]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched/fair: Fix enqueue_task_fair warning
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
771b53d0 19#include "../../fs/io-wq.h"
29d5e047 20#include "../smpboot.h"
6e0534f2 21
91c27493
VG
22#include "pelt.h"
23
a8d154b0 24#define CREATE_TRACE_POINTS
ad8d75ff 25#include <trace/events/sched.h>
a8d154b0 26
a056a5be
QY
27/*
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
30 */
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37
029632fb 38DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 39
e9666d10 40#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
41/*
42 * Debugging: various feature bits
765cc3a4
PB
43 *
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
bf5c91ba 47 */
f00b45c1
PZ
48#define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 50const_debug unsigned int sysctl_sched_features =
391e43da 51#include "features.h"
f00b45c1 52 0;
f00b45c1 53#undef SCHED_FEAT
765cc3a4 54#endif
f00b45c1 55
b82d9fdd
PZ
56/*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
fa85ae24 62/*
d1ccc66d 63 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
64 * default: 1s
65 */
9f0c1e56 66unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 67
029632fb 68__read_mostly int scheduler_running;
6892b75e 69
9f0c1e56
PZ
70/*
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
73 */
74int sysctl_sched_rt_runtime = 950000;
fa85ae24 75
3e71a462
PZ
76/*
77 * __task_rq_lock - lock the rq @p resides on.
78 */
eb580751 79struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
80 __acquires(rq->lock)
81{
82 struct rq *rq;
83
84 lockdep_assert_held(&p->pi_lock);
85
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 90 rq_pin_lock(rq, rf);
3e71a462
PZ
91 return rq;
92 }
93 raw_spin_unlock(&rq->lock);
94
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
97 }
98}
99
100/*
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 */
eb580751 103struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
106{
107 struct rq *rq;
108
109 for (;;) {
eb580751 110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
113 /*
114 * move_queued_task() task_rq_lock()
115 *
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
122 *
c546951d 123 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
124 * the old rq->lock will fully serialize against the stores.
125 *
c546951d
AP
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
129 */
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 131 rq_pin_lock(rq, rf);
3e71a462
PZ
132 return rq;
133 }
134 raw_spin_unlock(&rq->lock);
eb580751 135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
136
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
139 }
140}
141
535b9552
IM
142/*
143 * RQ-clock updating methods:
144 */
145
146static void update_rq_clock_task(struct rq *rq, s64 delta)
147{
148/*
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
151 */
11d4afd4
VG
152 s64 __maybe_unused steal = 0, irq_delta = 0;
153
535b9552
IM
154#ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156
157 /*
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
161 *
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
166 *
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
171 */
172 if (irq_delta > delta)
173 irq_delta = delta;
174
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177#endif
178#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((&paravirt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
182
183 if (unlikely(steal > delta))
184 steal = delta;
185
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
188 }
189#endif
190
191 rq->clock_task += delta;
192
11d4afd4 193#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 195 update_irq_load_avg(rq, irq_delta + steal);
535b9552 196#endif
23127296 197 update_rq_clock_pelt(rq, delta);
535b9552
IM
198}
199
200void update_rq_clock(struct rq *rq)
201{
202 s64 delta;
203
204 lockdep_assert_held(&rq->lock);
205
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
208
209#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
212 rq->clock_update_flags |= RQCF_UPDATED;
213#endif
26ae58d2 214
535b9552
IM
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
220}
221
222
8f4d37ec
PZ
223#ifdef CONFIG_SCHED_HRTICK
224/*
225 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 226 */
8f4d37ec 227
8f4d37ec
PZ
228static void hrtick_clear(struct rq *rq)
229{
230 if (hrtimer_active(&rq->hrtick_timer))
231 hrtimer_cancel(&rq->hrtick_timer);
232}
233
8f4d37ec
PZ
234/*
235 * High-resolution timer tick.
236 * Runs from hardirq context with interrupts disabled.
237 */
238static enum hrtimer_restart hrtick(struct hrtimer *timer)
239{
240 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 241 struct rq_flags rf;
8f4d37ec
PZ
242
243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244
8a8c69c3 245 rq_lock(rq, &rf);
3e51f33f 246 update_rq_clock(rq);
8f4d37ec 247 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 248 rq_unlock(rq, &rf);
8f4d37ec
PZ
249
250 return HRTIMER_NORESTART;
251}
252
95e904c7 253#ifdef CONFIG_SMP
971ee28c 254
4961b6e1 255static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
256{
257 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 258
d5096aa6 259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
260}
261
31656519
PZ
262/*
263 * called from hardirq (IPI) context
264 */
265static void __hrtick_start(void *arg)
b328ca18 266{
31656519 267 struct rq *rq = arg;
8a8c69c3 268 struct rq_flags rf;
b328ca18 269
8a8c69c3 270 rq_lock(rq, &rf);
971ee28c 271 __hrtick_restart(rq);
31656519 272 rq->hrtick_csd_pending = 0;
8a8c69c3 273 rq_unlock(rq, &rf);
b328ca18
PZ
274}
275
31656519
PZ
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
029632fb 281void hrtick_start(struct rq *rq, u64 delay)
b328ca18 282{
31656519 283 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 284 ktime_t time;
285 s64 delta;
286
287 /*
288 * Don't schedule slices shorter than 10000ns, that just
289 * doesn't make sense and can cause timer DoS.
290 */
291 delta = max_t(s64, delay, 10000LL);
292 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 293
cc584b21 294 hrtimer_set_expires(timer, time);
31656519
PZ
295
296 if (rq == this_rq()) {
971ee28c 297 __hrtick_restart(rq);
31656519 298 } else if (!rq->hrtick_csd_pending) {
c46fff2a 299 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
300 rq->hrtick_csd_pending = 1;
301 }
b328ca18
PZ
302}
303
31656519
PZ
304#else
305/*
306 * Called to set the hrtick timer state.
307 *
308 * called with rq->lock held and irqs disabled
309 */
029632fb 310void hrtick_start(struct rq *rq, u64 delay)
31656519 311{
86893335
WL
312 /*
313 * Don't schedule slices shorter than 10000ns, that just
314 * doesn't make sense. Rely on vruntime for fairness.
315 */
316 delay = max_t(u64, delay, 10000LL);
4961b6e1 317 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 318 HRTIMER_MODE_REL_PINNED_HARD);
31656519 319}
31656519 320#endif /* CONFIG_SMP */
8f4d37ec 321
77a021be 322static void hrtick_rq_init(struct rq *rq)
8f4d37ec 323{
31656519
PZ
324#ifdef CONFIG_SMP
325 rq->hrtick_csd_pending = 0;
8f4d37ec 326
31656519
PZ
327 rq->hrtick_csd.flags = 0;
328 rq->hrtick_csd.func = __hrtick_start;
329 rq->hrtick_csd.info = rq;
330#endif
8f4d37ec 331
d5096aa6 332 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 333 rq->hrtick_timer.function = hrtick;
8f4d37ec 334}
006c75f1 335#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
336static inline void hrtick_clear(struct rq *rq)
337{
338}
339
77a021be 340static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
341{
342}
006c75f1 343#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 344
5529578a
FW
345/*
346 * cmpxchg based fetch_or, macro so it works for different integer types
347 */
348#define fetch_or(ptr, mask) \
349 ({ \
350 typeof(ptr) _ptr = (ptr); \
351 typeof(mask) _mask = (mask); \
352 typeof(*_ptr) _old, _val = *_ptr; \
353 \
354 for (;;) { \
355 _old = cmpxchg(_ptr, _val, _val | _mask); \
356 if (_old == _val) \
357 break; \
358 _val = _old; \
359 } \
360 _old; \
361})
362
e3baac47 363#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
364/*
365 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
366 * this avoids any races wrt polling state changes and thereby avoids
367 * spurious IPIs.
368 */
369static bool set_nr_and_not_polling(struct task_struct *p)
370{
371 struct thread_info *ti = task_thread_info(p);
372 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
373}
e3baac47
PZ
374
375/*
376 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377 *
378 * If this returns true, then the idle task promises to call
379 * sched_ttwu_pending() and reschedule soon.
380 */
381static bool set_nr_if_polling(struct task_struct *p)
382{
383 struct thread_info *ti = task_thread_info(p);
316c1608 384 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
385
386 for (;;) {
387 if (!(val & _TIF_POLLING_NRFLAG))
388 return false;
389 if (val & _TIF_NEED_RESCHED)
390 return true;
391 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
392 if (old == val)
393 break;
394 val = old;
395 }
396 return true;
397}
398
fd99f91a
PZ
399#else
400static bool set_nr_and_not_polling(struct task_struct *p)
401{
402 set_tsk_need_resched(p);
403 return true;
404}
e3baac47
PZ
405
406#ifdef CONFIG_SMP
407static bool set_nr_if_polling(struct task_struct *p)
408{
409 return false;
410}
411#endif
fd99f91a
PZ
412#endif
413
07879c6a 414static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
415{
416 struct wake_q_node *node = &task->wake_q;
417
418 /*
419 * Atomically grab the task, if ->wake_q is !nil already it means
420 * its already queued (either by us or someone else) and will get the
421 * wakeup due to that.
422 *
4c4e3731
PZ
423 * In order to ensure that a pending wakeup will observe our pending
424 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 425 */
4c4e3731 426 smp_mb__before_atomic();
87ff19cb 427 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 428 return false;
76751049
PZ
429
430 /*
431 * The head is context local, there can be no concurrency.
432 */
433 *head->lastp = node;
434 head->lastp = &node->next;
07879c6a
DB
435 return true;
436}
437
438/**
439 * wake_q_add() - queue a wakeup for 'later' waking.
440 * @head: the wake_q_head to add @task to
441 * @task: the task to queue for 'later' wakeup
442 *
443 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
444 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
445 * instantly.
446 *
447 * This function must be used as-if it were wake_up_process(); IOW the task
448 * must be ready to be woken at this location.
449 */
450void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451{
452 if (__wake_q_add(head, task))
453 get_task_struct(task);
454}
455
456/**
457 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
458 * @head: the wake_q_head to add @task to
459 * @task: the task to queue for 'later' wakeup
460 *
461 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
462 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
463 * instantly.
464 *
465 * This function must be used as-if it were wake_up_process(); IOW the task
466 * must be ready to be woken at this location.
467 *
468 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
469 * that already hold reference to @task can call the 'safe' version and trust
470 * wake_q to do the right thing depending whether or not the @task is already
471 * queued for wakeup.
472 */
473void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474{
475 if (!__wake_q_add(head, task))
476 put_task_struct(task);
76751049
PZ
477}
478
479void wake_up_q(struct wake_q_head *head)
480{
481 struct wake_q_node *node = head->first;
482
483 while (node != WAKE_Q_TAIL) {
484 struct task_struct *task;
485
486 task = container_of(node, struct task_struct, wake_q);
487 BUG_ON(!task);
d1ccc66d 488 /* Task can safely be re-inserted now: */
76751049
PZ
489 node = node->next;
490 task->wake_q.next = NULL;
491
492 /*
7696f991
AP
493 * wake_up_process() executes a full barrier, which pairs with
494 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
495 */
496 wake_up_process(task);
497 put_task_struct(task);
498 }
499}
500
c24d20db 501/*
8875125e 502 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
503 *
504 * On UP this means the setting of the need_resched flag, on SMP it
505 * might also involve a cross-CPU call to trigger the scheduler on
506 * the target CPU.
507 */
8875125e 508void resched_curr(struct rq *rq)
c24d20db 509{
8875125e 510 struct task_struct *curr = rq->curr;
c24d20db
IM
511 int cpu;
512
8875125e 513 lockdep_assert_held(&rq->lock);
c24d20db 514
8875125e 515 if (test_tsk_need_resched(curr))
c24d20db
IM
516 return;
517
8875125e 518 cpu = cpu_of(rq);
fd99f91a 519
f27dde8d 520 if (cpu == smp_processor_id()) {
8875125e 521 set_tsk_need_resched(curr);
f27dde8d 522 set_preempt_need_resched();
c24d20db 523 return;
f27dde8d 524 }
c24d20db 525
8875125e 526 if (set_nr_and_not_polling(curr))
c24d20db 527 smp_send_reschedule(cpu);
dfc68f29
AL
528 else
529 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
7c2102e5 537 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
538 if (cpu_online(cpu) || cpu == smp_processor_id())
539 resched_curr(rq);
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c 542
b021fe3e 543#ifdef CONFIG_SMP
3451d024 544#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 545/*
d1ccc66d
IM
546 * In the semi idle case, use the nearest busy CPU for migrating timers
547 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
548 *
549 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
550 * selecting an idle CPU will add more delays to the timers than intended
551 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 552 */
bc7a34b8 553int get_nohz_timer_target(void)
83cd4fe2 554{
e938b9c9 555 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
556 struct sched_domain *sd;
557
e938b9c9
WL
558 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
559 if (!idle_cpu(cpu))
560 return cpu;
561 default_cpu = cpu;
562 }
6201b4d6 563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
e938b9c9
WL
566 for_each_cpu_and(i, sched_domain_span(sd),
567 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
568 if (cpu == i)
569 continue;
570
e938b9c9 571 if (!idle_cpu(i)) {
057f3fad
PZ
572 cpu = i;
573 goto unlock;
574 }
575 }
83cd4fe2 576 }
9642d18e 577
e938b9c9
WL
578 if (default_cpu == -1)
579 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
580 cpu = default_cpu;
057f3fad
PZ
581unlock:
582 rcu_read_unlock();
83cd4fe2
VP
583 return cpu;
584}
d1ccc66d 585
06d8308c
TG
586/*
587 * When add_timer_on() enqueues a timer into the timer wheel of an
588 * idle CPU then this timer might expire before the next timer event
589 * which is scheduled to wake up that CPU. In case of a completely
590 * idle system the next event might even be infinite time into the
591 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
592 * leaves the inner idle loop so the newly added timer is taken into
593 * account when the CPU goes back to idle and evaluates the timer
594 * wheel for the next timer event.
595 */
1c20091e 596static void wake_up_idle_cpu(int cpu)
06d8308c
TG
597{
598 struct rq *rq = cpu_rq(cpu);
599
600 if (cpu == smp_processor_id())
601 return;
602
67b9ca70 603 if (set_nr_and_not_polling(rq->idle))
06d8308c 604 smp_send_reschedule(cpu);
dfc68f29
AL
605 else
606 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
607}
608
c5bfece2 609static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 610{
53c5fa16
FW
611 /*
612 * We just need the target to call irq_exit() and re-evaluate
613 * the next tick. The nohz full kick at least implies that.
614 * If needed we can still optimize that later with an
615 * empty IRQ.
616 */
379d9ecb
PM
617 if (cpu_is_offline(cpu))
618 return true; /* Don't try to wake offline CPUs. */
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
53c5fa16 622 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
623 return true;
624 }
625
626 return false;
627}
628
379d9ecb
PM
629/*
630 * Wake up the specified CPU. If the CPU is going offline, it is the
631 * caller's responsibility to deal with the lost wakeup, for example,
632 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
633 */
1c20091e
FW
634void wake_up_nohz_cpu(int cpu)
635{
c5bfece2 636 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
637 wake_up_idle_cpu(cpu);
638}
639
ca38062e 640static inline bool got_nohz_idle_kick(void)
45bf76df 641{
1c792db7 642 int cpu = smp_processor_id();
873b4c65 643
b7031a02 644 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
645 return false;
646
647 if (idle_cpu(cpu) && !need_resched())
648 return true;
649
650 /*
651 * We can't run Idle Load Balance on this CPU for this time so we
652 * cancel it and clear NOHZ_BALANCE_KICK
653 */
b7031a02 654 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 655 return false;
45bf76df
IM
656}
657
3451d024 658#else /* CONFIG_NO_HZ_COMMON */
45bf76df 659
ca38062e 660static inline bool got_nohz_idle_kick(void)
2069dd75 661{
ca38062e 662 return false;
2069dd75
PZ
663}
664
3451d024 665#endif /* CONFIG_NO_HZ_COMMON */
d842de87 666
ce831b38 667#ifdef CONFIG_NO_HZ_FULL
76d92ac3 668bool sched_can_stop_tick(struct rq *rq)
ce831b38 669{
76d92ac3
FW
670 int fifo_nr_running;
671
672 /* Deadline tasks, even if single, need the tick */
673 if (rq->dl.dl_nr_running)
674 return false;
675
1e78cdbd 676 /*
2548d546
PZ
677 * If there are more than one RR tasks, we need the tick to effect the
678 * actual RR behaviour.
1e78cdbd 679 */
76d92ac3
FW
680 if (rq->rt.rr_nr_running) {
681 if (rq->rt.rr_nr_running == 1)
682 return true;
683 else
684 return false;
1e78cdbd
RR
685 }
686
2548d546
PZ
687 /*
688 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
689 * forced preemption between FIFO tasks.
690 */
691 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
692 if (fifo_nr_running)
693 return true;
694
695 /*
696 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
697 * if there's more than one we need the tick for involuntary
698 * preemption.
699 */
700 if (rq->nr_running > 1)
541b8264 701 return false;
ce831b38 702
541b8264 703 return true;
ce831b38
FW
704}
705#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 706#endif /* CONFIG_SMP */
18d95a28 707
a790de99
PT
708#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
709 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 710/*
8277434e
PT
711 * Iterate task_group tree rooted at *from, calling @down when first entering a
712 * node and @up when leaving it for the final time.
713 *
714 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 715 */
029632fb 716int walk_tg_tree_from(struct task_group *from,
8277434e 717 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
718{
719 struct task_group *parent, *child;
eb755805 720 int ret;
c09595f6 721
8277434e
PT
722 parent = from;
723
c09595f6 724down:
eb755805
PZ
725 ret = (*down)(parent, data);
726 if (ret)
8277434e 727 goto out;
c09595f6
PZ
728 list_for_each_entry_rcu(child, &parent->children, siblings) {
729 parent = child;
730 goto down;
731
732up:
733 continue;
734 }
eb755805 735 ret = (*up)(parent, data);
8277434e
PT
736 if (ret || parent == from)
737 goto out;
c09595f6
PZ
738
739 child = parent;
740 parent = parent->parent;
741 if (parent)
742 goto up;
8277434e 743out:
eb755805 744 return ret;
c09595f6
PZ
745}
746
029632fb 747int tg_nop(struct task_group *tg, void *data)
eb755805 748{
e2b245f8 749 return 0;
eb755805 750}
18d95a28
PZ
751#endif
752
9059393e 753static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 754{
f05998d4
NR
755 int prio = p->static_prio - MAX_RT_PRIO;
756 struct load_weight *load = &p->se.load;
757
dd41f596
IM
758 /*
759 * SCHED_IDLE tasks get minimal weight:
760 */
1da1843f 761 if (task_has_idle_policy(p)) {
c8b28116 762 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 763 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
764 return;
765 }
71f8bd46 766
9059393e
VG
767 /*
768 * SCHED_OTHER tasks have to update their load when changing their
769 * weight
770 */
771 if (update_load && p->sched_class == &fair_sched_class) {
772 reweight_task(p, prio);
773 } else {
774 load->weight = scale_load(sched_prio_to_weight[prio]);
775 load->inv_weight = sched_prio_to_wmult[prio];
776 }
71f8bd46
IM
777}
778
69842cba 779#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
780/*
781 * Serializes updates of utilization clamp values
782 *
783 * The (slow-path) user-space triggers utilization clamp value updates which
784 * can require updates on (fast-path) scheduler's data structures used to
785 * support enqueue/dequeue operations.
786 * While the per-CPU rq lock protects fast-path update operations, user-space
787 * requests are serialized using a mutex to reduce the risk of conflicting
788 * updates or API abuses.
789 */
790static DEFINE_MUTEX(uclamp_mutex);
791
e8f14172
PB
792/* Max allowed minimum utilization */
793unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
794
795/* Max allowed maximum utilization */
796unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
797
798/* All clamps are required to be less or equal than these values */
799static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba
PB
800
801/* Integer rounded range for each bucket */
802#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
803
804#define for_each_clamp_id(clamp_id) \
805 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
806
807static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
808{
809 return clamp_value / UCLAMP_BUCKET_DELTA;
810}
811
60daf9c1
PB
812static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
813{
814 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
815}
816
7763baac 817static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
818{
819 if (clamp_id == UCLAMP_MIN)
820 return 0;
821 return SCHED_CAPACITY_SCALE;
822}
823
a509a7cd
PB
824static inline void uclamp_se_set(struct uclamp_se *uc_se,
825 unsigned int value, bool user_defined)
69842cba
PB
826{
827 uc_se->value = value;
828 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 829 uc_se->user_defined = user_defined;
69842cba
PB
830}
831
e496187d 832static inline unsigned int
0413d7f3 833uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
834 unsigned int clamp_value)
835{
836 /*
837 * Avoid blocked utilization pushing up the frequency when we go
838 * idle (which drops the max-clamp) by retaining the last known
839 * max-clamp.
840 */
841 if (clamp_id == UCLAMP_MAX) {
842 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
843 return clamp_value;
844 }
845
846 return uclamp_none(UCLAMP_MIN);
847}
848
0413d7f3 849static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
850 unsigned int clamp_value)
851{
852 /* Reset max-clamp retention only on idle exit */
853 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
854 return;
855
856 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
857}
858
69842cba 859static inline
7763baac 860unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 861 unsigned int clamp_value)
69842cba
PB
862{
863 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
864 int bucket_id = UCLAMP_BUCKETS - 1;
865
866 /*
867 * Since both min and max clamps are max aggregated, find the
868 * top most bucket with tasks in.
869 */
870 for ( ; bucket_id >= 0; bucket_id--) {
871 if (!bucket[bucket_id].tasks)
872 continue;
873 return bucket[bucket_id].value;
874 }
875
876 /* No tasks -- default clamp values */
e496187d 877 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
878}
879
3eac870a 880static inline struct uclamp_se
0413d7f3 881uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
882{
883 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
884#ifdef CONFIG_UCLAMP_TASK_GROUP
885 struct uclamp_se uc_max;
886
887 /*
888 * Tasks in autogroups or root task group will be
889 * restricted by system defaults.
890 */
891 if (task_group_is_autogroup(task_group(p)))
892 return uc_req;
893 if (task_group(p) == &root_task_group)
894 return uc_req;
895
896 uc_max = task_group(p)->uclamp[clamp_id];
897 if (uc_req.value > uc_max.value || !uc_req.user_defined)
898 return uc_max;
899#endif
900
901 return uc_req;
902}
903
e8f14172
PB
904/*
905 * The effective clamp bucket index of a task depends on, by increasing
906 * priority:
907 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
908 * - the task group effective clamp value, for tasks not either in the root
909 * group or in an autogroup
e8f14172
PB
910 * - the system default clamp value, defined by the sysadmin
911 */
912static inline struct uclamp_se
0413d7f3 913uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 914{
3eac870a 915 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
916 struct uclamp_se uc_max = uclamp_default[clamp_id];
917
918 /* System default restrictions always apply */
919 if (unlikely(uc_req.value > uc_max.value))
920 return uc_max;
921
922 return uc_req;
923}
924
686516b5 925unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
926{
927 struct uclamp_se uc_eff;
928
929 /* Task currently refcounted: use back-annotated (effective) value */
930 if (p->uclamp[clamp_id].active)
686516b5 931 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
932
933 uc_eff = uclamp_eff_get(p, clamp_id);
934
686516b5 935 return (unsigned long)uc_eff.value;
9d20ad7d
PB
936}
937
69842cba
PB
938/*
939 * When a task is enqueued on a rq, the clamp bucket currently defined by the
940 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
941 * updates the rq's clamp value if required.
60daf9c1
PB
942 *
943 * Tasks can have a task-specific value requested from user-space, track
944 * within each bucket the maximum value for tasks refcounted in it.
945 * This "local max aggregation" allows to track the exact "requested" value
946 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
947 */
948static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 949 enum uclamp_id clamp_id)
69842cba
PB
950{
951 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
952 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
953 struct uclamp_bucket *bucket;
954
955 lockdep_assert_held(&rq->lock);
956
e8f14172
PB
957 /* Update task effective clamp */
958 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
959
69842cba
PB
960 bucket = &uc_rq->bucket[uc_se->bucket_id];
961 bucket->tasks++;
e8f14172 962 uc_se->active = true;
69842cba 963
e496187d
PB
964 uclamp_idle_reset(rq, clamp_id, uc_se->value);
965
60daf9c1
PB
966 /*
967 * Local max aggregation: rq buckets always track the max
968 * "requested" clamp value of its RUNNABLE tasks.
969 */
970 if (bucket->tasks == 1 || uc_se->value > bucket->value)
971 bucket->value = uc_se->value;
972
69842cba 973 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 974 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
975}
976
977/*
978 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
979 * is released. If this is the last task reference counting the rq's max
980 * active clamp value, then the rq's clamp value is updated.
981 *
982 * Both refcounted tasks and rq's cached clamp values are expected to be
983 * always valid. If it's detected they are not, as defensive programming,
984 * enforce the expected state and warn.
985 */
986static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 987 enum uclamp_id clamp_id)
69842cba
PB
988{
989 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
990 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
991 struct uclamp_bucket *bucket;
e496187d 992 unsigned int bkt_clamp;
69842cba
PB
993 unsigned int rq_clamp;
994
995 lockdep_assert_held(&rq->lock);
996
997 bucket = &uc_rq->bucket[uc_se->bucket_id];
998 SCHED_WARN_ON(!bucket->tasks);
999 if (likely(bucket->tasks))
1000 bucket->tasks--;
e8f14172 1001 uc_se->active = false;
69842cba 1002
60daf9c1
PB
1003 /*
1004 * Keep "local max aggregation" simple and accept to (possibly)
1005 * overboost some RUNNABLE tasks in the same bucket.
1006 * The rq clamp bucket value is reset to its base value whenever
1007 * there are no more RUNNABLE tasks refcounting it.
1008 */
69842cba
PB
1009 if (likely(bucket->tasks))
1010 return;
1011
1012 rq_clamp = READ_ONCE(uc_rq->value);
1013 /*
1014 * Defensive programming: this should never happen. If it happens,
1015 * e.g. due to future modification, warn and fixup the expected value.
1016 */
1017 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1018 if (bucket->value >= rq_clamp) {
1019 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1020 WRITE_ONCE(uc_rq->value, bkt_clamp);
1021 }
69842cba
PB
1022}
1023
1024static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1025{
0413d7f3 1026 enum uclamp_id clamp_id;
69842cba
PB
1027
1028 if (unlikely(!p->sched_class->uclamp_enabled))
1029 return;
1030
1031 for_each_clamp_id(clamp_id)
1032 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1033
1034 /* Reset clamp idle holding when there is one RUNNABLE task */
1035 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1036 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1037}
1038
1039static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1040{
0413d7f3 1041 enum uclamp_id clamp_id;
69842cba
PB
1042
1043 if (unlikely(!p->sched_class->uclamp_enabled))
1044 return;
1045
1046 for_each_clamp_id(clamp_id)
1047 uclamp_rq_dec_id(rq, p, clamp_id);
1048}
1049
babbe170 1050static inline void
0413d7f3 1051uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1052{
1053 struct rq_flags rf;
1054 struct rq *rq;
1055
1056 /*
1057 * Lock the task and the rq where the task is (or was) queued.
1058 *
1059 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1060 * price to pay to safely serialize util_{min,max} updates with
1061 * enqueues, dequeues and migration operations.
1062 * This is the same locking schema used by __set_cpus_allowed_ptr().
1063 */
1064 rq = task_rq_lock(p, &rf);
1065
1066 /*
1067 * Setting the clamp bucket is serialized by task_rq_lock().
1068 * If the task is not yet RUNNABLE and its task_struct is not
1069 * affecting a valid clamp bucket, the next time it's enqueued,
1070 * it will already see the updated clamp bucket value.
1071 */
6e1ff077 1072 if (p->uclamp[clamp_id].active) {
babbe170
PB
1073 uclamp_rq_dec_id(rq, p, clamp_id);
1074 uclamp_rq_inc_id(rq, p, clamp_id);
1075 }
1076
1077 task_rq_unlock(rq, p, &rf);
1078}
1079
e3b8b6a0 1080#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1081static inline void
1082uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1083 unsigned int clamps)
1084{
0413d7f3 1085 enum uclamp_id clamp_id;
babbe170
PB
1086 struct css_task_iter it;
1087 struct task_struct *p;
babbe170
PB
1088
1089 css_task_iter_start(css, 0, &it);
1090 while ((p = css_task_iter_next(&it))) {
1091 for_each_clamp_id(clamp_id) {
1092 if ((0x1 << clamp_id) & clamps)
1093 uclamp_update_active(p, clamp_id);
1094 }
1095 }
1096 css_task_iter_end(&it);
1097}
1098
7274a5c1
PB
1099static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1100static void uclamp_update_root_tg(void)
1101{
1102 struct task_group *tg = &root_task_group;
1103
1104 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1105 sysctl_sched_uclamp_util_min, false);
1106 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1107 sysctl_sched_uclamp_util_max, false);
1108
1109 rcu_read_lock();
1110 cpu_util_update_eff(&root_task_group.css);
1111 rcu_read_unlock();
1112}
1113#else
1114static void uclamp_update_root_tg(void) { }
1115#endif
1116
e8f14172
PB
1117int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1118 void __user *buffer, size_t *lenp,
1119 loff_t *ppos)
1120{
7274a5c1 1121 bool update_root_tg = false;
e8f14172 1122 int old_min, old_max;
e8f14172
PB
1123 int result;
1124
2480c093 1125 mutex_lock(&uclamp_mutex);
e8f14172
PB
1126 old_min = sysctl_sched_uclamp_util_min;
1127 old_max = sysctl_sched_uclamp_util_max;
1128
1129 result = proc_dointvec(table, write, buffer, lenp, ppos);
1130 if (result)
1131 goto undo;
1132 if (!write)
1133 goto done;
1134
1135 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1136 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1137 result = -EINVAL;
1138 goto undo;
1139 }
1140
1141 if (old_min != sysctl_sched_uclamp_util_min) {
1142 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1143 sysctl_sched_uclamp_util_min, false);
7274a5c1 1144 update_root_tg = true;
e8f14172
PB
1145 }
1146 if (old_max != sysctl_sched_uclamp_util_max) {
1147 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1148 sysctl_sched_uclamp_util_max, false);
7274a5c1 1149 update_root_tg = true;
e8f14172
PB
1150 }
1151
7274a5c1
PB
1152 if (update_root_tg)
1153 uclamp_update_root_tg();
1154
e8f14172 1155 /*
7274a5c1
PB
1156 * We update all RUNNABLE tasks only when task groups are in use.
1157 * Otherwise, keep it simple and do just a lazy update at each next
1158 * task enqueue time.
e8f14172 1159 */
7274a5c1 1160
e8f14172
PB
1161 goto done;
1162
1163undo:
1164 sysctl_sched_uclamp_util_min = old_min;
1165 sysctl_sched_uclamp_util_max = old_max;
1166done:
2480c093 1167 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1168
1169 return result;
1170}
1171
a509a7cd
PB
1172static int uclamp_validate(struct task_struct *p,
1173 const struct sched_attr *attr)
1174{
1175 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1176 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1177
1178 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1179 lower_bound = attr->sched_util_min;
1180 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1181 upper_bound = attr->sched_util_max;
1182
1183 if (lower_bound > upper_bound)
1184 return -EINVAL;
1185 if (upper_bound > SCHED_CAPACITY_SCALE)
1186 return -EINVAL;
1187
1188 return 0;
1189}
1190
1191static void __setscheduler_uclamp(struct task_struct *p,
1192 const struct sched_attr *attr)
1193{
0413d7f3 1194 enum uclamp_id clamp_id;
1a00d999
PB
1195
1196 /*
1197 * On scheduling class change, reset to default clamps for tasks
1198 * without a task-specific value.
