]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched/fair: Disable LB_BIAS by default
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
325ea10c 8#include "sched.h"
1da177e4 9
7281c8de 10#include <linux/nospec.h>
85f1abe0 11
0ed557aa
MR
12#include <linux/kcov.h>
13
96f951ed 14#include <asm/switch_to.h>
5517d86b 15#include <asm/tlb.h>
1da177e4 16
ea138446 17#include "../workqueue_internal.h"
29d5e047 18#include "../smpboot.h"
6e0534f2 19
91c27493
VG
20#include "pelt.h"
21
a8d154b0 22#define CREATE_TRACE_POINTS
ad8d75ff 23#include <trace/events/sched.h>
a8d154b0 24
029632fb 25DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 26
765cc3a4 27#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
bf5c91ba
IM
28/*
29 * Debugging: various feature bits
765cc3a4
PB
30 *
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
bf5c91ba 34 */
f00b45c1
PZ
35#define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 37const_debug unsigned int sysctl_sched_features =
391e43da 38#include "features.h"
f00b45c1 39 0;
f00b45c1 40#undef SCHED_FEAT
765cc3a4 41#endif
f00b45c1 42
b82d9fdd
PZ
43/*
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
46 */
47const_debug unsigned int sysctl_sched_nr_migrate = 32;
48
fa85ae24 49/*
d1ccc66d 50 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
51 * default: 1s
52 */
9f0c1e56 53unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 54
029632fb 55__read_mostly int scheduler_running;
6892b75e 56
9f0c1e56
PZ
57/*
58 * part of the period that we allow rt tasks to run in us.
59 * default: 0.95s
60 */
61int sysctl_sched_rt_runtime = 950000;
fa85ae24 62
3e71a462
PZ
63/*
64 * __task_rq_lock - lock the rq @p resides on.
65 */
eb580751 66struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
67 __acquires(rq->lock)
68{
69 struct rq *rq;
70
71 lockdep_assert_held(&p->pi_lock);
72
73 for (;;) {
74 rq = task_rq(p);
75 raw_spin_lock(&rq->lock);
76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 77 rq_pin_lock(rq, rf);
3e71a462
PZ
78 return rq;
79 }
80 raw_spin_unlock(&rq->lock);
81
82 while (unlikely(task_on_rq_migrating(p)))
83 cpu_relax();
84 }
85}
86
87/*
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89 */
eb580751 90struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
91 __acquires(p->pi_lock)
92 __acquires(rq->lock)
93{
94 struct rq *rq;
95
96 for (;;) {
eb580751 97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
98 rq = task_rq(p);
99 raw_spin_lock(&rq->lock);
100 /*
101 * move_queued_task() task_rq_lock()
102 *
103 * ACQUIRE (rq->lock)
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
107 * [L] ->on_rq
108 * RELEASE (rq->lock)
109 *
97fb7a0a 110 * If we observe the old CPU in task_rq_lock, the acquire of
3e71a462
PZ
111 * the old rq->lock will fully serialize against the stores.
112 *
d1ccc66d 113 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
114 * pair with the WMB to ensure we must then also see migrating.
115 */
116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 117 rq_pin_lock(rq, rf);
3e71a462
PZ
118 return rq;
119 }
120 raw_spin_unlock(&rq->lock);
eb580751 121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
122
123 while (unlikely(task_on_rq_migrating(p)))
124 cpu_relax();
125 }
126}
127
535b9552
IM
128/*
129 * RQ-clock updating methods:
130 */
131
132static void update_rq_clock_task(struct rq *rq, s64 delta)
133{
134/*
135 * In theory, the compile should just see 0 here, and optimize out the call
136 * to sched_rt_avg_update. But I don't trust it...
137 */
11d4afd4
VG
138 s64 __maybe_unused steal = 0, irq_delta = 0;
139
535b9552
IM
140#ifdef CONFIG_IRQ_TIME_ACCOUNTING
141 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
142
143 /*
144 * Since irq_time is only updated on {soft,}irq_exit, we might run into
145 * this case when a previous update_rq_clock() happened inside a
146 * {soft,}irq region.
147 *
148 * When this happens, we stop ->clock_task and only update the
149 * prev_irq_time stamp to account for the part that fit, so that a next
150 * update will consume the rest. This ensures ->clock_task is
151 * monotonic.
152 *
153 * It does however cause some slight miss-attribution of {soft,}irq
154 * time, a more accurate solution would be to update the irq_time using
155 * the current rq->clock timestamp, except that would require using
156 * atomic ops.
157 */
158 if (irq_delta > delta)
159 irq_delta = delta;
160
161 rq->prev_irq_time += irq_delta;
162 delta -= irq_delta;
163#endif
164#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
165 if (static_key_false((&paravirt_steal_rq_enabled))) {
166 steal = paravirt_steal_clock(cpu_of(rq));
167 steal -= rq->prev_steal_time_rq;
168
169 if (unlikely(steal > delta))
170 steal = delta;
171
172 rq->prev_steal_time_rq += steal;
173 delta -= steal;
174 }
175#endif
176
177 rq->clock_task += delta;
178
11d4afd4 179#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 180 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 181 update_irq_load_avg(rq, irq_delta + steal);
535b9552
IM
182#endif
183}
184
185void update_rq_clock(struct rq *rq)
186{
187 s64 delta;
188
189 lockdep_assert_held(&rq->lock);
190
191 if (rq->clock_update_flags & RQCF_ACT_SKIP)
192 return;
193
194#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
195 if (sched_feat(WARN_DOUBLE_CLOCK))
196 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
197 rq->clock_update_flags |= RQCF_UPDATED;
198#endif
26ae58d2 199
535b9552
IM
200 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
201 if (delta < 0)
202 return;
203 rq->clock += delta;
204 update_rq_clock_task(rq, delta);
205}
206
207
8f4d37ec
PZ
208#ifdef CONFIG_SCHED_HRTICK
209/*
210 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 211 */
8f4d37ec 212
8f4d37ec
PZ
213static void hrtick_clear(struct rq *rq)
214{
215 if (hrtimer_active(&rq->hrtick_timer))
216 hrtimer_cancel(&rq->hrtick_timer);
217}
218
8f4d37ec
PZ
219/*
220 * High-resolution timer tick.
221 * Runs from hardirq context with interrupts disabled.
222 */
223static enum hrtimer_restart hrtick(struct hrtimer *timer)
224{
225 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 226 struct rq_flags rf;
8f4d37ec
PZ
227
228 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
229
8a8c69c3 230 rq_lock(rq, &rf);
3e51f33f 231 update_rq_clock(rq);
8f4d37ec 232 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 233 rq_unlock(rq, &rf);
8f4d37ec
PZ
234
235 return HRTIMER_NORESTART;
236}
237
95e904c7 238#ifdef CONFIG_SMP
971ee28c 239
4961b6e1 240static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
241{
242 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 243
4961b6e1 244 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
245}
246
31656519
PZ
247/*
248 * called from hardirq (IPI) context
249 */
250static void __hrtick_start(void *arg)
b328ca18 251{
31656519 252 struct rq *rq = arg;
8a8c69c3 253 struct rq_flags rf;
b328ca18 254
8a8c69c3 255 rq_lock(rq, &rf);
971ee28c 256 __hrtick_restart(rq);
31656519 257 rq->hrtick_csd_pending = 0;
8a8c69c3 258 rq_unlock(rq, &rf);
b328ca18
PZ
259}
260
31656519
PZ
261/*
262 * Called to set the hrtick timer state.
263 *
264 * called with rq->lock held and irqs disabled
265 */
029632fb 266void hrtick_start(struct rq *rq, u64 delay)
b328ca18 267{
31656519 268 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 269 ktime_t time;
270 s64 delta;
271
272 /*
273 * Don't schedule slices shorter than 10000ns, that just
274 * doesn't make sense and can cause timer DoS.
275 */
276 delta = max_t(s64, delay, 10000LL);
277 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 278
cc584b21 279 hrtimer_set_expires(timer, time);
31656519
PZ
280
281 if (rq == this_rq()) {
971ee28c 282 __hrtick_restart(rq);
31656519 283 } else if (!rq->hrtick_csd_pending) {
c46fff2a 284 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
285 rq->hrtick_csd_pending = 1;
286 }
b328ca18
PZ
287}
288
31656519
PZ
289#else
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
31656519 296{
86893335
WL
297 /*
298 * Don't schedule slices shorter than 10000ns, that just
299 * doesn't make sense. Rely on vruntime for fairness.
300 */
301 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
302 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
303 HRTIMER_MODE_REL_PINNED);
31656519 304}
31656519 305#endif /* CONFIG_SMP */
8f4d37ec 306
77a021be 307static void hrtick_rq_init(struct rq *rq)
8f4d37ec 308{
31656519
PZ
309#ifdef CONFIG_SMP
310 rq->hrtick_csd_pending = 0;
8f4d37ec 311
31656519
PZ
312 rq->hrtick_csd.flags = 0;
313 rq->hrtick_csd.func = __hrtick_start;
314 rq->hrtick_csd.info = rq;
315#endif
8f4d37ec 316
31656519
PZ
317 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
318 rq->hrtick_timer.function = hrtick;
8f4d37ec 319}
006c75f1 320#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
321static inline void hrtick_clear(struct rq *rq)
322{
323}
324
77a021be 325static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
326{
327}
006c75f1 328#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 329
5529578a
FW
330/*
331 * cmpxchg based fetch_or, macro so it works for different integer types
332 */
333#define fetch_or(ptr, mask) \
334 ({ \
335 typeof(ptr) _ptr = (ptr); \
336 typeof(mask) _mask = (mask); \
337 typeof(*_ptr) _old, _val = *_ptr; \
338 \
339 for (;;) { \
340 _old = cmpxchg(_ptr, _val, _val | _mask); \
341 if (_old == _val) \
342 break; \
343 _val = _old; \
344 } \
345 _old; \
346})
347
e3baac47 348#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
349/*
350 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
351 * this avoids any races wrt polling state changes and thereby avoids
352 * spurious IPIs.
353 */
354static bool set_nr_and_not_polling(struct task_struct *p)
355{
356 struct thread_info *ti = task_thread_info(p);
357 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
358}
e3baac47
PZ
359
360/*
361 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
362 *
363 * If this returns true, then the idle task promises to call
364 * sched_ttwu_pending() and reschedule soon.
365 */
366static bool set_nr_if_polling(struct task_struct *p)
367{
368 struct thread_info *ti = task_thread_info(p);
316c1608 369 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
370
371 for (;;) {
372 if (!(val & _TIF_POLLING_NRFLAG))
373 return false;
374 if (val & _TIF_NEED_RESCHED)
375 return true;
376 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
377 if (old == val)
378 break;
379 val = old;
380 }
381 return true;
382}
383
fd99f91a
PZ
384#else
385static bool set_nr_and_not_polling(struct task_struct *p)
386{
387 set_tsk_need_resched(p);
388 return true;
389}
e3baac47
PZ
390
391#ifdef CONFIG_SMP
392static bool set_nr_if_polling(struct task_struct *p)
393{
394 return false;
395}
396#endif
fd99f91a
PZ
397#endif
398
76751049
PZ
399void wake_q_add(struct wake_q_head *head, struct task_struct *task)
400{
401 struct wake_q_node *node = &task->wake_q;
402
403 /*
404 * Atomically grab the task, if ->wake_q is !nil already it means
405 * its already queued (either by us or someone else) and will get the
406 * wakeup due to that.
407 *
7696f991
AP
408 * This cmpxchg() executes a full barrier, which pairs with the full
409 * barrier executed by the wakeup in wake_up_q().
76751049
PZ
410 */
411 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
412 return;
413
414 get_task_struct(task);
415
416 /*
417 * The head is context local, there can be no concurrency.
418 */
419 *head->lastp = node;
420 head->lastp = &node->next;
421}
422
423void wake_up_q(struct wake_q_head *head)
424{
425 struct wake_q_node *node = head->first;
426
427 while (node != WAKE_Q_TAIL) {
428 struct task_struct *task;
429
430 task = container_of(node, struct task_struct, wake_q);
431 BUG_ON(!task);
d1ccc66d 432 /* Task can safely be re-inserted now: */
76751049
PZ
433 node = node->next;
434 task->wake_q.next = NULL;
435
436 /*
7696f991
AP
437 * wake_up_process() executes a full barrier, which pairs with
438 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
439 */
440 wake_up_process(task);
441 put_task_struct(task);
442 }
443}
444
c24d20db 445/*
8875125e 446 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
447 *
448 * On UP this means the setting of the need_resched flag, on SMP it
449 * might also involve a cross-CPU call to trigger the scheduler on
450 * the target CPU.
451 */
8875125e 452void resched_curr(struct rq *rq)
c24d20db 453{
8875125e 454 struct task_struct *curr = rq->curr;
c24d20db
IM
455 int cpu;
456
8875125e 457 lockdep_assert_held(&rq->lock);
c24d20db 458
8875125e 459 if (test_tsk_need_resched(curr))
c24d20db
IM
460 return;
461
8875125e 462 cpu = cpu_of(rq);
fd99f91a 463
f27dde8d 464 if (cpu == smp_processor_id()) {
8875125e 465 set_tsk_need_resched(curr);
f27dde8d 466 set_preempt_need_resched();
c24d20db 467 return;
f27dde8d 468 }
c24d20db 469
8875125e 470 if (set_nr_and_not_polling(curr))
c24d20db 471 smp_send_reschedule(cpu);
dfc68f29
AL
472 else
473 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
474}
475
029632fb 476void resched_cpu(int cpu)
c24d20db
IM
477{
478 struct rq *rq = cpu_rq(cpu);
479 unsigned long flags;
480
7c2102e5 481 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
482 if (cpu_online(cpu) || cpu == smp_processor_id())
483 resched_curr(rq);
05fa785c 484 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 485}
06d8308c 486
b021fe3e 487#ifdef CONFIG_SMP
3451d024 488#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 489/*
d1ccc66d
IM
490 * In the semi idle case, use the nearest busy CPU for migrating timers
491 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
492 *
493 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
494 * selecting an idle CPU will add more delays to the timers than intended
495 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 496 */
bc7a34b8 497int get_nohz_timer_target(void)
83cd4fe2 498{
bc7a34b8 499 int i, cpu = smp_processor_id();
83cd4fe2
VP
500 struct sched_domain *sd;
501
de201559 502 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
503 return cpu;
504
057f3fad 505 rcu_read_lock();
83cd4fe2 506 for_each_domain(cpu, sd) {
057f3fad 507 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
508 if (cpu == i)
509 continue;
510
de201559 511 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
512 cpu = i;
513 goto unlock;
514 }
515 }
83cd4fe2 516 }
9642d18e 517
de201559
FW
518 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
519 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
520unlock:
521 rcu_read_unlock();
83cd4fe2
VP
522 return cpu;
523}
d1ccc66d 524
06d8308c
TG
525/*
526 * When add_timer_on() enqueues a timer into the timer wheel of an
527 * idle CPU then this timer might expire before the next timer event
528 * which is scheduled to wake up that CPU. In case of a completely
529 * idle system the next event might even be infinite time into the
530 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
531 * leaves the inner idle loop so the newly added timer is taken into
532 * account when the CPU goes back to idle and evaluates the timer
533 * wheel for the next timer event.
534 */
1c20091e 535static void wake_up_idle_cpu(int cpu)
06d8308c
TG
536{
537 struct rq *rq = cpu_rq(cpu);
538
539 if (cpu == smp_processor_id())
540 return;
541
67b9ca70 542 if (set_nr_and_not_polling(rq->idle))
06d8308c 543 smp_send_reschedule(cpu);
dfc68f29
AL
544 else
545 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
546}
547
c5bfece2 548static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 549{
53c5fa16
FW
550 /*
551 * We just need the target to call irq_exit() and re-evaluate
552 * the next tick. The nohz full kick at least implies that.
553 * If needed we can still optimize that later with an
554 * empty IRQ.
555 */
379d9ecb
PM
556 if (cpu_is_offline(cpu))
557 return true; /* Don't try to wake offline CPUs. */
c5bfece2 558 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
559 if (cpu != smp_processor_id() ||
560 tick_nohz_tick_stopped())
53c5fa16 561 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
562 return true;
563 }
564
565 return false;
566}
567
379d9ecb
PM
568/*
569 * Wake up the specified CPU. If the CPU is going offline, it is the
570 * caller's responsibility to deal with the lost wakeup, for example,
571 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
572 */
1c20091e
FW
573void wake_up_nohz_cpu(int cpu)
574{
c5bfece2 575 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
576 wake_up_idle_cpu(cpu);
577}
578
ca38062e 579static inline bool got_nohz_idle_kick(void)
45bf76df 580{
1c792db7 581 int cpu = smp_processor_id();
873b4c65 582
b7031a02 583 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
584 return false;
585
586 if (idle_cpu(cpu) && !need_resched())
587 return true;
588
589 /*
590 * We can't run Idle Load Balance on this CPU for this time so we
591 * cancel it and clear NOHZ_BALANCE_KICK
592 */
b7031a02 593 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 594 return false;
45bf76df
IM
595}
596
3451d024 597#else /* CONFIG_NO_HZ_COMMON */
45bf76df 598
ca38062e 599static inline bool got_nohz_idle_kick(void)
2069dd75 600{
ca38062e 601 return false;
2069dd75
PZ
602}
603
3451d024 604#endif /* CONFIG_NO_HZ_COMMON */
d842de87 605
ce831b38 606#ifdef CONFIG_NO_HZ_FULL
76d92ac3 607bool sched_can_stop_tick(struct rq *rq)
ce831b38 608{
76d92ac3
FW
609 int fifo_nr_running;
610
611 /* Deadline tasks, even if single, need the tick */
612 if (rq->dl.dl_nr_running)
613 return false;
614
1e78cdbd 615 /*
2548d546
PZ
616 * If there are more than one RR tasks, we need the tick to effect the
617 * actual RR behaviour.
1e78cdbd 618 */
76d92ac3
FW
619 if (rq->rt.rr_nr_running) {
620 if (rq->rt.rr_nr_running == 1)
621 return true;
622 else
623 return false;
1e78cdbd
RR
624 }
625
2548d546
PZ
626 /*
627 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
628 * forced preemption between FIFO tasks.
629 */
630 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
631 if (fifo_nr_running)
632 return true;
633
634 /*
635 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
636 * if there's more than one we need the tick for involuntary
637 * preemption.
638 */
639 if (rq->nr_running > 1)
541b8264 640 return false;
ce831b38 641
541b8264 642 return true;
ce831b38
FW
643}
644#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 645#endif /* CONFIG_SMP */
18d95a28 646
a790de99
PT
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 649/*
8277434e
PT
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 654 */
029632fb 655int walk_tg_tree_from(struct task_group *from,
8277434e 656 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
657{
658 struct task_group *parent, *child;
eb755805 659 int ret;
c09595f6 660
8277434e
PT
661 parent = from;
662
c09595f6 663down:
eb755805
PZ
664 ret = (*down)(parent, data);
665 if (ret)
8277434e 666 goto out;
c09595f6
PZ
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
eb755805 674 ret = (*up)(parent, data);
8277434e
PT
675 if (ret || parent == from)
676 goto out;
c09595f6
PZ
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
8277434e 682out:
eb755805 683 return ret;
c09595f6
PZ
684}
685
029632fb 686int tg_nop(struct task_group *tg, void *data)
eb755805 687{
e2b245f8 688 return 0;
eb755805 689}
18d95a28
PZ
690#endif
691
9059393e 692static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 693{
f05998d4
NR
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
dd41f596
IM
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
20f9cd2a 700 if (idle_policy(p->policy)) {
c8b28116 701 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 702 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
703 return;
704 }
71f8bd46 705
9059393e
VG
706 /*
707 * SCHED_OTHER tasks have to update their load when changing their
708 * weight
709 */
710 if (update_load && p->sched_class == &fair_sched_class) {
711 reweight_task(p, prio);
712 } else {
713 load->weight = scale_load(sched_prio_to_weight[prio]);
714 load->inv_weight = sched_prio_to_wmult[prio];
715 }
71f8bd46
IM
716}
717
1de64443 718static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 719{
0a67d1ee
PZ
720 if (!(flags & ENQUEUE_NOCLOCK))
721 update_rq_clock(rq);
722
1de64443
PZ
723 if (!(flags & ENQUEUE_RESTORE))
724 sched_info_queued(rq, p);
0a67d1ee 725
371fd7e7 726 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
727}
728
1de64443 729static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 730{
0a67d1ee
PZ
731 if (!(flags & DEQUEUE_NOCLOCK))
732 update_rq_clock(rq);
733
1de64443
PZ
734 if (!(flags & DEQUEUE_SAVE))
735 sched_info_dequeued(rq, p);
0a67d1ee 736
371fd7e7 737 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
738}
739
029632fb 740void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
741{
742 if (task_contributes_to_load(p))
743 rq->nr_uninterruptible--;
744
371fd7e7 745 enqueue_task(rq, p, flags);
1e3c88bd
PZ
746}
747
029632fb 748void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
749{
750 if (task_contributes_to_load(p))
751 rq->nr_uninterruptible++;
752
371fd7e7 753 dequeue_task(rq, p, flags);
1e3c88bd
PZ
754}
755
14531189 756/*
dd41f596 757 * __normal_prio - return the priority that is based on the static prio
14531189 758 */
14531189
IM
759static inline int __normal_prio(struct task_struct *p)
760{
dd41f596 761 return p->static_prio;
14531189
IM
762}
763
b29739f9
IM
764/*
765 * Calculate the expected normal priority: i.e. priority
766 * without taking RT-inheritance into account. Might be
767 * boosted by interactivity modifiers. Changes upon fork,
768 * setprio syscalls, and whenever the interactivity
769 * estimator recalculates.
770 */
36c8b586 771static inline int normal_prio(struct task_struct *p)
b29739f9
IM
772{
773 int prio;
774
aab03e05
DF
775 if (task_has_dl_policy(p))
776 prio = MAX_DL_PRIO-1;
777 else if (task_has_rt_policy(p))
b29739f9
IM
778 prio = MAX_RT_PRIO-1 - p->rt_priority;
779 else
780 prio = __normal_prio(p);
781 return prio;
782}
783
784/*
785 * Calculate the current priority, i.e. the priority
786 * taken into account by the scheduler. This value might
787 * be boosted by RT tasks, or might be boosted by
788 * interactivity modifiers. Will be RT if the task got
789 * RT-boosted. If not then it returns p->normal_prio.
790 */
36c8b586 791static int effective_prio(struct task_struct *p)
b29739f9
IM
792{
793 p->normal_prio = normal_prio(p);
794 /*
795 * If we are RT tasks or we were boosted to RT priority,
796 * keep the priority unchanged. Otherwise, update priority
797 * to the normal priority:
798 */
799 if (!rt_prio(p->prio))
800 return p->normal_prio;
801 return p->prio;
802}
803
1da177e4
LT
804/**
805 * task_curr - is this task currently executing on a CPU?
806 * @p: the task in question.
e69f6186
YB
807 *
808 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 809 */
36c8b586 810inline int task_curr(const struct task_struct *p)
1da177e4
LT
811{
812 return cpu_curr(task_cpu(p)) == p;
813}
814
67dfa1b7 815/*
4c9a4bc8
PZ
816 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
817 * use the balance_callback list if you want balancing.
818 *
819 * this means any call to check_class_changed() must be followed by a call to
820 * balance_callback().
67dfa1b7 821 */
cb469845
SR
822static inline void check_class_changed(struct rq *rq, struct task_struct *p,
823 const struct sched_class *prev_class,
da7a735e 824 int oldprio)
cb469845
SR
825{
826 if (prev_class != p->sched_class) {
827 if (prev_class->switched_from)
da7a735e 828 prev_class->switched_from(rq, p);
4c9a4bc8 829
da7a735e 830 p->sched_class->switched_to(rq, p);
2d3d891d 831 } else if (oldprio != p->prio || dl_task(p))
da7a735e 832 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
833}
834
029632fb 835void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
836{
837 const struct sched_class *class;
838
839 if (p->sched_class == rq->curr->sched_class) {
840 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
841 } else {
842 for_each_class(class) {
843 if (class == rq->curr->sched_class)
844 break;
845 if (class == p->sched_class) {
8875125e 846 resched_curr(rq);
1e5a7405
PZ
847 break;
848 }
849 }
850 }
851
852 /*
853 * A queue event has occurred, and we're going to schedule. In
854 * this case, we can save a useless back to back clock update.
855 */
da0c1e65 856 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 857 rq_clock_skip_update(rq);
1e5a7405
PZ
858}
859
1da177e4 860#ifdef CONFIG_SMP
175f0e25
PZ
861
862static inline bool is_per_cpu_kthread(struct task_struct *p)
863{
864 if (!(p->flags & PF_KTHREAD))
865 return false;
866
867 if (p->nr_cpus_allowed != 1)
868 return false;
869
870 return true;
871}
872
873/*
874 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
875 * __set_cpus_allowed_ptr() and select_fallback_rq().
876 */
877static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
878{
879 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
880 return false;
881
882 if (is_per_cpu_kthread(p))
883 return cpu_online(cpu);
884
885 return cpu_active(cpu);
886}
887
5cc389bc
PZ
888/*
889 * This is how migration works:
890 *
891 * 1) we invoke migration_cpu_stop() on the target CPU using
892 * stop_one_cpu().
893 * 2) stopper starts to run (implicitly forcing the migrated thread
894 * off the CPU)
895 * 3) it checks whether the migrated task is still in the wrong runqueue.
896 * 4) if it's in the wrong runqueue then the migration thread removes
897 * it and puts it into the right queue.
898 * 5) stopper completes and stop_one_cpu() returns and the migration
899 * is done.
900 */
901
902/*
903 * move_queued_task - move a queued task to new rq.
904 *
905 * Returns (locked) new rq. Old rq's lock is released.
906 */
8a8c69c3
PZ
907static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
908 struct task_struct *p, int new_cpu)
5cc389bc 909{
5cc389bc
PZ
910 lockdep_assert_held(&rq->lock);
911
5cc389bc 912 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 913 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 914 set_task_cpu(p, new_cpu);
8a8c69c3 915 rq_unlock(rq, rf);
5cc389bc
PZ
916
917 rq = cpu_rq(new_cpu);
918
8a8c69c3 919 rq_lock(rq, rf);
5cc389bc 920 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 921 enqueue_task(rq, p, 0);
3ea94de1 922 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
923 check_preempt_curr(rq, p, 0);
924
925 return rq;
926}
927
928struct migration_arg {
929 struct task_struct *task;
930 int dest_cpu;
931};
932
933/*
d1ccc66d 934 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
935 * this because either it can't run here any more (set_cpus_allowed()
936 * away from this CPU, or CPU going down), or because we're
937 * attempting to rebalance this task on exec (sched_exec).
938 *
939 * So we race with normal scheduler movements, but that's OK, as long
940 * as the task is no longer on this CPU.
5cc389bc 941 */
8a8c69c3
PZ
942static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
943 struct task_struct *p, int dest_cpu)
5cc389bc 944{
5cc389bc 945 /* Affinity changed (again). */
175f0e25 946 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 947 return rq;
5cc389bc 948
15ff991e 949 update_rq_clock(rq);
8a8c69c3 950 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
951
952 return rq;
5cc389bc
PZ
953}
954
955/*
956 * migration_cpu_stop - this will be executed by a highprio stopper thread
957 * and performs thread migration by bumping thread off CPU then
958 * 'pushing' onto another runqueue.
959 */
960static int migration_cpu_stop(void *data)
961{
962 struct migration_arg *arg = data;
5e16bbc2
PZ
963 struct task_struct *p = arg->task;
964 struct rq *rq = this_rq();
8a8c69c3 965 struct rq_flags rf;
5cc389bc
PZ
966
967 /*
d1ccc66d
IM
968 * The original target CPU might have gone down and we might
969 * be on another CPU but it doesn't matter.
5cc389bc
PZ
970 */
971 local_irq_disable();
972 /*
973 * We need to explicitly wake pending tasks before running
974 * __migrate_task() such that we will not miss enforcing cpus_allowed
975 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
976 */
977 sched_ttwu_pending();
5e16bbc2
PZ
978
979 raw_spin_lock(&p->pi_lock);
8a8c69c3 980 rq_lock(rq, &rf);
5e16bbc2
PZ
981 /*
982 * If task_rq(p) != rq, it cannot be migrated here, because we're
983 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
984 * we're holding p->pi_lock.
