]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/deadline.c
sched: Fix kerneldoc comment for ia64_set_curr_task
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / deadline.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
aab03e05
DF
2/*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 14 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18#include "sched.h"
3727e0e1 19#include "pelt.h"
aab03e05 20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
06a76fe0
NP
46#ifdef CONFIG_SMP
47static inline struct dl_bw *dl_bw_of(int i)
48{
49 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
50 "sched RCU must be held");
51 return &cpu_rq(i)->rd->dl_bw;
52}
53
54static inline int dl_bw_cpus(int i)
55{
56 struct root_domain *rd = cpu_rq(i)->rd;
57 int cpus = 0;
58
59 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
60 "sched RCU must be held");
61 for_each_cpu_and(i, rd->span, cpu_active_mask)
62 cpus++;
63
64 return cpus;
65}
66#else
67static inline struct dl_bw *dl_bw_of(int i)
68{
69 return &cpu_rq(i)->dl.dl_bw;
70}
71
72static inline int dl_bw_cpus(int i)
73{
74 return 1;
75}
76#endif
77
e36d8677 78static inline
794a56eb 79void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
e36d8677
LA
80{
81 u64 old = dl_rq->running_bw;
82
83 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
84 dl_rq->running_bw += dl_bw;
85 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
8fd27231 86 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
e0367b12 87 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
4042d003 88 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
e36d8677
LA
89}
90
91static inline
794a56eb 92void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
e36d8677
LA
93{
94 u64 old = dl_rq->running_bw;
95
96 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
97 dl_rq->running_bw -= dl_bw;
98 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
99 if (dl_rq->running_bw > old)
100 dl_rq->running_bw = 0;
e0367b12 101 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
4042d003 102 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
e36d8677
LA
103}
104
8fd27231 105static inline
794a56eb 106void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
8fd27231
LA
107{
108 u64 old = dl_rq->this_bw;
109
110 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
111 dl_rq->this_bw += dl_bw;
112 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
113}
114
115static inline
794a56eb 116void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
8fd27231
LA
117{
118 u64 old = dl_rq->this_bw;
119
120 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
121 dl_rq->this_bw -= dl_bw;
122 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
123 if (dl_rq->this_bw > old)
124 dl_rq->this_bw = 0;
125 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
126}
127
794a56eb
JL
128static inline
129void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
130{
131 if (!dl_entity_is_special(dl_se))
132 __add_rq_bw(dl_se->dl_bw, dl_rq);
133}
134
135static inline
136void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
137{
138 if (!dl_entity_is_special(dl_se))
139 __sub_rq_bw(dl_se->dl_bw, dl_rq);
140}
141
142static inline
143void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144{
145 if (!dl_entity_is_special(dl_se))
146 __add_running_bw(dl_se->dl_bw, dl_rq);
147}
148
149static inline
150void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
151{
152 if (!dl_entity_is_special(dl_se))
153 __sub_running_bw(dl_se->dl_bw, dl_rq);
154}
155
209a0cbd
LA
156void dl_change_utilization(struct task_struct *p, u64 new_bw)
157{
8fd27231 158 struct rq *rq;
209a0cbd 159
794a56eb
JL
160 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
161
8fd27231 162 if (task_on_rq_queued(p))
209a0cbd
LA
163 return;
164
8fd27231
LA
165 rq = task_rq(p);
166 if (p->dl.dl_non_contending) {
794a56eb 167 sub_running_bw(&p->dl, &rq->dl);
8fd27231
LA
168 p->dl.dl_non_contending = 0;
169 /*
170 * If the timer handler is currently running and the
171 * timer cannot be cancelled, inactive_task_timer()
172 * will see that dl_not_contending is not set, and
173 * will not touch the rq's active utilization,
174 * so we are still safe.
175 */
176 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
177 put_task_struct(p);
178 }
794a56eb
JL
179 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
180 __add_rq_bw(new_bw, &rq->dl);
209a0cbd
LA
181}
182
183/*
184 * The utilization of a task cannot be immediately removed from
185 * the rq active utilization (running_bw) when the task blocks.
186 * Instead, we have to wait for the so called "0-lag time".
187 *
188 * If a task blocks before the "0-lag time", a timer (the inactive
189 * timer) is armed, and running_bw is decreased when the timer
190 * fires.
191 *
192 * If the task wakes up again before the inactive timer fires,
193 * the timer is cancelled, whereas if the task wakes up after the
194 * inactive timer fired (and running_bw has been decreased) the
195 * task's utilization has to be added to running_bw again.
196 * A flag in the deadline scheduling entity (dl_non_contending)
197 * is used to avoid race conditions between the inactive timer handler
198 * and task wakeups.
199 *
200 * The following diagram shows how running_bw is updated. A task is
201 * "ACTIVE" when its utilization contributes to running_bw; an
202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
205 * time already passed, which does not contribute to running_bw anymore.
206 * +------------------+
207 * wakeup | ACTIVE |
208 * +------------------>+ contending |
209 * | add_running_bw | |
210 * | +----+------+------+
211 * | | ^
212 * | dequeue | |
213 * +--------+-------+ | |
214 * | | t >= 0-lag | | wakeup
215 * | INACTIVE |<---------------+ |
216 * | | sub_running_bw | |
217 * +--------+-------+ | |
218 * ^ | |
219 * | t < 0-lag | |
220 * | | |
221 * | V |
222 * | +----+------+------+
223 * | sub_running_bw | ACTIVE |
224 * +-------------------+ |
225 * inactive timer | non contending |
226 * fired +------------------+
227 *
228 * The task_non_contending() function is invoked when a task
229 * blocks, and checks if the 0-lag time already passed or
230 * not (in the first case, it directly updates running_bw;
231 * in the second case, it arms the inactive timer).
232 *
233 * The task_contending() function is invoked when a task wakes
234 * up, and checks if the task is still in the "ACTIVE non contending"
235 * state or not (in the second case, it updates running_bw).
236 */
237static void task_non_contending(struct task_struct *p)
238{
239 struct sched_dl_entity *dl_se = &p->dl;
240 struct hrtimer *timer = &dl_se->inactive_timer;
241 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
242 struct rq *rq = rq_of_dl_rq(dl_rq);
243 s64 zerolag_time;
244
245 /*
246 * If this is a non-deadline task that has been boosted,
247 * do nothing
248 */
249 if (dl_se->dl_runtime == 0)
250 return;
251
794a56eb
JL
252 if (dl_entity_is_special(dl_se))
253 return;
254
209a0cbd
LA
255 WARN_ON(dl_se->dl_non_contending);
256
257 zerolag_time = dl_se->deadline -
258 div64_long((dl_se->runtime * dl_se->dl_period),
259 dl_se->dl_runtime);
260
261 /*
262 * Using relative times instead of the absolute "0-lag time"
263 * allows to simplify the code
264 */
265 zerolag_time -= rq_clock(rq);
266
267 /*
268 * If the "0-lag time" already passed, decrease the active
269 * utilization now, instead of starting a timer
270 */
1b02cd6a 271 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
209a0cbd 272 if (dl_task(p))
794a56eb 273 sub_running_bw(dl_se, dl_rq);
387e3130
LA
274 if (!dl_task(p) || p->state == TASK_DEAD) {
275 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
276
8fd27231 277 if (p->state == TASK_DEAD)
794a56eb 278 sub_rq_bw(&p->dl, &rq->dl);
387e3130 279 raw_spin_lock(&dl_b->lock);
8c0944ce 280 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
209a0cbd 281 __dl_clear_params(p);
387e3130
LA
282 raw_spin_unlock(&dl_b->lock);
283 }
209a0cbd
LA
284
285 return;
286 }
287
288 dl_se->dl_non_contending = 1;
289 get_task_struct(p);
290 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
291}
292
8fd27231 293static void task_contending(struct sched_dl_entity *dl_se, int flags)
209a0cbd
LA
294{
295 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
296
297 /*
298 * If this is a non-deadline task that has been boosted,
299 * do nothing
300 */
301 if (dl_se->dl_runtime == 0)
302 return;
303
8fd27231 304 if (flags & ENQUEUE_MIGRATED)
794a56eb 305 add_rq_bw(dl_se, dl_rq);
8fd27231 306
209a0cbd
LA
307 if (dl_se->dl_non_contending) {
308 dl_se->dl_non_contending = 0;
309 /*
310 * If the timer handler is currently running and the
311 * timer cannot be cancelled, inactive_task_timer()
312 * will see that dl_not_contending is not set, and
313 * will not touch the rq's active utilization,
314 * so we are still safe.
315 */
316 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
317 put_task_struct(dl_task_of(dl_se));
318 } else {
319 /*
320 * Since "dl_non_contending" is not set, the
321 * task's utilization has already been removed from
322 * active utilization (either when the task blocked,
323 * when the "inactive timer" fired).
324 * So, add it back.
325 */
794a56eb 326 add_running_bw(dl_se, dl_rq);
209a0cbd
LA
327 }
328}
329
aab03e05
DF
330static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
331{
332 struct sched_dl_entity *dl_se = &p->dl;
333
2161573e 334 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
aab03e05
DF
335}
336
332ac17e
DF
337void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
338{
339 raw_spin_lock_init(&dl_b->dl_runtime_lock);
340 dl_b->dl_period = period;
341 dl_b->dl_runtime = runtime;
342}
343
332ac17e
DF
344void init_dl_bw(struct dl_bw *dl_b)
345{
346 raw_spin_lock_init(&dl_b->lock);
347 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 348 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
349 dl_b->bw = -1;
350 else
1724813d 351 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
352 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
353 dl_b->total_bw = 0;
354}
355
07c54f7a 356void init_dl_rq(struct dl_rq *dl_rq)
aab03e05 357{
2161573e 358 dl_rq->root = RB_ROOT_CACHED;
1baca4ce
JL
359
360#ifdef CONFIG_SMP
361 /* zero means no -deadline tasks */
362 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
363
364 dl_rq->dl_nr_migratory = 0;
365 dl_rq->overloaded = 0;
2161573e 366 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
332ac17e
DF
367#else
368 init_dl_bw(&dl_rq->dl_bw);
1baca4ce 369#endif
e36d8677
LA
370
371 dl_rq->running_bw = 0;
8fd27231 372 dl_rq->this_bw = 0;
4da3abce 373 init_dl_rq_bw_ratio(dl_rq);
1baca4ce
JL
374}
375
376#ifdef CONFIG_SMP
377
378static inline int dl_overloaded(struct rq *rq)
379{
380 return atomic_read(&rq->rd->dlo_count);
381}
382
383static inline void dl_set_overload(struct rq *rq)
384{
385 if (!rq->online)
386 return;
387
388 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
389 /*
390 * Must be visible before the overload count is
391 * set (as in sched_rt.c).
392 *
393 * Matched by the barrier in pull_dl_task().
