int can_nice(const struct task_struct *p, const int nice)
e43379f1 4261{
d1ccc66d 4262 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 4263 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 4264
78d7d407 4265 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4266 capable(CAP_SYS_NICE));
4267}
4268
1da177e4
LT
4269#ifdef __ARCH_WANT_SYS_NICE
4270
4271/*
4272 * sys_nice - change the priority of the current process.
4273 * @increment: priority increment
4274 *
4275 * sys_setpriority is a more generic, but much slower function that
4276 * does similar things.
4277 */
5add95d4 4278SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4279{
48f24c4d 4280 long nice, retval;
1da177e4
LT
4281
4282 /*
4283 * Setpriority might change our priority at the same moment.
4284 * We don't have to worry. Conceptually one call occurs first
4285 * and we have a single winner.
4286 */
a9467fa3 4287 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 4288 nice = task_nice(current) + increment;
1da177e4 4289
a9467fa3 4290 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
4291 if (increment < 0 && !can_nice(current, nice))
4292 return -EPERM;
4293
1da177e4
LT
4294 retval = security_task_setnice(current, nice);
4295 if (retval)
4296 return retval;
4297
4298 set_user_nice(current, nice);
4299 return 0;
4300}
4301
4302#endif
4303
4304/**
4305 * task_prio - return the priority value of a given task.
4306 * @p: the task in question.
4307 *
e69f6186 4308 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4309 * RT tasks are offset by -200. Normal tasks are centered
4310 * around 0, value goes from -16 to +15.
4311 */
36c8b586 4312int task_prio(const struct task_struct *p)
1da177e4
LT
4313{
4314 return p->prio - MAX_RT_PRIO;
4315}
4316
1da177e4 4317/**
d1ccc66d 4318 * idle_cpu - is a given CPU idle currently?
1da177e4 4319 * @cpu: the processor in question.
e69f6186
YB
4320 *
4321 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4322 */
4323int idle_cpu(int cpu)
4324{
908a3283
TG
4325 struct rq *rq = cpu_rq(cpu);
4326
4327 if (rq->curr != rq->idle)
4328 return 0;
4329
4330 if (rq->nr_running)
4331 return 0;
4332
4333#ifdef CONFIG_SMP
4334 if (!llist_empty(&rq->wake_list))
4335 return 0;
4336#endif
4337
4338 return 1;
1da177e4
LT
4339}
4340
943d355d
RJ
4341/**
4342 * available_idle_cpu - is a given CPU idle for enqueuing work.
4343 * @cpu: the CPU in question.
4344 *
4345 * Return: 1 if the CPU is currently idle. 0 otherwise.
4346 */
4347int available_idle_cpu(int cpu)
4348{
4349 if (!idle_cpu(cpu))
4350 return 0;
4351
247f2f6f
RJ
4352 if (vcpu_is_preempted(cpu))
4353 return 0;
4354
908a3283 4355 return 1;
1da177e4
LT
4356}
4357
1da177e4 4358/**
d1ccc66d 4359 * idle_task - return the idle task for a given CPU.
1da177e4 4360 * @cpu: the processor in question.
e69f6186 4361 *
d1ccc66d 4362 * Return: The idle task for the CPU @cpu.
1da177e4 4363 */
36c8b586 4364struct task_struct *idle_task(int cpu)
1da177e4
LT
4365{
4366 return cpu_rq(cpu)->idle;
4367}
4368
4369/**
4370 * find_process_by_pid - find a process with a matching PID value.
4371 * @pid: the pid in question.
e69f6186
YB
4372 *
4373 * The task of @pid, if found. %NULL otherwise.
1da177e4 4374 */
a9957449 4375static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4376{
228ebcbe 4377 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4378}
4379
c13db6b1
SR
4380/*
4381 * sched_setparam() passes in -1 for its policy, to let the functions
4382 * it calls know not to change it.
4383 */
4384#define SETPARAM_POLICY -1
4385
c365c292
TG
4386static void __setscheduler_params(struct task_struct *p,
4387 const struct sched_attr *attr)
1da177e4 4388{
d50dde5a
DF
4389 int policy = attr->sched_policy;
4390
c13db6b1 4391 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4392 policy = p->policy;
4393
1da177e4 4394 p->policy = policy;
d50dde5a 4395
aab03e05
DF
4396 if (dl_policy(policy))
4397 __setparam_dl(p, attr);
39fd8fd2 4398 else if (fair_policy(policy))
d50dde5a
DF
4399 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4400
39fd8fd2
PZ
4401 /*
4402 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4403 * !rt_policy. Always setting this ensures that things like
4404 * getparam()/getattr() don't report silly values for !rt tasks.
4405 */
4406 p->rt_priority = attr->sched_priority;
383afd09 4407 p->normal_prio = normal_prio(p);
9059393e 4408 set_load_weight(p, true);
c365c292 4409}
39fd8fd2 4410
c365c292
TG
4411/* Actually do priority change: must hold pi & rq lock. */
4412static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4413 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4414{
4415 __setscheduler_params(p, attr);
d50dde5a 4416
383afd09 4417 /*
0782e63b
TG
4418 * Keep a potential priority boosting if called from
4419 * sched_setscheduler().
383afd09 4420 */
acd58620 4421 p->prio = normal_prio(p);
0782e63b 4422 if (keep_boost)
acd58620 4423 p->prio = rt_effective_prio(p, p->prio);
383afd09 4424
aab03e05
DF
4425 if (dl_prio(p->prio))
4426 p->sched_class = &dl_sched_class;
4427 else if (rt_prio(p->prio))
ffd44db5
PZ
4428 p->sched_class = &rt_sched_class;
4429 else
4430 p->sched_class = &fair_sched_class;
1da177e4 4431}
aab03e05 4432
c69e8d9c 4433/*
d1ccc66d 4434 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4435 */
4436static bool check_same_owner(struct task_struct *p)
4437{
4438 const struct cred *cred = current_cred(), *pcred;
4439 bool match;
4440
4441 rcu_read_lock();
4442 pcred = __task_cred(p);
9c806aa0
EB
4443 match = (uid_eq(cred->euid, pcred->euid) ||
4444 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4445 rcu_read_unlock();
4446 return match;
4447}
4448
d50dde5a
DF
4449static int __sched_setscheduler(struct task_struct *p,
4450 const struct sched_attr *attr,
dbc7f069 4451 bool user, bool pi)
1da177e4 4452{
383afd09
SR
4453 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4454 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4455 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4456 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4457 const struct sched_class *prev_class;
eb580751 4458 struct rq_flags rf;
ca94c442 4459 int reset_on_fork;
7a57f32a 4460 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4461 struct rq *rq;
1da177e4 4462
896bbb25
SRV
4463 /* The pi code expects interrupts enabled */
4464 BUG_ON(pi && in_interrupt());
1da177e4 4465recheck:
d1ccc66d 4466 /* Double check policy once rq lock held: */
ca94c442
LP
4467 if (policy < 0) {
4468 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4469 policy = oldpolicy = p->policy;
ca94c442 4470 } else {
7479f3c9 4471 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4472
20f9cd2a 4473 if (!valid_policy(policy))
ca94c442
LP
4474 return -EINVAL;
4475 }
4476
794a56eb 4477 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4478 return -EINVAL;
4479
1da177e4
LT
4480 /*
4481 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4482 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4483 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4484 */
0bb040a4 4485 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4486 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4487 return -EINVAL;
aab03e05
DF
4488 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4489 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4490 return -EINVAL;
4491
37e4ab3f
OC
4492 /*
4493 * Allow unprivileged RT tasks to decrease priority:
4494 */
961ccddd 4495 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4496 if (fair_policy(policy)) {
d0ea0268 4497 if (attr->sched_nice < task_nice(p) &&
eaad4513 4498 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4499 return -EPERM;
4500 }
4501
e05606d3 4502 if (rt_policy(policy)) {
a44702e8
ON
4503 unsigned long rlim_rtprio =
4504 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4505
d1ccc66d 4506 /* Can't set/change the rt policy: */
8dc3e909
ON
4507 if (policy != p->policy && !rlim_rtprio)
4508 return -EPERM;
4509
d1ccc66d 4510 /* Can't increase priority: */
d50dde5a
DF
4511 if (attr->sched_priority > p->rt_priority &&
4512 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4513 return -EPERM;
4514 }
c02aa73b 4515
d44753b8
JL
4516 /*
4517 * Can't set/change SCHED_DEADLINE policy at all for now
4518 * (safest behavior); in the future we would like to allow
4519 * unprivileged DL tasks to increase their relative deadline
4520 * or reduce their runtime (both ways reducing utilization)
4521 */
4522 if (dl_policy(policy))
4523 return -EPERM;
4524
dd41f596 4525 /*
c02aa73b
DH
4526 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4527 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4528 */
1da1843f 4529 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4530 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4531 return -EPERM;
4532 }
5fe1d75f 4533
d1ccc66d 4534 /* Can't change other user's priorities: */
c69e8d9c 4535 if (!check_same_owner(p))
37e4ab3f 4536 return -EPERM;
ca94c442 4537
d1ccc66d 4538 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4539 if (p->sched_reset_on_fork && !reset_on_fork)
4540 return -EPERM;
37e4ab3f 4541 }
1da177e4 4542
725aad24 4543 if (user) {
794a56eb
JL
4544 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4545 return -EINVAL;
4546
b0ae1981 4547 retval = security_task_setscheduler(p);
725aad24
JF
4548 if (retval)
4549 return retval;
4550 }
4551
b29739f9 4552 /*
d1ccc66d 4553 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4554 * changing the priority of the task:
0122ec5b 4555 *
25985edc 4556 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4557 * runqueue lock must be held.
4558 */
eb580751 4559 rq = task_rq_lock(p, &rf);
80f5c1b8 4560 update_rq_clock(rq);
dc61b1d6 4561
34f971f6 4562 /*
d1ccc66d 4563 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4564 */
4565 if (p == rq->stop) {
eb580751 4566 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4567 return -EINVAL;
4568 }
4569
a51e9198 4570 /*
d6b1e911
TG
4571 * If not changing anything there's no need to proceed further,
4572 * but store a possible modification of reset_on_fork.
a51e9198 4573 */
d50dde5a 4574 if (unlikely(policy == p->policy)) {
d0ea0268 4575 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4576 goto change;
4577 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4578 goto change;
75381608 4579 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4580 goto change;
d50dde5a 4581
d6b1e911 4582 p->sched_reset_on_fork = reset_on_fork;
eb580751 4583 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4584 return 0;
4585 }
d50dde5a 4586change:
a51e9198 4587
dc61b1d6 4588 if (user) {
332ac17e 4589#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4590 /*
4591 * Do not allow realtime tasks into groups that have no runtime
4592 * assigned.
4593 */
4594 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4595 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4596 !task_group_is_autogroup(task_group(p))) {
eb580751 4597 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4598 return -EPERM;
4599 }
dc61b1d6 4600#endif
332ac17e 4601#ifdef CONFIG_SMP
794a56eb
JL
4602 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4603 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4604 cpumask_t *span = rq->rd->span;
332ac17e
DF
4605
4606 /*
4607 * Don't allow tasks with an affinity mask smaller than
4608 * the entire root_domain to become SCHED_DEADLINE. We
4609 * will also fail if there's no bandwidth available.
4610 */
3bd37062 4611 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4612 rq->rd->dl_bw.bw == 0) {
eb580751 4613 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4614 return -EPERM;
4615 }
4616 }
4617#endif
4618 }
dc61b1d6 4619
d1ccc66d 4620 /* Re-check policy now with rq lock held: */
1da177e4
LT
4621 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4622 policy = oldpolicy = -1;
eb580751 4623 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4624 goto recheck;
4625 }
332ac17e
DF
4626
4627 /*
4628 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4629 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4630 * is available.
4631 */
06a76fe0 4632 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4633 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4634 return -EBUSY;
4635 }
4636
c365c292
TG
4637 p->sched_reset_on_fork = reset_on_fork;
4638 oldprio = p->prio;
4639
dbc7f069
PZ
4640 if (pi) {
4641 /*
4642 * Take priority boosted tasks into account. If the new
4643 * effective priority is unchanged, we just store the new
4644 * normal parameters and do not touch the scheduler class and
4645 * the runqueue. This will be done when the task deboost
4646 * itself.
4647 */
acd58620 4648 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4649 if (new_effective_prio == oldprio)
4650 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4651 }
4652
da0c1e65 4653 queued = task_on_rq_queued(p);
051a1d1a 4654 running = task_current(rq, p);
da0c1e65 4655 if (queued)
ff77e468 4656 dequeue_task(rq, p, queue_flags);
0e1f3483 4657 if (running)
f3cd1c4e 4658 put_prev_task(rq, p);
f6b53205 4659
83ab0aa0 4660 prev_class = p->sched_class;
dbc7f069 4661 __setscheduler(rq, p, attr, pi);
f6b53205 4662
da0c1e65 4663 if (queued) {
81a44c54
TG
4664 /*
4665 * We enqueue to tail when the priority of a task is
4666 * increased (user space view).