985 */
bf89a304
CC
986 if (task_rq(p) == rq) {
987 if (task_on_rq_queued(p))
8a8c69c3 988 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
989 else
990 p->wake_cpu = arg->dest_cpu;
991 }
8a8c69c3 992 rq_unlock(rq, &rf);
5e16bbc2
PZ
993 raw_spin_unlock(&p->pi_lock);
994
5cc389bc
PZ
995 local_irq_enable();
996 return 0;
997}
998
c5b28038
PZ
999/*
1000 * sched_class::set_cpus_allowed must do the below, but is not required to
1001 * actually call this function.
1002 */
1003void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1004{
5cc389bc
PZ
1005 cpumask_copy(&p->cpus_allowed, new_mask);
1006 p->nr_cpus_allowed = cpumask_weight(new_mask);
1007}
1008
c5b28038
PZ
1009void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1010{
6c37067e
PZ
1011 struct rq *rq = task_rq(p);
1012 bool queued, running;
1013
c5b28038 1014 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1015
1016 queued = task_on_rq_queued(p);
1017 running = task_current(rq, p);
1018
1019 if (queued) {
1020 /*
1021 * Because __kthread_bind() calls this on blocked tasks without
1022 * holding rq->lock.
1023 */
1024 lockdep_assert_held(&rq->lock);
7a57f32a 1025 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1026 }
1027 if (running)
1028 put_prev_task(rq, p);
1029
c5b28038 1030 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1031
6c37067e 1032 if (queued)
7134b3e9 1033 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1034 if (running)
b2bf6c31 1035 set_curr_task(rq, p);
c5b28038
PZ
1036}
1037
5cc389bc
PZ
1038/*
1039 * Change a given task's CPU affinity. Migrate the thread to a
1040 * proper CPU and schedule it away if the CPU it's executing on
1041 * is removed from the allowed bitmask.
1042 *
1043 * NOTE: the caller must have a valid reference to the task, the
1044 * task must not exit() & deallocate itself prematurely. The
1045 * call is not atomic; no spinlocks may be held.
1046 */
25834c73
PZ
1047static int __set_cpus_allowed_ptr(struct task_struct *p,
1048 const struct cpumask *new_mask, bool check)
5cc389bc 1049{
e9d867a6 1050 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1051 unsigned int dest_cpu;
eb580751
PZ
1052 struct rq_flags rf;
1053 struct rq *rq;
5cc389bc
PZ
1054 int ret = 0;
1055
eb580751 1056 rq = task_rq_lock(p, &rf);
a499c3ea 1057 update_rq_clock(rq);
5cc389bc 1058
e9d867a6
PZI
1059 if (p->flags & PF_KTHREAD) {
1060 /*
1061 * Kernel threads are allowed on online && !active CPUs
1062 */
1063 cpu_valid_mask = cpu_online_mask;
1064 }
1065
25834c73
PZ
1066 /*
1067 * Must re-check here, to close a race against __kthread_bind(),
1068 * sched_setaffinity() is not guaranteed to observe the flag.
1069 */
1070 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1071 ret = -EINVAL;
1072 goto out;
1073 }
1074
5cc389bc
PZ
1075 if (cpumask_equal(&p->cpus_allowed, new_mask))
1076 goto out;
1077
e9d867a6 1078 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 do_set_cpus_allowed(p, new_mask);
1084
e9d867a6
PZI
1085 if (p->flags & PF_KTHREAD) {
1086 /*
1087 * For kernel threads that do indeed end up on online &&
d1ccc66d 1088 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1089 */
1090 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1091 !cpumask_intersects(new_mask, cpu_active_mask) &&
1092 p->nr_cpus_allowed != 1);
1093 }
1094
5cc389bc
PZ
1095 /* Can the task run on the task's current CPU? If so, we're done */
1096 if (cpumask_test_cpu(task_cpu(p), new_mask))
1097 goto out;
1098
e9d867a6 1099 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1100 if (task_running(rq, p) || p->state == TASK_WAKING) {
1101 struct migration_arg arg = { p, dest_cpu };
1102 /* Need help from migration thread: drop lock and wait. */
eb580751 1103 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1104 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1105 tlb_migrate_finish(p->mm);
1106 return 0;
cbce1a68
PZ
1107 } else if (task_on_rq_queued(p)) {
1108 /*
1109 * OK, since we're going to drop the lock immediately
1110 * afterwards anyway.
1111 */
8a8c69c3 1112 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1113 }
5cc389bc 1114out:
eb580751 1115 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1116
1117 return ret;
1118}
25834c73
PZ
1119
1120int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1121{
1122 return __set_cpus_allowed_ptr(p, new_mask, false);
1123}
5cc389bc
PZ
1124EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1125
dd41f596 1126void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1127{
e2912009
PZ
1128#ifdef CONFIG_SCHED_DEBUG
1129 /*
1130 * We should never call set_task_cpu() on a blocked task,
1131 * ttwu() will sort out the placement.
1132 */
077614ee 1133 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1134 !p->on_rq);
0122ec5b 1135
3ea94de1
JP
1136 /*
1137 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1138 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1139 * time relying on p->on_rq.
1140 */
1141 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1142 p->sched_class == &fair_sched_class &&
1143 (p->on_rq && !task_on_rq_migrating(p)));
1144
0122ec5b 1145#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1146 /*
1147 * The caller should hold either p->pi_lock or rq->lock, when changing
1148 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1149 *
1150 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1151 * see task_group().
6c6c54e1
PZ
1152 *
1153 * Furthermore, all task_rq users should acquire both locks, see
1154 * task_rq_lock().
1155 */
0122ec5b
PZ
1156 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1157 lockdep_is_held(&task_rq(p)->lock)));
1158#endif
4ff9083b
PZ
1159 /*
1160 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1161 */
1162 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1163#endif
1164
de1d7286 1165 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1166
0c69774e 1167 if (task_cpu(p) != new_cpu) {
0a74bef8 1168 if (p->sched_class->migrate_task_rq)
1327237a 1169 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1170 p->se.nr_migrations++;
d7822b1e 1171 rseq_migrate(p);
ff303e66 1172 perf_event_task_migrate(p);
0c69774e 1173 }
dd41f596
IM
1174
1175 __set_task_cpu(p, new_cpu);
c65cc870
IM
1176}
1177
0ad4e3df 1178#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1179static void __migrate_swap_task(struct task_struct *p, int cpu)
1180{
da0c1e65 1181 if (task_on_rq_queued(p)) {
ac66f547 1182 struct rq *src_rq, *dst_rq;
8a8c69c3 1183 struct rq_flags srf, drf;
ac66f547
PZ
1184
1185 src_rq = task_rq(p);
1186 dst_rq = cpu_rq(cpu);
1187
8a8c69c3
PZ
1188 rq_pin_lock(src_rq, &srf);
1189 rq_pin_lock(dst_rq, &drf);
1190
3ea94de1 1191 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1192 deactivate_task(src_rq, p, 0);
1193 set_task_cpu(p, cpu);
1194 activate_task(dst_rq, p, 0);
3ea94de1 1195 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1196 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1197
1198 rq_unpin_lock(dst_rq, &drf);
1199 rq_unpin_lock(src_rq, &srf);
1200
ac66f547
PZ
1201 } else {
1202 /*
1203 * Task isn't running anymore; make it appear like we migrated
1204 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1205 * previous CPU our target instead of where it really is.
ac66f547
PZ
1206 */
1207 p->wake_cpu = cpu;
1208 }
1209}
1210
1211struct migration_swap_arg {
1212 struct task_struct *src_task, *dst_task;
1213 int src_cpu, dst_cpu;
1214};
1215
1216static int migrate_swap_stop(void *data)
1217{
1218 struct migration_swap_arg *arg = data;
1219 struct rq *src_rq, *dst_rq;
1220 int ret = -EAGAIN;
1221
62694cd5
PZ
1222 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1223 return -EAGAIN;
1224
ac66f547
PZ
1225 src_rq = cpu_rq(arg->src_cpu);
1226 dst_rq = cpu_rq(arg->dst_cpu);
1227
74602315
PZ
1228 double_raw_lock(&arg->src_task->pi_lock,
1229 &arg->dst_task->pi_lock);
ac66f547 1230 double_rq_lock(src_rq, dst_rq);
62694cd5 1231
ac66f547
PZ
1232 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1233 goto unlock;
1234
1235 if (task_cpu(arg->src_task) != arg->src_cpu)
1236 goto unlock;
1237
0c98d344 1238 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1239 goto unlock;
1240
0c98d344 1241 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1242 goto unlock;
1243
1244 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1245 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1246
1247 ret = 0;
1248
1249unlock:
1250 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1251 raw_spin_unlock(&arg->dst_task->pi_lock);
1252 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1253
1254 return ret;
1255}
1256
1257/*
1258 * Cross migrate two tasks
1259 */
0ad4e3df
SD
1260int migrate_swap(struct task_struct *cur, struct task_struct *p,
1261 int target_cpu, int curr_cpu)
ac66f547
PZ
1262{
1263 struct migration_swap_arg arg;
1264 int ret = -EINVAL;
1265
ac66f547
PZ
1266 arg = (struct migration_swap_arg){
1267 .src_task = cur,
0ad4e3df 1268 .src_cpu = curr_cpu,
ac66f547 1269 .dst_task = p,
0ad4e3df 1270 .dst_cpu = target_cpu,
ac66f547
PZ
1271 };
1272
1273 if (arg.src_cpu == arg.dst_cpu)
1274 goto out;
1275
6acce3ef
PZ
1276 /*
1277 * These three tests are all lockless; this is OK since all of them
1278 * will be re-checked with proper locks held further down the line.
1279 */
ac66f547
PZ
1280 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1281 goto out;
1282
0c98d344 1283 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1284 goto out;
1285
0c98d344 1286 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1287 goto out;
1288
286549dc 1289 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1290 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1291
1292out:
ac66f547
PZ
1293 return ret;
1294}
0ad4e3df 1295#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1296
1da177e4
LT
1297/*
1298 * wait_task_inactive - wait for a thread to unschedule.
1299 *
85ba2d86
RM
1300 * If @match_state is nonzero, it's the @p->state value just checked and
1301 * not expected to change. If it changes, i.e. @p might have woken up,
1302 * then return zero. When we succeed in waiting for @p to be off its CPU,
1303 * we return a positive number (its total switch count). If a second call
1304 * a short while later returns the same number, the caller can be sure that
1305 * @p has remained unscheduled the whole time.
1306 *
1da177e4
LT
1307 * The caller must ensure that the task *will* unschedule sometime soon,
1308 * else this function might spin for a *long* time. This function can't
1309 * be called with interrupts off, or it may introduce deadlock with
1310 * smp_call_function() if an IPI is sent by the same process we are
1311 * waiting to become inactive.
1312 */
85ba2d86 1313unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1314{
da0c1e65 1315 int running, queued;
eb580751 1316 struct rq_flags rf;
85ba2d86 1317 unsigned long ncsw;
70b97a7f 1318 struct rq *rq;
1da177e4 1319
3a5c359a
AK
1320 for (;;) {
1321 /*
1322 * We do the initial early heuristics without holding
1323 * any task-queue locks at all. We'll only try to get
1324 * the runqueue lock when things look like they will
1325 * work out!
1326 */
1327 rq = task_rq(p);
fa490cfd 1328
3a5c359a
AK
1329 /*
1330 * If the task is actively running on another CPU
1331 * still, just relax and busy-wait without holding
1332 * any locks.
1333 *
1334 * NOTE! Since we don't hold any locks, it's not
1335 * even sure that "rq" stays as the right runqueue!
1336 * But we don't care, since "task_running()" will
1337 * return false if the runqueue has changed and p
1338 * is actually now running somewhere else!
1339 */
85ba2d86
RM
1340 while (task_running(rq, p)) {
1341 if (match_state && unlikely(p->state != match_state))
1342 return 0;
3a5c359a 1343 cpu_relax();
85ba2d86 1344 }
fa490cfd 1345
3a5c359a
AK
1346 /*
1347 * Ok, time to look more closely! We need the rq
1348 * lock now, to be *sure*. If we're wrong, we'll
1349 * just go back and repeat.
1350 */
eb580751 1351 rq = task_rq_lock(p, &rf);
27a9da65 1352 trace_sched_wait_task(p);
3a5c359a 1353 running = task_running(rq, p);
da0c1e65 1354 queued = task_on_rq_queued(p);
85ba2d86 1355 ncsw = 0;
f31e11d8 1356 if (!match_state || p->state == match_state)
93dcf55f 1357 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1358 task_rq_unlock(rq, p, &rf);
fa490cfd 1359
85ba2d86
RM
1360 /*
1361 * If it changed from the expected state, bail out now.
1362 */
1363 if (unlikely(!ncsw))
1364 break;
1365
3a5c359a
AK
1366 /*
1367 * Was it really running after all now that we
1368 * checked with the proper locks actually held?
1369 *
1370 * Oops. Go back and try again..
1371 */
1372 if (unlikely(running)) {
1373 cpu_relax();
1374 continue;
1375 }
fa490cfd 1376
3a5c359a
AK
1377 /*
1378 * It's not enough that it's not actively running,
1379 * it must be off the runqueue _entirely_, and not
1380 * preempted!
1381 *
80dd99b3 1382 * So if it was still runnable (but just not actively
3a5c359a
AK
1383 * running right now), it's preempted, and we should
1384 * yield - it could be a while.
1385 */
da0c1e65 1386 if (unlikely(queued)) {
8b0e1953 1387 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1388
1389 set_current_state(TASK_UNINTERRUPTIBLE);
1390 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1391 continue;
1392 }
fa490cfd 1393
3a5c359a
AK
1394 /*
1395 * Ahh, all good. It wasn't running, and it wasn't
1396 * runnable, which means that it will never become
1397 * running in the future either. We're all done!
1398 */
1399 break;
1400 }
85ba2d86
RM
1401
1402 return ncsw;
1da177e4
LT
1403}
1404
1405/***
1406 * kick_process - kick a running thread to enter/exit the kernel
1407 * @p: the to-be-kicked thread
1408 *
1409 * Cause a process which is running on another CPU to enter
1410 * kernel-mode, without any delay. (to get signals handled.)
1411 *
25985edc 1412 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1413 * because all it wants to ensure is that the remote task enters
1414 * the kernel. If the IPI races and the task has been migrated
1415 * to another CPU then no harm is done and the purpose has been
1416 * achieved as well.
1417 */
36c8b586 1418void kick_process(struct task_struct *p)
1da177e4
LT
1419{
1420 int cpu;
1421
1422 preempt_disable();
1423 cpu = task_cpu(p);
1424 if ((cpu != smp_processor_id()) && task_curr(p))
1425 smp_send_reschedule(cpu);
1426 preempt_enable();
1427}
b43e3521 1428EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1429
30da688e 1430/*
013fdb80 1431 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1432 *
1433 * A few notes on cpu_active vs cpu_online:
1434 *
1435 * - cpu_active must be a subset of cpu_online
1436 *
97fb7a0a 1437 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1438 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1439 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1440 * see it.
1441 *
d1ccc66d 1442 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1443 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1444 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1445 * off.
1446 *
1447 * This means that fallback selection must not select !active CPUs.
1448 * And can assume that any active CPU must be online. Conversely
1449 * select_task_rq() below may allow selection of !active CPUs in order
1450 * to satisfy the above rules.
30da688e 1451 */
5da9a0fb
PZ
1452static int select_fallback_rq(int cpu, struct task_struct *p)
1453{
aa00d89c
TC
1454 int nid = cpu_to_node(cpu);
1455 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1456 enum { cpuset, possible, fail } state = cpuset;
1457 int dest_cpu;
5da9a0fb 1458
aa00d89c 1459 /*
d1ccc66d
IM
1460 * If the node that the CPU is on has been offlined, cpu_to_node()
1461 * will return -1. There is no CPU on the node, and we should
1462 * select the CPU on the other node.
aa00d89c
TC
1463 */
1464 if (nid != -1) {
1465 nodemask = cpumask_of_node(nid);
1466
1467 /* Look for allowed, online CPU in same node. */
1468 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1469 if (!cpu_active(dest_cpu))
1470 continue;
0c98d344 1471 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1472 return dest_cpu;
1473 }
2baab4e9 1474 }
5da9a0fb 1475
2baab4e9
PZ
1476 for (;;) {
1477 /* Any allowed, online CPU? */
0c98d344 1478 for_each_cpu(dest_cpu, &p->cpus_allowed) {
175f0e25 1479 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1480 continue;
175f0e25 1481
2baab4e9
PZ
1482 goto out;
1483 }
5da9a0fb 1484
e73e85f0 1485 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1486 switch (state) {
1487 case cpuset:
e73e85f0
ON
1488 if (IS_ENABLED(CONFIG_CPUSETS)) {
1489 cpuset_cpus_allowed_fallback(p);
1490 state = possible;
1491 break;
1492 }
d1ccc66d 1493 /* Fall-through */
2baab4e9
PZ
1494 case possible:
1495 do_set_cpus_allowed(p, cpu_possible_mask);
1496 state = fail;
1497 break;
1498
1499 case fail:
1500 BUG();
1501 break;
1502 }
1503 }
1504
1505out:
1506 if (state != cpuset) {
1507 /*
1508 * Don't tell them about moving exiting tasks or
1509 * kernel threads (both mm NULL), since they never
1510 * leave kernel.
1511 */
1512 if (p->mm && printk_ratelimit()) {
aac74dc4 1513 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1514 task_pid_nr(p), p->comm, cpu);
1515 }
5da9a0fb
PZ
1516 }
1517
1518 return dest_cpu;
1519}
1520
e2912009 1521/*
013fdb80 1522 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1523 */
970b13ba 1524static inline
ac66f547 1525int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1526{
cbce1a68
PZ
1527 lockdep_assert_held(&p->pi_lock);
1528
4b53a341 1529 if (p->nr_cpus_allowed > 1)
6c1d9410 1530 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1531 else
0c98d344 1532 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1533
1534 /*
1535 * In order not to call set_task_cpu() on a blocking task we need
1536 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1537 * CPU.
e2912009
PZ
1538 *
1539 * Since this is common to all placement strategies, this lives here.
1540 *
1541 * [ this allows ->select_task() to simply return task_cpu(p) and
1542 * not worry about this generic constraint ]
1543 */
7af443ee 1544 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 1545 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1546
1547 return cpu;
970b13ba 1548}
09a40af5
MG
1549
1550static void update_avg(u64 *avg, u64 sample)
1551{
1552 s64 diff = sample - *avg;
1553 *avg += diff >> 3;
1554}
25834c73 1555
f5832c19
NP
1556void sched_set_stop_task(int cpu, struct task_struct *stop)
1557{
1558 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1559 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1560
1561 if (stop) {
1562 /*
1563 * Make it appear like a SCHED_FIFO task, its something
1564 * userspace knows about and won't get confused about.
1565 *
1566 * Also, it will make PI more or less work without too
1567 * much confusion -- but then, stop work should not
1568 * rely on PI working anyway.
1569 */
1570 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1571
1572 stop->sched_class = &stop_sched_class;
1573 }
1574
1575 cpu_rq(cpu)->stop = stop;
1576
1577 if (old_stop) {
1578 /*
1579 * Reset it back to a normal scheduling class so that
1580 * it can die in pieces.
1581 */
1582 old_stop->sched_class = &rt_sched_class;
1583 }
1584}
1585
25834c73
PZ
1586#else
1587
1588static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1589 const struct cpumask *new_mask, bool check)
1590{
1591 return set_cpus_allowed_ptr(p, new_mask);
1592}
1593
5cc389bc 1594#endif /* CONFIG_SMP */
970b13ba 1595
d7c01d27 1596static void
b84cb5df 1597ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1598{
4fa8d299 1599 struct rq *rq;
b84cb5df 1600
4fa8d299
JP
1601 if (!schedstat_enabled())
1602 return;
1603
1604 rq = this_rq();
d7c01d27 1605
4fa8d299
JP
1606#ifdef CONFIG_SMP
1607 if (cpu == rq->cpu) {
b85c8b71
PZ
1608 __schedstat_inc(rq->ttwu_local);
1609 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1610 } else {
1611 struct sched_domain *sd;
1612
b85c8b71 1613 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1614 rcu_read_lock();
4fa8d299 1615 for_each_domain(rq->cpu, sd) {
d7c01d27 1616 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1617 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1618 break;
1619 }
1620 }
057f3fad 1621 rcu_read_unlock();
d7c01d27 1622 }
f339b9dc
PZ
1623
1624 if (wake_flags & WF_MIGRATED)
b85c8b71 1625 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1626#endif /* CONFIG_SMP */
1627
b85c8b71
PZ
1628 __schedstat_inc(rq->ttwu_count);
1629 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1630
1631 if (wake_flags & WF_SYNC)
b85c8b71 1632 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1633}
1634
1de64443 1635static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1636{
9ed3811a 1637 activate_task(rq, p, en_flags);
da0c1e65 1638 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1639
d1ccc66d 1640 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1641 if (p->flags & PF_WQ_WORKER)
1642 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1643}
1644
23f41eeb
PZ
1645/*
1646 * Mark the task runnable and perform wakeup-preemption.
1647 */
e7904a28 1648static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1649 struct rq_flags *rf)
9ed3811a 1650{
9ed3811a 1651 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1652 p->state = TASK_RUNNING;
fbd705a0
PZ
1653 trace_sched_wakeup(p);
1654
9ed3811a 1655#ifdef CONFIG_SMP
4c9a4bc8
PZ
1656 if (p->sched_class->task_woken) {
1657 /*
cbce1a68
PZ
1658 * Our task @p is fully woken up and running; so its safe to
1659 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1660 */
d8ac8971 1661 rq_unpin_lock(rq, rf);
9ed3811a 1662 p->sched_class->task_woken(rq, p);
d8ac8971 1663 rq_repin_lock(rq, rf);
4c9a4bc8 1664 }
9ed3811a 1665
e69c6341 1666 if (rq->idle_stamp) {
78becc27 1667 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1668 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1669
abfafa54
JL
1670 update_avg(&rq->avg_idle, delta);
1671
1672 if (rq->avg_idle > max)
9ed3811a 1673 rq->avg_idle = max;
abfafa54 1674
9ed3811a
TH
1675 rq->idle_stamp = 0;
1676 }
1677#endif
1678}
1679
c05fbafb 1680static void
e7904a28 1681ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1682 struct rq_flags *rf)
c05fbafb 1683{
77558e4d 1684 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1685
cbce1a68
PZ
1686 lockdep_assert_held(&rq->lock);
1687
c05fbafb
PZ
1688#ifdef CONFIG_SMP
1689 if (p->sched_contributes_to_load)
1690 rq->nr_uninterruptible--;
b5179ac7 1691
b5179ac7 1692 if (wake_flags & WF_MIGRATED)
59efa0ba 1693 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1694#endif
1695
b5179ac7 1696 ttwu_activate(rq, p, en_flags);
d8ac8971 1697 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1698}
1699
1700/*
1701 * Called in case the task @p isn't fully descheduled from its runqueue,
1702 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1703 * since all we need to do is flip p->state to TASK_RUNNING, since
1704 * the task is still ->on_rq.
1705 */
1706static int ttwu_remote(struct task_struct *p, int wake_flags)
1707{
eb580751 1708 struct rq_flags rf;
c05fbafb
PZ
1709 struct rq *rq;
1710 int ret = 0;
1711
eb580751 1712 rq = __task_rq_lock(p, &rf);
da0c1e65 1713 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1714 /* check_preempt_curr() may use rq clock */
1715 update_rq_clock(rq);
d8ac8971 1716 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1717 ret = 1;
1718 }
eb580751 1719 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1720
1721 return ret;
1722}
1723
317f3941 1724#ifdef CONFIG_SMP
e3baac47 1725void sched_ttwu_pending(void)
317f3941
PZ
1726{
1727 struct rq *rq = this_rq();
fa14ff4a 1728 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1729 struct task_struct *p, *t;
d8ac8971 1730 struct rq_flags rf;
317f3941 1731
e3baac47
PZ
1732 if (!llist)
1733 return;
1734
8a8c69c3 1735 rq_lock_irqsave(rq, &rf);
77558e4d 1736 update_rq_clock(rq);
317f3941 1737
73215849
BP
1738 llist_for_each_entry_safe(p, t, llist, wake_entry)
1739 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1740
8a8c69c3 1741 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1742}
1743
1744void scheduler_ipi(void)
1745{
f27dde8d
PZ
1746 /*
1747 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1748 * TIF_NEED_RESCHED remotely (for the first time) will also send
1749 * this IPI.
1750 */
8cb75e0c 1751 preempt_fold_need_resched();
f27dde8d 1752
fd2ac4f4 1753 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1754 return;
1755
1756 /*
1757 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1758 * traditionally all their work was done from the interrupt return
1759 * path. Now that we actually do some work, we need to make sure
1760 * we do call them.
1761 *
1762 * Some archs already do call them, luckily irq_enter/exit nest
1763 * properly.
1764 *
1765 * Arguably we should visit all archs and update all handlers,
1766 * however a fair share of IPIs are still resched only so this would
1767 * somewhat pessimize the simple resched case.
1768 */
1769 irq_enter();
fa14ff4a 1770 sched_ttwu_pending();
ca38062e
SS
1771
1772 /*
1773 * Check if someone kicked us for doing the nohz idle load balance.
1774 */
873b4c65 1775 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1776 this_rq()->idle_balance = 1;
ca38062e 1777 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1778 }
c5d753a5 1779 irq_exit();
317f3941
PZ
1780}
1781
b7e7ade3 1782static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1783{
e3baac47
PZ
1784 struct rq *rq = cpu_rq(cpu);
1785
b7e7ade3
PZ
1786 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1787
e3baac47
PZ
1788 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1789 if (!set_nr_if_polling(rq->idle))
1790 smp_send_reschedule(cpu);
1791 else
1792 trace_sched_wake_idle_without_ipi(cpu);
1793 }
317f3941 1794}
d6aa8f85 1795
f6be8af1
CL
1796void wake_up_if_idle(int cpu)
1797{
1798 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1799 struct rq_flags rf;
f6be8af1 1800
fd7de1e8
AL
1801 rcu_read_lock();
1802
1803 if (!is_idle_task(rcu_dereference(rq->curr)))
1804 goto out;
f6be8af1
CL
1805
1806 if (set_nr_if_polling(rq->idle)) {
1807 trace_sched_wake_idle_without_ipi(cpu);
1808 } else {
8a8c69c3 1809 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1810 if (is_idle_task(rq->curr))
1811 smp_send_reschedule(cpu);
d1ccc66d 1812 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1813 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1814 }
fd7de1e8
AL
1815
1816out:
1817 rcu_read_unlock();
f6be8af1
CL
1818}
1819
39be3501 1820bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1821{
1822 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1823}
d6aa8f85 1824#endif /* CONFIG_SMP */
317f3941 1825
b5179ac7 1826static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1827{
1828 struct rq *rq = cpu_rq(cpu);
d8ac8971 1829 struct rq_flags rf;
c05fbafb 1830
17d9f311 1831#if defined(CONFIG_SMP)
39be3501 1832 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1833 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1834 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1835 return;
1836 }
1837#endif
1838
8a8c69c3 1839 rq_lock(rq, &rf);
77558e4d 1840 update_rq_clock(rq);
d8ac8971 1841 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1842 rq_unlock(rq, &rf);
9ed3811a
TH
1843}
1844
8643cda5
PZ
1845/*
1846 * Notes on Program-Order guarantees on SMP systems.
1847 *
1848 * MIGRATION
1849 *
1850 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1851 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1852 * execution on its new CPU [c1].
8643cda5
PZ
1853 *
1854 * For migration (of runnable tasks) this is provided by the following means:
1855 *
1856 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1857 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1858 * rq(c1)->lock (if not at the same time, then in that order).
