]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/cpupri.c
Merge tag 's390-5.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / cpupri.c
CommitLineData
b886d83c 1// SPDX-License-Identifier: GPL-2.0-only
6e0534f2 2/*
391e43da 3 * kernel/sched/cpupri.c
6e0534f2
GH
4 *
5 * CPU priority management
6 *
7 * Copyright (C) 2007-2008 Novell
8 *
9 * Author: Gregory Haskins <ghaskins@novell.com>
10 *
11 * This code tracks the priority of each CPU so that global migration
12 * decisions are easy to calculate. Each CPU can be in a state as follows:
13 *
14 * (INVALID), IDLE, NORMAL, RT1, ... RT99
15 *
16 * going from the lowest priority to the highest. CPUs in the INVALID state
17 * are not eligible for routing. The system maintains this state with
97fb7a0a 18 * a 2 dimensional bitmap (the first for priority class, the second for CPUs
6e0534f2
GH
19 * in that class). Therefore a typical application without affinity
20 * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
21 * searches). For tasks with affinity restrictions, the algorithm has a
22 * worst case complexity of O(min(102, nr_domcpus)), though the scenario that
23 * yields the worst case search is fairly contrived.
6e0534f2 24 */
325ea10c 25#include "sched.h"
6e0534f2
GH
26
27/* Convert between a 140 based task->prio, and our 102 based cpupri */
28static int convert_prio(int prio)
29{
30 int cpupri;
31
32 if (prio == CPUPRI_INVALID)
33 cpupri = CPUPRI_INVALID;
34 else if (prio == MAX_PRIO)
35 cpupri = CPUPRI_IDLE;
36 else if (prio >= MAX_RT_PRIO)
37 cpupri = CPUPRI_NORMAL;
38 else
39 cpupri = MAX_RT_PRIO - prio + 1;
40
41 return cpupri;
42}
43
d9cb236b
QY
44static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
45 struct cpumask *lowest_mask, int idx)
46{
47 struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
48 int skip = 0;
49
50 if (!atomic_read(&(vec)->count))
51 skip = 1;
52 /*
53 * When looking at the vector, we need to read the counter,
54 * do a memory barrier, then read the mask.
55 *
56 * Note: This is still all racey, but we can deal with it.
57 * Ideally, we only want to look at masks that are set.
58 *
59 * If a mask is not set, then the only thing wrong is that we
60 * did a little more work than necessary.
61 *
62 * If we read a zero count but the mask is set, because of the
63 * memory barriers, that can only happen when the highest prio
64 * task for a run queue has left the run queue, in which case,
65 * it will be followed by a pull. If the task we are processing
66 * fails to find a proper place to go, that pull request will
67 * pull this task if the run queue is running at a lower
68 * priority.
69 */
70 smp_rmb();
71
72 /* Need to do the rmb for every iteration */
73 if (skip)
74 return 0;
75
76 if (cpumask_any_and(p->cpus_ptr, vec->mask) >= nr_cpu_ids)
77 return 0;
78
79 if (lowest_mask) {
80 cpumask_and(lowest_mask, p->cpus_ptr, vec->mask);
81
82 /*
83 * We have to ensure that we have at least one bit
84 * still set in the array, since the map could have
85 * been concurrently emptied between the first and
86 * second reads of vec->mask. If we hit this
87 * condition, simply act as though we never hit this
88 * priority level and continue on.
89 */
90 if (cpumask_empty(lowest_mask))
91 return 0;
92 }
93
94 return 1;
95}
96
a1bd02e1
QY
97int cpupri_find(struct cpupri *cp, struct task_struct *p,
98 struct cpumask *lowest_mask)
99{
100 return cpupri_find_fitness(cp, p, lowest_mask, NULL);
101}
102
6e0534f2 103/**
a1bd02e1 104 * cpupri_find_fitness - find the best (lowest-pri) CPU in the system
6e0534f2
GH
105 * @cp: The cpupri context
106 * @p: The task
13b8bd0a 107 * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
804d402f
QY
108 * @fitness_fn: A pointer to a function to do custom checks whether the CPU
109 * fits a specific criteria so that we only return those CPUs.
6e0534f2
GH
110 *
111 * Note: This function returns the recommended CPUs as calculated during the
2a61aa40 112 * current invocation. By the time the call returns, the CPUs may have in
6e0534f2
GH
113 * fact changed priorities any number of times. While not ideal, it is not
114 * an issue of correctness since the normal rebalancer logic will correct
115 * any discrepancies created by racing against the uncertainty of the current
116 * priority configuration.
117 *
e69f6186 118 * Return: (int)bool - CPUs were found
6e0534f2 119 */
a1bd02e1 120int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
804d402f
QY
121 struct cpumask *lowest_mask,
122 bool (*fitness_fn)(struct task_struct *p, int cpu))
6e0534f2 123{
014acbf0 124 int task_pri = convert_prio(p->prio);
e94f80f6 125 int idx, cpu;
6e0534f2 126
6227cb00 127 BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
c92211d9
SR
128
129 for (idx = 0; idx < task_pri; idx++) {
d473750b 130
d9cb236b 131 if (!__cpupri_find(cp, p, lowest_mask, idx))
6e0534f2
GH
132 continue;
133
d9cb236b
QY
134 if (!lowest_mask || !fitness_fn)
135 return 1;
804d402f 136
d9cb236b
QY
137 /* Ensure the capacity of the CPUs fit the task */
138 for_each_cpu(cpu, lowest_mask) {
139 if (!fitness_fn(p, cpu))
140 cpumask_clear_cpu(cpu, lowest_mask);
141 }
07903af1 142
d9cb236b
QY
143 /*
144 * If no CPU at the current priority can fit the task
145 * continue looking
146 */
e94f80f6 147 if (cpumask_empty(lowest_mask))
d9cb236b 148 continue;
07903af1 149
6e0534f2
GH
150 return 1;
151 }
152
d9cb236b 153 /*
e94f80f6
QY
154 * If we failed to find a fitting lowest_mask, kick off a new search
155 * but without taking into account any fitness criteria this time.
d9cb236b
QY
156 *
157 * This rule favours honouring priority over fitting the task in the
158 * correct CPU (Capacity Awareness being the only user now).