394 */
395 smp_wmb();
396 atomic_inc(&rq->rd->dlo_count);
397}
398
399static inline void dl_clear_overload(struct rq *rq)
400{
401 if (!rq->online)
402 return;
403
404 atomic_dec(&rq->rd->dlo_count);
405 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
406}
407
408static void update_dl_migration(struct dl_rq *dl_rq)
409{
995b9ea4 410 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
411 if (!dl_rq->overloaded) {
412 dl_set_overload(rq_of_dl_rq(dl_rq));
413 dl_rq->overloaded = 1;
414 }
415 } else if (dl_rq->overloaded) {
416 dl_clear_overload(rq_of_dl_rq(dl_rq));
417 dl_rq->overloaded = 0;
418 }
419}
420
421static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
422{
423 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 424
4b53a341 425 if (p->nr_cpus_allowed > 1)
1baca4ce
JL
426 dl_rq->dl_nr_migratory++;
427
428 update_dl_migration(dl_rq);
429}
430
431static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
432{
433 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 434
4b53a341 435 if (p->nr_cpus_allowed > 1)
1baca4ce
JL
436 dl_rq->dl_nr_migratory--;
437
438 update_dl_migration(dl_rq);
439}
440
441/*
442 * The list of pushable -deadline task is not a plist, like in
443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
444 */
445static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
446{
447 struct dl_rq *dl_rq = &rq->dl;
2161573e 448 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
1baca4ce
JL
449 struct rb_node *parent = NULL;
450 struct task_struct *entry;
2161573e 451 bool leftmost = true;
1baca4ce
JL
452
453 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
454
455 while (*link) {
456 parent = *link;
457 entry = rb_entry(parent, struct task_struct,
458 pushable_dl_tasks);
459 if (dl_entity_preempt(&p->dl, &entry->dl))
460 link = &parent->rb_left;
461 else {
462 link = &parent->rb_right;
2161573e 463 leftmost = false;
1baca4ce
JL
464 }
465 }
466
2161573e 467 if (leftmost)
7d92de3a 468 dl_rq->earliest_dl.next = p->dl.deadline;
1baca4ce
JL
469
470 rb_link_node(&p->pushable_dl_tasks, parent, link);
2161573e
DB
471 rb_insert_color_cached(&p->pushable_dl_tasks,
472 &dl_rq->pushable_dl_tasks_root, leftmost);
aab03e05
DF
473}
474
1baca4ce
JL
475static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
476{
477 struct dl_rq *dl_rq = &rq->dl;
478
479 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
480 return;
481
2161573e 482 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
1baca4ce
JL
483 struct rb_node *next_node;
484
485 next_node = rb_next(&p->pushable_dl_tasks);
7d92de3a
WL
486 if (next_node) {
487 dl_rq->earliest_dl.next = rb_entry(next_node,
488 struct task_struct, pushable_dl_tasks)->dl.deadline;
489 }
1baca4ce
JL
490 }
491
2161573e 492 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
1baca4ce
JL
493 RB_CLEAR_NODE(&p->pushable_dl_tasks);
494}
495
496static inline int has_pushable_dl_tasks(struct rq *rq)
497{
2161573e 498 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
1baca4ce
JL
499}
500
501static int push_dl_task(struct rq *rq);
502
dc877341
PZ
503static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
504{
505 return dl_task(prev);
506}
507
9916e214
PZ
508static DEFINE_PER_CPU(struct callback_head, dl_push_head);
509static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
e3fca9e7
PZ
510
511static void push_dl_tasks(struct rq *);
9916e214 512static void pull_dl_task(struct rq *);
e3fca9e7 513
02d8ec94 514static inline void deadline_queue_push_tasks(struct rq *rq)
dc877341 515{
e3fca9e7
PZ
516 if (!has_pushable_dl_tasks(rq))
517 return;
518
9916e214
PZ
519 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
520}
521
02d8ec94 522static inline void deadline_queue_pull_task(struct rq *rq)
9916e214
PZ
523{
524 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
dc877341
PZ
525}
526
fa9c9d10
WL
527static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
528
a649f237 529static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
fa9c9d10
WL
530{
531 struct rq *later_rq = NULL;
59d06cea 532 struct dl_bw *dl_b;
fa9c9d10
WL
533
534 later_rq = find_lock_later_rq(p, rq);
fa9c9d10
WL
535 if (!later_rq) {
536 int cpu;
537
538 /*
539 * If we cannot preempt any rq, fall back to pick any
97fb7a0a 540 * online CPU:
fa9c9d10 541 */
3bd37062 542 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
fa9c9d10
WL
543 if (cpu >= nr_cpu_ids) {
544 /*
97fb7a0a 545 * Failed to find any suitable CPU.
fa9c9d10
WL
546 * The task will never come back!
547 */
548 BUG_ON(dl_bandwidth_enabled());
549
550 /*
551 * If admission control is disabled we
552 * try a little harder to let the task
553 * run.
554 */
555 cpu = cpumask_any(cpu_active_mask);
556 }
557 later_rq = cpu_rq(cpu);
558 double_lock_balance(rq, later_rq);
559 }
560
59d06cea
JL
561 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
562 /*
563 * Inactive timer is armed (or callback is running, but
564 * waiting for us to release rq locks). In any case, when it
565 * will fire (or continue), it will see running_bw of this
566 * task migrated to later_rq (and correctly handle it).
567 */
568 sub_running_bw(&p->dl, &rq->dl);
569 sub_rq_bw(&p->dl, &rq->dl);
570
571 add_rq_bw(&p->dl, &later_rq->dl);
572 add_running_bw(&p->dl, &later_rq->dl);
573 } else {
574 sub_rq_bw(&p->dl, &rq->dl);
575 add_rq_bw(&p->dl, &later_rq->dl);
576 }
577
578 /*
579 * And we finally need to fixup root_domain(s) bandwidth accounting,
580 * since p is still hanging out in the old (now moved to default) root
581 * domain.
582 */
583 dl_b = &rq->rd->dl_bw;
584 raw_spin_lock(&dl_b->lock);
585 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
586 raw_spin_unlock(&dl_b->lock);
587
588 dl_b = &later_rq->rd->dl_bw;
589 raw_spin_lock(&dl_b->lock);
590 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
591 raw_spin_unlock(&dl_b->lock);
592
fa9c9d10 593 set_task_cpu(p, later_rq->cpu);
a649f237
PZ
594 double_unlock_balance(later_rq, rq);
595
596 return later_rq;
fa9c9d10
WL
597}
598
1baca4ce
JL
599#else
600
601static inline
602void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
603{
604}
605
606static inline
607void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
608{
609}
610
611static inline
612void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
613{
614}
615
616static inline
617void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
618{
619}
620
dc877341
PZ
621static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
622{
623 return false;
624}
625
0ea60c20 626static inline void pull_dl_task(struct rq *rq)
dc877341 627{
dc877341
PZ
628}
629
02d8ec94 630static inline void deadline_queue_push_tasks(struct rq *rq)
dc877341 631{
dc877341
PZ
632}
633
02d8ec94 634static inline void deadline_queue_pull_task(struct rq *rq)
dc877341
PZ
635{
636}
1baca4ce
JL
637#endif /* CONFIG_SMP */
638
aab03e05
DF
639static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
640static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
97fb7a0a 641static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
aab03e05
DF
642
643/*
644 * We are being explicitly informed that a new instance is starting,
645 * and this means that:
646 * - the absolute deadline of the entity has to be placed at
647 * current time + relative deadline;
648 * - the runtime of the entity has to be set to the maximum value.
649 *
650 * The capability of specifying such event is useful whenever a -deadline
651 * entity wants to (try to!) synchronize its behaviour with the scheduler's
652 * one, and to (try to!) reconcile itself with its own scheduling
653 * parameters.
654 */
98b0a857 655static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
aab03e05
DF
656{
657 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
658 struct rq *rq = rq_of_dl_rq(dl_rq);
659
98b0a857 660 WARN_ON(dl_se->dl_boosted);
72f9f3fd
LA
661 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
662
663 /*
664 * We are racing with the deadline timer. So, do nothing because
665 * the deadline timer handler will take care of properly recharging
666 * the runtime and postponing the deadline
667 */
668 if (dl_se->dl_throttled)
669 return;
aab03e05
DF
670
671 /*
672 * We use the regular wall clock time to set deadlines in the
673 * future; in fact, we must consider execution overheads (time
674 * spent on hardirq context, etc.).
675 */
98b0a857
JL
676 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
677 dl_se->runtime = dl_se->dl_runtime;
aab03e05
DF
678}
679
680/*
681 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
682 * possibility of a entity lasting more than what it declared, and thus
683 * exhausting its runtime.
684 *
685 * Here we are interested in making runtime overrun possible, but we do
686 * not want a entity which is misbehaving to affect the scheduling of all
687 * other entities.
688 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
689 * is used, in order to confine each entity within its own bandwidth.
690 *
691 * This function deals exactly with that, and ensures that when the runtime
692 * of a entity is replenished, its deadline is also postponed. That ensures
693 * the overrunning entity can't interfere with other entity in the system and
694 * can't make them miss their deadlines. Reasons why this kind of overruns
695 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 696 * runtime, or it just underestimated it during sched_setattr().
aab03e05 697 */
2d3d891d
DF
698static void replenish_dl_entity(struct sched_dl_entity *dl_se,
699 struct sched_dl_entity *pi_se)
aab03e05
DF
700{
701 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
702 struct rq *rq = rq_of_dl_rq(dl_rq);
703
2d3d891d
DF
704 BUG_ON(pi_se->dl_runtime <= 0);
705
706 /*
707 * This could be the case for a !-dl task that is boosted.
708 * Just go with full inherited parameters.
709 */
710 if (dl_se->dl_deadline == 0) {
711 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
712 dl_se->runtime = pi_se->dl_runtime;
713 }
714
48be3a67
PZ
715 if (dl_se->dl_yielded && dl_se->runtime > 0)
716 dl_se->runtime = 0;
717
aab03e05
DF
718 /*
719 * We keep moving the deadline away until we get some
720 * available runtime for the entity. This ensures correct
721 * handling of situations where the runtime overrun is
722 * arbitrary large.
723 */
724 while (dl_se->runtime <= 0) {
2d3d891d
DF
725 dl_se->deadline += pi_se->dl_period;
726 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
727 }
728
729 /*
730 * At this point, the deadline really should be "in
731 * the future" with respect to rq->clock. If it's
732 * not, we are, for some reason, lagging too much!
733 * Anyway, after having warn userspace abut that,
734 * we still try to keep the things running by
735 * resetting the deadline and the budget of the
736 * entity.
737 */
738 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c219b7dd 739 printk_deferred_once("sched: DL replenish lagged too much\n");
2d3d891d
DF
740 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
741 dl_se->runtime = pi_se->dl_runtime;
aab03e05 742 }
1019a359
PZ
743
744 if (dl_se->dl_yielded)
745 dl_se->dl_yielded = 0;
746 if (dl_se->dl_throttled)
747 dl_se->dl_throttled = 0;
aab03e05
DF
748}
749
750/*
751 * Here we check if --at time t-- an entity (which is probably being
752 * [re]activated or, in general, enqueued) can use its remaining runtime
753 * and its current deadline _without_ exceeding the bandwidth it is
754 * assigned (function returns true if it can't). We are in fact applying
755 * one of the CBS rules: when a task wakes up, if the residual runtime
756 * over residual deadline fits within the allocated bandwidth, then we
757 * can keep the current (absolute) deadline and residual budget without
758 * disrupting the schedulability of the system. Otherwise, we should
759 * refill the runtime and set the deadline a period in the future,
760 * because keeping the current (absolute) deadline of the task would
712e5e34 761 * result in breaking guarantees promised to other tasks (refer to
d6a3b247 762 * Documentation/scheduler/sched-deadline.rst for more information).
aab03e05
DF
763 *
764 * This function returns true if:
765 *
2317d5f1 766 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
aab03e05
DF
767 *
768 * IOW we can't recycle current parameters.
755378a4 769 *
2317d5f1 770 * Notice that the bandwidth check is done against the deadline. For
755378a4 771 * task with deadline equal to period this is the same of using
2317d5f1 772 * dl_period instead of dl_deadline in the equation above.
aab03e05 773 */
2d3d891d
DF
774static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
775 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
776{
777 u64 left, right;
778
779 /*
780 * left and right are the two sides of the equation above,
781 * after a bit of shuffling to use multiplications instead
782 * of divisions.
783 *
784 * Note that none of the time values involved in the two
785 * multiplications are absolute: dl_deadline and dl_runtime
786 * are the relative deadline and the maximum runtime of each
787 * instance, runtime is the runtime left for the last instance
788 * and (deadline - t), since t is rq->clock, is the time left
789 * to the (absolute) deadline. Even if overflowing the u64 type
790 * is very unlikely to occur in both cases, here we scale down
791 * as we want to avoid that risk at all. Scaling down by 10
792 * means that we reduce granularity to 1us. We are fine with it,
793 * since this is only a true/false check and, anyway, thinking
794 * of anything below microseconds resolution is actually fiction
795 * (but still we want to give the user that illusion >;).