1859 * C) LOCK of the rq(c1)->lock scheduling in task
1860 *
7696f991 1861 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 1862 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1863 *
1864 * Example:
1865 *
1866 * CPU0 CPU1 CPU2
1867 *
1868 * LOCK rq(0)->lock
1869 * sched-out X
1870 * sched-in Y
1871 * UNLOCK rq(0)->lock
1872 *
1873 * LOCK rq(0)->lock // orders against CPU0
1874 * dequeue X
1875 * UNLOCK rq(0)->lock
1876 *
1877 * LOCK rq(1)->lock
1878 * enqueue X
1879 * UNLOCK rq(1)->lock
1880 *
1881 * LOCK rq(1)->lock // orders against CPU2
1882 * sched-out Z
1883 * sched-in X
1884 * UNLOCK rq(1)->lock
1885 *
1886 *
1887 * BLOCKING -- aka. SLEEP + WAKEUP
1888 *
1889 * For blocking we (obviously) need to provide the same guarantee as for
1890 * migration. However the means are completely different as there is no lock
1891 * chain to provide order. Instead we do:
1892 *
1893 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1894 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1895 *
1896 * Example:
1897 *
1898 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1899 *
1900 * LOCK rq(0)->lock LOCK X->pi_lock
1901 * dequeue X
1902 * sched-out X
1903 * smp_store_release(X->on_cpu, 0);
1904 *
1f03e8d2 1905 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1906 * X->state = WAKING
1907 * set_task_cpu(X,2)
1908 *
1909 * LOCK rq(2)->lock
1910 * enqueue X
1911 * X->state = RUNNING
1912 * UNLOCK rq(2)->lock
1913 *
1914 * LOCK rq(2)->lock // orders against CPU1
1915 * sched-out Z
1916 * sched-in X
1917 * UNLOCK rq(2)->lock
1918 *
1919 * UNLOCK X->pi_lock
1920 * UNLOCK rq(0)->lock
1921 *
1922 *
7696f991
AP
1923 * However, for wakeups there is a second guarantee we must provide, namely we
1924 * must ensure that CONDITION=1 done by the caller can not be reordered with
1925 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
1926 */
1927
9ed3811a 1928/**
1da177e4 1929 * try_to_wake_up - wake up a thread
9ed3811a 1930 * @p: the thread to be awakened
1da177e4 1931 * @state: the mask of task states that can be woken
9ed3811a 1932 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1933 *
a2250238 1934 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1935 *
a2250238
PZ
1936 * If the task was not queued/runnable, also place it back on a runqueue.
1937 *
1938 * Atomic against schedule() which would dequeue a task, also see
1939 * set_current_state().
1940 *
7696f991
AP
1941 * This function executes a full memory barrier before accessing the task
1942 * state; see set_current_state().
1943 *
a2250238
PZ
1944 * Return: %true if @p->state changes (an actual wakeup was done),
1945 * %false otherwise.
1da177e4 1946 */
e4a52bcb
PZ
1947static int
1948try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1949{
1da177e4 1950 unsigned long flags;
c05fbafb 1951 int cpu, success = 0;
2398f2c6 1952
e0acd0a6
ON
1953 /*
1954 * If we are going to wake up a thread waiting for CONDITION we
1955 * need to ensure that CONDITION=1 done by the caller can not be
1956 * reordered with p->state check below. This pairs with mb() in
1957 * set_current_state() the waiting thread does.
1958 */
013fdb80 1959 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 1960 smp_mb__after_spinlock();
e9c84311 1961 if (!(p->state & state))
1da177e4
LT
1962 goto out;
1963
fbd705a0
PZ
1964 trace_sched_waking(p);
1965
d1ccc66d
IM
1966 /* We're going to change ->state: */
1967 success = 1;
1da177e4 1968 cpu = task_cpu(p);
1da177e4 1969
135e8c92
BS
1970 /*
1971 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1972 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1973 * in smp_cond_load_acquire() below.
1974 *
3d85b270
AP
1975 * sched_ttwu_pending() try_to_wake_up()
1976 * STORE p->on_rq = 1 LOAD p->state
1977 * UNLOCK rq->lock
1978 *
1979 * __schedule() (switch to task 'p')
1980 * LOCK rq->lock smp_rmb();
1981 * smp_mb__after_spinlock();
1982 * UNLOCK rq->lock
135e8c92
BS
1983 *
1984 * [task p]
3d85b270 1985 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 1986 *
3d85b270
AP
1987 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1988 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
1989 */
1990 smp_rmb();
c05fbafb
PZ
1991 if (p->on_rq && ttwu_remote(p, wake_flags))
1992 goto stat;
1da177e4 1993
1da177e4 1994#ifdef CONFIG_SMP
ecf7d01c
PZ
1995 /*
1996 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1997 * possible to, falsely, observe p->on_cpu == 0.
1998 *
1999 * One must be running (->on_cpu == 1) in order to remove oneself
2000 * from the runqueue.
2001 *
3d85b270
AP
2002 * __schedule() (switch to task 'p') try_to_wake_up()
2003 * STORE p->on_cpu = 1 LOAD p->on_rq
2004 * UNLOCK rq->lock
2005 *
2006 * __schedule() (put 'p' to sleep)
2007 * LOCK rq->lock smp_rmb();
2008 * smp_mb__after_spinlock();
2009 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2010 *
3d85b270
AP
2011 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2012 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2013 */
2014 smp_rmb();
2015
e9c84311 2016 /*
d1ccc66d 2017 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2018 * this task as prev, wait until its done referencing the task.
b75a2253 2019 *
31cb1bc0 2020 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2021 *
2022 * This ensures that tasks getting woken will be fully ordered against
2023 * their previous state and preserve Program Order.
0970d299 2024 */
1f03e8d2 2025 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2026
a8e4f2ea 2027 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2028 p->state = TASK_WAKING;
e7693a36 2029
e33a9bba 2030 if (p->in_iowait) {
c96f5471 2031 delayacct_blkio_end(p);
e33a9bba
TH
2032 atomic_dec(&task_rq(p)->nr_iowait);
2033 }
2034
ac66f547 2035 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2036 if (task_cpu(p) != cpu) {
2037 wake_flags |= WF_MIGRATED;
e4a52bcb 2038 set_task_cpu(p, cpu);
f339b9dc 2039 }
e33a9bba
TH
2040
2041#else /* CONFIG_SMP */
2042
2043 if (p->in_iowait) {
c96f5471 2044 delayacct_blkio_end(p);
e33a9bba
TH
2045 atomic_dec(&task_rq(p)->nr_iowait);
2046 }
2047
1da177e4 2048#endif /* CONFIG_SMP */
1da177e4 2049
b5179ac7 2050 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2051stat:
4fa8d299 2052 ttwu_stat(p, cpu, wake_flags);
1da177e4 2053out:
013fdb80 2054 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2055
2056 return success;
2057}
2058
21aa9af0
TH
2059/**
2060 * try_to_wake_up_local - try to wake up a local task with rq lock held
2061 * @p: the thread to be awakened
bf50f0e8 2062 * @rf: request-queue flags for pinning
21aa9af0 2063 *
2acca55e 2064 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2065 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2066 * the current task.
21aa9af0 2067 */
d8ac8971 2068static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2069{
2070 struct rq *rq = task_rq(p);
21aa9af0 2071
383efcd0
TH
2072 if (WARN_ON_ONCE(rq != this_rq()) ||
2073 WARN_ON_ONCE(p == current))
2074 return;
2075
21aa9af0
TH
2076 lockdep_assert_held(&rq->lock);
2077
2acca55e 2078 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2079 /*
2080 * This is OK, because current is on_cpu, which avoids it being
2081 * picked for load-balance and preemption/IRQs are still
2082 * disabled avoiding further scheduler activity on it and we've
2083 * not yet picked a replacement task.
2084 */
8a8c69c3 2085 rq_unlock(rq, rf);
2acca55e 2086 raw_spin_lock(&p->pi_lock);
8a8c69c3 2087 rq_relock(rq, rf);
2acca55e
PZ
2088 }
2089
21aa9af0 2090 if (!(p->state & TASK_NORMAL))
2acca55e 2091 goto out;
21aa9af0 2092
fbd705a0
PZ
2093 trace_sched_waking(p);
2094
e33a9bba
TH
2095 if (!task_on_rq_queued(p)) {
2096 if (p->in_iowait) {
c96f5471 2097 delayacct_blkio_end(p);
e33a9bba
TH
2098 atomic_dec(&rq->nr_iowait);
2099 }
bce4dc80 2100 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2101 }
d7c01d27 2102
d8ac8971 2103 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2104 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2105out:
2106 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2107}
2108
50fa610a
DH
2109/**
2110 * wake_up_process - Wake up a specific process
2111 * @p: The process to be woken up.
2112 *
2113 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2114 * processes.
2115 *
2116 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2117 *
7696f991 2118 * This function executes a full memory barrier before accessing the task state.
50fa610a 2119 */
7ad5b3a5 2120int wake_up_process(struct task_struct *p)
1da177e4 2121{
9067ac85 2122 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2123}
1da177e4
LT
2124EXPORT_SYMBOL(wake_up_process);
2125
7ad5b3a5 2126int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2127{
2128 return try_to_wake_up(p, state, 0);
2129}
2130
1da177e4
LT
2131/*
2132 * Perform scheduler related setup for a newly forked process p.
2133 * p is forked by current.
dd41f596
IM
2134 *
2135 * __sched_fork() is basic setup used by init_idle() too:
2136 */
5e1576ed 2137static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2138{
fd2f4419
PZ
2139 p->on_rq = 0;
2140
2141 p->se.on_rq = 0;
dd41f596
IM
2142 p->se.exec_start = 0;
2143 p->se.sum_exec_runtime = 0;
f6cf891c 2144 p->se.prev_sum_exec_runtime = 0;
6c594c21 2145 p->se.nr_migrations = 0;
da7a735e 2146 p->se.vruntime = 0;
fd2f4419 2147 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2148
ad936d86
BP
2149#ifdef CONFIG_FAIR_GROUP_SCHED
2150 p->se.cfs_rq = NULL;
2151#endif
2152
6cfb0d5d 2153#ifdef CONFIG_SCHEDSTATS
cb251765 2154 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2155 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2156#endif
476d139c 2157
aab03e05 2158 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2159 init_dl_task_timer(&p->dl);
209a0cbd 2160 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2161 __dl_clear_params(p);
aab03e05 2162
fa717060 2163 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2164 p->rt.timeout = 0;
2165 p->rt.time_slice = sched_rr_timeslice;
2166 p->rt.on_rq = 0;
2167 p->rt.on_list = 0;
476d139c 2168
e107be36
AK
2169#ifdef CONFIG_PREEMPT_NOTIFIERS
2170 INIT_HLIST_HEAD(&p->preempt_notifiers);
2171#endif
cbee9f88 2172
13784475 2173 init_numa_balancing(clone_flags, p);
dd41f596
IM
2174}
2175
2a595721
SD
2176DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2177
1a687c2e 2178#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2179
1a687c2e
MG
2180void set_numabalancing_state(bool enabled)
2181{
2182 if (enabled)
2a595721 2183 static_branch_enable(&sched_numa_balancing);
1a687c2e 2184 else
2a595721 2185 static_branch_disable(&sched_numa_balancing);
1a687c2e 2186}
54a43d54
AK
2187
2188#ifdef CONFIG_PROC_SYSCTL
2189int sysctl_numa_balancing(struct ctl_table *table, int write,
2190 void __user *buffer, size_t *lenp, loff_t *ppos)
2191{
2192 struct ctl_table t;
2193 int err;
2a595721 2194 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2195
2196 if (write && !capable(CAP_SYS_ADMIN))
2197 return -EPERM;
2198
2199 t = *table;
2200 t.data = &state;
2201 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2202 if (err < 0)
2203 return err;
2204 if (write)
2205 set_numabalancing_state(state);
2206 return err;
2207}
2208#endif
2209#endif
dd41f596 2210
4698f88c
JP
2211#ifdef CONFIG_SCHEDSTATS
2212
cb251765 2213DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2214static bool __initdata __sched_schedstats = false;
cb251765 2215
cb251765
MG
2216static void set_schedstats(bool enabled)
2217{
2218 if (enabled)
2219 static_branch_enable(&sched_schedstats);
2220 else
2221 static_branch_disable(&sched_schedstats);
2222}
2223
2224void force_schedstat_enabled(void)
2225{
2226 if (!schedstat_enabled()) {
2227 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2228 static_branch_enable(&sched_schedstats);
2229 }
2230}
2231
2232static int __init setup_schedstats(char *str)
2233{
2234 int ret = 0;
2235 if (!str)
2236 goto out;
2237
4698f88c
JP
2238 /*
2239 * This code is called before jump labels have been set up, so we can't
2240 * change the static branch directly just yet. Instead set a temporary
2241 * variable so init_schedstats() can do it later.
2242 */
cb251765 2243 if (!strcmp(str, "enable")) {
4698f88c 2244 __sched_schedstats = true;
cb251765
MG
2245 ret = 1;
2246 } else if (!strcmp(str, "disable")) {
4698f88c 2247 __sched_schedstats = false;
cb251765
MG
2248 ret = 1;
2249 }
2250out:
2251 if (!ret)
2252 pr_warn("Unable to parse schedstats=\n");
2253
2254 return ret;
2255}
2256__setup("schedstats=", setup_schedstats);
2257
4698f88c
JP
2258static void __init init_schedstats(void)
2259{
2260 set_schedstats(__sched_schedstats);
2261}
2262
cb251765
MG
2263#ifdef CONFIG_PROC_SYSCTL
2264int sysctl_schedstats(struct ctl_table *table, int write,
2265 void __user *buffer, size_t *lenp, loff_t *ppos)
2266{
2267 struct ctl_table t;
2268 int err;
2269 int state = static_branch_likely(&sched_schedstats);
2270
2271 if (write && !capable(CAP_SYS_ADMIN))
2272 return -EPERM;
2273
2274 t = *table;
2275 t.data = &state;
2276 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2277 if (err < 0)
2278 return err;
2279 if (write)
2280 set_schedstats(state);
2281 return err;
2282}
4698f88c
JP
2283#endif /* CONFIG_PROC_SYSCTL */
2284#else /* !CONFIG_SCHEDSTATS */
2285static inline void init_schedstats(void) {}
2286#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2287
2288/*
2289 * fork()/clone()-time setup:
2290 */
aab03e05 2291int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2292{
0122ec5b 2293 unsigned long flags;
dd41f596 2294
5e1576ed 2295 __sched_fork(clone_flags, p);
06b83b5f 2296 /*
7dc603c9 2297 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2298 * nobody will actually run it, and a signal or other external
2299 * event cannot wake it up and insert it on the runqueue either.
2300 */
7dc603c9 2301 p->state = TASK_NEW;
dd41f596 2302
c350a04e
MG
2303 /*
2304 * Make sure we do not leak PI boosting priority to the child.
2305 */
2306 p->prio = current->normal_prio;
2307
b9dc29e7
MG
2308 /*
2309 * Revert to default priority/policy on fork if requested.
2310 */
2311 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2312 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2313 p->policy = SCHED_NORMAL;
6c697bdf 2314 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2315 p->rt_priority = 0;
2316 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2317 p->static_prio = NICE_TO_PRIO(0);
2318
2319 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2320 set_load_weight(p, false);
6c697bdf 2321
b9dc29e7
MG
2322 /*
2323 * We don't need the reset flag anymore after the fork. It has
2324 * fulfilled its duty:
2325 */
2326 p->sched_reset_on_fork = 0;
2327 }
ca94c442 2328
af0fffd9 2329 if (dl_prio(p->prio))
aab03e05 2330 return -EAGAIN;
af0fffd9 2331 else if (rt_prio(p->prio))
aab03e05 2332 p->sched_class = &rt_sched_class;
af0fffd9 2333 else
2ddbf952 2334 p->sched_class = &fair_sched_class;
b29739f9 2335
7dc603c9 2336 init_entity_runnable_average(&p->se);
cd29fe6f 2337
86951599
PZ
2338 /*
2339 * The child is not yet in the pid-hash so no cgroup attach races,
2340 * and the cgroup is pinned to this child due to cgroup_fork()
2341 * is ran before sched_fork().
2342 *
2343 * Silence PROVE_RCU.
2344 */
0122ec5b 2345 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2346 /*
d1ccc66d 2347 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2348 * so use __set_task_cpu().
2349 */
af0fffd9 2350 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2351 if (p->sched_class->task_fork)
2352 p->sched_class->task_fork(p);
0122ec5b 2353 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2354
f6db8347 2355#ifdef CONFIG_SCHED_INFO
dd41f596 2356 if (likely(sched_info_on()))
52f17b6c 2357 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2358#endif
3ca7a440
PZ
2359#if defined(CONFIG_SMP)
2360 p->on_cpu = 0;
4866cde0 2361#endif
01028747 2362 init_task_preempt_count(p);
806c09a7 2363#ifdef CONFIG_SMP
917b627d 2364 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2365 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2366#endif
aab03e05 2367 return 0;
1da177e4
LT
2368}
2369
332ac17e
DF
2370unsigned long to_ratio(u64 period, u64 runtime)
2371{
2372 if (runtime == RUNTIME_INF)
c52f14d3 2373 return BW_UNIT;
332ac17e
DF
2374
2375 /*
2376 * Doing this here saves a lot of checks in all
2377 * the calling paths, and returning zero seems
2378 * safe for them anyway.
2379 */
2380 if (period == 0)
2381 return 0;
2382
c52f14d3 2383 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2384}
2385
1da177e4
LT
2386/*
2387 * wake_up_new_task - wake up a newly created task for the first time.
2388 *
2389 * This function will do some initial scheduler statistics housekeeping
2390 * that must be done for every newly created context, then puts the task
2391 * on the runqueue and wakes it.
2392 */
3e51e3ed 2393void wake_up_new_task(struct task_struct *p)
1da177e4 2394{
eb580751 2395 struct rq_flags rf;
dd41f596 2396 struct rq *rq;
fabf318e 2397
eb580751 2398 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2399 p->state = TASK_RUNNING;
fabf318e
PZ
2400#ifdef CONFIG_SMP
2401 /*
2402 * Fork balancing, do it here and not earlier because:
2403 * - cpus_allowed can change in the fork path
d1ccc66d 2404 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2405 *
2406 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2407 * as we're not fully set-up yet.
fabf318e 2408 */
32e839dd 2409 p->recent_used_cpu = task_cpu(p);
e210bffd 2410 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2411#endif
b7fa30c9 2412 rq = __task_rq_lock(p, &rf);
4126bad6 2413 update_rq_clock(rq);
2b8c41da 2414 post_init_entity_util_avg(&p->se);
0017d735 2415
7a57f32a 2416 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2417 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2418 trace_sched_wakeup_new(p);
a7558e01 2419 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2420#ifdef CONFIG_SMP
0aaafaab
PZ
2421 if (p->sched_class->task_woken) {
2422 /*
2423 * Nothing relies on rq->lock after this, so its fine to
2424 * drop it.
2425 */
d8ac8971 2426 rq_unpin_lock(rq, &rf);
efbbd05a 2427 p->sched_class->task_woken(rq, p);
d8ac8971 2428 rq_repin_lock(rq, &rf);
0aaafaab 2429 }
9a897c5a 2430#endif
eb580751 2431 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2432}
2433
e107be36
AK
2434#ifdef CONFIG_PREEMPT_NOTIFIERS
2435
b7203428 2436static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2437
2ecd9d29
PZ
2438void preempt_notifier_inc(void)
2439{
b7203428 2440 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2441}
2442EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2443
2444void preempt_notifier_dec(void)
2445{
b7203428 2446 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2447}
2448EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2449
e107be36 2450/**
80dd99b3 2451 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2452 * @notifier: notifier struct to register
e107be36
AK
2453 */
2454void preempt_notifier_register(struct preempt_notifier *notifier)
2455{
b7203428 2456 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2457 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2458
e107be36
AK
2459 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2460}
2461EXPORT_SYMBOL_GPL(preempt_notifier_register);
2462
2463/**
2464 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2465 * @notifier: notifier struct to unregister
e107be36 2466 *
d84525a8 2467 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2468 */
2469void preempt_notifier_unregister(struct preempt_notifier *notifier)
2470{
2471 hlist_del(&notifier->link);
2472}
2473EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2474
1cde2930 2475static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2476{
2477 struct preempt_notifier *notifier;
e107be36 2478
b67bfe0d 2479 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2480 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2481}
2482
1cde2930
PZ
2483static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2484{
b7203428 2485 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2486 __fire_sched_in_preempt_notifiers(curr);
2487}
2488
e107be36 2489static void
1cde2930
PZ
2490__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2491 struct task_struct *next)
e107be36
AK
2492{
2493 struct preempt_notifier *notifier;
e107be36 2494
b67bfe0d 2495 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2496 notifier->ops->sched_out(notifier, next);
2497}
2498
1cde2930
PZ
2499static __always_inline void
2500fire_sched_out_preempt_notifiers(struct task_struct *curr,
2501 struct task_struct *next)
2502{
b7203428 2503 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2504 __fire_sched_out_preempt_notifiers(curr, next);
2505}
2506
6d6bc0ad 2507#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2508
1cde2930 2509static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2510{
2511}
2512
1cde2930 2513static inline void
e107be36
AK
2514fire_sched_out_preempt_notifiers(struct task_struct *curr,
2515 struct task_struct *next)
2516{
2517}
2518
6d6bc0ad 2519#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2520
31cb1bc0 2521static inline void prepare_task(struct task_struct *next)
2522{
2523#ifdef CONFIG_SMP
2524 /*
2525 * Claim the task as running, we do this before switching to it
2526 * such that any running task will have this set.
2527 */
2528 next->on_cpu = 1;
2529#endif
2530}
2531
2532static inline void finish_task(struct task_struct *prev)
2533{
2534#ifdef CONFIG_SMP
2535 /*
2536 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2537 * We must ensure this doesn't happen until the switch is completely
2538 * finished.
2539 *
2540 * In particular, the load of prev->state in finish_task_switch() must
2541 * happen before this.
2542 *
2543 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2544 */
2545 smp_store_release(&prev->on_cpu, 0);
2546#endif
2547}
2548
269d5992
PZ
2549static inline void
2550prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2551{
269d5992
PZ
2552 /*
2553 * Since the runqueue lock will be released by the next
2554 * task (which is an invalid locking op but in the case
2555 * of the scheduler it's an obvious special-case), so we
2556 * do an early lockdep release here:
2557 */
2558 rq_unpin_lock(rq, rf);
2559 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2560#ifdef CONFIG_DEBUG_SPINLOCK
2561 /* this is a valid case when another task releases the spinlock */
269d5992 2562 rq->lock.owner = next;
31cb1bc0 2563#endif
269d5992
PZ
2564}
2565
2566static inline void finish_lock_switch(struct rq *rq)
2567{
31cb1bc0 2568 /*
2569 * If we are tracking spinlock dependencies then we have to
2570 * fix up the runqueue lock - which gets 'carried over' from
2571 * prev into current:
2572 */
2573 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2574 raw_spin_unlock_irq(&rq->lock);
2575}
2576
325ea10c
IM
2577/*
2578 * NOP if the arch has not defined these:
2579 */
2580
2581#ifndef prepare_arch_switch
2582# define prepare_arch_switch(next) do { } while (0)
2583#endif
2584
2585#ifndef finish_arch_post_lock_switch
2586# define finish_arch_post_lock_switch() do { } while (0)
2587#endif
2588
4866cde0
NP
2589/**
2590 * prepare_task_switch - prepare to switch tasks
2591 * @rq: the runqueue preparing to switch
421cee29 2592 * @prev: the current task that is being switched out
4866cde0
NP
2593 * @next: the task we are going to switch to.
2594 *
2595 * This is called with the rq lock held and interrupts off. It must
2596 * be paired with a subsequent finish_task_switch after the context
2597 * switch.
2598 *
2599 * prepare_task_switch sets up locking and calls architecture specific
2600 * hooks.
2601 */
e107be36
AK
2602static inline void
2603prepare_task_switch(struct rq *rq, struct task_struct *prev,
2604 struct task_struct *next)
4866cde0 2605{
0ed557aa 2606 kcov_prepare_switch(prev);
43148951 2607 sched_info_switch(rq, prev, next);
fe4b04fa 2608 perf_event_task_sched_out(prev, next);
d7822b1e 2609 rseq_preempt(prev);
e107be36 2610 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2611 prepare_task(next);
4866cde0
NP
2612 prepare_arch_switch(next);
2613}
2614
1da177e4
LT
2615/**
2616 * finish_task_switch - clean up after a task-switch
2617 * @prev: the thread we just switched away from.
2618 *
4866cde0
NP
2619 * finish_task_switch must be called after the context switch, paired
2620 * with a prepare_task_switch call before the context switch.
2621 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2622 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2623 *
2624 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2625 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2626 * with the lock held can cause deadlocks; see schedule() for
2627 * details.)
dfa50b60
ON
2628 *
2629 * The context switch have flipped the stack from under us and restored the
2630 * local variables which were saved when this task called schedule() in the
2631 * past. prev == current is still correct but we need to recalculate this_rq
2632 * because prev may have moved to another CPU.
1da177e4 2633 */
dfa50b60 2634static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2635 __releases(rq->lock)
2636{
dfa50b60 2637 struct rq *rq = this_rq();
1da177e4 2638 struct mm_struct *mm = rq->prev_mm;
55a101f8 2639 long prev_state;
1da177e4 2640
609ca066
PZ
2641 /*
2642 * The previous task will have left us with a preempt_count of 2
2643 * because it left us after:
2644 *
2645 * schedule()
2646 * preempt_disable(); // 1
2647 * __schedule()
2648 * raw_spin_lock_irq(&rq->lock) // 2
2649 *
2650 * Also, see FORK_PREEMPT_COUNT.
2651 */
e2bf1c4b
PZ
2652 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2653 "corrupted preempt_count: %s/%d/0x%x\n",
2654 current->comm, current->pid, preempt_count()))
2655 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2656
1da177e4
LT
2657 rq->prev_mm = NULL;
2658
2659 /*
2660 * A task struct has one reference for the use as "current".
c394cc9f 2661 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2662 * schedule one last time. The schedule call will never return, and
2663 * the scheduled task must drop that reference.
95913d97
PZ
2664 *
2665 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2666 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2667 * running on another CPU and we could rave with its RUNNING -> DEAD
2668 * transition, resulting in a double drop.
1da177e4 2669 */
55a101f8 2670 prev_state = prev->state;
bf9fae9f 2671 vtime_task_switch(prev);
a8d757ef 2672 perf_event_task_sched_in(prev, current);
31cb1bc0 2673 finish_task(prev);
2674 finish_lock_switch(rq);
01f23e16 2675 finish_arch_post_lock_switch();
0ed557aa 2676 kcov_finish_switch(current);
e8fa1362 2677
e107be36 2678 fire_sched_in_preempt_notifiers(current);
306e0604 2679 /*
70216e18
MD
2680 * When switching through a kernel thread, the loop in
2681 * membarrier_{private,global}_expedited() may have observed that
2682 * kernel thread and not issued an IPI. It is therefore possible to
2683 * schedule between user->kernel->user threads without passing though
2684 * switch_mm(). Membarrier requires a barrier after storing to
2685 * rq->curr, before returning to userspace, so provide them here:
2686 *
2687 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2688 * provided by mmdrop(),
2689 * - a sync_core for SYNC_CORE.
306e0604 2690 */
70216e18
MD
2691 if (mm) {
2692 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2693 mmdrop(mm);
70216e18 2694 }
1cef1150
PZ
2695 if (unlikely(prev_state == TASK_DEAD)) {
2696 if (prev->sched_class->task_dead)
2697 prev->sched_class->task_dead(prev);
68f24b08 2698
1cef1150
PZ
2699 /*
2700 * Remove function-return probe instances associated with this
2701 * task and put them back on the free list.
2702 */
2703 kprobe_flush_task(prev);
2704
2705 /* Task is done with its stack. */
2706 put_task_stack(prev);
2707
2708 put_task_struct(prev);
c6fd91f0 2709 }
99e5ada9 2710
de734f89 2711 tick_nohz_task_switch();
dfa50b60 2712 return rq;
1da177e4
LT
2713}
2714
3f029d3c
GH
2715#ifdef CONFIG_SMP
2716
3f029d3c 2717/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2718static void __balance_callback(struct rq *rq)
3f029d3c 2719{
e3fca9e7
PZ
2720 struct callback_head *head, *next;
2721 void (*func)(struct rq *rq);
2722 unsigned long flags;
3f029d3c 2723
e3fca9e7
PZ
2724 raw_spin_lock_irqsave(&rq->lock, flags);
2725 head = rq->balance_callback;
2726 rq->balance_callback = NULL;
2727 while (head) {
2728 func = (void (*)(struct rq *))head->func;
2729 next = head->next;
2730 head->next = NULL;
2731 head = next;
3f029d3c 2732
e3fca9e7 2733 func(rq);
3f029d3c 2734 }
e3fca9e7
PZ
2735 raw_spin_unlock_irqrestore(&rq->lock, flags);
2736}
2737
2738static inline void balance_callback(struct rq *rq)
2739{
2740 if (unlikely(rq->balance_callback))
2741 __balance_callback(rq);
3f029d3c
GH
2742}
2743
2744#else
da19ab51 2745
e3fca9e7 2746static inline void balance_callback(struct rq *rq)
3f029d3c 2747{
1da177e4
LT
2748}
2749
3f029d3c
GH
2750#endif
2751
1da177e4
LT
2752/**
2753 * schedule_tail - first thing a freshly forked thread must call.
