]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/sched/core.c
nohz: Use nohz own full kick on 2nd task enqueue
[mirror_ubuntu-eoan-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621
PZ
141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 rq->clock += delta;
143 update_rq_clock_task(rq, delta);
3e51f33f
PZ
144}
145
bf5c91ba
IM
146/*
147 * Debugging: various feature bits
148 */
f00b45c1 149
f00b45c1
PZ
150#define SCHED_FEAT(name, enabled) \
151 (1UL << __SCHED_FEAT_##name) * enabled |
152
bf5c91ba 153const_debug unsigned int sysctl_sched_features =
391e43da 154#include "features.h"
f00b45c1
PZ
155 0;
156
157#undef SCHED_FEAT
158
159#ifdef CONFIG_SCHED_DEBUG
160#define SCHED_FEAT(name, enabled) \
161 #name ,
162
1292531f 163static const char * const sched_feat_names[] = {
391e43da 164#include "features.h"
f00b45c1
PZ
165};
166
167#undef SCHED_FEAT
168
34f3a814 169static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 170{
f00b45c1
PZ
171 int i;
172
f8b6d1cc 173 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
174 if (!(sysctl_sched_features & (1UL << i)))
175 seq_puts(m, "NO_");
176 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 177 }
34f3a814 178 seq_puts(m, "\n");
f00b45c1 179
34f3a814 180 return 0;
f00b45c1
PZ
181}
182
f8b6d1cc
PZ
183#ifdef HAVE_JUMP_LABEL
184
c5905afb
IM
185#define jump_label_key__true STATIC_KEY_INIT_TRUE
186#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
187
188#define SCHED_FEAT(name, enabled) \
189 jump_label_key__##enabled ,
190
c5905afb 191struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
192#include "features.h"
193};
194
195#undef SCHED_FEAT
196
197static void sched_feat_disable(int i)
198{
c5905afb
IM
199 if (static_key_enabled(&sched_feat_keys[i]))
200 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
201}
202
203static void sched_feat_enable(int i)
204{
c5905afb
IM
205 if (!static_key_enabled(&sched_feat_keys[i]))
206 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
207}
208#else
209static void sched_feat_disable(int i) { };
210static void sched_feat_enable(int i) { };
211#endif /* HAVE_JUMP_LABEL */
212
1a687c2e 213static int sched_feat_set(char *cmp)
f00b45c1 214{
f00b45c1 215 int i;
1a687c2e 216 int neg = 0;
f00b45c1 217
524429c3 218 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
219 neg = 1;
220 cmp += 3;
221 }
222
f8b6d1cc 223 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 224 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 225 if (neg) {
f00b45c1 226 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
227 sched_feat_disable(i);
228 } else {
f00b45c1 229 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
230 sched_feat_enable(i);
231 }
f00b45c1
PZ
232 break;
233 }
234 }
235
1a687c2e
MG
236 return i;
237}
238
239static ssize_t
240sched_feat_write(struct file *filp, const char __user *ubuf,
241 size_t cnt, loff_t *ppos)
242{
243 char buf[64];
244 char *cmp;
245 int i;
246
247 if (cnt > 63)
248 cnt = 63;
249
250 if (copy_from_user(&buf, ubuf, cnt))
251 return -EFAULT;
252
253 buf[cnt] = 0;
254 cmp = strstrip(buf);
255
256 i = sched_feat_set(cmp);
f8b6d1cc 257 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
258 return -EINVAL;
259
42994724 260 *ppos += cnt;
f00b45c1
PZ
261
262 return cnt;
263}
264
34f3a814
LZ
265static int sched_feat_open(struct inode *inode, struct file *filp)
266{
267 return single_open(filp, sched_feat_show, NULL);
268}
269
828c0950 270static const struct file_operations sched_feat_fops = {
34f3a814
LZ
271 .open = sched_feat_open,
272 .write = sched_feat_write,
273 .read = seq_read,
274 .llseek = seq_lseek,
275 .release = single_release,
f00b45c1
PZ
276};
277
278static __init int sched_init_debug(void)
279{
f00b45c1
PZ
280 debugfs_create_file("sched_features", 0644, NULL, NULL,
281 &sched_feat_fops);
282
283 return 0;
284}
285late_initcall(sched_init_debug);
f8b6d1cc 286#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 287
b82d9fdd
PZ
288/*
289 * Number of tasks to iterate in a single balance run.
290 * Limited because this is done with IRQs disabled.
291 */
292const_debug unsigned int sysctl_sched_nr_migrate = 32;
293
e9e9250b
PZ
294/*
295 * period over which we average the RT time consumption, measured
296 * in ms.
297 *
298 * default: 1s
299 */
300const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
301
fa85ae24 302/*
9f0c1e56 303 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
304 * default: 1s
305 */
9f0c1e56 306unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 307
029632fb 308__read_mostly int scheduler_running;
6892b75e 309
9f0c1e56
PZ
310/*
311 * part of the period that we allow rt tasks to run in us.
312 * default: 0.95s
313 */
314int sysctl_sched_rt_runtime = 950000;
fa85ae24 315
0970d299 316/*
0122ec5b 317 * __task_rq_lock - lock the rq @p resides on.
b29739f9 318 */
70b97a7f 319static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
320 __acquires(rq->lock)
321{
0970d299
PZ
322 struct rq *rq;
323
0122ec5b
PZ
324 lockdep_assert_held(&p->pi_lock);
325
3a5c359a 326 for (;;) {
0970d299 327 rq = task_rq(p);
05fa785c 328 raw_spin_lock(&rq->lock);
65cc8e48 329 if (likely(rq == task_rq(p)))
3a5c359a 330 return rq;
05fa785c 331 raw_spin_unlock(&rq->lock);
b29739f9 332 }
b29739f9
IM
333}
334
1da177e4 335/*
0122ec5b 336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 337 */
70b97a7f 338static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 339 __acquires(p->pi_lock)
1da177e4
LT
340 __acquires(rq->lock)
341{
70b97a7f 342 struct rq *rq;
1da177e4 343
3a5c359a 344 for (;;) {
0122ec5b 345 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 346 rq = task_rq(p);
05fa785c 347 raw_spin_lock(&rq->lock);
65cc8e48 348 if (likely(rq == task_rq(p)))
3a5c359a 349 return rq;
0122ec5b
PZ
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 352 }
1da177e4
LT
353}
354
a9957449 355static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
356 __releases(rq->lock)
357{
05fa785c 358 raw_spin_unlock(&rq->lock);
b29739f9
IM
359}
360
0122ec5b
PZ
361static inline void
362task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 363 __releases(rq->lock)
0122ec5b 364 __releases(p->pi_lock)
1da177e4 365{
0122ec5b
PZ
366 raw_spin_unlock(&rq->lock);
367 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
368}
369
1da177e4 370/*
cc2a73b5 371 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 372 */
a9957449 373static struct rq *this_rq_lock(void)
1da177e4
LT
374 __acquires(rq->lock)
375{
70b97a7f 376 struct rq *rq;
1da177e4
LT
377
378 local_irq_disable();
379 rq = this_rq();
05fa785c 380 raw_spin_lock(&rq->lock);
1da177e4
LT
381
382 return rq;
383}
384
8f4d37ec
PZ
385#ifdef CONFIG_SCHED_HRTICK
386/*
387 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 388 */
8f4d37ec 389
8f4d37ec
PZ
390static void hrtick_clear(struct rq *rq)
391{
392 if (hrtimer_active(&rq->hrtick_timer))
393 hrtimer_cancel(&rq->hrtick_timer);
394}
395
8f4d37ec
PZ
396/*
397 * High-resolution timer tick.
398 * Runs from hardirq context with interrupts disabled.
399 */
400static enum hrtimer_restart hrtick(struct hrtimer *timer)
401{
402 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403
404 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405
05fa785c 406 raw_spin_lock(&rq->lock);
3e51f33f 407 update_rq_clock(rq);
8f4d37ec 408 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 409 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
410
411 return HRTIMER_NORESTART;
412}
413
95e904c7 414#ifdef CONFIG_SMP
971ee28c
PZ
415
416static int __hrtick_restart(struct rq *rq)
417{
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = hrtimer_get_softexpires(timer);
420
421 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
422}
423
31656519
PZ
424/*
425 * called from hardirq (IPI) context
426 */
427static void __hrtick_start(void *arg)
b328ca18 428{
31656519 429 struct rq *rq = arg;
b328ca18 430
05fa785c 431 raw_spin_lock(&rq->lock);
971ee28c 432 __hrtick_restart(rq);
31656519 433 rq->hrtick_csd_pending = 0;
05fa785c 434 raw_spin_unlock(&rq->lock);
b328ca18
PZ
435}
436
31656519
PZ
437/*
438 * Called to set the hrtick timer state.
439 *
440 * called with rq->lock held and irqs disabled
441 */
029632fb 442void hrtick_start(struct rq *rq, u64 delay)
b328ca18 443{
31656519
PZ
444 struct hrtimer *timer = &rq->hrtick_timer;
445 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 446
cc584b21 447 hrtimer_set_expires(timer, time);
31656519
PZ
448
449 if (rq == this_rq()) {
971ee28c 450 __hrtick_restart(rq);
31656519 451 } else if (!rq->hrtick_csd_pending) {
c46fff2a 452 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
453 rq->hrtick_csd_pending = 1;
454 }
b328ca18
PZ
455}
456
457static int
458hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
459{
460 int cpu = (int)(long)hcpu;
461
462 switch (action) {
463 case CPU_UP_CANCELED:
464 case CPU_UP_CANCELED_FROZEN:
465 case CPU_DOWN_PREPARE:
466 case CPU_DOWN_PREPARE_FROZEN:
467 case CPU_DEAD:
468 case CPU_DEAD_FROZEN:
31656519 469 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
470 return NOTIFY_OK;
471 }
472
473 return NOTIFY_DONE;
474}
475
fa748203 476static __init void init_hrtick(void)
b328ca18
PZ
477{
478 hotcpu_notifier(hotplug_hrtick, 0);
479}
31656519
PZ
480#else
481/*
482 * Called to set the hrtick timer state.
483 *
484 * called with rq->lock held and irqs disabled
485 */
029632fb 486void hrtick_start(struct rq *rq, u64 delay)
31656519 487{
7f1e2ca9 488 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 489 HRTIMER_MODE_REL_PINNED, 0);
31656519 490}
b328ca18 491
006c75f1 492static inline void init_hrtick(void)
8f4d37ec 493{
8f4d37ec 494}
31656519 495#endif /* CONFIG_SMP */
8f4d37ec 496
31656519 497static void init_rq_hrtick(struct rq *rq)
8f4d37ec 498{
31656519
PZ
499#ifdef CONFIG_SMP
500 rq->hrtick_csd_pending = 0;
8f4d37ec 501
31656519
PZ
502 rq->hrtick_csd.flags = 0;
503 rq->hrtick_csd.func = __hrtick_start;
504 rq->hrtick_csd.info = rq;
505#endif
8f4d37ec 506
31656519
PZ
507 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508 rq->hrtick_timer.function = hrtick;
8f4d37ec 509}
006c75f1 510#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
511static inline void hrtick_clear(struct rq *rq)
512{
513}
514
8f4d37ec
PZ
515static inline void init_rq_hrtick(struct rq *rq)
516{
517}
518
b328ca18
PZ
519static inline void init_hrtick(void)
520{
521}
006c75f1 522#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 523
fd99f91a
PZ
524/*
525 * cmpxchg based fetch_or, macro so it works for different integer types
526 */
527#define fetch_or(ptr, val) \
528({ typeof(*(ptr)) __old, __val = *(ptr); \
529 for (;;) { \
530 __old = cmpxchg((ptr), __val, __val | (val)); \
531 if (__old == __val) \
532 break; \
533 __val = __old; \
534 } \
535 __old; \
536})
537
e3baac47 538#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
539/*
540 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
541 * this avoids any races wrt polling state changes and thereby avoids
542 * spurious IPIs.
543 */
544static bool set_nr_and_not_polling(struct task_struct *p)
545{
546 struct thread_info *ti = task_thread_info(p);
547 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
548}
e3baac47
PZ
549
550/*
551 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
552 *
553 * If this returns true, then the idle task promises to call
554 * sched_ttwu_pending() and reschedule soon.
555 */
556static bool set_nr_if_polling(struct task_struct *p)
557{
558 struct thread_info *ti = task_thread_info(p);
559 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
560
561 for (;;) {
562 if (!(val & _TIF_POLLING_NRFLAG))
563 return false;
564 if (val & _TIF_NEED_RESCHED)
565 return true;
566 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
567 if (old == val)
568 break;
569 val = old;
570 }
571 return true;
572}
573
fd99f91a
PZ
574#else
575static bool set_nr_and_not_polling(struct task_struct *p)
576{
577 set_tsk_need_resched(p);
578 return true;
579}
e3baac47
PZ
580
581#ifdef CONFIG_SMP
582static bool set_nr_if_polling(struct task_struct *p)
583{
584 return false;
585}
586#endif
fd99f91a
PZ
587#endif
588
c24d20db
IM
589/*
590 * resched_task - mark a task 'to be rescheduled now'.
591 *
592 * On UP this means the setting of the need_resched flag, on SMP it
593 * might also involve a cross-CPU call to trigger the scheduler on
594 * the target CPU.
595 */
029632fb 596void resched_task(struct task_struct *p)
c24d20db
IM
597{
598 int cpu;
599
b021fe3e 600 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 601
5ed0cec0 602 if (test_tsk_need_resched(p))
c24d20db
IM
603 return;
604
c24d20db 605 cpu = task_cpu(p);
fd99f91a 606
f27dde8d 607 if (cpu == smp_processor_id()) {
fd99f91a 608 set_tsk_need_resched(p);
f27dde8d 609 set_preempt_need_resched();
c24d20db 610 return;
f27dde8d 611 }
c24d20db 612
fd99f91a 613 if (set_nr_and_not_polling(p))
c24d20db 614 smp_send_reschedule(cpu);
dfc68f29
AL
615 else
616 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
617}
618
029632fb 619void resched_cpu(int cpu)
c24d20db
IM
620{
621 struct rq *rq = cpu_rq(cpu);
622 unsigned long flags;
623
05fa785c 624 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
625 return;
626 resched_task(cpu_curr(cpu));
05fa785c 627 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 628}
06d8308c 629
b021fe3e 630#ifdef CONFIG_SMP
3451d024 631#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
632/*
633 * In the semi idle case, use the nearest busy cpu for migrating timers
634 * from an idle cpu. This is good for power-savings.
635 *
636 * We don't do similar optimization for completely idle system, as
637 * selecting an idle cpu will add more delays to the timers than intended
638 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
639 */
6201b4d6 640int get_nohz_timer_target(int pinned)
83cd4fe2
VP
641{
642 int cpu = smp_processor_id();
643 int i;
644 struct sched_domain *sd;
645
6201b4d6
VK
646 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
647 return cpu;
648
057f3fad 649 rcu_read_lock();
83cd4fe2 650 for_each_domain(cpu, sd) {
057f3fad
PZ
651 for_each_cpu(i, sched_domain_span(sd)) {
652 if (!idle_cpu(i)) {
653 cpu = i;
654 goto unlock;
655 }
656 }
83cd4fe2 657 }
057f3fad
PZ
658unlock:
659 rcu_read_unlock();
83cd4fe2
VP
660 return cpu;
661}
06d8308c
TG
662/*
663 * When add_timer_on() enqueues a timer into the timer wheel of an
664 * idle CPU then this timer might expire before the next timer event
665 * which is scheduled to wake up that CPU. In case of a completely
666 * idle system the next event might even be infinite time into the
667 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
668 * leaves the inner idle loop so the newly added timer is taken into
669 * account when the CPU goes back to idle and evaluates the timer
670 * wheel for the next timer event.
671 */
1c20091e 672static void wake_up_idle_cpu(int cpu)
06d8308c
TG
673{
674 struct rq *rq = cpu_rq(cpu);
675
676 if (cpu == smp_processor_id())
677 return;
678
67b9ca70 679 if (set_nr_and_not_polling(rq->idle))
06d8308c 680 smp_send_reschedule(cpu);
dfc68f29
AL
681 else
682 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
683}
684
c5bfece2 685static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 686{
53c5fa16
FW
687 /*
688 * We just need the target to call irq_exit() and re-evaluate
689 * the next tick. The nohz full kick at least implies that.
690 * If needed we can still optimize that later with an
691 * empty IRQ.
692 */
c5bfece2 693 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
694 if (cpu != smp_processor_id() ||
695 tick_nohz_tick_stopped())
53c5fa16 696 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
697 return true;
698 }
699
700 return false;
701}
702
703void wake_up_nohz_cpu(int cpu)
704{
c5bfece2 705 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
706 wake_up_idle_cpu(cpu);
707}
708
ca38062e 709static inline bool got_nohz_idle_kick(void)
45bf76df 710{
1c792db7 711 int cpu = smp_processor_id();
873b4c65
VG
712
713 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
714 return false;
715
716 if (idle_cpu(cpu) && !need_resched())
717 return true;
718
719 /*
720 * We can't run Idle Load Balance on this CPU for this time so we
721 * cancel it and clear NOHZ_BALANCE_KICK
722 */
723 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
724 return false;
45bf76df
IM
725}
726
3451d024 727#else /* CONFIG_NO_HZ_COMMON */
45bf76df 728
ca38062e 729static inline bool got_nohz_idle_kick(void)
2069dd75 730{
ca38062e 731 return false;
2069dd75
PZ
732}
733
3451d024 734#endif /* CONFIG_NO_HZ_COMMON */
d842de87 735
ce831b38
FW
736#ifdef CONFIG_NO_HZ_FULL
737bool sched_can_stop_tick(void)
738{
739 struct rq *rq;
740
741 rq = this_rq();
742
743 /* Make sure rq->nr_running update is visible after the IPI */
744 smp_rmb();
745
746 /* More than one running task need preemption */
747 if (rq->nr_running > 1)
748 return false;
749
750 return true;
751}
752#endif /* CONFIG_NO_HZ_FULL */
d842de87 753
029632fb 754void sched_avg_update(struct rq *rq)
18d95a28 755{
e9e9250b
PZ
756 s64 period = sched_avg_period();
757
78becc27 758 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
759 /*
760 * Inline assembly required to prevent the compiler
761 * optimising this loop into a divmod call.
762 * See __iter_div_u64_rem() for another example of this.
763 */
764 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
765 rq->age_stamp += period;
766 rq->rt_avg /= 2;
767 }
18d95a28
PZ
768}
769
6d6bc0ad 770#endif /* CONFIG_SMP */
18d95a28 771
a790de99
PT
772#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
773 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 774/*
8277434e
PT
775 * Iterate task_group tree rooted at *from, calling @down when first entering a
776 * node and @up when leaving it for the final time.
777 *
778 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 779 */
029632fb 780int walk_tg_tree_from(struct task_group *from,
8277434e 781 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
782{
783 struct task_group *parent, *child;
eb755805 784 int ret;
c09595f6 785
8277434e
PT
786 parent = from;
787
c09595f6 788down:
eb755805
PZ
789 ret = (*down)(parent, data);
790 if (ret)
8277434e 791 goto out;
c09595f6
PZ
792 list_for_each_entry_rcu(child, &parent->children, siblings) {
793 parent = child;
794 goto down;
795
796up:
797 continue;
798 }
eb755805 799 ret = (*up)(parent, data);
8277434e
PT
800 if (ret || parent == from)
801 goto out;
c09595f6
PZ
802
803 child = parent;
804 parent = parent->parent;
805 if (parent)
806 goto up;
8277434e 807out:
eb755805 808 return ret;
c09595f6
PZ
809}
810
029632fb 811int tg_nop(struct task_group *tg, void *data)
eb755805 812{
e2b245f8 813 return 0;
eb755805 814}
18d95a28
PZ
815#endif
816
45bf76df
IM
817static void set_load_weight(struct task_struct *p)
818{
f05998d4
NR
819 int prio = p->static_prio - MAX_RT_PRIO;
820 struct load_weight *load = &p->se.load;
821
dd41f596
IM
822 /*
823 * SCHED_IDLE tasks get minimal weight:
824 */
825 if (p->policy == SCHED_IDLE) {
c8b28116 826 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 827 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
828 return;
829 }
71f8bd46 830
c8b28116 831 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 832 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
833}
834
371fd7e7 835static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 836{
a64692a3 837 update_rq_clock(rq);
43148951 838 sched_info_queued(rq, p);
371fd7e7 839 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
840}
841
371fd7e7 842static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 843{
a64692a3 844 update_rq_clock(rq);
43148951 845 sched_info_dequeued(rq, p);
371fd7e7 846 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
847}
848
029632fb 849void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
850{
851 if (task_contributes_to_load(p))
852 rq->nr_uninterruptible--;
853
371fd7e7 854 enqueue_task(rq, p, flags);
1e3c88bd
PZ
855}
856
029632fb 857void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
858{
859 if (task_contributes_to_load(p))
860 rq->nr_uninterruptible++;
861
371fd7e7 862 dequeue_task(rq, p, flags);
1e3c88bd
PZ
863}
864
fe44d621 865static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 866{
095c0aa8
GC
867/*
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
870 */
871#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872 s64 steal = 0, irq_delta = 0;
873#endif
874#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 875 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
876
877 /*
878 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879 * this case when a previous update_rq_clock() happened inside a
880 * {soft,}irq region.
881 *
882 * When this happens, we stop ->clock_task and only update the
883 * prev_irq_time stamp to account for the part that fit, so that a next
884 * update will consume the rest. This ensures ->clock_task is
885 * monotonic.
886 *
887 * It does however cause some slight miss-attribution of {soft,}irq
888 * time, a more accurate solution would be to update the irq_time using
889 * the current rq->clock timestamp, except that would require using
890 * atomic ops.
891 */
892 if (irq_delta > delta)
893 irq_delta = delta;
894
895 rq->prev_irq_time += irq_delta;
896 delta -= irq_delta;
095c0aa8
GC
897#endif
898#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 899 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
095c0aa8 906 rq->prev_steal_time_rq += steal;
095c0aa8
GC
907 delta -= steal;
908 }
909#endif
910
fe44d621
PZ
911 rq->clock_task += delta;
912
095c0aa8 913#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 914 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
915 sched_rt_avg_update(rq, irq_delta + steal);
916#endif
aa483808
VP
917}
918
34f971f6
PZ
919void sched_set_stop_task(int cpu, struct task_struct *stop)
920{
921 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
922 struct task_struct *old_stop = cpu_rq(cpu)->stop;
923
924 if (stop) {
925 /*
926 * Make it appear like a SCHED_FIFO task, its something
927 * userspace knows about and won't get confused about.
928 *
929 * Also, it will make PI more or less work without too
930 * much confusion -- but then, stop work should not
931 * rely on PI working anyway.
932 */
933 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
934
935 stop->sched_class = &stop_sched_class;
936 }
937
938 cpu_rq(cpu)->stop = stop;
939
940 if (old_stop) {
941 /*
942 * Reset it back to a normal scheduling class so that
943 * it can die in pieces.
944 */
945 old_stop->sched_class = &rt_sched_class;
946 }
947}
948
14531189 949/*
dd41f596 950 * __normal_prio - return the priority that is based on the static prio
14531189 951 */
14531189
IM
952static inline int __normal_prio(struct task_struct *p)
953{
dd41f596 954 return p->static_prio;
14531189
IM
955}
956
b29739f9
IM
957/*
958 * Calculate the expected normal priority: i.e. priority
959 * without taking RT-inheritance into account. Might be
960 * boosted by interactivity modifiers. Changes upon fork,
961 * setprio syscalls, and whenever the interactivity
962 * estimator recalculates.
963 */
36c8b586 964static inline int normal_prio(struct task_struct *p)
b29739f9
IM
965{
966 int prio;
967
aab03e05
DF
968 if (task_has_dl_policy(p))
969 prio = MAX_DL_PRIO-1;
970 else if (task_has_rt_policy(p))
b29739f9
IM
971 prio = MAX_RT_PRIO-1 - p->rt_priority;
972 else
973 prio = __normal_prio(p);
974 return prio;
975}
976
977/*
978 * Calculate the current priority, i.e. the priority
979 * taken into account by the scheduler. This value might
980 * be boosted by RT tasks, or might be boosted by
981 * interactivity modifiers. Will be RT if the task got
982 * RT-boosted. If not then it returns p->normal_prio.
983 */
36c8b586 984static int effective_prio(struct task_struct *p)
b29739f9
IM
985{
986 p->normal_prio = normal_prio(p);
987 /*
988 * If we are RT tasks or we were boosted to RT priority,
989 * keep the priority unchanged. Otherwise, update priority
990 * to the normal priority:
991 */
992 if (!rt_prio(p->prio))
993 return p->normal_prio;
994 return p->prio;
995}
996
1da177e4
LT
997/**
998 * task_curr - is this task currently executing on a CPU?
999 * @p: the task in question.
e69f6186
YB
1000 *
1001 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1002 */
36c8b586 1003inline int task_curr(const struct task_struct *p)
1da177e4
LT
1004{
1005 return cpu_curr(task_cpu(p)) == p;
1006}
1007
cb469845
SR
1008static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1009 const struct sched_class *prev_class,
da7a735e 1010 int oldprio)
cb469845
SR
1011{
1012 if (prev_class != p->sched_class) {
1013 if (prev_class->switched_from)
da7a735e
PZ
1014 prev_class->switched_from(rq, p);
1015 p->sched_class->switched_to(rq, p);
2d3d891d 1016 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1017 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1018}
1019
029632fb 1020void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1021{
1022 const struct sched_class *class;
1023
1024 if (p->sched_class == rq->curr->sched_class) {
1025 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1026 } else {
1027 for_each_class(class) {
1028 if (class == rq->curr->sched_class)
1029 break;
1030 if (class == p->sched_class) {
1031 resched_task(rq->curr);
1032 break;
1033 }
1034 }
1035 }
1036
1037 /*
1038 * A queue event has occurred, and we're going to schedule. In
1039 * this case, we can save a useless back to back clock update.
1040 */
fd2f4419 1041 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1042 rq->skip_clock_update = 1;
1043}
1044
1da177e4 1045#ifdef CONFIG_SMP
dd41f596 1046void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1047{
e2912009
PZ
1048#ifdef CONFIG_SCHED_DEBUG
1049 /*
1050 * We should never call set_task_cpu() on a blocked task,
1051 * ttwu() will sort out the placement.
1052 */
077614ee 1053 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1054 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1055
1056#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1057 /*
1058 * The caller should hold either p->pi_lock or rq->lock, when changing
1059 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1060 *
1061 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1062 * see task_group().
6c6c54e1
PZ
1063 *
1064 * Furthermore, all task_rq users should acquire both locks, see
1065 * task_rq_lock().
1066 */
0122ec5b
PZ
1067 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1068 lockdep_is_held(&task_rq(p)->lock)));
1069#endif
e2912009
PZ
1070#endif
1071
de1d7286 1072 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1073
0c69774e 1074 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1075 if (p->sched_class->migrate_task_rq)
1076 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1077 p->se.nr_migrations++;
a8b0ca17 1078 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1079 }
dd41f596
IM
1080
1081 __set_task_cpu(p, new_cpu);
c65cc870
IM
1082}
1083
ac66f547
PZ
1084static void __migrate_swap_task(struct task_struct *p, int cpu)
1085{
1086 if (p->on_rq) {
1087 struct rq *src_rq, *dst_rq;
1088
1089 src_rq = task_rq(p);
1090 dst_rq = cpu_rq(cpu);
1091
1092 deactivate_task(src_rq, p, 0);
1093 set_task_cpu(p, cpu);
1094 activate_task(dst_rq, p, 0);
1095 check_preempt_curr(dst_rq, p, 0);
1096 } else {
1097 /*
1098 * Task isn't running anymore; make it appear like we migrated
1099 * it before it went to sleep. This means on wakeup we make the
1100 * previous cpu our targer instead of where it really is.
1101 */
1102 p->wake_cpu = cpu;
1103 }
1104}
1105
1106struct migration_swap_arg {
1107 struct task_struct *src_task, *dst_task;
1108 int src_cpu, dst_cpu;
1109};
1110
1111static int migrate_swap_stop(void *data)
1112{
1113 struct migration_swap_arg *arg = data;
1114 struct rq *src_rq, *dst_rq;
1115 int ret = -EAGAIN;
1116
1117 src_rq = cpu_rq(arg->src_cpu);
1118 dst_rq = cpu_rq(arg->dst_cpu);
1119
74602315
PZ
1120 double_raw_lock(&arg->src_task->pi_lock,
1121 &arg->dst_task->pi_lock);
ac66f547
PZ
1122 double_rq_lock(src_rq, dst_rq);
1123 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1124 goto unlock;
1125
1126 if (task_cpu(arg->src_task) != arg->src_cpu)
1127 goto unlock;
1128
1129 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1133 goto unlock;
1134
1135 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1136 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1137
1138 ret = 0;
1139
1140unlock:
1141 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1142 raw_spin_unlock(&arg->dst_task->pi_lock);
1143 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1144
1145 return ret;
1146}
1147
1148/*
1149 * Cross migrate two tasks
1150 */
1151int migrate_swap(struct task_struct *cur, struct task_struct *p)
1152{
1153 struct migration_swap_arg arg;
1154 int ret = -EINVAL;
1155
ac66f547
PZ
1156 arg = (struct migration_swap_arg){
1157 .src_task = cur,
1158 .src_cpu = task_cpu(cur),
1159 .dst_task = p,
1160 .dst_cpu = task_cpu(p),
1161 };
1162
1163 if (arg.src_cpu == arg.dst_cpu)
1164 goto out;
1165
6acce3ef
PZ
1166 /*
1167 * These three tests are all lockless; this is OK since all of them
1168 * will be re-checked with proper locks held further down the line.
1169 */
ac66f547
PZ
1170 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1171 goto out;
1172
1173 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1177 goto out;
1178
286549dc 1179 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1180 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1181
1182out:
ac66f547
PZ
1183 return ret;
1184}
1185
969c7921 1186struct migration_arg {
36c8b586 1187 struct task_struct *task;
1da177e4 1188 int dest_cpu;
70b97a7f 1189};
1da177e4 1190
969c7921
TH
1191static int migration_cpu_stop(void *data);
1192
1da177e4
LT
1193/*
1194 * wait_task_inactive - wait for a thread to unschedule.
1195 *
85ba2d86
RM
1196 * If @match_state is nonzero, it's the @p->state value just checked and
1197 * not expected to change. If it changes, i.e. @p might have woken up,
1198 * then return zero. When we succeed in waiting for @p to be off its CPU,
1199 * we return a positive number (its total switch count). If a second call
1200 * a short while later returns the same number, the caller can be sure that
1201 * @p has remained unscheduled the whole time.
1202 *
1da177e4
LT
1203 * The caller must ensure that the task *will* unschedule sometime soon,
1204 * else this function might spin for a *long* time. This function can't
1205 * be called with interrupts off, or it may introduce deadlock with
1206 * smp_call_function() if an IPI is sent by the same process we are
1207 * waiting to become inactive.
