]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched/debug: Add sched_overutilized tracepoint
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
29d5e047 19#include "../smpboot.h"
6e0534f2 20
91c27493
VG
21#include "pelt.h"
22
a8d154b0 23#define CREATE_TRACE_POINTS
ad8d75ff 24#include <trace/events/sched.h>
a8d154b0 25
029632fb 26DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 27
e9666d10 28#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
29/*
30 * Debugging: various feature bits
765cc3a4
PB
31 *
32 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
33 * sysctl_sched_features, defined in sched.h, to allow constants propagation
34 * at compile time and compiler optimization based on features default.
bf5c91ba 35 */
f00b45c1
PZ
36#define SCHED_FEAT(name, enabled) \
37 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 38const_debug unsigned int sysctl_sched_features =
391e43da 39#include "features.h"
f00b45c1 40 0;
f00b45c1 41#undef SCHED_FEAT
765cc3a4 42#endif
f00b45c1 43
b82d9fdd
PZ
44/*
45 * Number of tasks to iterate in a single balance run.
46 * Limited because this is done with IRQs disabled.
47 */
48const_debug unsigned int sysctl_sched_nr_migrate = 32;
49
fa85ae24 50/*
d1ccc66d 51 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
52 * default: 1s
53 */
9f0c1e56 54unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 55
029632fb 56__read_mostly int scheduler_running;
6892b75e 57
9f0c1e56
PZ
58/*
59 * part of the period that we allow rt tasks to run in us.
60 * default: 0.95s
61 */
62int sysctl_sched_rt_runtime = 950000;
fa85ae24 63
3e71a462
PZ
64/*
65 * __task_rq_lock - lock the rq @p resides on.
66 */
eb580751 67struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
68 __acquires(rq->lock)
69{
70 struct rq *rq;
71
72 lockdep_assert_held(&p->pi_lock);
73
74 for (;;) {
75 rq = task_rq(p);
76 raw_spin_lock(&rq->lock);
77 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 78 rq_pin_lock(rq, rf);
3e71a462
PZ
79 return rq;
80 }
81 raw_spin_unlock(&rq->lock);
82
83 while (unlikely(task_on_rq_migrating(p)))
84 cpu_relax();
85 }
86}
87
88/*
89 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
90 */
eb580751 91struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
92 __acquires(p->pi_lock)
93 __acquires(rq->lock)
94{
95 struct rq *rq;
96
97 for (;;) {
eb580751 98 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
99 rq = task_rq(p);
100 raw_spin_lock(&rq->lock);
101 /*
102 * move_queued_task() task_rq_lock()
103 *
104 * ACQUIRE (rq->lock)
105 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
106 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
107 * [S] ->cpu = new_cpu [L] task_rq()
108 * [L] ->on_rq
109 * RELEASE (rq->lock)
110 *
c546951d 111 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
112 * the old rq->lock will fully serialize against the stores.
113 *
c546951d
AP
114 * If we observe the new CPU in task_rq_lock(), the address
115 * dependency headed by '[L] rq = task_rq()' and the acquire
116 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
117 */
118 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 119 rq_pin_lock(rq, rf);
3e71a462
PZ
120 return rq;
121 }
122 raw_spin_unlock(&rq->lock);
eb580751 123 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
124
125 while (unlikely(task_on_rq_migrating(p)))
126 cpu_relax();
127 }
128}
129
535b9552
IM
130/*
131 * RQ-clock updating methods:
132 */
133
134static void update_rq_clock_task(struct rq *rq, s64 delta)
135{
136/*
137 * In theory, the compile should just see 0 here, and optimize out the call
138 * to sched_rt_avg_update. But I don't trust it...
139 */
11d4afd4
VG
140 s64 __maybe_unused steal = 0, irq_delta = 0;
141
535b9552
IM
142#ifdef CONFIG_IRQ_TIME_ACCOUNTING
143 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
144
145 /*
146 * Since irq_time is only updated on {soft,}irq_exit, we might run into
147 * this case when a previous update_rq_clock() happened inside a
148 * {soft,}irq region.
149 *
150 * When this happens, we stop ->clock_task and only update the
151 * prev_irq_time stamp to account for the part that fit, so that a next
152 * update will consume the rest. This ensures ->clock_task is
153 * monotonic.
154 *
155 * It does however cause some slight miss-attribution of {soft,}irq
156 * time, a more accurate solution would be to update the irq_time using
157 * the current rq->clock timestamp, except that would require using
158 * atomic ops.
159 */
160 if (irq_delta > delta)
161 irq_delta = delta;
162
163 rq->prev_irq_time += irq_delta;
164 delta -= irq_delta;
165#endif
166#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
167 if (static_key_false((&paravirt_steal_rq_enabled))) {
168 steal = paravirt_steal_clock(cpu_of(rq));
169 steal -= rq->prev_steal_time_rq;
170
171 if (unlikely(steal > delta))
172 steal = delta;
173
174 rq->prev_steal_time_rq += steal;
175 delta -= steal;
176 }
177#endif
178
179 rq->clock_task += delta;
180
11d4afd4 181#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 182 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 183 update_irq_load_avg(rq, irq_delta + steal);
535b9552 184#endif
23127296 185 update_rq_clock_pelt(rq, delta);
535b9552
IM
186}
187
188void update_rq_clock(struct rq *rq)
189{
190 s64 delta;
191
192 lockdep_assert_held(&rq->lock);
193
194 if (rq->clock_update_flags & RQCF_ACT_SKIP)
195 return;
196
197#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
198 if (sched_feat(WARN_DOUBLE_CLOCK))
199 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
200 rq->clock_update_flags |= RQCF_UPDATED;
201#endif
26ae58d2 202
535b9552
IM
203 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
204 if (delta < 0)
205 return;
206 rq->clock += delta;
207 update_rq_clock_task(rq, delta);
208}
209
210
8f4d37ec
PZ
211#ifdef CONFIG_SCHED_HRTICK
212/*
213 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 214 */
8f4d37ec 215
8f4d37ec
PZ
216static void hrtick_clear(struct rq *rq)
217{
218 if (hrtimer_active(&rq->hrtick_timer))
219 hrtimer_cancel(&rq->hrtick_timer);
220}
221
8f4d37ec
PZ
222/*
223 * High-resolution timer tick.
224 * Runs from hardirq context with interrupts disabled.
225 */
226static enum hrtimer_restart hrtick(struct hrtimer *timer)
227{
228 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 229 struct rq_flags rf;
8f4d37ec
PZ
230
231 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
232
8a8c69c3 233 rq_lock(rq, &rf);
3e51f33f 234 update_rq_clock(rq);
8f4d37ec 235 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 236 rq_unlock(rq, &rf);
8f4d37ec
PZ
237
238 return HRTIMER_NORESTART;
239}
240
95e904c7 241#ifdef CONFIG_SMP
971ee28c 242
4961b6e1 243static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
244{
245 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 246
4961b6e1 247 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
248}
249
31656519
PZ
250/*
251 * called from hardirq (IPI) context
252 */
253static void __hrtick_start(void *arg)
b328ca18 254{
31656519 255 struct rq *rq = arg;
8a8c69c3 256 struct rq_flags rf;
b328ca18 257
8a8c69c3 258 rq_lock(rq, &rf);
971ee28c 259 __hrtick_restart(rq);
31656519 260 rq->hrtick_csd_pending = 0;
8a8c69c3 261 rq_unlock(rq, &rf);
b328ca18
PZ
262}
263
31656519
PZ
264/*
265 * Called to set the hrtick timer state.
266 *
267 * called with rq->lock held and irqs disabled
268 */
029632fb 269void hrtick_start(struct rq *rq, u64 delay)
b328ca18 270{
31656519 271 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 272 ktime_t time;
273 s64 delta;
274
275 /*
276 * Don't schedule slices shorter than 10000ns, that just
277 * doesn't make sense and can cause timer DoS.
278 */
279 delta = max_t(s64, delay, 10000LL);
280 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 281
cc584b21 282 hrtimer_set_expires(timer, time);
31656519
PZ
283
284 if (rq == this_rq()) {
971ee28c 285 __hrtick_restart(rq);
31656519 286 } else if (!rq->hrtick_csd_pending) {
c46fff2a 287 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
288 rq->hrtick_csd_pending = 1;
289 }
b328ca18
PZ
290}
291
31656519
PZ
292#else
293/*
294 * Called to set the hrtick timer state.
295 *
296 * called with rq->lock held and irqs disabled
297 */
029632fb 298void hrtick_start(struct rq *rq, u64 delay)
31656519 299{
86893335
WL
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense. Rely on vruntime for fairness.
303 */
304 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
305 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
306 HRTIMER_MODE_REL_PINNED);
31656519 307}
31656519 308#endif /* CONFIG_SMP */
8f4d37ec 309
77a021be 310static void hrtick_rq_init(struct rq *rq)
8f4d37ec 311{
31656519
PZ
312#ifdef CONFIG_SMP
313 rq->hrtick_csd_pending = 0;
8f4d37ec 314
31656519
PZ
315 rq->hrtick_csd.flags = 0;
316 rq->hrtick_csd.func = __hrtick_start;
317 rq->hrtick_csd.info = rq;
318#endif
8f4d37ec 319
31656519
PZ
320 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
321 rq->hrtick_timer.function = hrtick;
8f4d37ec 322}
006c75f1 323#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
324static inline void hrtick_clear(struct rq *rq)
325{
326}
327
77a021be 328static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
329{
330}
006c75f1 331#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 332
5529578a
FW
333/*
334 * cmpxchg based fetch_or, macro so it works for different integer types
335 */
336#define fetch_or(ptr, mask) \
337 ({ \
338 typeof(ptr) _ptr = (ptr); \
339 typeof(mask) _mask = (mask); \
340 typeof(*_ptr) _old, _val = *_ptr; \
341 \
342 for (;;) { \
343 _old = cmpxchg(_ptr, _val, _val | _mask); \
344 if (_old == _val) \
345 break; \
346 _val = _old; \
347 } \
348 _old; \
349})
350
e3baac47 351#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
352/*
353 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
354 * this avoids any races wrt polling state changes and thereby avoids
355 * spurious IPIs.
356 */
357static bool set_nr_and_not_polling(struct task_struct *p)
358{
359 struct thread_info *ti = task_thread_info(p);
360 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
361}
e3baac47
PZ
362
363/*
364 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
365 *
366 * If this returns true, then the idle task promises to call
367 * sched_ttwu_pending() and reschedule soon.
368 */
369static bool set_nr_if_polling(struct task_struct *p)
370{
371 struct thread_info *ti = task_thread_info(p);
316c1608 372 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
373
374 for (;;) {
375 if (!(val & _TIF_POLLING_NRFLAG))
376 return false;
377 if (val & _TIF_NEED_RESCHED)
378 return true;
379 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
380 if (old == val)
381 break;
382 val = old;
383 }
384 return true;
385}
386
fd99f91a
PZ
387#else
388static bool set_nr_and_not_polling(struct task_struct *p)
389{
390 set_tsk_need_resched(p);
391 return true;
392}
e3baac47
PZ
393
394#ifdef CONFIG_SMP
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 return false;
398}
399#endif
fd99f91a
PZ
400#endif
401
07879c6a 402static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
403{
404 struct wake_q_node *node = &task->wake_q;
405
406 /*
407 * Atomically grab the task, if ->wake_q is !nil already it means
408 * its already queued (either by us or someone else) and will get the
409 * wakeup due to that.
410 *
4c4e3731
PZ
411 * In order to ensure that a pending wakeup will observe our pending
412 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 413 */
4c4e3731 414 smp_mb__before_atomic();
87ff19cb 415 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 416 return false;
76751049
PZ
417
418 /*
419 * The head is context local, there can be no concurrency.
420 */
421 *head->lastp = node;
422 head->lastp = &node->next;
07879c6a
DB
423 return true;
424}
425
426/**
427 * wake_q_add() - queue a wakeup for 'later' waking.
428 * @head: the wake_q_head to add @task to
429 * @task: the task to queue for 'later' wakeup
430 *
431 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
432 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
433 * instantly.
434 *
435 * This function must be used as-if it were wake_up_process(); IOW the task
436 * must be ready to be woken at this location.
437 */
438void wake_q_add(struct wake_q_head *head, struct task_struct *task)
439{
440 if (__wake_q_add(head, task))
441 get_task_struct(task);
442}
443
444/**
445 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
446 * @head: the wake_q_head to add @task to
447 * @task: the task to queue for 'later' wakeup
448 *
449 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
450 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
451 * instantly.
452 *
453 * This function must be used as-if it were wake_up_process(); IOW the task
454 * must be ready to be woken at this location.
455 *
456 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
457 * that already hold reference to @task can call the 'safe' version and trust
458 * wake_q to do the right thing depending whether or not the @task is already
459 * queued for wakeup.
460 */
461void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
462{
463 if (!__wake_q_add(head, task))
464 put_task_struct(task);
76751049
PZ
465}
466
467void wake_up_q(struct wake_q_head *head)
468{
469 struct wake_q_node *node = head->first;
470
471 while (node != WAKE_Q_TAIL) {
472 struct task_struct *task;
473
474 task = container_of(node, struct task_struct, wake_q);
475 BUG_ON(!task);
d1ccc66d 476 /* Task can safely be re-inserted now: */
76751049
PZ
477 node = node->next;
478 task->wake_q.next = NULL;
479
480 /*
7696f991
AP
481 * wake_up_process() executes a full barrier, which pairs with
482 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
483 */
484 wake_up_process(task);
485 put_task_struct(task);
486 }
487}
488
c24d20db 489/*
8875125e 490 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
491 *
492 * On UP this means the setting of the need_resched flag, on SMP it
493 * might also involve a cross-CPU call to trigger the scheduler on
494 * the target CPU.
495 */
8875125e 496void resched_curr(struct rq *rq)
c24d20db 497{
8875125e 498 struct task_struct *curr = rq->curr;
c24d20db
IM
499 int cpu;
500
8875125e 501 lockdep_assert_held(&rq->lock);
c24d20db 502
8875125e 503 if (test_tsk_need_resched(curr))
c24d20db
IM
504 return;
505
8875125e 506 cpu = cpu_of(rq);
fd99f91a 507
f27dde8d 508 if (cpu == smp_processor_id()) {
8875125e 509 set_tsk_need_resched(curr);
f27dde8d 510 set_preempt_need_resched();
c24d20db 511 return;
f27dde8d 512 }
c24d20db 513
8875125e 514 if (set_nr_and_not_polling(curr))
c24d20db 515 smp_send_reschedule(cpu);
dfc68f29
AL
516 else
517 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
518}
519
029632fb 520void resched_cpu(int cpu)
c24d20db
IM
521{
522 struct rq *rq = cpu_rq(cpu);
523 unsigned long flags;
524
7c2102e5 525 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
526 if (cpu_online(cpu) || cpu == smp_processor_id())
527 resched_curr(rq);
05fa785c 528 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 529}
06d8308c 530
b021fe3e 531#ifdef CONFIG_SMP
3451d024 532#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 533/*
d1ccc66d
IM
534 * In the semi idle case, use the nearest busy CPU for migrating timers
535 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
536 *
537 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
538 * selecting an idle CPU will add more delays to the timers than intended
539 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 540 */
bc7a34b8 541int get_nohz_timer_target(void)
83cd4fe2 542{
bc7a34b8 543 int i, cpu = smp_processor_id();
83cd4fe2
VP
544 struct sched_domain *sd;
545
de201559 546 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
547 return cpu;
548
057f3fad 549 rcu_read_lock();
83cd4fe2 550 for_each_domain(cpu, sd) {
057f3fad 551 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
552 if (cpu == i)
553 continue;
554
de201559 555 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
556 cpu = i;
557 goto unlock;
558 }
559 }
83cd4fe2 560 }
9642d18e 561
de201559
FW
562 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
563 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
564unlock:
565 rcu_read_unlock();
83cd4fe2
VP
566 return cpu;
567}
d1ccc66d 568
06d8308c
TG
569/*
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
578 */
1c20091e 579static void wake_up_idle_cpu(int cpu)
06d8308c
TG
580{
581 struct rq *rq = cpu_rq(cpu);
582
583 if (cpu == smp_processor_id())
584 return;
585
67b9ca70 586 if (set_nr_and_not_polling(rq->idle))
06d8308c 587 smp_send_reschedule(cpu);
dfc68f29
AL
588 else
589 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
590}
591
c5bfece2 592static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 593{
53c5fa16
FW
594 /*
595 * We just need the target to call irq_exit() and re-evaluate
596 * the next tick. The nohz full kick at least implies that.
597 * If needed we can still optimize that later with an
598 * empty IRQ.
599 */
379d9ecb
PM
600 if (cpu_is_offline(cpu))
601 return true; /* Don't try to wake offline CPUs. */
c5bfece2 602 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
603 if (cpu != smp_processor_id() ||
604 tick_nohz_tick_stopped())
53c5fa16 605 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
606 return true;
607 }
608
609 return false;
610}
611
379d9ecb
PM
612/*
613 * Wake up the specified CPU. If the CPU is going offline, it is the
614 * caller's responsibility to deal with the lost wakeup, for example,
615 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
616 */
1c20091e
FW
617void wake_up_nohz_cpu(int cpu)
618{
c5bfece2 619 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
620 wake_up_idle_cpu(cpu);
621}
622
ca38062e 623static inline bool got_nohz_idle_kick(void)
45bf76df 624{
1c792db7 625 int cpu = smp_processor_id();
873b4c65 626
b7031a02 627 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
628 return false;
629
630 if (idle_cpu(cpu) && !need_resched())
631 return true;
632
633 /*
634 * We can't run Idle Load Balance on this CPU for this time so we
635 * cancel it and clear NOHZ_BALANCE_KICK
636 */
b7031a02 637 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 638 return false;
45bf76df
IM
639}
640
3451d024 641#else /* CONFIG_NO_HZ_COMMON */
45bf76df 642
ca38062e 643static inline bool got_nohz_idle_kick(void)
2069dd75 644{
ca38062e 645 return false;
2069dd75
PZ
646}
647
3451d024 648#endif /* CONFIG_NO_HZ_COMMON */
d842de87 649
ce831b38 650#ifdef CONFIG_NO_HZ_FULL
76d92ac3 651bool sched_can_stop_tick(struct rq *rq)
ce831b38 652{
76d92ac3
FW
653 int fifo_nr_running;
654
655 /* Deadline tasks, even if single, need the tick */
656 if (rq->dl.dl_nr_running)
657 return false;
658
1e78cdbd 659 /*
2548d546
PZ
660 * If there are more than one RR tasks, we need the tick to effect the
661 * actual RR behaviour.
1e78cdbd 662 */
76d92ac3
FW
663 if (rq->rt.rr_nr_running) {
664 if (rq->rt.rr_nr_running == 1)
665 return true;
666 else
667 return false;
1e78cdbd
RR
668 }
669
2548d546
PZ
670 /*
671 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
672 * forced preemption between FIFO tasks.
673 */
674 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
675 if (fifo_nr_running)
676 return true;
677
678 /*
679 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
680 * if there's more than one we need the tick for involuntary
681 * preemption.
682 */
683 if (rq->nr_running > 1)
541b8264 684 return false;
ce831b38 685
541b8264 686 return true;
ce831b38
FW
687}
688#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 689#endif /* CONFIG_SMP */
18d95a28 690
a790de99
PT
691#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
692 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 693/*
8277434e
PT
694 * Iterate task_group tree rooted at *from, calling @down when first entering a
695 * node and @up when leaving it for the final time.
696 *
697 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 698 */
029632fb 699int walk_tg_tree_from(struct task_group *from,
8277434e 700 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
701{
702 struct task_group *parent, *child;
eb755805 703 int ret;
c09595f6 704
8277434e
PT
705 parent = from;
706
c09595f6 707down:
eb755805
PZ
708 ret = (*down)(parent, data);
709 if (ret)
8277434e 710 goto out;
c09595f6
PZ
711 list_for_each_entry_rcu(child, &parent->children, siblings) {
712 parent = child;
713 goto down;
714
715up:
716 continue;
717 }
eb755805 718 ret = (*up)(parent, data);
8277434e
PT
719 if (ret || parent == from)
720 goto out;
c09595f6
PZ
721
722 child = parent;
723 parent = parent->parent;
724 if (parent)
725 goto up;
8277434e 726out:
eb755805 727 return ret;
c09595f6
PZ
728}
729
029632fb 730int tg_nop(struct task_group *tg, void *data)
eb755805 731{
e2b245f8 732 return 0;
eb755805 733}
18d95a28
PZ
734#endif
735
9059393e 736static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 737{
f05998d4
NR
738 int prio = p->static_prio - MAX_RT_PRIO;
739 struct load_weight *load = &p->se.load;
740
dd41f596
IM
741 /*
742 * SCHED_IDLE tasks get minimal weight:
743 */
1da1843f 744 if (task_has_idle_policy(p)) {
c8b28116 745 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 746 load->inv_weight = WMULT_IDLEPRIO;
4a465e3e 747 p->se.runnable_weight = load->weight;
dd41f596
IM
748 return;
749 }
71f8bd46 750
9059393e
VG
751 /*
752 * SCHED_OTHER tasks have to update their load when changing their
753 * weight
754 */
755 if (update_load && p->sched_class == &fair_sched_class) {
756 reweight_task(p, prio);
757 } else {
758 load->weight = scale_load(sched_prio_to_weight[prio]);
759 load->inv_weight = sched_prio_to_wmult[prio];
4a465e3e 760 p->se.runnable_weight = load->weight;
9059393e 761 }
71f8bd46
IM
762}
763
1de64443 764static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 765{
0a67d1ee
PZ
766 if (!(flags & ENQUEUE_NOCLOCK))
767 update_rq_clock(rq);
768
eb414681 769 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 770 sched_info_queued(rq, p);
eb414681
JW
771 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
772 }
0a67d1ee 773
371fd7e7 774 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
775}
776
1de64443 777static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 778{
0a67d1ee
PZ
779 if (!(flags & DEQUEUE_NOCLOCK))
780 update_rq_clock(rq);
781
eb414681 782 if (!(flags & DEQUEUE_SAVE)) {
1de64443 783 sched_info_dequeued(rq, p);
eb414681
JW
784 psi_dequeue(p, flags & DEQUEUE_SLEEP);
785 }
0a67d1ee 786
371fd7e7 787 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
788}
789
029632fb 790void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
791{
792 if (task_contributes_to_load(p))
793 rq->nr_uninterruptible--;
794
371fd7e7 795 enqueue_task(rq, p, flags);
7dd77884
PZ
796
797 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
798}
799
029632fb 800void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 801{
7dd77884
PZ
802 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
803
1e3c88bd
PZ
804 if (task_contributes_to_load(p))
805 rq->nr_uninterruptible++;
806
371fd7e7 807 dequeue_task(rq, p, flags);
1e3c88bd
PZ
808}
809
14531189 810/*
dd41f596 811 * __normal_prio - return the priority that is based on the static prio
14531189 812 */
14531189
IM
813static inline int __normal_prio(struct task_struct *p)
814{
dd41f596 815 return p->static_prio;
14531189
IM
816}
817
b29739f9
IM
818/*
819 * Calculate the expected normal priority: i.e. priority
820 * without taking RT-inheritance into account. Might be
821 * boosted by interactivity modifiers. Changes upon fork,
822 * setprio syscalls, and whenever the interactivity
823 * estimator recalculates.
824 */
36c8b586 825static inline int normal_prio(struct task_struct *p)
b29739f9
IM
826{
827 int prio;
828
aab03e05
DF
829 if (task_has_dl_policy(p))
830 prio = MAX_DL_PRIO-1;
831 else if (task_has_rt_policy(p))
b29739f9
IM
832 prio = MAX_RT_PRIO-1 - p->rt_priority;
833 else
834 prio = __normal_prio(p);
835 return prio;
836}
837
838/*
839 * Calculate the current priority, i.e. the priority
840 * taken into account by the scheduler. This value might
841 * be boosted by RT tasks, or might be boosted by
842 * interactivity modifiers. Will be RT if the task got
843 * RT-boosted. If not then it returns p->normal_prio.
844 */
36c8b586 845static int effective_prio(struct task_struct *p)
b29739f9
IM
846{
847 p->normal_prio = normal_prio(p);
848 /*
849 * If we are RT tasks or we were boosted to RT priority,
850 * keep the priority unchanged. Otherwise, update priority
851 * to the normal priority:
852 */
853 if (!rt_prio(p->prio))
854 return p->normal_prio;
855 return p->prio;
856}
857
1da177e4
LT
858/**
859 * task_curr - is this task currently executing on a CPU?
860 * @p: the task in question.
e69f6186
YB
861 *
862 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 863 */
36c8b586 864inline int task_curr(const struct task_struct *p)
1da177e4
LT
865{
866 return cpu_curr(task_cpu(p)) == p;
867}
868
67dfa1b7 869/*
4c9a4bc8
PZ
870 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
871 * use the balance_callback list if you want balancing.
872 *
873 * this means any call to check_class_changed() must be followed by a call to
874 * balance_callback().
67dfa1b7 875 */
cb469845
SR
876static inline void check_class_changed(struct rq *rq, struct task_struct *p,
877 const struct sched_class *prev_class,
da7a735e 878 int oldprio)
cb469845
SR
879{
880 if (prev_class != p->sched_class) {
881 if (prev_class->switched_from)
da7a735e 882 prev_class->switched_from(rq, p);
4c9a4bc8 883
da7a735e 884 p->sched_class->switched_to(rq, p);
2d3d891d 885 } else if (oldprio != p->prio || dl_task(p))
da7a735e 886 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
887}
888
029632fb 889void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
890{
891 const struct sched_class *class;
892
893 if (p->sched_class == rq->curr->sched_class) {
894 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
895 } else {
896 for_each_class(class) {
897 if (class == rq->curr->sched_class)
898 break;
899 if (class == p->sched_class) {
8875125e 900 resched_curr(rq);
1e5a7405
PZ
901 break;
902 }
903 }
904 }
905
906 /*
907 * A queue event has occurred, and we're going to schedule. In
908 * this case, we can save a useless back to back clock update.
909 */
da0c1e65 910 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 911 rq_clock_skip_update(rq);
1e5a7405
PZ
912}
913
1da177e4 914#ifdef CONFIG_SMP
175f0e25
PZ
915
916static inline bool is_per_cpu_kthread(struct task_struct *p)
917{
918 if (!(p->flags & PF_KTHREAD))
919 return false;
920
921 if (p->nr_cpus_allowed != 1)
922 return false;
923
924 return true;
925}
926
927/*
bee98539 928 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
929 * __set_cpus_allowed_ptr() and select_fallback_rq().
930 */
931static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
932{
3bd37062 933 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
934 return false;
935
936 if (is_per_cpu_kthread(p))
937 return cpu_online(cpu);
938
939 return cpu_active(cpu);
940}
941
5cc389bc
PZ
942/*
943 * This is how migration works:
944 *
945 * 1) we invoke migration_cpu_stop() on the target CPU using
946 * stop_one_cpu().
947 * 2) stopper starts to run (implicitly forcing the migrated thread
948 * off the CPU)
949 * 3) it checks whether the migrated task is still in the wrong runqueue.
950 * 4) if it's in the wrong runqueue then the migration thread removes
951 * it and puts it into the right queue.
952 * 5) stopper completes and stop_one_cpu() returns and the migration
953 * is done.
954 */
955
956/*
957 * move_queued_task - move a queued task to new rq.
958 *
959 * Returns (locked) new rq. Old rq's lock is released.
960 */
8a8c69c3
PZ
961static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
962 struct task_struct *p, int new_cpu)
5cc389bc 963{
5cc389bc
PZ
964 lockdep_assert_held(&rq->lock);
965
c546951d 966 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 967 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 968 set_task_cpu(p, new_cpu);
8a8c69c3 969 rq_unlock(rq, rf);
5cc389bc
PZ
970
971 rq = cpu_rq(new_cpu);
972
8a8c69c3 973 rq_lock(rq, rf);
5cc389bc 974 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 975 enqueue_task(rq, p, 0);
3ea94de1 976 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
977 check_preempt_curr(rq, p, 0);
978
979 return rq;
980}
981
982struct migration_arg {
983 struct task_struct *task;
984 int dest_cpu;
985};
986
987/*
d1ccc66d 988 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
989 * this because either it can't run here any more (set_cpus_allowed()
990 * away from this CPU, or CPU going down), or because we're
991 * attempting to rebalance this task on exec (sched_exec).