4667 */
ff77e468
PZ
4668 if (oldprio < p->prio)
4669 queue_flags |= ENQUEUE_HEAD;
1de64443 4670
ff77e468 4671 enqueue_task(rq, p, queue_flags);
81a44c54 4672 }
a399d233 4673 if (running)
b2bf6c31 4674 set_curr_task(rq, p);
cb469845 4675
da7a735e 4676 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4677
4678 /* Avoid rq from going away on us: */
4679 preempt_disable();
eb580751 4680 task_rq_unlock(rq, p, &rf);
b29739f9 4681
dbc7f069
PZ
4682 if (pi)
4683 rt_mutex_adjust_pi(p);
95e02ca9 4684
d1ccc66d 4685 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4686 balance_callback(rq);
4687 preempt_enable();
95e02ca9 4688
1da177e4
LT
4689 return 0;
4690}
961ccddd 4691
7479f3c9
PZ
4692static int _sched_setscheduler(struct task_struct *p, int policy,
4693 const struct sched_param *param, bool check)
4694{
4695 struct sched_attr attr = {
4696 .sched_policy = policy,
4697 .sched_priority = param->sched_priority,
4698 .sched_nice = PRIO_TO_NICE(p->static_prio),
4699 };
4700
c13db6b1
SR
4701 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4702 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4703 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4704 policy &= ~SCHED_RESET_ON_FORK;
4705 attr.sched_policy = policy;
4706 }
4707
dbc7f069 4708 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4709}
961ccddd
RR
4710/**
4711 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4712 * @p: the task in question.
4713 * @policy: new policy.
4714 * @param: structure containing the new RT priority.
4715 *
e69f6186
YB
4716 * Return: 0 on success. An error code otherwise.
4717 *
961ccddd
RR
4718 * NOTE that the task may be already dead.
4719 */
4720int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4721 const struct sched_param *param)
961ccddd 4722{
7479f3c9 4723 return _sched_setscheduler(p, policy, param, true);
961ccddd 4724}
1da177e4
LT
4725EXPORT_SYMBOL_GPL(sched_setscheduler);
4726
d50dde5a
DF
4727int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4728{
dbc7f069 4729 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4730}
4731EXPORT_SYMBOL_GPL(sched_setattr);
4732
794a56eb
JL
4733int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4734{
4735 return __sched_setscheduler(p, attr, false, true);
4736}
4737
961ccddd
RR
4738/**
4739 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4740 * @p: the task in question.
4741 * @policy: new policy.
4742 * @param: structure containing the new RT priority.
4743 *
4744 * Just like sched_setscheduler, only don't bother checking if the
4745 * current context has permission. For example, this is needed in
4746 * stop_machine(): we create temporary high priority worker threads,
4747 * but our caller might not have that capability.
e69f6186
YB
4748 *
4749 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4750 */
4751int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4752 const struct sched_param *param)
961ccddd 4753{
7479f3c9 4754 return _sched_setscheduler(p, policy, param, false);
961ccddd 4755}
84778472 4756EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4757
95cdf3b7
IM
4758static int
4759do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4760{
1da177e4
LT
4761 struct sched_param lparam;
4762 struct task_struct *p;
36c8b586 4763 int retval;
1da177e4
LT
4764
4765 if (!param || pid < 0)
4766 return -EINVAL;
4767 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4768 return -EFAULT;
5fe1d75f
ON
4769
4770 rcu_read_lock();
4771 retval = -ESRCH;
1da177e4 4772 p = find_process_by_pid(pid);
5fe1d75f
ON
4773 if (p != NULL)
4774 retval = sched_setscheduler(p, policy, &lparam);
4775 rcu_read_unlock();
36c8b586 4776
1da177e4
LT
4777 return retval;
4778}
4779
d50dde5a
DF
4780/*
4781 * Mimics kernel/events/core.c perf_copy_attr().
4782 */
d1ccc66d 4783static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4784{
4785 u32 size;
4786 int ret;
4787
96d4f267 4788 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
d50dde5a
DF
4789 return -EFAULT;
4790
d1ccc66d 4791 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4792 memset(attr, 0, sizeof(*attr));
4793
4794 ret = get_user(size, &uattr->size);
4795 if (ret)
4796 return ret;
4797
d1ccc66d
IM
4798 /* Bail out on silly large: */
4799 if (size > PAGE_SIZE)
d50dde5a
DF
4800 goto err_size;
4801
d1ccc66d
IM
4802 /* ABI compatibility quirk: */
4803 if (!size)
d50dde5a
DF
4804 size = SCHED_ATTR_SIZE_VER0;
4805
4806 if (size < SCHED_ATTR_SIZE_VER0)
4807 goto err_size;
4808
4809 /*
4810 * If we're handed a bigger struct than we know of,
4811 * ensure all the unknown bits are 0 - i.e. new
4812 * user-space does not rely on any kernel feature
4813 * extensions we dont know about yet.
4814 */
4815 if (size > sizeof(*attr)) {
4816 unsigned char __user *addr;
4817 unsigned char __user *end;
4818 unsigned char val;
4819
4820 addr = (void __user *)uattr + sizeof(*attr);
4821 end = (void __user *)uattr + size;
4822
4823 for (; addr < end; addr++) {
4824 ret = get_user(val, addr);
4825 if (ret)
4826 return ret;
4827 if (val)
4828 goto err_size;
4829 }
4830 size = sizeof(*attr);
4831 }
4832
4833 ret = copy_from_user(attr, uattr, size);
4834 if (ret)
4835 return -EFAULT;
4836
4837 /*
d1ccc66d 4838 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4839 * to be strict and return an error on out-of-bounds values?
4840 */
75e45d51 4841 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4842
e78c7bca 4843 return 0;
d50dde5a
DF
4844
4845err_size:
4846 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4847 return -E2BIG;
d50dde5a
DF
4848}
4849
1da177e4
LT
4850/**
4851 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4852 * @pid: the pid in question.
4853 * @policy: new policy.
4854 * @param: structure containing the new RT priority.
e69f6186
YB
4855 *
4856 * Return: 0 on success. An error code otherwise.
1da177e4 4857 */
d1ccc66d 4858SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4859{
c21761f1
JB
4860 if (policy < 0)
4861 return -EINVAL;
4862
1da177e4
LT
4863 return do_sched_setscheduler(pid, policy, param);
4864}
4865
4866/**
4867 * sys_sched_setparam - set/change the RT priority of a thread
4868 * @pid: the pid in question.
4869 * @param: structure containing the new RT priority.
e69f6186
YB
4870 *
4871 * Return: 0 on success. An error code otherwise.
1da177e4 4872 */
5add95d4 4873SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4874{
c13db6b1 4875 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4876}
4877
d50dde5a
DF
4878/**
4879 * sys_sched_setattr - same as above, but with extended sched_attr
4880 * @pid: the pid in question.
5778fccf 4881 * @uattr: structure containing the extended parameters.
db66d756 4882 * @flags: for future extension.
d50dde5a 4883 */
6d35ab48
PZ
4884SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4885 unsigned int, flags)
d50dde5a
DF
4886{
4887 struct sched_attr attr;
4888 struct task_struct *p;
4889 int retval;
4890
6d35ab48 4891 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4892 return -EINVAL;
4893
143cf23d
MK
4894 retval = sched_copy_attr(uattr, &attr);
4895 if (retval)
4896 return retval;
d50dde5a 4897
b14ed2c2 4898 if ((int)attr.sched_policy < 0)
dbdb2275 4899 return -EINVAL;
d50dde5a
DF
4900
4901 rcu_read_lock();
4902 retval = -ESRCH;
4903 p = find_process_by_pid(pid);
4904 if (p != NULL)
4905 retval = sched_setattr(p, &attr);
4906 rcu_read_unlock();
4907
4908 return retval;
4909}
4910
1da177e4
LT
4911/**
4912 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4913 * @pid: the pid in question.
e69f6186
YB
4914 *
4915 * Return: On success, the policy of the thread. Otherwise, a negative error
4916 * code.
1da177e4 4917 */
5add95d4 4918SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4919{
36c8b586 4920 struct task_struct *p;
3a5c359a 4921 int retval;
1da177e4
LT
4922
4923 if (pid < 0)
3a5c359a 4924 return -EINVAL;
1da177e4
LT
4925
4926 retval = -ESRCH;
5fe85be0 4927 rcu_read_lock();
1da177e4
LT
4928 p = find_process_by_pid(pid);
4929 if (p) {
4930 retval = security_task_getscheduler(p);
4931 if (!retval)
ca94c442
LP
4932 retval = p->policy
4933 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4934 }
5fe85be0 4935 rcu_read_unlock();
1da177e4
LT
4936 return retval;
4937}
4938
4939/**
ca94c442 4940 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4941 * @pid: the pid in question.
4942 * @param: structure containing the RT priority.
e69f6186
YB
4943 *
4944 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4945 * code.
1da177e4 4946 */
5add95d4 4947SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4948{
ce5f7f82 4949 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4950 struct task_struct *p;
3a5c359a 4951 int retval;
1da177e4
LT
4952
4953 if (!param || pid < 0)
3a5c359a 4954 return -EINVAL;
1da177e4 4955
5fe85be0 4956 rcu_read_lock();
1da177e4
LT
4957 p = find_process_by_pid(pid);
4958 retval = -ESRCH;
4959 if (!p)
4960 goto out_unlock;
4961
4962 retval = security_task_getscheduler(p);
4963 if (retval)
4964 goto out_unlock;
4965
ce5f7f82
PZ
4966 if (task_has_rt_policy(p))
4967 lp.sched_priority = p->rt_priority;
5fe85be0 4968 rcu_read_unlock();
1da177e4
LT
4969
4970 /*
4971 * This one might sleep, we cannot do it with a spinlock held ...
4972 */
4973 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4974
1da177e4
LT
4975 return retval;
4976
4977out_unlock:
5fe85be0 4978 rcu_read_unlock();
1da177e4
LT
4979 return retval;
4980}
4981
d50dde5a
DF
4982static int sched_read_attr(struct sched_attr __user *uattr,
4983 struct sched_attr *attr,
4984 unsigned int usize)
4985{
4986 int ret;
4987
96d4f267 4988 if (!access_ok(uattr, usize))
d50dde5a
DF
4989 return -EFAULT;
4990
4991 /*
4992 * If we're handed a smaller struct than we know of,
4993 * ensure all the unknown bits are 0 - i.e. old
4994 * user-space does not get uncomplete information.
4995 */
4996 if (usize < sizeof(*attr)) {
4997 unsigned char *addr;
4998 unsigned char *end;
4999
5000 addr = (void *)attr + usize;
5001 end = (void *)attr + sizeof(*attr);
5002
5003 for (; addr < end; addr++) {
5004 if (*addr)
22400674 5005 return -EFBIG;
d50dde5a
DF
5006 }
5007
5008 attr->size = usize;
5009 }
5010
4efbc454 5011 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
5012 if (ret)
5013 return -EFAULT;
5014
22400674 5015 return 0;
d50dde5a
DF
5016}
5017
5018/**
aab03e05 5019 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5020 * @pid: the pid in question.