796 */
2317d5f1 797 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
332ac17e
DF
798 right = ((dl_se->deadline - t) >> DL_SCALE) *
799 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
800
801 return dl_time_before(right, left);
802}
803
804/*
3effcb42
DBO
805 * Revised wakeup rule [1]: For self-suspending tasks, rather then
806 * re-initializing task's runtime and deadline, the revised wakeup
807 * rule adjusts the task's runtime to avoid the task to overrun its
808 * density.
aab03e05 809 *
3effcb42
DBO
810 * Reasoning: a task may overrun the density if:
811 * runtime / (deadline - t) > dl_runtime / dl_deadline
812 *
813 * Therefore, runtime can be adjusted to:
814 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
815 *
816 * In such way that runtime will be equal to the maximum density
817 * the task can use without breaking any rule.
818 *
819 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
820 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
821 */
822static void
823update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
824{
825 u64 laxity = dl_se->deadline - rq_clock(rq);
826
827 /*
828 * If the task has deadline < period, and the deadline is in the past,
829 * it should already be throttled before this check.
830 *
831 * See update_dl_entity() comments for further details.
832 */
833 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
834
835 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
836}
837
838/*
839 * Regarding the deadline, a task with implicit deadline has a relative
840 * deadline == relative period. A task with constrained deadline has a
841 * relative deadline <= relative period.
842 *
843 * We support constrained deadline tasks. However, there are some restrictions
844 * applied only for tasks which do not have an implicit deadline. See
845 * update_dl_entity() to know more about such restrictions.
846 *
847 * The dl_is_implicit() returns true if the task has an implicit deadline.
848 */
849static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
850{
851 return dl_se->dl_deadline == dl_se->dl_period;
852}
853
854/*
855 * When a deadline entity is placed in the runqueue, its runtime and deadline
856 * might need to be updated. This is done by a CBS wake up rule. There are two
857 * different rules: 1) the original CBS; and 2) the Revisited CBS.
858 *
859 * When the task is starting a new period, the Original CBS is used. In this
860 * case, the runtime is replenished and a new absolute deadline is set.
861 *
862 * When a task is queued before the begin of the next period, using the
863 * remaining runtime and deadline could make the entity to overflow, see
864 * dl_entity_overflow() to find more about runtime overflow. When such case
865 * is detected, the runtime and deadline need to be updated.
866 *
867 * If the task has an implicit deadline, i.e., deadline == period, the Original
868 * CBS is applied. the runtime is replenished and a new absolute deadline is
869 * set, as in the previous cases.
870 *
871 * However, the Original CBS does not work properly for tasks with
872 * deadline < period, which are said to have a constrained deadline. By
873 * applying the Original CBS, a constrained deadline task would be able to run
874 * runtime/deadline in a period. With deadline < period, the task would
875 * overrun the runtime/period allowed bandwidth, breaking the admission test.
876 *
877 * In order to prevent this misbehave, the Revisited CBS is used for
878 * constrained deadline tasks when a runtime overflow is detected. In the
879 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
880 * the remaining runtime of the task is reduced to avoid runtime overflow.
881 * Please refer to the comments update_dl_revised_wakeup() function to find
882 * more about the Revised CBS rule.
aab03e05 883 */
2d3d891d
DF
884static void update_dl_entity(struct sched_dl_entity *dl_se,
885 struct sched_dl_entity *pi_se)
aab03e05
DF
886{
887 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
888 struct rq *rq = rq_of_dl_rq(dl_rq);
889
aab03e05 890 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d 891 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
3effcb42
DBO
892
893 if (unlikely(!dl_is_implicit(dl_se) &&
894 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
895 !dl_se->dl_boosted)){
896 update_dl_revised_wakeup(dl_se, rq);
897 return;
898 }
899
2d3d891d
DF
900 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
901 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
902 }
903}
904
5ac69d37
DBO
905static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
906{
907 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
908}
909
aab03e05
DF
910/*
911 * If the entity depleted all its runtime, and if we want it to sleep
912 * while waiting for some new execution time to become available, we
5ac69d37 913 * set the bandwidth replenishment timer to the replenishment instant
aab03e05
DF
914 * and try to activate it.
915 *
916 * Notice that it is important for the caller to know if the timer
917 * actually started or not (i.e., the replenishment instant is in
918 * the future or in the past).
919 */
a649f237 920static int start_dl_timer(struct task_struct *p)
aab03e05 921{
a649f237
PZ
922 struct sched_dl_entity *dl_se = &p->dl;
923 struct hrtimer *timer = &dl_se->dl_timer;
924 struct rq *rq = task_rq(p);
aab03e05 925 ktime_t now, act;
aab03e05
DF
926 s64 delta;
927
a649f237
PZ
928 lockdep_assert_held(&rq->lock);
929
aab03e05
DF
930 /*
931 * We want the timer to fire at the deadline, but considering
932 * that it is actually coming from rq->clock and not from
933 * hrtimer's time base reading.
934 */
5ac69d37 935 act = ns_to_ktime(dl_next_period(dl_se));
a649f237 936 now = hrtimer_cb_get_time(timer);
aab03e05
DF
937 delta = ktime_to_ns(now) - rq_clock(rq);
938 act = ktime_add_ns(act, delta);
939
940 /*
941 * If the expiry time already passed, e.g., because the value
942 * chosen as the deadline is too small, don't even try to
943 * start the timer in the past!
944 */
945 if (ktime_us_delta(act, now) < 0)
946 return 0;
947
a649f237
PZ
948 /*
949 * !enqueued will guarantee another callback; even if one is already in
950 * progress. This ensures a balanced {get,put}_task_struct().
951 *
952 * The race against __run_timer() clearing the enqueued state is
953 * harmless because we're holding task_rq()->lock, therefore the timer
954 * expiring after we've done the check will wait on its task_rq_lock()
955 * and observe our state.
956 */
957 if (!hrtimer_is_queued(timer)) {
958 get_task_struct(p);
959 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
960 }
aab03e05 961
cc9684d3 962 return 1;
aab03e05
DF
963}
964
965/*
966 * This is the bandwidth enforcement timer callback. If here, we know
967 * a task is not on its dl_rq, since the fact that the timer was running
968 * means the task is throttled and needs a runtime replenishment.
969 *
970 * However, what we actually do depends on the fact the task is active,
971 * (it is on its rq) or has been removed from there by a call to
972 * dequeue_task_dl(). In the former case we must issue the runtime
973 * replenishment and add the task back to the dl_rq; in the latter, we just
974 * do nothing but clearing dl_throttled, so that runtime and deadline
975 * updating (and the queueing back to dl_rq) will be done by the
976 * next call to enqueue_task_dl().
977 */
978static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
979{
980 struct sched_dl_entity *dl_se = container_of(timer,
981 struct sched_dl_entity,
982 dl_timer);
983 struct task_struct *p = dl_task_of(dl_se);
eb580751 984 struct rq_flags rf;
0f397f2c 985 struct rq *rq;
3960c8c0 986
eb580751 987 rq = task_rq_lock(p, &rf);
0f397f2c 988
aab03e05 989 /*
a649f237 990 * The task might have changed its scheduling policy to something
9846d50d 991 * different than SCHED_DEADLINE (through switched_from_dl()).
a649f237 992 */
209a0cbd 993 if (!dl_task(p))
a649f237 994 goto unlock;
a649f237 995
a649f237
PZ
996 /*
997 * The task might have been boosted by someone else and might be in the
998 * boosting/deboosting path, its not throttled.
999 */
1000 if (dl_se->dl_boosted)
1001 goto unlock;
a79ec89f 1002
fa9c9d10 1003 /*
a649f237
PZ
1004 * Spurious timer due to start_dl_timer() race; or we already received
1005 * a replenishment from rt_mutex_setprio().
fa9c9d10 1006 */
a649f237 1007 if (!dl_se->dl_throttled)
fa9c9d10 1008 goto unlock;
a649f237
PZ
1009
1010 sched_clock_tick();
1011 update_rq_clock(rq);
fa9c9d10 1012
a79ec89f
KT
1013 /*
1014 * If the throttle happened during sched-out; like:
1015 *
1016 * schedule()
1017 * deactivate_task()
1018 * dequeue_task_dl()
1019 * update_curr_dl()
1020 * start_dl_timer()
1021 * __dequeue_task_dl()
1022 * prev->on_rq = 0;
1023 *
1024 * We can be both throttled and !queued. Replenish the counter
1025 * but do not enqueue -- wait for our wakeup to do that.
1026 */
1027 if (!task_on_rq_queued(p)) {
1028 replenish_dl_entity(dl_se, dl_se);
1029 goto unlock;
1030 }
1031
1baca4ce 1032#ifdef CONFIG_SMP
c0c8c9fa 1033 if (unlikely(!rq->online)) {
61c7aca6
WL
1034 /*
1035 * If the runqueue is no longer available, migrate the
1036 * task elsewhere. This necessarily changes rq.
1037 */
c0c8c9fa 1038 lockdep_unpin_lock(&rq->lock, rf.cookie);
a649f237 1039 rq = dl_task_offline_migration(rq, p);
c0c8c9fa 1040 rf.cookie = lockdep_pin_lock(&rq->lock);
dcc3b5ff 1041 update_rq_clock(rq);
61c7aca6
WL
1042
1043 /*
1044 * Now that the task has been migrated to the new RQ and we
1045 * have that locked, proceed as normal and enqueue the task
1046 * there.
1047 */
c0c8c9fa 1048 }
61c7aca6 1049#endif
a649f237 1050
61c7aca6
WL
1051 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1052 if (dl_task(rq->curr))
1053 check_preempt_curr_dl(rq, p, 0);
1054 else
1055 resched_curr(rq);
a649f237 1056
61c7aca6 1057#ifdef CONFIG_SMP
a649f237
PZ
1058 /*
1059 * Queueing this task back might have overloaded rq, check if we need
1060 * to kick someone away.
1019a359 1061 */
0aaafaab
PZ
1062 if (has_pushable_dl_tasks(rq)) {
1063 /*
1064 * Nothing relies on rq->lock after this, so its safe to drop
1065 * rq->lock.
1066 */
d8ac8971 1067 rq_unpin_lock(rq, &rf);
1019a359 1068 push_dl_task(rq);
d8ac8971 1069 rq_repin_lock(rq, &rf);
0aaafaab 1070 }
1baca4ce 1071#endif
a649f237 1072
aab03e05 1073unlock:
eb580751 1074 task_rq_unlock(rq, p, &rf);
aab03e05 1075
a649f237
PZ
1076 /*
1077 * This can free the task_struct, including this hrtimer, do not touch
1078 * anything related to that after this.
1079 */
1080 put_task_struct(p);
1081
aab03e05
DF
1082 return HRTIMER_NORESTART;
1083}
1084
1085void init_dl_task_timer(struct sched_dl_entity *dl_se)
1086{
1087 struct hrtimer *timer = &dl_se->dl_timer;
1088
aab03e05
DF
1089 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1090 timer->function = dl_task_timer;
1091}
1092
df8eac8c
DBO
1093/*
1094 * During the activation, CBS checks if it can reuse the current task's
1095 * runtime and period. If the deadline of the task is in the past, CBS
1096 * cannot use the runtime, and so it replenishes the task. This rule
1097 * works fine for implicit deadline tasks (deadline == period), and the
1098 * CBS was designed for implicit deadline tasks. However, a task with
1099 * constrained deadline (deadine < period) might be awakened after the
1100 * deadline, but before the next period. In this case, replenishing the
1101 * task would allow it to run for runtime / deadline. As in this case
1102 * deadline < period, CBS enables a task to run for more than the
1103 * runtime / period. In a very loaded system, this can cause a domino
1104 * effect, making other tasks miss their deadlines.