2754 * @prev: the thread we just switched away from.
2755 */
722a9f92 2756asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2757 __releases(rq->lock)
2758{
1a43a14a 2759 struct rq *rq;
da19ab51 2760
609ca066
PZ
2761 /*
2762 * New tasks start with FORK_PREEMPT_COUNT, see there and
2763 * finish_task_switch() for details.
2764 *
2765 * finish_task_switch() will drop rq->lock() and lower preempt_count
2766 * and the preempt_enable() will end up enabling preemption (on
2767 * PREEMPT_COUNT kernels).
2768 */
2769
dfa50b60 2770 rq = finish_task_switch(prev);
e3fca9e7 2771 balance_callback(rq);
1a43a14a 2772 preempt_enable();
70b97a7f 2773
1da177e4 2774 if (current->set_child_tid)
b488893a 2775 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
2776
2777 calculate_sigpending();
1da177e4
LT
2778}
2779
2780/*
dfa50b60 2781 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2782 */
04936948 2783static __always_inline struct rq *
70b97a7f 2784context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2785 struct task_struct *next, struct rq_flags *rf)
1da177e4 2786{
dd41f596 2787 struct mm_struct *mm, *oldmm;
1da177e4 2788
e107be36 2789 prepare_task_switch(rq, prev, next);
fe4b04fa 2790
dd41f596
IM
2791 mm = next->mm;
2792 oldmm = prev->active_mm;
9226d125
ZA
2793 /*
2794 * For paravirt, this is coupled with an exit in switch_to to
2795 * combine the page table reload and the switch backend into
2796 * one hypercall.
2797 */
224101ed 2798 arch_start_context_switch(prev);
9226d125 2799
306e0604
MD
2800 /*
2801 * If mm is non-NULL, we pass through switch_mm(). If mm is
2802 * NULL, we will pass through mmdrop() in finish_task_switch().
2803 * Both of these contain the full memory barrier required by
2804 * membarrier after storing to rq->curr, before returning to
2805 * user-space.
2806 */
31915ab4 2807 if (!mm) {
1da177e4 2808 next->active_mm = oldmm;
f1f10076 2809 mmgrab(oldmm);
1da177e4
LT
2810 enter_lazy_tlb(oldmm, next);
2811 } else
f98db601 2812 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2813
31915ab4 2814 if (!prev->mm) {
1da177e4 2815 prev->active_mm = NULL;
1da177e4
LT
2816 rq->prev_mm = oldmm;
2817 }
92509b73 2818
cb42c9a3 2819 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2820
269d5992 2821 prepare_lock_switch(rq, next, rf);
1da177e4
LT
2822
2823 /* Here we just switch the register state and the stack. */
2824 switch_to(prev, next, prev);
dd41f596 2825 barrier();
dfa50b60
ON
2826
2827 return finish_task_switch(prev);
1da177e4
LT
2828}
2829
2830/*
1c3e8264 2831 * nr_running and nr_context_switches:
1da177e4
LT
2832 *
2833 * externally visible scheduler statistics: current number of runnable
1c3e8264 2834 * threads, total number of context switches performed since bootup.
1da177e4
LT
2835 */
2836unsigned long nr_running(void)
2837{
2838 unsigned long i, sum = 0;
2839
2840 for_each_online_cpu(i)
2841 sum += cpu_rq(i)->nr_running;
2842
2843 return sum;
f711f609 2844}
1da177e4 2845
2ee507c4 2846/*
d1ccc66d 2847 * Check if only the current task is running on the CPU.
00cc1633
DD
2848 *
2849 * Caution: this function does not check that the caller has disabled
2850 * preemption, thus the result might have a time-of-check-to-time-of-use
2851 * race. The caller is responsible to use it correctly, for example:
2852 *
2853 * - from a non-preemptable section (of course)
2854 *
2855 * - from a thread that is bound to a single CPU
2856 *
2857 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2858 */
2859bool single_task_running(void)
2860{
00cc1633 2861 return raw_rq()->nr_running == 1;
2ee507c4
TC
2862}
2863EXPORT_SYMBOL(single_task_running);
2864
1da177e4 2865unsigned long long nr_context_switches(void)
46cb4b7c 2866{
cc94abfc
SR
2867 int i;
2868 unsigned long long sum = 0;
46cb4b7c 2869
0a945022 2870 for_each_possible_cpu(i)
1da177e4 2871 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2872
1da177e4
LT
2873 return sum;
2874}
483b4ee6 2875
e33a9bba
TH
2876/*
2877 * IO-wait accounting, and how its mostly bollocks (on SMP).
2878 *
2879 * The idea behind IO-wait account is to account the idle time that we could
2880 * have spend running if it were not for IO. That is, if we were to improve the
2881 * storage performance, we'd have a proportional reduction in IO-wait time.
2882 *
2883 * This all works nicely on UP, where, when a task blocks on IO, we account
2884 * idle time as IO-wait, because if the storage were faster, it could've been
2885 * running and we'd not be idle.
2886 *
2887 * This has been extended to SMP, by doing the same for each CPU. This however
2888 * is broken.
2889 *
2890 * Imagine for instance the case where two tasks block on one CPU, only the one
2891 * CPU will have IO-wait accounted, while the other has regular idle. Even
2892 * though, if the storage were faster, both could've ran at the same time,
2893 * utilising both CPUs.
2894 *
2895 * This means, that when looking globally, the current IO-wait accounting on
2896 * SMP is a lower bound, by reason of under accounting.
2897 *
2898 * Worse, since the numbers are provided per CPU, they are sometimes
2899 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2900 * associated with any one particular CPU, it can wake to another CPU than it
2901 * blocked on. This means the per CPU IO-wait number is meaningless.
2902 *
2903 * Task CPU affinities can make all that even more 'interesting'.
2904 */
2905
1da177e4
LT
2906unsigned long nr_iowait(void)
2907{
2908 unsigned long i, sum = 0;
483b4ee6 2909
0a945022 2910 for_each_possible_cpu(i)
1da177e4 2911 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2912
1da177e4
LT
2913 return sum;
2914}
483b4ee6 2915
e33a9bba
TH
2916/*
2917 * Consumers of these two interfaces, like for example the cpufreq menu
2918 * governor are using nonsensical data. Boosting frequency for a CPU that has
2919 * IO-wait which might not even end up running the task when it does become
2920 * runnable.
2921 */
2922
8c215bd3 2923unsigned long nr_iowait_cpu(int cpu)
69d25870 2924{
8c215bd3 2925 struct rq *this = cpu_rq(cpu);
69d25870
AV
2926 return atomic_read(&this->nr_iowait);
2927}
46cb4b7c 2928
372ba8cb
MG
2929void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2930{
3289bdb4
PZ
2931 struct rq *rq = this_rq();
2932 *nr_waiters = atomic_read(&rq->nr_iowait);
2933 *load = rq->load.weight;
372ba8cb
MG
2934}
2935
dd41f596 2936#ifdef CONFIG_SMP
8a0be9ef 2937
46cb4b7c 2938/*
38022906
PZ
2939 * sched_exec - execve() is a valuable balancing opportunity, because at
2940 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2941 */
38022906 2942void sched_exec(void)
46cb4b7c 2943{
38022906 2944 struct task_struct *p = current;
1da177e4 2945 unsigned long flags;
0017d735 2946 int dest_cpu;
46cb4b7c 2947
8f42ced9 2948 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2949 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2950 if (dest_cpu == smp_processor_id())
2951 goto unlock;
38022906 2952
8f42ced9 2953 if (likely(cpu_active(dest_cpu))) {
969c7921 2954 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2955
8f42ced9
PZ
2956 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2957 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2958 return;
2959 }
0017d735 2960unlock:
8f42ced9 2961 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2962}
dd41f596 2963
1da177e4
LT
2964#endif
2965
1da177e4 2966DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2967DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2968
2969EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2970EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2971
6075620b
GG
2972/*
2973 * The function fair_sched_class.update_curr accesses the struct curr
2974 * and its field curr->exec_start; when called from task_sched_runtime(),
2975 * we observe a high rate of cache misses in practice.
2976 * Prefetching this data results in improved performance.
2977 */
2978static inline void prefetch_curr_exec_start(struct task_struct *p)
2979{
2980#ifdef CONFIG_FAIR_GROUP_SCHED
2981 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2982#else
2983 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2984#endif
2985 prefetch(curr);
2986 prefetch(&curr->exec_start);
2987}
2988
c5f8d995
HS
2989/*
2990 * Return accounted runtime for the task.
2991 * In case the task is currently running, return the runtime plus current's
2992 * pending runtime that have not been accounted yet.
2993 */
2994unsigned long long task_sched_runtime(struct task_struct *p)
2995{
eb580751 2996 struct rq_flags rf;
c5f8d995 2997 struct rq *rq;
6e998916 2998 u64 ns;
c5f8d995 2999
911b2898
PZ
3000#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3001 /*
97fb7a0a 3002 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3003 * So we have a optimization chance when the task's delta_exec is 0.
3004 * Reading ->on_cpu is racy, but this is ok.
3005 *
d1ccc66d
IM
3006 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3007 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3008 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3009 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3010 * been accounted, so we're correct here as well.
911b2898 3011 */
da0c1e65 3012 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3013 return p->se.sum_exec_runtime;
3014#endif
3015
eb580751 3016 rq = task_rq_lock(p, &rf);
6e998916
SG
3017 /*
3018 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3019 * project cycles that may never be accounted to this
3020 * thread, breaking clock_gettime().
3021 */
3022 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3023 prefetch_curr_exec_start(p);
6e998916
SG
3024 update_rq_clock(rq);
3025 p->sched_class->update_curr(rq);
3026 }
3027 ns = p->se.sum_exec_runtime;
eb580751 3028 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3029
3030 return ns;
3031}
48f24c4d 3032
7835b98b
CL
3033/*
3034 * This function gets called by the timer code, with HZ frequency.
3035 * We call it with interrupts disabled.
7835b98b
CL
3036 */
3037void scheduler_tick(void)
3038{
7835b98b
CL
3039 int cpu = smp_processor_id();
3040 struct rq *rq = cpu_rq(cpu);
dd41f596 3041 struct task_struct *curr = rq->curr;
8a8c69c3 3042 struct rq_flags rf;
3e51f33f
PZ
3043
3044 sched_clock_tick();
dd41f596 3045
8a8c69c3
PZ
3046 rq_lock(rq, &rf);
3047
3e51f33f 3048 update_rq_clock(rq);
fa85ae24 3049 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3050 cpu_load_update_active(rq);
3289bdb4 3051 calc_global_load_tick(rq);
8a8c69c3
PZ
3052
3053 rq_unlock(rq, &rf);
7835b98b 3054
e9d2b064 3055 perf_event_task_tick();
e220d2dc 3056
e418e1c2 3057#ifdef CONFIG_SMP
6eb57e0d 3058 rq->idle_balance = idle_cpu(cpu);
7caff66f 3059 trigger_load_balance(rq);
e418e1c2 3060#endif
1da177e4
LT
3061}
3062
265f22a9 3063#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3064
3065struct tick_work {
3066 int cpu;
3067 struct delayed_work work;
3068};
3069
3070static struct tick_work __percpu *tick_work_cpu;
3071
3072static void sched_tick_remote(struct work_struct *work)
3073{
3074 struct delayed_work *dwork = to_delayed_work(work);
3075 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3076 int cpu = twork->cpu;
3077 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3078 struct task_struct *curr;
d84b3131 3079 struct rq_flags rf;
d9c0ffca 3080 u64 delta;
d84b3131
FW
3081
3082 /*
3083 * Handle the tick only if it appears the remote CPU is running in full
3084 * dynticks mode. The check is racy by nature, but missing a tick or
3085 * having one too much is no big deal because the scheduler tick updates
3086 * statistics and checks timeslices in a time-independent way, regardless
3087 * of when exactly it is running.
3088 */
d9c0ffca
FW
3089 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3090 goto out_requeue;
d84b3131 3091
d9c0ffca
FW
3092 rq_lock_irq(rq, &rf);
3093 curr = rq->curr;
3094 if (is_idle_task(curr))
3095 goto out_unlock;
d84b3131 3096
d9c0ffca
FW
3097 update_rq_clock(rq);
3098 delta = rq_clock_task(rq) - curr->se.exec_start;
3099
3100 /*
3101 * Make sure the next tick runs within a reasonable
3102 * amount of time.
3103 */
3104 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3105 curr->sched_class->task_tick(rq, curr, 0);
3106
3107out_unlock:
3108 rq_unlock_irq(rq, &rf);
d84b3131 3109
d9c0ffca 3110out_requeue:
d84b3131
FW
3111 /*
3112 * Run the remote tick once per second (1Hz). This arbitrary
3113 * frequency is large enough to avoid overload but short enough
3114 * to keep scheduler internal stats reasonably up to date.
3115 */
3116 queue_delayed_work(system_unbound_wq, dwork, HZ);
3117}
3118
3119static void sched_tick_start(int cpu)
3120{
3121 struct tick_work *twork;
3122
3123 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3124 return;
3125
3126 WARN_ON_ONCE(!tick_work_cpu);
3127
3128 twork = per_cpu_ptr(tick_work_cpu, cpu);
3129 twork->cpu = cpu;
3130 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3131 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3132}
3133
3134#ifdef CONFIG_HOTPLUG_CPU
3135static void sched_tick_stop(int cpu)
3136{
3137 struct tick_work *twork;
3138
3139 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3140 return;
3141
3142 WARN_ON_ONCE(!tick_work_cpu);
3143
3144 twork = per_cpu_ptr(tick_work_cpu, cpu);
3145 cancel_delayed_work_sync(&twork->work);
3146}
3147#endif /* CONFIG_HOTPLUG_CPU */
3148
3149int __init sched_tick_offload_init(void)
3150{
3151 tick_work_cpu = alloc_percpu(struct tick_work);
3152 BUG_ON(!tick_work_cpu);
3153
3154 return 0;
3155}
3156
3157#else /* !CONFIG_NO_HZ_FULL */
3158static inline void sched_tick_start(int cpu) { }
3159static inline void sched_tick_stop(int cpu) { }
265f22a9 3160#endif
1da177e4 3161
7e49fcce 3162#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3163 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3164/*
3165 * If the value passed in is equal to the current preempt count
3166 * then we just disabled preemption. Start timing the latency.
3167 */
3168static inline void preempt_latency_start(int val)
3169{
3170 if (preempt_count() == val) {
3171 unsigned long ip = get_lock_parent_ip();
3172#ifdef CONFIG_DEBUG_PREEMPT
3173 current->preempt_disable_ip = ip;
3174#endif
3175 trace_preempt_off(CALLER_ADDR0, ip);
3176 }
3177}
7e49fcce 3178
edafe3a5 3179void preempt_count_add(int val)
1da177e4 3180{
6cd8a4bb 3181#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3182 /*
3183 * Underflow?
3184 */
9a11b49a
IM
3185 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3186 return;
6cd8a4bb 3187#endif
bdb43806 3188 __preempt_count_add(val);
6cd8a4bb 3189#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3190 /*
3191 * Spinlock count overflowing soon?
3192 */
33859f7f
MOS
3193 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3194 PREEMPT_MASK - 10);
6cd8a4bb 3195#endif
47252cfb 3196 preempt_latency_start(val);
1da177e4 3197}
bdb43806 3198EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3199NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3200
47252cfb
SR
3201/*
3202 * If the value passed in equals to the current preempt count
3203 * then we just enabled preemption. Stop timing the latency.
3204 */
3205static inline void preempt_latency_stop(int val)
3206{
3207 if (preempt_count() == val)
3208 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3209}
3210
edafe3a5 3211void preempt_count_sub(int val)
1da177e4 3212{
6cd8a4bb 3213#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3214 /*
3215 * Underflow?
3216 */
01e3eb82 3217 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3218 return;
1da177e4
LT
3219 /*
3220 * Is the spinlock portion underflowing?
3221 */
9a11b49a
IM
3222 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3223 !(preempt_count() & PREEMPT_MASK)))
3224 return;
6cd8a4bb 3225#endif
9a11b49a 3226
47252cfb 3227 preempt_latency_stop(val);
bdb43806 3228 __preempt_count_sub(val);
1da177e4 3229}
bdb43806 3230EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3231NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3232
47252cfb
SR
3233#else
3234static inline void preempt_latency_start(int val) { }
3235static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3236#endif
3237
59ddbcb2
IM
3238static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3239{
3240#ifdef CONFIG_DEBUG_PREEMPT
3241 return p->preempt_disable_ip;
3242#else
3243 return 0;
3244#endif
3245}
3246
1da177e4 3247/*
dd41f596 3248 * Print scheduling while atomic bug:
1da177e4 3249 */
dd41f596 3250static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3251{
d1c6d149
VN
3252 /* Save this before calling printk(), since that will clobber it */
3253 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3254
664dfa65
DJ
3255 if (oops_in_progress)
3256 return;
3257
3df0fc5b
PZ
3258 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3259 prev->comm, prev->pid, preempt_count());
838225b4 3260
dd41f596 3261 debug_show_held_locks(prev);
e21f5b15 3262 print_modules();
dd41f596
IM
3263 if (irqs_disabled())
3264 print_irqtrace_events(prev);
d1c6d149
VN
3265 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3266 && in_atomic_preempt_off()) {
8f47b187 3267 pr_err("Preemption disabled at:");
d1c6d149 3268 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3269 pr_cont("\n");
3270 }
748c7201
DBO
3271 if (panic_on_warn)
3272 panic("scheduling while atomic\n");
3273
6135fc1e 3274 dump_stack();
373d4d09 3275 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3276}
1da177e4 3277
dd41f596
IM
3278/*
3279 * Various schedule()-time debugging checks and statistics:
3280 */
3281static inline void schedule_debug(struct task_struct *prev)
3282{
0d9e2632 3283#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3284 if (task_stack_end_corrupted(prev))
3285 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3286#endif
b99def8b 3287
1dc0fffc 3288 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3289 __schedule_bug(prev);
1dc0fffc
PZ
3290 preempt_count_set(PREEMPT_DISABLED);
3291 }
b3fbab05 3292 rcu_sleep_check();
dd41f596 3293
1da177e4
LT
3294 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3295
ae92882e 3296 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3297}
3298
3299/*
3300 * Pick up the highest-prio task:
3301 */
3302static inline struct task_struct *
d8ac8971 3303pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3304{
49ee5768 3305 const struct sched_class *class;
dd41f596 3306 struct task_struct *p;
1da177e4
LT
3307
3308 /*
0ba87bb2
PZ
3309 * Optimization: we know that if all tasks are in the fair class we can
3310 * call that function directly, but only if the @prev task wasn't of a
3311 * higher scheduling class, because otherwise those loose the
3312 * opportunity to pull in more work from other CPUs.
1da177e4 3313 */
0ba87bb2
PZ
3314 if (likely((prev->sched_class == &idle_sched_class ||
3315 prev->sched_class == &fair_sched_class) &&
3316 rq->nr_running == rq->cfs.h_nr_running)) {
3317
d8ac8971 3318 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3319 if (unlikely(p == RETRY_TASK))
3320 goto again;
3321
d1ccc66d 3322 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3323 if (unlikely(!p))
d8ac8971 3324 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3325
3326 return p;
1da177e4
LT
3327 }
3328
37e117c0 3329again:
34f971f6 3330 for_each_class(class) {
d8ac8971 3331 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3332 if (p) {
3333 if (unlikely(p == RETRY_TASK))
3334 goto again;
dd41f596 3335 return p;
37e117c0 3336 }
dd41f596 3337 }
34f971f6 3338
d1ccc66d
IM
3339 /* The idle class should always have a runnable task: */
3340 BUG();
dd41f596 3341}
1da177e4 3342
dd41f596 3343/*
c259e01a 3344 * __schedule() is the main scheduler function.
edde96ea
PE
3345 *
3346 * The main means of driving the scheduler and thus entering this function are:
3347 *
3348 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3349 *
3350 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3351 * paths. For example, see arch/x86/entry_64.S.
3352 *
3353 * To drive preemption between tasks, the scheduler sets the flag in timer
3354 * interrupt handler scheduler_tick().
3355 *
3356 * 3. Wakeups don't really cause entry into schedule(). They add a
3357 * task to the run-queue and that's it.
3358 *
3359 * Now, if the new task added to the run-queue preempts the current
3360 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3361 * called on the nearest possible occasion:
3362 *
3363 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3364 *
3365 * - in syscall or exception context, at the next outmost
3366 * preempt_enable(). (this might be as soon as the wake_up()'s
3367 * spin_unlock()!)
3368 *
3369 * - in IRQ context, return from interrupt-handler to
3370 * preemptible context
3371 *
3372 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3373 * then at the next:
3374 *
3375 * - cond_resched() call
3376 * - explicit schedule() call
3377 * - return from syscall or exception to user-space
3378 * - return from interrupt-handler to user-space
bfd9b2b5 3379 *
b30f0e3f 3380 * WARNING: must be called with preemption disabled!
dd41f596 3381 */
499d7955 3382static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3383{
3384 struct task_struct *prev, *next;
67ca7bde 3385 unsigned long *switch_count;
d8ac8971 3386 struct rq_flags rf;
dd41f596 3387 struct rq *rq;
31656519 3388 int cpu;
dd41f596 3389
dd41f596
IM
3390 cpu = smp_processor_id();
3391 rq = cpu_rq(cpu);
dd41f596 3392 prev = rq->curr;
dd41f596 3393
dd41f596 3394 schedule_debug(prev);
1da177e4 3395
31656519 3396 if (sched_feat(HRTICK))
f333fdc9 3397 hrtick_clear(rq);
8f4d37ec 3398
46a5d164 3399 local_irq_disable();
bcbfdd01 3400 rcu_note_context_switch(preempt);
46a5d164 3401
e0acd0a6
ON
3402 /*
3403 * Make sure that signal_pending_state()->signal_pending() below
3404 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3405 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3406 *
3407 * The membarrier system call requires a full memory barrier
3408 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3409 */
8a8c69c3 3410 rq_lock(rq, &rf);
d89e588c 3411 smp_mb__after_spinlock();
1da177e4 3412
d1ccc66d
IM
3413 /* Promote REQ to ACT */
3414 rq->clock_update_flags <<= 1;
bce4dc80 3415 update_rq_clock(rq);
9edfbfed 3416
246d86b5 3417 switch_count = &prev->nivcsw;
fc13aeba 3418 if (!preempt && prev->state) {
21aa9af0 3419 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3420 prev->state = TASK_RUNNING;
21aa9af0 3421 } else {
bce4dc80 3422 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3423 prev->on_rq = 0;
3424
e33a9bba
TH
3425 if (prev->in_iowait) {
3426 atomic_inc(&rq->nr_iowait);
3427 delayacct_blkio_start();
3428 }
3429
21aa9af0 3430 /*
2acca55e
PZ
3431 * If a worker went to sleep, notify and ask workqueue
3432 * whether it wants to wake up a task to maintain
3433 * concurrency.
21aa9af0
TH
3434 */
3435 if (prev->flags & PF_WQ_WORKER) {
3436 struct task_struct *to_wakeup;
3437
9b7f6597 3438 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3439 if (to_wakeup)
d8ac8971 3440 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3441 }
21aa9af0 3442 }
dd41f596 3443 switch_count = &prev->nvcsw;
1da177e4
LT
3444 }
3445
d8ac8971 3446 next = pick_next_task(rq, prev, &rf);
f26f9aff 3447 clear_tsk_need_resched(prev);
f27dde8d 3448 clear_preempt_need_resched();
1da177e4 3449
1da177e4 3450 if (likely(prev != next)) {
1da177e4
LT
3451 rq->nr_switches++;
3452 rq->curr = next;
22e4ebb9
MD
3453 /*
3454 * The membarrier system call requires each architecture
3455 * to have a full memory barrier after updating
306e0604
MD
3456 * rq->curr, before returning to user-space.
3457 *
3458 * Here are the schemes providing that barrier on the
3459 * various architectures:
3460 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3461 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3462 * - finish_lock_switch() for weakly-ordered
3463 * architectures where spin_unlock is a full barrier,
3464 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3465 * is a RELEASE barrier),
22e4ebb9 3466 */
1da177e4
LT
3467 ++*switch_count;
3468
c73464b1 3469 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3470
3471 /* Also unlocks the rq: */
3472 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3473 } else {
cb42c9a3 3474 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3475 rq_unlock_irq(rq, &rf);
cbce1a68 3476 }
1da177e4 3477
e3fca9e7 3478 balance_callback(rq);
1da177e4 3479}
c259e01a 3480
9af6528e
PZ
3481void __noreturn do_task_dead(void)
3482{
d1ccc66d 3483 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3484 set_special_state(TASK_DEAD);
d1ccc66d
IM
3485
3486 /* Tell freezer to ignore us: */
3487 current->flags |= PF_NOFREEZE;
3488
9af6528e
PZ
3489 __schedule(false);
3490 BUG();
d1ccc66d
IM
3491
3492 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3493 for (;;)
d1ccc66d 3494 cpu_relax();
9af6528e
PZ
3495}
3496
9c40cef2
TG
3497static inline void sched_submit_work(struct task_struct *tsk)
3498{
3c7d5184 3499 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3500 return;
3501 /*
3502 * If we are going to sleep and we have plugged IO queued,
3503 * make sure to submit it to avoid deadlocks.
3504 */
3505 if (blk_needs_flush_plug(tsk))
3506 blk_schedule_flush_plug(tsk);
3507}
3508
722a9f92 3509asmlinkage __visible void __sched schedule(void)
c259e01a 3510{
9c40cef2
TG
3511 struct task_struct *tsk = current;
3512
3513 sched_submit_work(tsk);
bfd9b2b5 3514 do {
b30f0e3f 3515 preempt_disable();
fc13aeba 3516 __schedule(false);
b30f0e3f 3517 sched_preempt_enable_no_resched();
bfd9b2b5 3518 } while (need_resched());
c259e01a 3519}
1da177e4
LT
3520EXPORT_SYMBOL(schedule);
3521
8663effb
SRV
3522/*
3523 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3524 * state (have scheduled out non-voluntarily) by making sure that all
3525 * tasks have either left the run queue or have gone into user space.
3526 * As idle tasks do not do either, they must not ever be preempted
3527 * (schedule out non-voluntarily).
3528 *
3529 * schedule_idle() is similar to schedule_preempt_disable() except that it
3530 * never enables preemption because it does not call sched_submit_work().
3531 */
3532void __sched schedule_idle(void)
3533{
3534 /*
3535 * As this skips calling sched_submit_work(), which the idle task does
3536 * regardless because that function is a nop when the task is in a
3537 * TASK_RUNNING state, make sure this isn't used someplace that the
3538 * current task can be in any other state. Note, idle is always in the
3539 * TASK_RUNNING state.
3540 */
3541 WARN_ON_ONCE(current->state);
3542 do {
3543 __schedule(false);
3544 } while (need_resched());
3545}
3546
91d1aa43 3547#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3548asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3549{
3550 /*
3551 * If we come here after a random call to set_need_resched(),
3552 * or we have been woken up remotely but the IPI has not yet arrived,
3553 * we haven't yet exited the RCU idle mode. Do it here manually until
3554 * we find a better solution.
7cc78f8f
AL
3555 *
3556 * NB: There are buggy callers of this function. Ideally we
c467ea76 3557 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3558 * too frequently to make sense yet.
