]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/deadline.c
sched/cpuset: Only offer CONFIG_CPUSETS if SMP is enabled
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
6bfd6d72
JL
19#include <linux/slab.h>
20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
e36d8677
LA
46static inline
47void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
48{
49 u64 old = dl_rq->running_bw;
50
51 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
52 dl_rq->running_bw += dl_bw;
53 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
8fd27231 54 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
e36d8677
LA
55}
56
57static inline
58void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
59{
60 u64 old = dl_rq->running_bw;
61
62 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
63 dl_rq->running_bw -= dl_bw;
64 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
65 if (dl_rq->running_bw > old)
66 dl_rq->running_bw = 0;
67}
68
8fd27231
LA
69static inline
70void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
71{
72 u64 old = dl_rq->this_bw;
73
74 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
75 dl_rq->this_bw += dl_bw;
76 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
77}
78
79static inline
80void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
81{
82 u64 old = dl_rq->this_bw;
83
84 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
85 dl_rq->this_bw -= dl_bw;
86 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
87 if (dl_rq->this_bw > old)
88 dl_rq->this_bw = 0;
89 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
90}
91
209a0cbd
LA
92void dl_change_utilization(struct task_struct *p, u64 new_bw)
93{
8fd27231 94 struct rq *rq;
209a0cbd 95
8fd27231 96 if (task_on_rq_queued(p))
209a0cbd
LA
97 return;
98
8fd27231
LA
99 rq = task_rq(p);
100 if (p->dl.dl_non_contending) {
101 sub_running_bw(p->dl.dl_bw, &rq->dl);
102 p->dl.dl_non_contending = 0;
103 /*
104 * If the timer handler is currently running and the
105 * timer cannot be cancelled, inactive_task_timer()
106 * will see that dl_not_contending is not set, and
107 * will not touch the rq's active utilization,
108 * so we are still safe.
109 */
110 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
111 put_task_struct(p);
112 }
113 sub_rq_bw(p->dl.dl_bw, &rq->dl);
114 add_rq_bw(new_bw, &rq->dl);
209a0cbd
LA
115}
116
117/*
118 * The utilization of a task cannot be immediately removed from
119 * the rq active utilization (running_bw) when the task blocks.
120 * Instead, we have to wait for the so called "0-lag time".
121 *
122 * If a task blocks before the "0-lag time", a timer (the inactive
123 * timer) is armed, and running_bw is decreased when the timer
124 * fires.
125 *
126 * If the task wakes up again before the inactive timer fires,
127 * the timer is cancelled, whereas if the task wakes up after the
128 * inactive timer fired (and running_bw has been decreased) the
129 * task's utilization has to be added to running_bw again.
130 * A flag in the deadline scheduling entity (dl_non_contending)
131 * is used to avoid race conditions between the inactive timer handler
132 * and task wakeups.
133 *
134 * The following diagram shows how running_bw is updated. A task is
135 * "ACTIVE" when its utilization contributes to running_bw; an
136 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
137 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
138 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
139 * time already passed, which does not contribute to running_bw anymore.
140 * +------------------+
141 * wakeup | ACTIVE |
142 * +------------------>+ contending |
143 * | add_running_bw | |
144 * | +----+------+------+
145 * | | ^
146 * | dequeue | |
147 * +--------+-------+ | |
148 * | | t >= 0-lag | | wakeup
149 * | INACTIVE |<---------------+ |
150 * | | sub_running_bw | |
151 * +--------+-------+ | |
152 * ^ | |
153 * | t < 0-lag | |
154 * | | |
155 * | V |
156 * | +----+------+------+
157 * | sub_running_bw | ACTIVE |
158 * +-------------------+ |
159 * inactive timer | non contending |
160 * fired +------------------+
161 *
162 * The task_non_contending() function is invoked when a task
163 * blocks, and checks if the 0-lag time already passed or
164 * not (in the first case, it directly updates running_bw;
165 * in the second case, it arms the inactive timer).
166 *
167 * The task_contending() function is invoked when a task wakes
168 * up, and checks if the task is still in the "ACTIVE non contending"
169 * state or not (in the second case, it updates running_bw).
170 */
171static void task_non_contending(struct task_struct *p)
172{
173 struct sched_dl_entity *dl_se = &p->dl;
174 struct hrtimer *timer = &dl_se->inactive_timer;
175 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
176 struct rq *rq = rq_of_dl_rq(dl_rq);
177 s64 zerolag_time;
178
179 /*
180 * If this is a non-deadline task that has been boosted,
181 * do nothing
182 */
183 if (dl_se->dl_runtime == 0)
184 return;
185
186 WARN_ON(hrtimer_active(&dl_se->inactive_timer));
187 WARN_ON(dl_se->dl_non_contending);
188
189 zerolag_time = dl_se->deadline -
190 div64_long((dl_se->runtime * dl_se->dl_period),
191 dl_se->dl_runtime);
192
193 /*
194 * Using relative times instead of the absolute "0-lag time"
195 * allows to simplify the code
196 */
197 zerolag_time -= rq_clock(rq);
198
199 /*
200 * If the "0-lag time" already passed, decrease the active
201 * utilization now, instead of starting a timer
202 */
203 if (zerolag_time < 0) {
204 if (dl_task(p))
205 sub_running_bw(dl_se->dl_bw, dl_rq);
387e3130
LA
206 if (!dl_task(p) || p->state == TASK_DEAD) {
207 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
208
8fd27231
LA
209 if (p->state == TASK_DEAD)
210 sub_rq_bw(p->dl.dl_bw, &rq->dl);
387e3130 211 raw_spin_lock(&dl_b->lock);
daec5798 212 __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
209a0cbd 213 __dl_clear_params(p);
387e3130
LA
214 raw_spin_unlock(&dl_b->lock);
215 }
209a0cbd
LA
216
217 return;
218 }
219
220 dl_se->dl_non_contending = 1;
221 get_task_struct(p);
222 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
223}
224
8fd27231 225static void task_contending(struct sched_dl_entity *dl_se, int flags)
209a0cbd
LA
226{
227 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
228
229 /*
230 * If this is a non-deadline task that has been boosted,
231 * do nothing
232 */
233 if (dl_se->dl_runtime == 0)
234 return;
235
8fd27231
LA
236 if (flags & ENQUEUE_MIGRATED)
237 add_rq_bw(dl_se->dl_bw, dl_rq);
238
209a0cbd
LA
239 if (dl_se->dl_non_contending) {
240 dl_se->dl_non_contending = 0;
241 /*
242 * If the timer handler is currently running and the
243 * timer cannot be cancelled, inactive_task_timer()
244 * will see that dl_not_contending is not set, and
245 * will not touch the rq's active utilization,
246 * so we are still safe.
247 */
248 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
249 put_task_struct(dl_task_of(dl_se));
250 } else {
251 /*
252 * Since "dl_non_contending" is not set, the
253 * task's utilization has already been removed from
254 * active utilization (either when the task blocked,
255 * when the "inactive timer" fired).
256 * So, add it back.
257 */
258 add_running_bw(dl_se->dl_bw, dl_rq);
259 }
260}
261
aab03e05
DF
262static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
263{
264 struct sched_dl_entity *dl_se = &p->dl;
265
266 return dl_rq->rb_leftmost == &dl_se->rb_node;
267}
268
332ac17e
DF
269void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
270{
271 raw_spin_lock_init(&dl_b->dl_runtime_lock);
272 dl_b->dl_period = period;
273 dl_b->dl_runtime = runtime;
274}
275
332ac17e
DF
276void init_dl_bw(struct dl_bw *dl_b)
277{
278 raw_spin_lock_init(&dl_b->lock);
279 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 280 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
281 dl_b->bw = -1;
282 else
1724813d 283 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
284 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
285 dl_b->total_bw = 0;
286}
287
07c54f7a 288void init_dl_rq(struct dl_rq *dl_rq)
aab03e05
DF
289{
290 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
291
292#ifdef CONFIG_SMP
293 /* zero means no -deadline tasks */
294 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
295
296 dl_rq->dl_nr_migratory = 0;
297 dl_rq->overloaded = 0;
298 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332ac17e
DF
299#else
300 init_dl_bw(&dl_rq->dl_bw);
1baca4ce 301#endif
e36d8677
LA
302
303 dl_rq->running_bw = 0;
8fd27231 304 dl_rq->this_bw = 0;
4da3abce 305 init_dl_rq_bw_ratio(dl_rq);
1baca4ce
JL
306}
307
308#ifdef CONFIG_SMP
309
310static inline int dl_overloaded(struct rq *rq)
311{
312 return atomic_read(&rq->rd->dlo_count);
313}
314
315static inline void dl_set_overload(struct rq *rq)
316{
317 if (!rq->online)
318 return;
319
320 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
321 /*
322 * Must be visible before the overload count is
323 * set (as in sched_rt.c).
324 *
325 * Matched by the barrier in pull_dl_task().