1199 */
1200 for_each_clamp_id(clamp_id) {
1201 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1202 unsigned int clamp_value = uclamp_none(clamp_id);
1203
1204 /* Keep using defined clamps across class changes */
1205 if (uc_se->user_defined)
1206 continue;
1207
1208 /* By default, RT tasks always get 100% boost */
1209 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1210 clamp_value = uclamp_none(UCLAMP_MAX);
1211
1212 uclamp_se_set(uc_se, clamp_value, false);
1213 }
1214
a509a7cd
PB
1215 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1216 return;
1217
1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1220 attr->sched_util_min, true);
1221 }
1222
1223 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1224 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1225 attr->sched_util_max, true);
1226 }
1227}
1228
e8f14172
PB
1229static void uclamp_fork(struct task_struct *p)
1230{
0413d7f3 1231 enum uclamp_id clamp_id;
e8f14172
PB
1232
1233 for_each_clamp_id(clamp_id)
1234 p->uclamp[clamp_id].active = false;
a87498ac
PB
1235
1236 if (likely(!p->sched_reset_on_fork))
1237 return;
1238
1239 for_each_clamp_id(clamp_id) {
1a00d999
PB
1240 unsigned int clamp_value = uclamp_none(clamp_id);
1241
1242 /* By default, RT tasks always get 100% boost */
1243 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1244 clamp_value = uclamp_none(UCLAMP_MAX);
1245
1246 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
a87498ac 1247 }
e8f14172
PB
1248}
1249
69842cba
PB
1250static void __init init_uclamp(void)
1251{
e8f14172 1252 struct uclamp_se uc_max = {};
0413d7f3 1253 enum uclamp_id clamp_id;
69842cba
PB
1254 int cpu;
1255
2480c093
PB
1256 mutex_init(&uclamp_mutex);
1257
e496187d 1258 for_each_possible_cpu(cpu) {
dcd6dffb
LG
1259 memset(&cpu_rq(cpu)->uclamp, 0,
1260 sizeof(struct uclamp_rq)*UCLAMP_CNT);
e496187d
PB
1261 cpu_rq(cpu)->uclamp_flags = 0;
1262 }
69842cba 1263
69842cba 1264 for_each_clamp_id(clamp_id) {
e8f14172 1265 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1266 uclamp_none(clamp_id), false);
69842cba 1267 }
e8f14172
PB
1268
1269 /* System defaults allow max clamp values for both indexes */
a509a7cd 1270 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1271 for_each_clamp_id(clamp_id) {
e8f14172 1272 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1273#ifdef CONFIG_UCLAMP_TASK_GROUP
1274 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1275 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1276#endif
1277 }
69842cba
PB
1278}
1279
1280#else /* CONFIG_UCLAMP_TASK */
1281static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1282static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1283static inline int uclamp_validate(struct task_struct *p,
1284 const struct sched_attr *attr)
1285{
1286 return -EOPNOTSUPP;
1287}
1288static void __setscheduler_uclamp(struct task_struct *p,
1289 const struct sched_attr *attr) { }
e8f14172 1290static inline void uclamp_fork(struct task_struct *p) { }
69842cba
PB
1291static inline void init_uclamp(void) { }
1292#endif /* CONFIG_UCLAMP_TASK */
1293
1de64443 1294static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1295{
0a67d1ee
PZ
1296 if (!(flags & ENQUEUE_NOCLOCK))
1297 update_rq_clock(rq);
1298
eb414681 1299 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1300 sched_info_queued(rq, p);
eb414681
JW
1301 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1302 }
0a67d1ee 1303
69842cba 1304 uclamp_rq_inc(rq, p);
371fd7e7 1305 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1306}
1307
1de64443 1308static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1309{
0a67d1ee
PZ
1310 if (!(flags & DEQUEUE_NOCLOCK))
1311 update_rq_clock(rq);
1312
eb414681 1313 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1314 sched_info_dequeued(rq, p);
eb414681
JW
1315 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1316 }
0a67d1ee 1317
69842cba 1318 uclamp_rq_dec(rq, p);
371fd7e7 1319 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1320}
1321
029632fb 1322void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1323{
1324 if (task_contributes_to_load(p))
1325 rq->nr_uninterruptible--;
1326
371fd7e7 1327 enqueue_task(rq, p, flags);
7dd77884
PZ
1328
1329 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1330}
1331
029632fb 1332void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1333{
7dd77884
PZ
1334 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1335
1e3c88bd
PZ
1336 if (task_contributes_to_load(p))
1337 rq->nr_uninterruptible++;
1338
371fd7e7 1339 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1340}
1341
14531189 1342/*
dd41f596 1343 * __normal_prio - return the priority that is based on the static prio
14531189 1344 */
14531189
IM
1345static inline int __normal_prio(struct task_struct *p)
1346{
dd41f596 1347 return p->static_prio;
14531189
IM
1348}
1349
b29739f9
IM
1350/*
1351 * Calculate the expected normal priority: i.e. priority
1352 * without taking RT-inheritance into account. Might be
1353 * boosted by interactivity modifiers. Changes upon fork,
1354 * setprio syscalls, and whenever the interactivity
1355 * estimator recalculates.
1356 */
36c8b586 1357static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1358{
1359 int prio;
1360
aab03e05
DF
1361 if (task_has_dl_policy(p))
1362 prio = MAX_DL_PRIO-1;
1363 else if (task_has_rt_policy(p))
b29739f9
IM
1364 prio = MAX_RT_PRIO-1 - p->rt_priority;
1365 else
1366 prio = __normal_prio(p);
1367 return prio;
1368}
1369
1370/*
1371 * Calculate the current priority, i.e. the priority
1372 * taken into account by the scheduler. This value might
1373 * be boosted by RT tasks, or might be boosted by
1374 * interactivity modifiers. Will be RT if the task got
1375 * RT-boosted. If not then it returns p->normal_prio.
1376 */
36c8b586 1377static int effective_prio(struct task_struct *p)
b29739f9
IM
1378{
1379 p->normal_prio = normal_prio(p);
1380 /*
1381 * If we are RT tasks or we were boosted to RT priority,
1382 * keep the priority unchanged. Otherwise, update priority
1383 * to the normal priority:
1384 */
1385 if (!rt_prio(p->prio))
1386 return p->normal_prio;
1387 return p->prio;
1388}
1389
1da177e4
LT
1390/**
1391 * task_curr - is this task currently executing on a CPU?
1392 * @p: the task in question.
e69f6186
YB
1393 *
1394 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1395 */
36c8b586 1396inline int task_curr(const struct task_struct *p)
1da177e4
LT
1397{
1398 return cpu_curr(task_cpu(p)) == p;
1399}
1400
67dfa1b7 1401/*
4c9a4bc8
PZ
1402 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1403 * use the balance_callback list if you want balancing.
1404 *
1405 * this means any call to check_class_changed() must be followed by a call to
1406 * balance_callback().
67dfa1b7 1407 */
cb469845
SR
1408static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1409 const struct sched_class *prev_class,
da7a735e 1410 int oldprio)
cb469845
SR
1411{
1412 if (prev_class != p->sched_class) {
1413 if (prev_class->switched_from)
da7a735e 1414 prev_class->switched_from(rq, p);
4c9a4bc8 1415
da7a735e 1416 p->sched_class->switched_to(rq, p);
2d3d891d 1417 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1418 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1419}
1420
029632fb 1421void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1422{
1423 const struct sched_class *class;
1424
1425 if (p->sched_class == rq->curr->sched_class) {
1426 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1427 } else {
1428 for_each_class(class) {
1429 if (class == rq->curr->sched_class)
1430 break;
1431 if (class == p->sched_class) {
8875125e 1432 resched_curr(rq);
1e5a7405
PZ
1433 break;
1434 }
1435 }
1436 }
1437
1438 /*
1439 * A queue event has occurred, and we're going to schedule. In
1440 * this case, we can save a useless back to back clock update.
1441 */
da0c1e65 1442 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1443 rq_clock_skip_update(rq);
1e5a7405
PZ
1444}
1445
1da177e4 1446#ifdef CONFIG_SMP
175f0e25 1447
175f0e25 1448/*
bee98539 1449 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1450 * __set_cpus_allowed_ptr() and select_fallback_rq().
1451 */
1452static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1453{
3bd37062 1454 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1455 return false;
1456
1457 if (is_per_cpu_kthread(p))
1458 return cpu_online(cpu);
1459
1460 return cpu_active(cpu);
1461}
1462
5cc389bc
PZ
1463/*
1464 * This is how migration works:
1465 *
1466 * 1) we invoke migration_cpu_stop() on the target CPU using
1467 * stop_one_cpu().
1468 * 2) stopper starts to run (implicitly forcing the migrated thread
1469 * off the CPU)
1470 * 3) it checks whether the migrated task is still in the wrong runqueue.
1471 * 4) if it's in the wrong runqueue then the migration thread removes
1472 * it and puts it into the right queue.
1473 * 5) stopper completes and stop_one_cpu() returns and the migration
1474 * is done.
1475 */
1476
1477/*
1478 * move_queued_task - move a queued task to new rq.
1479 *
1480 * Returns (locked) new rq. Old rq's lock is released.
1481 */
8a8c69c3
PZ
1482static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1483 struct task_struct *p, int new_cpu)
5cc389bc 1484{
5cc389bc
PZ
1485 lockdep_assert_held(&rq->lock);
1486
c546951d 1487 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 1488 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1489 set_task_cpu(p, new_cpu);
8a8c69c3 1490 rq_unlock(rq, rf);
5cc389bc
PZ
1491
1492 rq = cpu_rq(new_cpu);
1493
8a8c69c3 1494 rq_lock(rq, rf);
5cc389bc 1495 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1496 enqueue_task(rq, p, 0);
3ea94de1 1497 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1498 check_preempt_curr(rq, p, 0);
1499
1500 return rq;
1501}
1502
1503struct migration_arg {
1504 struct task_struct *task;
1505 int dest_cpu;
1506};
1507
1508/*
d1ccc66d 1509 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1510 * this because either it can't run here any more (set_cpus_allowed()
1511 * away from this CPU, or CPU going down), or because we're
1512 * attempting to rebalance this task on exec (sched_exec).
1513 *
1514 * So we race with normal scheduler movements, but that's OK, as long
1515 * as the task is no longer on this CPU.
5cc389bc 1516 */
8a8c69c3
PZ
1517static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1518 struct task_struct *p, int dest_cpu)
5cc389bc 1519{
5cc389bc 1520 /* Affinity changed (again). */
175f0e25 1521 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1522 return rq;
5cc389bc 1523
15ff991e 1524 update_rq_clock(rq);
8a8c69c3 1525 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1526
1527 return rq;
5cc389bc
PZ
1528}
1529
1530/*
1531 * migration_cpu_stop - this will be executed by a highprio stopper thread
1532 * and performs thread migration by bumping thread off CPU then
1533 * 'pushing' onto another runqueue.
1534 */
1535static int migration_cpu_stop(void *data)
1536{
1537 struct migration_arg *arg = data;
5e16bbc2
PZ
1538 struct task_struct *p = arg->task;
1539 struct rq *rq = this_rq();
8a8c69c3 1540 struct rq_flags rf;
5cc389bc
PZ
1541
1542 /*
d1ccc66d
IM
1543 * The original target CPU might have gone down and we might
1544 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1545 */
1546 local_irq_disable();
1547 /*
1548 * We need to explicitly wake pending tasks before running
3bd37062 1549 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1550 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1551 */
1552 sched_ttwu_pending();
5e16bbc2
PZ
1553
1554 raw_spin_lock(&p->pi_lock);
8a8c69c3 1555 rq_lock(rq, &rf);
5e16bbc2
PZ
1556 /*
1557 * If task_rq(p) != rq, it cannot be migrated here, because we're
1558 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1559 * we're holding p->pi_lock.
1560 */
bf89a304
CC
1561 if (task_rq(p) == rq) {
1562 if (task_on_rq_queued(p))
8a8c69c3 1563 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1564 else
1565 p->wake_cpu = arg->dest_cpu;
1566 }
8a8c69c3 1567 rq_unlock(rq, &rf);
5e16bbc2
PZ
1568 raw_spin_unlock(&p->pi_lock);
1569
5cc389bc
PZ
1570 local_irq_enable();
1571 return 0;
1572}
1573
c5b28038
PZ
1574/*
1575 * sched_class::set_cpus_allowed must do the below, but is not required to
1576 * actually call this function.
1577 */
1578void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1579{
3bd37062 1580 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1581 p->nr_cpus_allowed = cpumask_weight(new_mask);
1582}
1583
c5b28038
PZ
1584void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1585{
6c37067e
PZ
1586 struct rq *rq = task_rq(p);
1587 bool queued, running;
1588
c5b28038 1589 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1590
1591 queued = task_on_rq_queued(p);
1592 running = task_current(rq, p);
1593
1594 if (queued) {
1595 /*
1596 * Because __kthread_bind() calls this on blocked tasks without
1597 * holding rq->lock.
1598 */
1599 lockdep_assert_held(&rq->lock);
7a57f32a 1600 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1601 }
1602 if (running)
1603 put_prev_task(rq, p);
1604
c5b28038 1605 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1606
6c37067e 1607 if (queued)
7134b3e9 1608 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1609 if (running)
03b7fad1 1610 set_next_task(rq, p);
c5b28038
PZ
1611}
1612
5cc389bc
PZ
1613/*
1614 * Change a given task's CPU affinity. Migrate the thread to a
1615 * proper CPU and schedule it away if the CPU it's executing on
1616 * is removed from the allowed bitmask.
1617 *
1618 * NOTE: the caller must have a valid reference to the task, the
1619 * task must not exit() & deallocate itself prematurely. The
1620 * call is not atomic; no spinlocks may be held.
1621 */
25834c73
PZ
1622static int __set_cpus_allowed_ptr(struct task_struct *p,
1623 const struct cpumask *new_mask, bool check)
5cc389bc 1624{
e9d867a6 1625 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1626 unsigned int dest_cpu;
eb580751
PZ
1627 struct rq_flags rf;
1628 struct rq *rq;
5cc389bc
PZ
1629 int ret = 0;
1630
eb580751 1631 rq = task_rq_lock(p, &rf);
a499c3ea 1632 update_rq_clock(rq);
5cc389bc 1633
e9d867a6
PZI
1634 if (p->flags & PF_KTHREAD) {
1635 /*
1636 * Kernel threads are allowed on online && !active CPUs
1637 */
1638 cpu_valid_mask = cpu_online_mask;
1639 }
1640
25834c73
PZ
1641 /*
1642 * Must re-check here, to close a race against __kthread_bind(),
1643 * sched_setaffinity() is not guaranteed to observe the flag.
1644 */
1645 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1646 ret = -EINVAL;
1647 goto out;
1648 }
1649
3bd37062 1650 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1651 goto out;
1652
714e501e
KS
1653 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1654 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
1655 ret = -EINVAL;
1656 goto out;
1657 }
1658
1659 do_set_cpus_allowed(p, new_mask);
1660
e9d867a6
PZI
1661 if (p->flags & PF_KTHREAD) {
1662 /*
1663 * For kernel threads that do indeed end up on online &&
d1ccc66d 1664 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1665 */
1666 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1667 !cpumask_intersects(new_mask, cpu_active_mask) &&
1668 p->nr_cpus_allowed != 1);
1669 }
1670
5cc389bc
PZ
1671 /* Can the task run on the task's current CPU? If so, we're done */
1672 if (cpumask_test_cpu(task_cpu(p), new_mask))
1673 goto out;
1674
5cc389bc
PZ
1675 if (task_running(rq, p) || p->state == TASK_WAKING) {
1676 struct migration_arg arg = { p, dest_cpu };
1677 /* Need help from migration thread: drop lock and wait. */
eb580751 1678 task_rq_unlock(rq, p, &rf);
5cc389bc 1679 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1680 return 0;
cbce1a68
PZ
1681 } else if (task_on_rq_queued(p)) {
1682 /*
1683 * OK, since we're going to drop the lock immediately
1684 * afterwards anyway.
1685 */
8a8c69c3 1686 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1687 }
5cc389bc 1688out:
eb580751 1689 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1690
1691 return ret;
1692}
25834c73
PZ
1693
1694int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1695{
1696 return __set_cpus_allowed_ptr(p, new_mask, false);
1697}
5cc389bc
PZ
1698EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1699
dd41f596 1700void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1701{
e2912009
PZ
1702#ifdef CONFIG_SCHED_DEBUG
1703 /*
1704 * We should never call set_task_cpu() on a blocked task,
1705 * ttwu() will sort out the placement.
1706 */
077614ee 1707 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1708 !p->on_rq);
0122ec5b 1709
3ea94de1
JP
1710 /*
1711 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1712 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1713 * time relying on p->on_rq.
1714 */
1715 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1716 p->sched_class == &fair_sched_class &&
1717 (p->on_rq && !task_on_rq_migrating(p)));
1718
0122ec5b 1719#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1720 /*
1721 * The caller should hold either p->pi_lock or rq->lock, when changing
1722 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1723 *
1724 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1725 * see task_group().
6c6c54e1
PZ
1726 *
1727 * Furthermore, all task_rq users should acquire both locks, see
1728 * task_rq_lock().
1729 */
0122ec5b
PZ
1730 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1731 lockdep_is_held(&task_rq(p)->lock)));
1732#endif
4ff9083b
PZ
1733 /*
1734 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1735 */
1736 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1737#endif
1738
de1d7286 1739 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1740
0c69774e 1741 if (task_cpu(p) != new_cpu) {
0a74bef8 1742 if (p->sched_class->migrate_task_rq)
1327237a 1743 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1744 p->se.nr_migrations++;
d7822b1e 1745 rseq_migrate(p);
ff303e66 1746 perf_event_task_migrate(p);
0c69774e 1747 }
dd41f596
IM
1748
1749 __set_task_cpu(p, new_cpu);
c65cc870
IM
1750}
1751
0ad4e3df 1752#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1753static void __migrate_swap_task(struct task_struct *p, int cpu)
1754{
da0c1e65 1755 if (task_on_rq_queued(p)) {
ac66f547 1756 struct rq *src_rq, *dst_rq;
8a8c69c3 1757 struct rq_flags srf, drf;
ac66f547
PZ
1758
1759 src_rq = task_rq(p);
1760 dst_rq = cpu_rq(cpu);
1761
8a8c69c3
PZ
1762 rq_pin_lock(src_rq, &srf);
1763 rq_pin_lock(dst_rq, &drf);
1764
ac66f547
PZ
1765 deactivate_task(src_rq, p, 0);
1766 set_task_cpu(p, cpu);
1767 activate_task(dst_rq, p, 0);
1768 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1769
1770 rq_unpin_lock(dst_rq, &drf);
1771 rq_unpin_lock(src_rq, &srf);
1772
ac66f547
PZ
1773 } else {
1774 /*
1775 * Task isn't running anymore; make it appear like we migrated
1776 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1777 * previous CPU our target instead of where it really is.
ac66f547
PZ
1778 */
1779 p->wake_cpu = cpu;
1780 }
1781}
1782
1783struct migration_swap_arg {
1784 struct task_struct *src_task, *dst_task;
1785 int src_cpu, dst_cpu;
1786};
1787
1788static int migrate_swap_stop(void *data)
1789{
1790 struct migration_swap_arg *arg = data;
1791 struct rq *src_rq, *dst_rq;
1792 int ret = -EAGAIN;
1793
62694cd5
PZ
1794 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1795 return -EAGAIN;
1796
ac66f547
PZ
1797 src_rq = cpu_rq(arg->src_cpu);
1798 dst_rq = cpu_rq(arg->dst_cpu);
1799
74602315
PZ
1800 double_raw_lock(&arg->src_task->pi_lock,
1801 &arg->dst_task->pi_lock);
ac66f547 1802 double_rq_lock(src_rq, dst_rq);
62694cd5 1803
ac66f547
PZ
1804 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1805 goto unlock;
1806
1807 if (task_cpu(arg->src_task) != arg->src_cpu)
1808 goto unlock;
1809
3bd37062 1810 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1811 goto unlock;
1812
3bd37062 1813 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1814 goto unlock;
1815
1816 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1817 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1818
1819 ret = 0;
1820
1821unlock:
1822 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1823 raw_spin_unlock(&arg->dst_task->pi_lock);
1824 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1825
1826 return ret;
1827}
1828
1829/*
1830 * Cross migrate two tasks
1831 */
0ad4e3df
SD
1832int migrate_swap(struct task_struct *cur, struct task_struct *p,
1833 int target_cpu, int curr_cpu)
ac66f547
PZ
1834{
1835 struct migration_swap_arg arg;
1836 int ret = -EINVAL;
1837
ac66f547
PZ
1838 arg = (struct migration_swap_arg){
1839 .src_task = cur,
0ad4e3df 1840 .src_cpu = curr_cpu,
ac66f547 1841 .dst_task = p,
0ad4e3df 1842 .dst_cpu = target_cpu,
ac66f547
PZ
1843 };
1844
1845 if (arg.src_cpu == arg.dst_cpu)
1846 goto out;
1847
6acce3ef
PZ
1848 /*
1849 * These three tests are all lockless; this is OK since all of them
1850 * will be re-checked with proper locks held further down the line.
1851 */
ac66f547
PZ
1852 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1853 goto out;
1854
3bd37062 1855 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1856 goto out;
1857
3bd37062 1858 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1859 goto out;
1860
286549dc 1861 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1862 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1863
1864out:
ac66f547
PZ
1865 return ret;
1866}
0ad4e3df 1867#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1868
1da177e4
LT
1869/*
1870 * wait_task_inactive - wait for a thread to unschedule.
1871 *
85ba2d86
RM
1872 * If @match_state is nonzero, it's the @p->state value just checked and
1873 * not expected to change. If it changes, i.e. @p might have woken up,
1874 * then return zero. When we succeed in waiting for @p to be off its CPU,
1875 * we return a positive number (its total switch count). If a second call
1876 * a short while later returns the same number, the caller can be sure that
1877 * @p has remained unscheduled the whole time.
1878 *
1da177e4
LT
1879 * The caller must ensure that the task *will* unschedule sometime soon,
1880 * else this function might spin for a *long* time. This function can't
1881 * be called with interrupts off, or it may introduce deadlock with
1882 * smp_call_function() if an IPI is sent by the same process we are
1883 * waiting to become inactive.
1884 */
85ba2d86 1885unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1886{
da0c1e65 1887 int running, queued;
eb580751 1888 struct rq_flags rf;
85ba2d86 1889 unsigned long ncsw;
70b97a7f 1890 struct rq *rq;
1da177e4 1891
3a5c359a
AK
1892 for (;;) {
1893 /*
1894 * We do the initial early heuristics without holding
1895 * any task-queue locks at all. We'll only try to get
1896 * the runqueue lock when things look like they will
1897 * work out!
1898 */
1899 rq = task_rq(p);
fa490cfd 1900
3a5c359a
AK
1901 /*
1902 * If the task is actively running on another CPU
1903 * still, just relax and busy-wait without holding
1904 * any locks.
1905 *
1906 * NOTE! Since we don't hold any locks, it's not
1907 * even sure that "rq" stays as the right runqueue!
1908 * But we don't care, since "task_running()" will
1909 * return false if the runqueue has changed and p
1910 * is actually now running somewhere else!
1911 */
85ba2d86
RM
1912 while (task_running(rq, p)) {
1913 if (match_state && unlikely(p->state != match_state))
1914 return 0;
3a5c359a 1915 cpu_relax();
85ba2d86 1916 }
fa490cfd 1917
3a5c359a
AK
1918 /*
1919 * Ok, time to look more closely! We need the rq
1920 * lock now, to be *sure*. If we're wrong, we'll
1921 * just go back and repeat.
1922 */
eb580751 1923 rq = task_rq_lock(p, &rf);
27a9da65 1924 trace_sched_wait_task(p);
3a5c359a 1925 running = task_running(rq, p);
da0c1e65 1926 queued = task_on_rq_queued(p);
85ba2d86 1927 ncsw = 0;
f31e11d8 1928 if (!match_state || p->state == match_state)
93dcf55f 1929 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1930 task_rq_unlock(rq, p, &rf);
fa490cfd 1931
85ba2d86
RM
1932 /*
1933 * If it changed from the expected state, bail out now.
1934 */
1935 if (unlikely(!ncsw))
1936 break;
1937
3a5c359a
AK
1938 /*
1939 * Was it really running after all now that we
1940 * checked with the proper locks actually held?
1941 *
1942 * Oops. Go back and try again..
1943 */
1944 if (unlikely(running)) {
1945 cpu_relax();
1946 continue;
1947 }
fa490cfd 1948
3a5c359a
AK
1949 /*
1950 * It's not enough that it's not actively running,
1951 * it must be off the runqueue _entirely_, and not
1952 * preempted!
1953 *
80dd99b3 1954 * So if it was still runnable (but just not actively
3a5c359a
AK
1955 * running right now), it's preempted, and we should
1956 * yield - it could be a while.
1957 */
da0c1e65 1958 if (unlikely(queued)) {
8b0e1953 1959 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1960
1961 set_current_state(TASK_UNINTERRUPTIBLE);
1962 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1963 continue;
1964 }
fa490cfd 1965
3a5c359a
AK
1966 /*
1967 * Ahh, all good. It wasn't running, and it wasn't
1968 * runnable, which means that it will never become
1969 * running in the future either. We're all done!
1970 */
1971 break;
1972 }
85ba2d86
RM
1973
1974 return ncsw;
1da177e4
LT
1975}
1976
1977/***
1978 * kick_process - kick a running thread to enter/exit the kernel
1979 * @p: the to-be-kicked thread
1980 *
1981 * Cause a process which is running on another CPU to enter
1982 * kernel-mode, without any delay. (to get signals handled.)
1983 *
25985edc 1984 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1985 * because all it wants to ensure is that the remote task enters
1986 * the kernel. If the IPI races and the task has been migrated
1987 * to another CPU then no harm is done and the purpose has been
1988 * achieved as well.
1989 */
36c8b586 1990void kick_process(struct task_struct *p)
1da177e4
LT
1991{
1992 int cpu;
1993
1994 preempt_disable();
1995 cpu = task_cpu(p);
1996 if ((cpu != smp_processor_id()) && task_curr(p))
1997 smp_send_reschedule(cpu);
1998 preempt_enable();
1999}
b43e3521 2000EXPORT_SYMBOL_GPL(kick_process);
1da177e4 2001
30da688e 2002/*
3bd37062 2003 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2004 *
2005 * A few notes on cpu_active vs cpu_online:
2006 *
2007 * - cpu_active must be a subset of cpu_online
2008 *
97fb7a0a 2009 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2010 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2011 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2012 * see it.
2013 *
d1ccc66d 2014 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2015 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2016 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2017 * off.
2018 *
2019 * This means that fallback selection must not select !active CPUs.
2020 * And can assume that any active CPU must be online. Conversely
2021 * select_task_rq() below may allow selection of !active CPUs in order
2022 * to satisfy the above rules.
30da688e 2023 */
5da9a0fb
PZ
2024static int select_fallback_rq(int cpu, struct task_struct *p)
2025{
aa00d89c
TC
2026 int nid = cpu_to_node(cpu);
2027 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2028 enum { cpuset, possible, fail } state = cpuset;
2029 int dest_cpu;
5da9a0fb 2030
aa00d89c 2031 /*
d1ccc66d
IM
2032 * If the node that the CPU is on has been offlined, cpu_to_node()
2033 * will return -1. There is no CPU on the node, and we should
2034 * select the CPU on the other node.
aa00d89c
TC
2035 */
2036 if (nid != -1) {
2037 nodemask = cpumask_of_node(nid);
2038
2039 /* Look for allowed, online CPU in same node. */
2040 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2041 if (!cpu_active(dest_cpu))
2042 continue;
3bd37062 2043 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2044 return dest_cpu;
2045 }
2baab4e9 2046 }
5da9a0fb 2047
2baab4e9
PZ
2048 for (;;) {
2049 /* Any allowed, online CPU? */
3bd37062 2050 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2051 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2052 continue;
175f0e25 2053
2baab4e9
PZ
2054 goto out;
2055 }
5da9a0fb 2056
e73e85f0 2057 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2058 switch (state) {
2059 case cpuset:
e73e85f0
ON
2060 if (IS_ENABLED(CONFIG_CPUSETS)) {
2061 cpuset_cpus_allowed_fallback(p);
2062 state = possible;
2063 break;
2064 }
d1ccc66d 2065 /* Fall-through */
2baab4e9
PZ
2066 case possible:
2067 do_set_cpus_allowed(p, cpu_possible_mask);
2068 state = fail;
2069 break;
2070
2071 case fail:
2072 BUG();
2073 break;
2074 }
2075 }
2076
2077out:
2078 if (state != cpuset) {
2079 /*
2080 * Don't tell them about moving exiting tasks or
2081 * kernel threads (both mm NULL), since they never
2082 * leave kernel.
2083 */
2084 if (p->mm && printk_ratelimit()) {
aac74dc4 2085 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2086 task_pid_nr(p), p->comm, cpu);
2087 }
5da9a0fb
PZ
2088 }
2089
2090 return dest_cpu;
2091}
2092
e2912009 2093/*
3bd37062 2094 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2095 */
970b13ba 2096static inline
ac66f547 2097int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 2098{
cbce1a68
PZ
2099 lockdep_assert_held(&p->pi_lock);
2100
4b53a341 2101 if (p->nr_cpus_allowed > 1)
6c1d9410 2102 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 2103 else
3bd37062 2104 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2105
2106 /*
2107 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2108 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2109 * CPU.
e2912009
PZ
2110 *
2111 * Since this is common to all placement strategies, this lives here.
2112 *
2113 * [ this allows ->select_task() to simply return task_cpu(p) and
2114 * not worry about this generic constraint ]
2115 */
7af443ee 2116 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2117 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2118
2119 return cpu;
970b13ba 2120}
09a40af5
MG
2121
2122static void update_avg(u64 *avg, u64 sample)
2123{
2124 s64 diff = sample - *avg;
2125 *avg += diff >> 3;
2126}
25834c73 2127
f5832c19
NP
2128void sched_set_stop_task(int cpu, struct task_struct *stop)
2129{
2130 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2131 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2132
2133 if (stop) {
2134 /*
2135 * Make it appear like a SCHED_FIFO task, its something
2136 * userspace knows about and won't get confused about.
2137 *
2138 * Also, it will make PI more or less work without too
2139 * much confusion -- but then, stop work should not
2140 * rely on PI working anyway.
2141 */
2142 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2143
2144 stop->sched_class = &stop_sched_class;
2145 }
2146
2147 cpu_rq(cpu)->stop = stop;
2148
2149 if (old_stop) {
2150 /*
2151 * Reset it back to a normal scheduling class so that
2152 * it can die in pieces.