5778fccf 5021 * @uattr: structure containing the extended parameters.
d50dde5a 5022 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 5023 * @flags: for future extension.
d50dde5a 5024 */
6d35ab48
PZ
5025SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5026 unsigned int, size, unsigned int, flags)
d50dde5a
DF
5027{
5028 struct sched_attr attr = {
5029 .size = sizeof(struct sched_attr),
5030 };
5031 struct task_struct *p;
5032 int retval;
5033
5034 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 5035 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5036 return -EINVAL;
5037
5038 rcu_read_lock();
5039 p = find_process_by_pid(pid);
5040 retval = -ESRCH;
5041 if (!p)
5042 goto out_unlock;
5043
5044 retval = security_task_getscheduler(p);
5045 if (retval)
5046 goto out_unlock;
5047
5048 attr.sched_policy = p->policy;
7479f3c9
PZ
5049 if (p->sched_reset_on_fork)
5050 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
5051 if (task_has_dl_policy(p))
5052 __getparam_dl(p, &attr);
5053 else if (task_has_rt_policy(p))
d50dde5a
DF
5054 attr.sched_priority = p->rt_priority;
5055 else
d0ea0268 5056 attr.sched_nice = task_nice(p);
d50dde5a
DF
5057
5058 rcu_read_unlock();
5059
5060 retval = sched_read_attr(uattr, &attr, size);
5061 return retval;
5062
5063out_unlock:
5064 rcu_read_unlock();
5065 return retval;
5066}
5067
96f874e2 5068long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5069{
5a16f3d3 5070 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5071 struct task_struct *p;
5072 int retval;
1da177e4 5073
23f5d142 5074 rcu_read_lock();
1da177e4
LT
5075
5076 p = find_process_by_pid(pid);
5077 if (!p) {
23f5d142 5078 rcu_read_unlock();
1da177e4
LT
5079 return -ESRCH;
5080 }
5081
23f5d142 5082 /* Prevent p going away */
1da177e4 5083 get_task_struct(p);
23f5d142 5084 rcu_read_unlock();
1da177e4 5085
14a40ffc
TH
5086 if (p->flags & PF_NO_SETAFFINITY) {
5087 retval = -EINVAL;
5088 goto out_put_task;
5089 }
5a16f3d3
RR
5090 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5091 retval = -ENOMEM;
5092 goto out_put_task;
5093 }
5094 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5095 retval = -ENOMEM;
5096 goto out_free_cpus_allowed;
5097 }
1da177e4 5098 retval = -EPERM;
4c44aaaf
EB
5099 if (!check_same_owner(p)) {
5100 rcu_read_lock();
5101 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5102 rcu_read_unlock();
16303ab2 5103 goto out_free_new_mask;
4c44aaaf
EB
5104 }
5105 rcu_read_unlock();
5106 }
1da177e4 5107
b0ae1981 5108 retval = security_task_setscheduler(p);
e7834f8f 5109 if (retval)
16303ab2 5110 goto out_free_new_mask;
e7834f8f 5111
e4099a5e
PZ
5112
5113 cpuset_cpus_allowed(p, cpus_allowed);
5114 cpumask_and(new_mask, in_mask, cpus_allowed);
5115
332ac17e
DF
5116 /*
5117 * Since bandwidth control happens on root_domain basis,
5118 * if admission test is enabled, we only admit -deadline
5119 * tasks allowed to run on all the CPUs in the task's
5120 * root_domain.
5121 */
5122#ifdef CONFIG_SMP
f1e3a093
KT
5123 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5124 rcu_read_lock();
5125 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5126 retval = -EBUSY;
f1e3a093 5127 rcu_read_unlock();
16303ab2 5128 goto out_free_new_mask;
332ac17e 5129 }
f1e3a093 5130 rcu_read_unlock();
332ac17e
DF
5131 }
5132#endif
49246274 5133again:
25834c73 5134 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5135
8707d8b8 5136 if (!retval) {
5a16f3d3
RR
5137 cpuset_cpus_allowed(p, cpus_allowed);
5138 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5139 /*
5140 * We must have raced with a concurrent cpuset
5141 * update. Just reset the cpus_allowed to the
5142 * cpuset's cpus_allowed
5143 */
5a16f3d3 5144 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5145 goto again;
5146 }
5147 }
16303ab2 5148out_free_new_mask:
5a16f3d3
RR
5149 free_cpumask_var(new_mask);
5150out_free_cpus_allowed:
5151 free_cpumask_var(cpus_allowed);
5152out_put_task:
1da177e4 5153 put_task_struct(p);
1da177e4
LT
5154 return retval;
5155}
5156
5157static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5158 struct cpumask *new_mask)
1da177e4 5159{
96f874e2
RR
5160 if (len < cpumask_size())
5161 cpumask_clear(new_mask);
5162 else if (len > cpumask_size())
5163 len = cpumask_size();
5164
1da177e4
LT
5165 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5166}
5167
5168/**
d1ccc66d 5169 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5170 * @pid: pid of the process
5171 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5172 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5173 *
5174 * Return: 0 on success. An error code otherwise.
1da177e4 5175 */
5add95d4
HC
5176SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5177 unsigned long __user *, user_mask_ptr)
1da177e4 5178{
5a16f3d3 5179 cpumask_var_t new_mask;
1da177e4
LT
5180 int retval;
5181
5a16f3d3
RR
5182 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5183 return -ENOMEM;
1da177e4 5184
5a16f3d3
RR
5185 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5186 if (retval == 0)
5187 retval = sched_setaffinity(pid, new_mask);
5188 free_cpumask_var(new_mask);
5189 return retval;
1da177e4
LT
5190}
5191
96f874e2 5192long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5193{
36c8b586 5194 struct task_struct *p;
31605683 5195 unsigned long flags;
1da177e4 5196 int retval;
1da177e4 5197
23f5d142 5198 rcu_read_lock();
1da177e4
LT
5199
5200 retval = -ESRCH;
5201 p = find_process_by_pid(pid);
5202 if (!p)
5203 goto out_unlock;
5204
e7834f8f
DQ
5205 retval = security_task_getscheduler(p);
5206 if (retval)
5207 goto out_unlock;
5208
013fdb80 5209 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 5210 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 5211 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5212
5213out_unlock:
23f5d142 5214 rcu_read_unlock();
1da177e4 5215
9531b62f 5216 return retval;
1da177e4
LT
5217}
5218
5219/**
d1ccc66d 5220 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
5221 * @pid: pid of the process
5222 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5223 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 5224 *
599b4840
ZW
5225 * Return: size of CPU mask copied to user_mask_ptr on success. An
5226 * error code otherwise.
1da177e4 5227 */
5add95d4
HC
5228SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5229 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5230{
5231 int ret;
f17c8607 5232 cpumask_var_t mask;
1da177e4 5233
84fba5ec 5234 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5235 return -EINVAL;
5236 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5237 return -EINVAL;
5238
f17c8607
RR
5239 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5240 return -ENOMEM;
1da177e4 5241
f17c8607
RR
5242 ret = sched_getaffinity(pid, mask);
5243 if (ret == 0) {
4de373a1 5244 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
5245
5246 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5247 ret = -EFAULT;
5248 else
cd3d8031 5249 ret = retlen;
f17c8607
RR
5250 }
5251 free_cpumask_var(mask);
1da177e4 5252
f17c8607 5253 return ret;
1da177e4
LT
5254}
5255
5256/**
5257 * sys_sched_yield - yield the current processor to other threads.
5258 *
dd41f596
IM
5259 * This function yields the current CPU to other tasks. If there are no
5260 * other threads running on this CPU then this function will return.
e69f6186
YB
5261 *
5262 * Return: 0.
1da177e4 5263 */
7d4dd4f1 5264static void do_sched_yield(void)
1da177e4 5265{
8a8c69c3
PZ
5266 struct rq_flags rf;
5267 struct rq *rq;
5268
246b3b33 5269 rq = this_rq_lock_irq(&rf);
1da177e4 5270
ae92882e 5271 schedstat_inc(rq->yld_count);
4530d7ab 5272 current->sched_class->yield_task(rq);
1da177e4
LT
5273
5274 /*
5275 * Since we are going to call schedule() anyway, there's
5276 * no need to preempt or enable interrupts:
5277 */
8a8c69c3
PZ
5278 preempt_disable();
5279 rq_unlock(rq, &rf);
ba74c144 5280 sched_preempt_enable_no_resched();
1da177e4
LT
5281
5282 schedule();
7d4dd4f1 5283}
1da177e4 5284
7d4dd4f1
DB
5285SYSCALL_DEFINE0(sched_yield)
5286{
5287 do_sched_yield();
1da177e4
LT
5288 return 0;
5289}
5290
35a773a0 5291#ifndef CONFIG_PREEMPT
02b67cc3 5292int __sched _cond_resched(void)
1da177e4 5293{
fe32d3cd 5294 if (should_resched(0)) {
a18b5d01 5295 preempt_schedule_common();
1da177e4
LT
5296 return 1;
5297 }
f79c3ad6 5298 rcu_all_qs();
1da177e4
LT
5299 return 0;
5300}
02b67cc3 5301EXPORT_SYMBOL(_cond_resched);
35a773a0 5302#endif
1da177e4
LT
5303
5304/*
613afbf8 5305 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5306 * call schedule, and on return reacquire the lock.
5307 *
41a2d6cf 5308 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5309 * operations here to prevent schedule() from being called twice (once via
5310 * spin_unlock(), once by hand).
5311 */
613afbf8 5312int __cond_resched_lock(spinlock_t *lock)
1da177e4 5313{
fe32d3cd 5314 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5315 int ret = 0;
5316
f607c668
PZ
5317 lockdep_assert_held(lock);
5318
4a81e832 5319 if (spin_needbreak(lock) || resched) {
1da177e4 5320 spin_unlock(lock);
d86ee480 5321 if (resched)
a18b5d01 5322 preempt_schedule_common();
95c354fe
NP
5323 else
5324 cpu_relax();
6df3cecb 5325 ret = 1;
1da177e4 5326 spin_lock(lock);
1da177e4 5327 }
6df3cecb 5328 return ret;
1da177e4 5329}
613afbf8 5330EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5331
1da177e4
LT
5332/**
5333 * yield - yield the current processor to other threads.
5334 *
8e3fabfd
PZ
5335 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5336 *
5337 * The scheduler is at all times free to pick the calling task as the most
5338 * eligible task to run, if removing the yield() call from your code breaks
5339 * it, its already broken.
5340 *
5341 * Typical broken usage is:
5342 *
5343 * while (!event)
d1ccc66d 5344 * yield();
8e3fabfd
PZ
5345 *
5346 * where one assumes that yield() will let 'the other' process run that will
5347 * make event true. If the current task is a SCHED_FIFO task that will never
5348 * happen. Never use yield() as a progress guarantee!!
5349 *
5350 * If you want to use yield() to wait for something, use wait_event().
5351 * If you want to use yield() to be 'nice' for others, use cond_resched().
5352 * If you still want to use yield(), do not!
1da177e4
LT
5353 */
5354void __sched yield(void)
5355{
5356 set_current_state(TASK_RUNNING);
7d4dd4f1 5357 do_sched_yield();
1da177e4 5358}
1da177e4
LT
5359EXPORT_SYMBOL(yield);
5360
d95f4122
MG
5361/**
5362 * yield_to - yield the current processor to another thread in
5363 * your thread group, or accelerate that thread toward the
5364 * processor it's on.
16addf95
RD
5365 * @p: target task
5366 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5367 *
5368 * It's the caller's job to ensure that the target task struct
5369 * can't go away on us before we can do any checks.
5370 *
e69f6186 5371 * Return:
7b270f60
PZ
5372 * true (>0) if we indeed boosted the target task.
5373 * false (0) if we failed to boost the target.
5374 * -ESRCH if there's no task to yield to.
d95f4122 5375 */
fa93384f 5376int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5377{
5378 struct task_struct *curr = current;
5379 struct rq *rq, *p_rq;
5380 unsigned long flags;
c3c18640 5381 int yielded = 0;
d95f4122
MG
5382
5383 local_irq_save(flags);
5384 rq = this_rq();
5385
5386again:
5387 p_rq = task_rq(p);
7b270f60
PZ
5388 /*
5389 * If we're the only runnable task on the rq and target rq also
5390 * has only one task, there's absolutely no point in yielding.
5391 */
5392 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5393 yielded = -ESRCH;
5394 goto out_irq;
5395 }
5396
d95f4122 5397 double_rq_lock(rq, p_rq);
39e24d8f 5398 if (task_rq(p) != p_rq) {
d95f4122
MG
5399 double_rq_unlock(rq, p_rq);
5400 goto again;
5401 }
5402
5403 if (!curr->sched_class->yield_to_task)
7b270f60 5404 goto out_unlock;
d95f4122
MG
5405
5406 if (curr->sched_class != p->sched_class)
7b270f60 5407 goto out_unlock;
d95f4122
MG
5408
5409 if (task_running(p_rq, p) || p->state)
7b270f60 5410 goto out_unlock;
d95f4122
MG
5411
5412 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5413 if (yielded) {
ae92882e 5414 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5415 /*
5416 * Make p's CPU reschedule; pick_next_entity takes care of
5417 * fairness.
5418 */
5419 if (preempt && rq != p_rq)
8875125e 5420 resched_curr(p_rq);
6d1cafd8 5421 }
d95f4122 5422
7b270f60 5423out_unlock:
d95f4122 5424 double_rq_unlock(rq, p_rq);
7b270f60 5425out_irq:
d95f4122
MG
5426 local_irq_restore(flags);
5427
7b270f60 5428 if (yielded > 0)
d95f4122
MG
5429 schedule();
5430
5431 return yielded;
5432}
5433EXPORT_SYMBOL_GPL(yield_to);
5434
10ab5643
TH
5435int io_schedule_prepare(void)
5436{
5437 int old_iowait = current->in_iowait;
5438
5439 current->in_iowait = 1;
5440 blk_schedule_flush_plug(current);
5441
5442 return old_iowait;
5443}
5444
5445void io_schedule_finish(int token)
5446{
5447 current->in_iowait = token;
5448}
5449
1da177e4 5450/*
41a2d6cf 5451 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5452 * that process accounting knows that this is a task in IO wait state.