1105 *
1106 * To avoid this problem, in the activation of a constrained deadline
1107 * task after the deadline but before the next period, throttle the
1108 * task and set the replenishing timer to the begin of the next period,
1109 * unless it is boosted.
1110 */
1111static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1112{
1113 struct task_struct *p = dl_task_of(dl_se);
1114 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1115
1116 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1117 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1118 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1119 return;
1120 dl_se->dl_throttled = 1;
ae83b56a
XP
1121 if (dl_se->runtime > 0)
1122 dl_se->runtime = 0;
df8eac8c
DBO
1123 }
1124}
1125
aab03e05 1126static
6fab5410 1127int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
aab03e05 1128{
269ad801 1129 return (dl_se->runtime <= 0);
aab03e05
DF
1130}
1131
faa59937
JL
1132extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1133
c52f14d3
LA
1134/*
1135 * This function implements the GRUB accounting rule:
1136 * according to the GRUB reclaiming algorithm, the runtime is
daec5798
LA
1137 * not decreased as "dq = -dt", but as
1138 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1139 * where u is the utilization of the task, Umax is the maximum reclaimable
1140 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1141 * as the difference between the "total runqueue utilization" and the
1142 * runqueue active utilization, and Uextra is the (per runqueue) extra
1143 * reclaimable utilization.
9f0d1a50 1144 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
daec5798
LA
1145 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1146 * BW_SHIFT.
1147 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1148 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1149 * Since delta is a 64 bit variable, to have an overflow its value
1150 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1151 * So, overflow is not an issue here.
c52f14d3 1152 */
3febfc8a 1153static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
c52f14d3 1154{
9f0d1a50
LA
1155 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1156 u64 u_act;
daec5798 1157 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
c52f14d3 1158
9f0d1a50 1159 /*
daec5798
LA
1160 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1161 * we compare u_inact + rq->dl.extra_bw with
1162 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1163 * u_inact + rq->dl.extra_bw can be larger than
1164 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1165 * leading to wrong results)
9f0d1a50 1166 */
daec5798
LA
1167 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1168 u_act = u_act_min;
9f0d1a50 1169 else
daec5798 1170 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
9f0d1a50
LA
1171
1172 return (delta * u_act) >> BW_SHIFT;
c52f14d3
LA
1173}
1174
aab03e05
DF
1175/*
1176 * Update the current task's runtime statistics (provided it is still
1177 * a -deadline task and has not been removed from the dl_rq).
1178 */
1179static void update_curr_dl(struct rq *rq)
1180{
1181 struct task_struct *curr = rq->curr;
1182 struct sched_dl_entity *dl_se = &curr->dl;
07881166
JL
1183 u64 delta_exec, scaled_delta_exec;
1184 int cpu = cpu_of(rq);
6fe0ce1e 1185 u64 now;
aab03e05
DF
1186
1187 if (!dl_task(curr) || !on_dl_rq(dl_se))
1188 return;
1189
1190 /*
1191 * Consumed budget is computed considering the time as
1192 * observed by schedulable tasks (excluding time spent
1193 * in hardirq context, etc.). Deadlines are instead
1194 * computed using hard walltime. This seems to be the more
1195 * natural solution, but the full ramifications of this
1196 * approach need further study.
1197 */
6fe0ce1e
WY
1198 now = rq_clock_task(rq);
1199 delta_exec = now - curr->se.exec_start;
48be3a67
PZ
1200 if (unlikely((s64)delta_exec <= 0)) {
1201 if (unlikely(dl_se->dl_yielded))
1202 goto throttle;
734ff2a7 1203 return;
48be3a67 1204 }
aab03e05
DF
1205
1206 schedstat_set(curr->se.statistics.exec_max,
1207 max(curr->se.statistics.exec_max, delta_exec));
1208
1209 curr->se.sum_exec_runtime += delta_exec;
1210 account_group_exec_runtime(curr, delta_exec);
1211
6fe0ce1e 1212 curr->se.exec_start = now;
d2cc5ed6 1213 cgroup_account_cputime(curr, delta_exec);
aab03e05 1214
794a56eb
JL
1215 if (dl_entity_is_special(dl_se))
1216 return;
1217
07881166
JL
1218 /*
1219 * For tasks that participate in GRUB, we implement GRUB-PA: the
1220 * spare reclaimed bandwidth is used to clock down frequency.
1221 *
1222 * For the others, we still need to scale reservation parameters
1223 * according to current frequency and CPU maximum capacity.
1224 */
1225 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1226 scaled_delta_exec = grub_reclaim(delta_exec,
1227 rq,
1228 &curr->dl);
1229 } else {
1230 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
8ec59c0f 1231 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
07881166
JL
1232
1233 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1234 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1235 }
1236
1237 dl_se->runtime -= scaled_delta_exec;
48be3a67
PZ
1238
1239throttle:
1240 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1019a359 1241 dl_se->dl_throttled = 1;
34be3930
JL
1242
1243 /* If requested, inform the user about runtime overruns. */
1244 if (dl_runtime_exceeded(dl_se) &&
1245 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1246 dl_se->dl_overrun = 1;
1247
aab03e05 1248 __dequeue_task_dl(rq, curr, 0);
a649f237 1249 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
aab03e05
DF
1250 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1251
1252 if (!is_leftmost(curr, &rq->dl))
8875125e 1253 resched_curr(rq);
aab03e05 1254 }
1724813d
PZ
1255
1256 /*
1257 * Because -- for now -- we share the rt bandwidth, we need to
1258 * account our runtime there too, otherwise actual rt tasks
1259 * would be able to exceed the shared quota.
1260 *
1261 * Account to the root rt group for now.
1262 *
1263 * The solution we're working towards is having the RT groups scheduled
1264 * using deadline servers -- however there's a few nasties to figure
1265 * out before that can happen.
1266 */
1267 if (rt_bandwidth_enabled()) {
1268 struct rt_rq *rt_rq = &rq->rt;
1269
1270 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
1271 /*
1272 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
1273 * have our own CBS to keep us inline; only account when RT
1274 * bandwidth is relevant.
1724813d 1275 */
faa59937
JL
1276 if (sched_rt_bandwidth_account(rt_rq))
1277 rt_rq->rt_time += delta_exec;
1724813d
PZ
1278 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1279 }
aab03e05
DF
1280}
1281
209a0cbd
LA
1282static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1283{
1284 struct sched_dl_entity *dl_se = container_of(timer,
1285 struct sched_dl_entity,
1286 inactive_timer);
1287 struct task_struct *p = dl_task_of(dl_se);
1288 struct rq_flags rf;
1289 struct rq *rq;
1290
1291 rq = task_rq_lock(p, &rf);
1292
ecda2b66
JL
1293 sched_clock_tick();
1294 update_rq_clock(rq);
1295
209a0cbd 1296 if (!dl_task(p) || p->state == TASK_DEAD) {
387e3130
LA
1297 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1298
209a0cbd 1299 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
794a56eb
JL
1300 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1301 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
209a0cbd
LA
1302 dl_se->dl_non_contending = 0;
1303 }
387e3130
LA
1304
1305 raw_spin_lock(&dl_b->lock);
8c0944ce 1306 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
387e3130 1307 raw_spin_unlock(&dl_b->lock);
209a0cbd
LA
1308 __dl_clear_params(p);
1309
1310 goto unlock;
1311 }
1312 if (dl_se->dl_non_contending == 0)
1313 goto unlock;
1314
794a56eb 1315 sub_running_bw(dl_se, &rq->dl);
209a0cbd
LA
1316 dl_se->dl_non_contending = 0;
1317unlock:
1318 task_rq_unlock(rq, p, &rf);
1319 put_task_struct(p);
1320
1321 return HRTIMER_NORESTART;
1322}
1323
1324void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1325{
1326 struct hrtimer *timer = &dl_se->inactive_timer;
1327
1328 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1329 timer->function = inactive_task_timer;
1330}
1331
1baca4ce
JL
1332#ifdef CONFIG_SMP
1333
1baca4ce
JL
1334static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1335{
1336 struct rq *rq = rq_of_dl_rq(dl_rq);
1337
1338 if (dl_rq->earliest_dl.curr == 0 ||
1339 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1baca4ce 1340 dl_rq->earliest_dl.curr = deadline;
d8206bb3 1341 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1baca4ce
JL
1342 }
1343}
1344
1345static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1346{
1347 struct rq *rq = rq_of_dl_rq(dl_rq);
1348
1349 /*
1350 * Since we may have removed our earliest (and/or next earliest)
1351 * task we must recompute them.
1352 */
1353 if (!dl_rq->dl_nr_running) {
1354 dl_rq->earliest_dl.curr = 0;
1355 dl_rq->earliest_dl.next = 0;
d8206bb3 1356 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1baca4ce 1357 } else {
2161573e 1358 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1baca4ce
JL
1359 struct sched_dl_entity *entry;
1360
1361 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1362 dl_rq->earliest_dl.curr = entry->deadline;
d8206bb3 1363 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1baca4ce
JL
1364 }
1365}
1366
1367#else
1368
1369static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1370static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1371
1372#endif /* CONFIG_SMP */
1373
1374static inline
1375void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1376{
1377 int prio = dl_task_of(dl_se)->prio;
1378 u64 deadline = dl_se->deadline;
1379
1380 WARN_ON(!dl_prio(prio));
1381 dl_rq->dl_nr_running++;
72465447 1382 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
1383
1384 inc_dl_deadline(dl_rq, deadline);
1385 inc_dl_migration(dl_se, dl_rq);
1386}
1387
1388static inline
1389void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1390{
1391 int prio = dl_task_of(dl_se)->prio;
1392
1393 WARN_ON(!dl_prio(prio));
1394 WARN_ON(!dl_rq->dl_nr_running);
1395 dl_rq->dl_nr_running--;
72465447 1396 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
1397
1398 dec_dl_deadline(dl_rq, dl_se->deadline);
1399 dec_dl_migration(dl_se, dl_rq);
1400}
1401
aab03e05
DF
1402static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1403{
1404 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2161573e 1405 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
aab03e05
DF
1406 struct rb_node *parent = NULL;
1407 struct sched_dl_entity *entry;
1408 int leftmost = 1;
1409
1410 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1411
1412 while (*link) {
1413 parent = *link;
1414 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1415 if (dl_time_before(dl_se->deadline, entry->deadline))
1416 link = &parent->rb_left;
1417 else {
1418 link = &parent->rb_right;
1419 leftmost = 0;
1420 }
1421 }
1422
aab03e05 1423 rb_link_node(&dl_se->rb_node, parent, link);
2161573e 1424 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
aab03e05 1425
1baca4ce 1426 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
1427}
1428
1429static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1430{
1431 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1432
1433 if (RB_EMPTY_NODE(&dl_se->rb_node))
1434 return;
1435
2161573e 1436 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
aab03e05
DF
1437 RB_CLEAR_NODE(&dl_se->rb_node);
1438
1baca4ce 1439 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
1440}
1441
1442static void
2d3d891d
DF
1443enqueue_dl_entity(struct sched_dl_entity *dl_se,
1444 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
1445{
1446 BUG_ON(on_dl_rq(dl_se));
1447
1448 /*
1449 * If this is a wakeup or a new instance, the scheduling
1450 * parameters of the task might need updating. Otherwise,
1451 * we want a replenishment of its runtime.
