]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/fair.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
fb13c7ee
MG
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
887c290e
RR
1104static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
fb13c7ee
MG
1106{
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
887c290e 1112 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
887c290e
RR
1131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1133 * in any group then look only at task weights.
887c290e 1134 */
ca28aa53 1135 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
ca28aa53
RR
1138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
887c290e 1144 } else {
ca28aa53
RR
1145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
887c290e 1161 }
fb13c7ee
MG
1162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205assign:
1206 task_numa_assign(env, cur, imp);
1207unlock:
1208 rcu_read_unlock();
1209}
1210
887c290e
RR
1211static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
2c8a50aa
MG
1213{
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
887c290e 1222 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1223 }
1224}
1225
58d081b5
MG
1226static int task_numa_migrate(struct task_struct *p)
1227{
58d081b5
MG
1228 struct task_numa_env env = {
1229 .p = p,
fb13c7ee 1230
58d081b5 1231 .src_cpu = task_cpu(p),
b32e86b4 1232 .src_nid = task_node(p),
fb13c7ee
MG
1233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
58d081b5
MG
1239 };
1240 struct sched_domain *sd;
887c290e 1241 unsigned long taskweight, groupweight;
2c8a50aa 1242 int nid, ret;
887c290e 1243 long taskimp, groupimp;
e6628d5b 1244
58d081b5 1245 /*
fb13c7ee
MG
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
58d081b5
MG
1252 */
1253 rcu_read_lock();
fb13c7ee 1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1257 rcu_read_unlock();
1258
46a73e8a
RR
1259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
de1b301a 1266 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1267 return -EINVAL;
1268 }
1269
887c290e
RR
1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1272 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1273 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1276 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1277
e1dda8a7
RR
1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
887c290e 1280 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
2c8a50aa
MG
1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 continue;
58d081b5 1287
83e1d2cd 1288 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1292 continue;
1293
2c8a50aa
MG
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1296 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1297 }
1298 }
1299
fb13c7ee
MG
1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
0ec8aa00
PZ
1304 sched_setnuma(p, env.dst_nid);
1305
04bb2f94
RR
1306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
fb13c7ee 1312 if (env.best_task == NULL) {
286549dc
MG
1313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
286549dc
MG
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1322 put_task_struct(env.best_task);
1323 return ret;
e6628d5b
MG
1324}
1325
6b9a7460
MG
1326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
2739d3ee 1329 /* This task has no NUMA fault statistics yet */
ff1df896 1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1331 return;
1332
2739d3ee
RR
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1335
1336 /* Success if task is already running on preferred CPU */
de1b301a 1337 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1338 return;
1339
1340 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1341 task_numa_migrate(p);
6b9a7460
MG
1342}
1343
20e07dea
RR
1344/*
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357 unsigned long faults, max_faults = 0;
1358 int nid;
1359
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1364 }
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1373 }
1374}
1375
04bb2f94
RR
1376/*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1394{
1395 unsigned int period_slot;
1396 int ratio;
1397 int diff;
1398
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1401
1402 /*
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1406 */
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1410
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1413
1414 return;
1415 }
1416
1417 /*
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot)
1428 slot = 1;
1429 diff = slot * period_slot;
1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433 /*
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1440 */
04bb2f94
RR
1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 }
1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
7e2703e6
RR
1450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1463
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1467 } else {
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1470 }
1471
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1474
1475 return delta;
1476}
1477
cbee9f88
PZ
1478static void task_numa_placement(struct task_struct *p)
1479{
83e1d2cd
MG
1480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1482 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1483 unsigned long total_faults;
1484 u64 runtime, period;
7dbd13ed 1485 spinlock_t *group_lock = NULL;
cbee9f88 1486
2832bc19 1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1488 if (p->numa_scan_seq == seq)
1489 return;
1490 p->numa_scan_seq = seq;
598f0ec0 1491 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1492
7e2703e6
RR
1493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1496
7dbd13ed
MG
1497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
1500 spin_lock(group_lock);
1501 }
1502
688b7585
MG
1503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
83e1d2cd 1505 unsigned long faults = 0, group_faults = 0;
ac8e895b 1506 int priv, i;
745d6147 1507
be1e4e76 1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1509 long diff, f_diff, f_weight;
8c8a743c 1510
ac8e895b 1511 i = task_faults_idx(nid, priv);
745d6147 1512
ac8e895b 1513 /* Decay existing window, copy faults since last scan */
35664fd4 1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1517
7e2703e6
RR
1518 /*
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1);
35664fd4 1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1529 p->numa_faults_buffer_cpu[i] = 0;
1530
35664fd4
RR
1531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
ff1df896 1533 faults += p->numa_faults_memory[i];
83e1d2cd 1534 p->total_numa_faults += diff;
8c8a743c
PZ
1535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
989348b5 1537 p->numa_group->faults[i] += diff;
50ec8a40 1538 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
8c8a743c 1541 }
ac8e895b
MG
1542 }
1543
688b7585
MG
1544 if (faults > max_faults) {
1545 max_faults = faults;
1546 max_nid = nid;
1547 }
83e1d2cd
MG
1548
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1552 }
1553 }
1554
04bb2f94
RR
1555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
7dbd13ed 1557 if (p->numa_group) {
20e07dea 1558 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1559 /*
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1562 */
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
1565
1566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1570 max_nid = nid;
1571 }
83e1d2cd
MG
1572 }
1573 }
7dbd13ed
MG
1574
1575 spin_unlock(group_lock);
688b7585
MG
1576 }
1577
6b9a7460 1578 /* Preferred node as the node with the most faults */
3a7053b3 1579 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1580 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1581 sched_setnuma(p, max_nid);
6b9a7460 1582 numa_migrate_preferred(p);
3a7053b3 1583 }
cbee9f88
PZ
1584}
1585
8c8a743c
PZ
1586static inline int get_numa_group(struct numa_group *grp)
1587{
1588 return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1595}
1596
3e6a9418
MG
1597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv)
8c8a743c
PZ
1599{
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i;
1605
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1608 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp)
1612 return;
1613
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1617 grp->gid = p->pid;
50ec8a40 1618 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids;
8c8a743c 1621
20e07dea
RR
1622 node_set(task_node(current), grp->active_nodes);
1623
be1e4e76 1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1625 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1626
989348b5 1627 grp->total_faults = p->total_numa_faults;
83e1d2cd 1628
8c8a743c
PZ
1629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp);
1632 }
1633
1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1638 goto no_join;
8c8a743c
PZ
1639
1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp)
3354781a 1642 goto no_join;
8c8a743c
PZ
1643
1644 my_grp = p->numa_group;
1645 if (grp == my_grp)
3354781a 1646 goto no_join;
8c8a743c
PZ
1647
1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1653 goto no_join;
8c8a743c
PZ
1654
1655 /*
1656 * Tie-break on the grp address.
1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1659 goto no_join;
8c8a743c 1660
dabe1d99
RR
1661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1663 join = true;
1664
1665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1667 join = true;
8c8a743c 1668
3e6a9418
MG
1669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join;
1671
dabe1d99 1672 if (join && !get_numa_group(grp))
3354781a 1673 goto no_join;
8c8a743c 1674
8c8a743c
PZ
1675 rcu_read_unlock();
1676
1677 if (!join)
1678 return;
1679
989348b5
MG
1680 double_lock(&my_grp->lock, &grp->lock);
1681
be1e4e76 1682 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1683 my_grp->faults[i] -= p->numa_faults_memory[i];
1684 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1685 }
989348b5
MG
1686 my_grp->total_faults -= p->total_numa_faults;
1687 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1688
1689 list_move(&p->numa_entry, &grp->task_list);
1690 my_grp->nr_tasks--;
1691 grp->nr_tasks++;
1692
1693 spin_unlock(&my_grp->lock);
1694 spin_unlock(&grp->lock);
1695
1696 rcu_assign_pointer(p->numa_group, grp);
1697
1698 put_numa_group(my_grp);
3354781a
PZ
1699 return;
1700
1701no_join:
1702 rcu_read_unlock();
1703 return;
8c8a743c
PZ
1704}
1705
1706void task_numa_free(struct task_struct *p)
1707{
1708 struct numa_group *grp = p->numa_group;
1709 int i;
ff1df896 1710 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1711
1712 if (grp) {
989348b5 1713 spin_lock(&grp->lock);
be1e4e76 1714 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1715 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1716 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1717
8c8a743c
PZ
1718 list_del(&p->numa_entry);
1719 grp->nr_tasks--;
1720 spin_unlock(&grp->lock);
1721 rcu_assign_pointer(p->numa_group, NULL);
1722 put_numa_group(grp);
1723 }
1724
ff1df896
RR
1725 p->numa_faults_memory = NULL;
1726 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1727 p->numa_faults_cpu= NULL;
1728 p->numa_faults_buffer_cpu = NULL;
82727018 1729 kfree(numa_faults);
8c8a743c
PZ
1730}
1731
cbee9f88
PZ
1732/*
1733 * Got a PROT_NONE fault for a page on @node.
1734 */
58b46da3 1735void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1736{
1737 struct task_struct *p = current;
6688cc05 1738 bool migrated = flags & TNF_MIGRATED;
58b46da3 1739 int cpu_node = task_node(current);
ac8e895b 1740 int priv;
cbee9f88 1741
10e84b97 1742 if (!numabalancing_enabled)
1a687c2e
MG
1743 return;
1744
9ff1d9ff
MG
1745 /* for example, ksmd faulting in a user's mm */
1746 if (!p->mm)
1747 return;
1748
82727018
RR
1749 /* Do not worry about placement if exiting */
1750 if (p->state == TASK_DEAD)
1751 return;
1752
f809ca9a 1753 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1754 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1755 int size = sizeof(*p->numa_faults_memory) *
1756 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1757
be1e4e76 1758 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1759 if (!p->numa_faults_memory)
f809ca9a 1760 return;
745d6147 1761
ff1df896 1762 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1763 /*
1764 * The averaged statistics, shared & private, memory & cpu,
1765 * occupy the first half of the array. The second half of the
1766 * array is for current counters, which are averaged into the
1767 * first set by task_numa_placement.
1768 */
50ec8a40
RR
1769 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1770 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1771 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1772 p->total_numa_faults = 0;
04bb2f94 1773 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1774 }
cbee9f88 1775
8c8a743c
PZ
1776 /*
1777 * First accesses are treated as private, otherwise consider accesses
1778 * to be private if the accessing pid has not changed
1779 */
1780 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1781 priv = 1;
1782 } else {
1783 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1784 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1785 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1786 }
1787
cbee9f88 1788 task_numa_placement(p);
f809ca9a 1789
2739d3ee
RR
1790 /*
1791 * Retry task to preferred node migration periodically, in case it
1792 * case it previously failed, or the scheduler moved us.
1793 */
1794 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1795 numa_migrate_preferred(p);
1796
b32e86b4
IM
1797 if (migrated)
1798 p->numa_pages_migrated += pages;
1799
58b46da3
RR
1800 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1801 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
04bb2f94 1802 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1803}
1804
6e5fb223
PZ
1805static void reset_ptenuma_scan(struct task_struct *p)
1806{
1807 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1808 p->mm->numa_scan_offset = 0;
1809}
1810
cbee9f88
PZ
1811/*
1812 * The expensive part of numa migration is done from task_work context.
1813 * Triggered from task_tick_numa().
1814 */
1815void task_numa_work(struct callback_head *work)
1816{
1817 unsigned long migrate, next_scan, now = jiffies;
1818 struct task_struct *p = current;
1819 struct mm_struct *mm = p->mm;
6e5fb223 1820 struct vm_area_struct *vma;
9f40604c 1821 unsigned long start, end;
598f0ec0 1822 unsigned long nr_pte_updates = 0;
9f40604c 1823 long pages;
cbee9f88
PZ
1824
1825 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1826
1827 work->next = work; /* protect against double add */
1828 /*
1829 * Who cares about NUMA placement when they're dying.
1830 *
1831 * NOTE: make sure not to dereference p->mm before this check,
1832 * exit_task_work() happens _after_ exit_mm() so we could be called
1833 * without p->mm even though we still had it when we enqueued this
1834 * work.
1835 */
1836 if (p->flags & PF_EXITING)
1837 return;
1838
930aa174 1839 if (!mm->numa_next_scan) {
7e8d16b6
MG
1840 mm->numa_next_scan = now +
1841 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1842 }
1843
cbee9f88
PZ
1844 /*
1845 * Enforce maximal scan/migration frequency..
1846 */
1847 migrate = mm->numa_next_scan;
1848 if (time_before(now, migrate))
1849 return;
1850
598f0ec0
MG
1851 if (p->numa_scan_period == 0) {
1852 p->numa_scan_period_max = task_scan_max(p);
1853 p->numa_scan_period = task_scan_min(p);
1854 }
cbee9f88 1855
fb003b80 1856 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1857 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1858 return;
1859
19a78d11
PZ
1860 /*
1861 * Delay this task enough that another task of this mm will likely win
1862 * the next time around.
1863 */
1864 p->node_stamp += 2 * TICK_NSEC;
1865
9f40604c
MG
1866 start = mm->numa_scan_offset;
1867 pages = sysctl_numa_balancing_scan_size;
1868 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1869 if (!pages)
1870 return;
cbee9f88 1871
6e5fb223 1872 down_read(&mm->mmap_sem);
9f40604c 1873 vma = find_vma(mm, start);
6e5fb223
PZ
1874 if (!vma) {
1875 reset_ptenuma_scan(p);
9f40604c 1876 start = 0;
6e5fb223
PZ
1877 vma = mm->mmap;
1878 }
9f40604c 1879 for (; vma; vma = vma->vm_next) {
fc314724 1880 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1881 continue;
1882
4591ce4f
MG
1883 /*
1884 * Shared library pages mapped by multiple processes are not
1885 * migrated as it is expected they are cache replicated. Avoid
1886 * hinting faults in read-only file-backed mappings or the vdso
1887 * as migrating the pages will be of marginal benefit.
1888 */
1889 if (!vma->vm_mm ||
1890 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1891 continue;
1892
3c67f474
MG
1893 /*
1894 * Skip inaccessible VMAs to avoid any confusion between
1895 * PROT_NONE and NUMA hinting ptes
1896 */
1897 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1898 continue;
4591ce4f 1899
9f40604c
MG
1900 do {
1901 start = max(start, vma->vm_start);
1902 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1903 end = min(end, vma->vm_end);
598f0ec0
MG
1904 nr_pte_updates += change_prot_numa(vma, start, end);
1905
1906 /*
1907 * Scan sysctl_numa_balancing_scan_size but ensure that
1908 * at least one PTE is updated so that unused virtual
1909 * address space is quickly skipped.
1910 */
1911 if (nr_pte_updates)
1912 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1913
9f40604c
MG
1914 start = end;
1915 if (pages <= 0)
1916 goto out;
3cf1962c
RR
1917
1918 cond_resched();
9f40604c 1919 } while (end != vma->vm_end);
cbee9f88 1920 }
6e5fb223 1921
9f40604c 1922out:
6e5fb223 1923 /*
c69307d5
PZ
1924 * It is possible to reach the end of the VMA list but the last few
1925 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1926 * would find the !migratable VMA on the next scan but not reset the
1927 * scanner to the start so check it now.
6e5fb223
PZ
1928 */
1929 if (vma)
9f40604c 1930 mm->numa_scan_offset = start;
6e5fb223
PZ
1931 else
1932 reset_ptenuma_scan(p);
1933 up_read(&mm->mmap_sem);
cbee9f88
PZ
1934}
1935
1936/*
1937 * Drive the periodic memory faults..
1938 */
1939void task_tick_numa(struct rq *rq, struct task_struct *curr)
1940{
1941 struct callback_head *work = &curr->numa_work;
1942 u64 period, now;
1943
1944 /*
1945 * We don't care about NUMA placement if we don't have memory.
1946 */
1947 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1948 return;
1949
1950 /*
1951 * Using runtime rather than walltime has the dual advantage that
1952 * we (mostly) drive the selection from busy threads and that the
1953 * task needs to have done some actual work before we bother with
1954 * NUMA placement.
1955 */
1956 now = curr->se.sum_exec_runtime;
1957 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1958
1959 if (now - curr->node_stamp > period) {
4b96a29b 1960 if (!curr->node_stamp)
598f0ec0 1961 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1962 curr->node_stamp += period;
cbee9f88
PZ
1963
1964 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1965 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1966 task_work_add(curr, work, true);
1967 }
1968 }
1969}
1970#else
1971static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1972{
1973}
0ec8aa00
PZ
1974
1975static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1976{
1977}
1978
1979static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1980{
1981}
cbee9f88
PZ
1982#endif /* CONFIG_NUMA_BALANCING */
1983
30cfdcfc
DA
1984static void
1985account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1986{
1987 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1988 if (!parent_entity(se))
029632fb 1989 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1990#ifdef CONFIG_SMP
0ec8aa00
PZ
1991 if (entity_is_task(se)) {
1992 struct rq *rq = rq_of(cfs_rq);
1993
1994 account_numa_enqueue(rq, task_of(se));
1995 list_add(&se->group_node, &rq->cfs_tasks);
1996 }
367456c7 1997#endif
30cfdcfc 1998 cfs_rq->nr_running++;
30cfdcfc
DA
1999}
2000
2001static void
2002account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2003{
2004 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2005 if (!parent_entity(se))
029632fb 2006 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2007 if (entity_is_task(se)) {
2008 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2009 list_del_init(&se->group_node);
0ec8aa00 2010 }
30cfdcfc 2011 cfs_rq->nr_running--;
30cfdcfc
DA
2012}
2013
3ff6dcac
YZ
2014#ifdef CONFIG_FAIR_GROUP_SCHED
2015# ifdef CONFIG_SMP
cf5f0acf
PZ
2016static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2017{
2018 long tg_weight;
2019
2020 /*
2021 * Use this CPU's actual weight instead of the last load_contribution
2022 * to gain a more accurate current total weight. See
2023 * update_cfs_rq_load_contribution().
2024 */
bf5b986e 2025 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2026 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2027 tg_weight += cfs_rq->load.weight;
2028
2029 return tg_weight;
2030}
2031
6d5ab293 2032static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2033{
cf5f0acf 2034 long tg_weight, load, shares;
3ff6dcac 2035
cf5f0acf 2036 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2037 load = cfs_rq->load.weight;
3ff6dcac 2038
3ff6dcac 2039 shares = (tg->shares * load);
cf5f0acf
PZ
2040 if (tg_weight)
2041 shares /= tg_weight;
3ff6dcac
YZ
2042
2043 if (shares < MIN_SHARES)
2044 shares = MIN_SHARES;
2045 if (shares > tg->shares)
2046 shares = tg->shares;
2047
2048 return shares;
2049}
3ff6dcac 2050# else /* CONFIG_SMP */
6d5ab293 2051static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2052{
2053 return tg->shares;
2054}
3ff6dcac 2055# endif /* CONFIG_SMP */
2069dd75
PZ
2056static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2057 unsigned long weight)
2058{
19e5eebb
PT
2059 if (se->on_rq) {
2060 /* commit outstanding execution time */
2061 if (cfs_rq->curr == se)
2062 update_curr(cfs_rq);
2069dd75 2063 account_entity_dequeue(cfs_rq, se);
19e5eebb 2064 }
2069dd75
PZ
2065
2066 update_load_set(&se->load, weight);
2067
2068 if (se->on_rq)
2069 account_entity_enqueue(cfs_rq, se);
2070}
2071
82958366
PT
2072static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2073
6d5ab293 2074static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2075{
2076 struct task_group *tg;
2077 struct sched_entity *se;
3ff6dcac 2078 long shares;
2069dd75 2079
2069dd75
PZ
2080 tg = cfs_rq->tg;
2081 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2082 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2083 return;
3ff6dcac
YZ
2084#ifndef CONFIG_SMP
2085 if (likely(se->load.weight == tg->shares))
2086 return;
2087#endif
6d5ab293 2088 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2089
2090 reweight_entity(cfs_rq_of(se), se, shares);
2091}
2092#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2093static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2094{
2095}
2096#endif /* CONFIG_FAIR_GROUP_SCHED */
2097
141965c7 2098#ifdef CONFIG_SMP
5b51f2f8
PT
2099/*
2100 * We choose a half-life close to 1 scheduling period.
2101 * Note: The tables below are dependent on this value.
2102 */
2103#define LOAD_AVG_PERIOD 32
2104#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2105#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2106
2107/* Precomputed fixed inverse multiplies for multiplication by y^n */
2108static const u32 runnable_avg_yN_inv[] = {
2109 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2110 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2111 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2112 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2113 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2114 0x85aac367, 0x82cd8698,
2115};
2116
2117/*
2118 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2119 * over-estimates when re-combining.
2120 */
2121static const u32 runnable_avg_yN_sum[] = {
2122 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2123 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2124 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2125};
2126
9d85f21c
PT
2127/*
2128 * Approximate:
2129 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2130 */
2131static __always_inline u64 decay_load(u64 val, u64 n)
2132{
5b51f2f8
PT
2133 unsigned int local_n;
2134
2135 if (!n)
2136 return val;
2137 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2138 return 0;
2139
2140 /* after bounds checking we can collapse to 32-bit */
2141 local_n = n;
2142
2143 /*
2144 * As y^PERIOD = 1/2, we can combine
2145 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2146 * With a look-up table which covers k^n (n<PERIOD)
2147 *
2148 * To achieve constant time decay_load.
2149 */
2150 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2151 val >>= local_n / LOAD_AVG_PERIOD;
2152 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2153 }
2154
5b51f2f8
PT
2155 val *= runnable_avg_yN_inv[local_n];
2156 /* We don't use SRR here since we always want to round down. */
2157 return val >> 32;
2158}
2159
2160/*
2161 * For updates fully spanning n periods, the contribution to runnable
2162 * average will be: \Sum 1024*y^n
2163 *
2164 * We can compute this reasonably efficiently by combining:
2165 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2166 */
2167static u32 __compute_runnable_contrib(u64 n)
2168{
2169 u32 contrib = 0;
2170
2171 if (likely(n <= LOAD_AVG_PERIOD))
2172 return runnable_avg_yN_sum[n];
2173 else if (unlikely(n >= LOAD_AVG_MAX_N))
2174 return LOAD_AVG_MAX;
2175
2176 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2177 do {
2178 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2179 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2180
2181 n -= LOAD_AVG_PERIOD;
2182 } while (n > LOAD_AVG_PERIOD);
2183
2184 contrib = decay_load(contrib, n);
2185 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2186}
2187
2188/*
2189 * We can represent the historical contribution to runnable average as the
2190 * coefficients of a geometric series. To do this we sub-divide our runnable
2191 * history into segments of approximately 1ms (1024us); label the segment that
2192 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2193 *
2194 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2195 * p0 p1 p2
2196 * (now) (~1ms ago) (~2ms ago)
2197 *
2198 * Let u_i denote the fraction of p_i that the entity was runnable.
2199 *
2200 * We then designate the fractions u_i as our co-efficients, yielding the
2201 * following representation of historical load:
2202 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2203 *
2204 * We choose y based on the with of a reasonably scheduling period, fixing:
2205 * y^32 = 0.5
2206 *
2207 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2208 * approximately half as much as the contribution to load within the last ms
2209 * (u_0).
2210 *
2211 * When a period "rolls over" and we have new u_0`, multiplying the previous
2212 * sum again by y is sufficient to update:
2213 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2214 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2215 */
2216static __always_inline int __update_entity_runnable_avg(u64 now,
2217 struct sched_avg *sa,
2218 int runnable)
2219{
5b51f2f8
PT
2220 u64 delta, periods;
2221 u32 runnable_contrib;
9d85f21c
PT
2222 int delta_w, decayed = 0;
2223
2224 delta = now - sa->last_runnable_update;
2225 /*
2226 * This should only happen when time goes backwards, which it
2227 * unfortunately does during sched clock init when we swap over to TSC.
2228 */
2229 if ((s64)delta < 0) {
2230 sa->last_runnable_update = now;
2231 return 0;
2232 }
2233
2234 /*
2235 * Use 1024ns as the unit of measurement since it's a reasonable
2236 * approximation of 1us and fast to compute.
2237 */
2238 delta >>= 10;
2239 if (!delta)
2240 return 0;
2241 sa->last_runnable_update = now;
2242
2243 /* delta_w is the amount already accumulated against our next period */
2244 delta_w = sa->runnable_avg_period % 1024;
2245 if (delta + delta_w >= 1024) {
2246 /* period roll-over */
2247 decayed = 1;
2248
2249 /*
2250 * Now that we know we're crossing a period boundary, figure
2251 * out how much from delta we need to complete the current
2252 * period and accrue it.