1da177e4 5453 */
1da177e4
LT
5454long __sched io_schedule_timeout(long timeout)
5455{
10ab5643 5456 int token;
1da177e4
LT
5457 long ret;
5458
10ab5643 5459 token = io_schedule_prepare();
1da177e4 5460 ret = schedule_timeout(timeout);
10ab5643 5461 io_schedule_finish(token);
9cff8ade 5462
1da177e4
LT
5463 return ret;
5464}
9cff8ade 5465EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5466
e3b929b0 5467void __sched io_schedule(void)
10ab5643
TH
5468{
5469 int token;
5470
5471 token = io_schedule_prepare();
5472 schedule();
5473 io_schedule_finish(token);
5474}
5475EXPORT_SYMBOL(io_schedule);
5476
1da177e4
LT
5477/**
5478 * sys_sched_get_priority_max - return maximum RT priority.
5479 * @policy: scheduling class.
5480 *
e69f6186
YB
5481 * Return: On success, this syscall returns the maximum
5482 * rt_priority that can be used by a given scheduling class.
5483 * On failure, a negative error code is returned.
1da177e4 5484 */
5add95d4 5485SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5486{
5487 int ret = -EINVAL;
5488
5489 switch (policy) {
5490 case SCHED_FIFO:
5491 case SCHED_RR:
5492 ret = MAX_USER_RT_PRIO-1;
5493 break;
aab03e05 5494 case SCHED_DEADLINE:
1da177e4 5495 case SCHED_NORMAL:
b0a9499c 5496 case SCHED_BATCH:
dd41f596 5497 case SCHED_IDLE:
1da177e4
LT
5498 ret = 0;
5499 break;
5500 }
5501 return ret;
5502}
5503
5504/**
5505 * sys_sched_get_priority_min - return minimum RT priority.
5506 * @policy: scheduling class.
5507 *
e69f6186
YB
5508 * Return: On success, this syscall returns the minimum
5509 * rt_priority that can be used by a given scheduling class.
5510 * On failure, a negative error code is returned.
1da177e4 5511 */
5add95d4 5512SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5513{
5514 int ret = -EINVAL;
5515
5516 switch (policy) {
5517 case SCHED_FIFO:
5518 case SCHED_RR:
5519 ret = 1;
5520 break;
aab03e05 5521 case SCHED_DEADLINE:
1da177e4 5522 case SCHED_NORMAL:
b0a9499c 5523 case SCHED_BATCH:
dd41f596 5524 case SCHED_IDLE:
1da177e4
LT
5525 ret = 0;
5526 }
5527 return ret;
5528}
5529
abca5fc5 5530static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5531{
36c8b586 5532 struct task_struct *p;
a4ec24b4 5533 unsigned int time_slice;
eb580751 5534 struct rq_flags rf;
dba091b9 5535 struct rq *rq;
3a5c359a 5536 int retval;
1da177e4
LT
5537
5538 if (pid < 0)
3a5c359a 5539 return -EINVAL;
1da177e4
LT
5540
5541 retval = -ESRCH;
1a551ae7 5542 rcu_read_lock();
1da177e4
LT
5543 p = find_process_by_pid(pid);
5544 if (!p)
5545 goto out_unlock;
5546
5547 retval = security_task_getscheduler(p);
5548 if (retval)
5549 goto out_unlock;
5550
eb580751 5551 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5552 time_slice = 0;
5553 if (p->sched_class->get_rr_interval)
5554 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5555 task_rq_unlock(rq, p, &rf);
a4ec24b4 5556
1a551ae7 5557 rcu_read_unlock();
abca5fc5
AV
5558 jiffies_to_timespec64(time_slice, t);
5559 return 0;
3a5c359a 5560
1da177e4 5561out_unlock:
1a551ae7 5562 rcu_read_unlock();
1da177e4
LT
5563 return retval;
5564}
5565
2064a5ab
RD
5566/**
5567 * sys_sched_rr_get_interval - return the default timeslice of a process.
5568 * @pid: pid of the process.
5569 * @interval: userspace pointer to the timeslice value.
5570 *
5571 * this syscall writes the default timeslice value of a given process
5572 * into the user-space timespec buffer. A value of '0' means infinity.
5573 *
5574 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5575 * an error code.
5576 */
abca5fc5 5577SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5578 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5579{
5580 struct timespec64 t;
5581 int retval = sched_rr_get_interval(pid, &t);
5582
5583 if (retval == 0)
5584 retval = put_timespec64(&t, interval);
5585
5586 return retval;
5587}
5588
474b9c77 5589#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5590SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5591 struct old_timespec32 __user *, interval)
abca5fc5
AV
5592{
5593 struct timespec64 t;
5594 int retval = sched_rr_get_interval(pid, &t);
5595
5596 if (retval == 0)
9afc5eee 5597 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5598 return retval;
5599}
5600#endif
5601
82a1fcb9 5602void sched_show_task(struct task_struct *p)
1da177e4 5603{
1da177e4 5604 unsigned long free = 0;
4e79752c 5605 int ppid;
c930b2c0 5606
38200502
TH
5607 if (!try_get_task_stack(p))
5608 return;
20435d84
XX
5609
5610 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5611
5612 if (p->state == TASK_RUNNING)
3df0fc5b 5613 printk(KERN_CONT " running task ");
1da177e4 5614#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5615 free = stack_not_used(p);
1da177e4 5616#endif
a90e984c 5617 ppid = 0;
4e79752c 5618 rcu_read_lock();
a90e984c
ON
5619 if (pid_alive(p))
5620 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5621 rcu_read_unlock();
3df0fc5b 5622 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5623 task_pid_nr(p), ppid,
aa47b7e0 5624 (unsigned long)task_thread_info(p)->flags);
1da177e4 5625
3d1cb205 5626 print_worker_info(KERN_INFO, p);
5fb5e6de 5627 show_stack(p, NULL);
38200502 5628 put_task_stack(p);
1da177e4 5629}
0032f4e8 5630EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5631
5d68cc95
PZ
5632static inline bool
5633state_filter_match(unsigned long state_filter, struct task_struct *p)
5634{
5635 /* no filter, everything matches */
5636 if (!state_filter)
5637 return true;
5638
5639 /* filter, but doesn't match */
5640 if (!(p->state & state_filter))
5641 return false;
5642
5643 /*
5644 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5645 * TASK_KILLABLE).
5646 */
5647 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5648 return false;
5649
5650 return true;
5651}
5652
5653
e59e2ae2 5654void show_state_filter(unsigned long state_filter)
1da177e4 5655{
36c8b586 5656 struct task_struct *g, *p;
1da177e4 5657
4bd77321 5658#if BITS_PER_LONG == 32
3df0fc5b
PZ
5659 printk(KERN_INFO
5660 " task PC stack pid father\n");
1da177e4 5661#else
3df0fc5b
PZ
5662 printk(KERN_INFO
5663 " task PC stack pid father\n");
1da177e4 5664#endif
510f5acc 5665 rcu_read_lock();
5d07f420 5666 for_each_process_thread(g, p) {
1da177e4
LT
5667 /*
5668 * reset the NMI-timeout, listing all files on a slow
25985edc 5669 * console might take a lot of time:
57675cb9
AR
5670 * Also, reset softlockup watchdogs on all CPUs, because
5671 * another CPU might be blocked waiting for us to process
5672 * an IPI.
1da177e4
LT
5673 */
5674 touch_nmi_watchdog();
57675cb9 5675 touch_all_softlockup_watchdogs();
5d68cc95 5676 if (state_filter_match(state_filter, p))
82a1fcb9 5677 sched_show_task(p);
5d07f420 5678 }
1da177e4 5679
dd41f596 5680#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5681 if (!state_filter)
5682 sysrq_sched_debug_show();
dd41f596 5683#endif
510f5acc 5684 rcu_read_unlock();
e59e2ae2
IM
5685 /*
5686 * Only show locks if all tasks are dumped:
5687 */
93335a21 5688 if (!state_filter)
e59e2ae2 5689 debug_show_all_locks();
1da177e4
LT
5690}
5691
f340c0d1
IM
5692/**
5693 * init_idle - set up an idle thread for a given CPU
5694 * @idle: task in question
d1ccc66d 5695 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5696 *
5697 * NOTE: this function does not set the idle thread's NEED_RESCHED
5698 * flag, to make booting more robust.
5699 */
0db0628d 5700void init_idle(struct task_struct *idle, int cpu)
1da177e4 5701{
70b97a7f 5702 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5703 unsigned long flags;
5704
25834c73
PZ
5705 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5706 raw_spin_lock(&rq->lock);
5cbd54ef 5707
5e1576ed 5708 __sched_fork(0, idle);
06b83b5f 5709 idle->state = TASK_RUNNING;
dd41f596 5710 idle->se.exec_start = sched_clock();
c1de45ca 5711 idle->flags |= PF_IDLE;
dd41f596 5712
e1b77c92
MR
5713 kasan_unpoison_task_stack(idle);
5714
de9b8f5d
PZ
5715#ifdef CONFIG_SMP
5716 /*
5717 * Its possible that init_idle() gets called multiple times on a task,
5718 * in that case do_set_cpus_allowed() will not do the right thing.
5719 *
5720 * And since this is boot we can forgo the serialization.
5721 */
5722 set_cpus_allowed_common(idle, cpumask_of(cpu));
5723#endif
6506cf6c
PZ
5724 /*
5725 * We're having a chicken and egg problem, even though we are
d1ccc66d 5726 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5727 * lockdep check in task_group() will fail.
5728 *
5729 * Similar case to sched_fork(). / Alternatively we could
5730 * use task_rq_lock() here and obtain the other rq->lock.
5731 *
5732 * Silence PROVE_RCU
5733 */
5734 rcu_read_lock();
dd41f596 5735 __set_task_cpu(idle, cpu);
6506cf6c 5736 rcu_read_unlock();
1da177e4 5737
1da177e4 5738 rq->curr = rq->idle = idle;
da0c1e65 5739 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5740#ifdef CONFIG_SMP
3ca7a440 5741 idle->on_cpu = 1;
4866cde0 5742#endif
25834c73
PZ
5743 raw_spin_unlock(&rq->lock);
5744 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5745
5746 /* Set the preempt count _outside_ the spinlocks! */
01028747 5747 init_idle_preempt_count(idle, cpu);
55cd5340 5748
dd41f596
IM
5749 /*
5750 * The idle tasks have their own, simple scheduling class:
5751 */
5752 idle->sched_class = &idle_sched_class;
868baf07 5753 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5754 vtime_init_idle(idle, cpu);
de9b8f5d 5755#ifdef CONFIG_SMP
f1c6f1a7
CE
5756 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5757#endif
19978ca6
IM
5758}
5759
e1d4eeec
NP
5760#ifdef CONFIG_SMP
5761
f82f8042
JL
5762int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5763 const struct cpumask *trial)
5764{
06a76fe0 5765 int ret = 1;
f82f8042 5766
bb2bc55a
MG
5767 if (!cpumask_weight(cur))
5768 return ret;
5769
06a76fe0 5770 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5771
5772 return ret;
5773}
5774
7f51412a
JL
5775int task_can_attach(struct task_struct *p,
5776 const struct cpumask *cs_cpus_allowed)
5777{
5778 int ret = 0;
5779
5780 /*
5781 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5782 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5783 * affinity and isolating such threads by their set of
5784 * allowed nodes is unnecessary. Thus, cpusets are not
5785 * applicable for such threads. This prevents checking for
5786 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 5787 * before cpus_mask may be changed.