992 *
993 * So we race with normal scheduler movements, but that's OK, as long
994 * as the task is no longer on this CPU.
5cc389bc 995 */
8a8c69c3
PZ
996static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
997 struct task_struct *p, int dest_cpu)
5cc389bc 998{
5cc389bc 999 /* Affinity changed (again). */
175f0e25 1000 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1001 return rq;
5cc389bc 1002
15ff991e 1003 update_rq_clock(rq);
8a8c69c3 1004 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1005
1006 return rq;
5cc389bc
PZ
1007}
1008
1009/*
1010 * migration_cpu_stop - this will be executed by a highprio stopper thread
1011 * and performs thread migration by bumping thread off CPU then
1012 * 'pushing' onto another runqueue.
1013 */
1014static int migration_cpu_stop(void *data)
1015{
1016 struct migration_arg *arg = data;
5e16bbc2
PZ
1017 struct task_struct *p = arg->task;
1018 struct rq *rq = this_rq();
8a8c69c3 1019 struct rq_flags rf;
5cc389bc
PZ
1020
1021 /*
d1ccc66d
IM
1022 * The original target CPU might have gone down and we might
1023 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1024 */
1025 local_irq_disable();
1026 /*
1027 * We need to explicitly wake pending tasks before running
3bd37062 1028 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1029 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1030 */
1031 sched_ttwu_pending();
5e16bbc2
PZ
1032
1033 raw_spin_lock(&p->pi_lock);
8a8c69c3 1034 rq_lock(rq, &rf);
5e16bbc2
PZ
1035 /*
1036 * If task_rq(p) != rq, it cannot be migrated here, because we're
1037 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1038 * we're holding p->pi_lock.
1039 */
bf89a304
CC
1040 if (task_rq(p) == rq) {
1041 if (task_on_rq_queued(p))
8a8c69c3 1042 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1043 else
1044 p->wake_cpu = arg->dest_cpu;
1045 }
8a8c69c3 1046 rq_unlock(rq, &rf);
5e16bbc2
PZ
1047 raw_spin_unlock(&p->pi_lock);
1048
5cc389bc
PZ
1049 local_irq_enable();
1050 return 0;
1051}
1052
c5b28038
PZ
1053/*
1054 * sched_class::set_cpus_allowed must do the below, but is not required to
1055 * actually call this function.
1056 */
1057void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1058{
3bd37062 1059 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1060 p->nr_cpus_allowed = cpumask_weight(new_mask);
1061}
1062
c5b28038
PZ
1063void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1064{
6c37067e
PZ
1065 struct rq *rq = task_rq(p);
1066 bool queued, running;
1067
c5b28038 1068 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1069
1070 queued = task_on_rq_queued(p);
1071 running = task_current(rq, p);
1072
1073 if (queued) {
1074 /*
1075 * Because __kthread_bind() calls this on blocked tasks without
1076 * holding rq->lock.
1077 */
1078 lockdep_assert_held(&rq->lock);
7a57f32a 1079 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1080 }
1081 if (running)
1082 put_prev_task(rq, p);
1083
c5b28038 1084 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1085
6c37067e 1086 if (queued)
7134b3e9 1087 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1088 if (running)
b2bf6c31 1089 set_curr_task(rq, p);
c5b28038
PZ
1090}
1091
5cc389bc
PZ
1092/*
1093 * Change a given task's CPU affinity. Migrate the thread to a
1094 * proper CPU and schedule it away if the CPU it's executing on
1095 * is removed from the allowed bitmask.
1096 *
1097 * NOTE: the caller must have a valid reference to the task, the
1098 * task must not exit() & deallocate itself prematurely. The
1099 * call is not atomic; no spinlocks may be held.
1100 */
25834c73
PZ
1101static int __set_cpus_allowed_ptr(struct task_struct *p,
1102 const struct cpumask *new_mask, bool check)
5cc389bc 1103{
e9d867a6 1104 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1105 unsigned int dest_cpu;
eb580751
PZ
1106 struct rq_flags rf;
1107 struct rq *rq;
5cc389bc
PZ
1108 int ret = 0;
1109
eb580751 1110 rq = task_rq_lock(p, &rf);
a499c3ea 1111 update_rq_clock(rq);
5cc389bc 1112
e9d867a6
PZI
1113 if (p->flags & PF_KTHREAD) {
1114 /*
1115 * Kernel threads are allowed on online && !active CPUs
1116 */
1117 cpu_valid_mask = cpu_online_mask;
1118 }
1119
25834c73
PZ
1120 /*
1121 * Must re-check here, to close a race against __kthread_bind(),
1122 * sched_setaffinity() is not guaranteed to observe the flag.
1123 */
1124 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1125 ret = -EINVAL;
1126 goto out;
1127 }
1128
3bd37062 1129 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1130 goto out;
1131
e9d867a6 1132 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1133 ret = -EINVAL;
1134 goto out;
1135 }
1136
1137 do_set_cpus_allowed(p, new_mask);
1138
e9d867a6
PZI
1139 if (p->flags & PF_KTHREAD) {
1140 /*
1141 * For kernel threads that do indeed end up on online &&
d1ccc66d 1142 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1143 */
1144 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1145 !cpumask_intersects(new_mask, cpu_active_mask) &&
1146 p->nr_cpus_allowed != 1);
1147 }
1148
5cc389bc
PZ
1149 /* Can the task run on the task's current CPU? If so, we're done */
1150 if (cpumask_test_cpu(task_cpu(p), new_mask))
1151 goto out;
1152
e9d867a6 1153 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1154 if (task_running(rq, p) || p->state == TASK_WAKING) {
1155 struct migration_arg arg = { p, dest_cpu };
1156 /* Need help from migration thread: drop lock and wait. */
eb580751 1157 task_rq_unlock(rq, p, &rf);
5cc389bc 1158 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1159 return 0;
cbce1a68
PZ
1160 } else if (task_on_rq_queued(p)) {
1161 /*
1162 * OK, since we're going to drop the lock immediately
1163 * afterwards anyway.
1164 */
8a8c69c3 1165 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1166 }
5cc389bc 1167out:
eb580751 1168 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1169
1170 return ret;
1171}
25834c73
PZ
1172
1173int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1174{
1175 return __set_cpus_allowed_ptr(p, new_mask, false);
1176}
5cc389bc
PZ
1177EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1178
dd41f596 1179void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1180{
e2912009
PZ
1181#ifdef CONFIG_SCHED_DEBUG
1182 /*
1183 * We should never call set_task_cpu() on a blocked task,
1184 * ttwu() will sort out the placement.
1185 */
077614ee 1186 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1187 !p->on_rq);
0122ec5b 1188
3ea94de1
JP
1189 /*
1190 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1191 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1192 * time relying on p->on_rq.
1193 */
1194 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1195 p->sched_class == &fair_sched_class &&
1196 (p->on_rq && !task_on_rq_migrating(p)));
1197
0122ec5b 1198#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1199 /*
1200 * The caller should hold either p->pi_lock or rq->lock, when changing
1201 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1202 *
1203 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1204 * see task_group().
6c6c54e1
PZ
1205 *
1206 * Furthermore, all task_rq users should acquire both locks, see
1207 * task_rq_lock().
1208 */
0122ec5b
PZ
1209 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1210 lockdep_is_held(&task_rq(p)->lock)));
1211#endif
4ff9083b
PZ
1212 /*
1213 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1214 */
1215 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1216#endif
1217
de1d7286 1218 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1219
0c69774e 1220 if (task_cpu(p) != new_cpu) {
0a74bef8 1221 if (p->sched_class->migrate_task_rq)
1327237a 1222 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1223 p->se.nr_migrations++;
d7822b1e 1224 rseq_migrate(p);
ff303e66 1225 perf_event_task_migrate(p);
0c69774e 1226 }
dd41f596
IM
1227
1228 __set_task_cpu(p, new_cpu);
c65cc870
IM
1229}
1230
0ad4e3df 1231#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1232static void __migrate_swap_task(struct task_struct *p, int cpu)
1233{
da0c1e65 1234 if (task_on_rq_queued(p)) {
ac66f547 1235 struct rq *src_rq, *dst_rq;
8a8c69c3 1236 struct rq_flags srf, drf;
ac66f547
PZ
1237
1238 src_rq = task_rq(p);
1239 dst_rq = cpu_rq(cpu);
1240
8a8c69c3
PZ
1241 rq_pin_lock(src_rq, &srf);
1242 rq_pin_lock(dst_rq, &drf);
1243
ac66f547
PZ
1244 deactivate_task(src_rq, p, 0);
1245 set_task_cpu(p, cpu);
1246 activate_task(dst_rq, p, 0);
1247 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1248
1249 rq_unpin_lock(dst_rq, &drf);
1250 rq_unpin_lock(src_rq, &srf);
1251
ac66f547
PZ
1252 } else {
1253 /*
1254 * Task isn't running anymore; make it appear like we migrated
1255 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1256 * previous CPU our target instead of where it really is.
ac66f547
PZ
1257 */
1258 p->wake_cpu = cpu;
1259 }
1260}
1261
1262struct migration_swap_arg {
1263 struct task_struct *src_task, *dst_task;
1264 int src_cpu, dst_cpu;
1265};
1266
1267static int migrate_swap_stop(void *data)
1268{
1269 struct migration_swap_arg *arg = data;
1270 struct rq *src_rq, *dst_rq;
1271 int ret = -EAGAIN;
1272
62694cd5
PZ
1273 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1274 return -EAGAIN;
1275
ac66f547
PZ
1276 src_rq = cpu_rq(arg->src_cpu);
1277 dst_rq = cpu_rq(arg->dst_cpu);
1278
74602315
PZ
1279 double_raw_lock(&arg->src_task->pi_lock,
1280 &arg->dst_task->pi_lock);
ac66f547 1281 double_rq_lock(src_rq, dst_rq);
62694cd5 1282
ac66f547
PZ
1283 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1284 goto unlock;
1285
1286 if (task_cpu(arg->src_task) != arg->src_cpu)
1287 goto unlock;
1288
3bd37062 1289 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1290 goto unlock;
1291
3bd37062 1292 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1293 goto unlock;
1294
1295 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1296 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1297
1298 ret = 0;
1299
1300unlock:
1301 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1302 raw_spin_unlock(&arg->dst_task->pi_lock);
1303 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1304
1305 return ret;
1306}
1307
1308/*
1309 * Cross migrate two tasks
1310 */
0ad4e3df
SD
1311int migrate_swap(struct task_struct *cur, struct task_struct *p,
1312 int target_cpu, int curr_cpu)
ac66f547
PZ
1313{
1314 struct migration_swap_arg arg;
1315 int ret = -EINVAL;
1316
ac66f547
PZ
1317 arg = (struct migration_swap_arg){
1318 .src_task = cur,
0ad4e3df 1319 .src_cpu = curr_cpu,
ac66f547 1320 .dst_task = p,
0ad4e3df 1321 .dst_cpu = target_cpu,
ac66f547
PZ
1322 };
1323
1324 if (arg.src_cpu == arg.dst_cpu)
1325 goto out;
1326
6acce3ef
PZ
1327 /*
1328 * These three tests are all lockless; this is OK since all of them
1329 * will be re-checked with proper locks held further down the line.
1330 */
ac66f547
PZ
1331 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1332 goto out;
1333
3bd37062 1334 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1335 goto out;
1336
3bd37062 1337 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1338 goto out;
1339
286549dc 1340 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1341 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1342
1343out:
ac66f547
PZ
1344 return ret;
1345}
0ad4e3df 1346#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1347
1da177e4
LT
1348/*
1349 * wait_task_inactive - wait for a thread to unschedule.
1350 *
85ba2d86
RM
1351 * If @match_state is nonzero, it's the @p->state value just checked and
1352 * not expected to change. If it changes, i.e. @p might have woken up,
1353 * then return zero. When we succeed in waiting for @p to be off its CPU,
1354 * we return a positive number (its total switch count). If a second call
1355 * a short while later returns the same number, the caller can be sure that
1356 * @p has remained unscheduled the whole time.
1357 *
1da177e4
LT
1358 * The caller must ensure that the task *will* unschedule sometime soon,
1359 * else this function might spin for a *long* time. This function can't
1360 * be called with interrupts off, or it may introduce deadlock with
1361 * smp_call_function() if an IPI is sent by the same process we are
1362 * waiting to become inactive.
1363 */
85ba2d86 1364unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1365{
da0c1e65 1366 int running, queued;
eb580751 1367 struct rq_flags rf;
85ba2d86 1368 unsigned long ncsw;
70b97a7f 1369 struct rq *rq;
1da177e4 1370
3a5c359a
AK
1371 for (;;) {
1372 /*
1373 * We do the initial early heuristics without holding
1374 * any task-queue locks at all. We'll only try to get
1375 * the runqueue lock when things look like they will
1376 * work out!
1377 */
1378 rq = task_rq(p);
fa490cfd 1379
3a5c359a
AK
1380 /*
1381 * If the task is actively running on another CPU
1382 * still, just relax and busy-wait without holding
1383 * any locks.
1384 *
1385 * NOTE! Since we don't hold any locks, it's not
1386 * even sure that "rq" stays as the right runqueue!
1387 * But we don't care, since "task_running()" will
1388 * return false if the runqueue has changed and p
1389 * is actually now running somewhere else!
1390 */
85ba2d86
RM
1391 while (task_running(rq, p)) {
1392 if (match_state && unlikely(p->state != match_state))
1393 return 0;
3a5c359a 1394 cpu_relax();
85ba2d86 1395 }
fa490cfd 1396
3a5c359a
AK
1397 /*
1398 * Ok, time to look more closely! We need the rq
1399 * lock now, to be *sure*. If we're wrong, we'll
1400 * just go back and repeat.
1401 */
eb580751 1402 rq = task_rq_lock(p, &rf);
27a9da65 1403 trace_sched_wait_task(p);
3a5c359a 1404 running = task_running(rq, p);
da0c1e65 1405 queued = task_on_rq_queued(p);
85ba2d86 1406 ncsw = 0;
f31e11d8 1407 if (!match_state || p->state == match_state)
93dcf55f 1408 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1409 task_rq_unlock(rq, p, &rf);
fa490cfd 1410
85ba2d86
RM
1411 /*
1412 * If it changed from the expected state, bail out now.
1413 */
1414 if (unlikely(!ncsw))
1415 break;
1416
3a5c359a
AK
1417 /*
1418 * Was it really running after all now that we
1419 * checked with the proper locks actually held?
1420 *
1421 * Oops. Go back and try again..
1422 */
1423 if (unlikely(running)) {
1424 cpu_relax();
1425 continue;
1426 }
fa490cfd 1427
3a5c359a
AK
1428 /*
1429 * It's not enough that it's not actively running,
1430 * it must be off the runqueue _entirely_, and not
1431 * preempted!
1432 *
80dd99b3 1433 * So if it was still runnable (but just not actively
3a5c359a
AK
1434 * running right now), it's preempted, and we should
1435 * yield - it could be a while.
1436 */
da0c1e65 1437 if (unlikely(queued)) {
8b0e1953 1438 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1439
1440 set_current_state(TASK_UNINTERRUPTIBLE);
1441 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1442 continue;
1443 }
fa490cfd 1444
3a5c359a
AK
1445 /*
1446 * Ahh, all good. It wasn't running, and it wasn't
1447 * runnable, which means that it will never become
1448 * running in the future either. We're all done!
1449 */
1450 break;
1451 }
85ba2d86
RM
1452
1453 return ncsw;
1da177e4
LT
1454}
1455
1456/***
1457 * kick_process - kick a running thread to enter/exit the kernel
1458 * @p: the to-be-kicked thread
1459 *
1460 * Cause a process which is running on another CPU to enter
1461 * kernel-mode, without any delay. (to get signals handled.)
1462 *
25985edc 1463 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1464 * because all it wants to ensure is that the remote task enters
1465 * the kernel. If the IPI races and the task has been migrated
1466 * to another CPU then no harm is done and the purpose has been
1467 * achieved as well.
1468 */
36c8b586 1469void kick_process(struct task_struct *p)
1da177e4
LT
1470{
1471 int cpu;
1472
1473 preempt_disable();
1474 cpu = task_cpu(p);
1475 if ((cpu != smp_processor_id()) && task_curr(p))
1476 smp_send_reschedule(cpu);
1477 preempt_enable();
1478}
b43e3521 1479EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1480
30da688e 1481/*
3bd37062 1482 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1483 *
1484 * A few notes on cpu_active vs cpu_online:
1485 *
1486 * - cpu_active must be a subset of cpu_online
1487 *
97fb7a0a 1488 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1489 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1490 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1491 * see it.
1492 *
d1ccc66d 1493 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1494 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1495 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1496 * off.
1497 *
1498 * This means that fallback selection must not select !active CPUs.
1499 * And can assume that any active CPU must be online. Conversely
1500 * select_task_rq() below may allow selection of !active CPUs in order
1501 * to satisfy the above rules.
30da688e 1502 */
5da9a0fb
PZ
1503static int select_fallback_rq(int cpu, struct task_struct *p)
1504{
aa00d89c
TC
1505 int nid = cpu_to_node(cpu);
1506 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1507 enum { cpuset, possible, fail } state = cpuset;
1508 int dest_cpu;
5da9a0fb 1509
aa00d89c 1510 /*
d1ccc66d
IM
1511 * If the node that the CPU is on has been offlined, cpu_to_node()
1512 * will return -1. There is no CPU on the node, and we should
1513 * select the CPU on the other node.
aa00d89c
TC
1514 */
1515 if (nid != -1) {
1516 nodemask = cpumask_of_node(nid);
1517
1518 /* Look for allowed, online CPU in same node. */
1519 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1520 if (!cpu_active(dest_cpu))
1521 continue;
3bd37062 1522 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
1523 return dest_cpu;
1524 }
2baab4e9 1525 }
5da9a0fb 1526
2baab4e9
PZ
1527 for (;;) {
1528 /* Any allowed, online CPU? */
3bd37062 1529 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 1530 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1531 continue;
175f0e25 1532
2baab4e9
PZ
1533 goto out;
1534 }
5da9a0fb 1535
e73e85f0 1536 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1537 switch (state) {
1538 case cpuset:
e73e85f0
ON
1539 if (IS_ENABLED(CONFIG_CPUSETS)) {
1540 cpuset_cpus_allowed_fallback(p);
1541 state = possible;
1542 break;
1543 }
d1ccc66d 1544 /* Fall-through */
2baab4e9
PZ
1545 case possible:
1546 do_set_cpus_allowed(p, cpu_possible_mask);
1547 state = fail;
1548 break;
1549
1550 case fail:
1551 BUG();
1552 break;
1553 }
1554 }
1555
1556out:
1557 if (state != cpuset) {
1558 /*
1559 * Don't tell them about moving exiting tasks or
1560 * kernel threads (both mm NULL), since they never
1561 * leave kernel.
1562 */
1563 if (p->mm && printk_ratelimit()) {
aac74dc4 1564 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1565 task_pid_nr(p), p->comm, cpu);
1566 }
5da9a0fb
PZ
1567 }
1568
1569 return dest_cpu;
1570}
1571
e2912009 1572/*
3bd37062 1573 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 1574 */
970b13ba 1575static inline
ac66f547 1576int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1577{
cbce1a68
PZ
1578 lockdep_assert_held(&p->pi_lock);
1579
4b53a341 1580 if (p->nr_cpus_allowed > 1)
6c1d9410 1581 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1582 else
3bd37062 1583 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
1584
1585 /*
1586 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 1587 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 1588 * CPU.
e2912009
PZ
1589 *
1590 * Since this is common to all placement strategies, this lives here.
1591 *
1592 * [ this allows ->select_task() to simply return task_cpu(p) and
1593 * not worry about this generic constraint ]
1594 */
7af443ee 1595 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 1596 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1597
1598 return cpu;
970b13ba 1599}
09a40af5
MG
1600
1601static void update_avg(u64 *avg, u64 sample)
1602{
1603 s64 diff = sample - *avg;
1604 *avg += diff >> 3;
1605}
25834c73 1606
f5832c19
NP
1607void sched_set_stop_task(int cpu, struct task_struct *stop)
1608{
1609 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1610 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1611
1612 if (stop) {
1613 /*
1614 * Make it appear like a SCHED_FIFO task, its something
1615 * userspace knows about and won't get confused about.
1616 *
1617 * Also, it will make PI more or less work without too
1618 * much confusion -- but then, stop work should not
1619 * rely on PI working anyway.
1620 */
1621 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1622
1623 stop->sched_class = &stop_sched_class;
1624 }
1625
1626 cpu_rq(cpu)->stop = stop;
1627
1628 if (old_stop) {
1629 /*
1630 * Reset it back to a normal scheduling class so that
1631 * it can die in pieces.
1632 */
1633 old_stop->sched_class = &rt_sched_class;
1634 }
1635}
1636
25834c73
PZ
1637#else
1638
1639static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1640 const struct cpumask *new_mask, bool check)
1641{
1642 return set_cpus_allowed_ptr(p, new_mask);
1643}
1644
5cc389bc 1645#endif /* CONFIG_SMP */
970b13ba 1646
d7c01d27 1647static void
b84cb5df 1648ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1649{
4fa8d299 1650 struct rq *rq;
b84cb5df 1651
4fa8d299
JP
1652 if (!schedstat_enabled())
1653 return;
1654
1655 rq = this_rq();
d7c01d27 1656
4fa8d299
JP
1657#ifdef CONFIG_SMP
1658 if (cpu == rq->cpu) {
b85c8b71
PZ
1659 __schedstat_inc(rq->ttwu_local);
1660 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1661 } else {
1662 struct sched_domain *sd;
1663
b85c8b71 1664 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1665 rcu_read_lock();
4fa8d299 1666 for_each_domain(rq->cpu, sd) {
d7c01d27 1667 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1668 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1669 break;
1670 }
1671 }
057f3fad 1672 rcu_read_unlock();
d7c01d27 1673 }
f339b9dc
PZ
1674
1675 if (wake_flags & WF_MIGRATED)
b85c8b71 1676 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1677#endif /* CONFIG_SMP */
1678
b85c8b71
PZ
1679 __schedstat_inc(rq->ttwu_count);
1680 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1681
1682 if (wake_flags & WF_SYNC)
b85c8b71 1683 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1684}
1685
23f41eeb
PZ
1686/*
1687 * Mark the task runnable and perform wakeup-preemption.
1688 */
e7904a28 1689static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1690 struct rq_flags *rf)
9ed3811a 1691{
9ed3811a 1692 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1693 p->state = TASK_RUNNING;
fbd705a0
PZ
1694 trace_sched_wakeup(p);
1695
9ed3811a 1696#ifdef CONFIG_SMP
4c9a4bc8
PZ
1697 if (p->sched_class->task_woken) {
1698 /*
cbce1a68
PZ
1699 * Our task @p is fully woken up and running; so its safe to
1700 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1701 */
d8ac8971 1702 rq_unpin_lock(rq, rf);
9ed3811a 1703 p->sched_class->task_woken(rq, p);
d8ac8971 1704 rq_repin_lock(rq, rf);
4c9a4bc8 1705 }
9ed3811a 1706
e69c6341 1707 if (rq->idle_stamp) {
78becc27 1708 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1709 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1710
abfafa54
JL
1711 update_avg(&rq->avg_idle, delta);
1712
1713 if (rq->avg_idle > max)
9ed3811a 1714 rq->avg_idle = max;
abfafa54 1715
9ed3811a
TH
1716 rq->idle_stamp = 0;
1717 }
1718#endif
1719}
1720
c05fbafb 1721static void
e7904a28 1722ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1723 struct rq_flags *rf)
c05fbafb 1724{
77558e4d 1725 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1726
cbce1a68
PZ
1727 lockdep_assert_held(&rq->lock);
1728
c05fbafb
PZ
1729#ifdef CONFIG_SMP
1730 if (p->sched_contributes_to_load)
1731 rq->nr_uninterruptible--;
b5179ac7 1732
b5179ac7 1733 if (wake_flags & WF_MIGRATED)
59efa0ba 1734 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1735#endif
1736
1b174a2c 1737 activate_task(rq, p, en_flags);
d8ac8971 1738 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1739}
1740
1741/*
1742 * Called in case the task @p isn't fully descheduled from its runqueue,
1743 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1744 * since all we need to do is flip p->state to TASK_RUNNING, since
1745 * the task is still ->on_rq.
1746 */
1747static int ttwu_remote(struct task_struct *p, int wake_flags)
1748{
eb580751 1749 struct rq_flags rf;
c05fbafb
PZ
1750 struct rq *rq;
1751 int ret = 0;
1752
eb580751 1753 rq = __task_rq_lock(p, &rf);
da0c1e65 1754 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1755 /* check_preempt_curr() may use rq clock */
1756 update_rq_clock(rq);
d8ac8971 1757 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1758 ret = 1;
1759 }
eb580751 1760 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1761
1762 return ret;
1763}
1764
317f3941 1765#ifdef CONFIG_SMP
e3baac47 1766void sched_ttwu_pending(void)
317f3941
PZ
1767{
1768 struct rq *rq = this_rq();
fa14ff4a 1769 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1770 struct task_struct *p, *t;
d8ac8971 1771 struct rq_flags rf;
317f3941 1772
e3baac47
PZ
1773 if (!llist)
1774 return;
1775
8a8c69c3 1776 rq_lock_irqsave(rq, &rf);
77558e4d 1777 update_rq_clock(rq);
317f3941 1778
73215849
BP
1779 llist_for_each_entry_safe(p, t, llist, wake_entry)
1780 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1781
8a8c69c3 1782 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1783}
1784
1785void scheduler_ipi(void)
1786{
f27dde8d
PZ
1787 /*
1788 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1789 * TIF_NEED_RESCHED remotely (for the first time) will also send
1790 * this IPI.
1791 */
8cb75e0c 1792 preempt_fold_need_resched();
f27dde8d 1793
fd2ac4f4 1794 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1795 return;
1796
1797 /*
1798 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1799 * traditionally all their work was done from the interrupt return
1800 * path. Now that we actually do some work, we need to make sure
1801 * we do call them.
1802 *
1803 * Some archs already do call them, luckily irq_enter/exit nest
1804 * properly.
1805 *
1806 * Arguably we should visit all archs and update all handlers,
1807 * however a fair share of IPIs are still resched only so this would
1808 * somewhat pessimize the simple resched case.
1809 */
1810 irq_enter();
fa14ff4a 1811 sched_ttwu_pending();
ca38062e
SS
1812
1813 /*
1814 * Check if someone kicked us for doing the nohz idle load balance.
1815 */
873b4c65 1816 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1817 this_rq()->idle_balance = 1;
ca38062e 1818 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1819 }
c5d753a5 1820 irq_exit();
317f3941
PZ
1821}
1822
b7e7ade3 1823static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1824{
e3baac47
PZ
1825 struct rq *rq = cpu_rq(cpu);
1826
b7e7ade3
PZ
1827 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1828
e3baac47
PZ
1829 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1830 if (!set_nr_if_polling(rq->idle))
1831 smp_send_reschedule(cpu);
1832 else
1833 trace_sched_wake_idle_without_ipi(cpu);
1834 }
317f3941 1835}
d6aa8f85 1836
f6be8af1
CL
1837void wake_up_if_idle(int cpu)
1838{
1839 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1840 struct rq_flags rf;
f6be8af1 1841
fd7de1e8
AL
1842 rcu_read_lock();
1843
1844 if (!is_idle_task(rcu_dereference(rq->curr)))
1845 goto out;
f6be8af1
CL
1846
1847 if (set_nr_if_polling(rq->idle)) {
1848 trace_sched_wake_idle_without_ipi(cpu);
1849 } else {
8a8c69c3 1850 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1851 if (is_idle_task(rq->curr))
1852 smp_send_reschedule(cpu);
d1ccc66d 1853 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1854 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1855 }
fd7de1e8
AL
1856
1857out:
1858 rcu_read_unlock();
f6be8af1
CL
1859}
1860
39be3501 1861bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1862{
1863 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1864}
d6aa8f85 1865#endif /* CONFIG_SMP */
317f3941 1866
b5179ac7 1867static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1868{
1869 struct rq *rq = cpu_rq(cpu);
d8ac8971 1870 struct rq_flags rf;
c05fbafb 1871
17d9f311 1872#if defined(CONFIG_SMP)
39be3501 1873 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1874 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1875 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1876 return;
1877 }
1878#endif
1879
8a8c69c3 1880 rq_lock(rq, &rf);
77558e4d 1881 update_rq_clock(rq);
d8ac8971 1882 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1883 rq_unlock(rq, &rf);
9ed3811a
TH
1884}
1885
8643cda5
PZ
1886/*
1887 * Notes on Program-Order guarantees on SMP systems.
