]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/deadline.c
sched/deadline: Add SCHED_DEADLINE inheritance logic
[mirror_ubuntu-artful-kernel.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
aab03e05
DF
19static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
20{
21 return container_of(dl_se, struct task_struct, dl);
22}
23
24static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
25{
26 return container_of(dl_rq, struct rq, dl);
27}
28
29static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
30{
31 struct task_struct *p = dl_task_of(dl_se);
32 struct rq *rq = task_rq(p);
33
34 return &rq->dl;
35}
36
37static inline int on_dl_rq(struct sched_dl_entity *dl_se)
38{
39 return !RB_EMPTY_NODE(&dl_se->rb_node);
40}
41
42static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
43{
44 struct sched_dl_entity *dl_se = &p->dl;
45
46 return dl_rq->rb_leftmost == &dl_se->rb_node;
47}
48
49void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
50{
51 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
52
53#ifdef CONFIG_SMP
54 /* zero means no -deadline tasks */
55 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
56
57 dl_rq->dl_nr_migratory = 0;
58 dl_rq->overloaded = 0;
59 dl_rq->pushable_dl_tasks_root = RB_ROOT;
60#endif
61}
62
63#ifdef CONFIG_SMP
64
65static inline int dl_overloaded(struct rq *rq)
66{
67 return atomic_read(&rq->rd->dlo_count);
68}
69
70static inline void dl_set_overload(struct rq *rq)
71{
72 if (!rq->online)
73 return;
74
75 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
76 /*
77 * Must be visible before the overload count is
78 * set (as in sched_rt.c).
79 *
80 * Matched by the barrier in pull_dl_task().
81 */
82 smp_wmb();
83 atomic_inc(&rq->rd->dlo_count);
84}
85
86static inline void dl_clear_overload(struct rq *rq)
87{
88 if (!rq->online)
89 return;
90
91 atomic_dec(&rq->rd->dlo_count);
92 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
93}
94
95static void update_dl_migration(struct dl_rq *dl_rq)
96{
97 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_total > 1) {
98 if (!dl_rq->overloaded) {
99 dl_set_overload(rq_of_dl_rq(dl_rq));
100 dl_rq->overloaded = 1;
101 }
102 } else if (dl_rq->overloaded) {
103 dl_clear_overload(rq_of_dl_rq(dl_rq));
104 dl_rq->overloaded = 0;
105 }
106}
107
108static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
109{
110 struct task_struct *p = dl_task_of(dl_se);
111 dl_rq = &rq_of_dl_rq(dl_rq)->dl;
112
113 dl_rq->dl_nr_total++;
114 if (p->nr_cpus_allowed > 1)
115 dl_rq->dl_nr_migratory++;
116
117 update_dl_migration(dl_rq);
118}
119
120static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
121{
122 struct task_struct *p = dl_task_of(dl_se);
123 dl_rq = &rq_of_dl_rq(dl_rq)->dl;
124
125 dl_rq->dl_nr_total--;
126 if (p->nr_cpus_allowed > 1)
127 dl_rq->dl_nr_migratory--;
128
129 update_dl_migration(dl_rq);
130}
131
132/*
133 * The list of pushable -deadline task is not a plist, like in
134 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
135 */
136static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
137{
138 struct dl_rq *dl_rq = &rq->dl;
139 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
140 struct rb_node *parent = NULL;
141 struct task_struct *entry;
142 int leftmost = 1;
143
144 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
145
146 while (*link) {
147 parent = *link;
148 entry = rb_entry(parent, struct task_struct,
149 pushable_dl_tasks);
150 if (dl_entity_preempt(&p->dl, &entry->dl))
151 link = &parent->rb_left;
152 else {
153 link = &parent->rb_right;
154 leftmost = 0;
155 }
156 }
157
158 if (leftmost)
159 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
160
161 rb_link_node(&p->pushable_dl_tasks, parent, link);
162 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
163}
164
1baca4ce
JL
165static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
166{
167 struct dl_rq *dl_rq = &rq->dl;
168
169 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
170 return;
171
172 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
173 struct rb_node *next_node;
174
175 next_node = rb_next(&p->pushable_dl_tasks);
176 dl_rq->pushable_dl_tasks_leftmost = next_node;
177 }
178
179 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
180 RB_CLEAR_NODE(&p->pushable_dl_tasks);
181}
182
183static inline int has_pushable_dl_tasks(struct rq *rq)
184{
185 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
186}
187
188static int push_dl_task(struct rq *rq);
189
190#else
191
192static inline
193void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
194{
195}
196
197static inline
198void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
199{
200}
201
202static inline
203void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
204{
205}
206
207static inline
208void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
209{
210}
211
212#endif /* CONFIG_SMP */
213
aab03e05
DF
214static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
215static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
216static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
217 int flags);
218
219/*
220 * We are being explicitly informed that a new instance is starting,
221 * and this means that:
222 * - the absolute deadline of the entity has to be placed at
223 * current time + relative deadline;
224 * - the runtime of the entity has to be set to the maximum value.
225 *
226 * The capability of specifying such event is useful whenever a -deadline
227 * entity wants to (try to!) synchronize its behaviour with the scheduler's
228 * one, and to (try to!) reconcile itself with its own scheduling
229 * parameters.
230 */
2d3d891d
DF
231static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
232 struct sched_dl_entity *pi_se)
aab03e05
DF
233{
234 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
235 struct rq *rq = rq_of_dl_rq(dl_rq);
236
237 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
238
239 /*
240 * We use the regular wall clock time to set deadlines in the
241 * future; in fact, we must consider execution overheads (time
242 * spent on hardirq context, etc.).
243 */
2d3d891d
DF
244 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
245 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
246 dl_se->dl_new = 0;
247}
248
249/*
250 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
251 * possibility of a entity lasting more than what it declared, and thus
252 * exhausting its runtime.
253 *
254 * Here we are interested in making runtime overrun possible, but we do
255 * not want a entity which is misbehaving to affect the scheduling of all
256 * other entities.
257 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
258 * is used, in order to confine each entity within its own bandwidth.