2253 */
2254 delta_w = 1024 - delta_w;
5b51f2f8
PT
2255 if (runnable)
2256 sa->runnable_avg_sum += delta_w;
2257 sa->runnable_avg_period += delta_w;
2258
2259 delta -= delta_w;
2260
2261 /* Figure out how many additional periods this update spans */
2262 periods = delta / 1024;
2263 delta %= 1024;
2264
2265 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2266 periods + 1);
2267 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2268 periods + 1);
2269
2270 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2271 runnable_contrib = __compute_runnable_contrib(periods);
2272 if (runnable)
2273 sa->runnable_avg_sum += runnable_contrib;
2274 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2275 }
2276
2277 /* Remainder of delta accrued against u_0` */
2278 if (runnable)
2279 sa->runnable_avg_sum += delta;
2280 sa->runnable_avg_period += delta;
2281
2282 return decayed;
2283}
2284
9ee474f5 2285/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2286static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2287{
2288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2289 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2290
2291 decays -= se->avg.decay_count;
2292 if (!decays)
aff3e498 2293 return 0;
9ee474f5
PT
2294
2295 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2296 se->avg.decay_count = 0;
aff3e498
PT
2297
2298 return decays;
9ee474f5
PT
2299}
2300
c566e8e9
PT
2301#ifdef CONFIG_FAIR_GROUP_SCHED
2302static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2303 int force_update)
2304{
2305 struct task_group *tg = cfs_rq->tg;
bf5b986e 2306 long tg_contrib;
c566e8e9
PT
2307
2308 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2309 tg_contrib -= cfs_rq->tg_load_contrib;
2310
bf5b986e
AS
2311 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2312 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2313 cfs_rq->tg_load_contrib += tg_contrib;
2314 }
2315}
8165e145 2316
bb17f655
PT
2317/*
2318 * Aggregate cfs_rq runnable averages into an equivalent task_group
2319 * representation for computing load contributions.
2320 */
2321static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2322 struct cfs_rq *cfs_rq)
2323{
2324 struct task_group *tg = cfs_rq->tg;
2325 long contrib;
2326
2327 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2328 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2329 sa->runnable_avg_period + 1);
2330 contrib -= cfs_rq->tg_runnable_contrib;
2331
2332 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2333 atomic_add(contrib, &tg->runnable_avg);
2334 cfs_rq->tg_runnable_contrib += contrib;
2335 }
2336}
2337
8165e145
PT
2338static inline void __update_group_entity_contrib(struct sched_entity *se)
2339{
2340 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2341 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2342 int runnable_avg;
2343
8165e145
PT
2344 u64 contrib;
2345
2346 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2347 se->avg.load_avg_contrib = div_u64(contrib,
2348 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2349
2350 /*
2351 * For group entities we need to compute a correction term in the case
2352 * that they are consuming <1 cpu so that we would contribute the same
2353 * load as a task of equal weight.
2354 *
2355 * Explicitly co-ordinating this measurement would be expensive, but
2356 * fortunately the sum of each cpus contribution forms a usable
2357 * lower-bound on the true value.
2358 *
2359 * Consider the aggregate of 2 contributions. Either they are disjoint
2360 * (and the sum represents true value) or they are disjoint and we are
2361 * understating by the aggregate of their overlap.
2362 *
2363 * Extending this to N cpus, for a given overlap, the maximum amount we
2364 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2365 * cpus that overlap for this interval and w_i is the interval width.
2366 *
2367 * On a small machine; the first term is well-bounded which bounds the
2368 * total error since w_i is a subset of the period. Whereas on a
2369 * larger machine, while this first term can be larger, if w_i is the
2370 * of consequential size guaranteed to see n_i*w_i quickly converge to
2371 * our upper bound of 1-cpu.
2372 */
2373 runnable_avg = atomic_read(&tg->runnable_avg);
2374 if (runnable_avg < NICE_0_LOAD) {
2375 se->avg.load_avg_contrib *= runnable_avg;
2376 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2377 }
8165e145 2378}
f5f9739d
DE
2379
2380static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2381{
2382 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2383 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2384}
6e83125c 2385#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2386static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2387 int force_update) {}
bb17f655
PT
2388static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2389 struct cfs_rq *cfs_rq) {}
8165e145 2390static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2391static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2392#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2393
8165e145
PT
2394static inline void __update_task_entity_contrib(struct sched_entity *se)
2395{
2396 u32 contrib;
2397
2398 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2399 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2400 contrib /= (se->avg.runnable_avg_period + 1);
2401 se->avg.load_avg_contrib = scale_load(contrib);
2402}
2403
2dac754e
PT
2404/* Compute the current contribution to load_avg by se, return any delta */
2405static long __update_entity_load_avg_contrib(struct sched_entity *se)
2406{
2407 long old_contrib = se->avg.load_avg_contrib;
2408
8165e145
PT
2409 if (entity_is_task(se)) {
2410 __update_task_entity_contrib(se);
2411 } else {
bb17f655 2412 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2413 __update_group_entity_contrib(se);
2414 }
2dac754e
PT
2415
2416 return se->avg.load_avg_contrib - old_contrib;
2417}
2418
9ee474f5
PT
2419static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2420 long load_contrib)
2421{
2422 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2423 cfs_rq->blocked_load_avg -= load_contrib;
2424 else
2425 cfs_rq->blocked_load_avg = 0;
2426}
2427
f1b17280
PT
2428static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2429
9d85f21c 2430/* Update a sched_entity's runnable average */
9ee474f5
PT
2431static inline void update_entity_load_avg(struct sched_entity *se,
2432 int update_cfs_rq)
9d85f21c 2433{
2dac754e
PT
2434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2435 long contrib_delta;
f1b17280 2436 u64 now;
2dac754e 2437
f1b17280
PT
2438 /*
2439 * For a group entity we need to use their owned cfs_rq_clock_task() in
2440 * case they are the parent of a throttled hierarchy.
2441 */
2442 if (entity_is_task(se))
2443 now = cfs_rq_clock_task(cfs_rq);
2444 else
2445 now = cfs_rq_clock_task(group_cfs_rq(se));
2446
2447 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2448 return;
2449
2450 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2451
2452 if (!update_cfs_rq)
2453 return;
2454
2dac754e
PT
2455 if (se->on_rq)
2456 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2457 else
2458 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2459}
2460
2461/*
2462 * Decay the load contributed by all blocked children and account this so that
2463 * their contribution may appropriately discounted when they wake up.
2464 */
aff3e498 2465static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2466{
f1b17280 2467 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2468 u64 decays;
2469
2470 decays = now - cfs_rq->last_decay;
aff3e498 2471 if (!decays && !force_update)
9ee474f5
PT
2472 return;
2473
2509940f
AS
2474 if (atomic_long_read(&cfs_rq->removed_load)) {
2475 unsigned long removed_load;
2476 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2477 subtract_blocked_load_contrib(cfs_rq, removed_load);
2478 }
9ee474f5 2479
aff3e498
PT
2480 if (decays) {
2481 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2482 decays);
2483 atomic64_add(decays, &cfs_rq->decay_counter);
2484 cfs_rq->last_decay = now;
2485 }
c566e8e9
PT
2486
2487 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2488}
18bf2805 2489
2dac754e
PT
2490/* Add the load generated by se into cfs_rq's child load-average */
2491static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2492 struct sched_entity *se,
2493 int wakeup)
2dac754e 2494{
aff3e498
PT
2495 /*
2496 * We track migrations using entity decay_count <= 0, on a wake-up
2497 * migration we use a negative decay count to track the remote decays
2498 * accumulated while sleeping.
a75cdaa9
AS
2499 *
2500 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2501 * are seen by enqueue_entity_load_avg() as a migration with an already
2502 * constructed load_avg_contrib.
aff3e498
PT
2503 */
2504 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2505 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2506 if (se->avg.decay_count) {
2507 /*
2508 * In a wake-up migration we have to approximate the
2509 * time sleeping. This is because we can't synchronize
2510 * clock_task between the two cpus, and it is not
2511 * guaranteed to be read-safe. Instead, we can
2512 * approximate this using our carried decays, which are
2513 * explicitly atomically readable.
2514 */
2515 se->avg.last_runnable_update -= (-se->avg.decay_count)
2516 << 20;
2517 update_entity_load_avg(se, 0);
2518 /* Indicate that we're now synchronized and on-rq */
2519 se->avg.decay_count = 0;
2520 }
9ee474f5
PT
2521 wakeup = 0;
2522 } else {
9390675a 2523 __synchronize_entity_decay(se);
9ee474f5
PT
2524 }
2525
aff3e498
PT
2526 /* migrated tasks did not contribute to our blocked load */
2527 if (wakeup) {
9ee474f5 2528 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2529 update_entity_load_avg(se, 0);
2530 }
9ee474f5 2531
2dac754e 2532 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2533 /* we force update consideration on load-balancer moves */
2534 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2535}
2536
9ee474f5
PT
2537/*
2538 * Remove se's load from this cfs_rq child load-average, if the entity is
2539 * transitioning to a blocked state we track its projected decay using
2540 * blocked_load_avg.
2541 */
2dac754e 2542static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2543 struct sched_entity *se,
2544 int sleep)
2dac754e 2545{
9ee474f5 2546 update_entity_load_avg(se, 1);
aff3e498
PT
2547 /* we force update consideration on load-balancer moves */
2548 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2549
2dac754e 2550 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2551 if (sleep) {
2552 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2553 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2554 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2555}
642dbc39
VG
2556
2557/*
2558 * Update the rq's load with the elapsed running time before entering
2559 * idle. if the last scheduled task is not a CFS task, idle_enter will
2560 * be the only way to update the runnable statistic.
2561 */
2562void idle_enter_fair(struct rq *this_rq)
2563{
2564 update_rq_runnable_avg(this_rq, 1);
2565}
2566
2567/*
2568 * Update the rq's load with the elapsed idle time before a task is
2569 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2570 * be the only way to update the runnable statistic.
2571 */
2572void idle_exit_fair(struct rq *this_rq)
2573{
2574 update_rq_runnable_avg(this_rq, 0);
2575}
2576
6e83125c
PZ
2577static int idle_balance(struct rq *this_rq);
2578
38033c37
PZ
2579#else /* CONFIG_SMP */
2580
9ee474f5
PT
2581static inline void update_entity_load_avg(struct sched_entity *se,
2582 int update_cfs_rq) {}
18bf2805 2583static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2584static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2585 struct sched_entity *se,
2586 int wakeup) {}
2dac754e 2587static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2588 struct sched_entity *se,
2589 int sleep) {}
aff3e498
PT
2590static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2591 int force_update) {}
6e83125c
PZ
2592
2593static inline int idle_balance(struct rq *rq)
2594{
2595 return 0;
2596}
2597
38033c37 2598#endif /* CONFIG_SMP */
9d85f21c 2599
2396af69 2600static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2601{
bf0f6f24 2602#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2603 struct task_struct *tsk = NULL;
2604
2605 if (entity_is_task(se))
2606 tsk = task_of(se);
2607
41acab88 2608 if (se->statistics.sleep_start) {
78becc27 2609 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2610
2611 if ((s64)delta < 0)
2612 delta = 0;
2613
41acab88
LDM
2614 if (unlikely(delta > se->statistics.sleep_max))
2615 se->statistics.sleep_max = delta;
bf0f6f24 2616
8c79a045 2617 se->statistics.sleep_start = 0;
41acab88 2618 se->statistics.sum_sleep_runtime += delta;
9745512c 2619
768d0c27 2620 if (tsk) {
e414314c 2621 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2622 trace_sched_stat_sleep(tsk, delta);
2623 }
bf0f6f24 2624 }
41acab88 2625 if (se->statistics.block_start) {
78becc27 2626 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2627
2628 if ((s64)delta < 0)
2629 delta = 0;
2630
41acab88
LDM
2631 if (unlikely(delta > se->statistics.block_max))
2632 se->statistics.block_max = delta;
bf0f6f24 2633
8c79a045 2634 se->statistics.block_start = 0;
41acab88 2635 se->statistics.sum_sleep_runtime += delta;
30084fbd 2636
e414314c 2637 if (tsk) {
8f0dfc34 2638 if (tsk->in_iowait) {
41acab88
LDM
2639 se->statistics.iowait_sum += delta;
2640 se->statistics.iowait_count++;
768d0c27 2641 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2642 }
2643
b781a602
AV
2644 trace_sched_stat_blocked(tsk, delta);
2645
e414314c
PZ
2646 /*
2647 * Blocking time is in units of nanosecs, so shift by
2648 * 20 to get a milliseconds-range estimation of the
2649 * amount of time that the task spent sleeping:
2650 */
2651 if (unlikely(prof_on == SLEEP_PROFILING)) {
2652 profile_hits(SLEEP_PROFILING,
2653 (void *)get_wchan(tsk),
2654 delta >> 20);
2655 }
2656 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2657 }
bf0f6f24
IM
2658 }
2659#endif
2660}
2661
ddc97297
PZ
2662static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2663{
2664#ifdef CONFIG_SCHED_DEBUG
2665 s64 d = se->vruntime - cfs_rq->min_vruntime;
2666
2667 if (d < 0)
2668 d = -d;
2669
2670 if (d > 3*sysctl_sched_latency)
2671 schedstat_inc(cfs_rq, nr_spread_over);
2672#endif
2673}
2674
aeb73b04
PZ
2675static void
2676place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2677{
1af5f730 2678 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2679
2cb8600e
PZ
2680 /*
2681 * The 'current' period is already promised to the current tasks,
2682 * however the extra weight of the new task will slow them down a
2683 * little, place the new task so that it fits in the slot that
2684 * stays open at the end.
2685 */
94dfb5e7 2686 if (initial && sched_feat(START_DEBIT))
f9c0b095 2687 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2688
a2e7a7eb 2689 /* sleeps up to a single latency don't count. */
5ca9880c 2690 if (!initial) {
a2e7a7eb 2691 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2692
a2e7a7eb
MG
2693 /*
2694 * Halve their sleep time's effect, to allow
2695 * for a gentler effect of sleepers:
2696 */
2697 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2698 thresh >>= 1;
51e0304c 2699
a2e7a7eb 2700 vruntime -= thresh;
aeb73b04
PZ
2701 }
2702
b5d9d734 2703 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2704 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2705}
2706
d3d9dc33
PT
2707static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2708
bf0f6f24 2709static void
88ec22d3 2710enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2711{
88ec22d3
PZ
2712 /*
2713 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2714 * through calling update_curr().
88ec22d3 2715 */
371fd7e7 2716 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2717 se->vruntime += cfs_rq->min_vruntime;
2718
bf0f6f24 2719 /*
a2a2d680 2720 * Update run-time statistics of the 'current'.
bf0f6f24 2721 */
b7cc0896 2722 update_curr(cfs_rq);
f269ae04 2723 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2724 account_entity_enqueue(cfs_rq, se);
2725 update_cfs_shares(cfs_rq);
bf0f6f24 2726
88ec22d3 2727 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2728 place_entity(cfs_rq, se, 0);
2396af69 2729 enqueue_sleeper(cfs_rq, se);
e9acbff6 2730 }
bf0f6f24 2731
d2417e5a 2732 update_stats_enqueue(cfs_rq, se);
ddc97297 2733 check_spread(cfs_rq, se);
83b699ed
SV
2734 if (se != cfs_rq->curr)
2735 __enqueue_entity(cfs_rq, se);
2069dd75 2736 se->on_rq = 1;
3d4b47b4 2737
d3d9dc33 2738 if (cfs_rq->nr_running == 1) {
3d4b47b4 2739 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2740 check_enqueue_throttle(cfs_rq);
2741 }
bf0f6f24
IM
2742}
2743
2c13c919 2744static void __clear_buddies_last(struct sched_entity *se)
2002c695 2745{
2c13c919
RR
2746 for_each_sched_entity(se) {
2747 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2748 if (cfs_rq->last != se)
2c13c919 2749 break;
f1044799
PZ
2750
2751 cfs_rq->last = NULL;
2c13c919
RR
2752 }
2753}
2002c695 2754
2c13c919
RR
2755static void __clear_buddies_next(struct sched_entity *se)
2756{
2757 for_each_sched_entity(se) {
2758 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2759 if (cfs_rq->next != se)
2c13c919 2760 break;
f1044799
PZ
2761
2762 cfs_rq->next = NULL;
2c13c919 2763 }
2002c695
PZ
2764}
2765
ac53db59
RR
2766static void __clear_buddies_skip(struct sched_entity *se)
2767{
2768 for_each_sched_entity(se) {
2769 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2770 if (cfs_rq->skip != se)
ac53db59 2771 break;
f1044799
PZ
2772
2773 cfs_rq->skip = NULL;
ac53db59
RR
2774 }
2775}
2776
a571bbea
PZ
2777static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2778{
2c13c919
RR
2779 if (cfs_rq->last == se)
2780 __clear_buddies_last(se);
2781
2782 if (cfs_rq->next == se)
2783 __clear_buddies_next(se);
ac53db59
RR
2784
2785 if (cfs_rq->skip == se)
2786 __clear_buddies_skip(se);
a571bbea
PZ
2787}
2788
6c16a6dc 2789static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2790
bf0f6f24 2791static void
371fd7e7 2792dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2793{
a2a2d680
DA
2794 /*
2795 * Update run-time statistics of the 'current'.
2796 */
2797 update_curr(cfs_rq);
17bc14b7 2798 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2799
19b6a2e3 2800 update_stats_dequeue(cfs_rq, se);
371fd7e7 2801 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2802#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2803 if (entity_is_task(se)) {
2804 struct task_struct *tsk = task_of(se);
2805
2806 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2807 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2808 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2809 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2810 }
db36cc7d 2811#endif
67e9fb2a
PZ
2812 }
2813
2002c695 2814 clear_buddies(cfs_rq, se);
4793241b 2815
83b699ed 2816 if (se != cfs_rq->curr)
30cfdcfc 2817 __dequeue_entity(cfs_rq, se);
17bc14b7 2818 se->on_rq = 0;
30cfdcfc 2819 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2820
2821 /*
2822 * Normalize the entity after updating the min_vruntime because the
2823 * update can refer to the ->curr item and we need to reflect this
2824 * movement in our normalized position.
2825 */
371fd7e7 2826 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2827 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2828
d8b4986d
PT
2829 /* return excess runtime on last dequeue */
2830 return_cfs_rq_runtime(cfs_rq);
2831
1e876231 2832 update_min_vruntime(cfs_rq);
17bc14b7 2833 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2834}
2835
2836/*
2837 * Preempt the current task with a newly woken task if needed:
2838 */
7c92e54f 2839static void
2e09bf55 2840check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2841{
11697830 2842 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2843 struct sched_entity *se;
2844 s64 delta;
11697830 2845
6d0f0ebd 2846 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2847 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2848 if (delta_exec > ideal_runtime) {
bf0f6f24 2849 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2850 /*
2851 * The current task ran long enough, ensure it doesn't get
2852 * re-elected due to buddy favours.
2853 */
2854 clear_buddies(cfs_rq, curr);
f685ceac
MG
2855 return;
2856 }
2857
2858 /*
2859 * Ensure that a task that missed wakeup preemption by a
2860 * narrow margin doesn't have to wait for a full slice.
2861 * This also mitigates buddy induced latencies under load.
2862 */
f685ceac
MG
2863 if (delta_exec < sysctl_sched_min_granularity)
2864 return;
2865
f4cfb33e
WX
2866 se = __pick_first_entity(cfs_rq);
2867 delta = curr->vruntime - se->vruntime;
f685ceac 2868
f4cfb33e
WX
2869 if (delta < 0)
2870 return;
d7d82944 2871
f4cfb33e
WX
2872 if (delta > ideal_runtime)
2873 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2874}
2875
83b699ed 2876static void
8494f412 2877set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2878{
83b699ed
SV
2879 /* 'current' is not kept within the tree. */
2880 if (se->on_rq) {
2881 /*
2882 * Any task has to be enqueued before it get to execute on
2883 * a CPU. So account for the time it spent waiting on the
2884 * runqueue.
2885 */
2886 update_stats_wait_end(cfs_rq, se);
2887 __dequeue_entity(cfs_rq, se);
2888 }
2889
79303e9e 2890 update_stats_curr_start(cfs_rq, se);
429d43bc 2891 cfs_rq->curr = se;
eba1ed4b
IM
2892#ifdef CONFIG_SCHEDSTATS
2893 /*
2894 * Track our maximum slice length, if the CPU's load is at
2895 * least twice that of our own weight (i.e. dont track it
2896 * when there are only lesser-weight tasks around):
2897 */
495eca49 2898 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2899 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2900 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2901 }
2902#endif
4a55b450 2903 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2904}
2905
3f3a4904
PZ
2906static int
2907wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2908
ac53db59
RR
2909/*
2910 * Pick the next process, keeping these things in mind, in this order:
2911 * 1) keep things fair between processes/task groups
2912 * 2) pick the "next" process, since someone really wants that to run
2913 * 3) pick the "last" process, for cache locality
2914 * 4) do not run the "skip" process, if something else is available
2915 */
678d5718
PZ
2916static struct sched_entity *
2917pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2918{
678d5718
PZ
2919 struct sched_entity *left = __pick_first_entity(cfs_rq);
2920 struct sched_entity *se;
2921
2922 /*
2923 * If curr is set we have to see if its left of the leftmost entity
2924 * still in the tree, provided there was anything in the tree at all.
2925 */
2926 if (!left || (curr && entity_before(curr, left)))
2927 left = curr;
2928
2929 se = left; /* ideally we run the leftmost entity */
f4b6755f 2930
ac53db59
RR
2931 /*
2932 * Avoid running the skip buddy, if running something else can
2933 * be done without getting too unfair.
2934 */
2935 if (cfs_rq->skip == se) {
678d5718
PZ
2936 struct sched_entity *second;
2937
2938 if (se == curr) {
2939 second = __pick_first_entity(cfs_rq);
2940 } else {
2941 second = __pick_next_entity(se);
2942 if (!second || (curr && entity_before(curr, second)))
2943 second = curr;
2944 }
2945
ac53db59
RR
2946 if (second && wakeup_preempt_entity(second, left) < 1)
2947 se = second;
2948 }
aa2ac252 2949
f685ceac
MG
2950 /*
2951 * Prefer last buddy, try to return the CPU to a preempted task.
2952 */
2953 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2954 se = cfs_rq->last;
2955
ac53db59
RR
2956 /*
2957 * Someone really wants this to run. If it's not unfair, run it.
2958 */
2959 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2960 se = cfs_rq->next;
2961
f685ceac 2962 clear_buddies(cfs_rq, se);
4793241b
PZ
2963
2964 return se;
aa2ac252
PZ
2965}
2966
678d5718 2967static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 2968
ab6cde26 2969static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2970{
2971 /*
2972 * If still on the runqueue then deactivate_task()
2973 * was not called and update_curr() has to be done:
2974 */
2975 if (prev->on_rq)
b7cc0896 2976 update_curr(cfs_rq);
bf0f6f24 2977
d3d9dc33
PT
2978 /* throttle cfs_rqs exceeding runtime */
2979 check_cfs_rq_runtime(cfs_rq);
2980
ddc97297 2981 check_spread(cfs_rq, prev);
30cfdcfc 2982 if (prev->on_rq) {
5870db5b 2983 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2984 /* Put 'current' back into the tree. */
2985 __enqueue_entity(cfs_rq, prev);
9d85f21c 2986 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2987 update_entity_load_avg(prev, 1);
30cfdcfc 2988 }
429d43bc 2989 cfs_rq->curr = NULL;
bf0f6f24
IM
2990}
2991
8f4d37ec
PZ
2992static void
2993entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2994{
bf0f6f24 2995 /*
30cfdcfc 2996 * Update run-time statistics of the 'current'.
bf0f6f24 2997 */
30cfdcfc 2998 update_curr(cfs_rq);
bf0f6f24 2999
9d85f21c
PT
3000 /*
3001 * Ensure that runnable average is periodically updated.
3002 */
9ee474f5 3003 update_entity_load_avg(curr, 1);
aff3e498 3004 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3005 update_cfs_shares(cfs_rq);
9d85f21c 3006
8f4d37ec
PZ
3007#ifdef CONFIG_SCHED_HRTICK
3008 /*
3009 * queued ticks are scheduled to match the slice, so don't bother
3010 * validating it and just reschedule.