1888 *
1889 * MIGRATION
1890 *
1891 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1892 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1893 * execution on its new CPU [c1].
8643cda5
PZ
1894 *
1895 * For migration (of runnable tasks) this is provided by the following means:
1896 *
1897 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1898 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1899 * rq(c1)->lock (if not at the same time, then in that order).
1900 * C) LOCK of the rq(c1)->lock scheduling in task
1901 *
7696f991 1902 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 1903 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1904 *
1905 * Example:
1906 *
1907 * CPU0 CPU1 CPU2
1908 *
1909 * LOCK rq(0)->lock
1910 * sched-out X
1911 * sched-in Y
1912 * UNLOCK rq(0)->lock
1913 *
1914 * LOCK rq(0)->lock // orders against CPU0
1915 * dequeue X
1916 * UNLOCK rq(0)->lock
1917 *
1918 * LOCK rq(1)->lock
1919 * enqueue X
1920 * UNLOCK rq(1)->lock
1921 *
1922 * LOCK rq(1)->lock // orders against CPU2
1923 * sched-out Z
1924 * sched-in X
1925 * UNLOCK rq(1)->lock
1926 *
1927 *
1928 * BLOCKING -- aka. SLEEP + WAKEUP
1929 *
1930 * For blocking we (obviously) need to provide the same guarantee as for
1931 * migration. However the means are completely different as there is no lock
1932 * chain to provide order. Instead we do:
1933 *
1934 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1935 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1936 *
1937 * Example:
1938 *
1939 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1940 *
1941 * LOCK rq(0)->lock LOCK X->pi_lock
1942 * dequeue X
1943 * sched-out X
1944 * smp_store_release(X->on_cpu, 0);
1945 *
1f03e8d2 1946 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1947 * X->state = WAKING
1948 * set_task_cpu(X,2)
1949 *
1950 * LOCK rq(2)->lock
1951 * enqueue X
1952 * X->state = RUNNING
1953 * UNLOCK rq(2)->lock
1954 *
1955 * LOCK rq(2)->lock // orders against CPU1
1956 * sched-out Z
1957 * sched-in X
1958 * UNLOCK rq(2)->lock
1959 *
1960 * UNLOCK X->pi_lock
1961 * UNLOCK rq(0)->lock
1962 *
1963 *
7696f991
AP
1964 * However, for wakeups there is a second guarantee we must provide, namely we
1965 * must ensure that CONDITION=1 done by the caller can not be reordered with
1966 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
1967 */
1968
9ed3811a 1969/**
1da177e4 1970 * try_to_wake_up - wake up a thread
9ed3811a 1971 * @p: the thread to be awakened
1da177e4 1972 * @state: the mask of task states that can be woken
9ed3811a 1973 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1974 *
a2250238 1975 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1976 *
a2250238
PZ
1977 * If the task was not queued/runnable, also place it back on a runqueue.
1978 *
1979 * Atomic against schedule() which would dequeue a task, also see
1980 * set_current_state().
1981 *
7696f991
AP
1982 * This function executes a full memory barrier before accessing the task
1983 * state; see set_current_state().
1984 *
a2250238
PZ
1985 * Return: %true if @p->state changes (an actual wakeup was done),
1986 * %false otherwise.
1da177e4 1987 */
e4a52bcb
PZ
1988static int
1989try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1990{
1da177e4 1991 unsigned long flags;
c05fbafb 1992 int cpu, success = 0;
2398f2c6 1993
aacedf26
PZ
1994 if (p == current) {
1995 /*
1996 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
1997 * == smp_processor_id()'. Together this means we can special
1998 * case the whole 'p->on_rq && ttwu_remote()' case below
1999 * without taking any locks.
2000 *
2001 * In particular:
2002 * - we rely on Program-Order guarantees for all the ordering,
2003 * - we're serialized against set_special_state() by virtue of
2004 * it disabling IRQs (this allows not taking ->pi_lock).
2005 */
2006 if (!(p->state & state))
2007 return false;
2008
2009 success = 1;
2010 cpu = task_cpu(p);
2011 trace_sched_waking(p);
2012 p->state = TASK_RUNNING;
2013 trace_sched_wakeup(p);
2014 goto out;
2015 }
2016
e0acd0a6
ON
2017 /*
2018 * If we are going to wake up a thread waiting for CONDITION we
2019 * need to ensure that CONDITION=1 done by the caller can not be
2020 * reordered with p->state check below. This pairs with mb() in
2021 * set_current_state() the waiting thread does.
2022 */
013fdb80 2023 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2024 smp_mb__after_spinlock();
e9c84311 2025 if (!(p->state & state))
aacedf26 2026 goto unlock;
1da177e4 2027
fbd705a0
PZ
2028 trace_sched_waking(p);
2029
d1ccc66d
IM
2030 /* We're going to change ->state: */
2031 success = 1;
1da177e4 2032 cpu = task_cpu(p);
1da177e4 2033
135e8c92
BS
2034 /*
2035 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2036 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2037 * in smp_cond_load_acquire() below.
2038 *
3d85b270
AP
2039 * sched_ttwu_pending() try_to_wake_up()
2040 * STORE p->on_rq = 1 LOAD p->state
2041 * UNLOCK rq->lock
2042 *
2043 * __schedule() (switch to task 'p')
2044 * LOCK rq->lock smp_rmb();
2045 * smp_mb__after_spinlock();
2046 * UNLOCK rq->lock
135e8c92
BS
2047 *
2048 * [task p]
3d85b270 2049 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2050 *
3d85b270
AP
2051 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2052 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2053 */
2054 smp_rmb();
c05fbafb 2055 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2056 goto unlock;
1da177e4 2057
1da177e4 2058#ifdef CONFIG_SMP
ecf7d01c
PZ
2059 /*
2060 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2061 * possible to, falsely, observe p->on_cpu == 0.
2062 *
2063 * One must be running (->on_cpu == 1) in order to remove oneself
2064 * from the runqueue.
2065 *
3d85b270
AP
2066 * __schedule() (switch to task 'p') try_to_wake_up()
2067 * STORE p->on_cpu = 1 LOAD p->on_rq
2068 * UNLOCK rq->lock
2069 *
2070 * __schedule() (put 'p' to sleep)
2071 * LOCK rq->lock smp_rmb();
2072 * smp_mb__after_spinlock();
2073 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2074 *
3d85b270
AP
2075 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2076 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2077 */
2078 smp_rmb();
2079
e9c84311 2080 /*
d1ccc66d 2081 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2082 * this task as prev, wait until its done referencing the task.
b75a2253 2083 *
31cb1bc0 2084 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2085 *
2086 * This ensures that tasks getting woken will be fully ordered against
2087 * their previous state and preserve Program Order.
0970d299 2088 */
1f03e8d2 2089 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2090
a8e4f2ea 2091 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2092 p->state = TASK_WAKING;
e7693a36 2093
e33a9bba 2094 if (p->in_iowait) {
c96f5471 2095 delayacct_blkio_end(p);
e33a9bba
TH
2096 atomic_dec(&task_rq(p)->nr_iowait);
2097 }
2098
ac66f547 2099 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2100 if (task_cpu(p) != cpu) {
2101 wake_flags |= WF_MIGRATED;
eb414681 2102 psi_ttwu_dequeue(p);
e4a52bcb 2103 set_task_cpu(p, cpu);
f339b9dc 2104 }
e33a9bba
TH
2105
2106#else /* CONFIG_SMP */
2107
2108 if (p->in_iowait) {
c96f5471 2109 delayacct_blkio_end(p);
e33a9bba
TH
2110 atomic_dec(&task_rq(p)->nr_iowait);
2111 }
2112
1da177e4 2113#endif /* CONFIG_SMP */
1da177e4 2114
b5179ac7 2115 ttwu_queue(p, cpu, wake_flags);
aacedf26 2116unlock:
013fdb80 2117 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2118out:
2119 if (success)
2120 ttwu_stat(p, cpu, wake_flags);
1da177e4
LT
2121
2122 return success;
2123}
2124
50fa610a
DH
2125/**
2126 * wake_up_process - Wake up a specific process
2127 * @p: The process to be woken up.
2128 *
2129 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2130 * processes.
2131 *
2132 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2133 *
7696f991 2134 * This function executes a full memory barrier before accessing the task state.
50fa610a 2135 */
7ad5b3a5 2136int wake_up_process(struct task_struct *p)
1da177e4 2137{
9067ac85 2138 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2139}
1da177e4
LT
2140EXPORT_SYMBOL(wake_up_process);
2141
7ad5b3a5 2142int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2143{
2144 return try_to_wake_up(p, state, 0);
2145}
2146
1da177e4
LT
2147/*
2148 * Perform scheduler related setup for a newly forked process p.
2149 * p is forked by current.
dd41f596
IM
2150 *
2151 * __sched_fork() is basic setup used by init_idle() too:
2152 */
5e1576ed 2153static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2154{
fd2f4419
PZ
2155 p->on_rq = 0;
2156
2157 p->se.on_rq = 0;
dd41f596
IM
2158 p->se.exec_start = 0;
2159 p->se.sum_exec_runtime = 0;
f6cf891c 2160 p->se.prev_sum_exec_runtime = 0;
6c594c21 2161 p->se.nr_migrations = 0;
da7a735e 2162 p->se.vruntime = 0;
fd2f4419 2163 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2164
ad936d86
BP
2165#ifdef CONFIG_FAIR_GROUP_SCHED
2166 p->se.cfs_rq = NULL;
2167#endif
2168
6cfb0d5d 2169#ifdef CONFIG_SCHEDSTATS
cb251765 2170 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2171 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2172#endif
476d139c 2173
aab03e05 2174 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2175 init_dl_task_timer(&p->dl);
209a0cbd 2176 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2177 __dl_clear_params(p);
aab03e05 2178
fa717060 2179 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2180 p->rt.timeout = 0;
2181 p->rt.time_slice = sched_rr_timeslice;
2182 p->rt.on_rq = 0;
2183 p->rt.on_list = 0;
476d139c 2184
e107be36
AK
2185#ifdef CONFIG_PREEMPT_NOTIFIERS
2186 INIT_HLIST_HEAD(&p->preempt_notifiers);
2187#endif
cbee9f88 2188
5e1f0f09
MG
2189#ifdef CONFIG_COMPACTION
2190 p->capture_control = NULL;
2191#endif
13784475 2192 init_numa_balancing(clone_flags, p);
dd41f596
IM
2193}
2194
2a595721
SD
2195DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2196
1a687c2e 2197#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2198
1a687c2e
MG
2199void set_numabalancing_state(bool enabled)
2200{
2201 if (enabled)
2a595721 2202 static_branch_enable(&sched_numa_balancing);
1a687c2e 2203 else
2a595721 2204 static_branch_disable(&sched_numa_balancing);
1a687c2e 2205}
54a43d54
AK
2206
2207#ifdef CONFIG_PROC_SYSCTL
2208int sysctl_numa_balancing(struct ctl_table *table, int write,
2209 void __user *buffer, size_t *lenp, loff_t *ppos)
2210{
2211 struct ctl_table t;
2212 int err;
2a595721 2213 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2214
2215 if (write && !capable(CAP_SYS_ADMIN))
2216 return -EPERM;
2217
2218 t = *table;
2219 t.data = &state;
2220 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2221 if (err < 0)
2222 return err;
2223 if (write)
2224 set_numabalancing_state(state);
2225 return err;
2226}
2227#endif
2228#endif
dd41f596 2229
4698f88c
JP
2230#ifdef CONFIG_SCHEDSTATS
2231
cb251765 2232DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2233static bool __initdata __sched_schedstats = false;
cb251765 2234
cb251765
MG
2235static void set_schedstats(bool enabled)
2236{
2237 if (enabled)
2238 static_branch_enable(&sched_schedstats);
2239 else
2240 static_branch_disable(&sched_schedstats);
2241}
2242
2243void force_schedstat_enabled(void)
2244{
2245 if (!schedstat_enabled()) {
2246 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2247 static_branch_enable(&sched_schedstats);
2248 }
2249}
2250
2251static int __init setup_schedstats(char *str)
2252{
2253 int ret = 0;
2254 if (!str)
2255 goto out;
2256
4698f88c
JP
2257 /*
2258 * This code is called before jump labels have been set up, so we can't
2259 * change the static branch directly just yet. Instead set a temporary
2260 * variable so init_schedstats() can do it later.
2261 */
cb251765 2262 if (!strcmp(str, "enable")) {
4698f88c 2263 __sched_schedstats = true;
cb251765
MG
2264 ret = 1;
2265 } else if (!strcmp(str, "disable")) {
4698f88c 2266 __sched_schedstats = false;
cb251765
MG
2267 ret = 1;
2268 }
2269out:
2270 if (!ret)
2271 pr_warn("Unable to parse schedstats=\n");
2272
2273 return ret;
2274}
2275__setup("schedstats=", setup_schedstats);
2276
4698f88c
JP
2277static void __init init_schedstats(void)
2278{
2279 set_schedstats(__sched_schedstats);
2280}
2281
cb251765
MG
2282#ifdef CONFIG_PROC_SYSCTL
2283int sysctl_schedstats(struct ctl_table *table, int write,
2284 void __user *buffer, size_t *lenp, loff_t *ppos)
2285{
2286 struct ctl_table t;
2287 int err;
2288 int state = static_branch_likely(&sched_schedstats);
2289
2290 if (write && !capable(CAP_SYS_ADMIN))
2291 return -EPERM;
2292
2293 t = *table;
2294 t.data = &state;
2295 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2296 if (err < 0)
2297 return err;
2298 if (write)
2299 set_schedstats(state);
2300 return err;
2301}
4698f88c
JP
2302#endif /* CONFIG_PROC_SYSCTL */
2303#else /* !CONFIG_SCHEDSTATS */
2304static inline void init_schedstats(void) {}
2305#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2306
2307/*
2308 * fork()/clone()-time setup:
2309 */
aab03e05 2310int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2311{
0122ec5b 2312 unsigned long flags;
dd41f596 2313
5e1576ed 2314 __sched_fork(clone_flags, p);
06b83b5f 2315 /*
7dc603c9 2316 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2317 * nobody will actually run it, and a signal or other external
2318 * event cannot wake it up and insert it on the runqueue either.
2319 */
7dc603c9 2320 p->state = TASK_NEW;
dd41f596 2321
c350a04e
MG
2322 /*
2323 * Make sure we do not leak PI boosting priority to the child.
2324 */
2325 p->prio = current->normal_prio;
2326
b9dc29e7
MG
2327 /*
2328 * Revert to default priority/policy on fork if requested.
2329 */
2330 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2331 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2332 p->policy = SCHED_NORMAL;
6c697bdf 2333 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2334 p->rt_priority = 0;
2335 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2336 p->static_prio = NICE_TO_PRIO(0);
2337
2338 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2339 set_load_weight(p, false);
6c697bdf 2340
b9dc29e7
MG
2341 /*
2342 * We don't need the reset flag anymore after the fork. It has
2343 * fulfilled its duty:
2344 */
2345 p->sched_reset_on_fork = 0;
2346 }
ca94c442 2347
af0fffd9 2348 if (dl_prio(p->prio))
aab03e05 2349 return -EAGAIN;
af0fffd9 2350 else if (rt_prio(p->prio))
aab03e05 2351 p->sched_class = &rt_sched_class;
af0fffd9 2352 else
2ddbf952 2353 p->sched_class = &fair_sched_class;
b29739f9 2354
7dc603c9 2355 init_entity_runnable_average(&p->se);
cd29fe6f 2356
86951599
PZ
2357 /*
2358 * The child is not yet in the pid-hash so no cgroup attach races,
2359 * and the cgroup is pinned to this child due to cgroup_fork()
2360 * is ran before sched_fork().
2361 *
2362 * Silence PROVE_RCU.
2363 */
0122ec5b 2364 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2365 /*
d1ccc66d 2366 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2367 * so use __set_task_cpu().
2368 */
af0fffd9 2369 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2370 if (p->sched_class->task_fork)
2371 p->sched_class->task_fork(p);
0122ec5b 2372 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2373
f6db8347 2374#ifdef CONFIG_SCHED_INFO
dd41f596 2375 if (likely(sched_info_on()))
52f17b6c 2376 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2377#endif
3ca7a440
PZ
2378#if defined(CONFIG_SMP)
2379 p->on_cpu = 0;
4866cde0 2380#endif
01028747 2381 init_task_preempt_count(p);
806c09a7 2382#ifdef CONFIG_SMP
917b627d 2383 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2384 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2385#endif
aab03e05 2386 return 0;
1da177e4
LT
2387}
2388
332ac17e
DF
2389unsigned long to_ratio(u64 period, u64 runtime)
2390{
2391 if (runtime == RUNTIME_INF)
c52f14d3 2392 return BW_UNIT;
332ac17e
DF
2393
2394 /*
2395 * Doing this here saves a lot of checks in all
2396 * the calling paths, and returning zero seems
2397 * safe for them anyway.
2398 */
2399 if (period == 0)
2400 return 0;
2401
c52f14d3 2402 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2403}
2404
1da177e4
LT
2405/*
2406 * wake_up_new_task - wake up a newly created task for the first time.
2407 *
2408 * This function will do some initial scheduler statistics housekeeping
2409 * that must be done for every newly created context, then puts the task
2410 * on the runqueue and wakes it.
2411 */
3e51e3ed 2412void wake_up_new_task(struct task_struct *p)
1da177e4 2413{
eb580751 2414 struct rq_flags rf;
dd41f596 2415 struct rq *rq;
fabf318e 2416
eb580751 2417 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2418 p->state = TASK_RUNNING;
fabf318e
PZ
2419#ifdef CONFIG_SMP
2420 /*
2421 * Fork balancing, do it here and not earlier because:
3bd37062 2422 * - cpus_ptr can change in the fork path
d1ccc66d 2423 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2424 *
2425 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2426 * as we're not fully set-up yet.
fabf318e 2427 */
32e839dd 2428 p->recent_used_cpu = task_cpu(p);
e210bffd 2429 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2430#endif
b7fa30c9 2431 rq = __task_rq_lock(p, &rf);
4126bad6 2432 update_rq_clock(rq);
d0fe0b9c 2433 post_init_entity_util_avg(p);
0017d735 2434
7a57f32a 2435 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2436 trace_sched_wakeup_new(p);
a7558e01 2437 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2438#ifdef CONFIG_SMP
0aaafaab
PZ
2439 if (p->sched_class->task_woken) {
2440 /*
2441 * Nothing relies on rq->lock after this, so its fine to
2442 * drop it.
2443 */
d8ac8971 2444 rq_unpin_lock(rq, &rf);
efbbd05a 2445 p->sched_class->task_woken(rq, p);
d8ac8971 2446 rq_repin_lock(rq, &rf);
0aaafaab 2447 }
9a897c5a 2448#endif
eb580751 2449 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2450}
2451
e107be36
AK
2452#ifdef CONFIG_PREEMPT_NOTIFIERS
2453
b7203428 2454static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2455
2ecd9d29
PZ
2456void preempt_notifier_inc(void)
2457{
b7203428 2458 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2459}
2460EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2461
2462void preempt_notifier_dec(void)
2463{
b7203428 2464 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2465}
2466EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2467
e107be36 2468/**
80dd99b3 2469 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2470 * @notifier: notifier struct to register
e107be36
AK
2471 */
2472void preempt_notifier_register(struct preempt_notifier *notifier)
2473{
b7203428 2474 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2475 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2476
e107be36
AK
2477 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2478}
2479EXPORT_SYMBOL_GPL(preempt_notifier_register);
2480
2481/**
2482 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2483 * @notifier: notifier struct to unregister
e107be36 2484 *
d84525a8 2485 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2486 */
2487void preempt_notifier_unregister(struct preempt_notifier *notifier)
2488{
2489 hlist_del(&notifier->link);
2490}
2491EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2492
1cde2930 2493static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2494{
2495 struct preempt_notifier *notifier;
e107be36 2496
b67bfe0d 2497 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2498 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2499}
2500
1cde2930
PZ
2501static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2502{
b7203428 2503 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2504 __fire_sched_in_preempt_notifiers(curr);
2505}
2506
e107be36 2507static void
1cde2930
PZ
2508__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2509 struct task_struct *next)
e107be36
AK
2510{
2511 struct preempt_notifier *notifier;
e107be36 2512
b67bfe0d 2513 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2514 notifier->ops->sched_out(notifier, next);
2515}
2516
1cde2930
PZ
2517static __always_inline void
2518fire_sched_out_preempt_notifiers(struct task_struct *curr,
2519 struct task_struct *next)
2520{
b7203428 2521 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2522 __fire_sched_out_preempt_notifiers(curr, next);
2523}
2524
6d6bc0ad 2525#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2526
1cde2930 2527static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2528{
2529}
2530
1cde2930 2531static inline void
e107be36
AK
2532fire_sched_out_preempt_notifiers(struct task_struct *curr,
2533 struct task_struct *next)
2534{
2535}
2536
6d6bc0ad 2537#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2538
31cb1bc0 2539static inline void prepare_task(struct task_struct *next)
2540{
2541#ifdef CONFIG_SMP
2542 /*
2543 * Claim the task as running, we do this before switching to it
2544 * such that any running task will have this set.
2545 */
2546 next->on_cpu = 1;
2547#endif
2548}
2549
2550static inline void finish_task(struct task_struct *prev)
2551{
2552#ifdef CONFIG_SMP
2553 /*
2554 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2555 * We must ensure this doesn't happen until the switch is completely
2556 * finished.
2557 *
2558 * In particular, the load of prev->state in finish_task_switch() must
2559 * happen before this.
2560 *
2561 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2562 */
2563 smp_store_release(&prev->on_cpu, 0);
2564#endif
2565}
2566
269d5992
PZ
2567static inline void
2568prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2569{
269d5992
PZ
2570 /*
2571 * Since the runqueue lock will be released by the next
2572 * task (which is an invalid locking op but in the case
2573 * of the scheduler it's an obvious special-case), so we
2574 * do an early lockdep release here:
2575 */
2576 rq_unpin_lock(rq, rf);
2577 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2578#ifdef CONFIG_DEBUG_SPINLOCK
2579 /* this is a valid case when another task releases the spinlock */
269d5992 2580 rq->lock.owner = next;
31cb1bc0 2581#endif
269d5992
PZ
2582}
2583
2584static inline void finish_lock_switch(struct rq *rq)
2585{
31cb1bc0 2586 /*
2587 * If we are tracking spinlock dependencies then we have to
2588 * fix up the runqueue lock - which gets 'carried over' from
2589 * prev into current:
2590 */
2591 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2592 raw_spin_unlock_irq(&rq->lock);
2593}
2594
325ea10c
IM
2595/*
2596 * NOP if the arch has not defined these:
2597 */
2598
2599#ifndef prepare_arch_switch
2600# define prepare_arch_switch(next) do { } while (0)
2601#endif
2602
2603#ifndef finish_arch_post_lock_switch
2604# define finish_arch_post_lock_switch() do { } while (0)
2605#endif
2606
4866cde0
NP
2607/**
2608 * prepare_task_switch - prepare to switch tasks
2609 * @rq: the runqueue preparing to switch
421cee29 2610 * @prev: the current task that is being switched out
4866cde0
NP
2611 * @next: the task we are going to switch to.
2612 *
2613 * This is called with the rq lock held and interrupts off. It must
2614 * be paired with a subsequent finish_task_switch after the context
2615 * switch.
2616 *
2617 * prepare_task_switch sets up locking and calls architecture specific
2618 * hooks.
2619 */
e107be36
AK
2620static inline void
2621prepare_task_switch(struct rq *rq, struct task_struct *prev,
2622 struct task_struct *next)
4866cde0 2623{
0ed557aa 2624 kcov_prepare_switch(prev);
43148951 2625 sched_info_switch(rq, prev, next);
fe4b04fa 2626 perf_event_task_sched_out(prev, next);
d7822b1e 2627 rseq_preempt(prev);
e107be36 2628 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2629 prepare_task(next);
4866cde0
NP
2630 prepare_arch_switch(next);
2631}
2632
1da177e4
LT
2633/**
2634 * finish_task_switch - clean up after a task-switch
2635 * @prev: the thread we just switched away from.
2636 *
4866cde0
NP
2637 * finish_task_switch must be called after the context switch, paired
2638 * with a prepare_task_switch call before the context switch.
2639 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2640 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2641 *
2642 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2643 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2644 * with the lock held can cause deadlocks; see schedule() for
2645 * details.)
dfa50b60
ON
2646 *
2647 * The context switch have flipped the stack from under us and restored the
2648 * local variables which were saved when this task called schedule() in the
2649 * past. prev == current is still correct but we need to recalculate this_rq
2650 * because prev may have moved to another CPU.
1da177e4 2651 */
dfa50b60 2652static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2653 __releases(rq->lock)
2654{
dfa50b60 2655 struct rq *rq = this_rq();
1da177e4 2656 struct mm_struct *mm = rq->prev_mm;
55a101f8 2657 long prev_state;
1da177e4 2658
609ca066
PZ
2659 /*
2660 * The previous task will have left us with a preempt_count of 2
2661 * because it left us after:
2662 *
2663 * schedule()
2664 * preempt_disable(); // 1
2665 * __schedule()
2666 * raw_spin_lock_irq(&rq->lock) // 2
2667 *
2668 * Also, see FORK_PREEMPT_COUNT.
2669 */
e2bf1c4b
PZ
2670 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2671 "corrupted preempt_count: %s/%d/0x%x\n",
2672 current->comm, current->pid, preempt_count()))
2673 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2674
1da177e4
LT
2675 rq->prev_mm = NULL;
2676
2677 /*
2678 * A task struct has one reference for the use as "current".
c394cc9f 2679 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2680 * schedule one last time. The schedule call will never return, and
2681 * the scheduled task must drop that reference.
95913d97
PZ
2682 *
2683 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2684 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2685 * running on another CPU and we could rave with its RUNNING -> DEAD
2686 * transition, resulting in a double drop.
1da177e4 2687 */
55a101f8 2688 prev_state = prev->state;
bf9fae9f 2689 vtime_task_switch(prev);
a8d757ef 2690 perf_event_task_sched_in(prev, current);
31cb1bc0 2691 finish_task(prev);
2692 finish_lock_switch(rq);
01f23e16 2693 finish_arch_post_lock_switch();
0ed557aa 2694 kcov_finish_switch(current);
e8fa1362 2695
e107be36 2696 fire_sched_in_preempt_notifiers(current);
306e0604 2697 /*
70216e18
MD
2698 * When switching through a kernel thread, the loop in
2699 * membarrier_{private,global}_expedited() may have observed that
2700 * kernel thread and not issued an IPI. It is therefore possible to
2701 * schedule between user->kernel->user threads without passing though
2702 * switch_mm(). Membarrier requires a barrier after storing to
2703 * rq->curr, before returning to userspace, so provide them here:
2704 *
2705 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2706 * provided by mmdrop(),
2707 * - a sync_core for SYNC_CORE.
306e0604 2708 */
70216e18
MD
2709 if (mm) {
2710 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2711 mmdrop(mm);
70216e18 2712 }
1cef1150
PZ
2713 if (unlikely(prev_state == TASK_DEAD)) {
2714 if (prev->sched_class->task_dead)
2715 prev->sched_class->task_dead(prev);
68f24b08 2716
1cef1150
PZ
2717 /*
2718 * Remove function-return probe instances associated with this
2719 * task and put them back on the free list.