1208 */
85ba2d86 1209unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1210{
1211 unsigned long flags;
dd41f596 1212 int running, on_rq;
85ba2d86 1213 unsigned long ncsw;
70b97a7f 1214 struct rq *rq;
1da177e4 1215
3a5c359a
AK
1216 for (;;) {
1217 /*
1218 * We do the initial early heuristics without holding
1219 * any task-queue locks at all. We'll only try to get
1220 * the runqueue lock when things look like they will
1221 * work out!
1222 */
1223 rq = task_rq(p);
fa490cfd 1224
3a5c359a
AK
1225 /*
1226 * If the task is actively running on another CPU
1227 * still, just relax and busy-wait without holding
1228 * any locks.
1229 *
1230 * NOTE! Since we don't hold any locks, it's not
1231 * even sure that "rq" stays as the right runqueue!
1232 * But we don't care, since "task_running()" will
1233 * return false if the runqueue has changed and p
1234 * is actually now running somewhere else!
1235 */
85ba2d86
RM
1236 while (task_running(rq, p)) {
1237 if (match_state && unlikely(p->state != match_state))
1238 return 0;
3a5c359a 1239 cpu_relax();
85ba2d86 1240 }
fa490cfd 1241
3a5c359a
AK
1242 /*
1243 * Ok, time to look more closely! We need the rq
1244 * lock now, to be *sure*. If we're wrong, we'll
1245 * just go back and repeat.
1246 */
1247 rq = task_rq_lock(p, &flags);
27a9da65 1248 trace_sched_wait_task(p);
3a5c359a 1249 running = task_running(rq, p);
fd2f4419 1250 on_rq = p->on_rq;
85ba2d86 1251 ncsw = 0;
f31e11d8 1252 if (!match_state || p->state == match_state)
93dcf55f 1253 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1254 task_rq_unlock(rq, p, &flags);
fa490cfd 1255
85ba2d86
RM
1256 /*
1257 * If it changed from the expected state, bail out now.
1258 */
1259 if (unlikely(!ncsw))
1260 break;
1261
3a5c359a
AK
1262 /*
1263 * Was it really running after all now that we
1264 * checked with the proper locks actually held?
1265 *
1266 * Oops. Go back and try again..
1267 */
1268 if (unlikely(running)) {
1269 cpu_relax();
1270 continue;
1271 }
fa490cfd 1272
3a5c359a
AK
1273 /*
1274 * It's not enough that it's not actively running,
1275 * it must be off the runqueue _entirely_, and not
1276 * preempted!
1277 *
80dd99b3 1278 * So if it was still runnable (but just not actively
3a5c359a
AK
1279 * running right now), it's preempted, and we should
1280 * yield - it could be a while.
1281 */
1282 if (unlikely(on_rq)) {
8eb90c30
TG
1283 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1284
1285 set_current_state(TASK_UNINTERRUPTIBLE);
1286 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1287 continue;
1288 }
fa490cfd 1289
3a5c359a
AK
1290 /*
1291 * Ahh, all good. It wasn't running, and it wasn't
1292 * runnable, which means that it will never become
1293 * running in the future either. We're all done!
1294 */
1295 break;
1296 }
85ba2d86
RM
1297
1298 return ncsw;
1da177e4
LT
1299}
1300
1301/***
1302 * kick_process - kick a running thread to enter/exit the kernel
1303 * @p: the to-be-kicked thread
1304 *
1305 * Cause a process which is running on another CPU to enter
1306 * kernel-mode, without any delay. (to get signals handled.)
1307 *
25985edc 1308 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1309 * because all it wants to ensure is that the remote task enters
1310 * the kernel. If the IPI races and the task has been migrated
1311 * to another CPU then no harm is done and the purpose has been
1312 * achieved as well.
1313 */
36c8b586 1314void kick_process(struct task_struct *p)
1da177e4
LT
1315{
1316 int cpu;
1317
1318 preempt_disable();
1319 cpu = task_cpu(p);
1320 if ((cpu != smp_processor_id()) && task_curr(p))
1321 smp_send_reschedule(cpu);
1322 preempt_enable();
1323}
b43e3521 1324EXPORT_SYMBOL_GPL(kick_process);
476d139c 1325#endif /* CONFIG_SMP */
1da177e4 1326
970b13ba 1327#ifdef CONFIG_SMP
30da688e 1328/*
013fdb80 1329 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1330 */
5da9a0fb
PZ
1331static int select_fallback_rq(int cpu, struct task_struct *p)
1332{
aa00d89c
TC
1333 int nid = cpu_to_node(cpu);
1334 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1335 enum { cpuset, possible, fail } state = cpuset;
1336 int dest_cpu;
5da9a0fb 1337
aa00d89c
TC
1338 /*
1339 * If the node that the cpu is on has been offlined, cpu_to_node()
1340 * will return -1. There is no cpu on the node, and we should
1341 * select the cpu on the other node.
1342 */
1343 if (nid != -1) {
1344 nodemask = cpumask_of_node(nid);
1345
1346 /* Look for allowed, online CPU in same node. */
1347 for_each_cpu(dest_cpu, nodemask) {
1348 if (!cpu_online(dest_cpu))
1349 continue;
1350 if (!cpu_active(dest_cpu))
1351 continue;
1352 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1353 return dest_cpu;
1354 }
2baab4e9 1355 }
5da9a0fb 1356
2baab4e9
PZ
1357 for (;;) {
1358 /* Any allowed, online CPU? */
e3831edd 1359 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1360 if (!cpu_online(dest_cpu))
1361 continue;
1362 if (!cpu_active(dest_cpu))
1363 continue;
1364 goto out;
1365 }
5da9a0fb 1366
2baab4e9
PZ
1367 switch (state) {
1368 case cpuset:
1369 /* No more Mr. Nice Guy. */
1370 cpuset_cpus_allowed_fallback(p);
1371 state = possible;
1372 break;
1373
1374 case possible:
1375 do_set_cpus_allowed(p, cpu_possible_mask);
1376 state = fail;
1377 break;
1378
1379 case fail:
1380 BUG();
1381 break;
1382 }
1383 }
1384
1385out:
1386 if (state != cpuset) {
1387 /*
1388 * Don't tell them about moving exiting tasks or
1389 * kernel threads (both mm NULL), since they never
1390 * leave kernel.
1391 */
1392 if (p->mm && printk_ratelimit()) {
aac74dc4 1393 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1394 task_pid_nr(p), p->comm, cpu);
1395 }
5da9a0fb
PZ
1396 }
1397
1398 return dest_cpu;
1399}
1400
e2912009 1401/*
013fdb80 1402 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1403 */
970b13ba 1404static inline
ac66f547 1405int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1406{
ac66f547 1407 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1408
1409 /*
1410 * In order not to call set_task_cpu() on a blocking task we need
1411 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1412 * cpu.
1413 *
1414 * Since this is common to all placement strategies, this lives here.
1415 *
1416 * [ this allows ->select_task() to simply return task_cpu(p) and
1417 * not worry about this generic constraint ]
1418 */
fa17b507 1419 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1420 !cpu_online(cpu)))
5da9a0fb 1421 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1422
1423 return cpu;
970b13ba 1424}
09a40af5
MG
1425
1426static void update_avg(u64 *avg, u64 sample)
1427{
1428 s64 diff = sample - *avg;
1429 *avg += diff >> 3;
1430}
970b13ba
PZ
1431#endif
1432
d7c01d27 1433static void
b84cb5df 1434ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1435{
d7c01d27 1436#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1437 struct rq *rq = this_rq();
1438
d7c01d27
PZ
1439#ifdef CONFIG_SMP
1440 int this_cpu = smp_processor_id();
1441
1442 if (cpu == this_cpu) {
1443 schedstat_inc(rq, ttwu_local);
1444 schedstat_inc(p, se.statistics.nr_wakeups_local);
1445 } else {
1446 struct sched_domain *sd;
1447
1448 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1449 rcu_read_lock();
d7c01d27
PZ
1450 for_each_domain(this_cpu, sd) {
1451 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1452 schedstat_inc(sd, ttwu_wake_remote);
1453 break;
1454 }
1455 }
057f3fad 1456 rcu_read_unlock();
d7c01d27 1457 }
f339b9dc
PZ
1458
1459 if (wake_flags & WF_MIGRATED)
1460 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1461
d7c01d27
PZ
1462#endif /* CONFIG_SMP */
1463
1464 schedstat_inc(rq, ttwu_count);
9ed3811a 1465 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1466
1467 if (wake_flags & WF_SYNC)
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1469
d7c01d27
PZ
1470#endif /* CONFIG_SCHEDSTATS */
1471}
1472
1473static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1474{
9ed3811a 1475 activate_task(rq, p, en_flags);
fd2f4419 1476 p->on_rq = 1;
c2f7115e
PZ
1477
1478 /* if a worker is waking up, notify workqueue */
1479 if (p->flags & PF_WQ_WORKER)
1480 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1481}
1482
23f41eeb
PZ
1483/*
1484 * Mark the task runnable and perform wakeup-preemption.
1485 */
89363381 1486static void
23f41eeb 1487ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1488{
9ed3811a 1489 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1490 trace_sched_wakeup(p, true);
9ed3811a
TH
1491
1492 p->state = TASK_RUNNING;
1493#ifdef CONFIG_SMP
1494 if (p->sched_class->task_woken)
1495 p->sched_class->task_woken(rq, p);
1496
e69c6341 1497 if (rq->idle_stamp) {
78becc27 1498 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1499 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1500
abfafa54
JL
1501 update_avg(&rq->avg_idle, delta);
1502
1503 if (rq->avg_idle > max)
9ed3811a 1504 rq->avg_idle = max;
abfafa54 1505
9ed3811a
TH
1506 rq->idle_stamp = 0;
1507 }
1508#endif
1509}
1510
c05fbafb
PZ
1511static void
1512ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1513{
1514#ifdef CONFIG_SMP
1515 if (p->sched_contributes_to_load)
1516 rq->nr_uninterruptible--;
1517#endif
1518
1519 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1520 ttwu_do_wakeup(rq, p, wake_flags);
1521}
1522
1523/*
1524 * Called in case the task @p isn't fully descheduled from its runqueue,
1525 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1526 * since all we need to do is flip p->state to TASK_RUNNING, since
1527 * the task is still ->on_rq.
1528 */
1529static int ttwu_remote(struct task_struct *p, int wake_flags)
1530{
1531 struct rq *rq;
1532 int ret = 0;
1533
1534 rq = __task_rq_lock(p);
1535 if (p->on_rq) {
1ad4ec0d
FW
1536 /* check_preempt_curr() may use rq clock */
1537 update_rq_clock(rq);
c05fbafb
PZ
1538 ttwu_do_wakeup(rq, p, wake_flags);
1539 ret = 1;
1540 }
1541 __task_rq_unlock(rq);
1542
1543 return ret;
1544}
1545
317f3941 1546#ifdef CONFIG_SMP
e3baac47 1547void sched_ttwu_pending(void)
317f3941
PZ
1548{
1549 struct rq *rq = this_rq();
fa14ff4a
PZ
1550 struct llist_node *llist = llist_del_all(&rq->wake_list);
1551 struct task_struct *p;
e3baac47 1552 unsigned long flags;
317f3941 1553
e3baac47
PZ
1554 if (!llist)
1555 return;
1556
1557 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1558
fa14ff4a
PZ
1559 while (llist) {
1560 p = llist_entry(llist, struct task_struct, wake_entry);
1561 llist = llist_next(llist);
317f3941
PZ
1562 ttwu_do_activate(rq, p, 0);
1563 }
1564
e3baac47 1565 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1566}
1567
1568void scheduler_ipi(void)
1569{
f27dde8d
PZ
1570 /*
1571 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1572 * TIF_NEED_RESCHED remotely (for the first time) will also send
1573 * this IPI.
1574 */
8cb75e0c 1575 preempt_fold_need_resched();
f27dde8d 1576
fd2ac4f4 1577 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1578 return;
1579
1580 /*
1581 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1582 * traditionally all their work was done from the interrupt return
1583 * path. Now that we actually do some work, we need to make sure
1584 * we do call them.
1585 *
1586 * Some archs already do call them, luckily irq_enter/exit nest
1587 * properly.
1588 *
1589 * Arguably we should visit all archs and update all handlers,
1590 * however a fair share of IPIs are still resched only so this would
1591 * somewhat pessimize the simple resched case.
1592 */
1593 irq_enter();
fa14ff4a 1594 sched_ttwu_pending();
ca38062e
SS
1595
1596 /*
1597 * Check if someone kicked us for doing the nohz idle load balance.
1598 */
873b4c65 1599 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1600 this_rq()->idle_balance = 1;
ca38062e 1601 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1602 }
c5d753a5 1603 irq_exit();
317f3941
PZ
1604}
1605
1606static void ttwu_queue_remote(struct task_struct *p, int cpu)
1607{
e3baac47
PZ
1608 struct rq *rq = cpu_rq(cpu);
1609
1610 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1611 if (!set_nr_if_polling(rq->idle))
1612 smp_send_reschedule(cpu);
1613 else
1614 trace_sched_wake_idle_without_ipi(cpu);
1615 }
317f3941 1616}
d6aa8f85 1617
39be3501 1618bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1619{
1620 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1621}
d6aa8f85 1622#endif /* CONFIG_SMP */
317f3941 1623
c05fbafb
PZ
1624static void ttwu_queue(struct task_struct *p, int cpu)
1625{
1626 struct rq *rq = cpu_rq(cpu);
1627
17d9f311 1628#if defined(CONFIG_SMP)
39be3501 1629 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1630 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1631 ttwu_queue_remote(p, cpu);
1632 return;
1633 }
1634#endif
1635
c05fbafb
PZ
1636 raw_spin_lock(&rq->lock);
1637 ttwu_do_activate(rq, p, 0);
1638 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1639}
1640
1641/**
1da177e4 1642 * try_to_wake_up - wake up a thread
9ed3811a 1643 * @p: the thread to be awakened
1da177e4 1644 * @state: the mask of task states that can be woken
9ed3811a 1645 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1646 *
1647 * Put it on the run-queue if it's not already there. The "current"
1648 * thread is always on the run-queue (except when the actual
1649 * re-schedule is in progress), and as such you're allowed to do
1650 * the simpler "current->state = TASK_RUNNING" to mark yourself
1651 * runnable without the overhead of this.
1652 *
e69f6186 1653 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1654 * or @state didn't match @p's state.
1da177e4 1655 */
e4a52bcb
PZ
1656static int
1657try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1658{
1da177e4 1659 unsigned long flags;
c05fbafb 1660 int cpu, success = 0;
2398f2c6 1661
e0acd0a6
ON
1662 /*
1663 * If we are going to wake up a thread waiting for CONDITION we
1664 * need to ensure that CONDITION=1 done by the caller can not be
1665 * reordered with p->state check below. This pairs with mb() in
1666 * set_current_state() the waiting thread does.
1667 */
1668 smp_mb__before_spinlock();
013fdb80 1669 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1670 if (!(p->state & state))
1da177e4
LT
1671 goto out;
1672
c05fbafb 1673 success = 1; /* we're going to change ->state */
1da177e4 1674 cpu = task_cpu(p);
1da177e4 1675
c05fbafb
PZ
1676 if (p->on_rq && ttwu_remote(p, wake_flags))
1677 goto stat;
1da177e4 1678
1da177e4 1679#ifdef CONFIG_SMP
e9c84311 1680 /*
c05fbafb
PZ
1681 * If the owning (remote) cpu is still in the middle of schedule() with
1682 * this task as prev, wait until its done referencing the task.
e9c84311 1683 */
f3e94786 1684 while (p->on_cpu)
e4a52bcb 1685 cpu_relax();
0970d299 1686 /*
e4a52bcb 1687 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1688 */
e4a52bcb 1689 smp_rmb();
1da177e4 1690
a8e4f2ea 1691 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1692 p->state = TASK_WAKING;
e7693a36 1693
e4a52bcb 1694 if (p->sched_class->task_waking)
74f8e4b2 1695 p->sched_class->task_waking(p);
efbbd05a 1696
ac66f547 1697 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1698 if (task_cpu(p) != cpu) {
1699 wake_flags |= WF_MIGRATED;
e4a52bcb 1700 set_task_cpu(p, cpu);
f339b9dc 1701 }
1da177e4 1702#endif /* CONFIG_SMP */
1da177e4 1703
c05fbafb
PZ
1704 ttwu_queue(p, cpu);
1705stat:
b84cb5df 1706 ttwu_stat(p, cpu, wake_flags);
1da177e4 1707out:
013fdb80 1708 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1709
1710 return success;
1711}
1712
21aa9af0
TH
1713/**
1714 * try_to_wake_up_local - try to wake up a local task with rq lock held
1715 * @p: the thread to be awakened
1716 *
2acca55e 1717 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1718 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1719 * the current task.
21aa9af0
TH
1720 */
1721static void try_to_wake_up_local(struct task_struct *p)
1722{
1723 struct rq *rq = task_rq(p);
21aa9af0 1724
383efcd0
TH
1725 if (WARN_ON_ONCE(rq != this_rq()) ||
1726 WARN_ON_ONCE(p == current))
1727 return;
1728
21aa9af0
TH
1729 lockdep_assert_held(&rq->lock);
1730
2acca55e
PZ
1731 if (!raw_spin_trylock(&p->pi_lock)) {
1732 raw_spin_unlock(&rq->lock);
1733 raw_spin_lock(&p->pi_lock);
1734 raw_spin_lock(&rq->lock);
1735 }
1736
21aa9af0 1737 if (!(p->state & TASK_NORMAL))
2acca55e 1738 goto out;
21aa9af0 1739
fd2f4419 1740 if (!p->on_rq)
d7c01d27
PZ
1741 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1742
23f41eeb 1743 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1744 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1745out:
1746 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1747}
1748
50fa610a
DH
1749/**
1750 * wake_up_process - Wake up a specific process
1751 * @p: The process to be woken up.
1752 *
1753 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1754 * processes.
1755 *
1756 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1757 *
1758 * It may be assumed that this function implies a write memory barrier before
1759 * changing the task state if and only if any tasks are woken up.
1760 */
7ad5b3a5 1761int wake_up_process(struct task_struct *p)
1da177e4 1762{
9067ac85
ON
1763 WARN_ON(task_is_stopped_or_traced(p));
1764 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1765}
1da177e4
LT
1766EXPORT_SYMBOL(wake_up_process);
1767
7ad5b3a5 1768int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1769{
1770 return try_to_wake_up(p, state, 0);
1771}
1772
1da177e4
LT
1773/*
1774 * Perform scheduler related setup for a newly forked process p.
1775 * p is forked by current.
dd41f596
IM
1776 *
1777 * __sched_fork() is basic setup used by init_idle() too:
1778 */
5e1576ed 1779static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1780{
fd2f4419
PZ
1781 p->on_rq = 0;
1782
1783 p->se.on_rq = 0;
dd41f596
IM
1784 p->se.exec_start = 0;
1785 p->se.sum_exec_runtime = 0;
f6cf891c 1786 p->se.prev_sum_exec_runtime = 0;
6c594c21 1787 p->se.nr_migrations = 0;
da7a735e 1788 p->se.vruntime = 0;
fd2f4419 1789 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1790
1791#ifdef CONFIG_SCHEDSTATS
41acab88 1792 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1793#endif
476d139c 1794
aab03e05
DF
1795 RB_CLEAR_NODE(&p->dl.rb_node);
1796 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1797 p->dl.dl_runtime = p->dl.runtime = 0;
1798 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1799 p->dl.dl_period = 0;
aab03e05
DF
1800 p->dl.flags = 0;
1801
fa717060 1802 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1803
e107be36
AK
1804#ifdef CONFIG_PREEMPT_NOTIFIERS
1805 INIT_HLIST_HEAD(&p->preempt_notifiers);
1806#endif
cbee9f88
PZ
1807
1808#ifdef CONFIG_NUMA_BALANCING
1809 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1810 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1811 p->mm->numa_scan_seq = 0;
1812 }
1813
5e1576ed
RR
1814 if (clone_flags & CLONE_VM)
1815 p->numa_preferred_nid = current->numa_preferred_nid;
1816 else
1817 p->numa_preferred_nid = -1;
1818
cbee9f88
PZ
1819 p->node_stamp = 0ULL;
1820 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1821 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1822 p->numa_work.next = &p->numa_work;
ff1df896
RR
1823 p->numa_faults_memory = NULL;
1824 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1825 p->last_task_numa_placement = 0;
1826 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1827
1828 INIT_LIST_HEAD(&p->numa_entry);
1829 p->numa_group = NULL;
cbee9f88 1830#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1831}
1832
1a687c2e 1833#ifdef CONFIG_NUMA_BALANCING
3105b86a 1834#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1835void set_numabalancing_state(bool enabled)
1836{
1837 if (enabled)
1838 sched_feat_set("NUMA");
1839 else
1840 sched_feat_set("NO_NUMA");
1841}
3105b86a
MG
1842#else
1843__read_mostly bool numabalancing_enabled;
1844
1845void set_numabalancing_state(bool enabled)
1846{
1847 numabalancing_enabled = enabled;
dd41f596 1848}
3105b86a 1849#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1850
1851#ifdef CONFIG_PROC_SYSCTL
1852int sysctl_numa_balancing(struct ctl_table *table, int write,
1853 void __user *buffer, size_t *lenp, loff_t *ppos)
1854{
1855 struct ctl_table t;
1856 int err;
1857 int state = numabalancing_enabled;
1858
1859 if (write && !capable(CAP_SYS_ADMIN))
1860 return -EPERM;
1861
1862 t = *table;
1863 t.data = &state;
1864 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1865 if (err < 0)
1866 return err;
1867 if (write)
1868 set_numabalancing_state(state);
1869 return err;
1870}
1871#endif
1872#endif
dd41f596
IM
1873
1874/*
1875 * fork()/clone()-time setup:
1876 */
aab03e05 1877int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1878{
0122ec5b 1879 unsigned long flags;
dd41f596
IM
1880 int cpu = get_cpu();
1881
5e1576ed 1882 __sched_fork(clone_flags, p);
06b83b5f 1883 /*
0017d735 1884 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1885 * nobody will actually run it, and a signal or other external
1886 * event cannot wake it up and insert it on the runqueue either.
1887 */
0017d735 1888 p->state = TASK_RUNNING;
dd41f596 1889
c350a04e
MG
1890 /*
1891 * Make sure we do not leak PI boosting priority to the child.
1892 */
1893 p->prio = current->normal_prio;
1894
b9dc29e7
MG
1895 /*
1896 * Revert to default priority/policy on fork if requested.
1897 */
1898 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1899 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1900 p->policy = SCHED_NORMAL;
6c697bdf 1901 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1902 p->rt_priority = 0;
1903 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1904 p->static_prio = NICE_TO_PRIO(0);
1905
1906 p->prio = p->normal_prio = __normal_prio(p);
1907 set_load_weight(p);
6c697bdf 1908
b9dc29e7
MG
1909 /*
1910 * We don't need the reset flag anymore after the fork. It has
1911 * fulfilled its duty:
1912 */
1913 p->sched_reset_on_fork = 0;
1914 }
ca94c442 1915
aab03e05
DF
1916 if (dl_prio(p->prio)) {
1917 put_cpu();
1918 return -EAGAIN;
1919 } else if (rt_prio(p->prio)) {
1920 p->sched_class = &rt_sched_class;
1921 } else {
2ddbf952 1922 p->sched_class = &fair_sched_class;
aab03e05 1923 }
b29739f9 1924
cd29fe6f
PZ
1925 if (p->sched_class->task_fork)
1926 p->sched_class->task_fork(p);
1927
86951599
PZ
1928 /*
1929 * The child is not yet in the pid-hash so no cgroup attach races,
1930 * and the cgroup is pinned to this child due to cgroup_fork()
1931 * is ran before sched_fork().
1932 *
1933 * Silence PROVE_RCU.
1934 */
0122ec5b 1935 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1936 set_task_cpu(p, cpu);
0122ec5b 1937 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1938
52f17b6c 1939#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1940 if (likely(sched_info_on()))
52f17b6c 1941 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1942#endif
3ca7a440
PZ
1943#if defined(CONFIG_SMP)
1944 p->on_cpu = 0;
4866cde0 1945#endif
01028747 1946 init_task_preempt_count(p);
806c09a7 1947#ifdef CONFIG_SMP
917b627d 1948 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1949 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1950#endif
917b627d 1951
476d139c 1952 put_cpu();
aab03e05 1953 return 0;
1da177e4
LT
1954}
1955
332ac17e
DF
1956unsigned long to_ratio(u64 period, u64 runtime)
1957{
1958 if (runtime == RUNTIME_INF)
1959 return 1ULL << 20;
1960
1961 /*
1962 * Doing this here saves a lot of checks in all
1963 * the calling paths, and returning zero seems
1964 * safe for them anyway.
1965 */
1966 if (period == 0)
1967 return 0;
1968
1969 return div64_u64(runtime << 20, period);
1970}
1971
1972#ifdef CONFIG_SMP
1973inline struct dl_bw *dl_bw_of(int i)
1974{
1975 return &cpu_rq(i)->rd->dl_bw;
1976}
1977
de212f18 1978static inline int dl_bw_cpus(int i)
332ac17e 1979{
de212f18
PZ
1980 struct root_domain *rd = cpu_rq(i)->rd;
1981 int cpus = 0;
1982
1983 for_each_cpu_and(i, rd->span, cpu_active_mask)
1984 cpus++;
1985
1986 return cpus;
332ac17e
DF
1987}
1988#else
1989inline struct dl_bw *dl_bw_of(int i)
1990{
1991 return &cpu_rq(i)->dl.dl_bw;
1992}
1993
de212f18 1994static inline int dl_bw_cpus(int i)
332ac17e
DF
1995{
1996 return 1;
1997}
1998#endif
1999
2000static inline
2001void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2002{
2003 dl_b->total_bw -= tsk_bw;
2004}
2005
2006static inline
2007void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2008{
2009 dl_b->total_bw += tsk_bw;
2010}
2011
2012static inline
2013bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2014{
2015 return dl_b->bw != -1 &&
2016 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2017}
2018
2019/*
2020 * We must be sure that accepting a new task (or allowing changing the
2021 * parameters of an existing one) is consistent with the bandwidth
2022 * constraints. If yes, this function also accordingly updates the currently
2023 * allocated bandwidth to reflect the new situation.
2024 *
2025 * This function is called while holding p's rq->lock.
2026 */
2027static int dl_overflow(struct task_struct *p, int policy,
2028 const struct sched_attr *attr)
2029{
2030
2031 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2032 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2033 u64 runtime = attr->sched_runtime;
2034 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2035 int cpus, err = -1;
332ac17e
DF
2036
2037 if (new_bw == p->dl.dl_bw)
2038 return 0;
2039
2040 /*
2041 * Either if a task, enters, leave, or stays -deadline but changes
2042 * its parameters, we may need to update accordingly the total
2043 * allocated bandwidth of the container.
2044 */
2045 raw_spin_lock(&dl_b->lock);
de212f18 2046 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2047 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2048 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2049 __dl_add(dl_b, new_bw);
2050 err = 0;
2051 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2052 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2053 __dl_clear(dl_b, p->dl.dl_bw);
2054 __dl_add(dl_b, new_bw);
2055 err = 0;
2056 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2057 __dl_clear(dl_b, p->dl.dl_bw);
2058 err = 0;
2059 }
2060 raw_spin_unlock(&dl_b->lock);
2061
2062 return err;
2063}
2064
2065extern void init_dl_bw(struct dl_bw *dl_b);
2066
1da177e4
LT
2067/*
2068 * wake_up_new_task - wake up a newly created task for the first time.
2069 *
2070 * This function will do some initial scheduler statistics housekeeping
2071 * that must be done for every newly created context, then puts the task
2072 * on the runqueue and wakes it.
2073 */
3e51e3ed 2074void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2075{
2076 unsigned long flags;
dd41f596 2077 struct rq *rq;
fabf318e 2078
ab2515c4 2079 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2080#ifdef CONFIG_SMP
2081 /*
2082 * Fork balancing, do it here and not earlier because:
2083 * - cpus_allowed can change in the fork path
2084 * - any previously selected cpu might disappear through hotplug
fabf318e 2085 */
ac66f547 2086 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2087#endif
2088
a75cdaa9
AS
2089 /* Initialize new task's runnable average */
2090 init_task_runnable_average(p);
ab2515c4 2091 rq = __task_rq_lock(p);
cd29fe6f 2092 activate_task(rq, p, 0);
fd2f4419 2093 p->on_rq = 1;
89363381 2094 trace_sched_wakeup_new(p, true);
a7558e01 2095 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2096#ifdef CONFIG_SMP
efbbd05a
PZ
2097 if (p->sched_class->task_woken)
2098 p->sched_class->task_woken(rq, p);
9a897c5a 2099#endif
0122ec5b 2100 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2101}
2102
e107be36
AK
2103#ifdef CONFIG_PREEMPT_NOTIFIERS
2104
2105/**
80dd99b3 2106 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2107 * @notifier: notifier struct to register
e107be36
AK
2108 */
2109void preempt_notifier_register(struct preempt_notifier *notifier)
2110{
2111 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2112}
2113EXPORT_SYMBOL_GPL(preempt_notifier_register);
2114
2115/**
2116 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2117 * @notifier: notifier struct to unregister
e107be36
AK
2118 *
2119 * This is safe to call from within a preemption notifier.
2120 */
2121void preempt_notifier_unregister(struct preempt_notifier *notifier)
2122{
2123 hlist_del(&notifier->link);
2124}
2125EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2126
2127static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2128{
2129 struct preempt_notifier *notifier;
e107be36 2130
b67bfe0d 2131 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2132 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2133}
2134
2135static void
2136fire_sched_out_preempt_notifiers(struct task_struct *curr,
2137 struct task_struct *next)
2138{
2139 struct preempt_notifier *notifier;
e107be36 2140
b67bfe0d 2141 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2142 notifier->ops->sched_out(notifier, next);
2143}
2144
6d6bc0ad 2145#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2146
2147static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2148{
2149}
2150
2151static void
2152fire_sched_out_preempt_notifiers(struct task_struct *curr,
2153 struct task_struct *next)
2154{
2155}
2156
6d6bc0ad 2157#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2158
4866cde0
NP
2159/**
2160 * prepare_task_switch - prepare to switch tasks
2161 * @rq: the runqueue preparing to switch
421cee29 2162 * @prev: the current task that is being switched out
4866cde0
NP
2163 * @next: the task we are going to switch to.
2164 *
2165 * This is called with the rq lock held and interrupts off. It must
2166 * be paired with a subsequent finish_task_switch after the context
2167 * switch.
2168 *
2169 * prepare_task_switch sets up locking and calls architecture specific
2170 * hooks.
2171 */
e107be36
AK
2172static inline void
2173prepare_task_switch(struct rq *rq, struct task_struct *prev,
2174 struct task_struct *next)
4866cde0 2175{
895dd92c 2176 trace_sched_switch(prev, next);
43148951 2177 sched_info_switch(rq, prev, next);
fe4b04fa 2178 perf_event_task_sched_out(prev, next);
e107be36 2179 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2180 prepare_lock_switch(rq, next);
2181 prepare_arch_switch(next);
2182}
2183
1da177e4
LT
2184/**
2185 * finish_task_switch - clean up after a task-switch
344babaa 2186 * @rq: runqueue associated with task-switch
1da177e4
LT
2187 * @prev: the thread we just switched away from.