3011 */
983ed7a6
HH
3012 if (queued) {
3013 resched_task(rq_of(cfs_rq)->curr);
3014 return;
3015 }
8f4d37ec
PZ
3016 /*
3017 * don't let the period tick interfere with the hrtick preemption
3018 */
3019 if (!sched_feat(DOUBLE_TICK) &&
3020 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3021 return;
3022#endif
3023
2c2efaed 3024 if (cfs_rq->nr_running > 1)
2e09bf55 3025 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3026}
3027
ab84d31e
PT
3028
3029/**************************************************
3030 * CFS bandwidth control machinery
3031 */
3032
3033#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3034
3035#ifdef HAVE_JUMP_LABEL
c5905afb 3036static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3037
3038static inline bool cfs_bandwidth_used(void)
3039{
c5905afb 3040 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3041}
3042
1ee14e6c 3043void cfs_bandwidth_usage_inc(void)
029632fb 3044{
1ee14e6c
BS
3045 static_key_slow_inc(&__cfs_bandwidth_used);
3046}
3047
3048void cfs_bandwidth_usage_dec(void)
3049{
3050 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3051}
3052#else /* HAVE_JUMP_LABEL */
3053static bool cfs_bandwidth_used(void)
3054{
3055 return true;
3056}
3057
1ee14e6c
BS
3058void cfs_bandwidth_usage_inc(void) {}
3059void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3060#endif /* HAVE_JUMP_LABEL */
3061
ab84d31e
PT
3062/*
3063 * default period for cfs group bandwidth.
3064 * default: 0.1s, units: nanoseconds
3065 */
3066static inline u64 default_cfs_period(void)
3067{
3068 return 100000000ULL;
3069}
ec12cb7f
PT
3070
3071static inline u64 sched_cfs_bandwidth_slice(void)
3072{
3073 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3074}
3075
a9cf55b2
PT
3076/*
3077 * Replenish runtime according to assigned quota and update expiration time.
3078 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3079 * additional synchronization around rq->lock.
3080 *
3081 * requires cfs_b->lock
3082 */
029632fb 3083void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3084{
3085 u64 now;
3086
3087 if (cfs_b->quota == RUNTIME_INF)
3088 return;
3089
3090 now = sched_clock_cpu(smp_processor_id());
3091 cfs_b->runtime = cfs_b->quota;
3092 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3093}
3094
029632fb
PZ
3095static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3096{
3097 return &tg->cfs_bandwidth;
3098}
3099
f1b17280
PT
3100/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3101static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3102{
3103 if (unlikely(cfs_rq->throttle_count))
3104 return cfs_rq->throttled_clock_task;
3105
78becc27 3106 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3107}
3108
85dac906
PT
3109/* returns 0 on failure to allocate runtime */
3110static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3111{
3112 struct task_group *tg = cfs_rq->tg;
3113 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3114 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3115
3116 /* note: this is a positive sum as runtime_remaining <= 0 */
3117 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3118
3119 raw_spin_lock(&cfs_b->lock);
3120 if (cfs_b->quota == RUNTIME_INF)
3121 amount = min_amount;
58088ad0 3122 else {
a9cf55b2
PT
3123 /*
3124 * If the bandwidth pool has become inactive, then at least one
3125 * period must have elapsed since the last consumption.
3126 * Refresh the global state and ensure bandwidth timer becomes
3127 * active.
3128 */
3129 if (!cfs_b->timer_active) {
3130 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3131 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3132 }
58088ad0
PT
3133
3134 if (cfs_b->runtime > 0) {
3135 amount = min(cfs_b->runtime, min_amount);
3136 cfs_b->runtime -= amount;
3137 cfs_b->idle = 0;
3138 }
ec12cb7f 3139 }
a9cf55b2 3140 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3141 raw_spin_unlock(&cfs_b->lock);
3142
3143 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3144 /*
3145 * we may have advanced our local expiration to account for allowed
3146 * spread between our sched_clock and the one on which runtime was
3147 * issued.
3148 */
3149 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3150 cfs_rq->runtime_expires = expires;
85dac906
PT
3151
3152 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3153}
3154
a9cf55b2
PT
3155/*
3156 * Note: This depends on the synchronization provided by sched_clock and the
3157 * fact that rq->clock snapshots this value.
3158 */
3159static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3160{
a9cf55b2 3161 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3162
3163 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3164 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3165 return;
3166
a9cf55b2
PT
3167 if (cfs_rq->runtime_remaining < 0)
3168 return;
3169
3170 /*
3171 * If the local deadline has passed we have to consider the
3172 * possibility that our sched_clock is 'fast' and the global deadline
3173 * has not truly expired.
3174 *
3175 * Fortunately we can check determine whether this the case by checking
3176 * whether the global deadline has advanced.
3177 */
3178
3179 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3180 /* extend local deadline, drift is bounded above by 2 ticks */
3181 cfs_rq->runtime_expires += TICK_NSEC;
3182 } else {
3183 /* global deadline is ahead, expiration has passed */
3184 cfs_rq->runtime_remaining = 0;
3185 }
3186}
3187
9dbdb155 3188static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3189{
3190 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3191 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3192 expire_cfs_rq_runtime(cfs_rq);
3193
3194 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3195 return;
3196
85dac906
PT
3197 /*
3198 * if we're unable to extend our runtime we resched so that the active
3199 * hierarchy can be throttled
3200 */
3201 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3202 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3203}
3204
6c16a6dc 3205static __always_inline
9dbdb155 3206void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3207{
56f570e5 3208 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3209 return;
3210
3211 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3212}
3213
85dac906
PT
3214static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3215{
56f570e5 3216 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3217}
3218
64660c86
PT
3219/* check whether cfs_rq, or any parent, is throttled */
3220static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3221{
56f570e5 3222 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3223}
3224
3225/*
3226 * Ensure that neither of the group entities corresponding to src_cpu or
3227 * dest_cpu are members of a throttled hierarchy when performing group
3228 * load-balance operations.
3229 */
3230static inline int throttled_lb_pair(struct task_group *tg,
3231 int src_cpu, int dest_cpu)
3232{
3233 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3234
3235 src_cfs_rq = tg->cfs_rq[src_cpu];
3236 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3237
3238 return throttled_hierarchy(src_cfs_rq) ||
3239 throttled_hierarchy(dest_cfs_rq);
3240}
3241
3242/* updated child weight may affect parent so we have to do this bottom up */
3243static int tg_unthrottle_up(struct task_group *tg, void *data)
3244{
3245 struct rq *rq = data;
3246 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3247
3248 cfs_rq->throttle_count--;
3249#ifdef CONFIG_SMP
3250 if (!cfs_rq->throttle_count) {
f1b17280 3251 /* adjust cfs_rq_clock_task() */
78becc27 3252 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3253 cfs_rq->throttled_clock_task;
64660c86
PT
3254 }
3255#endif
3256
3257 return 0;
3258}
3259
3260static int tg_throttle_down(struct task_group *tg, void *data)
3261{
3262 struct rq *rq = data;
3263 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3264
82958366
PT
3265 /* group is entering throttled state, stop time */
3266 if (!cfs_rq->throttle_count)
78becc27 3267 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3268 cfs_rq->throttle_count++;
3269
3270 return 0;
3271}
3272
d3d9dc33 3273static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3274{
3275 struct rq *rq = rq_of(cfs_rq);
3276 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3277 struct sched_entity *se;
3278 long task_delta, dequeue = 1;
3279
3280 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3281
f1b17280 3282 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3283 rcu_read_lock();
3284 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3285 rcu_read_unlock();
85dac906
PT
3286
3287 task_delta = cfs_rq->h_nr_running;
3288 for_each_sched_entity(se) {
3289 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3290 /* throttled entity or throttle-on-deactivate */
3291 if (!se->on_rq)
3292 break;
3293
3294 if (dequeue)
3295 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3296 qcfs_rq->h_nr_running -= task_delta;
3297
3298 if (qcfs_rq->load.weight)
3299 dequeue = 0;
3300 }
3301
3302 if (!se)
3303 rq->nr_running -= task_delta;
3304
3305 cfs_rq->throttled = 1;
78becc27 3306 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3307 raw_spin_lock(&cfs_b->lock);
3308 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3309 if (!cfs_b->timer_active)
3310 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3311 raw_spin_unlock(&cfs_b->lock);
3312}
3313
029632fb 3314void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3315{
3316 struct rq *rq = rq_of(cfs_rq);
3317 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3318 struct sched_entity *se;
3319 int enqueue = 1;
3320 long task_delta;
3321
22b958d8 3322 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3323
3324 cfs_rq->throttled = 0;
1a55af2e
FW
3325
3326 update_rq_clock(rq);
3327
671fd9da 3328 raw_spin_lock(&cfs_b->lock);
78becc27 3329 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3330 list_del_rcu(&cfs_rq->throttled_list);
3331 raw_spin_unlock(&cfs_b->lock);
3332
64660c86
PT
3333 /* update hierarchical throttle state */
3334 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3335
671fd9da
PT
3336 if (!cfs_rq->load.weight)
3337 return;
3338
3339 task_delta = cfs_rq->h_nr_running;
3340 for_each_sched_entity(se) {
3341 if (se->on_rq)
3342 enqueue = 0;
3343
3344 cfs_rq = cfs_rq_of(se);
3345 if (enqueue)
3346 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3347 cfs_rq->h_nr_running += task_delta;
3348
3349 if (cfs_rq_throttled(cfs_rq))
3350 break;
3351 }
3352
3353 if (!se)
3354 rq->nr_running += task_delta;
3355
3356 /* determine whether we need to wake up potentially idle cpu */
3357 if (rq->curr == rq->idle && rq->cfs.nr_running)
3358 resched_task(rq->curr);
3359}
3360
3361static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3362 u64 remaining, u64 expires)
3363{
3364 struct cfs_rq *cfs_rq;
3365 u64 runtime = remaining;
3366
3367 rcu_read_lock();
3368 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3369 throttled_list) {
3370 struct rq *rq = rq_of(cfs_rq);
3371
3372 raw_spin_lock(&rq->lock);
3373 if (!cfs_rq_throttled(cfs_rq))
3374 goto next;
3375
3376 runtime = -cfs_rq->runtime_remaining + 1;
3377 if (runtime > remaining)
3378 runtime = remaining;
3379 remaining -= runtime;
3380
3381 cfs_rq->runtime_remaining += runtime;
3382 cfs_rq->runtime_expires = expires;
3383
3384 /* we check whether we're throttled above */
3385 if (cfs_rq->runtime_remaining > 0)
3386 unthrottle_cfs_rq(cfs_rq);
3387
3388next:
3389 raw_spin_unlock(&rq->lock);
3390
3391 if (!remaining)
3392 break;
3393 }
3394 rcu_read_unlock();
3395
3396 return remaining;
3397}
3398
58088ad0
PT
3399/*
3400 * Responsible for refilling a task_group's bandwidth and unthrottling its
3401 * cfs_rqs as appropriate. If there has been no activity within the last
3402 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3403 * used to track this state.
3404 */
3405static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3406{
671fd9da
PT
3407 u64 runtime, runtime_expires;
3408 int idle = 1, throttled;
58088ad0
PT
3409
3410 raw_spin_lock(&cfs_b->lock);
3411 /* no need to continue the timer with no bandwidth constraint */
3412 if (cfs_b->quota == RUNTIME_INF)
3413 goto out_unlock;
3414
671fd9da
PT
3415 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3416 /* idle depends on !throttled (for the case of a large deficit) */
3417 idle = cfs_b->idle && !throttled;
e8da1b18 3418 cfs_b->nr_periods += overrun;
671fd9da 3419
a9cf55b2
PT
3420 /* if we're going inactive then everything else can be deferred */
3421 if (idle)
3422 goto out_unlock;
3423
927b54fc
BS
3424 /*
3425 * if we have relooped after returning idle once, we need to update our
3426 * status as actually running, so that other cpus doing
3427 * __start_cfs_bandwidth will stop trying to cancel us.
3428 */
3429 cfs_b->timer_active = 1;
3430
a9cf55b2
PT
3431 __refill_cfs_bandwidth_runtime(cfs_b);
3432
671fd9da
PT
3433 if (!throttled) {
3434 /* mark as potentially idle for the upcoming period */
3435 cfs_b->idle = 1;
3436 goto out_unlock;
3437 }
3438
e8da1b18
NR
3439 /* account preceding periods in which throttling occurred */
3440 cfs_b->nr_throttled += overrun;
3441
671fd9da
PT
3442 /*
3443 * There are throttled entities so we must first use the new bandwidth
3444 * to unthrottle them before making it generally available. This
3445 * ensures that all existing debts will be paid before a new cfs_rq is
3446 * allowed to run.
3447 */
3448 runtime = cfs_b->runtime;
3449 runtime_expires = cfs_b->runtime_expires;
3450 cfs_b->runtime = 0;
3451
3452 /*
3453 * This check is repeated as we are holding onto the new bandwidth
3454 * while we unthrottle. This can potentially race with an unthrottled
3455 * group trying to acquire new bandwidth from the global pool.
3456 */
3457 while (throttled && runtime > 0) {
3458 raw_spin_unlock(&cfs_b->lock);
3459 /* we can't nest cfs_b->lock while distributing bandwidth */
3460 runtime = distribute_cfs_runtime(cfs_b, runtime,
3461 runtime_expires);
3462 raw_spin_lock(&cfs_b->lock);
3463
3464 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3465 }
58088ad0 3466
671fd9da
PT
3467 /* return (any) remaining runtime */
3468 cfs_b->runtime = runtime;
3469 /*
3470 * While we are ensured activity in the period following an
3471 * unthrottle, this also covers the case in which the new bandwidth is
3472 * insufficient to cover the existing bandwidth deficit. (Forcing the
3473 * timer to remain active while there are any throttled entities.)
3474 */
3475 cfs_b->idle = 0;
58088ad0
PT
3476out_unlock:
3477 if (idle)
3478 cfs_b->timer_active = 0;
3479 raw_spin_unlock(&cfs_b->lock);
3480
3481 return idle;
3482}
d3d9dc33 3483
d8b4986d
PT
3484/* a cfs_rq won't donate quota below this amount */
3485static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3486/* minimum remaining period time to redistribute slack quota */
3487static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3488/* how long we wait to gather additional slack before distributing */
3489static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3490
db06e78c
BS
3491/*
3492 * Are we near the end of the current quota period?
3493 *
3494 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3495 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3496 * migrate_hrtimers, base is never cleared, so we are fine.
3497 */
d8b4986d
PT
3498static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3499{
3500 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3501 u64 remaining;
3502
3503 /* if the call-back is running a quota refresh is already occurring */
3504 if (hrtimer_callback_running(refresh_timer))
3505 return 1;
3506
3507 /* is a quota refresh about to occur? */
3508 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3509 if (remaining < min_expire)
3510 return 1;
3511
3512 return 0;
3513}
3514
3515static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3516{
3517 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3518
3519 /* if there's a quota refresh soon don't bother with slack */
3520 if (runtime_refresh_within(cfs_b, min_left))
3521 return;
3522
3523 start_bandwidth_timer(&cfs_b->slack_timer,
3524 ns_to_ktime(cfs_bandwidth_slack_period));
3525}
3526
3527/* we know any runtime found here is valid as update_curr() precedes return */
3528static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3529{
3530 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3531 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3532
3533 if (slack_runtime <= 0)
3534 return;
3535
3536 raw_spin_lock(&cfs_b->lock);
3537 if (cfs_b->quota != RUNTIME_INF &&
3538 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3539 cfs_b->runtime += slack_runtime;
3540
3541 /* we are under rq->lock, defer unthrottling using a timer */
3542 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3543 !list_empty(&cfs_b->throttled_cfs_rq))
3544 start_cfs_slack_bandwidth(cfs_b);
3545 }
3546 raw_spin_unlock(&cfs_b->lock);
3547
3548 /* even if it's not valid for return we don't want to try again */
3549 cfs_rq->runtime_remaining -= slack_runtime;
3550}
3551
3552static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3553{
56f570e5
PT
3554 if (!cfs_bandwidth_used())
3555 return;
3556
fccfdc6f 3557 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3558 return;
3559
3560 __return_cfs_rq_runtime(cfs_rq);
3561}
3562
3563/*
3564 * This is done with a timer (instead of inline with bandwidth return) since
3565 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3566 */
3567static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3568{
3569 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3570 u64 expires;
3571
3572 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3573 raw_spin_lock(&cfs_b->lock);
3574 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3575 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3576 return;
db06e78c 3577 }
d8b4986d 3578
d8b4986d
PT
3579 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3580 runtime = cfs_b->runtime;
3581 cfs_b->runtime = 0;
3582 }
3583 expires = cfs_b->runtime_expires;
3584 raw_spin_unlock(&cfs_b->lock);
3585
3586 if (!runtime)
3587 return;
3588
3589 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3590
3591 raw_spin_lock(&cfs_b->lock);
3592 if (expires == cfs_b->runtime_expires)
3593 cfs_b->runtime = runtime;
3594 raw_spin_unlock(&cfs_b->lock);
3595}
3596
d3d9dc33
PT
3597/*
3598 * When a group wakes up we want to make sure that its quota is not already
3599 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3600 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3601 */
3602static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3603{
56f570e5
PT
3604 if (!cfs_bandwidth_used())
3605 return;
3606
d3d9dc33
PT
3607 /* an active group must be handled by the update_curr()->put() path */
3608 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3609 return;
3610
3611 /* ensure the group is not already throttled */
3612 if (cfs_rq_throttled(cfs_rq))
3613 return;
3614
3615 /* update runtime allocation */
3616 account_cfs_rq_runtime(cfs_rq, 0);
3617 if (cfs_rq->runtime_remaining <= 0)
3618 throttle_cfs_rq(cfs_rq);
3619}
3620
3621/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3622static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3623{
56f570e5 3624 if (!cfs_bandwidth_used())
678d5718 3625 return false;
56f570e5 3626
d3d9dc33 3627 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3628 return false;
d3d9dc33
PT
3629
3630 /*
3631 * it's possible for a throttled entity to be forced into a running
3632 * state (e.g. set_curr_task), in this case we're finished.
3633 */
3634 if (cfs_rq_throttled(cfs_rq))
678d5718 3635 return true;
d3d9dc33
PT
3636
3637 throttle_cfs_rq(cfs_rq);
678d5718 3638 return true;
d3d9dc33 3639}
029632fb 3640
029632fb
PZ
3641static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3642{
3643 struct cfs_bandwidth *cfs_b =
3644 container_of(timer, struct cfs_bandwidth, slack_timer);
3645 do_sched_cfs_slack_timer(cfs_b);
3646
3647 return HRTIMER_NORESTART;
3648}
3649
3650static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3651{
3652 struct cfs_bandwidth *cfs_b =
3653 container_of(timer, struct cfs_bandwidth, period_timer);
3654 ktime_t now;
3655 int overrun;
3656 int idle = 0;
3657
3658 for (;;) {
3659 now = hrtimer_cb_get_time(timer);
3660 overrun = hrtimer_forward(timer, now, cfs_b->period);
3661
3662 if (!overrun)
3663 break;
3664
3665 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3666 }
3667
3668 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3669}
3670
3671void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3672{
3673 raw_spin_lock_init(&cfs_b->lock);
3674 cfs_b->runtime = 0;
3675 cfs_b->quota = RUNTIME_INF;
3676 cfs_b->period = ns_to_ktime(default_cfs_period());
3677
3678 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3679 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3680 cfs_b->period_timer.function = sched_cfs_period_timer;
3681 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3682 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3683}
3684
3685static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3686{
3687 cfs_rq->runtime_enabled = 0;
3688 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3689}
3690
3691/* requires cfs_b->lock, may release to reprogram timer */
3692void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3693{
3694 /*
3695 * The timer may be active because we're trying to set a new bandwidth
3696 * period or because we're racing with the tear-down path
3697 * (timer_active==0 becomes visible before the hrtimer call-back
3698 * terminates). In either case we ensure that it's re-programmed
3699 */
927b54fc
BS
3700 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3701 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3702 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3703 raw_spin_unlock(&cfs_b->lock);
927b54fc 3704 cpu_relax();
029632fb
PZ
3705 raw_spin_lock(&cfs_b->lock);
3706 /* if someone else restarted the timer then we're done */
3707 if (cfs_b->timer_active)
3708 return;
3709 }
3710
3711 cfs_b->timer_active = 1;
3712 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3713}
3714
3715static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3716{
3717 hrtimer_cancel(&cfs_b->period_timer);
3718 hrtimer_cancel(&cfs_b->slack_timer);
3719}
3720
38dc3348 3721static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3722{
3723 struct cfs_rq *cfs_rq;
3724
3725 for_each_leaf_cfs_rq(rq, cfs_rq) {
3726 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3727
3728 if (!cfs_rq->runtime_enabled)
3729 continue;
3730
3731 /*
3732 * clock_task is not advancing so we just need to make sure
3733 * there's some valid quota amount
3734 */
3735 cfs_rq->runtime_remaining = cfs_b->quota;
3736 if (cfs_rq_throttled(cfs_rq))
3737 unthrottle_cfs_rq(cfs_rq);
3738 }
3739}
3740
3741#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3742static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3743{
78becc27 3744 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3745}
3746
9dbdb155 3747static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3748static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3749static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3750static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3751
3752static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3753{
3754 return 0;
3755}
64660c86
PT
3756
3757static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3758{
3759 return 0;
3760}
3761
3762static inline int throttled_lb_pair(struct task_group *tg,
3763 int src_cpu, int dest_cpu)
3764{
3765 return 0;
3766}
029632fb
PZ
3767
3768void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3769
3770#ifdef CONFIG_FAIR_GROUP_SCHED
3771static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3772#endif
3773
029632fb
PZ
3774static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3775{
3776 return NULL;
3777}
3778static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3779static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3780
3781#endif /* CONFIG_CFS_BANDWIDTH */
3782
bf0f6f24
IM
3783/**************************************************
3784 * CFS operations on tasks:
3785 */
3786
8f4d37ec
PZ
3787#ifdef CONFIG_SCHED_HRTICK
3788static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3789{
8f4d37ec
PZ
3790 struct sched_entity *se = &p->se;
3791 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3792
3793 WARN_ON(task_rq(p) != rq);
3794
b39e66ea 3795 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3796 u64 slice = sched_slice(cfs_rq, se);
3797 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3798 s64 delta = slice - ran;
3799
3800 if (delta < 0) {
3801 if (rq->curr == p)
3802 resched_task(p);
3803 return;
3804 }
3805
3806 /*
3807 * Don't schedule slices shorter than 10000ns, that just
3808 * doesn't make sense. Rely on vruntime for fairness.
3809 */
31656519 3810 if (rq->curr != p)
157124c1 3811 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3812
31656519 3813 hrtick_start(rq, delta);
8f4d37ec
PZ
3814 }
3815}
a4c2f00f
PZ
3816
3817/*
3818 * called from enqueue/dequeue and updates the hrtick when the
3819 * current task is from our class and nr_running is low enough
3820 * to matter.
3821 */
3822static void hrtick_update(struct rq *rq)
3823{
3824 struct task_struct *curr = rq->curr;
3825
b39e66ea 3826 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3827 return;
3828
3829 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3830 hrtick_start_fair(rq, curr);
3831}
55e12e5e 3832#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3833static inline void
3834hrtick_start_fair(struct rq *rq, struct task_struct *p)
3835{
3836}
a4c2f00f
PZ
3837
3838static inline void hrtick_update(struct rq *rq)
3839{
3840}
8f4d37ec
PZ
3841#endif
3842
bf0f6f24
IM
3843/*
3844 * The enqueue_task method is called before nr_running is
3845 * increased. Here we update the fair scheduling stats and
3846 * then put the task into the rbtree:
3847 */
ea87bb78 3848static void
371fd7e7 3849enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3850{
3851 struct cfs_rq *cfs_rq;
62fb1851 3852 struct sched_entity *se = &p->se;
bf0f6f24
IM
3853
3854 for_each_sched_entity(se) {
62fb1851 3855 if (se->on_rq)
bf0f6f24
IM
3856 break;
3857 cfs_rq = cfs_rq_of(se);
88ec22d3 3858 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3859
3860 /*
3861 * end evaluation on encountering a throttled cfs_rq
3862 *
3863 * note: in the case of encountering a throttled cfs_rq we will
3864 * post the final h_nr_running increment below.