326 */
327 smp_wmb();
328 atomic_inc(&rq->rd->dlo_count);
329}
330
331static inline void dl_clear_overload(struct rq *rq)
332{
333 if (!rq->online)
334 return;
335
336 atomic_dec(&rq->rd->dlo_count);
337 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
338}
339
340static void update_dl_migration(struct dl_rq *dl_rq)
341{
995b9ea4 342 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
343 if (!dl_rq->overloaded) {
344 dl_set_overload(rq_of_dl_rq(dl_rq));
345 dl_rq->overloaded = 1;
346 }
347 } else if (dl_rq->overloaded) {
348 dl_clear_overload(rq_of_dl_rq(dl_rq));
349 dl_rq->overloaded = 0;
350 }
351}
352
353static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
354{
355 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 356
4b53a341 357 if (p->nr_cpus_allowed > 1)
1baca4ce
JL
358 dl_rq->dl_nr_migratory++;
359
360 update_dl_migration(dl_rq);
361}
362
363static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
364{
365 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 366
4b53a341 367 if (p->nr_cpus_allowed > 1)
1baca4ce
JL
368 dl_rq->dl_nr_migratory--;
369
370 update_dl_migration(dl_rq);
371}
372
373/*
374 * The list of pushable -deadline task is not a plist, like in
375 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
376 */
377static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
378{
379 struct dl_rq *dl_rq = &rq->dl;
380 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
381 struct rb_node *parent = NULL;
382 struct task_struct *entry;
383 int leftmost = 1;
384
385 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
386
387 while (*link) {
388 parent = *link;
389 entry = rb_entry(parent, struct task_struct,
390 pushable_dl_tasks);
391 if (dl_entity_preempt(&p->dl, &entry->dl))
392 link = &parent->rb_left;
393 else {
394 link = &parent->rb_right;
395 leftmost = 0;
396 }
397 }
398
7d92de3a 399 if (leftmost) {
1baca4ce 400 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
7d92de3a
WL
401 dl_rq->earliest_dl.next = p->dl.deadline;
402 }
1baca4ce
JL
403
404 rb_link_node(&p->pushable_dl_tasks, parent, link);
405 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
406}
407
1baca4ce
JL
408static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
409{
410 struct dl_rq *dl_rq = &rq->dl;
411
412 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
413 return;
414
415 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
416 struct rb_node *next_node;
417
418 next_node = rb_next(&p->pushable_dl_tasks);
419 dl_rq->pushable_dl_tasks_leftmost = next_node;
7d92de3a
WL
420 if (next_node) {
421 dl_rq->earliest_dl.next = rb_entry(next_node,
422 struct task_struct, pushable_dl_tasks)->dl.deadline;
423 }
1baca4ce
JL
424 }
425
426 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
427 RB_CLEAR_NODE(&p->pushable_dl_tasks);
428}
429
430static inline int has_pushable_dl_tasks(struct rq *rq)
431{
432 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
433}
434
435static int push_dl_task(struct rq *rq);
436
dc877341
PZ
437static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
438{
439 return dl_task(prev);
440}
441
9916e214
PZ
442static DEFINE_PER_CPU(struct callback_head, dl_push_head);
443static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
e3fca9e7
PZ
444
445static void push_dl_tasks(struct rq *);
9916e214 446static void pull_dl_task(struct rq *);
e3fca9e7
PZ
447
448static inline void queue_push_tasks(struct rq *rq)
dc877341 449{
e3fca9e7
PZ
450 if (!has_pushable_dl_tasks(rq))
451 return;
452
9916e214
PZ
453 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
454}
455
456static inline void queue_pull_task(struct rq *rq)
457{
458 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
dc877341
PZ
459}
460
fa9c9d10
WL
461static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
462
a649f237 463static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
fa9c9d10
WL
464{
465 struct rq *later_rq = NULL;
fa9c9d10
WL
466
467 later_rq = find_lock_later_rq(p, rq);
fa9c9d10
WL
468 if (!later_rq) {
469 int cpu;
470
471 /*
472 * If we cannot preempt any rq, fall back to pick any
473 * online cpu.
474 */
0c98d344 475 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
fa9c9d10
WL
476 if (cpu >= nr_cpu_ids) {
477 /*
478 * Fail to find any suitable cpu.
479 * The task will never come back!
480 */
481 BUG_ON(dl_bandwidth_enabled());
482
483 /*
484 * If admission control is disabled we
485 * try a little harder to let the task
486 * run.
487 */
488 cpu = cpumask_any(cpu_active_mask);
489 }
490 later_rq = cpu_rq(cpu);
491 double_lock_balance(rq, later_rq);
492 }
493
fa9c9d10 494 set_task_cpu(p, later_rq->cpu);
a649f237
PZ
495 double_unlock_balance(later_rq, rq);
496
497 return later_rq;
fa9c9d10
WL
498}
499
1baca4ce
JL
500#else
501
502static inline
503void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
504{
505}
506
507static inline
508void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
509{
510}
511
512static inline
513void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
514{
515}
516
517static inline
518void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
519{
520}
521
dc877341
PZ
522static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
523{
524 return false;
525}
526
0ea60c20 527static inline void pull_dl_task(struct rq *rq)
dc877341 528{
dc877341
PZ
529}
530
e3fca9e7 531static inline void queue_push_tasks(struct rq *rq)
dc877341 532{
dc877341
PZ
533}
534
9916e214 535static inline void queue_pull_task(struct rq *rq)
dc877341
PZ
536{
537}
1baca4ce
JL
538#endif /* CONFIG_SMP */
539
aab03e05
DF
540static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
541static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
542static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
543 int flags);
544
545/*
546 * We are being explicitly informed that a new instance is starting,
547 * and this means that:
548 * - the absolute deadline of the entity has to be placed at
549 * current time + relative deadline;
550 * - the runtime of the entity has to be set to the maximum value.
551 *
552 * The capability of specifying such event is useful whenever a -deadline
553 * entity wants to (try to!) synchronize its behaviour with the scheduler's
554 * one, and to (try to!) reconcile itself with its own scheduling
555 * parameters.
556 */
98b0a857 557static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
aab03e05
DF
558{
559 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
560 struct rq *rq = rq_of_dl_rq(dl_rq);
561
98b0a857 562 WARN_ON(dl_se->dl_boosted);
72f9f3fd
LA
563 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
564
565 /*
566 * We are racing with the deadline timer. So, do nothing because
567 * the deadline timer handler will take care of properly recharging
568 * the runtime and postponing the deadline
569 */
570 if (dl_se->dl_throttled)
571 return;
aab03e05
DF
572
573 /*
574 * We use the regular wall clock time to set deadlines in the
575 * future; in fact, we must consider execution overheads (time
576 * spent on hardirq context, etc.).
577 */
98b0a857
JL
578 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
579 dl_se->runtime = dl_se->dl_runtime;
aab03e05
DF
580}
581
582/*
583 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
584 * possibility of a entity lasting more than what it declared, and thus
585 * exhausting its runtime.
586 *
587 * Here we are interested in making runtime overrun possible, but we do
588 * not want a entity which is misbehaving to affect the scheduling of all
589 * other entities.
590 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
591 * is used, in order to confine each entity within its own bandwidth.
592 *
593 * This function deals exactly with that, and ensures that when the runtime
594 * of a entity is replenished, its deadline is also postponed. That ensures
595 * the overrunning entity can't interfere with other entity in the system and
596 * can't make them miss their deadlines. Reasons why this kind of overruns
597 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 598 * runtime, or it just underestimated it during sched_setattr().
aab03e05 599 */
2d3d891d
DF
600static void replenish_dl_entity(struct sched_dl_entity *dl_se,
601 struct sched_dl_entity *pi_se)
aab03e05
DF
602{
603 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
604 struct rq *rq = rq_of_dl_rq(dl_rq);
605
2d3d891d
DF
606 BUG_ON(pi_se->dl_runtime <= 0);
607
608 /*
609 * This could be the case for a !-dl task that is boosted.
610 * Just go with full inherited parameters.
611 */
612 if (dl_se->dl_deadline == 0) {
613 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
614 dl_se->runtime = pi_se->dl_runtime;
615 }
616
48be3a67
PZ
617 if (dl_se->dl_yielded && dl_se->runtime > 0)
618 dl_se->runtime = 0;
619
aab03e05
DF
620 /*
621 * We keep moving the deadline away until we get some
622 * available runtime for the entity. This ensures correct
623 * handling of situations where the runtime overrun is
624 * arbitrary large.
625 */
626 while (dl_se->runtime <= 0) {
2d3d891d
DF
627 dl_se->deadline += pi_se->dl_period;
628 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
629 }
630
631 /*
632 * At this point, the deadline really should be "in
633 * the future" with respect to rq->clock. If it's
634 * not, we are, for some reason, lagging too much!
635 * Anyway, after having warn userspace abut that,
636 * we still try to keep the things running by
637 * resetting the deadline and the budget of the
638 * entity.
639 */
640 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c219b7dd 641 printk_deferred_once("sched: DL replenish lagged too much\n");
2d3d891d
DF
642 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
643 dl_se->runtime = pi_se->dl_runtime;
aab03e05 644 }
1019a359
PZ
645
646 if (dl_se->dl_yielded)
647 dl_se->dl_yielded = 0;
648 if (dl_se->dl_throttled)
649 dl_se->dl_throttled = 0;
aab03e05
DF
650}
651
652/*
653 * Here we check if --at time t-- an entity (which is probably being
654 * [re]activated or, in general, enqueued) can use its remaining runtime
655 * and its current deadline _without_ exceeding the bandwidth it is
656 * assigned (function returns true if it can't). We are in fact applying
657 * one of the CBS rules: when a task wakes up, if the residual runtime
658 * over residual deadline fits within the allocated bandwidth, then we
659 * can keep the current (absolute) deadline and residual budget without
660 * disrupting the schedulability of the system. Otherwise, we should
661 * refill the runtime and set the deadline a period in the future,
662 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
663 * result in breaking guarantees promised to other tasks (refer to
664 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
665 *
666 * This function returns true if:
667 *
2317d5f1 668 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
aab03e05
DF
669 *
670 * IOW we can't recycle current parameters.