2188 *
4866cde0
NP
2189 * finish_task_switch must be called after the context switch, paired
2190 * with a prepare_task_switch call before the context switch.
2191 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2192 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2193 *
2194 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2195 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2196 * with the lock held can cause deadlocks; see schedule() for
2197 * details.)
2198 */
a9957449 2199static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2200 __releases(rq->lock)
2201{
1da177e4 2202 struct mm_struct *mm = rq->prev_mm;
55a101f8 2203 long prev_state;
1da177e4
LT
2204
2205 rq->prev_mm = NULL;
2206
2207 /*
2208 * A task struct has one reference for the use as "current".
c394cc9f 2209 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2210 * schedule one last time. The schedule call will never return, and
2211 * the scheduled task must drop that reference.
c394cc9f 2212 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2213 * still held, otherwise prev could be scheduled on another cpu, die
2214 * there before we look at prev->state, and then the reference would
2215 * be dropped twice.
2216 * Manfred Spraul <manfred@colorfullife.com>
2217 */
55a101f8 2218 prev_state = prev->state;
bf9fae9f 2219 vtime_task_switch(prev);
4866cde0 2220 finish_arch_switch(prev);
a8d757ef 2221 perf_event_task_sched_in(prev, current);
4866cde0 2222 finish_lock_switch(rq, prev);
01f23e16 2223 finish_arch_post_lock_switch();
e8fa1362 2224
e107be36 2225 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2226 if (mm)
2227 mmdrop(mm);
c394cc9f 2228 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2229 if (prev->sched_class->task_dead)
2230 prev->sched_class->task_dead(prev);
2231
c6fd91f0 2232 /*
2233 * Remove function-return probe instances associated with this
2234 * task and put them back on the free list.
9761eea8 2235 */
c6fd91f0 2236 kprobe_flush_task(prev);
1da177e4 2237 put_task_struct(prev);
c6fd91f0 2238 }
99e5ada9
FW
2239
2240 tick_nohz_task_switch(current);
1da177e4
LT
2241}
2242
3f029d3c
GH
2243#ifdef CONFIG_SMP
2244
3f029d3c
GH
2245/* rq->lock is NOT held, but preemption is disabled */
2246static inline void post_schedule(struct rq *rq)
2247{
2248 if (rq->post_schedule) {
2249 unsigned long flags;
2250
05fa785c 2251 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2252 if (rq->curr->sched_class->post_schedule)
2253 rq->curr->sched_class->post_schedule(rq);
05fa785c 2254 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2255
2256 rq->post_schedule = 0;
2257 }
2258}
2259
2260#else
da19ab51 2261
3f029d3c
GH
2262static inline void post_schedule(struct rq *rq)
2263{
1da177e4
LT
2264}
2265
3f029d3c
GH
2266#endif
2267
1da177e4
LT
2268/**
2269 * schedule_tail - first thing a freshly forked thread must call.
2270 * @prev: the thread we just switched away from.
2271 */
722a9f92 2272asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2273 __releases(rq->lock)
2274{
70b97a7f
IM
2275 struct rq *rq = this_rq();
2276
4866cde0 2277 finish_task_switch(rq, prev);
da19ab51 2278
3f029d3c
GH
2279 /*
2280 * FIXME: do we need to worry about rq being invalidated by the
2281 * task_switch?
2282 */
2283 post_schedule(rq);
70b97a7f 2284
4866cde0
NP
2285#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2286 /* In this case, finish_task_switch does not reenable preemption */
2287 preempt_enable();
2288#endif
1da177e4 2289 if (current->set_child_tid)
b488893a 2290 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2291}
2292
2293/*
2294 * context_switch - switch to the new MM and the new
2295 * thread's register state.
2296 */
dd41f596 2297static inline void
70b97a7f 2298context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2299 struct task_struct *next)
1da177e4 2300{
dd41f596 2301 struct mm_struct *mm, *oldmm;
1da177e4 2302
e107be36 2303 prepare_task_switch(rq, prev, next);
fe4b04fa 2304
dd41f596
IM
2305 mm = next->mm;
2306 oldmm = prev->active_mm;
9226d125
ZA
2307 /*
2308 * For paravirt, this is coupled with an exit in switch_to to
2309 * combine the page table reload and the switch backend into
2310 * one hypercall.
2311 */
224101ed 2312 arch_start_context_switch(prev);
9226d125 2313
31915ab4 2314 if (!mm) {
1da177e4
LT
2315 next->active_mm = oldmm;
2316 atomic_inc(&oldmm->mm_count);
2317 enter_lazy_tlb(oldmm, next);
2318 } else
2319 switch_mm(oldmm, mm, next);
2320
31915ab4 2321 if (!prev->mm) {
1da177e4 2322 prev->active_mm = NULL;
1da177e4
LT
2323 rq->prev_mm = oldmm;
2324 }
3a5f5e48
IM
2325 /*
2326 * Since the runqueue lock will be released by the next
2327 * task (which is an invalid locking op but in the case
2328 * of the scheduler it's an obvious special-case), so we
2329 * do an early lockdep release here:
2330 */
2331#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2332 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2333#endif
1da177e4 2334
91d1aa43 2335 context_tracking_task_switch(prev, next);
1da177e4
LT
2336 /* Here we just switch the register state and the stack. */
2337 switch_to(prev, next, prev);
2338
dd41f596
IM
2339 barrier();
2340 /*
2341 * this_rq must be evaluated again because prev may have moved
2342 * CPUs since it called schedule(), thus the 'rq' on its stack
2343 * frame will be invalid.
2344 */
2345 finish_task_switch(this_rq(), prev);
1da177e4
LT
2346}
2347
2348/*
1c3e8264 2349 * nr_running and nr_context_switches:
1da177e4
LT
2350 *
2351 * externally visible scheduler statistics: current number of runnable
1c3e8264 2352 * threads, total number of context switches performed since bootup.
1da177e4
LT
2353 */
2354unsigned long nr_running(void)
2355{
2356 unsigned long i, sum = 0;
2357
2358 for_each_online_cpu(i)
2359 sum += cpu_rq(i)->nr_running;
2360
2361 return sum;
f711f609 2362}
1da177e4 2363
1da177e4 2364unsigned long long nr_context_switches(void)
46cb4b7c 2365{
cc94abfc
SR
2366 int i;
2367 unsigned long long sum = 0;
46cb4b7c 2368
0a945022 2369 for_each_possible_cpu(i)
1da177e4 2370 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2371
1da177e4
LT
2372 return sum;
2373}
483b4ee6 2374
1da177e4
LT
2375unsigned long nr_iowait(void)
2376{
2377 unsigned long i, sum = 0;
483b4ee6 2378
0a945022 2379 for_each_possible_cpu(i)
1da177e4 2380 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2381
1da177e4
LT
2382 return sum;
2383}
483b4ee6 2384
8c215bd3 2385unsigned long nr_iowait_cpu(int cpu)
69d25870 2386{
8c215bd3 2387 struct rq *this = cpu_rq(cpu);
69d25870
AV
2388 return atomic_read(&this->nr_iowait);
2389}
46cb4b7c 2390
dd41f596 2391#ifdef CONFIG_SMP
8a0be9ef 2392
46cb4b7c 2393/*
38022906
PZ
2394 * sched_exec - execve() is a valuable balancing opportunity, because at
2395 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2396 */
38022906 2397void sched_exec(void)
46cb4b7c 2398{
38022906 2399 struct task_struct *p = current;
1da177e4 2400 unsigned long flags;
0017d735 2401 int dest_cpu;
46cb4b7c 2402
8f42ced9 2403 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2404 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2405 if (dest_cpu == smp_processor_id())
2406 goto unlock;
38022906 2407
8f42ced9 2408 if (likely(cpu_active(dest_cpu))) {
969c7921 2409 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2410
8f42ced9
PZ
2411 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2412 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2413 return;
2414 }
0017d735 2415unlock:
8f42ced9 2416 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2417}
dd41f596 2418
1da177e4
LT
2419#endif
2420
1da177e4 2421DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2422DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2423
2424EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2425EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2426
2427/*
c5f8d995 2428 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2429 * @p in case that task is currently running.
c5f8d995
HS
2430 *
2431 * Called with task_rq_lock() held on @rq.
1da177e4 2432 */
c5f8d995
HS
2433static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2434{
2435 u64 ns = 0;
2436
2437 if (task_current(rq, p)) {
2438 update_rq_clock(rq);
78becc27 2439 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2440 if ((s64)ns < 0)
2441 ns = 0;
2442 }
2443
2444 return ns;
2445}
2446
bb34d92f 2447unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2448{
1da177e4 2449 unsigned long flags;
41b86e9c 2450 struct rq *rq;
bb34d92f 2451 u64 ns = 0;
48f24c4d 2452
41b86e9c 2453 rq = task_rq_lock(p, &flags);
c5f8d995 2454 ns = do_task_delta_exec(p, rq);
0122ec5b 2455 task_rq_unlock(rq, p, &flags);
1508487e 2456
c5f8d995
HS
2457 return ns;
2458}
f06febc9 2459
c5f8d995
HS
2460/*
2461 * Return accounted runtime for the task.
2462 * In case the task is currently running, return the runtime plus current's
2463 * pending runtime that have not been accounted yet.
2464 */
2465unsigned long long task_sched_runtime(struct task_struct *p)
2466{
2467 unsigned long flags;
2468 struct rq *rq;
2469 u64 ns = 0;
2470
911b2898
PZ
2471#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2472 /*
2473 * 64-bit doesn't need locks to atomically read a 64bit value.
2474 * So we have a optimization chance when the task's delta_exec is 0.
2475 * Reading ->on_cpu is racy, but this is ok.
2476 *
2477 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2478 * If we race with it entering cpu, unaccounted time is 0. This is
2479 * indistinguishable from the read occurring a few cycles earlier.
2480 */
2481 if (!p->on_cpu)
2482 return p->se.sum_exec_runtime;
2483#endif
2484
c5f8d995
HS
2485 rq = task_rq_lock(p, &flags);
2486 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2487 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2488
2489 return ns;
2490}
48f24c4d 2491
7835b98b
CL
2492/*
2493 * This function gets called by the timer code, with HZ frequency.
2494 * We call it with interrupts disabled.
7835b98b
CL
2495 */
2496void scheduler_tick(void)
2497{
7835b98b
CL
2498 int cpu = smp_processor_id();
2499 struct rq *rq = cpu_rq(cpu);
dd41f596 2500 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2501
2502 sched_clock_tick();
dd41f596 2503
05fa785c 2504 raw_spin_lock(&rq->lock);
3e51f33f 2505 update_rq_clock(rq);
fa85ae24 2506 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2507 update_cpu_load_active(rq);
05fa785c 2508 raw_spin_unlock(&rq->lock);
7835b98b 2509
e9d2b064 2510 perf_event_task_tick();
e220d2dc 2511
e418e1c2 2512#ifdef CONFIG_SMP
6eb57e0d 2513 rq->idle_balance = idle_cpu(cpu);
7caff66f 2514 trigger_load_balance(rq);
e418e1c2 2515#endif
265f22a9 2516 rq_last_tick_reset(rq);
1da177e4
LT
2517}
2518
265f22a9
FW
2519#ifdef CONFIG_NO_HZ_FULL
2520/**
2521 * scheduler_tick_max_deferment
2522 *
2523 * Keep at least one tick per second when a single
2524 * active task is running because the scheduler doesn't
2525 * yet completely support full dynticks environment.
2526 *
2527 * This makes sure that uptime, CFS vruntime, load
2528 * balancing, etc... continue to move forward, even
2529 * with a very low granularity.
e69f6186
YB
2530 *
2531 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2532 */
2533u64 scheduler_tick_max_deferment(void)
2534{
2535 struct rq *rq = this_rq();
2536 unsigned long next, now = ACCESS_ONCE(jiffies);
2537
2538 next = rq->last_sched_tick + HZ;
2539
2540 if (time_before_eq(next, now))
2541 return 0;
2542
8fe8ff09 2543 return jiffies_to_nsecs(next - now);
1da177e4 2544}
265f22a9 2545#endif
1da177e4 2546
132380a0 2547notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2548{
2549 if (in_lock_functions(addr)) {
2550 addr = CALLER_ADDR2;
2551 if (in_lock_functions(addr))
2552 addr = CALLER_ADDR3;
2553 }
2554 return addr;
2555}
1da177e4 2556
7e49fcce
SR
2557#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2558 defined(CONFIG_PREEMPT_TRACER))
2559
edafe3a5 2560void preempt_count_add(int val)
1da177e4 2561{
6cd8a4bb 2562#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2563 /*
2564 * Underflow?
2565 */
9a11b49a
IM
2566 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2567 return;
6cd8a4bb 2568#endif
bdb43806 2569 __preempt_count_add(val);
6cd8a4bb 2570#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2571 /*
2572 * Spinlock count overflowing soon?
2573 */
33859f7f
MOS
2574 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2575 PREEMPT_MASK - 10);
6cd8a4bb 2576#endif
8f47b187
TG
2577 if (preempt_count() == val) {
2578 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2579#ifdef CONFIG_DEBUG_PREEMPT
2580 current->preempt_disable_ip = ip;
2581#endif
2582 trace_preempt_off(CALLER_ADDR0, ip);
2583 }
1da177e4 2584}
bdb43806 2585EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2586NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2587
edafe3a5 2588void preempt_count_sub(int val)
1da177e4 2589{
6cd8a4bb 2590#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2591 /*
2592 * Underflow?
2593 */
01e3eb82 2594 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2595 return;
1da177e4
LT
2596 /*
2597 * Is the spinlock portion underflowing?
2598 */
9a11b49a
IM
2599 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2600 !(preempt_count() & PREEMPT_MASK)))
2601 return;
6cd8a4bb 2602#endif
9a11b49a 2603
6cd8a4bb
SR
2604 if (preempt_count() == val)
2605 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2606 __preempt_count_sub(val);
1da177e4 2607}
bdb43806 2608EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2609NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2610
2611#endif
2612
2613/*
dd41f596 2614 * Print scheduling while atomic bug:
1da177e4 2615 */
dd41f596 2616static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2617{
664dfa65
DJ
2618 if (oops_in_progress)
2619 return;
2620
3df0fc5b
PZ
2621 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2622 prev->comm, prev->pid, preempt_count());
838225b4 2623
dd41f596 2624 debug_show_held_locks(prev);
e21f5b15 2625 print_modules();
dd41f596
IM
2626 if (irqs_disabled())
2627 print_irqtrace_events(prev);
8f47b187
TG
2628#ifdef CONFIG_DEBUG_PREEMPT
2629 if (in_atomic_preempt_off()) {
2630 pr_err("Preemption disabled at:");
2631 print_ip_sym(current->preempt_disable_ip);
2632 pr_cont("\n");
2633 }
2634#endif
6135fc1e 2635 dump_stack();
373d4d09 2636 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2637}
1da177e4 2638
dd41f596
IM
2639/*
2640 * Various schedule()-time debugging checks and statistics:
2641 */
2642static inline void schedule_debug(struct task_struct *prev)
2643{
1da177e4 2644 /*
41a2d6cf 2645 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2646 * schedule() atomically, we ignore that path. Otherwise whine
2647 * if we are scheduling when we should not.
1da177e4 2648 */
192301e7 2649 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2650 __schedule_bug(prev);
b3fbab05 2651 rcu_sleep_check();
dd41f596 2652
1da177e4
LT
2653 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2654
2d72376b 2655 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2656}
2657
2658/*
2659 * Pick up the highest-prio task:
2660 */
2661static inline struct task_struct *
606dba2e 2662pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2663{
37e117c0 2664 const struct sched_class *class = &fair_sched_class;
dd41f596 2665 struct task_struct *p;
1da177e4
LT
2666
2667 /*
dd41f596
IM
2668 * Optimization: we know that if all tasks are in
2669 * the fair class we can call that function directly:
1da177e4 2670 */
37e117c0 2671 if (likely(prev->sched_class == class &&
38033c37 2672 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2673 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2674 if (unlikely(p == RETRY_TASK))
2675 goto again;
2676
2677 /* assumes fair_sched_class->next == idle_sched_class */
2678 if (unlikely(!p))
2679 p = idle_sched_class.pick_next_task(rq, prev);
2680
2681 return p;
1da177e4
LT
2682 }
2683
37e117c0 2684again:
34f971f6 2685 for_each_class(class) {
606dba2e 2686 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2687 if (p) {
2688 if (unlikely(p == RETRY_TASK))
2689 goto again;
dd41f596 2690 return p;
37e117c0 2691 }
dd41f596 2692 }
34f971f6
PZ
2693
2694 BUG(); /* the idle class will always have a runnable task */
dd41f596 2695}
1da177e4 2696
dd41f596 2697/*
c259e01a 2698 * __schedule() is the main scheduler function.
edde96ea
PE
2699 *
2700 * The main means of driving the scheduler and thus entering this function are:
2701 *
2702 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2703 *
2704 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2705 * paths. For example, see arch/x86/entry_64.S.
2706 *
2707 * To drive preemption between tasks, the scheduler sets the flag in timer
2708 * interrupt handler scheduler_tick().
2709 *
2710 * 3. Wakeups don't really cause entry into schedule(). They add a
2711 * task to the run-queue and that's it.
2712 *
2713 * Now, if the new task added to the run-queue preempts the current
2714 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2715 * called on the nearest possible occasion:
2716 *
2717 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2718 *
2719 * - in syscall or exception context, at the next outmost
2720 * preempt_enable(). (this might be as soon as the wake_up()'s
2721 * spin_unlock()!)
2722 *
2723 * - in IRQ context, return from interrupt-handler to
2724 * preemptible context
2725 *
2726 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2727 * then at the next:
2728 *
2729 * - cond_resched() call
2730 * - explicit schedule() call
2731 * - return from syscall or exception to user-space
2732 * - return from interrupt-handler to user-space
dd41f596 2733 */
c259e01a 2734static void __sched __schedule(void)
dd41f596
IM
2735{
2736 struct task_struct *prev, *next;
67ca7bde 2737 unsigned long *switch_count;
dd41f596 2738 struct rq *rq;
31656519 2739 int cpu;
dd41f596 2740
ff743345
PZ
2741need_resched:
2742 preempt_disable();
dd41f596
IM
2743 cpu = smp_processor_id();
2744 rq = cpu_rq(cpu);
25502a6c 2745 rcu_note_context_switch(cpu);
dd41f596 2746 prev = rq->curr;
dd41f596 2747
dd41f596 2748 schedule_debug(prev);
1da177e4 2749
31656519 2750 if (sched_feat(HRTICK))
f333fdc9 2751 hrtick_clear(rq);
8f4d37ec 2752
e0acd0a6
ON
2753 /*
2754 * Make sure that signal_pending_state()->signal_pending() below
2755 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2756 * done by the caller to avoid the race with signal_wake_up().
2757 */
2758 smp_mb__before_spinlock();
05fa785c 2759 raw_spin_lock_irq(&rq->lock);
1da177e4 2760
246d86b5 2761 switch_count = &prev->nivcsw;
1da177e4 2762 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2763 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2764 prev->state = TASK_RUNNING;
21aa9af0 2765 } else {
2acca55e
PZ
2766 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2767 prev->on_rq = 0;
2768
21aa9af0 2769 /*
2acca55e
PZ
2770 * If a worker went to sleep, notify and ask workqueue
2771 * whether it wants to wake up a task to maintain
2772 * concurrency.
21aa9af0
TH
2773 */
2774 if (prev->flags & PF_WQ_WORKER) {
2775 struct task_struct *to_wakeup;
2776
2777 to_wakeup = wq_worker_sleeping(prev, cpu);
2778 if (to_wakeup)
2779 try_to_wake_up_local(to_wakeup);
2780 }
21aa9af0 2781 }
dd41f596 2782 switch_count = &prev->nvcsw;
1da177e4
LT
2783 }
2784
606dba2e
PZ
2785 if (prev->on_rq || rq->skip_clock_update < 0)
2786 update_rq_clock(rq);
2787
2788 next = pick_next_task(rq, prev);
f26f9aff 2789 clear_tsk_need_resched(prev);
f27dde8d 2790 clear_preempt_need_resched();
f26f9aff 2791 rq->skip_clock_update = 0;
1da177e4 2792
1da177e4 2793 if (likely(prev != next)) {
1da177e4
LT
2794 rq->nr_switches++;
2795 rq->curr = next;
2796 ++*switch_count;
2797
dd41f596 2798 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2799 /*
246d86b5
ON
2800 * The context switch have flipped the stack from under us
2801 * and restored the local variables which were saved when
2802 * this task called schedule() in the past. prev == current
2803 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2804 */
2805 cpu = smp_processor_id();
2806 rq = cpu_rq(cpu);
1da177e4 2807 } else
05fa785c 2808 raw_spin_unlock_irq(&rq->lock);
1da177e4 2809
3f029d3c 2810 post_schedule(rq);
1da177e4 2811
ba74c144 2812 sched_preempt_enable_no_resched();
ff743345 2813 if (need_resched())
1da177e4
LT
2814 goto need_resched;
2815}
c259e01a 2816
9c40cef2
TG
2817static inline void sched_submit_work(struct task_struct *tsk)
2818{
3c7d5184 2819 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2820 return;
2821 /*
2822 * If we are going to sleep and we have plugged IO queued,
2823 * make sure to submit it to avoid deadlocks.
2824 */
2825 if (blk_needs_flush_plug(tsk))
2826 blk_schedule_flush_plug(tsk);
2827}
2828
722a9f92 2829asmlinkage __visible void __sched schedule(void)
c259e01a 2830{
9c40cef2
TG
2831 struct task_struct *tsk = current;
2832
2833 sched_submit_work(tsk);
c259e01a
TG
2834 __schedule();
2835}
1da177e4
LT
2836EXPORT_SYMBOL(schedule);
2837
91d1aa43 2838#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2839asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2840{
2841 /*
2842 * If we come here after a random call to set_need_resched(),
2843 * or we have been woken up remotely but the IPI has not yet arrived,
2844 * we haven't yet exited the RCU idle mode. Do it here manually until
2845 * we find a better solution.
2846 */
91d1aa43 2847 user_exit();
20ab65e3 2848 schedule();
91d1aa43 2849 user_enter();
20ab65e3
FW
2850}
2851#endif
2852
c5491ea7
TG
2853/**
2854 * schedule_preempt_disabled - called with preemption disabled
2855 *
2856 * Returns with preemption disabled. Note: preempt_count must be 1
2857 */
2858void __sched schedule_preempt_disabled(void)
2859{
ba74c144 2860 sched_preempt_enable_no_resched();
c5491ea7
TG
2861 schedule();
2862 preempt_disable();
2863}
2864
1da177e4
LT
2865#ifdef CONFIG_PREEMPT
2866/*
2ed6e34f 2867 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2868 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2869 * occur there and call schedule directly.
2870 */
722a9f92 2871asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2872{
1da177e4
LT
2873 /*
2874 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2875 * we do not want to preempt the current task. Just return..
1da177e4 2876 */
fbb00b56 2877 if (likely(!preemptible()))
1da177e4
LT
2878 return;
2879
3a5c359a 2880 do {
bdb43806 2881 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2882 __schedule();
bdb43806 2883 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2884
3a5c359a
AK
2885 /*
2886 * Check again in case we missed a preemption opportunity
2887 * between schedule and now.
2888 */
2889 barrier();
5ed0cec0 2890 } while (need_resched());
1da177e4 2891}
376e2424 2892NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2893EXPORT_SYMBOL(preempt_schedule);
32e475d7 2894#endif /* CONFIG_PREEMPT */
1da177e4
LT
2895
2896/*
2ed6e34f 2897 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2898 * off of irq context.
2899 * Note, that this is called and return with irqs disabled. This will
2900 * protect us against recursive calling from irq.
2901 */
722a9f92 2902asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2903{
b22366cd 2904 enum ctx_state prev_state;
6478d880 2905
2ed6e34f 2906 /* Catch callers which need to be fixed */
f27dde8d 2907 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2908
b22366cd
FW
2909 prev_state = exception_enter();
2910
3a5c359a 2911 do {
bdb43806 2912 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2913 local_irq_enable();
c259e01a 2914 __schedule();
3a5c359a 2915 local_irq_disable();
bdb43806 2916 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2917
3a5c359a
AK
2918 /*
2919 * Check again in case we missed a preemption opportunity
2920 * between schedule and now.
2921 */
2922 barrier();
5ed0cec0 2923 } while (need_resched());
b22366cd
FW
2924
2925 exception_exit(prev_state);
1da177e4
LT
2926}
2927
63859d4f 2928int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2929 void *key)
1da177e4 2930{
63859d4f 2931 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2932}
1da177e4
LT
2933EXPORT_SYMBOL(default_wake_function);
2934
b29739f9
IM
2935#ifdef CONFIG_RT_MUTEXES
2936
2937/*
2938 * rt_mutex_setprio - set the current priority of a task
2939 * @p: task
2940 * @prio: prio value (kernel-internal form)
2941 *
2942 * This function changes the 'effective' priority of a task. It does
2943 * not touch ->normal_prio like __setscheduler().
2944 *
c365c292
TG
2945 * Used by the rt_mutex code to implement priority inheritance
2946 * logic. Call site only calls if the priority of the task changed.
b29739f9 2947 */
36c8b586 2948void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2949{
2d3d891d 2950 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2951 struct rq *rq;
83ab0aa0 2952 const struct sched_class *prev_class;
b29739f9 2953
aab03e05 2954 BUG_ON(prio > MAX_PRIO);
b29739f9 2955
0122ec5b 2956 rq = __task_rq_lock(p);
b29739f9 2957
1c4dd99b
TG
2958 /*
2959 * Idle task boosting is a nono in general. There is one
2960 * exception, when PREEMPT_RT and NOHZ is active:
2961 *
2962 * The idle task calls get_next_timer_interrupt() and holds
2963 * the timer wheel base->lock on the CPU and another CPU wants
2964 * to access the timer (probably to cancel it). We can safely
2965 * ignore the boosting request, as the idle CPU runs this code
2966 * with interrupts disabled and will complete the lock
2967 * protected section without being interrupted. So there is no
2968 * real need to boost.
2969 */
2970 if (unlikely(p == rq->idle)) {
2971 WARN_ON(p != rq->curr);
2972 WARN_ON(p->pi_blocked_on);
2973 goto out_unlock;
2974 }
2975
a8027073 2976 trace_sched_pi_setprio(p, prio);
2d3d891d 2977 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2978 oldprio = p->prio;
83ab0aa0 2979 prev_class = p->sched_class;
fd2f4419 2980 on_rq = p->on_rq;
051a1d1a 2981 running = task_current(rq, p);
0e1f3483 2982 if (on_rq)
69be72c1 2983 dequeue_task(rq, p, 0);
0e1f3483
HS
2984 if (running)
2985 p->sched_class->put_prev_task(rq, p);
dd41f596 2986
2d3d891d
DF
2987 /*
2988 * Boosting condition are:
2989 * 1. -rt task is running and holds mutex A
2990 * --> -dl task blocks on mutex A
2991 *
2992 * 2. -dl task is running and holds mutex A
2993 * --> -dl task blocks on mutex A and could preempt the
2994 * running task
2995 */
2996 if (dl_prio(prio)) {
2997 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2998 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2999 p->dl.dl_boosted = 1;
3000 p->dl.dl_throttled = 0;
3001 enqueue_flag = ENQUEUE_REPLENISH;
3002 } else
3003 p->dl.dl_boosted = 0;
aab03e05 3004 p->sched_class = &dl_sched_class;
2d3d891d
DF
3005 } else if (rt_prio(prio)) {
3006 if (dl_prio(oldprio))
3007 p->dl.dl_boosted = 0;
3008 if (oldprio < prio)
3009 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3010 p->sched_class = &rt_sched_class;
2d3d891d
DF
3011 } else {
3012 if (dl_prio(oldprio))
3013 p->dl.dl_boosted = 0;
dd41f596 3014 p->sched_class = &fair_sched_class;
2d3d891d 3015 }
dd41f596 3016
b29739f9
IM
3017 p->prio = prio;
3018
0e1f3483
HS
3019 if (running)
3020 p->sched_class->set_curr_task(rq);
da7a735e 3021 if (on_rq)
2d3d891d 3022 enqueue_task(rq, p, enqueue_flag);
cb469845 3023
da7a735e 3024 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3025out_unlock:
0122ec5b 3026 __task_rq_unlock(rq);
b29739f9 3027}
b29739f9 3028#endif
d50dde5a 3029
36c8b586 3030void set_user_nice(struct task_struct *p, long nice)
1da177e4 3031{
dd41f596 3032 int old_prio, delta, on_rq;
1da177e4 3033 unsigned long flags;
70b97a7f 3034 struct rq *rq;
1da177e4 3035
75e45d51 3036 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3037 return;
3038 /*
3039 * We have to be careful, if called from sys_setpriority(),
3040 * the task might be in the middle of scheduling on another CPU.
3041 */
3042 rq = task_rq_lock(p, &flags);
3043 /*
3044 * The RT priorities are set via sched_setscheduler(), but we still
3045 * allow the 'normal' nice value to be set - but as expected
3046 * it wont have any effect on scheduling until the task is
aab03e05 3047 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3048 */
aab03e05 3049 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3050 p->static_prio = NICE_TO_PRIO(nice);
3051 goto out_unlock;
3052 }
fd2f4419 3053 on_rq = p->on_rq;
c09595f6 3054 if (on_rq)
69be72c1 3055 dequeue_task(rq, p, 0);
1da177e4 3056
1da177e4 3057 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3058 set_load_weight(p);
b29739f9
IM
3059 old_prio = p->prio;
3060 p->prio = effective_prio(p);
3061 delta = p->prio - old_prio;
1da177e4 3062
dd41f596 3063 if (on_rq) {
371fd7e7 3064 enqueue_task(rq, p, 0);
1da177e4 3065 /*
d5f9f942
AM
3066 * If the task increased its priority or is running and
3067 * lowered its priority, then reschedule its CPU:
1da177e4 3068 */
d5f9f942 3069 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3070 resched_task(rq->curr);
3071 }
3072out_unlock:
0122ec5b 3073 task_rq_unlock(rq, p, &flags);
1da177e4 3074}
1da177e4
LT
3075EXPORT_SYMBOL(set_user_nice);
3076
e43379f1
MM
3077/*
3078 * can_nice - check if a task can reduce its nice value
3079 * @p: task
3080 * @nice: nice value
3081 */
36c8b586 3082int can_nice(const struct task_struct *p, const int nice)
e43379f1 3083{
024f4747 3084 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3085 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3086
78d7d407 3087 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3088 capable(CAP_SYS_NICE));
3089}
3090
1da177e4
LT
3091#ifdef __ARCH_WANT_SYS_NICE
3092
3093/*
3094 * sys_nice - change the priority of the current process.
3095 * @increment: priority increment
3096 *
3097 * sys_setpriority is a more generic, but much slower function that
3098 * does similar things.