259 *
260 * This function deals exactly with that, and ensures that when the runtime
261 * of a entity is replenished, its deadline is also postponed. That ensures
262 * the overrunning entity can't interfere with other entity in the system and
263 * can't make them miss their deadlines. Reasons why this kind of overruns
264 * could happen are, typically, a entity voluntarily trying to overcome its
265 * runtime, or it just underestimated it during sched_setscheduler_ex().
266 */
2d3d891d
DF
267static void replenish_dl_entity(struct sched_dl_entity *dl_se,
268 struct sched_dl_entity *pi_se)
aab03e05
DF
269{
270 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
271 struct rq *rq = rq_of_dl_rq(dl_rq);
272
2d3d891d
DF
273 BUG_ON(pi_se->dl_runtime <= 0);
274
275 /*
276 * This could be the case for a !-dl task that is boosted.
277 * Just go with full inherited parameters.
278 */
279 if (dl_se->dl_deadline == 0) {
280 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
281 dl_se->runtime = pi_se->dl_runtime;
282 }
283
aab03e05
DF
284 /*
285 * We keep moving the deadline away until we get some
286 * available runtime for the entity. This ensures correct
287 * handling of situations where the runtime overrun is
288 * arbitrary large.
289 */
290 while (dl_se->runtime <= 0) {
2d3d891d
DF
291 dl_se->deadline += pi_se->dl_period;
292 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
293 }
294
295 /*
296 * At this point, the deadline really should be "in
297 * the future" with respect to rq->clock. If it's
298 * not, we are, for some reason, lagging too much!
299 * Anyway, after having warn userspace abut that,
300 * we still try to keep the things running by
301 * resetting the deadline and the budget of the
302 * entity.
303 */
304 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
305 static bool lag_once = false;
306
307 if (!lag_once) {
308 lag_once = true;
309 printk_sched("sched: DL replenish lagged to much\n");
310 }
2d3d891d
DF
311 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
312 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
313 }
314}
315
316/*
317 * Here we check if --at time t-- an entity (which is probably being
318 * [re]activated or, in general, enqueued) can use its remaining runtime
319 * and its current deadline _without_ exceeding the bandwidth it is
320 * assigned (function returns true if it can't). We are in fact applying
321 * one of the CBS rules: when a task wakes up, if the residual runtime
322 * over residual deadline fits within the allocated bandwidth, then we
323 * can keep the current (absolute) deadline and residual budget without
324 * disrupting the schedulability of the system. Otherwise, we should
325 * refill the runtime and set the deadline a period in the future,
326 * because keeping the current (absolute) deadline of the task would
327 * result in breaking guarantees promised to other tasks.
328 *
329 * This function returns true if:
330 *
755378a4 331 * runtime / (deadline - t) > dl_runtime / dl_period ,
aab03e05
DF
332 *
333 * IOW we can't recycle current parameters.
755378a4
HG
334 *
335 * Notice that the bandwidth check is done against the period. For
336 * task with deadline equal to period this is the same of using
337 * dl_deadline instead of dl_period in the equation above.
aab03e05 338 */
2d3d891d
DF
339static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
340 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
341{
342 u64 left, right;
343
344 /*
345 * left and right are the two sides of the equation above,
346 * after a bit of shuffling to use multiplications instead
347 * of divisions.
348 *
349 * Note that none of the time values involved in the two
350 * multiplications are absolute: dl_deadline and dl_runtime
351 * are the relative deadline and the maximum runtime of each
352 * instance, runtime is the runtime left for the last instance
353 * and (deadline - t), since t is rq->clock, is the time left
354 * to the (absolute) deadline. Even if overflowing the u64 type
355 * is very unlikely to occur in both cases, here we scale down
356 * as we want to avoid that risk at all. Scaling down by 10
357 * means that we reduce granularity to 1us. We are fine with it,
358 * since this is only a true/false check and, anyway, thinking
359 * of anything below microseconds resolution is actually fiction
360 * (but still we want to give the user that illusion >;).
361 */
2d3d891d
DF
362 left = (pi_se->dl_period >> 10) * (dl_se->runtime >> 10);
363 right = ((dl_se->deadline - t) >> 10) * (pi_se->dl_runtime >> 10);
aab03e05
DF
364
365 return dl_time_before(right, left);
366}
367
368/*
369 * When a -deadline entity is queued back on the runqueue, its runtime and
370 * deadline might need updating.
371 *
372 * The policy here is that we update the deadline of the entity only if:
373 * - the current deadline is in the past,
374 * - using the remaining runtime with the current deadline would make
375 * the entity exceed its bandwidth.
376 */
2d3d891d
DF
377static void update_dl_entity(struct sched_dl_entity *dl_se,
378 struct sched_dl_entity *pi_se)
aab03e05
DF
379{
380 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
381 struct rq *rq = rq_of_dl_rq(dl_rq);
382
383 /*
384 * The arrival of a new instance needs special treatment, i.e.,
385 * the actual scheduling parameters have to be "renewed".
386 */
387 if (dl_se->dl_new) {
2d3d891d 388 setup_new_dl_entity(dl_se, pi_se);
aab03e05
DF
389 return;
390 }
391
392 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d
DF
393 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
394 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
395 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
396 }
397}
398
399/*
400 * If the entity depleted all its runtime, and if we want it to sleep
401 * while waiting for some new execution time to become available, we
402 * set the bandwidth enforcement timer to the replenishment instant
403 * and try to activate it.
404 *
405 * Notice that it is important for the caller to know if the timer
406 * actually started or not (i.e., the replenishment instant is in
407 * the future or in the past).
408 */
2d3d891d 409static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
aab03e05
DF
410{
411 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
412 struct rq *rq = rq_of_dl_rq(dl_rq);
413 ktime_t now, act;
414 ktime_t soft, hard;
415 unsigned long range;
416 s64 delta;
417
2d3d891d
DF
418 if (boosted)
419 return 0;
aab03e05
DF
420 /*
421 * We want the timer to fire at the deadline, but considering
422 * that it is actually coming from rq->clock and not from
423 * hrtimer's time base reading.