2720 */
2721 kprobe_flush_task(prev);
2722
2723 /* Task is done with its stack. */
2724 put_task_stack(prev);
2725
2726 put_task_struct(prev);
c6fd91f0 2727 }
99e5ada9 2728
de734f89 2729 tick_nohz_task_switch();
dfa50b60 2730 return rq;
1da177e4
LT
2731}
2732
3f029d3c
GH
2733#ifdef CONFIG_SMP
2734
3f029d3c 2735/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2736static void __balance_callback(struct rq *rq)
3f029d3c 2737{
e3fca9e7
PZ
2738 struct callback_head *head, *next;
2739 void (*func)(struct rq *rq);
2740 unsigned long flags;
3f029d3c 2741
e3fca9e7
PZ
2742 raw_spin_lock_irqsave(&rq->lock, flags);
2743 head = rq->balance_callback;
2744 rq->balance_callback = NULL;
2745 while (head) {
2746 func = (void (*)(struct rq *))head->func;
2747 next = head->next;
2748 head->next = NULL;
2749 head = next;
3f029d3c 2750
e3fca9e7 2751 func(rq);
3f029d3c 2752 }
e3fca9e7
PZ
2753 raw_spin_unlock_irqrestore(&rq->lock, flags);
2754}
2755
2756static inline void balance_callback(struct rq *rq)
2757{
2758 if (unlikely(rq->balance_callback))
2759 __balance_callback(rq);
3f029d3c
GH
2760}
2761
2762#else
da19ab51 2763
e3fca9e7 2764static inline void balance_callback(struct rq *rq)
3f029d3c 2765{
1da177e4
LT
2766}
2767
3f029d3c
GH
2768#endif
2769
1da177e4
LT
2770/**
2771 * schedule_tail - first thing a freshly forked thread must call.
2772 * @prev: the thread we just switched away from.
2773 */
722a9f92 2774asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2775 __releases(rq->lock)
2776{
1a43a14a 2777 struct rq *rq;
da19ab51 2778
609ca066
PZ
2779 /*
2780 * New tasks start with FORK_PREEMPT_COUNT, see there and
2781 * finish_task_switch() for details.
2782 *
2783 * finish_task_switch() will drop rq->lock() and lower preempt_count
2784 * and the preempt_enable() will end up enabling preemption (on
2785 * PREEMPT_COUNT kernels).
2786 */
2787
dfa50b60 2788 rq = finish_task_switch(prev);
e3fca9e7 2789 balance_callback(rq);
1a43a14a 2790 preempt_enable();
70b97a7f 2791
1da177e4 2792 if (current->set_child_tid)
b488893a 2793 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
2794
2795 calculate_sigpending();
1da177e4
LT
2796}
2797
2798/*
dfa50b60 2799 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2800 */
04936948 2801static __always_inline struct rq *
70b97a7f 2802context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2803 struct task_struct *next, struct rq_flags *rf)
1da177e4 2804{
dd41f596 2805 struct mm_struct *mm, *oldmm;
1da177e4 2806
e107be36 2807 prepare_task_switch(rq, prev, next);
fe4b04fa 2808
dd41f596
IM
2809 mm = next->mm;
2810 oldmm = prev->active_mm;
9226d125
ZA
2811 /*
2812 * For paravirt, this is coupled with an exit in switch_to to
2813 * combine the page table reload and the switch backend into
2814 * one hypercall.
2815 */
224101ed 2816 arch_start_context_switch(prev);
9226d125 2817
306e0604
MD
2818 /*
2819 * If mm is non-NULL, we pass through switch_mm(). If mm is
2820 * NULL, we will pass through mmdrop() in finish_task_switch().
2821 * Both of these contain the full memory barrier required by
2822 * membarrier after storing to rq->curr, before returning to
2823 * user-space.
2824 */
31915ab4 2825 if (!mm) {
1da177e4 2826 next->active_mm = oldmm;
f1f10076 2827 mmgrab(oldmm);
1da177e4
LT
2828 enter_lazy_tlb(oldmm, next);
2829 } else
f98db601 2830 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2831
31915ab4 2832 if (!prev->mm) {
1da177e4 2833 prev->active_mm = NULL;
1da177e4
LT
2834 rq->prev_mm = oldmm;
2835 }
92509b73 2836
cb42c9a3 2837 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2838
269d5992 2839 prepare_lock_switch(rq, next, rf);
1da177e4
LT
2840
2841 /* Here we just switch the register state and the stack. */
2842 switch_to(prev, next, prev);
dd41f596 2843 barrier();
dfa50b60
ON
2844
2845 return finish_task_switch(prev);
1da177e4
LT
2846}
2847
2848/*
1c3e8264 2849 * nr_running and nr_context_switches:
1da177e4
LT
2850 *
2851 * externally visible scheduler statistics: current number of runnable
1c3e8264 2852 * threads, total number of context switches performed since bootup.
1da177e4
LT
2853 */
2854unsigned long nr_running(void)
2855{
2856 unsigned long i, sum = 0;
2857
2858 for_each_online_cpu(i)
2859 sum += cpu_rq(i)->nr_running;
2860
2861 return sum;
f711f609 2862}
1da177e4 2863
2ee507c4 2864/*
d1ccc66d 2865 * Check if only the current task is running on the CPU.
00cc1633
DD
2866 *
2867 * Caution: this function does not check that the caller has disabled
2868 * preemption, thus the result might have a time-of-check-to-time-of-use
2869 * race. The caller is responsible to use it correctly, for example:
2870 *
dfcb245e 2871 * - from a non-preemptible section (of course)
00cc1633
DD
2872 *
2873 * - from a thread that is bound to a single CPU
2874 *
2875 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2876 */
2877bool single_task_running(void)
2878{
00cc1633 2879 return raw_rq()->nr_running == 1;
2ee507c4
TC
2880}
2881EXPORT_SYMBOL(single_task_running);
2882
1da177e4 2883unsigned long long nr_context_switches(void)
46cb4b7c 2884{
cc94abfc
SR
2885 int i;
2886 unsigned long long sum = 0;
46cb4b7c 2887
0a945022 2888 for_each_possible_cpu(i)
1da177e4 2889 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2890
1da177e4
LT
2891 return sum;
2892}
483b4ee6 2893
145d952a
DL
2894/*
2895 * Consumers of these two interfaces, like for example the cpuidle menu
2896 * governor, are using nonsensical data. Preferring shallow idle state selection
2897 * for a CPU that has IO-wait which might not even end up running the task when
2898 * it does become runnable.
2899 */
2900
2901unsigned long nr_iowait_cpu(int cpu)
2902{
2903 return atomic_read(&cpu_rq(cpu)->nr_iowait);
2904}
2905
e33a9bba
TH
2906/*
2907 * IO-wait accounting, and how its mostly bollocks (on SMP).
2908 *
2909 * The idea behind IO-wait account is to account the idle time that we could
2910 * have spend running if it were not for IO. That is, if we were to improve the
2911 * storage performance, we'd have a proportional reduction in IO-wait time.
2912 *
2913 * This all works nicely on UP, where, when a task blocks on IO, we account
2914 * idle time as IO-wait, because if the storage were faster, it could've been
2915 * running and we'd not be idle.
2916 *
2917 * This has been extended to SMP, by doing the same for each CPU. This however
2918 * is broken.
2919 *
2920 * Imagine for instance the case where two tasks block on one CPU, only the one
2921 * CPU will have IO-wait accounted, while the other has regular idle. Even
2922 * though, if the storage were faster, both could've ran at the same time,
2923 * utilising both CPUs.
2924 *
2925 * This means, that when looking globally, the current IO-wait accounting on
2926 * SMP is a lower bound, by reason of under accounting.
2927 *
2928 * Worse, since the numbers are provided per CPU, they are sometimes
2929 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2930 * associated with any one particular CPU, it can wake to another CPU than it
2931 * blocked on. This means the per CPU IO-wait number is meaningless.
2932 *
2933 * Task CPU affinities can make all that even more 'interesting'.
2934 */
2935
1da177e4
LT
2936unsigned long nr_iowait(void)
2937{
2938 unsigned long i, sum = 0;
483b4ee6 2939
0a945022 2940 for_each_possible_cpu(i)
145d952a 2941 sum += nr_iowait_cpu(i);
46cb4b7c 2942
1da177e4
LT
2943 return sum;
2944}
483b4ee6 2945
dd41f596 2946#ifdef CONFIG_SMP
8a0be9ef 2947
46cb4b7c 2948/*
38022906
PZ
2949 * sched_exec - execve() is a valuable balancing opportunity, because at
2950 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2951 */
38022906 2952void sched_exec(void)
46cb4b7c 2953{
38022906 2954 struct task_struct *p = current;
1da177e4 2955 unsigned long flags;
0017d735 2956 int dest_cpu;
46cb4b7c 2957
8f42ced9 2958 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2959 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2960 if (dest_cpu == smp_processor_id())
2961 goto unlock;
38022906 2962
8f42ced9 2963 if (likely(cpu_active(dest_cpu))) {
969c7921 2964 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2965
8f42ced9
PZ
2966 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2967 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2968 return;
2969 }
0017d735 2970unlock:
8f42ced9 2971 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2972}
dd41f596 2973
1da177e4
LT
2974#endif
2975
1da177e4 2976DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2977DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2978
2979EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2980EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2981
6075620b
GG
2982/*
2983 * The function fair_sched_class.update_curr accesses the struct curr
2984 * and its field curr->exec_start; when called from task_sched_runtime(),
2985 * we observe a high rate of cache misses in practice.
2986 * Prefetching this data results in improved performance.
2987 */
2988static inline void prefetch_curr_exec_start(struct task_struct *p)
2989{
2990#ifdef CONFIG_FAIR_GROUP_SCHED
2991 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2992#else
2993 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2994#endif
2995 prefetch(curr);
2996 prefetch(&curr->exec_start);
2997}
2998
c5f8d995
HS
2999/*
3000 * Return accounted runtime for the task.
3001 * In case the task is currently running, return the runtime plus current's
3002 * pending runtime that have not been accounted yet.
3003 */
3004unsigned long long task_sched_runtime(struct task_struct *p)
3005{
eb580751 3006 struct rq_flags rf;
c5f8d995 3007 struct rq *rq;
6e998916 3008 u64 ns;
c5f8d995 3009
911b2898
PZ
3010#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3011 /*
97fb7a0a 3012 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3013 * So we have a optimization chance when the task's delta_exec is 0.
3014 * Reading ->on_cpu is racy, but this is ok.
3015 *
d1ccc66d
IM
3016 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3017 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3018 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3019 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3020 * been accounted, so we're correct here as well.
911b2898 3021 */
da0c1e65 3022 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3023 return p->se.sum_exec_runtime;
3024#endif
3025
eb580751 3026 rq = task_rq_lock(p, &rf);
6e998916
SG
3027 /*
3028 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3029 * project cycles that may never be accounted to this
3030 * thread, breaking clock_gettime().
3031 */
3032 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3033 prefetch_curr_exec_start(p);
6e998916
SG
3034 update_rq_clock(rq);
3035 p->sched_class->update_curr(rq);
3036 }
3037 ns = p->se.sum_exec_runtime;
eb580751 3038 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3039
3040 return ns;
3041}
48f24c4d 3042
7835b98b
CL
3043/*
3044 * This function gets called by the timer code, with HZ frequency.
3045 * We call it with interrupts disabled.
7835b98b
CL
3046 */
3047void scheduler_tick(void)
3048{
7835b98b
CL
3049 int cpu = smp_processor_id();
3050 struct rq *rq = cpu_rq(cpu);
dd41f596 3051 struct task_struct *curr = rq->curr;
8a8c69c3 3052 struct rq_flags rf;
3e51f33f
PZ
3053
3054 sched_clock_tick();
dd41f596 3055
8a8c69c3
PZ
3056 rq_lock(rq, &rf);
3057
3e51f33f 3058 update_rq_clock(rq);
fa85ae24 3059 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3060 calc_global_load_tick(rq);
eb414681 3061 psi_task_tick(rq);
8a8c69c3
PZ
3062
3063 rq_unlock(rq, &rf);
7835b98b 3064
e9d2b064 3065 perf_event_task_tick();
e220d2dc 3066
e418e1c2 3067#ifdef CONFIG_SMP
6eb57e0d 3068 rq->idle_balance = idle_cpu(cpu);
7caff66f 3069 trigger_load_balance(rq);
e418e1c2 3070#endif
1da177e4
LT
3071}
3072
265f22a9 3073#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3074
3075struct tick_work {
3076 int cpu;
3077 struct delayed_work work;
3078};
3079
3080static struct tick_work __percpu *tick_work_cpu;
3081
3082static void sched_tick_remote(struct work_struct *work)
3083{
3084 struct delayed_work *dwork = to_delayed_work(work);
3085 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3086 int cpu = twork->cpu;
3087 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3088 struct task_struct *curr;
d84b3131 3089 struct rq_flags rf;
d9c0ffca 3090 u64 delta;
d84b3131
FW
3091
3092 /*
3093 * Handle the tick only if it appears the remote CPU is running in full
3094 * dynticks mode. The check is racy by nature, but missing a tick or
3095 * having one too much is no big deal because the scheduler tick updates
3096 * statistics and checks timeslices in a time-independent way, regardless
3097 * of when exactly it is running.
3098 */
d9c0ffca
FW
3099 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3100 goto out_requeue;
d84b3131 3101
d9c0ffca
FW
3102 rq_lock_irq(rq, &rf);
3103 curr = rq->curr;
3104 if (is_idle_task(curr))
3105 goto out_unlock;
d84b3131 3106
d9c0ffca
FW
3107 update_rq_clock(rq);
3108 delta = rq_clock_task(rq) - curr->se.exec_start;
3109
3110 /*
3111 * Make sure the next tick runs within a reasonable
3112 * amount of time.
3113 */
3114 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3115 curr->sched_class->task_tick(rq, curr, 0);
3116
3117out_unlock:
3118 rq_unlock_irq(rq, &rf);
d84b3131 3119
d9c0ffca 3120out_requeue:
d84b3131
FW
3121 /*
3122 * Run the remote tick once per second (1Hz). This arbitrary
3123 * frequency is large enough to avoid overload but short enough
3124 * to keep scheduler internal stats reasonably up to date.
3125 */
3126 queue_delayed_work(system_unbound_wq, dwork, HZ);
3127}
3128
3129static void sched_tick_start(int cpu)
3130{
3131 struct tick_work *twork;
3132
3133 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3134 return;
3135
3136 WARN_ON_ONCE(!tick_work_cpu);
3137
3138 twork = per_cpu_ptr(tick_work_cpu, cpu);
3139 twork->cpu = cpu;
3140 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3141 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3142}
3143
3144#ifdef CONFIG_HOTPLUG_CPU
3145static void sched_tick_stop(int cpu)
3146{
3147 struct tick_work *twork;
3148
3149 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3150 return;
3151
3152 WARN_ON_ONCE(!tick_work_cpu);
3153
3154 twork = per_cpu_ptr(tick_work_cpu, cpu);
3155 cancel_delayed_work_sync(&twork->work);
3156}
3157#endif /* CONFIG_HOTPLUG_CPU */
3158
3159int __init sched_tick_offload_init(void)
3160{
3161 tick_work_cpu = alloc_percpu(struct tick_work);
3162 BUG_ON(!tick_work_cpu);
3163
3164 return 0;
3165}
3166
3167#else /* !CONFIG_NO_HZ_FULL */
3168static inline void sched_tick_start(int cpu) { }
3169static inline void sched_tick_stop(int cpu) { }
265f22a9 3170#endif
1da177e4 3171
7e49fcce 3172#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3173 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3174/*
3175 * If the value passed in is equal to the current preempt count
3176 * then we just disabled preemption. Start timing the latency.
3177 */
3178static inline void preempt_latency_start(int val)
3179{
3180 if (preempt_count() == val) {
3181 unsigned long ip = get_lock_parent_ip();
3182#ifdef CONFIG_DEBUG_PREEMPT
3183 current->preempt_disable_ip = ip;
3184#endif
3185 trace_preempt_off(CALLER_ADDR0, ip);
3186 }
3187}
7e49fcce 3188
edafe3a5 3189void preempt_count_add(int val)
1da177e4 3190{
6cd8a4bb 3191#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3192 /*
3193 * Underflow?
3194 */
9a11b49a
IM
3195 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3196 return;
6cd8a4bb 3197#endif
bdb43806 3198 __preempt_count_add(val);
6cd8a4bb 3199#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3200 /*
3201 * Spinlock count overflowing soon?
3202 */
33859f7f
MOS
3203 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3204 PREEMPT_MASK - 10);
6cd8a4bb 3205#endif
47252cfb 3206 preempt_latency_start(val);
1da177e4 3207}
bdb43806 3208EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3209NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3210
47252cfb
SR
3211/*
3212 * If the value passed in equals to the current preempt count
3213 * then we just enabled preemption. Stop timing the latency.
3214 */
3215static inline void preempt_latency_stop(int val)
3216{
3217 if (preempt_count() == val)
3218 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3219}
3220
edafe3a5 3221void preempt_count_sub(int val)
1da177e4 3222{
6cd8a4bb 3223#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3224 /*
3225 * Underflow?
3226 */
01e3eb82 3227 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3228 return;
1da177e4
LT
3229 /*
3230 * Is the spinlock portion underflowing?
3231 */
9a11b49a
IM
3232 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3233 !(preempt_count() & PREEMPT_MASK)))
3234 return;
6cd8a4bb 3235#endif
9a11b49a 3236
47252cfb 3237 preempt_latency_stop(val);
bdb43806 3238 __preempt_count_sub(val);
1da177e4 3239}
bdb43806 3240EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3241NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3242
47252cfb
SR
3243#else
3244static inline void preempt_latency_start(int val) { }
3245static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3246#endif
3247
59ddbcb2
IM
3248static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3249{
3250#ifdef CONFIG_DEBUG_PREEMPT
3251 return p->preempt_disable_ip;
3252#else
3253 return 0;
3254#endif
3255}
3256
1da177e4 3257/*
dd41f596 3258 * Print scheduling while atomic bug:
1da177e4 3259 */
dd41f596 3260static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3261{
d1c6d149
VN
3262 /* Save this before calling printk(), since that will clobber it */
3263 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3264
664dfa65
DJ
3265 if (oops_in_progress)
3266 return;
3267
3df0fc5b
PZ
3268 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3269 prev->comm, prev->pid, preempt_count());
838225b4 3270
dd41f596 3271 debug_show_held_locks(prev);
e21f5b15 3272 print_modules();
dd41f596
IM
3273 if (irqs_disabled())
3274 print_irqtrace_events(prev);
d1c6d149
VN
3275 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3276 && in_atomic_preempt_off()) {
8f47b187 3277 pr_err("Preemption disabled at:");
d1c6d149 3278 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3279 pr_cont("\n");
3280 }
748c7201
DBO
3281 if (panic_on_warn)
3282 panic("scheduling while atomic\n");
3283
6135fc1e 3284 dump_stack();
373d4d09 3285 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3286}
1da177e4 3287
dd41f596
IM
3288/*
3289 * Various schedule()-time debugging checks and statistics:
3290 */
3291static inline void schedule_debug(struct task_struct *prev)
3292{
0d9e2632 3293#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3294 if (task_stack_end_corrupted(prev))
3295 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3296#endif
b99def8b 3297
1dc0fffc 3298 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3299 __schedule_bug(prev);
1dc0fffc
PZ
3300 preempt_count_set(PREEMPT_DISABLED);
3301 }
b3fbab05 3302 rcu_sleep_check();
dd41f596 3303
1da177e4
LT
3304 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3305
ae92882e 3306 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3307}
3308
3309/*
3310 * Pick up the highest-prio task:
3311 */
3312static inline struct task_struct *
d8ac8971 3313pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3314{
49ee5768 3315 const struct sched_class *class;
dd41f596 3316 struct task_struct *p;
1da177e4
LT
3317
3318 /*
0ba87bb2
PZ
3319 * Optimization: we know that if all tasks are in the fair class we can
3320 * call that function directly, but only if the @prev task wasn't of a
3321 * higher scheduling class, because otherwise those loose the
3322 * opportunity to pull in more work from other CPUs.
1da177e4 3323 */
0ba87bb2
PZ
3324 if (likely((prev->sched_class == &idle_sched_class ||
3325 prev->sched_class == &fair_sched_class) &&
3326 rq->nr_running == rq->cfs.h_nr_running)) {
3327
d8ac8971 3328 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3329 if (unlikely(p == RETRY_TASK))
3330 goto again;
3331
d1ccc66d 3332 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3333 if (unlikely(!p))
d8ac8971 3334 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3335
3336 return p;
1da177e4
LT
3337 }
3338
37e117c0 3339again:
34f971f6 3340 for_each_class(class) {
d8ac8971 3341 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3342 if (p) {
3343 if (unlikely(p == RETRY_TASK))
3344 goto again;
dd41f596 3345 return p;
37e117c0 3346 }
dd41f596 3347 }
34f971f6 3348
d1ccc66d
IM
3349 /* The idle class should always have a runnable task: */
3350 BUG();
dd41f596 3351}
1da177e4 3352
dd41f596 3353/*
c259e01a 3354 * __schedule() is the main scheduler function.
edde96ea
PE
3355 *
3356 * The main means of driving the scheduler and thus entering this function are:
3357 *
3358 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3359 *
3360 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3361 * paths. For example, see arch/x86/entry_64.S.
3362 *
3363 * To drive preemption between tasks, the scheduler sets the flag in timer
3364 * interrupt handler scheduler_tick().
3365 *
3366 * 3. Wakeups don't really cause entry into schedule(). They add a
3367 * task to the run-queue and that's it.
3368 *
3369 * Now, if the new task added to the run-queue preempts the current
3370 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3371 * called on the nearest possible occasion:
3372 *
3373 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3374 *
3375 * - in syscall or exception context, at the next outmost
3376 * preempt_enable(). (this might be as soon as the wake_up()'s
3377 * spin_unlock()!)
3378 *
3379 * - in IRQ context, return from interrupt-handler to
3380 * preemptible context
3381 *
3382 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3383 * then at the next:
3384 *
3385 * - cond_resched() call
3386 * - explicit schedule() call
3387 * - return from syscall or exception to user-space
3388 * - return from interrupt-handler to user-space
bfd9b2b5 3389 *
b30f0e3f 3390 * WARNING: must be called with preemption disabled!
dd41f596 3391 */
499d7955 3392static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3393{
3394 struct task_struct *prev, *next;
67ca7bde 3395 unsigned long *switch_count;
d8ac8971 3396 struct rq_flags rf;
dd41f596 3397 struct rq *rq;
31656519 3398 int cpu;
dd41f596 3399
dd41f596
IM
3400 cpu = smp_processor_id();
3401 rq = cpu_rq(cpu);
dd41f596 3402 prev = rq->curr;
dd41f596 3403
dd41f596 3404 schedule_debug(prev);
1da177e4 3405
31656519 3406 if (sched_feat(HRTICK))
f333fdc9 3407 hrtick_clear(rq);
8f4d37ec 3408
46a5d164 3409 local_irq_disable();
bcbfdd01 3410 rcu_note_context_switch(preempt);
46a5d164 3411
e0acd0a6
ON
3412 /*
3413 * Make sure that signal_pending_state()->signal_pending() below
3414 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3415 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3416 *
3417 * The membarrier system call requires a full memory barrier
3418 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3419 */
8a8c69c3 3420 rq_lock(rq, &rf);
d89e588c 3421 smp_mb__after_spinlock();
1da177e4 3422
d1ccc66d
IM
3423 /* Promote REQ to ACT */
3424 rq->clock_update_flags <<= 1;
bce4dc80 3425 update_rq_clock(rq);
9edfbfed 3426
246d86b5 3427 switch_count = &prev->nivcsw;
fc13aeba 3428 if (!preempt && prev->state) {
34ec35ad 3429 if (signal_pending_state(prev->state, prev)) {
1da177e4 3430 prev->state = TASK_RUNNING;
21aa9af0 3431 } else {
bce4dc80 3432 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 3433
e33a9bba
TH
3434 if (prev->in_iowait) {
3435 atomic_inc(&rq->nr_iowait);
3436 delayacct_blkio_start();
3437 }
21aa9af0 3438 }
dd41f596 3439 switch_count = &prev->nvcsw;
1da177e4
LT
3440 }
3441
d8ac8971 3442 next = pick_next_task(rq, prev, &rf);
f26f9aff 3443 clear_tsk_need_resched(prev);
f27dde8d 3444 clear_preempt_need_resched();
1da177e4 3445
1da177e4 3446 if (likely(prev != next)) {
1da177e4
LT
3447 rq->nr_switches++;
3448 rq->curr = next;
22e4ebb9
MD
3449 /*
3450 * The membarrier system call requires each architecture
3451 * to have a full memory barrier after updating
306e0604
MD
3452 * rq->curr, before returning to user-space.
3453 *
3454 * Here are the schemes providing that barrier on the
3455 * various architectures:
3456 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3457 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3458 * - finish_lock_switch() for weakly-ordered
3459 * architectures where spin_unlock is a full barrier,
3460 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3461 * is a RELEASE barrier),
22e4ebb9 3462 */
1da177e4
LT
3463 ++*switch_count;
3464
c73464b1 3465 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3466
3467 /* Also unlocks the rq: */
3468 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3469 } else {
cb42c9a3 3470 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3471 rq_unlock_irq(rq, &rf);
cbce1a68 3472 }
1da177e4 3473
e3fca9e7 3474 balance_callback(rq);
1da177e4 3475}
c259e01a 3476
9af6528e
PZ
3477void __noreturn do_task_dead(void)
3478{
d1ccc66d 3479 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3480 set_special_state(TASK_DEAD);
d1ccc66d
IM
3481
3482 /* Tell freezer to ignore us: */
3483 current->flags |= PF_NOFREEZE;
3484
9af6528e
PZ
3485 __schedule(false);
3486 BUG();
d1ccc66d
IM
3487
3488 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3489 for (;;)
d1ccc66d 3490 cpu_relax();
9af6528e
PZ
3491}
3492
9c40cef2
TG
3493static inline void sched_submit_work(struct task_struct *tsk)
3494{
3c7d5184 3495 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2 3496 return;
6d25be57
TG
3497
3498 /*
3499 * If a worker went to sleep, notify and ask workqueue whether
3500 * it wants to wake up a task to maintain concurrency.
3501 * As this function is called inside the schedule() context,
3502 * we disable preemption to avoid it calling schedule() again
3503 * in the possible wakeup of a kworker.
3504 */
3505 if (tsk->flags & PF_WQ_WORKER) {
3506 preempt_disable();
3507 wq_worker_sleeping(tsk);
3508 preempt_enable_no_resched();
3509 }
3510
9c40cef2
TG
3511 /*
3512 * If we are going to sleep and we have plugged IO queued,
3513 * make sure to submit it to avoid deadlocks.
3514 */
3515 if (blk_needs_flush_plug(tsk))
3516 blk_schedule_flush_plug(tsk);
3517}
3518
6d25be57
TG
3519static void sched_update_worker(struct task_struct *tsk)
3520{
3521 if (tsk->flags & PF_WQ_WORKER)
3522 wq_worker_running(tsk);
3523}
3524
722a9f92 3525asmlinkage __visible void __sched schedule(void)
c259e01a 3526{
9c40cef2
TG
3527 struct task_struct *tsk = current;
3528
3529 sched_submit_work(tsk);
bfd9b2b5 3530 do {
b30f0e3f 3531 preempt_disable();
fc13aeba 3532 __schedule(false);
b30f0e3f 3533 sched_preempt_enable_no_resched();
bfd9b2b5 3534 } while (need_resched());
6d25be57 3535 sched_update_worker(tsk);
c259e01a 3536}
1da177e4
LT
3537EXPORT_SYMBOL(schedule);
3538
8663effb
SRV
3539/*
3540 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3541 * state (have scheduled out non-voluntarily) by making sure that all
3542 * tasks have either left the run queue or have gone into user space.
3543 * As idle tasks do not do either, they must not ever be preempted
3544 * (schedule out non-voluntarily).
3545 *
3546 * schedule_idle() is similar to schedule_preempt_disable() except that it
3547 * never enables preemption because it does not call sched_submit_work().
3548 */
3549void __sched schedule_idle(void)
3550{
3551 /*
3552 * As this skips calling sched_submit_work(), which the idle task does
3553 * regardless because that function is a nop when the task is in a
3554 * TASK_RUNNING state, make sure this isn't used someplace that the
3555 * current task can be in any other state. Note, idle is always in the
3556 * TASK_RUNNING state.
3557 */
3558 WARN_ON_ONCE(current->state);
3559 do {
3560 __schedule(false);
3561 } while (need_resched());
3562}
3563
91d1aa43 3564#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3565asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3566{
3567 /*
3568 * If we come here after a random call to set_need_resched(),
3569 * or we have been woken up remotely but the IPI has not yet arrived,
3570 * we haven't yet exited the RCU idle mode. Do it here manually until
3571 * we find a better solution.
7cc78f8f
AL
3572 *
3573 * NB: There are buggy callers of this function. Ideally we
c467ea76 3574 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3575 * too frequently to make sense yet.