3099 */
5add95d4 3100SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3101{
48f24c4d 3102 long nice, retval;
1da177e4
LT
3103
3104 /*
3105 * Setpriority might change our priority at the same moment.
3106 * We don't have to worry. Conceptually one call occurs first
3107 * and we have a single winner.
3108 */
a9467fa3 3109 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3110 nice = task_nice(current) + increment;
1da177e4 3111
a9467fa3 3112 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3113 if (increment < 0 && !can_nice(current, nice))
3114 return -EPERM;
3115
1da177e4
LT
3116 retval = security_task_setnice(current, nice);
3117 if (retval)
3118 return retval;
3119
3120 set_user_nice(current, nice);
3121 return 0;
3122}
3123
3124#endif
3125
3126/**
3127 * task_prio - return the priority value of a given task.
3128 * @p: the task in question.
3129 *
e69f6186 3130 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3131 * RT tasks are offset by -200. Normal tasks are centered
3132 * around 0, value goes from -16 to +15.
3133 */
36c8b586 3134int task_prio(const struct task_struct *p)
1da177e4
LT
3135{
3136 return p->prio - MAX_RT_PRIO;
3137}
3138
1da177e4
LT
3139/**
3140 * idle_cpu - is a given cpu idle currently?
3141 * @cpu: the processor in question.
e69f6186
YB
3142 *
3143 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3144 */
3145int idle_cpu(int cpu)
3146{
908a3283
TG
3147 struct rq *rq = cpu_rq(cpu);
3148
3149 if (rq->curr != rq->idle)
3150 return 0;
3151
3152 if (rq->nr_running)
3153 return 0;
3154
3155#ifdef CONFIG_SMP
3156 if (!llist_empty(&rq->wake_list))
3157 return 0;
3158#endif
3159
3160 return 1;
1da177e4
LT
3161}
3162
1da177e4
LT
3163/**
3164 * idle_task - return the idle task for a given cpu.
3165 * @cpu: the processor in question.
e69f6186
YB
3166 *
3167 * Return: The idle task for the cpu @cpu.
1da177e4 3168 */
36c8b586 3169struct task_struct *idle_task(int cpu)
1da177e4
LT
3170{
3171 return cpu_rq(cpu)->idle;
3172}
3173
3174/**
3175 * find_process_by_pid - find a process with a matching PID value.
3176 * @pid: the pid in question.
e69f6186
YB
3177 *
3178 * The task of @pid, if found. %NULL otherwise.
1da177e4 3179 */
a9957449 3180static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3181{
228ebcbe 3182 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3183}
3184
aab03e05
DF
3185/*
3186 * This function initializes the sched_dl_entity of a newly becoming
3187 * SCHED_DEADLINE task.
3188 *
3189 * Only the static values are considered here, the actual runtime and the
3190 * absolute deadline will be properly calculated when the task is enqueued
3191 * for the first time with its new policy.
3192 */
3193static void
3194__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3195{
3196 struct sched_dl_entity *dl_se = &p->dl;
3197
3198 init_dl_task_timer(dl_se);
3199 dl_se->dl_runtime = attr->sched_runtime;
3200 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3201 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3202 dl_se->flags = attr->sched_flags;
332ac17e 3203 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3204 dl_se->dl_throttled = 0;
3205 dl_se->dl_new = 1;
5bfd126e 3206 dl_se->dl_yielded = 0;
aab03e05
DF
3207}
3208
c365c292
TG
3209static void __setscheduler_params(struct task_struct *p,
3210 const struct sched_attr *attr)
1da177e4 3211{
d50dde5a
DF
3212 int policy = attr->sched_policy;
3213
39fd8fd2
PZ
3214 if (policy == -1) /* setparam */
3215 policy = p->policy;
3216
1da177e4 3217 p->policy = policy;
d50dde5a 3218
aab03e05
DF
3219 if (dl_policy(policy))
3220 __setparam_dl(p, attr);
39fd8fd2 3221 else if (fair_policy(policy))
d50dde5a
DF
3222 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3223
39fd8fd2
PZ
3224 /*
3225 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3226 * !rt_policy. Always setting this ensures that things like
3227 * getparam()/getattr() don't report silly values for !rt tasks.
3228 */
3229 p->rt_priority = attr->sched_priority;
383afd09 3230 p->normal_prio = normal_prio(p);
c365c292
TG
3231 set_load_weight(p);
3232}
39fd8fd2 3233
c365c292
TG
3234/* Actually do priority change: must hold pi & rq lock. */
3235static void __setscheduler(struct rq *rq, struct task_struct *p,
3236 const struct sched_attr *attr)
3237{
3238 __setscheduler_params(p, attr);
d50dde5a 3239
383afd09
SR
3240 /*
3241 * If we get here, there was no pi waiters boosting the
3242 * task. It is safe to use the normal prio.
3243 */
3244 p->prio = normal_prio(p);
3245
aab03e05
DF
3246 if (dl_prio(p->prio))
3247 p->sched_class = &dl_sched_class;
3248 else if (rt_prio(p->prio))
ffd44db5
PZ
3249 p->sched_class = &rt_sched_class;
3250 else
3251 p->sched_class = &fair_sched_class;
1da177e4 3252}
aab03e05
DF
3253
3254static void
3255__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3256{
3257 struct sched_dl_entity *dl_se = &p->dl;
3258
3259 attr->sched_priority = p->rt_priority;
3260 attr->sched_runtime = dl_se->dl_runtime;
3261 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3262 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3263 attr->sched_flags = dl_se->flags;
3264}
3265
3266/*
3267 * This function validates the new parameters of a -deadline task.
3268 * We ask for the deadline not being zero, and greater or equal
755378a4 3269 * than the runtime, as well as the period of being zero or
332ac17e 3270 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3271 * user parameters are above the internal resolution of 1us (we
3272 * check sched_runtime only since it is always the smaller one) and
3273 * below 2^63 ns (we have to check both sched_deadline and
3274 * sched_period, as the latter can be zero).
aab03e05
DF
3275 */
3276static bool
3277__checkparam_dl(const struct sched_attr *attr)
3278{
b0827819
JL
3279 /* deadline != 0 */
3280 if (attr->sched_deadline == 0)
3281 return false;
3282
3283 /*
3284 * Since we truncate DL_SCALE bits, make sure we're at least
3285 * that big.
3286 */
3287 if (attr->sched_runtime < (1ULL << DL_SCALE))
3288 return false;
3289
3290 /*
3291 * Since we use the MSB for wrap-around and sign issues, make
3292 * sure it's not set (mind that period can be equal to zero).
3293 */
3294 if (attr->sched_deadline & (1ULL << 63) ||
3295 attr->sched_period & (1ULL << 63))
3296 return false;
3297
3298 /* runtime <= deadline <= period (if period != 0) */
3299 if ((attr->sched_period != 0 &&
3300 attr->sched_period < attr->sched_deadline) ||
3301 attr->sched_deadline < attr->sched_runtime)
3302 return false;
3303
3304 return true;
aab03e05
DF
3305}
3306
c69e8d9c
DH
3307/*
3308 * check the target process has a UID that matches the current process's
3309 */
3310static bool check_same_owner(struct task_struct *p)
3311{
3312 const struct cred *cred = current_cred(), *pcred;
3313 bool match;
3314
3315 rcu_read_lock();
3316 pcred = __task_cred(p);
9c806aa0
EB
3317 match = (uid_eq(cred->euid, pcred->euid) ||
3318 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3319 rcu_read_unlock();
3320 return match;
3321}
3322
d50dde5a
DF
3323static int __sched_setscheduler(struct task_struct *p,
3324 const struct sched_attr *attr,
3325 bool user)
1da177e4 3326{
383afd09
SR
3327 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3328 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3329 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3330 int policy = attr->sched_policy;
1da177e4 3331 unsigned long flags;
83ab0aa0 3332 const struct sched_class *prev_class;
70b97a7f 3333 struct rq *rq;
ca94c442 3334 int reset_on_fork;
1da177e4 3335
66e5393a
SR
3336 /* may grab non-irq protected spin_locks */
3337 BUG_ON(in_interrupt());
1da177e4
LT
3338recheck:
3339 /* double check policy once rq lock held */
ca94c442
LP
3340 if (policy < 0) {
3341 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3342 policy = oldpolicy = p->policy;
ca94c442 3343 } else {
7479f3c9 3344 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3345
aab03e05
DF
3346 if (policy != SCHED_DEADLINE &&
3347 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3348 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3349 policy != SCHED_IDLE)
3350 return -EINVAL;
3351 }
3352
7479f3c9
PZ
3353 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3354 return -EINVAL;
3355
1da177e4
LT
3356 /*
3357 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3358 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3359 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3360 */
0bb040a4 3361 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3362 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3363 return -EINVAL;
aab03e05
DF
3364 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3365 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3366 return -EINVAL;
3367
37e4ab3f
OC
3368 /*
3369 * Allow unprivileged RT tasks to decrease priority:
3370 */
961ccddd 3371 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3372 if (fair_policy(policy)) {
d0ea0268 3373 if (attr->sched_nice < task_nice(p) &&
eaad4513 3374 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3375 return -EPERM;
3376 }
3377
e05606d3 3378 if (rt_policy(policy)) {
a44702e8
ON
3379 unsigned long rlim_rtprio =
3380 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3381
3382 /* can't set/change the rt policy */
3383 if (policy != p->policy && !rlim_rtprio)
3384 return -EPERM;
3385
3386 /* can't increase priority */
d50dde5a
DF
3387 if (attr->sched_priority > p->rt_priority &&
3388 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3389 return -EPERM;
3390 }
c02aa73b 3391
d44753b8
JL
3392 /*
3393 * Can't set/change SCHED_DEADLINE policy at all for now
3394 * (safest behavior); in the future we would like to allow
3395 * unprivileged DL tasks to increase their relative deadline
3396 * or reduce their runtime (both ways reducing utilization)
3397 */
3398 if (dl_policy(policy))
3399 return -EPERM;
3400
dd41f596 3401 /*
c02aa73b
DH
3402 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3403 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3404 */
c02aa73b 3405 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3406 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3407 return -EPERM;
3408 }
5fe1d75f 3409
37e4ab3f 3410 /* can't change other user's priorities */
c69e8d9c 3411 if (!check_same_owner(p))
37e4ab3f 3412 return -EPERM;
ca94c442
LP
3413
3414 /* Normal users shall not reset the sched_reset_on_fork flag */
3415 if (p->sched_reset_on_fork && !reset_on_fork)
3416 return -EPERM;
37e4ab3f 3417 }
1da177e4 3418
725aad24 3419 if (user) {
b0ae1981 3420 retval = security_task_setscheduler(p);
725aad24
JF
3421 if (retval)
3422 return retval;
3423 }
3424
b29739f9
IM
3425 /*
3426 * make sure no PI-waiters arrive (or leave) while we are
3427 * changing the priority of the task:
0122ec5b 3428 *
25985edc 3429 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3430 * runqueue lock must be held.
3431 */
0122ec5b 3432 rq = task_rq_lock(p, &flags);
dc61b1d6 3433
34f971f6
PZ
3434 /*
3435 * Changing the policy of the stop threads its a very bad idea
3436 */
3437 if (p == rq->stop) {
0122ec5b 3438 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3439 return -EINVAL;
3440 }
3441
a51e9198 3442 /*
d6b1e911
TG
3443 * If not changing anything there's no need to proceed further,
3444 * but store a possible modification of reset_on_fork.
a51e9198 3445 */
d50dde5a 3446 if (unlikely(policy == p->policy)) {
d0ea0268 3447 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3448 goto change;
3449 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3450 goto change;
aab03e05
DF
3451 if (dl_policy(policy))
3452 goto change;
d50dde5a 3453
d6b1e911 3454 p->sched_reset_on_fork = reset_on_fork;
45afb173 3455 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3456 return 0;
3457 }
d50dde5a 3458change:
a51e9198 3459
dc61b1d6 3460 if (user) {
332ac17e 3461#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3462 /*
3463 * Do not allow realtime tasks into groups that have no runtime
3464 * assigned.
3465 */
3466 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3467 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3468 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3469 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3470 return -EPERM;
3471 }
dc61b1d6 3472#endif
332ac17e
DF
3473#ifdef CONFIG_SMP
3474 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3475 cpumask_t *span = rq->rd->span;
332ac17e
DF
3476
3477 /*
3478 * Don't allow tasks with an affinity mask smaller than
3479 * the entire root_domain to become SCHED_DEADLINE. We
3480 * will also fail if there's no bandwidth available.
3481 */
e4099a5e
PZ
3482 if (!cpumask_subset(span, &p->cpus_allowed) ||
3483 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3484 task_rq_unlock(rq, p, &flags);
3485 return -EPERM;
3486 }
3487 }
3488#endif
3489 }
dc61b1d6 3490
1da177e4
LT
3491 /* recheck policy now with rq lock held */
3492 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3493 policy = oldpolicy = -1;
0122ec5b 3494 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3495 goto recheck;
3496 }
332ac17e
DF
3497
3498 /*
3499 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3500 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3501 * is available.
3502 */
e4099a5e 3503 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3504 task_rq_unlock(rq, p, &flags);
3505 return -EBUSY;
3506 }
3507
c365c292
TG
3508 p->sched_reset_on_fork = reset_on_fork;
3509 oldprio = p->prio;
3510
3511 /*
3512 * Special case for priority boosted tasks.
3513 *
3514 * If the new priority is lower or equal (user space view)
3515 * than the current (boosted) priority, we just store the new
3516 * normal parameters and do not touch the scheduler class and
3517 * the runqueue. This will be done when the task deboost
3518 * itself.
3519 */
3520 if (rt_mutex_check_prio(p, newprio)) {
3521 __setscheduler_params(p, attr);
3522 task_rq_unlock(rq, p, &flags);
3523 return 0;
3524 }
3525
fd2f4419 3526 on_rq = p->on_rq;
051a1d1a 3527 running = task_current(rq, p);
0e1f3483 3528 if (on_rq)
4ca9b72b 3529 dequeue_task(rq, p, 0);
0e1f3483
HS
3530 if (running)
3531 p->sched_class->put_prev_task(rq, p);
f6b53205 3532
83ab0aa0 3533 prev_class = p->sched_class;
d50dde5a 3534 __setscheduler(rq, p, attr);
f6b53205 3535
0e1f3483
HS
3536 if (running)
3537 p->sched_class->set_curr_task(rq);
81a44c54
TG
3538 if (on_rq) {
3539 /*
3540 * We enqueue to tail when the priority of a task is
3541 * increased (user space view).
3542 */
3543 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3544 }
cb469845 3545
da7a735e 3546 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3547 task_rq_unlock(rq, p, &flags);
b29739f9 3548
95e02ca9
TG
3549 rt_mutex_adjust_pi(p);
3550
1da177e4
LT
3551 return 0;
3552}
961ccddd 3553
7479f3c9
PZ
3554static int _sched_setscheduler(struct task_struct *p, int policy,
3555 const struct sched_param *param, bool check)
3556{
3557 struct sched_attr attr = {
3558 .sched_policy = policy,
3559 .sched_priority = param->sched_priority,
3560 .sched_nice = PRIO_TO_NICE(p->static_prio),
3561 };
3562
3563 /*
3564 * Fixup the legacy SCHED_RESET_ON_FORK hack
3565 */
3566 if (policy & SCHED_RESET_ON_FORK) {
3567 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3568 policy &= ~SCHED_RESET_ON_FORK;
3569 attr.sched_policy = policy;
3570 }
3571
3572 return __sched_setscheduler(p, &attr, check);
3573}
961ccddd
RR
3574/**
3575 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3576 * @p: the task in question.
3577 * @policy: new policy.
3578 * @param: structure containing the new RT priority.
3579 *
e69f6186
YB
3580 * Return: 0 on success. An error code otherwise.
3581 *
961ccddd
RR
3582 * NOTE that the task may be already dead.
3583 */
3584int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3585 const struct sched_param *param)
961ccddd 3586{
7479f3c9 3587 return _sched_setscheduler(p, policy, param, true);
961ccddd 3588}
1da177e4
LT
3589EXPORT_SYMBOL_GPL(sched_setscheduler);
3590
d50dde5a
DF
3591int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3592{
3593 return __sched_setscheduler(p, attr, true);
3594}
3595EXPORT_SYMBOL_GPL(sched_setattr);
3596
961ccddd
RR
3597/**
3598 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3599 * @p: the task in question.
3600 * @policy: new policy.
3601 * @param: structure containing the new RT priority.
3602 *
3603 * Just like sched_setscheduler, only don't bother checking if the
3604 * current context has permission. For example, this is needed in
3605 * stop_machine(): we create temporary high priority worker threads,
3606 * but our caller might not have that capability.
e69f6186
YB
3607 *
3608 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3609 */
3610int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3611 const struct sched_param *param)
961ccddd 3612{
7479f3c9 3613 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3614}
3615
95cdf3b7
IM
3616static int
3617do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3618{
1da177e4
LT
3619 struct sched_param lparam;
3620 struct task_struct *p;
36c8b586 3621 int retval;
1da177e4
LT
3622
3623 if (!param || pid < 0)
3624 return -EINVAL;
3625 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3626 return -EFAULT;
5fe1d75f
ON
3627
3628 rcu_read_lock();
3629 retval = -ESRCH;
1da177e4 3630 p = find_process_by_pid(pid);
5fe1d75f
ON
3631 if (p != NULL)
3632 retval = sched_setscheduler(p, policy, &lparam);
3633 rcu_read_unlock();
36c8b586 3634
1da177e4
LT
3635 return retval;
3636}
3637
d50dde5a
DF
3638/*
3639 * Mimics kernel/events/core.c perf_copy_attr().
3640 */
3641static int sched_copy_attr(struct sched_attr __user *uattr,
3642 struct sched_attr *attr)
3643{
3644 u32 size;
3645 int ret;
3646
3647 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3648 return -EFAULT;
3649
3650 /*
3651 * zero the full structure, so that a short copy will be nice.
3652 */
3653 memset(attr, 0, sizeof(*attr));
3654
3655 ret = get_user(size, &uattr->size);
3656 if (ret)
3657 return ret;
3658
3659 if (size > PAGE_SIZE) /* silly large */
3660 goto err_size;
3661
3662 if (!size) /* abi compat */
3663 size = SCHED_ATTR_SIZE_VER0;
3664
3665 if (size < SCHED_ATTR_SIZE_VER0)
3666 goto err_size;
3667
3668 /*
3669 * If we're handed a bigger struct than we know of,
3670 * ensure all the unknown bits are 0 - i.e. new
3671 * user-space does not rely on any kernel feature
3672 * extensions we dont know about yet.
3673 */
3674 if (size > sizeof(*attr)) {
3675 unsigned char __user *addr;
3676 unsigned char __user *end;
3677 unsigned char val;
3678
3679 addr = (void __user *)uattr + sizeof(*attr);
3680 end = (void __user *)uattr + size;
3681
3682 for (; addr < end; addr++) {
3683 ret = get_user(val, addr);
3684 if (ret)
3685 return ret;
3686 if (val)
3687 goto err_size;
3688 }
3689 size = sizeof(*attr);
3690 }
3691
3692 ret = copy_from_user(attr, uattr, size);
3693 if (ret)
3694 return -EFAULT;
3695
3696 /*
3697 * XXX: do we want to be lenient like existing syscalls; or do we want
3698 * to be strict and return an error on out-of-bounds values?
3699 */
75e45d51 3700 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3701
e78c7bca 3702 return 0;
d50dde5a
DF
3703
3704err_size:
3705 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3706 return -E2BIG;
d50dde5a
DF
3707}
3708
1da177e4
LT
3709/**
3710 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3711 * @pid: the pid in question.
3712 * @policy: new policy.
3713 * @param: structure containing the new RT priority.
e69f6186
YB
3714 *
3715 * Return: 0 on success. An error code otherwise.
1da177e4 3716 */
5add95d4
HC
3717SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3718 struct sched_param __user *, param)
1da177e4 3719{
c21761f1
JB
3720 /* negative values for policy are not valid */
3721 if (policy < 0)
3722 return -EINVAL;
3723
1da177e4
LT
3724 return do_sched_setscheduler(pid, policy, param);
3725}
3726
3727/**
3728 * sys_sched_setparam - set/change the RT priority of a thread
3729 * @pid: the pid in question.
3730 * @param: structure containing the new RT priority.
e69f6186
YB
3731 *
3732 * Return: 0 on success. An error code otherwise.
1da177e4 3733 */
5add95d4 3734SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3735{
3736 return do_sched_setscheduler(pid, -1, param);
3737}
3738
d50dde5a
DF
3739/**
3740 * sys_sched_setattr - same as above, but with extended sched_attr
3741 * @pid: the pid in question.
5778fccf 3742 * @uattr: structure containing the extended parameters.
db66d756 3743 * @flags: for future extension.
d50dde5a 3744 */
6d35ab48
PZ
3745SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3746 unsigned int, flags)
d50dde5a
DF
3747{
3748 struct sched_attr attr;
3749 struct task_struct *p;
3750 int retval;
3751
6d35ab48 3752 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3753 return -EINVAL;
3754
143cf23d
MK
3755 retval = sched_copy_attr(uattr, &attr);
3756 if (retval)
3757 return retval;
d50dde5a 3758
b14ed2c2 3759 if ((int)attr.sched_policy < 0)
dbdb2275 3760 return -EINVAL;
d50dde5a
DF
3761
3762 rcu_read_lock();
3763 retval = -ESRCH;
3764 p = find_process_by_pid(pid);
3765 if (p != NULL)
3766 retval = sched_setattr(p, &attr);
3767 rcu_read_unlock();
3768
3769 return retval;
3770}
3771
1da177e4
LT
3772/**
3773 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3774 * @pid: the pid in question.
e69f6186
YB
3775 *
3776 * Return: On success, the policy of the thread. Otherwise, a negative error
3777 * code.
1da177e4 3778 */
5add95d4 3779SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3780{
36c8b586 3781 struct task_struct *p;
3a5c359a 3782 int retval;
1da177e4
LT
3783
3784 if (pid < 0)
3a5c359a 3785 return -EINVAL;
1da177e4
LT
3786
3787 retval = -ESRCH;
5fe85be0 3788 rcu_read_lock();
1da177e4
LT
3789 p = find_process_by_pid(pid);
3790 if (p) {
3791 retval = security_task_getscheduler(p);
3792 if (!retval)
ca94c442
LP
3793 retval = p->policy
3794 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3795 }
5fe85be0 3796 rcu_read_unlock();
1da177e4
LT
3797 return retval;
3798}
3799
3800/**
ca94c442 3801 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3802 * @pid: the pid in question.
3803 * @param: structure containing the RT priority.
e69f6186
YB
3804 *
3805 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3806 * code.
1da177e4 3807 */
5add95d4 3808SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3809{
ce5f7f82 3810 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3811 struct task_struct *p;
3a5c359a 3812 int retval;
1da177e4
LT
3813
3814 if (!param || pid < 0)
3a5c359a 3815 return -EINVAL;
1da177e4 3816
5fe85be0 3817 rcu_read_lock();
1da177e4
LT
3818 p = find_process_by_pid(pid);
3819 retval = -ESRCH;
3820 if (!p)
3821 goto out_unlock;
3822
3823 retval = security_task_getscheduler(p);
3824 if (retval)
3825 goto out_unlock;
3826
ce5f7f82
PZ
3827 if (task_has_rt_policy(p))
3828 lp.sched_priority = p->rt_priority;
5fe85be0 3829 rcu_read_unlock();
1da177e4
LT
3830
3831 /*
3832 * This one might sleep, we cannot do it with a spinlock held ...
3833 */
3834 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3835
1da177e4
LT
3836 return retval;
3837
3838out_unlock:
5fe85be0 3839 rcu_read_unlock();
1da177e4
LT
3840 return retval;
3841}
3842
d50dde5a
DF
3843static int sched_read_attr(struct sched_attr __user *uattr,
3844 struct sched_attr *attr,
3845 unsigned int usize)
3846{
3847 int ret;
3848
3849 if (!access_ok(VERIFY_WRITE, uattr, usize))
3850 return -EFAULT;
3851
3852 /*
3853 * If we're handed a smaller struct than we know of,
3854 * ensure all the unknown bits are 0 - i.e. old
3855 * user-space does not get uncomplete information.
3856 */
3857 if (usize < sizeof(*attr)) {
3858 unsigned char *addr;
3859 unsigned char *end;
3860
3861 addr = (void *)attr + usize;
3862 end = (void *)attr + sizeof(*attr);
3863
3864 for (; addr < end; addr++) {
3865 if (*addr)
22400674 3866 return -EFBIG;
d50dde5a
DF
3867 }
3868
3869 attr->size = usize;
3870 }
3871
4efbc454 3872 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3873 if (ret)
3874 return -EFAULT;
3875
22400674 3876 return 0;
d50dde5a
DF
3877}
3878
3879/**
aab03e05 3880 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3881 * @pid: the pid in question.
5778fccf 3882 * @uattr: structure containing the extended parameters.
d50dde5a 3883 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3884 * @flags: for future extension.
d50dde5a 3885 */
6d35ab48
PZ
3886SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3887 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3888{
3889 struct sched_attr attr = {
3890 .size = sizeof(struct sched_attr),
3891 };
3892 struct task_struct *p;
3893 int retval;
3894
3895 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3896 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3897 return -EINVAL;
3898
3899 rcu_read_lock();
3900 p = find_process_by_pid(pid);
3901 retval = -ESRCH;
3902 if (!p)
3903 goto out_unlock;
3904
3905 retval = security_task_getscheduler(p);
3906 if (retval)
3907 goto out_unlock;
3908
3909 attr.sched_policy = p->policy;
7479f3c9
PZ
3910 if (p->sched_reset_on_fork)
3911 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3912 if (task_has_dl_policy(p))
3913 __getparam_dl(p, &attr);
3914 else if (task_has_rt_policy(p))
d50dde5a
DF
3915 attr.sched_priority = p->rt_priority;
3916 else
d0ea0268 3917 attr.sched_nice = task_nice(p);
d50dde5a
DF
3918
3919 rcu_read_unlock();
3920
3921 retval = sched_read_attr(uattr, &attr, size);
3922 return retval;
3923
3924out_unlock:
3925 rcu_read_unlock();
3926 return retval;
3927}
3928
96f874e2 3929long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3930{
5a16f3d3 3931 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3932 struct task_struct *p;
3933 int retval;
1da177e4 3934
23f5d142 3935 rcu_read_lock();
1da177e4
LT
3936
3937 p = find_process_by_pid(pid);
3938 if (!p) {
23f5d142 3939 rcu_read_unlock();
1da177e4
LT
3940 return -ESRCH;
3941 }
3942
23f5d142 3943 /* Prevent p going away */
1da177e4 3944 get_task_struct(p);
23f5d142 3945 rcu_read_unlock();
1da177e4 3946
14a40ffc
TH
3947 if (p->flags & PF_NO_SETAFFINITY) {
3948 retval = -EINVAL;
3949 goto out_put_task;
3950 }
5a16f3d3
RR
3951 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3952 retval = -ENOMEM;
3953 goto out_put_task;
3954 }
3955 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3956 retval = -ENOMEM;
3957 goto out_free_cpus_allowed;
3958 }
1da177e4 3959 retval = -EPERM;
4c44aaaf
EB
3960 if (!check_same_owner(p)) {
3961 rcu_read_lock();
3962 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3963 rcu_read_unlock();
3964 goto out_unlock;
3965 }
3966 rcu_read_unlock();
3967 }
1da177e4 3968
b0ae1981 3969 retval = security_task_setscheduler(p);
e7834f8f
DQ
3970 if (retval)
3971 goto out_unlock;
3972
e4099a5e
PZ
3973
3974 cpuset_cpus_allowed(p, cpus_allowed);
3975 cpumask_and(new_mask, in_mask, cpus_allowed);
3976
332ac17e
DF
3977 /*
3978 * Since bandwidth control happens on root_domain basis,
3979 * if admission test is enabled, we only admit -deadline
3980 * tasks allowed to run on all the CPUs in the task's
3981 * root_domain.
3982 */
3983#ifdef CONFIG_SMP
3984 if (task_has_dl_policy(p)) {
3985 const struct cpumask *span = task_rq(p)->rd->span;
3986
e4099a5e 3987 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3988 retval = -EBUSY;
3989 goto out_unlock;
3990 }
3991 }
3992#endif
49246274 3993again:
5a16f3d3 3994 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3995
8707d8b8 3996 if (!retval) {
5a16f3d3
RR
3997 cpuset_cpus_allowed(p, cpus_allowed);
3998 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3999 /*
4000 * We must have raced with a concurrent cpuset
4001 * update. Just reset the cpus_allowed to the
4002 * cpuset's cpus_allowed
4003 */
5a16f3d3 4004 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4005 goto again;
4006 }
4007 }
1da177e4 4008out_unlock:
5a16f3d3
RR
4009 free_cpumask_var(new_mask);
4010out_free_cpus_allowed:
4011 free_cpumask_var(cpus_allowed);
4012out_put_task:
1da177e4 4013 put_task_struct(p);
1da177e4
LT
4014 return retval;
4015}
4016
4017static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4018 struct cpumask *new_mask)
1da177e4 4019{
96f874e2
RR
4020 if (len < cpumask_size())
4021 cpumask_clear(new_mask);
4022 else if (len > cpumask_size())
4023 len = cpumask_size();
4024
1da177e4
LT
4025 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4026}
4027
4028/**
4029 * sys_sched_setaffinity - set the cpu affinity of a process
4030 * @pid: pid of the process
4031 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4032 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4033 *
4034 * Return: 0 on success. An error code otherwise.
1da177e4 4035 */
5add95d4
HC
4036SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4037 unsigned long __user *, user_mask_ptr)
1da177e4 4038{
5a16f3d3 4039 cpumask_var_t new_mask;
1da177e4
LT
4040 int retval;
4041
5a16f3d3
RR
4042 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4043 return -ENOMEM;
1da177e4 4044
5a16f3d3
RR
4045 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4046 if (retval == 0)
4047 retval = sched_setaffinity(pid, new_mask);
4048 free_cpumask_var(new_mask);
4049 return retval;
1da177e4
LT
4050}
4051
96f874e2 4052long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4053{
36c8b586 4054 struct task_struct *p;
31605683 4055 unsigned long flags;
1da177e4 4056 int retval;
1da177e4 4057
23f5d142 4058 rcu_read_lock();
1da177e4
LT
4059
4060 retval = -ESRCH;
4061 p = find_process_by_pid(pid);
4062 if (!p)
4063 goto out_unlock;
4064
e7834f8f
DQ
4065 retval = security_task_getscheduler(p);
4066 if (retval)
4067 goto out_unlock;
4068
013fdb80 4069 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4070 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4071 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4072
4073out_unlock:
23f5d142 4074 rcu_read_unlock();
1da177e4 4075
9531b62f 4076 return retval;
1da177e4
LT
4077}
4078
4079/**
4080 * sys_sched_getaffinity - get the cpu affinity of a process
4081 * @pid: pid of the process
4082 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4083 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4084 *
4085 * Return: 0 on success. An error code otherwise.