424 */
425 act = ns_to_ktime(dl_se->deadline);
426 now = hrtimer_cb_get_time(&dl_se->dl_timer);
427 delta = ktime_to_ns(now) - rq_clock(rq);
428 act = ktime_add_ns(act, delta);
429
430 /*
431 * If the expiry time already passed, e.g., because the value
432 * chosen as the deadline is too small, don't even try to
433 * start the timer in the past!
434 */
435 if (ktime_us_delta(act, now) < 0)
436 return 0;
437
438 hrtimer_set_expires(&dl_se->dl_timer, act);
439
440 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
441 hard = hrtimer_get_expires(&dl_se->dl_timer);
442 range = ktime_to_ns(ktime_sub(hard, soft));
443 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
444 range, HRTIMER_MODE_ABS, 0);
445
446 return hrtimer_active(&dl_se->dl_timer);
447}
448
449/*
450 * This is the bandwidth enforcement timer callback. If here, we know
451 * a task is not on its dl_rq, since the fact that the timer was running
452 * means the task is throttled and needs a runtime replenishment.
453 *
454 * However, what we actually do depends on the fact the task is active,
455 * (it is on its rq) or has been removed from there by a call to
456 * dequeue_task_dl(). In the former case we must issue the runtime
457 * replenishment and add the task back to the dl_rq; in the latter, we just
458 * do nothing but clearing dl_throttled, so that runtime and deadline
459 * updating (and the queueing back to dl_rq) will be done by the
460 * next call to enqueue_task_dl().
461 */
462static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
463{
464 struct sched_dl_entity *dl_se = container_of(timer,
465 struct sched_dl_entity,
466 dl_timer);
467 struct task_struct *p = dl_task_of(dl_se);
468 struct rq *rq = task_rq(p);
469 raw_spin_lock(&rq->lock);
470
471 /*
472 * We need to take care of a possible races here. In fact, the
473 * task might have changed its scheduling policy to something
474 * different from SCHED_DEADLINE or changed its reservation
475 * parameters (through sched_setscheduler()).
476 */
477 if (!dl_task(p) || dl_se->dl_new)
478 goto unlock;
479
480 sched_clock_tick();
481 update_rq_clock(rq);
482 dl_se->dl_throttled = 0;
483 if (p->on_rq) {
484 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
485 if (task_has_dl_policy(rq->curr))
486 check_preempt_curr_dl(rq, p, 0);
487 else
488 resched_task(rq->curr);
1baca4ce
JL
489#ifdef CONFIG_SMP
490 /*
491 * Queueing this task back might have overloaded rq,
492 * check if we need to kick someone away.
493 */
494 if (has_pushable_dl_tasks(rq))
495 push_dl_task(rq);
496#endif
aab03e05
DF
497 }
498unlock:
499 raw_spin_unlock(&rq->lock);
500
501 return HRTIMER_NORESTART;
502}
503
504void init_dl_task_timer(struct sched_dl_entity *dl_se)
505{
506 struct hrtimer *timer = &dl_se->dl_timer;
507
508 if (hrtimer_active(timer)) {
509 hrtimer_try_to_cancel(timer);
510 return;
511 }
512
513 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
514 timer->function = dl_task_timer;
515}
516
517static
518int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
519{
520 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
521 int rorun = dl_se->runtime <= 0;
522
523 if (!rorun && !dmiss)
524 return 0;
525
526 /*
527 * If we are beyond our current deadline and we are still
528 * executing, then we have already used some of the runtime of
529 * the next instance. Thus, if we do not account that, we are
530 * stealing bandwidth from the system at each deadline miss!
531 */
532 if (dmiss) {
533 dl_se->runtime = rorun ? dl_se->runtime : 0;
534 dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
535 }
536
537 return 1;
538}
539
540/*
541 * Update the current task's runtime statistics (provided it is still
542 * a -deadline task and has not been removed from the dl_rq).
543 */
544static void update_curr_dl(struct rq *rq)
545{
546 struct task_struct *curr = rq->curr;
547 struct sched_dl_entity *dl_se = &curr->dl;
548 u64 delta_exec;
549
550 if (!dl_task(curr) || !on_dl_rq(dl_se))
551 return;
552
553 /*
554 * Consumed budget is computed considering the time as
555 * observed by schedulable tasks (excluding time spent
556 * in hardirq context, etc.). Deadlines are instead
557 * computed using hard walltime. This seems to be the more
558 * natural solution, but the full ramifications of this
559 * approach need further study.
560 */
561 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
562 if (unlikely((s64)delta_exec < 0))
563 delta_exec = 0;
564
565 schedstat_set(curr->se.statistics.exec_max,
566 max(curr->se.statistics.exec_max, delta_exec));
567
568 curr->se.sum_exec_runtime += delta_exec;
569 account_group_exec_runtime(curr, delta_exec);
570
571 curr->se.exec_start = rq_clock_task(rq);
572 cpuacct_charge(curr, delta_exec);
573
239be4a9
DF
574 sched_rt_avg_update(rq, delta_exec);
575
aab03e05
DF
576 dl_se->runtime -= delta_exec;
577 if (dl_runtime_exceeded(rq, dl_se)) {
578 __dequeue_task_dl(rq, curr, 0);
2d3d891d 579 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
aab03e05
DF
580 dl_se->dl_throttled = 1;
581 else
582 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
583
584 if (!is_leftmost(curr, &rq->dl))
585 resched_task(curr);
586 }
587}
588
1baca4ce
JL
589#ifdef CONFIG_SMP
590
591static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
592
593static inline u64 next_deadline(struct rq *rq)
594{
595 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
596
597 if (next && dl_prio(next->prio))
598 return next->dl.deadline;
599 else
600 return 0;
601}
602
603static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
604{
605 struct rq *rq = rq_of_dl_rq(dl_rq);
606
607 if (dl_rq->earliest_dl.curr == 0 ||
608 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
609 /*
610 * If the dl_rq had no -deadline tasks, or if the new task
611 * has shorter deadline than the current one on dl_rq, we
612 * know that the previous earliest becomes our next earliest,
613 * as the new task becomes the earliest itself.