1452 */
e36d8677 1453 if (flags & ENQUEUE_WAKEUP) {
8fd27231 1454 task_contending(dl_se, flags);
2d3d891d 1455 update_dl_entity(dl_se, pi_se);
e36d8677 1456 } else if (flags & ENQUEUE_REPLENISH) {
6a503c3b 1457 replenish_dl_entity(dl_se, pi_se);
295d6d5e
LA
1458 } else if ((flags & ENQUEUE_RESTORE) &&
1459 dl_time_before(dl_se->deadline,
1460 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1461 setup_new_dl_entity(dl_se);
e36d8677 1462 }
aab03e05
DF
1463
1464 __enqueue_dl_entity(dl_se);
1465}
1466
1467static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1468{
1469 __dequeue_dl_entity(dl_se);
1470}
1471
1472static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1473{
2d3d891d
DF
1474 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1475 struct sched_dl_entity *pi_se = &p->dl;
1476
1477 /*
193be41e
JF
1478 * Use the scheduling parameters of the top pi-waiter task if:
1479 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1480 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1481 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1482 * boosted due to a SCHED_DEADLINE pi-waiter).
1483 * Otherwise we keep our runtime and deadline.
2d3d891d 1484 */
193be41e 1485 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
2d3d891d 1486 pi_se = &pi_task->dl;
64be6f1f
JL
1487 } else if (!dl_prio(p->normal_prio)) {
1488 /*
1489 * Special case in which we have a !SCHED_DEADLINE task
193be41e 1490 * that is going to be deboosted, but exceeds its
64be6f1f
JL
1491 * runtime while doing so. No point in replenishing
1492 * it, as it's going to return back to its original
1493 * scheduling class after this.
1494 */
1495 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1496 return;
1497 }
2d3d891d 1498
df8eac8c
DBO
1499 /*
1500 * Check if a constrained deadline task was activated
1501 * after the deadline but before the next period.
1502 * If that is the case, the task will be throttled and
1503 * the replenishment timer will be set to the next period.
1504 */
3effcb42 1505 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
df8eac8c
DBO
1506 dl_check_constrained_dl(&p->dl);
1507
8fd27231 1508 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
794a56eb
JL
1509 add_rq_bw(&p->dl, &rq->dl);
1510 add_running_bw(&p->dl, &rq->dl);
8fd27231 1511 }
e36d8677 1512
aab03e05 1513 /*
e36d8677 1514 * If p is throttled, we do not enqueue it. In fact, if it exhausted
aab03e05
DF
1515 * its budget it needs a replenishment and, since it now is on
1516 * its rq, the bandwidth timer callback (which clearly has not
1517 * run yet) will take care of this.
e36d8677
LA
1518 * However, the active utilization does not depend on the fact
1519 * that the task is on the runqueue or not (but depends on the
1520 * task's state - in GRUB parlance, "inactive" vs "active contending").
1521 * In other words, even if a task is throttled its utilization must
1522 * be counted in the active utilization; hence, we need to call
1523 * add_running_bw().
aab03e05 1524 */
e36d8677 1525 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
209a0cbd 1526 if (flags & ENQUEUE_WAKEUP)
8fd27231 1527 task_contending(&p->dl, flags);
209a0cbd 1528
aab03e05 1529 return;
e36d8677 1530 }
aab03e05 1531
2d3d891d 1532 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce 1533
4b53a341 1534 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1baca4ce 1535 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1536}
1537
1538static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1539{
1540 dequeue_dl_entity(&p->dl);
1baca4ce 1541 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
1542}
1543
1544static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1545{
1546 update_curr_dl(rq);
1547 __dequeue_task_dl(rq, p, flags);
e36d8677 1548
8fd27231 1549 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
794a56eb
JL
1550 sub_running_bw(&p->dl, &rq->dl);
1551 sub_rq_bw(&p->dl, &rq->dl);
8fd27231 1552 }
e36d8677
LA
1553
1554 /*
209a0cbd
LA
1555 * This check allows to start the inactive timer (or to immediately
1556 * decrease the active utilization, if needed) in two cases:
e36d8677
LA
1557 * when the task blocks and when it is terminating
1558 * (p->state == TASK_DEAD). We can handle the two cases in the same
1559 * way, because from GRUB's point of view the same thing is happening
1560 * (the task moves from "active contending" to "active non contending"
1561 * or "inactive")
1562 */
1563 if (flags & DEQUEUE_SLEEP)
209a0cbd 1564 task_non_contending(p);
aab03e05
DF
1565}
1566
1567/*
1568 * Yield task semantic for -deadline tasks is:
1569 *
1570 * get off from the CPU until our next instance, with
1571 * a new runtime. This is of little use now, since we
1572 * don't have a bandwidth reclaiming mechanism. Anyway,
1573 * bandwidth reclaiming is planned for the future, and
1574 * yield_task_dl will indicate that some spare budget
1575 * is available for other task instances to use it.
1576 */
1577static void yield_task_dl(struct rq *rq)
1578{
aab03e05
DF
1579 /*
1580 * We make the task go to sleep until its current deadline by
1581 * forcing its runtime to zero. This way, update_curr_dl() stops
1582 * it and the bandwidth timer will wake it up and will give it
5bfd126e 1583 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05 1584 */
48be3a67
PZ
1585 rq->curr->dl.dl_yielded = 1;
1586
6f1607f1 1587 update_rq_clock(rq);
aab03e05 1588 update_curr_dl(rq);
44fb085b
WL
1589 /*
1590 * Tell update_rq_clock() that we've just updated,
1591 * so we don't do microscopic update in schedule()
1592 * and double the fastpath cost.
1593 */
adcc8da8 1594 rq_clock_skip_update(rq);
aab03e05
DF
1595}
1596
1baca4ce
JL
1597#ifdef CONFIG_SMP
1598
1599static int find_later_rq(struct task_struct *task);
1baca4ce
JL
1600
1601static int
1602select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1603{
1604 struct task_struct *curr;
1605 struct rq *rq;
1606
1d7e974c 1607 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
1608 goto out;
1609
1610 rq = cpu_rq(cpu);
1611
1612 rcu_read_lock();
316c1608 1613 curr = READ_ONCE(rq->curr); /* unlocked access */
1baca4ce
JL
1614
1615 /*
1616 * If we are dealing with a -deadline task, we must
1617 * decide where to wake it up.
1618 * If it has a later deadline and the current task
1619 * on this rq can't move (provided the waking task
1620 * can!) we prefer to send it somewhere else. On the
1621 * other hand, if it has a shorter deadline, we
1622 * try to make it stay here, it might be important.
1623 */
1624 if (unlikely(dl_task(curr)) &&
4b53a341 1625 (curr->nr_cpus_allowed < 2 ||
1baca4ce 1626 !dl_entity_preempt(&p->dl, &curr->dl)) &&
4b53a341 1627 (p->nr_cpus_allowed > 1)) {
1baca4ce
JL
1628 int target = find_later_rq(p);
1629
9d514262 1630 if (target != -1 &&
5aa50507
LA
1631 (dl_time_before(p->dl.deadline,
1632 cpu_rq(target)->dl.earliest_dl.curr) ||
1633 (cpu_rq(target)->dl.dl_nr_running == 0)))
1baca4ce
JL
1634 cpu = target;
1635 }
1636 rcu_read_unlock();
1637
1638out:
1639 return cpu;
1640}
1641
1327237a 1642static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
209a0cbd
LA
1643{
1644 struct rq *rq;
1645
8fd27231 1646 if (p->state != TASK_WAKING)
209a0cbd
LA
1647 return;
1648
1649 rq = task_rq(p);
1650 /*
1651 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1652 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1653 * rq->lock is not... So, lock it
1654 */
1655 raw_spin_lock(&rq->lock);
8fd27231 1656 if (p->dl.dl_non_contending) {
794a56eb 1657 sub_running_bw(&p->dl, &rq->dl);
8fd27231
LA
1658 p->dl.dl_non_contending = 0;
1659 /*
1660 * If the timer handler is currently running and the
1661 * timer cannot be cancelled, inactive_task_timer()
1662 * will see that dl_not_contending is not set, and
1663 * will not touch the rq's active utilization,
1664 * so we are still safe.
1665 */
1666 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1667 put_task_struct(p);
1668 }
794a56eb 1669 sub_rq_bw(&p->dl, &rq->dl);
209a0cbd
LA
1670 raw_spin_unlock(&rq->lock);
1671}
1672
1baca4ce
JL
1673static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1674{
1675 /*
1676 * Current can't be migrated, useless to reschedule,
1677 * let's hope p can move out.
1678 */
4b53a341 1679 if (rq->curr->nr_cpus_allowed == 1 ||
3261ed0b 1680 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1baca4ce
JL
1681 return;
1682
1683 /*
1684 * p is migratable, so let's not schedule it and
1685 * see if it is pushed or pulled somewhere else.
1686 */
4b53a341 1687 if (p->nr_cpus_allowed != 1 &&
3261ed0b 1688 cpudl_find(&rq->rd->cpudl, p, NULL))
1baca4ce
JL
1689 return;
1690
8875125e 1691 resched_curr(rq);
1baca4ce
JL
1692}
1693
1694#endif /* CONFIG_SMP */
1695
aab03e05
DF
1696/*
1697 * Only called when both the current and waking task are -deadline
1698 * tasks.
1699 */
1700static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1701 int flags)
1702{
1baca4ce 1703 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1704 resched_curr(rq);
1baca4ce
JL
1705 return;
1706 }
1707
1708#ifdef CONFIG_SMP
1709 /*
1710 * In the unlikely case current and p have the same deadline
1711 * let us try to decide what's the best thing to do...
1712 */
332ac17e
DF
1713 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1714 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1715 check_preempt_equal_dl(rq, p);
1716#endif /* CONFIG_SMP */
aab03e05
DF
1717}
1718
1719#ifdef CONFIG_SCHED_HRTICK
1720static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1721{
177ef2a6 1722 hrtick_start(rq, p->dl.runtime);
aab03e05 1723}
36ce9881
WL
1724#else /* !CONFIG_SCHED_HRTICK */
1725static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1726{
1727}
aab03e05
DF
1728#endif
1729
ff1cdc94
MS
1730static inline void set_next_task(struct rq *rq, struct task_struct *p)
1731{
1732 p->se.exec_start = rq_clock_task(rq);
1733
1734 /* You can't push away the running task */
1735 dequeue_pushable_dl_task(rq, p);
1736}
1737
aab03e05
DF
1738static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1739 struct dl_rq *dl_rq)
1740{
2161573e 1741 struct rb_node *left = rb_first_cached(&dl_rq->root);
aab03e05
DF
1742
1743 if (!left)
1744 return NULL;
1745
1746 return rb_entry(left, struct sched_dl_entity, rb_node);
1747}
1748
181a80d1 1749static struct task_struct *
d8ac8971 1750pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
aab03e05
DF
1751{
1752 struct sched_dl_entity *dl_se;
1753 struct task_struct *p;
1754 struct dl_rq *dl_rq;
1755
1756 dl_rq = &rq->dl;
1757
a1d9a323 1758 if (need_pull_dl_task(rq, prev)) {
cbce1a68
PZ
1759 /*
1760 * This is OK, because current is on_cpu, which avoids it being
1761 * picked for load-balance and preemption/IRQs are still
1762 * disabled avoiding further scheduler activity on it and we're
1763 * being very careful to re-start the picking loop.
1764 */
d8ac8971 1765 rq_unpin_lock(rq, rf);
38033c37 1766 pull_dl_task(rq);
d8ac8971 1767 rq_repin_lock(rq, rf);
a1d9a323 1768 /*
176cedc4 1769 * pull_dl_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1770 * means a stop task can slip in, in which case we need to
1771 * re-start task selection.
1772 */
da0c1e65 1773 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1774 return RETRY_TASK;
1775 }
1776
734ff2a7
KT
1777 /*
1778 * When prev is DL, we may throttle it in put_prev_task().
1779 * So, we update time before we check for dl_nr_running.