1da177e4 4086 */
5add95d4
HC
4087SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4088 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4089{
4090 int ret;
f17c8607 4091 cpumask_var_t mask;
1da177e4 4092
84fba5ec 4093 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4094 return -EINVAL;
4095 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4096 return -EINVAL;
4097
f17c8607
RR
4098 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4099 return -ENOMEM;
1da177e4 4100
f17c8607
RR
4101 ret = sched_getaffinity(pid, mask);
4102 if (ret == 0) {
8bc037fb 4103 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4104
4105 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4106 ret = -EFAULT;
4107 else
cd3d8031 4108 ret = retlen;
f17c8607
RR
4109 }
4110 free_cpumask_var(mask);
1da177e4 4111
f17c8607 4112 return ret;
1da177e4
LT
4113}
4114
4115/**
4116 * sys_sched_yield - yield the current processor to other threads.
4117 *
dd41f596
IM
4118 * This function yields the current CPU to other tasks. If there are no
4119 * other threads running on this CPU then this function will return.
e69f6186
YB
4120 *
4121 * Return: 0.
1da177e4 4122 */
5add95d4 4123SYSCALL_DEFINE0(sched_yield)
1da177e4 4124{
70b97a7f 4125 struct rq *rq = this_rq_lock();
1da177e4 4126
2d72376b 4127 schedstat_inc(rq, yld_count);
4530d7ab 4128 current->sched_class->yield_task(rq);
1da177e4
LT
4129
4130 /*
4131 * Since we are going to call schedule() anyway, there's
4132 * no need to preempt or enable interrupts:
4133 */
4134 __release(rq->lock);
8a25d5de 4135 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4136 do_raw_spin_unlock(&rq->lock);
ba74c144 4137 sched_preempt_enable_no_resched();
1da177e4
LT
4138
4139 schedule();
4140
4141 return 0;
4142}
4143
e7b38404 4144static void __cond_resched(void)
1da177e4 4145{
bdb43806 4146 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4147 __schedule();
bdb43806 4148 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4149}
4150
02b67cc3 4151int __sched _cond_resched(void)
1da177e4 4152{
ac1bea85 4153 rcu_cond_resched();
d86ee480 4154 if (should_resched()) {
1da177e4
LT
4155 __cond_resched();
4156 return 1;
4157 }
4158 return 0;
4159}
02b67cc3 4160EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4161
4162/*
613afbf8 4163 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4164 * call schedule, and on return reacquire the lock.
4165 *
41a2d6cf 4166 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4167 * operations here to prevent schedule() from being called twice (once via
4168 * spin_unlock(), once by hand).
4169 */
613afbf8 4170int __cond_resched_lock(spinlock_t *lock)
1da177e4 4171{
ac1bea85 4172 bool need_rcu_resched = rcu_should_resched();
d86ee480 4173 int resched = should_resched();
6df3cecb
JK
4174 int ret = 0;
4175
f607c668
PZ
4176 lockdep_assert_held(lock);
4177
ac1bea85 4178 if (spin_needbreak(lock) || resched || need_rcu_resched) {
1da177e4 4179 spin_unlock(lock);
d86ee480 4180 if (resched)
95c354fe 4181 __cond_resched();
ac1bea85
PM
4182 else if (unlikely(need_rcu_resched))
4183 rcu_resched();
95c354fe
NP
4184 else
4185 cpu_relax();
6df3cecb 4186 ret = 1;
1da177e4 4187 spin_lock(lock);
1da177e4 4188 }
6df3cecb 4189 return ret;
1da177e4 4190}
613afbf8 4191EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4192
613afbf8 4193int __sched __cond_resched_softirq(void)
1da177e4
LT
4194{
4195 BUG_ON(!in_softirq());
4196
ac1bea85 4197 rcu_cond_resched(); /* BH disabled OK, just recording QSes. */
d86ee480 4198 if (should_resched()) {
98d82567 4199 local_bh_enable();
1da177e4
LT
4200 __cond_resched();
4201 local_bh_disable();
4202 return 1;
4203 }
4204 return 0;
4205}
613afbf8 4206EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4207
1da177e4
LT
4208/**
4209 * yield - yield the current processor to other threads.
4210 *
8e3fabfd
PZ
4211 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4212 *
4213 * The scheduler is at all times free to pick the calling task as the most
4214 * eligible task to run, if removing the yield() call from your code breaks
4215 * it, its already broken.
4216 *
4217 * Typical broken usage is:
4218 *
4219 * while (!event)
4220 * yield();
4221 *
4222 * where one assumes that yield() will let 'the other' process run that will
4223 * make event true. If the current task is a SCHED_FIFO task that will never
4224 * happen. Never use yield() as a progress guarantee!!
4225 *
4226 * If you want to use yield() to wait for something, use wait_event().
4227 * If you want to use yield() to be 'nice' for others, use cond_resched().
4228 * If you still want to use yield(), do not!
1da177e4
LT
4229 */
4230void __sched yield(void)
4231{
4232 set_current_state(TASK_RUNNING);
4233 sys_sched_yield();
4234}
1da177e4
LT
4235EXPORT_SYMBOL(yield);
4236
d95f4122
MG
4237/**
4238 * yield_to - yield the current processor to another thread in
4239 * your thread group, or accelerate that thread toward the
4240 * processor it's on.
16addf95
RD
4241 * @p: target task
4242 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4243 *
4244 * It's the caller's job to ensure that the target task struct
4245 * can't go away on us before we can do any checks.
4246 *
e69f6186 4247 * Return:
7b270f60
PZ
4248 * true (>0) if we indeed boosted the target task.
4249 * false (0) if we failed to boost the target.
4250 * -ESRCH if there's no task to yield to.
d95f4122 4251 */
fa93384f 4252int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4253{
4254 struct task_struct *curr = current;
4255 struct rq *rq, *p_rq;
4256 unsigned long flags;
c3c18640 4257 int yielded = 0;
d95f4122
MG
4258
4259 local_irq_save(flags);
4260 rq = this_rq();
4261
4262again:
4263 p_rq = task_rq(p);
7b270f60
PZ
4264 /*
4265 * If we're the only runnable task on the rq and target rq also
4266 * has only one task, there's absolutely no point in yielding.
4267 */
4268 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4269 yielded = -ESRCH;
4270 goto out_irq;
4271 }
4272
d95f4122 4273 double_rq_lock(rq, p_rq);
39e24d8f 4274 if (task_rq(p) != p_rq) {
d95f4122
MG
4275 double_rq_unlock(rq, p_rq);
4276 goto again;
4277 }
4278
4279 if (!curr->sched_class->yield_to_task)
7b270f60 4280 goto out_unlock;
d95f4122
MG
4281
4282 if (curr->sched_class != p->sched_class)
7b270f60 4283 goto out_unlock;
d95f4122
MG
4284
4285 if (task_running(p_rq, p) || p->state)
7b270f60 4286 goto out_unlock;
d95f4122
MG
4287
4288 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4289 if (yielded) {
d95f4122 4290 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4291 /*
4292 * Make p's CPU reschedule; pick_next_entity takes care of
4293 * fairness.
4294 */
4295 if (preempt && rq != p_rq)
4296 resched_task(p_rq->curr);
4297 }
d95f4122 4298
7b270f60 4299out_unlock:
d95f4122 4300 double_rq_unlock(rq, p_rq);
7b270f60 4301out_irq:
d95f4122
MG
4302 local_irq_restore(flags);
4303
7b270f60 4304 if (yielded > 0)
d95f4122
MG
4305 schedule();
4306
4307 return yielded;
4308}
4309EXPORT_SYMBOL_GPL(yield_to);
4310
1da177e4 4311/*
41a2d6cf 4312 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4313 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4314 */
4315void __sched io_schedule(void)
4316{
54d35f29 4317 struct rq *rq = raw_rq();
1da177e4 4318
0ff92245 4319 delayacct_blkio_start();
1da177e4 4320 atomic_inc(&rq->nr_iowait);
73c10101 4321 blk_flush_plug(current);
8f0dfc34 4322 current->in_iowait = 1;
1da177e4 4323 schedule();
8f0dfc34 4324 current->in_iowait = 0;
1da177e4 4325 atomic_dec(&rq->nr_iowait);
0ff92245 4326 delayacct_blkio_end();
1da177e4 4327}
1da177e4
LT
4328EXPORT_SYMBOL(io_schedule);
4329
4330long __sched io_schedule_timeout(long timeout)
4331{
54d35f29 4332 struct rq *rq = raw_rq();
1da177e4
LT
4333 long ret;
4334
0ff92245 4335 delayacct_blkio_start();
1da177e4 4336 atomic_inc(&rq->nr_iowait);
73c10101 4337 blk_flush_plug(current);
8f0dfc34 4338 current->in_iowait = 1;
1da177e4 4339 ret = schedule_timeout(timeout);
8f0dfc34 4340 current->in_iowait = 0;
1da177e4 4341 atomic_dec(&rq->nr_iowait);
0ff92245 4342 delayacct_blkio_end();
1da177e4
LT
4343 return ret;
4344}
4345
4346/**
4347 * sys_sched_get_priority_max - return maximum RT priority.
4348 * @policy: scheduling class.
4349 *
e69f6186
YB
4350 * Return: On success, this syscall returns the maximum
4351 * rt_priority that can be used by a given scheduling class.
4352 * On failure, a negative error code is returned.
1da177e4 4353 */
5add95d4 4354SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4355{
4356 int ret = -EINVAL;
4357
4358 switch (policy) {
4359 case SCHED_FIFO:
4360 case SCHED_RR:
4361 ret = MAX_USER_RT_PRIO-1;
4362 break;
aab03e05 4363 case SCHED_DEADLINE:
1da177e4 4364 case SCHED_NORMAL:
b0a9499c 4365 case SCHED_BATCH:
dd41f596 4366 case SCHED_IDLE:
1da177e4
LT
4367 ret = 0;
4368 break;
4369 }
4370 return ret;
4371}
4372
4373/**
4374 * sys_sched_get_priority_min - return minimum RT priority.
4375 * @policy: scheduling class.
4376 *
e69f6186
YB
4377 * Return: On success, this syscall returns the minimum
4378 * rt_priority that can be used by a given scheduling class.
4379 * On failure, a negative error code is returned.
1da177e4 4380 */
5add95d4 4381SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4382{
4383 int ret = -EINVAL;
4384
4385 switch (policy) {
4386 case SCHED_FIFO:
4387 case SCHED_RR:
4388 ret = 1;
4389 break;
aab03e05 4390 case SCHED_DEADLINE:
1da177e4 4391 case SCHED_NORMAL:
b0a9499c 4392 case SCHED_BATCH:
dd41f596 4393 case SCHED_IDLE:
1da177e4
LT
4394 ret = 0;
4395 }
4396 return ret;
4397}
4398
4399/**
4400 * sys_sched_rr_get_interval - return the default timeslice of a process.
4401 * @pid: pid of the process.
4402 * @interval: userspace pointer to the timeslice value.
4403 *
4404 * this syscall writes the default timeslice value of a given process
4405 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4406 *
4407 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4408 * an error code.
1da177e4 4409 */
17da2bd9 4410SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4411 struct timespec __user *, interval)
1da177e4 4412{
36c8b586 4413 struct task_struct *p;
a4ec24b4 4414 unsigned int time_slice;
dba091b9
TG
4415 unsigned long flags;
4416 struct rq *rq;
3a5c359a 4417 int retval;
1da177e4 4418 struct timespec t;
1da177e4
LT
4419
4420 if (pid < 0)
3a5c359a 4421 return -EINVAL;
1da177e4
LT
4422
4423 retval = -ESRCH;
1a551ae7 4424 rcu_read_lock();
1da177e4
LT
4425 p = find_process_by_pid(pid);
4426 if (!p)
4427 goto out_unlock;
4428
4429 retval = security_task_getscheduler(p);
4430 if (retval)
4431 goto out_unlock;
4432
dba091b9 4433 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4434 time_slice = 0;
4435 if (p->sched_class->get_rr_interval)
4436 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4437 task_rq_unlock(rq, p, &flags);
a4ec24b4 4438
1a551ae7 4439 rcu_read_unlock();
a4ec24b4 4440 jiffies_to_timespec(time_slice, &t);
1da177e4 4441 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4442 return retval;
3a5c359a 4443
1da177e4 4444out_unlock:
1a551ae7 4445 rcu_read_unlock();
1da177e4
LT
4446 return retval;
4447}
4448
7c731e0a 4449static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4450
82a1fcb9 4451void sched_show_task(struct task_struct *p)
1da177e4 4452{
1da177e4 4453 unsigned long free = 0;
4e79752c 4454 int ppid;
36c8b586 4455 unsigned state;
1da177e4 4456
1da177e4 4457 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4458 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4459 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4460#if BITS_PER_LONG == 32
1da177e4 4461 if (state == TASK_RUNNING)
3df0fc5b 4462 printk(KERN_CONT " running ");
1da177e4 4463 else
3df0fc5b 4464 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4465#else
4466 if (state == TASK_RUNNING)
3df0fc5b 4467 printk(KERN_CONT " running task ");
1da177e4 4468 else
3df0fc5b 4469 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4470#endif
4471#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4472 free = stack_not_used(p);
1da177e4 4473#endif
4e79752c
PM
4474 rcu_read_lock();
4475 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4476 rcu_read_unlock();
3df0fc5b 4477 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4478 task_pid_nr(p), ppid,
aa47b7e0 4479 (unsigned long)task_thread_info(p)->flags);
1da177e4 4480
3d1cb205 4481 print_worker_info(KERN_INFO, p);
5fb5e6de 4482 show_stack(p, NULL);
1da177e4
LT
4483}
4484
e59e2ae2 4485void show_state_filter(unsigned long state_filter)
1da177e4 4486{
36c8b586 4487 struct task_struct *g, *p;
1da177e4 4488
4bd77321 4489#if BITS_PER_LONG == 32
3df0fc5b
PZ
4490 printk(KERN_INFO
4491 " task PC stack pid father\n");
1da177e4 4492#else
3df0fc5b
PZ
4493 printk(KERN_INFO
4494 " task PC stack pid father\n");
1da177e4 4495#endif
510f5acc 4496 rcu_read_lock();
1da177e4
LT
4497 do_each_thread(g, p) {
4498 /*
4499 * reset the NMI-timeout, listing all files on a slow
25985edc 4500 * console might take a lot of time:
1da177e4
LT
4501 */
4502 touch_nmi_watchdog();
39bc89fd 4503 if (!state_filter || (p->state & state_filter))
82a1fcb9 4504 sched_show_task(p);
1da177e4
LT
4505 } while_each_thread(g, p);
4506
04c9167f
JF
4507 touch_all_softlockup_watchdogs();
4508
dd41f596
IM
4509#ifdef CONFIG_SCHED_DEBUG
4510 sysrq_sched_debug_show();
4511#endif
510f5acc 4512 rcu_read_unlock();
e59e2ae2
IM
4513 /*
4514 * Only show locks if all tasks are dumped:
4515 */
93335a21 4516 if (!state_filter)
e59e2ae2 4517 debug_show_all_locks();
1da177e4
LT
4518}
4519
0db0628d 4520void init_idle_bootup_task(struct task_struct *idle)
1df21055 4521{
dd41f596 4522 idle->sched_class = &idle_sched_class;
1df21055
IM
4523}
4524
f340c0d1
IM
4525/**
4526 * init_idle - set up an idle thread for a given CPU
4527 * @idle: task in question
4528 * @cpu: cpu the idle task belongs to
4529 *
4530 * NOTE: this function does not set the idle thread's NEED_RESCHED
4531 * flag, to make booting more robust.
4532 */
0db0628d 4533void init_idle(struct task_struct *idle, int cpu)
1da177e4 4534{
70b97a7f 4535 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4536 unsigned long flags;
4537
05fa785c 4538 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4539
5e1576ed 4540 __sched_fork(0, idle);
06b83b5f 4541 idle->state = TASK_RUNNING;
dd41f596
IM
4542 idle->se.exec_start = sched_clock();
4543
1e1b6c51 4544 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4545 /*
4546 * We're having a chicken and egg problem, even though we are
4547 * holding rq->lock, the cpu isn't yet set to this cpu so the
4548 * lockdep check in task_group() will fail.
4549 *
4550 * Similar case to sched_fork(). / Alternatively we could
4551 * use task_rq_lock() here and obtain the other rq->lock.
4552 *
4553 * Silence PROVE_RCU
4554 */
4555 rcu_read_lock();
dd41f596 4556 __set_task_cpu(idle, cpu);
6506cf6c 4557 rcu_read_unlock();
1da177e4 4558
1da177e4 4559 rq->curr = rq->idle = idle;
77177856 4560 idle->on_rq = 1;
3ca7a440
PZ
4561#if defined(CONFIG_SMP)
4562 idle->on_cpu = 1;
4866cde0 4563#endif
05fa785c 4564 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4565
4566 /* Set the preempt count _outside_ the spinlocks! */
01028747 4567 init_idle_preempt_count(idle, cpu);
55cd5340 4568
dd41f596
IM
4569 /*
4570 * The idle tasks have their own, simple scheduling class:
4571 */
4572 idle->sched_class = &idle_sched_class;
868baf07 4573 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4574 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4575#if defined(CONFIG_SMP)
4576 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4577#endif
19978ca6
IM
4578}
4579
1da177e4 4580#ifdef CONFIG_SMP
1e1b6c51
KM
4581void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4582{
4583 if (p->sched_class && p->sched_class->set_cpus_allowed)
4584 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4585
4586 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4587 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4588}
4589
1da177e4
LT
4590/*
4591 * This is how migration works:
4592 *
969c7921
TH
4593 * 1) we invoke migration_cpu_stop() on the target CPU using
4594 * stop_one_cpu().
4595 * 2) stopper starts to run (implicitly forcing the migrated thread
4596 * off the CPU)
4597 * 3) it checks whether the migrated task is still in the wrong runqueue.
4598 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4599 * it and puts it into the right queue.
969c7921
TH
4600 * 5) stopper completes and stop_one_cpu() returns and the migration
4601 * is done.
1da177e4
LT
4602 */
4603
4604/*
4605 * Change a given task's CPU affinity. Migrate the thread to a
4606 * proper CPU and schedule it away if the CPU it's executing on
4607 * is removed from the allowed bitmask.
4608 *
4609 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4610 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4611 * call is not atomic; no spinlocks may be held.
4612 */
96f874e2 4613int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4614{
4615 unsigned long flags;
70b97a7f 4616 struct rq *rq;
969c7921 4617 unsigned int dest_cpu;
48f24c4d 4618 int ret = 0;
1da177e4
LT
4619
4620 rq = task_rq_lock(p, &flags);
e2912009 4621
db44fc01
YZ
4622 if (cpumask_equal(&p->cpus_allowed, new_mask))
4623 goto out;
4624
6ad4c188 4625 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4626 ret = -EINVAL;
4627 goto out;
4628 }
4629
1e1b6c51 4630 do_set_cpus_allowed(p, new_mask);
73fe6aae 4631
1da177e4 4632 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4633 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4634 goto out;
4635
969c7921 4636 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4637 if (p->on_rq) {
969c7921 4638 struct migration_arg arg = { p, dest_cpu };
1da177e4 4639 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4640 task_rq_unlock(rq, p, &flags);
969c7921 4641 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4642 tlb_migrate_finish(p->mm);
4643 return 0;
4644 }
4645out:
0122ec5b 4646 task_rq_unlock(rq, p, &flags);
48f24c4d 4647
1da177e4
LT
4648 return ret;
4649}
cd8ba7cd 4650EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4651
4652/*
41a2d6cf 4653 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4654 * this because either it can't run here any more (set_cpus_allowed()
4655 * away from this CPU, or CPU going down), or because we're
4656 * attempting to rebalance this task on exec (sched_exec).
4657 *
4658 * So we race with normal scheduler movements, but that's OK, as long
4659 * as the task is no longer on this CPU.
efc30814
KK
4660 *
4661 * Returns non-zero if task was successfully migrated.
1da177e4 4662 */
efc30814 4663static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4664{
70b97a7f 4665 struct rq *rq_dest, *rq_src;
e2912009 4666 int ret = 0;
1da177e4 4667
e761b772 4668 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4669 return ret;
1da177e4
LT
4670
4671 rq_src = cpu_rq(src_cpu);
4672 rq_dest = cpu_rq(dest_cpu);
4673
0122ec5b 4674 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4675 double_rq_lock(rq_src, rq_dest);
4676 /* Already moved. */
4677 if (task_cpu(p) != src_cpu)
b1e38734 4678 goto done;
1da177e4 4679 /* Affinity changed (again). */
fa17b507 4680 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4681 goto fail;
1da177e4 4682
e2912009
PZ
4683 /*
4684 * If we're not on a rq, the next wake-up will ensure we're
4685 * placed properly.
4686 */
fd2f4419 4687 if (p->on_rq) {
4ca9b72b 4688 dequeue_task(rq_src, p, 0);
e2912009 4689 set_task_cpu(p, dest_cpu);
4ca9b72b 4690 enqueue_task(rq_dest, p, 0);
15afe09b 4691 check_preempt_curr(rq_dest, p, 0);
1da177e4 4692 }
b1e38734 4693done:
efc30814 4694 ret = 1;
b1e38734 4695fail:
1da177e4 4696 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4697 raw_spin_unlock(&p->pi_lock);
efc30814 4698 return ret;
1da177e4
LT
4699}
4700
e6628d5b
MG
4701#ifdef CONFIG_NUMA_BALANCING
4702/* Migrate current task p to target_cpu */
4703int migrate_task_to(struct task_struct *p, int target_cpu)
4704{
4705 struct migration_arg arg = { p, target_cpu };
4706 int curr_cpu = task_cpu(p);
4707
4708 if (curr_cpu == target_cpu)
4709 return 0;
4710
4711 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4712 return -EINVAL;
4713
4714 /* TODO: This is not properly updating schedstats */
4715
286549dc 4716 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4717 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4718}
0ec8aa00
PZ
4719
4720/*
4721 * Requeue a task on a given node and accurately track the number of NUMA
4722 * tasks on the runqueues
4723 */
4724void sched_setnuma(struct task_struct *p, int nid)
4725{
4726 struct rq *rq;
4727 unsigned long flags;
4728 bool on_rq, running;
4729
4730 rq = task_rq_lock(p, &flags);
4731 on_rq = p->on_rq;
4732 running = task_current(rq, p);
4733
4734 if (on_rq)
4735 dequeue_task(rq, p, 0);
4736 if (running)
4737 p->sched_class->put_prev_task(rq, p);
4738
4739 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4740
4741 if (running)
4742 p->sched_class->set_curr_task(rq);
4743 if (on_rq)
4744 enqueue_task(rq, p, 0);
4745 task_rq_unlock(rq, p, &flags);
4746}
e6628d5b
MG
4747#endif
4748
1da177e4 4749/*
969c7921
TH
4750 * migration_cpu_stop - this will be executed by a highprio stopper thread
4751 * and performs thread migration by bumping thread off CPU then
4752 * 'pushing' onto another runqueue.
1da177e4 4753 */
969c7921 4754static int migration_cpu_stop(void *data)
1da177e4 4755{
969c7921 4756 struct migration_arg *arg = data;
f7b4cddc 4757
969c7921
TH
4758 /*
4759 * The original target cpu might have gone down and we might
4760 * be on another cpu but it doesn't matter.
4761 */
f7b4cddc 4762 local_irq_disable();
969c7921 4763 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4764 local_irq_enable();
1da177e4 4765 return 0;
f7b4cddc
ON
4766}
4767
1da177e4 4768#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4769
054b9108 4770/*
48c5ccae
PZ
4771 * Ensures that the idle task is using init_mm right before its cpu goes
4772 * offline.
054b9108 4773 */
48c5ccae 4774void idle_task_exit(void)
1da177e4 4775{
48c5ccae 4776 struct mm_struct *mm = current->active_mm;
e76bd8d9 4777
48c5ccae 4778 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4779
a53efe5f 4780 if (mm != &init_mm) {
48c5ccae 4781 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4782 finish_arch_post_lock_switch();
4783 }
48c5ccae 4784 mmdrop(mm);
1da177e4
LT
4785}
4786
4787/*
5d180232
PZ
4788 * Since this CPU is going 'away' for a while, fold any nr_active delta
4789 * we might have. Assumes we're called after migrate_tasks() so that the
4790 * nr_active count is stable.
4791 *
4792 * Also see the comment "Global load-average calculations".
1da177e4 4793 */
5d180232 4794static void calc_load_migrate(struct rq *rq)
1da177e4 4795{
5d180232
PZ
4796 long delta = calc_load_fold_active(rq);
4797 if (delta)
4798 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4799}
4800
3f1d2a31
PZ
4801static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4802{
4803}
4804
4805static const struct sched_class fake_sched_class = {
4806 .put_prev_task = put_prev_task_fake,
4807};
4808
4809static struct task_struct fake_task = {
4810 /*
4811 * Avoid pull_{rt,dl}_task()
4812 */
4813 .prio = MAX_PRIO + 1,
4814 .sched_class = &fake_sched_class,
4815};
4816
48f24c4d 4817/*
48c5ccae
PZ
4818 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4819 * try_to_wake_up()->select_task_rq().
4820 *
4821 * Called with rq->lock held even though we'er in stop_machine() and
4822 * there's no concurrency possible, we hold the required locks anyway
4823 * because of lock validation efforts.
1da177e4 4824 */
48c5ccae 4825static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4826{
70b97a7f 4827 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4828 struct task_struct *next, *stop = rq->stop;
4829 int dest_cpu;
1da177e4
LT
4830
4831 /*
48c5ccae
PZ
4832 * Fudge the rq selection such that the below task selection loop
4833 * doesn't get stuck on the currently eligible stop task.
4834 *
4835 * We're currently inside stop_machine() and the rq is either stuck
4836 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4837 * either way we should never end up calling schedule() until we're
4838 * done here.
1da177e4 4839 */
48c5ccae 4840 rq->stop = NULL;
48f24c4d 4841
77bd3970
FW
4842 /*
4843 * put_prev_task() and pick_next_task() sched
4844 * class method both need to have an up-to-date
4845 * value of rq->clock[_task]
4846 */
4847 update_rq_clock(rq);
4848
dd41f596 4849 for ( ; ; ) {
48c5ccae
PZ
4850 /*
4851 * There's this thread running, bail when that's the only
4852 * remaining thread.
4853 */
4854 if (rq->nr_running == 1)
dd41f596 4855 break;
48c5ccae 4856
3f1d2a31 4857 next = pick_next_task(rq, &fake_task);
48c5ccae 4858 BUG_ON(!next);
79c53799 4859 next->sched_class->put_prev_task(rq, next);
e692ab53 4860
48c5ccae
PZ
4861 /* Find suitable destination for @next, with force if needed. */
4862 dest_cpu = select_fallback_rq(dead_cpu, next);
4863 raw_spin_unlock(&rq->lock);
4864
4865 __migrate_task(next, dead_cpu, dest_cpu);
4866
4867 raw_spin_lock(&rq->lock);
1da177e4 4868 }
dce48a84 4869
48c5ccae 4870 rq->stop = stop;
dce48a84 4871}
48c5ccae 4872
1da177e4
LT
4873#endif /* CONFIG_HOTPLUG_CPU */
4874
e692ab53
NP
4875#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4876
4877static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4878 {
4879 .procname = "sched_domain",
c57baf1e 4880 .mode = 0555,
e0361851 4881 },
56992309 4882 {}
e692ab53
NP
4883};
4884
4885static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4886 {
4887 .procname = "kernel",
c57baf1e 4888 .mode = 0555,
e0361851
AD
4889 .child = sd_ctl_dir,
4890 },
56992309 4891 {}
e692ab53
NP
4892};
4893
4894static struct ctl_table *sd_alloc_ctl_entry(int n)
4895{
4896 struct ctl_table *entry =
5cf9f062 4897 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4898
e692ab53
NP
4899 return entry;
4900}
4901
6382bc90
MM
4902static void sd_free_ctl_entry(struct ctl_table **tablep)
4903{
cd790076 4904 struct ctl_table *entry;
6382bc90 4905
cd790076
MM
4906 /*
4907 * In the intermediate directories, both the child directory and
4908 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4909 * will always be set. In the lowest directory the names are
cd790076
MM
4910 * static strings and all have proc handlers.
4911 */
4912 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4913 if (entry->child)
4914 sd_free_ctl_entry(&entry->child);
cd790076
MM
4915 if (entry->proc_handler == NULL)
4916 kfree(entry->procname);
4917 }
6382bc90
MM
4918
4919 kfree(*tablep);
4920 *tablep = NULL;
4921}
4922
201c373e 4923static int min_load_idx = 0;
fd9b86d3 4924static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4925
e692ab53 4926static void
e0361851 4927set_table_entry(struct ctl_table *entry,
e692ab53 4928 const char *procname, void *data, int maxlen,
201c373e
NK
4929 umode_t mode, proc_handler *proc_handler,
4930 bool load_idx)
e692ab53 4931{
e692ab53
NP
4932 entry->procname = procname;
4933 entry->data = data;
4934 entry->maxlen = maxlen;
4935 entry->mode = mode;
4936 entry->proc_handler = proc_handler;
201c373e
NK
4937
4938 if (load_idx) {
4939 entry->extra1 = &min_load_idx;
4940 entry->extra2 = &max_load_idx;
4941 }
e692ab53
NP
4942}
4943
4944static struct ctl_table *
4945sd_alloc_ctl_domain_table(struct sched_domain *sd)
4946{
37e6bae8 4947 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4948
ad1cdc1d
MM
4949 if (table == NULL)
4950 return NULL;
4951
e0361851 4952 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4953 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4954 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4955 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4956 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4957 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4958 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4959 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4960 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4961 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4962 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4963 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4964 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4965 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4966 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4967 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4968 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4969 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4970 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4971 &sd->cache_nice_tries,
201c373e 4972 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4973 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4974 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4975 set_table_entry(&table[11], "max_newidle_lb_cost",
4976 &sd->max_newidle_lb_cost,
4977 sizeof(long), 0644, proc_doulongvec_minmax, false);
4978 set_table_entry(&table[12], "name", sd->name,
201c373e 4979 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4980 /* &table[13] is terminator */
e692ab53
NP
4981
4982 return table;
4983}
4984
be7002e6 4985static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4986{
4987 struct ctl_table *entry, *table;
4988 struct sched_domain *sd;
4989 int domain_num = 0, i;
4990 char buf[32];
4991
4992 for_each_domain(cpu, sd)
4993 domain_num++;
4994 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4995 if (table == NULL)
4996 return NULL;
e692ab53
NP
4997
4998 i = 0;
4999 for_each_domain(cpu, sd) {
5000 snprintf(buf, 32, "domain%d", i);
e692ab53 5001 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5002 entry->mode = 0555;
e692ab53
NP
5003 entry->child = sd_alloc_ctl_domain_table(sd);
5004 entry++;
5005 i++;
5006 }
5007 return table;
5008}
5009
5010static struct ctl_table_header *sd_sysctl_header;
6382bc90 5011static void register_sched_domain_sysctl(void)
e692ab53 5012{
6ad4c188 5013 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5014 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5015 char buf[32];
5016
7378547f
MM
5017 WARN_ON(sd_ctl_dir[0].child);
5018 sd_ctl_dir[0].child = entry;
5019
ad1cdc1d
MM
5020 if (entry == NULL)
5021 return;
5022
6ad4c188 5023 for_each_possible_cpu(i) {
e692ab53 5024 snprintf(buf, 32, "cpu%d", i);
e692ab53 5025 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5026 entry->mode = 0555;
e692ab53 5027 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5028 entry++;
e692ab53 5029 }
7378547f
MM
5030
5031 WARN_ON(sd_sysctl_header);
e692ab53
NP
5032 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5033}
6382bc90 5034
7378547f 5035/* may be called multiple times per register */
6382bc90
MM
5036static void unregister_sched_domain_sysctl(void)
5037{
7378547f
MM
5038 if (sd_sysctl_header)
5039 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5040 sd_sysctl_header = NULL;
7378547f
MM
5041 if (sd_ctl_dir[0].child)
5042 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5043}
e692ab53 5044#else
6382bc90
MM
5045static void register_sched_domain_sysctl(void)
5046{
5047}
5048static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5049{
5050}
5051#endif
5052
1f11eb6a
GH
5053static void set_rq_online(struct rq *rq)
5054{
5055 if (!rq->online) {
5056 const struct sched_class *class;
5057
c6c4927b 5058 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5059 rq->online = 1;
5060
5061 for_each_class(class) {
5062 if (class->rq_online)
5063 class->rq_online(rq);
5064 }
5065 }
5066}
5067
5068static void set_rq_offline(struct rq *rq)
5069{
5070 if (rq->online) {
5071 const struct sched_class *class;
5072
5073 for_each_class(class) {
5074 if (class->rq_offline)
5075 class->rq_offline(rq);
5076 }
5077
c6c4927b 5078 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5079 rq->online = 0;
5080 }
5081}
5082
1da177e4
LT
5083/*
5084 * migration_call - callback that gets triggered when a CPU is added.