159 * The idea is that if a higher priority task can run, then it should
160 * run even if this ends up being on unfitting CPU.
161 *
162 * The cost of this trade-off is not entirely clear and will probably
163 * be good for some workloads and bad for others.
164 *
165 * The main idea here is that if some CPUs were overcommitted, we try
166 * to spread which is what the scheduler traditionally did. Sys admins
167 * must do proper RT planning to avoid overloading the system if they
168 * really care.
169 */
e94f80f6
QY
170 if (fitness_fn)
171 return cpupri_find(cp, p, lowest_mask);
d9cb236b 172
6e0534f2
GH
173 return 0;
174}
175
176/**
97fb7a0a 177 * cpupri_set - update the CPU priority setting
6e0534f2 178 * @cp: The cpupri context
97fb7a0a 179 * @cpu: The target CPU
fa757281 180 * @newpri: The priority (INVALID-RT99) to assign to this CPU
6e0534f2
GH
181 *
182 * Note: Assumes cpu_rq(cpu)->lock is locked
183 *
184 * Returns: (void)
185 */
186void cpupri_set(struct cpupri *cp, int cpu, int newpri)
187{
014acbf0
YX
188 int *currpri = &cp->cpu_to_pri[cpu];
189 int oldpri = *currpri;
190 int do_mb = 0;
6e0534f2
GH
191
192 newpri = convert_prio(newpri);
193
194 BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
195
196 if (newpri == oldpri)
197 return;
198
199 /*
97fb7a0a 200 * If the CPU was currently mapped to a different value, we
c3a2ae3d
SR
201 * need to map it to the new value then remove the old value.
202 * Note, we must add the new value first, otherwise we risk the
5710f15b 203 * cpu being missed by the priority loop in cpupri_find.
6e0534f2 204 */
6e0534f2
GH
205 if (likely(newpri != CPUPRI_INVALID)) {
206 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
207
68e74568 208 cpumask_set_cpu(cpu, vec->mask);
c92211d9
SR
209 /*
210 * When adding a new vector, we update the mask first,
211 * do a write memory barrier, and then update the count, to
212 * make sure the vector is visible when count is set.
213 */
4e857c58 214 smp_mb__before_atomic();
c92211d9 215 atomic_inc(&(vec)->count);
d473750b 216 do_mb = 1;
6e0534f2 217 }
c3a2ae3d
SR
218 if (likely(oldpri != CPUPRI_INVALID)) {
219 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
220
d473750b
SR
221 /*
222 * Because the order of modification of the vec->count
223 * is important, we must make sure that the update
224 * of the new prio is seen before we decrement the
225 * old prio. This makes sure that the loop sees
226 * one or the other when we raise the priority of
227 * the run queue. We don't care about when we lower the
228 * priority, as that will trigger an rt pull anyway.
229 *
230 * We only need to do a memory barrier if we updated
231 * the new priority vec.
232 */
233 if (do_mb)
4e857c58 234 smp_mb__after_atomic();
d473750b 235
c92211d9
SR
236 /*
237 * When removing from the vector, we decrement the counter first
238 * do a memory barrier and then clear the mask.
239 */
240 atomic_dec(&(vec)->count);
4e857c58 241 smp_mb__after_atomic();
c3a2ae3d 242 cpumask_clear_cpu(cpu, vec->mask);
c3a2ae3d 243 }
6e0534f2
GH
244
245 *currpri = newpri;
246}
247
248/**
249 * cpupri_init - initialize the cpupri structure
250 * @cp: The cpupri context
251 *
e69f6186 252 * Return: -ENOMEM on memory allocation failure.
6e0534f2 253 */
68c38fc3 254int cpupri_init(struct cpupri *cp)
6e0534f2
GH
255{
256 int i;
257
6e0534f2
GH
258 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
259 struct cpupri_vec *vec = &cp->pri_to_cpu[i];
260
c92211d9 261 atomic_set(&vec->count, 0);
68c38fc3 262 if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
68e74568 263 goto cleanup;
6e0534f2
GH
264 }
265
4dac0b63
PZ
266 cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
267 if (!cp->cpu_to_pri)
268 goto cleanup;
269
6e0534f2
GH
270 for_each_possible_cpu(i)
271 cp->cpu_to_pri[i] = CPUPRI_INVALID;
4dac0b63 272
68e74568
RR
273 return 0;
274
275cleanup:
276 for (i--; i >= 0; i--)
277 free_cpumask_var(cp->pri_to_cpu[i].mask);
278 return -ENOMEM;
6e0534f2
GH
279}
280
68e74568
RR
281/**
282 * cpupri_cleanup - clean up the cpupri structure
283 * @cp: The cpupri context
284 */
285void cpupri_cleanup(struct cpupri *cp)
286{
287 int i;
6e0534f2 288
4dac0b63 289 kfree(cp->cpu_to_pri);
68e74568
RR
290 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
291 free_cpumask_var(cp->pri_to_cpu[i].mask);
292}