3865 */
3866 if (cfs_rq_throttled(cfs_rq))
3867 break;
953bfcd1 3868 cfs_rq->h_nr_running++;
85dac906 3869
88ec22d3 3870 flags = ENQUEUE_WAKEUP;
bf0f6f24 3871 }
8f4d37ec 3872
2069dd75 3873 for_each_sched_entity(se) {
0f317143 3874 cfs_rq = cfs_rq_of(se);
953bfcd1 3875 cfs_rq->h_nr_running++;
2069dd75 3876
85dac906
PT
3877 if (cfs_rq_throttled(cfs_rq))
3878 break;
3879
17bc14b7 3880 update_cfs_shares(cfs_rq);
9ee474f5 3881 update_entity_load_avg(se, 1);
2069dd75
PZ
3882 }
3883
18bf2805
BS
3884 if (!se) {
3885 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3886 inc_nr_running(rq);
18bf2805 3887 }
a4c2f00f 3888 hrtick_update(rq);
bf0f6f24
IM
3889}
3890
2f36825b
VP
3891static void set_next_buddy(struct sched_entity *se);
3892
bf0f6f24
IM
3893/*
3894 * The dequeue_task method is called before nr_running is
3895 * decreased. We remove the task from the rbtree and
3896 * update the fair scheduling stats:
3897 */
371fd7e7 3898static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3899{
3900 struct cfs_rq *cfs_rq;
62fb1851 3901 struct sched_entity *se = &p->se;
2f36825b 3902 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3903
3904 for_each_sched_entity(se) {
3905 cfs_rq = cfs_rq_of(se);
371fd7e7 3906 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3907
3908 /*
3909 * end evaluation on encountering a throttled cfs_rq
3910 *
3911 * note: in the case of encountering a throttled cfs_rq we will
3912 * post the final h_nr_running decrement below.
3913 */
3914 if (cfs_rq_throttled(cfs_rq))
3915 break;
953bfcd1 3916 cfs_rq->h_nr_running--;
2069dd75 3917
bf0f6f24 3918 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3919 if (cfs_rq->load.weight) {
3920 /*
3921 * Bias pick_next to pick a task from this cfs_rq, as
3922 * p is sleeping when it is within its sched_slice.
3923 */
3924 if (task_sleep && parent_entity(se))
3925 set_next_buddy(parent_entity(se));
9598c82d
PT
3926
3927 /* avoid re-evaluating load for this entity */
3928 se = parent_entity(se);
bf0f6f24 3929 break;
2f36825b 3930 }
371fd7e7 3931 flags |= DEQUEUE_SLEEP;
bf0f6f24 3932 }
8f4d37ec 3933
2069dd75 3934 for_each_sched_entity(se) {
0f317143 3935 cfs_rq = cfs_rq_of(se);
953bfcd1 3936 cfs_rq->h_nr_running--;
2069dd75 3937
85dac906
PT
3938 if (cfs_rq_throttled(cfs_rq))
3939 break;
3940
17bc14b7 3941 update_cfs_shares(cfs_rq);
9ee474f5 3942 update_entity_load_avg(se, 1);
2069dd75
PZ
3943 }
3944
18bf2805 3945 if (!se) {
85dac906 3946 dec_nr_running(rq);
18bf2805
BS
3947 update_rq_runnable_avg(rq, 1);
3948 }
a4c2f00f 3949 hrtick_update(rq);
bf0f6f24
IM
3950}
3951
e7693a36 3952#ifdef CONFIG_SMP
029632fb
PZ
3953/* Used instead of source_load when we know the type == 0 */
3954static unsigned long weighted_cpuload(const int cpu)
3955{
b92486cb 3956 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3957}
3958
3959/*
3960 * Return a low guess at the load of a migration-source cpu weighted
3961 * according to the scheduling class and "nice" value.
3962 *
3963 * We want to under-estimate the load of migration sources, to
3964 * balance conservatively.
3965 */
3966static unsigned long source_load(int cpu, int type)
3967{
3968 struct rq *rq = cpu_rq(cpu);
3969 unsigned long total = weighted_cpuload(cpu);
3970
3971 if (type == 0 || !sched_feat(LB_BIAS))
3972 return total;
3973
3974 return min(rq->cpu_load[type-1], total);
3975}
3976
3977/*
3978 * Return a high guess at the load of a migration-target cpu weighted
3979 * according to the scheduling class and "nice" value.
3980 */
3981static unsigned long target_load(int cpu, int type)
3982{
3983 struct rq *rq = cpu_rq(cpu);
3984 unsigned long total = weighted_cpuload(cpu);
3985
3986 if (type == 0 || !sched_feat(LB_BIAS))
3987 return total;
3988
3989 return max(rq->cpu_load[type-1], total);
3990}
3991
3992static unsigned long power_of(int cpu)
3993{
3994 return cpu_rq(cpu)->cpu_power;
3995}
3996
3997static unsigned long cpu_avg_load_per_task(int cpu)
3998{
3999 struct rq *rq = cpu_rq(cpu);
4000 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4001 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4002
4003 if (nr_running)
b92486cb 4004 return load_avg / nr_running;
029632fb
PZ
4005
4006 return 0;
4007}
4008
62470419
MW
4009static void record_wakee(struct task_struct *p)
4010{
4011 /*
4012 * Rough decay (wiping) for cost saving, don't worry
4013 * about the boundary, really active task won't care
4014 * about the loss.
4015 */
4016 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4017 current->wakee_flips = 0;
4018 current->wakee_flip_decay_ts = jiffies;
4019 }
4020
4021 if (current->last_wakee != p) {
4022 current->last_wakee = p;
4023 current->wakee_flips++;
4024 }
4025}
098fb9db 4026
74f8e4b2 4027static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4028{
4029 struct sched_entity *se = &p->se;
4030 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4031 u64 min_vruntime;
4032
4033#ifndef CONFIG_64BIT
4034 u64 min_vruntime_copy;
88ec22d3 4035
3fe1698b
PZ
4036 do {
4037 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4038 smp_rmb();
4039 min_vruntime = cfs_rq->min_vruntime;
4040 } while (min_vruntime != min_vruntime_copy);
4041#else
4042 min_vruntime = cfs_rq->min_vruntime;
4043#endif
88ec22d3 4044
3fe1698b 4045 se->vruntime -= min_vruntime;
62470419 4046 record_wakee(p);
88ec22d3
PZ
4047}
4048
bb3469ac 4049#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4050/*
4051 * effective_load() calculates the load change as seen from the root_task_group
4052 *
4053 * Adding load to a group doesn't make a group heavier, but can cause movement
4054 * of group shares between cpus. Assuming the shares were perfectly aligned one
4055 * can calculate the shift in shares.
cf5f0acf
PZ
4056 *
4057 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4058 * on this @cpu and results in a total addition (subtraction) of @wg to the
4059 * total group weight.
4060 *
4061 * Given a runqueue weight distribution (rw_i) we can compute a shares
4062 * distribution (s_i) using:
4063 *
4064 * s_i = rw_i / \Sum rw_j (1)
4065 *
4066 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4067 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4068 * shares distribution (s_i):
4069 *
4070 * rw_i = { 2, 4, 1, 0 }
4071 * s_i = { 2/7, 4/7, 1/7, 0 }
4072 *
4073 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4074 * task used to run on and the CPU the waker is running on), we need to
4075 * compute the effect of waking a task on either CPU and, in case of a sync
4076 * wakeup, compute the effect of the current task going to sleep.
4077 *
4078 * So for a change of @wl to the local @cpu with an overall group weight change
4079 * of @wl we can compute the new shares distribution (s'_i) using:
4080 *
4081 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4082 *
4083 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4084 * differences in waking a task to CPU 0. The additional task changes the
4085 * weight and shares distributions like:
4086 *
4087 * rw'_i = { 3, 4, 1, 0 }
4088 * s'_i = { 3/8, 4/8, 1/8, 0 }
4089 *
4090 * We can then compute the difference in effective weight by using:
4091 *
4092 * dw_i = S * (s'_i - s_i) (3)
4093 *
4094 * Where 'S' is the group weight as seen by its parent.
4095 *
4096 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4097 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4098 * 4/7) times the weight of the group.
f5bfb7d9 4099 */
2069dd75 4100static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4101{
4be9daaa 4102 struct sched_entity *se = tg->se[cpu];
f1d239f7 4103
9722c2da 4104 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4105 return wl;
4106
4be9daaa 4107 for_each_sched_entity(se) {
cf5f0acf 4108 long w, W;
4be9daaa 4109
977dda7c 4110 tg = se->my_q->tg;
bb3469ac 4111
cf5f0acf
PZ
4112 /*
4113 * W = @wg + \Sum rw_j
4114 */
4115 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4116
cf5f0acf
PZ
4117 /*
4118 * w = rw_i + @wl
4119 */
4120 w = se->my_q->load.weight + wl;
940959e9 4121
cf5f0acf
PZ
4122 /*
4123 * wl = S * s'_i; see (2)
4124 */
4125 if (W > 0 && w < W)
4126 wl = (w * tg->shares) / W;
977dda7c
PT
4127 else
4128 wl = tg->shares;
940959e9 4129
cf5f0acf
PZ
4130 /*
4131 * Per the above, wl is the new se->load.weight value; since
4132 * those are clipped to [MIN_SHARES, ...) do so now. See
4133 * calc_cfs_shares().
4134 */
977dda7c
PT
4135 if (wl < MIN_SHARES)
4136 wl = MIN_SHARES;
cf5f0acf
PZ
4137
4138 /*
4139 * wl = dw_i = S * (s'_i - s_i); see (3)
4140 */
977dda7c 4141 wl -= se->load.weight;
cf5f0acf
PZ
4142
4143 /*
4144 * Recursively apply this logic to all parent groups to compute
4145 * the final effective load change on the root group. Since
4146 * only the @tg group gets extra weight, all parent groups can
4147 * only redistribute existing shares. @wl is the shift in shares
4148 * resulting from this level per the above.
4149 */
4be9daaa 4150 wg = 0;
4be9daaa 4151 }
bb3469ac 4152
4be9daaa 4153 return wl;
bb3469ac
PZ
4154}
4155#else
4be9daaa 4156
58d081b5 4157static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4158{
83378269 4159 return wl;
bb3469ac 4160}
4be9daaa 4161
bb3469ac
PZ
4162#endif
4163
62470419
MW
4164static int wake_wide(struct task_struct *p)
4165{
7d9ffa89 4166 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4167
4168 /*
4169 * Yeah, it's the switching-frequency, could means many wakee or
4170 * rapidly switch, use factor here will just help to automatically
4171 * adjust the loose-degree, so bigger node will lead to more pull.
4172 */
4173 if (p->wakee_flips > factor) {
4174 /*
4175 * wakee is somewhat hot, it needs certain amount of cpu
4176 * resource, so if waker is far more hot, prefer to leave
4177 * it alone.
4178 */
4179 if (current->wakee_flips > (factor * p->wakee_flips))
4180 return 1;
4181 }
4182
4183 return 0;
4184}
4185
c88d5910 4186static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4187{
e37b6a7b 4188 s64 this_load, load;
c88d5910 4189 int idx, this_cpu, prev_cpu;
098fb9db 4190 unsigned long tl_per_task;
c88d5910 4191 struct task_group *tg;
83378269 4192 unsigned long weight;
b3137bc8 4193 int balanced;
098fb9db 4194
62470419
MW
4195 /*
4196 * If we wake multiple tasks be careful to not bounce
4197 * ourselves around too much.
4198 */
4199 if (wake_wide(p))
4200 return 0;
4201
c88d5910
PZ
4202 idx = sd->wake_idx;
4203 this_cpu = smp_processor_id();
4204 prev_cpu = task_cpu(p);
4205 load = source_load(prev_cpu, idx);
4206 this_load = target_load(this_cpu, idx);
098fb9db 4207
b3137bc8
MG
4208 /*
4209 * If sync wakeup then subtract the (maximum possible)
4210 * effect of the currently running task from the load
4211 * of the current CPU:
4212 */
83378269
PZ
4213 if (sync) {
4214 tg = task_group(current);
4215 weight = current->se.load.weight;
4216
c88d5910 4217 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4218 load += effective_load(tg, prev_cpu, 0, -weight);
4219 }
b3137bc8 4220
83378269
PZ
4221 tg = task_group(p);
4222 weight = p->se.load.weight;
b3137bc8 4223
71a29aa7
PZ
4224 /*
4225 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4226 * due to the sync cause above having dropped this_load to 0, we'll
4227 * always have an imbalance, but there's really nothing you can do
4228 * about that, so that's good too.
71a29aa7
PZ
4229 *
4230 * Otherwise check if either cpus are near enough in load to allow this
4231 * task to be woken on this_cpu.
4232 */
e37b6a7b
PT
4233 if (this_load > 0) {
4234 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4235
4236 this_eff_load = 100;
4237 this_eff_load *= power_of(prev_cpu);
4238 this_eff_load *= this_load +
4239 effective_load(tg, this_cpu, weight, weight);
4240
4241 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4242 prev_eff_load *= power_of(this_cpu);
4243 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4244
4245 balanced = this_eff_load <= prev_eff_load;
4246 } else
4247 balanced = true;
b3137bc8 4248
098fb9db 4249 /*
4ae7d5ce
IM
4250 * If the currently running task will sleep within
4251 * a reasonable amount of time then attract this newly
4252 * woken task:
098fb9db 4253 */
2fb7635c
PZ
4254 if (sync && balanced)
4255 return 1;
098fb9db 4256
41acab88 4257 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4258 tl_per_task = cpu_avg_load_per_task(this_cpu);
4259
c88d5910
PZ
4260 if (balanced ||
4261 (this_load <= load &&
4262 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4263 /*
4264 * This domain has SD_WAKE_AFFINE and
4265 * p is cache cold in this domain, and
4266 * there is no bad imbalance.
4267 */
c88d5910 4268 schedstat_inc(sd, ttwu_move_affine);
41acab88 4269 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4270
4271 return 1;
4272 }
4273 return 0;
4274}
4275
aaee1203
PZ
4276/*
4277 * find_idlest_group finds and returns the least busy CPU group within the
4278 * domain.
4279 */
4280static struct sched_group *
78e7ed53 4281find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4282 int this_cpu, int sd_flag)
e7693a36 4283{
b3bd3de6 4284 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4285 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4286 int load_idx = sd->forkexec_idx;
aaee1203 4287 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4288
c44f2a02
VG
4289 if (sd_flag & SD_BALANCE_WAKE)
4290 load_idx = sd->wake_idx;
4291
aaee1203
PZ
4292 do {
4293 unsigned long load, avg_load;
4294 int local_group;
4295 int i;
e7693a36 4296
aaee1203
PZ
4297 /* Skip over this group if it has no CPUs allowed */
4298 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4299 tsk_cpus_allowed(p)))
aaee1203
PZ
4300 continue;
4301
4302 local_group = cpumask_test_cpu(this_cpu,
4303 sched_group_cpus(group));
4304
4305 /* Tally up the load of all CPUs in the group */
4306 avg_load = 0;
4307
4308 for_each_cpu(i, sched_group_cpus(group)) {
4309 /* Bias balancing toward cpus of our domain */
4310 if (local_group)
4311 load = source_load(i, load_idx);
4312 else
4313 load = target_load(i, load_idx);
4314
4315 avg_load += load;
4316 }
4317
4318 /* Adjust by relative CPU power of the group */
9c3f75cb 4319 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4320
4321 if (local_group) {
4322 this_load = avg_load;
aaee1203
PZ
4323 } else if (avg_load < min_load) {
4324 min_load = avg_load;
4325 idlest = group;
4326 }
4327 } while (group = group->next, group != sd->groups);
4328
4329 if (!idlest || 100*this_load < imbalance*min_load)
4330 return NULL;
4331 return idlest;
4332}
4333
4334/*
4335 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4336 */
4337static int
4338find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4339{
4340 unsigned long load, min_load = ULONG_MAX;
4341 int idlest = -1;
4342 int i;
4343
4344 /* Traverse only the allowed CPUs */
fa17b507 4345 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4346 load = weighted_cpuload(i);
4347
4348 if (load < min_load || (load == min_load && i == this_cpu)) {
4349 min_load = load;
4350 idlest = i;
e7693a36
GH
4351 }
4352 }
4353
aaee1203
PZ
4354 return idlest;
4355}
e7693a36 4356
a50bde51
PZ
4357/*
4358 * Try and locate an idle CPU in the sched_domain.
4359 */
99bd5e2f 4360static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4361{
99bd5e2f 4362 struct sched_domain *sd;
37407ea7 4363 struct sched_group *sg;
e0a79f52 4364 int i = task_cpu(p);
a50bde51 4365
e0a79f52
MG
4366 if (idle_cpu(target))
4367 return target;
99bd5e2f
SS
4368
4369 /*
e0a79f52 4370 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4371 */
e0a79f52
MG
4372 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4373 return i;
a50bde51
PZ
4374
4375 /*
37407ea7 4376 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4377 */
518cd623 4378 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4379 for_each_lower_domain(sd) {
37407ea7
LT
4380 sg = sd->groups;
4381 do {
4382 if (!cpumask_intersects(sched_group_cpus(sg),
4383 tsk_cpus_allowed(p)))
4384 goto next;
4385
4386 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4387 if (i == target || !idle_cpu(i))
37407ea7
LT
4388 goto next;
4389 }
970e1789 4390
37407ea7
LT
4391 target = cpumask_first_and(sched_group_cpus(sg),
4392 tsk_cpus_allowed(p));
4393 goto done;
4394next:
4395 sg = sg->next;
4396 } while (sg != sd->groups);
4397 }
4398done:
a50bde51
PZ
4399 return target;
4400}
4401
aaee1203 4402/*
de91b9cb
MR
4403 * select_task_rq_fair: Select target runqueue for the waking task in domains
4404 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4405 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4406 *
de91b9cb
MR
4407 * Balances load by selecting the idlest cpu in the idlest group, or under
4408 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4409 *
de91b9cb 4410 * Returns the target cpu number.
aaee1203
PZ
4411 *
4412 * preempt must be disabled.
4413 */
0017d735 4414static int
ac66f547 4415select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4416{
29cd8bae 4417 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4418 int cpu = smp_processor_id();
c88d5910 4419 int new_cpu = cpu;
99bd5e2f 4420 int want_affine = 0;
5158f4e4 4421 int sync = wake_flags & WF_SYNC;
c88d5910 4422
29baa747 4423 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4424 return prev_cpu;
4425
0763a660 4426 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4427 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4428 want_affine = 1;
4429 new_cpu = prev_cpu;
4430 }
aaee1203 4431
dce840a0 4432 rcu_read_lock();
aaee1203 4433 for_each_domain(cpu, tmp) {
e4f42888
PZ
4434 if (!(tmp->flags & SD_LOAD_BALANCE))
4435 continue;
4436
fe3bcfe1 4437 /*
99bd5e2f
SS
4438 * If both cpu and prev_cpu are part of this domain,
4439 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4440 */
99bd5e2f
SS
4441 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4442 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4443 affine_sd = tmp;
29cd8bae 4444 break;
f03542a7 4445 }
29cd8bae 4446
f03542a7 4447 if (tmp->flags & sd_flag)
29cd8bae
PZ
4448 sd = tmp;
4449 }
4450
8b911acd 4451 if (affine_sd) {
f03542a7 4452 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4453 prev_cpu = cpu;
4454
4455 new_cpu = select_idle_sibling(p, prev_cpu);
4456 goto unlock;
8b911acd 4457 }
e7693a36 4458
aaee1203
PZ
4459 while (sd) {
4460 struct sched_group *group;
c88d5910 4461 int weight;
098fb9db 4462
0763a660 4463 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4464 sd = sd->child;
4465 continue;
4466 }
098fb9db 4467
c44f2a02 4468 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4469 if (!group) {
4470 sd = sd->child;
4471 continue;
4472 }
4ae7d5ce 4473
d7c33c49 4474 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4475 if (new_cpu == -1 || new_cpu == cpu) {
4476 /* Now try balancing at a lower domain level of cpu */
4477 sd = sd->child;
4478 continue;
e7693a36 4479 }
aaee1203
PZ
4480
4481 /* Now try balancing at a lower domain level of new_cpu */
4482 cpu = new_cpu;
669c55e9 4483 weight = sd->span_weight;
aaee1203
PZ
4484 sd = NULL;
4485 for_each_domain(cpu, tmp) {
669c55e9 4486 if (weight <= tmp->span_weight)
aaee1203 4487 break;
0763a660 4488 if (tmp->flags & sd_flag)
aaee1203
PZ
4489 sd = tmp;
4490 }
4491 /* while loop will break here if sd == NULL */
e7693a36 4492 }
dce840a0
PZ
4493unlock:
4494 rcu_read_unlock();
e7693a36 4495
c88d5910 4496 return new_cpu;
e7693a36 4497}
0a74bef8
PT
4498
4499/*
4500 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4501 * cfs_rq_of(p) references at time of call are still valid and identify the
4502 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4503 * other assumptions, including the state of rq->lock, should be made.
4504 */
4505static void
4506migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4507{
aff3e498
PT
4508 struct sched_entity *se = &p->se;
4509 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4510
4511 /*
4512 * Load tracking: accumulate removed load so that it can be processed
4513 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4514 * to blocked load iff they have a positive decay-count. It can never
4515 * be negative here since on-rq tasks have decay-count == 0.
4516 */
4517 if (se->avg.decay_count) {
4518 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4519 atomic_long_add(se->avg.load_avg_contrib,
4520 &cfs_rq->removed_load);
aff3e498 4521 }
0a74bef8 4522}
e7693a36
GH
4523#endif /* CONFIG_SMP */
4524
e52fb7c0
PZ
4525static unsigned long
4526wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4527{
4528 unsigned long gran = sysctl_sched_wakeup_granularity;
4529
4530 /*
e52fb7c0
PZ
4531 * Since its curr running now, convert the gran from real-time
4532 * to virtual-time in his units.
13814d42
MG
4533 *
4534 * By using 'se' instead of 'curr' we penalize light tasks, so
4535 * they get preempted easier. That is, if 'se' < 'curr' then
4536 * the resulting gran will be larger, therefore penalizing the
4537 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4538 * be smaller, again penalizing the lighter task.
4539 *
4540 * This is especially important for buddies when the leftmost
4541 * task is higher priority than the buddy.
0bbd3336 4542 */
f4ad9bd2 4543 return calc_delta_fair(gran, se);
0bbd3336
PZ
4544}
4545
464b7527
PZ
4546/*
4547 * Should 'se' preempt 'curr'.
4548 *
4549 * |s1
4550 * |s2
4551 * |s3
4552 * g
4553 * |<--->|c
4554 *
4555 * w(c, s1) = -1
4556 * w(c, s2) = 0
4557 * w(c, s3) = 1
4558 *
4559 */
4560static int
4561wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4562{
4563 s64 gran, vdiff = curr->vruntime - se->vruntime;
4564
4565 if (vdiff <= 0)
4566 return -1;
4567
e52fb7c0 4568 gran = wakeup_gran(curr, se);
464b7527
PZ
4569 if (vdiff > gran)
4570 return 1;
4571
4572 return 0;
4573}
4574
02479099
PZ
4575static void set_last_buddy(struct sched_entity *se)
4576{
69c80f3e
VP
4577 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4578 return;
4579
4580 for_each_sched_entity(se)
4581 cfs_rq_of(se)->last = se;
02479099
PZ
4582}
4583
4584static void set_next_buddy(struct sched_entity *se)
4585{
69c80f3e
VP
4586 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4587 return;
4588
4589 for_each_sched_entity(se)
4590 cfs_rq_of(se)->next = se;
02479099
PZ
4591}
4592
ac53db59
RR
4593static void set_skip_buddy(struct sched_entity *se)
4594{
69c80f3e
VP
4595 for_each_sched_entity(se)
4596 cfs_rq_of(se)->skip = se;
ac53db59
RR
4597}
4598
bf0f6f24
IM
4599/*
4600 * Preempt the current task with a newly woken task if needed:
4601 */
5a9b86f6 4602static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4603{
4604 struct task_struct *curr = rq->curr;
8651a86c 4605 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4606 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4607 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4608 int next_buddy_marked = 0;
bf0f6f24 4609
4ae7d5ce
IM
4610 if (unlikely(se == pse))
4611 return;
4612
5238cdd3 4613 /*
ddcdf6e7 4614 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4615 * unconditionally check_prempt_curr() after an enqueue (which may have
4616 * lead to a throttle). This both saves work and prevents false
4617 * next-buddy nomination below.
4618 */
4619 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4620 return;
4621
2f36825b 4622 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4623 set_next_buddy(pse);
2f36825b
VP
4624 next_buddy_marked = 1;
4625 }
57fdc26d 4626
aec0a514
BR
4627 /*
4628 * We can come here with TIF_NEED_RESCHED already set from new task
4629 * wake up path.