7f51412a
JL
5788 */
5789 if (p->flags & PF_NO_SETAFFINITY) {
5790 ret = -EINVAL;
5791 goto out;
5792 }
5793
7f51412a 5794 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5795 cs_cpus_allowed))
5796 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5797
7f51412a
JL
5798out:
5799 return ret;
5800}
5801
f2cb1360 5802bool sched_smp_initialized __read_mostly;
e26fbffd 5803
e6628d5b
MG
5804#ifdef CONFIG_NUMA_BALANCING
5805/* Migrate current task p to target_cpu */
5806int migrate_task_to(struct task_struct *p, int target_cpu)
5807{
5808 struct migration_arg arg = { p, target_cpu };
5809 int curr_cpu = task_cpu(p);
5810
5811 if (curr_cpu == target_cpu)
5812 return 0;
5813
3bd37062 5814 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
5815 return -EINVAL;
5816
5817 /* TODO: This is not properly updating schedstats */
5818
286549dc 5819 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5820 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5821}
0ec8aa00
PZ
5822
5823/*
5824 * Requeue a task on a given node and accurately track the number of NUMA
5825 * tasks on the runqueues
5826 */
5827void sched_setnuma(struct task_struct *p, int nid)
5828{
da0c1e65 5829 bool queued, running;
eb580751
PZ
5830 struct rq_flags rf;
5831 struct rq *rq;
0ec8aa00 5832
eb580751 5833 rq = task_rq_lock(p, &rf);
da0c1e65 5834 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5835 running = task_current(rq, p);
5836
da0c1e65 5837 if (queued)
1de64443 5838 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5839 if (running)
f3cd1c4e 5840 put_prev_task(rq, p);
0ec8aa00
PZ
5841
5842 p->numa_preferred_nid = nid;
0ec8aa00 5843
da0c1e65 5844 if (queued)
7134b3e9 5845 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5846 if (running)
b2bf6c31 5847 set_curr_task(rq, p);
eb580751 5848 task_rq_unlock(rq, p, &rf);
0ec8aa00 5849}
5cc389bc 5850#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5851
1da177e4 5852#ifdef CONFIG_HOTPLUG_CPU
054b9108 5853/*
d1ccc66d 5854 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5855 * offline.
054b9108 5856 */
48c5ccae 5857void idle_task_exit(void)
1da177e4 5858{
48c5ccae 5859 struct mm_struct *mm = current->active_mm;
e76bd8d9 5860
48c5ccae 5861 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5862
a53efe5f 5863 if (mm != &init_mm) {
252d2a41 5864 switch_mm(mm, &init_mm, current);
3eda69c9 5865 current->active_mm = &init_mm;
a53efe5f
MS
5866 finish_arch_post_lock_switch();
5867 }
48c5ccae 5868 mmdrop(mm);
1da177e4
LT
5869}
5870
5871/*
5d180232
PZ
5872 * Since this CPU is going 'away' for a while, fold any nr_active delta
5873 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5874 * nr_active count is stable. We need to take the teardown thread which
5875 * is calling this into account, so we hand in adjust = 1 to the load
5876 * calculation.
5d180232
PZ
5877 *
5878 * Also see the comment "Global load-average calculations".
1da177e4 5879 */
5d180232 5880static void calc_load_migrate(struct rq *rq)
1da177e4 5881{
d60585c5 5882 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5883 if (delta)
5884 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5885}
5886
3f1d2a31
PZ
5887static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5888{
5889}
5890
5891static const struct sched_class fake_sched_class = {
5892 .put_prev_task = put_prev_task_fake,
5893};
5894
5895static struct task_struct fake_task = {
5896 /*
5897 * Avoid pull_{rt,dl}_task()
5898 */
5899 .prio = MAX_PRIO + 1,
5900 .sched_class = &fake_sched_class,
5901};
5902
48f24c4d 5903/*
48c5ccae
PZ
5904 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5905 * try_to_wake_up()->select_task_rq().
5906 *
5907 * Called with rq->lock held even though we'er in stop_machine() and
5908 * there's no concurrency possible, we hold the required locks anyway
5909 * because of lock validation efforts.
1da177e4 5910 */
8a8c69c3 5911static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5912{
5e16bbc2 5913 struct rq *rq = dead_rq;
48c5ccae 5914 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5915 struct rq_flags orf = *rf;
48c5ccae 5916 int dest_cpu;
1da177e4
LT
5917
5918 /*
48c5ccae
PZ
5919 * Fudge the rq selection such that the below task selection loop
5920 * doesn't get stuck on the currently eligible stop task.
5921 *
5922 * We're currently inside stop_machine() and the rq is either stuck
5923 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5924 * either way we should never end up calling schedule() until we're
5925 * done here.
1da177e4 5926 */
48c5ccae 5927 rq->stop = NULL;
48f24c4d 5928
77bd3970
FW
5929 /*
5930 * put_prev_task() and pick_next_task() sched
5931 * class method both need to have an up-to-date
5932 * value of rq->clock[_task]
5933 */
5934 update_rq_clock(rq);
5935
5e16bbc2 5936 for (;;) {
48c5ccae
PZ
5937 /*
5938 * There's this thread running, bail when that's the only
d1ccc66d 5939 * remaining thread:
48c5ccae
PZ
5940 */
5941 if (rq->nr_running == 1)
dd41f596 5942 break;
48c5ccae 5943
cbce1a68 5944 /*
d1ccc66d 5945 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5946 */
8a8c69c3 5947 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5948 BUG_ON(!next);
5b713a3d 5949 put_prev_task(rq, next);
e692ab53 5950
5473e0cc 5951 /*
3bd37062 5952 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
5953 * both pi_lock and rq->lock, such that holding either
5954 * stabilizes the mask.
5955 *
5956 * Drop rq->lock is not quite as disastrous as it usually is
5957 * because !cpu_active at this point, which means load-balance
5958 * will not interfere. Also, stop-machine.
5959 */
8a8c69c3 5960 rq_unlock(rq, rf);
5473e0cc 5961 raw_spin_lock(&next->pi_lock);
8a8c69c3 5962 rq_relock(rq, rf);
5473e0cc
WL
5963
5964 /*
5965 * Since we're inside stop-machine, _nothing_ should have
5966 * changed the task, WARN if weird stuff happened, because in
5967 * that case the above rq->lock drop is a fail too.
5968 */
5969 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5970 raw_spin_unlock(&next->pi_lock);
5971 continue;
5972 }
5973
48c5ccae 5974 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5975 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5976 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5977 if (rq != dead_rq) {
8a8c69c3 5978 rq_unlock(rq, rf);
5e16bbc2 5979 rq = dead_rq;
8a8c69c3
PZ
5980 *rf = orf;
5981 rq_relock(rq, rf);
5e16bbc2 5982 }
5473e0cc 5983 raw_spin_unlock(&next->pi_lock);
1da177e4 5984 }
dce48a84 5985
48c5ccae 5986 rq->stop = stop;
dce48a84 5987}
1da177e4
LT
5988#endif /* CONFIG_HOTPLUG_CPU */
5989
f2cb1360 5990void set_rq_online(struct rq *rq)
1f11eb6a
GH
5991{
5992 if (!rq->online) {
5993 const struct sched_class *class;
5994
c6c4927b 5995 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5996 rq->online = 1;
5997
5998 for_each_class(class) {
5999 if (class->rq_online)
6000 class->rq_online(rq);
6001 }
6002 }
6003}
6004
f2cb1360 6005void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6006{
6007 if (rq->online) {
6008 const struct sched_class *class;
6009
6010 for_each_class(class) {
6011 if (class->rq_offline)
6012 class->rq_offline(rq);
6013 }
6014
c6c4927b 6015 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6016 rq->online = 0;
6017 }
6018}
6019
d1ccc66d
IM
6020/*
6021 * used to mark begin/end of suspend/resume:
6022 */
6023static int num_cpus_frozen;
d35be8ba 6024
1da177e4 6025/*
3a101d05
TH
6026 * Update cpusets according to cpu_active mask. If cpusets are
6027 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6028 * around partition_sched_domains().
d35be8ba
SB
6029 *
6030 * If we come here as part of a suspend/resume, don't touch cpusets because we
6031 * want to restore it back to its original state upon resume anyway.
1da177e4 6032 */
40190a78 6033static void cpuset_cpu_active(void)
e761b772 6034{
40190a78 6035 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6036 /*
6037 * num_cpus_frozen tracks how many CPUs are involved in suspend
6038 * resume sequence. As long as this is not the last online
6039 * operation in the resume sequence, just build a single sched
6040 * domain, ignoring cpusets.
6041 */
50e76632
PZ
6042 partition_sched_domains(1, NULL, NULL);
6043 if (--num_cpus_frozen)
135fb3e1 6044 return;
d35be8ba
SB
6045 /*
6046 * This is the last CPU online operation. So fall through and
6047 * restore the original sched domains by considering the
6048 * cpuset configurations.
6049 */
50e76632 6050 cpuset_force_rebuild();
3a101d05 6051 }
30e03acd 6052 cpuset_update_active_cpus();
3a101d05 6053}
e761b772 6054
40190a78 6055static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6056{
40190a78 6057 if (!cpuhp_tasks_frozen) {
06a76fe0 6058 if (dl_cpu_busy(cpu))
135fb3e1 6059 return -EBUSY;
30e03acd 6060 cpuset_update_active_cpus();
135fb3e1 6061 } else {
d35be8ba
SB
6062 num_cpus_frozen++;
6063 partition_sched_domains(1, NULL, NULL);
e761b772 6064 }
135fb3e1 6065 return 0;
e761b772 6066}
e761b772 6067
40190a78 6068int sched_cpu_activate(unsigned int cpu)
135fb3e1 6069{
7d976699 6070 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6071 struct rq_flags rf;
7d976699 6072
ba2591a5
PZ
6073#ifdef CONFIG_SCHED_SMT
6074 /*
c5511d03 6075 * When going up, increment the number of cores with SMT present.
ba2591a5 6076 */
c5511d03
PZI
6077 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6078 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6079#endif
40190a78 6080 set_cpu_active(cpu, true);
135fb3e1 6081
40190a78 6082 if (sched_smp_initialized) {
135fb3e1 6083 sched_domains_numa_masks_set(cpu);
40190a78 6084 cpuset_cpu_active();
e761b772 6085 }
7d976699
TG
6086
6087 /*
6088 * Put the rq online, if not already. This happens:
6089 *
6090 * 1) In the early boot process, because we build the real domains
d1ccc66d 6091 * after all CPUs have been brought up.
7d976699
TG
6092 *
6093 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6094 * domains.
6095 */
8a8c69c3 6096 rq_lock_irqsave(rq, &rf);
7d976699
TG
6097 if (rq->rd) {
6098 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6099 set_rq_online(rq);
6100 }
8a8c69c3 6101 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
6102
6103 update_max_interval();
6104
40190a78 6105 return 0;
135fb3e1
TG
6106}
6107
40190a78 6108int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6109{
135fb3e1
TG
6110 int ret;
6111
40190a78 6112 set_cpu_active(cpu, false);
b2454caa
PZ
6113 /*
6114 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6115 * users of this state to go away such that all new such users will
6116 * observe it.
6117 *
b2454caa
PZ
6118 * Do sync before park smpboot threads to take care the rcu boost case.
6119 */
309ba859 6120 synchronize_rcu();
40190a78 6121
c5511d03
PZI
6122#ifdef CONFIG_SCHED_SMT
6123 /*
6124 * When going down, decrement the number of cores with SMT present.
6125 */
6126 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6127 static_branch_dec_cpuslocked(&sched_smt_present);
6128#endif
6129
40190a78
TG
6130 if (!sched_smp_initialized)
6131 return 0;
6132
6133 ret = cpuset_cpu_inactive(cpu);
6134 if (ret) {
6135 set_cpu_active(cpu, true);
6136 return ret;
135fb3e1 6137 }
40190a78
TG
6138 sched_domains_numa_masks_clear(cpu);
6139 return 0;
135fb3e1
TG
6140}
6141
94baf7a5
TG
6142static void sched_rq_cpu_starting(unsigned int cpu)
6143{
6144 struct rq *rq = cpu_rq(cpu);
6145
6146 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6147 update_max_interval();
6148}
6149
135fb3e1
TG
6150int sched_cpu_starting(unsigned int cpu)
6151{
94baf7a5 6152 sched_rq_cpu_starting(cpu);
d84b3131 6153 sched_tick_start(cpu);
135fb3e1 6154 return 0;
e761b772 6155}
e761b772 6156
f2785ddb
TG
6157#ifdef CONFIG_HOTPLUG_CPU
6158int sched_cpu_dying(unsigned int cpu)
6159{
6160 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6161 struct rq_flags rf;
f2785ddb
TG
6162
6163 /* Handle pending wakeups and then migrate everything off */
6164 sched_ttwu_pending();
d84b3131 6165 sched_tick_stop(cpu);
8a8c69c3
PZ
6166
6167 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6168 if (rq->rd) {
6169 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6170 set_rq_offline(rq);
6171 }
8a8c69c3 6172 migrate_tasks(rq, &rf);
f2785ddb 6173 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6174 rq_unlock_irqrestore(rq, &rf);
6175
f2785ddb
TG
6176 calc_load_migrate(rq);
6177 update_max_interval();
00357f5e 6178 nohz_balance_exit_idle(rq);
e5ef27d0 6179 hrtick_clear(rq);
f2785ddb
TG
6180 return 0;
6181}
6182#endif
6183
1da177e4
LT
6184void __init sched_init_smp(void)
6185{
cb83b629
PZ
6186 sched_init_numa();
6187
6acce3ef
PZ
6188 /*
6189 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 6190 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 6191 * happen.