20ab65e3 3576 */
7cc78f8f 3577 enum ctx_state prev_state = exception_enter();
20ab65e3 3578 schedule();
7cc78f8f 3579 exception_exit(prev_state);
20ab65e3
FW
3580}
3581#endif
3582
c5491ea7
TG
3583/**
3584 * schedule_preempt_disabled - called with preemption disabled
3585 *
3586 * Returns with preemption disabled. Note: preempt_count must be 1
3587 */
3588void __sched schedule_preempt_disabled(void)
3589{
ba74c144 3590 sched_preempt_enable_no_resched();
c5491ea7
TG
3591 schedule();
3592 preempt_disable();
3593}
3594
06b1f808 3595static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3596{
3597 do {
47252cfb
SR
3598 /*
3599 * Because the function tracer can trace preempt_count_sub()
3600 * and it also uses preempt_enable/disable_notrace(), if
3601 * NEED_RESCHED is set, the preempt_enable_notrace() called
3602 * by the function tracer will call this function again and
3603 * cause infinite recursion.
3604 *
3605 * Preemption must be disabled here before the function
3606 * tracer can trace. Break up preempt_disable() into two
3607 * calls. One to disable preemption without fear of being
3608 * traced. The other to still record the preemption latency,
3609 * which can also be traced by the function tracer.
3610 */
499d7955 3611 preempt_disable_notrace();
47252cfb 3612 preempt_latency_start(1);
fc13aeba 3613 __schedule(true);
47252cfb 3614 preempt_latency_stop(1);
499d7955 3615 preempt_enable_no_resched_notrace();
a18b5d01
FW
3616
3617 /*
3618 * Check again in case we missed a preemption opportunity
3619 * between schedule and now.
3620 */
a18b5d01
FW
3621 } while (need_resched());
3622}
3623
1da177e4
LT
3624#ifdef CONFIG_PREEMPT
3625/*
2ed6e34f 3626 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3627 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3628 * occur there and call schedule directly.
3629 */
722a9f92 3630asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3631{
1da177e4
LT
3632 /*
3633 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3634 * we do not want to preempt the current task. Just return..
1da177e4 3635 */
fbb00b56 3636 if (likely(!preemptible()))
1da177e4
LT
3637 return;
3638
a18b5d01 3639 preempt_schedule_common();
1da177e4 3640}
376e2424 3641NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3642EXPORT_SYMBOL(preempt_schedule);
009f60e2 3643
009f60e2 3644/**
4eaca0a8 3645 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3646 *
3647 * The tracing infrastructure uses preempt_enable_notrace to prevent
3648 * recursion and tracing preempt enabling caused by the tracing
3649 * infrastructure itself. But as tracing can happen in areas coming
3650 * from userspace or just about to enter userspace, a preempt enable
3651 * can occur before user_exit() is called. This will cause the scheduler
3652 * to be called when the system is still in usermode.
3653 *
3654 * To prevent this, the preempt_enable_notrace will use this function
3655 * instead of preempt_schedule() to exit user context if needed before
3656 * calling the scheduler.
3657 */
4eaca0a8 3658asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3659{
3660 enum ctx_state prev_ctx;
3661
3662 if (likely(!preemptible()))
3663 return;
3664
3665 do {
47252cfb
SR
3666 /*
3667 * Because the function tracer can trace preempt_count_sub()
3668 * and it also uses preempt_enable/disable_notrace(), if
3669 * NEED_RESCHED is set, the preempt_enable_notrace() called
3670 * by the function tracer will call this function again and
3671 * cause infinite recursion.
3672 *
3673 * Preemption must be disabled here before the function
3674 * tracer can trace. Break up preempt_disable() into two
3675 * calls. One to disable preemption without fear of being
3676 * traced. The other to still record the preemption latency,
3677 * which can also be traced by the function tracer.
3678 */
3d8f74dd 3679 preempt_disable_notrace();
47252cfb 3680 preempt_latency_start(1);
009f60e2
ON
3681 /*
3682 * Needs preempt disabled in case user_exit() is traced
3683 * and the tracer calls preempt_enable_notrace() causing
3684 * an infinite recursion.
3685 */
3686 prev_ctx = exception_enter();
fc13aeba 3687 __schedule(true);
009f60e2
ON
3688 exception_exit(prev_ctx);
3689
47252cfb 3690 preempt_latency_stop(1);
3d8f74dd 3691 preempt_enable_no_resched_notrace();
009f60e2
ON
3692 } while (need_resched());
3693}
4eaca0a8 3694EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3695
32e475d7 3696#endif /* CONFIG_PREEMPT */
1da177e4
LT
3697
3698/*
2ed6e34f 3699 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3700 * off of irq context.
3701 * Note, that this is called and return with irqs disabled. This will
3702 * protect us against recursive calling from irq.
3703 */
722a9f92 3704asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3705{
b22366cd 3706 enum ctx_state prev_state;
6478d880 3707
2ed6e34f 3708 /* Catch callers which need to be fixed */
f27dde8d 3709 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3710
b22366cd
FW
3711 prev_state = exception_enter();
3712
3a5c359a 3713 do {
3d8f74dd 3714 preempt_disable();
3a5c359a 3715 local_irq_enable();
fc13aeba 3716 __schedule(true);
3a5c359a 3717 local_irq_disable();
3d8f74dd 3718 sched_preempt_enable_no_resched();
5ed0cec0 3719 } while (need_resched());
b22366cd
FW
3720
3721 exception_exit(prev_state);
1da177e4
LT
3722}
3723
ac6424b9 3724int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3725 void *key)
1da177e4 3726{
63859d4f 3727 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3728}
1da177e4
LT
3729EXPORT_SYMBOL(default_wake_function);
3730
b29739f9
IM
3731#ifdef CONFIG_RT_MUTEXES
3732
acd58620
PZ
3733static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3734{
3735 if (pi_task)
3736 prio = min(prio, pi_task->prio);
3737
3738 return prio;
3739}
3740
3741static inline int rt_effective_prio(struct task_struct *p, int prio)
3742{
3743 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3744
3745 return __rt_effective_prio(pi_task, prio);
3746}
3747
b29739f9
IM
3748/*
3749 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3750 * @p: task to boost
3751 * @pi_task: donor task
b29739f9
IM
3752 *
3753 * This function changes the 'effective' priority of a task. It does
3754 * not touch ->normal_prio like __setscheduler().
3755 *
c365c292
TG
3756 * Used by the rt_mutex code to implement priority inheritance
3757 * logic. Call site only calls if the priority of the task changed.
b29739f9 3758 */
acd58620 3759void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3760{
acd58620 3761 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3762 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3763 const struct sched_class *prev_class;
eb580751
PZ
3764 struct rq_flags rf;
3765 struct rq *rq;
b29739f9 3766
acd58620
PZ
3767 /* XXX used to be waiter->prio, not waiter->task->prio */
3768 prio = __rt_effective_prio(pi_task, p->normal_prio);
3769
3770 /*
3771 * If nothing changed; bail early.
3772 */
3773 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3774 return;
b29739f9 3775
eb580751 3776 rq = __task_rq_lock(p, &rf);
80f5c1b8 3777 update_rq_clock(rq);
acd58620
PZ
3778 /*
3779 * Set under pi_lock && rq->lock, such that the value can be used under
3780 * either lock.
3781 *
3782 * Note that there is loads of tricky to make this pointer cache work
3783 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3784 * ensure a task is de-boosted (pi_task is set to NULL) before the
3785 * task is allowed to run again (and can exit). This ensures the pointer
3786 * points to a blocked task -- which guaratees the task is present.
3787 */
3788 p->pi_top_task = pi_task;
3789
3790 /*
3791 * For FIFO/RR we only need to set prio, if that matches we're done.
3792 */
3793 if (prio == p->prio && !dl_prio(prio))
3794 goto out_unlock;
b29739f9 3795
1c4dd99b
TG
3796 /*
3797 * Idle task boosting is a nono in general. There is one
3798 * exception, when PREEMPT_RT and NOHZ is active:
3799 *
3800 * The idle task calls get_next_timer_interrupt() and holds
3801 * the timer wheel base->lock on the CPU and another CPU wants
3802 * to access the timer (probably to cancel it). We can safely
3803 * ignore the boosting request, as the idle CPU runs this code
3804 * with interrupts disabled and will complete the lock
3805 * protected section without being interrupted. So there is no
3806 * real need to boost.
3807 */
3808 if (unlikely(p == rq->idle)) {
3809 WARN_ON(p != rq->curr);
3810 WARN_ON(p->pi_blocked_on);
3811 goto out_unlock;
3812 }
3813
b91473ff 3814 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3815 oldprio = p->prio;
ff77e468
PZ
3816
3817 if (oldprio == prio)
3818 queue_flag &= ~DEQUEUE_MOVE;
3819
83ab0aa0 3820 prev_class = p->sched_class;
da0c1e65 3821 queued = task_on_rq_queued(p);
051a1d1a 3822 running = task_current(rq, p);
da0c1e65 3823 if (queued)
ff77e468 3824 dequeue_task(rq, p, queue_flag);
0e1f3483 3825 if (running)
f3cd1c4e 3826 put_prev_task(rq, p);
dd41f596 3827
2d3d891d
DF
3828 /*
3829 * Boosting condition are:
3830 * 1. -rt task is running and holds mutex A
3831 * --> -dl task blocks on mutex A
3832 *
3833 * 2. -dl task is running and holds mutex A
3834 * --> -dl task blocks on mutex A and could preempt the
3835 * running task
3836 */
3837 if (dl_prio(prio)) {
466af29b
ON
3838 if (!dl_prio(p->normal_prio) ||
3839 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3840 p->dl.dl_boosted = 1;
ff77e468 3841 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3842 } else
3843 p->dl.dl_boosted = 0;
aab03e05 3844 p->sched_class = &dl_sched_class;
2d3d891d
DF
3845 } else if (rt_prio(prio)) {
3846 if (dl_prio(oldprio))
3847 p->dl.dl_boosted = 0;
3848 if (oldprio < prio)
ff77e468 3849 queue_flag |= ENQUEUE_HEAD;
dd41f596 3850 p->sched_class = &rt_sched_class;
2d3d891d
DF
3851 } else {
3852 if (dl_prio(oldprio))
3853 p->dl.dl_boosted = 0;
746db944
BS
3854 if (rt_prio(oldprio))
3855 p->rt.timeout = 0;
dd41f596 3856 p->sched_class = &fair_sched_class;
2d3d891d 3857 }
dd41f596 3858
b29739f9
IM
3859 p->prio = prio;
3860
da0c1e65 3861 if (queued)
ff77e468 3862 enqueue_task(rq, p, queue_flag);
a399d233 3863 if (running)
b2bf6c31 3864 set_curr_task(rq, p);
cb469845 3865
da7a735e 3866 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3867out_unlock:
d1ccc66d
IM
3868 /* Avoid rq from going away on us: */
3869 preempt_disable();
eb580751 3870 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3871
3872 balance_callback(rq);
3873 preempt_enable();
b29739f9 3874}
acd58620
PZ
3875#else
3876static inline int rt_effective_prio(struct task_struct *p, int prio)
3877{
3878 return prio;
3879}
b29739f9 3880#endif
d50dde5a 3881
36c8b586 3882void set_user_nice(struct task_struct *p, long nice)
1da177e4 3883{
49bd21ef
PZ
3884 bool queued, running;
3885 int old_prio, delta;
eb580751 3886 struct rq_flags rf;
70b97a7f 3887 struct rq *rq;
1da177e4 3888
75e45d51 3889 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3890 return;
3891 /*
3892 * We have to be careful, if called from sys_setpriority(),
3893 * the task might be in the middle of scheduling on another CPU.
3894 */
eb580751 3895 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3896 update_rq_clock(rq);
3897
1da177e4
LT
3898 /*
3899 * The RT priorities are set via sched_setscheduler(), but we still
3900 * allow the 'normal' nice value to be set - but as expected
3901 * it wont have any effect on scheduling until the task is
aab03e05 3902 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3903 */
aab03e05 3904 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3905 p->static_prio = NICE_TO_PRIO(nice);
3906 goto out_unlock;
3907 }
da0c1e65 3908 queued = task_on_rq_queued(p);
49bd21ef 3909 running = task_current(rq, p);
da0c1e65 3910 if (queued)
7a57f32a 3911 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3912 if (running)
3913 put_prev_task(rq, p);
1da177e4 3914
1da177e4 3915 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3916 set_load_weight(p, true);
b29739f9
IM
3917 old_prio = p->prio;
3918 p->prio = effective_prio(p);
3919 delta = p->prio - old_prio;
1da177e4 3920
da0c1e65 3921 if (queued) {
7134b3e9 3922 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3923 /*
d5f9f942
AM
3924 * If the task increased its priority or is running and
3925 * lowered its priority, then reschedule its CPU:
1da177e4 3926 */
d5f9f942 3927 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3928 resched_curr(rq);
1da177e4 3929 }
49bd21ef
PZ
3930 if (running)
3931 set_curr_task(rq, p);
1da177e4 3932out_unlock:
eb580751 3933 task_rq_unlock(rq, p, &rf);
1da177e4 3934}
1da177e4
LT
3935EXPORT_SYMBOL(set_user_nice);
3936
e43379f1
MM
3937/*
3938 * can_nice - check if a task can reduce its nice value
3939 * @p: task
3940 * @nice: nice value
3941 */
36c8b586 3942int can_nice(const struct task_struct *p, const int nice)
e43379f1 3943{
d1ccc66d 3944 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3945 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3946
78d7d407 3947 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3948 capable(CAP_SYS_NICE));
3949}
3950
1da177e4
LT
3951#ifdef __ARCH_WANT_SYS_NICE
3952
3953/*
3954 * sys_nice - change the priority of the current process.
3955 * @increment: priority increment
3956 *
3957 * sys_setpriority is a more generic, but much slower function that
3958 * does similar things.
3959 */
5add95d4 3960SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3961{
48f24c4d 3962 long nice, retval;
1da177e4
LT
3963
3964 /*
3965 * Setpriority might change our priority at the same moment.
3966 * We don't have to worry. Conceptually one call occurs first
3967 * and we have a single winner.
3968 */
a9467fa3 3969 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3970 nice = task_nice(current) + increment;
1da177e4 3971
a9467fa3 3972 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3973 if (increment < 0 && !can_nice(current, nice))
3974 return -EPERM;
3975
1da177e4
LT
3976 retval = security_task_setnice(current, nice);
3977 if (retval)
3978 return retval;
3979
3980 set_user_nice(current, nice);
3981 return 0;
3982}
3983
3984#endif
3985
3986/**
3987 * task_prio - return the priority value of a given task.
3988 * @p: the task in question.
3989 *
e69f6186 3990 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3991 * RT tasks are offset by -200. Normal tasks are centered
3992 * around 0, value goes from -16 to +15.
3993 */
36c8b586 3994int task_prio(const struct task_struct *p)
1da177e4
LT
3995{
3996 return p->prio - MAX_RT_PRIO;
3997}
3998
1da177e4 3999/**
d1ccc66d 4000 * idle_cpu - is a given CPU idle currently?
1da177e4 4001 * @cpu: the processor in question.
e69f6186
YB
4002 *
4003 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4004 */
4005int idle_cpu(int cpu)
4006{
908a3283
TG
4007 struct rq *rq = cpu_rq(cpu);
4008
4009 if (rq->curr != rq->idle)
4010 return 0;
4011
4012 if (rq->nr_running)
4013 return 0;
4014
4015#ifdef CONFIG_SMP
4016 if (!llist_empty(&rq->wake_list))
4017 return 0;
4018#endif
4019
4020 return 1;
1da177e4
LT
4021}
4022
943d355d
RJ
4023/**
4024 * available_idle_cpu - is a given CPU idle for enqueuing work.
4025 * @cpu: the CPU in question.
4026 *
4027 * Return: 1 if the CPU is currently idle. 0 otherwise.
4028 */
4029int available_idle_cpu(int cpu)
4030{
4031 if (!idle_cpu(cpu))
4032 return 0;
4033
247f2f6f
RJ
4034 if (vcpu_is_preempted(cpu))
4035 return 0;
4036
908a3283 4037 return 1;
1da177e4
LT
4038}
4039
1da177e4 4040/**
d1ccc66d 4041 * idle_task - return the idle task for a given CPU.
1da177e4 4042 * @cpu: the processor in question.
e69f6186 4043 *
d1ccc66d 4044 * Return: The idle task for the CPU @cpu.
1da177e4 4045 */
36c8b586 4046struct task_struct *idle_task(int cpu)
1da177e4
LT
4047{
4048 return cpu_rq(cpu)->idle;
4049}
4050
4051/**
4052 * find_process_by_pid - find a process with a matching PID value.
4053 * @pid: the pid in question.
e69f6186
YB
4054 *
4055 * The task of @pid, if found. %NULL otherwise.
1da177e4 4056 */
a9957449 4057static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4058{
228ebcbe 4059 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4060}
4061
c13db6b1
SR
4062/*
4063 * sched_setparam() passes in -1 for its policy, to let the functions
4064 * it calls know not to change it.
4065 */
4066#define SETPARAM_POLICY -1
4067
c365c292
TG
4068static void __setscheduler_params(struct task_struct *p,
4069 const struct sched_attr *attr)
1da177e4 4070{
d50dde5a
DF
4071 int policy = attr->sched_policy;
4072
c13db6b1 4073 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4074 policy = p->policy;
4075
1da177e4 4076 p->policy = policy;
d50dde5a 4077
aab03e05
DF
4078 if (dl_policy(policy))
4079 __setparam_dl(p, attr);
39fd8fd2 4080 else if (fair_policy(policy))
d50dde5a
DF
4081 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4082
39fd8fd2
PZ
4083 /*
4084 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4085 * !rt_policy. Always setting this ensures that things like
4086 * getparam()/getattr() don't report silly values for !rt tasks.
4087 */
4088 p->rt_priority = attr->sched_priority;
383afd09 4089 p->normal_prio = normal_prio(p);
9059393e 4090 set_load_weight(p, true);
c365c292 4091}
39fd8fd2 4092
c365c292
TG
4093/* Actually do priority change: must hold pi & rq lock. */
4094static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4095 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4096{
4097 __setscheduler_params(p, attr);
d50dde5a 4098
383afd09 4099 /*
0782e63b
TG
4100 * Keep a potential priority boosting if called from
4101 * sched_setscheduler().
383afd09 4102 */
acd58620 4103 p->prio = normal_prio(p);
0782e63b 4104 if (keep_boost)
acd58620 4105 p->prio = rt_effective_prio(p, p->prio);
383afd09 4106
aab03e05
DF
4107 if (dl_prio(p->prio))
4108 p->sched_class = &dl_sched_class;
4109 else if (rt_prio(p->prio))
ffd44db5
PZ
4110 p->sched_class = &rt_sched_class;
4111 else
4112 p->sched_class = &fair_sched_class;
1da177e4 4113}
aab03e05 4114
c69e8d9c 4115/*
d1ccc66d 4116 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4117 */
4118static bool check_same_owner(struct task_struct *p)
4119{
4120 const struct cred *cred = current_cred(), *pcred;
4121 bool match;
4122
4123 rcu_read_lock();
4124 pcred = __task_cred(p);
9c806aa0
EB
4125 match = (uid_eq(cred->euid, pcred->euid) ||
4126 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4127 rcu_read_unlock();
4128 return match;
4129}
4130
d50dde5a
DF
4131static int __sched_setscheduler(struct task_struct *p,
4132 const struct sched_attr *attr,
dbc7f069 4133 bool user, bool pi)
1da177e4 4134{
383afd09
SR
4135 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4136 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4137 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4138 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4139 const struct sched_class *prev_class;
eb580751 4140 struct rq_flags rf;
ca94c442 4141 int reset_on_fork;
7a57f32a 4142 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4143 struct rq *rq;
1da177e4 4144
896bbb25
SRV
4145 /* The pi code expects interrupts enabled */
4146 BUG_ON(pi && in_interrupt());
1da177e4 4147recheck:
d1ccc66d 4148 /* Double check policy once rq lock held: */
ca94c442
LP
4149 if (policy < 0) {
4150 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4151 policy = oldpolicy = p->policy;
ca94c442 4152 } else {
7479f3c9 4153 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4154
20f9cd2a 4155 if (!valid_policy(policy))
ca94c442
LP
4156 return -EINVAL;
4157 }
4158
794a56eb 4159 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4160 return -EINVAL;
4161
1da177e4
LT
4162 /*
4163 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4164 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4165 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4166 */
0bb040a4 4167 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4168 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4169 return -EINVAL;
aab03e05
DF
4170 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4171 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4172 return -EINVAL;
4173
37e4ab3f
OC
4174 /*
4175 * Allow unprivileged RT tasks to decrease priority:
4176 */
961ccddd 4177 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4178 if (fair_policy(policy)) {
d0ea0268 4179 if (attr->sched_nice < task_nice(p) &&
eaad4513 4180 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4181 return -EPERM;
4182 }
4183
e05606d3 4184 if (rt_policy(policy)) {
a44702e8
ON
4185 unsigned long rlim_rtprio =
4186 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4187
d1ccc66d 4188 /* Can't set/change the rt policy: */
8dc3e909
ON
4189 if (policy != p->policy && !rlim_rtprio)
4190 return -EPERM;
4191
d1ccc66d 4192 /* Can't increase priority: */
d50dde5a
DF
4193 if (attr->sched_priority > p->rt_priority &&
4194 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4195 return -EPERM;
4196 }
c02aa73b 4197
d44753b8
JL
4198 /*
4199 * Can't set/change SCHED_DEADLINE policy at all for now
4200 * (safest behavior); in the future we would like to allow
4201 * unprivileged DL tasks to increase their relative deadline
4202 * or reduce their runtime (both ways reducing utilization)
4203 */
4204 if (dl_policy(policy))
4205 return -EPERM;
4206
dd41f596 4207 /*
c02aa73b
DH
4208 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4209 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4210 */
1da1843f 4211 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4212 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4213 return -EPERM;
4214 }
5fe1d75f 4215
d1ccc66d 4216 /* Can't change other user's priorities: */
c69e8d9c 4217 if (!check_same_owner(p))
37e4ab3f 4218 return -EPERM;
ca94c442 4219
d1ccc66d 4220 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4221 if (p->sched_reset_on_fork && !reset_on_fork)
4222 return -EPERM;
37e4ab3f 4223 }
1da177e4 4224
725aad24 4225 if (user) {
794a56eb
JL
4226 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4227 return -EINVAL;
4228
b0ae1981 4229 retval = security_task_setscheduler(p);
725aad24
JF
4230 if (retval)
4231 return retval;
4232 }
4233
b29739f9 4234 /*
d1ccc66d 4235 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4236 * changing the priority of the task:
0122ec5b 4237 *
25985edc 4238 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4239 * runqueue lock must be held.
4240 */
eb580751 4241 rq = task_rq_lock(p, &rf);
80f5c1b8 4242 update_rq_clock(rq);
dc61b1d6 4243
34f971f6 4244 /*
d1ccc66d 4245 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4246 */
4247 if (p == rq->stop) {
eb580751 4248 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4249 return -EINVAL;
4250 }
4251
a51e9198 4252 /*
d6b1e911
TG
4253 * If not changing anything there's no need to proceed further,
4254 * but store a possible modification of reset_on_fork.
a51e9198 4255 */
d50dde5a 4256 if (unlikely(policy == p->policy)) {
d0ea0268 4257 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4258 goto change;
4259 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4260 goto change;
75381608 4261 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4262 goto change;
d50dde5a 4263
d6b1e911 4264 p->sched_reset_on_fork = reset_on_fork;
eb580751 4265 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4266 return 0;
4267 }
d50dde5a 4268change:
a51e9198 4269
dc61b1d6 4270 if (user) {
332ac17e 4271#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4272 /*
4273 * Do not allow realtime tasks into groups that have no runtime
4274 * assigned.
4275 */
4276 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4277 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4278 !task_group_is_autogroup(task_group(p))) {
eb580751 4279 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4280 return -EPERM;
4281 }
dc61b1d6 4282#endif
332ac17e 4283#ifdef CONFIG_SMP
794a56eb
JL
4284 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4285 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4286 cpumask_t *span = rq->rd->span;
332ac17e
DF
4287
4288 /*
4289 * Don't allow tasks with an affinity mask smaller than
4290 * the entire root_domain to become SCHED_DEADLINE. We
4291 * will also fail if there's no bandwidth available.
4292 */
3bd37062 4293 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4294 rq->rd->dl_bw.bw == 0) {
eb580751 4295 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4296 return -EPERM;
4297 }
4298 }
4299#endif
4300 }
dc61b1d6 4301
d1ccc66d 4302 /* Re-check policy now with rq lock held: */
1da177e4
LT
4303 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4304 policy = oldpolicy = -1;
eb580751 4305 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4306 goto recheck;
4307 }
332ac17e
DF
4308
4309 /*
4310 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4311 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4312 * is available.
4313 */
06a76fe0 4314 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4315 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4316 return -EBUSY;
4317 }
4318
c365c292
TG
4319 p->sched_reset_on_fork = reset_on_fork;
4320 oldprio = p->prio;
4321
dbc7f069
PZ
4322 if (pi) {
4323 /*
4324 * Take priority boosted tasks into account. If the new
4325 * effective priority is unchanged, we just store the new
4326 * normal parameters and do not touch the scheduler class and
4327 * the runqueue. This will be done when the task deboost
4328 * itself.
4329 */
acd58620 4330 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4331 if (new_effective_prio == oldprio)
4332 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4333 }
4334
da0c1e65 4335 queued = task_on_rq_queued(p);
051a1d1a 4336 running = task_current(rq, p);
da0c1e65 4337 if (queued)
ff77e468 4338 dequeue_task(rq, p, queue_flags);
0e1f3483 4339 if (running)
f3cd1c4e 4340 put_prev_task(rq, p);
f6b53205 4341
83ab0aa0 4342 prev_class = p->sched_class;
dbc7f069 4343 __setscheduler(rq, p, attr, pi);
f6b53205 4344
da0c1e65 4345 if (queued) {
81a44c54
TG
4346 /*
4347 * We enqueue to tail when the priority of a task is
4348 * increased (user space view).
4349 */
ff77e468
PZ
4350 if (oldprio < p->prio)
4351 queue_flags |= ENQUEUE_HEAD;
1de64443 4352
ff77e468 4353 enqueue_task(rq, p, queue_flags);
81a44c54 4354 }
a399d233 4355 if (running)
b2bf6c31 4356 set_curr_task(rq, p);
cb469845 4357
da7a735e 4358 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4359
4360 /* Avoid rq from going away on us: */
4361 preempt_disable();
eb580751 4362 task_rq_unlock(rq, p, &rf);
b29739f9 4363
dbc7f069
PZ
4364 if (pi)
4365 rt_mutex_adjust_pi(p);
95e02ca9 4366
d1ccc66d 4367 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4368 balance_callback(rq);
4369 preempt_enable();
95e02ca9 4370
1da177e4
LT
4371 return 0;
4372}
961ccddd 4373
7479f3c9
PZ
4374static int _sched_setscheduler(struct task_struct *p, int policy,
4375 const struct sched_param *param, bool check)
4376{
4377 struct sched_attr attr = {
4378 .sched_policy = policy,
4379 .sched_priority = param->sched_priority,
4380 .sched_nice = PRIO_TO_NICE(p->static_prio),
4381 };
4382
c13db6b1
SR
4383 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4384 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4385 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4386 policy &= ~SCHED_RESET_ON_FORK;
4387 attr.sched_policy = policy;
4388 }
4389
dbc7f069 4390 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4391}
961ccddd
RR
4392/**
4393 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4394 * @p: the task in question.
4395 * @policy: new policy.
4396 * @param: structure containing the new RT priority.
4397 *
e69f6186
YB
4398 * Return: 0 on success. An error code otherwise.
4399 *
961ccddd
RR
4400 * NOTE that the task may be already dead.
4401 */
4402int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4403 const struct sched_param *param)
961ccddd 4404{
7479f3c9 4405 return _sched_setscheduler(p, policy, param, true);
961ccddd 4406}
1da177e4
LT
4407EXPORT_SYMBOL_GPL(sched_setscheduler);
4408
d50dde5a
DF
4409int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4410{
dbc7f069 4411 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4412}
4413EXPORT_SYMBOL_GPL(sched_setattr);
4414
794a56eb
JL
4415int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4416{
4417 return __sched_setscheduler(p, attr, false, true);
4418}
4419
961ccddd
RR
4420/**
4421 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4422 * @p: the task in question.