20ab65e3 3559 */
7cc78f8f 3560 enum ctx_state prev_state = exception_enter();
20ab65e3 3561 schedule();
7cc78f8f 3562 exception_exit(prev_state);
20ab65e3
FW
3563}
3564#endif
3565
c5491ea7
TG
3566/**
3567 * schedule_preempt_disabled - called with preemption disabled
3568 *
3569 * Returns with preemption disabled. Note: preempt_count must be 1
3570 */
3571void __sched schedule_preempt_disabled(void)
3572{
ba74c144 3573 sched_preempt_enable_no_resched();
c5491ea7
TG
3574 schedule();
3575 preempt_disable();
3576}
3577
06b1f808 3578static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3579{
3580 do {
47252cfb
SR
3581 /*
3582 * Because the function tracer can trace preempt_count_sub()
3583 * and it also uses preempt_enable/disable_notrace(), if
3584 * NEED_RESCHED is set, the preempt_enable_notrace() called
3585 * by the function tracer will call this function again and
3586 * cause infinite recursion.
3587 *
3588 * Preemption must be disabled here before the function
3589 * tracer can trace. Break up preempt_disable() into two
3590 * calls. One to disable preemption without fear of being
3591 * traced. The other to still record the preemption latency,
3592 * which can also be traced by the function tracer.
3593 */
499d7955 3594 preempt_disable_notrace();
47252cfb 3595 preempt_latency_start(1);
fc13aeba 3596 __schedule(true);
47252cfb 3597 preempt_latency_stop(1);
499d7955 3598 preempt_enable_no_resched_notrace();
a18b5d01
FW
3599
3600 /*
3601 * Check again in case we missed a preemption opportunity
3602 * between schedule and now.
3603 */
a18b5d01
FW
3604 } while (need_resched());
3605}
3606
1da177e4
LT
3607#ifdef CONFIG_PREEMPT
3608/*
2ed6e34f 3609 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3610 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3611 * occur there and call schedule directly.
3612 */
722a9f92 3613asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3614{
1da177e4
LT
3615 /*
3616 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3617 * we do not want to preempt the current task. Just return..
1da177e4 3618 */
fbb00b56 3619 if (likely(!preemptible()))
1da177e4
LT
3620 return;
3621
a18b5d01 3622 preempt_schedule_common();
1da177e4 3623}
376e2424 3624NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3625EXPORT_SYMBOL(preempt_schedule);
009f60e2 3626
009f60e2 3627/**
4eaca0a8 3628 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3629 *
3630 * The tracing infrastructure uses preempt_enable_notrace to prevent
3631 * recursion and tracing preempt enabling caused by the tracing
3632 * infrastructure itself. But as tracing can happen in areas coming
3633 * from userspace or just about to enter userspace, a preempt enable
3634 * can occur before user_exit() is called. This will cause the scheduler
3635 * to be called when the system is still in usermode.
3636 *
3637 * To prevent this, the preempt_enable_notrace will use this function
3638 * instead of preempt_schedule() to exit user context if needed before
3639 * calling the scheduler.
3640 */
4eaca0a8 3641asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3642{
3643 enum ctx_state prev_ctx;
3644
3645 if (likely(!preemptible()))
3646 return;
3647
3648 do {
47252cfb
SR
3649 /*
3650 * Because the function tracer can trace preempt_count_sub()
3651 * and it also uses preempt_enable/disable_notrace(), if
3652 * NEED_RESCHED is set, the preempt_enable_notrace() called
3653 * by the function tracer will call this function again and
3654 * cause infinite recursion.
3655 *
3656 * Preemption must be disabled here before the function
3657 * tracer can trace. Break up preempt_disable() into two
3658 * calls. One to disable preemption without fear of being
3659 * traced. The other to still record the preemption latency,
3660 * which can also be traced by the function tracer.
3661 */
3d8f74dd 3662 preempt_disable_notrace();
47252cfb 3663 preempt_latency_start(1);
009f60e2
ON
3664 /*
3665 * Needs preempt disabled in case user_exit() is traced
3666 * and the tracer calls preempt_enable_notrace() causing
3667 * an infinite recursion.
3668 */
3669 prev_ctx = exception_enter();
fc13aeba 3670 __schedule(true);
009f60e2
ON
3671 exception_exit(prev_ctx);
3672
47252cfb 3673 preempt_latency_stop(1);
3d8f74dd 3674 preempt_enable_no_resched_notrace();
009f60e2
ON
3675 } while (need_resched());
3676}
4eaca0a8 3677EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3678
32e475d7 3679#endif /* CONFIG_PREEMPT */
1da177e4
LT
3680
3681/*
2ed6e34f 3682 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3683 * off of irq context.
3684 * Note, that this is called and return with irqs disabled. This will
3685 * protect us against recursive calling from irq.
3686 */
722a9f92 3687asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3688{
b22366cd 3689 enum ctx_state prev_state;
6478d880 3690
2ed6e34f 3691 /* Catch callers which need to be fixed */
f27dde8d 3692 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3693
b22366cd
FW
3694 prev_state = exception_enter();
3695
3a5c359a 3696 do {
3d8f74dd 3697 preempt_disable();
3a5c359a 3698 local_irq_enable();
fc13aeba 3699 __schedule(true);
3a5c359a 3700 local_irq_disable();
3d8f74dd 3701 sched_preempt_enable_no_resched();
5ed0cec0 3702 } while (need_resched());
b22366cd
FW
3703
3704 exception_exit(prev_state);
1da177e4
LT
3705}
3706
ac6424b9 3707int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3708 void *key)
1da177e4 3709{
63859d4f 3710 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3711}
1da177e4
LT
3712EXPORT_SYMBOL(default_wake_function);
3713
b29739f9
IM
3714#ifdef CONFIG_RT_MUTEXES
3715
acd58620
PZ
3716static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3717{
3718 if (pi_task)
3719 prio = min(prio, pi_task->prio);
3720
3721 return prio;
3722}
3723
3724static inline int rt_effective_prio(struct task_struct *p, int prio)
3725{
3726 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3727
3728 return __rt_effective_prio(pi_task, prio);
3729}
3730
b29739f9
IM
3731/*
3732 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3733 * @p: task to boost
3734 * @pi_task: donor task
b29739f9
IM
3735 *
3736 * This function changes the 'effective' priority of a task. It does
3737 * not touch ->normal_prio like __setscheduler().
3738 *
c365c292
TG
3739 * Used by the rt_mutex code to implement priority inheritance
3740 * logic. Call site only calls if the priority of the task changed.
b29739f9 3741 */
acd58620 3742void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3743{
acd58620 3744 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3745 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3746 const struct sched_class *prev_class;
eb580751
PZ
3747 struct rq_flags rf;
3748 struct rq *rq;
b29739f9 3749
acd58620
PZ
3750 /* XXX used to be waiter->prio, not waiter->task->prio */
3751 prio = __rt_effective_prio(pi_task, p->normal_prio);
3752
3753 /*
3754 * If nothing changed; bail early.
3755 */
3756 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3757 return;
b29739f9 3758
eb580751 3759 rq = __task_rq_lock(p, &rf);
80f5c1b8 3760 update_rq_clock(rq);
acd58620
PZ
3761 /*
3762 * Set under pi_lock && rq->lock, such that the value can be used under
3763 * either lock.
3764 *
3765 * Note that there is loads of tricky to make this pointer cache work
3766 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3767 * ensure a task is de-boosted (pi_task is set to NULL) before the
3768 * task is allowed to run again (and can exit). This ensures the pointer
3769 * points to a blocked task -- which guaratees the task is present.
3770 */
3771 p->pi_top_task = pi_task;
3772
3773 /*
3774 * For FIFO/RR we only need to set prio, if that matches we're done.
3775 */
3776 if (prio == p->prio && !dl_prio(prio))
3777 goto out_unlock;
b29739f9 3778
1c4dd99b
TG
3779 /*
3780 * Idle task boosting is a nono in general. There is one
3781 * exception, when PREEMPT_RT and NOHZ is active:
3782 *
3783 * The idle task calls get_next_timer_interrupt() and holds
3784 * the timer wheel base->lock on the CPU and another CPU wants
3785 * to access the timer (probably to cancel it). We can safely
3786 * ignore the boosting request, as the idle CPU runs this code
3787 * with interrupts disabled and will complete the lock
3788 * protected section without being interrupted. So there is no
3789 * real need to boost.
3790 */
3791 if (unlikely(p == rq->idle)) {
3792 WARN_ON(p != rq->curr);
3793 WARN_ON(p->pi_blocked_on);
3794 goto out_unlock;
3795 }
3796
b91473ff 3797 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3798 oldprio = p->prio;
ff77e468
PZ
3799
3800 if (oldprio == prio)
3801 queue_flag &= ~DEQUEUE_MOVE;
3802
83ab0aa0 3803 prev_class = p->sched_class;
da0c1e65 3804 queued = task_on_rq_queued(p);
051a1d1a 3805 running = task_current(rq, p);
da0c1e65 3806 if (queued)
ff77e468 3807 dequeue_task(rq, p, queue_flag);
0e1f3483 3808 if (running)
f3cd1c4e 3809 put_prev_task(rq, p);
dd41f596 3810
2d3d891d
DF
3811 /*
3812 * Boosting condition are:
3813 * 1. -rt task is running and holds mutex A
3814 * --> -dl task blocks on mutex A
3815 *
3816 * 2. -dl task is running and holds mutex A
3817 * --> -dl task blocks on mutex A and could preempt the
3818 * running task
3819 */
3820 if (dl_prio(prio)) {
466af29b
ON
3821 if (!dl_prio(p->normal_prio) ||
3822 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3823 p->dl.dl_boosted = 1;
ff77e468 3824 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3825 } else
3826 p->dl.dl_boosted = 0;
aab03e05 3827 p->sched_class = &dl_sched_class;
2d3d891d
DF
3828 } else if (rt_prio(prio)) {
3829 if (dl_prio(oldprio))
3830 p->dl.dl_boosted = 0;
3831 if (oldprio < prio)
ff77e468 3832 queue_flag |= ENQUEUE_HEAD;
dd41f596 3833 p->sched_class = &rt_sched_class;
2d3d891d
DF
3834 } else {
3835 if (dl_prio(oldprio))
3836 p->dl.dl_boosted = 0;
746db944
BS
3837 if (rt_prio(oldprio))
3838 p->rt.timeout = 0;
dd41f596 3839 p->sched_class = &fair_sched_class;
2d3d891d 3840 }
dd41f596 3841
b29739f9
IM
3842 p->prio = prio;
3843
da0c1e65 3844 if (queued)
ff77e468 3845 enqueue_task(rq, p, queue_flag);
a399d233 3846 if (running)
b2bf6c31 3847 set_curr_task(rq, p);
cb469845 3848
da7a735e 3849 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3850out_unlock:
d1ccc66d
IM
3851 /* Avoid rq from going away on us: */
3852 preempt_disable();
eb580751 3853 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3854
3855 balance_callback(rq);
3856 preempt_enable();
b29739f9 3857}
acd58620
PZ
3858#else
3859static inline int rt_effective_prio(struct task_struct *p, int prio)
3860{
3861 return prio;
3862}
b29739f9 3863#endif
d50dde5a 3864
36c8b586 3865void set_user_nice(struct task_struct *p, long nice)
1da177e4 3866{
49bd21ef
PZ
3867 bool queued, running;
3868 int old_prio, delta;
eb580751 3869 struct rq_flags rf;
70b97a7f 3870 struct rq *rq;
1da177e4 3871
75e45d51 3872 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3873 return;
3874 /*
3875 * We have to be careful, if called from sys_setpriority(),
3876 * the task might be in the middle of scheduling on another CPU.
3877 */
eb580751 3878 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3879 update_rq_clock(rq);
3880
1da177e4
LT
3881 /*
3882 * The RT priorities are set via sched_setscheduler(), but we still
3883 * allow the 'normal' nice value to be set - but as expected
3884 * it wont have any effect on scheduling until the task is
aab03e05 3885 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3886 */
aab03e05 3887 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3888 p->static_prio = NICE_TO_PRIO(nice);
3889 goto out_unlock;
3890 }
da0c1e65 3891 queued = task_on_rq_queued(p);
49bd21ef 3892 running = task_current(rq, p);
da0c1e65 3893 if (queued)
7a57f32a 3894 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3895 if (running)
3896 put_prev_task(rq, p);
1da177e4 3897
1da177e4 3898 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3899 set_load_weight(p, true);
b29739f9
IM
3900 old_prio = p->prio;
3901 p->prio = effective_prio(p);
3902 delta = p->prio - old_prio;
1da177e4 3903
da0c1e65 3904 if (queued) {
7134b3e9 3905 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3906 /*
d5f9f942
AM
3907 * If the task increased its priority or is running and
3908 * lowered its priority, then reschedule its CPU:
1da177e4 3909 */
d5f9f942 3910 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3911 resched_curr(rq);
1da177e4 3912 }
49bd21ef
PZ
3913 if (running)
3914 set_curr_task(rq, p);
1da177e4 3915out_unlock:
eb580751 3916 task_rq_unlock(rq, p, &rf);
1da177e4 3917}
1da177e4
LT
3918EXPORT_SYMBOL(set_user_nice);
3919
e43379f1
MM
3920/*
3921 * can_nice - check if a task can reduce its nice value
3922 * @p: task
3923 * @nice: nice value
3924 */
36c8b586 3925int can_nice(const struct task_struct *p, const int nice)
e43379f1 3926{
d1ccc66d 3927 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3928 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3929
78d7d407 3930 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3931 capable(CAP_SYS_NICE));
3932}
3933
1da177e4
LT
3934#ifdef __ARCH_WANT_SYS_NICE
3935
3936/*
3937 * sys_nice - change the priority of the current process.
3938 * @increment: priority increment
3939 *
3940 * sys_setpriority is a more generic, but much slower function that
3941 * does similar things.
3942 */
5add95d4 3943SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3944{
48f24c4d 3945 long nice, retval;
1da177e4
LT
3946
3947 /*
3948 * Setpriority might change our priority at the same moment.
3949 * We don't have to worry. Conceptually one call occurs first
3950 * and we have a single winner.
3951 */
a9467fa3 3952 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3953 nice = task_nice(current) + increment;
1da177e4 3954
a9467fa3 3955 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3956 if (increment < 0 && !can_nice(current, nice))
3957 return -EPERM;
3958
1da177e4
LT
3959 retval = security_task_setnice(current, nice);
3960 if (retval)
3961 return retval;
3962
3963 set_user_nice(current, nice);
3964 return 0;
3965}
3966
3967#endif
3968
3969/**
3970 * task_prio - return the priority value of a given task.
3971 * @p: the task in question.
3972 *
e69f6186 3973 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3974 * RT tasks are offset by -200. Normal tasks are centered
3975 * around 0, value goes from -16 to +15.
3976 */
36c8b586 3977int task_prio(const struct task_struct *p)
1da177e4
LT
3978{
3979 return p->prio - MAX_RT_PRIO;
3980}
3981
1da177e4 3982/**
d1ccc66d 3983 * idle_cpu - is a given CPU idle currently?
1da177e4 3984 * @cpu: the processor in question.
e69f6186
YB
3985 *
3986 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3987 */
3988int idle_cpu(int cpu)
3989{
908a3283
TG
3990 struct rq *rq = cpu_rq(cpu);
3991
3992 if (rq->curr != rq->idle)
3993 return 0;
3994
3995 if (rq->nr_running)
3996 return 0;
3997
3998#ifdef CONFIG_SMP
3999 if (!llist_empty(&rq->wake_list))
4000 return 0;
4001#endif
4002
4003 return 1;
1da177e4
LT
4004}
4005
943d355d
RJ
4006/**
4007 * available_idle_cpu - is a given CPU idle for enqueuing work.
4008 * @cpu: the CPU in question.
4009 *
4010 * Return: 1 if the CPU is currently idle. 0 otherwise.
4011 */
4012int available_idle_cpu(int cpu)
4013{
4014 if (!idle_cpu(cpu))
4015 return 0;
4016
247f2f6f
RJ
4017 if (vcpu_is_preempted(cpu))
4018 return 0;
4019
908a3283 4020 return 1;
1da177e4
LT
4021}
4022
1da177e4 4023/**
d1ccc66d 4024 * idle_task - return the idle task for a given CPU.
1da177e4 4025 * @cpu: the processor in question.
e69f6186 4026 *
d1ccc66d 4027 * Return: The idle task for the CPU @cpu.
1da177e4 4028 */
36c8b586 4029struct task_struct *idle_task(int cpu)
1da177e4
LT
4030{
4031 return cpu_rq(cpu)->idle;
4032}
4033
4034/**
4035 * find_process_by_pid - find a process with a matching PID value.
4036 * @pid: the pid in question.
e69f6186
YB
4037 *
4038 * The task of @pid, if found. %NULL otherwise.
1da177e4 4039 */
a9957449 4040static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4041{
228ebcbe 4042 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4043}
4044
c13db6b1
SR
4045/*
4046 * sched_setparam() passes in -1 for its policy, to let the functions
4047 * it calls know not to change it.
4048 */
4049#define SETPARAM_POLICY -1
4050
c365c292
TG
4051static void __setscheduler_params(struct task_struct *p,
4052 const struct sched_attr *attr)
1da177e4 4053{
d50dde5a
DF
4054 int policy = attr->sched_policy;
4055
c13db6b1 4056 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4057 policy = p->policy;
4058
1da177e4 4059 p->policy = policy;
d50dde5a 4060
aab03e05
DF
4061 if (dl_policy(policy))
4062 __setparam_dl(p, attr);
39fd8fd2 4063 else if (fair_policy(policy))
d50dde5a
DF
4064 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4065
39fd8fd2
PZ
4066 /*
4067 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4068 * !rt_policy. Always setting this ensures that things like
4069 * getparam()/getattr() don't report silly values for !rt tasks.
4070 */
4071 p->rt_priority = attr->sched_priority;
383afd09 4072 p->normal_prio = normal_prio(p);
9059393e 4073 set_load_weight(p, true);
c365c292 4074}
39fd8fd2 4075
c365c292
TG
4076/* Actually do priority change: must hold pi & rq lock. */
4077static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4078 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4079{
4080 __setscheduler_params(p, attr);
d50dde5a 4081
383afd09 4082 /*
0782e63b
TG
4083 * Keep a potential priority boosting if called from
4084 * sched_setscheduler().
383afd09 4085 */
acd58620 4086 p->prio = normal_prio(p);
0782e63b 4087 if (keep_boost)
acd58620 4088 p->prio = rt_effective_prio(p, p->prio);
383afd09 4089
aab03e05
DF
4090 if (dl_prio(p->prio))
4091 p->sched_class = &dl_sched_class;
4092 else if (rt_prio(p->prio))
ffd44db5
PZ
4093 p->sched_class = &rt_sched_class;
4094 else
4095 p->sched_class = &fair_sched_class;
1da177e4 4096}
aab03e05 4097
c69e8d9c 4098/*
d1ccc66d 4099 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4100 */
4101static bool check_same_owner(struct task_struct *p)
4102{
4103 const struct cred *cred = current_cred(), *pcred;
4104 bool match;
4105
4106 rcu_read_lock();
4107 pcred = __task_cred(p);
9c806aa0
EB
4108 match = (uid_eq(cred->euid, pcred->euid) ||
4109 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4110 rcu_read_unlock();
4111 return match;
4112}
4113
d50dde5a
DF
4114static int __sched_setscheduler(struct task_struct *p,
4115 const struct sched_attr *attr,
dbc7f069 4116 bool user, bool pi)
1da177e4 4117{
383afd09
SR
4118 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4119 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4120 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4121 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4122 const struct sched_class *prev_class;
eb580751 4123 struct rq_flags rf;
ca94c442 4124 int reset_on_fork;
7a57f32a 4125 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4126 struct rq *rq;
1da177e4 4127
896bbb25
SRV
4128 /* The pi code expects interrupts enabled */
4129 BUG_ON(pi && in_interrupt());
1da177e4 4130recheck:
d1ccc66d 4131 /* Double check policy once rq lock held: */
ca94c442
LP
4132 if (policy < 0) {
4133 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4134 policy = oldpolicy = p->policy;
ca94c442 4135 } else {
7479f3c9 4136 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4137
20f9cd2a 4138 if (!valid_policy(policy))
ca94c442
LP
4139 return -EINVAL;
4140 }
4141
794a56eb 4142 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4143 return -EINVAL;
4144
1da177e4
LT
4145 /*
4146 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4147 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4148 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4149 */
0bb040a4 4150 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4151 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4152 return -EINVAL;
aab03e05
DF
4153 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4154 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4155 return -EINVAL;
4156
37e4ab3f
OC
4157 /*
4158 * Allow unprivileged RT tasks to decrease priority:
4159 */
961ccddd 4160 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4161 if (fair_policy(policy)) {
d0ea0268 4162 if (attr->sched_nice < task_nice(p) &&
eaad4513 4163 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4164 return -EPERM;
4165 }
4166
e05606d3 4167 if (rt_policy(policy)) {
a44702e8
ON
4168 unsigned long rlim_rtprio =
4169 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4170
d1ccc66d 4171 /* Can't set/change the rt policy: */
8dc3e909
ON
4172 if (policy != p->policy && !rlim_rtprio)
4173 return -EPERM;
4174
d1ccc66d 4175 /* Can't increase priority: */
d50dde5a
DF
4176 if (attr->sched_priority > p->rt_priority &&
4177 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4178 return -EPERM;
4179 }
c02aa73b 4180
d44753b8
JL
4181 /*
4182 * Can't set/change SCHED_DEADLINE policy at all for now
4183 * (safest behavior); in the future we would like to allow
4184 * unprivileged DL tasks to increase their relative deadline
4185 * or reduce their runtime (both ways reducing utilization)
4186 */
4187 if (dl_policy(policy))
4188 return -EPERM;
4189
dd41f596 4190 /*
c02aa73b
DH
4191 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4192 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4193 */
20f9cd2a 4194 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4195 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4196 return -EPERM;
4197 }
5fe1d75f 4198
d1ccc66d 4199 /* Can't change other user's priorities: */
c69e8d9c 4200 if (!check_same_owner(p))
37e4ab3f 4201 return -EPERM;
ca94c442 4202
d1ccc66d 4203 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4204 if (p->sched_reset_on_fork && !reset_on_fork)
4205 return -EPERM;
37e4ab3f 4206 }
1da177e4 4207
725aad24 4208 if (user) {
794a56eb
JL
4209 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4210 return -EINVAL;
4211
b0ae1981 4212 retval = security_task_setscheduler(p);
725aad24
JF
4213 if (retval)
4214 return retval;
4215 }
4216
b29739f9 4217 /*
d1ccc66d 4218 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4219 * changing the priority of the task:
0122ec5b 4220 *
25985edc 4221 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4222 * runqueue lock must be held.
4223 */
eb580751 4224 rq = task_rq_lock(p, &rf);
80f5c1b8 4225 update_rq_clock(rq);
dc61b1d6 4226
34f971f6 4227 /*
d1ccc66d 4228 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4229 */
4230 if (p == rq->stop) {
eb580751 4231 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4232 return -EINVAL;
4233 }
4234
a51e9198 4235 /*
d6b1e911
TG
4236 * If not changing anything there's no need to proceed further,
4237 * but store a possible modification of reset_on_fork.
a51e9198 4238 */
d50dde5a 4239 if (unlikely(policy == p->policy)) {
d0ea0268 4240 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4241 goto change;
4242 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4243 goto change;
75381608 4244 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4245 goto change;
d50dde5a 4246
d6b1e911 4247 p->sched_reset_on_fork = reset_on_fork;
eb580751 4248 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4249 return 0;
4250 }
d50dde5a 4251change:
a51e9198 4252
dc61b1d6 4253 if (user) {
332ac17e 4254#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4255 /*
4256 * Do not allow realtime tasks into groups that have no runtime
4257 * assigned.
4258 */
4259 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4260 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4261 !task_group_is_autogroup(task_group(p))) {
eb580751 4262 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4263 return -EPERM;
4264 }
dc61b1d6 4265#endif
332ac17e 4266#ifdef CONFIG_SMP
794a56eb
JL
4267 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4268 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4269 cpumask_t *span = rq->rd->span;
332ac17e
DF
4270
4271 /*
4272 * Don't allow tasks with an affinity mask smaller than
4273 * the entire root_domain to become SCHED_DEADLINE. We
4274 * will also fail if there's no bandwidth available.
4275 */
e4099a5e
PZ
4276 if (!cpumask_subset(span, &p->cpus_allowed) ||
4277 rq->rd->dl_bw.bw == 0) {
eb580751 4278 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4279 return -EPERM;
4280 }
4281 }
4282#endif
4283 }
dc61b1d6 4284
d1ccc66d 4285 /* Re-check policy now with rq lock held: */
1da177e4
LT
4286 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4287 policy = oldpolicy = -1;
eb580751 4288 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4289 goto recheck;
4290 }
332ac17e
DF
4291
4292 /*
4293 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4294 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4295 * is available.
4296 */
06a76fe0 4297 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4298 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4299 return -EBUSY;
4300 }
4301
c365c292
TG
4302 p->sched_reset_on_fork = reset_on_fork;
4303 oldprio = p->prio;
4304
dbc7f069
PZ
4305 if (pi) {
4306 /*
4307 * Take priority boosted tasks into account. If the new
4308 * effective priority is unchanged, we just store the new
4309 * normal parameters and do not touch the scheduler class and
4310 * the runqueue. This will be done when the task deboost
4311 * itself.
4312 */
acd58620 4313 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4314 if (new_effective_prio == oldprio)
4315 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4316 }
4317
da0c1e65 4318 queued = task_on_rq_queued(p);
051a1d1a 4319 running = task_current(rq, p);
da0c1e65 4320 if (queued)
ff77e468 4321 dequeue_task(rq, p, queue_flags);
0e1f3483 4322 if (running)
f3cd1c4e 4323 put_prev_task(rq, p);
f6b53205 4324
83ab0aa0 4325 prev_class = p->sched_class;
dbc7f069 4326 __setscheduler(rq, p, attr, pi);
f6b53205 4327
da0c1e65 4328 if (queued) {
81a44c54
TG
4329 /*
4330 * We enqueue to tail when the priority of a task is
4331 * increased (user space view).
4332 */
ff77e468
PZ
4333 if (oldprio < p->prio)
4334 queue_flags |= ENQUEUE_HEAD;
1de64443 4335
ff77e468 4336 enqueue_task(rq, p, queue_flags);
81a44c54 4337 }
a399d233 4338 if (running)
b2bf6c31 4339 set_curr_task(rq, p);
cb469845 4340
da7a735e 4341 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4342
4343 /* Avoid rq from going away on us: */
4344 preempt_disable();
eb580751 4345 task_rq_unlock(rq, p, &rf);
b29739f9 4346
dbc7f069
PZ
4347 if (pi)
4348 rt_mutex_adjust_pi(p);
95e02ca9 4349
d1ccc66d 4350 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4351 balance_callback(rq);
4352 preempt_enable();
95e02ca9 4353
1da177e4
LT
4354 return 0;
4355}
961ccddd 4356
7479f3c9
PZ
4357static int _sched_setscheduler(struct task_struct *p, int policy,
4358 const struct sched_param *param, bool check)
4359{
4360 struct sched_attr attr = {
4361 .sched_policy = policy,
4362 .sched_priority = param->sched_priority,
4363 .sched_nice = PRIO_TO_NICE(p->static_prio),
4364 };
4365
c13db6b1
SR
4366 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4367 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4368 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4369 policy &= ~SCHED_RESET_ON_FORK;
4370 attr.sched_policy = policy;
4371 }
4372
dbc7f069 4373 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4374}
961ccddd
RR
4375/**
4376 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4377 * @p: the task in question.
4378 * @policy: new policy.
4379 * @param: structure containing the new RT priority.
4380 *
e69f6186
YB
4381 * Return: 0 on success. An error code otherwise.
4382 *
961ccddd
RR
4383 * NOTE that the task may be already dead.
4384 */
4385int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4386 const struct sched_param *param)
961ccddd 4387{
7479f3c9 4388 return _sched_setscheduler(p, policy, param, true);
961ccddd 4389}
1da177e4
LT
4390EXPORT_SYMBOL_GPL(sched_setscheduler);
4391
d50dde5a
DF
4392int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4393{
dbc7f069 4394 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4395}
4396EXPORT_SYMBOL_GPL(sched_setattr);
4397
794a56eb
JL
4398int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4399{
4400 return __sched_setscheduler(p, attr, false, true);
4401}
4402
961ccddd
RR
4403/**
4404 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4405 * @p: the task in question.