5085 * Here we can start up the necessary migration thread for the new CPU.
5086 */
0db0628d 5087static int
48f24c4d 5088migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5089{
48f24c4d 5090 int cpu = (long)hcpu;
1da177e4 5091 unsigned long flags;
969c7921 5092 struct rq *rq = cpu_rq(cpu);
1da177e4 5093
48c5ccae 5094 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5095
1da177e4 5096 case CPU_UP_PREPARE:
a468d389 5097 rq->calc_load_update = calc_load_update;
1da177e4 5098 break;
48f24c4d 5099
1da177e4 5100 case CPU_ONLINE:
1f94ef59 5101 /* Update our root-domain */
05fa785c 5102 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5103 if (rq->rd) {
c6c4927b 5104 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5105
5106 set_rq_online(rq);
1f94ef59 5107 }
05fa785c 5108 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5109 break;
48f24c4d 5110
1da177e4 5111#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5112 case CPU_DYING:
317f3941 5113 sched_ttwu_pending();
57d885fe 5114 /* Update our root-domain */
05fa785c 5115 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5116 if (rq->rd) {
c6c4927b 5117 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5118 set_rq_offline(rq);
57d885fe 5119 }
48c5ccae
PZ
5120 migrate_tasks(cpu);
5121 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5122 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5123 break;
48c5ccae 5124
5d180232 5125 case CPU_DEAD:
f319da0c 5126 calc_load_migrate(rq);
57d885fe 5127 break;
1da177e4
LT
5128#endif
5129 }
49c022e6
PZ
5130
5131 update_max_interval();
5132
1da177e4
LT
5133 return NOTIFY_OK;
5134}
5135
f38b0820
PM
5136/*
5137 * Register at high priority so that task migration (migrate_all_tasks)
5138 * happens before everything else. This has to be lower priority than
cdd6c482 5139 * the notifier in the perf_event subsystem, though.
1da177e4 5140 */
0db0628d 5141static struct notifier_block migration_notifier = {
1da177e4 5142 .notifier_call = migration_call,
50a323b7 5143 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5144};
5145
a803f026
CM
5146static void __cpuinit set_cpu_rq_start_time(void)
5147{
5148 int cpu = smp_processor_id();
5149 struct rq *rq = cpu_rq(cpu);
5150 rq->age_stamp = sched_clock_cpu(cpu);
5151}
5152
0db0628d 5153static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5154 unsigned long action, void *hcpu)
5155{
5156 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5157 case CPU_STARTING:
5158 set_cpu_rq_start_time();
5159 return NOTIFY_OK;
3a101d05
TH
5160 case CPU_DOWN_FAILED:
5161 set_cpu_active((long)hcpu, true);
5162 return NOTIFY_OK;
5163 default:
5164 return NOTIFY_DONE;
5165 }
5166}
5167
0db0628d 5168static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5169 unsigned long action, void *hcpu)
5170{
de212f18
PZ
5171 unsigned long flags;
5172 long cpu = (long)hcpu;
5173
3a101d05
TH
5174 switch (action & ~CPU_TASKS_FROZEN) {
5175 case CPU_DOWN_PREPARE:
de212f18
PZ
5176 set_cpu_active(cpu, false);
5177
5178 /* explicitly allow suspend */
5179 if (!(action & CPU_TASKS_FROZEN)) {
5180 struct dl_bw *dl_b = dl_bw_of(cpu);
5181 bool overflow;
5182 int cpus;
5183
5184 raw_spin_lock_irqsave(&dl_b->lock, flags);
5185 cpus = dl_bw_cpus(cpu);
5186 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5187 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5188
5189 if (overflow)
5190 return notifier_from_errno(-EBUSY);
5191 }
3a101d05 5192 return NOTIFY_OK;
3a101d05 5193 }
de212f18
PZ
5194
5195 return NOTIFY_DONE;
3a101d05
TH
5196}
5197
7babe8db 5198static int __init migration_init(void)
1da177e4
LT
5199{
5200 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5201 int err;
48f24c4d 5202
3a101d05 5203 /* Initialize migration for the boot CPU */
07dccf33
AM
5204 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5205 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5206 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5207 register_cpu_notifier(&migration_notifier);
7babe8db 5208
3a101d05
TH
5209 /* Register cpu active notifiers */
5210 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5211 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5212
a004cd42 5213 return 0;
1da177e4 5214}
7babe8db 5215early_initcall(migration_init);
1da177e4
LT
5216#endif
5217
5218#ifdef CONFIG_SMP
476f3534 5219
4cb98839
PZ
5220static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5221
3e9830dc 5222#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5223
d039ac60 5224static __read_mostly int sched_debug_enabled;
f6630114 5225
d039ac60 5226static int __init sched_debug_setup(char *str)
f6630114 5227{
d039ac60 5228 sched_debug_enabled = 1;
f6630114
MT
5229
5230 return 0;
5231}
d039ac60
PZ
5232early_param("sched_debug", sched_debug_setup);
5233
5234static inline bool sched_debug(void)
5235{
5236 return sched_debug_enabled;
5237}
f6630114 5238
7c16ec58 5239static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5240 struct cpumask *groupmask)
1da177e4 5241{
4dcf6aff 5242 struct sched_group *group = sd->groups;
434d53b0 5243 char str[256];
1da177e4 5244
968ea6d8 5245 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5246 cpumask_clear(groupmask);
4dcf6aff
IM
5247
5248 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5249
5250 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5251 printk("does not load-balance\n");
4dcf6aff 5252 if (sd->parent)
3df0fc5b
PZ
5253 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5254 " has parent");
4dcf6aff 5255 return -1;
41c7ce9a
NP
5256 }
5257
3df0fc5b 5258 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5259
758b2cdc 5260 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5261 printk(KERN_ERR "ERROR: domain->span does not contain "
5262 "CPU%d\n", cpu);
4dcf6aff 5263 }
758b2cdc 5264 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5265 printk(KERN_ERR "ERROR: domain->groups does not contain"
5266 " CPU%d\n", cpu);
4dcf6aff 5267 }
1da177e4 5268
4dcf6aff 5269 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5270 do {
4dcf6aff 5271 if (!group) {
3df0fc5b
PZ
5272 printk("\n");
5273 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5274 break;
5275 }
5276
c3decf0d 5277 /*
63b2ca30
NP
5278 * Even though we initialize ->capacity to something semi-sane,
5279 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5280 * domain iteration is still funny without causing /0 traps.
5281 */
63b2ca30 5282 if (!group->sgc->capacity_orig) {
3df0fc5b 5283 printk(KERN_CONT "\n");
63b2ca30 5284 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5285 break;
5286 }
1da177e4 5287
758b2cdc 5288 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5289 printk(KERN_CONT "\n");
5290 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5291 break;
5292 }
1da177e4 5293
cb83b629
PZ
5294 if (!(sd->flags & SD_OVERLAP) &&
5295 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5296 printk(KERN_CONT "\n");
5297 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5298 break;
5299 }
1da177e4 5300
758b2cdc 5301 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5302
968ea6d8 5303 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5304
3df0fc5b 5305 printk(KERN_CONT " %s", str);
ca8ce3d0 5306 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5307 printk(KERN_CONT " (cpu_capacity = %d)",
5308 group->sgc->capacity);
381512cf 5309 }
1da177e4 5310
4dcf6aff
IM
5311 group = group->next;
5312 } while (group != sd->groups);
3df0fc5b 5313 printk(KERN_CONT "\n");
1da177e4 5314
758b2cdc 5315 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5316 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5317
758b2cdc
RR
5318 if (sd->parent &&
5319 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5320 printk(KERN_ERR "ERROR: parent span is not a superset "
5321 "of domain->span\n");
4dcf6aff
IM
5322 return 0;
5323}
1da177e4 5324
4dcf6aff
IM
5325static void sched_domain_debug(struct sched_domain *sd, int cpu)
5326{
5327 int level = 0;
1da177e4 5328
d039ac60 5329 if (!sched_debug_enabled)
f6630114
MT
5330 return;
5331
4dcf6aff
IM
5332 if (!sd) {
5333 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5334 return;
5335 }
1da177e4 5336
4dcf6aff
IM
5337 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5338
5339 for (;;) {
4cb98839 5340 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5341 break;
1da177e4
LT
5342 level++;
5343 sd = sd->parent;
33859f7f 5344 if (!sd)
4dcf6aff
IM
5345 break;
5346 }
1da177e4 5347}
6d6bc0ad 5348#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5349# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5350static inline bool sched_debug(void)
5351{
5352 return false;
5353}
6d6bc0ad 5354#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5355
1a20ff27 5356static int sd_degenerate(struct sched_domain *sd)
245af2c7 5357{
758b2cdc 5358 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5359 return 1;
5360
5361 /* Following flags need at least 2 groups */
5362 if (sd->flags & (SD_LOAD_BALANCE |
5363 SD_BALANCE_NEWIDLE |
5364 SD_BALANCE_FORK |
89c4710e 5365 SD_BALANCE_EXEC |
5d4dfddd 5366 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5367 SD_SHARE_PKG_RESOURCES |
5368 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5369 if (sd->groups != sd->groups->next)
5370 return 0;
5371 }
5372
5373 /* Following flags don't use groups */
c88d5910 5374 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5375 return 0;
5376
5377 return 1;
5378}
5379
48f24c4d
IM
5380static int
5381sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5382{
5383 unsigned long cflags = sd->flags, pflags = parent->flags;
5384
5385 if (sd_degenerate(parent))
5386 return 1;
5387
758b2cdc 5388 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5389 return 0;
5390
245af2c7
SS
5391 /* Flags needing groups don't count if only 1 group in parent */
5392 if (parent->groups == parent->groups->next) {
5393 pflags &= ~(SD_LOAD_BALANCE |
5394 SD_BALANCE_NEWIDLE |
5395 SD_BALANCE_FORK |
89c4710e 5396 SD_BALANCE_EXEC |
5d4dfddd 5397 SD_SHARE_CPUCAPACITY |
10866e62 5398 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5399 SD_PREFER_SIBLING |
5400 SD_SHARE_POWERDOMAIN);
5436499e
KC
5401 if (nr_node_ids == 1)
5402 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5403 }
5404 if (~cflags & pflags)
5405 return 0;
5406
5407 return 1;
5408}
5409
dce840a0 5410static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5411{
dce840a0 5412 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5413
68e74568 5414 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5415 cpudl_cleanup(&rd->cpudl);
1baca4ce 5416 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5417 free_cpumask_var(rd->rto_mask);
5418 free_cpumask_var(rd->online);
5419 free_cpumask_var(rd->span);
5420 kfree(rd);
5421}
5422
57d885fe
GH
5423static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5424{
a0490fa3 5425 struct root_domain *old_rd = NULL;
57d885fe 5426 unsigned long flags;
57d885fe 5427
05fa785c 5428 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5429
5430 if (rq->rd) {
a0490fa3 5431 old_rd = rq->rd;
57d885fe 5432
c6c4927b 5433 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5434 set_rq_offline(rq);
57d885fe 5435
c6c4927b 5436 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5437
a0490fa3 5438 /*
0515973f 5439 * If we dont want to free the old_rd yet then
a0490fa3
IM
5440 * set old_rd to NULL to skip the freeing later
5441 * in this function:
5442 */
5443 if (!atomic_dec_and_test(&old_rd->refcount))
5444 old_rd = NULL;
57d885fe
GH
5445 }
5446
5447 atomic_inc(&rd->refcount);
5448 rq->rd = rd;
5449
c6c4927b 5450 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5451 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5452 set_rq_online(rq);
57d885fe 5453
05fa785c 5454 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5455
5456 if (old_rd)
dce840a0 5457 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5458}
5459
68c38fc3 5460static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5461{
5462 memset(rd, 0, sizeof(*rd));
5463
68c38fc3 5464 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5465 goto out;
68c38fc3 5466 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5467 goto free_span;
1baca4ce 5468 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5469 goto free_online;
1baca4ce
JL
5470 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5471 goto free_dlo_mask;
6e0534f2 5472
332ac17e 5473 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5474 if (cpudl_init(&rd->cpudl) != 0)
5475 goto free_dlo_mask;
332ac17e 5476
68c38fc3 5477 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5478 goto free_rto_mask;
c6c4927b 5479 return 0;
6e0534f2 5480
68e74568
RR
5481free_rto_mask:
5482 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5483free_dlo_mask:
5484 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5485free_online:
5486 free_cpumask_var(rd->online);
5487free_span:
5488 free_cpumask_var(rd->span);
0c910d28 5489out:
c6c4927b 5490 return -ENOMEM;
57d885fe
GH
5491}
5492
029632fb
PZ
5493/*
5494 * By default the system creates a single root-domain with all cpus as
5495 * members (mimicking the global state we have today).
5496 */
5497struct root_domain def_root_domain;
5498
57d885fe
GH
5499static void init_defrootdomain(void)
5500{
68c38fc3 5501 init_rootdomain(&def_root_domain);
c6c4927b 5502
57d885fe
GH
5503 atomic_set(&def_root_domain.refcount, 1);
5504}
5505
dc938520 5506static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5507{
5508 struct root_domain *rd;
5509
5510 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5511 if (!rd)
5512 return NULL;
5513
68c38fc3 5514 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5515 kfree(rd);
5516 return NULL;
5517 }
57d885fe
GH
5518
5519 return rd;
5520}
5521
63b2ca30 5522static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5523{
5524 struct sched_group *tmp, *first;
5525
5526 if (!sg)
5527 return;
5528
5529 first = sg;
5530 do {
5531 tmp = sg->next;
5532
63b2ca30
NP
5533 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5534 kfree(sg->sgc);
e3589f6c
PZ
5535
5536 kfree(sg);
5537 sg = tmp;
5538 } while (sg != first);
5539}
5540
dce840a0
PZ
5541static void free_sched_domain(struct rcu_head *rcu)
5542{
5543 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5544
5545 /*
5546 * If its an overlapping domain it has private groups, iterate and
5547 * nuke them all.
5548 */
5549 if (sd->flags & SD_OVERLAP) {
5550 free_sched_groups(sd->groups, 1);
5551 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5552 kfree(sd->groups->sgc);
dce840a0 5553 kfree(sd->groups);
9c3f75cb 5554 }
dce840a0
PZ
5555 kfree(sd);
5556}
5557
5558static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5559{
5560 call_rcu(&sd->rcu, free_sched_domain);
5561}
5562
5563static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5564{
5565 for (; sd; sd = sd->parent)
5566 destroy_sched_domain(sd, cpu);
5567}
5568
518cd623
PZ
5569/*
5570 * Keep a special pointer to the highest sched_domain that has
5571 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5572 * allows us to avoid some pointer chasing select_idle_sibling().
5573 *
5574 * Also keep a unique ID per domain (we use the first cpu number in
5575 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5576 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5577 */
5578DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5579DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5580DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5581DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5582DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5583DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5584
5585static void update_top_cache_domain(int cpu)
5586{
5587 struct sched_domain *sd;
5d4cf996 5588 struct sched_domain *busy_sd = NULL;
518cd623 5589 int id = cpu;
7d9ffa89 5590 int size = 1;
518cd623
PZ
5591
5592 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5593 if (sd) {
518cd623 5594 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5595 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5596 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5597 }
5d4cf996 5598 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5599
5600 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5601 per_cpu(sd_llc_size, cpu) = size;
518cd623 5602 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5603
5604 sd = lowest_flag_domain(cpu, SD_NUMA);
5605 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5606
5607 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5608 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5609}
5610
1da177e4 5611/*
0eab9146 5612 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5613 * hold the hotplug lock.
5614 */
0eab9146
IM
5615static void
5616cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5617{
70b97a7f 5618 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5619 struct sched_domain *tmp;
5620
5621 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5622 for (tmp = sd; tmp; ) {
245af2c7
SS
5623 struct sched_domain *parent = tmp->parent;
5624 if (!parent)
5625 break;
f29c9b1c 5626
1a848870 5627 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5628 tmp->parent = parent->parent;
1a848870
SS
5629 if (parent->parent)
5630 parent->parent->child = tmp;
10866e62
PZ
5631 /*
5632 * Transfer SD_PREFER_SIBLING down in case of a
5633 * degenerate parent; the spans match for this
5634 * so the property transfers.
5635 */
5636 if (parent->flags & SD_PREFER_SIBLING)
5637 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5638 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5639 } else
5640 tmp = tmp->parent;
245af2c7
SS
5641 }
5642
1a848870 5643 if (sd && sd_degenerate(sd)) {
dce840a0 5644 tmp = sd;
245af2c7 5645 sd = sd->parent;
dce840a0 5646 destroy_sched_domain(tmp, cpu);
1a848870
SS
5647 if (sd)
5648 sd->child = NULL;
5649 }
1da177e4 5650
4cb98839 5651 sched_domain_debug(sd, cpu);
1da177e4 5652
57d885fe 5653 rq_attach_root(rq, rd);
dce840a0 5654 tmp = rq->sd;
674311d5 5655 rcu_assign_pointer(rq->sd, sd);
dce840a0 5656 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5657
5658 update_top_cache_domain(cpu);
1da177e4
LT
5659}
5660
5661/* cpus with isolated domains */
dcc30a35 5662static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5663
5664/* Setup the mask of cpus configured for isolated domains */
5665static int __init isolated_cpu_setup(char *str)
5666{
bdddd296 5667 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5668 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5669 return 1;
5670}
5671
8927f494 5672__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5673
49a02c51 5674struct s_data {
21d42ccf 5675 struct sched_domain ** __percpu sd;
49a02c51
AH
5676 struct root_domain *rd;
5677};
5678
2109b99e 5679enum s_alloc {
2109b99e 5680 sa_rootdomain,
21d42ccf 5681 sa_sd,
dce840a0 5682 sa_sd_storage,
2109b99e
AH
5683 sa_none,
5684};
5685
c1174876
PZ
5686/*
5687 * Build an iteration mask that can exclude certain CPUs from the upwards
5688 * domain traversal.
5689 *
5690 * Asymmetric node setups can result in situations where the domain tree is of
5691 * unequal depth, make sure to skip domains that already cover the entire
5692 * range.
5693 *
5694 * In that case build_sched_domains() will have terminated the iteration early
5695 * and our sibling sd spans will be empty. Domains should always include the
5696 * cpu they're built on, so check that.
5697 *
5698 */
5699static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5700{
5701 const struct cpumask *span = sched_domain_span(sd);
5702 struct sd_data *sdd = sd->private;
5703 struct sched_domain *sibling;
5704 int i;
5705
5706 for_each_cpu(i, span) {
5707 sibling = *per_cpu_ptr(sdd->sd, i);
5708 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5709 continue;
5710
5711 cpumask_set_cpu(i, sched_group_mask(sg));
5712 }
5713}
5714
5715/*
5716 * Return the canonical balance cpu for this group, this is the first cpu
5717 * of this group that's also in the iteration mask.
5718 */
5719int group_balance_cpu(struct sched_group *sg)
5720{
5721 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5722}
5723
e3589f6c
PZ
5724static int
5725build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5726{
5727 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5728 const struct cpumask *span = sched_domain_span(sd);
5729 struct cpumask *covered = sched_domains_tmpmask;
5730 struct sd_data *sdd = sd->private;
5731 struct sched_domain *child;
5732 int i;
5733
5734 cpumask_clear(covered);
5735
5736 for_each_cpu(i, span) {
5737 struct cpumask *sg_span;
5738
5739 if (cpumask_test_cpu(i, covered))
5740 continue;
5741
c1174876
PZ
5742 child = *per_cpu_ptr(sdd->sd, i);
5743
5744 /* See the comment near build_group_mask(). */
5745 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5746 continue;
5747
e3589f6c 5748 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5749 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5750
5751 if (!sg)
5752 goto fail;
5753
5754 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5755 if (child->child) {
5756 child = child->child;
5757 cpumask_copy(sg_span, sched_domain_span(child));
5758 } else
5759 cpumask_set_cpu(i, sg_span);
5760
5761 cpumask_or(covered, covered, sg_span);
5762
63b2ca30
NP
5763 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5764 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5765 build_group_mask(sd, sg);
5766
c3decf0d 5767 /*
63b2ca30 5768 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5769 * domains and no possible iteration will get us here, we won't
5770 * die on a /0 trap.
5771 */
ca8ce3d0 5772 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5773 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5774
c1174876
PZ
5775 /*
5776 * Make sure the first group of this domain contains the
5777 * canonical balance cpu. Otherwise the sched_domain iteration
5778 * breaks. See update_sg_lb_stats().
5779 */
74a5ce20 5780 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5781 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5782 groups = sg;
5783
5784 if (!first)
5785 first = sg;
5786 if (last)
5787 last->next = sg;
5788 last = sg;
5789 last->next = first;
5790 }
5791 sd->groups = groups;
5792
5793 return 0;
5794
5795fail:
5796 free_sched_groups(first, 0);
5797
5798 return -ENOMEM;
5799}
5800
dce840a0 5801static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5802{
dce840a0
PZ
5803 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5804 struct sched_domain *child = sd->child;
1da177e4 5805
dce840a0
PZ
5806 if (child)
5807 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5808
9c3f75cb 5809 if (sg) {
dce840a0 5810 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5811 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5812 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5813 }
dce840a0
PZ
5814
5815 return cpu;
1e9f28fa 5816}
1e9f28fa 5817
01a08546 5818/*
dce840a0
PZ
5819 * build_sched_groups will build a circular linked list of the groups
5820 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5821 * and ->cpu_capacity to 0.
e3589f6c
PZ
5822 *
5823 * Assumes the sched_domain tree is fully constructed
01a08546 5824 */
e3589f6c
PZ
5825static int
5826build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5827{
dce840a0
PZ
5828 struct sched_group *first = NULL, *last = NULL;
5829 struct sd_data *sdd = sd->private;
5830 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5831 struct cpumask *covered;
dce840a0 5832 int i;
9c1cfda2 5833
e3589f6c
PZ
5834 get_group(cpu, sdd, &sd->groups);
5835 atomic_inc(&sd->groups->ref);
5836
0936629f 5837 if (cpu != cpumask_first(span))
e3589f6c
PZ
5838 return 0;
5839
f96225fd
PZ
5840 lockdep_assert_held(&sched_domains_mutex);
5841 covered = sched_domains_tmpmask;
5842
dce840a0 5843 cpumask_clear(covered);
6711cab4 5844
dce840a0
PZ
5845 for_each_cpu(i, span) {
5846 struct sched_group *sg;
cd08e923 5847 int group, j;
6711cab4 5848
dce840a0
PZ
5849 if (cpumask_test_cpu(i, covered))
5850 continue;
6711cab4 5851
cd08e923 5852 group = get_group(i, sdd, &sg);
c1174876 5853 cpumask_setall(sched_group_mask(sg));
0601a88d 5854
dce840a0
PZ
5855 for_each_cpu(j, span) {
5856 if (get_group(j, sdd, NULL) != group)
5857 continue;
0601a88d 5858
dce840a0
PZ
5859 cpumask_set_cpu(j, covered);
5860 cpumask_set_cpu(j, sched_group_cpus(sg));
5861 }
0601a88d 5862
dce840a0
PZ
5863 if (!first)
5864 first = sg;
5865 if (last)
5866 last->next = sg;
5867 last = sg;
5868 }
5869 last->next = first;
e3589f6c
PZ
5870
5871 return 0;
0601a88d 5872}
51888ca2 5873
89c4710e 5874/*
63b2ca30 5875 * Initialize sched groups cpu_capacity.
89c4710e 5876 *
63b2ca30 5877 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5878 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5879 * Typically cpu_capacity for all the groups in a sched domain will be same
5880 * unless there are asymmetries in the topology. If there are asymmetries,
5881 * group having more cpu_capacity will pickup more load compared to the
5882 * group having less cpu_capacity.
89c4710e 5883 */
63b2ca30 5884static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5885{
e3589f6c 5886 struct sched_group *sg = sd->groups;
89c4710e 5887
94c95ba6 5888 WARN_ON(!sg);
e3589f6c
PZ
5889
5890 do {
5891 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5892 sg = sg->next;
5893 } while (sg != sd->groups);
89c4710e 5894
c1174876 5895 if (cpu != group_balance_cpu(sg))
e3589f6c 5896 return;
aae6d3dd 5897
63b2ca30
NP
5898 update_group_capacity(sd, cpu);
5899 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5900}
5901
7c16ec58
MT
5902/*
5903 * Initializers for schedule domains
5904 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5905 */
5906
1d3504fc 5907static int default_relax_domain_level = -1;
60495e77 5908int sched_domain_level_max;
1d3504fc
HS
5909
5910static int __init setup_relax_domain_level(char *str)
5911{
a841f8ce
DS
5912 if (kstrtoint(str, 0, &default_relax_domain_level))
5913 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5914
1d3504fc
HS
5915 return 1;
5916}
5917__setup("relax_domain_level=", setup_relax_domain_level);
5918
5919static void set_domain_attribute(struct sched_domain *sd,
5920 struct sched_domain_attr *attr)
5921{
5922 int request;
5923
5924 if (!attr || attr->relax_domain_level < 0) {
5925 if (default_relax_domain_level < 0)
5926 return;
5927 else
5928 request = default_relax_domain_level;
5929 } else
5930 request = attr->relax_domain_level;
5931 if (request < sd->level) {
5932 /* turn off idle balance on this domain */
c88d5910 5933 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5934 } else {
5935 /* turn on idle balance on this domain */
c88d5910 5936 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5937 }
5938}
5939
54ab4ff4
PZ
5940static void __sdt_free(const struct cpumask *cpu_map);
5941static int __sdt_alloc(const struct cpumask *cpu_map);
5942
2109b99e
AH
5943static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5944 const struct cpumask *cpu_map)
5945{
5946 switch (what) {
2109b99e 5947 case sa_rootdomain:
822ff793
PZ
5948 if (!atomic_read(&d->rd->refcount))
5949 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5950 case sa_sd:
5951 free_percpu(d->sd); /* fall through */
dce840a0 5952 case sa_sd_storage:
54ab4ff4 5953 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5954 case sa_none:
5955 break;
5956 }
5957}
3404c8d9 5958
2109b99e
AH
5959static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5960 const struct cpumask *cpu_map)
5961{
dce840a0
PZ
5962 memset(d, 0, sizeof(*d));
5963
54ab4ff4
PZ
5964 if (__sdt_alloc(cpu_map))
5965 return sa_sd_storage;
dce840a0
PZ
5966 d->sd = alloc_percpu(struct sched_domain *);
5967 if (!d->sd)
5968 return sa_sd_storage;
2109b99e 5969 d->rd = alloc_rootdomain();
dce840a0 5970 if (!d->rd)
21d42ccf 5971 return sa_sd;
2109b99e
AH
5972 return sa_rootdomain;
5973}
57d885fe 5974
dce840a0
PZ
5975/*
5976 * NULL the sd_data elements we've used to build the sched_domain and
5977 * sched_group structure so that the subsequent __free_domain_allocs()
5978 * will not free the data we're using.
5979 */
5980static void claim_allocations(int cpu, struct sched_domain *sd)
5981{
5982 struct sd_data *sdd = sd->private;
dce840a0
PZ
5983
5984 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5985 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5986
e3589f6c 5987 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5988 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 5989
63b2ca30
NP
5990 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5991 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
5992}
5993
cb83b629 5994#ifdef CONFIG_NUMA
cb83b629 5995static int sched_domains_numa_levels;
cb83b629
PZ
5996static int *sched_domains_numa_distance;
5997static struct cpumask ***sched_domains_numa_masks;
5998static int sched_domains_curr_level;
143e1e28 5999#endif
cb83b629 6000
143e1e28
VG
6001/*
6002 * SD_flags allowed in topology descriptions.
6003 *
5d4dfddd 6004 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6005 * SD_SHARE_PKG_RESOURCES - describes shared caches
6006 * SD_NUMA - describes NUMA topologies
d77b3ed5 6007 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6008 *
6009 * Odd one out:
6010 * SD_ASYM_PACKING - describes SMT quirks
6011 */
6012#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6013 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6014 SD_SHARE_PKG_RESOURCES | \
6015 SD_NUMA | \
d77b3ed5
VG
6016 SD_ASYM_PACKING | \
6017 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6018
6019static struct sched_domain *
143e1e28 6020sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6021{
6022 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6023 int sd_weight, sd_flags = 0;
6024
6025#ifdef CONFIG_NUMA
6026 /*
6027 * Ugly hack to pass state to sd_numa_mask()...