6acce3ef 6192 */
712555ee 6193 mutex_lock(&sched_domains_mutex);
8d5dc512 6194 sched_init_domains(cpu_active_mask);
712555ee 6195 mutex_unlock(&sched_domains_mutex);
e761b772 6196
5c1e1767 6197 /* Move init over to a non-isolated CPU */
edb93821 6198 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 6199 BUG();
19978ca6 6200 sched_init_granularity();
4212823f 6201
0e3900e6 6202 init_sched_rt_class();
1baca4ce 6203 init_sched_dl_class();
1b568f0a 6204
e26fbffd 6205 sched_smp_initialized = true;
1da177e4 6206}
e26fbffd
TG
6207
6208static int __init migration_init(void)
6209{
77a5352b 6210 sched_cpu_starting(smp_processor_id());
e26fbffd 6211 return 0;
1da177e4 6212}
e26fbffd
TG
6213early_initcall(migration_init);
6214
1da177e4
LT
6215#else
6216void __init sched_init_smp(void)
6217{
19978ca6 6218 sched_init_granularity();
1da177e4
LT
6219}
6220#endif /* CONFIG_SMP */
6221
6222int in_sched_functions(unsigned long addr)
6223{
1da177e4
LT
6224 return in_lock_functions(addr) ||
6225 (addr >= (unsigned long)__sched_text_start
6226 && addr < (unsigned long)__sched_text_end);
6227}
6228
029632fb 6229#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6230/*
6231 * Default task group.
6232 * Every task in system belongs to this group at bootup.
6233 */
029632fb 6234struct task_group root_task_group;
35cf4e50 6235LIST_HEAD(task_groups);
b0367629
WL
6236
6237/* Cacheline aligned slab cache for task_group */
6238static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6239#endif
6f505b16 6240
e6252c3e 6241DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6242DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6243
1da177e4
LT
6244void __init sched_init(void)
6245{
434d53b0 6246 unsigned long alloc_size = 0, ptr;
55627e3c 6247 int i;
434d53b0 6248
5822a454 6249 wait_bit_init();
9dcb8b68 6250
434d53b0
MT
6251#ifdef CONFIG_FAIR_GROUP_SCHED
6252 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6253#endif
6254#ifdef CONFIG_RT_GROUP_SCHED
6255 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6256#endif
434d53b0 6257 if (alloc_size) {
36b7b6d4 6258 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6259
6260#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6261 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6262 ptr += nr_cpu_ids * sizeof(void **);
6263
07e06b01 6264 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6265 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6266
6d6bc0ad 6267#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6268#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6269 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6270 ptr += nr_cpu_ids * sizeof(void **);
6271
07e06b01 6272 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6273 ptr += nr_cpu_ids * sizeof(void **);
6274
6d6bc0ad 6275#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6276 }
df7c8e84 6277#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6278 for_each_possible_cpu(i) {
6279 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6280 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6281 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6282 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6283 }
b74e6278 6284#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6285
d1ccc66d
IM
6286 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6287 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6288
57d885fe
GH
6289#ifdef CONFIG_SMP
6290 init_defrootdomain();
6291#endif
6292
d0b27fa7 6293#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6294 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6295 global_rt_period(), global_rt_runtime());
6d6bc0ad 6296#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6297
7c941438 6298#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6299 task_group_cache = KMEM_CACHE(task_group, 0);
6300
07e06b01
YZ
6301 list_add(&root_task_group.list, &task_groups);
6302 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6303 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6304 autogroup_init(&init_task);
7c941438 6305#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6306
0a945022 6307 for_each_possible_cpu(i) {
70b97a7f 6308 struct rq *rq;
1da177e4
LT
6309
6310 rq = cpu_rq(i);
05fa785c 6311 raw_spin_lock_init(&rq->lock);
7897986b 6312 rq->nr_running = 0;
dce48a84
TG
6313 rq->calc_load_active = 0;
6314 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6315 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6316 init_rt_rq(&rq->rt);
6317 init_dl_rq(&rq->dl);
dd41f596 6318#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6319 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6320 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6321 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6322 /*
d1ccc66d 6323 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6324 *
6325 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6326 * gets 100% of the CPU resources in the system. This overall
6327 * system CPU resource is divided among the tasks of
07e06b01 6328 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6329 * based on each entity's (task or task-group's) weight
6330 * (se->load.weight).
6331 *
07e06b01 6332 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6333 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6334 * then A0's share of the CPU resource is:
354d60c2 6335 *
0d905bca 6336 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6337 *
07e06b01
YZ
6338 * We achieve this by letting root_task_group's tasks sit
6339 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6340 */
ab84d31e 6341 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6342 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6343#endif /* CONFIG_FAIR_GROUP_SCHED */
6344
6345 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6346#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6347 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6348#endif
1da177e4 6349#ifdef CONFIG_SMP
41c7ce9a 6350 rq->sd = NULL;
57d885fe 6351 rq->rd = NULL;
ca6d75e6 6352 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6353 rq->balance_callback = NULL;
1da177e4 6354 rq->active_balance = 0;
dd41f596 6355 rq->next_balance = jiffies;
1da177e4 6356 rq->push_cpu = 0;
0a2966b4 6357 rq->cpu = i;
1f11eb6a 6358 rq->online = 0;
eae0c9df
MG
6359 rq->idle_stamp = 0;
6360 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6361 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6362
6363 INIT_LIST_HEAD(&rq->cfs_tasks);
6364
dc938520 6365 rq_attach_root(rq, &def_root_domain);
3451d024 6366#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6367 rq->last_load_update_tick = jiffies;
e022e0d3 6368 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6369 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6370#endif
9fd81dd5 6371#endif /* CONFIG_SMP */
77a021be 6372 hrtick_rq_init(rq);
1da177e4 6373 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6374 }
6375
9059393e 6376 set_load_weight(&init_task, false);
b50f60ce 6377
1da177e4
LT
6378 /*
6379 * The boot idle thread does lazy MMU switching as well:
6380 */
f1f10076 6381 mmgrab(&init_mm);
1da177e4
LT
6382 enter_lazy_tlb(&init_mm, current);
6383
6384 /*
6385 * Make us the idle thread. Technically, schedule() should not be
6386 * called from this thread, however somewhere below it might be,
6387 * but because we are the idle thread, we just pick up running again
6388 * when this runqueue becomes "idle".
6389 */
6390 init_idle(current, smp_processor_id());
dce48a84
TG
6391
6392 calc_load_update = jiffies + LOAD_FREQ;
6393
bf4d83f6 6394#ifdef CONFIG_SMP
29d5e047 6395 idle_thread_set_boot_cpu();
029632fb
PZ
6396#endif
6397 init_sched_fair_class();
6a7b3dc3 6398
4698f88c
JP
6399 init_schedstats();
6400
eb414681
JW
6401 psi_init();
6402
69842cba
PB
6403 init_uclamp();
6404
6892b75e 6405 scheduler_running = 1;
1da177e4
LT
6406}
6407
d902db1e 6408#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6409static inline int preempt_count_equals(int preempt_offset)
6410{
da7142e2 6411 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6412
4ba8216c 6413 return (nested == preempt_offset);
e4aafea2
FW
6414}
6415
d894837f 6416void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6417{
8eb23b9f
PZ
6418 /*
6419 * Blocking primitives will set (and therefore destroy) current->state,
6420 * since we will exit with TASK_RUNNING make sure we enter with it,
6421 * otherwise we will destroy state.
6422 */
00845eb9 6423 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6424 "do not call blocking ops when !TASK_RUNNING; "
6425 "state=%lx set at [<%p>] %pS\n",
6426 current->state,
6427 (void *)current->task_state_change,
00845eb9 6428 (void *)current->task_state_change);
8eb23b9f 6429
3427445a
PZ
6430 ___might_sleep(file, line, preempt_offset);
6431}
6432EXPORT_SYMBOL(__might_sleep);
6433
6434void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6435{
d1ccc66d
IM
6436 /* Ratelimiting timestamp: */
6437 static unsigned long prev_jiffy;
6438
d1c6d149 6439 unsigned long preempt_disable_ip;
1da177e4 6440
d1ccc66d
IM
6441 /* WARN_ON_ONCE() by default, no rate limit required: */
6442 rcu_sleep_check();
6443
db273be2
TG
6444 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6445 !is_idle_task(current)) ||
1c3c5eab
TG
6446 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6447 oops_in_progress)
aef745fc 6448 return;
1c3c5eab 6449
aef745fc
IM
6450 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6451 return;
6452 prev_jiffy = jiffies;
6453
d1ccc66d 6454 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6455 preempt_disable_ip = get_preempt_disable_ip(current);
6456
3df0fc5b
PZ
6457 printk(KERN_ERR
6458 "BUG: sleeping function called from invalid context at %s:%d\n",
6459 file, line);
6460 printk(KERN_ERR
6461 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6462 in_atomic(), irqs_disabled(),
6463 current->pid, current->comm);
aef745fc 6464
a8b686b3
ES
6465 if (task_stack_end_corrupted(current))
6466 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6467
aef745fc
IM
6468 debug_show_held_locks(current);
6469 if (irqs_disabled())
6470 print_irqtrace_events(current);
d1c6d149
VN
6471 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6472 && !preempt_count_equals(preempt_offset)) {
8f47b187 6473 pr_err("Preemption disabled at:");
d1c6d149 6474 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6475 pr_cont("\n");
6476 }
aef745fc 6477 dump_stack();
f0b22e39 6478 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6479}
3427445a 6480EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6481
6482void __cant_sleep(const char *file, int line, int preempt_offset)
6483{
6484 static unsigned long prev_jiffy;
6485
6486 if (irqs_disabled())
6487 return;
6488
6489 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6490 return;
6491
6492 if (preempt_count() > preempt_offset)
6493 return;
6494
6495 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6496 return;
6497 prev_jiffy = jiffies;
6498
6499 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6500 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6501 in_atomic(), irqs_disabled(),
6502 current->pid, current->comm);
6503
6504 debug_show_held_locks(current);
6505 dump_stack();
6506 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6507}
6508EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6509#endif
6510
6511#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6512void normalize_rt_tasks(void)
3a5e4dc1 6513{
dbc7f069 6514 struct task_struct *g, *p;
d50dde5a
DF
6515 struct sched_attr attr = {
6516 .sched_policy = SCHED_NORMAL,
6517 };
1da177e4 6518
3472eaa1 6519 read_lock(&tasklist_lock);
5d07f420 6520 for_each_process_thread(g, p) {
178be793
IM
6521 /*
6522 * Only normalize user tasks:
6523 */
3472eaa1 6524 if (p->flags & PF_KTHREAD)
178be793
IM
6525 continue;
6526
4fa8d299
JP
6527 p->se.exec_start = 0;
6528 schedstat_set(p->se.statistics.wait_start, 0);
6529 schedstat_set(p->se.statistics.sleep_start, 0);
6530 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6531
aab03e05 6532 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6533 /*
6534 * Renice negative nice level userspace
6535 * tasks back to 0:
6536 */
3472eaa1 6537 if (task_nice(p) < 0)
dd41f596 6538 set_user_nice(p, 0);
1da177e4 6539 continue;
dd41f596 6540 }
1da177e4 6541
dbc7f069 6542 __sched_setscheduler(p, &attr, false, false);
5d07f420 6543 }
3472eaa1 6544 read_unlock(&tasklist_lock);
1da177e4
LT
6545}
6546
6547#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6548
67fc4e0c 6549#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6550/*
67fc4e0c 6551 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6552 *
6553 * They can only be called when the whole system has been
6554 * stopped - every CPU needs to be quiescent, and no scheduling
6555 * activity can take place. Using them for anything else would
6556 * be a serious bug, and as a result, they aren't even visible
6557 * under any other configuration.
6558 */
6559
6560/**
d1ccc66d 6561 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6562 * @cpu: the processor in question.
6563 *
6564 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6565 *
6566 * Return: The current task for @cpu.
1df5c10a 6567 */
36c8b586 6568struct task_struct *curr_task(int cpu)
1df5c10a
LT
6569{
6570 return cpu_curr(cpu);
6571}
6572
67fc4e0c
JW
6573#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6574
6575#ifdef CONFIG_IA64
1df5c10a 6576/**
d1ccc66d 6577 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6578 * @cpu: the processor in question.
6579 * @p: the task pointer to set.
6580 *
6581 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6582 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6583 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6584 * must be called with all CPU's synchronized, and interrupts disabled, the
6585 * and caller must save the original value of the current task (see
6586 * curr_task() above) and restore that value before reenabling interrupts and
6587 * re-starting the system.