4406 * @policy: new policy.
4407 * @param: structure containing the new RT priority.
4408 *
4409 * Just like sched_setscheduler, only don't bother checking if the
4410 * current context has permission. For example, this is needed in
4411 * stop_machine(): we create temporary high priority worker threads,
4412 * but our caller might not have that capability.
e69f6186
YB
4413 *
4414 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4415 */
4416int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4417 const struct sched_param *param)
961ccddd 4418{
7479f3c9 4419 return _sched_setscheduler(p, policy, param, false);
961ccddd 4420}
84778472 4421EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4422
95cdf3b7
IM
4423static int
4424do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4425{
1da177e4
LT
4426 struct sched_param lparam;
4427 struct task_struct *p;
36c8b586 4428 int retval;
1da177e4
LT
4429
4430 if (!param || pid < 0)
4431 return -EINVAL;
4432 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4433 return -EFAULT;
5fe1d75f
ON
4434
4435 rcu_read_lock();
4436 retval = -ESRCH;
1da177e4 4437 p = find_process_by_pid(pid);
5fe1d75f
ON
4438 if (p != NULL)
4439 retval = sched_setscheduler(p, policy, &lparam);
4440 rcu_read_unlock();
36c8b586 4441
1da177e4
LT
4442 return retval;
4443}
4444
d50dde5a
DF
4445/*
4446 * Mimics kernel/events/core.c perf_copy_attr().
4447 */
d1ccc66d 4448static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4449{
4450 u32 size;
4451 int ret;
4452
4453 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4454 return -EFAULT;
4455
d1ccc66d 4456 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4457 memset(attr, 0, sizeof(*attr));
4458
4459 ret = get_user(size, &uattr->size);
4460 if (ret)
4461 return ret;
4462
d1ccc66d
IM
4463 /* Bail out on silly large: */
4464 if (size > PAGE_SIZE)
d50dde5a
DF
4465 goto err_size;
4466
d1ccc66d
IM
4467 /* ABI compatibility quirk: */
4468 if (!size)
d50dde5a
DF
4469 size = SCHED_ATTR_SIZE_VER0;
4470
4471 if (size < SCHED_ATTR_SIZE_VER0)
4472 goto err_size;
4473
4474 /*
4475 * If we're handed a bigger struct than we know of,
4476 * ensure all the unknown bits are 0 - i.e. new
4477 * user-space does not rely on any kernel feature
4478 * extensions we dont know about yet.
4479 */
4480 if (size > sizeof(*attr)) {
4481 unsigned char __user *addr;
4482 unsigned char __user *end;
4483 unsigned char val;
4484
4485 addr = (void __user *)uattr + sizeof(*attr);
4486 end = (void __user *)uattr + size;
4487
4488 for (; addr < end; addr++) {
4489 ret = get_user(val, addr);
4490 if (ret)
4491 return ret;
4492 if (val)
4493 goto err_size;
4494 }
4495 size = sizeof(*attr);
4496 }
4497
4498 ret = copy_from_user(attr, uattr, size);
4499 if (ret)
4500 return -EFAULT;
4501
4502 /*
d1ccc66d 4503 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4504 * to be strict and return an error on out-of-bounds values?
4505 */
75e45d51 4506 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4507
e78c7bca 4508 return 0;
d50dde5a
DF
4509
4510err_size:
4511 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4512 return -E2BIG;
d50dde5a
DF
4513}
4514
1da177e4
LT
4515/**
4516 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4517 * @pid: the pid in question.
4518 * @policy: new policy.
4519 * @param: structure containing the new RT priority.
e69f6186
YB
4520 *
4521 * Return: 0 on success. An error code otherwise.
1da177e4 4522 */
d1ccc66d 4523SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4524{
c21761f1
JB
4525 if (policy < 0)
4526 return -EINVAL;
4527
1da177e4
LT
4528 return do_sched_setscheduler(pid, policy, param);
4529}
4530
4531/**
4532 * sys_sched_setparam - set/change the RT priority of a thread
4533 * @pid: the pid in question.
4534 * @param: structure containing the new RT priority.
e69f6186
YB
4535 *
4536 * Return: 0 on success. An error code otherwise.
1da177e4 4537 */
5add95d4 4538SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4539{
c13db6b1 4540 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4541}
4542
d50dde5a
DF
4543/**
4544 * sys_sched_setattr - same as above, but with extended sched_attr
4545 * @pid: the pid in question.
5778fccf 4546 * @uattr: structure containing the extended parameters.
db66d756 4547 * @flags: for future extension.
d50dde5a 4548 */
6d35ab48
PZ
4549SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4550 unsigned int, flags)
d50dde5a
DF
4551{
4552 struct sched_attr attr;
4553 struct task_struct *p;
4554 int retval;
4555
6d35ab48 4556 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4557 return -EINVAL;
4558
143cf23d
MK
4559 retval = sched_copy_attr(uattr, &attr);
4560 if (retval)
4561 return retval;
d50dde5a 4562
b14ed2c2 4563 if ((int)attr.sched_policy < 0)
dbdb2275 4564 return -EINVAL;
d50dde5a
DF
4565
4566 rcu_read_lock();
4567 retval = -ESRCH;
4568 p = find_process_by_pid(pid);
4569 if (p != NULL)
4570 retval = sched_setattr(p, &attr);
4571 rcu_read_unlock();
4572
4573 return retval;
4574}
4575
1da177e4
LT
4576/**
4577 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4578 * @pid: the pid in question.
e69f6186
YB
4579 *
4580 * Return: On success, the policy of the thread. Otherwise, a negative error
4581 * code.
1da177e4 4582 */
5add95d4 4583SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4584{
36c8b586 4585 struct task_struct *p;
3a5c359a 4586 int retval;
1da177e4
LT
4587
4588 if (pid < 0)
3a5c359a 4589 return -EINVAL;
1da177e4
LT
4590
4591 retval = -ESRCH;
5fe85be0 4592 rcu_read_lock();
1da177e4
LT
4593 p = find_process_by_pid(pid);
4594 if (p) {
4595 retval = security_task_getscheduler(p);
4596 if (!retval)
ca94c442
LP
4597 retval = p->policy
4598 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4599 }
5fe85be0 4600 rcu_read_unlock();
1da177e4
LT
4601 return retval;
4602}
4603
4604/**
ca94c442 4605 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4606 * @pid: the pid in question.
4607 * @param: structure containing the RT priority.
e69f6186
YB
4608 *
4609 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4610 * code.
1da177e4 4611 */
5add95d4 4612SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4613{
ce5f7f82 4614 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4615 struct task_struct *p;
3a5c359a 4616 int retval;
1da177e4
LT
4617
4618 if (!param || pid < 0)
3a5c359a 4619 return -EINVAL;
1da177e4 4620
5fe85be0 4621 rcu_read_lock();
1da177e4
LT
4622 p = find_process_by_pid(pid);
4623 retval = -ESRCH;
4624 if (!p)
4625 goto out_unlock;
4626
4627 retval = security_task_getscheduler(p);
4628 if (retval)
4629 goto out_unlock;
4630
ce5f7f82
PZ
4631 if (task_has_rt_policy(p))
4632 lp.sched_priority = p->rt_priority;
5fe85be0 4633 rcu_read_unlock();
1da177e4
LT
4634
4635 /*
4636 * This one might sleep, we cannot do it with a spinlock held ...
4637 */
4638 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4639
1da177e4
LT
4640 return retval;
4641
4642out_unlock:
5fe85be0 4643 rcu_read_unlock();
1da177e4
LT
4644 return retval;
4645}
4646
d50dde5a
DF
4647static int sched_read_attr(struct sched_attr __user *uattr,
4648 struct sched_attr *attr,
4649 unsigned int usize)
4650{
4651 int ret;
4652
4653 if (!access_ok(VERIFY_WRITE, uattr, usize))
4654 return -EFAULT;
4655
4656 /*
4657 * If we're handed a smaller struct than we know of,
4658 * ensure all the unknown bits are 0 - i.e. old
4659 * user-space does not get uncomplete information.
4660 */
4661 if (usize < sizeof(*attr)) {
4662 unsigned char *addr;
4663 unsigned char *end;
4664
4665 addr = (void *)attr + usize;
4666 end = (void *)attr + sizeof(*attr);
4667
4668 for (; addr < end; addr++) {
4669 if (*addr)
22400674 4670 return -EFBIG;
d50dde5a
DF
4671 }
4672
4673 attr->size = usize;
4674 }
4675
4efbc454 4676 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4677 if (ret)
4678 return -EFAULT;
4679
22400674 4680 return 0;
d50dde5a
DF
4681}
4682
4683/**
aab03e05 4684 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4685 * @pid: the pid in question.
5778fccf 4686 * @uattr: structure containing the extended parameters.
d50dde5a 4687 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4688 * @flags: for future extension.
d50dde5a 4689 */
6d35ab48
PZ
4690SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4691 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4692{
4693 struct sched_attr attr = {
4694 .size = sizeof(struct sched_attr),
4695 };
4696 struct task_struct *p;
4697 int retval;
4698
4699 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4700 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4701 return -EINVAL;
4702
4703 rcu_read_lock();
4704 p = find_process_by_pid(pid);
4705 retval = -ESRCH;
4706 if (!p)
4707 goto out_unlock;
4708
4709 retval = security_task_getscheduler(p);
4710 if (retval)
4711 goto out_unlock;
4712
4713 attr.sched_policy = p->policy;
7479f3c9
PZ
4714 if (p->sched_reset_on_fork)
4715 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4716 if (task_has_dl_policy(p))
4717 __getparam_dl(p, &attr);
4718 else if (task_has_rt_policy(p))
d50dde5a
DF
4719 attr.sched_priority = p->rt_priority;
4720 else
d0ea0268 4721 attr.sched_nice = task_nice(p);
d50dde5a
DF
4722
4723 rcu_read_unlock();
4724
4725 retval = sched_read_attr(uattr, &attr, size);
4726 return retval;
4727
4728out_unlock:
4729 rcu_read_unlock();
4730 return retval;
4731}
4732
96f874e2 4733long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4734{
5a16f3d3 4735 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4736 struct task_struct *p;
4737 int retval;
1da177e4 4738
23f5d142 4739 rcu_read_lock();
1da177e4
LT
4740
4741 p = find_process_by_pid(pid);
4742 if (!p) {
23f5d142 4743 rcu_read_unlock();
1da177e4
LT
4744 return -ESRCH;
4745 }
4746
23f5d142 4747 /* Prevent p going away */
1da177e4 4748 get_task_struct(p);
23f5d142 4749 rcu_read_unlock();
1da177e4 4750
14a40ffc
TH
4751 if (p->flags & PF_NO_SETAFFINITY) {
4752 retval = -EINVAL;
4753 goto out_put_task;
4754 }
5a16f3d3
RR
4755 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4756 retval = -ENOMEM;
4757 goto out_put_task;
4758 }
4759 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4760 retval = -ENOMEM;
4761 goto out_free_cpus_allowed;
4762 }
1da177e4 4763 retval = -EPERM;
4c44aaaf
EB
4764 if (!check_same_owner(p)) {
4765 rcu_read_lock();
4766 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4767 rcu_read_unlock();
16303ab2 4768 goto out_free_new_mask;
4c44aaaf
EB
4769 }
4770 rcu_read_unlock();
4771 }
1da177e4 4772
b0ae1981 4773 retval = security_task_setscheduler(p);
e7834f8f 4774 if (retval)
16303ab2 4775 goto out_free_new_mask;
e7834f8f 4776
e4099a5e
PZ
4777
4778 cpuset_cpus_allowed(p, cpus_allowed);
4779 cpumask_and(new_mask, in_mask, cpus_allowed);
4780
332ac17e
DF
4781 /*
4782 * Since bandwidth control happens on root_domain basis,
4783 * if admission test is enabled, we only admit -deadline
4784 * tasks allowed to run on all the CPUs in the task's
4785 * root_domain.
4786 */
4787#ifdef CONFIG_SMP
f1e3a093
KT
4788 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4789 rcu_read_lock();
4790 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4791 retval = -EBUSY;
f1e3a093 4792 rcu_read_unlock();
16303ab2 4793 goto out_free_new_mask;
332ac17e 4794 }
f1e3a093 4795 rcu_read_unlock();
332ac17e
DF
4796 }
4797#endif
49246274 4798again:
25834c73 4799 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4800
8707d8b8 4801 if (!retval) {
5a16f3d3
RR
4802 cpuset_cpus_allowed(p, cpus_allowed);
4803 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4804 /*
4805 * We must have raced with a concurrent cpuset
4806 * update. Just reset the cpus_allowed to the
4807 * cpuset's cpus_allowed
4808 */
5a16f3d3 4809 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4810 goto again;
4811 }
4812 }
16303ab2 4813out_free_new_mask:
5a16f3d3
RR
4814 free_cpumask_var(new_mask);
4815out_free_cpus_allowed:
4816 free_cpumask_var(cpus_allowed);
4817out_put_task:
1da177e4 4818 put_task_struct(p);
1da177e4
LT
4819 return retval;
4820}
4821
4822static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4823 struct cpumask *new_mask)
1da177e4 4824{
96f874e2
RR
4825 if (len < cpumask_size())
4826 cpumask_clear(new_mask);
4827 else if (len > cpumask_size())
4828 len = cpumask_size();
4829
1da177e4
LT
4830 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4831}
4832
4833/**
d1ccc66d 4834 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4835 * @pid: pid of the process
4836 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4837 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4838 *
4839 * Return: 0 on success. An error code otherwise.
1da177e4 4840 */
5add95d4
HC
4841SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4842 unsigned long __user *, user_mask_ptr)
1da177e4 4843{
5a16f3d3 4844 cpumask_var_t new_mask;
1da177e4
LT
4845 int retval;
4846
5a16f3d3
RR
4847 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4848 return -ENOMEM;
1da177e4 4849
5a16f3d3
RR
4850 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4851 if (retval == 0)
4852 retval = sched_setaffinity(pid, new_mask);
4853 free_cpumask_var(new_mask);
4854 return retval;
1da177e4
LT
4855}
4856
96f874e2 4857long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4858{
36c8b586 4859 struct task_struct *p;
31605683 4860 unsigned long flags;
1da177e4 4861 int retval;
1da177e4 4862
23f5d142 4863 rcu_read_lock();
1da177e4
LT
4864
4865 retval = -ESRCH;
4866 p = find_process_by_pid(pid);
4867 if (!p)
4868 goto out_unlock;
4869
e7834f8f
DQ
4870 retval = security_task_getscheduler(p);
4871 if (retval)
4872 goto out_unlock;
4873
013fdb80 4874 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4875 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4876 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4877
4878out_unlock:
23f5d142 4879 rcu_read_unlock();
1da177e4 4880
9531b62f 4881 return retval;
1da177e4
LT
4882}
4883
4884/**
d1ccc66d 4885 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4886 * @pid: pid of the process
4887 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4888 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4889 *
599b4840
ZW
4890 * Return: size of CPU mask copied to user_mask_ptr on success. An
4891 * error code otherwise.
1da177e4 4892 */
5add95d4
HC
4893SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4894 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4895{
4896 int ret;
f17c8607 4897 cpumask_var_t mask;
1da177e4 4898
84fba5ec 4899 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4900 return -EINVAL;
4901 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4902 return -EINVAL;
4903
f17c8607
RR
4904 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4905 return -ENOMEM;
1da177e4 4906
f17c8607
RR
4907 ret = sched_getaffinity(pid, mask);
4908 if (ret == 0) {
4de373a1 4909 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
4910
4911 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4912 ret = -EFAULT;
4913 else
cd3d8031 4914 ret = retlen;
f17c8607
RR
4915 }
4916 free_cpumask_var(mask);
1da177e4 4917
f17c8607 4918 return ret;
1da177e4
LT
4919}
4920
4921/**
4922 * sys_sched_yield - yield the current processor to other threads.
4923 *
dd41f596
IM
4924 * This function yields the current CPU to other tasks. If there are no
4925 * other threads running on this CPU then this function will return.
e69f6186
YB
4926 *
4927 * Return: 0.
1da177e4 4928 */
7d4dd4f1 4929static void do_sched_yield(void)
1da177e4 4930{
8a8c69c3
PZ
4931 struct rq_flags rf;
4932 struct rq *rq;
4933
4934 local_irq_disable();
4935 rq = this_rq();
4936 rq_lock(rq, &rf);
1da177e4 4937
ae92882e 4938 schedstat_inc(rq->yld_count);
4530d7ab 4939 current->sched_class->yield_task(rq);
1da177e4
LT
4940
4941 /*
4942 * Since we are going to call schedule() anyway, there's
4943 * no need to preempt or enable interrupts:
4944 */
8a8c69c3
PZ
4945 preempt_disable();
4946 rq_unlock(rq, &rf);
ba74c144 4947 sched_preempt_enable_no_resched();
1da177e4
LT
4948
4949 schedule();
7d4dd4f1 4950}
1da177e4 4951
7d4dd4f1
DB
4952SYSCALL_DEFINE0(sched_yield)
4953{
4954 do_sched_yield();
1da177e4
LT
4955 return 0;
4956}
4957
35a773a0 4958#ifndef CONFIG_PREEMPT
02b67cc3 4959int __sched _cond_resched(void)
1da177e4 4960{
fe32d3cd 4961 if (should_resched(0)) {
a18b5d01 4962 preempt_schedule_common();
1da177e4
LT
4963 return 1;
4964 }
f79c3ad6 4965 rcu_all_qs();
1da177e4
LT
4966 return 0;
4967}
02b67cc3 4968EXPORT_SYMBOL(_cond_resched);
35a773a0 4969#endif
1da177e4
LT
4970
4971/*
613afbf8 4972 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4973 * call schedule, and on return reacquire the lock.
4974 *
41a2d6cf 4975 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4976 * operations here to prevent schedule() from being called twice (once via
4977 * spin_unlock(), once by hand).
4978 */
613afbf8 4979int __cond_resched_lock(spinlock_t *lock)
1da177e4 4980{
fe32d3cd 4981 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4982 int ret = 0;
4983
f607c668
PZ
4984 lockdep_assert_held(lock);
4985
4a81e832 4986 if (spin_needbreak(lock) || resched) {
1da177e4 4987 spin_unlock(lock);
d86ee480 4988 if (resched)
a18b5d01 4989 preempt_schedule_common();
95c354fe
NP
4990 else
4991 cpu_relax();
6df3cecb 4992 ret = 1;
1da177e4 4993 spin_lock(lock);
1da177e4 4994 }
6df3cecb 4995 return ret;
1da177e4 4996}
613afbf8 4997EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4998
1da177e4
LT
4999/**
5000 * yield - yield the current processor to other threads.
5001 *
8e3fabfd
PZ
5002 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5003 *
5004 * The scheduler is at all times free to pick the calling task as the most
5005 * eligible task to run, if removing the yield() call from your code breaks
5006 * it, its already broken.
5007 *
5008 * Typical broken usage is:
5009 *
5010 * while (!event)
d1ccc66d 5011 * yield();
8e3fabfd
PZ
5012 *
5013 * where one assumes that yield() will let 'the other' process run that will
5014 * make event true. If the current task is a SCHED_FIFO task that will never
5015 * happen. Never use yield() as a progress guarantee!!
5016 *
5017 * If you want to use yield() to wait for something, use wait_event().
5018 * If you want to use yield() to be 'nice' for others, use cond_resched().
5019 * If you still want to use yield(), do not!
1da177e4
LT
5020 */
5021void __sched yield(void)
5022{
5023 set_current_state(TASK_RUNNING);
7d4dd4f1 5024 do_sched_yield();
1da177e4 5025}
1da177e4
LT
5026EXPORT_SYMBOL(yield);
5027
d95f4122
MG
5028/**
5029 * yield_to - yield the current processor to another thread in
5030 * your thread group, or accelerate that thread toward the
5031 * processor it's on.
16addf95
RD
5032 * @p: target task
5033 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5034 *
5035 * It's the caller's job to ensure that the target task struct
5036 * can't go away on us before we can do any checks.
5037 *
e69f6186 5038 * Return:
7b270f60
PZ
5039 * true (>0) if we indeed boosted the target task.
5040 * false (0) if we failed to boost the target.
5041 * -ESRCH if there's no task to yield to.
d95f4122 5042 */
fa93384f 5043int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5044{
5045 struct task_struct *curr = current;
5046 struct rq *rq, *p_rq;
5047 unsigned long flags;
c3c18640 5048 int yielded = 0;
d95f4122
MG
5049
5050 local_irq_save(flags);
5051 rq = this_rq();
5052
5053again:
5054 p_rq = task_rq(p);
7b270f60
PZ
5055 /*
5056 * If we're the only runnable task on the rq and target rq also
5057 * has only one task, there's absolutely no point in yielding.
5058 */
5059 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5060 yielded = -ESRCH;
5061 goto out_irq;
5062 }
5063
d95f4122 5064 double_rq_lock(rq, p_rq);
39e24d8f 5065 if (task_rq(p) != p_rq) {
d95f4122
MG
5066 double_rq_unlock(rq, p_rq);
5067 goto again;
5068 }
5069
5070 if (!curr->sched_class->yield_to_task)
7b270f60 5071 goto out_unlock;
d95f4122
MG
5072
5073 if (curr->sched_class != p->sched_class)
7b270f60 5074 goto out_unlock;
d95f4122
MG
5075
5076 if (task_running(p_rq, p) || p->state)
7b270f60 5077 goto out_unlock;
d95f4122
MG
5078
5079 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5080 if (yielded) {
ae92882e 5081 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5082 /*
5083 * Make p's CPU reschedule; pick_next_entity takes care of
5084 * fairness.
5085 */
5086 if (preempt && rq != p_rq)
8875125e 5087 resched_curr(p_rq);
6d1cafd8 5088 }
d95f4122 5089
7b270f60 5090out_unlock:
d95f4122 5091 double_rq_unlock(rq, p_rq);
7b270f60 5092out_irq:
d95f4122
MG
5093 local_irq_restore(flags);
5094
7b270f60 5095 if (yielded > 0)
d95f4122
MG
5096 schedule();
5097
5098 return yielded;
5099}
5100EXPORT_SYMBOL_GPL(yield_to);
5101
10ab5643
TH
5102int io_schedule_prepare(void)
5103{
5104 int old_iowait = current->in_iowait;
5105
5106 current->in_iowait = 1;
5107 blk_schedule_flush_plug(current);
5108
5109 return old_iowait;
5110}
5111
5112void io_schedule_finish(int token)
5113{
5114 current->in_iowait = token;
5115}
5116
1da177e4 5117/*
41a2d6cf 5118 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5119 * that process accounting knows that this is a task in IO wait state.
1da177e4 5120 */
1da177e4
LT
5121long __sched io_schedule_timeout(long timeout)
5122{
10ab5643 5123 int token;
1da177e4
LT
5124 long ret;
5125
10ab5643 5126 token = io_schedule_prepare();
1da177e4 5127 ret = schedule_timeout(timeout);
10ab5643 5128 io_schedule_finish(token);
9cff8ade 5129
1da177e4
LT
5130 return ret;
5131}
9cff8ade 5132EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5133
10ab5643
TH
5134void io_schedule(void)
5135{
5136 int token;
5137
5138 token = io_schedule_prepare();
5139 schedule();
5140 io_schedule_finish(token);
5141}
5142EXPORT_SYMBOL(io_schedule);
5143
1da177e4
LT
5144/**
5145 * sys_sched_get_priority_max - return maximum RT priority.
5146 * @policy: scheduling class.
5147 *
e69f6186
YB
5148 * Return: On success, this syscall returns the maximum
5149 * rt_priority that can be used by a given scheduling class.
5150 * On failure, a negative error code is returned.
1da177e4 5151 */
5add95d4 5152SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5153{
5154 int ret = -EINVAL;
5155
5156 switch (policy) {
5157 case SCHED_FIFO:
5158 case SCHED_RR:
5159 ret = MAX_USER_RT_PRIO-1;
5160 break;
aab03e05 5161 case SCHED_DEADLINE:
1da177e4 5162 case SCHED_NORMAL:
b0a9499c 5163 case SCHED_BATCH:
dd41f596 5164 case SCHED_IDLE:
1da177e4
LT
5165 ret = 0;
5166 break;
5167 }
5168 return ret;
5169}
5170
5171/**
5172 * sys_sched_get_priority_min - return minimum RT priority.
5173 * @policy: scheduling class.
5174 *
e69f6186
YB
5175 * Return: On success, this syscall returns the minimum
5176 * rt_priority that can be used by a given scheduling class.
5177 * On failure, a negative error code is returned.
1da177e4 5178 */
5add95d4 5179SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5180{
5181 int ret = -EINVAL;
5182
5183 switch (policy) {
5184 case SCHED_FIFO:
5185 case SCHED_RR:
5186 ret = 1;
5187 break;
aab03e05 5188 case SCHED_DEADLINE:
1da177e4 5189 case SCHED_NORMAL:
b0a9499c 5190 case SCHED_BATCH:
dd41f596 5191 case SCHED_IDLE:
1da177e4
LT
5192 ret = 0;
5193 }
5194 return ret;
5195}
5196
abca5fc5 5197static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5198{
36c8b586 5199 struct task_struct *p;
a4ec24b4 5200 unsigned int time_slice;
eb580751 5201 struct rq_flags rf;
dba091b9 5202 struct rq *rq;
3a5c359a 5203 int retval;
1da177e4
LT
5204
5205 if (pid < 0)
3a5c359a 5206 return -EINVAL;
1da177e4
LT
5207
5208 retval = -ESRCH;
1a551ae7 5209 rcu_read_lock();
1da177e4
LT
5210 p = find_process_by_pid(pid);
5211 if (!p)
5212 goto out_unlock;
5213
5214 retval = security_task_getscheduler(p);
5215 if (retval)
5216 goto out_unlock;
5217
eb580751 5218 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5219 time_slice = 0;
5220 if (p->sched_class->get_rr_interval)
5221 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5222 task_rq_unlock(rq, p, &rf);
a4ec24b4 5223
1a551ae7 5224 rcu_read_unlock();
abca5fc5
AV
5225 jiffies_to_timespec64(time_slice, t);
5226 return 0;
3a5c359a 5227
1da177e4 5228out_unlock:
1a551ae7 5229 rcu_read_unlock();
1da177e4
LT
5230 return retval;
5231}
5232
2064a5ab
RD
5233/**
5234 * sys_sched_rr_get_interval - return the default timeslice of a process.
5235 * @pid: pid of the process.
5236 * @interval: userspace pointer to the timeslice value.
5237 *
5238 * this syscall writes the default timeslice value of a given process
5239 * into the user-space timespec buffer. A value of '0' means infinity.
5240 *
5241 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5242 * an error code.
5243 */
abca5fc5
AV
5244SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5245 struct timespec __user *, interval)
5246{
5247 struct timespec64 t;
5248 int retval = sched_rr_get_interval(pid, &t);
5249
5250 if (retval == 0)
5251 retval = put_timespec64(&t, interval);
5252
5253 return retval;
5254}
5255
5256#ifdef CONFIG_COMPAT
5257COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5258 compat_pid_t, pid,
5259 struct compat_timespec __user *, interval)
5260{
5261 struct timespec64 t;
5262 int retval = sched_rr_get_interval(pid, &t);
5263
5264 if (retval == 0)
5265 retval = compat_put_timespec64(&t, interval);
5266 return retval;
5267}
5268#endif
5269
82a1fcb9 5270void sched_show_task(struct task_struct *p)
1da177e4 5271{
1da177e4 5272 unsigned long free = 0;
4e79752c 5273 int ppid;
c930b2c0 5274
38200502
TH
5275 if (!try_get_task_stack(p))
5276 return;
20435d84
XX
5277
5278 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5279
5280 if (p->state == TASK_RUNNING)
3df0fc5b 5281 printk(KERN_CONT " running task ");
1da177e4 5282#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5283 free = stack_not_used(p);
1da177e4 5284#endif
a90e984c 5285 ppid = 0;
4e79752c 5286 rcu_read_lock();
a90e984c
ON
5287 if (pid_alive(p))
5288 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5289 rcu_read_unlock();
3df0fc5b 5290 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5291 task_pid_nr(p), ppid,
aa47b7e0 5292 (unsigned long)task_thread_info(p)->flags);
1da177e4 5293
3d1cb205 5294 print_worker_info(KERN_INFO, p);
5fb5e6de 5295 show_stack(p, NULL);
38200502 5296 put_task_stack(p);
1da177e4 5297}
0032f4e8 5298EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5299
5d68cc95
PZ
5300static inline bool
5301state_filter_match(unsigned long state_filter, struct task_struct *p)
5302{
5303 /* no filter, everything matches */
5304 if (!state_filter)
5305 return true;
5306
5307 /* filter, but doesn't match */
5308 if (!(p->state & state_filter))
5309 return false;
5310
5311 /*
5312 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5313 * TASK_KILLABLE).