6028 */
6029 sched_domains_curr_level = tl->numa_level;
6030#endif
6031
6032 sd_weight = cpumask_weight(tl->mask(cpu));
6033
6034 if (tl->sd_flags)
6035 sd_flags = (*tl->sd_flags)();
6036 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6037 "wrong sd_flags in topology description\n"))
6038 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6039
6040 *sd = (struct sched_domain){
6041 .min_interval = sd_weight,
6042 .max_interval = 2*sd_weight,
6043 .busy_factor = 32,
870a0bb5 6044 .imbalance_pct = 125,
143e1e28
VG
6045
6046 .cache_nice_tries = 0,
6047 .busy_idx = 0,
6048 .idle_idx = 0,
cb83b629
PZ
6049 .newidle_idx = 0,
6050 .wake_idx = 0,
6051 .forkexec_idx = 0,
6052
6053 .flags = 1*SD_LOAD_BALANCE
6054 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6055 | 1*SD_BALANCE_EXEC
6056 | 1*SD_BALANCE_FORK
cb83b629 6057 | 0*SD_BALANCE_WAKE
143e1e28 6058 | 1*SD_WAKE_AFFINE
5d4dfddd 6059 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6060 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6061 | 0*SD_SERIALIZE
cb83b629 6062 | 0*SD_PREFER_SIBLING
143e1e28
VG
6063 | 0*SD_NUMA
6064 | sd_flags
cb83b629 6065 ,
143e1e28 6066
cb83b629
PZ
6067 .last_balance = jiffies,
6068 .balance_interval = sd_weight,
143e1e28 6069 .smt_gain = 0,
2b4cfe64
JL
6070 .max_newidle_lb_cost = 0,
6071 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6072#ifdef CONFIG_SCHED_DEBUG
6073 .name = tl->name,
6074#endif
cb83b629 6075 };
cb83b629
PZ
6076
6077 /*
143e1e28 6078 * Convert topological properties into behaviour.
cb83b629 6079 */
143e1e28 6080
5d4dfddd 6081 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6082 sd->imbalance_pct = 110;
6083 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6084
6085 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6086 sd->imbalance_pct = 117;
6087 sd->cache_nice_tries = 1;
6088 sd->busy_idx = 2;
6089
6090#ifdef CONFIG_NUMA
6091 } else if (sd->flags & SD_NUMA) {
6092 sd->cache_nice_tries = 2;
6093 sd->busy_idx = 3;
6094 sd->idle_idx = 2;
6095
6096 sd->flags |= SD_SERIALIZE;
6097 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6098 sd->flags &= ~(SD_BALANCE_EXEC |
6099 SD_BALANCE_FORK |
6100 SD_WAKE_AFFINE);
6101 }
6102
6103#endif
6104 } else {
6105 sd->flags |= SD_PREFER_SIBLING;
6106 sd->cache_nice_tries = 1;
6107 sd->busy_idx = 2;
6108 sd->idle_idx = 1;
6109 }
6110
6111 sd->private = &tl->data;
cb83b629
PZ
6112
6113 return sd;
6114}
6115
143e1e28
VG
6116/*
6117 * Topology list, bottom-up.
6118 */
6119static struct sched_domain_topology_level default_topology[] = {
6120#ifdef CONFIG_SCHED_SMT
6121 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6122#endif
6123#ifdef CONFIG_SCHED_MC
6124 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6125#endif
6126 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6127 { NULL, },
6128};
6129
6130struct sched_domain_topology_level *sched_domain_topology = default_topology;
6131
6132#define for_each_sd_topology(tl) \
6133 for (tl = sched_domain_topology; tl->mask; tl++)
6134
6135void set_sched_topology(struct sched_domain_topology_level *tl)
6136{
6137 sched_domain_topology = tl;
6138}
6139
6140#ifdef CONFIG_NUMA
6141
cb83b629
PZ
6142static const struct cpumask *sd_numa_mask(int cpu)
6143{
6144 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6145}
6146
d039ac60
PZ
6147static void sched_numa_warn(const char *str)
6148{
6149 static int done = false;
6150 int i,j;
6151
6152 if (done)
6153 return;
6154
6155 done = true;
6156
6157 printk(KERN_WARNING "ERROR: %s\n\n", str);
6158
6159 for (i = 0; i < nr_node_ids; i++) {
6160 printk(KERN_WARNING " ");
6161 for (j = 0; j < nr_node_ids; j++)
6162 printk(KERN_CONT "%02d ", node_distance(i,j));
6163 printk(KERN_CONT "\n");
6164 }
6165 printk(KERN_WARNING "\n");
6166}
6167
6168static bool find_numa_distance(int distance)
6169{
6170 int i;
6171
6172 if (distance == node_distance(0, 0))
6173 return true;
6174
6175 for (i = 0; i < sched_domains_numa_levels; i++) {
6176 if (sched_domains_numa_distance[i] == distance)
6177 return true;
6178 }
6179
6180 return false;
6181}
6182
cb83b629
PZ
6183static void sched_init_numa(void)
6184{
6185 int next_distance, curr_distance = node_distance(0, 0);
6186 struct sched_domain_topology_level *tl;
6187 int level = 0;
6188 int i, j, k;
6189
cb83b629
PZ
6190 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6191 if (!sched_domains_numa_distance)
6192 return;
6193
6194 /*
6195 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6196 * unique distances in the node_distance() table.
6197 *
6198 * Assumes node_distance(0,j) includes all distances in
6199 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6200 */
6201 next_distance = curr_distance;
6202 for (i = 0; i < nr_node_ids; i++) {
6203 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6204 for (k = 0; k < nr_node_ids; k++) {
6205 int distance = node_distance(i, k);
6206
6207 if (distance > curr_distance &&
6208 (distance < next_distance ||
6209 next_distance == curr_distance))
6210 next_distance = distance;
6211
6212 /*
6213 * While not a strong assumption it would be nice to know
6214 * about cases where if node A is connected to B, B is not
6215 * equally connected to A.
6216 */
6217 if (sched_debug() && node_distance(k, i) != distance)
6218 sched_numa_warn("Node-distance not symmetric");
6219
6220 if (sched_debug() && i && !find_numa_distance(distance))
6221 sched_numa_warn("Node-0 not representative");
6222 }
6223 if (next_distance != curr_distance) {
6224 sched_domains_numa_distance[level++] = next_distance;
6225 sched_domains_numa_levels = level;
6226 curr_distance = next_distance;
6227 } else break;
cb83b629 6228 }
d039ac60
PZ
6229
6230 /*
6231 * In case of sched_debug() we verify the above assumption.
6232 */
6233 if (!sched_debug())
6234 break;
cb83b629
PZ
6235 }
6236 /*
6237 * 'level' contains the number of unique distances, excluding the
6238 * identity distance node_distance(i,i).
6239 *
28b4a521 6240 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6241 * numbers.
6242 */
6243
5f7865f3
TC
6244 /*
6245 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6246 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6247 * the array will contain less then 'level' members. This could be
6248 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6249 * in other functions.
6250 *
6251 * We reset it to 'level' at the end of this function.
6252 */
6253 sched_domains_numa_levels = 0;
6254
cb83b629
PZ
6255 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6256 if (!sched_domains_numa_masks)
6257 return;
6258
6259 /*
6260 * Now for each level, construct a mask per node which contains all
6261 * cpus of nodes that are that many hops away from us.
6262 */
6263 for (i = 0; i < level; i++) {
6264 sched_domains_numa_masks[i] =
6265 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6266 if (!sched_domains_numa_masks[i])
6267 return;
6268
6269 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6270 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6271 if (!mask)
6272 return;
6273
6274 sched_domains_numa_masks[i][j] = mask;
6275
6276 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6277 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6278 continue;
6279
6280 cpumask_or(mask, mask, cpumask_of_node(k));
6281 }
6282 }
6283 }
6284
143e1e28
VG
6285 /* Compute default topology size */
6286 for (i = 0; sched_domain_topology[i].mask; i++);
6287
c515db8c 6288 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6289 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6290 if (!tl)
6291 return;
6292
6293 /*
6294 * Copy the default topology bits..
6295 */
143e1e28
VG
6296 for (i = 0; sched_domain_topology[i].mask; i++)
6297 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6298
6299 /*
6300 * .. and append 'j' levels of NUMA goodness.
6301 */
6302 for (j = 0; j < level; i++, j++) {
6303 tl[i] = (struct sched_domain_topology_level){
cb83b629 6304 .mask = sd_numa_mask,
143e1e28 6305 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6306 .flags = SDTL_OVERLAP,
6307 .numa_level = j,
143e1e28 6308 SD_INIT_NAME(NUMA)
cb83b629
PZ
6309 };
6310 }
6311
6312 sched_domain_topology = tl;
5f7865f3
TC
6313
6314 sched_domains_numa_levels = level;
cb83b629 6315}
301a5cba
TC
6316
6317static void sched_domains_numa_masks_set(int cpu)
6318{
6319 int i, j;
6320 int node = cpu_to_node(cpu);
6321
6322 for (i = 0; i < sched_domains_numa_levels; i++) {
6323 for (j = 0; j < nr_node_ids; j++) {
6324 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6325 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6326 }
6327 }
6328}
6329
6330static void sched_domains_numa_masks_clear(int cpu)
6331{
6332 int i, j;
6333 for (i = 0; i < sched_domains_numa_levels; i++) {
6334 for (j = 0; j < nr_node_ids; j++)
6335 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6336 }
6337}
6338
6339/*
6340 * Update sched_domains_numa_masks[level][node] array when new cpus
6341 * are onlined.
6342 */
6343static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6344 unsigned long action,
6345 void *hcpu)
6346{
6347 int cpu = (long)hcpu;
6348
6349 switch (action & ~CPU_TASKS_FROZEN) {
6350 case CPU_ONLINE:
6351 sched_domains_numa_masks_set(cpu);
6352 break;
6353
6354 case CPU_DEAD:
6355 sched_domains_numa_masks_clear(cpu);
6356 break;
6357
6358 default:
6359 return NOTIFY_DONE;
6360 }
6361
6362 return NOTIFY_OK;
cb83b629
PZ
6363}
6364#else
6365static inline void sched_init_numa(void)
6366{
6367}
301a5cba
TC
6368
6369static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6370 unsigned long action,
6371 void *hcpu)
6372{
6373 return 0;
6374}
cb83b629
PZ
6375#endif /* CONFIG_NUMA */
6376
54ab4ff4
PZ
6377static int __sdt_alloc(const struct cpumask *cpu_map)
6378{
6379 struct sched_domain_topology_level *tl;
6380 int j;
6381
27723a68 6382 for_each_sd_topology(tl) {
54ab4ff4
PZ
6383 struct sd_data *sdd = &tl->data;
6384
6385 sdd->sd = alloc_percpu(struct sched_domain *);
6386 if (!sdd->sd)
6387 return -ENOMEM;
6388
6389 sdd->sg = alloc_percpu(struct sched_group *);
6390 if (!sdd->sg)
6391 return -ENOMEM;
6392
63b2ca30
NP
6393 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6394 if (!sdd->sgc)
9c3f75cb
PZ
6395 return -ENOMEM;
6396
54ab4ff4
PZ
6397 for_each_cpu(j, cpu_map) {
6398 struct sched_domain *sd;
6399 struct sched_group *sg;
63b2ca30 6400 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6401
6402 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6403 GFP_KERNEL, cpu_to_node(j));
6404 if (!sd)
6405 return -ENOMEM;
6406
6407 *per_cpu_ptr(sdd->sd, j) = sd;
6408
6409 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6410 GFP_KERNEL, cpu_to_node(j));
6411 if (!sg)
6412 return -ENOMEM;
6413
30b4e9eb
IM
6414 sg->next = sg;
6415
54ab4ff4 6416 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6417
63b2ca30 6418 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6419 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6420 if (!sgc)
9c3f75cb
PZ
6421 return -ENOMEM;
6422
63b2ca30 6423 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6424 }
6425 }
6426
6427 return 0;
6428}
6429
6430static void __sdt_free(const struct cpumask *cpu_map)
6431{
6432 struct sched_domain_topology_level *tl;
6433 int j;
6434
27723a68 6435 for_each_sd_topology(tl) {
54ab4ff4
PZ
6436 struct sd_data *sdd = &tl->data;
6437
6438 for_each_cpu(j, cpu_map) {
fb2cf2c6 6439 struct sched_domain *sd;
6440
6441 if (sdd->sd) {
6442 sd = *per_cpu_ptr(sdd->sd, j);
6443 if (sd && (sd->flags & SD_OVERLAP))
6444 free_sched_groups(sd->groups, 0);
6445 kfree(*per_cpu_ptr(sdd->sd, j));
6446 }
6447
6448 if (sdd->sg)
6449 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6450 if (sdd->sgc)
6451 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6452 }
6453 free_percpu(sdd->sd);
fb2cf2c6 6454 sdd->sd = NULL;
54ab4ff4 6455 free_percpu(sdd->sg);
fb2cf2c6 6456 sdd->sg = NULL;
63b2ca30
NP
6457 free_percpu(sdd->sgc);
6458 sdd->sgc = NULL;
54ab4ff4
PZ
6459 }
6460}
6461
2c402dc3 6462struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6463 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6464 struct sched_domain *child, int cpu)
2c402dc3 6465{
143e1e28 6466 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6467 if (!sd)
d069b916 6468 return child;
2c402dc3 6469
2c402dc3 6470 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6471 if (child) {
6472 sd->level = child->level + 1;
6473 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6474 child->parent = sd;
c75e0128 6475 sd->child = child;
60495e77 6476 }
a841f8ce 6477 set_domain_attribute(sd, attr);
2c402dc3
PZ
6478
6479 return sd;
6480}
6481
2109b99e
AH
6482/*
6483 * Build sched domains for a given set of cpus and attach the sched domains
6484 * to the individual cpus
6485 */
dce840a0
PZ
6486static int build_sched_domains(const struct cpumask *cpu_map,
6487 struct sched_domain_attr *attr)
2109b99e 6488{
1c632169 6489 enum s_alloc alloc_state;
dce840a0 6490 struct sched_domain *sd;
2109b99e 6491 struct s_data d;
822ff793 6492 int i, ret = -ENOMEM;
9c1cfda2 6493
2109b99e
AH
6494 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6495 if (alloc_state != sa_rootdomain)
6496 goto error;
9c1cfda2 6497
dce840a0 6498 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6499 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6500 struct sched_domain_topology_level *tl;
6501
3bd65a80 6502 sd = NULL;
27723a68 6503 for_each_sd_topology(tl) {
4a850cbe 6504 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6505 if (tl == sched_domain_topology)
6506 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6507 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6508 sd->flags |= SD_OVERLAP;
d110235d
PZ
6509 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6510 break;
e3589f6c 6511 }
dce840a0
PZ
6512 }
6513
6514 /* Build the groups for the domains */
6515 for_each_cpu(i, cpu_map) {
6516 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6517 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6518 if (sd->flags & SD_OVERLAP) {
6519 if (build_overlap_sched_groups(sd, i))
6520 goto error;
6521 } else {
6522 if (build_sched_groups(sd, i))
6523 goto error;
6524 }
1cf51902 6525 }
a06dadbe 6526 }
9c1cfda2 6527
ced549fa 6528 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6529 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6530 if (!cpumask_test_cpu(i, cpu_map))
6531 continue;
9c1cfda2 6532
dce840a0
PZ
6533 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6534 claim_allocations(i, sd);
63b2ca30 6535 init_sched_groups_capacity(i, sd);
dce840a0 6536 }
f712c0c7 6537 }
9c1cfda2 6538
1da177e4 6539 /* Attach the domains */
dce840a0 6540 rcu_read_lock();
abcd083a 6541 for_each_cpu(i, cpu_map) {
21d42ccf 6542 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6543 cpu_attach_domain(sd, d.rd, i);
1da177e4 6544 }
dce840a0 6545 rcu_read_unlock();
51888ca2 6546
822ff793 6547 ret = 0;
51888ca2 6548error:
2109b99e 6549 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6550 return ret;
1da177e4 6551}
029190c5 6552
acc3f5d7 6553static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6554static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6555static struct sched_domain_attr *dattr_cur;
6556 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6557
6558/*
6559 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6560 * cpumask) fails, then fallback to a single sched domain,
6561 * as determined by the single cpumask fallback_doms.
029190c5 6562 */
4212823f 6563static cpumask_var_t fallback_doms;
029190c5 6564
ee79d1bd
HC
6565/*
6566 * arch_update_cpu_topology lets virtualized architectures update the
6567 * cpu core maps. It is supposed to return 1 if the topology changed
6568 * or 0 if it stayed the same.
6569 */
52f5684c 6570int __weak arch_update_cpu_topology(void)
22e52b07 6571{
ee79d1bd 6572 return 0;
22e52b07
HC
6573}
6574
acc3f5d7
RR
6575cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6576{
6577 int i;
6578 cpumask_var_t *doms;
6579
6580 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6581 if (!doms)
6582 return NULL;
6583 for (i = 0; i < ndoms; i++) {
6584 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6585 free_sched_domains(doms, i);
6586 return NULL;
6587 }
6588 }
6589 return doms;
6590}
6591
6592void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6593{
6594 unsigned int i;
6595 for (i = 0; i < ndoms; i++)
6596 free_cpumask_var(doms[i]);
6597 kfree(doms);
6598}
6599
1a20ff27 6600/*
41a2d6cf 6601 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6602 * For now this just excludes isolated cpus, but could be used to
6603 * exclude other special cases in the future.
1a20ff27 6604 */
c4a8849a 6605static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6606{
7378547f
MM
6607 int err;
6608
22e52b07 6609 arch_update_cpu_topology();
029190c5 6610 ndoms_cur = 1;
acc3f5d7 6611 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6612 if (!doms_cur)
acc3f5d7
RR
6613 doms_cur = &fallback_doms;
6614 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6615 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6616 register_sched_domain_sysctl();
7378547f
MM
6617
6618 return err;
1a20ff27
DG
6619}
6620
1a20ff27
DG
6621/*
6622 * Detach sched domains from a group of cpus specified in cpu_map
6623 * These cpus will now be attached to the NULL domain
6624 */
96f874e2 6625static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6626{
6627 int i;
6628
dce840a0 6629 rcu_read_lock();
abcd083a 6630 for_each_cpu(i, cpu_map)
57d885fe 6631 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6632 rcu_read_unlock();
1a20ff27
DG
6633}
6634
1d3504fc
HS
6635/* handle null as "default" */
6636static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6637 struct sched_domain_attr *new, int idx_new)
6638{
6639 struct sched_domain_attr tmp;
6640
6641 /* fast path */
6642 if (!new && !cur)
6643 return 1;
6644
6645 tmp = SD_ATTR_INIT;
6646 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6647 new ? (new + idx_new) : &tmp,
6648 sizeof(struct sched_domain_attr));
6649}
6650
029190c5
PJ
6651/*
6652 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6653 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6654 * doms_new[] to the current sched domain partitioning, doms_cur[].
6655 * It destroys each deleted domain and builds each new domain.
6656 *
acc3f5d7 6657 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6658 * The masks don't intersect (don't overlap.) We should setup one
6659 * sched domain for each mask. CPUs not in any of the cpumasks will
6660 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6661 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6662 * it as it is.
6663 *
acc3f5d7
RR
6664 * The passed in 'doms_new' should be allocated using
6665 * alloc_sched_domains. This routine takes ownership of it and will
6666 * free_sched_domains it when done with it. If the caller failed the
6667 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6668 * and partition_sched_domains() will fallback to the single partition
6669 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6670 *
96f874e2 6671 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6672 * ndoms_new == 0 is a special case for destroying existing domains,
6673 * and it will not create the default domain.
dfb512ec 6674 *
029190c5
PJ
6675 * Call with hotplug lock held
6676 */
acc3f5d7 6677void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6678 struct sched_domain_attr *dattr_new)
029190c5 6679{
dfb512ec 6680 int i, j, n;
d65bd5ec 6681 int new_topology;
029190c5 6682
712555ee 6683 mutex_lock(&sched_domains_mutex);
a1835615 6684
7378547f
MM
6685 /* always unregister in case we don't destroy any domains */
6686 unregister_sched_domain_sysctl();
6687
d65bd5ec
HC
6688 /* Let architecture update cpu core mappings. */
6689 new_topology = arch_update_cpu_topology();
6690
dfb512ec 6691 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6692
6693 /* Destroy deleted domains */
6694 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6695 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6696 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6697 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6698 goto match1;
6699 }
6700 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6701 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6702match1:
6703 ;
6704 }
6705
c8d2d47a 6706 n = ndoms_cur;
e761b772 6707 if (doms_new == NULL) {
c8d2d47a 6708 n = 0;
acc3f5d7 6709 doms_new = &fallback_doms;
6ad4c188 6710 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6711 WARN_ON_ONCE(dattr_new);
e761b772
MK
6712 }
6713
029190c5
PJ
6714 /* Build new domains */
6715 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6716 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6717 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6718 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6719 goto match2;
6720 }
6721 /* no match - add a new doms_new */
dce840a0 6722 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6723match2:
6724 ;
6725 }
6726
6727 /* Remember the new sched domains */
acc3f5d7
RR
6728 if (doms_cur != &fallback_doms)
6729 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6730 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6731 doms_cur = doms_new;
1d3504fc 6732 dattr_cur = dattr_new;
029190c5 6733 ndoms_cur = ndoms_new;
7378547f
MM
6734
6735 register_sched_domain_sysctl();
a1835615 6736
712555ee 6737 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6738}
6739
d35be8ba
SB
6740static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6741
1da177e4 6742/*
3a101d05
TH
6743 * Update cpusets according to cpu_active mask. If cpusets are
6744 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6745 * around partition_sched_domains().
d35be8ba
SB
6746 *
6747 * If we come here as part of a suspend/resume, don't touch cpusets because we
6748 * want to restore it back to its original state upon resume anyway.
1da177e4 6749 */
0b2e918a
TH
6750static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6751 void *hcpu)
e761b772 6752{
d35be8ba
SB
6753 switch (action) {
6754 case CPU_ONLINE_FROZEN:
6755 case CPU_DOWN_FAILED_FROZEN:
6756
6757 /*
6758 * num_cpus_frozen tracks how many CPUs are involved in suspend
6759 * resume sequence. As long as this is not the last online
6760 * operation in the resume sequence, just build a single sched
6761 * domain, ignoring cpusets.
6762 */
6763 num_cpus_frozen--;
6764 if (likely(num_cpus_frozen)) {
6765 partition_sched_domains(1, NULL, NULL);
6766 break;
6767 }
6768
6769 /*
6770 * This is the last CPU online operation. So fall through and
6771 * restore the original sched domains by considering the
6772 * cpuset configurations.
6773 */
6774
e761b772 6775 case CPU_ONLINE:
6ad4c188 6776 case CPU_DOWN_FAILED:
7ddf96b0 6777 cpuset_update_active_cpus(true);
d35be8ba 6778 break;
3a101d05
TH
6779 default:
6780 return NOTIFY_DONE;
6781 }
d35be8ba 6782 return NOTIFY_OK;
3a101d05 6783}
e761b772 6784
0b2e918a
TH
6785static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6786 void *hcpu)
3a101d05 6787{
d35be8ba 6788 switch (action) {
3a101d05 6789 case CPU_DOWN_PREPARE:
7ddf96b0 6790 cpuset_update_active_cpus(false);
d35be8ba
SB
6791 break;
6792 case CPU_DOWN_PREPARE_FROZEN:
6793 num_cpus_frozen++;
6794 partition_sched_domains(1, NULL, NULL);
6795 break;
e761b772
MK
6796 default:
6797 return NOTIFY_DONE;
6798 }
d35be8ba 6799 return NOTIFY_OK;
e761b772 6800}
e761b772 6801
1da177e4
LT
6802void __init sched_init_smp(void)
6803{
dcc30a35
RR
6804 cpumask_var_t non_isolated_cpus;
6805
6806 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6807 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6808
cb83b629
PZ
6809 sched_init_numa();
6810
6acce3ef
PZ
6811 /*
6812 * There's no userspace yet to cause hotplug operations; hence all the
6813 * cpu masks are stable and all blatant races in the below code cannot
6814 * happen.
6815 */
712555ee 6816 mutex_lock(&sched_domains_mutex);
c4a8849a 6817 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6818 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6819 if (cpumask_empty(non_isolated_cpus))
6820 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6821 mutex_unlock(&sched_domains_mutex);
e761b772 6822
301a5cba 6823 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6824 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6825 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6826
b328ca18 6827 init_hrtick();
5c1e1767
NP
6828
6829 /* Move init over to a non-isolated CPU */
dcc30a35 6830 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6831 BUG();
19978ca6 6832 sched_init_granularity();
dcc30a35 6833 free_cpumask_var(non_isolated_cpus);
4212823f 6834
0e3900e6 6835 init_sched_rt_class();
1baca4ce 6836 init_sched_dl_class();
1da177e4
LT
6837}
6838#else
6839void __init sched_init_smp(void)
6840{
19978ca6 6841 sched_init_granularity();
1da177e4
LT
6842}
6843#endif /* CONFIG_SMP */
6844
cd1bb94b
AB
6845const_debug unsigned int sysctl_timer_migration = 1;
6846
1da177e4
LT
6847int in_sched_functions(unsigned long addr)
6848{
1da177e4
LT
6849 return in_lock_functions(addr) ||
6850 (addr >= (unsigned long)__sched_text_start
6851 && addr < (unsigned long)__sched_text_end);
6852}
6853
029632fb 6854#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6855/*
6856 * Default task group.
6857 * Every task in system belongs to this group at bootup.
6858 */
029632fb 6859struct task_group root_task_group;
35cf4e50 6860LIST_HEAD(task_groups);
052f1dc7 6861#endif
6f505b16 6862
e6252c3e 6863DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6864
1da177e4
LT
6865void __init sched_init(void)
6866{
dd41f596 6867 int i, j;
434d53b0
MT
6868 unsigned long alloc_size = 0, ptr;
6869
6870#ifdef CONFIG_FAIR_GROUP_SCHED
6871 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6872#endif
6873#ifdef CONFIG_RT_GROUP_SCHED
6874 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6875#endif
df7c8e84 6876#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6877 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6878#endif
434d53b0 6879 if (alloc_size) {
36b7b6d4 6880 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6881
6882#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6883 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6884 ptr += nr_cpu_ids * sizeof(void **);
6885
07e06b01 6886 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6887 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6888
6d6bc0ad 6889#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6890#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6891 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6892 ptr += nr_cpu_ids * sizeof(void **);
6893
07e06b01 6894 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6895 ptr += nr_cpu_ids * sizeof(void **);
6896
6d6bc0ad 6897#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6898#ifdef CONFIG_CPUMASK_OFFSTACK
6899 for_each_possible_cpu(i) {
e6252c3e 6900 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6901 ptr += cpumask_size();
6902 }
6903#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6904 }
dd41f596 6905
332ac17e
DF
6906 init_rt_bandwidth(&def_rt_bandwidth,
6907 global_rt_period(), global_rt_runtime());
6908 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6909 global_rt_period(), global_rt_runtime());
332ac17e 6910
57d885fe
GH
6911#ifdef CONFIG_SMP
6912 init_defrootdomain();
6913#endif
6914
d0b27fa7 6915#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6916 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6917 global_rt_period(), global_rt_runtime());
6d6bc0ad 6918#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6919
7c941438 6920#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6921 list_add(&root_task_group.list, &task_groups);
6922 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6923 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6924 autogroup_init(&init_task);
54c707e9 6925
7c941438 6926#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6927
0a945022 6928 for_each_possible_cpu(i) {
70b97a7f 6929 struct rq *rq;
1da177e4
LT
6930
6931 rq = cpu_rq(i);
05fa785c 6932 raw_spin_lock_init(&rq->lock);
7897986b 6933 rq->nr_running = 0;
dce48a84
TG
6934 rq->calc_load_active = 0;
6935 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6936 init_cfs_rq(&rq->cfs);
6f505b16 6937 init_rt_rq(&rq->rt, rq);
aab03e05 6938 init_dl_rq(&rq->dl, rq);
dd41f596 6939#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6940 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6941 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6942 /*
07e06b01 6943 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6944 *
6945 * In case of task-groups formed thr' the cgroup filesystem, it
6946 * gets 100% of the cpu resources in the system. This overall
6947 * system cpu resource is divided among the tasks of
07e06b01 6948 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6949 * based on each entity's (task or task-group's) weight
6950 * (se->load.weight).
6951 *
07e06b01 6952 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6953 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6954 * then A0's share of the cpu resource is:
6955 *
0d905bca 6956 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6957 *
07e06b01
YZ
6958 * We achieve this by letting root_task_group's tasks sit
6959 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6960 */
ab84d31e 6961 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6962 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6963#endif /* CONFIG_FAIR_GROUP_SCHED */
6964
6965 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6966#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6967 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6968#endif
1da177e4 6969
dd41f596
IM
6970 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6971 rq->cpu_load[j] = 0;
fdf3e95d
VP
6972
6973 rq->last_load_update_tick = jiffies;
6974
1da177e4 6975#ifdef CONFIG_SMP
41c7ce9a 6976 rq->sd = NULL;
57d885fe 6977 rq->rd = NULL;
ca8ce3d0 6978 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 6979 rq->post_schedule = 0;
1da177e4 6980 rq->active_balance = 0;
dd41f596 6981 rq->next_balance = jiffies;
1da177e4 6982 rq->push_cpu = 0;
0a2966b4 6983 rq->cpu = i;
1f11eb6a 6984 rq->online = 0;
eae0c9df
MG
6985 rq->idle_stamp = 0;
6986 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6987 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6988
6989 INIT_LIST_HEAD(&rq->cfs_tasks);
6990
dc938520 6991 rq_attach_root(rq, &def_root_domain);
3451d024 6992#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6993 rq->nohz_flags = 0;
83cd4fe2 6994#endif
265f22a9
FW
6995#ifdef CONFIG_NO_HZ_FULL
6996 rq->last_sched_tick = 0;
6997#endif
1da177e4 6998#endif
8f4d37ec 6999 init_rq_hrtick(rq);
1da177e4 7000 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7001 }
7002
2dd73a4f 7003 set_load_weight(&init_task);
b50f60ce 7004
e107be36
AK
7005#ifdef CONFIG_PREEMPT_NOTIFIERS
7006 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7007#endif
7008
1da177e4
LT
7009 /*
7010 * The boot idle thread does lazy MMU switching as well:
7011 */
7012 atomic_inc(&init_mm.mm_count);
7013 enter_lazy_tlb(&init_mm, current);
7014
7015 /*
7016 * Make us the idle thread. Technically, schedule() should not be
7017 * called from this thread, however somewhere below it might be,
7018 * but because we are the idle thread, we just pick up running again
7019 * when this runqueue becomes "idle".