4423 * @policy: new policy.
4424 * @param: structure containing the new RT priority.
4425 *
4426 * Just like sched_setscheduler, only don't bother checking if the
4427 * current context has permission. For example, this is needed in
4428 * stop_machine(): we create temporary high priority worker threads,
4429 * but our caller might not have that capability.
e69f6186
YB
4430 *
4431 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4432 */
4433int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4434 const struct sched_param *param)
961ccddd 4435{
7479f3c9 4436 return _sched_setscheduler(p, policy, param, false);
961ccddd 4437}
84778472 4438EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4439
95cdf3b7
IM
4440static int
4441do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4442{
1da177e4
LT
4443 struct sched_param lparam;
4444 struct task_struct *p;
36c8b586 4445 int retval;
1da177e4
LT
4446
4447 if (!param || pid < 0)
4448 return -EINVAL;
4449 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4450 return -EFAULT;
5fe1d75f
ON
4451
4452 rcu_read_lock();
4453 retval = -ESRCH;
1da177e4 4454 p = find_process_by_pid(pid);
5fe1d75f
ON
4455 if (p != NULL)
4456 retval = sched_setscheduler(p, policy, &lparam);
4457 rcu_read_unlock();
36c8b586 4458
1da177e4
LT
4459 return retval;
4460}
4461
d50dde5a
DF
4462/*
4463 * Mimics kernel/events/core.c perf_copy_attr().
4464 */
d1ccc66d 4465static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4466{
4467 u32 size;
4468 int ret;
4469
96d4f267 4470 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
d50dde5a
DF
4471 return -EFAULT;
4472
d1ccc66d 4473 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4474 memset(attr, 0, sizeof(*attr));
4475
4476 ret = get_user(size, &uattr->size);
4477 if (ret)
4478 return ret;
4479
d1ccc66d
IM
4480 /* Bail out on silly large: */
4481 if (size > PAGE_SIZE)
d50dde5a
DF
4482 goto err_size;
4483
d1ccc66d
IM
4484 /* ABI compatibility quirk: */
4485 if (!size)
d50dde5a
DF
4486 size = SCHED_ATTR_SIZE_VER0;
4487
4488 if (size < SCHED_ATTR_SIZE_VER0)
4489 goto err_size;
4490
4491 /*
4492 * If we're handed a bigger struct than we know of,
4493 * ensure all the unknown bits are 0 - i.e. new
4494 * user-space does not rely on any kernel feature
4495 * extensions we dont know about yet.
4496 */
4497 if (size > sizeof(*attr)) {
4498 unsigned char __user *addr;
4499 unsigned char __user *end;
4500 unsigned char val;
4501
4502 addr = (void __user *)uattr + sizeof(*attr);
4503 end = (void __user *)uattr + size;
4504
4505 for (; addr < end; addr++) {
4506 ret = get_user(val, addr);
4507 if (ret)
4508 return ret;
4509 if (val)
4510 goto err_size;
4511 }
4512 size = sizeof(*attr);
4513 }
4514
4515 ret = copy_from_user(attr, uattr, size);
4516 if (ret)
4517 return -EFAULT;
4518
4519 /*
d1ccc66d 4520 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4521 * to be strict and return an error on out-of-bounds values?
4522 */
75e45d51 4523 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4524
e78c7bca 4525 return 0;
d50dde5a
DF
4526
4527err_size:
4528 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4529 return -E2BIG;
d50dde5a
DF
4530}
4531
1da177e4
LT
4532/**
4533 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4534 * @pid: the pid in question.
4535 * @policy: new policy.
4536 * @param: structure containing the new RT priority.
e69f6186
YB
4537 *
4538 * Return: 0 on success. An error code otherwise.
1da177e4 4539 */
d1ccc66d 4540SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4541{
c21761f1
JB
4542 if (policy < 0)
4543 return -EINVAL;
4544
1da177e4
LT
4545 return do_sched_setscheduler(pid, policy, param);
4546}
4547
4548/**
4549 * sys_sched_setparam - set/change the RT priority of a thread
4550 * @pid: the pid in question.
4551 * @param: structure containing the new RT priority.
e69f6186
YB
4552 *
4553 * Return: 0 on success. An error code otherwise.
1da177e4 4554 */
5add95d4 4555SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4556{
c13db6b1 4557 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4558}
4559
d50dde5a
DF
4560/**
4561 * sys_sched_setattr - same as above, but with extended sched_attr
4562 * @pid: the pid in question.
5778fccf 4563 * @uattr: structure containing the extended parameters.
db66d756 4564 * @flags: for future extension.
d50dde5a 4565 */
6d35ab48
PZ
4566SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4567 unsigned int, flags)
d50dde5a
DF
4568{
4569 struct sched_attr attr;
4570 struct task_struct *p;
4571 int retval;
4572
6d35ab48 4573 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4574 return -EINVAL;
4575
143cf23d
MK
4576 retval = sched_copy_attr(uattr, &attr);
4577 if (retval)
4578 return retval;
d50dde5a 4579
b14ed2c2 4580 if ((int)attr.sched_policy < 0)
dbdb2275 4581 return -EINVAL;
d50dde5a
DF
4582
4583 rcu_read_lock();
4584 retval = -ESRCH;
4585 p = find_process_by_pid(pid);
4586 if (p != NULL)
4587 retval = sched_setattr(p, &attr);
4588 rcu_read_unlock();
4589
4590 return retval;
4591}
4592
1da177e4
LT
4593/**
4594 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4595 * @pid: the pid in question.
e69f6186
YB
4596 *
4597 * Return: On success, the policy of the thread. Otherwise, a negative error
4598 * code.
1da177e4 4599 */
5add95d4 4600SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4601{
36c8b586 4602 struct task_struct *p;
3a5c359a 4603 int retval;
1da177e4
LT
4604
4605 if (pid < 0)
3a5c359a 4606 return -EINVAL;
1da177e4
LT
4607
4608 retval = -ESRCH;
5fe85be0 4609 rcu_read_lock();
1da177e4
LT
4610 p = find_process_by_pid(pid);
4611 if (p) {
4612 retval = security_task_getscheduler(p);
4613 if (!retval)
ca94c442
LP
4614 retval = p->policy
4615 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4616 }
5fe85be0 4617 rcu_read_unlock();
1da177e4
LT
4618 return retval;
4619}
4620
4621/**
ca94c442 4622 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4623 * @pid: the pid in question.
4624 * @param: structure containing the RT priority.
e69f6186
YB
4625 *
4626 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4627 * code.
1da177e4 4628 */
5add95d4 4629SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4630{
ce5f7f82 4631 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4632 struct task_struct *p;
3a5c359a 4633 int retval;
1da177e4
LT
4634
4635 if (!param || pid < 0)
3a5c359a 4636 return -EINVAL;
1da177e4 4637
5fe85be0 4638 rcu_read_lock();
1da177e4
LT
4639 p = find_process_by_pid(pid);
4640 retval = -ESRCH;
4641 if (!p)
4642 goto out_unlock;
4643
4644 retval = security_task_getscheduler(p);
4645 if (retval)
4646 goto out_unlock;
4647
ce5f7f82
PZ
4648 if (task_has_rt_policy(p))
4649 lp.sched_priority = p->rt_priority;
5fe85be0 4650 rcu_read_unlock();
1da177e4
LT
4651
4652 /*
4653 * This one might sleep, we cannot do it with a spinlock held ...
4654 */
4655 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4656
1da177e4
LT
4657 return retval;
4658
4659out_unlock:
5fe85be0 4660 rcu_read_unlock();
1da177e4
LT
4661 return retval;
4662}
4663
d50dde5a
DF
4664static int sched_read_attr(struct sched_attr __user *uattr,
4665 struct sched_attr *attr,
4666 unsigned int usize)
4667{
4668 int ret;
4669
96d4f267 4670 if (!access_ok(uattr, usize))
d50dde5a
DF
4671 return -EFAULT;
4672
4673 /*
4674 * If we're handed a smaller struct than we know of,
4675 * ensure all the unknown bits are 0 - i.e. old
4676 * user-space does not get uncomplete information.
4677 */
4678 if (usize < sizeof(*attr)) {
4679 unsigned char *addr;
4680 unsigned char *end;
4681
4682 addr = (void *)attr + usize;
4683 end = (void *)attr + sizeof(*attr);
4684
4685 for (; addr < end; addr++) {
4686 if (*addr)
22400674 4687 return -EFBIG;
d50dde5a
DF
4688 }
4689
4690 attr->size = usize;
4691 }
4692
4efbc454 4693 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4694 if (ret)
4695 return -EFAULT;
4696
22400674 4697 return 0;
d50dde5a
DF
4698}
4699
4700/**
aab03e05 4701 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4702 * @pid: the pid in question.
5778fccf 4703 * @uattr: structure containing the extended parameters.
d50dde5a 4704 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4705 * @flags: for future extension.
d50dde5a 4706 */
6d35ab48
PZ
4707SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4708 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4709{
4710 struct sched_attr attr = {
4711 .size = sizeof(struct sched_attr),
4712 };
4713 struct task_struct *p;
4714 int retval;
4715
4716 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4717 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4718 return -EINVAL;
4719
4720 rcu_read_lock();
4721 p = find_process_by_pid(pid);
4722 retval = -ESRCH;
4723 if (!p)
4724 goto out_unlock;
4725
4726 retval = security_task_getscheduler(p);
4727 if (retval)
4728 goto out_unlock;
4729
4730 attr.sched_policy = p->policy;
7479f3c9
PZ
4731 if (p->sched_reset_on_fork)
4732 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4733 if (task_has_dl_policy(p))
4734 __getparam_dl(p, &attr);
4735 else if (task_has_rt_policy(p))
d50dde5a
DF
4736 attr.sched_priority = p->rt_priority;
4737 else
d0ea0268 4738 attr.sched_nice = task_nice(p);
d50dde5a
DF
4739
4740 rcu_read_unlock();
4741
4742 retval = sched_read_attr(uattr, &attr, size);
4743 return retval;
4744
4745out_unlock:
4746 rcu_read_unlock();
4747 return retval;
4748}
4749
96f874e2 4750long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4751{
5a16f3d3 4752 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4753 struct task_struct *p;
4754 int retval;
1da177e4 4755
23f5d142 4756 rcu_read_lock();
1da177e4
LT
4757
4758 p = find_process_by_pid(pid);
4759 if (!p) {
23f5d142 4760 rcu_read_unlock();
1da177e4
LT
4761 return -ESRCH;
4762 }
4763
23f5d142 4764 /* Prevent p going away */
1da177e4 4765 get_task_struct(p);
23f5d142 4766 rcu_read_unlock();
1da177e4 4767
14a40ffc
TH
4768 if (p->flags & PF_NO_SETAFFINITY) {
4769 retval = -EINVAL;
4770 goto out_put_task;
4771 }
5a16f3d3
RR
4772 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4773 retval = -ENOMEM;
4774 goto out_put_task;
4775 }
4776 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4777 retval = -ENOMEM;
4778 goto out_free_cpus_allowed;
4779 }
1da177e4 4780 retval = -EPERM;
4c44aaaf
EB
4781 if (!check_same_owner(p)) {
4782 rcu_read_lock();
4783 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4784 rcu_read_unlock();
16303ab2 4785 goto out_free_new_mask;
4c44aaaf
EB
4786 }
4787 rcu_read_unlock();
4788 }
1da177e4 4789
b0ae1981 4790 retval = security_task_setscheduler(p);
e7834f8f 4791 if (retval)
16303ab2 4792 goto out_free_new_mask;
e7834f8f 4793
e4099a5e
PZ
4794
4795 cpuset_cpus_allowed(p, cpus_allowed);
4796 cpumask_and(new_mask, in_mask, cpus_allowed);
4797
332ac17e
DF
4798 /*
4799 * Since bandwidth control happens on root_domain basis,
4800 * if admission test is enabled, we only admit -deadline
4801 * tasks allowed to run on all the CPUs in the task's
4802 * root_domain.
4803 */
4804#ifdef CONFIG_SMP
f1e3a093
KT
4805 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4806 rcu_read_lock();
4807 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4808 retval = -EBUSY;
f1e3a093 4809 rcu_read_unlock();
16303ab2 4810 goto out_free_new_mask;
332ac17e 4811 }
f1e3a093 4812 rcu_read_unlock();
332ac17e
DF
4813 }
4814#endif
49246274 4815again:
25834c73 4816 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4817
8707d8b8 4818 if (!retval) {
5a16f3d3
RR
4819 cpuset_cpus_allowed(p, cpus_allowed);
4820 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4821 /*
4822 * We must have raced with a concurrent cpuset
4823 * update. Just reset the cpus_allowed to the
4824 * cpuset's cpus_allowed
4825 */
5a16f3d3 4826 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4827 goto again;
4828 }
4829 }
16303ab2 4830out_free_new_mask:
5a16f3d3
RR
4831 free_cpumask_var(new_mask);
4832out_free_cpus_allowed:
4833 free_cpumask_var(cpus_allowed);
4834out_put_task:
1da177e4 4835 put_task_struct(p);
1da177e4
LT
4836 return retval;
4837}
4838
4839static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4840 struct cpumask *new_mask)
1da177e4 4841{
96f874e2
RR
4842 if (len < cpumask_size())
4843 cpumask_clear(new_mask);
4844 else if (len > cpumask_size())
4845 len = cpumask_size();
4846
1da177e4
LT
4847 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4848}
4849
4850/**
d1ccc66d 4851 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4852 * @pid: pid of the process
4853 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4854 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4855 *
4856 * Return: 0 on success. An error code otherwise.
1da177e4 4857 */
5add95d4
HC
4858SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4859 unsigned long __user *, user_mask_ptr)
1da177e4 4860{
5a16f3d3 4861 cpumask_var_t new_mask;
1da177e4
LT
4862 int retval;
4863
5a16f3d3
RR
4864 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4865 return -ENOMEM;
1da177e4 4866
5a16f3d3
RR
4867 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4868 if (retval == 0)
4869 retval = sched_setaffinity(pid, new_mask);
4870 free_cpumask_var(new_mask);
4871 return retval;
1da177e4
LT
4872}
4873
96f874e2 4874long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4875{
36c8b586 4876 struct task_struct *p;
31605683 4877 unsigned long flags;
1da177e4 4878 int retval;
1da177e4 4879
23f5d142 4880 rcu_read_lock();
1da177e4
LT
4881
4882 retval = -ESRCH;
4883 p = find_process_by_pid(pid);
4884 if (!p)
4885 goto out_unlock;
4886
e7834f8f
DQ
4887 retval = security_task_getscheduler(p);
4888 if (retval)
4889 goto out_unlock;
4890
013fdb80 4891 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 4892 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 4893 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4894
4895out_unlock:
23f5d142 4896 rcu_read_unlock();
1da177e4 4897
9531b62f 4898 return retval;
1da177e4
LT
4899}
4900
4901/**
d1ccc66d 4902 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4903 * @pid: pid of the process
4904 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4905 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4906 *
599b4840
ZW
4907 * Return: size of CPU mask copied to user_mask_ptr on success. An
4908 * error code otherwise.
1da177e4 4909 */
5add95d4
HC
4910SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4911 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4912{
4913 int ret;
f17c8607 4914 cpumask_var_t mask;
1da177e4 4915
84fba5ec 4916 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4917 return -EINVAL;
4918 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4919 return -EINVAL;
4920
f17c8607
RR
4921 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4922 return -ENOMEM;
1da177e4 4923
f17c8607
RR
4924 ret = sched_getaffinity(pid, mask);
4925 if (ret == 0) {
4de373a1 4926 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
4927
4928 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4929 ret = -EFAULT;
4930 else
cd3d8031 4931 ret = retlen;
f17c8607
RR
4932 }
4933 free_cpumask_var(mask);
1da177e4 4934
f17c8607 4935 return ret;
1da177e4
LT
4936}
4937
4938/**
4939 * sys_sched_yield - yield the current processor to other threads.
4940 *
dd41f596
IM
4941 * This function yields the current CPU to other tasks. If there are no
4942 * other threads running on this CPU then this function will return.
e69f6186
YB
4943 *
4944 * Return: 0.
1da177e4 4945 */
7d4dd4f1 4946static void do_sched_yield(void)
1da177e4 4947{
8a8c69c3
PZ
4948 struct rq_flags rf;
4949 struct rq *rq;
4950
246b3b33 4951 rq = this_rq_lock_irq(&rf);
1da177e4 4952
ae92882e 4953 schedstat_inc(rq->yld_count);
4530d7ab 4954 current->sched_class->yield_task(rq);
1da177e4
LT
4955
4956 /*
4957 * Since we are going to call schedule() anyway, there's
4958 * no need to preempt or enable interrupts:
4959 */
8a8c69c3
PZ
4960 preempt_disable();
4961 rq_unlock(rq, &rf);
ba74c144 4962 sched_preempt_enable_no_resched();
1da177e4
LT
4963
4964 schedule();
7d4dd4f1 4965}
1da177e4 4966
7d4dd4f1
DB
4967SYSCALL_DEFINE0(sched_yield)
4968{
4969 do_sched_yield();
1da177e4
LT
4970 return 0;
4971}
4972
35a773a0 4973#ifndef CONFIG_PREEMPT
02b67cc3 4974int __sched _cond_resched(void)
1da177e4 4975{
fe32d3cd 4976 if (should_resched(0)) {
a18b5d01 4977 preempt_schedule_common();
1da177e4
LT
4978 return 1;
4979 }
f79c3ad6 4980 rcu_all_qs();
1da177e4
LT
4981 return 0;
4982}
02b67cc3 4983EXPORT_SYMBOL(_cond_resched);
35a773a0 4984#endif
1da177e4
LT
4985
4986/*
613afbf8 4987 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4988 * call schedule, and on return reacquire the lock.
4989 *
41a2d6cf 4990 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4991 * operations here to prevent schedule() from being called twice (once via
4992 * spin_unlock(), once by hand).
4993 */
613afbf8 4994int __cond_resched_lock(spinlock_t *lock)
1da177e4 4995{
fe32d3cd 4996 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4997 int ret = 0;
4998
f607c668
PZ
4999 lockdep_assert_held(lock);
5000
4a81e832 5001 if (spin_needbreak(lock) || resched) {
1da177e4 5002 spin_unlock(lock);
d86ee480 5003 if (resched)
a18b5d01 5004 preempt_schedule_common();
95c354fe
NP
5005 else
5006 cpu_relax();
6df3cecb 5007 ret = 1;
1da177e4 5008 spin_lock(lock);
1da177e4 5009 }
6df3cecb 5010 return ret;
1da177e4 5011}
613afbf8 5012EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5013
1da177e4
LT
5014/**
5015 * yield - yield the current processor to other threads.
5016 *
8e3fabfd
PZ
5017 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5018 *
5019 * The scheduler is at all times free to pick the calling task as the most
5020 * eligible task to run, if removing the yield() call from your code breaks
5021 * it, its already broken.
5022 *
5023 * Typical broken usage is:
5024 *
5025 * while (!event)
d1ccc66d 5026 * yield();
8e3fabfd
PZ
5027 *
5028 * where one assumes that yield() will let 'the other' process run that will
5029 * make event true. If the current task is a SCHED_FIFO task that will never
5030 * happen. Never use yield() as a progress guarantee!!
5031 *
5032 * If you want to use yield() to wait for something, use wait_event().
5033 * If you want to use yield() to be 'nice' for others, use cond_resched().
5034 * If you still want to use yield(), do not!
1da177e4
LT
5035 */
5036void __sched yield(void)
5037{
5038 set_current_state(TASK_RUNNING);
7d4dd4f1 5039 do_sched_yield();
1da177e4 5040}
1da177e4
LT
5041EXPORT_SYMBOL(yield);
5042
d95f4122
MG
5043/**
5044 * yield_to - yield the current processor to another thread in
5045 * your thread group, or accelerate that thread toward the
5046 * processor it's on.
16addf95
RD
5047 * @p: target task
5048 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5049 *
5050 * It's the caller's job to ensure that the target task struct
5051 * can't go away on us before we can do any checks.
5052 *
e69f6186 5053 * Return:
7b270f60
PZ
5054 * true (>0) if we indeed boosted the target task.
5055 * false (0) if we failed to boost the target.
5056 * -ESRCH if there's no task to yield to.
d95f4122 5057 */
fa93384f 5058int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5059{
5060 struct task_struct *curr = current;
5061 struct rq *rq, *p_rq;
5062 unsigned long flags;
c3c18640 5063 int yielded = 0;
d95f4122
MG
5064
5065 local_irq_save(flags);
5066 rq = this_rq();
5067
5068again:
5069 p_rq = task_rq(p);
7b270f60
PZ
5070 /*
5071 * If we're the only runnable task on the rq and target rq also
5072 * has only one task, there's absolutely no point in yielding.
5073 */
5074 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5075 yielded = -ESRCH;
5076 goto out_irq;
5077 }
5078
d95f4122 5079 double_rq_lock(rq, p_rq);
39e24d8f 5080 if (task_rq(p) != p_rq) {
d95f4122
MG
5081 double_rq_unlock(rq, p_rq);
5082 goto again;
5083 }
5084
5085 if (!curr->sched_class->yield_to_task)
7b270f60 5086 goto out_unlock;
d95f4122
MG
5087
5088 if (curr->sched_class != p->sched_class)
7b270f60 5089 goto out_unlock;
d95f4122
MG
5090
5091 if (task_running(p_rq, p) || p->state)
7b270f60 5092 goto out_unlock;
d95f4122
MG
5093
5094 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5095 if (yielded) {
ae92882e 5096 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5097 /*
5098 * Make p's CPU reschedule; pick_next_entity takes care of
5099 * fairness.
5100 */
5101 if (preempt && rq != p_rq)
8875125e 5102 resched_curr(p_rq);
6d1cafd8 5103 }
d95f4122 5104
7b270f60 5105out_unlock:
d95f4122 5106 double_rq_unlock(rq, p_rq);
7b270f60 5107out_irq:
d95f4122
MG
5108 local_irq_restore(flags);
5109
7b270f60 5110 if (yielded > 0)
d95f4122
MG
5111 schedule();
5112
5113 return yielded;
5114}
5115EXPORT_SYMBOL_GPL(yield_to);
5116
10ab5643
TH
5117int io_schedule_prepare(void)
5118{
5119 int old_iowait = current->in_iowait;
5120
5121 current->in_iowait = 1;
5122 blk_schedule_flush_plug(current);
5123
5124 return old_iowait;
5125}
5126
5127void io_schedule_finish(int token)
5128{
5129 current->in_iowait = token;
5130}
5131
1da177e4 5132/*
41a2d6cf 5133 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5134 * that process accounting knows that this is a task in IO wait state.
1da177e4 5135 */
1da177e4
LT
5136long __sched io_schedule_timeout(long timeout)
5137{
10ab5643 5138 int token;
1da177e4
LT
5139 long ret;
5140
10ab5643 5141 token = io_schedule_prepare();
1da177e4 5142 ret = schedule_timeout(timeout);
10ab5643 5143 io_schedule_finish(token);
9cff8ade 5144
1da177e4
LT
5145 return ret;
5146}
9cff8ade 5147EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5148
e3b929b0 5149void __sched io_schedule(void)
10ab5643
TH
5150{
5151 int token;
5152
5153 token = io_schedule_prepare();
5154 schedule();
5155 io_schedule_finish(token);
5156}
5157EXPORT_SYMBOL(io_schedule);
5158
1da177e4
LT
5159/**
5160 * sys_sched_get_priority_max - return maximum RT priority.
5161 * @policy: scheduling class.
5162 *
e69f6186
YB
5163 * Return: On success, this syscall returns the maximum
5164 * rt_priority that can be used by a given scheduling class.
5165 * On failure, a negative error code is returned.
1da177e4 5166 */
5add95d4 5167SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5168{
5169 int ret = -EINVAL;
5170
5171 switch (policy) {
5172 case SCHED_FIFO:
5173 case SCHED_RR:
5174 ret = MAX_USER_RT_PRIO-1;
5175 break;
aab03e05 5176 case SCHED_DEADLINE:
1da177e4 5177 case SCHED_NORMAL:
b0a9499c 5178 case SCHED_BATCH:
dd41f596 5179 case SCHED_IDLE:
1da177e4
LT
5180 ret = 0;
5181 break;
5182 }
5183 return ret;
5184}
5185
5186/**
5187 * sys_sched_get_priority_min - return minimum RT priority.
5188 * @policy: scheduling class.
5189 *
e69f6186
YB
5190 * Return: On success, this syscall returns the minimum
5191 * rt_priority that can be used by a given scheduling class.
5192 * On failure, a negative error code is returned.
1da177e4 5193 */
5add95d4 5194SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5195{
5196 int ret = -EINVAL;
5197
5198 switch (policy) {
5199 case SCHED_FIFO:
5200 case SCHED_RR:
5201 ret = 1;
5202 break;
aab03e05 5203 case SCHED_DEADLINE:
1da177e4 5204 case SCHED_NORMAL:
b0a9499c 5205 case SCHED_BATCH:
dd41f596 5206 case SCHED_IDLE:
1da177e4
LT
5207 ret = 0;
5208 }
5209 return ret;
5210}
5211
abca5fc5 5212static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5213{
36c8b586 5214 struct task_struct *p;
a4ec24b4 5215 unsigned int time_slice;
eb580751 5216 struct rq_flags rf;
dba091b9 5217 struct rq *rq;
3a5c359a 5218 int retval;
1da177e4
LT
5219
5220 if (pid < 0)
3a5c359a 5221 return -EINVAL;
1da177e4
LT
5222
5223 retval = -ESRCH;
1a551ae7 5224 rcu_read_lock();
1da177e4
LT
5225 p = find_process_by_pid(pid);
5226 if (!p)
5227 goto out_unlock;
5228
5229 retval = security_task_getscheduler(p);
5230 if (retval)
5231 goto out_unlock;
5232
eb580751 5233 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5234 time_slice = 0;
5235 if (p->sched_class->get_rr_interval)
5236 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5237 task_rq_unlock(rq, p, &rf);
a4ec24b4 5238
1a551ae7 5239 rcu_read_unlock();
abca5fc5
AV
5240 jiffies_to_timespec64(time_slice, t);
5241 return 0;
3a5c359a 5242
1da177e4 5243out_unlock:
1a551ae7 5244 rcu_read_unlock();
1da177e4
LT
5245 return retval;
5246}
5247
2064a5ab
RD
5248/**
5249 * sys_sched_rr_get_interval - return the default timeslice of a process.
5250 * @pid: pid of the process.
5251 * @interval: userspace pointer to the timeslice value.
5252 *
5253 * this syscall writes the default timeslice value of a given process
5254 * into the user-space timespec buffer. A value of '0' means infinity.
5255 *
5256 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5257 * an error code.
5258 */
abca5fc5 5259SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5260 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5261{
5262 struct timespec64 t;
5263 int retval = sched_rr_get_interval(pid, &t);
5264
5265 if (retval == 0)
5266 retval = put_timespec64(&t, interval);
5267
5268 return retval;
5269}
5270
474b9c77 5271#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5272SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5273 struct old_timespec32 __user *, interval)
abca5fc5
AV
5274{
5275 struct timespec64 t;
5276 int retval = sched_rr_get_interval(pid, &t);
5277
5278 if (retval == 0)
9afc5eee 5279 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5280 return retval;
5281}
5282#endif
5283
82a1fcb9 5284void sched_show_task(struct task_struct *p)
1da177e4 5285{
1da177e4 5286 unsigned long free = 0;
4e79752c 5287 int ppid;
c930b2c0 5288
38200502
TH
5289 if (!try_get_task_stack(p))
5290 return;
20435d84
XX
5291
5292 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5293
5294 if (p->state == TASK_RUNNING)
3df0fc5b 5295 printk(KERN_CONT " running task ");
1da177e4 5296#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5297 free = stack_not_used(p);
1da177e4 5298#endif
a90e984c 5299 ppid = 0;
4e79752c 5300 rcu_read_lock();
a90e984c
ON
5301 if (pid_alive(p))
5302 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5303 rcu_read_unlock();
3df0fc5b 5304 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5305 task_pid_nr(p), ppid,
aa47b7e0 5306 (unsigned long)task_thread_info(p)->flags);
1da177e4 5307
3d1cb205 5308 print_worker_info(KERN_INFO, p);
5fb5e6de 5309 show_stack(p, NULL);
38200502 5310 put_task_stack(p);
1da177e4 5311}
0032f4e8 5312EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5313
5d68cc95
PZ
5314static inline bool
5315state_filter_match(unsigned long state_filter, struct task_struct *p)
5316{
5317 /* no filter, everything matches */
5318 if (!state_filter)
5319 return true;
5320
5321 /* filter, but doesn't match */
5322 if (!(p->state & state_filter))
5323 return false;
5324
5325 /*
5326 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5327 * TASK_KILLABLE).