755378a4 671 *
2317d5f1 672 * Notice that the bandwidth check is done against the deadline. For
755378a4 673 * task with deadline equal to period this is the same of using
2317d5f1 674 * dl_period instead of dl_deadline in the equation above.
aab03e05 675 */
2d3d891d
DF
676static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
677 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
678{
679 u64 left, right;
680
681 /*
682 * left and right are the two sides of the equation above,
683 * after a bit of shuffling to use multiplications instead
684 * of divisions.
685 *
686 * Note that none of the time values involved in the two
687 * multiplications are absolute: dl_deadline and dl_runtime
688 * are the relative deadline and the maximum runtime of each
689 * instance, runtime is the runtime left for the last instance
690 * and (deadline - t), since t is rq->clock, is the time left
691 * to the (absolute) deadline. Even if overflowing the u64 type
692 * is very unlikely to occur in both cases, here we scale down
693 * as we want to avoid that risk at all. Scaling down by 10
694 * means that we reduce granularity to 1us. We are fine with it,
695 * since this is only a true/false check and, anyway, thinking
696 * of anything below microseconds resolution is actually fiction
697 * (but still we want to give the user that illusion >;).
698 */
2317d5f1 699 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
332ac17e
DF
700 right = ((dl_se->deadline - t) >> DL_SCALE) *
701 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
702
703 return dl_time_before(right, left);
704}
705
706/*
3effcb42
DBO
707 * Revised wakeup rule [1]: For self-suspending tasks, rather then
708 * re-initializing task's runtime and deadline, the revised wakeup
709 * rule adjusts the task's runtime to avoid the task to overrun its
710 * density.
aab03e05 711 *
3effcb42
DBO
712 * Reasoning: a task may overrun the density if:
713 * runtime / (deadline - t) > dl_runtime / dl_deadline
714 *
715 * Therefore, runtime can be adjusted to:
716 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
717 *
718 * In such way that runtime will be equal to the maximum density
719 * the task can use without breaking any rule.
720 *
721 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
722 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
723 */
724static void
725update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
726{
727 u64 laxity = dl_se->deadline - rq_clock(rq);
728
729 /*
730 * If the task has deadline < period, and the deadline is in the past,
731 * it should already be throttled before this check.
732 *
733 * See update_dl_entity() comments for further details.
734 */
735 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
736
737 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
738}
739
740/*
741 * Regarding the deadline, a task with implicit deadline has a relative
742 * deadline == relative period. A task with constrained deadline has a
743 * relative deadline <= relative period.
744 *
745 * We support constrained deadline tasks. However, there are some restrictions
746 * applied only for tasks which do not have an implicit deadline. See
747 * update_dl_entity() to know more about such restrictions.
748 *
749 * The dl_is_implicit() returns true if the task has an implicit deadline.
750 */
751static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
752{
753 return dl_se->dl_deadline == dl_se->dl_period;
754}
755
756/*
757 * When a deadline entity is placed in the runqueue, its runtime and deadline
758 * might need to be updated. This is done by a CBS wake up rule. There are two
759 * different rules: 1) the original CBS; and 2) the Revisited CBS.
760 *
761 * When the task is starting a new period, the Original CBS is used. In this
762 * case, the runtime is replenished and a new absolute deadline is set.
763 *
764 * When a task is queued before the begin of the next period, using the
765 * remaining runtime and deadline could make the entity to overflow, see
766 * dl_entity_overflow() to find more about runtime overflow. When such case
767 * is detected, the runtime and deadline need to be updated.
768 *
769 * If the task has an implicit deadline, i.e., deadline == period, the Original
770 * CBS is applied. the runtime is replenished and a new absolute deadline is
771 * set, as in the previous cases.
772 *
773 * However, the Original CBS does not work properly for tasks with
774 * deadline < period, which are said to have a constrained deadline. By
775 * applying the Original CBS, a constrained deadline task would be able to run
776 * runtime/deadline in a period. With deadline < period, the task would
777 * overrun the runtime/period allowed bandwidth, breaking the admission test.
778 *
779 * In order to prevent this misbehave, the Revisited CBS is used for
780 * constrained deadline tasks when a runtime overflow is detected. In the
781 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
782 * the remaining runtime of the task is reduced to avoid runtime overflow.
783 * Please refer to the comments update_dl_revised_wakeup() function to find
784 * more about the Revised CBS rule.
aab03e05 785 */
2d3d891d
DF
786static void update_dl_entity(struct sched_dl_entity *dl_se,
787 struct sched_dl_entity *pi_se)
aab03e05
DF
788{
789 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
790 struct rq *rq = rq_of_dl_rq(dl_rq);
791
aab03e05 792 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d 793 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
3effcb42
DBO
794
795 if (unlikely(!dl_is_implicit(dl_se) &&
796 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
797 !dl_se->dl_boosted)){
798 update_dl_revised_wakeup(dl_se, rq);
799 return;
800 }
801
2d3d891d
DF
802 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
803 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
804 }
805}
806
5ac69d37
DBO
807static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
808{
809 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
810}
811
aab03e05
DF
812/*
813 * If the entity depleted all its runtime, and if we want it to sleep
814 * while waiting for some new execution time to become available, we
5ac69d37 815 * set the bandwidth replenishment timer to the replenishment instant
aab03e05
DF
816 * and try to activate it.
817 *
818 * Notice that it is important for the caller to know if the timer
819 * actually started or not (i.e., the replenishment instant is in
820 * the future or in the past).
821 */
a649f237 822static int start_dl_timer(struct task_struct *p)
aab03e05 823{
a649f237
PZ
824 struct sched_dl_entity *dl_se = &p->dl;
825 struct hrtimer *timer = &dl_se->dl_timer;
826 struct rq *rq = task_rq(p);
aab03e05 827 ktime_t now, act;
aab03e05
DF
828 s64 delta;
829
a649f237
PZ
830 lockdep_assert_held(&rq->lock);
831
aab03e05
DF
832 /*
833 * We want the timer to fire at the deadline, but considering
834 * that it is actually coming from rq->clock and not from
835 * hrtimer's time base reading.
836 */
5ac69d37 837 act = ns_to_ktime(dl_next_period(dl_se));
a649f237 838 now = hrtimer_cb_get_time(timer);
aab03e05
DF
839 delta = ktime_to_ns(now) - rq_clock(rq);
840 act = ktime_add_ns(act, delta);
841
842 /*
843 * If the expiry time already passed, e.g., because the value
844 * chosen as the deadline is too small, don't even try to
845 * start the timer in the past!
846 */
847 if (ktime_us_delta(act, now) < 0)
848 return 0;
849
a649f237
PZ
850 /*
851 * !enqueued will guarantee another callback; even if one is already in
852 * progress. This ensures a balanced {get,put}_task_struct().
853 *
854 * The race against __run_timer() clearing the enqueued state is
855 * harmless because we're holding task_rq()->lock, therefore the timer
856 * expiring after we've done the check will wait on its task_rq_lock()
857 * and observe our state.
858 */
859 if (!hrtimer_is_queued(timer)) {
860 get_task_struct(p);
861 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
862 }
aab03e05 863
cc9684d3 864 return 1;
aab03e05
DF
865}
866
867/*
868 * This is the bandwidth enforcement timer callback. If here, we know
869 * a task is not on its dl_rq, since the fact that the timer was running
870 * means the task is throttled and needs a runtime replenishment.
871 *
872 * However, what we actually do depends on the fact the task is active,
873 * (it is on its rq) or has been removed from there by a call to
874 * dequeue_task_dl(). In the former case we must issue the runtime
875 * replenishment and add the task back to the dl_rq; in the latter, we just
876 * do nothing but clearing dl_throttled, so that runtime and deadline
877 * updating (and the queueing back to dl_rq) will be done by the
878 * next call to enqueue_task_dl().
879 */
880static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
881{
882 struct sched_dl_entity *dl_se = container_of(timer,
883 struct sched_dl_entity,
884 dl_timer);
885 struct task_struct *p = dl_task_of(dl_se);
eb580751 886 struct rq_flags rf;
0f397f2c 887 struct rq *rq;
3960c8c0 888
eb580751 889 rq = task_rq_lock(p, &rf);
0f397f2c 890
aab03e05 891 /*
a649f237 892 * The task might have changed its scheduling policy to something
9846d50d 893 * different than SCHED_DEADLINE (through switched_from_dl()).
a649f237 894 */
209a0cbd 895 if (!dl_task(p))
a649f237 896 goto unlock;
a649f237 897
a649f237
PZ
898 /*
899 * The task might have been boosted by someone else and might be in the
900 * boosting/deboosting path, its not throttled.
901 */
902 if (dl_se->dl_boosted)
903 goto unlock;
a79ec89f 904
fa9c9d10 905 /*
a649f237
PZ
906 * Spurious timer due to start_dl_timer() race; or we already received
907 * a replenishment from rt_mutex_setprio().
fa9c9d10 908 */
a649f237 909 if (!dl_se->dl_throttled)
fa9c9d10 910 goto unlock;
a649f237
PZ
911
912 sched_clock_tick();
913 update_rq_clock(rq);
fa9c9d10 914
a79ec89f
KT
915 /*
916 * If the throttle happened during sched-out; like:
917 *
918 * schedule()
919 * deactivate_task()
920 * dequeue_task_dl()
921 * update_curr_dl()
922 * start_dl_timer()
923 * __dequeue_task_dl()
924 * prev->on_rq = 0;
925 *
926 * We can be both throttled and !queued. Replenish the counter
927 * but do not enqueue -- wait for our wakeup to do that.
928 */
929 if (!task_on_rq_queued(p)) {
930 replenish_dl_entity(dl_se, dl_se);
931 goto unlock;
932 }
933
1baca4ce 934#ifdef CONFIG_SMP
c0c8c9fa 935 if (unlikely(!rq->online)) {
61c7aca6
WL
936 /*
937 * If the runqueue is no longer available, migrate the
938 * task elsewhere. This necessarily changes rq.