5238cdd3
PT
4630 *
4631 * Note: this also catches the edge-case of curr being in a throttled
4632 * group (e.g. via set_curr_task), since update_curr() (in the
4633 * enqueue of curr) will have resulted in resched being set. This
4634 * prevents us from potentially nominating it as a false LAST_BUDDY
4635 * below.
aec0a514
BR
4636 */
4637 if (test_tsk_need_resched(curr))
4638 return;
4639
a2f5c9ab
DH
4640 /* Idle tasks are by definition preempted by non-idle tasks. */
4641 if (unlikely(curr->policy == SCHED_IDLE) &&
4642 likely(p->policy != SCHED_IDLE))
4643 goto preempt;
4644
91c234b4 4645 /*
a2f5c9ab
DH
4646 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4647 * is driven by the tick):
91c234b4 4648 */
8ed92e51 4649 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4650 return;
bf0f6f24 4651
464b7527 4652 find_matching_se(&se, &pse);
9bbd7374 4653 update_curr(cfs_rq_of(se));
002f128b 4654 BUG_ON(!pse);
2f36825b
VP
4655 if (wakeup_preempt_entity(se, pse) == 1) {
4656 /*
4657 * Bias pick_next to pick the sched entity that is
4658 * triggering this preemption.
4659 */
4660 if (!next_buddy_marked)
4661 set_next_buddy(pse);
3a7e73a2 4662 goto preempt;
2f36825b 4663 }
464b7527 4664
3a7e73a2 4665 return;
a65ac745 4666
3a7e73a2
PZ
4667preempt:
4668 resched_task(curr);
4669 /*
4670 * Only set the backward buddy when the current task is still
4671 * on the rq. This can happen when a wakeup gets interleaved
4672 * with schedule on the ->pre_schedule() or idle_balance()
4673 * point, either of which can * drop the rq lock.
4674 *
4675 * Also, during early boot the idle thread is in the fair class,
4676 * for obvious reasons its a bad idea to schedule back to it.
4677 */
4678 if (unlikely(!se->on_rq || curr == rq->idle))
4679 return;
4680
4681 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4682 set_last_buddy(se);
bf0f6f24
IM
4683}
4684
606dba2e
PZ
4685static struct task_struct *
4686pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4687{
4688 struct cfs_rq *cfs_rq = &rq->cfs;
4689 struct sched_entity *se;
678d5718 4690 struct task_struct *p;
37e117c0 4691 int new_tasks;
678d5718 4692
6e83125c 4693again:
678d5718
PZ
4694#ifdef CONFIG_FAIR_GROUP_SCHED
4695 if (!cfs_rq->nr_running)
38033c37 4696 goto idle;
678d5718 4697
3f1d2a31 4698 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4699 goto simple;
4700
4701 /*
4702 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4703 * likely that a next task is from the same cgroup as the current.
4704 *
4705 * Therefore attempt to avoid putting and setting the entire cgroup
4706 * hierarchy, only change the part that actually changes.
4707 */
4708
4709 do {
4710 struct sched_entity *curr = cfs_rq->curr;
4711
4712 /*
4713 * Since we got here without doing put_prev_entity() we also
4714 * have to consider cfs_rq->curr. If it is still a runnable
4715 * entity, update_curr() will update its vruntime, otherwise
4716 * forget we've ever seen it.
4717 */
4718 if (curr && curr->on_rq)
4719 update_curr(cfs_rq);
4720 else
4721 curr = NULL;
4722
4723 /*
4724 * This call to check_cfs_rq_runtime() will do the throttle and
4725 * dequeue its entity in the parent(s). Therefore the 'simple'
4726 * nr_running test will indeed be correct.
4727 */
4728 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4729 goto simple;
4730
4731 se = pick_next_entity(cfs_rq, curr);
4732 cfs_rq = group_cfs_rq(se);
4733 } while (cfs_rq);
4734
4735 p = task_of(se);
4736
4737 /*
4738 * Since we haven't yet done put_prev_entity and if the selected task
4739 * is a different task than we started out with, try and touch the
4740 * least amount of cfs_rqs.
4741 */
4742 if (prev != p) {
4743 struct sched_entity *pse = &prev->se;
4744
4745 while (!(cfs_rq = is_same_group(se, pse))) {
4746 int se_depth = se->depth;
4747 int pse_depth = pse->depth;
4748
4749 if (se_depth <= pse_depth) {
4750 put_prev_entity(cfs_rq_of(pse), pse);
4751 pse = parent_entity(pse);
4752 }
4753 if (se_depth >= pse_depth) {
4754 set_next_entity(cfs_rq_of(se), se);
4755 se = parent_entity(se);
4756 }
4757 }
4758
4759 put_prev_entity(cfs_rq, pse);
4760 set_next_entity(cfs_rq, se);
4761 }
4762
4763 if (hrtick_enabled(rq))
4764 hrtick_start_fair(rq, p);
4765
4766 return p;
4767simple:
4768 cfs_rq = &rq->cfs;
4769#endif
bf0f6f24 4770
36ace27e 4771 if (!cfs_rq->nr_running)
38033c37 4772 goto idle;
bf0f6f24 4773
3f1d2a31 4774 put_prev_task(rq, prev);
606dba2e 4775
bf0f6f24 4776 do {
678d5718 4777 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4778 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4779 cfs_rq = group_cfs_rq(se);
4780 } while (cfs_rq);
4781
8f4d37ec 4782 p = task_of(se);
678d5718 4783
b39e66ea
MG
4784 if (hrtick_enabled(rq))
4785 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4786
4787 return p;
38033c37
PZ
4788
4789idle:
e4aa358b 4790 new_tasks = idle_balance(rq);
37e117c0
PZ
4791 /*
4792 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4793 * possible for any higher priority task to appear. In that case we
4794 * must re-start the pick_next_entity() loop.
4795 */
e4aa358b 4796 if (new_tasks < 0)
37e117c0
PZ
4797 return RETRY_TASK;
4798
e4aa358b 4799 if (new_tasks > 0)
38033c37 4800 goto again;
38033c37
PZ
4801
4802 return NULL;
bf0f6f24
IM
4803}
4804
4805/*
4806 * Account for a descheduled task:
4807 */
31ee529c 4808static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4809{
4810 struct sched_entity *se = &prev->se;
4811 struct cfs_rq *cfs_rq;
4812
4813 for_each_sched_entity(se) {
4814 cfs_rq = cfs_rq_of(se);
ab6cde26 4815 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4816 }
4817}
4818
ac53db59
RR
4819/*
4820 * sched_yield() is very simple
4821 *
4822 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4823 */
4824static void yield_task_fair(struct rq *rq)
4825{
4826 struct task_struct *curr = rq->curr;
4827 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4828 struct sched_entity *se = &curr->se;
4829
4830 /*
4831 * Are we the only task in the tree?
4832 */
4833 if (unlikely(rq->nr_running == 1))
4834 return;
4835
4836 clear_buddies(cfs_rq, se);
4837
4838 if (curr->policy != SCHED_BATCH) {
4839 update_rq_clock(rq);
4840 /*
4841 * Update run-time statistics of the 'current'.
4842 */
4843 update_curr(cfs_rq);
916671c0
MG
4844 /*
4845 * Tell update_rq_clock() that we've just updated,
4846 * so we don't do microscopic update in schedule()
4847 * and double the fastpath cost.
4848 */
4849 rq->skip_clock_update = 1;
ac53db59
RR
4850 }
4851
4852 set_skip_buddy(se);
4853}
4854
d95f4122
MG
4855static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4856{
4857 struct sched_entity *se = &p->se;
4858
5238cdd3
PT
4859 /* throttled hierarchies are not runnable */
4860 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4861 return false;
4862
4863 /* Tell the scheduler that we'd really like pse to run next. */
4864 set_next_buddy(se);
4865
d95f4122
MG
4866 yield_task_fair(rq);
4867
4868 return true;
4869}
4870
681f3e68 4871#ifdef CONFIG_SMP
bf0f6f24 4872/**************************************************
e9c84cb8
PZ
4873 * Fair scheduling class load-balancing methods.
4874 *
4875 * BASICS
4876 *
4877 * The purpose of load-balancing is to achieve the same basic fairness the
4878 * per-cpu scheduler provides, namely provide a proportional amount of compute
4879 * time to each task. This is expressed in the following equation:
4880 *
4881 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4882 *
4883 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4884 * W_i,0 is defined as:
4885 *
4886 * W_i,0 = \Sum_j w_i,j (2)
4887 *
4888 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4889 * is derived from the nice value as per prio_to_weight[].
4890 *
4891 * The weight average is an exponential decay average of the instantaneous
4892 * weight:
4893 *
4894 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4895 *
4896 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4897 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4898 * can also include other factors [XXX].
4899 *
4900 * To achieve this balance we define a measure of imbalance which follows
4901 * directly from (1):
4902 *
4903 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4904 *
4905 * We them move tasks around to minimize the imbalance. In the continuous
4906 * function space it is obvious this converges, in the discrete case we get
4907 * a few fun cases generally called infeasible weight scenarios.
4908 *
4909 * [XXX expand on:
4910 * - infeasible weights;
4911 * - local vs global optima in the discrete case. ]
4912 *
4913 *
4914 * SCHED DOMAINS
4915 *
4916 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4917 * for all i,j solution, we create a tree of cpus that follows the hardware
4918 * topology where each level pairs two lower groups (or better). This results
4919 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4920 * tree to only the first of the previous level and we decrease the frequency
4921 * of load-balance at each level inv. proportional to the number of cpus in
4922 * the groups.
4923 *
4924 * This yields:
4925 *
4926 * log_2 n 1 n
4927 * \Sum { --- * --- * 2^i } = O(n) (5)
4928 * i = 0 2^i 2^i
4929 * `- size of each group
4930 * | | `- number of cpus doing load-balance
4931 * | `- freq
4932 * `- sum over all levels
4933 *
4934 * Coupled with a limit on how many tasks we can migrate every balance pass,
4935 * this makes (5) the runtime complexity of the balancer.
4936 *
4937 * An important property here is that each CPU is still (indirectly) connected
4938 * to every other cpu in at most O(log n) steps:
4939 *
4940 * The adjacency matrix of the resulting graph is given by:
4941 *
4942 * log_2 n
4943 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4944 * k = 0
4945 *
4946 * And you'll find that:
4947 *
4948 * A^(log_2 n)_i,j != 0 for all i,j (7)
4949 *
4950 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4951 * The task movement gives a factor of O(m), giving a convergence complexity
4952 * of:
4953 *
4954 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4955 *
4956 *
4957 * WORK CONSERVING
4958 *
4959 * In order to avoid CPUs going idle while there's still work to do, new idle
4960 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4961 * tree itself instead of relying on other CPUs to bring it work.
4962 *
4963 * This adds some complexity to both (5) and (8) but it reduces the total idle
4964 * time.
4965 *
4966 * [XXX more?]
4967 *
4968 *
4969 * CGROUPS
4970 *
4971 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4972 *
4973 * s_k,i
4974 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4975 * S_k
4976 *
4977 * Where
4978 *
4979 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4980 *
4981 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4982 *
4983 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4984 * property.
4985 *
4986 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4987 * rewrite all of this once again.]
4988 */
bf0f6f24 4989
ed387b78
HS
4990static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4991
0ec8aa00
PZ
4992enum fbq_type { regular, remote, all };
4993
ddcdf6e7 4994#define LBF_ALL_PINNED 0x01
367456c7 4995#define LBF_NEED_BREAK 0x02
6263322c
PZ
4996#define LBF_DST_PINNED 0x04
4997#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4998
4999struct lb_env {
5000 struct sched_domain *sd;
5001
ddcdf6e7 5002 struct rq *src_rq;
85c1e7da 5003 int src_cpu;
ddcdf6e7
PZ
5004
5005 int dst_cpu;
5006 struct rq *dst_rq;
5007
88b8dac0
SV
5008 struct cpumask *dst_grpmask;
5009 int new_dst_cpu;
ddcdf6e7 5010 enum cpu_idle_type idle;
bd939f45 5011 long imbalance;
b9403130
MW
5012 /* The set of CPUs under consideration for load-balancing */
5013 struct cpumask *cpus;
5014
ddcdf6e7 5015 unsigned int flags;
367456c7
PZ
5016
5017 unsigned int loop;
5018 unsigned int loop_break;
5019 unsigned int loop_max;
0ec8aa00
PZ
5020
5021 enum fbq_type fbq_type;
ddcdf6e7
PZ
5022};
5023
1e3c88bd 5024/*
ddcdf6e7 5025 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5026 * Both runqueues must be locked.
5027 */
ddcdf6e7 5028static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5029{
ddcdf6e7
PZ
5030 deactivate_task(env->src_rq, p, 0);
5031 set_task_cpu(p, env->dst_cpu);
5032 activate_task(env->dst_rq, p, 0);
5033 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5034}
5035
029632fb
PZ
5036/*
5037 * Is this task likely cache-hot:
5038 */
5039static int
6037dd1a 5040task_hot(struct task_struct *p, u64 now)
029632fb
PZ
5041{
5042 s64 delta;
5043
5044 if (p->sched_class != &fair_sched_class)
5045 return 0;
5046
5047 if (unlikely(p->policy == SCHED_IDLE))
5048 return 0;
5049
5050 /*
5051 * Buddy candidates are cache hot:
5052 */
5053 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5054 (&p->se == cfs_rq_of(&p->se)->next ||
5055 &p->se == cfs_rq_of(&p->se)->last))
5056 return 1;
5057
5058 if (sysctl_sched_migration_cost == -1)
5059 return 1;
5060 if (sysctl_sched_migration_cost == 0)
5061 return 0;
5062
5063 delta = now - p->se.exec_start;
5064
5065 return delta < (s64)sysctl_sched_migration_cost;
5066}
5067
3a7053b3
MG
5068#ifdef CONFIG_NUMA_BALANCING
5069/* Returns true if the destination node has incurred more faults */
5070static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5071{
5072 int src_nid, dst_nid;
5073
ff1df896 5074 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5075 !(env->sd->flags & SD_NUMA)) {
5076 return false;
5077 }
5078
5079 src_nid = cpu_to_node(env->src_cpu);
5080 dst_nid = cpu_to_node(env->dst_cpu);
5081
83e1d2cd 5082 if (src_nid == dst_nid)
3a7053b3
MG
5083 return false;
5084
83e1d2cd
MG
5085 /* Always encourage migration to the preferred node. */
5086 if (dst_nid == p->numa_preferred_nid)
5087 return true;
5088
887c290e
RR
5089 /* If both task and group weight improve, this move is a winner. */
5090 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5091 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
5092 return true;
5093
5094 return false;
5095}
7a0f3083
MG
5096
5097
5098static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5099{
5100 int src_nid, dst_nid;
5101
5102 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5103 return false;
5104
ff1df896 5105 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5106 return false;
5107
5108 src_nid = cpu_to_node(env->src_cpu);
5109 dst_nid = cpu_to_node(env->dst_cpu);
5110
83e1d2cd 5111 if (src_nid == dst_nid)
7a0f3083
MG
5112 return false;
5113
83e1d2cd
MG
5114 /* Migrating away from the preferred node is always bad. */
5115 if (src_nid == p->numa_preferred_nid)
5116 return true;
5117
887c290e
RR
5118 /* If either task or group weight get worse, don't do it. */
5119 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5120 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
5121 return true;
5122
5123 return false;
5124}
5125
3a7053b3
MG
5126#else
5127static inline bool migrate_improves_locality(struct task_struct *p,
5128 struct lb_env *env)
5129{
5130 return false;
5131}
7a0f3083
MG
5132
5133static inline bool migrate_degrades_locality(struct task_struct *p,
5134 struct lb_env *env)
5135{
5136 return false;
5137}
3a7053b3
MG
5138#endif
5139
1e3c88bd
PZ
5140/*
5141 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5142 */
5143static
8e45cb54 5144int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5145{
5146 int tsk_cache_hot = 0;
5147 /*
5148 * We do not migrate tasks that are:
d3198084 5149 * 1) throttled_lb_pair, or
1e3c88bd 5150 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5151 * 3) running (obviously), or
5152 * 4) are cache-hot on their current CPU.
1e3c88bd 5153 */
d3198084
JK
5154 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5155 return 0;
5156
ddcdf6e7 5157 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5158 int cpu;
88b8dac0 5159
41acab88 5160 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5161
6263322c
PZ
5162 env->flags |= LBF_SOME_PINNED;
5163
88b8dac0
SV
5164 /*
5165 * Remember if this task can be migrated to any other cpu in
5166 * our sched_group. We may want to revisit it if we couldn't
5167 * meet load balance goals by pulling other tasks on src_cpu.
5168 *
5169 * Also avoid computing new_dst_cpu if we have already computed
5170 * one in current iteration.
5171 */
6263322c 5172 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5173 return 0;
5174
e02e60c1
JK
5175 /* Prevent to re-select dst_cpu via env's cpus */
5176 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5177 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5178 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5179 env->new_dst_cpu = cpu;
5180 break;
5181 }
88b8dac0 5182 }
e02e60c1 5183
1e3c88bd
PZ
5184 return 0;
5185 }
88b8dac0
SV
5186
5187 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5188 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5189
ddcdf6e7 5190 if (task_running(env->src_rq, p)) {
41acab88 5191 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5192 return 0;
5193 }
5194
5195 /*
5196 * Aggressive migration if:
3a7053b3
MG
5197 * 1) destination numa is preferred
5198 * 2) task is cache cold, or
5199 * 3) too many balance attempts have failed.
1e3c88bd 5200 */
6037dd1a 5201 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
7a0f3083
MG
5202 if (!tsk_cache_hot)
5203 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5204
5205 if (migrate_improves_locality(p, env)) {
5206#ifdef CONFIG_SCHEDSTATS
5207 if (tsk_cache_hot) {
5208 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5209 schedstat_inc(p, se.statistics.nr_forced_migrations);
5210 }
5211#endif
5212 return 1;
5213 }
5214
1e3c88bd 5215 if (!tsk_cache_hot ||
8e45cb54 5216 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5217
1e3c88bd 5218 if (tsk_cache_hot) {
8e45cb54 5219 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5220 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5221 }
4e2dcb73 5222
1e3c88bd
PZ
5223 return 1;
5224 }
5225
4e2dcb73
ZH
5226 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5227 return 0;
1e3c88bd
PZ
5228}
5229
897c395f
PZ
5230/*
5231 * move_one_task tries to move exactly one task from busiest to this_rq, as
5232 * part of active balancing operations within "domain".
5233 * Returns 1 if successful and 0 otherwise.
5234 *
5235 * Called with both runqueues locked.
5236 */
8e45cb54 5237static int move_one_task(struct lb_env *env)
897c395f
PZ
5238{
5239 struct task_struct *p, *n;
897c395f 5240
367456c7 5241 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5242 if (!can_migrate_task(p, env))
5243 continue;
897c395f 5244
367456c7
PZ
5245 move_task(p, env);
5246 /*
5247 * Right now, this is only the second place move_task()
5248 * is called, so we can safely collect move_task()
5249 * stats here rather than inside move_task().
5250 */
5251 schedstat_inc(env->sd, lb_gained[env->idle]);
5252 return 1;
897c395f 5253 }
897c395f
PZ
5254 return 0;
5255}
5256
eb95308e
PZ
5257static const unsigned int sched_nr_migrate_break = 32;
5258
5d6523eb 5259/*
bd939f45 5260 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5261 * this_rq, as part of a balancing operation within domain "sd".
5262 * Returns 1 if successful and 0 otherwise.
5263 *
5264 * Called with both runqueues locked.
5265 */
5266static int move_tasks(struct lb_env *env)
1e3c88bd 5267{
5d6523eb
PZ
5268 struct list_head *tasks = &env->src_rq->cfs_tasks;
5269 struct task_struct *p;
367456c7
PZ
5270 unsigned long load;
5271 int pulled = 0;
1e3c88bd 5272
bd939f45 5273 if (env->imbalance <= 0)
5d6523eb 5274 return 0;
1e3c88bd 5275
5d6523eb
PZ
5276 while (!list_empty(tasks)) {
5277 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5278
367456c7
PZ
5279 env->loop++;
5280 /* We've more or less seen every task there is, call it quits */
5d6523eb 5281 if (env->loop > env->loop_max)
367456c7 5282 break;
5d6523eb
PZ
5283
5284 /* take a breather every nr_migrate tasks */
367456c7 5285 if (env->loop > env->loop_break) {
eb95308e 5286 env->loop_break += sched_nr_migrate_break;
8e45cb54 5287 env->flags |= LBF_NEED_BREAK;
ee00e66f 5288 break;
a195f004 5289 }
1e3c88bd 5290
d3198084 5291 if (!can_migrate_task(p, env))
367456c7
PZ
5292 goto next;
5293
5294 load = task_h_load(p);
5d6523eb 5295
eb95308e 5296 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5297 goto next;
5298
bd939f45 5299 if ((load / 2) > env->imbalance)
367456c7 5300 goto next;
1e3c88bd 5301
ddcdf6e7 5302 move_task(p, env);
ee00e66f 5303 pulled++;
bd939f45 5304 env->imbalance -= load;
1e3c88bd
PZ
5305
5306#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5307 /*
5308 * NEWIDLE balancing is a source of latency, so preemptible
5309 * kernels will stop after the first task is pulled to minimize
5310 * the critical section.
5311 */
5d6523eb 5312 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5313 break;
1e3c88bd
PZ
5314#endif
5315
ee00e66f
PZ
5316 /*
5317 * We only want to steal up to the prescribed amount of
5318 * weighted load.
5319 */
bd939f45 5320 if (env->imbalance <= 0)
ee00e66f 5321 break;
367456c7
PZ
5322
5323 continue;
5324next:
5d6523eb 5325 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5326 }
5d6523eb 5327
1e3c88bd 5328 /*
ddcdf6e7
PZ
5329 * Right now, this is one of only two places move_task() is called,
5330 * so we can safely collect move_task() stats here rather than
5331 * inside move_task().
1e3c88bd 5332 */
8e45cb54 5333 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5334
5d6523eb 5335 return pulled;
1e3c88bd
PZ
5336}
5337
230059de 5338#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5339/*
5340 * update tg->load_weight by folding this cpu's load_avg
5341 */
48a16753 5342static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5343{
48a16753
PT
5344 struct sched_entity *se = tg->se[cpu];
5345 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5346
48a16753
PT
5347 /* throttled entities do not contribute to load */
5348 if (throttled_hierarchy(cfs_rq))
5349 return;
9e3081ca 5350
aff3e498 5351 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5352
82958366
PT
5353 if (se) {
5354 update_entity_load_avg(se, 1);
5355 /*
5356 * We pivot on our runnable average having decayed to zero for
5357 * list removal. This generally implies that all our children
5358 * have also been removed (modulo rounding error or bandwidth
5359 * control); however, such cases are rare and we can fix these
5360 * at enqueue.
5361 *
5362 * TODO: fix up out-of-order children on enqueue.
5363 */
5364 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5365 list_del_leaf_cfs_rq(cfs_rq);
5366 } else {
48a16753 5367 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5368 update_rq_runnable_avg(rq, rq->nr_running);
5369 }
9e3081ca
PZ
5370}
5371
48a16753 5372static void update_blocked_averages(int cpu)
9e3081ca 5373{
9e3081ca 5374 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5375 struct cfs_rq *cfs_rq;
5376 unsigned long flags;
9e3081ca 5377
48a16753
PT
5378 raw_spin_lock_irqsave(&rq->lock, flags);
5379 update_rq_clock(rq);
9763b67f
PZ
5380 /*
5381 * Iterates the task_group tree in a bottom up fashion, see
5382 * list_add_leaf_cfs_rq() for details.
5383 */
64660c86 5384 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5385 /*
5386 * Note: We may want to consider periodically releasing
5387 * rq->lock about these updates so that creating many task
5388 * groups does not result in continually extending hold time.
5389 */
5390 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5391 }
48a16753
PT
5392
5393 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5394}
5395
9763b67f 5396/*
68520796 5397 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5398 * This needs to be done in a top-down fashion because the load of a child
5399 * group is a fraction of its parents load.