614 */
615 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
616 dl_rq->earliest_dl.curr = deadline;
617 } else if (dl_rq->earliest_dl.next == 0 ||
618 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
619 /*
620 * On the other hand, if the new -deadline task has a
621 * a later deadline than the earliest one on dl_rq, but
622 * it is earlier than the next (if any), we must
623 * recompute the next-earliest.
624 */
625 dl_rq->earliest_dl.next = next_deadline(rq);
626 }
627}
628
629static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
630{
631 struct rq *rq = rq_of_dl_rq(dl_rq);
632
633 /*
634 * Since we may have removed our earliest (and/or next earliest)
635 * task we must recompute them.
636 */
637 if (!dl_rq->dl_nr_running) {
638 dl_rq->earliest_dl.curr = 0;
639 dl_rq->earliest_dl.next = 0;
640 } else {
641 struct rb_node *leftmost = dl_rq->rb_leftmost;
642 struct sched_dl_entity *entry;
643
644 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
645 dl_rq->earliest_dl.curr = entry->deadline;
646 dl_rq->earliest_dl.next = next_deadline(rq);
647 }
648}
649
650#else
651
652static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
653static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
654
655#endif /* CONFIG_SMP */
656
657static inline
658void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
659{
660 int prio = dl_task_of(dl_se)->prio;
661 u64 deadline = dl_se->deadline;
662
663 WARN_ON(!dl_prio(prio));
664 dl_rq->dl_nr_running++;
665
666 inc_dl_deadline(dl_rq, deadline);
667 inc_dl_migration(dl_se, dl_rq);
668}
669
670static inline
671void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
672{
673 int prio = dl_task_of(dl_se)->prio;
674
675 WARN_ON(!dl_prio(prio));
676 WARN_ON(!dl_rq->dl_nr_running);
677 dl_rq->dl_nr_running--;
678
679 dec_dl_deadline(dl_rq, dl_se->deadline);
680 dec_dl_migration(dl_se, dl_rq);
681}
682
aab03e05
DF
683static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
684{
685 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
686 struct rb_node **link = &dl_rq->rb_root.rb_node;
687 struct rb_node *parent = NULL;
688 struct sched_dl_entity *entry;
689 int leftmost = 1;
690
691 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
692
693 while (*link) {
694 parent = *link;
695 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
696 if (dl_time_before(dl_se->deadline, entry->deadline))
697 link = &parent->rb_left;
698 else {
699 link = &parent->rb_right;
700 leftmost = 0;
701 }
702 }
703
704 if (leftmost)
705 dl_rq->rb_leftmost = &dl_se->rb_node;
706
707 rb_link_node(&dl_se->rb_node, parent, link);
708 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
709
1baca4ce 710 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
711}
712
713static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
714{
715 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
716
717 if (RB_EMPTY_NODE(&dl_se->rb_node))
718 return;
719
720 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
721 struct rb_node *next_node;
722
723 next_node = rb_next(&dl_se->rb_node);
724 dl_rq->rb_leftmost = next_node;
725 }
726
727 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
728 RB_CLEAR_NODE(&dl_se->rb_node);
729
1baca4ce 730 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
731}
732
733static void
2d3d891d
DF
734enqueue_dl_entity(struct sched_dl_entity *dl_se,
735 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
736{
737 BUG_ON(on_dl_rq(dl_se));
738
739 /*
740 * If this is a wakeup or a new instance, the scheduling
741 * parameters of the task might need updating. Otherwise,
742 * we want a replenishment of its runtime.
743 */
744 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
2d3d891d 745 replenish_dl_entity(dl_se, pi_se);
aab03e05 746 else
2d3d891d 747 update_dl_entity(dl_se, pi_se);
aab03e05
DF
748
749 __enqueue_dl_entity(dl_se);
750}
751
752static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
753{
754 __dequeue_dl_entity(dl_se);
755}
756
757static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
758{
2d3d891d
DF
759 struct task_struct *pi_task = rt_mutex_get_top_task(p);
760 struct sched_dl_entity *pi_se = &p->dl;
761
762 /*
763 * Use the scheduling parameters of the top pi-waiter
764 * task if we have one and its (relative) deadline is
765 * smaller than our one... OTW we keep our runtime and
766 * deadline.
767 */
768 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
769 pi_se = &pi_task->dl;
770
aab03e05
DF
771 /*
772 * If p is throttled, we do nothing. In fact, if it exhausted
773 * its budget it needs a replenishment and, since it now is on
774 * its rq, the bandwidth timer callback (which clearly has not
775 * run yet) will take care of this.
776 */
777 if (p->dl.dl_throttled)
778 return;
779
2d3d891d 780 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce
JL
781
782 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
783 enqueue_pushable_dl_task(rq, p);
784
aab03e05
DF
785 inc_nr_running(rq);
786}
787
788static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
789{
790 dequeue_dl_entity(&p->dl);
1baca4ce 791 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
792}
793
794static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
795{
796 update_curr_dl(rq);
797 __dequeue_task_dl(rq, p, flags);
798
799 dec_nr_running(rq);
800}
801
802/*
803 * Yield task semantic for -deadline tasks is:
804 *
805 * get off from the CPU until our next instance, with
806 * a new runtime. This is of little use now, since we
807 * don't have a bandwidth reclaiming mechanism. Anyway,
808 * bandwidth reclaiming is planned for the future, and
809 * yield_task_dl will indicate that some spare budget
810 * is available for other task instances to use it.
811 */
812static void yield_task_dl(struct rq *rq)
813{
814 struct task_struct *p = rq->curr;
815
816 /*
817 * We make the task go to sleep until its current deadline by
818 * forcing its runtime to zero. This way, update_curr_dl() stops
819 * it and the bandwidth timer will wake it up and will give it
820 * new scheduling parameters (thanks to dl_new=1).