2153 */
2154 old_stop->sched_class = &rt_sched_class;
2155 }
2156}
2157
25834c73
PZ
2158#else
2159
2160static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2161 const struct cpumask *new_mask, bool check)
2162{
2163 return set_cpus_allowed_ptr(p, new_mask);
2164}
2165
5cc389bc 2166#endif /* CONFIG_SMP */
970b13ba 2167
d7c01d27 2168static void
b84cb5df 2169ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2170{
4fa8d299 2171 struct rq *rq;
b84cb5df 2172
4fa8d299
JP
2173 if (!schedstat_enabled())
2174 return;
2175
2176 rq = this_rq();
d7c01d27 2177
4fa8d299
JP
2178#ifdef CONFIG_SMP
2179 if (cpu == rq->cpu) {
b85c8b71
PZ
2180 __schedstat_inc(rq->ttwu_local);
2181 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2182 } else {
2183 struct sched_domain *sd;
2184
b85c8b71 2185 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2186 rcu_read_lock();
4fa8d299 2187 for_each_domain(rq->cpu, sd) {
d7c01d27 2188 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2189 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2190 break;
2191 }
2192 }
057f3fad 2193 rcu_read_unlock();
d7c01d27 2194 }
f339b9dc
PZ
2195
2196 if (wake_flags & WF_MIGRATED)
b85c8b71 2197 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2198#endif /* CONFIG_SMP */
2199
b85c8b71
PZ
2200 __schedstat_inc(rq->ttwu_count);
2201 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2202
2203 if (wake_flags & WF_SYNC)
b85c8b71 2204 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2205}
2206
23f41eeb
PZ
2207/*
2208 * Mark the task runnable and perform wakeup-preemption.
2209 */
e7904a28 2210static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2211 struct rq_flags *rf)
9ed3811a 2212{
9ed3811a 2213 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2214 p->state = TASK_RUNNING;
fbd705a0
PZ
2215 trace_sched_wakeup(p);
2216
9ed3811a 2217#ifdef CONFIG_SMP
4c9a4bc8
PZ
2218 if (p->sched_class->task_woken) {
2219 /*
cbce1a68
PZ
2220 * Our task @p is fully woken up and running; so its safe to
2221 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2222 */
d8ac8971 2223 rq_unpin_lock(rq, rf);
9ed3811a 2224 p->sched_class->task_woken(rq, p);
d8ac8971 2225 rq_repin_lock(rq, rf);
4c9a4bc8 2226 }
9ed3811a 2227
e69c6341 2228 if (rq->idle_stamp) {
78becc27 2229 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2230 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2231
abfafa54
JL
2232 update_avg(&rq->avg_idle, delta);
2233
2234 if (rq->avg_idle > max)
9ed3811a 2235 rq->avg_idle = max;
abfafa54 2236
9ed3811a
TH
2237 rq->idle_stamp = 0;
2238 }
2239#endif
2240}
2241
c05fbafb 2242static void
e7904a28 2243ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2244 struct rq_flags *rf)
c05fbafb 2245{
77558e4d 2246 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2247
cbce1a68
PZ
2248 lockdep_assert_held(&rq->lock);
2249
c05fbafb
PZ
2250#ifdef CONFIG_SMP
2251 if (p->sched_contributes_to_load)
2252 rq->nr_uninterruptible--;
b5179ac7 2253
b5179ac7 2254 if (wake_flags & WF_MIGRATED)
59efa0ba 2255 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2256#endif
2257
1b174a2c 2258 activate_task(rq, p, en_flags);
d8ac8971 2259 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2260}
2261
2262/*
2263 * Called in case the task @p isn't fully descheduled from its runqueue,
2264 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2265 * since all we need to do is flip p->state to TASK_RUNNING, since
2266 * the task is still ->on_rq.
2267 */
2268static int ttwu_remote(struct task_struct *p, int wake_flags)
2269{
eb580751 2270 struct rq_flags rf;
c05fbafb
PZ
2271 struct rq *rq;
2272 int ret = 0;
2273
eb580751 2274 rq = __task_rq_lock(p, &rf);
da0c1e65 2275 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2276 /* check_preempt_curr() may use rq clock */
2277 update_rq_clock(rq);
d8ac8971 2278 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2279 ret = 1;
2280 }
eb580751 2281 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2282
2283 return ret;
2284}
2285
317f3941 2286#ifdef CONFIG_SMP
e3baac47 2287void sched_ttwu_pending(void)
317f3941
PZ
2288{
2289 struct rq *rq = this_rq();
fa14ff4a 2290 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 2291 struct task_struct *p, *t;
d8ac8971 2292 struct rq_flags rf;
317f3941 2293
e3baac47
PZ
2294 if (!llist)
2295 return;
2296
8a8c69c3 2297 rq_lock_irqsave(rq, &rf);
77558e4d 2298 update_rq_clock(rq);
317f3941 2299
73215849
BP
2300 llist_for_each_entry_safe(p, t, llist, wake_entry)
2301 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 2302
8a8c69c3 2303 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2304}
2305
2306void scheduler_ipi(void)
2307{
f27dde8d
PZ
2308 /*
2309 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2310 * TIF_NEED_RESCHED remotely (for the first time) will also send
2311 * this IPI.
2312 */
8cb75e0c 2313 preempt_fold_need_resched();
f27dde8d 2314
fd2ac4f4 2315 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2316 return;
2317
2318 /*
2319 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2320 * traditionally all their work was done from the interrupt return
2321 * path. Now that we actually do some work, we need to make sure
2322 * we do call them.
2323 *
2324 * Some archs already do call them, luckily irq_enter/exit nest
2325 * properly.
2326 *
2327 * Arguably we should visit all archs and update all handlers,
2328 * however a fair share of IPIs are still resched only so this would
2329 * somewhat pessimize the simple resched case.
2330 */
2331 irq_enter();
fa14ff4a 2332 sched_ttwu_pending();
ca38062e
SS
2333
2334 /*
2335 * Check if someone kicked us for doing the nohz idle load balance.
2336 */
873b4c65 2337 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 2338 this_rq()->idle_balance = 1;
ca38062e 2339 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2340 }
c5d753a5 2341 irq_exit();
317f3941
PZ
2342}
2343
b7e7ade3 2344static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 2345{
e3baac47
PZ
2346 struct rq *rq = cpu_rq(cpu);
2347
b7e7ade3
PZ
2348 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2349
e3baac47
PZ
2350 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2351 if (!set_nr_if_polling(rq->idle))
2352 smp_send_reschedule(cpu);
2353 else
2354 trace_sched_wake_idle_without_ipi(cpu);
2355 }
317f3941 2356}
d6aa8f85 2357
f6be8af1
CL
2358void wake_up_if_idle(int cpu)
2359{
2360 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2361 struct rq_flags rf;
f6be8af1 2362
fd7de1e8
AL
2363 rcu_read_lock();
2364
2365 if (!is_idle_task(rcu_dereference(rq->curr)))
2366 goto out;
f6be8af1
CL
2367
2368 if (set_nr_if_polling(rq->idle)) {
2369 trace_sched_wake_idle_without_ipi(cpu);
2370 } else {
8a8c69c3 2371 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2372 if (is_idle_task(rq->curr))
2373 smp_send_reschedule(cpu);
d1ccc66d 2374 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2375 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2376 }
fd7de1e8
AL
2377
2378out:
2379 rcu_read_unlock();
f6be8af1
CL
2380}
2381
39be3501 2382bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2383{
2384 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2385}
d6aa8f85 2386#endif /* CONFIG_SMP */
317f3941 2387
b5179ac7 2388static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2389{
2390 struct rq *rq = cpu_rq(cpu);
d8ac8971 2391 struct rq_flags rf;
c05fbafb 2392
17d9f311 2393#if defined(CONFIG_SMP)
39be3501 2394 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 2395 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 2396 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
2397 return;
2398 }
2399#endif
2400
8a8c69c3 2401 rq_lock(rq, &rf);
77558e4d 2402 update_rq_clock(rq);
d8ac8971 2403 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2404 rq_unlock(rq, &rf);
9ed3811a
TH
2405}
2406
8643cda5
PZ
2407/*
2408 * Notes on Program-Order guarantees on SMP systems.
2409 *
2410 * MIGRATION
2411 *
2412 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2413 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2414 * execution on its new CPU [c1].
8643cda5
PZ
2415 *
2416 * For migration (of runnable tasks) this is provided by the following means:
2417 *
2418 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2419 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2420 * rq(c1)->lock (if not at the same time, then in that order).
2421 * C) LOCK of the rq(c1)->lock scheduling in task
2422 *
7696f991 2423 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2424 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2425 *
2426 * Example:
2427 *
2428 * CPU0 CPU1 CPU2
2429 *
2430 * LOCK rq(0)->lock
2431 * sched-out X
2432 * sched-in Y
2433 * UNLOCK rq(0)->lock
2434 *
2435 * LOCK rq(0)->lock // orders against CPU0
2436 * dequeue X
2437 * UNLOCK rq(0)->lock
2438 *
2439 * LOCK rq(1)->lock
2440 * enqueue X
2441 * UNLOCK rq(1)->lock
2442 *
2443 * LOCK rq(1)->lock // orders against CPU2
2444 * sched-out Z
2445 * sched-in X
2446 * UNLOCK rq(1)->lock
2447 *
2448 *
2449 * BLOCKING -- aka. SLEEP + WAKEUP
2450 *
2451 * For blocking we (obviously) need to provide the same guarantee as for
2452 * migration. However the means are completely different as there is no lock
2453 * chain to provide order. Instead we do:
2454 *
2455 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 2456 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
2457 *
2458 * Example:
2459 *
2460 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2461 *
2462 * LOCK rq(0)->lock LOCK X->pi_lock
2463 * dequeue X
2464 * sched-out X
2465 * smp_store_release(X->on_cpu, 0);
2466 *
1f03e8d2 2467 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2468 * X->state = WAKING
2469 * set_task_cpu(X,2)
2470 *
2471 * LOCK rq(2)->lock
2472 * enqueue X
2473 * X->state = RUNNING
2474 * UNLOCK rq(2)->lock
2475 *
2476 * LOCK rq(2)->lock // orders against CPU1
2477 * sched-out Z
2478 * sched-in X
2479 * UNLOCK rq(2)->lock
2480 *
2481 * UNLOCK X->pi_lock
2482 * UNLOCK rq(0)->lock
2483 *
2484 *
7696f991
AP
2485 * However, for wakeups there is a second guarantee we must provide, namely we
2486 * must ensure that CONDITION=1 done by the caller can not be reordered with
2487 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2488 */
2489
9ed3811a 2490/**
1da177e4 2491 * try_to_wake_up - wake up a thread
9ed3811a 2492 * @p: the thread to be awakened
1da177e4 2493 * @state: the mask of task states that can be woken
9ed3811a 2494 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2495 *
a2250238 2496 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2497 *
a2250238
PZ
2498 * If the task was not queued/runnable, also place it back on a runqueue.
2499 *
2500 * Atomic against schedule() which would dequeue a task, also see
2501 * set_current_state().
2502 *
7696f991
AP
2503 * This function executes a full memory barrier before accessing the task
2504 * state; see set_current_state().
2505 *
a2250238
PZ
2506 * Return: %true if @p->state changes (an actual wakeup was done),
2507 * %false otherwise.
1da177e4 2508 */
e4a52bcb
PZ
2509static int
2510try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2511{
1da177e4 2512 unsigned long flags;
c05fbafb 2513 int cpu, success = 0;
2398f2c6 2514
e3d85487 2515 preempt_disable();
aacedf26
PZ
2516 if (p == current) {
2517 /*
2518 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2519 * == smp_processor_id()'. Together this means we can special
2520 * case the whole 'p->on_rq && ttwu_remote()' case below
2521 * without taking any locks.
2522 *
2523 * In particular:
2524 * - we rely on Program-Order guarantees for all the ordering,
2525 * - we're serialized against set_special_state() by virtue of
2526 * it disabling IRQs (this allows not taking ->pi_lock).
2527 */
2528 if (!(p->state & state))
e3d85487 2529 goto out;
aacedf26
PZ
2530
2531 success = 1;
2532 cpu = task_cpu(p);
2533 trace_sched_waking(p);
2534 p->state = TASK_RUNNING;
2535 trace_sched_wakeup(p);
2536 goto out;
2537 }
2538
e0acd0a6
ON
2539 /*
2540 * If we are going to wake up a thread waiting for CONDITION we
2541 * need to ensure that CONDITION=1 done by the caller can not be
2542 * reordered with p->state check below. This pairs with mb() in
2543 * set_current_state() the waiting thread does.
2544 */
013fdb80 2545 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2546 smp_mb__after_spinlock();
e9c84311 2547 if (!(p->state & state))
aacedf26 2548 goto unlock;
1da177e4 2549
fbd705a0
PZ
2550 trace_sched_waking(p);
2551
d1ccc66d
IM
2552 /* We're going to change ->state: */
2553 success = 1;
1da177e4 2554 cpu = task_cpu(p);
1da177e4 2555
135e8c92
BS
2556 /*
2557 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2558 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2559 * in smp_cond_load_acquire() below.
2560 *
3d85b270
AP
2561 * sched_ttwu_pending() try_to_wake_up()
2562 * STORE p->on_rq = 1 LOAD p->state
2563 * UNLOCK rq->lock
2564 *
2565 * __schedule() (switch to task 'p')
2566 * LOCK rq->lock smp_rmb();
2567 * smp_mb__after_spinlock();
2568 * UNLOCK rq->lock
135e8c92
BS
2569 *
2570 * [task p]
3d85b270 2571 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2572 *
3d85b270
AP
2573 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2574 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2575 */
2576 smp_rmb();
c05fbafb 2577 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2578 goto unlock;
1da177e4 2579
1da177e4 2580#ifdef CONFIG_SMP
ecf7d01c
PZ
2581 /*
2582 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2583 * possible to, falsely, observe p->on_cpu == 0.
2584 *
2585 * One must be running (->on_cpu == 1) in order to remove oneself
2586 * from the runqueue.
2587 *
3d85b270
AP
2588 * __schedule() (switch to task 'p') try_to_wake_up()
2589 * STORE p->on_cpu = 1 LOAD p->on_rq
2590 * UNLOCK rq->lock
2591 *
2592 * __schedule() (put 'p' to sleep)
2593 * LOCK rq->lock smp_rmb();
2594 * smp_mb__after_spinlock();
2595 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2596 *
3d85b270
AP
2597 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2598 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2599 */
2600 smp_rmb();
2601
e9c84311 2602 /*
d1ccc66d 2603 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2604 * this task as prev, wait until its done referencing the task.
b75a2253 2605 *
31cb1bc0 2606 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2607 *
2608 * This ensures that tasks getting woken will be fully ordered against
2609 * their previous state and preserve Program Order.
0970d299 2610 */
1f03e8d2 2611 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2612
a8e4f2ea 2613 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2614 p->state = TASK_WAKING;
e7693a36 2615
e33a9bba 2616 if (p->in_iowait) {
c96f5471 2617 delayacct_blkio_end(p);
e33a9bba
TH
2618 atomic_dec(&task_rq(p)->nr_iowait);
2619 }
2620
ac66f547 2621 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2622 if (task_cpu(p) != cpu) {
2623 wake_flags |= WF_MIGRATED;
eb414681 2624 psi_ttwu_dequeue(p);
e4a52bcb 2625 set_task_cpu(p, cpu);
f339b9dc 2626 }
e33a9bba
TH
2627
2628#else /* CONFIG_SMP */
2629
2630 if (p->in_iowait) {
c96f5471 2631 delayacct_blkio_end(p);
e33a9bba
TH
2632 atomic_dec(&task_rq(p)->nr_iowait);
2633 }
2634
1da177e4 2635#endif /* CONFIG_SMP */
1da177e4 2636
b5179ac7 2637 ttwu_queue(p, cpu, wake_flags);
aacedf26 2638unlock:
013fdb80 2639 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2640out:
2641 if (success)
2642 ttwu_stat(p, cpu, wake_flags);
e3d85487 2643 preempt_enable();
1da177e4
LT
2644
2645 return success;
2646}
2647
50fa610a
DH
2648/**
2649 * wake_up_process - Wake up a specific process
2650 * @p: The process to be woken up.
2651 *
2652 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2653 * processes.
2654 *
2655 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2656 *
7696f991 2657 * This function executes a full memory barrier before accessing the task state.
50fa610a 2658 */
7ad5b3a5 2659int wake_up_process(struct task_struct *p)
1da177e4 2660{
9067ac85 2661 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2662}
1da177e4
LT
2663EXPORT_SYMBOL(wake_up_process);
2664
7ad5b3a5 2665int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2666{
2667 return try_to_wake_up(p, state, 0);
2668}
2669
1da177e4
LT
2670/*
2671 * Perform scheduler related setup for a newly forked process p.
2672 * p is forked by current.
dd41f596
IM
2673 *
2674 * __sched_fork() is basic setup used by init_idle() too:
2675 */
5e1576ed 2676static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2677{
fd2f4419
PZ
2678 p->on_rq = 0;
2679
2680 p->se.on_rq = 0;
dd41f596
IM
2681 p->se.exec_start = 0;
2682 p->se.sum_exec_runtime = 0;
f6cf891c 2683 p->se.prev_sum_exec_runtime = 0;
6c594c21 2684 p->se.nr_migrations = 0;
da7a735e 2685 p->se.vruntime = 0;
fd2f4419 2686 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2687
ad936d86
BP
2688#ifdef CONFIG_FAIR_GROUP_SCHED
2689 p->se.cfs_rq = NULL;
2690#endif
2691
6cfb0d5d 2692#ifdef CONFIG_SCHEDSTATS
cb251765 2693 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2694 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2695#endif
476d139c 2696
aab03e05 2697 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2698 init_dl_task_timer(&p->dl);
209a0cbd 2699 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2700 __dl_clear_params(p);
aab03e05 2701
fa717060 2702 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2703 p->rt.timeout = 0;
2704 p->rt.time_slice = sched_rr_timeslice;
2705 p->rt.on_rq = 0;
2706 p->rt.on_list = 0;
476d139c 2707
e107be36
AK
2708#ifdef CONFIG_PREEMPT_NOTIFIERS
2709 INIT_HLIST_HEAD(&p->preempt_notifiers);
2710#endif
cbee9f88 2711
5e1f0f09
MG
2712#ifdef CONFIG_COMPACTION
2713 p->capture_control = NULL;
2714#endif
13784475 2715 init_numa_balancing(clone_flags, p);
dd41f596
IM
2716}
2717
2a595721
SD
2718DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2719
1a687c2e 2720#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2721
1a687c2e
MG
2722void set_numabalancing_state(bool enabled)
2723{
2724 if (enabled)
2a595721 2725 static_branch_enable(&sched_numa_balancing);
1a687c2e 2726 else
2a595721 2727 static_branch_disable(&sched_numa_balancing);
1a687c2e 2728}
54a43d54
AK
2729
2730#ifdef CONFIG_PROC_SYSCTL
2731int sysctl_numa_balancing(struct ctl_table *table, int write,
2732 void __user *buffer, size_t *lenp, loff_t *ppos)
2733{
2734 struct ctl_table t;
2735 int err;
2a595721 2736 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2737
2738 if (write && !capable(CAP_SYS_ADMIN))
2739 return -EPERM;
2740
2741 t = *table;
2742 t.data = &state;
2743 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2744 if (err < 0)
2745 return err;
2746 if (write)
2747 set_numabalancing_state(state);
2748 return err;
2749}
2750#endif
2751#endif
dd41f596 2752
4698f88c
JP
2753#ifdef CONFIG_SCHEDSTATS
2754
cb251765 2755DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2756static bool __initdata __sched_schedstats = false;
cb251765 2757
cb251765
MG
2758static void set_schedstats(bool enabled)
2759{
2760 if (enabled)
2761 static_branch_enable(&sched_schedstats);
2762 else
2763 static_branch_disable(&sched_schedstats);
2764}
2765
2766void force_schedstat_enabled(void)
2767{
2768 if (!schedstat_enabled()) {
2769 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2770 static_branch_enable(&sched_schedstats);
2771 }
2772}
2773
2774static int __init setup_schedstats(char *str)
2775{
2776 int ret = 0;
2777 if (!str)
2778 goto out;
2779
4698f88c
JP
2780 /*
2781 * This code is called before jump labels have been set up, so we can't
2782 * change the static branch directly just yet. Instead set a temporary
2783 * variable so init_schedstats() can do it later.
2784 */
cb251765 2785 if (!strcmp(str, "enable")) {
4698f88c 2786 __sched_schedstats = true;
cb251765
MG
2787 ret = 1;
2788 } else if (!strcmp(str, "disable")) {
4698f88c 2789 __sched_schedstats = false;
cb251765
MG
2790 ret = 1;
2791 }
2792out:
2793 if (!ret)
2794 pr_warn("Unable to parse schedstats=\n");
2795
2796 return ret;
2797}
2798__setup("schedstats=", setup_schedstats);
2799
4698f88c
JP
2800static void __init init_schedstats(void)
2801{
2802 set_schedstats(__sched_schedstats);
2803}
2804
cb251765
MG
2805#ifdef CONFIG_PROC_SYSCTL
2806int sysctl_schedstats(struct ctl_table *table, int write,
2807 void __user *buffer, size_t *lenp, loff_t *ppos)
2808{
2809 struct ctl_table t;
2810 int err;
2811 int state = static_branch_likely(&sched_schedstats);
2812
2813 if (write && !capable(CAP_SYS_ADMIN))
2814 return -EPERM;
2815
2816 t = *table;
2817 t.data = &state;
2818 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2819 if (err < 0)
2820 return err;
2821 if (write)
2822 set_schedstats(state);
2823 return err;
2824}
4698f88c
JP
2825#endif /* CONFIG_PROC_SYSCTL */
2826#else /* !CONFIG_SCHEDSTATS */
2827static inline void init_schedstats(void) {}
2828#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2829
2830/*
2831 * fork()/clone()-time setup:
2832 */
aab03e05 2833int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2834{
0122ec5b 2835 unsigned long flags;
dd41f596 2836
5e1576ed 2837 __sched_fork(clone_flags, p);
06b83b5f 2838 /*
7dc603c9 2839 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2840 * nobody will actually run it, and a signal or other external
2841 * event cannot wake it up and insert it on the runqueue either.
2842 */
7dc603c9 2843 p->state = TASK_NEW;
dd41f596 2844
c350a04e
MG
2845 /*
2846 * Make sure we do not leak PI boosting priority to the child.
2847 */
2848 p->prio = current->normal_prio;
2849
e8f14172
PB
2850 uclamp_fork(p);
2851
b9dc29e7
MG
2852 /*
2853 * Revert to default priority/policy on fork if requested.
2854 */
2855 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2856 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2857 p->policy = SCHED_NORMAL;
6c697bdf 2858 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2859 p->rt_priority = 0;
2860 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2861 p->static_prio = NICE_TO_PRIO(0);
2862
2863 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2864 set_load_weight(p, false);
6c697bdf 2865
b9dc29e7
MG
2866 /*
2867 * We don't need the reset flag anymore after the fork. It has
2868 * fulfilled its duty:
2869 */
2870 p->sched_reset_on_fork = 0;
2871 }
ca94c442 2872
af0fffd9 2873 if (dl_prio(p->prio))
aab03e05 2874 return -EAGAIN;
af0fffd9 2875 else if (rt_prio(p->prio))
aab03e05 2876 p->sched_class = &rt_sched_class;
af0fffd9 2877 else
2ddbf952 2878 p->sched_class = &fair_sched_class;
b29739f9 2879
7dc603c9 2880 init_entity_runnable_average(&p->se);
cd29fe6f 2881
86951599
PZ
2882 /*
2883 * The child is not yet in the pid-hash so no cgroup attach races,
2884 * and the cgroup is pinned to this child due to cgroup_fork()
2885 * is ran before sched_fork().
2886 *
2887 * Silence PROVE_RCU.
2888 */
0122ec5b 2889 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2890 /*
d1ccc66d 2891 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2892 * so use __set_task_cpu().
2893 */
af0fffd9 2894 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2895 if (p->sched_class->task_fork)
2896 p->sched_class->task_fork(p);
0122ec5b 2897 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2898
f6db8347 2899#ifdef CONFIG_SCHED_INFO
dd41f596 2900 if (likely(sched_info_on()))
52f17b6c 2901 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2902#endif
3ca7a440
PZ
2903#if defined(CONFIG_SMP)
2904 p->on_cpu = 0;
4866cde0 2905#endif
01028747 2906 init_task_preempt_count(p);
806c09a7 2907#ifdef CONFIG_SMP
917b627d 2908 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2909 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2910#endif
aab03e05 2911 return 0;
1da177e4
LT
2912}
2913
332ac17e
DF
2914unsigned long to_ratio(u64 period, u64 runtime)
2915{
2916 if (runtime == RUNTIME_INF)
c52f14d3 2917 return BW_UNIT;
332ac17e
DF
2918
2919 /*
2920 * Doing this here saves a lot of checks in all
2921 * the calling paths, and returning zero seems
2922 * safe for them anyway.
2923 */
2924 if (period == 0)
2925 return 0;
2926
c52f14d3 2927 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2928}
2929
1da177e4
LT
2930/*
2931 * wake_up_new_task - wake up a newly created task for the first time.
2932 *
2933 * This function will do some initial scheduler statistics housekeeping
2934 * that must be done for every newly created context, then puts the task
2935 * on the runqueue and wakes it.
2936 */
3e51e3ed 2937void wake_up_new_task(struct task_struct *p)
1da177e4 2938{
eb580751 2939 struct rq_flags rf;
dd41f596 2940 struct rq *rq;
fabf318e 2941
eb580751 2942 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2943 p->state = TASK_RUNNING;
fabf318e
PZ
2944#ifdef CONFIG_SMP
2945 /*
2946 * Fork balancing, do it here and not earlier because:
3bd37062 2947 * - cpus_ptr can change in the fork path
d1ccc66d 2948 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2949 *
2950 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2951 * as we're not fully set-up yet.
fabf318e 2952 */
32e839dd 2953 p->recent_used_cpu = task_cpu(p);
e210bffd 2954 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2955#endif
b7fa30c9 2956 rq = __task_rq_lock(p, &rf);
4126bad6 2957 update_rq_clock(rq);
d0fe0b9c 2958 post_init_entity_util_avg(p);
0017d735 2959
7a57f32a 2960 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2961 trace_sched_wakeup_new(p);
a7558e01 2962 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2963#ifdef CONFIG_SMP
0aaafaab
PZ
2964 if (p->sched_class->task_woken) {
2965 /*
2966 * Nothing relies on rq->lock after this, so its fine to
2967 * drop it.
2968 */
d8ac8971 2969 rq_unpin_lock(rq, &rf);
efbbd05a 2970 p->sched_class->task_woken(rq, p);
d8ac8971 2971 rq_repin_lock(rq, &rf);
0aaafaab 2972 }
9a897c5a 2973#endif
eb580751 2974 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2975}
2976
e107be36
AK
2977#ifdef CONFIG_PREEMPT_NOTIFIERS
2978
b7203428 2979static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2980
2ecd9d29
PZ
2981void preempt_notifier_inc(void)
2982{
b7203428 2983 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2984}
2985EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2986
2987void preempt_notifier_dec(void)
2988{
b7203428 2989 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2990}
2991EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2992
e107be36 2993/**
80dd99b3 2994 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2995 * @notifier: notifier struct to register
e107be36
AK
2996 */
2997void preempt_notifier_register(struct preempt_notifier *notifier)
2998{
b7203428 2999 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
3000 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3001
e107be36
AK
3002 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3003}
3004EXPORT_SYMBOL_GPL(preempt_notifier_register);
3005
3006/**
3007 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3008 * @notifier: notifier struct to unregister
e107be36 3009 *
d84525a8 3010 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3011 */
3012void preempt_notifier_unregister(struct preempt_notifier *notifier)
3013{
3014 hlist_del(&notifier->link);
3015}
3016EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3017
1cde2930 3018static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3019{
3020 struct preempt_notifier *notifier;
e107be36 3021
b67bfe0d 3022 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3023 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3024}
3025
1cde2930
PZ
3026static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3027{
b7203428 3028 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3029 __fire_sched_in_preempt_notifiers(curr);
3030}
3031
e107be36 3032static void
1cde2930
PZ
3033__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3034 struct task_struct *next)
e107be36
AK
3035{
3036 struct preempt_notifier *notifier;
e107be36 3037
b67bfe0d 3038 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3039 notifier->ops->sched_out(notifier, next);
3040}
3041
1cde2930
PZ
3042static __always_inline void
3043fire_sched_out_preempt_notifiers(struct task_struct *curr,
3044 struct task_struct *next)
3045{
b7203428 3046 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3047 __fire_sched_out_preempt_notifiers(curr, next);
3048}
3049
6d6bc0ad 3050#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3051
1cde2930 3052static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3053{
3054}
3055
1cde2930 3056static inline void
e107be36
AK
3057fire_sched_out_preempt_notifiers(struct task_struct *curr,
3058 struct task_struct *next)
3059{
3060}
3061
6d6bc0ad 3062#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3063
31cb1bc0 3064static inline void prepare_task(struct task_struct *next)
3065{
3066#ifdef CONFIG_SMP
3067 /*
3068 * Claim the task as running, we do this before switching to it
3069 * such that any running task will have this set.
3070 */
3071 next->on_cpu = 1;
3072#endif
3073}
3074
3075static inline void finish_task(struct task_struct *prev)
3076{
3077#ifdef CONFIG_SMP
3078 /*
3079 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3080 * We must ensure this doesn't happen until the switch is completely
3081 * finished.
3082 *
3083 * In particular, the load of prev->state in finish_task_switch() must
3084 * happen before this.
3085 *
3086 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3087 */
3088 smp_store_release(&prev->on_cpu, 0);
3089#endif
3090}
3091
269d5992
PZ
3092static inline void
3093prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 3094{
269d5992
PZ
3095 /*
3096 * Since the runqueue lock will be released by the next
3097 * task (which is an invalid locking op but in the case
3098 * of the scheduler it's an obvious special-case), so we
3099 * do an early lockdep release here:
3100 */
3101 rq_unpin_lock(rq, rf);
5facae4f 3102 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 3103#ifdef CONFIG_DEBUG_SPINLOCK
3104 /* this is a valid case when another task releases the spinlock */
269d5992 3105 rq->lock.owner = next;
31cb1bc0 3106#endif
269d5992
PZ
3107}
3108
3109static inline void finish_lock_switch(struct rq *rq)
3110{
31cb1bc0 3111 /*
3112 * If we are tracking spinlock dependencies then we have to
3113 * fix up the runqueue lock - which gets 'carried over' from
3114 * prev into current:
3115 */
3116 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 3117 raw_spin_unlock_irq(&rq->lock);
3118}
3119
325ea10c
IM
3120/*
3121 * NOP if the arch has not defined these:
3122 */
3123
3124#ifndef prepare_arch_switch
3125# define prepare_arch_switch(next) do { } while (0)
3126#endif
3127
3128#ifndef finish_arch_post_lock_switch
3129# define finish_arch_post_lock_switch() do { } while (0)
3130#endif
3131
4866cde0
NP
3132/**
3133 * prepare_task_switch - prepare to switch tasks
3134 * @rq: the runqueue preparing to switch
421cee29 3135 * @prev: the current task that is being switched out
4866cde0
NP
3136 * @next: the task we are going to switch to.
3137 *
3138 * This is called with the rq lock held and interrupts off. It must
3139 * be paired with a subsequent finish_task_switch after the context
3140 * switch.
3141 *
3142 * prepare_task_switch sets up locking and calls architecture specific
3143 * hooks.
3144 */
e107be36
AK
3145static inline void
3146prepare_task_switch(struct rq *rq, struct task_struct *prev,
3147 struct task_struct *next)
4866cde0 3148{
0ed557aa 3149 kcov_prepare_switch(prev);
43148951 3150 sched_info_switch(rq, prev, next);
fe4b04fa 3151 perf_event_task_sched_out(prev, next);
d7822b1e 3152 rseq_preempt(prev);
e107be36 3153 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3154 prepare_task(next);
4866cde0
NP
3155 prepare_arch_switch(next);
3156}
3157
1da177e4
LT
3158/**
3159 * finish_task_switch - clean up after a task-switch
3160 * @prev: the thread we just switched away from.
3161 *
4866cde0
NP
3162 * finish_task_switch must be called after the context switch, paired
3163 * with a prepare_task_switch call before the context switch.