5328 */
5329 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5330 return false;
5331
5332 return true;
5333}
5334
5335
e59e2ae2 5336void show_state_filter(unsigned long state_filter)
1da177e4 5337{
36c8b586 5338 struct task_struct *g, *p;
1da177e4 5339
4bd77321 5340#if BITS_PER_LONG == 32
3df0fc5b
PZ
5341 printk(KERN_INFO
5342 " task PC stack pid father\n");
1da177e4 5343#else
3df0fc5b
PZ
5344 printk(KERN_INFO
5345 " task PC stack pid father\n");
1da177e4 5346#endif
510f5acc 5347 rcu_read_lock();
5d07f420 5348 for_each_process_thread(g, p) {
1da177e4
LT
5349 /*
5350 * reset the NMI-timeout, listing all files on a slow
25985edc 5351 * console might take a lot of time:
57675cb9
AR
5352 * Also, reset softlockup watchdogs on all CPUs, because
5353 * another CPU might be blocked waiting for us to process
5354 * an IPI.
1da177e4
LT
5355 */
5356 touch_nmi_watchdog();
57675cb9 5357 touch_all_softlockup_watchdogs();
5d68cc95 5358 if (state_filter_match(state_filter, p))
82a1fcb9 5359 sched_show_task(p);
5d07f420 5360 }
1da177e4 5361
dd41f596 5362#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5363 if (!state_filter)
5364 sysrq_sched_debug_show();
dd41f596 5365#endif
510f5acc 5366 rcu_read_unlock();
e59e2ae2
IM
5367 /*
5368 * Only show locks if all tasks are dumped:
5369 */
93335a21 5370 if (!state_filter)
e59e2ae2 5371 debug_show_all_locks();
1da177e4
LT
5372}
5373
f340c0d1
IM
5374/**
5375 * init_idle - set up an idle thread for a given CPU
5376 * @idle: task in question
d1ccc66d 5377 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5378 *
5379 * NOTE: this function does not set the idle thread's NEED_RESCHED
5380 * flag, to make booting more robust.
5381 */
0db0628d 5382void init_idle(struct task_struct *idle, int cpu)
1da177e4 5383{
70b97a7f 5384 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5385 unsigned long flags;
5386
25834c73
PZ
5387 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5388 raw_spin_lock(&rq->lock);
5cbd54ef 5389
5e1576ed 5390 __sched_fork(0, idle);
06b83b5f 5391 idle->state = TASK_RUNNING;
dd41f596 5392 idle->se.exec_start = sched_clock();
c1de45ca 5393 idle->flags |= PF_IDLE;
dd41f596 5394
e1b77c92
MR
5395 kasan_unpoison_task_stack(idle);
5396
de9b8f5d
PZ
5397#ifdef CONFIG_SMP
5398 /*
5399 * Its possible that init_idle() gets called multiple times on a task,
5400 * in that case do_set_cpus_allowed() will not do the right thing.
5401 *
5402 * And since this is boot we can forgo the serialization.
5403 */
5404 set_cpus_allowed_common(idle, cpumask_of(cpu));
5405#endif
6506cf6c
PZ
5406 /*
5407 * We're having a chicken and egg problem, even though we are
d1ccc66d 5408 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5409 * lockdep check in task_group() will fail.
5410 *
5411 * Similar case to sched_fork(). / Alternatively we could
5412 * use task_rq_lock() here and obtain the other rq->lock.
5413 *
5414 * Silence PROVE_RCU
5415 */
5416 rcu_read_lock();
dd41f596 5417 __set_task_cpu(idle, cpu);
6506cf6c 5418 rcu_read_unlock();
1da177e4 5419
1da177e4 5420 rq->curr = rq->idle = idle;
da0c1e65 5421 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5422#ifdef CONFIG_SMP
3ca7a440 5423 idle->on_cpu = 1;
4866cde0 5424#endif
25834c73
PZ
5425 raw_spin_unlock(&rq->lock);
5426 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5427
5428 /* Set the preempt count _outside_ the spinlocks! */
01028747 5429 init_idle_preempt_count(idle, cpu);
55cd5340 5430
dd41f596
IM
5431 /*
5432 * The idle tasks have their own, simple scheduling class:
5433 */
5434 idle->sched_class = &idle_sched_class;
868baf07 5435 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5436 vtime_init_idle(idle, cpu);
de9b8f5d 5437#ifdef CONFIG_SMP
f1c6f1a7
CE
5438 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5439#endif
19978ca6
IM
5440}
5441
e1d4eeec
NP
5442#ifdef CONFIG_SMP
5443
f82f8042
JL
5444int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5445 const struct cpumask *trial)
5446{
06a76fe0 5447 int ret = 1;
f82f8042 5448
bb2bc55a
MG
5449 if (!cpumask_weight(cur))
5450 return ret;
5451
06a76fe0 5452 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5453
5454 return ret;
5455}
5456
7f51412a
JL
5457int task_can_attach(struct task_struct *p,
5458 const struct cpumask *cs_cpus_allowed)
5459{
5460 int ret = 0;
5461
5462 /*
5463 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5464 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5465 * affinity and isolating such threads by their set of
5466 * allowed nodes is unnecessary. Thus, cpusets are not
5467 * applicable for such threads. This prevents checking for
5468 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 5469 * before cpus_mask may be changed.
7f51412a
JL
5470 */
5471 if (p->flags & PF_NO_SETAFFINITY) {
5472 ret = -EINVAL;
5473 goto out;
5474 }
5475
7f51412a 5476 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5477 cs_cpus_allowed))
5478 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5479
7f51412a
JL
5480out:
5481 return ret;
5482}
5483
f2cb1360 5484bool sched_smp_initialized __read_mostly;
e26fbffd 5485
e6628d5b
MG
5486#ifdef CONFIG_NUMA_BALANCING
5487/* Migrate current task p to target_cpu */
5488int migrate_task_to(struct task_struct *p, int target_cpu)
5489{
5490 struct migration_arg arg = { p, target_cpu };
5491 int curr_cpu = task_cpu(p);
5492
5493 if (curr_cpu == target_cpu)
5494 return 0;
5495
3bd37062 5496 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
5497 return -EINVAL;
5498
5499 /* TODO: This is not properly updating schedstats */
5500
286549dc 5501 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5502 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5503}
0ec8aa00
PZ
5504
5505/*
5506 * Requeue a task on a given node and accurately track the number of NUMA
5507 * tasks on the runqueues
5508 */
5509void sched_setnuma(struct task_struct *p, int nid)
5510{
da0c1e65 5511 bool queued, running;
eb580751
PZ
5512 struct rq_flags rf;
5513 struct rq *rq;
0ec8aa00 5514
eb580751 5515 rq = task_rq_lock(p, &rf);
da0c1e65 5516 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5517 running = task_current(rq, p);
5518
da0c1e65 5519 if (queued)
1de64443 5520 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5521 if (running)
f3cd1c4e 5522 put_prev_task(rq, p);
0ec8aa00
PZ
5523
5524 p->numa_preferred_nid = nid;
0ec8aa00 5525
da0c1e65 5526 if (queued)
7134b3e9 5527 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5528 if (running)
b2bf6c31 5529 set_curr_task(rq, p);
eb580751 5530 task_rq_unlock(rq, p, &rf);
0ec8aa00 5531}
5cc389bc 5532#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5533
1da177e4 5534#ifdef CONFIG_HOTPLUG_CPU
054b9108 5535/*
d1ccc66d 5536 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5537 * offline.
054b9108 5538 */
48c5ccae 5539void idle_task_exit(void)
1da177e4 5540{
48c5ccae 5541 struct mm_struct *mm = current->active_mm;
e76bd8d9 5542
48c5ccae 5543 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5544
a53efe5f 5545 if (mm != &init_mm) {
252d2a41 5546 switch_mm(mm, &init_mm, current);
3eda69c9 5547 current->active_mm = &init_mm;
a53efe5f
MS
5548 finish_arch_post_lock_switch();
5549 }
48c5ccae 5550 mmdrop(mm);
1da177e4
LT
5551}
5552
5553/*
5d180232
PZ
5554 * Since this CPU is going 'away' for a while, fold any nr_active delta
5555 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5556 * nr_active count is stable. We need to take the teardown thread which
5557 * is calling this into account, so we hand in adjust = 1 to the load
5558 * calculation.
5d180232
PZ
5559 *
5560 * Also see the comment "Global load-average calculations".
1da177e4 5561 */
5d180232 5562static void calc_load_migrate(struct rq *rq)
1da177e4 5563{
d60585c5 5564 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5565 if (delta)
5566 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5567}
5568
3f1d2a31
PZ
5569static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5570{
5571}
5572
5573static const struct sched_class fake_sched_class = {
5574 .put_prev_task = put_prev_task_fake,
5575};
5576
5577static struct task_struct fake_task = {
5578 /*
5579 * Avoid pull_{rt,dl}_task()
5580 */
5581 .prio = MAX_PRIO + 1,
5582 .sched_class = &fake_sched_class,
5583};
5584
48f24c4d 5585/*
48c5ccae
PZ
5586 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5587 * try_to_wake_up()->select_task_rq().
5588 *
5589 * Called with rq->lock held even though we'er in stop_machine() and
5590 * there's no concurrency possible, we hold the required locks anyway
5591 * because of lock validation efforts.
1da177e4 5592 */
8a8c69c3 5593static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5594{
5e16bbc2 5595 struct rq *rq = dead_rq;
48c5ccae 5596 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5597 struct rq_flags orf = *rf;
48c5ccae 5598 int dest_cpu;
1da177e4
LT
5599
5600 /*
48c5ccae
PZ
5601 * Fudge the rq selection such that the below task selection loop
5602 * doesn't get stuck on the currently eligible stop task.
5603 *
5604 * We're currently inside stop_machine() and the rq is either stuck
5605 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5606 * either way we should never end up calling schedule() until we're
5607 * done here.
1da177e4 5608 */
48c5ccae 5609 rq->stop = NULL;
48f24c4d 5610
77bd3970
FW
5611 /*
5612 * put_prev_task() and pick_next_task() sched
5613 * class method both need to have an up-to-date
5614 * value of rq->clock[_task]
5615 */
5616 update_rq_clock(rq);
5617
5e16bbc2 5618 for (;;) {
48c5ccae
PZ
5619 /*
5620 * There's this thread running, bail when that's the only
d1ccc66d 5621 * remaining thread:
48c5ccae
PZ
5622 */
5623 if (rq->nr_running == 1)
dd41f596 5624 break;
48c5ccae 5625
cbce1a68 5626 /*
d1ccc66d 5627 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5628 */
8a8c69c3 5629 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5630 BUG_ON(!next);
5b713a3d 5631 put_prev_task(rq, next);
e692ab53 5632
5473e0cc 5633 /*
3bd37062 5634 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
5635 * both pi_lock and rq->lock, such that holding either
5636 * stabilizes the mask.
5637 *
5638 * Drop rq->lock is not quite as disastrous as it usually is
5639 * because !cpu_active at this point, which means load-balance
5640 * will not interfere. Also, stop-machine.
5641 */
8a8c69c3 5642 rq_unlock(rq, rf);
5473e0cc 5643 raw_spin_lock(&next->pi_lock);
8a8c69c3 5644 rq_relock(rq, rf);
5473e0cc
WL
5645
5646 /*
5647 * Since we're inside stop-machine, _nothing_ should have
5648 * changed the task, WARN if weird stuff happened, because in
5649 * that case the above rq->lock drop is a fail too.
5650 */
5651 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5652 raw_spin_unlock(&next->pi_lock);
5653 continue;
5654 }
5655
48c5ccae 5656 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5657 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5658 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5659 if (rq != dead_rq) {
8a8c69c3 5660 rq_unlock(rq, rf);
5e16bbc2 5661 rq = dead_rq;
8a8c69c3
PZ
5662 *rf = orf;
5663 rq_relock(rq, rf);
5e16bbc2 5664 }
5473e0cc 5665 raw_spin_unlock(&next->pi_lock);
1da177e4 5666 }
dce48a84 5667
48c5ccae 5668 rq->stop = stop;
dce48a84 5669}
1da177e4
LT
5670#endif /* CONFIG_HOTPLUG_CPU */
5671
f2cb1360 5672void set_rq_online(struct rq *rq)
1f11eb6a
GH
5673{
5674 if (!rq->online) {
5675 const struct sched_class *class;
5676
c6c4927b 5677 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5678 rq->online = 1;
5679
5680 for_each_class(class) {
5681 if (class->rq_online)
5682 class->rq_online(rq);
5683 }
5684 }
5685}
5686
f2cb1360 5687void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5688{
5689 if (rq->online) {
5690 const struct sched_class *class;
5691
5692 for_each_class(class) {
5693 if (class->rq_offline)
5694 class->rq_offline(rq);
5695 }
5696
c6c4927b 5697 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5698 rq->online = 0;
5699 }
5700}
5701
d1ccc66d
IM
5702/*
5703 * used to mark begin/end of suspend/resume:
5704 */
5705static int num_cpus_frozen;
d35be8ba 5706
1da177e4 5707/*
3a101d05
TH
5708 * Update cpusets according to cpu_active mask. If cpusets are
5709 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5710 * around partition_sched_domains().
d35be8ba
SB
5711 *
5712 * If we come here as part of a suspend/resume, don't touch cpusets because we
5713 * want to restore it back to its original state upon resume anyway.
1da177e4 5714 */
40190a78 5715static void cpuset_cpu_active(void)
e761b772 5716{
40190a78 5717 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5718 /*
5719 * num_cpus_frozen tracks how many CPUs are involved in suspend
5720 * resume sequence. As long as this is not the last online
5721 * operation in the resume sequence, just build a single sched
5722 * domain, ignoring cpusets.
5723 */
50e76632
PZ
5724 partition_sched_domains(1, NULL, NULL);
5725 if (--num_cpus_frozen)
135fb3e1 5726 return;
d35be8ba
SB
5727 /*
5728 * This is the last CPU online operation. So fall through and
5729 * restore the original sched domains by considering the
5730 * cpuset configurations.
5731 */
50e76632 5732 cpuset_force_rebuild();
3a101d05 5733 }
30e03acd 5734 cpuset_update_active_cpus();
3a101d05 5735}
e761b772 5736
40190a78 5737static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5738{
40190a78 5739 if (!cpuhp_tasks_frozen) {
06a76fe0 5740 if (dl_cpu_busy(cpu))
135fb3e1 5741 return -EBUSY;
30e03acd 5742 cpuset_update_active_cpus();
135fb3e1 5743 } else {
d35be8ba
SB
5744 num_cpus_frozen++;
5745 partition_sched_domains(1, NULL, NULL);
e761b772 5746 }
135fb3e1 5747 return 0;
e761b772 5748}
e761b772 5749
40190a78 5750int sched_cpu_activate(unsigned int cpu)
135fb3e1 5751{
7d976699 5752 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5753 struct rq_flags rf;
7d976699 5754
ba2591a5
PZ
5755#ifdef CONFIG_SCHED_SMT
5756 /*
c5511d03 5757 * When going up, increment the number of cores with SMT present.
ba2591a5 5758 */
c5511d03
PZI
5759 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5760 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 5761#endif
40190a78 5762 set_cpu_active(cpu, true);
135fb3e1 5763
40190a78 5764 if (sched_smp_initialized) {
135fb3e1 5765 sched_domains_numa_masks_set(cpu);
40190a78 5766 cpuset_cpu_active();
e761b772 5767 }
7d976699
TG
5768
5769 /*
5770 * Put the rq online, if not already. This happens:
5771 *
5772 * 1) In the early boot process, because we build the real domains
d1ccc66d 5773 * after all CPUs have been brought up.
7d976699
TG
5774 *
5775 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5776 * domains.
5777 */
8a8c69c3 5778 rq_lock_irqsave(rq, &rf);
7d976699
TG
5779 if (rq->rd) {
5780 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5781 set_rq_online(rq);
5782 }
8a8c69c3 5783 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5784
5785 update_max_interval();
5786
40190a78 5787 return 0;
135fb3e1
TG
5788}
5789
40190a78 5790int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5791{
135fb3e1
TG
5792 int ret;
5793
40190a78 5794 set_cpu_active(cpu, false);
b2454caa
PZ
5795 /*
5796 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5797 * users of this state to go away such that all new such users will
5798 * observe it.
5799 *
b2454caa
PZ
5800 * Do sync before park smpboot threads to take care the rcu boost case.
5801 */
309ba859 5802 synchronize_rcu();
40190a78 5803
c5511d03
PZI
5804#ifdef CONFIG_SCHED_SMT
5805 /*
5806 * When going down, decrement the number of cores with SMT present.
5807 */
5808 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5809 static_branch_dec_cpuslocked(&sched_smt_present);
5810#endif
5811
40190a78
TG
5812 if (!sched_smp_initialized)
5813 return 0;
5814
5815 ret = cpuset_cpu_inactive(cpu);
5816 if (ret) {
5817 set_cpu_active(cpu, true);
5818 return ret;
135fb3e1 5819 }
40190a78
TG
5820 sched_domains_numa_masks_clear(cpu);
5821 return 0;
135fb3e1
TG
5822}
5823
94baf7a5
TG
5824static void sched_rq_cpu_starting(unsigned int cpu)
5825{
5826 struct rq *rq = cpu_rq(cpu);
5827
5828 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5829 update_max_interval();
5830}
5831
135fb3e1
TG
5832int sched_cpu_starting(unsigned int cpu)
5833{
94baf7a5 5834 sched_rq_cpu_starting(cpu);
d84b3131 5835 sched_tick_start(cpu);
135fb3e1 5836 return 0;
e761b772 5837}
e761b772 5838
f2785ddb
TG
5839#ifdef CONFIG_HOTPLUG_CPU
5840int sched_cpu_dying(unsigned int cpu)
5841{
5842 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5843 struct rq_flags rf;
f2785ddb
TG
5844
5845 /* Handle pending wakeups and then migrate everything off */
5846 sched_ttwu_pending();
d84b3131 5847 sched_tick_stop(cpu);
8a8c69c3
PZ
5848
5849 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5850 if (rq->rd) {
5851 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5852 set_rq_offline(rq);
5853 }
8a8c69c3 5854 migrate_tasks(rq, &rf);
f2785ddb 5855 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5856 rq_unlock_irqrestore(rq, &rf);
5857
f2785ddb
TG
5858 calc_load_migrate(rq);
5859 update_max_interval();
00357f5e 5860 nohz_balance_exit_idle(rq);
e5ef27d0 5861 hrtick_clear(rq);
f2785ddb
TG
5862 return 0;
5863}
5864#endif
5865
1da177e4
LT
5866void __init sched_init_smp(void)
5867{
cb83b629
PZ
5868 sched_init_numa();
5869
6acce3ef
PZ
5870 /*
5871 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5872 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 5873 * happen.
6acce3ef 5874 */
712555ee 5875 mutex_lock(&sched_domains_mutex);
8d5dc512 5876 sched_init_domains(cpu_active_mask);
712555ee 5877 mutex_unlock(&sched_domains_mutex);
e761b772 5878
5c1e1767 5879 /* Move init over to a non-isolated CPU */
edb93821 5880 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5881 BUG();
19978ca6 5882 sched_init_granularity();
4212823f 5883
0e3900e6 5884 init_sched_rt_class();
1baca4ce 5885 init_sched_dl_class();
1b568f0a 5886
e26fbffd 5887 sched_smp_initialized = true;
1da177e4 5888}
e26fbffd
TG
5889
5890static int __init migration_init(void)
5891{
77a5352b 5892 sched_cpu_starting(smp_processor_id());
e26fbffd 5893 return 0;
1da177e4 5894}
e26fbffd
TG
5895early_initcall(migration_init);
5896
1da177e4
LT
5897#else
5898void __init sched_init_smp(void)
5899{
19978ca6 5900 sched_init_granularity();
1da177e4
LT
5901}
5902#endif /* CONFIG_SMP */
5903
5904int in_sched_functions(unsigned long addr)
5905{
1da177e4
LT
5906 return in_lock_functions(addr) ||
5907 (addr >= (unsigned long)__sched_text_start
5908 && addr < (unsigned long)__sched_text_end);
5909}
5910
029632fb 5911#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5912/*
5913 * Default task group.
5914 * Every task in system belongs to this group at bootup.
5915 */
029632fb 5916struct task_group root_task_group;
35cf4e50 5917LIST_HEAD(task_groups);
b0367629
WL
5918
5919/* Cacheline aligned slab cache for task_group */
5920static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5921#endif
6f505b16 5922
e6252c3e 5923DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5924DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5925
1da177e4
LT
5926void __init sched_init(void)
5927{
434d53b0 5928 unsigned long alloc_size = 0, ptr;
55627e3c 5929 int i;
434d53b0 5930
5822a454 5931 wait_bit_init();
9dcb8b68 5932
434d53b0
MT
5933#ifdef CONFIG_FAIR_GROUP_SCHED
5934 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5935#endif
5936#ifdef CONFIG_RT_GROUP_SCHED
5937 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5938#endif
434d53b0 5939 if (alloc_size) {
36b7b6d4 5940 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5941
5942#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5943 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5944 ptr += nr_cpu_ids * sizeof(void **);
5945
07e06b01 5946 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5947 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5948
6d6bc0ad 5949#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5950#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5951 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5952 ptr += nr_cpu_ids * sizeof(void **);
5953
07e06b01 5954 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5955 ptr += nr_cpu_ids * sizeof(void **);
5956
6d6bc0ad 5957#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5958 }
df7c8e84 5959#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5960 for_each_possible_cpu(i) {
5961 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5962 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5963 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5964 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 5965 }
b74e6278 5966#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 5967
d1ccc66d
IM
5968 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5969 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 5970
57d885fe
GH
5971#ifdef CONFIG_SMP
5972 init_defrootdomain();
5973#endif
5974
d0b27fa7 5975#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5976 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 5977 global_rt_period(), global_rt_runtime());
6d6bc0ad 5978#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 5979
7c941438 5980#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
5981 task_group_cache = KMEM_CACHE(task_group, 0);
5982
07e06b01
YZ
5983 list_add(&root_task_group.list, &task_groups);
5984 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 5985 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 5986 autogroup_init(&init_task);
7c941438 5987#endif /* CONFIG_CGROUP_SCHED */
6f505b16 5988
0a945022 5989 for_each_possible_cpu(i) {
70b97a7f 5990 struct rq *rq;
1da177e4
LT
5991
5992 rq = cpu_rq(i);
05fa785c 5993 raw_spin_lock_init(&rq->lock);
7897986b 5994 rq->nr_running = 0;
dce48a84
TG
5995 rq->calc_load_active = 0;
5996 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 5997 init_cfs_rq(&rq->cfs);
07c54f7a
AV
5998 init_rt_rq(&rq->rt);
5999 init_dl_rq(&rq->dl);
dd41f596 6000#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6001 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6002 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6003 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6004 /*
d1ccc66d 6005 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6006 *
6007 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6008 * gets 100% of the CPU resources in the system. This overall
6009 * system CPU resource is divided among the tasks of
07e06b01 6010 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6011 * based on each entity's (task or task-group's) weight
6012 * (se->load.weight).
6013 *
07e06b01 6014 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6015 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6016 * then A0's share of the CPU resource is:
354d60c2 6017 *
0d905bca 6018 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6019 *
07e06b01
YZ
6020 * We achieve this by letting root_task_group's tasks sit
6021 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6022 */
ab84d31e 6023 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6024 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6025#endif /* CONFIG_FAIR_GROUP_SCHED */
6026
6027 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6028#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6029 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6030#endif
1da177e4 6031#ifdef CONFIG_SMP
41c7ce9a 6032 rq->sd = NULL;
57d885fe 6033 rq->rd = NULL;
ca6d75e6 6034 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6035 rq->balance_callback = NULL;
1da177e4 6036 rq->active_balance = 0;
dd41f596 6037 rq->next_balance = jiffies;
1da177e4 6038 rq->push_cpu = 0;
0a2966b4 6039 rq->cpu = i;
1f11eb6a 6040 rq->online = 0;
eae0c9df
MG
6041 rq->idle_stamp = 0;
6042 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6043 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6044
6045 INIT_LIST_HEAD(&rq->cfs_tasks);
6046
dc938520 6047 rq_attach_root(rq, &def_root_domain);
3451d024 6048#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6049 rq->last_load_update_tick = jiffies;
e022e0d3 6050 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6051 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6052#endif
9fd81dd5 6053#endif /* CONFIG_SMP */
77a021be 6054 hrtick_rq_init(rq);
1da177e4 6055 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6056 }
6057
9059393e 6058 set_load_weight(&init_task, false);
b50f60ce 6059
1da177e4
LT
6060 /*
6061 * The boot idle thread does lazy MMU switching as well:
6062 */
f1f10076 6063 mmgrab(&init_mm);
1da177e4
LT
6064 enter_lazy_tlb(&init_mm, current);
6065
6066 /*
6067 * Make us the idle thread. Technically, schedule() should not be
6068 * called from this thread, however somewhere below it might be,
6069 * but because we are the idle thread, we just pick up running again
6070 * when this runqueue becomes "idle".
6071 */
6072 init_idle(current, smp_processor_id());
dce48a84
TG
6073
6074 calc_load_update = jiffies + LOAD_FREQ;
6075
bf4d83f6 6076#ifdef CONFIG_SMP
29d5e047 6077 idle_thread_set_boot_cpu();
029632fb
PZ
6078#endif
6079 init_sched_fair_class();
6a7b3dc3 6080
4698f88c
JP
6081 init_schedstats();
6082
eb414681
JW
6083 psi_init();
6084
6892b75e 6085 scheduler_running = 1;
1da177e4
LT
6086}
6087
d902db1e 6088#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6089static inline int preempt_count_equals(int preempt_offset)
6090{
da7142e2 6091 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6092
4ba8216c 6093 return (nested == preempt_offset);
e4aafea2
FW
6094}
6095
d894837f 6096void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6097{
8eb23b9f
PZ
6098 /*
6099 * Blocking primitives will set (and therefore destroy) current->state,
6100 * since we will exit with TASK_RUNNING make sure we enter with it,
6101 * otherwise we will destroy state.