821 */
822 if (p->dl.runtime > 0) {
823 rq->curr->dl.dl_new = 1;
824 p->dl.runtime = 0;
825 }
826 update_curr_dl(rq);
827}
828
1baca4ce
JL
829#ifdef CONFIG_SMP
830
831static int find_later_rq(struct task_struct *task);
832static int latest_cpu_find(struct cpumask *span,
833 struct task_struct *task,
834 struct cpumask *later_mask);
835
836static int
837select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
838{
839 struct task_struct *curr;
840 struct rq *rq;
841
842 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
843 goto out;
844
845 rq = cpu_rq(cpu);
846
847 rcu_read_lock();
848 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
849
850 /*
851 * If we are dealing with a -deadline task, we must
852 * decide where to wake it up.
853 * If it has a later deadline and the current task
854 * on this rq can't move (provided the waking task
855 * can!) we prefer to send it somewhere else. On the
856 * other hand, if it has a shorter deadline, we
857 * try to make it stay here, it might be important.
858 */
859 if (unlikely(dl_task(curr)) &&
860 (curr->nr_cpus_allowed < 2 ||
861 !dl_entity_preempt(&p->dl, &curr->dl)) &&
862 (p->nr_cpus_allowed > 1)) {
863 int target = find_later_rq(p);
864
865 if (target != -1)
866 cpu = target;
867 }
868 rcu_read_unlock();
869
870out:
871 return cpu;
872}
873
874static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
875{
876 /*
877 * Current can't be migrated, useless to reschedule,
878 * let's hope p can move out.
879 */
880 if (rq->curr->nr_cpus_allowed == 1 ||
881 latest_cpu_find(rq->rd->span, rq->curr, NULL) == -1)
882 return;
883
884 /*
885 * p is migratable, so let's not schedule it and
886 * see if it is pushed or pulled somewhere else.
887 */
888 if (p->nr_cpus_allowed != 1 &&
889 latest_cpu_find(rq->rd->span, p, NULL) != -1)
890 return;
891
892 resched_task(rq->curr);
893}
894
895#endif /* CONFIG_SMP */
896
aab03e05
DF
897/*
898 * Only called when both the current and waking task are -deadline
899 * tasks.
900 */
901static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
902 int flags)
903{
1baca4ce 904 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
aab03e05 905 resched_task(rq->curr);
1baca4ce
JL
906 return;
907 }
908
909#ifdef CONFIG_SMP
910 /*
911 * In the unlikely case current and p have the same deadline
912 * let us try to decide what's the best thing to do...
913 */
914 if ((s64)(p->dl.deadline - rq->curr->dl.deadline) == 0 &&
915 !need_resched())
916 check_preempt_equal_dl(rq, p);
917#endif /* CONFIG_SMP */
aab03e05
DF
918}
919
920#ifdef CONFIG_SCHED_HRTICK
921static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
922{
923 s64 delta = p->dl.dl_runtime - p->dl.runtime;
924
925 if (delta > 10000)
926 hrtick_start(rq, p->dl.runtime);
927}
928#endif
929
930static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
931 struct dl_rq *dl_rq)
932{
933 struct rb_node *left = dl_rq->rb_leftmost;
934
935 if (!left)
936 return NULL;
937
938 return rb_entry(left, struct sched_dl_entity, rb_node);
939}
940
941struct task_struct *pick_next_task_dl(struct rq *rq)
942{
943 struct sched_dl_entity *dl_se;
944 struct task_struct *p;
945 struct dl_rq *dl_rq;
946
947 dl_rq = &rq->dl;
948
949 if (unlikely(!dl_rq->dl_nr_running))
950 return NULL;
951
952 dl_se = pick_next_dl_entity(rq, dl_rq);
953 BUG_ON(!dl_se);
954
955 p = dl_task_of(dl_se);
956 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
957
958 /* Running task will never be pushed. */
959 if (p)
960 dequeue_pushable_dl_task(rq, p);
961
aab03e05
DF
962#ifdef CONFIG_SCHED_HRTICK
963 if (hrtick_enabled(rq))
964 start_hrtick_dl(rq, p);
965#endif
1baca4ce
JL
966
967#ifdef CONFIG_SMP
968 rq->post_schedule = has_pushable_dl_tasks(rq);
969#endif /* CONFIG_SMP */
970
aab03e05
DF
971 return p;
972}
973
974static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
975{
976 update_curr_dl(rq);
1baca4ce
JL
977
978 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
979 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
980}
981
982static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
983{
984 update_curr_dl(rq);
985
986#ifdef CONFIG_SCHED_HRTICK
987 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
988 start_hrtick_dl(rq, p);
989#endif
990}
991
992static void task_fork_dl(struct task_struct *p)
993{
994 /*
995 * SCHED_DEADLINE tasks cannot fork and this is achieved through
996 * sched_fork()
997 */
998}
999
1000static void task_dead_dl(struct task_struct *p)
1001{
1002 struct hrtimer *timer = &p->dl.dl_timer;
1003
2d3d891d 1004 hrtimer_cancel(timer);
aab03e05
DF
1005}
1006
1007static void set_curr_task_dl(struct rq *rq)
1008{
1009 struct task_struct *p = rq->curr;
1010
1011 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1012
1013 /* You can't push away the running task */
1014 dequeue_pushable_dl_task(rq, p);
1015}
1016
1017#ifdef CONFIG_SMP
1018
1019/* Only try algorithms three times */
1020#define DL_MAX_TRIES 3
1021
1022static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1023{
1024 if (!task_running(rq, p) &&
1025 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1026 (p->nr_cpus_allowed > 1))
1027 return 1;
1028
1029 return 0;
1030}
1031
1032/* Returns the second earliest -deadline task, NULL otherwise */
1033static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1034{