3164 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3165 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3166 *
3167 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3168 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3169 * with the lock held can cause deadlocks; see schedule() for
3170 * details.)
dfa50b60
ON
3171 *
3172 * The context switch have flipped the stack from under us and restored the
3173 * local variables which were saved when this task called schedule() in the
3174 * past. prev == current is still correct but we need to recalculate this_rq
3175 * because prev may have moved to another CPU.
1da177e4 3176 */
dfa50b60 3177static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3178 __releases(rq->lock)
3179{
dfa50b60 3180 struct rq *rq = this_rq();
1da177e4 3181 struct mm_struct *mm = rq->prev_mm;
55a101f8 3182 long prev_state;
1da177e4 3183
609ca066
PZ
3184 /*
3185 * The previous task will have left us with a preempt_count of 2
3186 * because it left us after:
3187 *
3188 * schedule()
3189 * preempt_disable(); // 1
3190 * __schedule()
3191 * raw_spin_lock_irq(&rq->lock) // 2
3192 *
3193 * Also, see FORK_PREEMPT_COUNT.
3194 */
e2bf1c4b
PZ
3195 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3196 "corrupted preempt_count: %s/%d/0x%x\n",
3197 current->comm, current->pid, preempt_count()))
3198 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3199
1da177e4
LT
3200 rq->prev_mm = NULL;
3201
3202 /*
3203 * A task struct has one reference for the use as "current".
c394cc9f 3204 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3205 * schedule one last time. The schedule call will never return, and
3206 * the scheduled task must drop that reference.
95913d97
PZ
3207 *
3208 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3209 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3210 * running on another CPU and we could rave with its RUNNING -> DEAD
3211 * transition, resulting in a double drop.
1da177e4 3212 */
55a101f8 3213 prev_state = prev->state;
bf9fae9f 3214 vtime_task_switch(prev);
a8d757ef 3215 perf_event_task_sched_in(prev, current);
31cb1bc0 3216 finish_task(prev);
3217 finish_lock_switch(rq);
01f23e16 3218 finish_arch_post_lock_switch();
0ed557aa 3219 kcov_finish_switch(current);
e8fa1362 3220
e107be36 3221 fire_sched_in_preempt_notifiers(current);
306e0604 3222 /*
70216e18
MD
3223 * When switching through a kernel thread, the loop in
3224 * membarrier_{private,global}_expedited() may have observed that
3225 * kernel thread and not issued an IPI. It is therefore possible to
3226 * schedule between user->kernel->user threads without passing though
3227 * switch_mm(). Membarrier requires a barrier after storing to
3228 * rq->curr, before returning to userspace, so provide them here:
3229 *
3230 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3231 * provided by mmdrop(),
3232 * - a sync_core for SYNC_CORE.
306e0604 3233 */
70216e18
MD
3234 if (mm) {
3235 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3236 mmdrop(mm);
70216e18 3237 }
1cef1150
PZ
3238 if (unlikely(prev_state == TASK_DEAD)) {
3239 if (prev->sched_class->task_dead)
3240 prev->sched_class->task_dead(prev);
68f24b08 3241
1cef1150
PZ
3242 /*
3243 * Remove function-return probe instances associated with this
3244 * task and put them back on the free list.
3245 */
3246 kprobe_flush_task(prev);
3247
3248 /* Task is done with its stack. */
3249 put_task_stack(prev);
3250
0ff7b2cf 3251 put_task_struct_rcu_user(prev);
c6fd91f0 3252 }
99e5ada9 3253
de734f89 3254 tick_nohz_task_switch();
dfa50b60 3255 return rq;
1da177e4
LT
3256}
3257
3f029d3c
GH
3258#ifdef CONFIG_SMP
3259
3f029d3c 3260/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3261static void __balance_callback(struct rq *rq)
3f029d3c 3262{
e3fca9e7
PZ
3263 struct callback_head *head, *next;
3264 void (*func)(struct rq *rq);
3265 unsigned long flags;
3f029d3c 3266
e3fca9e7
PZ
3267 raw_spin_lock_irqsave(&rq->lock, flags);
3268 head = rq->balance_callback;
3269 rq->balance_callback = NULL;
3270 while (head) {
3271 func = (void (*)(struct rq *))head->func;
3272 next = head->next;
3273 head->next = NULL;
3274 head = next;
3f029d3c 3275
e3fca9e7 3276 func(rq);
3f029d3c 3277 }
e3fca9e7
PZ
3278 raw_spin_unlock_irqrestore(&rq->lock, flags);
3279}
3280
3281static inline void balance_callback(struct rq *rq)
3282{
3283 if (unlikely(rq->balance_callback))
3284 __balance_callback(rq);
3f029d3c
GH
3285}
3286
3287#else
da19ab51 3288
e3fca9e7 3289static inline void balance_callback(struct rq *rq)
3f029d3c 3290{
1da177e4
LT
3291}
3292
3f029d3c
GH
3293#endif
3294
1da177e4
LT
3295/**
3296 * schedule_tail - first thing a freshly forked thread must call.
3297 * @prev: the thread we just switched away from.
3298 */
722a9f92 3299asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3300 __releases(rq->lock)
3301{
1a43a14a 3302 struct rq *rq;
da19ab51 3303
609ca066
PZ
3304 /*
3305 * New tasks start with FORK_PREEMPT_COUNT, see there and
3306 * finish_task_switch() for details.
3307 *
3308 * finish_task_switch() will drop rq->lock() and lower preempt_count
3309 * and the preempt_enable() will end up enabling preemption (on
3310 * PREEMPT_COUNT kernels).
3311 */
3312
dfa50b60 3313 rq = finish_task_switch(prev);
e3fca9e7 3314 balance_callback(rq);
1a43a14a 3315 preempt_enable();
70b97a7f 3316
1da177e4 3317 if (current->set_child_tid)
b488893a 3318 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3319
3320 calculate_sigpending();
1da177e4
LT
3321}
3322
3323/*
dfa50b60 3324 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3325 */
04936948 3326static __always_inline struct rq *
70b97a7f 3327context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3328 struct task_struct *next, struct rq_flags *rf)
1da177e4 3329{
e107be36 3330 prepare_task_switch(rq, prev, next);
fe4b04fa 3331
9226d125
ZA
3332 /*
3333 * For paravirt, this is coupled with an exit in switch_to to
3334 * combine the page table reload and the switch backend into
3335 * one hypercall.
3336 */
224101ed 3337 arch_start_context_switch(prev);
9226d125 3338
306e0604 3339 /*
139d025c
PZ
3340 * kernel -> kernel lazy + transfer active
3341 * user -> kernel lazy + mmgrab() active
3342 *
3343 * kernel -> user switch + mmdrop() active
3344 * user -> user switch
306e0604 3345 */
139d025c
PZ
3346 if (!next->mm) { // to kernel
3347 enter_lazy_tlb(prev->active_mm, next);
3348
3349 next->active_mm = prev->active_mm;
3350 if (prev->mm) // from user
3351 mmgrab(prev->active_mm);
3352 else
3353 prev->active_mm = NULL;
3354 } else { // to user
227a4aad 3355 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
3356 /*
3357 * sys_membarrier() requires an smp_mb() between setting
227a4aad 3358 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
3359 *
3360 * The below provides this either through switch_mm(), or in
3361 * case 'prev->active_mm == next->mm' through
3362 * finish_task_switch()'s mmdrop().
3363 */
139d025c 3364 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 3365
139d025c
PZ
3366 if (!prev->mm) { // from kernel
3367 /* will mmdrop() in finish_task_switch(). */
3368 rq->prev_mm = prev->active_mm;
3369 prev->active_mm = NULL;
3370 }
1da177e4 3371 }
92509b73 3372
cb42c9a3 3373 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3374
269d5992 3375 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3376
3377 /* Here we just switch the register state and the stack. */
3378 switch_to(prev, next, prev);
dd41f596 3379 barrier();
dfa50b60
ON
3380
3381 return finish_task_switch(prev);
1da177e4
LT
3382}
3383
3384/*
1c3e8264 3385 * nr_running and nr_context_switches:
1da177e4
LT
3386 *
3387 * externally visible scheduler statistics: current number of runnable
1c3e8264 3388 * threads, total number of context switches performed since bootup.
1da177e4
LT
3389 */
3390unsigned long nr_running(void)
3391{
3392 unsigned long i, sum = 0;
3393
3394 for_each_online_cpu(i)
3395 sum += cpu_rq(i)->nr_running;
3396
3397 return sum;
f711f609 3398}
1da177e4 3399
2ee507c4 3400/*
d1ccc66d 3401 * Check if only the current task is running on the CPU.
00cc1633
DD
3402 *
3403 * Caution: this function does not check that the caller has disabled
3404 * preemption, thus the result might have a time-of-check-to-time-of-use
3405 * race. The caller is responsible to use it correctly, for example:
3406 *
dfcb245e 3407 * - from a non-preemptible section (of course)
00cc1633
DD
3408 *
3409 * - from a thread that is bound to a single CPU
3410 *
3411 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3412 */
3413bool single_task_running(void)
3414{
00cc1633 3415 return raw_rq()->nr_running == 1;
2ee507c4
TC
3416}
3417EXPORT_SYMBOL(single_task_running);
3418
1da177e4 3419unsigned long long nr_context_switches(void)
46cb4b7c 3420{
cc94abfc
SR
3421 int i;
3422 unsigned long long sum = 0;
46cb4b7c 3423
0a945022 3424 for_each_possible_cpu(i)
1da177e4 3425 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3426
1da177e4
LT
3427 return sum;
3428}
483b4ee6 3429
145d952a
DL
3430/*
3431 * Consumers of these two interfaces, like for example the cpuidle menu
3432 * governor, are using nonsensical data. Preferring shallow idle state selection
3433 * for a CPU that has IO-wait which might not even end up running the task when
3434 * it does become runnable.
3435 */
3436
3437unsigned long nr_iowait_cpu(int cpu)
3438{
3439 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3440}
3441
e33a9bba
TH
3442/*
3443 * IO-wait accounting, and how its mostly bollocks (on SMP).
3444 *
3445 * The idea behind IO-wait account is to account the idle time that we could
3446 * have spend running if it were not for IO. That is, if we were to improve the
3447 * storage performance, we'd have a proportional reduction in IO-wait time.
3448 *
3449 * This all works nicely on UP, where, when a task blocks on IO, we account
3450 * idle time as IO-wait, because if the storage were faster, it could've been
3451 * running and we'd not be idle.
3452 *
3453 * This has been extended to SMP, by doing the same for each CPU. This however
3454 * is broken.
3455 *
3456 * Imagine for instance the case where two tasks block on one CPU, only the one
3457 * CPU will have IO-wait accounted, while the other has regular idle. Even
3458 * though, if the storage were faster, both could've ran at the same time,
3459 * utilising both CPUs.
3460 *
3461 * This means, that when looking globally, the current IO-wait accounting on
3462 * SMP is a lower bound, by reason of under accounting.
3463 *
3464 * Worse, since the numbers are provided per CPU, they are sometimes
3465 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3466 * associated with any one particular CPU, it can wake to another CPU than it
3467 * blocked on. This means the per CPU IO-wait number is meaningless.
3468 *
3469 * Task CPU affinities can make all that even more 'interesting'.
3470 */
3471
1da177e4
LT
3472unsigned long nr_iowait(void)
3473{
3474 unsigned long i, sum = 0;
483b4ee6 3475
0a945022 3476 for_each_possible_cpu(i)
145d952a 3477 sum += nr_iowait_cpu(i);
46cb4b7c 3478
1da177e4
LT
3479 return sum;
3480}
483b4ee6 3481
dd41f596 3482#ifdef CONFIG_SMP
8a0be9ef 3483
46cb4b7c 3484/*
38022906
PZ
3485 * sched_exec - execve() is a valuable balancing opportunity, because at
3486 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3487 */
38022906 3488void sched_exec(void)
46cb4b7c 3489{
38022906 3490 struct task_struct *p = current;
1da177e4 3491 unsigned long flags;
0017d735 3492 int dest_cpu;
46cb4b7c 3493
8f42ced9 3494 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3495 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3496 if (dest_cpu == smp_processor_id())
3497 goto unlock;
38022906 3498
8f42ced9 3499 if (likely(cpu_active(dest_cpu))) {
969c7921 3500 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3501
8f42ced9
PZ
3502 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3503 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3504 return;
3505 }
0017d735 3506unlock:
8f42ced9 3507 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3508}
dd41f596 3509
1da177e4
LT
3510#endif
3511
1da177e4 3512DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3513DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3514
3515EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3516EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3517
6075620b
GG
3518/*
3519 * The function fair_sched_class.update_curr accesses the struct curr
3520 * and its field curr->exec_start; when called from task_sched_runtime(),
3521 * we observe a high rate of cache misses in practice.
3522 * Prefetching this data results in improved performance.
3523 */
3524static inline void prefetch_curr_exec_start(struct task_struct *p)
3525{
3526#ifdef CONFIG_FAIR_GROUP_SCHED
3527 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3528#else
3529 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3530#endif
3531 prefetch(curr);
3532 prefetch(&curr->exec_start);
3533}
3534
c5f8d995
HS
3535/*
3536 * Return accounted runtime for the task.
3537 * In case the task is currently running, return the runtime plus current's
3538 * pending runtime that have not been accounted yet.
3539 */
3540unsigned long long task_sched_runtime(struct task_struct *p)
3541{
eb580751 3542 struct rq_flags rf;
c5f8d995 3543 struct rq *rq;
6e998916 3544 u64 ns;
c5f8d995 3545
911b2898
PZ
3546#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3547 /*
97fb7a0a 3548 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3549 * So we have a optimization chance when the task's delta_exec is 0.
3550 * Reading ->on_cpu is racy, but this is ok.
3551 *
d1ccc66d
IM
3552 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3553 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3554 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3555 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3556 * been accounted, so we're correct here as well.
911b2898 3557 */
da0c1e65 3558 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3559 return p->se.sum_exec_runtime;
3560#endif
3561
eb580751 3562 rq = task_rq_lock(p, &rf);
6e998916
SG
3563 /*
3564 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3565 * project cycles that may never be accounted to this
3566 * thread, breaking clock_gettime().
3567 */
3568 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3569 prefetch_curr_exec_start(p);
6e998916
SG
3570 update_rq_clock(rq);
3571 p->sched_class->update_curr(rq);
3572 }
3573 ns = p->se.sum_exec_runtime;
eb580751 3574 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3575
3576 return ns;
3577}
48f24c4d 3578
14533a16
IM
3579DEFINE_PER_CPU(unsigned long, thermal_pressure);
3580
3581void arch_set_thermal_pressure(struct cpumask *cpus,
3582 unsigned long th_pressure)
3583{
3584 int cpu;
3585
3586 for_each_cpu(cpu, cpus)
3587 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3588}
3589
7835b98b
CL
3590/*
3591 * This function gets called by the timer code, with HZ frequency.
3592 * We call it with interrupts disabled.
7835b98b
CL
3593 */
3594void scheduler_tick(void)
3595{
7835b98b
CL
3596 int cpu = smp_processor_id();
3597 struct rq *rq = cpu_rq(cpu);
dd41f596 3598 struct task_struct *curr = rq->curr;
8a8c69c3 3599 struct rq_flags rf;
b4eccf5f 3600 unsigned long thermal_pressure;
3e51f33f 3601
1567c3e3 3602 arch_scale_freq_tick();
3e51f33f 3603 sched_clock_tick();
dd41f596 3604
8a8c69c3
PZ
3605 rq_lock(rq, &rf);
3606
3e51f33f 3607 update_rq_clock(rq);
b4eccf5f 3608 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 3609 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 3610 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3611 calc_global_load_tick(rq);
eb414681 3612 psi_task_tick(rq);
8a8c69c3
PZ
3613
3614 rq_unlock(rq, &rf);
7835b98b 3615
e9d2b064 3616 perf_event_task_tick();
e220d2dc 3617
e418e1c2 3618#ifdef CONFIG_SMP
6eb57e0d 3619 rq->idle_balance = idle_cpu(cpu);
7caff66f 3620 trigger_load_balance(rq);
e418e1c2 3621#endif
1da177e4
LT
3622}
3623
265f22a9 3624#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3625
3626struct tick_work {
3627 int cpu;
b55bd585 3628 atomic_t state;
d84b3131
FW
3629 struct delayed_work work;
3630};
b55bd585
PM
3631/* Values for ->state, see diagram below. */
3632#define TICK_SCHED_REMOTE_OFFLINE 0
3633#define TICK_SCHED_REMOTE_OFFLINING 1
3634#define TICK_SCHED_REMOTE_RUNNING 2
3635
3636/*
3637 * State diagram for ->state:
3638 *
3639 *
3640 * TICK_SCHED_REMOTE_OFFLINE
3641 * | ^
3642 * | |
3643 * | | sched_tick_remote()
3644 * | |
3645 * | |
3646 * +--TICK_SCHED_REMOTE_OFFLINING
3647 * | ^
3648 * | |
3649 * sched_tick_start() | | sched_tick_stop()
3650 * | |
3651 * V |
3652 * TICK_SCHED_REMOTE_RUNNING
3653 *
3654 *
3655 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3656 * and sched_tick_start() are happy to leave the state in RUNNING.
3657 */
d84b3131
FW
3658
3659static struct tick_work __percpu *tick_work_cpu;
3660
3661static void sched_tick_remote(struct work_struct *work)
3662{
3663 struct delayed_work *dwork = to_delayed_work(work);
3664 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3665 int cpu = twork->cpu;
3666 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3667 struct task_struct *curr;
d84b3131 3668 struct rq_flags rf;
d9c0ffca 3669 u64 delta;
b55bd585 3670 int os;
d84b3131
FW
3671
3672 /*
3673 * Handle the tick only if it appears the remote CPU is running in full
3674 * dynticks mode. The check is racy by nature, but missing a tick or
3675 * having one too much is no big deal because the scheduler tick updates
3676 * statistics and checks timeslices in a time-independent way, regardless
3677 * of when exactly it is running.
3678 */
488603b8 3679 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 3680 goto out_requeue;
d84b3131 3681
d9c0ffca
FW
3682 rq_lock_irq(rq, &rf);
3683 curr = rq->curr;
488603b8 3684 if (cpu_is_offline(cpu))
d9c0ffca 3685 goto out_unlock;
d84b3131 3686
d9c0ffca 3687 update_rq_clock(rq);
d9c0ffca 3688
488603b8
SW
3689 if (!is_idle_task(curr)) {
3690 /*
3691 * Make sure the next tick runs within a reasonable
3692 * amount of time.
3693 */
3694 delta = rq_clock_task(rq) - curr->se.exec_start;
3695 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3696 }
d9c0ffca
FW
3697 curr->sched_class->task_tick(rq, curr, 0);
3698
ebc0f83c 3699 calc_load_nohz_remote(rq);
d9c0ffca
FW
3700out_unlock:
3701 rq_unlock_irq(rq, &rf);
d9c0ffca 3702out_requeue:
ebc0f83c 3703
d84b3131
FW
3704 /*
3705 * Run the remote tick once per second (1Hz). This arbitrary
3706 * frequency is large enough to avoid overload but short enough
b55bd585
PM
3707 * to keep scheduler internal stats reasonably up to date. But
3708 * first update state to reflect hotplug activity if required.
d84b3131 3709 */
b55bd585
PM
3710 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3711 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3712 if (os == TICK_SCHED_REMOTE_RUNNING)
3713 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
3714}
3715
3716static void sched_tick_start(int cpu)
3717{
b55bd585 3718 int os;
d84b3131
FW
3719 struct tick_work *twork;
3720
3721 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3722 return;
3723
3724 WARN_ON_ONCE(!tick_work_cpu);
3725
3726 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
3727 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3728 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3729 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3730 twork->cpu = cpu;
3731 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3732 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3733 }
d84b3131
FW
3734}
3735
3736#ifdef CONFIG_HOTPLUG_CPU
3737static void sched_tick_stop(int cpu)
3738{
3739 struct tick_work *twork;
b55bd585 3740 int os;
d84b3131
FW
3741
3742 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3743 return;
3744
3745 WARN_ON_ONCE(!tick_work_cpu);
3746
3747 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
3748 /* There cannot be competing actions, but don't rely on stop-machine. */
3749 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3750 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3751 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
3752}
3753#endif /* CONFIG_HOTPLUG_CPU */
3754
3755int __init sched_tick_offload_init(void)
3756{
3757 tick_work_cpu = alloc_percpu(struct tick_work);
3758 BUG_ON(!tick_work_cpu);
d84b3131
FW
3759 return 0;
3760}
3761
3762#else /* !CONFIG_NO_HZ_FULL */
3763static inline void sched_tick_start(int cpu) { }
3764static inline void sched_tick_stop(int cpu) { }
265f22a9 3765#endif
1da177e4 3766
c1a280b6 3767#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3768 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3769/*
3770 * If the value passed in is equal to the current preempt count
3771 * then we just disabled preemption. Start timing the latency.
3772 */
3773static inline void preempt_latency_start(int val)
3774{
3775 if (preempt_count() == val) {
3776 unsigned long ip = get_lock_parent_ip();
3777#ifdef CONFIG_DEBUG_PREEMPT
3778 current->preempt_disable_ip = ip;
3779#endif
3780 trace_preempt_off(CALLER_ADDR0, ip);
3781 }
3782}
7e49fcce 3783
edafe3a5 3784void preempt_count_add(int val)
1da177e4 3785{
6cd8a4bb 3786#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3787 /*
3788 * Underflow?
3789 */
9a11b49a
IM
3790 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3791 return;
6cd8a4bb 3792#endif
bdb43806 3793 __preempt_count_add(val);
6cd8a4bb 3794#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3795 /*
3796 * Spinlock count overflowing soon?
3797 */
33859f7f
MOS
3798 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3799 PREEMPT_MASK - 10);
6cd8a4bb 3800#endif
47252cfb 3801 preempt_latency_start(val);
1da177e4 3802}
bdb43806 3803EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3804NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3805
47252cfb
SR
3806/*
3807 * If the value passed in equals to the current preempt count
3808 * then we just enabled preemption. Stop timing the latency.
3809 */
3810static inline void preempt_latency_stop(int val)
3811{
3812 if (preempt_count() == val)
3813 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3814}
3815
edafe3a5 3816void preempt_count_sub(int val)
1da177e4 3817{
6cd8a4bb 3818#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3819 /*
3820 * Underflow?
3821 */
01e3eb82 3822 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3823 return;
1da177e4
LT
3824 /*
3825 * Is the spinlock portion underflowing?
3826 */
9a11b49a
IM
3827 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3828 !(preempt_count() & PREEMPT_MASK)))
3829 return;
6cd8a4bb 3830#endif
9a11b49a 3831
47252cfb 3832 preempt_latency_stop(val);
bdb43806 3833 __preempt_count_sub(val);
1da177e4 3834}
bdb43806 3835EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3836NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3837
47252cfb
SR
3838#else
3839static inline void preempt_latency_start(int val) { }
3840static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3841#endif
3842
59ddbcb2
IM
3843static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3844{
3845#ifdef CONFIG_DEBUG_PREEMPT
3846 return p->preempt_disable_ip;
3847#else
3848 return 0;
3849#endif
3850}
3851
1da177e4 3852/*
dd41f596 3853 * Print scheduling while atomic bug:
1da177e4 3854 */
dd41f596 3855static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3856{
d1c6d149
VN
3857 /* Save this before calling printk(), since that will clobber it */
3858 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3859
664dfa65
DJ
3860 if (oops_in_progress)
3861 return;
3862
3df0fc5b
PZ
3863 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3864 prev->comm, prev->pid, preempt_count());
838225b4 3865
dd41f596 3866 debug_show_held_locks(prev);
e21f5b15 3867 print_modules();
dd41f596
IM
3868 if (irqs_disabled())
3869 print_irqtrace_events(prev);
d1c6d149
VN
3870 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3871 && in_atomic_preempt_off()) {
8f47b187 3872 pr_err("Preemption disabled at:");
d1c6d149 3873 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3874 pr_cont("\n");
3875 }
748c7201
DBO
3876 if (panic_on_warn)
3877 panic("scheduling while atomic\n");
3878
6135fc1e 3879 dump_stack();
373d4d09 3880 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3881}
1da177e4 3882
dd41f596
IM
3883/*
3884 * Various schedule()-time debugging checks and statistics:
3885 */
312364f3 3886static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 3887{
0d9e2632 3888#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3889 if (task_stack_end_corrupted(prev))
3890 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3891#endif
b99def8b 3892
312364f3
DV
3893#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3894 if (!preempt && prev->state && prev->non_block_count) {
3895 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3896 prev->comm, prev->pid, prev->non_block_count);
3897 dump_stack();
3898 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3899 }
3900#endif
3901
1dc0fffc 3902 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3903 __schedule_bug(prev);
1dc0fffc
PZ
3904 preempt_count_set(PREEMPT_DISABLED);
3905 }
b3fbab05 3906 rcu_sleep_check();
dd41f596 3907
1da177e4
LT
3908 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3909
ae92882e 3910 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3911}
3912
3913/*
3914 * Pick up the highest-prio task:
3915 */
3916static inline struct task_struct *
d8ac8971 3917pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3918{
49ee5768 3919 const struct sched_class *class;
dd41f596 3920 struct task_struct *p;
1da177e4
LT
3921
3922 /*
0ba87bb2
PZ
3923 * Optimization: we know that if all tasks are in the fair class we can
3924 * call that function directly, but only if the @prev task wasn't of a
3925 * higher scheduling class, because otherwise those loose the
3926 * opportunity to pull in more work from other CPUs.
1da177e4 3927 */
0ba87bb2
PZ
3928 if (likely((prev->sched_class == &idle_sched_class ||
3929 prev->sched_class == &fair_sched_class) &&
3930 rq->nr_running == rq->cfs.h_nr_running)) {
3931
5d7d6056 3932 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 3933 if (unlikely(p == RETRY_TASK))
67692435 3934 goto restart;
6ccdc84b 3935
d1ccc66d 3936 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 3937 if (!p) {
f488e105 3938 put_prev_task(rq, prev);
98c2f700 3939 p = pick_next_task_idle(rq);
f488e105 3940 }
6ccdc84b
PZ
3941
3942 return p;
1da177e4
LT
3943 }
3944
67692435 3945restart:
6e2df058 3946#ifdef CONFIG_SMP
67692435 3947 /*
6e2df058
PZ
3948 * We must do the balancing pass before put_next_task(), such
3949 * that when we release the rq->lock the task is in the same
3950 * state as before we took rq->lock.
3951 *
3952 * We can terminate the balance pass as soon as we know there is
3953 * a runnable task of @class priority or higher.
67692435 3954 */
6e2df058
PZ
3955 for_class_range(class, prev->sched_class, &idle_sched_class) {
3956 if (class->balance(rq, prev, rf))
3957 break;
3958 }
3959#endif
3960
3961 put_prev_task(rq, prev);
67692435 3962
34f971f6 3963 for_each_class(class) {
98c2f700 3964 p = class->pick_next_task(rq);
67692435 3965 if (p)
dd41f596 3966 return p;
dd41f596 3967 }
34f971f6 3968
d1ccc66d
IM
3969 /* The idle class should always have a runnable task: */
3970 BUG();
dd41f596 3971}
1da177e4 3972
dd41f596 3973/*
c259e01a 3974 * __schedule() is the main scheduler function.
edde96ea
PE
3975 *
3976 * The main means of driving the scheduler and thus entering this function are:
3977 *
3978 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3979 *
3980 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3981 * paths. For example, see arch/x86/entry_64.S.
3982 *
3983 * To drive preemption between tasks, the scheduler sets the flag in timer
3984 * interrupt handler scheduler_tick().
3985 *
3986 * 3. Wakeups don't really cause entry into schedule(). They add a
3987 * task to the run-queue and that's it.
3988 *
3989 * Now, if the new task added to the run-queue preempts the current
3990 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3991 * called on the nearest possible occasion:
3992 *
c1a280b6 3993 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
3994 *
3995 * - in syscall or exception context, at the next outmost
3996 * preempt_enable(). (this might be as soon as the wake_up()'s
3997 * spin_unlock()!)
3998 *
3999 * - in IRQ context, return from interrupt-handler to
4000 * preemptible context
4001 *
c1a280b6 4002 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
4003 * then at the next:
4004 *
4005 * - cond_resched() call
4006 * - explicit schedule() call
4007 * - return from syscall or exception to user-space
4008 * - return from interrupt-handler to user-space
bfd9b2b5 4009 *
b30f0e3f 4010 * WARNING: must be called with preemption disabled!
dd41f596 4011 */
499d7955 4012static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4013{
4014 struct task_struct *prev, *next;
67ca7bde 4015 unsigned long *switch_count;
d8ac8971 4016 struct rq_flags rf;
dd41f596 4017 struct rq *rq;
31656519 4018 int cpu;
dd41f596 4019
dd41f596
IM
4020 cpu = smp_processor_id();
4021 rq = cpu_rq(cpu);
dd41f596 4022 prev = rq->curr;
dd41f596 4023
312364f3 4024 schedule_debug(prev, preempt);
1da177e4 4025
31656519 4026 if (sched_feat(HRTICK))
f333fdc9 4027 hrtick_clear(rq);
8f4d37ec 4028
46a5d164 4029 local_irq_disable();
bcbfdd01 4030 rcu_note_context_switch(preempt);
46a5d164 4031
e0acd0a6
ON
4032 /*
4033 * Make sure that signal_pending_state()->signal_pending() below
4034 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4035 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
4036 *
4037 * The membarrier system call requires a full memory barrier
4038 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4039 */
8a8c69c3 4040 rq_lock(rq, &rf);
d89e588c 4041 smp_mb__after_spinlock();
1da177e4 4042
d1ccc66d
IM
4043 /* Promote REQ to ACT */
4044 rq->clock_update_flags <<= 1;
bce4dc80 4045 update_rq_clock(rq);
9edfbfed 4046
246d86b5 4047 switch_count = &prev->nivcsw;
fc13aeba 4048 if (!preempt && prev->state) {
34ec35ad 4049 if (signal_pending_state(prev->state, prev)) {
1da177e4 4050 prev->state = TASK_RUNNING;
21aa9af0 4051 } else {
bce4dc80 4052 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 4053
e33a9bba
TH
4054 if (prev->in_iowait) {
4055 atomic_inc(&rq->nr_iowait);
4056 delayacct_blkio_start();
4057 }
21aa9af0 4058 }
dd41f596 4059 switch_count = &prev->nvcsw;
1da177e4
LT
4060 }
4061
d8ac8971 4062 next = pick_next_task(rq, prev, &rf);
f26f9aff 4063 clear_tsk_need_resched(prev);
f27dde8d 4064 clear_preempt_need_resched();
1da177e4 4065
1da177e4 4066 if (likely(prev != next)) {
1da177e4 4067 rq->nr_switches++;
5311a98f
EB
4068 /*
4069 * RCU users of rcu_dereference(rq->curr) may not see
4070 * changes to task_struct made by pick_next_task().
4071 */
4072 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
4073 /*
4074 * The membarrier system call requires each architecture
4075 * to have a full memory barrier after updating
306e0604
MD
4076 * rq->curr, before returning to user-space.