939 */
c0c8c9fa 940 lockdep_unpin_lock(&rq->lock, rf.cookie);
a649f237 941 rq = dl_task_offline_migration(rq, p);
c0c8c9fa 942 rf.cookie = lockdep_pin_lock(&rq->lock);
dcc3b5ff 943 update_rq_clock(rq);
61c7aca6
WL
944
945 /*
946 * Now that the task has been migrated to the new RQ and we
947 * have that locked, proceed as normal and enqueue the task
948 * there.
949 */
c0c8c9fa 950 }
61c7aca6 951#endif
a649f237 952
61c7aca6
WL
953 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
954 if (dl_task(rq->curr))
955 check_preempt_curr_dl(rq, p, 0);
956 else
957 resched_curr(rq);
a649f237 958
61c7aca6 959#ifdef CONFIG_SMP
a649f237
PZ
960 /*
961 * Queueing this task back might have overloaded rq, check if we need
962 * to kick someone away.
1019a359 963 */
0aaafaab
PZ
964 if (has_pushable_dl_tasks(rq)) {
965 /*
966 * Nothing relies on rq->lock after this, so its safe to drop
967 * rq->lock.
968 */
d8ac8971 969 rq_unpin_lock(rq, &rf);
1019a359 970 push_dl_task(rq);
d8ac8971 971 rq_repin_lock(rq, &rf);
0aaafaab 972 }
1baca4ce 973#endif
a649f237 974
aab03e05 975unlock:
eb580751 976 task_rq_unlock(rq, p, &rf);
aab03e05 977
a649f237
PZ
978 /*
979 * This can free the task_struct, including this hrtimer, do not touch
980 * anything related to that after this.
981 */
982 put_task_struct(p);
983
aab03e05
DF
984 return HRTIMER_NORESTART;
985}
986
987void init_dl_task_timer(struct sched_dl_entity *dl_se)
988{
989 struct hrtimer *timer = &dl_se->dl_timer;
990
aab03e05
DF
991 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
992 timer->function = dl_task_timer;
993}
994
df8eac8c
DBO
995/*
996 * During the activation, CBS checks if it can reuse the current task's
997 * runtime and period. If the deadline of the task is in the past, CBS
998 * cannot use the runtime, and so it replenishes the task. This rule
999 * works fine for implicit deadline tasks (deadline == period), and the
1000 * CBS was designed for implicit deadline tasks. However, a task with
1001 * constrained deadline (deadine < period) might be awakened after the
1002 * deadline, but before the next period. In this case, replenishing the
1003 * task would allow it to run for runtime / deadline. As in this case
1004 * deadline < period, CBS enables a task to run for more than the
1005 * runtime / period. In a very loaded system, this can cause a domino
1006 * effect, making other tasks miss their deadlines.
1007 *
1008 * To avoid this problem, in the activation of a constrained deadline
1009 * task after the deadline but before the next period, throttle the
1010 * task and set the replenishing timer to the begin of the next period,
1011 * unless it is boosted.
1012 */
1013static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1014{
1015 struct task_struct *p = dl_task_of(dl_se);
1016 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1017
1018 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1019 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1020 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1021 return;
1022 dl_se->dl_throttled = 1;
ae83b56a
XP
1023 if (dl_se->runtime > 0)
1024 dl_se->runtime = 0;
df8eac8c
DBO
1025 }
1026}
1027
aab03e05 1028static
6fab5410 1029int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
aab03e05 1030{
269ad801 1031 return (dl_se->runtime <= 0);
aab03e05
DF
1032}
1033
faa59937
JL
1034extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1035
c52f14d3
LA
1036/*
1037 * This function implements the GRUB accounting rule:
1038 * according to the GRUB reclaiming algorithm, the runtime is
daec5798
LA
1039 * not decreased as "dq = -dt", but as
1040 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1041 * where u is the utilization of the task, Umax is the maximum reclaimable
1042 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1043 * as the difference between the "total runqueue utilization" and the
1044 * runqueue active utilization, and Uextra is the (per runqueue) extra
1045 * reclaimable utilization.
9f0d1a50 1046 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
daec5798
LA
1047 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1048 * BW_SHIFT.
1049 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1050 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1051 * Since delta is a 64 bit variable, to have an overflow its value
1052 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1053 * So, overflow is not an issue here.
c52f14d3 1054 */
9f0d1a50 1055u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
c52f14d3 1056{
9f0d1a50
LA
1057 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1058 u64 u_act;
daec5798 1059 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
c52f14d3 1060
9f0d1a50 1061 /*
daec5798
LA
1062 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1063 * we compare u_inact + rq->dl.extra_bw with
1064 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1065 * u_inact + rq->dl.extra_bw can be larger than
1066 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1067 * leading to wrong results)
9f0d1a50 1068 */
daec5798
LA
1069 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1070 u_act = u_act_min;
9f0d1a50 1071 else
daec5798 1072 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
9f0d1a50
LA
1073
1074 return (delta * u_act) >> BW_SHIFT;
c52f14d3
LA
1075}
1076
aab03e05
DF
1077/*
1078 * Update the current task's runtime statistics (provided it is still
1079 * a -deadline task and has not been removed from the dl_rq).
1080 */
1081static void update_curr_dl(struct rq *rq)
1082{
1083 struct task_struct *curr = rq->curr;
1084 struct sched_dl_entity *dl_se = &curr->dl;
1085 u64 delta_exec;
1086
1087 if (!dl_task(curr) || !on_dl_rq(dl_se))
1088 return;
1089
1090 /*
1091 * Consumed budget is computed considering the time as
1092 * observed by schedulable tasks (excluding time spent
1093 * in hardirq context, etc.). Deadlines are instead
1094 * computed using hard walltime. This seems to be the more
1095 * natural solution, but the full ramifications of this
1096 * approach need further study.
1097 */
1098 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
48be3a67
PZ
1099 if (unlikely((s64)delta_exec <= 0)) {
1100 if (unlikely(dl_se->dl_yielded))
1101 goto throttle;
734ff2a7 1102 return;
48be3a67 1103 }
aab03e05 1104
58919e83 1105 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
12bde33d 1106 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL);
594dd290 1107
aab03e05
DF
1108 schedstat_set(curr->se.statistics.exec_max,
1109 max(curr->se.statistics.exec_max, delta_exec));
1110
1111 curr->se.sum_exec_runtime += delta_exec;
1112 account_group_exec_runtime(curr, delta_exec);
1113
1114 curr->se.exec_start = rq_clock_task(rq);
1115 cpuacct_charge(curr, delta_exec);
1116
239be4a9
DF
1117 sched_rt_avg_update(rq, delta_exec);
1118
2d4283e9 1119 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM))
9f0d1a50 1120 delta_exec = grub_reclaim(delta_exec, rq, &curr->dl);
48be3a67
PZ
1121 dl_se->runtime -= delta_exec;
1122
1123throttle:
1124 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1019a359 1125 dl_se->dl_throttled = 1;
aab03e05 1126 __dequeue_task_dl(rq, curr, 0);
a649f237 1127 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
aab03e05
DF
1128 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1129
1130 if (!is_leftmost(curr, &rq->dl))
8875125e 1131 resched_curr(rq);
aab03e05 1132 }
1724813d
PZ
1133
1134 /*
1135 * Because -- for now -- we share the rt bandwidth, we need to
1136 * account our runtime there too, otherwise actual rt tasks
1137 * would be able to exceed the shared quota.
1138 *
1139 * Account to the root rt group for now.
1140 *
1141 * The solution we're working towards is having the RT groups scheduled
1142 * using deadline servers -- however there's a few nasties to figure
1143 * out before that can happen.
1144 */
1145 if (rt_bandwidth_enabled()) {
1146 struct rt_rq *rt_rq = &rq->rt;
1147
1148 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
1149 /*
1150 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
1151 * have our own CBS to keep us inline; only account when RT
1152 * bandwidth is relevant.
1724813d 1153 */
faa59937
JL
1154 if (sched_rt_bandwidth_account(rt_rq))
1155 rt_rq->rt_time += delta_exec;
1724813d
PZ
1156 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1157 }
aab03e05
DF
1158}
1159
209a0cbd
LA
1160static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1161{
1162 struct sched_dl_entity *dl_se = container_of(timer,
1163 struct sched_dl_entity,
1164 inactive_timer);
1165 struct task_struct *p = dl_task_of(dl_se);
1166 struct rq_flags rf;
1167 struct rq *rq;
1168
1169 rq = task_rq_lock(p, &rf);
1170
1171 if (!dl_task(p) || p->state == TASK_DEAD) {
387e3130
LA
1172 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1173
209a0cbd
LA
1174 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1175 sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
8fd27231 1176 sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
209a0cbd
LA
1177 dl_se->dl_non_contending = 0;
1178 }
387e3130
LA
1179
1180 raw_spin_lock(&dl_b->lock);
daec5798 1181 __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
387e3130 1182 raw_spin_unlock(&dl_b->lock);
209a0cbd
LA
1183 __dl_clear_params(p);
1184
1185 goto unlock;
1186 }
1187 if (dl_se->dl_non_contending == 0)
1188 goto unlock;
1189
1190 sched_clock_tick();
1191 update_rq_clock(rq);
1192
1193 sub_running_bw(dl_se->dl_bw, &rq->dl);
1194 dl_se->dl_non_contending = 0;
1195unlock:
1196 task_rq_unlock(rq, p, &rf);
1197 put_task_struct(p);
1198
1199 return HRTIMER_NORESTART;
1200}
1201
1202void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1203{
1204 struct hrtimer *timer = &dl_se->inactive_timer;
1205
1206 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1207 timer->function = inactive_task_timer;
1208}
1209
1baca4ce
JL
1210#ifdef CONFIG_SMP
1211
1baca4ce
JL
1212static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1213{
1214 struct rq *rq = rq_of_dl_rq(dl_rq);
1215
1216 if (dl_rq->earliest_dl.curr == 0 ||
1217 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1baca4ce 1218 dl_rq->earliest_dl.curr = deadline;
d8206bb3 1219 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1baca4ce
JL
1220 }
1221}
1222
1223static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1224{
1225 struct rq *rq = rq_of_dl_rq(dl_rq);
1226
1227 /*
1228 * Since we may have removed our earliest (and/or next earliest)
1229 * task we must recompute them.