5400 */
68520796 5401static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5402{
68520796
VD
5403 struct rq *rq = rq_of(cfs_rq);
5404 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5405 unsigned long now = jiffies;
68520796 5406 unsigned long load;
a35b6466 5407
68520796 5408 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5409 return;
5410
68520796
VD
5411 cfs_rq->h_load_next = NULL;
5412 for_each_sched_entity(se) {
5413 cfs_rq = cfs_rq_of(se);
5414 cfs_rq->h_load_next = se;
5415 if (cfs_rq->last_h_load_update == now)
5416 break;
5417 }
a35b6466 5418
68520796 5419 if (!se) {
7e3115ef 5420 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5421 cfs_rq->last_h_load_update = now;
5422 }
5423
5424 while ((se = cfs_rq->h_load_next) != NULL) {
5425 load = cfs_rq->h_load;
5426 load = div64_ul(load * se->avg.load_avg_contrib,
5427 cfs_rq->runnable_load_avg + 1);
5428 cfs_rq = group_cfs_rq(se);
5429 cfs_rq->h_load = load;
5430 cfs_rq->last_h_load_update = now;
5431 }
9763b67f
PZ
5432}
5433
367456c7 5434static unsigned long task_h_load(struct task_struct *p)
230059de 5435{
367456c7 5436 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5437
68520796 5438 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5439 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5440 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5441}
5442#else
48a16753 5443static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5444{
5445}
5446
367456c7 5447static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5448{
a003a25b 5449 return p->se.avg.load_avg_contrib;
1e3c88bd 5450}
230059de 5451#endif
1e3c88bd 5452
1e3c88bd 5453/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5454/*
5455 * sg_lb_stats - stats of a sched_group required for load_balancing
5456 */
5457struct sg_lb_stats {
5458 unsigned long avg_load; /*Avg load across the CPUs of the group */
5459 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5460 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5461 unsigned long load_per_task;
3ae11c90 5462 unsigned long group_power;
147c5fc2
PZ
5463 unsigned int sum_nr_running; /* Nr tasks running in the group */
5464 unsigned int group_capacity;
5465 unsigned int idle_cpus;
5466 unsigned int group_weight;
1e3c88bd 5467 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5468 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5469#ifdef CONFIG_NUMA_BALANCING
5470 unsigned int nr_numa_running;
5471 unsigned int nr_preferred_running;
5472#endif
1e3c88bd
PZ
5473};
5474
56cf515b
JK
5475/*
5476 * sd_lb_stats - Structure to store the statistics of a sched_domain
5477 * during load balancing.
5478 */
5479struct sd_lb_stats {
5480 struct sched_group *busiest; /* Busiest group in this sd */
5481 struct sched_group *local; /* Local group in this sd */
5482 unsigned long total_load; /* Total load of all groups in sd */
5483 unsigned long total_pwr; /* Total power of all groups in sd */
5484 unsigned long avg_load; /* Average load across all groups in sd */
5485
56cf515b 5486 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5487 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5488};
5489
147c5fc2
PZ
5490static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5491{
5492 /*
5493 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5494 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5495 * We must however clear busiest_stat::avg_load because
5496 * update_sd_pick_busiest() reads this before assignment.
5497 */
5498 *sds = (struct sd_lb_stats){
5499 .busiest = NULL,
5500 .local = NULL,
5501 .total_load = 0UL,
5502 .total_pwr = 0UL,
5503 .busiest_stat = {
5504 .avg_load = 0UL,
5505 },
5506 };
5507}
5508
1e3c88bd
PZ
5509/**
5510 * get_sd_load_idx - Obtain the load index for a given sched domain.
5511 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5512 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5513 *
5514 * Return: The load index.
1e3c88bd
PZ
5515 */
5516static inline int get_sd_load_idx(struct sched_domain *sd,
5517 enum cpu_idle_type idle)
5518{
5519 int load_idx;
5520
5521 switch (idle) {
5522 case CPU_NOT_IDLE:
5523 load_idx = sd->busy_idx;
5524 break;
5525
5526 case CPU_NEWLY_IDLE:
5527 load_idx = sd->newidle_idx;
5528 break;
5529 default:
5530 load_idx = sd->idle_idx;
5531 break;
5532 }
5533
5534 return load_idx;
5535}
5536
15f803c9 5537static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5538{
1399fa78 5539 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5540}
5541
5542unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5543{
5544 return default_scale_freq_power(sd, cpu);
5545}
5546
15f803c9 5547static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5548{
669c55e9 5549 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5550 unsigned long smt_gain = sd->smt_gain;
5551
5552 smt_gain /= weight;
5553
5554 return smt_gain;
5555}
5556
5557unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5558{
5559 return default_scale_smt_power(sd, cpu);
5560}
5561
15f803c9 5562static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5563{
5564 struct rq *rq = cpu_rq(cpu);
b654f7de 5565 u64 total, available, age_stamp, avg;
1e3c88bd 5566
b654f7de
PZ
5567 /*
5568 * Since we're reading these variables without serialization make sure
5569 * we read them once before doing sanity checks on them.
5570 */
5571 age_stamp = ACCESS_ONCE(rq->age_stamp);
5572 avg = ACCESS_ONCE(rq->rt_avg);
5573
78becc27 5574 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5575
b654f7de 5576 if (unlikely(total < avg)) {
aa483808
VP
5577 /* Ensures that power won't end up being negative */
5578 available = 0;
5579 } else {
b654f7de 5580 available = total - avg;
aa483808 5581 }
1e3c88bd 5582
1399fa78
NR
5583 if (unlikely((s64)total < SCHED_POWER_SCALE))
5584 total = SCHED_POWER_SCALE;
1e3c88bd 5585
1399fa78 5586 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5587
5588 return div_u64(available, total);
5589}
5590
5591static void update_cpu_power(struct sched_domain *sd, int cpu)
5592{
669c55e9 5593 unsigned long weight = sd->span_weight;
1399fa78 5594 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5595 struct sched_group *sdg = sd->groups;
5596
1e3c88bd
PZ
5597 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5598 if (sched_feat(ARCH_POWER))
5599 power *= arch_scale_smt_power(sd, cpu);
5600 else
5601 power *= default_scale_smt_power(sd, cpu);
5602
1399fa78 5603 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5604 }
5605
9c3f75cb 5606 sdg->sgp->power_orig = power;
9d5efe05
SV
5607
5608 if (sched_feat(ARCH_POWER))
5609 power *= arch_scale_freq_power(sd, cpu);
5610 else
5611 power *= default_scale_freq_power(sd, cpu);
5612
1399fa78 5613 power >>= SCHED_POWER_SHIFT;
9d5efe05 5614
1e3c88bd 5615 power *= scale_rt_power(cpu);
1399fa78 5616 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5617
5618 if (!power)
5619 power = 1;
5620
e51fd5e2 5621 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5622 sdg->sgp->power = power;
1e3c88bd
PZ
5623}
5624
029632fb 5625void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5626{
5627 struct sched_domain *child = sd->child;
5628 struct sched_group *group, *sdg = sd->groups;
863bffc8 5629 unsigned long power, power_orig;
4ec4412e
VG
5630 unsigned long interval;
5631
5632 interval = msecs_to_jiffies(sd->balance_interval);
5633 interval = clamp(interval, 1UL, max_load_balance_interval);
5634 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5635
5636 if (!child) {
5637 update_cpu_power(sd, cpu);
5638 return;
5639 }
5640
863bffc8 5641 power_orig = power = 0;
1e3c88bd 5642
74a5ce20
PZ
5643 if (child->flags & SD_OVERLAP) {
5644 /*
5645 * SD_OVERLAP domains cannot assume that child groups
5646 * span the current group.
5647 */
5648
863bffc8 5649 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5650 struct sched_group_power *sgp;
5651 struct rq *rq = cpu_rq(cpu);
863bffc8 5652
9abf24d4
SD
5653 /*
5654 * build_sched_domains() -> init_sched_groups_power()
5655 * gets here before we've attached the domains to the
5656 * runqueues.
5657 *
5658 * Use power_of(), which is set irrespective of domains
5659 * in update_cpu_power().
5660 *
5661 * This avoids power/power_orig from being 0 and
5662 * causing divide-by-zero issues on boot.
5663 *
5664 * Runtime updates will correct power_orig.
5665 */
5666 if (unlikely(!rq->sd)) {
5667 power_orig += power_of(cpu);
5668 power += power_of(cpu);
5669 continue;
5670 }
863bffc8 5671
9abf24d4
SD
5672 sgp = rq->sd->groups->sgp;
5673 power_orig += sgp->power_orig;
5674 power += sgp->power;
863bffc8 5675 }
74a5ce20
PZ
5676 } else {
5677 /*
5678 * !SD_OVERLAP domains can assume that child groups
5679 * span the current group.
5680 */
5681
5682 group = child->groups;
5683 do {
863bffc8 5684 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5685 power += group->sgp->power;
5686 group = group->next;
5687 } while (group != child->groups);
5688 }
1e3c88bd 5689
863bffc8
PZ
5690 sdg->sgp->power_orig = power_orig;
5691 sdg->sgp->power = power;
1e3c88bd
PZ
5692}
5693
9d5efe05
SV
5694/*
5695 * Try and fix up capacity for tiny siblings, this is needed when
5696 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5697 * which on its own isn't powerful enough.
5698 *
5699 * See update_sd_pick_busiest() and check_asym_packing().
5700 */
5701static inline int
5702fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5703{
5704 /*
1399fa78 5705 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5706 */
a6c75f2f 5707 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5708 return 0;
5709
5710 /*
5711 * If ~90% of the cpu_power is still there, we're good.
5712 */
9c3f75cb 5713 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5714 return 1;
5715
5716 return 0;
5717}
5718
30ce5dab
PZ
5719/*
5720 * Group imbalance indicates (and tries to solve) the problem where balancing
5721 * groups is inadequate due to tsk_cpus_allowed() constraints.
5722 *
5723 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5724 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5725 * Something like:
5726 *
5727 * { 0 1 2 3 } { 4 5 6 7 }
5728 * * * * *
5729 *
5730 * If we were to balance group-wise we'd place two tasks in the first group and
5731 * two tasks in the second group. Clearly this is undesired as it will overload
5732 * cpu 3 and leave one of the cpus in the second group unused.
5733 *
5734 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5735 * by noticing the lower domain failed to reach balance and had difficulty
5736 * moving tasks due to affinity constraints.
30ce5dab
PZ
5737 *
5738 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5739 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5740 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5741 * to create an effective group imbalance.
5742 *
5743 * This is a somewhat tricky proposition since the next run might not find the
5744 * group imbalance and decide the groups need to be balanced again. A most
5745 * subtle and fragile situation.
5746 */
5747
6263322c 5748static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5749{
6263322c 5750 return group->sgp->imbalance;
30ce5dab
PZ
5751}
5752
b37d9316
PZ
5753/*
5754 * Compute the group capacity.
5755 *
c61037e9
PZ
5756 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5757 * first dividing out the smt factor and computing the actual number of cores
5758 * and limit power unit capacity with that.
b37d9316
PZ
5759 */
5760static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5761{
c61037e9
PZ
5762 unsigned int capacity, smt, cpus;
5763 unsigned int power, power_orig;
5764
5765 power = group->sgp->power;
5766 power_orig = group->sgp->power_orig;
5767 cpus = group->group_weight;
b37d9316 5768
c61037e9
PZ
5769 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5770 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5771 capacity = cpus / smt; /* cores */
b37d9316 5772
c61037e9 5773 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5774 if (!capacity)
5775 capacity = fix_small_capacity(env->sd, group);
5776
5777 return capacity;
5778}
5779
1e3c88bd
PZ
5780/**
5781 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5782 * @env: The load balancing environment.
1e3c88bd 5783 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5784 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5785 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5786 * @sgs: variable to hold the statistics for this group.
5787 */
bd939f45
PZ
5788static inline void update_sg_lb_stats(struct lb_env *env,
5789 struct sched_group *group, int load_idx,
23f0d209 5790 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5791{
30ce5dab 5792 unsigned long load;
bd939f45 5793 int i;
1e3c88bd 5794
b72ff13c
PZ
5795 memset(sgs, 0, sizeof(*sgs));
5796
b9403130 5797 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5798 struct rq *rq = cpu_rq(i);
5799
1e3c88bd 5800 /* Bias balancing toward cpus of our domain */
6263322c 5801 if (local_group)
04f733b4 5802 load = target_load(i, load_idx);
6263322c 5803 else
1e3c88bd 5804 load = source_load(i, load_idx);
1e3c88bd
PZ
5805
5806 sgs->group_load += load;
380c9077 5807 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5808#ifdef CONFIG_NUMA_BALANCING
5809 sgs->nr_numa_running += rq->nr_numa_running;
5810 sgs->nr_preferred_running += rq->nr_preferred_running;
5811#endif
1e3c88bd 5812 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5813 if (idle_cpu(i))
5814 sgs->idle_cpus++;
1e3c88bd
PZ
5815 }
5816
1e3c88bd 5817 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5818 sgs->group_power = group->sgp->power;
5819 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5820
dd5feea1 5821 if (sgs->sum_nr_running)
38d0f770 5822 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5823
aae6d3dd 5824 sgs->group_weight = group->group_weight;
fab47622 5825
b37d9316
PZ
5826 sgs->group_imb = sg_imbalanced(group);
5827 sgs->group_capacity = sg_capacity(env, group);
5828
fab47622
NR
5829 if (sgs->group_capacity > sgs->sum_nr_running)
5830 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5831}
5832
532cb4c4
MN
5833/**
5834 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5835 * @env: The load balancing environment.
532cb4c4
MN
5836 * @sds: sched_domain statistics
5837 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5838 * @sgs: sched_group statistics
532cb4c4
MN
5839 *
5840 * Determine if @sg is a busier group than the previously selected
5841 * busiest group.
e69f6186
YB
5842 *
5843 * Return: %true if @sg is a busier group than the previously selected
5844 * busiest group. %false otherwise.
532cb4c4 5845 */
bd939f45 5846static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5847 struct sd_lb_stats *sds,
5848 struct sched_group *sg,
bd939f45 5849 struct sg_lb_stats *sgs)
532cb4c4 5850{
56cf515b 5851 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5852 return false;
5853
5854 if (sgs->sum_nr_running > sgs->group_capacity)
5855 return true;
5856
5857 if (sgs->group_imb)
5858 return true;
5859
5860 /*
5861 * ASYM_PACKING needs to move all the work to the lowest
5862 * numbered CPUs in the group, therefore mark all groups
5863 * higher than ourself as busy.
5864 */
bd939f45
PZ
5865 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5866 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5867 if (!sds->busiest)
5868 return true;
5869
5870 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5871 return true;
5872 }
5873
5874 return false;
5875}
5876
0ec8aa00
PZ
5877#ifdef CONFIG_NUMA_BALANCING
5878static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5879{
5880 if (sgs->sum_nr_running > sgs->nr_numa_running)
5881 return regular;
5882 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5883 return remote;
5884 return all;
5885}
5886
5887static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5888{
5889 if (rq->nr_running > rq->nr_numa_running)
5890 return regular;
5891 if (rq->nr_running > rq->nr_preferred_running)
5892 return remote;
5893 return all;
5894}
5895#else
5896static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5897{
5898 return all;
5899}
5900
5901static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5902{
5903 return regular;
5904}
5905#endif /* CONFIG_NUMA_BALANCING */
5906
1e3c88bd 5907/**
461819ac 5908 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5909 * @env: The load balancing environment.
1e3c88bd
PZ
5910 * @sds: variable to hold the statistics for this sched_domain.
5911 */
0ec8aa00 5912static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5913{
bd939f45
PZ
5914 struct sched_domain *child = env->sd->child;
5915 struct sched_group *sg = env->sd->groups;
56cf515b 5916 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5917 int load_idx, prefer_sibling = 0;
5918
5919 if (child && child->flags & SD_PREFER_SIBLING)
5920 prefer_sibling = 1;
5921
bd939f45 5922 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5923
5924 do {
56cf515b 5925 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5926 int local_group;
5927
bd939f45 5928 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5929 if (local_group) {
5930 sds->local = sg;
5931 sgs = &sds->local_stat;
b72ff13c
PZ
5932
5933 if (env->idle != CPU_NEWLY_IDLE ||
5934 time_after_eq(jiffies, sg->sgp->next_update))
5935 update_group_power(env->sd, env->dst_cpu);
56cf515b 5936 }
1e3c88bd 5937
56cf515b 5938 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5939
b72ff13c
PZ
5940 if (local_group)
5941 goto next_group;
5942
1e3c88bd
PZ
5943 /*
5944 * In case the child domain prefers tasks go to siblings
532cb4c4 5945 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5946 * and move all the excess tasks away. We lower the capacity
5947 * of a group only if the local group has the capacity to fit
5948 * these excess tasks, i.e. nr_running < group_capacity. The
5949 * extra check prevents the case where you always pull from the
5950 * heaviest group when it is already under-utilized (possible
5951 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5952 */
b72ff13c
PZ
5953 if (prefer_sibling && sds->local &&
5954 sds->local_stat.group_has_capacity)
147c5fc2 5955 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5956
b72ff13c 5957 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5958 sds->busiest = sg;
56cf515b 5959 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5960 }
5961
b72ff13c
PZ
5962next_group:
5963 /* Now, start updating sd_lb_stats */
5964 sds->total_load += sgs->group_load;
5965 sds->total_pwr += sgs->group_power;
5966
532cb4c4 5967 sg = sg->next;
bd939f45 5968 } while (sg != env->sd->groups);
0ec8aa00
PZ
5969
5970 if (env->sd->flags & SD_NUMA)
5971 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5972}
5973
532cb4c4
MN
5974/**
5975 * check_asym_packing - Check to see if the group is packed into the
5976 * sched doman.
5977 *
5978 * This is primarily intended to used at the sibling level. Some
5979 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5980 * case of POWER7, it can move to lower SMT modes only when higher
5981 * threads are idle. When in lower SMT modes, the threads will
5982 * perform better since they share less core resources. Hence when we
5983 * have idle threads, we want them to be the higher ones.
5984 *
5985 * This packing function is run on idle threads. It checks to see if
5986 * the busiest CPU in this domain (core in the P7 case) has a higher
5987 * CPU number than the packing function is being run on. Here we are
5988 * assuming lower CPU number will be equivalent to lower a SMT thread
5989 * number.
5990 *
e69f6186 5991 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5992 * this CPU. The amount of the imbalance is returned in *imbalance.
5993 *
cd96891d 5994 * @env: The load balancing environment.
532cb4c4 5995 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5996 */
bd939f45 5997static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5998{
5999 int busiest_cpu;
6000
bd939f45 6001 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6002 return 0;
6003
6004 if (!sds->busiest)
6005 return 0;
6006
6007 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6008 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6009 return 0;
6010
bd939f45 6011 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
6012 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6013 SCHED_POWER_SCALE);
bd939f45 6014
532cb4c4 6015 return 1;
1e3c88bd
PZ
6016}
6017
6018/**
6019 * fix_small_imbalance - Calculate the minor imbalance that exists
6020 * amongst the groups of a sched_domain, during
6021 * load balancing.
cd96891d 6022 * @env: The load balancing environment.
1e3c88bd 6023 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6024 */
bd939f45
PZ
6025static inline
6026void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
6027{
6028 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6029 unsigned int imbn = 2;
dd5feea1 6030 unsigned long scaled_busy_load_per_task;
56cf515b 6031 struct sg_lb_stats *local, *busiest;
1e3c88bd 6032
56cf515b
JK
6033 local = &sds->local_stat;
6034 busiest = &sds->busiest_stat;
1e3c88bd 6035
56cf515b
JK
6036 if (!local->sum_nr_running)
6037 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6038 else if (busiest->load_per_task > local->load_per_task)
6039 imbn = 1;
dd5feea1 6040
56cf515b
JK
6041 scaled_busy_load_per_task =
6042 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6043 busiest->group_power;
56cf515b 6044
3029ede3
VD
6045 if (busiest->avg_load + scaled_busy_load_per_task >=
6046 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6047 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6048 return;
6049 }
6050
6051 /*
6052 * OK, we don't have enough imbalance to justify moving tasks,
6053 * however we may be able to increase total CPU power used by
6054 * moving them.
6055 */
6056
3ae11c90 6057 pwr_now += busiest->group_power *
56cf515b 6058 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 6059 pwr_now += local->group_power *
56cf515b 6060 min(local->load_per_task, local->avg_load);
1399fa78 6061 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6062
6063 /* Amount of load we'd subtract */
a2cd4260 6064 if (busiest->avg_load > scaled_busy_load_per_task) {
3ae11c90 6065 pwr_move += busiest->group_power *
56cf515b 6066 min(busiest->load_per_task,
a2cd4260 6067 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6068 }
1e3c88bd
PZ
6069
6070 /* Amount of load we'd add */
3ae11c90 6071 if (busiest->avg_load * busiest->group_power <
56cf515b 6072 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
6073 tmp = (busiest->avg_load * busiest->group_power) /
6074 local->group_power;
56cf515b
JK
6075 } else {
6076 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6077 local->group_power;
56cf515b 6078 }
3ae11c90
PZ
6079 pwr_move += local->group_power *
6080 min(local->load_per_task, local->avg_load + tmp);
1399fa78 6081 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6082
6083 /* Move if we gain throughput */
6084 if (pwr_move > pwr_now)
56cf515b 6085 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6086}
6087
6088/**
6089 * calculate_imbalance - Calculate the amount of imbalance present within the
6090 * groups of a given sched_domain during load balance.
bd939f45 6091 * @env: load balance environment
1e3c88bd 6092 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6093 */
bd939f45 6094static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6095{
dd5feea1 6096 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6097 struct sg_lb_stats *local, *busiest;
6098
6099 local = &sds->local_stat;
56cf515b 6100 busiest = &sds->busiest_stat;
dd5feea1 6101
56cf515b 6102 if (busiest->group_imb) {
30ce5dab
PZ
6103 /*
6104 * In the group_imb case we cannot rely on group-wide averages
6105 * to ensure cpu-load equilibrium, look at wider averages. XXX
6106 */
56cf515b
JK
6107 busiest->load_per_task =
6108 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6109 }
6110
1e3c88bd
PZ
6111 /*
6112 * In the presence of smp nice balancing, certain scenarios can have
6113 * max load less than avg load(as we skip the groups at or below
6114 * its cpu_power, while calculating max_load..)
6115 */
b1885550
VD
6116 if (busiest->avg_load <= sds->avg_load ||
6117 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6118 env->imbalance = 0;
6119 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6120 }
6121
56cf515b 6122 if (!busiest->group_imb) {
dd5feea1
SS
6123 /*
6124 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6125 * Except of course for the group_imb case, since then we might
6126 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6127 */
56cf515b
JK
6128 load_above_capacity =
6129 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 6130
1399fa78 6131 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6132 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6133 }
6134
6135 /*
6136 * We're trying to get all the cpus to the average_load, so we don't
6137 * want to push ourselves above the average load, nor do we wish to
6138 * reduce the max loaded cpu below the average load. At the same time,
6139 * we also don't want to reduce the group load below the group capacity
6140 * (so that we can implement power-savings policies etc). Thus we look
6141 * for the minimum possible imbalance.
dd5feea1 6142 */
30ce5dab 6143 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6144
6145 /* How much load to actually move to equalise the imbalance */
56cf515b 6146 env->imbalance = min(
3ae11c90
PZ
6147 max_pull * busiest->group_power,
6148 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6149 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6150
6151 /*
6152 * if *imbalance is less than the average load per runnable task
25985edc 6153 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6154 * a think about bumping its value to force at least one task to be
6155 * moved
6156 */
56cf515b 6157 if (env->imbalance < busiest->load_per_task)
bd939f45 6158 return fix_small_imbalance(env, sds);
1e3c88bd 6159}
fab47622 6160
1e3c88bd
PZ
6161/******* find_busiest_group() helpers end here *********************/
6162
6163/**
6164 * find_busiest_group - Returns the busiest group within the sched_domain
6165 * if there is an imbalance. If there isn't an imbalance, and
6166 * the user has opted for power-savings, it returns a group whose
6167 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6168 * such a group exists.
6169 *
6170 * Also calculates the amount of weighted load which should be moved
6171 * to restore balance.
6172 *
cd96891d 6173 * @env: The load balancing environment.
1e3c88bd 6174 *
e69f6186 6175 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6176 * - If no imbalance and user has opted for power-savings balance,
6177 * return the least loaded group whose CPUs can be
6178 * put to idle by rebalancing its tasks onto our group.
6179 */
56cf515b 6180static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6181{
56cf515b 6182 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6183 struct sd_lb_stats sds;
6184
147c5fc2 6185 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6186
6187 /*
6188 * Compute the various statistics relavent for load balancing at
6189 * this level.
6190 */
23f0d209 6191 update_sd_lb_stats(env, &sds);
56cf515b
JK
6192 local = &sds.local_stat;
6193 busiest = &sds.busiest_stat;
1e3c88bd 6194
bd939f45
PZ
6195 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6196 check_asym_packing(env, &sds))
532cb4c4
MN
6197 return sds.busiest;
6198
cc57aa8f 6199 /* There is no busy sibling group to pull tasks from */
56cf515b 6200 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6201 goto out_balanced;
6202
1399fa78 6203 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6204
866ab43e
PZ
6205 /*
6206 * If the busiest group is imbalanced the below checks don't
30ce5dab 6207 * work because they assume all things are equal, which typically
866ab43e
PZ
6208 * isn't true due to cpus_allowed constraints and the like.