4077 *
4078 * Here are the schemes providing that barrier on the
4079 * various architectures:
4080 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4081 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4082 * - finish_lock_switch() for weakly-ordered
4083 * architectures where spin_unlock is a full barrier,
4084 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4085 * is a RELEASE barrier),
22e4ebb9 4086 */
1da177e4
LT
4087 ++*switch_count;
4088
c73464b1 4089 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
4090
4091 /* Also unlocks the rq: */
4092 rq = context_switch(rq, prev, next, &rf);
cbce1a68 4093 } else {
cb42c9a3 4094 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 4095 rq_unlock_irq(rq, &rf);
cbce1a68 4096 }
1da177e4 4097
e3fca9e7 4098 balance_callback(rq);
1da177e4 4099}
c259e01a 4100
9af6528e
PZ
4101void __noreturn do_task_dead(void)
4102{
d1ccc66d 4103 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 4104 set_special_state(TASK_DEAD);
d1ccc66d
IM
4105
4106 /* Tell freezer to ignore us: */
4107 current->flags |= PF_NOFREEZE;
4108
9af6528e
PZ
4109 __schedule(false);
4110 BUG();
d1ccc66d
IM
4111
4112 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 4113 for (;;)
d1ccc66d 4114 cpu_relax();
9af6528e
PZ
4115}
4116
9c40cef2
TG
4117static inline void sched_submit_work(struct task_struct *tsk)
4118{
b0fdc013 4119 if (!tsk->state)
9c40cef2 4120 return;
6d25be57
TG
4121
4122 /*
4123 * If a worker went to sleep, notify and ask workqueue whether
4124 * it wants to wake up a task to maintain concurrency.
4125 * As this function is called inside the schedule() context,
4126 * we disable preemption to avoid it calling schedule() again
4127 * in the possible wakeup of a kworker.
4128 */
771b53d0 4129 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 4130 preempt_disable();
771b53d0
JA
4131 if (tsk->flags & PF_WQ_WORKER)
4132 wq_worker_sleeping(tsk);
4133 else
4134 io_wq_worker_sleeping(tsk);
6d25be57
TG
4135 preempt_enable_no_resched();
4136 }
4137
b0fdc013
SAS
4138 if (tsk_is_pi_blocked(tsk))
4139 return;
4140
9c40cef2
TG
4141 /*
4142 * If we are going to sleep and we have plugged IO queued,
4143 * make sure to submit it to avoid deadlocks.
4144 */
4145 if (blk_needs_flush_plug(tsk))
4146 blk_schedule_flush_plug(tsk);
4147}
4148
6d25be57
TG
4149static void sched_update_worker(struct task_struct *tsk)
4150{
771b53d0
JA
4151 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4152 if (tsk->flags & PF_WQ_WORKER)
4153 wq_worker_running(tsk);
4154 else
4155 io_wq_worker_running(tsk);
4156 }
6d25be57
TG
4157}
4158
722a9f92 4159asmlinkage __visible void __sched schedule(void)
c259e01a 4160{
9c40cef2
TG
4161 struct task_struct *tsk = current;
4162
4163 sched_submit_work(tsk);
bfd9b2b5 4164 do {
b30f0e3f 4165 preempt_disable();
fc13aeba 4166 __schedule(false);
b30f0e3f 4167 sched_preempt_enable_no_resched();
bfd9b2b5 4168 } while (need_resched());
6d25be57 4169 sched_update_worker(tsk);
c259e01a 4170}
1da177e4
LT
4171EXPORT_SYMBOL(schedule);
4172
8663effb
SRV
4173/*
4174 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4175 * state (have scheduled out non-voluntarily) by making sure that all
4176 * tasks have either left the run queue or have gone into user space.
4177 * As idle tasks do not do either, they must not ever be preempted
4178 * (schedule out non-voluntarily).
4179 *
4180 * schedule_idle() is similar to schedule_preempt_disable() except that it
4181 * never enables preemption because it does not call sched_submit_work().
4182 */
4183void __sched schedule_idle(void)
4184{
4185 /*
4186 * As this skips calling sched_submit_work(), which the idle task does
4187 * regardless because that function is a nop when the task is in a
4188 * TASK_RUNNING state, make sure this isn't used someplace that the
4189 * current task can be in any other state. Note, idle is always in the
4190 * TASK_RUNNING state.
4191 */
4192 WARN_ON_ONCE(current->state);
4193 do {
4194 __schedule(false);
4195 } while (need_resched());
4196}
4197
91d1aa43 4198#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 4199asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
4200{
4201 /*
4202 * If we come here after a random call to set_need_resched(),
4203 * or we have been woken up remotely but the IPI has not yet arrived,
4204 * we haven't yet exited the RCU idle mode. Do it here manually until
4205 * we find a better solution.
7cc78f8f
AL
4206 *
4207 * NB: There are buggy callers of this function. Ideally we
c467ea76 4208 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 4209 * too frequently to make sense yet.
20ab65e3 4210 */
7cc78f8f 4211 enum ctx_state prev_state = exception_enter();
20ab65e3 4212 schedule();
7cc78f8f 4213 exception_exit(prev_state);
20ab65e3
FW
4214}
4215#endif
4216
c5491ea7
TG
4217/**
4218 * schedule_preempt_disabled - called with preemption disabled
4219 *
4220 * Returns with preemption disabled. Note: preempt_count must be 1
4221 */
4222void __sched schedule_preempt_disabled(void)
4223{
ba74c144 4224 sched_preempt_enable_no_resched();
c5491ea7
TG
4225 schedule();
4226 preempt_disable();
4227}
4228
06b1f808 4229static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
4230{
4231 do {
47252cfb
SR
4232 /*
4233 * Because the function tracer can trace preempt_count_sub()
4234 * and it also uses preempt_enable/disable_notrace(), if
4235 * NEED_RESCHED is set, the preempt_enable_notrace() called
4236 * by the function tracer will call this function again and
4237 * cause infinite recursion.
4238 *
4239 * Preemption must be disabled here before the function
4240 * tracer can trace. Break up preempt_disable() into two
4241 * calls. One to disable preemption without fear of being
4242 * traced. The other to still record the preemption latency,
4243 * which can also be traced by the function tracer.
4244 */
499d7955 4245 preempt_disable_notrace();
47252cfb 4246 preempt_latency_start(1);
fc13aeba 4247 __schedule(true);
47252cfb 4248 preempt_latency_stop(1);
499d7955 4249 preempt_enable_no_resched_notrace();
a18b5d01
FW
4250
4251 /*
4252 * Check again in case we missed a preemption opportunity
4253 * between schedule and now.
4254 */
a18b5d01
FW
4255 } while (need_resched());
4256}
4257
c1a280b6 4258#ifdef CONFIG_PREEMPTION
1da177e4 4259/*
a49b4f40
VS
4260 * This is the entry point to schedule() from in-kernel preemption
4261 * off of preempt_enable.
1da177e4 4262 */
722a9f92 4263asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 4264{
1da177e4
LT
4265 /*
4266 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4267 * we do not want to preempt the current task. Just return..
1da177e4 4268 */
fbb00b56 4269 if (likely(!preemptible()))
1da177e4
LT
4270 return;
4271
a18b5d01 4272 preempt_schedule_common();
1da177e4 4273}
376e2424 4274NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4275EXPORT_SYMBOL(preempt_schedule);
009f60e2 4276
009f60e2 4277/**
4eaca0a8 4278 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4279 *
4280 * The tracing infrastructure uses preempt_enable_notrace to prevent
4281 * recursion and tracing preempt enabling caused by the tracing
4282 * infrastructure itself. But as tracing can happen in areas coming
4283 * from userspace or just about to enter userspace, a preempt enable
4284 * can occur before user_exit() is called. This will cause the scheduler
4285 * to be called when the system is still in usermode.
4286 *
4287 * To prevent this, the preempt_enable_notrace will use this function
4288 * instead of preempt_schedule() to exit user context if needed before
4289 * calling the scheduler.
4290 */
4eaca0a8 4291asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4292{
4293 enum ctx_state prev_ctx;
4294
4295 if (likely(!preemptible()))
4296 return;
4297
4298 do {
47252cfb
SR
4299 /*
4300 * Because the function tracer can trace preempt_count_sub()
4301 * and it also uses preempt_enable/disable_notrace(), if
4302 * NEED_RESCHED is set, the preempt_enable_notrace() called
4303 * by the function tracer will call this function again and
4304 * cause infinite recursion.
4305 *
4306 * Preemption must be disabled here before the function
4307 * tracer can trace. Break up preempt_disable() into two
4308 * calls. One to disable preemption without fear of being
4309 * traced. The other to still record the preemption latency,
4310 * which can also be traced by the function tracer.
4311 */
3d8f74dd 4312 preempt_disable_notrace();
47252cfb 4313 preempt_latency_start(1);
009f60e2
ON
4314 /*
4315 * Needs preempt disabled in case user_exit() is traced
4316 * and the tracer calls preempt_enable_notrace() causing
4317 * an infinite recursion.
4318 */
4319 prev_ctx = exception_enter();
fc13aeba 4320 __schedule(true);
009f60e2
ON
4321 exception_exit(prev_ctx);
4322
47252cfb 4323 preempt_latency_stop(1);
3d8f74dd 4324 preempt_enable_no_resched_notrace();
009f60e2
ON
4325 } while (need_resched());
4326}
4eaca0a8 4327EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4328
c1a280b6 4329#endif /* CONFIG_PREEMPTION */
1da177e4
LT
4330
4331/*
a49b4f40 4332 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
4333 * off of irq context.
4334 * Note, that this is called and return with irqs disabled. This will
4335 * protect us against recursive calling from irq.
4336 */
722a9f92 4337asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4338{
b22366cd 4339 enum ctx_state prev_state;
6478d880 4340
2ed6e34f 4341 /* Catch callers which need to be fixed */
f27dde8d 4342 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4343
b22366cd
FW
4344 prev_state = exception_enter();
4345
3a5c359a 4346 do {
3d8f74dd 4347 preempt_disable();
3a5c359a 4348 local_irq_enable();
fc13aeba 4349 __schedule(true);
3a5c359a 4350 local_irq_disable();
3d8f74dd 4351 sched_preempt_enable_no_resched();
5ed0cec0 4352 } while (need_resched());
b22366cd
FW
4353
4354 exception_exit(prev_state);
1da177e4
LT
4355}
4356
ac6424b9 4357int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4358 void *key)
1da177e4 4359{
63859d4f 4360 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4361}
1da177e4
LT
4362EXPORT_SYMBOL(default_wake_function);
4363
b29739f9
IM
4364#ifdef CONFIG_RT_MUTEXES
4365
acd58620
PZ
4366static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4367{
4368 if (pi_task)
4369 prio = min(prio, pi_task->prio);
4370
4371 return prio;
4372}
4373
4374static inline int rt_effective_prio(struct task_struct *p, int prio)
4375{
4376 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4377
4378 return __rt_effective_prio(pi_task, prio);
4379}
4380
b29739f9
IM
4381/*
4382 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4383 * @p: task to boost
4384 * @pi_task: donor task
b29739f9
IM
4385 *
4386 * This function changes the 'effective' priority of a task. It does
4387 * not touch ->normal_prio like __setscheduler().
4388 *
c365c292
TG
4389 * Used by the rt_mutex code to implement priority inheritance
4390 * logic. Call site only calls if the priority of the task changed.
b29739f9 4391 */
acd58620 4392void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4393{
acd58620 4394 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4395 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4396 const struct sched_class *prev_class;
eb580751
PZ
4397 struct rq_flags rf;
4398 struct rq *rq;
b29739f9 4399
acd58620
PZ
4400 /* XXX used to be waiter->prio, not waiter->task->prio */
4401 prio = __rt_effective_prio(pi_task, p->normal_prio);
4402
4403 /*
4404 * If nothing changed; bail early.
4405 */
4406 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4407 return;
b29739f9 4408
eb580751 4409 rq = __task_rq_lock(p, &rf);
80f5c1b8 4410 update_rq_clock(rq);
acd58620
PZ
4411 /*
4412 * Set under pi_lock && rq->lock, such that the value can be used under
4413 * either lock.
4414 *
4415 * Note that there is loads of tricky to make this pointer cache work
4416 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4417 * ensure a task is de-boosted (pi_task is set to NULL) before the
4418 * task is allowed to run again (and can exit). This ensures the pointer
4419 * points to a blocked task -- which guaratees the task is present.
4420 */
4421 p->pi_top_task = pi_task;
4422
4423 /*
4424 * For FIFO/RR we only need to set prio, if that matches we're done.
4425 */
4426 if (prio == p->prio && !dl_prio(prio))
4427 goto out_unlock;
b29739f9 4428
1c4dd99b
TG
4429 /*
4430 * Idle task boosting is a nono in general. There is one
4431 * exception, when PREEMPT_RT and NOHZ is active:
4432 *
4433 * The idle task calls get_next_timer_interrupt() and holds
4434 * the timer wheel base->lock on the CPU and another CPU wants
4435 * to access the timer (probably to cancel it). We can safely
4436 * ignore the boosting request, as the idle CPU runs this code
4437 * with interrupts disabled and will complete the lock
4438 * protected section without being interrupted. So there is no
4439 * real need to boost.
4440 */
4441 if (unlikely(p == rq->idle)) {
4442 WARN_ON(p != rq->curr);
4443 WARN_ON(p->pi_blocked_on);
4444 goto out_unlock;
4445 }
4446
b91473ff 4447 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4448 oldprio = p->prio;
ff77e468
PZ
4449
4450 if (oldprio == prio)
4451 queue_flag &= ~DEQUEUE_MOVE;
4452
83ab0aa0 4453 prev_class = p->sched_class;
da0c1e65 4454 queued = task_on_rq_queued(p);
051a1d1a 4455 running = task_current(rq, p);
da0c1e65 4456 if (queued)
ff77e468 4457 dequeue_task(rq, p, queue_flag);
0e1f3483 4458 if (running)
f3cd1c4e 4459 put_prev_task(rq, p);
dd41f596 4460
2d3d891d
DF
4461 /*
4462 * Boosting condition are:
4463 * 1. -rt task is running and holds mutex A
4464 * --> -dl task blocks on mutex A
4465 *
4466 * 2. -dl task is running and holds mutex A
4467 * --> -dl task blocks on mutex A and could preempt the
4468 * running task
4469 */
4470 if (dl_prio(prio)) {
466af29b
ON
4471 if (!dl_prio(p->normal_prio) ||
4472 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4473 p->dl.dl_boosted = 1;
ff77e468 4474 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4475 } else
4476 p->dl.dl_boosted = 0;
aab03e05 4477 p->sched_class = &dl_sched_class;
2d3d891d
DF
4478 } else if (rt_prio(prio)) {
4479 if (dl_prio(oldprio))
4480 p->dl.dl_boosted = 0;
4481 if (oldprio < prio)
ff77e468 4482 queue_flag |= ENQUEUE_HEAD;
dd41f596 4483 p->sched_class = &rt_sched_class;
2d3d891d
DF
4484 } else {
4485 if (dl_prio(oldprio))
4486 p->dl.dl_boosted = 0;
746db944
BS
4487 if (rt_prio(oldprio))
4488 p->rt.timeout = 0;
dd41f596 4489 p->sched_class = &fair_sched_class;
2d3d891d 4490 }
dd41f596 4491
b29739f9
IM
4492 p->prio = prio;
4493
da0c1e65 4494 if (queued)
ff77e468 4495 enqueue_task(rq, p, queue_flag);
a399d233 4496 if (running)
03b7fad1 4497 set_next_task(rq, p);
cb469845 4498
da7a735e 4499 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4500out_unlock:
d1ccc66d
IM
4501 /* Avoid rq from going away on us: */
4502 preempt_disable();
eb580751 4503 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4504
4505 balance_callback(rq);
4506 preempt_enable();
b29739f9 4507}
acd58620
PZ
4508#else
4509static inline int rt_effective_prio(struct task_struct *p, int prio)
4510{
4511 return prio;
4512}
b29739f9 4513#endif
d50dde5a 4514
36c8b586 4515void set_user_nice(struct task_struct *p, long nice)
1da177e4 4516{
49bd21ef 4517 bool queued, running;
53a23364 4518 int old_prio;
eb580751 4519 struct rq_flags rf;
70b97a7f 4520 struct rq *rq;
1da177e4 4521
75e45d51 4522 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4523 return;
4524 /*
4525 * We have to be careful, if called from sys_setpriority(),
4526 * the task might be in the middle of scheduling on another CPU.
4527 */
eb580751 4528 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4529 update_rq_clock(rq);
4530
1da177e4
LT
4531 /*
4532 * The RT priorities are set via sched_setscheduler(), but we still
4533 * allow the 'normal' nice value to be set - but as expected
4534 * it wont have any effect on scheduling until the task is
aab03e05 4535 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4536 */
aab03e05 4537 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4538 p->static_prio = NICE_TO_PRIO(nice);
4539 goto out_unlock;
4540 }
da0c1e65 4541 queued = task_on_rq_queued(p);
49bd21ef 4542 running = task_current(rq, p);
da0c1e65 4543 if (queued)
7a57f32a 4544 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4545 if (running)
4546 put_prev_task(rq, p);
1da177e4 4547
1da177e4 4548 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4549 set_load_weight(p, true);
b29739f9
IM
4550 old_prio = p->prio;
4551 p->prio = effective_prio(p);
1da177e4 4552
5443a0be 4553 if (queued)
7134b3e9 4554 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 4555 if (running)
03b7fad1 4556 set_next_task(rq, p);
5443a0be
FW
4557
4558 /*
4559 * If the task increased its priority or is running and
4560 * lowered its priority, then reschedule its CPU:
4561 */
4562 p->sched_class->prio_changed(rq, p, old_prio);
4563
1da177e4 4564out_unlock:
eb580751 4565 task_rq_unlock(rq, p, &rf);
1da177e4 4566}
1da177e4
LT
4567EXPORT_SYMBOL(set_user_nice);
4568
e43379f1
MM
4569/*
4570 * can_nice - check if a task can reduce its nice value
4571 * @p: task
4572 * @nice: nice value
4573 */
36c8b586 4574int can_nice(const struct task_struct *p, const int nice)
e43379f1 4575{
d1ccc66d 4576 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 4577 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 4578
78d7d407 4579 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4580 capable(CAP_SYS_NICE));
4581}
4582
1da177e4
LT
4583#ifdef __ARCH_WANT_SYS_NICE
4584
4585/*
4586 * sys_nice - change the priority of the current process.
4587 * @increment: priority increment
4588 *
4589 * sys_setpriority is a more generic, but much slower function that
4590 * does similar things.
4591 */
5add95d4 4592SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4593{
48f24c4d 4594 long nice, retval;
1da177e4
LT
4595
4596 /*
4597 * Setpriority might change our priority at the same moment.
4598 * We don't have to worry. Conceptually one call occurs first
4599 * and we have a single winner.
4600 */
a9467fa3 4601 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 4602 nice = task_nice(current) + increment;
1da177e4 4603
a9467fa3 4604 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
4605 if (increment < 0 && !can_nice(current, nice))
4606 return -EPERM;
4607
1da177e4
LT
4608 retval = security_task_setnice(current, nice);
4609 if (retval)
4610 return retval;
4611
4612 set_user_nice(current, nice);
4613 return 0;
4614}
4615
4616#endif
4617
4618/**
4619 * task_prio - return the priority value of a given task.
4620 * @p: the task in question.
4621 *
e69f6186 4622 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4623 * RT tasks are offset by -200. Normal tasks are centered
4624 * around 0, value goes from -16 to +15.
4625 */
36c8b586 4626int task_prio(const struct task_struct *p)
1da177e4
LT
4627{
4628 return p->prio - MAX_RT_PRIO;
4629}
4630
1da177e4 4631/**
d1ccc66d 4632 * idle_cpu - is a given CPU idle currently?
1da177e4 4633 * @cpu: the processor in question.
e69f6186
YB
4634 *
4635 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4636 */
4637int idle_cpu(int cpu)
4638{
908a3283
TG
4639 struct rq *rq = cpu_rq(cpu);
4640
4641 if (rq->curr != rq->idle)
4642 return 0;
4643
4644 if (rq->nr_running)
4645 return 0;
4646
4647#ifdef CONFIG_SMP
4648 if (!llist_empty(&rq->wake_list))
4649 return 0;
4650#endif
4651
4652 return 1;
1da177e4
LT
4653}
4654
943d355d
RJ
4655/**
4656 * available_idle_cpu - is a given CPU idle for enqueuing work.
4657 * @cpu: the CPU in question.
4658 *
4659 * Return: 1 if the CPU is currently idle. 0 otherwise.
4660 */
4661int available_idle_cpu(int cpu)
4662{
4663 if (!idle_cpu(cpu))
4664 return 0;
4665
247f2f6f
RJ
4666 if (vcpu_is_preempted(cpu))
4667 return 0;
4668
908a3283 4669 return 1;
1da177e4
LT
4670}
4671
1da177e4 4672/**
d1ccc66d 4673 * idle_task - return the idle task for a given CPU.
1da177e4 4674 * @cpu: the processor in question.
e69f6186 4675 *
d1ccc66d 4676 * Return: The idle task for the CPU @cpu.
1da177e4 4677 */
36c8b586 4678struct task_struct *idle_task(int cpu)
1da177e4
LT
4679{
4680 return cpu_rq(cpu)->idle;
4681}
4682
4683/**
4684 * find_process_by_pid - find a process with a matching PID value.
4685 * @pid: the pid in question.
e69f6186
YB
4686 *
4687 * The task of @pid, if found. %NULL otherwise.
1da177e4 4688 */
a9957449 4689static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4690{
228ebcbe 4691 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4692}
4693
c13db6b1
SR
4694/*
4695 * sched_setparam() passes in -1 for its policy, to let the functions
4696 * it calls know not to change it.
4697 */
4698#define SETPARAM_POLICY -1
4699
c365c292
TG
4700static void __setscheduler_params(struct task_struct *p,
4701 const struct sched_attr *attr)
1da177e4 4702{
d50dde5a
DF
4703 int policy = attr->sched_policy;
4704
c13db6b1 4705 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4706 policy = p->policy;
4707
1da177e4 4708 p->policy = policy;
d50dde5a 4709
aab03e05
DF
4710 if (dl_policy(policy))
4711 __setparam_dl(p, attr);
39fd8fd2 4712 else if (fair_policy(policy))
d50dde5a
DF
4713 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4714
39fd8fd2
PZ
4715 /*
4716 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4717 * !rt_policy. Always setting this ensures that things like
4718 * getparam()/getattr() don't report silly values for !rt tasks.
4719 */
4720 p->rt_priority = attr->sched_priority;
383afd09 4721 p->normal_prio = normal_prio(p);
9059393e 4722 set_load_weight(p, true);
c365c292 4723}
39fd8fd2 4724
c365c292
TG
4725/* Actually do priority change: must hold pi & rq lock. */
4726static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4727 const struct sched_attr *attr, bool keep_boost)
c365c292 4728{
a509a7cd
PB
4729 /*
4730 * If params can't change scheduling class changes aren't allowed
4731 * either.
4732 */
4733 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4734 return;
4735
c365c292 4736 __setscheduler_params(p, attr);
d50dde5a 4737
383afd09 4738 /*
0782e63b
TG
4739 * Keep a potential priority boosting if called from
4740 * sched_setscheduler().
383afd09 4741 */
acd58620 4742 p->prio = normal_prio(p);
0782e63b 4743 if (keep_boost)
acd58620 4744 p->prio = rt_effective_prio(p, p->prio);
383afd09 4745
aab03e05
DF
4746 if (dl_prio(p->prio))
4747 p->sched_class = &dl_sched_class;
4748 else if (rt_prio(p->prio))
ffd44db5
PZ
4749 p->sched_class = &rt_sched_class;
4750 else
4751 p->sched_class = &fair_sched_class;
1da177e4 4752}
aab03e05 4753
c69e8d9c 4754/*
d1ccc66d 4755 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4756 */
4757static bool check_same_owner(struct task_struct *p)
4758{
4759 const struct cred *cred = current_cred(), *pcred;
4760 bool match;
4761
4762 rcu_read_lock();
4763 pcred = __task_cred(p);
9c806aa0
EB
4764 match = (uid_eq(cred->euid, pcred->euid) ||
4765 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4766 rcu_read_unlock();
4767 return match;
4768}
4769
d50dde5a
DF
4770static int __sched_setscheduler(struct task_struct *p,
4771 const struct sched_attr *attr,
dbc7f069 4772 bool user, bool pi)
1da177e4 4773{
383afd09
SR
4774 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4775 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4776 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4777 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4778 const struct sched_class *prev_class;
eb580751 4779 struct rq_flags rf;
ca94c442 4780 int reset_on_fork;
7a57f32a 4781 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4782 struct rq *rq;
1da177e4 4783
896bbb25
SRV
4784 /* The pi code expects interrupts enabled */
4785 BUG_ON(pi && in_interrupt());
1da177e4 4786recheck:
d1ccc66d 4787 /* Double check policy once rq lock held: */
ca94c442
LP
4788 if (policy < 0) {
4789 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4790 policy = oldpolicy = p->policy;
ca94c442 4791 } else {
7479f3c9 4792 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4793
20f9cd2a 4794 if (!valid_policy(policy))
ca94c442
LP
4795 return -EINVAL;
4796 }
4797
794a56eb 4798 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4799 return -EINVAL;
4800
1da177e4
LT
4801 /*
4802 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4803 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4804 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4805 */
0bb040a4 4806 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4807 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4808 return -EINVAL;
aab03e05
DF
4809 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4810 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4811 return -EINVAL;
4812
37e4ab3f
OC
4813 /*
4814 * Allow unprivileged RT tasks to decrease priority:
4815 */
961ccddd 4816 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4817 if (fair_policy(policy)) {
d0ea0268 4818 if (attr->sched_nice < task_nice(p) &&
eaad4513 4819 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4820 return -EPERM;
4821 }
4822
e05606d3 4823 if (rt_policy(policy)) {
a44702e8
ON
4824 unsigned long rlim_rtprio =
4825 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4826
d1ccc66d 4827 /* Can't set/change the rt policy: */
8dc3e909
ON
4828 if (policy != p->policy && !rlim_rtprio)
4829 return -EPERM;
4830
d1ccc66d 4831 /* Can't increase priority: */
d50dde5a
DF
4832 if (attr->sched_priority > p->rt_priority &&
4833 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4834 return -EPERM;
4835 }
c02aa73b 4836
d44753b8
JL
4837 /*
4838 * Can't set/change SCHED_DEADLINE policy at all for now
4839 * (safest behavior); in the future we would like to allow
4840 * unprivileged DL tasks to increase their relative deadline
4841 * or reduce their runtime (both ways reducing utilization)
4842 */
4843 if (dl_policy(policy))
4844 return -EPERM;
4845
dd41f596 4846 /*
c02aa73b
DH
4847 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4848 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4849 */
1da1843f 4850 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4851 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4852 return -EPERM;
4853 }
5fe1d75f 4854
d1ccc66d 4855 /* Can't change other user's priorities: */
c69e8d9c 4856 if (!check_same_owner(p))
37e4ab3f 4857 return -EPERM;
ca94c442 4858
d1ccc66d 4859 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4860 if (p->sched_reset_on_fork && !reset_on_fork)
4861 return -EPERM;
37e4ab3f 4862 }
1da177e4 4863
725aad24 4864 if (user) {
794a56eb
JL
4865 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4866 return -EINVAL;
4867
b0ae1981 4868 retval = security_task_setscheduler(p);
725aad24
JF
4869 if (retval)
4870 return retval;
4871 }
4872
a509a7cd
PB
4873 /* Update task specific "requested" clamps */
4874 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4875 retval = uclamp_validate(p, attr);
4876 if (retval)
4877 return retval;
4878 }
4879
710da3c8
JL
4880 if (pi)
4881 cpuset_read_lock();
4882
b29739f9 4883 /*
d1ccc66d 4884 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4885 * changing the priority of the task:
0122ec5b 4886 *
25985edc 4887 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4888 * runqueue lock must be held.
4889 */
eb580751 4890 rq = task_rq_lock(p, &rf);
80f5c1b8 4891 update_rq_clock(rq);
dc61b1d6 4892
34f971f6 4893 /*
d1ccc66d 4894 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4895 */
4896 if (p == rq->stop) {
4b211f2b
MP
4897 retval = -EINVAL;
4898 goto unlock;
34f971f6
PZ
4899 }
4900
a51e9198 4901 /*
d6b1e911
TG
4902 * If not changing anything there's no need to proceed further,
4903 * but store a possible modification of reset_on_fork.
a51e9198 4904 */
d50dde5a 4905 if (unlikely(policy == p->policy)) {
d0ea0268 4906 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4907 goto change;
4908 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4909 goto change;
75381608 4910 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4911 goto change;
a509a7cd
PB
4912 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4913 goto change;
d50dde5a 4914
d6b1e911 4915 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
4916 retval = 0;
4917 goto unlock;
a51e9198 4918 }
d50dde5a 4919change:
a51e9198 4920
dc61b1d6 4921 if (user) {
332ac17e 4922#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4923 /*
4924 * Do not allow realtime tasks into groups that have no runtime
4925 * assigned.
4926 */
4927 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4928 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4929 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
4930 retval = -EPERM;
4931 goto unlock;
dc61b1d6 4932 }
dc61b1d6 4933#endif
332ac17e 4934#ifdef CONFIG_SMP
794a56eb
JL
4935 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4936 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4937 cpumask_t *span = rq->rd->span;
332ac17e
DF
4938
4939 /*
4940 * Don't allow tasks with an affinity mask smaller than
4941 * the entire root_domain to become SCHED_DEADLINE. We
4942 * will also fail if there's no bandwidth available.
4943 */
3bd37062 4944 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4945 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
4946 retval = -EPERM;
4947 goto unlock;
332ac17e
DF
4948 }
4949 }
4950#endif
4951 }
dc61b1d6 4952
d1ccc66d 4953 /* Re-check policy now with rq lock held: */
1da177e4
LT
4954 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4955 policy = oldpolicy = -1;
eb580751 4956 task_rq_unlock(rq, p, &rf);
710da3c8
JL
4957 if (pi)
4958 cpuset_read_unlock();
1da177e4
LT
4959 goto recheck;
4960 }
332ac17e
DF
4961
4962 /*
4963 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4964 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4965 * is available.
4966 */
06a76fe0 4967 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
4968 retval = -EBUSY;
4969 goto unlock;
332ac17e
DF
4970 }
4971
c365c292
TG
4972 p->sched_reset_on_fork = reset_on_fork;
4973 oldprio = p->prio;
4974
dbc7f069
PZ
4975 if (pi) {
4976 /*
4977 * Take priority boosted tasks into account. If the new
4978 * effective priority is unchanged, we just store the new
4979 * normal parameters and do not touch the scheduler class and
4980 * the runqueue. This will be done when the task deboost
4981 * itself.
4982 */
acd58620 4983 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4984 if (new_effective_prio == oldprio)
4985 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4986 }
4987
da0c1e65 4988 queued = task_on_rq_queued(p);
051a1d1a 4989 running = task_current(rq, p);
da0c1e65 4990 if (queued)
ff77e468 4991 dequeue_task(rq, p, queue_flags);
0e1f3483 4992 if (running)
f3cd1c4e 4993 put_prev_task(rq, p);
f6b53205 4994
83ab0aa0 4995 prev_class = p->sched_class;
a509a7cd 4996
dbc7f069 4997 __setscheduler(rq, p, attr, pi);
a509a7cd 4998 __setscheduler_uclamp(p, attr);
f6b53205 4999
da0c1e65 5000 if (queued) {
81a44c54
TG
5001 /*
5002 * We enqueue to tail when the priority of a task is
5003 * increased (user space view).