6102 */
00845eb9 6103 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6104 "do not call blocking ops when !TASK_RUNNING; "
6105 "state=%lx set at [<%p>] %pS\n",
6106 current->state,
6107 (void *)current->task_state_change,
00845eb9 6108 (void *)current->task_state_change);
8eb23b9f 6109
3427445a
PZ
6110 ___might_sleep(file, line, preempt_offset);
6111}
6112EXPORT_SYMBOL(__might_sleep);
6113
6114void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6115{
d1ccc66d
IM
6116 /* Ratelimiting timestamp: */
6117 static unsigned long prev_jiffy;
6118
d1c6d149 6119 unsigned long preempt_disable_ip;
1da177e4 6120
d1ccc66d
IM
6121 /* WARN_ON_ONCE() by default, no rate limit required: */
6122 rcu_sleep_check();
6123
db273be2
TG
6124 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6125 !is_idle_task(current)) ||
1c3c5eab
TG
6126 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6127 oops_in_progress)
aef745fc 6128 return;
1c3c5eab 6129
aef745fc
IM
6130 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6131 return;
6132 prev_jiffy = jiffies;
6133
d1ccc66d 6134 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6135 preempt_disable_ip = get_preempt_disable_ip(current);
6136
3df0fc5b
PZ
6137 printk(KERN_ERR
6138 "BUG: sleeping function called from invalid context at %s:%d\n",
6139 file, line);
6140 printk(KERN_ERR
6141 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6142 in_atomic(), irqs_disabled(),
6143 current->pid, current->comm);
aef745fc 6144
a8b686b3
ES
6145 if (task_stack_end_corrupted(current))
6146 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6147
aef745fc
IM
6148 debug_show_held_locks(current);
6149 if (irqs_disabled())
6150 print_irqtrace_events(current);
d1c6d149
VN
6151 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6152 && !preempt_count_equals(preempt_offset)) {
8f47b187 6153 pr_err("Preemption disabled at:");
d1c6d149 6154 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6155 pr_cont("\n");
6156 }
aef745fc 6157 dump_stack();
f0b22e39 6158 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6159}
3427445a 6160EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6161
6162void __cant_sleep(const char *file, int line, int preempt_offset)
6163{
6164 static unsigned long prev_jiffy;
6165
6166 if (irqs_disabled())
6167 return;
6168
6169 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6170 return;
6171
6172 if (preempt_count() > preempt_offset)
6173 return;
6174
6175 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6176 return;
6177 prev_jiffy = jiffies;
6178
6179 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6180 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6181 in_atomic(), irqs_disabled(),
6182 current->pid, current->comm);
6183
6184 debug_show_held_locks(current);
6185 dump_stack();
6186 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6187}
6188EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6189#endif
6190
6191#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6192void normalize_rt_tasks(void)
3a5e4dc1 6193{
dbc7f069 6194 struct task_struct *g, *p;
d50dde5a
DF
6195 struct sched_attr attr = {
6196 .sched_policy = SCHED_NORMAL,
6197 };
1da177e4 6198
3472eaa1 6199 read_lock(&tasklist_lock);
5d07f420 6200 for_each_process_thread(g, p) {
178be793
IM
6201 /*
6202 * Only normalize user tasks:
6203 */
3472eaa1 6204 if (p->flags & PF_KTHREAD)
178be793
IM
6205 continue;
6206
4fa8d299
JP
6207 p->se.exec_start = 0;
6208 schedstat_set(p->se.statistics.wait_start, 0);
6209 schedstat_set(p->se.statistics.sleep_start, 0);
6210 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6211
aab03e05 6212 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6213 /*
6214 * Renice negative nice level userspace
6215 * tasks back to 0:
6216 */
3472eaa1 6217 if (task_nice(p) < 0)
dd41f596 6218 set_user_nice(p, 0);
1da177e4 6219 continue;
dd41f596 6220 }
1da177e4 6221
dbc7f069 6222 __sched_setscheduler(p, &attr, false, false);
5d07f420 6223 }
3472eaa1 6224 read_unlock(&tasklist_lock);
1da177e4
LT
6225}
6226
6227#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6228
67fc4e0c 6229#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6230/*
67fc4e0c 6231 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6232 *
6233 * They can only be called when the whole system has been
6234 * stopped - every CPU needs to be quiescent, and no scheduling
6235 * activity can take place. Using them for anything else would
6236 * be a serious bug, and as a result, they aren't even visible
6237 * under any other configuration.
6238 */
6239
6240/**
d1ccc66d 6241 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6242 * @cpu: the processor in question.
6243 *
6244 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6245 *
6246 * Return: The current task for @cpu.
1df5c10a 6247 */
36c8b586 6248struct task_struct *curr_task(int cpu)
1df5c10a
LT
6249{
6250 return cpu_curr(cpu);
6251}
6252
67fc4e0c
JW
6253#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6254
6255#ifdef CONFIG_IA64
1df5c10a 6256/**
d1ccc66d 6257 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6258 * @cpu: the processor in question.
6259 * @p: the task pointer to set.
6260 *
6261 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6262 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6263 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6264 * must be called with all CPU's synchronized, and interrupts disabled, the
6265 * and caller must save the original value of the current task (see
6266 * curr_task() above) and restore that value before reenabling interrupts and
6267 * re-starting the system.
6268 *
6269 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6270 */
a458ae2e 6271void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6272{
6273 cpu_curr(cpu) = p;
6274}
6275
6276#endif
29f59db3 6277
7c941438 6278#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6279/* task_group_lock serializes the addition/removal of task groups */
6280static DEFINE_SPINLOCK(task_group_lock);
6281
2f5177f0 6282static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6283{
6284 free_fair_sched_group(tg);
6285 free_rt_sched_group(tg);
e9aa1dd1 6286 autogroup_free(tg);
b0367629 6287 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6288}
6289
6290/* allocate runqueue etc for a new task group */
ec7dc8ac 6291struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6292{
6293 struct task_group *tg;
bccbe08a 6294
b0367629 6295 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6296 if (!tg)
6297 return ERR_PTR(-ENOMEM);
6298
ec7dc8ac 6299 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6300 goto err;
6301
ec7dc8ac 6302 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6303 goto err;
6304
ace783b9
LZ
6305 return tg;
6306
6307err:
2f5177f0 6308 sched_free_group(tg);
ace783b9
LZ
6309 return ERR_PTR(-ENOMEM);
6310}
6311
6312void sched_online_group(struct task_group *tg, struct task_group *parent)
6313{
6314 unsigned long flags;
6315
8ed36996 6316 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6317 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6318
d1ccc66d
IM
6319 /* Root should already exist: */
6320 WARN_ON(!parent);
f473aa5e
PZ
6321
6322 tg->parent = parent;
f473aa5e 6323 INIT_LIST_HEAD(&tg->children);
09f2724a 6324 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6325 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6326
6327 online_fair_sched_group(tg);
29f59db3
SV
6328}
6329
9b5b7751 6330/* rcu callback to free various structures associated with a task group */
2f5177f0 6331static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6332{
d1ccc66d 6333 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6334 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6335}
6336
4cf86d77 6337void sched_destroy_group(struct task_group *tg)
ace783b9 6338{
d1ccc66d 6339 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6340 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6341}
6342
6343void sched_offline_group(struct task_group *tg)
29f59db3 6344{
8ed36996 6345 unsigned long flags;
29f59db3 6346
d1ccc66d 6347 /* End participation in shares distribution: */
6fe1f348 6348 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6349
6350 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6351 list_del_rcu(&tg->list);
f473aa5e 6352 list_del_rcu(&tg->siblings);
8ed36996 6353 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6354}
6355
ea86cb4b 6356static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6357{
8323f26c 6358 struct task_group *tg;
29f59db3 6359
f7b8a47d
KT
6360 /*
6361 * All callers are synchronized by task_rq_lock(); we do not use RCU
6362 * which is pointless here. Thus, we pass "true" to task_css_check()
6363 * to prevent lockdep warnings.
6364 */
6365 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6366 struct task_group, css);
6367 tg = autogroup_task_group(tsk, tg);
6368 tsk->sched_task_group = tg;
6369
810b3817 6370#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6371 if (tsk->sched_class->task_change_group)
6372 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6373 else
810b3817 6374#endif
b2b5ce02 6375 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6376}
6377
6378/*
6379 * Change task's runqueue when it moves between groups.
6380 *
6381 * The caller of this function should have put the task in its new group by
6382 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6383 * its new group.
6384 */
6385void sched_move_task(struct task_struct *tsk)
6386{
7a57f32a
PZ
6387 int queued, running, queue_flags =
6388 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6389 struct rq_flags rf;
6390 struct rq *rq;
6391
6392 rq = task_rq_lock(tsk, &rf);
1b1d6225 6393 update_rq_clock(rq);
ea86cb4b
VG
6394
6395 running = task_current(rq, tsk);
6396 queued = task_on_rq_queued(tsk);
6397
6398 if (queued)
7a57f32a 6399 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6400 if (running)
ea86cb4b
VG
6401 put_prev_task(rq, tsk);
6402
6403 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6404
da0c1e65 6405 if (queued)
7a57f32a 6406 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6407 if (running)
b2bf6c31 6408 set_curr_task(rq, tsk);
29f59db3 6409
eb580751 6410 task_rq_unlock(rq, tsk, &rf);
29f59db3 6411}
68318b8e 6412
a7c6d554 6413static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6414{
a7c6d554 6415 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6416}
6417
eb95419b
TH
6418static struct cgroup_subsys_state *
6419cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6420{
eb95419b
TH
6421 struct task_group *parent = css_tg(parent_css);
6422 struct task_group *tg;
68318b8e 6423
eb95419b 6424 if (!parent) {
68318b8e 6425 /* This is early initialization for the top cgroup */
07e06b01 6426 return &root_task_group.css;
68318b8e
SV
6427 }
6428
ec7dc8ac 6429 tg = sched_create_group(parent);
68318b8e
SV
6430 if (IS_ERR(tg))
6431 return ERR_PTR(-ENOMEM);
6432
68318b8e
SV
6433 return &tg->css;
6434}
6435
96b77745
KK
6436/* Expose task group only after completing cgroup initialization */
6437static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6438{
6439 struct task_group *tg = css_tg(css);
6440 struct task_group *parent = css_tg(css->parent);
6441
6442 if (parent)
6443 sched_online_group(tg, parent);
6444 return 0;
6445}
6446
2f5177f0 6447static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6448{
eb95419b 6449 struct task_group *tg = css_tg(css);
ace783b9 6450
2f5177f0 6451 sched_offline_group(tg);
ace783b9
LZ
6452}
6453
eb95419b 6454static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6455{
eb95419b 6456 struct task_group *tg = css_tg(css);
68318b8e 6457
2f5177f0
PZ
6458 /*
6459 * Relies on the RCU grace period between css_released() and this.
6460 */
6461 sched_free_group(tg);
ace783b9
LZ
6462}
6463
ea86cb4b
VG
6464/*
6465 * This is called before wake_up_new_task(), therefore we really only
6466 * have to set its group bits, all the other stuff does not apply.
6467 */
b53202e6 6468static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6469{
ea86cb4b
VG
6470 struct rq_flags rf;
6471 struct rq *rq;
6472
6473 rq = task_rq_lock(task, &rf);
6474
80f5c1b8 6475 update_rq_clock(rq);
ea86cb4b
VG
6476 sched_change_group(task, TASK_SET_GROUP);
6477
6478 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6479}
6480
1f7dd3e5 6481static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6482{
bb9d97b6 6483 struct task_struct *task;
1f7dd3e5 6484 struct cgroup_subsys_state *css;
7dc603c9 6485 int ret = 0;
bb9d97b6 6486
1f7dd3e5 6487 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6488#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6489 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6490 return -EINVAL;
b68aa230 6491#else
bb9d97b6
TH
6492 /* We don't support RT-tasks being in separate groups */
6493 if (task->sched_class != &fair_sched_class)
6494 return -EINVAL;
b68aa230 6495#endif
7dc603c9
PZ
6496 /*
6497 * Serialize against wake_up_new_task() such that if its
6498 * running, we're sure to observe its full state.
6499 */
6500 raw_spin_lock_irq(&task->pi_lock);
6501 /*
6502 * Avoid calling sched_move_task() before wake_up_new_task()
6503 * has happened. This would lead to problems with PELT, due to
6504 * move wanting to detach+attach while we're not attached yet.
6505 */
6506 if (task->state == TASK_NEW)
6507 ret = -EINVAL;
6508 raw_spin_unlock_irq(&task->pi_lock);
6509
6510 if (ret)
6511 break;
bb9d97b6 6512 }
7dc603c9 6513 return ret;
be367d09 6514}
68318b8e 6515
1f7dd3e5 6516static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6517{
bb9d97b6 6518 struct task_struct *task;
1f7dd3e5 6519 struct cgroup_subsys_state *css;
bb9d97b6 6520
1f7dd3e5 6521 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6522 sched_move_task(task);
68318b8e
SV
6523}
6524
052f1dc7 6525#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6526static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6527 struct cftype *cftype, u64 shareval)
68318b8e 6528{
5b61d50a
KK
6529 if (shareval > scale_load_down(ULONG_MAX))
6530 shareval = MAX_SHARES;
182446d0 6531 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6532}
6533
182446d0
TH
6534static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6535 struct cftype *cft)
68318b8e 6536{
182446d0 6537 struct task_group *tg = css_tg(css);
68318b8e 6538
c8b28116 6539 return (u64) scale_load_down(tg->shares);
68318b8e 6540}
ab84d31e
PT
6541
6542#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6543static DEFINE_MUTEX(cfs_constraints_mutex);
6544
ab84d31e 6545const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 6546static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
ab84d31e 6547
a790de99
PT
6548static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6549
ab84d31e
PT
6550static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6551{
56f570e5 6552 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6553 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6554
6555 if (tg == &root_task_group)
6556 return -EINVAL;
6557
6558 /*
6559 * Ensure we have at some amount of bandwidth every period. This is
6560 * to prevent reaching a state of large arrears when throttled via
6561 * entity_tick() resulting in prolonged exit starvation.
6562 */
6563 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6564 return -EINVAL;
6565
6566 /*
6567 * Likewise, bound things on the otherside by preventing insane quota
6568 * periods. This also allows us to normalize in computing quota
6569 * feasibility.
6570 */
6571 if (period > max_cfs_quota_period)
6572 return -EINVAL;
6573
0e59bdae
KT
6574 /*
6575 * Prevent race between setting of cfs_rq->runtime_enabled and
6576 * unthrottle_offline_cfs_rqs().
6577 */
6578 get_online_cpus();
a790de99
PT
6579 mutex_lock(&cfs_constraints_mutex);
6580 ret = __cfs_schedulable(tg, period, quota);
6581 if (ret)
6582 goto out_unlock;
6583
58088ad0 6584 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6585 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6586 /*
6587 * If we need to toggle cfs_bandwidth_used, off->on must occur
6588 * before making related changes, and on->off must occur afterwards
6589 */
6590 if (runtime_enabled && !runtime_was_enabled)
6591 cfs_bandwidth_usage_inc();
ab84d31e
PT
6592 raw_spin_lock_irq(&cfs_b->lock);
6593 cfs_b->period = ns_to_ktime(period);
6594 cfs_b->quota = quota;
58088ad0 6595
a9cf55b2 6596 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6597
6598 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6599 if (runtime_enabled)
6600 start_cfs_bandwidth(cfs_b);
d1ccc66d 6601
ab84d31e
PT
6602 raw_spin_unlock_irq(&cfs_b->lock);
6603
0e59bdae 6604 for_each_online_cpu(i) {
ab84d31e 6605 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6606 struct rq *rq = cfs_rq->rq;
8a8c69c3 6607 struct rq_flags rf;
ab84d31e 6608
8a8c69c3 6609 rq_lock_irq(rq, &rf);
58088ad0 6610 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6611 cfs_rq->runtime_remaining = 0;
671fd9da 6612
029632fb 6613 if (cfs_rq->throttled)
671fd9da 6614 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6615 rq_unlock_irq(rq, &rf);
ab84d31e 6616 }
1ee14e6c
BS
6617 if (runtime_was_enabled && !runtime_enabled)
6618 cfs_bandwidth_usage_dec();
a790de99
PT
6619out_unlock:
6620 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6621 put_online_cpus();
ab84d31e 6622
a790de99 6623 return ret;
ab84d31e
PT
6624}
6625
b1546edc 6626static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
6627{
6628 u64 quota, period;
6629
029632fb 6630 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6631 if (cfs_quota_us < 0)
6632 quota = RUNTIME_INF;
1a8b4540 6633 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 6634 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
6635 else
6636 return -EINVAL;
ab84d31e
PT
6637
6638 return tg_set_cfs_bandwidth(tg, period, quota);
6639}
6640
b1546edc 6641static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
6642{
6643 u64 quota_us;
6644
029632fb 6645 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6646 return -1;
6647
029632fb 6648 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6649 do_div(quota_us, NSEC_PER_USEC);
6650
6651 return quota_us;
6652}
6653
b1546edc 6654static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
6655{
6656 u64 quota, period;
6657
1a8b4540
KK
6658 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
6659 return -EINVAL;
6660
ab84d31e 6661 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6662 quota = tg->cfs_bandwidth.quota;
ab84d31e 6663
ab84d31e
PT
6664 return tg_set_cfs_bandwidth(tg, period, quota);
6665}
6666
b1546edc 6667static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
6668{
6669 u64 cfs_period_us;
6670
029632fb 6671 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6672 do_div(cfs_period_us, NSEC_PER_USEC);
6673
6674 return cfs_period_us;
6675}
6676
182446d0
TH
6677static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6678 struct cftype *cft)
ab84d31e 6679{
182446d0 6680 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6681}
6682
182446d0
TH
6683static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6684 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6685{
182446d0 6686 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6687}
6688
182446d0
TH
6689static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6690 struct cftype *cft)
ab84d31e 6691{
182446d0 6692 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6693}
6694
182446d0
TH
6695static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6696 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6697{
182446d0 6698 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6699}
6700
a790de99
PT
6701struct cfs_schedulable_data {
6702 struct task_group *tg;
6703 u64 period, quota;
6704};
6705
6706/*
6707 * normalize group quota/period to be quota/max_period
6708 * note: units are usecs
6709 */
6710static u64 normalize_cfs_quota(struct task_group *tg,
6711 struct cfs_schedulable_data *d)
6712{
6713 u64 quota, period;
6714
6715 if (tg == d->tg) {
6716 period = d->period;
6717 quota = d->quota;
6718 } else {
6719 period = tg_get_cfs_period(tg);
6720 quota = tg_get_cfs_quota(tg);
6721 }
6722
6723 /* note: these should typically be equivalent */
6724 if (quota == RUNTIME_INF || quota == -1)
6725 return RUNTIME_INF;
6726
6727 return to_ratio(period, quota);
6728}
6729
6730static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6731{
6732 struct cfs_schedulable_data *d = data;
029632fb 6733 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6734 s64 quota = 0, parent_quota = -1;
6735
6736 if (!tg->parent) {
6737 quota = RUNTIME_INF;
6738 } else {
029632fb 6739 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6740
6741 quota = normalize_cfs_quota(tg, d);
9c58c79a 6742 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6743
6744 /*
c53593e5
TH
6745 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6746 * always take the min. On cgroup1, only inherit when no
d1ccc66d 6747 * limit is set:
a790de99 6748 */
c53593e5
TH
6749 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6750 quota = min(quota, parent_quota);
6751 } else {
6752 if (quota == RUNTIME_INF)
6753 quota = parent_quota;
6754 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6755 return -EINVAL;
6756 }
a790de99 6757 }
9c58c79a 6758 cfs_b->hierarchical_quota = quota;
a790de99
PT
6759
6760 return 0;
6761}
6762
6763static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6764{
8277434e 6765 int ret;
a790de99
PT
6766 struct cfs_schedulable_data data = {
6767 .tg = tg,
6768 .period = period,
6769 .quota = quota,
6770 };
6771
6772 if (quota != RUNTIME_INF) {
6773 do_div(data.period, NSEC_PER_USEC);
6774 do_div(data.quota, NSEC_PER_USEC);
6775 }
6776
8277434e
PT
6777 rcu_read_lock();
6778 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6779 rcu_read_unlock();
6780
6781 return ret;
a790de99 6782}
e8da1b18 6783
a1f7164c 6784static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6785{
2da8ca82 6786 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6787 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6788
44ffc75b
TH
6789 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6790 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6791 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 6792
3d6c50c2
YW
6793 if (schedstat_enabled() && tg != &root_task_group) {
6794 u64 ws = 0;
6795 int i;
6796
6797 for_each_possible_cpu(i)
6798 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6799
6800 seq_printf(sf, "wait_sum %llu\n", ws);
6801 }
6802
e8da1b18
NR
6803 return 0;
6804}
ab84d31e 6805#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6806#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6807
052f1dc7 6808#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6809static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6810 struct cftype *cft, s64 val)
6f505b16 6811{
182446d0 6812 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6813}
6814
182446d0
TH
6815static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6816 struct cftype *cft)
6f505b16 6817{
182446d0 6818 return sched_group_rt_runtime(css_tg(css));
6f505b16 6819}
d0b27fa7 6820
182446d0
TH
6821static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6822 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6823{
182446d0 6824 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6825}
6826
182446d0
TH
6827static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6828 struct cftype *cft)
d0b27fa7 6829{
182446d0 6830 return sched_group_rt_period(css_tg(css));
d0b27fa7 6831}
6d6bc0ad 6832#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6833
a1f7164c 6834static struct cftype cpu_legacy_files[] = {
052f1dc7 6835#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6836 {
6837 .name = "shares",
f4c753b7
PM
6838 .read_u64 = cpu_shares_read_u64,
6839 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6840 },
052f1dc7 6841#endif
ab84d31e
PT
6842#ifdef CONFIG_CFS_BANDWIDTH
6843 {
6844 .name = "cfs_quota_us",
6845 .read_s64 = cpu_cfs_quota_read_s64,
6846 .write_s64 = cpu_cfs_quota_write_s64,
6847 },
6848 {
6849 .name = "cfs_period_us",
6850 .read_u64 = cpu_cfs_period_read_u64,
6851 .write_u64 = cpu_cfs_period_write_u64,
6852 },
e8da1b18
NR
6853 {
6854 .name = "stat",
a1f7164c 6855 .seq_show = cpu_cfs_stat_show,
e8da1b18 6856 },
ab84d31e 6857#endif
052f1dc7 6858#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6859 {
9f0c1e56 6860 .name = "rt_runtime_us",
06ecb27c
PM
6861 .read_s64 = cpu_rt_runtime_read,
6862 .write_s64 = cpu_rt_runtime_write,
6f505b16 6863 },
d0b27fa7
PZ
6864 {
6865 .name = "rt_period_us",
f4c753b7
PM
6866 .read_u64 = cpu_rt_period_read_uint,
6867 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6868 },
052f1dc7 6869#endif
d1ccc66d 6870 { } /* Terminate */
68318b8e
SV
6871};
6872
d41bf8c9
TH
6873static int cpu_extra_stat_show(struct seq_file *sf,
6874 struct cgroup_subsys_state *css)
0d593634 6875{
0d593634
TH
6876#ifdef CONFIG_CFS_BANDWIDTH
6877 {
d41bf8c9 6878 struct task_group *tg = css_tg(css);
0d593634
TH
6879 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6880 u64 throttled_usec;
6881
6882 throttled_usec = cfs_b->throttled_time;
6883 do_div(throttled_usec, NSEC_PER_USEC);
6884
6885 seq_printf(sf, "nr_periods %d\n"
6886 "nr_throttled %d\n"
6887 "throttled_usec %llu\n",
6888 cfs_b->nr_periods, cfs_b->nr_throttled,
6889 throttled_usec);
6890 }
6891#endif
6892 return 0;
6893}
6894
6895#ifdef CONFIG_FAIR_GROUP_SCHED
6896static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6897 struct cftype *cft)
6898{
6899 struct task_group *tg = css_tg(css);
6900 u64 weight = scale_load_down(tg->shares);
6901
6902 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6903}
6904
6905static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6906 struct cftype *cft, u64 weight)
6907{
6908 /*
6909 * cgroup weight knobs should use the common MIN, DFL and MAX
6910 * values which are 1, 100 and 10000 respectively. While it loses
6911 * a bit of range on both ends, it maps pretty well onto the shares
6912 * value used by scheduler and the round-trip conversions preserve
6913 * the original value over the entire range.
6914 */
6915 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6916 return -ERANGE;
6917
6918 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6919
6920 return sched_group_set_shares(css_tg(css), scale_load(weight));
6921}
6922
6923static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6924 struct cftype *cft)
6925{
6926 unsigned long weight = scale_load_down(css_tg(css)->shares);
6927 int last_delta = INT_MAX;
6928 int prio, delta;
6929
6930 /* find the closest nice value to the current weight */
6931 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6932 delta = abs(sched_prio_to_weight[prio] - weight);
6933 if (delta >= last_delta)
6934 break;
6935 last_delta = delta;
6936 }
6937
6938 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6939}
6940
6941static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6942 struct cftype *cft, s64 nice)
6943{
6944 unsigned long weight;
7281c8de 6945 int idx;
0d593634
TH
6946
6947 if (nice < MIN_NICE || nice > MAX_NICE)
6948 return -ERANGE;
6949
7281c8de
PZ
6950 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6951 idx = array_index_nospec(idx, 40);
6952 weight = sched_prio_to_weight[idx];
6953
0d593634
TH
6954 return sched_group_set_shares(css_tg(css), scale_load(weight));
6955}
6956#endif
6957
6958static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6959 long period, long quota)
6960{
6961 if (quota < 0)
6962 seq_puts(sf, "max");
6963 else
6964 seq_printf(sf, "%ld", quota);
6965
6966 seq_printf(sf, " %ld\n", period);
6967}
6968
6969/* caller should put the current value in *@periodp before calling */
6970static int __maybe_unused cpu_period_quota_parse(char *buf,
6971 u64 *periodp, u64 *quotap)
6972{
6973 char tok[21]; /* U64_MAX */
6974
4c47acd8 6975 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
6976 return -EINVAL;
6977
6978 *periodp *= NSEC_PER_USEC;
6979
6980 if (sscanf(tok, "%llu", quotap))
6981 *quotap *= NSEC_PER_USEC;
6982 else if (!strcmp(tok, "max"))
6983 *quotap = RUNTIME_INF;
6984 else
6985 return -EINVAL;
6986
6987 return 0;
6988}
6989
6990#ifdef CONFIG_CFS_BANDWIDTH
6991static int cpu_max_show(struct seq_file *sf, void *v)
6992{
6993 struct task_group *tg = css_tg(seq_css(sf));
6994
6995 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6996 return 0;
6997}
6998
6999static ssize_t cpu_max_write(struct kernfs_open_file *of,
7000 char *buf, size_t nbytes, loff_t off)
7001{
7002 struct task_group *tg = css_tg(of_css(of));
7003 u64 period = tg_get_cfs_period(tg);
7004 u64 quota;
7005 int ret;
7006
7007 ret = cpu_period_quota_parse(buf, &period, &quota);
7008 if (!ret)
7009 ret = tg_set_cfs_bandwidth(tg, period, quota);
7010 return ret ?: nbytes;
7011}
7012#endif
7013
7014static struct cftype cpu_files[] = {
0d593634
TH
7015#ifdef CONFIG_FAIR_GROUP_SCHED
7016 {
7017 .name = "weight",
7018 .flags = CFTYPE_NOT_ON_ROOT,
7019 .read_u64 = cpu_weight_read_u64,
7020 .write_u64 = cpu_weight_write_u64,
7021 },
7022 {
7023 .name = "weight.nice",
7024 .flags = CFTYPE_NOT_ON_ROOT,
7025 .read_s64 = cpu_weight_nice_read_s64,
7026 .write_s64 = cpu_weight_nice_write_s64,
7027 },
7028#endif
7029#ifdef CONFIG_CFS_BANDWIDTH
7030 {
7031 .name = "max",
7032 .flags = CFTYPE_NOT_ON_ROOT,
7033 .seq_show = cpu_max_show,
7034 .write = cpu_max_write,
7035 },
7036#endif
7037 { } /* terminate */
7038};
7039
073219e9 7040struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7041 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7042 .css_online = cpu_cgroup_css_online,
2f5177f0 7043 .css_released = cpu_cgroup_css_released,
92fb9748 7044 .css_free = cpu_cgroup_css_free,
d41bf8c9 7045 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7046 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7047 .can_attach = cpu_cgroup_can_attach,
7048 .attach = cpu_cgroup_attach,
a1f7164c 7049 .legacy_cftypes = cpu_legacy_files,
0d593634 7050 .dfl_cftypes = cpu_files,
b38e42e9 7051 .early_init = true,
0d593634 7052 .threaded = true,
68318b8e
SV
7053};
7054
052f1dc7 7055#endif /* CONFIG_CGROUP_SCHED */
d842de87 7056
b637a328
PM
7057void dump_cpu_task(int cpu)
7058{
7059 pr_info("Task dump for CPU %d:\n", cpu);
7060 sched_show_task(cpu_curr(cpu));
7061}
ed82b8a1
AK
7062
7063/*
7064 * Nice levels are multiplicative, with a gentle 10% change for every
7065 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7066 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7067 * that remained on nice 0.
7068 *
7069 * The "10% effect" is relative and cumulative: from _any_ nice level,
7070 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7071 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7072 * If a task goes up by ~10% and another task goes down by ~10% then
7073 * the relative distance between them is ~25%.)
7074 */
7075const int sched_prio_to_weight[40] = {
7076 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7077 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7078 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7079 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7080 /* 0 */ 1024, 820, 655, 526, 423,
7081 /* 5 */ 335, 272, 215, 172, 137,
7082 /* 10 */ 110, 87, 70, 56, 45,
7083 /* 15 */ 36, 29, 23, 18, 15,
7084};
7085
7086/*
7087 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7088 *
7089 * In cases where the weight does not change often, we can use the
7090 * precalculated inverse to speed up arithmetics by turning divisions
7091 * into multiplications:
7092 */
7093const u32 sched_prio_to_wmult[40] = {
7094 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7095 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7096 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7097 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7098 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7099 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7100 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7101 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7102};
14a7405b
IM
7103
7104#undef CREATE_TRACE_POINTS