5314 */
5315 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5316 return false;
5317
5318 return true;
5319}
5320
5321
e59e2ae2 5322void show_state_filter(unsigned long state_filter)
1da177e4 5323{
36c8b586 5324 struct task_struct *g, *p;
1da177e4 5325
4bd77321 5326#if BITS_PER_LONG == 32
3df0fc5b
PZ
5327 printk(KERN_INFO
5328 " task PC stack pid father\n");
1da177e4 5329#else
3df0fc5b
PZ
5330 printk(KERN_INFO
5331 " task PC stack pid father\n");
1da177e4 5332#endif
510f5acc 5333 rcu_read_lock();
5d07f420 5334 for_each_process_thread(g, p) {
1da177e4
LT
5335 /*
5336 * reset the NMI-timeout, listing all files on a slow
25985edc 5337 * console might take a lot of time:
57675cb9
AR
5338 * Also, reset softlockup watchdogs on all CPUs, because
5339 * another CPU might be blocked waiting for us to process
5340 * an IPI.
1da177e4
LT
5341 */
5342 touch_nmi_watchdog();
57675cb9 5343 touch_all_softlockup_watchdogs();
5d68cc95 5344 if (state_filter_match(state_filter, p))
82a1fcb9 5345 sched_show_task(p);
5d07f420 5346 }
1da177e4 5347
dd41f596 5348#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5349 if (!state_filter)
5350 sysrq_sched_debug_show();
dd41f596 5351#endif
510f5acc 5352 rcu_read_unlock();
e59e2ae2
IM
5353 /*
5354 * Only show locks if all tasks are dumped:
5355 */
93335a21 5356 if (!state_filter)
e59e2ae2 5357 debug_show_all_locks();
1da177e4
LT
5358}
5359
f340c0d1
IM
5360/**
5361 * init_idle - set up an idle thread for a given CPU
5362 * @idle: task in question
d1ccc66d 5363 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5364 *
5365 * NOTE: this function does not set the idle thread's NEED_RESCHED
5366 * flag, to make booting more robust.
5367 */
0db0628d 5368void init_idle(struct task_struct *idle, int cpu)
1da177e4 5369{
70b97a7f 5370 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5371 unsigned long flags;
5372
25834c73
PZ
5373 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5374 raw_spin_lock(&rq->lock);
5cbd54ef 5375
5e1576ed 5376 __sched_fork(0, idle);
06b83b5f 5377 idle->state = TASK_RUNNING;
dd41f596 5378 idle->se.exec_start = sched_clock();
c1de45ca 5379 idle->flags |= PF_IDLE;
dd41f596 5380
e1b77c92
MR
5381 kasan_unpoison_task_stack(idle);
5382
de9b8f5d
PZ
5383#ifdef CONFIG_SMP
5384 /*
5385 * Its possible that init_idle() gets called multiple times on a task,
5386 * in that case do_set_cpus_allowed() will not do the right thing.
5387 *
5388 * And since this is boot we can forgo the serialization.
5389 */
5390 set_cpus_allowed_common(idle, cpumask_of(cpu));
5391#endif
6506cf6c
PZ
5392 /*
5393 * We're having a chicken and egg problem, even though we are
d1ccc66d 5394 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5395 * lockdep check in task_group() will fail.
5396 *
5397 * Similar case to sched_fork(). / Alternatively we could
5398 * use task_rq_lock() here and obtain the other rq->lock.
5399 *
5400 * Silence PROVE_RCU
5401 */
5402 rcu_read_lock();
dd41f596 5403 __set_task_cpu(idle, cpu);
6506cf6c 5404 rcu_read_unlock();
1da177e4 5405
1da177e4 5406 rq->curr = rq->idle = idle;
da0c1e65 5407 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5408#ifdef CONFIG_SMP
3ca7a440 5409 idle->on_cpu = 1;
4866cde0 5410#endif
25834c73
PZ
5411 raw_spin_unlock(&rq->lock);
5412 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5413
5414 /* Set the preempt count _outside_ the spinlocks! */
01028747 5415 init_idle_preempt_count(idle, cpu);
55cd5340 5416
dd41f596
IM
5417 /*
5418 * The idle tasks have their own, simple scheduling class:
5419 */
5420 idle->sched_class = &idle_sched_class;
868baf07 5421 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5422 vtime_init_idle(idle, cpu);
de9b8f5d 5423#ifdef CONFIG_SMP
f1c6f1a7
CE
5424 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5425#endif
19978ca6
IM
5426}
5427
e1d4eeec
NP
5428#ifdef CONFIG_SMP
5429
f82f8042
JL
5430int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5431 const struct cpumask *trial)
5432{
06a76fe0 5433 int ret = 1;
f82f8042 5434
bb2bc55a
MG
5435 if (!cpumask_weight(cur))
5436 return ret;
5437
06a76fe0 5438 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5439
5440 return ret;
5441}
5442
7f51412a
JL
5443int task_can_attach(struct task_struct *p,
5444 const struct cpumask *cs_cpus_allowed)
5445{
5446 int ret = 0;
5447
5448 /*
5449 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5450 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5451 * affinity and isolating such threads by their set of
5452 * allowed nodes is unnecessary. Thus, cpusets are not
5453 * applicable for such threads. This prevents checking for
5454 * success of set_cpus_allowed_ptr() on all attached tasks
5455 * before cpus_allowed may be changed.
5456 */
5457 if (p->flags & PF_NO_SETAFFINITY) {
5458 ret = -EINVAL;
5459 goto out;
5460 }
5461
7f51412a 5462 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5463 cs_cpus_allowed))
5464 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5465
7f51412a
JL
5466out:
5467 return ret;
5468}
5469
f2cb1360 5470bool sched_smp_initialized __read_mostly;
e26fbffd 5471
e6628d5b
MG
5472#ifdef CONFIG_NUMA_BALANCING
5473/* Migrate current task p to target_cpu */
5474int migrate_task_to(struct task_struct *p, int target_cpu)
5475{
5476 struct migration_arg arg = { p, target_cpu };
5477 int curr_cpu = task_cpu(p);
5478
5479 if (curr_cpu == target_cpu)
5480 return 0;
5481
0c98d344 5482 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5483 return -EINVAL;
5484
5485 /* TODO: This is not properly updating schedstats */
5486
286549dc 5487 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5488 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5489}
0ec8aa00
PZ
5490
5491/*
5492 * Requeue a task on a given node and accurately track the number of NUMA
5493 * tasks on the runqueues
5494 */
5495void sched_setnuma(struct task_struct *p, int nid)
5496{
da0c1e65 5497 bool queued, running;
eb580751
PZ
5498 struct rq_flags rf;
5499 struct rq *rq;
0ec8aa00 5500
eb580751 5501 rq = task_rq_lock(p, &rf);
da0c1e65 5502 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5503 running = task_current(rq, p);
5504
da0c1e65 5505 if (queued)
1de64443 5506 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5507 if (running)
f3cd1c4e 5508 put_prev_task(rq, p);
0ec8aa00
PZ
5509
5510 p->numa_preferred_nid = nid;
0ec8aa00 5511
da0c1e65 5512 if (queued)
7134b3e9 5513 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5514 if (running)
b2bf6c31 5515 set_curr_task(rq, p);
eb580751 5516 task_rq_unlock(rq, p, &rf);
0ec8aa00 5517}
5cc389bc 5518#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5519
1da177e4 5520#ifdef CONFIG_HOTPLUG_CPU
054b9108 5521/*
d1ccc66d 5522 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5523 * offline.
054b9108 5524 */
48c5ccae 5525void idle_task_exit(void)
1da177e4 5526{
48c5ccae 5527 struct mm_struct *mm = current->active_mm;
e76bd8d9 5528
48c5ccae 5529 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5530
a53efe5f 5531 if (mm != &init_mm) {
252d2a41 5532 switch_mm(mm, &init_mm, current);
3eda69c9 5533 current->active_mm = &init_mm;
a53efe5f
MS
5534 finish_arch_post_lock_switch();
5535 }
48c5ccae 5536 mmdrop(mm);
1da177e4
LT
5537}
5538
5539/*
5d180232
PZ
5540 * Since this CPU is going 'away' for a while, fold any nr_active delta
5541 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5542 * nr_active count is stable. We need to take the teardown thread which
5543 * is calling this into account, so we hand in adjust = 1 to the load
5544 * calculation.
5d180232
PZ
5545 *
5546 * Also see the comment "Global load-average calculations".
1da177e4 5547 */
5d180232 5548static void calc_load_migrate(struct rq *rq)
1da177e4 5549{
d60585c5 5550 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5551 if (delta)
5552 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5553}
5554
3f1d2a31
PZ
5555static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5556{
5557}
5558
5559static const struct sched_class fake_sched_class = {
5560 .put_prev_task = put_prev_task_fake,
5561};
5562
5563static struct task_struct fake_task = {
5564 /*
5565 * Avoid pull_{rt,dl}_task()
5566 */
5567 .prio = MAX_PRIO + 1,
5568 .sched_class = &fake_sched_class,
5569};
5570
48f24c4d 5571/*
48c5ccae
PZ
5572 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5573 * try_to_wake_up()->select_task_rq().
5574 *
5575 * Called with rq->lock held even though we'er in stop_machine() and
5576 * there's no concurrency possible, we hold the required locks anyway
5577 * because of lock validation efforts.
1da177e4 5578 */
8a8c69c3 5579static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5580{
5e16bbc2 5581 struct rq *rq = dead_rq;
48c5ccae 5582 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5583 struct rq_flags orf = *rf;
48c5ccae 5584 int dest_cpu;
1da177e4
LT
5585
5586 /*
48c5ccae
PZ
5587 * Fudge the rq selection such that the below task selection loop
5588 * doesn't get stuck on the currently eligible stop task.
5589 *
5590 * We're currently inside stop_machine() and the rq is either stuck
5591 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5592 * either way we should never end up calling schedule() until we're
5593 * done here.
1da177e4 5594 */
48c5ccae 5595 rq->stop = NULL;
48f24c4d 5596
77bd3970
FW
5597 /*
5598 * put_prev_task() and pick_next_task() sched
5599 * class method both need to have an up-to-date
5600 * value of rq->clock[_task]
5601 */
5602 update_rq_clock(rq);
5603
5e16bbc2 5604 for (;;) {
48c5ccae
PZ
5605 /*
5606 * There's this thread running, bail when that's the only
d1ccc66d 5607 * remaining thread:
48c5ccae
PZ
5608 */
5609 if (rq->nr_running == 1)
dd41f596 5610 break;
48c5ccae 5611
cbce1a68 5612 /*
d1ccc66d 5613 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5614 */
8a8c69c3 5615 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5616 BUG_ON(!next);
5b713a3d 5617 put_prev_task(rq, next);
e692ab53 5618
5473e0cc
WL
5619 /*
5620 * Rules for changing task_struct::cpus_allowed are holding
5621 * both pi_lock and rq->lock, such that holding either
5622 * stabilizes the mask.
5623 *
5624 * Drop rq->lock is not quite as disastrous as it usually is
5625 * because !cpu_active at this point, which means load-balance
5626 * will not interfere. Also, stop-machine.
5627 */
8a8c69c3 5628 rq_unlock(rq, rf);
5473e0cc 5629 raw_spin_lock(&next->pi_lock);
8a8c69c3 5630 rq_relock(rq, rf);
5473e0cc
WL
5631
5632 /*
5633 * Since we're inside stop-machine, _nothing_ should have
5634 * changed the task, WARN if weird stuff happened, because in
5635 * that case the above rq->lock drop is a fail too.
5636 */
5637 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5638 raw_spin_unlock(&next->pi_lock);
5639 continue;
5640 }
5641
48c5ccae 5642 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5643 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5644 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5645 if (rq != dead_rq) {
8a8c69c3 5646 rq_unlock(rq, rf);
5e16bbc2 5647 rq = dead_rq;
8a8c69c3
PZ
5648 *rf = orf;
5649 rq_relock(rq, rf);
5e16bbc2 5650 }
5473e0cc 5651 raw_spin_unlock(&next->pi_lock);
1da177e4 5652 }
dce48a84 5653
48c5ccae 5654 rq->stop = stop;
dce48a84 5655}
1da177e4
LT
5656#endif /* CONFIG_HOTPLUG_CPU */
5657
f2cb1360 5658void set_rq_online(struct rq *rq)
1f11eb6a
GH
5659{
5660 if (!rq->online) {
5661 const struct sched_class *class;
5662
c6c4927b 5663 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5664 rq->online = 1;
5665
5666 for_each_class(class) {
5667 if (class->rq_online)
5668 class->rq_online(rq);
5669 }
5670 }
5671}
5672
f2cb1360 5673void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5674{
5675 if (rq->online) {
5676 const struct sched_class *class;
5677
5678 for_each_class(class) {
5679 if (class->rq_offline)
5680 class->rq_offline(rq);
5681 }
5682
c6c4927b 5683 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5684 rq->online = 0;
5685 }
5686}
5687
d1ccc66d
IM
5688/*
5689 * used to mark begin/end of suspend/resume:
5690 */
5691static int num_cpus_frozen;
d35be8ba 5692
1da177e4 5693/*
3a101d05
TH
5694 * Update cpusets according to cpu_active mask. If cpusets are
5695 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5696 * around partition_sched_domains().
d35be8ba
SB
5697 *
5698 * If we come here as part of a suspend/resume, don't touch cpusets because we
5699 * want to restore it back to its original state upon resume anyway.
1da177e4 5700 */
40190a78 5701static void cpuset_cpu_active(void)
e761b772 5702{
40190a78 5703 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5704 /*
5705 * num_cpus_frozen tracks how many CPUs are involved in suspend
5706 * resume sequence. As long as this is not the last online
5707 * operation in the resume sequence, just build a single sched
5708 * domain, ignoring cpusets.
5709 */
50e76632
PZ
5710 partition_sched_domains(1, NULL, NULL);
5711 if (--num_cpus_frozen)
135fb3e1 5712 return;
d35be8ba
SB
5713 /*
5714 * This is the last CPU online operation. So fall through and
5715 * restore the original sched domains by considering the
5716 * cpuset configurations.
5717 */
50e76632 5718 cpuset_force_rebuild();
3a101d05 5719 }
30e03acd 5720 cpuset_update_active_cpus();
3a101d05 5721}
e761b772 5722
40190a78 5723static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5724{
40190a78 5725 if (!cpuhp_tasks_frozen) {
06a76fe0 5726 if (dl_cpu_busy(cpu))
135fb3e1 5727 return -EBUSY;
30e03acd 5728 cpuset_update_active_cpus();
135fb3e1 5729 } else {
d35be8ba
SB
5730 num_cpus_frozen++;
5731 partition_sched_domains(1, NULL, NULL);
e761b772 5732 }
135fb3e1 5733 return 0;
e761b772 5734}
e761b772 5735
40190a78 5736int sched_cpu_activate(unsigned int cpu)
135fb3e1 5737{
7d976699 5738 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5739 struct rq_flags rf;
7d976699 5740
ba2591a5
PZ
5741#ifdef CONFIG_SCHED_SMT
5742 /*
5743 * The sched_smt_present static key needs to be evaluated on every
5744 * hotplug event because at boot time SMT might be disabled when
5745 * the number of booted CPUs is limited.
5746 *
5747 * If then later a sibling gets hotplugged, then the key would stay
5748 * off and SMT scheduling would never be functional.
5749 */
5750 if (cpumask_weight(cpu_smt_mask(cpu)) > 1)
5751 static_branch_enable_cpuslocked(&sched_smt_present);
5752#endif
40190a78 5753 set_cpu_active(cpu, true);
135fb3e1 5754
40190a78 5755 if (sched_smp_initialized) {
135fb3e1 5756 sched_domains_numa_masks_set(cpu);
40190a78 5757 cpuset_cpu_active();
e761b772 5758 }
7d976699
TG
5759
5760 /*
5761 * Put the rq online, if not already. This happens:
5762 *
5763 * 1) In the early boot process, because we build the real domains
d1ccc66d 5764 * after all CPUs have been brought up.
7d976699
TG
5765 *
5766 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5767 * domains.
5768 */
8a8c69c3 5769 rq_lock_irqsave(rq, &rf);
7d976699
TG
5770 if (rq->rd) {
5771 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5772 set_rq_online(rq);
5773 }
8a8c69c3 5774 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5775
5776 update_max_interval();
5777
40190a78 5778 return 0;
135fb3e1
TG
5779}
5780
40190a78 5781int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5782{
135fb3e1
TG
5783 int ret;
5784
40190a78 5785 set_cpu_active(cpu, false);
b2454caa
PZ
5786 /*
5787 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5788 * users of this state to go away such that all new such users will
5789 * observe it.
5790 *
b2454caa
PZ
5791 * Do sync before park smpboot threads to take care the rcu boost case.
5792 */
d7d34d5e 5793 synchronize_rcu_mult(call_rcu, call_rcu_sched);
40190a78
TG
5794
5795 if (!sched_smp_initialized)
5796 return 0;
5797
5798 ret = cpuset_cpu_inactive(cpu);
5799 if (ret) {
5800 set_cpu_active(cpu, true);
5801 return ret;
135fb3e1 5802 }
40190a78
TG
5803 sched_domains_numa_masks_clear(cpu);
5804 return 0;
135fb3e1
TG
5805}
5806
94baf7a5
TG
5807static void sched_rq_cpu_starting(unsigned int cpu)
5808{
5809 struct rq *rq = cpu_rq(cpu);
5810
5811 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5812 update_max_interval();
5813}
5814
135fb3e1
TG
5815int sched_cpu_starting(unsigned int cpu)
5816{
94baf7a5 5817 sched_rq_cpu_starting(cpu);
d84b3131 5818 sched_tick_start(cpu);
135fb3e1 5819 return 0;
e761b772 5820}
e761b772 5821
f2785ddb
TG
5822#ifdef CONFIG_HOTPLUG_CPU
5823int sched_cpu_dying(unsigned int cpu)
5824{
5825 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5826 struct rq_flags rf;
f2785ddb
TG
5827
5828 /* Handle pending wakeups and then migrate everything off */
5829 sched_ttwu_pending();
d84b3131 5830 sched_tick_stop(cpu);
8a8c69c3
PZ
5831
5832 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5833 if (rq->rd) {
5834 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5835 set_rq_offline(rq);
5836 }
8a8c69c3 5837 migrate_tasks(rq, &rf);
f2785ddb 5838 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5839 rq_unlock_irqrestore(rq, &rf);
5840
f2785ddb
TG
5841 calc_load_migrate(rq);
5842 update_max_interval();
00357f5e 5843 nohz_balance_exit_idle(rq);
e5ef27d0 5844 hrtick_clear(rq);
f2785ddb
TG
5845 return 0;
5846}
5847#endif
5848
1da177e4
LT
5849void __init sched_init_smp(void)
5850{
cb83b629
PZ
5851 sched_init_numa();
5852
6acce3ef
PZ
5853 /*
5854 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5855 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5856 * happen.
5857 */
712555ee 5858 mutex_lock(&sched_domains_mutex);
8d5dc512 5859 sched_init_domains(cpu_active_mask);
712555ee 5860 mutex_unlock(&sched_domains_mutex);
e761b772 5861
5c1e1767 5862 /* Move init over to a non-isolated CPU */
edb93821 5863 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5864 BUG();
19978ca6 5865 sched_init_granularity();
4212823f 5866
0e3900e6 5867 init_sched_rt_class();
1baca4ce 5868 init_sched_dl_class();
1b568f0a 5869
e26fbffd 5870 sched_smp_initialized = true;
1da177e4 5871}
e26fbffd
TG
5872
5873static int __init migration_init(void)
5874{
94baf7a5 5875 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5876 return 0;
1da177e4 5877}
e26fbffd
TG
5878early_initcall(migration_init);
5879
1da177e4
LT
5880#else
5881void __init sched_init_smp(void)
5882{
19978ca6 5883 sched_init_granularity();
1da177e4
LT
5884}
5885#endif /* CONFIG_SMP */
5886
5887int in_sched_functions(unsigned long addr)
5888{
1da177e4
LT
5889 return in_lock_functions(addr) ||
5890 (addr >= (unsigned long)__sched_text_start
5891 && addr < (unsigned long)__sched_text_end);
5892}
5893
029632fb 5894#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5895/*
5896 * Default task group.
5897 * Every task in system belongs to this group at bootup.
5898 */
029632fb 5899struct task_group root_task_group;
35cf4e50 5900LIST_HEAD(task_groups);
b0367629
WL
5901
5902/* Cacheline aligned slab cache for task_group */
5903static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5904#endif
6f505b16 5905
e6252c3e 5906DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5907DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5908
1da177e4
LT
5909void __init sched_init(void)
5910{
dd41f596 5911 int i, j;
434d53b0
MT
5912 unsigned long alloc_size = 0, ptr;
5913
5822a454 5914 wait_bit_init();
9dcb8b68 5915
434d53b0
MT
5916#ifdef CONFIG_FAIR_GROUP_SCHED
5917 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5918#endif
5919#ifdef CONFIG_RT_GROUP_SCHED
5920 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5921#endif
434d53b0 5922 if (alloc_size) {
36b7b6d4 5923 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5924
5925#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5926 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5927 ptr += nr_cpu_ids * sizeof(void **);
5928
07e06b01 5929 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5930 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5931
6d6bc0ad 5932#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5933#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5934 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5935 ptr += nr_cpu_ids * sizeof(void **);
5936
07e06b01 5937 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5938 ptr += nr_cpu_ids * sizeof(void **);
5939
6d6bc0ad 5940#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5941 }
df7c8e84 5942#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5943 for_each_possible_cpu(i) {
5944 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5945 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5946 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5947 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 5948 }
b74e6278 5949#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 5950
d1ccc66d
IM
5951 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5952 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 5953
57d885fe
GH
5954#ifdef CONFIG_SMP
5955 init_defrootdomain();
5956#endif
5957
d0b27fa7 5958#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5959 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 5960 global_rt_period(), global_rt_runtime());
6d6bc0ad 5961#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 5962
7c941438 5963#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
5964 task_group_cache = KMEM_CACHE(task_group, 0);
5965
07e06b01
YZ
5966 list_add(&root_task_group.list, &task_groups);
5967 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 5968 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 5969 autogroup_init(&init_task);
7c941438 5970#endif /* CONFIG_CGROUP_SCHED */
6f505b16 5971
0a945022 5972 for_each_possible_cpu(i) {
70b97a7f 5973 struct rq *rq;
1da177e4
LT
5974
5975 rq = cpu_rq(i);
05fa785c 5976 raw_spin_lock_init(&rq->lock);
7897986b 5977 rq->nr_running = 0;
dce48a84
TG
5978 rq->calc_load_active = 0;
5979 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 5980 init_cfs_rq(&rq->cfs);
07c54f7a
AV
5981 init_rt_rq(&rq->rt);
5982 init_dl_rq(&rq->dl);
dd41f596 5983#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 5984 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 5985 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 5986 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 5987 /*
d1ccc66d 5988 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
5989 *
5990 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
5991 * gets 100% of the CPU resources in the system. This overall
5992 * system CPU resource is divided among the tasks of
07e06b01 5993 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
5994 * based on each entity's (task or task-group's) weight
5995 * (se->load.weight).
5996 *
07e06b01 5997 * In other words, if root_task_group has 10 tasks of weight
354d60c2 5998 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 5999 * then A0's share of the CPU resource is:
354d60c2 6000 *
0d905bca 6001 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6002 *
07e06b01
YZ
6003 * We achieve this by letting root_task_group's tasks sit
6004 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6005 */
ab84d31e 6006 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6007 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6008#endif /* CONFIG_FAIR_GROUP_SCHED */
6009
6010 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6011#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6012 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6013#endif
1da177e4 6014
dd41f596
IM
6015 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6016 rq->cpu_load[j] = 0;
fdf3e95d 6017
1da177e4 6018#ifdef CONFIG_SMP
41c7ce9a 6019 rq->sd = NULL;
57d885fe 6020 rq->rd = NULL;
ca6d75e6 6021 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6022 rq->balance_callback = NULL;
1da177e4 6023 rq->active_balance = 0;
dd41f596 6024 rq->next_balance = jiffies;
1da177e4 6025 rq->push_cpu = 0;
0a2966b4 6026 rq->cpu = i;
1f11eb6a 6027 rq->online = 0;
eae0c9df
MG
6028 rq->idle_stamp = 0;
6029 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6030 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6031
6032 INIT_LIST_HEAD(&rq->cfs_tasks);
6033
dc938520 6034 rq_attach_root(rq, &def_root_domain);
3451d024 6035#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6036 rq->last_load_update_tick = jiffies;
e022e0d3 6037 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6038 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6039#endif
9fd81dd5 6040#endif /* CONFIG_SMP */
77a021be 6041 hrtick_rq_init(rq);
1da177e4 6042 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6043 }
6044
9059393e 6045 set_load_weight(&init_task, false);
b50f60ce 6046
1da177e4
LT
6047 /*
6048 * The boot idle thread does lazy MMU switching as well:
6049 */
f1f10076 6050 mmgrab(&init_mm);
1da177e4
LT
6051 enter_lazy_tlb(&init_mm, current);
6052
6053 /*
6054 * Make us the idle thread. Technically, schedule() should not be
6055 * called from this thread, however somewhere below it might be,
6056 * but because we are the idle thread, we just pick up running again
6057 * when this runqueue becomes "idle".
6058 */
6059 init_idle(current, smp_processor_id());
dce48a84
TG
6060
6061 calc_load_update = jiffies + LOAD_FREQ;
6062
bf4d83f6 6063#ifdef CONFIG_SMP
29d5e047 6064 idle_thread_set_boot_cpu();
029632fb
PZ
6065#endif
6066 init_sched_fair_class();
6a7b3dc3 6067
4698f88c
JP
6068 init_schedstats();
6069
6892b75e 6070 scheduler_running = 1;
1da177e4
LT
6071}
6072
d902db1e 6073#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6074static inline int preempt_count_equals(int preempt_offset)
6075{
da7142e2 6076 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6077
4ba8216c 6078 return (nested == preempt_offset);
e4aafea2
FW
6079}
6080
d894837f 6081void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6082{
8eb23b9f
PZ
6083 /*
6084 * Blocking primitives will set (and therefore destroy) current->state,
6085 * since we will exit with TASK_RUNNING make sure we enter with it,
6086 * otherwise we will destroy state.