5004 */
ff77e468
PZ
5005 if (oldprio < p->prio)
5006 queue_flags |= ENQUEUE_HEAD;
1de64443 5007
ff77e468 5008 enqueue_task(rq, p, queue_flags);
81a44c54 5009 }
a399d233 5010 if (running)
03b7fad1 5011 set_next_task(rq, p);
cb469845 5012
da7a735e 5013 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
5014
5015 /* Avoid rq from going away on us: */
5016 preempt_disable();
eb580751 5017 task_rq_unlock(rq, p, &rf);
b29739f9 5018
710da3c8
JL
5019 if (pi) {
5020 cpuset_read_unlock();
dbc7f069 5021 rt_mutex_adjust_pi(p);
710da3c8 5022 }
95e02ca9 5023
d1ccc66d 5024 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
5025 balance_callback(rq);
5026 preempt_enable();
95e02ca9 5027
1da177e4 5028 return 0;
4b211f2b
MP
5029
5030unlock:
5031 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5032 if (pi)
5033 cpuset_read_unlock();
4b211f2b 5034 return retval;
1da177e4 5035}
961ccddd 5036
7479f3c9
PZ
5037static int _sched_setscheduler(struct task_struct *p, int policy,
5038 const struct sched_param *param, bool check)
5039{
5040 struct sched_attr attr = {
5041 .sched_policy = policy,
5042 .sched_priority = param->sched_priority,
5043 .sched_nice = PRIO_TO_NICE(p->static_prio),
5044 };
5045
c13db6b1
SR
5046 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5047 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
5048 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5049 policy &= ~SCHED_RESET_ON_FORK;
5050 attr.sched_policy = policy;
5051 }
5052
dbc7f069 5053 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 5054}
961ccddd
RR
5055/**
5056 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5057 * @p: the task in question.
5058 * @policy: new policy.
5059 * @param: structure containing the new RT priority.
5060 *
e69f6186
YB
5061 * Return: 0 on success. An error code otherwise.
5062 *
961ccddd
RR
5063 * NOTE that the task may be already dead.
5064 */
5065int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5066 const struct sched_param *param)
961ccddd 5067{
7479f3c9 5068 return _sched_setscheduler(p, policy, param, true);
961ccddd 5069}
1da177e4
LT
5070EXPORT_SYMBOL_GPL(sched_setscheduler);
5071
d50dde5a
DF
5072int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5073{
dbc7f069 5074 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
5075}
5076EXPORT_SYMBOL_GPL(sched_setattr);
5077
794a56eb
JL
5078int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5079{
5080 return __sched_setscheduler(p, attr, false, true);
5081}
5082
961ccddd
RR
5083/**
5084 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5085 * @p: the task in question.
5086 * @policy: new policy.
5087 * @param: structure containing the new RT priority.
5088 *
5089 * Just like sched_setscheduler, only don't bother checking if the
5090 * current context has permission. For example, this is needed in
5091 * stop_machine(): we create temporary high priority worker threads,
5092 * but our caller might not have that capability.
e69f6186
YB
5093 *
5094 * Return: 0 on success. An error code otherwise.
961ccddd
RR
5095 */
5096int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5097 const struct sched_param *param)
961ccddd 5098{
7479f3c9 5099 return _sched_setscheduler(p, policy, param, false);
961ccddd 5100}
84778472 5101EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 5102
95cdf3b7
IM
5103static int
5104do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5105{
1da177e4
LT
5106 struct sched_param lparam;
5107 struct task_struct *p;
36c8b586 5108 int retval;
1da177e4
LT
5109
5110 if (!param || pid < 0)
5111 return -EINVAL;
5112 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5113 return -EFAULT;
5fe1d75f
ON
5114
5115 rcu_read_lock();
5116 retval = -ESRCH;
1da177e4 5117 p = find_process_by_pid(pid);
710da3c8
JL
5118 if (likely(p))
5119 get_task_struct(p);
5fe1d75f 5120 rcu_read_unlock();
36c8b586 5121
710da3c8
JL
5122 if (likely(p)) {
5123 retval = sched_setscheduler(p, policy, &lparam);
5124 put_task_struct(p);
5125 }
5126
1da177e4
LT
5127 return retval;
5128}
5129
d50dde5a
DF
5130/*
5131 * Mimics kernel/events/core.c perf_copy_attr().
5132 */
d1ccc66d 5133static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
5134{
5135 u32 size;
5136 int ret;
5137
d1ccc66d 5138 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
5139 memset(attr, 0, sizeof(*attr));
5140
5141 ret = get_user(size, &uattr->size);
5142 if (ret)
5143 return ret;
5144
d1ccc66d
IM
5145 /* ABI compatibility quirk: */
5146 if (!size)
d50dde5a 5147 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 5148 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
5149 goto err_size;
5150
dff3a85f
AS
5151 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5152 if (ret) {
5153 if (ret == -E2BIG)
5154 goto err_size;
5155 return ret;
d50dde5a
DF
5156 }
5157
a509a7cd
PB
5158 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5159 size < SCHED_ATTR_SIZE_VER1)
5160 return -EINVAL;
5161
d50dde5a 5162 /*
d1ccc66d 5163 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
5164 * to be strict and return an error on out-of-bounds values?
5165 */
75e45d51 5166 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 5167
e78c7bca 5168 return 0;
d50dde5a
DF
5169
5170err_size:
5171 put_user(sizeof(*attr), &uattr->size);
e78c7bca 5172 return -E2BIG;
d50dde5a
DF
5173}
5174
1da177e4
LT
5175/**
5176 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5177 * @pid: the pid in question.
5178 * @policy: new policy.
5179 * @param: structure containing the new RT priority.
e69f6186
YB
5180 *
5181 * Return: 0 on success. An error code otherwise.
1da177e4 5182 */
d1ccc66d 5183SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 5184{
c21761f1
JB
5185 if (policy < 0)
5186 return -EINVAL;
5187
1da177e4
LT
5188 return do_sched_setscheduler(pid, policy, param);
5189}
5190
5191/**
5192 * sys_sched_setparam - set/change the RT priority of a thread
5193 * @pid: the pid in question.
5194 * @param: structure containing the new RT priority.
e69f6186
YB
5195 *
5196 * Return: 0 on success. An error code otherwise.
1da177e4 5197 */
5add95d4 5198SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5199{
c13db6b1 5200 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
5201}
5202
d50dde5a
DF
5203/**
5204 * sys_sched_setattr - same as above, but with extended sched_attr
5205 * @pid: the pid in question.
5778fccf 5206 * @uattr: structure containing the extended parameters.
db66d756 5207 * @flags: for future extension.
d50dde5a 5208 */
6d35ab48
PZ
5209SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5210 unsigned int, flags)
d50dde5a
DF
5211{
5212 struct sched_attr attr;
5213 struct task_struct *p;
5214 int retval;
5215
6d35ab48 5216 if (!uattr || pid < 0 || flags)
d50dde5a
DF
5217 return -EINVAL;
5218
143cf23d
MK
5219 retval = sched_copy_attr(uattr, &attr);
5220 if (retval)
5221 return retval;
d50dde5a 5222
b14ed2c2 5223 if ((int)attr.sched_policy < 0)
dbdb2275 5224 return -EINVAL;
1d6362fa
PB
5225 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5226 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
5227
5228 rcu_read_lock();
5229 retval = -ESRCH;
5230 p = find_process_by_pid(pid);
a509a7cd
PB
5231 if (likely(p))
5232 get_task_struct(p);
d50dde5a
DF
5233 rcu_read_unlock();
5234
a509a7cd
PB
5235 if (likely(p)) {
5236 retval = sched_setattr(p, &attr);
5237 put_task_struct(p);
5238 }
5239
d50dde5a
DF
5240 return retval;
5241}
5242
1da177e4
LT
5243/**
5244 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5245 * @pid: the pid in question.
e69f6186
YB
5246 *
5247 * Return: On success, the policy of the thread. Otherwise, a negative error
5248 * code.
1da177e4 5249 */
5add95d4 5250SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5251{
36c8b586 5252 struct task_struct *p;
3a5c359a 5253 int retval;
1da177e4
LT
5254
5255 if (pid < 0)
3a5c359a 5256 return -EINVAL;
1da177e4
LT
5257
5258 retval = -ESRCH;
5fe85be0 5259 rcu_read_lock();
1da177e4
LT
5260 p = find_process_by_pid(pid);
5261 if (p) {
5262 retval = security_task_getscheduler(p);
5263 if (!retval)
ca94c442
LP
5264 retval = p->policy
5265 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5266 }
5fe85be0 5267 rcu_read_unlock();
1da177e4
LT
5268 return retval;
5269}
5270
5271/**
ca94c442 5272 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5273 * @pid: the pid in question.
5274 * @param: structure containing the RT priority.
e69f6186
YB
5275 *
5276 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5277 * code.
1da177e4 5278 */
5add95d4 5279SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5280{
ce5f7f82 5281 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5282 struct task_struct *p;
3a5c359a 5283 int retval;
1da177e4
LT
5284
5285 if (!param || pid < 0)
3a5c359a 5286 return -EINVAL;
1da177e4 5287
5fe85be0 5288 rcu_read_lock();
1da177e4
LT
5289 p = find_process_by_pid(pid);
5290 retval = -ESRCH;
5291 if (!p)
5292 goto out_unlock;
5293
5294 retval = security_task_getscheduler(p);
5295 if (retval)
5296 goto out_unlock;
5297
ce5f7f82
PZ
5298 if (task_has_rt_policy(p))
5299 lp.sched_priority = p->rt_priority;
5fe85be0 5300 rcu_read_unlock();
1da177e4
LT
5301
5302 /*
5303 * This one might sleep, we cannot do it with a spinlock held ...
5304 */
5305 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5306
1da177e4
LT
5307 return retval;
5308
5309out_unlock:
5fe85be0 5310 rcu_read_unlock();
1da177e4
LT
5311 return retval;
5312}
5313
1251201c
IM
5314/*
5315 * Copy the kernel size attribute structure (which might be larger
5316 * than what user-space knows about) to user-space.
5317 *
5318 * Note that all cases are valid: user-space buffer can be larger or
5319 * smaller than the kernel-space buffer. The usual case is that both
5320 * have the same size.
5321 */
5322static int
5323sched_attr_copy_to_user(struct sched_attr __user *uattr,
5324 struct sched_attr *kattr,
5325 unsigned int usize)
d50dde5a 5326{
1251201c 5327 unsigned int ksize = sizeof(*kattr);
d50dde5a 5328
96d4f267 5329 if (!access_ok(uattr, usize))
d50dde5a
DF
5330 return -EFAULT;
5331
5332 /*
1251201c
IM
5333 * sched_getattr() ABI forwards and backwards compatibility:
5334 *
5335 * If usize == ksize then we just copy everything to user-space and all is good.
5336 *
5337 * If usize < ksize then we only copy as much as user-space has space for,
5338 * this keeps ABI compatibility as well. We skip the rest.
5339 *
5340 * If usize > ksize then user-space is using a newer version of the ABI,
5341 * which part the kernel doesn't know about. Just ignore it - tooling can
5342 * detect the kernel's knowledge of attributes from the attr->size value
5343 * which is set to ksize in this case.
d50dde5a 5344 */
1251201c 5345 kattr->size = min(usize, ksize);
d50dde5a 5346
1251201c 5347 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
5348 return -EFAULT;
5349
22400674 5350 return 0;
d50dde5a
DF
5351}
5352
5353/**
aab03e05 5354 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5355 * @pid: the pid in question.
5778fccf 5356 * @uattr: structure containing the extended parameters.
dff3a85f 5357 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 5358 * @flags: for future extension.
d50dde5a 5359 */
6d35ab48 5360SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 5361 unsigned int, usize, unsigned int, flags)
d50dde5a 5362{
1251201c 5363 struct sched_attr kattr = { };
d50dde5a
DF
5364 struct task_struct *p;
5365 int retval;
5366
1251201c
IM
5367 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5368 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5369 return -EINVAL;
5370
5371 rcu_read_lock();
5372 p = find_process_by_pid(pid);
5373 retval = -ESRCH;
5374 if (!p)
5375 goto out_unlock;
5376
5377 retval = security_task_getscheduler(p);
5378 if (retval)
5379 goto out_unlock;
5380
1251201c 5381 kattr.sched_policy = p->policy;
7479f3c9 5382 if (p->sched_reset_on_fork)
1251201c 5383 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 5384 if (task_has_dl_policy(p))
1251201c 5385 __getparam_dl(p, &kattr);
aab03e05 5386 else if (task_has_rt_policy(p))
1251201c 5387 kattr.sched_priority = p->rt_priority;
d50dde5a 5388 else
1251201c 5389 kattr.sched_nice = task_nice(p);
d50dde5a 5390
a509a7cd 5391#ifdef CONFIG_UCLAMP_TASK
1251201c
IM
5392 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5393 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
5394#endif
5395
d50dde5a
DF
5396 rcu_read_unlock();
5397
1251201c 5398 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
5399
5400out_unlock:
5401 rcu_read_unlock();
5402 return retval;
5403}
5404
96f874e2 5405long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5406{
5a16f3d3 5407 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5408 struct task_struct *p;
5409 int retval;
1da177e4 5410
23f5d142 5411 rcu_read_lock();
1da177e4
LT
5412
5413 p = find_process_by_pid(pid);
5414 if (!p) {
23f5d142 5415 rcu_read_unlock();
1da177e4
LT
5416 return -ESRCH;
5417 }
5418
23f5d142 5419 /* Prevent p going away */
1da177e4 5420 get_task_struct(p);
23f5d142 5421 rcu_read_unlock();
1da177e4 5422
14a40ffc
TH
5423 if (p->flags & PF_NO_SETAFFINITY) {
5424 retval = -EINVAL;
5425 goto out_put_task;
5426 }
5a16f3d3
RR
5427 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5428 retval = -ENOMEM;
5429 goto out_put_task;
5430 }
5431 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5432 retval = -ENOMEM;
5433 goto out_free_cpus_allowed;
5434 }
1da177e4 5435 retval = -EPERM;
4c44aaaf
EB
5436 if (!check_same_owner(p)) {
5437 rcu_read_lock();
5438 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5439 rcu_read_unlock();
16303ab2 5440 goto out_free_new_mask;
4c44aaaf
EB
5441 }
5442 rcu_read_unlock();
5443 }
1da177e4 5444
b0ae1981 5445 retval = security_task_setscheduler(p);
e7834f8f 5446 if (retval)
16303ab2 5447 goto out_free_new_mask;
e7834f8f 5448
e4099a5e
PZ
5449
5450 cpuset_cpus_allowed(p, cpus_allowed);
5451 cpumask_and(new_mask, in_mask, cpus_allowed);
5452
332ac17e
DF
5453 /*
5454 * Since bandwidth control happens on root_domain basis,
5455 * if admission test is enabled, we only admit -deadline
5456 * tasks allowed to run on all the CPUs in the task's
5457 * root_domain.
5458 */
5459#ifdef CONFIG_SMP
f1e3a093
KT
5460 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5461 rcu_read_lock();
5462 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5463 retval = -EBUSY;
f1e3a093 5464 rcu_read_unlock();
16303ab2 5465 goto out_free_new_mask;
332ac17e 5466 }
f1e3a093 5467 rcu_read_unlock();
332ac17e
DF
5468 }
5469#endif
49246274 5470again:
25834c73 5471 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5472
8707d8b8 5473 if (!retval) {
5a16f3d3
RR
5474 cpuset_cpus_allowed(p, cpus_allowed);
5475 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5476 /*
5477 * We must have raced with a concurrent cpuset
5478 * update. Just reset the cpus_allowed to the
5479 * cpuset's cpus_allowed
5480 */
5a16f3d3 5481 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5482 goto again;
5483 }
5484 }
16303ab2 5485out_free_new_mask:
5a16f3d3
RR
5486 free_cpumask_var(new_mask);
5487out_free_cpus_allowed:
5488 free_cpumask_var(cpus_allowed);
5489out_put_task:
1da177e4 5490 put_task_struct(p);
1da177e4
LT
5491 return retval;
5492}
5493
5494static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5495 struct cpumask *new_mask)
1da177e4 5496{
96f874e2
RR
5497 if (len < cpumask_size())
5498 cpumask_clear(new_mask);
5499 else if (len > cpumask_size())
5500 len = cpumask_size();
5501
1da177e4
LT
5502 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5503}
5504
5505/**
d1ccc66d 5506 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5507 * @pid: pid of the process
5508 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5509 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5510 *
5511 * Return: 0 on success. An error code otherwise.
1da177e4 5512 */
5add95d4
HC
5513SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5514 unsigned long __user *, user_mask_ptr)
1da177e4 5515{
5a16f3d3 5516 cpumask_var_t new_mask;
1da177e4
LT
5517 int retval;
5518
5a16f3d3
RR
5519 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5520 return -ENOMEM;
1da177e4 5521
5a16f3d3
RR
5522 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5523 if (retval == 0)
5524 retval = sched_setaffinity(pid, new_mask);
5525 free_cpumask_var(new_mask);
5526 return retval;
1da177e4
LT
5527}
5528
96f874e2 5529long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5530{
36c8b586 5531 struct task_struct *p;
31605683 5532 unsigned long flags;
1da177e4 5533 int retval;
1da177e4 5534
23f5d142 5535 rcu_read_lock();
1da177e4
LT
5536
5537 retval = -ESRCH;
5538 p = find_process_by_pid(pid);
5539 if (!p)
5540 goto out_unlock;
5541
e7834f8f
DQ
5542 retval = security_task_getscheduler(p);
5543 if (retval)
5544 goto out_unlock;
5545
013fdb80 5546 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 5547 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 5548 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5549
5550out_unlock:
23f5d142 5551 rcu_read_unlock();
1da177e4 5552
9531b62f 5553 return retval;
1da177e4
LT
5554}
5555
5556/**
d1ccc66d 5557 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
5558 * @pid: pid of the process
5559 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5560 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 5561 *
599b4840
ZW
5562 * Return: size of CPU mask copied to user_mask_ptr on success. An
5563 * error code otherwise.
1da177e4 5564 */
5add95d4
HC
5565SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5566 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5567{
5568 int ret;
f17c8607 5569 cpumask_var_t mask;
1da177e4 5570
84fba5ec 5571 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5572 return -EINVAL;
5573 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5574 return -EINVAL;
5575
f17c8607
RR
5576 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5577 return -ENOMEM;
1da177e4 5578
f17c8607
RR
5579 ret = sched_getaffinity(pid, mask);
5580 if (ret == 0) {
4de373a1 5581 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
5582
5583 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5584 ret = -EFAULT;
5585 else
cd3d8031 5586 ret = retlen;
f17c8607
RR
5587 }
5588 free_cpumask_var(mask);
1da177e4 5589
f17c8607 5590 return ret;
1da177e4
LT
5591}
5592
5593/**
5594 * sys_sched_yield - yield the current processor to other threads.
5595 *
dd41f596
IM
5596 * This function yields the current CPU to other tasks. If there are no
5597 * other threads running on this CPU then this function will return.
e69f6186
YB
5598 *
5599 * Return: 0.
1da177e4 5600 */
7d4dd4f1 5601static void do_sched_yield(void)
1da177e4 5602{
8a8c69c3
PZ
5603 struct rq_flags rf;
5604 struct rq *rq;
5605
246b3b33 5606 rq = this_rq_lock_irq(&rf);
1da177e4 5607
ae92882e 5608 schedstat_inc(rq->yld_count);
4530d7ab 5609 current->sched_class->yield_task(rq);
1da177e4
LT
5610
5611 /*
5612 * Since we are going to call schedule() anyway, there's
5613 * no need to preempt or enable interrupts:
5614 */
8a8c69c3
PZ
5615 preempt_disable();
5616 rq_unlock(rq, &rf);
ba74c144 5617 sched_preempt_enable_no_resched();
1da177e4
LT
5618
5619 schedule();
7d4dd4f1 5620}
1da177e4 5621
7d4dd4f1
DB
5622SYSCALL_DEFINE0(sched_yield)
5623{
5624 do_sched_yield();
1da177e4
LT
5625 return 0;
5626}
5627
c1a280b6 5628#ifndef CONFIG_PREEMPTION
02b67cc3 5629int __sched _cond_resched(void)
1da177e4 5630{
fe32d3cd 5631 if (should_resched(0)) {
a18b5d01 5632 preempt_schedule_common();
1da177e4
LT
5633 return 1;
5634 }
f79c3ad6 5635 rcu_all_qs();
1da177e4
LT
5636 return 0;
5637}
02b67cc3 5638EXPORT_SYMBOL(_cond_resched);
35a773a0 5639#endif
1da177e4
LT
5640
5641/*
613afbf8 5642 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5643 * call schedule, and on return reacquire the lock.
5644 *
c1a280b6 5645 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
5646 * operations here to prevent schedule() from being called twice (once via
5647 * spin_unlock(), once by hand).
5648 */
613afbf8 5649int __cond_resched_lock(spinlock_t *lock)
1da177e4 5650{
fe32d3cd 5651 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5652 int ret = 0;
5653
f607c668
PZ
5654 lockdep_assert_held(lock);
5655
4a81e832 5656 if (spin_needbreak(lock) || resched) {
1da177e4 5657 spin_unlock(lock);
d86ee480 5658 if (resched)
a18b5d01 5659 preempt_schedule_common();
95c354fe
NP
5660 else
5661 cpu_relax();
6df3cecb 5662 ret = 1;
1da177e4 5663 spin_lock(lock);
1da177e4 5664 }
6df3cecb 5665 return ret;
1da177e4 5666}
613afbf8 5667EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5668
1da177e4
LT
5669/**
5670 * yield - yield the current processor to other threads.
5671 *
8e3fabfd
PZ
5672 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5673 *
5674 * The scheduler is at all times free to pick the calling task as the most
5675 * eligible task to run, if removing the yield() call from your code breaks
5676 * it, its already broken.
5677 *
5678 * Typical broken usage is:
5679 *
5680 * while (!event)
d1ccc66d 5681 * yield();
8e3fabfd
PZ
5682 *
5683 * where one assumes that yield() will let 'the other' process run that will
5684 * make event true. If the current task is a SCHED_FIFO task that will never
5685 * happen. Never use yield() as a progress guarantee!!
5686 *
5687 * If you want to use yield() to wait for something, use wait_event().
5688 * If you want to use yield() to be 'nice' for others, use cond_resched().
5689 * If you still want to use yield(), do not!
1da177e4
LT
5690 */
5691void __sched yield(void)
5692{
5693 set_current_state(TASK_RUNNING);
7d4dd4f1 5694 do_sched_yield();
1da177e4 5695}
1da177e4
LT
5696EXPORT_SYMBOL(yield);
5697
d95f4122
MG
5698/**
5699 * yield_to - yield the current processor to another thread in
5700 * your thread group, or accelerate that thread toward the
5701 * processor it's on.
16addf95
RD
5702 * @p: target task
5703 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5704 *
5705 * It's the caller's job to ensure that the target task struct
5706 * can't go away on us before we can do any checks.
5707 *
e69f6186 5708 * Return:
7b270f60
PZ
5709 * true (>0) if we indeed boosted the target task.
5710 * false (0) if we failed to boost the target.
5711 * -ESRCH if there's no task to yield to.
d95f4122 5712 */
fa93384f 5713int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5714{
5715 struct task_struct *curr = current;
5716 struct rq *rq, *p_rq;
5717 unsigned long flags;
c3c18640 5718 int yielded = 0;
d95f4122
MG
5719
5720 local_irq_save(flags);
5721 rq = this_rq();
5722
5723again:
5724 p_rq = task_rq(p);
7b270f60
PZ
5725 /*
5726 * If we're the only runnable task on the rq and target rq also
5727 * has only one task, there's absolutely no point in yielding.
5728 */
5729 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5730 yielded = -ESRCH;
5731 goto out_irq;
5732 }
5733
d95f4122 5734 double_rq_lock(rq, p_rq);
39e24d8f 5735 if (task_rq(p) != p_rq) {
d95f4122
MG
5736 double_rq_unlock(rq, p_rq);
5737 goto again;
5738 }
5739
5740 if (!curr->sched_class->yield_to_task)
7b270f60 5741 goto out_unlock;
d95f4122
MG
5742
5743 if (curr->sched_class != p->sched_class)
7b270f60 5744 goto out_unlock;
d95f4122
MG
5745
5746 if (task_running(p_rq, p) || p->state)
7b270f60 5747 goto out_unlock;
d95f4122
MG
5748
5749 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5750 if (yielded) {
ae92882e 5751 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5752 /*
5753 * Make p's CPU reschedule; pick_next_entity takes care of
5754 * fairness.
5755 */
5756 if (preempt && rq != p_rq)
8875125e 5757 resched_curr(p_rq);
6d1cafd8 5758 }
d95f4122 5759
7b270f60 5760out_unlock:
d95f4122 5761 double_rq_unlock(rq, p_rq);
7b270f60 5762out_irq:
d95f4122
MG
5763 local_irq_restore(flags);
5764
7b270f60 5765 if (yielded > 0)
d95f4122
MG
5766 schedule();
5767
5768 return yielded;
5769}
5770EXPORT_SYMBOL_GPL(yield_to);
5771
10ab5643
TH
5772int io_schedule_prepare(void)
5773{
5774 int old_iowait = current->in_iowait;
5775
5776 current->in_iowait = 1;
5777 blk_schedule_flush_plug(current);
5778
5779 return old_iowait;
5780}
5781
5782void io_schedule_finish(int token)
5783{
5784 current->in_iowait = token;
5785}
5786
1da177e4 5787/*
41a2d6cf 5788 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5789 * that process accounting knows that this is a task in IO wait state.
1da177e4 5790 */
1da177e4
LT
5791long __sched io_schedule_timeout(long timeout)
5792{
10ab5643 5793 int token;
1da177e4
LT
5794 long ret;
5795
10ab5643 5796 token = io_schedule_prepare();
1da177e4 5797 ret = schedule_timeout(timeout);
10ab5643 5798 io_schedule_finish(token);
9cff8ade 5799
1da177e4
LT
5800 return ret;
5801}
9cff8ade 5802EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5803
e3b929b0 5804void __sched io_schedule(void)
10ab5643
TH
5805{
5806 int token;
5807
5808 token = io_schedule_prepare();
5809 schedule();
5810 io_schedule_finish(token);
5811}
5812EXPORT_SYMBOL(io_schedule);
5813
1da177e4
LT
5814/**
5815 * sys_sched_get_priority_max - return maximum RT priority.
5816 * @policy: scheduling class.
5817 *
e69f6186
YB
5818 * Return: On success, this syscall returns the maximum
5819 * rt_priority that can be used by a given scheduling class.
5820 * On failure, a negative error code is returned.
1da177e4 5821 */
5add95d4 5822SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5823{
5824 int ret = -EINVAL;
5825
5826 switch (policy) {
5827 case SCHED_FIFO:
5828 case SCHED_RR:
5829 ret = MAX_USER_RT_PRIO-1;
5830 break;
aab03e05 5831 case SCHED_DEADLINE:
1da177e4 5832 case SCHED_NORMAL:
b0a9499c 5833 case SCHED_BATCH:
dd41f596 5834 case SCHED_IDLE:
1da177e4
LT
5835 ret = 0;
5836 break;
5837 }
5838 return ret;
5839}
5840
5841/**
5842 * sys_sched_get_priority_min - return minimum RT priority.
5843 * @policy: scheduling class.
5844 *
e69f6186
YB
5845 * Return: On success, this syscall returns the minimum
5846 * rt_priority that can be used by a given scheduling class.
5847 * On failure, a negative error code is returned.
1da177e4 5848 */
5add95d4 5849SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5850{
5851 int ret = -EINVAL;
5852
5853 switch (policy) {
5854 case SCHED_FIFO:
5855 case SCHED_RR:
5856 ret = 1;
5857 break;
aab03e05 5858 case SCHED_DEADLINE:
1da177e4 5859 case SCHED_NORMAL:
b0a9499c 5860 case SCHED_BATCH:
dd41f596 5861 case SCHED_IDLE:
1da177e4
LT
5862 ret = 0;
5863 }
5864 return ret;
5865}
5866
abca5fc5 5867static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5868{
36c8b586 5869 struct task_struct *p;
a4ec24b4 5870 unsigned int time_slice;
eb580751 5871 struct rq_flags rf;
dba091b9 5872 struct rq *rq;
3a5c359a 5873 int retval;
1da177e4
LT
5874
5875 if (pid < 0)
3a5c359a 5876 return -EINVAL;
1da177e4
LT
5877
5878 retval = -ESRCH;
1a551ae7 5879 rcu_read_lock();
1da177e4
LT
5880 p = find_process_by_pid(pid);
5881 if (!p)
5882 goto out_unlock;
5883
5884 retval = security_task_getscheduler(p);
5885 if (retval)
5886 goto out_unlock;
5887
eb580751 5888 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5889 time_slice = 0;
5890 if (p->sched_class->get_rr_interval)
5891 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5892 task_rq_unlock(rq, p, &rf);
a4ec24b4 5893
1a551ae7 5894 rcu_read_unlock();
abca5fc5
AV
5895 jiffies_to_timespec64(time_slice, t);
5896 return 0;
3a5c359a 5897
1da177e4 5898out_unlock:
1a551ae7 5899 rcu_read_unlock();
1da177e4
LT
5900 return retval;
5901}
5902
2064a5ab
RD
5903/**
5904 * sys_sched_rr_get_interval - return the default timeslice of a process.
5905 * @pid: pid of the process.
5906 * @interval: userspace pointer to the timeslice value.
5907 *
5908 * this syscall writes the default timeslice value of a given process
5909 * into the user-space timespec buffer. A value of '0' means infinity.
5910 *
5911 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5912 * an error code.
5913 */
abca5fc5 5914SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5915 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5916{
5917 struct timespec64 t;
5918 int retval = sched_rr_get_interval(pid, &t);
5919
5920 if (retval == 0)
5921 retval = put_timespec64(&t, interval);
5922
5923 return retval;
5924}
5925
474b9c77 5926#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5927SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5928 struct old_timespec32 __user *, interval)
abca5fc5
AV
5929{
5930 struct timespec64 t;
5931 int retval = sched_rr_get_interval(pid, &t);
5932
5933 if (retval == 0)
9afc5eee 5934 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5935 return retval;
5936}
5937#endif
5938
82a1fcb9 5939void sched_show_task(struct task_struct *p)
1da177e4 5940{
1da177e4 5941 unsigned long free = 0;
4e79752c 5942 int ppid;
c930b2c0 5943
38200502
TH
5944 if (!try_get_task_stack(p))
5945 return;
20435d84
XX
5946
5947 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5948
5949 if (p->state == TASK_RUNNING)
3df0fc5b 5950 printk(KERN_CONT " running task ");
1da177e4 5951#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5952 free = stack_not_used(p);
1da177e4 5953#endif
a90e984c 5954 ppid = 0;
4e79752c 5955 rcu_read_lock();
a90e984c
ON
5956 if (pid_alive(p))
5957 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5958 rcu_read_unlock();
3df0fc5b 5959 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5960 task_pid_nr(p), ppid,
aa47b7e0 5961 (unsigned long)task_thread_info(p)->flags);
1da177e4 5962
3d1cb205 5963 print_worker_info(KERN_INFO, p);
5fb5e6de 5964 show_stack(p, NULL);
38200502 5965 put_task_stack(p);
1da177e4 5966}
0032f4e8 5967EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5968
5d68cc95
PZ
5969static inline bool
5970state_filter_match(unsigned long state_filter, struct task_struct *p)
5971{
5972 /* no filter, everything matches */
5973 if (!state_filter)
5974 return true;
5975
5976 /* filter, but doesn't match */
5977 if (!(p->state & state_filter))
5978 return false;
5979
5980 /*
5981 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5982 * TASK_KILLABLE).