1035 struct rb_node *next_node = rq->dl.rb_leftmost;
1036 struct sched_dl_entity *dl_se;
1037 struct task_struct *p = NULL;
1038
1039next_node:
1040 next_node = rb_next(next_node);
1041 if (next_node) {
1042 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1043 p = dl_task_of(dl_se);
1044
1045 if (pick_dl_task(rq, p, cpu))
1046 return p;
1047
1048 goto next_node;
1049 }
1050
1051 return NULL;
1052}
1053
1054static int latest_cpu_find(struct cpumask *span,
1055 struct task_struct *task,
1056 struct cpumask *later_mask)
1057{
1058 const struct sched_dl_entity *dl_se = &task->dl;
1059 int cpu, found = -1, best = 0;
1060 u64 max_dl = 0;
1061
1062 for_each_cpu(cpu, span) {
1063 struct rq *rq = cpu_rq(cpu);
1064 struct dl_rq *dl_rq = &rq->dl;
1065
1066 if (cpumask_test_cpu(cpu, &task->cpus_allowed) &&
1067 (!dl_rq->dl_nr_running || dl_time_before(dl_se->deadline,
1068 dl_rq->earliest_dl.curr))) {
1069 if (later_mask)
1070 cpumask_set_cpu(cpu, later_mask);
1071 if (!best && !dl_rq->dl_nr_running) {
1072 best = 1;
1073 found = cpu;
1074 } else if (!best &&
1075 dl_time_before(max_dl,
1076 dl_rq->earliest_dl.curr)) {
1077 max_dl = dl_rq->earliest_dl.curr;
1078 found = cpu;
1079 }
1080 } else if (later_mask)
1081 cpumask_clear_cpu(cpu, later_mask);
1082 }
1083
1084 return found;
1085}
1086
1087static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1088
1089static int find_later_rq(struct task_struct *task)
1090{
1091 struct sched_domain *sd;
1092 struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
1093 int this_cpu = smp_processor_id();
1094 int best_cpu, cpu = task_cpu(task);
1095
1096 /* Make sure the mask is initialized first */
1097 if (unlikely(!later_mask))
1098 return -1;
1099
1100 if (task->nr_cpus_allowed == 1)
1101 return -1;
1102
1103 best_cpu = latest_cpu_find(task_rq(task)->rd->span, task, later_mask);
1104 if (best_cpu == -1)
1105 return -1;
1106
1107 /*
1108 * If we are here, some target has been found,
1109 * the most suitable of which is cached in best_cpu.
1110 * This is, among the runqueues where the current tasks
1111 * have later deadlines than the task's one, the rq
1112 * with the latest possible one.
1113 *
1114 * Now we check how well this matches with task's
1115 * affinity and system topology.
1116 *
1117 * The last cpu where the task run is our first
1118 * guess, since it is most likely cache-hot there.
1119 */
1120 if (cpumask_test_cpu(cpu, later_mask))
1121 return cpu;
1122 /*
1123 * Check if this_cpu is to be skipped (i.e., it is
1124 * not in the mask) or not.
1125 */
1126 if (!cpumask_test_cpu(this_cpu, later_mask))
1127 this_cpu = -1;
1128
1129 rcu_read_lock();
1130 for_each_domain(cpu, sd) {
1131 if (sd->flags & SD_WAKE_AFFINE) {
1132
1133 /*
1134 * If possible, preempting this_cpu is
1135 * cheaper than migrating.
1136 */
1137 if (this_cpu != -1 &&
1138 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1139 rcu_read_unlock();
1140 return this_cpu;
1141 }
1142
1143 /*
1144 * Last chance: if best_cpu is valid and is
1145 * in the mask, that becomes our choice.
1146 */
1147 if (best_cpu < nr_cpu_ids &&
1148 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1149 rcu_read_unlock();
1150 return best_cpu;
1151 }
1152 }
1153 }
1154 rcu_read_unlock();
1155
1156 /*
1157 * At this point, all our guesses failed, we just return
1158 * 'something', and let the caller sort the things out.
1159 */
1160 if (this_cpu != -1)
1161 return this_cpu;
1162
1163 cpu = cpumask_any(later_mask);
1164 if (cpu < nr_cpu_ids)
1165 return cpu;
1166
1167 return -1;
1168}
1169
1170/* Locks the rq it finds */
1171static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1172{
1173 struct rq *later_rq = NULL;
1174 int tries;
1175 int cpu;
1176
1177 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1178 cpu = find_later_rq(task);
1179
1180 if ((cpu == -1) || (cpu == rq->cpu))
1181 break;
1182
1183 later_rq = cpu_rq(cpu);
1184
1185 /* Retry if something changed. */
1186 if (double_lock_balance(rq, later_rq)) {
1187 if (unlikely(task_rq(task) != rq ||
1188 !cpumask_test_cpu(later_rq->cpu,
1189 &task->cpus_allowed) ||
1190 task_running(rq, task) || !task->on_rq)) {
1191 double_unlock_balance(rq, later_rq);
1192 later_rq = NULL;
1193 break;
1194 }
1195 }
1196
1197 /*
1198 * If the rq we found has no -deadline task, or
1199 * its earliest one has a later deadline than our
1200 * task, the rq is a good one.
1201 */
1202 if (!later_rq->dl.dl_nr_running ||
1203 dl_time_before(task->dl.deadline,
1204 later_rq->dl.earliest_dl.curr))
1205 break;
1206
1207 /* Otherwise we try again. */
1208 double_unlock_balance(rq, later_rq);
1209 later_rq = NULL;
1210 }
1211
1212 return later_rq;
1213}
1214
1215static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1216{
1217 struct task_struct *p;
1218
1219 if (!has_pushable_dl_tasks(rq))
1220 return NULL;
1221
1222 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1223 struct task_struct, pushable_dl_tasks);
1224
1225 BUG_ON(rq->cpu != task_cpu(p));
1226 BUG_ON(task_current(rq, p));
1227 BUG_ON(p->nr_cpus_allowed <= 1);
1228
1229 BUG_ON(!p->se.on_rq);
1230 BUG_ON(!dl_task(p));
1231
1232 return p;
1233}
1234
1235/*
1236 * See if the non running -deadline tasks on this rq
1237 * can be sent to some other CPU where they can preempt
1238 * and start executing.