1230 */
1231 if (!dl_rq->dl_nr_running) {
1232 dl_rq->earliest_dl.curr = 0;
1233 dl_rq->earliest_dl.next = 0;
d8206bb3 1234 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
1235 } else {
1236 struct rb_node *leftmost = dl_rq->rb_leftmost;
1237 struct sched_dl_entity *entry;
1238
1239 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1240 dl_rq->earliest_dl.curr = entry->deadline;
d8206bb3 1241 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1baca4ce
JL
1242 }
1243}
1244
1245#else
1246
1247static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1248static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1249
1250#endif /* CONFIG_SMP */
1251
1252static inline
1253void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1254{
1255 int prio = dl_task_of(dl_se)->prio;
1256 u64 deadline = dl_se->deadline;
1257
1258 WARN_ON(!dl_prio(prio));
1259 dl_rq->dl_nr_running++;
72465447 1260 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
1261
1262 inc_dl_deadline(dl_rq, deadline);
1263 inc_dl_migration(dl_se, dl_rq);
1264}
1265
1266static inline
1267void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1268{
1269 int prio = dl_task_of(dl_se)->prio;
1270
1271 WARN_ON(!dl_prio(prio));
1272 WARN_ON(!dl_rq->dl_nr_running);
1273 dl_rq->dl_nr_running--;
72465447 1274 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
1275
1276 dec_dl_deadline(dl_rq, dl_se->deadline);
1277 dec_dl_migration(dl_se, dl_rq);
1278}
1279
aab03e05
DF
1280static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1281{
1282 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1283 struct rb_node **link = &dl_rq->rb_root.rb_node;
1284 struct rb_node *parent = NULL;
1285 struct sched_dl_entity *entry;
1286 int leftmost = 1;
1287
1288 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1289
1290 while (*link) {
1291 parent = *link;
1292 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1293 if (dl_time_before(dl_se->deadline, entry->deadline))
1294 link = &parent->rb_left;
1295 else {
1296 link = &parent->rb_right;
1297 leftmost = 0;
1298 }
1299 }
1300
1301 if (leftmost)
1302 dl_rq->rb_leftmost = &dl_se->rb_node;
1303
1304 rb_link_node(&dl_se->rb_node, parent, link);
1305 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
1306
1baca4ce 1307 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
1308}
1309
1310static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1311{
1312 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1313
1314 if (RB_EMPTY_NODE(&dl_se->rb_node))
1315 return;
1316
1317 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
1318 struct rb_node *next_node;
1319
1320 next_node = rb_next(&dl_se->rb_node);
1321 dl_rq->rb_leftmost = next_node;
1322 }
1323
1324 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
1325 RB_CLEAR_NODE(&dl_se->rb_node);
1326
1baca4ce 1327 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
1328}
1329
1330static void
2d3d891d
DF
1331enqueue_dl_entity(struct sched_dl_entity *dl_se,
1332 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
1333{
1334 BUG_ON(on_dl_rq(dl_se));
1335
1336 /*
1337 * If this is a wakeup or a new instance, the scheduling
1338 * parameters of the task might need updating. Otherwise,
1339 * we want a replenishment of its runtime.
1340 */
e36d8677 1341 if (flags & ENQUEUE_WAKEUP) {
8fd27231 1342 task_contending(dl_se, flags);
2d3d891d 1343 update_dl_entity(dl_se, pi_se);
e36d8677 1344 } else if (flags & ENQUEUE_REPLENISH) {
6a503c3b 1345 replenish_dl_entity(dl_se, pi_se);
e36d8677 1346 }
aab03e05
DF
1347
1348 __enqueue_dl_entity(dl_se);
1349}
1350
1351static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1352{
1353 __dequeue_dl_entity(dl_se);
1354}
1355
1356static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1357{
2d3d891d
DF
1358 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1359 struct sched_dl_entity *pi_se = &p->dl;
1360
1361 /*
1362 * Use the scheduling parameters of the top pi-waiter
ff277d42 1363 * task if we have one and its (absolute) deadline is
2d3d891d
DF
1364 * smaller than our one... OTW we keep our runtime and
1365 * deadline.
1366 */
64be6f1f 1367 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
2d3d891d 1368 pi_se = &pi_task->dl;
64be6f1f
JL
1369 } else if (!dl_prio(p->normal_prio)) {
1370 /*
1371 * Special case in which we have a !SCHED_DEADLINE task
1372 * that is going to be deboosted, but exceedes its
1373 * runtime while doing so. No point in replenishing
1374 * it, as it's going to return back to its original
1375 * scheduling class after this.
1376 */
1377 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1378 return;
1379 }
2d3d891d 1380
df8eac8c
DBO
1381 /*
1382 * Check if a constrained deadline task was activated
1383 * after the deadline but before the next period.
1384 * If that is the case, the task will be throttled and
1385 * the replenishment timer will be set to the next period.
1386 */
3effcb42 1387 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
df8eac8c
DBO
1388 dl_check_constrained_dl(&p->dl);
1389
8fd27231
LA
1390 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1391 add_rq_bw(p->dl.dl_bw, &rq->dl);
e36d8677 1392 add_running_bw(p->dl.dl_bw, &rq->dl);
8fd27231 1393 }
e36d8677 1394
aab03e05 1395 /*
e36d8677 1396 * If p is throttled, we do not enqueue it. In fact, if it exhausted
aab03e05
DF
1397 * its budget it needs a replenishment and, since it now is on
1398 * its rq, the bandwidth timer callback (which clearly has not
1399 * run yet) will take care of this.
e36d8677
LA
1400 * However, the active utilization does not depend on the fact
1401 * that the task is on the runqueue or not (but depends on the
1402 * task's state - in GRUB parlance, "inactive" vs "active contending").
1403 * In other words, even if a task is throttled its utilization must
1404 * be counted in the active utilization; hence, we need to call
1405 * add_running_bw().
aab03e05 1406 */
e36d8677 1407 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
209a0cbd 1408 if (flags & ENQUEUE_WAKEUP)
8fd27231 1409 task_contending(&p->dl, flags);
209a0cbd 1410
aab03e05 1411 return;
e36d8677 1412 }
aab03e05 1413
2d3d891d 1414 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce 1415
4b53a341 1416 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1baca4ce 1417 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1418}
1419
1420static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1421{
1422 dequeue_dl_entity(&p->dl);
1baca4ce 1423 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
1424}
1425
1426static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1427{
1428 update_curr_dl(rq);
1429 __dequeue_task_dl(rq, p, flags);
e36d8677 1430
8fd27231 1431 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
e36d8677 1432 sub_running_bw(p->dl.dl_bw, &rq->dl);
8fd27231
LA
1433 sub_rq_bw(p->dl.dl_bw, &rq->dl);
1434 }
e36d8677
LA
1435
1436 /*
209a0cbd
LA
1437 * This check allows to start the inactive timer (or to immediately
1438 * decrease the active utilization, if needed) in two cases:
e36d8677
LA
1439 * when the task blocks and when it is terminating
1440 * (p->state == TASK_DEAD). We can handle the two cases in the same
1441 * way, because from GRUB's point of view the same thing is happening
1442 * (the task moves from "active contending" to "active non contending"
1443 * or "inactive")
1444 */
1445 if (flags & DEQUEUE_SLEEP)
209a0cbd 1446 task_non_contending(p);
aab03e05
DF
1447}
1448
1449/*
1450 * Yield task semantic for -deadline tasks is:
1451 *
1452 * get off from the CPU until our next instance, with
1453 * a new runtime. This is of little use now, since we
1454 * don't have a bandwidth reclaiming mechanism. Anyway,
1455 * bandwidth reclaiming is planned for the future, and
1456 * yield_task_dl will indicate that some spare budget
1457 * is available for other task instances to use it.
1458 */
1459static void yield_task_dl(struct rq *rq)
1460{
aab03e05
DF
1461 /*
1462 * We make the task go to sleep until its current deadline by
1463 * forcing its runtime to zero. This way, update_curr_dl() stops
1464 * it and the bandwidth timer will wake it up and will give it
5bfd126e 1465 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05 1466 */
48be3a67
PZ
1467 rq->curr->dl.dl_yielded = 1;
1468
6f1607f1 1469 update_rq_clock(rq);
aab03e05 1470 update_curr_dl(rq);
44fb085b
WL
1471 /*
1472 * Tell update_rq_clock() that we've just updated,
1473 * so we don't do microscopic update in schedule()
1474 * and double the fastpath cost.