5983 */
5984 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5985 return false;
5986
5987 return true;
5988}
5989
5990
e59e2ae2 5991void show_state_filter(unsigned long state_filter)
1da177e4 5992{
36c8b586 5993 struct task_struct *g, *p;
1da177e4 5994
4bd77321 5995#if BITS_PER_LONG == 32
3df0fc5b
PZ
5996 printk(KERN_INFO
5997 " task PC stack pid father\n");
1da177e4 5998#else
3df0fc5b
PZ
5999 printk(KERN_INFO
6000 " task PC stack pid father\n");
1da177e4 6001#endif
510f5acc 6002 rcu_read_lock();
5d07f420 6003 for_each_process_thread(g, p) {
1da177e4
LT
6004 /*
6005 * reset the NMI-timeout, listing all files on a slow
25985edc 6006 * console might take a lot of time:
57675cb9
AR
6007 * Also, reset softlockup watchdogs on all CPUs, because
6008 * another CPU might be blocked waiting for us to process
6009 * an IPI.
1da177e4
LT
6010 */
6011 touch_nmi_watchdog();
57675cb9 6012 touch_all_softlockup_watchdogs();
5d68cc95 6013 if (state_filter_match(state_filter, p))
82a1fcb9 6014 sched_show_task(p);
5d07f420 6015 }
1da177e4 6016
dd41f596 6017#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
6018 if (!state_filter)
6019 sysrq_sched_debug_show();
dd41f596 6020#endif
510f5acc 6021 rcu_read_unlock();
e59e2ae2
IM
6022 /*
6023 * Only show locks if all tasks are dumped:
6024 */
93335a21 6025 if (!state_filter)
e59e2ae2 6026 debug_show_all_locks();
1da177e4
LT
6027}
6028
f340c0d1
IM
6029/**
6030 * init_idle - set up an idle thread for a given CPU
6031 * @idle: task in question
d1ccc66d 6032 * @cpu: CPU the idle task belongs to
f340c0d1
IM
6033 *
6034 * NOTE: this function does not set the idle thread's NEED_RESCHED
6035 * flag, to make booting more robust.
6036 */
0db0628d 6037void init_idle(struct task_struct *idle, int cpu)
1da177e4 6038{
70b97a7f 6039 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6040 unsigned long flags;
6041
ff51ff84
PZ
6042 __sched_fork(0, idle);
6043
25834c73
PZ
6044 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6045 raw_spin_lock(&rq->lock);
5cbd54ef 6046
06b83b5f 6047 idle->state = TASK_RUNNING;
dd41f596 6048 idle->se.exec_start = sched_clock();
c1de45ca 6049 idle->flags |= PF_IDLE;
dd41f596 6050
e1b77c92
MR
6051 kasan_unpoison_task_stack(idle);
6052
de9b8f5d
PZ
6053#ifdef CONFIG_SMP
6054 /*
6055 * Its possible that init_idle() gets called multiple times on a task,
6056 * in that case do_set_cpus_allowed() will not do the right thing.
6057 *
6058 * And since this is boot we can forgo the serialization.
6059 */
6060 set_cpus_allowed_common(idle, cpumask_of(cpu));
6061#endif
6506cf6c
PZ
6062 /*
6063 * We're having a chicken and egg problem, even though we are
d1ccc66d 6064 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
6065 * lockdep check in task_group() will fail.
6066 *
6067 * Similar case to sched_fork(). / Alternatively we could
6068 * use task_rq_lock() here and obtain the other rq->lock.
6069 *
6070 * Silence PROVE_RCU
6071 */
6072 rcu_read_lock();
dd41f596 6073 __set_task_cpu(idle, cpu);
6506cf6c 6074 rcu_read_unlock();
1da177e4 6075
5311a98f
EB
6076 rq->idle = idle;
6077 rcu_assign_pointer(rq->curr, idle);
da0c1e65 6078 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 6079#ifdef CONFIG_SMP
3ca7a440 6080 idle->on_cpu = 1;
4866cde0 6081#endif
25834c73
PZ
6082 raw_spin_unlock(&rq->lock);
6083 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
6084
6085 /* Set the preempt count _outside_ the spinlocks! */
01028747 6086 init_idle_preempt_count(idle, cpu);
55cd5340 6087
dd41f596
IM
6088 /*
6089 * The idle tasks have their own, simple scheduling class:
6090 */
6091 idle->sched_class = &idle_sched_class;
868baf07 6092 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 6093 vtime_init_idle(idle, cpu);
de9b8f5d 6094#ifdef CONFIG_SMP
f1c6f1a7
CE
6095 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6096#endif
19978ca6
IM
6097}
6098
e1d4eeec
NP
6099#ifdef CONFIG_SMP
6100
f82f8042
JL
6101int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6102 const struct cpumask *trial)
6103{
06a76fe0 6104 int ret = 1;
f82f8042 6105
bb2bc55a
MG
6106 if (!cpumask_weight(cur))
6107 return ret;
6108
06a76fe0 6109 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
6110
6111 return ret;
6112}
6113
7f51412a
JL
6114int task_can_attach(struct task_struct *p,
6115 const struct cpumask *cs_cpus_allowed)
6116{
6117 int ret = 0;
6118
6119 /*
6120 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 6121 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
6122 * affinity and isolating such threads by their set of
6123 * allowed nodes is unnecessary. Thus, cpusets are not
6124 * applicable for such threads. This prevents checking for
6125 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 6126 * before cpus_mask may be changed.
7f51412a
JL
6127 */
6128 if (p->flags & PF_NO_SETAFFINITY) {
6129 ret = -EINVAL;
6130 goto out;
6131 }
6132
7f51412a 6133 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
6134 cs_cpus_allowed))
6135 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 6136
7f51412a
JL
6137out:
6138 return ret;
6139}
6140
f2cb1360 6141bool sched_smp_initialized __read_mostly;
e26fbffd 6142
e6628d5b
MG
6143#ifdef CONFIG_NUMA_BALANCING
6144/* Migrate current task p to target_cpu */
6145int migrate_task_to(struct task_struct *p, int target_cpu)
6146{
6147 struct migration_arg arg = { p, target_cpu };
6148 int curr_cpu = task_cpu(p);
6149
6150 if (curr_cpu == target_cpu)
6151 return 0;
6152
3bd37062 6153 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
6154 return -EINVAL;
6155
6156 /* TODO: This is not properly updating schedstats */
6157
286549dc 6158 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
6159 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6160}
0ec8aa00
PZ
6161
6162/*
6163 * Requeue a task on a given node and accurately track the number of NUMA
6164 * tasks on the runqueues
6165 */
6166void sched_setnuma(struct task_struct *p, int nid)
6167{
da0c1e65 6168 bool queued, running;
eb580751
PZ
6169 struct rq_flags rf;
6170 struct rq *rq;
0ec8aa00 6171
eb580751 6172 rq = task_rq_lock(p, &rf);
da0c1e65 6173 queued = task_on_rq_queued(p);
0ec8aa00
PZ
6174 running = task_current(rq, p);
6175
da0c1e65 6176 if (queued)
1de64443 6177 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 6178 if (running)
f3cd1c4e 6179 put_prev_task(rq, p);
0ec8aa00
PZ
6180
6181 p->numa_preferred_nid = nid;
0ec8aa00 6182
da0c1e65 6183 if (queued)
7134b3e9 6184 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 6185 if (running)
03b7fad1 6186 set_next_task(rq, p);
eb580751 6187 task_rq_unlock(rq, p, &rf);
0ec8aa00 6188}
5cc389bc 6189#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 6190
1da177e4 6191#ifdef CONFIG_HOTPLUG_CPU
054b9108 6192/*
d1ccc66d 6193 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 6194 * offline.
054b9108 6195 */
48c5ccae 6196void idle_task_exit(void)
1da177e4 6197{
48c5ccae 6198 struct mm_struct *mm = current->active_mm;
e76bd8d9 6199
48c5ccae 6200 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6201
a53efe5f 6202 if (mm != &init_mm) {
252d2a41 6203 switch_mm(mm, &init_mm, current);
3eda69c9 6204 current->active_mm = &init_mm;
a53efe5f
MS
6205 finish_arch_post_lock_switch();
6206 }
48c5ccae 6207 mmdrop(mm);
1da177e4
LT
6208}
6209
6210/*
5d180232
PZ
6211 * Since this CPU is going 'away' for a while, fold any nr_active delta
6212 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
6213 * nr_active count is stable. We need to take the teardown thread which
6214 * is calling this into account, so we hand in adjust = 1 to the load
6215 * calculation.
5d180232
PZ
6216 *
6217 * Also see the comment "Global load-average calculations".
1da177e4 6218 */
5d180232 6219static void calc_load_migrate(struct rq *rq)
1da177e4 6220{
d60585c5 6221 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
6222 if (delta)
6223 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
6224}
6225
10e7071b 6226static struct task_struct *__pick_migrate_task(struct rq *rq)
3f1d2a31 6227{
10e7071b
PZ
6228 const struct sched_class *class;
6229 struct task_struct *next;
3f1d2a31 6230
10e7071b 6231 for_each_class(class) {
98c2f700 6232 next = class->pick_next_task(rq);
10e7071b 6233 if (next) {
6e2df058 6234 next->sched_class->put_prev_task(rq, next);
10e7071b
PZ
6235 return next;
6236 }
6237 }
3f1d2a31 6238
10e7071b
PZ
6239 /* The idle class should always have a runnable task */
6240 BUG();
6241}
3f1d2a31 6242
48f24c4d 6243/*
48c5ccae
PZ
6244 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6245 * try_to_wake_up()->select_task_rq().
6246 *
6247 * Called with rq->lock held even though we'er in stop_machine() and
6248 * there's no concurrency possible, we hold the required locks anyway
6249 * because of lock validation efforts.
1da177e4 6250 */
8a8c69c3 6251static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 6252{
5e16bbc2 6253 struct rq *rq = dead_rq;
48c5ccae 6254 struct task_struct *next, *stop = rq->stop;
8a8c69c3 6255 struct rq_flags orf = *rf;
48c5ccae 6256 int dest_cpu;
1da177e4
LT
6257
6258 /*
48c5ccae
PZ
6259 * Fudge the rq selection such that the below task selection loop
6260 * doesn't get stuck on the currently eligible stop task.
6261 *
6262 * We're currently inside stop_machine() and the rq is either stuck
6263 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6264 * either way we should never end up calling schedule() until we're
6265 * done here.
1da177e4 6266 */
48c5ccae 6267 rq->stop = NULL;
48f24c4d 6268
77bd3970
FW
6269 /*
6270 * put_prev_task() and pick_next_task() sched
6271 * class method both need to have an up-to-date
6272 * value of rq->clock[_task]
6273 */
6274 update_rq_clock(rq);
6275
5e16bbc2 6276 for (;;) {
48c5ccae
PZ
6277 /*
6278 * There's this thread running, bail when that's the only
d1ccc66d 6279 * remaining thread:
48c5ccae
PZ
6280 */
6281 if (rq->nr_running == 1)
dd41f596 6282 break;
48c5ccae 6283
10e7071b 6284 next = __pick_migrate_task(rq);
e692ab53 6285
5473e0cc 6286 /*
3bd37062 6287 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
6288 * both pi_lock and rq->lock, such that holding either
6289 * stabilizes the mask.
6290 *
6291 * Drop rq->lock is not quite as disastrous as it usually is
6292 * because !cpu_active at this point, which means load-balance
6293 * will not interfere. Also, stop-machine.
6294 */
8a8c69c3 6295 rq_unlock(rq, rf);
5473e0cc 6296 raw_spin_lock(&next->pi_lock);
8a8c69c3 6297 rq_relock(rq, rf);
5473e0cc
WL
6298
6299 /*
6300 * Since we're inside stop-machine, _nothing_ should have
6301 * changed the task, WARN if weird stuff happened, because in
6302 * that case the above rq->lock drop is a fail too.
6303 */
6304 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6305 raw_spin_unlock(&next->pi_lock);
6306 continue;
6307 }
6308
48c5ccae 6309 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 6310 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 6311 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 6312 if (rq != dead_rq) {
8a8c69c3 6313 rq_unlock(rq, rf);
5e16bbc2 6314 rq = dead_rq;
8a8c69c3
PZ
6315 *rf = orf;
6316 rq_relock(rq, rf);
5e16bbc2 6317 }
5473e0cc 6318 raw_spin_unlock(&next->pi_lock);
1da177e4 6319 }
dce48a84 6320
48c5ccae 6321 rq->stop = stop;
dce48a84 6322}
1da177e4
LT
6323#endif /* CONFIG_HOTPLUG_CPU */
6324
f2cb1360 6325void set_rq_online(struct rq *rq)
1f11eb6a
GH
6326{
6327 if (!rq->online) {
6328 const struct sched_class *class;
6329
c6c4927b 6330 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6331 rq->online = 1;
6332
6333 for_each_class(class) {
6334 if (class->rq_online)
6335 class->rq_online(rq);
6336 }
6337 }
6338}
6339
f2cb1360 6340void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6341{
6342 if (rq->online) {
6343 const struct sched_class *class;
6344
6345 for_each_class(class) {
6346 if (class->rq_offline)
6347 class->rq_offline(rq);
6348 }
6349
c6c4927b 6350 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6351 rq->online = 0;
6352 }
6353}
6354
d1ccc66d
IM
6355/*
6356 * used to mark begin/end of suspend/resume:
6357 */
6358static int num_cpus_frozen;
d35be8ba 6359
1da177e4 6360/*
3a101d05
TH
6361 * Update cpusets according to cpu_active mask. If cpusets are
6362 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6363 * around partition_sched_domains().
d35be8ba
SB
6364 *
6365 * If we come here as part of a suspend/resume, don't touch cpusets because we
6366 * want to restore it back to its original state upon resume anyway.
1da177e4 6367 */
40190a78 6368static void cpuset_cpu_active(void)
e761b772 6369{
40190a78 6370 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6371 /*
6372 * num_cpus_frozen tracks how many CPUs are involved in suspend
6373 * resume sequence. As long as this is not the last online
6374 * operation in the resume sequence, just build a single sched
6375 * domain, ignoring cpusets.
6376 */
50e76632
PZ
6377 partition_sched_domains(1, NULL, NULL);
6378 if (--num_cpus_frozen)
135fb3e1 6379 return;
d35be8ba
SB
6380 /*
6381 * This is the last CPU online operation. So fall through and
6382 * restore the original sched domains by considering the
6383 * cpuset configurations.
6384 */
50e76632 6385 cpuset_force_rebuild();
3a101d05 6386 }
30e03acd 6387 cpuset_update_active_cpus();
3a101d05 6388}
e761b772 6389
40190a78 6390static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6391{
40190a78 6392 if (!cpuhp_tasks_frozen) {
06a76fe0 6393 if (dl_cpu_busy(cpu))
135fb3e1 6394 return -EBUSY;
30e03acd 6395 cpuset_update_active_cpus();
135fb3e1 6396 } else {
d35be8ba
SB
6397 num_cpus_frozen++;
6398 partition_sched_domains(1, NULL, NULL);
e761b772 6399 }
135fb3e1 6400 return 0;
e761b772 6401}
e761b772 6402
40190a78 6403int sched_cpu_activate(unsigned int cpu)
135fb3e1 6404{
7d976699 6405 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6406 struct rq_flags rf;
7d976699 6407
ba2591a5
PZ
6408#ifdef CONFIG_SCHED_SMT
6409 /*
c5511d03 6410 * When going up, increment the number of cores with SMT present.
ba2591a5 6411 */
c5511d03
PZI
6412 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6413 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6414#endif
40190a78 6415 set_cpu_active(cpu, true);
135fb3e1 6416
40190a78 6417 if (sched_smp_initialized) {
135fb3e1 6418 sched_domains_numa_masks_set(cpu);
40190a78 6419 cpuset_cpu_active();
e761b772 6420 }
7d976699
TG
6421
6422 /*
6423 * Put the rq online, if not already. This happens:
6424 *
6425 * 1) In the early boot process, because we build the real domains
d1ccc66d 6426 * after all CPUs have been brought up.
7d976699
TG
6427 *
6428 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6429 * domains.
6430 */
8a8c69c3 6431 rq_lock_irqsave(rq, &rf);
7d976699
TG
6432 if (rq->rd) {
6433 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6434 set_rq_online(rq);
6435 }
8a8c69c3 6436 rq_unlock_irqrestore(rq, &rf);
7d976699 6437
40190a78 6438 return 0;
135fb3e1
TG
6439}
6440
40190a78 6441int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6442{
135fb3e1
TG
6443 int ret;
6444
40190a78 6445 set_cpu_active(cpu, false);
b2454caa
PZ
6446 /*
6447 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6448 * users of this state to go away such that all new such users will
6449 * observe it.
6450 *
b2454caa
PZ
6451 * Do sync before park smpboot threads to take care the rcu boost case.
6452 */
309ba859 6453 synchronize_rcu();
40190a78 6454
c5511d03
PZI
6455#ifdef CONFIG_SCHED_SMT
6456 /*
6457 * When going down, decrement the number of cores with SMT present.
6458 */
6459 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6460 static_branch_dec_cpuslocked(&sched_smt_present);
6461#endif
6462
40190a78
TG
6463 if (!sched_smp_initialized)
6464 return 0;
6465
6466 ret = cpuset_cpu_inactive(cpu);
6467 if (ret) {
6468 set_cpu_active(cpu, true);
6469 return ret;
135fb3e1 6470 }
40190a78
TG
6471 sched_domains_numa_masks_clear(cpu);
6472 return 0;
135fb3e1
TG
6473}
6474
94baf7a5
TG
6475static void sched_rq_cpu_starting(unsigned int cpu)
6476{
6477 struct rq *rq = cpu_rq(cpu);
6478
6479 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6480 update_max_interval();
6481}
6482
135fb3e1
TG
6483int sched_cpu_starting(unsigned int cpu)
6484{
94baf7a5 6485 sched_rq_cpu_starting(cpu);
d84b3131 6486 sched_tick_start(cpu);
135fb3e1 6487 return 0;
e761b772 6488}
e761b772 6489
f2785ddb
TG
6490#ifdef CONFIG_HOTPLUG_CPU
6491int sched_cpu_dying(unsigned int cpu)
6492{
6493 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6494 struct rq_flags rf;
f2785ddb
TG
6495
6496 /* Handle pending wakeups and then migrate everything off */
6497 sched_ttwu_pending();
d84b3131 6498 sched_tick_stop(cpu);
8a8c69c3
PZ
6499
6500 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6501 if (rq->rd) {
6502 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6503 set_rq_offline(rq);
6504 }
8a8c69c3 6505 migrate_tasks(rq, &rf);
f2785ddb 6506 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6507 rq_unlock_irqrestore(rq, &rf);
6508
f2785ddb
TG
6509 calc_load_migrate(rq);
6510 update_max_interval();
00357f5e 6511 nohz_balance_exit_idle(rq);
e5ef27d0 6512 hrtick_clear(rq);
f2785ddb
TG
6513 return 0;
6514}
6515#endif
6516
1da177e4
LT
6517void __init sched_init_smp(void)
6518{
cb83b629
PZ
6519 sched_init_numa();
6520
6acce3ef
PZ
6521 /*
6522 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 6523 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 6524 * happen.
6acce3ef 6525 */
712555ee 6526 mutex_lock(&sched_domains_mutex);
8d5dc512 6527 sched_init_domains(cpu_active_mask);
712555ee 6528 mutex_unlock(&sched_domains_mutex);
e761b772 6529
5c1e1767 6530 /* Move init over to a non-isolated CPU */
edb93821 6531 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 6532 BUG();
19978ca6 6533 sched_init_granularity();
4212823f 6534
0e3900e6 6535 init_sched_rt_class();
1baca4ce 6536 init_sched_dl_class();
1b568f0a 6537
e26fbffd 6538 sched_smp_initialized = true;
1da177e4 6539}
e26fbffd
TG
6540
6541static int __init migration_init(void)
6542{
77a5352b 6543 sched_cpu_starting(smp_processor_id());
e26fbffd 6544 return 0;
1da177e4 6545}
e26fbffd
TG
6546early_initcall(migration_init);
6547
1da177e4
LT
6548#else
6549void __init sched_init_smp(void)
6550{
19978ca6 6551 sched_init_granularity();
1da177e4
LT
6552}
6553#endif /* CONFIG_SMP */
6554
6555int in_sched_functions(unsigned long addr)
6556{
1da177e4
LT
6557 return in_lock_functions(addr) ||
6558 (addr >= (unsigned long)__sched_text_start
6559 && addr < (unsigned long)__sched_text_end);
6560}
6561
029632fb 6562#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6563/*
6564 * Default task group.
6565 * Every task in system belongs to this group at bootup.
6566 */
029632fb 6567struct task_group root_task_group;
35cf4e50 6568LIST_HEAD(task_groups);
b0367629
WL
6569
6570/* Cacheline aligned slab cache for task_group */
6571static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6572#endif
6f505b16 6573
e6252c3e 6574DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6575DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6576
1da177e4
LT
6577void __init sched_init(void)
6578{
a1dc0446 6579 unsigned long ptr = 0;
55627e3c 6580 int i;
434d53b0 6581
5822a454 6582 wait_bit_init();
9dcb8b68 6583
434d53b0 6584#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 6585 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
6586#endif
6587#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 6588 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 6589#endif
a1dc0446
QC
6590 if (ptr) {
6591 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
6592
6593#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6594 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6595 ptr += nr_cpu_ids * sizeof(void **);
6596
07e06b01 6597 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6598 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6599
6d6bc0ad 6600#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6601#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6602 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6603 ptr += nr_cpu_ids * sizeof(void **);
6604
07e06b01 6605 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6606 ptr += nr_cpu_ids * sizeof(void **);
6607
6d6bc0ad 6608#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6609 }
df7c8e84 6610#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6611 for_each_possible_cpu(i) {
6612 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6613 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6614 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6615 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6616 }
b74e6278 6617#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6618
d1ccc66d
IM
6619 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6620 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6621
57d885fe
GH
6622#ifdef CONFIG_SMP
6623 init_defrootdomain();
6624#endif
6625
d0b27fa7 6626#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6627 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6628 global_rt_period(), global_rt_runtime());
6d6bc0ad 6629#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6630
7c941438 6631#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6632 task_group_cache = KMEM_CACHE(task_group, 0);
6633
07e06b01
YZ
6634 list_add(&root_task_group.list, &task_groups);
6635 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6636 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6637 autogroup_init(&init_task);
7c941438 6638#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6639
0a945022 6640 for_each_possible_cpu(i) {
70b97a7f 6641 struct rq *rq;
1da177e4
LT
6642
6643 rq = cpu_rq(i);
05fa785c 6644 raw_spin_lock_init(&rq->lock);
7897986b 6645 rq->nr_running = 0;
dce48a84
TG
6646 rq->calc_load_active = 0;
6647 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6648 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6649 init_rt_rq(&rq->rt);
6650 init_dl_rq(&rq->dl);
dd41f596 6651#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6652 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6653 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6654 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6655 /*
d1ccc66d 6656 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6657 *
6658 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6659 * gets 100% of the CPU resources in the system. This overall
6660 * system CPU resource is divided among the tasks of
07e06b01 6661 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6662 * based on each entity's (task or task-group's) weight
6663 * (se->load.weight).
6664 *
07e06b01 6665 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6666 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6667 * then A0's share of the CPU resource is:
354d60c2 6668 *
0d905bca 6669 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6670 *
07e06b01
YZ
6671 * We achieve this by letting root_task_group's tasks sit
6672 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6673 */
ab84d31e 6674 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6675 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6676#endif /* CONFIG_FAIR_GROUP_SCHED */
6677
6678 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6679#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6680 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6681#endif
1da177e4 6682#ifdef CONFIG_SMP
41c7ce9a 6683 rq->sd = NULL;
57d885fe 6684 rq->rd = NULL;
ca6d75e6 6685 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6686 rq->balance_callback = NULL;
1da177e4 6687 rq->active_balance = 0;
dd41f596 6688 rq->next_balance = jiffies;
1da177e4 6689 rq->push_cpu = 0;
0a2966b4 6690 rq->cpu = i;
1f11eb6a 6691 rq->online = 0;
eae0c9df
MG
6692 rq->idle_stamp = 0;
6693 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6694 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6695
6696 INIT_LIST_HEAD(&rq->cfs_tasks);
6697
dc938520 6698 rq_attach_root(rq, &def_root_domain);
3451d024 6699#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6700 rq->last_load_update_tick = jiffies;
e022e0d3 6701 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6702 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6703#endif
9fd81dd5 6704#endif /* CONFIG_SMP */
77a021be 6705 hrtick_rq_init(rq);
1da177e4 6706 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6707 }
6708
9059393e 6709 set_load_weight(&init_task, false);
b50f60ce 6710
1da177e4
LT
6711 /*
6712 * The boot idle thread does lazy MMU switching as well:
6713 */
f1f10076 6714 mmgrab(&init_mm);
1da177e4
LT
6715 enter_lazy_tlb(&init_mm, current);
6716
6717 /*
6718 * Make us the idle thread. Technically, schedule() should not be
6719 * called from this thread, however somewhere below it might be,
6720 * but because we are the idle thread, we just pick up running again
6721 * when this runqueue becomes "idle".
6722 */
6723 init_idle(current, smp_processor_id());
dce48a84
TG
6724
6725 calc_load_update = jiffies + LOAD_FREQ;
6726
bf4d83f6 6727#ifdef CONFIG_SMP
29d5e047 6728 idle_thread_set_boot_cpu();
029632fb
PZ
6729#endif
6730 init_sched_fair_class();
6a7b3dc3 6731
4698f88c
JP
6732 init_schedstats();
6733
eb414681
JW
6734 psi_init();
6735
69842cba
PB
6736 init_uclamp();
6737
6892b75e 6738 scheduler_running = 1;
1da177e4
LT
6739}
6740
d902db1e 6741#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6742static inline int preempt_count_equals(int preempt_offset)
6743{
da7142e2 6744 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6745
4ba8216c 6746 return (nested == preempt_offset);
e4aafea2
FW
6747}
6748
d894837f 6749void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6750{
8eb23b9f
PZ
6751 /*
6752 * Blocking primitives will set (and therefore destroy) current->state,
6753 * since we will exit with TASK_RUNNING make sure we enter with it,
6754 * otherwise we will destroy state.
6755 */
00845eb9 6756 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6757 "do not call blocking ops when !TASK_RUNNING; "
6758 "state=%lx set at [<%p>] %pS\n",
6759 current->state,
6760 (void *)current->task_state_change,
00845eb9 6761 (void *)current->task_state_change);
8eb23b9f 6762
3427445a
PZ
6763 ___might_sleep(file, line, preempt_offset);
6764}
6765EXPORT_SYMBOL(__might_sleep);
6766
6767void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6768{
d1ccc66d
IM
6769 /* Ratelimiting timestamp: */
6770 static unsigned long prev_jiffy;
6771
d1c6d149 6772 unsigned long preempt_disable_ip;
1da177e4 6773
d1ccc66d
IM
6774 /* WARN_ON_ONCE() by default, no rate limit required: */
6775 rcu_sleep_check();
6776
db273be2 6777 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 6778 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
6779 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6780 oops_in_progress)
aef745fc 6781 return;
1c3c5eab 6782
aef745fc
IM
6783 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6784 return;
6785 prev_jiffy = jiffies;
6786
d1ccc66d 6787 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6788 preempt_disable_ip = get_preempt_disable_ip(current);
6789
3df0fc5b
PZ
6790 printk(KERN_ERR
6791 "BUG: sleeping function called from invalid context at %s:%d\n",
6792 file, line);
6793 printk(KERN_ERR
312364f3
DV
6794 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6795 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 6796 current->pid, current->comm);
aef745fc 6797
a8b686b3
ES
6798 if (task_stack_end_corrupted(current))
6799 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6800
aef745fc
IM
6801 debug_show_held_locks(current);
6802 if (irqs_disabled())
6803 print_irqtrace_events(current);
d1c6d149
VN
6804 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6805 && !preempt_count_equals(preempt_offset)) {
8f47b187 6806 pr_err("Preemption disabled at:");
d1c6d149 6807 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6808 pr_cont("\n");
6809 }
aef745fc 6810 dump_stack();
f0b22e39 6811 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6812}
3427445a 6813EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6814
6815void __cant_sleep(const char *file, int line, int preempt_offset)
6816{
6817 static unsigned long prev_jiffy;
6818
6819 if (irqs_disabled())
6820 return;
6821
6822 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6823 return;
6824
6825 if (preempt_count() > preempt_offset)
6826 return;
6827
6828 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6829 return;
6830 prev_jiffy = jiffies;
6831
6832 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6833 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6834 in_atomic(), irqs_disabled(),
6835 current->pid, current->comm);
6836
6837 debug_show_held_locks(current);
6838 dump_stack();
6839 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6840}
6841EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6842#endif
6843
6844#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6845void normalize_rt_tasks(void)
3a5e4dc1 6846{
dbc7f069 6847 struct task_struct *g, *p;
d50dde5a
DF
6848 struct sched_attr attr = {
6849 .sched_policy = SCHED_NORMAL,
6850 };
1da177e4 6851
3472eaa1 6852 read_lock(&tasklist_lock);
5d07f420 6853 for_each_process_thread(g, p) {
178be793
IM
6854 /*
6855 * Only normalize user tasks:
6856 */
3472eaa1 6857 if (p->flags & PF_KTHREAD)
178be793
IM
6858 continue;
6859
4fa8d299
JP
6860 p->se.exec_start = 0;
6861 schedstat_set(p->se.statistics.wait_start, 0);
6862 schedstat_set(p->se.statistics.sleep_start, 0);
6863 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6864
aab03e05 6865 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6866 /*
6867 * Renice negative nice level userspace
6868 * tasks back to 0:
6869 */
3472eaa1 6870 if (task_nice(p) < 0)
dd41f596 6871 set_user_nice(p, 0);
1da177e4 6872 continue;
dd41f596 6873 }
1da177e4 6874
dbc7f069 6875 __sched_setscheduler(p, &attr, false, false);
5d07f420 6876 }
3472eaa1 6877 read_unlock(&tasklist_lock);
1da177e4
LT
6878}
6879
6880#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6881
67fc4e0c 6882#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6883/*
67fc4e0c 6884 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6885 *
6886 * They can only be called when the whole system has been
6887 * stopped - every CPU needs to be quiescent, and no scheduling
6888 * activity can take place. Using them for anything else would
6889 * be a serious bug, and as a result, they aren't even visible
6890 * under any other configuration.
6891 */
6892
6893/**
d1ccc66d 6894 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6895 * @cpu: the processor in question.
6896 *
6897 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6898 *
6899 * Return: The current task for @cpu.
1df5c10a 6900 */
36c8b586 6901struct task_struct *curr_task(int cpu)
1df5c10a
LT
6902{
6903 return cpu_curr(cpu);
6904}
6905
67fc4e0c
JW
6906#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6907
6908#ifdef CONFIG_IA64
1df5c10a 6909/**
5feeb783 6910 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6911 * @cpu: the processor in question.
6912 * @p: the task pointer to set.
6913 *
6914 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6915 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6916 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6917 * must be called with all CPU's synchronized, and interrupts disabled, the
6918 * and caller must save the original value of the current task (see
6919 * curr_task() above) and restore that value before reenabling interrupts and
6920 * re-starting the system.