6588 *
6589 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6590 */
a458ae2e 6591void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6592{
6593 cpu_curr(cpu) = p;
6594}
6595
6596#endif
29f59db3 6597
7c941438 6598#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6599/* task_group_lock serializes the addition/removal of task groups */
6600static DEFINE_SPINLOCK(task_group_lock);
6601
2f5177f0 6602static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6603{
6604 free_fair_sched_group(tg);
6605 free_rt_sched_group(tg);
e9aa1dd1 6606 autogroup_free(tg);
b0367629 6607 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6608}
6609
6610/* allocate runqueue etc for a new task group */
ec7dc8ac 6611struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6612{
6613 struct task_group *tg;
bccbe08a 6614
b0367629 6615 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6616 if (!tg)
6617 return ERR_PTR(-ENOMEM);
6618
ec7dc8ac 6619 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6620 goto err;
6621
ec7dc8ac 6622 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6623 goto err;
6624
ace783b9
LZ
6625 return tg;
6626
6627err:
2f5177f0 6628 sched_free_group(tg);
ace783b9
LZ
6629 return ERR_PTR(-ENOMEM);
6630}
6631
6632void sched_online_group(struct task_group *tg, struct task_group *parent)
6633{
6634 unsigned long flags;
6635
8ed36996 6636 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6637 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6638
d1ccc66d
IM
6639 /* Root should already exist: */
6640 WARN_ON(!parent);
f473aa5e
PZ
6641
6642 tg->parent = parent;
f473aa5e 6643 INIT_LIST_HEAD(&tg->children);
09f2724a 6644 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6645 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6646
6647 online_fair_sched_group(tg);
29f59db3
SV
6648}
6649
9b5b7751 6650/* rcu callback to free various structures associated with a task group */
2f5177f0 6651static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6652{
d1ccc66d 6653 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6654 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6655}
6656
4cf86d77 6657void sched_destroy_group(struct task_group *tg)
ace783b9 6658{
d1ccc66d 6659 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6660 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6661}
6662
6663void sched_offline_group(struct task_group *tg)
29f59db3 6664{
8ed36996 6665 unsigned long flags;
29f59db3 6666
d1ccc66d 6667 /* End participation in shares distribution: */
6fe1f348 6668 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6669
6670 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6671 list_del_rcu(&tg->list);
f473aa5e 6672 list_del_rcu(&tg->siblings);
8ed36996 6673 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6674}
6675
ea86cb4b 6676static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6677{
8323f26c 6678 struct task_group *tg;
29f59db3 6679
f7b8a47d
KT
6680 /*
6681 * All callers are synchronized by task_rq_lock(); we do not use RCU
6682 * which is pointless here. Thus, we pass "true" to task_css_check()
6683 * to prevent lockdep warnings.
6684 */
6685 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6686 struct task_group, css);
6687 tg = autogroup_task_group(tsk, tg);
6688 tsk->sched_task_group = tg;
6689
810b3817 6690#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6691 if (tsk->sched_class->task_change_group)
6692 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6693 else
810b3817 6694#endif
b2b5ce02 6695 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6696}
6697
6698/*
6699 * Change task's runqueue when it moves between groups.
6700 *
6701 * The caller of this function should have put the task in its new group by
6702 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6703 * its new group.
6704 */
6705void sched_move_task(struct task_struct *tsk)
6706{
7a57f32a
PZ
6707 int queued, running, queue_flags =
6708 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6709 struct rq_flags rf;
6710 struct rq *rq;
6711
6712 rq = task_rq_lock(tsk, &rf);
1b1d6225 6713 update_rq_clock(rq);
ea86cb4b
VG
6714
6715 running = task_current(rq, tsk);
6716 queued = task_on_rq_queued(tsk);
6717
6718 if (queued)
7a57f32a 6719 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6720 if (running)
ea86cb4b
VG
6721 put_prev_task(rq, tsk);
6722
6723 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6724
da0c1e65 6725 if (queued)
7a57f32a 6726 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6727 if (running)
b2bf6c31 6728 set_curr_task(rq, tsk);
29f59db3 6729
eb580751 6730 task_rq_unlock(rq, tsk, &rf);
29f59db3 6731}
68318b8e 6732
a7c6d554 6733static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6734{
a7c6d554 6735 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6736}
6737
eb95419b
TH
6738static struct cgroup_subsys_state *
6739cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6740{
eb95419b
TH
6741 struct task_group *parent = css_tg(parent_css);
6742 struct task_group *tg;
68318b8e 6743
eb95419b 6744 if (!parent) {
68318b8e 6745 /* This is early initialization for the top cgroup */
07e06b01 6746 return &root_task_group.css;
68318b8e
SV
6747 }
6748
ec7dc8ac 6749 tg = sched_create_group(parent);
68318b8e
SV
6750 if (IS_ERR(tg))
6751 return ERR_PTR(-ENOMEM);
6752
68318b8e
SV
6753 return &tg->css;
6754}
6755
96b77745
KK
6756/* Expose task group only after completing cgroup initialization */
6757static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6758{
6759 struct task_group *tg = css_tg(css);
6760 struct task_group *parent = css_tg(css->parent);
6761
6762 if (parent)
6763 sched_online_group(tg, parent);
6764 return 0;
6765}
6766
2f5177f0 6767static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6768{
eb95419b 6769 struct task_group *tg = css_tg(css);
ace783b9 6770
2f5177f0 6771 sched_offline_group(tg);
ace783b9
LZ
6772}
6773
eb95419b 6774static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6775{
eb95419b 6776 struct task_group *tg = css_tg(css);
68318b8e 6777
2f5177f0
PZ
6778 /*
6779 * Relies on the RCU grace period between css_released() and this.
6780 */
6781 sched_free_group(tg);
ace783b9
LZ
6782}
6783
ea86cb4b
VG
6784/*
6785 * This is called before wake_up_new_task(), therefore we really only
6786 * have to set its group bits, all the other stuff does not apply.
6787 */
b53202e6 6788static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6789{
ea86cb4b
VG
6790 struct rq_flags rf;
6791 struct rq *rq;
6792
6793 rq = task_rq_lock(task, &rf);
6794
80f5c1b8 6795 update_rq_clock(rq);
ea86cb4b
VG
6796 sched_change_group(task, TASK_SET_GROUP);
6797
6798 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6799}
6800
1f7dd3e5 6801static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6802{
bb9d97b6 6803 struct task_struct *task;
1f7dd3e5 6804 struct cgroup_subsys_state *css;
7dc603c9 6805 int ret = 0;
bb9d97b6 6806
1f7dd3e5 6807 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6808#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6809 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6810 return -EINVAL;
b68aa230 6811#else
bb9d97b6
TH
6812 /* We don't support RT-tasks being in separate groups */
6813 if (task->sched_class != &fair_sched_class)
6814 return -EINVAL;
b68aa230 6815#endif
7dc603c9
PZ
6816 /*
6817 * Serialize against wake_up_new_task() such that if its
6818 * running, we're sure to observe its full state.
6819 */
6820 raw_spin_lock_irq(&task->pi_lock);
6821 /*
6822 * Avoid calling sched_move_task() before wake_up_new_task()
6823 * has happened. This would lead to problems with PELT, due to
6824 * move wanting to detach+attach while we're not attached yet.
6825 */
6826 if (task->state == TASK_NEW)
6827 ret = -EINVAL;
6828 raw_spin_unlock_irq(&task->pi_lock);
6829
6830 if (ret)
6831 break;
bb9d97b6 6832 }
7dc603c9 6833 return ret;
be367d09 6834}
68318b8e 6835
1f7dd3e5 6836static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6837{
bb9d97b6 6838 struct task_struct *task;
1f7dd3e5 6839 struct cgroup_subsys_state *css;
bb9d97b6 6840
1f7dd3e5 6841 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6842 sched_move_task(task);
68318b8e
SV
6843}
6844
052f1dc7 6845#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6846static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6847 struct cftype *cftype, u64 shareval)
68318b8e 6848{
5b61d50a
KK
6849 if (shareval > scale_load_down(ULONG_MAX))
6850 shareval = MAX_SHARES;
182446d0 6851 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6852}
6853
182446d0
TH
6854static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6855 struct cftype *cft)
68318b8e 6856{
182446d0 6857 struct task_group *tg = css_tg(css);
68318b8e 6858
c8b28116 6859 return (u64) scale_load_down(tg->shares);
68318b8e 6860}
ab84d31e
PT
6861
6862#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6863static DEFINE_MUTEX(cfs_constraints_mutex);
6864
ab84d31e 6865const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 6866static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
ab84d31e 6867
a790de99
PT
6868static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6869
ab84d31e
PT
6870static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6871{
56f570e5 6872 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6873 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6874
6875 if (tg == &root_task_group)
6876 return -EINVAL;
6877
6878 /*
6879 * Ensure we have at some amount of bandwidth every period. This is
6880 * to prevent reaching a state of large arrears when throttled via
6881 * entity_tick() resulting in prolonged exit starvation.
6882 */
6883 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6884 return -EINVAL;
6885
6886 /*
6887 * Likewise, bound things on the otherside by preventing insane quota
6888 * periods. This also allows us to normalize in computing quota
6889 * feasibility.
6890 */
6891 if (period > max_cfs_quota_period)
6892 return -EINVAL;
6893
0e59bdae
KT
6894 /*
6895 * Prevent race between setting of cfs_rq->runtime_enabled and
6896 * unthrottle_offline_cfs_rqs().