6087 */
00845eb9 6088 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6089 "do not call blocking ops when !TASK_RUNNING; "
6090 "state=%lx set at [<%p>] %pS\n",
6091 current->state,
6092 (void *)current->task_state_change,
00845eb9 6093 (void *)current->task_state_change);
8eb23b9f 6094
3427445a
PZ
6095 ___might_sleep(file, line, preempt_offset);
6096}
6097EXPORT_SYMBOL(__might_sleep);
6098
6099void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6100{
d1ccc66d
IM
6101 /* Ratelimiting timestamp: */
6102 static unsigned long prev_jiffy;
6103
d1c6d149 6104 unsigned long preempt_disable_ip;
1da177e4 6105
d1ccc66d
IM
6106 /* WARN_ON_ONCE() by default, no rate limit required: */
6107 rcu_sleep_check();
6108
db273be2
TG
6109 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6110 !is_idle_task(current)) ||
1c3c5eab
TG
6111 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6112 oops_in_progress)
aef745fc 6113 return;
1c3c5eab 6114
aef745fc
IM
6115 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6116 return;
6117 prev_jiffy = jiffies;
6118
d1ccc66d 6119 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6120 preempt_disable_ip = get_preempt_disable_ip(current);
6121
3df0fc5b
PZ
6122 printk(KERN_ERR
6123 "BUG: sleeping function called from invalid context at %s:%d\n",
6124 file, line);
6125 printk(KERN_ERR
6126 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6127 in_atomic(), irqs_disabled(),
6128 current->pid, current->comm);
aef745fc 6129
a8b686b3
ES
6130 if (task_stack_end_corrupted(current))
6131 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6132
aef745fc
IM
6133 debug_show_held_locks(current);
6134 if (irqs_disabled())
6135 print_irqtrace_events(current);
d1c6d149
VN
6136 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6137 && !preempt_count_equals(preempt_offset)) {
8f47b187 6138 pr_err("Preemption disabled at:");
d1c6d149 6139 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6140 pr_cont("\n");
6141 }
aef745fc 6142 dump_stack();
f0b22e39 6143 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6144}
3427445a 6145EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6146#endif
6147
6148#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6149void normalize_rt_tasks(void)
3a5e4dc1 6150{
dbc7f069 6151 struct task_struct *g, *p;
d50dde5a
DF
6152 struct sched_attr attr = {
6153 .sched_policy = SCHED_NORMAL,
6154 };
1da177e4 6155
3472eaa1 6156 read_lock(&tasklist_lock);
5d07f420 6157 for_each_process_thread(g, p) {
178be793
IM
6158 /*
6159 * Only normalize user tasks:
6160 */
3472eaa1 6161 if (p->flags & PF_KTHREAD)
178be793
IM
6162 continue;
6163
4fa8d299
JP
6164 p->se.exec_start = 0;
6165 schedstat_set(p->se.statistics.wait_start, 0);
6166 schedstat_set(p->se.statistics.sleep_start, 0);
6167 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6168
aab03e05 6169 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6170 /*
6171 * Renice negative nice level userspace
6172 * tasks back to 0:
6173 */
3472eaa1 6174 if (task_nice(p) < 0)
dd41f596 6175 set_user_nice(p, 0);
1da177e4 6176 continue;
dd41f596 6177 }
1da177e4 6178
dbc7f069 6179 __sched_setscheduler(p, &attr, false, false);
5d07f420 6180 }
3472eaa1 6181 read_unlock(&tasklist_lock);
1da177e4
LT
6182}
6183
6184#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6185
67fc4e0c 6186#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6187/*
67fc4e0c 6188 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6189 *
6190 * They can only be called when the whole system has been
6191 * stopped - every CPU needs to be quiescent, and no scheduling
6192 * activity can take place. Using them for anything else would
6193 * be a serious bug, and as a result, they aren't even visible
6194 * under any other configuration.
6195 */
6196
6197/**
d1ccc66d 6198 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6199 * @cpu: the processor in question.
6200 *
6201 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6202 *
6203 * Return: The current task for @cpu.
1df5c10a 6204 */
36c8b586 6205struct task_struct *curr_task(int cpu)
1df5c10a
LT
6206{
6207 return cpu_curr(cpu);
6208}
6209
67fc4e0c
JW
6210#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6211
6212#ifdef CONFIG_IA64
1df5c10a 6213/**
d1ccc66d 6214 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6215 * @cpu: the processor in question.
6216 * @p: the task pointer to set.
6217 *
6218 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6219 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6220 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6221 * must be called with all CPU's synchronized, and interrupts disabled, the
6222 * and caller must save the original value of the current task (see
6223 * curr_task() above) and restore that value before reenabling interrupts and
6224 * re-starting the system.
6225 *
6226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6227 */
a458ae2e 6228void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6229{
6230 cpu_curr(cpu) = p;
6231}
6232
6233#endif
29f59db3 6234
7c941438 6235#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6236/* task_group_lock serializes the addition/removal of task groups */
6237static DEFINE_SPINLOCK(task_group_lock);
6238
2f5177f0 6239static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6240{
6241 free_fair_sched_group(tg);
6242 free_rt_sched_group(tg);
e9aa1dd1 6243 autogroup_free(tg);
b0367629 6244 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6245}
6246
6247/* allocate runqueue etc for a new task group */
ec7dc8ac 6248struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6249{
6250 struct task_group *tg;
bccbe08a 6251
b0367629 6252 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6253 if (!tg)
6254 return ERR_PTR(-ENOMEM);
6255
ec7dc8ac 6256 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6257 goto err;
6258
ec7dc8ac 6259 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6260 goto err;
6261
ace783b9
LZ
6262 return tg;
6263
6264err:
2f5177f0 6265 sched_free_group(tg);
ace783b9
LZ
6266 return ERR_PTR(-ENOMEM);
6267}
6268
6269void sched_online_group(struct task_group *tg, struct task_group *parent)
6270{
6271 unsigned long flags;
6272
8ed36996 6273 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6274 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6275
d1ccc66d
IM
6276 /* Root should already exist: */
6277 WARN_ON(!parent);
f473aa5e
PZ
6278
6279 tg->parent = parent;
f473aa5e 6280 INIT_LIST_HEAD(&tg->children);
09f2724a 6281 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6282 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6283
6284 online_fair_sched_group(tg);
29f59db3
SV
6285}
6286
9b5b7751 6287/* rcu callback to free various structures associated with a task group */
2f5177f0 6288static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6289{
d1ccc66d 6290 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6291 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6292}
6293
4cf86d77 6294void sched_destroy_group(struct task_group *tg)
ace783b9 6295{
d1ccc66d 6296 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6297 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6298}
6299
6300void sched_offline_group(struct task_group *tg)
29f59db3 6301{
8ed36996 6302 unsigned long flags;
29f59db3 6303
d1ccc66d 6304 /* End participation in shares distribution: */
6fe1f348 6305 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6306
6307 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6308 list_del_rcu(&tg->list);
f473aa5e 6309 list_del_rcu(&tg->siblings);
8ed36996 6310 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6311}
6312
ea86cb4b 6313static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6314{
8323f26c 6315 struct task_group *tg;
29f59db3 6316
f7b8a47d
KT
6317 /*
6318 * All callers are synchronized by task_rq_lock(); we do not use RCU
6319 * which is pointless here. Thus, we pass "true" to task_css_check()
6320 * to prevent lockdep warnings.
6321 */
6322 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6323 struct task_group, css);
6324 tg = autogroup_task_group(tsk, tg);
6325 tsk->sched_task_group = tg;
6326
810b3817 6327#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6328 if (tsk->sched_class->task_change_group)
6329 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6330 else
810b3817 6331#endif
b2b5ce02 6332 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6333}
6334
6335/*
6336 * Change task's runqueue when it moves between groups.
6337 *
6338 * The caller of this function should have put the task in its new group by
6339 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6340 * its new group.
6341 */
6342void sched_move_task(struct task_struct *tsk)
6343{
7a57f32a
PZ
6344 int queued, running, queue_flags =
6345 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6346 struct rq_flags rf;
6347 struct rq *rq;
6348
6349 rq = task_rq_lock(tsk, &rf);
1b1d6225 6350 update_rq_clock(rq);
ea86cb4b
VG
6351
6352 running = task_current(rq, tsk);
6353 queued = task_on_rq_queued(tsk);
6354
6355 if (queued)
7a57f32a 6356 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6357 if (running)
ea86cb4b
VG
6358 put_prev_task(rq, tsk);
6359
6360 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6361
da0c1e65 6362 if (queued)
7a57f32a 6363 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6364 if (running)
b2bf6c31 6365 set_curr_task(rq, tsk);
29f59db3 6366
eb580751 6367 task_rq_unlock(rq, tsk, &rf);
29f59db3 6368}
68318b8e 6369
a7c6d554 6370static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6371{
a7c6d554 6372 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6373}
6374
eb95419b
TH
6375static struct cgroup_subsys_state *
6376cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6377{
eb95419b
TH
6378 struct task_group *parent = css_tg(parent_css);
6379 struct task_group *tg;
68318b8e 6380
eb95419b 6381 if (!parent) {
68318b8e 6382 /* This is early initialization for the top cgroup */
07e06b01 6383 return &root_task_group.css;
68318b8e
SV
6384 }
6385
ec7dc8ac 6386 tg = sched_create_group(parent);
68318b8e
SV
6387 if (IS_ERR(tg))
6388 return ERR_PTR(-ENOMEM);
6389
68318b8e
SV
6390 return &tg->css;
6391}
6392
96b77745
KK
6393/* Expose task group only after completing cgroup initialization */
6394static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6395{
6396 struct task_group *tg = css_tg(css);
6397 struct task_group *parent = css_tg(css->parent);
6398
6399 if (parent)
6400 sched_online_group(tg, parent);
6401 return 0;
6402}
6403
2f5177f0 6404static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6405{
eb95419b 6406 struct task_group *tg = css_tg(css);
ace783b9 6407
2f5177f0 6408 sched_offline_group(tg);
ace783b9
LZ
6409}
6410
eb95419b 6411static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6412{
eb95419b 6413 struct task_group *tg = css_tg(css);
68318b8e 6414
2f5177f0
PZ
6415 /*
6416 * Relies on the RCU grace period between css_released() and this.
6417 */
6418 sched_free_group(tg);
ace783b9
LZ
6419}
6420
ea86cb4b
VG
6421/*
6422 * This is called before wake_up_new_task(), therefore we really only
6423 * have to set its group bits, all the other stuff does not apply.
6424 */
b53202e6 6425static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6426{
ea86cb4b
VG
6427 struct rq_flags rf;
6428 struct rq *rq;
6429
6430 rq = task_rq_lock(task, &rf);
6431
80f5c1b8 6432 update_rq_clock(rq);
ea86cb4b
VG
6433 sched_change_group(task, TASK_SET_GROUP);
6434
6435 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6436}
6437
1f7dd3e5 6438static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6439{
bb9d97b6 6440 struct task_struct *task;
1f7dd3e5 6441 struct cgroup_subsys_state *css;
7dc603c9 6442 int ret = 0;
bb9d97b6 6443
1f7dd3e5 6444 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6445#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6446 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6447 return -EINVAL;
b68aa230 6448#else
bb9d97b6
TH
6449 /* We don't support RT-tasks being in separate groups */
6450 if (task->sched_class != &fair_sched_class)
6451 return -EINVAL;
b68aa230 6452#endif
7dc603c9
PZ
6453 /*
6454 * Serialize against wake_up_new_task() such that if its
6455 * running, we're sure to observe its full state.
6456 */
6457 raw_spin_lock_irq(&task->pi_lock);
6458 /*
6459 * Avoid calling sched_move_task() before wake_up_new_task()
6460 * has happened. This would lead to problems with PELT, due to
6461 * move wanting to detach+attach while we're not attached yet.
6462 */
6463 if (task->state == TASK_NEW)
6464 ret = -EINVAL;
6465 raw_spin_unlock_irq(&task->pi_lock);
6466
6467 if (ret)
6468 break;
bb9d97b6 6469 }
7dc603c9 6470 return ret;
be367d09 6471}
68318b8e 6472
1f7dd3e5 6473static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6474{
bb9d97b6 6475 struct task_struct *task;
1f7dd3e5 6476 struct cgroup_subsys_state *css;
bb9d97b6 6477
1f7dd3e5 6478 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6479 sched_move_task(task);
68318b8e
SV
6480}
6481
052f1dc7 6482#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6483static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6484 struct cftype *cftype, u64 shareval)
68318b8e 6485{
182446d0 6486 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6487}
6488
182446d0
TH
6489static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6490 struct cftype *cft)
68318b8e 6491{
182446d0 6492 struct task_group *tg = css_tg(css);
68318b8e 6493
c8b28116 6494 return (u64) scale_load_down(tg->shares);
68318b8e 6495}
ab84d31e
PT
6496
6497#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6498static DEFINE_MUTEX(cfs_constraints_mutex);
6499
ab84d31e
PT
6500const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6501const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6502
a790de99
PT
6503static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6504
ab84d31e
PT
6505static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6506{
56f570e5 6507 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6508 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6509
6510 if (tg == &root_task_group)
6511 return -EINVAL;
6512
6513 /*
6514 * Ensure we have at some amount of bandwidth every period. This is
6515 * to prevent reaching a state of large arrears when throttled via
6516 * entity_tick() resulting in prolonged exit starvation.
6517 */
6518 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6519 return -EINVAL;
6520
6521 /*
6522 * Likewise, bound things on the otherside by preventing insane quota
6523 * periods. This also allows us to normalize in computing quota
6524 * feasibility.
6525 */
6526 if (period > max_cfs_quota_period)
6527 return -EINVAL;
6528
0e59bdae
KT
6529 /*
6530 * Prevent race between setting of cfs_rq->runtime_enabled and
6531 * unthrottle_offline_cfs_rqs().
6532 */
6533 get_online_cpus();
a790de99
PT
6534 mutex_lock(&cfs_constraints_mutex);
6535 ret = __cfs_schedulable(tg, period, quota);
6536 if (ret)
6537 goto out_unlock;
6538
58088ad0 6539 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6540 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6541 /*
6542 * If we need to toggle cfs_bandwidth_used, off->on must occur
6543 * before making related changes, and on->off must occur afterwards
6544 */
6545 if (runtime_enabled && !runtime_was_enabled)
6546 cfs_bandwidth_usage_inc();
ab84d31e
PT
6547 raw_spin_lock_irq(&cfs_b->lock);
6548 cfs_b->period = ns_to_ktime(period);
6549 cfs_b->quota = quota;
58088ad0 6550
a9cf55b2 6551 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6552
6553 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6554 if (runtime_enabled)
6555 start_cfs_bandwidth(cfs_b);
d1ccc66d 6556
ab84d31e
PT
6557 raw_spin_unlock_irq(&cfs_b->lock);
6558
0e59bdae 6559 for_each_online_cpu(i) {
ab84d31e 6560 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6561 struct rq *rq = cfs_rq->rq;
8a8c69c3 6562 struct rq_flags rf;
ab84d31e 6563
8a8c69c3 6564 rq_lock_irq(rq, &rf);
58088ad0 6565 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6566 cfs_rq->runtime_remaining = 0;
671fd9da 6567
029632fb 6568 if (cfs_rq->throttled)
671fd9da 6569 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6570 rq_unlock_irq(rq, &rf);
ab84d31e 6571 }
1ee14e6c
BS
6572 if (runtime_was_enabled && !runtime_enabled)
6573 cfs_bandwidth_usage_dec();
a790de99
PT
6574out_unlock:
6575 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6576 put_online_cpus();
ab84d31e 6577
a790de99 6578 return ret;
ab84d31e
PT
6579}
6580
6581int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6582{
6583 u64 quota, period;
6584
029632fb 6585 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6586 if (cfs_quota_us < 0)
6587 quota = RUNTIME_INF;
6588 else
6589 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6590
6591 return tg_set_cfs_bandwidth(tg, period, quota);
6592}
6593
6594long tg_get_cfs_quota(struct task_group *tg)
6595{
6596 u64 quota_us;
6597
029632fb 6598 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6599 return -1;
6600
029632fb 6601 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6602 do_div(quota_us, NSEC_PER_USEC);
6603
6604 return quota_us;
6605}
6606
6607int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6608{
6609 u64 quota, period;
6610
6611 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6612 quota = tg->cfs_bandwidth.quota;
ab84d31e 6613
ab84d31e
PT
6614 return tg_set_cfs_bandwidth(tg, period, quota);
6615}
6616
6617long tg_get_cfs_period(struct task_group *tg)
6618{
6619 u64 cfs_period_us;
6620
029632fb 6621 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6622 do_div(cfs_period_us, NSEC_PER_USEC);
6623
6624 return cfs_period_us;
6625}
6626
182446d0
TH
6627static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6628 struct cftype *cft)
ab84d31e 6629{
182446d0 6630 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6631}
6632
182446d0
TH
6633static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6634 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6635{
182446d0 6636 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6637}
6638
182446d0
TH
6639static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6640 struct cftype *cft)
ab84d31e 6641{
182446d0 6642 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6643}
6644
182446d0
TH
6645static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6646 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6647{
182446d0 6648 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6649}
6650
a790de99
PT
6651struct cfs_schedulable_data {
6652 struct task_group *tg;
6653 u64 period, quota;
6654};
6655
6656/*
6657 * normalize group quota/period to be quota/max_period
6658 * note: units are usecs
6659 */
6660static u64 normalize_cfs_quota(struct task_group *tg,
6661 struct cfs_schedulable_data *d)
6662{
6663 u64 quota, period;
6664
6665 if (tg == d->tg) {
6666 period = d->period;
6667 quota = d->quota;
6668 } else {
6669 period = tg_get_cfs_period(tg);
6670 quota = tg_get_cfs_quota(tg);
6671 }
6672
6673 /* note: these should typically be equivalent */
6674 if (quota == RUNTIME_INF || quota == -1)
6675 return RUNTIME_INF;
6676
6677 return to_ratio(period, quota);
6678}
6679
6680static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6681{
6682 struct cfs_schedulable_data *d = data;
029632fb 6683 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6684 s64 quota = 0, parent_quota = -1;
6685
6686 if (!tg->parent) {
6687 quota = RUNTIME_INF;
6688 } else {
029632fb 6689 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6690
6691 quota = normalize_cfs_quota(tg, d);
9c58c79a 6692 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6693
6694 /*
c53593e5
TH
6695 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6696 * always take the min. On cgroup1, only inherit when no
d1ccc66d 6697 * limit is set:
a790de99 6698 */
c53593e5
TH
6699 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6700 quota = min(quota, parent_quota);
6701 } else {
6702 if (quota == RUNTIME_INF)
6703 quota = parent_quota;
6704 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6705 return -EINVAL;
6706 }
a790de99 6707 }
9c58c79a 6708 cfs_b->hierarchical_quota = quota;
a790de99
PT
6709
6710 return 0;
6711}
6712
6713static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6714{
8277434e 6715 int ret;
a790de99
PT
6716 struct cfs_schedulable_data data = {
6717 .tg = tg,
6718 .period = period,
6719 .quota = quota,
6720 };
6721
6722 if (quota != RUNTIME_INF) {
6723 do_div(data.period, NSEC_PER_USEC);
6724 do_div(data.quota, NSEC_PER_USEC);
6725 }
6726
8277434e
PT
6727 rcu_read_lock();
6728 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6729 rcu_read_unlock();
6730
6731 return ret;
a790de99 6732}
e8da1b18 6733
a1f7164c 6734static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6735{
2da8ca82 6736 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6737 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6738
44ffc75b
TH
6739 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6740 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6741 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 6742
3d6c50c2
YW
6743 if (schedstat_enabled() && tg != &root_task_group) {
6744 u64 ws = 0;
6745 int i;
6746
6747 for_each_possible_cpu(i)
6748 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6749
6750 seq_printf(sf, "wait_sum %llu\n", ws);
6751 }
6752
e8da1b18
NR
6753 return 0;
6754}
ab84d31e 6755#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6756#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6757
052f1dc7 6758#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6759static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6760 struct cftype *cft, s64 val)
6f505b16 6761{
182446d0 6762 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6763}
6764
182446d0
TH
6765static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6766 struct cftype *cft)
6f505b16 6767{
182446d0 6768 return sched_group_rt_runtime(css_tg(css));
6f505b16 6769}
d0b27fa7 6770
182446d0
TH
6771static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6772 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6773{
182446d0 6774 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6775}
6776
182446d0
TH
6777static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6778 struct cftype *cft)
d0b27fa7 6779{
182446d0 6780 return sched_group_rt_period(css_tg(css));
d0b27fa7 6781}
6d6bc0ad 6782#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6783
a1f7164c 6784static struct cftype cpu_legacy_files[] = {
052f1dc7 6785#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6786 {
6787 .name = "shares",
f4c753b7
PM
6788 .read_u64 = cpu_shares_read_u64,
6789 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6790 },
052f1dc7 6791#endif
ab84d31e
PT
6792#ifdef CONFIG_CFS_BANDWIDTH
6793 {
6794 .name = "cfs_quota_us",
6795 .read_s64 = cpu_cfs_quota_read_s64,
6796 .write_s64 = cpu_cfs_quota_write_s64,
6797 },
6798 {
6799 .name = "cfs_period_us",
6800 .read_u64 = cpu_cfs_period_read_u64,
6801 .write_u64 = cpu_cfs_period_write_u64,
6802 },
e8da1b18
NR
6803 {
6804 .name = "stat",
a1f7164c 6805 .seq_show = cpu_cfs_stat_show,
e8da1b18 6806 },
ab84d31e 6807#endif
052f1dc7 6808#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6809 {
9f0c1e56 6810 .name = "rt_runtime_us",
06ecb27c
PM
6811 .read_s64 = cpu_rt_runtime_read,
6812 .write_s64 = cpu_rt_runtime_write,
6f505b16 6813 },
d0b27fa7
PZ
6814 {
6815 .name = "rt_period_us",
f4c753b7
PM
6816 .read_u64 = cpu_rt_period_read_uint,
6817 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6818 },
052f1dc7 6819#endif
d1ccc66d 6820 { } /* Terminate */
68318b8e
SV
6821};
6822
d41bf8c9
TH
6823static int cpu_extra_stat_show(struct seq_file *sf,
6824 struct cgroup_subsys_state *css)
0d593634 6825{
0d593634
TH
6826#ifdef CONFIG_CFS_BANDWIDTH
6827 {
d41bf8c9 6828 struct task_group *tg = css_tg(css);
0d593634
TH
6829 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6830 u64 throttled_usec;
6831
6832 throttled_usec = cfs_b->throttled_time;
6833 do_div(throttled_usec, NSEC_PER_USEC);
6834
6835 seq_printf(sf, "nr_periods %d\n"
6836 "nr_throttled %d\n"
6837 "throttled_usec %llu\n",
6838 cfs_b->nr_periods, cfs_b->nr_throttled,
6839 throttled_usec);
6840 }
6841#endif
6842 return 0;
6843}
6844
6845#ifdef CONFIG_FAIR_GROUP_SCHED
6846static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6847 struct cftype *cft)
6848{
6849 struct task_group *tg = css_tg(css);
6850 u64 weight = scale_load_down(tg->shares);
6851
6852 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6853}
6854
6855static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6856 struct cftype *cft, u64 weight)
6857{
6858 /*
6859 * cgroup weight knobs should use the common MIN, DFL and MAX
6860 * values which are 1, 100 and 10000 respectively. While it loses
6861 * a bit of range on both ends, it maps pretty well onto the shares
6862 * value used by scheduler and the round-trip conversions preserve
6863 * the original value over the entire range.
6864 */
6865 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6866 return -ERANGE;
6867
6868 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6869
6870 return sched_group_set_shares(css_tg(css), scale_load(weight));
6871}
6872
6873static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6874 struct cftype *cft)
6875{
6876 unsigned long weight = scale_load_down(css_tg(css)->shares);
6877 int last_delta = INT_MAX;
6878 int prio, delta;
6879
6880 /* find the closest nice value to the current weight */
6881 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6882 delta = abs(sched_prio_to_weight[prio] - weight);
6883 if (delta >= last_delta)
6884 break;
6885 last_delta = delta;
6886 }
6887
6888 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6889}
6890
6891static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6892 struct cftype *cft, s64 nice)
6893{
6894 unsigned long weight;
7281c8de 6895 int idx;
0d593634
TH
6896
6897 if (nice < MIN_NICE || nice > MAX_NICE)
6898 return -ERANGE;
6899
7281c8de
PZ
6900 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6901 idx = array_index_nospec(idx, 40);
6902 weight = sched_prio_to_weight[idx];
6903
0d593634
TH
6904 return sched_group_set_shares(css_tg(css), scale_load(weight));
6905}
6906#endif
6907
6908static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6909 long period, long quota)
6910{
6911 if (quota < 0)
6912 seq_puts(sf, "max");
6913 else
6914 seq_printf(sf, "%ld", quota);
6915
6916 seq_printf(sf, " %ld\n", period);
6917}
6918
6919/* caller should put the current value in *@periodp before calling */
6920static int __maybe_unused cpu_period_quota_parse(char *buf,
6921 u64 *periodp, u64 *quotap)
6922{
6923 char tok[21]; /* U64_MAX */
6924
6925 if (!sscanf(buf, "%s %llu", tok, periodp))
6926 return -EINVAL;
6927
6928 *periodp *= NSEC_PER_USEC;
6929
6930 if (sscanf(tok, "%llu", quotap))
6931 *quotap *= NSEC_PER_USEC;
6932 else if (!strcmp(tok, "max"))
6933 *quotap = RUNTIME_INF;
6934 else
6935 return -EINVAL;
6936
6937 return 0;
6938}
6939
6940#ifdef CONFIG_CFS_BANDWIDTH
6941static int cpu_max_show(struct seq_file *sf, void *v)
6942{
6943 struct task_group *tg = css_tg(seq_css(sf));
6944
6945 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6946 return 0;
6947}
6948
6949static ssize_t cpu_max_write(struct kernfs_open_file *of,
6950 char *buf, size_t nbytes, loff_t off)
6951{
6952 struct task_group *tg = css_tg(of_css(of));
6953 u64 period = tg_get_cfs_period(tg);
6954 u64 quota;
6955 int ret;
6956
6957 ret = cpu_period_quota_parse(buf, &period, &quota);
6958 if (!ret)
6959 ret = tg_set_cfs_bandwidth(tg, period, quota);
6960 return ret ?: nbytes;
6961}
6962#endif
6963
6964static struct cftype cpu_files[] = {
0d593634
TH
6965#ifdef CONFIG_FAIR_GROUP_SCHED
6966 {
6967 .name = "weight",
6968 .flags = CFTYPE_NOT_ON_ROOT,
6969 .read_u64 = cpu_weight_read_u64,
6970 .write_u64 = cpu_weight_write_u64,
6971 },
6972 {
6973 .name = "weight.nice",
6974 .flags = CFTYPE_NOT_ON_ROOT,
6975 .read_s64 = cpu_weight_nice_read_s64,
6976 .write_s64 = cpu_weight_nice_write_s64,
6977 },
6978#endif
6979#ifdef CONFIG_CFS_BANDWIDTH
6980 {
6981 .name = "max",
6982 .flags = CFTYPE_NOT_ON_ROOT,
6983 .seq_show = cpu_max_show,
6984 .write = cpu_max_write,
6985 },
6986#endif
6987 { } /* terminate */
6988};
6989
073219e9 6990struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 6991 .css_alloc = cpu_cgroup_css_alloc,
96b77745 6992 .css_online = cpu_cgroup_css_online,
2f5177f0 6993 .css_released = cpu_cgroup_css_released,
92fb9748 6994 .css_free = cpu_cgroup_css_free,
d41bf8c9 6995 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 6996 .fork = cpu_cgroup_fork,
bb9d97b6
TH
6997 .can_attach = cpu_cgroup_can_attach,
6998 .attach = cpu_cgroup_attach,
a1f7164c 6999 .legacy_cftypes = cpu_legacy_files,
0d593634 7000 .dfl_cftypes = cpu_files,
b38e42e9 7001 .early_init = true,
0d593634 7002 .threaded = true,
68318b8e
SV
7003};
7004
052f1dc7 7005#endif /* CONFIG_CGROUP_SCHED */
d842de87 7006
b637a328
PM
7007void dump_cpu_task(int cpu)
7008{
7009 pr_info("Task dump for CPU %d:\n", cpu);
7010 sched_show_task(cpu_curr(cpu));
7011}
ed82b8a1
AK
7012
7013/*
7014 * Nice levels are multiplicative, with a gentle 10% change for every
7015 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7016 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7017 * that remained on nice 0.
7018 *
7019 * The "10% effect" is relative and cumulative: from _any_ nice level,
7020 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7021 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7022 * If a task goes up by ~10% and another task goes down by ~10% then
7023 * the relative distance between them is ~25%.)
7024 */
7025const int sched_prio_to_weight[40] = {
7026 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7027 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7028 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7029 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7030 /* 0 */ 1024, 820, 655, 526, 423,
7031 /* 5 */ 335, 272, 215, 172, 137,
7032 /* 10 */ 110, 87, 70, 56, 45,
7033 /* 15 */ 36, 29, 23, 18, 15,
7034};
7035
7036/*
7037 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7038 *
7039 * In cases where the weight does not change often, we can use the
7040 * precalculated inverse to speed up arithmetics by turning divisions
7041 * into multiplications:
7042 */
7043const u32 sched_prio_to_wmult[40] = {
7044 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7045 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7046 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7047 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7048 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7049 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7050 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7051 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7052};
14a7405b
IM
7053
7054#undef CREATE_TRACE_POINTS