6921 *
6922 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6923 */
a458ae2e 6924void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6925{
6926 cpu_curr(cpu) = p;
6927}
6928
6929#endif
29f59db3 6930
7c941438 6931#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6932/* task_group_lock serializes the addition/removal of task groups */
6933static DEFINE_SPINLOCK(task_group_lock);
6934
2480c093
PB
6935static inline void alloc_uclamp_sched_group(struct task_group *tg,
6936 struct task_group *parent)
6937{
6938#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 6939 enum uclamp_id clamp_id;
2480c093
PB
6940
6941 for_each_clamp_id(clamp_id) {
6942 uclamp_se_set(&tg->uclamp_req[clamp_id],
6943 uclamp_none(clamp_id), false);
0b60ba2d 6944 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
6945 }
6946#endif
6947}
6948
2f5177f0 6949static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6950{
6951 free_fair_sched_group(tg);
6952 free_rt_sched_group(tg);
e9aa1dd1 6953 autogroup_free(tg);
b0367629 6954 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6955}
6956
6957/* allocate runqueue etc for a new task group */
ec7dc8ac 6958struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6959{
6960 struct task_group *tg;
bccbe08a 6961
b0367629 6962 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6963 if (!tg)
6964 return ERR_PTR(-ENOMEM);
6965
ec7dc8ac 6966 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6967 goto err;
6968
ec7dc8ac 6969 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6970 goto err;
6971
2480c093
PB
6972 alloc_uclamp_sched_group(tg, parent);
6973
ace783b9
LZ
6974 return tg;
6975
6976err:
2f5177f0 6977 sched_free_group(tg);
ace783b9
LZ
6978 return ERR_PTR(-ENOMEM);
6979}
6980
6981void sched_online_group(struct task_group *tg, struct task_group *parent)
6982{
6983 unsigned long flags;
6984
8ed36996 6985 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6986 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6987
d1ccc66d
IM
6988 /* Root should already exist: */
6989 WARN_ON(!parent);
f473aa5e
PZ
6990
6991 tg->parent = parent;
f473aa5e 6992 INIT_LIST_HEAD(&tg->children);
09f2724a 6993 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6994 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6995
6996 online_fair_sched_group(tg);
29f59db3
SV
6997}
6998
9b5b7751 6999/* rcu callback to free various structures associated with a task group */
2f5177f0 7000static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7001{
d1ccc66d 7002 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 7003 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7004}
7005
4cf86d77 7006void sched_destroy_group(struct task_group *tg)
ace783b9 7007{
d1ccc66d 7008 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 7009 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7010}
7011
7012void sched_offline_group(struct task_group *tg)
29f59db3 7013{
8ed36996 7014 unsigned long flags;
29f59db3 7015
d1ccc66d 7016 /* End participation in shares distribution: */
6fe1f348 7017 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7018
7019 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7020 list_del_rcu(&tg->list);
f473aa5e 7021 list_del_rcu(&tg->siblings);
8ed36996 7022 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7023}
7024
ea86cb4b 7025static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7026{
8323f26c 7027 struct task_group *tg;
29f59db3 7028
f7b8a47d
KT
7029 /*
7030 * All callers are synchronized by task_rq_lock(); we do not use RCU
7031 * which is pointless here. Thus, we pass "true" to task_css_check()
7032 * to prevent lockdep warnings.
7033 */
7034 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7035 struct task_group, css);
7036 tg = autogroup_task_group(tsk, tg);
7037 tsk->sched_task_group = tg;
7038
810b3817 7039#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7040 if (tsk->sched_class->task_change_group)
7041 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7042 else
810b3817 7043#endif
b2b5ce02 7044 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7045}
7046
7047/*
7048 * Change task's runqueue when it moves between groups.
7049 *
7050 * The caller of this function should have put the task in its new group by
7051 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7052 * its new group.
7053 */
7054void sched_move_task(struct task_struct *tsk)
7055{
7a57f32a
PZ
7056 int queued, running, queue_flags =
7057 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
7058 struct rq_flags rf;
7059 struct rq *rq;
7060
7061 rq = task_rq_lock(tsk, &rf);
1b1d6225 7062 update_rq_clock(rq);
ea86cb4b
VG
7063
7064 running = task_current(rq, tsk);
7065 queued = task_on_rq_queued(tsk);
7066
7067 if (queued)
7a57f32a 7068 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 7069 if (running)
ea86cb4b
VG
7070 put_prev_task(rq, tsk);
7071
7072 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7073
da0c1e65 7074 if (queued)
7a57f32a 7075 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 7076 if (running) {
03b7fad1 7077 set_next_task(rq, tsk);
2a4b03ff
VG
7078 /*
7079 * After changing group, the running task may have joined a
7080 * throttled one but it's still the running task. Trigger a
7081 * resched to make sure that task can still run.
7082 */
7083 resched_curr(rq);
7084 }
29f59db3 7085
eb580751 7086 task_rq_unlock(rq, tsk, &rf);
29f59db3 7087}
68318b8e 7088
a7c6d554 7089static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7090{
a7c6d554 7091 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7092}
7093
eb95419b
TH
7094static struct cgroup_subsys_state *
7095cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7096{
eb95419b
TH
7097 struct task_group *parent = css_tg(parent_css);
7098 struct task_group *tg;
68318b8e 7099
eb95419b 7100 if (!parent) {
68318b8e 7101 /* This is early initialization for the top cgroup */
07e06b01 7102 return &root_task_group.css;
68318b8e
SV
7103 }
7104
ec7dc8ac 7105 tg = sched_create_group(parent);
68318b8e
SV
7106 if (IS_ERR(tg))
7107 return ERR_PTR(-ENOMEM);
7108
68318b8e
SV
7109 return &tg->css;
7110}
7111
96b77745
KK
7112/* Expose task group only after completing cgroup initialization */
7113static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7114{
7115 struct task_group *tg = css_tg(css);
7116 struct task_group *parent = css_tg(css->parent);
7117
7118 if (parent)
7119 sched_online_group(tg, parent);
7226017a
QY
7120
7121#ifdef CONFIG_UCLAMP_TASK_GROUP
7122 /* Propagate the effective uclamp value for the new group */
7123 cpu_util_update_eff(css);
7124#endif
7125
96b77745
KK
7126 return 0;
7127}
7128
2f5177f0 7129static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 7130{
eb95419b 7131 struct task_group *tg = css_tg(css);
ace783b9 7132
2f5177f0 7133 sched_offline_group(tg);
ace783b9
LZ
7134}
7135
eb95419b 7136static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7137{
eb95419b 7138 struct task_group *tg = css_tg(css);
68318b8e 7139
2f5177f0
PZ
7140 /*
7141 * Relies on the RCU grace period between css_released() and this.
7142 */
7143 sched_free_group(tg);
ace783b9
LZ
7144}
7145
ea86cb4b
VG
7146/*
7147 * This is called before wake_up_new_task(), therefore we really only
7148 * have to set its group bits, all the other stuff does not apply.
7149 */
b53202e6 7150static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 7151{
ea86cb4b
VG
7152 struct rq_flags rf;
7153 struct rq *rq;
7154
7155 rq = task_rq_lock(task, &rf);
7156
80f5c1b8 7157 update_rq_clock(rq);
ea86cb4b
VG
7158 sched_change_group(task, TASK_SET_GROUP);
7159
7160 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
7161}
7162
1f7dd3e5 7163static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 7164{
bb9d97b6 7165 struct task_struct *task;
1f7dd3e5 7166 struct cgroup_subsys_state *css;
7dc603c9 7167 int ret = 0;
bb9d97b6 7168
1f7dd3e5 7169 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7170#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7171 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7172 return -EINVAL;
b68aa230 7173#endif
7dc603c9
PZ
7174 /*
7175 * Serialize against wake_up_new_task() such that if its
7176 * running, we're sure to observe its full state.
7177 */
7178 raw_spin_lock_irq(&task->pi_lock);
7179 /*
7180 * Avoid calling sched_move_task() before wake_up_new_task()
7181 * has happened. This would lead to problems with PELT, due to
7182 * move wanting to detach+attach while we're not attached yet.
7183 */
7184 if (task->state == TASK_NEW)
7185 ret = -EINVAL;
7186 raw_spin_unlock_irq(&task->pi_lock);
7187
7188 if (ret)
7189 break;
bb9d97b6 7190 }
7dc603c9 7191 return ret;
be367d09 7192}
68318b8e 7193
1f7dd3e5 7194static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 7195{
bb9d97b6 7196 struct task_struct *task;
1f7dd3e5 7197 struct cgroup_subsys_state *css;
bb9d97b6 7198
1f7dd3e5 7199 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7200 sched_move_task(task);
68318b8e
SV
7201}
7202
2480c093 7203#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
7204static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7205{
7206 struct cgroup_subsys_state *top_css = css;
7207 struct uclamp_se *uc_parent = NULL;
7208 struct uclamp_se *uc_se = NULL;
7209 unsigned int eff[UCLAMP_CNT];
0413d7f3 7210 enum uclamp_id clamp_id;
0b60ba2d
PB
7211 unsigned int clamps;
7212
7213 css_for_each_descendant_pre(css, top_css) {
7214 uc_parent = css_tg(css)->parent
7215 ? css_tg(css)->parent->uclamp : NULL;
7216
7217 for_each_clamp_id(clamp_id) {
7218 /* Assume effective clamps matches requested clamps */
7219 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7220 /* Cap effective clamps with parent's effective clamps */
7221 if (uc_parent &&
7222 eff[clamp_id] > uc_parent[clamp_id].value) {
7223 eff[clamp_id] = uc_parent[clamp_id].value;
7224 }
7225 }
7226 /* Ensure protection is always capped by limit */
7227 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7228
7229 /* Propagate most restrictive effective clamps */
7230 clamps = 0x0;
7231 uc_se = css_tg(css)->uclamp;
7232 for_each_clamp_id(clamp_id) {
7233 if (eff[clamp_id] == uc_se[clamp_id].value)
7234 continue;
7235 uc_se[clamp_id].value = eff[clamp_id];
7236 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7237 clamps |= (0x1 << clamp_id);
7238 }
babbe170 7239 if (!clamps) {
0b60ba2d 7240 css = css_rightmost_descendant(css);
babbe170
PB
7241 continue;
7242 }
7243
7244 /* Immediately update descendants RUNNABLE tasks */
7245 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
7246 }
7247}
2480c093
PB
7248
7249/*
7250 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7251 * C expression. Since there is no way to convert a macro argument (N) into a
7252 * character constant, use two levels of macros.
7253 */
7254#define _POW10(exp) ((unsigned int)1e##exp)
7255#define POW10(exp) _POW10(exp)
7256
7257struct uclamp_request {
7258#define UCLAMP_PERCENT_SHIFT 2
7259#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7260 s64 percent;
7261 u64 util;
7262 int ret;
7263};
7264
7265static inline struct uclamp_request
7266capacity_from_percent(char *buf)
7267{
7268 struct uclamp_request req = {
7269 .percent = UCLAMP_PERCENT_SCALE,
7270 .util = SCHED_CAPACITY_SCALE,
7271 .ret = 0,
7272 };
7273
7274 buf = strim(buf);
7275 if (strcmp(buf, "max")) {
7276 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7277 &req.percent);
7278 if (req.ret)
7279 return req;
b562d140 7280 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
7281 req.ret = -ERANGE;
7282 return req;
7283 }
7284
7285 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7286 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7287 }
7288
7289 return req;
7290}
7291
7292static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7293 size_t nbytes, loff_t off,
7294 enum uclamp_id clamp_id)
7295{
7296 struct uclamp_request req;
7297 struct task_group *tg;
7298
7299 req = capacity_from_percent(buf);
7300 if (req.ret)
7301 return req.ret;
7302
7303 mutex_lock(&uclamp_mutex);
7304 rcu_read_lock();
7305
7306 tg = css_tg(of_css(of));
7307 if (tg->uclamp_req[clamp_id].value != req.util)
7308 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7309
7310 /*
7311 * Because of not recoverable conversion rounding we keep track of the
7312 * exact requested value
7313 */
7314 tg->uclamp_pct[clamp_id] = req.percent;
7315
0b60ba2d
PB
7316 /* Update effective clamps to track the most restrictive value */
7317 cpu_util_update_eff(of_css(of));
7318
2480c093
PB
7319 rcu_read_unlock();
7320 mutex_unlock(&uclamp_mutex);
7321
7322 return nbytes;
7323}
7324
7325static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7326 char *buf, size_t nbytes,
7327 loff_t off)
7328{
7329 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7330}
7331
7332static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7333 char *buf, size_t nbytes,
7334 loff_t off)
7335{
7336 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7337}
7338
7339static inline void cpu_uclamp_print(struct seq_file *sf,
7340 enum uclamp_id clamp_id)
7341{
7342 struct task_group *tg;
7343 u64 util_clamp;
7344 u64 percent;
7345 u32 rem;
7346
7347 rcu_read_lock();
7348 tg = css_tg(seq_css(sf));
7349 util_clamp = tg->uclamp_req[clamp_id].value;
7350 rcu_read_unlock();
7351
7352 if (util_clamp == SCHED_CAPACITY_SCALE) {
7353 seq_puts(sf, "max\n");
7354 return;
7355 }
7356
7357 percent = tg->uclamp_pct[clamp_id];
7358 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7359 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7360}
7361
7362static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7363{
7364 cpu_uclamp_print(sf, UCLAMP_MIN);
7365 return 0;
7366}
7367
7368static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7369{
7370 cpu_uclamp_print(sf, UCLAMP_MAX);
7371 return 0;
7372}
7373#endif /* CONFIG_UCLAMP_TASK_GROUP */
7374
052f1dc7 7375#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7376static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7377 struct cftype *cftype, u64 shareval)
68318b8e 7378{
5b61d50a
KK
7379 if (shareval > scale_load_down(ULONG_MAX))
7380 shareval = MAX_SHARES;
182446d0 7381 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7382}
7383
182446d0
TH
7384static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7385 struct cftype *cft)
68318b8e 7386{
182446d0 7387 struct task_group *tg = css_tg(css);
68318b8e 7388
c8b28116 7389 return (u64) scale_load_down(tg->shares);
68318b8e 7390}
ab84d31e
PT
7391
7392#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7393static DEFINE_MUTEX(cfs_constraints_mutex);
7394
ab84d31e 7395const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 7396static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
ab84d31e 7397
a790de99
PT
7398static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7399
ab84d31e
PT
7400static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7401{
56f570e5 7402 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7403 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7404
7405 if (tg == &root_task_group)
7406 return -EINVAL;
7407
7408 /*
7409 * Ensure we have at some amount of bandwidth every period. This is
7410 * to prevent reaching a state of large arrears when throttled via
7411 * entity_tick() resulting in prolonged exit starvation.
7412 */
7413 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7414 return -EINVAL;
7415
7416 /*
7417 * Likewise, bound things on the otherside by preventing insane quota
7418 * periods. This also allows us to normalize in computing quota
7419 * feasibility.
7420 */
7421 if (period > max_cfs_quota_period)
7422 return -EINVAL;
7423
0e59bdae
KT
7424 /*
7425 * Prevent race between setting of cfs_rq->runtime_enabled and
7426 * unthrottle_offline_cfs_rqs().
7427 */
7428 get_online_cpus();
a790de99
PT
7429 mutex_lock(&cfs_constraints_mutex);
7430 ret = __cfs_schedulable(tg, period, quota);
7431 if (ret)
7432 goto out_unlock;
7433
58088ad0 7434 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7435 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7436 /*
7437 * If we need to toggle cfs_bandwidth_used, off->on must occur
7438 * before making related changes, and on->off must occur afterwards
7439 */
7440 if (runtime_enabled && !runtime_was_enabled)
7441 cfs_bandwidth_usage_inc();
ab84d31e
PT
7442 raw_spin_lock_irq(&cfs_b->lock);
7443 cfs_b->period = ns_to_ktime(period);
7444 cfs_b->quota = quota;
58088ad0 7445
a9cf55b2 7446 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7447
7448 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7449 if (runtime_enabled)
7450 start_cfs_bandwidth(cfs_b);
d1ccc66d 7451
ab84d31e
PT
7452 raw_spin_unlock_irq(&cfs_b->lock);
7453
0e59bdae 7454 for_each_online_cpu(i) {
ab84d31e 7455 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7456 struct rq *rq = cfs_rq->rq;
8a8c69c3 7457 struct rq_flags rf;
ab84d31e 7458
8a8c69c3 7459 rq_lock_irq(rq, &rf);
58088ad0 7460 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7461 cfs_rq->runtime_remaining = 0;
671fd9da 7462
029632fb 7463 if (cfs_rq->throttled)
671fd9da 7464 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7465 rq_unlock_irq(rq, &rf);
ab84d31e 7466 }
1ee14e6c
BS
7467 if (runtime_was_enabled && !runtime_enabled)
7468 cfs_bandwidth_usage_dec();
a790de99
PT
7469out_unlock:
7470 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7471 put_online_cpus();
ab84d31e 7472
a790de99 7473 return ret;
ab84d31e
PT
7474}
7475
b1546edc 7476static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
7477{
7478 u64 quota, period;
7479
029632fb 7480 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7481 if (cfs_quota_us < 0)
7482 quota = RUNTIME_INF;
1a8b4540 7483 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 7484 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
7485 else
7486 return -EINVAL;
ab84d31e
PT
7487
7488 return tg_set_cfs_bandwidth(tg, period, quota);
7489}
7490
b1546edc 7491static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
7492{
7493 u64 quota_us;
7494
029632fb 7495 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7496 return -1;
7497
029632fb 7498 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7499 do_div(quota_us, NSEC_PER_USEC);
7500
7501 return quota_us;
7502}
7503
b1546edc 7504static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
7505{
7506 u64 quota, period;
7507
1a8b4540
KK
7508 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7509 return -EINVAL;
7510
ab84d31e 7511 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7512 quota = tg->cfs_bandwidth.quota;
ab84d31e 7513
ab84d31e
PT
7514 return tg_set_cfs_bandwidth(tg, period, quota);
7515}
7516
b1546edc 7517static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
7518{
7519 u64 cfs_period_us;
7520
029632fb 7521 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7522 do_div(cfs_period_us, NSEC_PER_USEC);
7523
7524 return cfs_period_us;
7525}
7526
182446d0
TH
7527static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7528 struct cftype *cft)
ab84d31e 7529{
182446d0 7530 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7531}
7532
182446d0
TH
7533static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7534 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7535{
182446d0 7536 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7537}
7538
182446d0
TH
7539static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7540 struct cftype *cft)
ab84d31e 7541{
182446d0 7542 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7543}
7544
182446d0
TH
7545static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7546 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7547{
182446d0 7548 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7549}
7550
a790de99
PT
7551struct cfs_schedulable_data {
7552 struct task_group *tg;
7553 u64 period, quota;
7554};
7555
7556/*
7557 * normalize group quota/period to be quota/max_period
7558 * note: units are usecs
7559 */
7560static u64 normalize_cfs_quota(struct task_group *tg,
7561 struct cfs_schedulable_data *d)
7562{
7563 u64 quota, period;
7564
7565 if (tg == d->tg) {
7566 period = d->period;
7567 quota = d->quota;
7568 } else {
7569 period = tg_get_cfs_period(tg);
7570 quota = tg_get_cfs_quota(tg);
7571 }
7572
7573 /* note: these should typically be equivalent */
7574 if (quota == RUNTIME_INF || quota == -1)
7575 return RUNTIME_INF;
7576
7577 return to_ratio(period, quota);
7578}
7579
7580static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7581{
7582 struct cfs_schedulable_data *d = data;
029632fb 7583 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7584 s64 quota = 0, parent_quota = -1;
7585
7586 if (!tg->parent) {
7587 quota = RUNTIME_INF;
7588 } else {
029632fb 7589 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7590
7591 quota = normalize_cfs_quota(tg, d);
9c58c79a 7592 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7593
7594 /*
c53593e5
TH
7595 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7596 * always take the min. On cgroup1, only inherit when no
d1ccc66d 7597 * limit is set:
a790de99 7598 */
c53593e5
TH
7599 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7600 quota = min(quota, parent_quota);
7601 } else {
7602 if (quota == RUNTIME_INF)
7603 quota = parent_quota;
7604 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7605 return -EINVAL;
7606 }
a790de99 7607 }
9c58c79a 7608 cfs_b->hierarchical_quota = quota;
a790de99
PT
7609
7610 return 0;
7611}
7612
7613static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7614{
8277434e 7615 int ret;
a790de99
PT
7616 struct cfs_schedulable_data data = {
7617 .tg = tg,
7618 .period = period,
7619 .quota = quota,
7620 };
7621
7622 if (quota != RUNTIME_INF) {
7623 do_div(data.period, NSEC_PER_USEC);
7624 do_div(data.quota, NSEC_PER_USEC);
7625 }
7626
8277434e
PT
7627 rcu_read_lock();
7628 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7629 rcu_read_unlock();
7630
7631 return ret;
a790de99 7632}
e8da1b18 7633
a1f7164c 7634static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 7635{
2da8ca82 7636 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7637 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7638
44ffc75b
TH
7639 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7640 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7641 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 7642
3d6c50c2
YW
7643 if (schedstat_enabled() && tg != &root_task_group) {
7644 u64 ws = 0;
7645 int i;
7646
7647 for_each_possible_cpu(i)
7648 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7649
7650 seq_printf(sf, "wait_sum %llu\n", ws);
7651 }
7652
e8da1b18
NR
7653 return 0;
7654}
ab84d31e 7655#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7656#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7657
052f1dc7 7658#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7659static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7660 struct cftype *cft, s64 val)
6f505b16 7661{
182446d0 7662 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7663}
7664
182446d0
TH
7665static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7666 struct cftype *cft)
6f505b16 7667{
182446d0 7668 return sched_group_rt_runtime(css_tg(css));
6f505b16 7669}
d0b27fa7 7670
182446d0
TH
7671static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7672 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7673{
182446d0 7674 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7675}
7676
182446d0
TH
7677static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7678 struct cftype *cft)
d0b27fa7 7679{
182446d0 7680 return sched_group_rt_period(css_tg(css));
d0b27fa7 7681}
6d6bc0ad 7682#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7683
a1f7164c 7684static struct cftype cpu_legacy_files[] = {
052f1dc7 7685#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7686 {
7687 .name = "shares",
f4c753b7
PM
7688 .read_u64 = cpu_shares_read_u64,
7689 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7690 },
052f1dc7 7691#endif
ab84d31e
PT
7692#ifdef CONFIG_CFS_BANDWIDTH
7693 {
7694 .name = "cfs_quota_us",
7695 .read_s64 = cpu_cfs_quota_read_s64,
7696 .write_s64 = cpu_cfs_quota_write_s64,
7697 },
7698 {
7699 .name = "cfs_period_us",
7700 .read_u64 = cpu_cfs_period_read_u64,
7701 .write_u64 = cpu_cfs_period_write_u64,
7702 },
e8da1b18
NR
7703 {
7704 .name = "stat",
a1f7164c 7705 .seq_show = cpu_cfs_stat_show,
e8da1b18 7706 },
ab84d31e 7707#endif
052f1dc7 7708#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7709 {
9f0c1e56 7710 .name = "rt_runtime_us",
06ecb27c
PM
7711 .read_s64 = cpu_rt_runtime_read,
7712 .write_s64 = cpu_rt_runtime_write,
6f505b16 7713 },
d0b27fa7
PZ
7714 {
7715 .name = "rt_period_us",
f4c753b7
PM
7716 .read_u64 = cpu_rt_period_read_uint,
7717 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7718 },
2480c093
PB
7719#endif
7720#ifdef CONFIG_UCLAMP_TASK_GROUP
7721 {
7722 .name = "uclamp.min",
7723 .flags = CFTYPE_NOT_ON_ROOT,
7724 .seq_show = cpu_uclamp_min_show,
7725 .write = cpu_uclamp_min_write,
7726 },
7727 {
7728 .name = "uclamp.max",
7729 .flags = CFTYPE_NOT_ON_ROOT,
7730 .seq_show = cpu_uclamp_max_show,
7731 .write = cpu_uclamp_max_write,
7732 },
052f1dc7 7733#endif
d1ccc66d 7734 { } /* Terminate */
68318b8e
SV
7735};
7736
d41bf8c9
TH
7737static int cpu_extra_stat_show(struct seq_file *sf,
7738 struct cgroup_subsys_state *css)
0d593634 7739{
0d593634
TH
7740#ifdef CONFIG_CFS_BANDWIDTH
7741 {
d41bf8c9 7742 struct task_group *tg = css_tg(css);
0d593634
TH
7743 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7744 u64 throttled_usec;
7745
7746 throttled_usec = cfs_b->throttled_time;
7747 do_div(throttled_usec, NSEC_PER_USEC);
7748
7749 seq_printf(sf, "nr_periods %d\n"
7750 "nr_throttled %d\n"
7751 "throttled_usec %llu\n",
7752 cfs_b->nr_periods, cfs_b->nr_throttled,
7753 throttled_usec);
7754 }
7755#endif
7756 return 0;
7757}
7758
7759#ifdef CONFIG_FAIR_GROUP_SCHED
7760static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7761 struct cftype *cft)
7762{
7763 struct task_group *tg = css_tg(css);
7764 u64 weight = scale_load_down(tg->shares);
7765
7766 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7767}
7768
7769static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7770 struct cftype *cft, u64 weight)
7771{
7772 /*
7773 * cgroup weight knobs should use the common MIN, DFL and MAX
7774 * values which are 1, 100 and 10000 respectively. While it loses
7775 * a bit of range on both ends, it maps pretty well onto the shares
7776 * value used by scheduler and the round-trip conversions preserve
7777 * the original value over the entire range.
7778 */
7779 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7780 return -ERANGE;
7781
7782 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7783
7784 return sched_group_set_shares(css_tg(css), scale_load(weight));
7785}
7786
7787static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7788 struct cftype *cft)
7789{
7790 unsigned long weight = scale_load_down(css_tg(css)->shares);
7791 int last_delta = INT_MAX;
7792 int prio, delta;
7793
7794 /* find the closest nice value to the current weight */
7795 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7796 delta = abs(sched_prio_to_weight[prio] - weight);
7797 if (delta >= last_delta)
7798 break;
7799 last_delta = delta;
7800 }
7801
7802 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7803}
7804
7805static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7806 struct cftype *cft, s64 nice)
7807{
7808 unsigned long weight;
7281c8de 7809 int idx;
0d593634
TH
7810
7811 if (nice < MIN_NICE || nice > MAX_NICE)
7812 return -ERANGE;
7813
7281c8de
PZ
7814 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7815 idx = array_index_nospec(idx, 40);
7816 weight = sched_prio_to_weight[idx];
7817
0d593634
TH
7818 return sched_group_set_shares(css_tg(css), scale_load(weight));
7819}
7820#endif
7821
7822static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7823 long period, long quota)
7824{
7825 if (quota < 0)
7826 seq_puts(sf, "max");
7827 else
7828 seq_printf(sf, "%ld", quota);
7829
7830 seq_printf(sf, " %ld\n", period);
7831}
7832
7833/* caller should put the current value in *@periodp before calling */
7834static int __maybe_unused cpu_period_quota_parse(char *buf,
7835 u64 *periodp, u64 *quotap)
7836{
7837 char tok[21]; /* U64_MAX */
7838
4c47acd8 7839 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
7840 return -EINVAL;
7841
7842 *periodp *= NSEC_PER_USEC;
7843
7844 if (sscanf(tok, "%llu", quotap))
7845 *quotap *= NSEC_PER_USEC;
7846 else if (!strcmp(tok, "max"))
7847 *quotap = RUNTIME_INF;
7848 else
7849 return -EINVAL;
7850
7851 return 0;
7852}
7853
7854#ifdef CONFIG_CFS_BANDWIDTH
7855static int cpu_max_show(struct seq_file *sf, void *v)
7856{
7857 struct task_group *tg = css_tg(seq_css(sf));
7858
7859 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7860 return 0;
7861}
7862
7863static ssize_t cpu_max_write(struct kernfs_open_file *of,
7864 char *buf, size_t nbytes, loff_t off)
7865{
7866 struct task_group *tg = css_tg(of_css(of));
7867 u64 period = tg_get_cfs_period(tg);
7868 u64 quota;
7869 int ret;
7870
7871 ret = cpu_period_quota_parse(buf, &period, &quota);
7872 if (!ret)
7873 ret = tg_set_cfs_bandwidth(tg, period, quota);
7874 return ret ?: nbytes;
7875}
7876#endif
7877
7878static struct cftype cpu_files[] = {
0d593634
TH
7879#ifdef CONFIG_FAIR_GROUP_SCHED
7880 {
7881 .name = "weight",
7882 .flags = CFTYPE_NOT_ON_ROOT,
7883 .read_u64 = cpu_weight_read_u64,
7884 .write_u64 = cpu_weight_write_u64,
7885 },
7886 {
7887 .name = "weight.nice",
7888 .flags = CFTYPE_NOT_ON_ROOT,
7889 .read_s64 = cpu_weight_nice_read_s64,
7890 .write_s64 = cpu_weight_nice_write_s64,
7891 },
7892#endif
7893#ifdef CONFIG_CFS_BANDWIDTH
7894 {
7895 .name = "max",
7896 .flags = CFTYPE_NOT_ON_ROOT,
7897 .seq_show = cpu_max_show,
7898 .write = cpu_max_write,
7899 },
2480c093
PB
7900#endif
7901#ifdef CONFIG_UCLAMP_TASK_GROUP
7902 {
7903 .name = "uclamp.min",
7904 .flags = CFTYPE_NOT_ON_ROOT,
7905 .seq_show = cpu_uclamp_min_show,
7906 .write = cpu_uclamp_min_write,
7907 },
7908 {
7909 .name = "uclamp.max",
7910 .flags = CFTYPE_NOT_ON_ROOT,
7911 .seq_show = cpu_uclamp_max_show,
7912 .write = cpu_uclamp_max_write,
7913 },
0d593634
TH
7914#endif
7915 { } /* terminate */
7916};
7917
073219e9 7918struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7919 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7920 .css_online = cpu_cgroup_css_online,
2f5177f0 7921 .css_released = cpu_cgroup_css_released,
92fb9748 7922 .css_free = cpu_cgroup_css_free,
d41bf8c9 7923 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7924 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7925 .can_attach = cpu_cgroup_can_attach,
7926 .attach = cpu_cgroup_attach,
a1f7164c 7927 .legacy_cftypes = cpu_legacy_files,
0d593634 7928 .dfl_cftypes = cpu_files,
b38e42e9 7929 .early_init = true,
0d593634 7930 .threaded = true,
68318b8e
SV
7931};
7932
052f1dc7 7933#endif /* CONFIG_CGROUP_SCHED */
d842de87 7934
b637a328
PM
7935void dump_cpu_task(int cpu)
7936{
7937 pr_info("Task dump for CPU %d:\n", cpu);
7938 sched_show_task(cpu_curr(cpu));
7939}
ed82b8a1
AK
7940
7941/*
7942 * Nice levels are multiplicative, with a gentle 10% change for every
7943 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7944 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7945 * that remained on nice 0.
7946 *
7947 * The "10% effect" is relative and cumulative: from _any_ nice level,
7948 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7949 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7950 * If a task goes up by ~10% and another task goes down by ~10% then
7951 * the relative distance between them is ~25%.)
7952 */
7953const int sched_prio_to_weight[40] = {
7954 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7955 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7956 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7957 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7958 /* 0 */ 1024, 820, 655, 526, 423,
7959 /* 5 */ 335, 272, 215, 172, 137,
7960 /* 10 */ 110, 87, 70, 56, 45,
7961 /* 15 */ 36, 29, 23, 18, 15,
7962};
7963
7964/*
7965 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7966 *
7967 * In cases where the weight does not change often, we can use the
7968 * precalculated inverse to speed up arithmetics by turning divisions
7969 * into multiplications:
7970 */
7971const u32 sched_prio_to_wmult[40] = {
7972 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7973 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7974 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7975 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7976 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7977 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7978 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7979 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7980};
14a7405b
IM
7981
7982#undef CREATE_TRACE_POINTS