1239 */
1240static int push_dl_task(struct rq *rq)
1241{
1242 struct task_struct *next_task;
1243 struct rq *later_rq;
1244
1245 if (!rq->dl.overloaded)
1246 return 0;
1247
1248 next_task = pick_next_pushable_dl_task(rq);
1249 if (!next_task)
1250 return 0;
1251
1252retry:
1253 if (unlikely(next_task == rq->curr)) {
1254 WARN_ON(1);
1255 return 0;
1256 }
1257
1258 /*
1259 * If next_task preempts rq->curr, and rq->curr
1260 * can move away, it makes sense to just reschedule
1261 * without going further in pushing next_task.
1262 */
1263 if (dl_task(rq->curr) &&
1264 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1265 rq->curr->nr_cpus_allowed > 1) {
1266 resched_task(rq->curr);
1267 return 0;
1268 }
1269
1270 /* We might release rq lock */
1271 get_task_struct(next_task);
1272
1273 /* Will lock the rq it'll find */
1274 later_rq = find_lock_later_rq(next_task, rq);
1275 if (!later_rq) {
1276 struct task_struct *task;
1277
1278 /*
1279 * We must check all this again, since
1280 * find_lock_later_rq releases rq->lock and it is
1281 * then possible that next_task has migrated.
1282 */
1283 task = pick_next_pushable_dl_task(rq);
1284 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1285 /*
1286 * The task is still there. We don't try
1287 * again, some other cpu will pull it when ready.
1288 */
1289 dequeue_pushable_dl_task(rq, next_task);
1290 goto out;
1291 }
1292
1293 if (!task)
1294 /* No more tasks */
1295 goto out;
1296
1297 put_task_struct(next_task);
1298 next_task = task;
1299 goto retry;
1300 }
1301
1302 deactivate_task(rq, next_task, 0);
1303 set_task_cpu(next_task, later_rq->cpu);
1304 activate_task(later_rq, next_task, 0);
1305
1306 resched_task(later_rq->curr);
1307
1308 double_unlock_balance(rq, later_rq);
1309
1310out:
1311 put_task_struct(next_task);
1312
1313 return 1;
1314}
1315
1316static void push_dl_tasks(struct rq *rq)
1317{
1318 /* Terminates as it moves a -deadline task */
1319 while (push_dl_task(rq))
1320 ;
aab03e05
DF
1321}
1322
1baca4ce
JL
1323static int pull_dl_task(struct rq *this_rq)
1324{
1325 int this_cpu = this_rq->cpu, ret = 0, cpu;
1326 struct task_struct *p;
1327 struct rq *src_rq;
1328 u64 dmin = LONG_MAX;
1329
1330 if (likely(!dl_overloaded(this_rq)))
1331 return 0;
1332
1333 /*
1334 * Match the barrier from dl_set_overloaded; this guarantees that if we
1335 * see overloaded we must also see the dlo_mask bit.
1336 */
1337 smp_rmb();
1338
1339 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1340 if (this_cpu == cpu)
1341 continue;
1342
1343 src_rq = cpu_rq(cpu);
1344
1345 /*
1346 * It looks racy, abd it is! However, as in sched_rt.c,
1347 * we are fine with this.
1348 */
1349 if (this_rq->dl.dl_nr_running &&
1350 dl_time_before(this_rq->dl.earliest_dl.curr,
1351 src_rq->dl.earliest_dl.next))
1352 continue;
1353
1354 /* Might drop this_rq->lock */
1355 double_lock_balance(this_rq, src_rq);
1356
1357 /*
1358 * If there are no more pullable tasks on the
1359 * rq, we're done with it.
1360 */
1361 if (src_rq->dl.dl_nr_running <= 1)
1362 goto skip;
1363
1364 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1365
1366 /*
1367 * We found a task to be pulled if:
1368 * - it preempts our current (if there's one),
1369 * - it will preempt the last one we pulled (if any).
1370 */
1371 if (p && dl_time_before(p->dl.deadline, dmin) &&
1372 (!this_rq->dl.dl_nr_running ||
1373 dl_time_before(p->dl.deadline,
1374 this_rq->dl.earliest_dl.curr))) {
1375 WARN_ON(p == src_rq->curr);
1376 WARN_ON(!p->se.on_rq);
1377
1378 /*
1379 * Then we pull iff p has actually an earlier
1380 * deadline than the current task of its runqueue.
1381 */
1382 if (dl_time_before(p->dl.deadline,
1383 src_rq->curr->dl.deadline))
1384 goto skip;
1385
1386 ret = 1;
1387
1388 deactivate_task(src_rq, p, 0);
1389 set_task_cpu(p, this_cpu);
1390 activate_task(this_rq, p, 0);
1391 dmin = p->dl.deadline;
1392
1393 /* Is there any other task even earlier? */
1394 }
1395skip:
1396 double_unlock_balance(this_rq, src_rq);
1397 }
1398
1399 return ret;
1400}
1401
1402static void pre_schedule_dl(struct rq *rq, struct task_struct *prev)
1403{
1404 /* Try to pull other tasks here */
1405 if (dl_task(prev))
1406 pull_dl_task(rq);
1407}
1408
1409static void post_schedule_dl(struct rq *rq)
1410{
1411 push_dl_tasks(rq);
1412}
1413
1414/*
1415 * Since the task is not running and a reschedule is not going to happen
1416 * anytime soon on its runqueue, we try pushing it away now.
1417 */
1418static void task_woken_dl(struct rq *rq, struct task_struct *p)
1419{
1420 if (!task_running(rq, p) &&
1421 !test_tsk_need_resched(rq->curr) &&
1422 has_pushable_dl_tasks(rq) &&
1423 p->nr_cpus_allowed > 1 &&
1424 dl_task(rq->curr) &&
1425 (rq->curr->nr_cpus_allowed < 2 ||
1426 dl_entity_preempt(&rq->curr->dl, &p->dl))) {
1427 push_dl_tasks(rq);
1428 }
1429}
1430
1431static void set_cpus_allowed_dl(struct task_struct *p,
1432 const struct cpumask *new_mask)
1433{
1434 struct rq *rq;
1435 int weight;
1436
1437 BUG_ON(!dl_task(p));
1438
1439 /*
1440 * Update only if the task is actually running (i.e.,
1441 * it is on the rq AND it is not throttled).