6897 */
6898 get_online_cpus();
a790de99
PT
6899 mutex_lock(&cfs_constraints_mutex);
6900 ret = __cfs_schedulable(tg, period, quota);
6901 if (ret)
6902 goto out_unlock;
6903
58088ad0 6904 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6905 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6906 /*
6907 * If we need to toggle cfs_bandwidth_used, off->on must occur
6908 * before making related changes, and on->off must occur afterwards
6909 */
6910 if (runtime_enabled && !runtime_was_enabled)
6911 cfs_bandwidth_usage_inc();
ab84d31e
PT
6912 raw_spin_lock_irq(&cfs_b->lock);
6913 cfs_b->period = ns_to_ktime(period);
6914 cfs_b->quota = quota;
58088ad0 6915
a9cf55b2 6916 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6917
6918 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6919 if (runtime_enabled)
6920 start_cfs_bandwidth(cfs_b);
d1ccc66d 6921
ab84d31e
PT
6922 raw_spin_unlock_irq(&cfs_b->lock);
6923
0e59bdae 6924 for_each_online_cpu(i) {
ab84d31e 6925 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6926 struct rq *rq = cfs_rq->rq;
8a8c69c3 6927 struct rq_flags rf;
ab84d31e 6928
8a8c69c3 6929 rq_lock_irq(rq, &rf);
58088ad0 6930 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6931 cfs_rq->runtime_remaining = 0;
671fd9da 6932
029632fb 6933 if (cfs_rq->throttled)
671fd9da 6934 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6935 rq_unlock_irq(rq, &rf);
ab84d31e 6936 }
1ee14e6c
BS
6937 if (runtime_was_enabled && !runtime_enabled)
6938 cfs_bandwidth_usage_dec();
a790de99
PT
6939out_unlock:
6940 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6941 put_online_cpus();
ab84d31e 6942
a790de99 6943 return ret;
ab84d31e
PT
6944}
6945
b1546edc 6946static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
6947{
6948 u64 quota, period;
6949
029632fb 6950 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6951 if (cfs_quota_us < 0)
6952 quota = RUNTIME_INF;
1a8b4540 6953 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 6954 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
6955 else
6956 return -EINVAL;
ab84d31e
PT
6957
6958 return tg_set_cfs_bandwidth(tg, period, quota);
6959}
6960
b1546edc 6961static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
6962{
6963 u64 quota_us;
6964
029632fb 6965 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6966 return -1;
6967
029632fb 6968 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6969 do_div(quota_us, NSEC_PER_USEC);
6970
6971 return quota_us;
6972}
6973
b1546edc 6974static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
6975{
6976 u64 quota, period;
6977
1a8b4540
KK
6978 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
6979 return -EINVAL;
6980
ab84d31e 6981 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6982 quota = tg->cfs_bandwidth.quota;
ab84d31e 6983
ab84d31e
PT
6984 return tg_set_cfs_bandwidth(tg, period, quota);
6985}
6986
b1546edc 6987static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
6988{
6989 u64 cfs_period_us;
6990
029632fb 6991 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6992 do_div(cfs_period_us, NSEC_PER_USEC);
6993
6994 return cfs_period_us;
6995}
6996
182446d0
TH
6997static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6998 struct cftype *cft)
ab84d31e 6999{
182446d0 7000 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7001}
7002
182446d0
TH
7003static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7004 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7005{
182446d0 7006 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7007}
7008
182446d0
TH
7009static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7010 struct cftype *cft)
ab84d31e 7011{
182446d0 7012 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7013}
7014
182446d0
TH
7015static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7016 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7017{
182446d0 7018 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7019}
7020
a790de99
PT
7021struct cfs_schedulable_data {
7022 struct task_group *tg;
7023 u64 period, quota;
7024};
7025
7026/*
7027 * normalize group quota/period to be quota/max_period
7028 * note: units are usecs
7029 */
7030static u64 normalize_cfs_quota(struct task_group *tg,
7031 struct cfs_schedulable_data *d)
7032{
7033 u64 quota, period;
7034
7035 if (tg == d->tg) {
7036 period = d->period;
7037 quota = d->quota;
7038 } else {
7039 period = tg_get_cfs_period(tg);
7040 quota = tg_get_cfs_quota(tg);
7041 }
7042
7043 /* note: these should typically be equivalent */
7044 if (quota == RUNTIME_INF || quota == -1)
7045 return RUNTIME_INF;
7046
7047 return to_ratio(period, quota);
7048}
7049
7050static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7051{
7052 struct cfs_schedulable_data *d = data;
029632fb 7053 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7054 s64 quota = 0, parent_quota = -1;
7055
7056 if (!tg->parent) {
7057 quota = RUNTIME_INF;
7058 } else {
029632fb 7059 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7060
7061 quota = normalize_cfs_quota(tg, d);
9c58c79a 7062 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7063
7064 /*
c53593e5
TH
7065 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7066 * always take the min. On cgroup1, only inherit when no
d1ccc66d 7067 * limit is set:
a790de99 7068 */
c53593e5
TH
7069 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7070 quota = min(quota, parent_quota);
7071 } else {
7072 if (quota == RUNTIME_INF)
7073 quota = parent_quota;
7074 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7075 return -EINVAL;
7076 }
a790de99 7077 }
9c58c79a 7078 cfs_b->hierarchical_quota = quota;
a790de99
PT
7079
7080 return 0;
7081}
7082
7083static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7084{
8277434e 7085 int ret;
a790de99
PT
7086 struct cfs_schedulable_data data = {
7087 .tg = tg,
7088 .period = period,
7089 .quota = quota,
7090 };
7091
7092 if (quota != RUNTIME_INF) {
7093 do_div(data.period, NSEC_PER_USEC);
7094 do_div(data.quota, NSEC_PER_USEC);
7095 }
7096
8277434e
PT
7097 rcu_read_lock();
7098 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7099 rcu_read_unlock();
7100
7101 return ret;
a790de99 7102}
e8da1b18 7103
a1f7164c 7104static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 7105{
2da8ca82 7106 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7107 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7108
44ffc75b
TH
7109 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7110 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7111 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 7112
3d6c50c2
YW
7113 if (schedstat_enabled() && tg != &root_task_group) {
7114 u64 ws = 0;
7115 int i;
7116
7117 for_each_possible_cpu(i)
7118 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7119
7120 seq_printf(sf, "wait_sum %llu\n", ws);
7121 }
7122
e8da1b18
NR
7123 return 0;
7124}
ab84d31e 7125#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7126#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7127
052f1dc7 7128#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7129static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7130 struct cftype *cft, s64 val)
6f505b16 7131{
182446d0 7132 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7133}
7134
182446d0
TH
7135static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7136 struct cftype *cft)
6f505b16 7137{
182446d0 7138 return sched_group_rt_runtime(css_tg(css));
6f505b16 7139}
d0b27fa7 7140
182446d0
TH
7141static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7142 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7143{
182446d0 7144 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7145}
7146
182446d0
TH
7147static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7148 struct cftype *cft)
d0b27fa7 7149{
182446d0 7150 return sched_group_rt_period(css_tg(css));
d0b27fa7 7151}
6d6bc0ad 7152#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7153
a1f7164c 7154static struct cftype cpu_legacy_files[] = {
052f1dc7 7155#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7156 {
7157 .name = "shares",
f4c753b7
PM
7158 .read_u64 = cpu_shares_read_u64,
7159 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7160 },
052f1dc7 7161#endif
ab84d31e
PT
7162#ifdef CONFIG_CFS_BANDWIDTH
7163 {
7164 .name = "cfs_quota_us",
7165 .read_s64 = cpu_cfs_quota_read_s64,
7166 .write_s64 = cpu_cfs_quota_write_s64,
7167 },
7168 {
7169 .name = "cfs_period_us",
7170 .read_u64 = cpu_cfs_period_read_u64,
7171 .write_u64 = cpu_cfs_period_write_u64,
7172 },
e8da1b18
NR
7173 {
7174 .name = "stat",
a1f7164c 7175 .seq_show = cpu_cfs_stat_show,
e8da1b18 7176 },
ab84d31e 7177#endif
052f1dc7 7178#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7179 {
9f0c1e56 7180 .name = "rt_runtime_us",
06ecb27c
PM
7181 .read_s64 = cpu_rt_runtime_read,
7182 .write_s64 = cpu_rt_runtime_write,
6f505b16 7183 },
d0b27fa7
PZ
7184 {
7185 .name = "rt_period_us",
f4c753b7
PM
7186 .read_u64 = cpu_rt_period_read_uint,
7187 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7188 },
052f1dc7 7189#endif
d1ccc66d 7190 { } /* Terminate */
68318b8e
SV
7191};
7192
d41bf8c9
TH
7193static int cpu_extra_stat_show(struct seq_file *sf,
7194 struct cgroup_subsys_state *css)
0d593634 7195{
0d593634
TH
7196#ifdef CONFIG_CFS_BANDWIDTH
7197 {
d41bf8c9 7198 struct task_group *tg = css_tg(css);
0d593634
TH
7199 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7200 u64 throttled_usec;
7201
7202 throttled_usec = cfs_b->throttled_time;
7203 do_div(throttled_usec, NSEC_PER_USEC);
7204
7205 seq_printf(sf, "nr_periods %d\n"
7206 "nr_throttled %d\n"
7207 "throttled_usec %llu\n",
7208 cfs_b->nr_periods, cfs_b->nr_throttled,
7209 throttled_usec);
7210 }
7211#endif
7212 return 0;
7213}
7214
7215#ifdef CONFIG_FAIR_GROUP_SCHED
7216static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7217 struct cftype *cft)
7218{
7219 struct task_group *tg = css_tg(css);
7220 u64 weight = scale_load_down(tg->shares);
7221
7222 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7223}
7224
7225static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7226 struct cftype *cft, u64 weight)
7227{
7228 /*
7229 * cgroup weight knobs should use the common MIN, DFL and MAX
7230 * values which are 1, 100 and 10000 respectively. While it loses
7231 * a bit of range on both ends, it maps pretty well onto the shares
7232 * value used by scheduler and the round-trip conversions preserve
7233 * the original value over the entire range.
7234 */
7235 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7236 return -ERANGE;
7237
7238 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7239
7240 return sched_group_set_shares(css_tg(css), scale_load(weight));
7241}
7242
7243static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7244 struct cftype *cft)
7245{
7246 unsigned long weight = scale_load_down(css_tg(css)->shares);
7247 int last_delta = INT_MAX;
7248 int prio, delta;
7249
7250 /* find the closest nice value to the current weight */
7251 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7252 delta = abs(sched_prio_to_weight[prio] - weight);
7253 if (delta >= last_delta)
7254 break;
7255 last_delta = delta;
7256 }
7257
7258 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7259}
7260
7261static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7262 struct cftype *cft, s64 nice)
7263{
7264 unsigned long weight;
7281c8de 7265 int idx;
0d593634
TH
7266
7267 if (nice < MIN_NICE || nice > MAX_NICE)
7268 return -ERANGE;
7269
7281c8de
PZ
7270 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7271 idx = array_index_nospec(idx, 40);
7272 weight = sched_prio_to_weight[idx];
7273
0d593634
TH
7274 return sched_group_set_shares(css_tg(css), scale_load(weight));
7275}
7276#endif
7277
7278static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7279 long period, long quota)
7280{
7281 if (quota < 0)
7282 seq_puts(sf, "max");
7283 else
7284 seq_printf(sf, "%ld", quota);
7285
7286 seq_printf(sf, " %ld\n", period);
7287}
7288
7289/* caller should put the current value in *@periodp before calling */
7290static int __maybe_unused cpu_period_quota_parse(char *buf,
7291 u64 *periodp, u64 *quotap)
7292{
7293 char tok[21]; /* U64_MAX */
7294
4c47acd8 7295 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
7296 return -EINVAL;
7297
7298 *periodp *= NSEC_PER_USEC;
7299
7300 if (sscanf(tok, "%llu", quotap))
7301 *quotap *= NSEC_PER_USEC;
7302 else if (!strcmp(tok, "max"))
7303 *quotap = RUNTIME_INF;
7304 else
7305 return -EINVAL;
7306
7307 return 0;
7308}
7309
7310#ifdef CONFIG_CFS_BANDWIDTH
7311static int cpu_max_show(struct seq_file *sf, void *v)
7312{
7313 struct task_group *tg = css_tg(seq_css(sf));
7314
7315 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7316 return 0;
7317}
7318
7319static ssize_t cpu_max_write(struct kernfs_open_file *of,
7320 char *buf, size_t nbytes, loff_t off)
7321{
7322 struct task_group *tg = css_tg(of_css(of));
7323 u64 period = tg_get_cfs_period(tg);
7324 u64 quota;
7325 int ret;
7326
7327 ret = cpu_period_quota_parse(buf, &period, &quota);
7328 if (!ret)
7329 ret = tg_set_cfs_bandwidth(tg, period, quota);
7330 return ret ?: nbytes;
7331}
7332#endif
7333
7334static struct cftype cpu_files[] = {
0d593634
TH
7335#ifdef CONFIG_FAIR_GROUP_SCHED
7336 {
7337 .name = "weight",
7338 .flags = CFTYPE_NOT_ON_ROOT,
7339 .read_u64 = cpu_weight_read_u64,
7340 .write_u64 = cpu_weight_write_u64,
7341 },
7342 {
7343 .name = "weight.nice",
7344 .flags = CFTYPE_NOT_ON_ROOT,
7345 .read_s64 = cpu_weight_nice_read_s64,
7346 .write_s64 = cpu_weight_nice_write_s64,
7347 },
7348#endif
7349#ifdef CONFIG_CFS_BANDWIDTH
7350 {
7351 .name = "max",
7352 .flags = CFTYPE_NOT_ON_ROOT,
7353 .seq_show = cpu_max_show,
7354 .write = cpu_max_write,
7355 },
7356#endif
7357 { } /* terminate */
7358};
7359
073219e9 7360struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7361 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7362 .css_online = cpu_cgroup_css_online,
2f5177f0 7363 .css_released = cpu_cgroup_css_released,
92fb9748 7364 .css_free = cpu_cgroup_css_free,
d41bf8c9 7365 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7366 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7367 .can_attach = cpu_cgroup_can_attach,
7368 .attach = cpu_cgroup_attach,
a1f7164c 7369 .legacy_cftypes = cpu_legacy_files,
0d593634 7370 .dfl_cftypes = cpu_files,
b38e42e9 7371 .early_init = true,
0d593634 7372 .threaded = true,
68318b8e
SV
7373};
7374
052f1dc7 7375#endif /* CONFIG_CGROUP_SCHED */
d842de87 7376
b637a328
PM
7377void dump_cpu_task(int cpu)
7378{
7379 pr_info("Task dump for CPU %d:\n", cpu);
7380 sched_show_task(cpu_curr(cpu));
7381}
ed82b8a1
AK
7382
7383/*
7384 * Nice levels are multiplicative, with a gentle 10% change for every
7385 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7386 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7387 * that remained on nice 0.
7388 *
7389 * The "10% effect" is relative and cumulative: from _any_ nice level,
7390 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7391 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7392 * If a task goes up by ~10% and another task goes down by ~10% then
7393 * the relative distance between them is ~25%.)
7394 */
7395const int sched_prio_to_weight[40] = {
7396 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7397 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7398 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7399 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7400 /* 0 */ 1024, 820, 655, 526, 423,
7401 /* 5 */ 335, 272, 215, 172, 137,
7402 /* 10 */ 110, 87, 70, 56, 45,
7403 /* 15 */ 36, 29, 23, 18, 15,
7404};
7405
7406/*
7407 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7408 *
7409 * In cases where the weight does not change often, we can use the
7410 * precalculated inverse to speed up arithmetics by turning divisions
7411 * into multiplications:
7412 */
7413const u32 sched_prio_to_wmult[40] = {
7414 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7415 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7416 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7417 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7418 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7419 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7420 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7421 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7422};
14a7405b
IM
7423
7424#undef CREATE_TRACE_POINTS