1780 */
1781 if (prev->sched_class == &dl_sched_class)
1782 update_curr_dl(rq);
38033c37 1783
aab03e05
DF
1784 if (unlikely(!dl_rq->dl_nr_running))
1785 return NULL;
1786
3f1d2a31 1787 put_prev_task(rq, prev);
606dba2e 1788
aab03e05
DF
1789 dl_se = pick_next_dl_entity(rq, dl_rq);
1790 BUG_ON(!dl_se);
1791
1792 p = dl_task_of(dl_se);
1baca4ce 1793
ff1cdc94 1794 set_next_task(rq, p);
1baca4ce 1795
aab03e05
DF
1796 if (hrtick_enabled(rq))
1797 start_hrtick_dl(rq, p);
1baca4ce 1798
02d8ec94 1799 deadline_queue_push_tasks(rq);
1baca4ce 1800
3727e0e1 1801 if (rq->curr->sched_class != &dl_sched_class)
23127296 1802 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3727e0e1 1803
aab03e05
DF
1804 return p;
1805}
1806
1807static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1808{
1809 update_curr_dl(rq);
1baca4ce 1810
23127296 1811 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
4b53a341 1812 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1baca4ce 1813 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1814}
1815
d84b3131
FW
1816/*
1817 * scheduler tick hitting a task of our scheduling class.
1818 *
1819 * NOTE: This function can be called remotely by the tick offload that
1820 * goes along full dynticks. Therefore no local assumption can be made
1821 * and everything must be accessed through the @rq and @curr passed in
1822 * parameters.
1823 */
aab03e05
DF
1824static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1825{
1826 update_curr_dl(rq);
1827
23127296 1828 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
a7bebf48
WL
1829 /*
1830 * Even when we have runtime, update_curr_dl() might have resulted in us
1831 * not being the leftmost task anymore. In that case NEED_RESCHED will
1832 * be set and schedule() will start a new hrtick for the next task.
1833 */
1834 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1835 is_leftmost(p, &rq->dl))
aab03e05 1836 start_hrtick_dl(rq, p);
aab03e05
DF
1837}
1838
1839static void task_fork_dl(struct task_struct *p)
1840{
1841 /*
1842 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1843 * sched_fork()
1844 */
1845}
1846
aab03e05
DF
1847static void set_curr_task_dl(struct rq *rq)
1848{
ff1cdc94 1849 set_next_task(rq, rq->curr);
1baca4ce
JL
1850}
1851
1852#ifdef CONFIG_SMP
1853
1854/* Only try algorithms three times */
1855#define DL_MAX_TRIES 3
1856
1857static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1858{
1859 if (!task_running(rq, p) &&
3bd37062 1860 cpumask_test_cpu(cpu, p->cpus_ptr))
1baca4ce 1861 return 1;
1baca4ce
JL
1862 return 0;
1863}
1864
8b5e770e
WL
1865/*
1866 * Return the earliest pushable rq's task, which is suitable to be executed
1867 * on the CPU, NULL otherwise:
1868 */
1869static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1870{
2161573e 1871 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
8b5e770e
WL
1872 struct task_struct *p = NULL;
1873
1874 if (!has_pushable_dl_tasks(rq))
1875 return NULL;
1876
1877next_node:
1878 if (next_node) {
1879 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1880
1881 if (pick_dl_task(rq, p, cpu))
1882 return p;
1883
1884 next_node = rb_next(next_node);
1885 goto next_node;
1886 }
1887
1888 return NULL;
1889}
1890
1baca4ce
JL
1891static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1892
1893static int find_later_rq(struct task_struct *task)
1894{
1895 struct sched_domain *sd;
4ba29684 1896 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce 1897 int this_cpu = smp_processor_id();
b18c3ca1 1898 int cpu = task_cpu(task);
1baca4ce
JL
1899
1900 /* Make sure the mask is initialized first */
1901 if (unlikely(!later_mask))
1902 return -1;
1903
4b53a341 1904 if (task->nr_cpus_allowed == 1)
1baca4ce
JL
1905 return -1;
1906
91ec6778
JL
1907 /*
1908 * We have to consider system topology and task affinity
97fb7a0a 1909 * first, then we can look for a suitable CPU.
91ec6778 1910 */
3261ed0b 1911 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1baca4ce
JL
1912 return -1;
1913
1914 /*
b18c3ca1
BP
1915 * If we are here, some targets have been found, including
1916 * the most suitable which is, among the runqueues where the
1917 * current tasks have later deadlines than the task's one, the
1918 * rq with the latest possible one.
1baca4ce
JL
1919 *
1920 * Now we check how well this matches with task's
1921 * affinity and system topology.
1922 *
97fb7a0a 1923 * The last CPU where the task run is our first
1baca4ce
JL
1924 * guess, since it is most likely cache-hot there.
1925 */
1926 if (cpumask_test_cpu(cpu, later_mask))
1927 return cpu;
1928 /*
1929 * Check if this_cpu is to be skipped (i.e., it is
1930 * not in the mask) or not.
1931 */
1932 if (!cpumask_test_cpu(this_cpu, later_mask))
1933 this_cpu = -1;
1934
1935 rcu_read_lock();
1936 for_each_domain(cpu, sd) {
1937 if (sd->flags & SD_WAKE_AFFINE) {
b18c3ca1 1938 int best_cpu;
1baca4ce
JL
1939
1940 /*
1941 * If possible, preempting this_cpu is
1942 * cheaper than migrating.
1943 */
1944 if (this_cpu != -1 &&
1945 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1946 rcu_read_unlock();
1947 return this_cpu;
1948 }
1949
b18c3ca1
BP
1950 best_cpu = cpumask_first_and(later_mask,
1951 sched_domain_span(sd));
1baca4ce 1952 /*
97fb7a0a 1953 * Last chance: if a CPU being in both later_mask
b18c3ca1 1954 * and current sd span is valid, that becomes our
97fb7a0a 1955 * choice. Of course, the latest possible CPU is
b18c3ca1 1956 * already under consideration through later_mask.
1baca4ce 1957 */
b18c3ca1 1958 if (best_cpu < nr_cpu_ids) {
1baca4ce
JL
1959 rcu_read_unlock();
1960 return best_cpu;
1961 }
1962 }
1963 }
1964 rcu_read_unlock();
1965
1966 /*
1967 * At this point, all our guesses failed, we just return
1968 * 'something', and let the caller sort the things out.
1969 */
1970 if (this_cpu != -1)
1971 return this_cpu;
1972
1973 cpu = cpumask_any(later_mask);
1974 if (cpu < nr_cpu_ids)
1975 return cpu;
1976
1977 return -1;
1978}
1979
1980/* Locks the rq it finds */
1981static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1982{
1983 struct rq *later_rq = NULL;
1984 int tries;
1985 int cpu;
1986
1987 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1988 cpu = find_later_rq(task);
1989
1990 if ((cpu == -1) || (cpu == rq->cpu))
1991 break;
1992
1993 later_rq = cpu_rq(cpu);
1994
5aa50507
LA
1995 if (later_rq->dl.dl_nr_running &&
1996 !dl_time_before(task->dl.deadline,
9d514262
WL
1997 later_rq->dl.earliest_dl.curr)) {
1998 /*
1999 * Target rq has tasks of equal or earlier deadline,
2000 * retrying does not release any lock and is unlikely
2001 * to yield a different result.
2002 */
2003 later_rq = NULL;
2004 break;
2005 }
2006
1baca4ce
JL
2007 /* Retry if something changed. */
2008 if (double_lock_balance(rq, later_rq)) {
2009 if (unlikely(task_rq(task) != rq ||
3bd37062 2010 !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
da0c1e65 2011 task_running(rq, task) ||
13b5ab02 2012 !dl_task(task) ||
da0c1e65 2013 !task_on_rq_queued(task))) {
1baca4ce
JL
2014 double_unlock_balance(rq, later_rq);
2015 later_rq = NULL;
2016 break;
2017 }
2018 }
2019
2020 /*
2021 * If the rq we found has no -deadline task, or
2022 * its earliest one has a later deadline than our
2023 * task, the rq is a good one.
2024 */
2025 if (!later_rq->dl.dl_nr_running ||
2026 dl_time_before(task->dl.deadline,
2027 later_rq->dl.earliest_dl.curr))
2028 break;
2029
2030 /* Otherwise we try again. */
2031 double_unlock_balance(rq, later_rq);
2032 later_rq = NULL;
2033 }
2034
2035 return later_rq;
2036}
2037
2038static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2039{
2040 struct task_struct *p;
2041
2042 if (!has_pushable_dl_tasks(rq))
2043 return NULL;
2044
2161573e 2045 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
1baca4ce
JL
2046 struct task_struct, pushable_dl_tasks);
2047
2048 BUG_ON(rq->cpu != task_cpu(p));
2049 BUG_ON(task_current(rq, p));
4b53a341 2050 BUG_ON(p->nr_cpus_allowed <= 1);
1baca4ce 2051
da0c1e65 2052 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
2053 BUG_ON(!dl_task(p));
2054
2055 return p;
2056}
2057
2058/*
2059 * See if the non running -deadline tasks on this rq
2060 * can be sent to some other CPU where they can preempt
2061 * and start executing.
2062 */
2063static int push_dl_task(struct rq *rq)
2064{
2065 struct task_struct *next_task;
2066 struct rq *later_rq;
c51b8ab5 2067 int ret = 0;
1baca4ce
JL
2068
2069 if (!rq->dl.overloaded)
2070 return 0;
2071
2072 next_task = pick_next_pushable_dl_task(rq);
2073 if (!next_task)
2074 return 0;
2075
2076retry:
9ebc6053 2077 if (WARN_ON(next_task == rq->curr))
1baca4ce 2078 return 0;
1baca4ce
JL
2079
2080 /*
2081 * If next_task preempts rq->curr, and rq->curr
2082 * can move away, it makes sense to just reschedule
2083 * without going further in pushing next_task.
2084 */
2085 if (dl_task(rq->curr) &&
2086 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
4b53a341 2087 rq->curr->nr_cpus_allowed > 1) {
8875125e 2088 resched_curr(rq);
1baca4ce
JL
2089 return 0;
2090 }
2091
2092 /* We might release rq lock */
2093 get_task_struct(next_task);
2094
2095 /* Will lock the rq it'll find */
2096 later_rq = find_lock_later_rq(next_task, rq);
2097 if (!later_rq) {
2098 struct task_struct *task;
2099
2100 /*
2101 * We must check all this again, since
2102 * find_lock_later_rq releases rq->lock and it is
2103 * then possible that next_task has migrated.
2104 */
2105 task = pick_next_pushable_dl_task(rq);
a776b968 2106 if (task == next_task) {
1baca4ce
JL
2107 /*
2108 * The task is still there. We don't try
97fb7a0a 2109 * again, some other CPU will pull it when ready.
1baca4ce 2110 */
1baca4ce
JL
2111 goto out;
2112 }
2113
2114 if (!task)
2115 /* No more tasks */
2116 goto out;
2117
2118 put_task_struct(next_task);
2119 next_task = task;
2120 goto retry;
2121 }
2122
2123 deactivate_task(rq, next_task, 0);
794a56eb
JL
2124 sub_running_bw(&next_task->dl, &rq->dl);
2125 sub_rq_bw(&next_task->dl, &rq->dl);
1baca4ce 2126 set_task_cpu(next_task, later_rq->cpu);
794a56eb 2127 add_rq_bw(&next_task->dl, &later_rq->dl);
840d7196
DBO
2128
2129 /*
2130 * Update the later_rq clock here, because the clock is used
2131 * by the cpufreq_update_util() inside __add_running_bw().