1442 */
1443 if (!on_dl_rq(&p->dl))
1444 return;
1445
1446 weight = cpumask_weight(new_mask);
1447
1448 /*
1449 * Only update if the process changes its state from whether it
1450 * can migrate or not.
1451 */
1452 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1453 return;
1454
1455 rq = task_rq(p);
1456
1457 /*
1458 * The process used to be able to migrate OR it can now migrate
1459 */
1460 if (weight <= 1) {
1461 if (!task_current(rq, p))
1462 dequeue_pushable_dl_task(rq, p);
1463 BUG_ON(!rq->dl.dl_nr_migratory);
1464 rq->dl.dl_nr_migratory--;
1465 } else {
1466 if (!task_current(rq, p))
1467 enqueue_pushable_dl_task(rq, p);
1468 rq->dl.dl_nr_migratory++;
1469 }
1470
1471 update_dl_migration(&rq->dl);
1472}
1473
1474/* Assumes rq->lock is held */
1475static void rq_online_dl(struct rq *rq)
1476{
1477 if (rq->dl.overloaded)
1478 dl_set_overload(rq);
1479}
1480
1481/* Assumes rq->lock is held */
1482static void rq_offline_dl(struct rq *rq)
1483{
1484 if (rq->dl.overloaded)
1485 dl_clear_overload(rq);
1486}
1487
1488void init_sched_dl_class(void)
1489{
1490 unsigned int i;
1491
1492 for_each_possible_cpu(i)
1493 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1494 GFP_KERNEL, cpu_to_node(i));
1495}
1496
1497#endif /* CONFIG_SMP */
1498
aab03e05
DF
1499static void switched_from_dl(struct rq *rq, struct task_struct *p)
1500{
1baca4ce 1501 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
aab03e05 1502 hrtimer_try_to_cancel(&p->dl.dl_timer);
1baca4ce
JL
1503
1504#ifdef CONFIG_SMP
1505 /*
1506 * Since this might be the only -deadline task on the rq,
1507 * this is the right place to try to pull some other one
1508 * from an overloaded cpu, if any.
1509 */
1510 if (!rq->dl.dl_nr_running)
1511 pull_dl_task(rq);
1512#endif
aab03e05
DF
1513}
1514
1baca4ce
JL
1515/*
1516 * When switching to -deadline, we may overload the rq, then
1517 * we try to push someone off, if possible.
1518 */
aab03e05
DF
1519static void switched_to_dl(struct rq *rq, struct task_struct *p)
1520{
1baca4ce
JL
1521 int check_resched = 1;
1522
aab03e05
DF
1523 /*
1524 * If p is throttled, don't consider the possibility
1525 * of preempting rq->curr, the check will be done right
1526 * after its runtime will get replenished.
1527 */
1528 if (unlikely(p->dl.dl_throttled))
1529 return;
1530
1531 if (p->on_rq || rq->curr != p) {
1baca4ce
JL
1532#ifdef CONFIG_SMP
1533 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
1534 /* Only reschedule if pushing failed */
1535 check_resched = 0;
1536#endif /* CONFIG_SMP */
1537 if (check_resched && task_has_dl_policy(rq->curr))
aab03e05 1538 check_preempt_curr_dl(rq, p, 0);
aab03e05
DF
1539 }
1540}
1541
1baca4ce
JL
1542/*
1543 * If the scheduling parameters of a -deadline task changed,
1544 * a push or pull operation might be needed.
1545 */
aab03e05
DF
1546static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1547 int oldprio)
1548{
1baca4ce 1549 if (p->on_rq || rq->curr == p) {
aab03e05 1550#ifdef CONFIG_SMP
1baca4ce
JL
1551 /*
1552 * This might be too much, but unfortunately
1553 * we don't have the old deadline value, and
1554 * we can't argue if the task is increasing
1555 * or lowering its prio, so...
1556 */
1557 if (!rq->dl.overloaded)
1558 pull_dl_task(rq);
1559
1560 /*
1561 * If we now have a earlier deadline task than p,
1562 * then reschedule, provided p is still on this
1563 * runqueue.
1564 */
1565 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1566 rq->curr == p)
1567 resched_task(p);
1568#else
1569 /*
1570 * Again, we don't know if p has a earlier
1571 * or later deadline, so let's blindly set a
1572 * (maybe not needed) rescheduling point.
1573 */
1574 resched_task(p);
1575#endif /* CONFIG_SMP */
1576 } else
1577 switched_to_dl(rq, p);
aab03e05 1578}
aab03e05
DF
1579
1580const struct sched_class dl_sched_class = {
1581 .next = &rt_sched_class,
1582 .enqueue_task = enqueue_task_dl,
1583 .dequeue_task = dequeue_task_dl,
1584 .yield_task = yield_task_dl,
1585
1586 .check_preempt_curr = check_preempt_curr_dl,
1587
1588 .pick_next_task = pick_next_task_dl,
1589 .put_prev_task = put_prev_task_dl,
1590
1591#ifdef CONFIG_SMP
1592 .select_task_rq = select_task_rq_dl,
1baca4ce
JL
1593 .set_cpus_allowed = set_cpus_allowed_dl,
1594 .rq_online = rq_online_dl,
1595 .rq_offline = rq_offline_dl,
1596 .pre_schedule = pre_schedule_dl,
1597 .post_schedule = post_schedule_dl,
1598 .task_woken = task_woken_dl,
aab03e05
DF
1599#endif
1600
1601 .set_curr_task = set_curr_task_dl,
1602 .task_tick = task_tick_dl,
1603 .task_fork = task_fork_dl,
1604 .task_dead = task_dead_dl,
1605
1606 .prio_changed = prio_changed_dl,
1607 .switched_from = switched_from_dl,
1608 .switched_to = switched_to_dl,
1609};