7020 */
7021 init_idle(current, smp_processor_id());
dce48a84
TG
7022
7023 calc_load_update = jiffies + LOAD_FREQ;
7024
dd41f596
IM
7025 /*
7026 * During early bootup we pretend to be a normal task:
7027 */
7028 current->sched_class = &fair_sched_class;
6892b75e 7029
bf4d83f6 7030#ifdef CONFIG_SMP
4cb98839 7031 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7032 /* May be allocated at isolcpus cmdline parse time */
7033 if (cpu_isolated_map == NULL)
7034 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7035 idle_thread_set_boot_cpu();
a803f026 7036 set_cpu_rq_start_time();
029632fb
PZ
7037#endif
7038 init_sched_fair_class();
6a7b3dc3 7039
6892b75e 7040 scheduler_running = 1;
1da177e4
LT
7041}
7042
d902db1e 7043#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7044static inline int preempt_count_equals(int preempt_offset)
7045{
234da7bc 7046 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7047
4ba8216c 7048 return (nested == preempt_offset);
e4aafea2
FW
7049}
7050
d894837f 7051void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7052{
1da177e4
LT
7053 static unsigned long prev_jiffy; /* ratelimiting */
7054
b3fbab05 7055 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7056 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7057 !is_idle_task(current)) ||
e4aafea2 7058 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7059 return;
7060 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7061 return;
7062 prev_jiffy = jiffies;
7063
3df0fc5b
PZ
7064 printk(KERN_ERR
7065 "BUG: sleeping function called from invalid context at %s:%d\n",
7066 file, line);
7067 printk(KERN_ERR
7068 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7069 in_atomic(), irqs_disabled(),
7070 current->pid, current->comm);
aef745fc
IM
7071
7072 debug_show_held_locks(current);
7073 if (irqs_disabled())
7074 print_irqtrace_events(current);
8f47b187
TG
7075#ifdef CONFIG_DEBUG_PREEMPT
7076 if (!preempt_count_equals(preempt_offset)) {
7077 pr_err("Preemption disabled at:");
7078 print_ip_sym(current->preempt_disable_ip);
7079 pr_cont("\n");
7080 }
7081#endif
aef745fc 7082 dump_stack();
1da177e4
LT
7083}
7084EXPORT_SYMBOL(__might_sleep);
7085#endif
7086
7087#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7088static void normalize_task(struct rq *rq, struct task_struct *p)
7089{
da7a735e 7090 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7091 struct sched_attr attr = {
7092 .sched_policy = SCHED_NORMAL,
7093 };
da7a735e 7094 int old_prio = p->prio;
3a5e4dc1 7095 int on_rq;
3e51f33f 7096
fd2f4419 7097 on_rq = p->on_rq;
3a5e4dc1 7098 if (on_rq)
4ca9b72b 7099 dequeue_task(rq, p, 0);
d50dde5a 7100 __setscheduler(rq, p, &attr);
3a5e4dc1 7101 if (on_rq) {
4ca9b72b 7102 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7103 resched_task(rq->curr);
7104 }
da7a735e
PZ
7105
7106 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7107}
7108
1da177e4
LT
7109void normalize_rt_tasks(void)
7110{
a0f98a1c 7111 struct task_struct *g, *p;
1da177e4 7112 unsigned long flags;
70b97a7f 7113 struct rq *rq;
1da177e4 7114
4cf5d77a 7115 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7116 do_each_thread(g, p) {
178be793
IM
7117 /*
7118 * Only normalize user tasks:
7119 */
7120 if (!p->mm)
7121 continue;
7122
6cfb0d5d 7123 p->se.exec_start = 0;
6cfb0d5d 7124#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7125 p->se.statistics.wait_start = 0;
7126 p->se.statistics.sleep_start = 0;
7127 p->se.statistics.block_start = 0;
6cfb0d5d 7128#endif
dd41f596 7129
aab03e05 7130 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7131 /*
7132 * Renice negative nice level userspace
7133 * tasks back to 0:
7134 */
d0ea0268 7135 if (task_nice(p) < 0 && p->mm)
dd41f596 7136 set_user_nice(p, 0);
1da177e4 7137 continue;
dd41f596 7138 }
1da177e4 7139
1d615482 7140 raw_spin_lock(&p->pi_lock);
b29739f9 7141 rq = __task_rq_lock(p);
1da177e4 7142
178be793 7143 normalize_task(rq, p);
3a5e4dc1 7144
b29739f9 7145 __task_rq_unlock(rq);
1d615482 7146 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7147 } while_each_thread(g, p);
7148
4cf5d77a 7149 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7150}
7151
7152#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7153
67fc4e0c 7154#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7155/*
67fc4e0c 7156 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7157 *
7158 * They can only be called when the whole system has been
7159 * stopped - every CPU needs to be quiescent, and no scheduling
7160 * activity can take place. Using them for anything else would
7161 * be a serious bug, and as a result, they aren't even visible
7162 * under any other configuration.
7163 */
7164
7165/**
7166 * curr_task - return the current task for a given cpu.
7167 * @cpu: the processor in question.
7168 *
7169 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7170 *
7171 * Return: The current task for @cpu.
1df5c10a 7172 */
36c8b586 7173struct task_struct *curr_task(int cpu)
1df5c10a
LT
7174{
7175 return cpu_curr(cpu);
7176}
7177
67fc4e0c
JW
7178#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7179
7180#ifdef CONFIG_IA64
1df5c10a
LT
7181/**
7182 * set_curr_task - set the current task for a given cpu.
7183 * @cpu: the processor in question.
7184 * @p: the task pointer to set.
7185 *
7186 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7187 * are serviced on a separate stack. It allows the architecture to switch the
7188 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7189 * must be called with all CPU's synchronized, and interrupts disabled, the
7190 * and caller must save the original value of the current task (see
7191 * curr_task() above) and restore that value before reenabling interrupts and
7192 * re-starting the system.
7193 *
7194 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7195 */
36c8b586 7196void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7197{
7198 cpu_curr(cpu) = p;
7199}
7200
7201#endif
29f59db3 7202
7c941438 7203#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7204/* task_group_lock serializes the addition/removal of task groups */
7205static DEFINE_SPINLOCK(task_group_lock);
7206
bccbe08a
PZ
7207static void free_sched_group(struct task_group *tg)
7208{
7209 free_fair_sched_group(tg);
7210 free_rt_sched_group(tg);
e9aa1dd1 7211 autogroup_free(tg);
bccbe08a
PZ
7212 kfree(tg);
7213}
7214
7215/* allocate runqueue etc for a new task group */
ec7dc8ac 7216struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7217{
7218 struct task_group *tg;
bccbe08a
PZ
7219
7220 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7221 if (!tg)
7222 return ERR_PTR(-ENOMEM);
7223
ec7dc8ac 7224 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7225 goto err;
7226
ec7dc8ac 7227 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7228 goto err;
7229
ace783b9
LZ
7230 return tg;
7231
7232err:
7233 free_sched_group(tg);
7234 return ERR_PTR(-ENOMEM);
7235}
7236
7237void sched_online_group(struct task_group *tg, struct task_group *parent)
7238{
7239 unsigned long flags;
7240
8ed36996 7241 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7242 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7243
7244 WARN_ON(!parent); /* root should already exist */
7245
7246 tg->parent = parent;
f473aa5e 7247 INIT_LIST_HEAD(&tg->children);
09f2724a 7248 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7249 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7250}
7251
9b5b7751 7252/* rcu callback to free various structures associated with a task group */
6f505b16 7253static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7254{
29f59db3 7255 /* now it should be safe to free those cfs_rqs */
6f505b16 7256 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7257}
7258
9b5b7751 7259/* Destroy runqueue etc associated with a task group */
4cf86d77 7260void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7261{
7262 /* wait for possible concurrent references to cfs_rqs complete */
7263 call_rcu(&tg->rcu, free_sched_group_rcu);
7264}
7265
7266void sched_offline_group(struct task_group *tg)
29f59db3 7267{
8ed36996 7268 unsigned long flags;
9b5b7751 7269 int i;
29f59db3 7270
3d4b47b4
PZ
7271 /* end participation in shares distribution */
7272 for_each_possible_cpu(i)
bccbe08a 7273 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7274
7275 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7276 list_del_rcu(&tg->list);
f473aa5e 7277 list_del_rcu(&tg->siblings);
8ed36996 7278 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7279}
7280
9b5b7751 7281/* change task's runqueue when it moves between groups.
3a252015
IM
7282 * The caller of this function should have put the task in its new group
7283 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7284 * reflect its new group.
9b5b7751
SV
7285 */
7286void sched_move_task(struct task_struct *tsk)
29f59db3 7287{
8323f26c 7288 struct task_group *tg;
29f59db3
SV
7289 int on_rq, running;
7290 unsigned long flags;
7291 struct rq *rq;
7292
7293 rq = task_rq_lock(tsk, &flags);
7294
051a1d1a 7295 running = task_current(rq, tsk);
fd2f4419 7296 on_rq = tsk->on_rq;
29f59db3 7297
0e1f3483 7298 if (on_rq)
29f59db3 7299 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7300 if (unlikely(running))
7301 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7302
073219e9 7303 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7304 lockdep_is_held(&tsk->sighand->siglock)),
7305 struct task_group, css);
7306 tg = autogroup_task_group(tsk, tg);
7307 tsk->sched_task_group = tg;
7308
810b3817 7309#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7310 if (tsk->sched_class->task_move_group)
7311 tsk->sched_class->task_move_group(tsk, on_rq);
7312 else
810b3817 7313#endif
b2b5ce02 7314 set_task_rq(tsk, task_cpu(tsk));
810b3817 7315
0e1f3483
HS
7316 if (unlikely(running))
7317 tsk->sched_class->set_curr_task(rq);
7318 if (on_rq)
371fd7e7 7319 enqueue_task(rq, tsk, 0);
29f59db3 7320
0122ec5b 7321 task_rq_unlock(rq, tsk, &flags);
29f59db3 7322}
7c941438 7323#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7324
a790de99
PT
7325#ifdef CONFIG_RT_GROUP_SCHED
7326/*
7327 * Ensure that the real time constraints are schedulable.
7328 */
7329static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7330
9a7e0b18
PZ
7331/* Must be called with tasklist_lock held */
7332static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7333{
9a7e0b18 7334 struct task_struct *g, *p;
b40b2e8e 7335
9a7e0b18 7336 do_each_thread(g, p) {
029632fb 7337 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7338 return 1;
7339 } while_each_thread(g, p);
b40b2e8e 7340
9a7e0b18
PZ
7341 return 0;
7342}
b40b2e8e 7343
9a7e0b18
PZ
7344struct rt_schedulable_data {
7345 struct task_group *tg;
7346 u64 rt_period;
7347 u64 rt_runtime;
7348};
b40b2e8e 7349
a790de99 7350static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7351{
7352 struct rt_schedulable_data *d = data;
7353 struct task_group *child;
7354 unsigned long total, sum = 0;
7355 u64 period, runtime;
b40b2e8e 7356
9a7e0b18
PZ
7357 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7358 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7359
9a7e0b18
PZ
7360 if (tg == d->tg) {
7361 period = d->rt_period;
7362 runtime = d->rt_runtime;
b40b2e8e 7363 }
b40b2e8e 7364
4653f803
PZ
7365 /*
7366 * Cannot have more runtime than the period.
7367 */
7368 if (runtime > period && runtime != RUNTIME_INF)
7369 return -EINVAL;
6f505b16 7370
4653f803
PZ
7371 /*
7372 * Ensure we don't starve existing RT tasks.
7373 */
9a7e0b18
PZ
7374 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7375 return -EBUSY;
6f505b16 7376
9a7e0b18 7377 total = to_ratio(period, runtime);
6f505b16 7378
4653f803
PZ
7379 /*
7380 * Nobody can have more than the global setting allows.
7381 */
7382 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7383 return -EINVAL;
6f505b16 7384
4653f803
PZ
7385 /*
7386 * The sum of our children's runtime should not exceed our own.
7387 */
9a7e0b18
PZ
7388 list_for_each_entry_rcu(child, &tg->children, siblings) {
7389 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7390 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7391
9a7e0b18
PZ
7392 if (child == d->tg) {
7393 period = d->rt_period;
7394 runtime = d->rt_runtime;
7395 }
6f505b16 7396
9a7e0b18 7397 sum += to_ratio(period, runtime);
9f0c1e56 7398 }
6f505b16 7399
9a7e0b18
PZ
7400 if (sum > total)
7401 return -EINVAL;
7402
7403 return 0;
6f505b16
PZ
7404}
7405
9a7e0b18 7406static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7407{
8277434e
PT
7408 int ret;
7409
9a7e0b18
PZ
7410 struct rt_schedulable_data data = {
7411 .tg = tg,
7412 .rt_period = period,
7413 .rt_runtime = runtime,
7414 };
7415
8277434e
PT
7416 rcu_read_lock();
7417 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7418 rcu_read_unlock();
7419
7420 return ret;
521f1a24
DG
7421}
7422
ab84d31e 7423static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7424 u64 rt_period, u64 rt_runtime)
6f505b16 7425{
ac086bc2 7426 int i, err = 0;
9f0c1e56 7427
9f0c1e56 7428 mutex_lock(&rt_constraints_mutex);
521f1a24 7429 read_lock(&tasklist_lock);
9a7e0b18
PZ
7430 err = __rt_schedulable(tg, rt_period, rt_runtime);
7431 if (err)
9f0c1e56 7432 goto unlock;
ac086bc2 7433
0986b11b 7434 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7435 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7436 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7437
7438 for_each_possible_cpu(i) {
7439 struct rt_rq *rt_rq = tg->rt_rq[i];
7440
0986b11b 7441 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7442 rt_rq->rt_runtime = rt_runtime;
0986b11b 7443 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7444 }
0986b11b 7445 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7446unlock:
521f1a24 7447 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7448 mutex_unlock(&rt_constraints_mutex);
7449
7450 return err;
6f505b16
PZ
7451}
7452
25cc7da7 7453static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7454{
7455 u64 rt_runtime, rt_period;
7456
7457 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7458 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7459 if (rt_runtime_us < 0)
7460 rt_runtime = RUNTIME_INF;
7461
ab84d31e 7462 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7463}
7464
25cc7da7 7465static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7466{
7467 u64 rt_runtime_us;
7468
d0b27fa7 7469 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7470 return -1;
7471
d0b27fa7 7472 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7473 do_div(rt_runtime_us, NSEC_PER_USEC);
7474 return rt_runtime_us;
7475}
d0b27fa7 7476
25cc7da7 7477static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7478{
7479 u64 rt_runtime, rt_period;
7480
7481 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7482 rt_runtime = tg->rt_bandwidth.rt_runtime;
7483
619b0488
R
7484 if (rt_period == 0)
7485 return -EINVAL;
7486
ab84d31e 7487 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7488}
7489
25cc7da7 7490static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7491{
7492 u64 rt_period_us;
7493
7494 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7495 do_div(rt_period_us, NSEC_PER_USEC);
7496 return rt_period_us;
7497}
332ac17e 7498#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7499
332ac17e 7500#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7501static int sched_rt_global_constraints(void)
7502{
7503 int ret = 0;
7504
7505 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7506 read_lock(&tasklist_lock);
4653f803 7507 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7508 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7509 mutex_unlock(&rt_constraints_mutex);
7510
7511 return ret;
7512}
54e99124 7513
25cc7da7 7514static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7515{
7516 /* Don't accept realtime tasks when there is no way for them to run */
7517 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7518 return 0;
7519
7520 return 1;
7521}
7522
6d6bc0ad 7523#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7524static int sched_rt_global_constraints(void)
7525{
ac086bc2 7526 unsigned long flags;
332ac17e 7527 int i, ret = 0;
ec5d4989 7528
0986b11b 7529 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7530 for_each_possible_cpu(i) {
7531 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7532
0986b11b 7533 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7534 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7535 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7536 }
0986b11b 7537 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7538
332ac17e 7539 return ret;
d0b27fa7 7540}
6d6bc0ad 7541#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7542
332ac17e
DF
7543static int sched_dl_global_constraints(void)
7544{
1724813d
PZ
7545 u64 runtime = global_rt_runtime();
7546 u64 period = global_rt_period();
332ac17e 7547 u64 new_bw = to_ratio(period, runtime);
1724813d 7548 int cpu, ret = 0;
49516342 7549 unsigned long flags;
332ac17e
DF
7550
7551 /*
7552 * Here we want to check the bandwidth not being set to some
7553 * value smaller than the currently allocated bandwidth in
7554 * any of the root_domains.
7555 *
7556 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7557 * cycling on root_domains... Discussion on different/better
7558 * solutions is welcome!
7559 */
1724813d
PZ
7560 for_each_possible_cpu(cpu) {
7561 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7562
49516342 7563 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7564 if (new_bw < dl_b->total_bw)
7565 ret = -EBUSY;
49516342 7566 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7567
7568 if (ret)
7569 break;
332ac17e
DF
7570 }
7571
1724813d 7572 return ret;
332ac17e
DF
7573}
7574
1724813d 7575static void sched_dl_do_global(void)
ce0dbbbb 7576{
1724813d
PZ
7577 u64 new_bw = -1;
7578 int cpu;
49516342 7579 unsigned long flags;
ce0dbbbb 7580
1724813d
PZ
7581 def_dl_bandwidth.dl_period = global_rt_period();
7582 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7583
7584 if (global_rt_runtime() != RUNTIME_INF)
7585 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7586
7587 /*
7588 * FIXME: As above...
7589 */
7590 for_each_possible_cpu(cpu) {
7591 struct dl_bw *dl_b = dl_bw_of(cpu);
7592
49516342 7593 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7594 dl_b->bw = new_bw;
49516342 7595 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7596 }
1724813d
PZ
7597}
7598
7599static int sched_rt_global_validate(void)
7600{
7601 if (sysctl_sched_rt_period <= 0)
7602 return -EINVAL;
7603
e9e7cb38
JL
7604 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7605 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7606 return -EINVAL;
7607
7608 return 0;
7609}
7610
7611static void sched_rt_do_global(void)
7612{
7613 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7614 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7615}
7616
d0b27fa7 7617int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7618 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7619 loff_t *ppos)
7620{
d0b27fa7
PZ
7621 int old_period, old_runtime;
7622 static DEFINE_MUTEX(mutex);
1724813d 7623 int ret;
d0b27fa7
PZ
7624
7625 mutex_lock(&mutex);
7626 old_period = sysctl_sched_rt_period;
7627 old_runtime = sysctl_sched_rt_runtime;
7628
8d65af78 7629 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7630
7631 if (!ret && write) {
1724813d
PZ
7632 ret = sched_rt_global_validate();
7633 if (ret)
7634 goto undo;
7635
d0b27fa7 7636 ret = sched_rt_global_constraints();
1724813d
PZ
7637 if (ret)
7638 goto undo;
7639
7640 ret = sched_dl_global_constraints();
7641 if (ret)
7642 goto undo;
7643
7644 sched_rt_do_global();
7645 sched_dl_do_global();
7646 }
7647 if (0) {
7648undo:
7649 sysctl_sched_rt_period = old_period;
7650 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7651 }
7652 mutex_unlock(&mutex);
7653
7654 return ret;
7655}
68318b8e 7656
1724813d 7657int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7658 void __user *buffer, size_t *lenp,
7659 loff_t *ppos)
7660{
7661 int ret;
332ac17e 7662 static DEFINE_MUTEX(mutex);
332ac17e
DF
7663
7664 mutex_lock(&mutex);
332ac17e 7665 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7666 /* make sure that internally we keep jiffies */
7667 /* also, writing zero resets timeslice to default */
332ac17e 7668 if (!ret && write) {
1724813d
PZ
7669 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7670 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7671 }
7672 mutex_unlock(&mutex);
332ac17e
DF
7673 return ret;
7674}
7675
052f1dc7 7676#ifdef CONFIG_CGROUP_SCHED
68318b8e 7677
a7c6d554 7678static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7679{
a7c6d554 7680 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7681}
7682
eb95419b
TH
7683static struct cgroup_subsys_state *
7684cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7685{
eb95419b
TH
7686 struct task_group *parent = css_tg(parent_css);
7687 struct task_group *tg;
68318b8e 7688
eb95419b 7689 if (!parent) {
68318b8e 7690 /* This is early initialization for the top cgroup */
07e06b01 7691 return &root_task_group.css;
68318b8e
SV
7692 }
7693
ec7dc8ac 7694 tg = sched_create_group(parent);
68318b8e
SV
7695 if (IS_ERR(tg))
7696 return ERR_PTR(-ENOMEM);
7697
68318b8e
SV
7698 return &tg->css;
7699}
7700
eb95419b 7701static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7702{
eb95419b 7703 struct task_group *tg = css_tg(css);
5c9d535b 7704 struct task_group *parent = css_tg(css->parent);
ace783b9 7705
63876986
TH
7706 if (parent)
7707 sched_online_group(tg, parent);
ace783b9
LZ
7708 return 0;
7709}
7710
eb95419b 7711static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7712{
eb95419b 7713 struct task_group *tg = css_tg(css);
68318b8e
SV
7714
7715 sched_destroy_group(tg);
7716}
7717
eb95419b 7718static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7719{
eb95419b 7720 struct task_group *tg = css_tg(css);
ace783b9
LZ
7721
7722 sched_offline_group(tg);
7723}
7724
eb95419b 7725static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7726 struct cgroup_taskset *tset)
68318b8e 7727{
bb9d97b6
TH
7728 struct task_struct *task;
7729
924f0d9a 7730 cgroup_taskset_for_each(task, tset) {
b68aa230 7731#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7732 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7733 return -EINVAL;
b68aa230 7734#else
bb9d97b6
TH
7735 /* We don't support RT-tasks being in separate groups */
7736 if (task->sched_class != &fair_sched_class)
7737 return -EINVAL;
b68aa230 7738#endif
bb9d97b6 7739 }
be367d09
BB
7740 return 0;
7741}
68318b8e 7742
eb95419b 7743static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7744 struct cgroup_taskset *tset)
68318b8e 7745{
bb9d97b6
TH
7746 struct task_struct *task;
7747
924f0d9a 7748 cgroup_taskset_for_each(task, tset)
bb9d97b6 7749 sched_move_task(task);
68318b8e
SV
7750}
7751
eb95419b
TH
7752static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7753 struct cgroup_subsys_state *old_css,
7754 struct task_struct *task)
068c5cc5
PZ
7755{
7756 /*
7757 * cgroup_exit() is called in the copy_process() failure path.
7758 * Ignore this case since the task hasn't ran yet, this avoids
7759 * trying to poke a half freed task state from generic code.
7760 */
7761 if (!(task->flags & PF_EXITING))
7762 return;
7763
7764 sched_move_task(task);
7765}
7766
052f1dc7 7767#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7768static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7769 struct cftype *cftype, u64 shareval)
68318b8e 7770{
182446d0 7771 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7772}
7773
182446d0
TH
7774static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7775 struct cftype *cft)
68318b8e 7776{
182446d0 7777 struct task_group *tg = css_tg(css);
68318b8e 7778
c8b28116 7779 return (u64) scale_load_down(tg->shares);
68318b8e 7780}
ab84d31e
PT
7781
7782#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7783static DEFINE_MUTEX(cfs_constraints_mutex);
7784
ab84d31e
PT
7785const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7786const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7787
a790de99
PT
7788static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7789
ab84d31e
PT
7790static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7791{
56f570e5 7792 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7793 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7794
7795 if (tg == &root_task_group)
7796 return -EINVAL;
7797
7798 /*
7799 * Ensure we have at some amount of bandwidth every period. This is
7800 * to prevent reaching a state of large arrears when throttled via
7801 * entity_tick() resulting in prolonged exit starvation.
7802 */
7803 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7804 return -EINVAL;
7805
7806 /*
7807 * Likewise, bound things on the otherside by preventing insane quota
7808 * periods. This also allows us to normalize in computing quota
7809 * feasibility.
7810 */
7811 if (period > max_cfs_quota_period)
7812 return -EINVAL;
7813
a790de99
PT
7814 mutex_lock(&cfs_constraints_mutex);
7815 ret = __cfs_schedulable(tg, period, quota);
7816 if (ret)
7817 goto out_unlock;
7818
58088ad0 7819 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7820 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7821 /*
7822 * If we need to toggle cfs_bandwidth_used, off->on must occur
7823 * before making related changes, and on->off must occur afterwards
7824 */
7825 if (runtime_enabled && !runtime_was_enabled)
7826 cfs_bandwidth_usage_inc();
ab84d31e
PT
7827 raw_spin_lock_irq(&cfs_b->lock);
7828 cfs_b->period = ns_to_ktime(period);
7829 cfs_b->quota = quota;
58088ad0 7830
a9cf55b2 7831 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7832 /* restart the period timer (if active) to handle new period expiry */
7833 if (runtime_enabled && cfs_b->timer_active) {
7834 /* force a reprogram */
09dc4ab0 7835 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7836 }
ab84d31e
PT
7837 raw_spin_unlock_irq(&cfs_b->lock);
7838
7839 for_each_possible_cpu(i) {
7840 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7841 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7842
7843 raw_spin_lock_irq(&rq->lock);
58088ad0 7844 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7845 cfs_rq->runtime_remaining = 0;
671fd9da 7846
029632fb 7847 if (cfs_rq->throttled)
671fd9da 7848 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7849 raw_spin_unlock_irq(&rq->lock);
7850 }
1ee14e6c
BS
7851 if (runtime_was_enabled && !runtime_enabled)
7852 cfs_bandwidth_usage_dec();
a790de99
PT
7853out_unlock:
7854 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7855
a790de99 7856 return ret;
ab84d31e
PT
7857}
7858
7859int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7860{
7861 u64 quota, period;
7862
029632fb 7863 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7864 if (cfs_quota_us < 0)
7865 quota = RUNTIME_INF;
7866 else
7867 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7868
7869 return tg_set_cfs_bandwidth(tg, period, quota);
7870}
7871
7872long tg_get_cfs_quota(struct task_group *tg)
7873{
7874 u64 quota_us;
7875
029632fb 7876 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7877 return -1;
7878
029632fb 7879 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7880 do_div(quota_us, NSEC_PER_USEC);
7881
7882 return quota_us;
7883}
7884
7885int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7886{
7887 u64 quota, period;
7888
7889 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7890 quota = tg->cfs_bandwidth.quota;
ab84d31e 7891
ab84d31e
PT
7892 return tg_set_cfs_bandwidth(tg, period, quota);
7893}
7894
7895long tg_get_cfs_period(struct task_group *tg)
7896{
7897 u64 cfs_period_us;
7898
029632fb 7899 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7900 do_div(cfs_period_us, NSEC_PER_USEC);
7901
7902 return cfs_period_us;
7903}
7904
182446d0
TH
7905static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7906 struct cftype *cft)
ab84d31e 7907{
182446d0 7908 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7909}
7910
182446d0
TH
7911static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7912 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7913{
182446d0 7914 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7915}
7916
182446d0
TH
7917static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7918 struct cftype *cft)
ab84d31e 7919{
182446d0 7920 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7921}
7922
182446d0
TH
7923static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7924 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7925{
182446d0 7926 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7927}
7928
a790de99
PT
7929struct cfs_schedulable_data {
7930 struct task_group *tg;
7931 u64 period, quota;
7932};
7933
7934/*
7935 * normalize group quota/period to be quota/max_period
7936 * note: units are usecs
7937 */
7938static u64 normalize_cfs_quota(struct task_group *tg,
7939 struct cfs_schedulable_data *d)
7940{
7941 u64 quota, period;
7942
7943 if (tg == d->tg) {
7944 period = d->period;
7945 quota = d->quota;
7946 } else {
7947 period = tg_get_cfs_period(tg);
7948 quota = tg_get_cfs_quota(tg);
7949 }
7950
7951 /* note: these should typically be equivalent */
7952 if (quota == RUNTIME_INF || quota == -1)
7953 return RUNTIME_INF;
7954
7955 return to_ratio(period, quota);
7956}
7957
7958static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7959{
7960 struct cfs_schedulable_data *d = data;
029632fb 7961 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7962 s64 quota = 0, parent_quota = -1;
7963
7964 if (!tg->parent) {
7965 quota = RUNTIME_INF;
7966 } else {
029632fb 7967 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7968
7969 quota = normalize_cfs_quota(tg, d);
7970 parent_quota = parent_b->hierarchal_quota;
7971
7972 /*
7973 * ensure max(child_quota) <= parent_quota, inherit when no
7974 * limit is set
7975 */
7976 if (quota == RUNTIME_INF)
7977 quota = parent_quota;
7978 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7979 return -EINVAL;
7980 }
7981 cfs_b->hierarchal_quota = quota;
7982
7983 return 0;
7984}
7985
7986static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7987{
8277434e 7988 int ret;
a790de99
PT
7989 struct cfs_schedulable_data data = {
7990 .tg = tg,
7991 .period = period,
7992 .quota = quota,
7993 };
7994
7995 if (quota != RUNTIME_INF) {
7996 do_div(data.period, NSEC_PER_USEC);
7997 do_div(data.quota, NSEC_PER_USEC);
7998 }
7999
8277434e
PT
8000 rcu_read_lock();
8001 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8002 rcu_read_unlock();
8003
8004 return ret;
a790de99 8005}
e8da1b18 8006
2da8ca82 8007static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8008{
2da8ca82 8009 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8010 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8011
44ffc75b
TH
8012 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8013 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8014 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8015
8016 return 0;
8017}
ab84d31e 8018#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8019#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8020
052f1dc7 8021#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8022static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8023 struct cftype *cft, s64 val)
6f505b16 8024{
182446d0 8025 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8026}
8027
182446d0
TH
8028static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8029 struct cftype *cft)
6f505b16 8030{
182446d0 8031 return sched_group_rt_runtime(css_tg(css));
6f505b16 8032}
d0b27fa7 8033
182446d0
TH
8034static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8035 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8036{
182446d0 8037 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8038}
8039
182446d0
TH
8040static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8041 struct cftype *cft)
d0b27fa7 8042{
182446d0 8043 return sched_group_rt_period(css_tg(css));
d0b27fa7 8044}
6d6bc0ad 8045#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8046
fe5c7cc2 8047static struct cftype cpu_files[] = {
052f1dc7 8048#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8049 {
8050 .name = "shares",
f4c753b7
PM
8051 .read_u64 = cpu_shares_read_u64,
8052 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8053 },
052f1dc7 8054#endif
ab84d31e
PT
8055#ifdef CONFIG_CFS_BANDWIDTH
8056 {
8057 .name = "cfs_quota_us",
8058 .read_s64 = cpu_cfs_quota_read_s64,
8059 .write_s64 = cpu_cfs_quota_write_s64,
8060 },
8061 {
8062 .name = "cfs_period_us",
8063 .read_u64 = cpu_cfs_period_read_u64,
8064 .write_u64 = cpu_cfs_period_write_u64,
8065 },
e8da1b18
NR
8066 {
8067 .name = "stat",
2da8ca82 8068 .seq_show = cpu_stats_show,
e8da1b18 8069 },
ab84d31e 8070#endif
052f1dc7 8071#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8072 {
9f0c1e56 8073 .name = "rt_runtime_us",
06ecb27c
PM
8074 .read_s64 = cpu_rt_runtime_read,
8075 .write_s64 = cpu_rt_runtime_write,
6f505b16 8076 },
d0b27fa7
PZ
8077 {
8078 .name = "rt_period_us",
f4c753b7
PM
8079 .read_u64 = cpu_rt_period_read_uint,
8080 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8081 },
052f1dc7 8082#endif
4baf6e33 8083 { } /* terminate */
68318b8e
SV
8084};
8085
073219e9 8086struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8087 .css_alloc = cpu_cgroup_css_alloc,
8088 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8089 .css_online = cpu_cgroup_css_online,
8090 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8091 .can_attach = cpu_cgroup_can_attach,
8092 .attach = cpu_cgroup_attach,
068c5cc5 8093 .exit = cpu_cgroup_exit,
4baf6e33 8094 .base_cftypes = cpu_files,
68318b8e
SV
8095 .early_init = 1,
8096};
8097
052f1dc7 8098#endif /* CONFIG_CGROUP_SCHED */
d842de87 8099
b637a328
PM
8100void dump_cpu_task(int cpu)
8101{
8102 pr_info("Task dump for CPU %d:\n", cpu);
8103 sched_show_task(cpu_curr(cpu));
8104}