6209 */
56cf515b 6210 if (busiest->group_imb)
866ab43e
PZ
6211 goto force_balance;
6212
cc57aa8f 6213 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6214 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6215 !busiest->group_has_capacity)
fab47622
NR
6216 goto force_balance;
6217
cc57aa8f
PZ
6218 /*
6219 * If the local group is more busy than the selected busiest group
6220 * don't try and pull any tasks.
6221 */
56cf515b 6222 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6223 goto out_balanced;
6224
cc57aa8f
PZ
6225 /*
6226 * Don't pull any tasks if this group is already above the domain
6227 * average load.
6228 */
56cf515b 6229 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6230 goto out_balanced;
6231
bd939f45 6232 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6233 /*
6234 * This cpu is idle. If the busiest group load doesn't
6235 * have more tasks than the number of available cpu's and
6236 * there is no imbalance between this and busiest group
6237 * wrt to idle cpu's, it is balanced.
6238 */
56cf515b
JK
6239 if ((local->idle_cpus < busiest->idle_cpus) &&
6240 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6241 goto out_balanced;
c186fafe
PZ
6242 } else {
6243 /*
6244 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6245 * imbalance_pct to be conservative.
6246 */
56cf515b
JK
6247 if (100 * busiest->avg_load <=
6248 env->sd->imbalance_pct * local->avg_load)
c186fafe 6249 goto out_balanced;
aae6d3dd 6250 }
1e3c88bd 6251
fab47622 6252force_balance:
1e3c88bd 6253 /* Looks like there is an imbalance. Compute it */
bd939f45 6254 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6255 return sds.busiest;
6256
6257out_balanced:
bd939f45 6258 env->imbalance = 0;
1e3c88bd
PZ
6259 return NULL;
6260}
6261
6262/*
6263 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6264 */
bd939f45 6265static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6266 struct sched_group *group)
1e3c88bd
PZ
6267{
6268 struct rq *busiest = NULL, *rq;
95a79b80 6269 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6270 int i;
6271
6906a408 6272 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6273 unsigned long power, capacity, wl;
6274 enum fbq_type rt;
6275
6276 rq = cpu_rq(i);
6277 rt = fbq_classify_rq(rq);
1e3c88bd 6278
0ec8aa00
PZ
6279 /*
6280 * We classify groups/runqueues into three groups:
6281 * - regular: there are !numa tasks
6282 * - remote: there are numa tasks that run on the 'wrong' node
6283 * - all: there is no distinction
6284 *
6285 * In order to avoid migrating ideally placed numa tasks,
6286 * ignore those when there's better options.
6287 *
6288 * If we ignore the actual busiest queue to migrate another
6289 * task, the next balance pass can still reduce the busiest
6290 * queue by moving tasks around inside the node.
6291 *
6292 * If we cannot move enough load due to this classification
6293 * the next pass will adjust the group classification and
6294 * allow migration of more tasks.
6295 *
6296 * Both cases only affect the total convergence complexity.
6297 */
6298 if (rt > env->fbq_type)
6299 continue;
6300
6301 power = power_of(i);
6302 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6303 if (!capacity)
bd939f45 6304 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6305
6e40f5bb 6306 wl = weighted_cpuload(i);
1e3c88bd 6307
6e40f5bb
TG
6308 /*
6309 * When comparing with imbalance, use weighted_cpuload()
6310 * which is not scaled with the cpu power.
6311 */
bd939f45 6312 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6313 continue;
6314
6e40f5bb
TG
6315 /*
6316 * For the load comparisons with the other cpu's, consider
6317 * the weighted_cpuload() scaled with the cpu power, so that
6318 * the load can be moved away from the cpu that is potentially
6319 * running at a lower capacity.
95a79b80
JK
6320 *
6321 * Thus we're looking for max(wl_i / power_i), crosswise
6322 * multiplication to rid ourselves of the division works out
6323 * to: wl_i * power_j > wl_j * power_i; where j is our
6324 * previous maximum.
6e40f5bb 6325 */
95a79b80
JK
6326 if (wl * busiest_power > busiest_load * power) {
6327 busiest_load = wl;
6328 busiest_power = power;
1e3c88bd
PZ
6329 busiest = rq;
6330 }
6331 }
6332
6333 return busiest;
6334}
6335
6336/*
6337 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6338 * so long as it is large enough.
6339 */
6340#define MAX_PINNED_INTERVAL 512
6341
6342/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6343DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6344
bd939f45 6345static int need_active_balance(struct lb_env *env)
1af3ed3d 6346{
bd939f45
PZ
6347 struct sched_domain *sd = env->sd;
6348
6349 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6350
6351 /*
6352 * ASYM_PACKING needs to force migrate tasks from busy but
6353 * higher numbered CPUs in order to pack all tasks in the
6354 * lowest numbered CPUs.
6355 */
bd939f45 6356 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6357 return 1;
1af3ed3d
PZ
6358 }
6359
6360 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6361}
6362
969c7921
TH
6363static int active_load_balance_cpu_stop(void *data);
6364
23f0d209
JK
6365static int should_we_balance(struct lb_env *env)
6366{
6367 struct sched_group *sg = env->sd->groups;
6368 struct cpumask *sg_cpus, *sg_mask;
6369 int cpu, balance_cpu = -1;
6370
6371 /*
6372 * In the newly idle case, we will allow all the cpu's
6373 * to do the newly idle load balance.
6374 */
6375 if (env->idle == CPU_NEWLY_IDLE)
6376 return 1;
6377
6378 sg_cpus = sched_group_cpus(sg);
6379 sg_mask = sched_group_mask(sg);
6380 /* Try to find first idle cpu */
6381 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6382 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6383 continue;
6384
6385 balance_cpu = cpu;
6386 break;
6387 }
6388
6389 if (balance_cpu == -1)
6390 balance_cpu = group_balance_cpu(sg);
6391
6392 /*
6393 * First idle cpu or the first cpu(busiest) in this sched group
6394 * is eligible for doing load balancing at this and above domains.
6395 */
b0cff9d8 6396 return balance_cpu == env->dst_cpu;
23f0d209
JK
6397}
6398
1e3c88bd
PZ
6399/*
6400 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6401 * tasks if there is an imbalance.
6402 */
6403static int load_balance(int this_cpu, struct rq *this_rq,
6404 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6405 int *continue_balancing)
1e3c88bd 6406{
88b8dac0 6407 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6408 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6409 struct sched_group *group;
1e3c88bd
PZ
6410 struct rq *busiest;
6411 unsigned long flags;
e6252c3e 6412 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6413
8e45cb54
PZ
6414 struct lb_env env = {
6415 .sd = sd,
ddcdf6e7
PZ
6416 .dst_cpu = this_cpu,
6417 .dst_rq = this_rq,
88b8dac0 6418 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6419 .idle = idle,
eb95308e 6420 .loop_break = sched_nr_migrate_break,
b9403130 6421 .cpus = cpus,
0ec8aa00 6422 .fbq_type = all,
8e45cb54
PZ
6423 };
6424
cfc03118
JK
6425 /*
6426 * For NEWLY_IDLE load_balancing, we don't need to consider
6427 * other cpus in our group
6428 */
e02e60c1 6429 if (idle == CPU_NEWLY_IDLE)
cfc03118 6430 env.dst_grpmask = NULL;
cfc03118 6431
1e3c88bd
PZ
6432 cpumask_copy(cpus, cpu_active_mask);
6433
1e3c88bd
PZ
6434 schedstat_inc(sd, lb_count[idle]);
6435
6436redo:
23f0d209
JK
6437 if (!should_we_balance(&env)) {
6438 *continue_balancing = 0;
1e3c88bd 6439 goto out_balanced;
23f0d209 6440 }
1e3c88bd 6441
23f0d209 6442 group = find_busiest_group(&env);
1e3c88bd
PZ
6443 if (!group) {
6444 schedstat_inc(sd, lb_nobusyg[idle]);
6445 goto out_balanced;
6446 }
6447
b9403130 6448 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6449 if (!busiest) {
6450 schedstat_inc(sd, lb_nobusyq[idle]);
6451 goto out_balanced;
6452 }
6453
78feefc5 6454 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6455
bd939f45 6456 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6457
6458 ld_moved = 0;
6459 if (busiest->nr_running > 1) {
6460 /*
6461 * Attempt to move tasks. If find_busiest_group has found
6462 * an imbalance but busiest->nr_running <= 1, the group is
6463 * still unbalanced. ld_moved simply stays zero, so it is
6464 * correctly treated as an imbalance.
6465 */
8e45cb54 6466 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6467 env.src_cpu = busiest->cpu;
6468 env.src_rq = busiest;
6469 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6470
5d6523eb 6471more_balance:
1e3c88bd 6472 local_irq_save(flags);
78feefc5 6473 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6474
6475 /*
6476 * cur_ld_moved - load moved in current iteration
6477 * ld_moved - cumulative load moved across iterations
6478 */
6479 cur_ld_moved = move_tasks(&env);
6480 ld_moved += cur_ld_moved;
78feefc5 6481 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6482 local_irq_restore(flags);
6483
6484 /*
6485 * some other cpu did the load balance for us.
6486 */
88b8dac0
SV
6487 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6488 resched_cpu(env.dst_cpu);
6489
f1cd0858
JK
6490 if (env.flags & LBF_NEED_BREAK) {
6491 env.flags &= ~LBF_NEED_BREAK;
6492 goto more_balance;
6493 }
6494
88b8dac0
SV
6495 /*
6496 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6497 * us and move them to an alternate dst_cpu in our sched_group
6498 * where they can run. The upper limit on how many times we
6499 * iterate on same src_cpu is dependent on number of cpus in our
6500 * sched_group.
6501 *
6502 * This changes load balance semantics a bit on who can move
6503 * load to a given_cpu. In addition to the given_cpu itself
6504 * (or a ilb_cpu acting on its behalf where given_cpu is
6505 * nohz-idle), we now have balance_cpu in a position to move
6506 * load to given_cpu. In rare situations, this may cause
6507 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6508 * _independently_ and at _same_ time to move some load to
6509 * given_cpu) causing exceess load to be moved to given_cpu.
6510 * This however should not happen so much in practice and
6511 * moreover subsequent load balance cycles should correct the
6512 * excess load moved.
6513 */
6263322c 6514 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6515
7aff2e3a
VD
6516 /* Prevent to re-select dst_cpu via env's cpus */
6517 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6518
78feefc5 6519 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6520 env.dst_cpu = env.new_dst_cpu;
6263322c 6521 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6522 env.loop = 0;
6523 env.loop_break = sched_nr_migrate_break;
e02e60c1 6524
88b8dac0
SV
6525 /*
6526 * Go back to "more_balance" rather than "redo" since we
6527 * need to continue with same src_cpu.
6528 */
6529 goto more_balance;
6530 }
1e3c88bd 6531
6263322c
PZ
6532 /*
6533 * We failed to reach balance because of affinity.
6534 */
6535 if (sd_parent) {
6536 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6537
6538 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6539 *group_imbalance = 1;
6540 } else if (*group_imbalance)
6541 *group_imbalance = 0;
6542 }
6543
1e3c88bd 6544 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6545 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6546 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6547 if (!cpumask_empty(cpus)) {
6548 env.loop = 0;
6549 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6550 goto redo;
bbf18b19 6551 }
1e3c88bd
PZ
6552 goto out_balanced;
6553 }
6554 }
6555
6556 if (!ld_moved) {
6557 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6558 /*
6559 * Increment the failure counter only on periodic balance.
6560 * We do not want newidle balance, which can be very
6561 * frequent, pollute the failure counter causing
6562 * excessive cache_hot migrations and active balances.
6563 */
6564 if (idle != CPU_NEWLY_IDLE)
6565 sd->nr_balance_failed++;
1e3c88bd 6566
bd939f45 6567 if (need_active_balance(&env)) {
1e3c88bd
PZ
6568 raw_spin_lock_irqsave(&busiest->lock, flags);
6569
969c7921
TH
6570 /* don't kick the active_load_balance_cpu_stop,
6571 * if the curr task on busiest cpu can't be
6572 * moved to this_cpu
1e3c88bd
PZ
6573 */
6574 if (!cpumask_test_cpu(this_cpu,
fa17b507 6575 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6576 raw_spin_unlock_irqrestore(&busiest->lock,
6577 flags);
8e45cb54 6578 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6579 goto out_one_pinned;
6580 }
6581
969c7921
TH
6582 /*
6583 * ->active_balance synchronizes accesses to
6584 * ->active_balance_work. Once set, it's cleared
6585 * only after active load balance is finished.
6586 */
1e3c88bd
PZ
6587 if (!busiest->active_balance) {
6588 busiest->active_balance = 1;
6589 busiest->push_cpu = this_cpu;
6590 active_balance = 1;
6591 }
6592 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6593
bd939f45 6594 if (active_balance) {
969c7921
TH
6595 stop_one_cpu_nowait(cpu_of(busiest),
6596 active_load_balance_cpu_stop, busiest,
6597 &busiest->active_balance_work);
bd939f45 6598 }
1e3c88bd
PZ
6599
6600 /*
6601 * We've kicked active balancing, reset the failure
6602 * counter.
6603 */
6604 sd->nr_balance_failed = sd->cache_nice_tries+1;
6605 }
6606 } else
6607 sd->nr_balance_failed = 0;
6608
6609 if (likely(!active_balance)) {
6610 /* We were unbalanced, so reset the balancing interval */
6611 sd->balance_interval = sd->min_interval;
6612 } else {
6613 /*
6614 * If we've begun active balancing, start to back off. This
6615 * case may not be covered by the all_pinned logic if there
6616 * is only 1 task on the busy runqueue (because we don't call
6617 * move_tasks).
6618 */
6619 if (sd->balance_interval < sd->max_interval)
6620 sd->balance_interval *= 2;
6621 }
6622
1e3c88bd
PZ
6623 goto out;
6624
6625out_balanced:
6626 schedstat_inc(sd, lb_balanced[idle]);
6627
6628 sd->nr_balance_failed = 0;
6629
6630out_one_pinned:
6631 /* tune up the balancing interval */
8e45cb54 6632 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6633 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6634 (sd->balance_interval < sd->max_interval))
6635 sd->balance_interval *= 2;
6636
46e49b38 6637 ld_moved = 0;
1e3c88bd 6638out:
1e3c88bd
PZ
6639 return ld_moved;
6640}
6641
1e3c88bd
PZ
6642/*
6643 * idle_balance is called by schedule() if this_cpu is about to become
6644 * idle. Attempts to pull tasks from other CPUs.
6645 */
6e83125c 6646static int idle_balance(struct rq *this_rq)
1e3c88bd
PZ
6647{
6648 struct sched_domain *sd;
6649 int pulled_task = 0;
6650 unsigned long next_balance = jiffies + HZ;
9bd721c5 6651 u64 curr_cost = 0;
b4f2ab43 6652 int this_cpu = this_rq->cpu;
1e3c88bd 6653
6e83125c
PZ
6654 idle_enter_fair(this_rq);
6655 /*
6656 * We must set idle_stamp _before_ calling idle_balance(), such that we
6657 * measure the duration of idle_balance() as idle time.
6658 */
6659 this_rq->idle_stamp = rq_clock(this_rq);
6660
1e3c88bd 6661 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6e83125c 6662 goto out;
1e3c88bd 6663
f492e12e
PZ
6664 /*
6665 * Drop the rq->lock, but keep IRQ/preempt disabled.
6666 */
6667 raw_spin_unlock(&this_rq->lock);
6668
48a16753 6669 update_blocked_averages(this_cpu);
dce840a0 6670 rcu_read_lock();
1e3c88bd
PZ
6671 for_each_domain(this_cpu, sd) {
6672 unsigned long interval;
23f0d209 6673 int continue_balancing = 1;
9bd721c5 6674 u64 t0, domain_cost;
1e3c88bd
PZ
6675
6676 if (!(sd->flags & SD_LOAD_BALANCE))
6677 continue;
6678
9bd721c5
JL
6679 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6680 break;
6681
f492e12e 6682 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6683 t0 = sched_clock_cpu(this_cpu);
6684
1e3c88bd 6685 /* If we've pulled tasks over stop searching: */
f492e12e 6686 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6687 sd, CPU_NEWLY_IDLE,
6688 &continue_balancing);
9bd721c5
JL
6689
6690 domain_cost = sched_clock_cpu(this_cpu) - t0;
6691 if (domain_cost > sd->max_newidle_lb_cost)
6692 sd->max_newidle_lb_cost = domain_cost;
6693
6694 curr_cost += domain_cost;
f492e12e 6695 }
1e3c88bd
PZ
6696
6697 interval = msecs_to_jiffies(sd->balance_interval);
6698 if (time_after(next_balance, sd->last_balance + interval))
6699 next_balance = sd->last_balance + interval;
3c4017c1 6700 if (pulled_task)
1e3c88bd 6701 break;
1e3c88bd 6702 }
dce840a0 6703 rcu_read_unlock();
f492e12e
PZ
6704
6705 raw_spin_lock(&this_rq->lock);
6706
e5fc6611
DL
6707 /*
6708 * While browsing the domains, we released the rq lock.
6709 * A task could have be enqueued in the meantime
6710 */
35805ff8 6711 if (this_rq->cfs.h_nr_running && !pulled_task) {
6e83125c
PZ
6712 pulled_task = 1;
6713 goto out;
6714 }
e5fc6611 6715
1e3c88bd
PZ
6716 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6717 /*
6718 * We are going idle. next_balance may be set based on
6719 * a busy processor. So reset next_balance.
6720 */
6721 this_rq->next_balance = next_balance;
6722 }
9bd721c5
JL
6723
6724 if (curr_cost > this_rq->max_idle_balance_cost)
6725 this_rq->max_idle_balance_cost = curr_cost;
3c4017c1 6726
6e83125c 6727out:
e4aa358b 6728 /* Is there a task of a high priority class? */
4c6c4e38
KT
6729 if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
6730 (this_rq->dl.dl_nr_running ||
6731 (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
e4aa358b
KT
6732 pulled_task = -1;
6733
6734 if (pulled_task) {
6735 idle_exit_fair(this_rq);
6e83125c 6736 this_rq->idle_stamp = 0;
e4aa358b 6737 }
6e83125c 6738
3c4017c1 6739 return pulled_task;
1e3c88bd
PZ
6740}
6741
6742/*
969c7921
TH
6743 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6744 * running tasks off the busiest CPU onto idle CPUs. It requires at
6745 * least 1 task to be running on each physical CPU where possible, and
6746 * avoids physical / logical imbalances.
1e3c88bd 6747 */
969c7921 6748static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6749{
969c7921
TH
6750 struct rq *busiest_rq = data;
6751 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6752 int target_cpu = busiest_rq->push_cpu;
969c7921 6753 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6754 struct sched_domain *sd;
969c7921
TH
6755
6756 raw_spin_lock_irq(&busiest_rq->lock);
6757
6758 /* make sure the requested cpu hasn't gone down in the meantime */
6759 if (unlikely(busiest_cpu != smp_processor_id() ||
6760 !busiest_rq->active_balance))
6761 goto out_unlock;
1e3c88bd
PZ
6762
6763 /* Is there any task to move? */
6764 if (busiest_rq->nr_running <= 1)
969c7921 6765 goto out_unlock;
1e3c88bd
PZ
6766
6767 /*
6768 * This condition is "impossible", if it occurs
6769 * we need to fix it. Originally reported by
6770 * Bjorn Helgaas on a 128-cpu setup.
6771 */
6772 BUG_ON(busiest_rq == target_rq);
6773
6774 /* move a task from busiest_rq to target_rq */
6775 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6776
6777 /* Search for an sd spanning us and the target CPU. */
dce840a0 6778 rcu_read_lock();
1e3c88bd
PZ
6779 for_each_domain(target_cpu, sd) {
6780 if ((sd->flags & SD_LOAD_BALANCE) &&
6781 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6782 break;
6783 }
6784
6785 if (likely(sd)) {
8e45cb54
PZ
6786 struct lb_env env = {
6787 .sd = sd,
ddcdf6e7
PZ
6788 .dst_cpu = target_cpu,
6789 .dst_rq = target_rq,
6790 .src_cpu = busiest_rq->cpu,
6791 .src_rq = busiest_rq,
8e45cb54
PZ
6792 .idle = CPU_IDLE,
6793 };
6794
1e3c88bd
PZ
6795 schedstat_inc(sd, alb_count);
6796
8e45cb54 6797 if (move_one_task(&env))
1e3c88bd
PZ
6798 schedstat_inc(sd, alb_pushed);
6799 else
6800 schedstat_inc(sd, alb_failed);
6801 }
dce840a0 6802 rcu_read_unlock();
1e3c88bd 6803 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6804out_unlock:
6805 busiest_rq->active_balance = 0;
6806 raw_spin_unlock_irq(&busiest_rq->lock);
6807 return 0;
1e3c88bd
PZ
6808}
6809
d987fc7f
MG
6810static inline int on_null_domain(struct rq *rq)
6811{
6812 return unlikely(!rcu_dereference_sched(rq->sd));
6813}
6814
3451d024 6815#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6816/*
6817 * idle load balancing details
83cd4fe2
VP
6818 * - When one of the busy CPUs notice that there may be an idle rebalancing
6819 * needed, they will kick the idle load balancer, which then does idle
6820 * load balancing for all the idle CPUs.
6821 */
1e3c88bd 6822static struct {
83cd4fe2 6823 cpumask_var_t idle_cpus_mask;
0b005cf5 6824 atomic_t nr_cpus;
83cd4fe2
VP
6825 unsigned long next_balance; /* in jiffy units */
6826} nohz ____cacheline_aligned;
1e3c88bd 6827
3dd0337d 6828static inline int find_new_ilb(void)
1e3c88bd 6829{
0b005cf5 6830 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6831
786d6dc7
SS
6832 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6833 return ilb;
6834
6835 return nr_cpu_ids;
1e3c88bd 6836}
1e3c88bd 6837
83cd4fe2
VP
6838/*
6839 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6840 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6841 * CPU (if there is one).
6842 */
0aeeeeba 6843static void nohz_balancer_kick(void)
83cd4fe2
VP
6844{
6845 int ilb_cpu;
6846
6847 nohz.next_balance++;
6848
3dd0337d 6849 ilb_cpu = find_new_ilb();
83cd4fe2 6850
0b005cf5
SS
6851 if (ilb_cpu >= nr_cpu_ids)
6852 return;
83cd4fe2 6853
cd490c5b 6854 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6855 return;
6856 /*
6857 * Use smp_send_reschedule() instead of resched_cpu().
6858 * This way we generate a sched IPI on the target cpu which
6859 * is idle. And the softirq performing nohz idle load balance
6860 * will be run before returning from the IPI.
6861 */
6862 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6863 return;
6864}
6865
c1cc017c 6866static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6867{
6868 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6869 /*
6870 * Completely isolated CPUs don't ever set, so we must test.
6871 */
6872 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6873 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6874 atomic_dec(&nohz.nr_cpus);
6875 }
71325960
SS
6876 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6877 }
6878}
6879
69e1e811
SS
6880static inline void set_cpu_sd_state_busy(void)
6881{
6882 struct sched_domain *sd;
37dc6b50 6883 int cpu = smp_processor_id();
69e1e811 6884
69e1e811 6885 rcu_read_lock();
37dc6b50 6886 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6887
6888 if (!sd || !sd->nohz_idle)
6889 goto unlock;
6890 sd->nohz_idle = 0;
6891
37dc6b50 6892 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6893unlock:
69e1e811
SS
6894 rcu_read_unlock();
6895}
6896
6897void set_cpu_sd_state_idle(void)
6898{
6899 struct sched_domain *sd;
37dc6b50 6900 int cpu = smp_processor_id();
69e1e811 6901
69e1e811 6902 rcu_read_lock();
37dc6b50 6903 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6904
6905 if (!sd || sd->nohz_idle)
6906 goto unlock;
6907 sd->nohz_idle = 1;
6908
37dc6b50 6909 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6910unlock:
69e1e811
SS
6911 rcu_read_unlock();
6912}
6913
1e3c88bd 6914/*
c1cc017c 6915 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6916 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6917 */
c1cc017c 6918void nohz_balance_enter_idle(int cpu)
1e3c88bd 6919{
71325960
SS
6920 /*
6921 * If this cpu is going down, then nothing needs to be done.
6922 */
6923 if (!cpu_active(cpu))
6924 return;
6925
c1cc017c
AS
6926 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6927 return;
1e3c88bd 6928
d987fc7f
MG
6929 /*
6930 * If we're a completely isolated CPU, we don't play.