2132 */
2133 update_rq_clock(later_rq);
794a56eb 2134 add_running_bw(&next_task->dl, &later_rq->dl);
840d7196 2135 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
c51b8ab5 2136 ret = 1;
1baca4ce 2137
8875125e 2138 resched_curr(later_rq);
1baca4ce
JL
2139
2140 double_unlock_balance(rq, later_rq);
2141
2142out:
2143 put_task_struct(next_task);
2144
c51b8ab5 2145 return ret;
1baca4ce
JL
2146}
2147
2148static void push_dl_tasks(struct rq *rq)
2149{
4ffa08ed 2150 /* push_dl_task() will return true if it moved a -deadline task */
1baca4ce
JL
2151 while (push_dl_task(rq))
2152 ;
aab03e05
DF
2153}
2154
0ea60c20 2155static void pull_dl_task(struct rq *this_rq)
1baca4ce 2156{
0ea60c20 2157 int this_cpu = this_rq->cpu, cpu;
1baca4ce 2158 struct task_struct *p;
0ea60c20 2159 bool resched = false;
1baca4ce
JL
2160 struct rq *src_rq;
2161 u64 dmin = LONG_MAX;
2162
2163 if (likely(!dl_overloaded(this_rq)))
0ea60c20 2164 return;
1baca4ce
JL
2165
2166 /*
2167 * Match the barrier from dl_set_overloaded; this guarantees that if we
2168 * see overloaded we must also see the dlo_mask bit.
2169 */
2170 smp_rmb();
2171
2172 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2173 if (this_cpu == cpu)
2174 continue;
2175
2176 src_rq = cpu_rq(cpu);
2177
2178 /*
2179 * It looks racy, abd it is! However, as in sched_rt.c,
2180 * we are fine with this.
2181 */
2182 if (this_rq->dl.dl_nr_running &&
2183 dl_time_before(this_rq->dl.earliest_dl.curr,
2184 src_rq->dl.earliest_dl.next))
2185 continue;
2186
2187 /* Might drop this_rq->lock */
2188 double_lock_balance(this_rq, src_rq);
2189
2190 /*
2191 * If there are no more pullable tasks on the
2192 * rq, we're done with it.
2193 */
2194 if (src_rq->dl.dl_nr_running <= 1)
2195 goto skip;
2196
8b5e770e 2197 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1baca4ce
JL
2198
2199 /*
2200 * We found a task to be pulled if:
2201 * - it preempts our current (if there's one),
2202 * - it will preempt the last one we pulled (if any).
2203 */
2204 if (p && dl_time_before(p->dl.deadline, dmin) &&
2205 (!this_rq->dl.dl_nr_running ||
2206 dl_time_before(p->dl.deadline,
2207 this_rq->dl.earliest_dl.curr))) {
2208 WARN_ON(p == src_rq->curr);
da0c1e65 2209 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
2210
2211 /*
2212 * Then we pull iff p has actually an earlier
2213 * deadline than the current task of its runqueue.
2214 */
2215 if (dl_time_before(p->dl.deadline,
2216 src_rq->curr->dl.deadline))
2217 goto skip;
2218
0ea60c20 2219 resched = true;
1baca4ce
JL
2220
2221 deactivate_task(src_rq, p, 0);
794a56eb
JL
2222 sub_running_bw(&p->dl, &src_rq->dl);
2223 sub_rq_bw(&p->dl, &src_rq->dl);
1baca4ce 2224 set_task_cpu(p, this_cpu);
794a56eb
JL
2225 add_rq_bw(&p->dl, &this_rq->dl);
2226 add_running_bw(&p->dl, &this_rq->dl);
1baca4ce
JL
2227 activate_task(this_rq, p, 0);
2228 dmin = p->dl.deadline;
2229
2230 /* Is there any other task even earlier? */
2231 }
2232skip:
2233 double_unlock_balance(this_rq, src_rq);
2234 }
2235
0ea60c20
PZ
2236 if (resched)
2237 resched_curr(this_rq);
1baca4ce
JL
2238}
2239
2240/*
2241 * Since the task is not running and a reschedule is not going to happen
2242 * anytime soon on its runqueue, we try pushing it away now.
2243 */
2244static void task_woken_dl(struct rq *rq, struct task_struct *p)
2245{
2246 if (!task_running(rq, p) &&
2247 !test_tsk_need_resched(rq->curr) &&
4b53a341 2248 p->nr_cpus_allowed > 1 &&
1baca4ce 2249 dl_task(rq->curr) &&
4b53a341 2250 (rq->curr->nr_cpus_allowed < 2 ||
6b0a563f 2251 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
2252 push_dl_tasks(rq);
2253 }
2254}
2255
2256static void set_cpus_allowed_dl(struct task_struct *p,
2257 const struct cpumask *new_mask)
2258{
7f51412a 2259 struct root_domain *src_rd;
6c37067e 2260 struct rq *rq;
1baca4ce
JL
2261
2262 BUG_ON(!dl_task(p));
2263
7f51412a
JL
2264 rq = task_rq(p);
2265 src_rd = rq->rd;
2266 /*
2267 * Migrating a SCHED_DEADLINE task between exclusive
2268 * cpusets (different root_domains) entails a bandwidth
2269 * update. We already made space for us in the destination
2270 * domain (see cpuset_can_attach()).
2271 */
2272 if (!cpumask_intersects(src_rd->span, new_mask)) {
2273 struct dl_bw *src_dl_b;
2274
2275 src_dl_b = dl_bw_of(cpu_of(rq));
2276 /*
2277 * We now free resources of the root_domain we are migrating
2278 * off. In the worst case, sched_setattr() may temporary fail
2279 * until we complete the update.
2280 */
2281 raw_spin_lock(&src_dl_b->lock);
8c0944ce 2282 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
7f51412a
JL
2283 raw_spin_unlock(&src_dl_b->lock);
2284 }
2285
6c37067e 2286 set_cpus_allowed_common(p, new_mask);
1baca4ce
JL
2287}
2288
2289/* Assumes rq->lock is held */
2290static void rq_online_dl(struct rq *rq)
2291{
2292 if (rq->dl.overloaded)
2293 dl_set_overload(rq);
6bfd6d72 2294
16b26943 2295 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72 2296 if (rq->dl.dl_nr_running > 0)
d8206bb3 2297 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
1baca4ce
JL
2298}
2299
2300/* Assumes rq->lock is held */
2301static void rq_offline_dl(struct rq *rq)
2302{
2303 if (rq->dl.overloaded)
2304 dl_clear_overload(rq);
6bfd6d72 2305
d8206bb3 2306 cpudl_clear(&rq->rd->cpudl, rq->cpu);
16b26943 2307 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
2308}
2309
a6c0e746 2310void __init init_sched_dl_class(void)
1baca4ce
JL
2311{
2312 unsigned int i;
2313
2314 for_each_possible_cpu(i)
2315 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2316 GFP_KERNEL, cpu_to_node(i));
2317}
2318
f9a25f77
MP
2319void dl_add_task_root_domain(struct task_struct *p)
2320{
2321 struct rq_flags rf;
2322 struct rq *rq;
2323 struct dl_bw *dl_b;
2324
2325 rq = task_rq_lock(p, &rf);
2326 if (!dl_task(p))
2327 goto unlock;
2328
2329 dl_b = &rq->rd->dl_bw;
2330 raw_spin_lock(&dl_b->lock);
2331
2332 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2333
2334 raw_spin_unlock(&dl_b->lock);
2335
2336unlock:
2337 task_rq_unlock(rq, p, &rf);
2338}
2339
2340void dl_clear_root_domain(struct root_domain *rd)
2341{
2342 unsigned long flags;
2343
2344 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2345 rd->dl_bw.total_bw = 0;
2346 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2347}
2348
1baca4ce
JL
2349#endif /* CONFIG_SMP */
2350
aab03e05
DF
2351static void switched_from_dl(struct rq *rq, struct task_struct *p)
2352{
a649f237 2353 /*
209a0cbd
LA
2354 * task_non_contending() can start the "inactive timer" (if the 0-lag
2355 * time is in the future). If the task switches back to dl before
2356 * the "inactive timer" fires, it can continue to consume its current
2357 * runtime using its current deadline. If it stays outside of
2358 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2359 * will reset the task parameters.
a649f237 2360 */
209a0cbd
LA
2361 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2362 task_non_contending(p);
2363
e117cb52
JL
2364 if (!task_on_rq_queued(p)) {
2365 /*
2366 * Inactive timer is armed. However, p is leaving DEADLINE and
2367 * might migrate away from this rq while continuing to run on
2368 * some other class. We need to remove its contribution from
2369 * this rq running_bw now, or sub_rq_bw (below) will complain.
2370 */
2371 if (p->dl.dl_non_contending)
2372 sub_running_bw(&p->dl, &rq->dl);
794a56eb 2373 sub_rq_bw(&p->dl, &rq->dl);
e117cb52 2374 }
8fd27231 2375
209a0cbd
LA
2376 /*
2377 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2378 * at the 0-lag time, because the task could have been migrated
2379 * while SCHED_OTHER in the meanwhile.
2380 */
2381 if (p->dl.dl_non_contending)
2382 p->dl.dl_non_contending = 0;
a5e7be3b 2383
1baca4ce
JL
2384 /*
2385 * Since this might be the only -deadline task on the rq,
2386 * this is the right place to try to pull some other one
97fb7a0a 2387 * from an overloaded CPU, if any.
1baca4ce 2388 */
cd660911
WL
2389 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2390 return;
2391
02d8ec94 2392 deadline_queue_pull_task(rq);
aab03e05
DF
2393}
2394
1baca4ce
JL
2395/*
2396 * When switching to -deadline, we may overload the rq, then
2397 * we try to push someone off, if possible.
2398 */
aab03e05
DF
2399static void switched_to_dl(struct rq *rq, struct task_struct *p)
2400{
209a0cbd
LA
2401 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2402 put_task_struct(p);
98b0a857
JL
2403
2404 /* If p is not queued we will update its parameters at next wakeup. */
8fd27231 2405 if (!task_on_rq_queued(p)) {
794a56eb 2406 add_rq_bw(&p->dl, &rq->dl);
98b0a857 2407
8fd27231
LA
2408 return;
2409 }
72f9f3fd 2410
98b0a857 2411 if (rq->curr != p) {
1baca4ce 2412#ifdef CONFIG_SMP
4b53a341 2413 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
02d8ec94 2414 deadline_queue_push_tasks(rq);
619bd4a7 2415#endif
9916e214
PZ
2416 if (dl_task(rq->curr))
2417 check_preempt_curr_dl(rq, p, 0);
2418 else
2419 resched_curr(rq);
aab03e05
DF
2420 }
2421}
2422
1baca4ce
JL
2423/*
2424 * If the scheduling parameters of a -deadline task changed,
2425 * a push or pull operation might be needed.
2426 */
aab03e05
DF
2427static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2428 int oldprio)
2429{
da0c1e65 2430 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 2431#ifdef CONFIG_SMP
1baca4ce
JL
2432 /*
2433 * This might be too much, but unfortunately
2434 * we don't have the old deadline value, and
2435 * we can't argue if the task is increasing
2436 * or lowering its prio, so...
2437 */
2438 if (!rq->dl.overloaded)
02d8ec94 2439 deadline_queue_pull_task(rq);
1baca4ce
JL
2440
2441 /*
2442 * If we now have a earlier deadline task than p,
2443 * then reschedule, provided p is still on this
2444 * runqueue.
2445 */
9916e214 2446 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
8875125e 2447 resched_curr(rq);
1baca4ce
JL
2448#else
2449 /*
2450 * Again, we don't know if p has a earlier
2451 * or later deadline, so let's blindly set a
2452 * (maybe not needed) rescheduling point.