1475 */
1476 rq_clock_skip_update(rq, true);
aab03e05
DF
1477}
1478
1baca4ce
JL
1479#ifdef CONFIG_SMP
1480
1481static int find_later_rq(struct task_struct *task);
1baca4ce
JL
1482
1483static int
1484select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1485{
1486 struct task_struct *curr;
1487 struct rq *rq;
1488
1d7e974c 1489 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
1490 goto out;
1491
1492 rq = cpu_rq(cpu);
1493
1494 rcu_read_lock();
316c1608 1495 curr = READ_ONCE(rq->curr); /* unlocked access */
1baca4ce
JL
1496
1497 /*
1498 * If we are dealing with a -deadline task, we must
1499 * decide where to wake it up.
1500 * If it has a later deadline and the current task
1501 * on this rq can't move (provided the waking task
1502 * can!) we prefer to send it somewhere else. On the
1503 * other hand, if it has a shorter deadline, we
1504 * try to make it stay here, it might be important.
1505 */
1506 if (unlikely(dl_task(curr)) &&
4b53a341 1507 (curr->nr_cpus_allowed < 2 ||
1baca4ce 1508 !dl_entity_preempt(&p->dl, &curr->dl)) &&
4b53a341 1509 (p->nr_cpus_allowed > 1)) {
1baca4ce
JL
1510 int target = find_later_rq(p);
1511
9d514262 1512 if (target != -1 &&
5aa50507
LA
1513 (dl_time_before(p->dl.deadline,
1514 cpu_rq(target)->dl.earliest_dl.curr) ||
1515 (cpu_rq(target)->dl.dl_nr_running == 0)))
1baca4ce
JL
1516 cpu = target;
1517 }
1518 rcu_read_unlock();
1519
1520out:
1521 return cpu;
1522}
1523
209a0cbd
LA
1524static void migrate_task_rq_dl(struct task_struct *p)
1525{
1526 struct rq *rq;
1527
8fd27231 1528 if (p->state != TASK_WAKING)
209a0cbd
LA
1529 return;
1530
1531 rq = task_rq(p);
1532 /*
1533 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1534 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1535 * rq->lock is not... So, lock it
1536 */
1537 raw_spin_lock(&rq->lock);
8fd27231
LA
1538 if (p->dl.dl_non_contending) {
1539 sub_running_bw(p->dl.dl_bw, &rq->dl);
1540 p->dl.dl_non_contending = 0;
1541 /*
1542 * If the timer handler is currently running and the
1543 * timer cannot be cancelled, inactive_task_timer()
1544 * will see that dl_not_contending is not set, and
1545 * will not touch the rq's active utilization,
1546 * so we are still safe.
1547 */
1548 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1549 put_task_struct(p);
1550 }
1551 sub_rq_bw(p->dl.dl_bw, &rq->dl);
209a0cbd
LA
1552 raw_spin_unlock(&rq->lock);
1553}
1554
1baca4ce
JL
1555static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1556{
1557 /*
1558 * Current can't be migrated, useless to reschedule,
1559 * let's hope p can move out.
1560 */
4b53a341 1561 if (rq->curr->nr_cpus_allowed == 1 ||
6bfd6d72 1562 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1baca4ce
JL
1563 return;
1564
1565 /*
1566 * p is migratable, so let's not schedule it and
1567 * see if it is pushed or pulled somewhere else.
1568 */
4b53a341 1569 if (p->nr_cpus_allowed != 1 &&
6bfd6d72 1570 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1baca4ce
JL
1571 return;
1572
8875125e 1573 resched_curr(rq);
1baca4ce
JL
1574}
1575
1576#endif /* CONFIG_SMP */
1577
aab03e05
DF
1578/*
1579 * Only called when both the current and waking task are -deadline
1580 * tasks.
1581 */
1582static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1583 int flags)
1584{
1baca4ce 1585 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1586 resched_curr(rq);
1baca4ce
JL
1587 return;
1588 }
1589
1590#ifdef CONFIG_SMP
1591 /*
1592 * In the unlikely case current and p have the same deadline
1593 * let us try to decide what's the best thing to do...
1594 */
332ac17e
DF
1595 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1596 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1597 check_preempt_equal_dl(rq, p);
1598#endif /* CONFIG_SMP */
aab03e05
DF
1599}
1600
1601#ifdef CONFIG_SCHED_HRTICK
1602static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1603{
177ef2a6 1604 hrtick_start(rq, p->dl.runtime);
aab03e05 1605}
36ce9881
WL
1606#else /* !CONFIG_SCHED_HRTICK */
1607static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1608{
1609}
aab03e05
DF
1610#endif
1611
1612static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1613 struct dl_rq *dl_rq)
1614{
1615 struct rb_node *left = dl_rq->rb_leftmost;
1616
1617 if (!left)
1618 return NULL;
1619
1620 return rb_entry(left, struct sched_dl_entity, rb_node);
1621}
1622
e7904a28 1623struct task_struct *
d8ac8971 1624pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
aab03e05
DF
1625{
1626 struct sched_dl_entity *dl_se;
1627 struct task_struct *p;
1628 struct dl_rq *dl_rq;
1629
1630 dl_rq = &rq->dl;
1631
a1d9a323 1632 if (need_pull_dl_task(rq, prev)) {
cbce1a68
PZ
1633 /*
1634 * This is OK, because current is on_cpu, which avoids it being
1635 * picked for load-balance and preemption/IRQs are still
1636 * disabled avoiding further scheduler activity on it and we're
1637 * being very careful to re-start the picking loop.
1638 */
d8ac8971 1639 rq_unpin_lock(rq, rf);
38033c37 1640 pull_dl_task(rq);
d8ac8971 1641 rq_repin_lock(rq, rf);
a1d9a323 1642 /*
176cedc4 1643 * pull_dl_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1644 * means a stop task can slip in, in which case we need to
1645 * re-start task selection.
1646 */
da0c1e65 1647 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1648 return RETRY_TASK;
1649 }
1650
734ff2a7
KT
1651 /*
1652 * When prev is DL, we may throttle it in put_prev_task().
1653 * So, we update time before we check for dl_nr_running.
1654 */
1655 if (prev->sched_class == &dl_sched_class)
1656 update_curr_dl(rq);
38033c37 1657
aab03e05
DF
1658 if (unlikely(!dl_rq->dl_nr_running))
1659 return NULL;
1660
3f1d2a31 1661 put_prev_task(rq, prev);
606dba2e 1662
aab03e05
DF
1663 dl_se = pick_next_dl_entity(rq, dl_rq);
1664 BUG_ON(!dl_se);
1665
1666 p = dl_task_of(dl_se);
1667 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1668
1669 /* Running task will never be pushed. */
71362650 1670 dequeue_pushable_dl_task(rq, p);
1baca4ce 1671
aab03e05
DF
1672 if (hrtick_enabled(rq))
1673 start_hrtick_dl(rq, p);
1baca4ce 1674
e3fca9e7 1675 queue_push_tasks(rq);
1baca4ce 1676
aab03e05
DF
1677 return p;
1678}
1679
1680static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1681{
1682 update_curr_dl(rq);
1baca4ce 1683
4b53a341 1684 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1baca4ce 1685 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1686}
1687
1688static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1689{
1690 update_curr_dl(rq);
1691
a7bebf48
WL
1692 /*
1693 * Even when we have runtime, update_curr_dl() might have resulted in us
1694 * not being the leftmost task anymore. In that case NEED_RESCHED will
1695 * be set and schedule() will start a new hrtick for the next task.
1696 */
1697 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1698 is_leftmost(p, &rq->dl))
aab03e05 1699 start_hrtick_dl(rq, p);
aab03e05
DF
1700}
1701
1702static void task_fork_dl(struct task_struct *p)
1703{
1704 /*
1705 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1706 * sched_fork()
1707 */
1708}
1709
aab03e05
DF
1710static void set_curr_task_dl(struct rq *rq)
1711{
1712 struct task_struct *p = rq->curr;
1713
1714 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1715
1716 /* You can't push away the running task */
1717 dequeue_pushable_dl_task(rq, p);
1718}
1719
1720#ifdef CONFIG_SMP
1721
1722/* Only try algorithms three times */
1723#define DL_MAX_TRIES 3
1724
1725static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1726{
1727 if (!task_running(rq, p) &&
0c98d344 1728 cpumask_test_cpu(cpu, &p->cpus_allowed))
1baca4ce 1729 return 1;
1baca4ce
JL
1730 return 0;
1731}
1732
8b5e770e
WL
1733/*
1734 * Return the earliest pushable rq's task, which is suitable to be executed
1735 * on the CPU, NULL otherwise:
1736 */
1737static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1738{
1739 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1740 struct task_struct *p = NULL;
1741
1742 if (!has_pushable_dl_tasks(rq))
1743 return NULL;
1744
1745next_node:
1746 if (next_node) {
1747 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1748
1749 if (pick_dl_task(rq, p, cpu))
1750 return p;
1751
1752 next_node = rb_next(next_node);
1753 goto next_node;
1754 }
1755
1756 return NULL;
1757}
1758
1baca4ce
JL
1759static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1760
1761static int find_later_rq(struct task_struct *task)
1762{
1763 struct sched_domain *sd;
4ba29684 1764 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce
JL
1765 int this_cpu = smp_processor_id();
1766 int best_cpu, cpu = task_cpu(task);
1767
1768 /* Make sure the mask is initialized first */
1769 if (unlikely(!later_mask))
1770 return -1;
1771
4b53a341 1772 if (task->nr_cpus_allowed == 1)
1baca4ce
JL
1773 return -1;
1774
91ec6778
JL
1775 /*
1776 * We have to consider system topology and task affinity
1777 * first, then we can look for a suitable cpu.
1778 */
6bfd6d72
JL
1779 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1780 task, later_mask);
1baca4ce
JL
1781 if (best_cpu == -1)
1782 return -1;
1783
1784 /*
1785 * If we are here, some target has been found,
1786 * the most suitable of which is cached in best_cpu.