6931 */
6932 if (on_null_domain(cpu_rq(cpu)))
6933 return;
6934
c1cc017c
AS
6935 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6936 atomic_inc(&nohz.nr_cpus);
6937 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6938}
71325960 6939
0db0628d 6940static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6941 unsigned long action, void *hcpu)
6942{
6943 switch (action & ~CPU_TASKS_FROZEN) {
6944 case CPU_DYING:
c1cc017c 6945 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6946 return NOTIFY_OK;
6947 default:
6948 return NOTIFY_DONE;
6949 }
6950}
1e3c88bd
PZ
6951#endif
6952
6953static DEFINE_SPINLOCK(balancing);
6954
49c022e6
PZ
6955/*
6956 * Scale the max load_balance interval with the number of CPUs in the system.
6957 * This trades load-balance latency on larger machines for less cross talk.
6958 */
029632fb 6959void update_max_interval(void)
49c022e6
PZ
6960{
6961 max_load_balance_interval = HZ*num_online_cpus()/10;
6962}
6963
1e3c88bd
PZ
6964/*
6965 * It checks each scheduling domain to see if it is due to be balanced,
6966 * and initiates a balancing operation if so.
6967 *
b9b0853a 6968 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6969 */
f7ed0a89 6970static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6971{
23f0d209 6972 int continue_balancing = 1;
f7ed0a89 6973 int cpu = rq->cpu;
1e3c88bd 6974 unsigned long interval;
04f733b4 6975 struct sched_domain *sd;
1e3c88bd
PZ
6976 /* Earliest time when we have to do rebalance again */
6977 unsigned long next_balance = jiffies + 60*HZ;
6978 int update_next_balance = 0;
f48627e6
JL
6979 int need_serialize, need_decay = 0;
6980 u64 max_cost = 0;
1e3c88bd 6981
48a16753 6982 update_blocked_averages(cpu);
2069dd75 6983
dce840a0 6984 rcu_read_lock();
1e3c88bd 6985 for_each_domain(cpu, sd) {
f48627e6
JL
6986 /*
6987 * Decay the newidle max times here because this is a regular
6988 * visit to all the domains. Decay ~1% per second.
6989 */
6990 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6991 sd->max_newidle_lb_cost =
6992 (sd->max_newidle_lb_cost * 253) / 256;
6993 sd->next_decay_max_lb_cost = jiffies + HZ;
6994 need_decay = 1;
6995 }
6996 max_cost += sd->max_newidle_lb_cost;
6997
1e3c88bd
PZ
6998 if (!(sd->flags & SD_LOAD_BALANCE))
6999 continue;
7000
f48627e6
JL
7001 /*
7002 * Stop the load balance at this level. There is another
7003 * CPU in our sched group which is doing load balancing more
7004 * actively.
7005 */
7006 if (!continue_balancing) {
7007 if (need_decay)
7008 continue;
7009 break;
7010 }
7011
1e3c88bd
PZ
7012 interval = sd->balance_interval;
7013 if (idle != CPU_IDLE)
7014 interval *= sd->busy_factor;
7015
7016 /* scale ms to jiffies */
7017 interval = msecs_to_jiffies(interval);
49c022e6 7018 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
7019
7020 need_serialize = sd->flags & SD_SERIALIZE;
7021
7022 if (need_serialize) {
7023 if (!spin_trylock(&balancing))
7024 goto out;
7025 }
7026
7027 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7028 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7029 /*
6263322c 7030 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7031 * env->dst_cpu, so we can't know our idle
7032 * state even if we migrated tasks. Update it.
1e3c88bd 7033 */
de5eb2dd 7034 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7035 }
7036 sd->last_balance = jiffies;
7037 }
7038 if (need_serialize)
7039 spin_unlock(&balancing);
7040out:
7041 if (time_after(next_balance, sd->last_balance + interval)) {
7042 next_balance = sd->last_balance + interval;
7043 update_next_balance = 1;
7044 }
f48627e6
JL
7045 }
7046 if (need_decay) {
1e3c88bd 7047 /*
f48627e6
JL
7048 * Ensure the rq-wide value also decays but keep it at a
7049 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7050 */
f48627e6
JL
7051 rq->max_idle_balance_cost =
7052 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7053 }
dce840a0 7054 rcu_read_unlock();
1e3c88bd
PZ
7055
7056 /*
7057 * next_balance will be updated only when there is a need.
7058 * When the cpu is attached to null domain for ex, it will not be
7059 * updated.
7060 */
7061 if (likely(update_next_balance))
7062 rq->next_balance = next_balance;
7063}
7064
3451d024 7065#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7066/*
3451d024 7067 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7068 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7069 */
208cb16b 7070static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7071{
208cb16b 7072 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7073 struct rq *rq;
7074 int balance_cpu;
7075
1c792db7
SS
7076 if (idle != CPU_IDLE ||
7077 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7078 goto end;
83cd4fe2
VP
7079
7080 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7081 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7082 continue;
7083
7084 /*
7085 * If this cpu gets work to do, stop the load balancing
7086 * work being done for other cpus. Next load
7087 * balancing owner will pick it up.
7088 */
1c792db7 7089 if (need_resched())
83cd4fe2 7090 break;
83cd4fe2 7091
5ed4f1d9
VG
7092 rq = cpu_rq(balance_cpu);
7093
7094 raw_spin_lock_irq(&rq->lock);
7095 update_rq_clock(rq);
7096 update_idle_cpu_load(rq);
7097 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 7098
f7ed0a89 7099 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 7100
83cd4fe2
VP
7101 if (time_after(this_rq->next_balance, rq->next_balance))
7102 this_rq->next_balance = rq->next_balance;
7103 }
7104 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7105end:
7106 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7107}
7108
7109/*
0b005cf5
SS
7110 * Current heuristic for kicking the idle load balancer in the presence
7111 * of an idle cpu is the system.
7112 * - This rq has more than one task.
7113 * - At any scheduler domain level, this cpu's scheduler group has multiple
7114 * busy cpu's exceeding the group's power.
7115 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7116 * domain span are idle.
83cd4fe2 7117 */
4a725627 7118static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7119{
7120 unsigned long now = jiffies;
0b005cf5 7121 struct sched_domain *sd;
37dc6b50 7122 struct sched_group_power *sgp;
4a725627 7123 int nr_busy, cpu = rq->cpu;
83cd4fe2 7124
4a725627 7125 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7126 return 0;
7127
1c792db7
SS
7128 /*
7129 * We may be recently in ticked or tickless idle mode. At the first
7130 * busy tick after returning from idle, we will update the busy stats.
7131 */
69e1e811 7132 set_cpu_sd_state_busy();
c1cc017c 7133 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7134
7135 /*
7136 * None are in tickless mode and hence no need for NOHZ idle load
7137 * balancing.
7138 */
7139 if (likely(!atomic_read(&nohz.nr_cpus)))
7140 return 0;
1c792db7
SS
7141
7142 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7143 return 0;
7144
0b005cf5
SS
7145 if (rq->nr_running >= 2)
7146 goto need_kick;
83cd4fe2 7147
067491b7 7148 rcu_read_lock();
37dc6b50 7149 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7150
37dc6b50
PM
7151 if (sd) {
7152 sgp = sd->groups->sgp;
7153 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 7154
37dc6b50 7155 if (nr_busy > 1)
067491b7 7156 goto need_kick_unlock;
83cd4fe2 7157 }
37dc6b50
PM
7158
7159 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7160
7161 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7162 sched_domain_span(sd)) < cpu))
7163 goto need_kick_unlock;
7164
067491b7 7165 rcu_read_unlock();
83cd4fe2 7166 return 0;
067491b7
PZ
7167
7168need_kick_unlock:
7169 rcu_read_unlock();
0b005cf5
SS
7170need_kick:
7171 return 1;
83cd4fe2
VP
7172}
7173#else
208cb16b 7174static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7175#endif
7176
7177/*
7178 * run_rebalance_domains is triggered when needed from the scheduler tick.
7179 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7180 */
1e3c88bd
PZ
7181static void run_rebalance_domains(struct softirq_action *h)
7182{
208cb16b 7183 struct rq *this_rq = this_rq();
6eb57e0d 7184 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7185 CPU_IDLE : CPU_NOT_IDLE;
7186
f7ed0a89 7187 rebalance_domains(this_rq, idle);
1e3c88bd 7188
1e3c88bd 7189 /*
83cd4fe2 7190 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7191 * balancing on behalf of the other idle cpus whose ticks are
7192 * stopped.
7193 */
208cb16b 7194 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7195}
7196
1e3c88bd
PZ
7197/*
7198 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7199 */
7caff66f 7200void trigger_load_balance(struct rq *rq)
1e3c88bd 7201{
1e3c88bd 7202 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7203 if (unlikely(on_null_domain(rq)))
7204 return;
7205
7206 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7207 raise_softirq(SCHED_SOFTIRQ);
3451d024 7208#ifdef CONFIG_NO_HZ_COMMON
c726099e 7209 if (nohz_kick_needed(rq))
0aeeeeba 7210 nohz_balancer_kick();
83cd4fe2 7211#endif
1e3c88bd
PZ
7212}
7213
0bcdcf28
CE
7214static void rq_online_fair(struct rq *rq)
7215{
7216 update_sysctl();
7217}
7218
7219static void rq_offline_fair(struct rq *rq)
7220{
7221 update_sysctl();
a4c96ae3
PB
7222
7223 /* Ensure any throttled groups are reachable by pick_next_task */
7224 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7225}
7226
55e12e5e 7227#endif /* CONFIG_SMP */
e1d1484f 7228
bf0f6f24
IM
7229/*
7230 * scheduler tick hitting a task of our scheduling class:
7231 */
8f4d37ec 7232static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7233{
7234 struct cfs_rq *cfs_rq;
7235 struct sched_entity *se = &curr->se;
7236
7237 for_each_sched_entity(se) {
7238 cfs_rq = cfs_rq_of(se);
8f4d37ec 7239 entity_tick(cfs_rq, se, queued);
bf0f6f24 7240 }
18bf2805 7241
10e84b97 7242 if (numabalancing_enabled)
cbee9f88 7243 task_tick_numa(rq, curr);
3d59eebc 7244
18bf2805 7245 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7246}
7247
7248/*
cd29fe6f
PZ
7249 * called on fork with the child task as argument from the parent's context
7250 * - child not yet on the tasklist
7251 * - preemption disabled
bf0f6f24 7252 */
cd29fe6f 7253static void task_fork_fair(struct task_struct *p)
bf0f6f24 7254{
4fc420c9
DN
7255 struct cfs_rq *cfs_rq;
7256 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7257 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7258 struct rq *rq = this_rq();
7259 unsigned long flags;
7260
05fa785c 7261 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7262
861d034e
PZ
7263 update_rq_clock(rq);
7264
4fc420c9
DN
7265 cfs_rq = task_cfs_rq(current);
7266 curr = cfs_rq->curr;
7267
6c9a27f5
DN
7268 /*
7269 * Not only the cpu but also the task_group of the parent might have
7270 * been changed after parent->se.parent,cfs_rq were copied to
7271 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7272 * of child point to valid ones.
7273 */
7274 rcu_read_lock();
7275 __set_task_cpu(p, this_cpu);
7276 rcu_read_unlock();
bf0f6f24 7277
7109c442 7278 update_curr(cfs_rq);
cd29fe6f 7279
b5d9d734
MG
7280 if (curr)
7281 se->vruntime = curr->vruntime;
aeb73b04 7282 place_entity(cfs_rq, se, 1);
4d78e7b6 7283
cd29fe6f 7284 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7285 /*
edcb60a3
IM
7286 * Upon rescheduling, sched_class::put_prev_task() will place
7287 * 'current' within the tree based on its new key value.
7288 */
4d78e7b6 7289 swap(curr->vruntime, se->vruntime);
aec0a514 7290 resched_task(rq->curr);
4d78e7b6 7291 }
bf0f6f24 7292
88ec22d3
PZ
7293 se->vruntime -= cfs_rq->min_vruntime;
7294
05fa785c 7295 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7296}
7297
cb469845
SR
7298/*
7299 * Priority of the task has changed. Check to see if we preempt
7300 * the current task.
7301 */
da7a735e
PZ
7302static void
7303prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7304{
da7a735e
PZ
7305 if (!p->se.on_rq)
7306 return;
7307
cb469845
SR
7308 /*
7309 * Reschedule if we are currently running on this runqueue and
7310 * our priority decreased, or if we are not currently running on
7311 * this runqueue and our priority is higher than the current's
7312 */
da7a735e 7313 if (rq->curr == p) {
cb469845
SR
7314 if (p->prio > oldprio)
7315 resched_task(rq->curr);
7316 } else
15afe09b 7317 check_preempt_curr(rq, p, 0);
cb469845
SR
7318}
7319
da7a735e
PZ
7320static void switched_from_fair(struct rq *rq, struct task_struct *p)
7321{
7322 struct sched_entity *se = &p->se;
7323 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7324
7325 /*
791c9e02 7326 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7327 * switched back to the fair class the enqueue_entity(.flags=0) will
7328 * do the right thing.
7329 *
791c9e02
GM
7330 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7331 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7332 * the task is sleeping will it still have non-normalized vruntime.
7333 */
791c9e02 7334 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7335 /*
7336 * Fix up our vruntime so that the current sleep doesn't
7337 * cause 'unlimited' sleep bonus.
7338 */
7339 place_entity(cfs_rq, se, 0);
7340 se->vruntime -= cfs_rq->min_vruntime;
7341 }
9ee474f5 7342
141965c7 7343#ifdef CONFIG_SMP
9ee474f5
PT
7344 /*
7345 * Remove our load from contribution when we leave sched_fair
7346 * and ensure we don't carry in an old decay_count if we
7347 * switch back.
7348 */
87e3c8ae
KT
7349 if (se->avg.decay_count) {
7350 __synchronize_entity_decay(se);
7351 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7352 }
7353#endif
da7a735e
PZ
7354}
7355
cb469845
SR
7356/*
7357 * We switched to the sched_fair class.
7358 */
da7a735e 7359static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7360{
eb7a59b2
M
7361 struct sched_entity *se = &p->se;
7362#ifdef CONFIG_FAIR_GROUP_SCHED
7363 /*
7364 * Since the real-depth could have been changed (only FAIR
7365 * class maintain depth value), reset depth properly.
7366 */
7367 se->depth = se->parent ? se->parent->depth + 1 : 0;
7368#endif
7369 if (!se->on_rq)
da7a735e
PZ
7370 return;
7371
cb469845
SR
7372 /*
7373 * We were most likely switched from sched_rt, so
7374 * kick off the schedule if running, otherwise just see
7375 * if we can still preempt the current task.
7376 */
da7a735e 7377 if (rq->curr == p)
cb469845
SR
7378 resched_task(rq->curr);
7379 else
15afe09b 7380 check_preempt_curr(rq, p, 0);
cb469845
SR
7381}
7382
83b699ed
SV
7383/* Account for a task changing its policy or group.
7384 *
7385 * This routine is mostly called to set cfs_rq->curr field when a task
7386 * migrates between groups/classes.
7387 */
7388static void set_curr_task_fair(struct rq *rq)
7389{
7390 struct sched_entity *se = &rq->curr->se;
7391
ec12cb7f
PT
7392 for_each_sched_entity(se) {
7393 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7394
7395 set_next_entity(cfs_rq, se);
7396 /* ensure bandwidth has been allocated on our new cfs_rq */
7397 account_cfs_rq_runtime(cfs_rq, 0);
7398 }
83b699ed
SV
7399}
7400
029632fb
PZ
7401void init_cfs_rq(struct cfs_rq *cfs_rq)
7402{
7403 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7404 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7405#ifndef CONFIG_64BIT
7406 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7407#endif
141965c7 7408#ifdef CONFIG_SMP
9ee474f5 7409 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7410 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7411#endif
029632fb
PZ
7412}
7413
810b3817 7414#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7415static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7416{
fed14d45 7417 struct sched_entity *se = &p->se;
aff3e498 7418 struct cfs_rq *cfs_rq;
fed14d45 7419
b2b5ce02
PZ
7420 /*
7421 * If the task was not on the rq at the time of this cgroup movement
7422 * it must have been asleep, sleeping tasks keep their ->vruntime
7423 * absolute on their old rq until wakeup (needed for the fair sleeper
7424 * bonus in place_entity()).
7425 *
7426 * If it was on the rq, we've just 'preempted' it, which does convert
7427 * ->vruntime to a relative base.
7428 *
7429 * Make sure both cases convert their relative position when migrating
7430 * to another cgroup's rq. This does somewhat interfere with the
7431 * fair sleeper stuff for the first placement, but who cares.
7432 */
7ceff013
DN
7433 /*
7434 * When !on_rq, vruntime of the task has usually NOT been normalized.
7435 * But there are some cases where it has already been normalized:
7436 *
7437 * - Moving a forked child which is waiting for being woken up by
7438 * wake_up_new_task().
62af3783
DN
7439 * - Moving a task which has been woken up by try_to_wake_up() and
7440 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7441 *
7442 * To prevent boost or penalty in the new cfs_rq caused by delta
7443 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7444 */
fed14d45 7445 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7446 on_rq = 1;
7447
b2b5ce02 7448 if (!on_rq)
fed14d45 7449 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7450 set_task_rq(p, task_cpu(p));
fed14d45 7451 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7452 if (!on_rq) {
fed14d45
PZ
7453 cfs_rq = cfs_rq_of(se);
7454 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7455#ifdef CONFIG_SMP
7456 /*
7457 * migrate_task_rq_fair() will have removed our previous
7458 * contribution, but we must synchronize for ongoing future
7459 * decay.
7460 */
fed14d45
PZ
7461 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7462 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7463#endif
7464 }
810b3817 7465}
029632fb
PZ
7466
7467void free_fair_sched_group(struct task_group *tg)
7468{
7469 int i;
7470
7471 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7472
7473 for_each_possible_cpu(i) {
7474 if (tg->cfs_rq)
7475 kfree(tg->cfs_rq[i]);
7476 if (tg->se)
7477 kfree(tg->se[i]);
7478 }
7479
7480 kfree(tg->cfs_rq);
7481 kfree(tg->se);
7482}
7483
7484int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7485{
7486 struct cfs_rq *cfs_rq;
7487 struct sched_entity *se;
7488 int i;
7489
7490 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7491 if (!tg->cfs_rq)
7492 goto err;
7493 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7494 if (!tg->se)
7495 goto err;
7496
7497 tg->shares = NICE_0_LOAD;
7498
7499 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7500
7501 for_each_possible_cpu(i) {
7502 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7503 GFP_KERNEL, cpu_to_node(i));
7504 if (!cfs_rq)
7505 goto err;
7506
7507 se = kzalloc_node(sizeof(struct sched_entity),
7508 GFP_KERNEL, cpu_to_node(i));
7509 if (!se)
7510 goto err_free_rq;
7511
7512 init_cfs_rq(cfs_rq);
7513 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7514 }
7515
7516 return 1;
7517
7518err_free_rq:
7519 kfree(cfs_rq);
7520err:
7521 return 0;
7522}
7523
7524void unregister_fair_sched_group(struct task_group *tg, int cpu)
7525{
7526 struct rq *rq = cpu_rq(cpu);
7527 unsigned long flags;
7528
7529 /*
7530 * Only empty task groups can be destroyed; so we can speculatively
7531 * check on_list without danger of it being re-added.
7532 */
7533 if (!tg->cfs_rq[cpu]->on_list)
7534 return;
7535
7536 raw_spin_lock_irqsave(&rq->lock, flags);
7537 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7538 raw_spin_unlock_irqrestore(&rq->lock, flags);
7539}
7540
7541void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7542 struct sched_entity *se, int cpu,
7543 struct sched_entity *parent)
7544{
7545 struct rq *rq = cpu_rq(cpu);
7546
7547 cfs_rq->tg = tg;
7548 cfs_rq->rq = rq;
029632fb
PZ
7549 init_cfs_rq_runtime(cfs_rq);
7550
7551 tg->cfs_rq[cpu] = cfs_rq;
7552 tg->se[cpu] = se;
7553
7554 /* se could be NULL for root_task_group */
7555 if (!se)
7556 return;
7557
fed14d45 7558 if (!parent) {
029632fb 7559 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7560 se->depth = 0;
7561 } else {
029632fb 7562 se->cfs_rq = parent->my_q;
fed14d45
PZ
7563 se->depth = parent->depth + 1;
7564 }
029632fb
PZ
7565
7566 se->my_q = cfs_rq;
0ac9b1c2
PT
7567 /* guarantee group entities always have weight */
7568 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7569 se->parent = parent;
7570}
7571
7572static DEFINE_MUTEX(shares_mutex);
7573
7574int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7575{
7576 int i;
7577 unsigned long flags;
7578
7579 /*
7580 * We can't change the weight of the root cgroup.
7581 */
7582 if (!tg->se[0])
7583 return -EINVAL;
7584
7585 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7586
7587 mutex_lock(&shares_mutex);
7588 if (tg->shares == shares)
7589 goto done;
7590
7591 tg->shares = shares;
7592 for_each_possible_cpu(i) {
7593 struct rq *rq = cpu_rq(i);
7594 struct sched_entity *se;
7595
7596 se = tg->se[i];
7597 /* Propagate contribution to hierarchy */
7598 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7599
7600 /* Possible calls to update_curr() need rq clock */
7601 update_rq_clock(rq);
17bc14b7 7602 for_each_sched_entity(se)
029632fb
PZ
7603 update_cfs_shares(group_cfs_rq(se));
7604 raw_spin_unlock_irqrestore(&rq->lock, flags);
7605 }
7606
7607done:
7608 mutex_unlock(&shares_mutex);
7609 return 0;
7610}
7611#else /* CONFIG_FAIR_GROUP_SCHED */
7612
7613void free_fair_sched_group(struct task_group *tg) { }
7614
7615int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7616{
7617 return 1;
7618}
7619
7620void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7621
7622#endif /* CONFIG_FAIR_GROUP_SCHED */
7623
810b3817 7624
6d686f45 7625static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7626{
7627 struct sched_entity *se = &task->se;
0d721cea
PW
7628 unsigned int rr_interval = 0;
7629
7630 /*
7631 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7632 * idle runqueue:
7633 */
0d721cea 7634 if (rq->cfs.load.weight)
a59f4e07 7635 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7636
7637 return rr_interval;
7638}
7639
bf0f6f24
IM
7640/*
7641 * All the scheduling class methods:
7642 */
029632fb 7643const struct sched_class fair_sched_class = {
5522d5d5 7644 .next = &idle_sched_class,
bf0f6f24
IM
7645 .enqueue_task = enqueue_task_fair,
7646 .dequeue_task = dequeue_task_fair,
7647 .yield_task = yield_task_fair,
d95f4122 7648 .yield_to_task = yield_to_task_fair,
bf0f6f24 7649
2e09bf55 7650 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7651
7652 .pick_next_task = pick_next_task_fair,
7653 .put_prev_task = put_prev_task_fair,
7654
681f3e68 7655#ifdef CONFIG_SMP
4ce72a2c 7656 .select_task_rq = select_task_rq_fair,
0a74bef8 7657 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7658
0bcdcf28
CE
7659 .rq_online = rq_online_fair,
7660 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7661
7662 .task_waking = task_waking_fair,
681f3e68 7663#endif
bf0f6f24 7664
83b699ed 7665 .set_curr_task = set_curr_task_fair,
bf0f6f24 7666 .task_tick = task_tick_fair,
cd29fe6f 7667 .task_fork = task_fork_fair,
cb469845
SR
7668
7669 .prio_changed = prio_changed_fair,
da7a735e 7670 .switched_from = switched_from_fair,
cb469845 7671 .switched_to = switched_to_fair,
810b3817 7672
0d721cea
PW
7673 .get_rr_interval = get_rr_interval_fair,
7674
810b3817 7675#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7676 .task_move_group = task_move_group_fair,
810b3817 7677#endif
bf0f6f24
IM
7678};
7679
7680#ifdef CONFIG_SCHED_DEBUG
029632fb 7681void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7682{
bf0f6f24
IM
7683 struct cfs_rq *cfs_rq;
7684
5973e5b9 7685 rcu_read_lock();
c3b64f1e 7686 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7687 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7688 rcu_read_unlock();
bf0f6f24
IM
7689}
7690#endif
029632fb
PZ
7691
7692__init void init_sched_fair_class(void)
7693{
7694#ifdef CONFIG_SMP
7695 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7696
3451d024 7697#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7698 nohz.next_balance = jiffies;
029632fb 7699 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7700 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7701#endif
7702#endif /* SMP */
7703
7704}