2453 */
8875125e 2454 resched_curr(rq);
1baca4ce 2455#endif /* CONFIG_SMP */
801ccdbf 2456 }
aab03e05 2457}
aab03e05
DF
2458
2459const struct sched_class dl_sched_class = {
2460 .next = &rt_sched_class,
2461 .enqueue_task = enqueue_task_dl,
2462 .dequeue_task = dequeue_task_dl,
2463 .yield_task = yield_task_dl,
2464
2465 .check_preempt_curr = check_preempt_curr_dl,
2466
2467 .pick_next_task = pick_next_task_dl,
2468 .put_prev_task = put_prev_task_dl,
2469
2470#ifdef CONFIG_SMP
2471 .select_task_rq = select_task_rq_dl,
209a0cbd 2472 .migrate_task_rq = migrate_task_rq_dl,
1baca4ce
JL
2473 .set_cpus_allowed = set_cpus_allowed_dl,
2474 .rq_online = rq_online_dl,
2475 .rq_offline = rq_offline_dl,
1baca4ce 2476 .task_woken = task_woken_dl,
aab03e05
DF
2477#endif
2478
2479 .set_curr_task = set_curr_task_dl,
2480 .task_tick = task_tick_dl,
2481 .task_fork = task_fork_dl,
aab03e05
DF
2482
2483 .prio_changed = prio_changed_dl,
2484 .switched_from = switched_from_dl,
2485 .switched_to = switched_to_dl,
6e998916
SG
2486
2487 .update_curr = update_curr_dl,
aab03e05 2488};
acb32132 2489
06a76fe0
NP
2490int sched_dl_global_validate(void)
2491{
2492 u64 runtime = global_rt_runtime();
2493 u64 period = global_rt_period();
2494 u64 new_bw = to_ratio(period, runtime);
2495 struct dl_bw *dl_b;
2496 int cpu, ret = 0;
2497 unsigned long flags;
2498
2499 /*
2500 * Here we want to check the bandwidth not being set to some
2501 * value smaller than the currently allocated bandwidth in
2502 * any of the root_domains.
2503 *
2504 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2505 * cycling on root_domains... Discussion on different/better
2506 * solutions is welcome!
2507 */
2508 for_each_possible_cpu(cpu) {
2509 rcu_read_lock_sched();
2510 dl_b = dl_bw_of(cpu);
2511
2512 raw_spin_lock_irqsave(&dl_b->lock, flags);
2513 if (new_bw < dl_b->total_bw)
2514 ret = -EBUSY;
2515 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2516
2517 rcu_read_unlock_sched();
2518
2519 if (ret)
2520 break;
2521 }
2522
2523 return ret;
2524}
2525
2526void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2527{
2528 if (global_rt_runtime() == RUNTIME_INF) {
2529 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2530 dl_rq->extra_bw = 1 << BW_SHIFT;
2531 } else {
2532 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2533 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2534 dl_rq->extra_bw = to_ratio(global_rt_period(),
2535 global_rt_runtime());
2536 }
2537}
2538
2539void sched_dl_do_global(void)
2540{
2541 u64 new_bw = -1;
2542 struct dl_bw *dl_b;
2543 int cpu;
2544 unsigned long flags;
2545
2546 def_dl_bandwidth.dl_period = global_rt_period();
2547 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2548
2549 if (global_rt_runtime() != RUNTIME_INF)
2550 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2551
2552 /*
2553 * FIXME: As above...
2554 */
2555 for_each_possible_cpu(cpu) {
2556 rcu_read_lock_sched();
2557 dl_b = dl_bw_of(cpu);
2558
2559 raw_spin_lock_irqsave(&dl_b->lock, flags);
2560 dl_b->bw = new_bw;
2561 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2562
2563 rcu_read_unlock_sched();
2564 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2565 }
2566}
2567
2568/*
2569 * We must be sure that accepting a new task (or allowing changing the
2570 * parameters of an existing one) is consistent with the bandwidth
2571 * constraints. If yes, this function also accordingly updates the currently
2572 * allocated bandwidth to reflect the new situation.
2573 *
2574 * This function is called while holding p's rq->lock.
2575 */
2576int sched_dl_overflow(struct task_struct *p, int policy,
2577 const struct sched_attr *attr)
2578{
2579 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2580 u64 period = attr->sched_period ?: attr->sched_deadline;
2581 u64 runtime = attr->sched_runtime;
2582 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2583 int cpus, err = -1;
2584
794a56eb
JL
2585 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2586 return 0;
2587
06a76fe0
NP
2588 /* !deadline task may carry old deadline bandwidth */
2589 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2590 return 0;
2591
2592 /*
2593 * Either if a task, enters, leave, or stays -deadline but changes
2594 * its parameters, we may need to update accordingly the total
2595 * allocated bandwidth of the container.
2596 */
2597 raw_spin_lock(&dl_b->lock);
2598 cpus = dl_bw_cpus(task_cpu(p));
2599 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2600 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2601 if (hrtimer_active(&p->dl.inactive_timer))
8c0944ce 2602 __dl_sub(dl_b, p->dl.dl_bw, cpus);
06a76fe0
NP
2603 __dl_add(dl_b, new_bw, cpus);
2604 err = 0;
2605 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2606 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2607 /*
2608 * XXX this is slightly incorrect: when the task
2609 * utilization decreases, we should delay the total
2610 * utilization change until the task's 0-lag point.
2611 * But this would require to set the task's "inactive
2612 * timer" when the task is not inactive.
2613 */
8c0944ce 2614 __dl_sub(dl_b, p->dl.dl_bw, cpus);
06a76fe0
NP
2615 __dl_add(dl_b, new_bw, cpus);
2616 dl_change_utilization(p, new_bw);
2617 err = 0;
2618 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2619 /*
2620 * Do not decrease the total deadline utilization here,
2621 * switched_from_dl() will take care to do it at the correct
2622 * (0-lag) time.
2623 */
2624 err = 0;
2625 }
2626 raw_spin_unlock(&dl_b->lock);
2627
2628 return err;
2629}
2630
2631/*
2632 * This function initializes the sched_dl_entity of a newly becoming
2633 * SCHED_DEADLINE task.
2634 *
2635 * Only the static values are considered here, the actual runtime and the
2636 * absolute deadline will be properly calculated when the task is enqueued
2637 * for the first time with its new policy.
2638 */
2639void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2640{
2641 struct sched_dl_entity *dl_se = &p->dl;
2642
2643 dl_se->dl_runtime = attr->sched_runtime;
2644 dl_se->dl_deadline = attr->sched_deadline;
2645 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2646 dl_se->flags = attr->sched_flags;
2647 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2648 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2649}
2650
2651void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2652{
2653 struct sched_dl_entity *dl_se = &p->dl;
2654
2655 attr->sched_priority = p->rt_priority;
2656 attr->sched_runtime = dl_se->dl_runtime;
2657 attr->sched_deadline = dl_se->dl_deadline;
2658 attr->sched_period = dl_se->dl_period;
2659 attr->sched_flags = dl_se->flags;
2660}
2661
2662/*
2663 * This function validates the new parameters of a -deadline task.
2664 * We ask for the deadline not being zero, and greater or equal
2665 * than the runtime, as well as the period of being zero or
2666 * greater than deadline. Furthermore, we have to be sure that
2667 * user parameters are above the internal resolution of 1us (we
2668 * check sched_runtime only since it is always the smaller one) and
2669 * below 2^63 ns (we have to check both sched_deadline and
2670 * sched_period, as the latter can be zero).
2671 */
2672bool __checkparam_dl(const struct sched_attr *attr)
2673{
794a56eb
JL
2674 /* special dl tasks don't actually use any parameter */
2675 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2676 return true;
2677
06a76fe0
NP
2678 /* deadline != 0 */
2679 if (attr->sched_deadline == 0)
2680 return false;
2681
2682 /*
2683 * Since we truncate DL_SCALE bits, make sure we're at least
2684 * that big.
2685 */
2686 if (attr->sched_runtime < (1ULL << DL_SCALE))
2687 return false;
2688
2689 /*
2690 * Since we use the MSB for wrap-around and sign issues, make
2691 * sure it's not set (mind that period can be equal to zero).
2692 */
2693 if (attr->sched_deadline & (1ULL << 63) ||
2694 attr->sched_period & (1ULL << 63))
2695 return false;
2696
2697 /* runtime <= deadline <= period (if period != 0) */
2698 if ((attr->sched_period != 0 &&
2699 attr->sched_period < attr->sched_deadline) ||
2700 attr->sched_deadline < attr->sched_runtime)
2701 return false;
2702
2703 return true;
2704}
2705
2706/*
2707 * This function clears the sched_dl_entity static params.
2708 */
2709void __dl_clear_params(struct task_struct *p)
2710{
2711 struct sched_dl_entity *dl_se = &p->dl;
2712
97fb7a0a
IM
2713 dl_se->dl_runtime = 0;
2714 dl_se->dl_deadline = 0;
2715 dl_se->dl_period = 0;
2716 dl_se->flags = 0;
2717 dl_se->dl_bw = 0;
2718 dl_se->dl_density = 0;
06a76fe0 2719
97fb7a0a
IM
2720 dl_se->dl_throttled = 0;
2721 dl_se->dl_yielded = 0;
2722 dl_se->dl_non_contending = 0;
2723 dl_se->dl_overrun = 0;
06a76fe0
NP
2724}
2725
2726bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2727{
2728 struct sched_dl_entity *dl_se = &p->dl;
2729
2730 if (dl_se->dl_runtime != attr->sched_runtime ||
2731 dl_se->dl_deadline != attr->sched_deadline ||
2732 dl_se->dl_period != attr->sched_period ||
2733 dl_se->flags != attr->sched_flags)
2734 return true;
2735
2736 return false;
2737}
2738
2739#ifdef CONFIG_SMP
2740int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2741{
97fb7a0a 2742 unsigned int dest_cpu;
06a76fe0
NP
2743 struct dl_bw *dl_b;
2744 bool overflow;
2745 int cpus, ret;
2746 unsigned long flags;
2747
97fb7a0a
IM
2748 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2749
06a76fe0
NP
2750 rcu_read_lock_sched();
2751 dl_b = dl_bw_of(dest_cpu);
2752 raw_spin_lock_irqsave(&dl_b->lock, flags);
2753 cpus = dl_bw_cpus(dest_cpu);
2754 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
97fb7a0a 2755 if (overflow) {
06a76fe0 2756 ret = -EBUSY;
97fb7a0a 2757 } else {
06a76fe0
NP
2758 /*
2759 * We reserve space for this task in the destination
2760 * root_domain, as we can't fail after this point.
2761 * We will free resources in the source root_domain
2762 * later on (see set_cpus_allowed_dl()).
2763 */
2764 __dl_add(dl_b, p->dl.dl_bw, cpus);
2765 ret = 0;
2766 }
2767 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2768 rcu_read_unlock_sched();
97fb7a0a 2769
06a76fe0
NP
2770 return ret;
2771}
2772
2773int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2774 const struct cpumask *trial)
2775{
2776 int ret = 1, trial_cpus;
2777 struct dl_bw *cur_dl_b;
2778 unsigned long flags;
2779
2780 rcu_read_lock_sched();
2781 cur_dl_b = dl_bw_of(cpumask_any(cur));
2782 trial_cpus = cpumask_weight(trial);
2783
2784 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2785 if (cur_dl_b->bw != -1 &&
2786 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2787 ret = 0;
2788 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2789 rcu_read_unlock_sched();
97fb7a0a 2790
06a76fe0
NP
2791 return ret;
2792}
2793
2794bool dl_cpu_busy(unsigned int cpu)
2795{
2796 unsigned long flags;
2797 struct dl_bw *dl_b;
2798 bool overflow;
2799 int cpus;
2800
2801 rcu_read_lock_sched();
2802 dl_b = dl_bw_of(cpu);
2803 raw_spin_lock_irqsave(&dl_b->lock, flags);
2804 cpus = dl_bw_cpus(cpu);
2805 overflow = __dl_overflow(dl_b, cpus, 0, 0);
2806 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2807 rcu_read_unlock_sched();
97fb7a0a 2808
06a76fe0
NP
2809 return overflow;
2810}
2811#endif
2812
acb32132 2813#ifdef CONFIG_SCHED_DEBUG
acb32132
WL
2814void print_dl_stats(struct seq_file *m, int cpu)
2815{
2816 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2817}
2818#endif /* CONFIG_SCHED_DEBUG */