1787 * This is, among the runqueues where the current tasks
1788 * have later deadlines than the task's one, the rq
1789 * with the latest possible one.
1790 *
1791 * Now we check how well this matches with task's
1792 * affinity and system topology.
1793 *
1794 * The last cpu where the task run is our first
1795 * guess, since it is most likely cache-hot there.
1796 */
1797 if (cpumask_test_cpu(cpu, later_mask))
1798 return cpu;
1799 /*
1800 * Check if this_cpu is to be skipped (i.e., it is
1801 * not in the mask) or not.
1802 */
1803 if (!cpumask_test_cpu(this_cpu, later_mask))
1804 this_cpu = -1;
1805
1806 rcu_read_lock();
1807 for_each_domain(cpu, sd) {
1808 if (sd->flags & SD_WAKE_AFFINE) {
1809
1810 /*
1811 * If possible, preempting this_cpu is
1812 * cheaper than migrating.
1813 */
1814 if (this_cpu != -1 &&
1815 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1816 rcu_read_unlock();
1817 return this_cpu;
1818 }
1819
1820 /*
1821 * Last chance: if best_cpu is valid and is
1822 * in the mask, that becomes our choice.
1823 */
1824 if (best_cpu < nr_cpu_ids &&
1825 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1826 rcu_read_unlock();
1827 return best_cpu;
1828 }
1829 }
1830 }
1831 rcu_read_unlock();
1832
1833 /*
1834 * At this point, all our guesses failed, we just return
1835 * 'something', and let the caller sort the things out.
1836 */
1837 if (this_cpu != -1)
1838 return this_cpu;
1839
1840 cpu = cpumask_any(later_mask);
1841 if (cpu < nr_cpu_ids)
1842 return cpu;
1843
1844 return -1;
1845}
1846
1847/* Locks the rq it finds */
1848static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1849{
1850 struct rq *later_rq = NULL;
1851 int tries;
1852 int cpu;
1853
1854 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1855 cpu = find_later_rq(task);
1856
1857 if ((cpu == -1) || (cpu == rq->cpu))
1858 break;
1859
1860 later_rq = cpu_rq(cpu);
1861
5aa50507
LA
1862 if (later_rq->dl.dl_nr_running &&
1863 !dl_time_before(task->dl.deadline,
9d514262
WL
1864 later_rq->dl.earliest_dl.curr)) {
1865 /*
1866 * Target rq has tasks of equal or earlier deadline,
1867 * retrying does not release any lock and is unlikely
1868 * to yield a different result.
1869 */
1870 later_rq = NULL;
1871 break;
1872 }
1873
1baca4ce
JL
1874 /* Retry if something changed. */
1875 if (double_lock_balance(rq, later_rq)) {
1876 if (unlikely(task_rq(task) != rq ||
0c98d344 1877 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
da0c1e65 1878 task_running(rq, task) ||
13b5ab02 1879 !dl_task(task) ||
da0c1e65 1880 !task_on_rq_queued(task))) {
1baca4ce
JL
1881 double_unlock_balance(rq, later_rq);
1882 later_rq = NULL;
1883 break;
1884 }
1885 }
1886
1887 /*
1888 * If the rq we found has no -deadline task, or
1889 * its earliest one has a later deadline than our
1890 * task, the rq is a good one.
1891 */
1892 if (!later_rq->dl.dl_nr_running ||
1893 dl_time_before(task->dl.deadline,
1894 later_rq->dl.earliest_dl.curr))
1895 break;
1896
1897 /* Otherwise we try again. */
1898 double_unlock_balance(rq, later_rq);
1899 later_rq = NULL;
1900 }
1901
1902 return later_rq;
1903}
1904
1905static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1906{
1907 struct task_struct *p;
1908
1909 if (!has_pushable_dl_tasks(rq))
1910 return NULL;
1911
1912 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1913 struct task_struct, pushable_dl_tasks);
1914
1915 BUG_ON(rq->cpu != task_cpu(p));
1916 BUG_ON(task_current(rq, p));
4b53a341 1917 BUG_ON(p->nr_cpus_allowed <= 1);
1baca4ce 1918
da0c1e65 1919 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
1920 BUG_ON(!dl_task(p));
1921
1922 return p;
1923}
1924
1925/*
1926 * See if the non running -deadline tasks on this rq
1927 * can be sent to some other CPU where they can preempt
1928 * and start executing.
1929 */
1930static int push_dl_task(struct rq *rq)
1931{
1932 struct task_struct *next_task;
1933 struct rq *later_rq;
c51b8ab5 1934 int ret = 0;
1baca4ce
JL
1935
1936 if (!rq->dl.overloaded)
1937 return 0;
1938
1939 next_task = pick_next_pushable_dl_task(rq);
1940 if (!next_task)
1941 return 0;
1942
1943retry:
1944 if (unlikely(next_task == rq->curr)) {
1945 WARN_ON(1);
1946 return 0;
1947 }
1948
1949 /*
1950 * If next_task preempts rq->curr, and rq->curr
1951 * can move away, it makes sense to just reschedule
1952 * without going further in pushing next_task.
1953 */
1954 if (dl_task(rq->curr) &&
1955 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
4b53a341 1956 rq->curr->nr_cpus_allowed > 1) {
8875125e 1957 resched_curr(rq);
1baca4ce
JL
1958 return 0;
1959 }
1960
1961 /* We might release rq lock */
1962 get_task_struct(next_task);
1963
1964 /* Will lock the rq it'll find */
1965 later_rq = find_lock_later_rq(next_task, rq);
1966 if (!later_rq) {
1967 struct task_struct *task;
1968
1969 /*
1970 * We must check all this again, since
1971 * find_lock_later_rq releases rq->lock and it is
1972 * then possible that next_task has migrated.
1973 */
1974 task = pick_next_pushable_dl_task(rq);
a776b968 1975 if (task == next_task) {
1baca4ce
JL
1976 /*
1977 * The task is still there. We don't try
1978 * again, some other cpu will pull it when ready.
1979 */
1baca4ce
JL
1980 goto out;
1981 }
1982
1983 if (!task)
1984 /* No more tasks */
1985 goto out;
1986
1987 put_task_struct(next_task);
1988 next_task = task;
1989 goto retry;
1990 }
1991
1992 deactivate_task(rq, next_task, 0);
e36d8677 1993 sub_running_bw(next_task->dl.dl_bw, &rq->dl);
8fd27231 1994 sub_rq_bw(next_task->dl.dl_bw, &rq->dl);
1baca4ce 1995 set_task_cpu(next_task, later_rq->cpu);
8fd27231 1996 add_rq_bw(next_task->dl.dl_bw, &later_rq->dl);
e36d8677 1997 add_running_bw(next_task->dl.dl_bw, &later_rq->dl);
1baca4ce 1998 activate_task(later_rq, next_task, 0);
c51b8ab5 1999 ret = 1;
1baca4ce 2000
8875125e 2001 resched_curr(later_rq);
1baca4ce
JL
2002
2003 double_unlock_balance(rq, later_rq);
2004
2005out:
2006 put_task_struct(next_task);
2007
c51b8ab5 2008 return ret;
1baca4ce
JL
2009}
2010
2011static void push_dl_tasks(struct rq *rq)
2012{
4ffa08ed 2013 /* push_dl_task() will return true if it moved a -deadline task */
1baca4ce
JL
2014 while (push_dl_task(rq))
2015 ;
aab03e05
DF
2016}
2017
0ea60c20 2018static void pull_dl_task(struct rq *this_rq)
1baca4ce 2019{
0ea60c20 2020 int this_cpu = this_rq->cpu, cpu;
1baca4ce 2021 struct task_struct *p;
0ea60c20 2022 bool resched = false;
1baca4ce
JL
2023 struct rq *src_rq;
2024 u64 dmin = LONG_MAX;
2025
2026 if (likely(!dl_overloaded(this_rq)))
0ea60c20 2027 return;
1baca4ce
JL
2028
2029 /*
2030 * Match the barrier from dl_set_overloaded; this guarantees that if we
2031 * see overloaded we must also see the dlo_mask bit.
2032 */
2033 smp_rmb();
2034
2035 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2036 if (this_cpu == cpu)
2037 continue;
2038
2039 src_rq = cpu_rq(cpu);
2040
2041 /*
2042 * It looks racy, abd it is! However, as in sched_rt.c,
2043 * we are fine with this.
2044 */
2045 if (this_rq->dl.dl_nr_running &&
2046 dl_time_before(this_rq->dl.earliest_dl.curr,
2047 src_rq->dl.earliest_dl.next))
2048 continue;
2049
2050 /* Might drop this_rq->lock */
2051 double_lock_balance(this_rq, src_rq);
2052
2053 /*
2054 * If there are no more pullable tasks on the
2055 * rq, we're done with it.
2056 */
2057 if (src_rq->dl.dl_nr_running <= 1)
2058 goto skip;
2059
8b5e770e 2060 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1baca4ce
JL
2061
2062 /*
2063 * We found a task to be pulled if:
2064 * - it preempts our current (if there's one),
2065 * - it will preempt the last one we pulled (if any).
2066 */
2067 if (p && dl_time_before(p->dl.deadline, dmin) &&
2068 (!this_rq->dl.dl_nr_running ||
2069 dl_time_before(p->dl.deadline,
2070 this_rq->dl.earliest_dl.curr))) {
2071 WARN_ON(p == src_rq->curr);
da0c1e65 2072 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
2073
2074 /*
2075 * Then we pull iff p has actually an earlier
2076 * deadline than the current task of its runqueue.
2077 */
2078 if (dl_time_before(p->dl.deadline,
2079 src_rq->curr->dl.deadline))
2080 goto skip;
2081
0ea60c20 2082 resched = true;
1baca4ce
JL
2083
2084 deactivate_task(src_rq, p, 0);
e36d8677 2085 sub_running_bw(p->dl.dl_bw, &src_rq->dl);
8fd27231 2086 sub_rq_bw(p->dl.dl_bw, &src_rq->dl);
1baca4ce 2087 set_task_cpu(p, this_cpu);
8fd27231 2088 add_rq_bw(p->dl.dl_bw, &this_rq->dl);
e36d8677 2089 add_running_bw(p->dl.dl_bw, &this_rq->dl);
1baca4ce
JL
2090 activate_task(this_rq, p, 0);
2091 dmin = p->dl.deadline;
2092
2093 /* Is there any other task even earlier? */
2094 }
2095skip:
2096 double_unlock_balance(this_rq, src_rq);
2097 }
2098
0ea60c20
PZ
2099 if (resched)
2100 resched_curr(this_rq);
1baca4ce
JL
2101}
2102
2103/*
2104 * Since the task is not running and a reschedule is not going to happen
2105 * anytime soon on its runqueue, we try pushing it away now.
2106 */
2107static void task_woken_dl(struct rq *rq, struct task_struct *p)
2108{
2109 if (!task_running(rq, p) &&
2110 !test_tsk_need_resched(rq->curr) &&
4b53a341 2111 p->nr_cpus_allowed > 1 &&
1baca4ce 2112 dl_task(rq->curr) &&
4b53a341 2113 (rq->curr->nr_cpus_allowed < 2 ||
6b0a563f 2114 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
2115 push_dl_tasks(rq);
2116 }
2117}
2118
2119static void set_cpus_allowed_dl(struct task_struct *p,
2120 const struct cpumask *new_mask)
2121{
7f51412a 2122 struct root_domain *src_rd;
6c37067e 2123 struct rq *rq;
1baca4ce
JL
2124
2125 BUG_ON(!dl_task(p));
2126
7f51412a
JL
2127 rq = task_rq(p);
2128 src_rd = rq->rd;
2129 /*
2130 * Migrating a SCHED_DEADLINE task between exclusive
2131 * cpusets (different root_domains) entails a bandwidth
2132 * update. We already made space for us in the destination
2133 * domain (see cpuset_can_attach()).
2134 */
2135 if (!cpumask_intersects(src_rd->span, new_mask)) {
2136 struct dl_bw *src_dl_b;
2137
2138 src_dl_b = dl_bw_of(cpu_of(rq));
2139 /*
2140 * We now free resources of the root_domain we are migrating
2141 * off. In the worst case, sched_setattr() may temporary fail
2142 * until we complete the update.
2143 */
2144 raw_spin_lock(&src_dl_b->lock);
daec5798 2145 __dl_clear(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
7f51412a
JL
2146 raw_spin_unlock(&src_dl_b->lock);
2147 }
2148
6c37067e 2149 set_cpus_allowed_common(p, new_mask);
1baca4ce
JL
2150}
2151
2152/* Assumes rq->lock is held */
2153static void rq_online_dl(struct rq *rq)
2154{
2155 if (rq->dl.overloaded)
2156 dl_set_overload(rq);
6bfd6d72 2157
16b26943 2158 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72 2159 if (rq->dl.dl_nr_running > 0)
d8206bb3 2160 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
1baca4ce
JL
2161}
2162
2163/* Assumes rq->lock is held */
2164static void rq_offline_dl(struct rq *rq)
2165{
2166 if (rq->dl.overloaded)
2167 dl_clear_overload(rq);
6bfd6d72 2168
d8206bb3 2169 cpudl_clear(&rq->rd->cpudl, rq->cpu);
16b26943 2170 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
2171}
2172
a6c0e746 2173void __init init_sched_dl_class(void)
1baca4ce
JL
2174{
2175 unsigned int i;
2176
2177 for_each_possible_cpu(i)
2178 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2179 GFP_KERNEL, cpu_to_node(i));
2180}
2181
2182#endif /* CONFIG_SMP */
2183
aab03e05
DF
2184static void switched_from_dl(struct rq *rq, struct task_struct *p)
2185{
a649f237 2186 /*
209a0cbd
LA
2187 * task_non_contending() can start the "inactive timer" (if the 0-lag
2188 * time is in the future). If the task switches back to dl before
2189 * the "inactive timer" fires, it can continue to consume its current
2190 * runtime using its current deadline. If it stays outside of
2191 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2192 * will reset the task parameters.
a649f237 2193 */
209a0cbd
LA
2194 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2195 task_non_contending(p);
2196
8fd27231
LA
2197 if (!task_on_rq_queued(p))
2198 sub_rq_bw(p->dl.dl_bw, &rq->dl);
2199
209a0cbd
LA
2200 /*
2201 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2202 * at the 0-lag time, because the task could have been migrated
2203 * while SCHED_OTHER in the meanwhile.
2204 */
2205 if (p->dl.dl_non_contending)
2206 p->dl.dl_non_contending = 0;
a5e7be3b 2207
1baca4ce
JL
2208 /*
2209 * Since this might be the only -deadline task on the rq,
2210 * this is the right place to try to pull some other one
2211 * from an overloaded cpu, if any.
2212 */
cd660911
WL
2213 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2214 return;
2215
9916e214 2216 queue_pull_task(rq);
aab03e05
DF
2217}
2218
1baca4ce
JL
2219/*
2220 * When switching to -deadline, we may overload the rq, then
2221 * we try to push someone off, if possible.
2222 */
aab03e05
DF
2223static void switched_to_dl(struct rq *rq, struct task_struct *p)
2224{
209a0cbd
LA
2225 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2226 put_task_struct(p);
98b0a857
JL
2227
2228 /* If p is not queued we will update its parameters at next wakeup. */
8fd27231
LA
2229 if (!task_on_rq_queued(p)) {
2230 add_rq_bw(p->dl.dl_bw, &rq->dl);
98b0a857 2231
8fd27231
LA
2232 return;
2233 }
98b0a857
JL
2234 /*
2235 * If p is boosted we already updated its params in
2236 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
2237 * p's deadline being now already after rq_clock(rq).
2238 */
72f9f3fd 2239 if (dl_time_before(p->dl.deadline, rq_clock(rq)))
98b0a857 2240 setup_new_dl_entity(&p->dl);
72f9f3fd 2241
98b0a857 2242 if (rq->curr != p) {
1baca4ce 2243#ifdef CONFIG_SMP
4b53a341 2244 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
9916e214 2245 queue_push_tasks(rq);
619bd4a7 2246#endif
9916e214
PZ
2247 if (dl_task(rq->curr))
2248 check_preempt_curr_dl(rq, p, 0);
2249 else
2250 resched_curr(rq);
aab03e05
DF
2251 }
2252}
2253
1baca4ce
JL
2254/*
2255 * If the scheduling parameters of a -deadline task changed,
2256 * a push or pull operation might be needed.
2257 */
aab03e05
DF
2258static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2259 int oldprio)
2260{
da0c1e65 2261 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 2262#ifdef CONFIG_SMP
1baca4ce
JL
2263 /*
2264 * This might be too much, but unfortunately
2265 * we don't have the old deadline value, and
2266 * we can't argue if the task is increasing
2267 * or lowering its prio, so...
2268 */
2269 if (!rq->dl.overloaded)
9916e214 2270 queue_pull_task(rq);
1baca4ce
JL
2271
2272 /*
2273 * If we now have a earlier deadline task than p,
2274 * then reschedule, provided p is still on this
2275 * runqueue.
2276 */
9916e214 2277 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
8875125e 2278 resched_curr(rq);
1baca4ce
JL
2279#else
2280 /*
2281 * Again, we don't know if p has a earlier
2282 * or later deadline, so let's blindly set a
2283 * (maybe not needed) rescheduling point.
2284 */
8875125e 2285 resched_curr(rq);
1baca4ce 2286#endif /* CONFIG_SMP */
801ccdbf 2287 }
aab03e05 2288}
aab03e05
DF
2289
2290const struct sched_class dl_sched_class = {
2291 .next = &rt_sched_class,
2292 .enqueue_task = enqueue_task_dl,
2293 .dequeue_task = dequeue_task_dl,
2294 .yield_task = yield_task_dl,
2295
2296 .check_preempt_curr = check_preempt_curr_dl,
2297
2298 .pick_next_task = pick_next_task_dl,
2299 .put_prev_task = put_prev_task_dl,
2300
2301#ifdef CONFIG_SMP
2302 .select_task_rq = select_task_rq_dl,
209a0cbd 2303 .migrate_task_rq = migrate_task_rq_dl,
1baca4ce
JL
2304 .set_cpus_allowed = set_cpus_allowed_dl,
2305 .rq_online = rq_online_dl,
2306 .rq_offline = rq_offline_dl,
1baca4ce 2307 .task_woken = task_woken_dl,
aab03e05
DF
2308#endif
2309
2310 .set_curr_task = set_curr_task_dl,
2311 .task_tick = task_tick_dl,
2312 .task_fork = task_fork_dl,
aab03e05
DF
2313
2314 .prio_changed = prio_changed_dl,
2315 .switched_from = switched_from_dl,
2316 .switched_to = switched_to_dl,
6e998916
SG
2317
2318 .update_curr = update_curr_dl,
aab03e05 2319};
acb32132
WL
2320
2321#ifdef CONFIG_SCHED_DEBUG
2322extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2323
2324void print_dl_stats(struct seq_file *m, int cpu)
2325{
2326 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2327}
2328#endif /* CONFIG_SCHED_DEBUG */