]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/fair.c
Merge tag 'sound-4.11-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c
PZ
371/* Iterate thr' all leaf cfs_rq's on a runqueue */
372#define for_each_leaf_cfs_rq(rq, cfs_rq) \
373 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
374
375/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 376static inline struct cfs_rq *
b758149c
PZ
377is_same_group(struct sched_entity *se, struct sched_entity *pse)
378{
379 if (se->cfs_rq == pse->cfs_rq)
fed14d45 380 return se->cfs_rq;
b758149c 381
fed14d45 382 return NULL;
b758149c
PZ
383}
384
385static inline struct sched_entity *parent_entity(struct sched_entity *se)
386{
387 return se->parent;
388}
389
464b7527
PZ
390static void
391find_matching_se(struct sched_entity **se, struct sched_entity **pse)
392{
393 int se_depth, pse_depth;
394
395 /*
396 * preemption test can be made between sibling entities who are in the
397 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
398 * both tasks until we find their ancestors who are siblings of common
399 * parent.
400 */
401
402 /* First walk up until both entities are at same depth */
fed14d45
PZ
403 se_depth = (*se)->depth;
404 pse_depth = (*pse)->depth;
464b7527
PZ
405
406 while (se_depth > pse_depth) {
407 se_depth--;
408 *se = parent_entity(*se);
409 }
410
411 while (pse_depth > se_depth) {
412 pse_depth--;
413 *pse = parent_entity(*pse);
414 }
415
416 while (!is_same_group(*se, *pse)) {
417 *se = parent_entity(*se);
418 *pse = parent_entity(*pse);
419 }
420}
421
8f48894f
PZ
422#else /* !CONFIG_FAIR_GROUP_SCHED */
423
424static inline struct task_struct *task_of(struct sched_entity *se)
425{
426 return container_of(se, struct task_struct, se);
427}
bf0f6f24 428
62160e3f
IM
429static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
430{
431 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
432}
433
434#define entity_is_task(se) 1
435
b758149c
PZ
436#define for_each_sched_entity(se) \
437 for (; se; se = NULL)
bf0f6f24 438
b758149c 439static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 440{
b758149c 441 return &task_rq(p)->cfs;
bf0f6f24
IM
442}
443
b758149c
PZ
444static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
445{
446 struct task_struct *p = task_of(se);
447 struct rq *rq = task_rq(p);
448
449 return &rq->cfs;
450}
451
452/* runqueue "owned" by this group */
453static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
454{
455 return NULL;
456}
457
3d4b47b4
PZ
458static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
459{
460}
461
462static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
463{
464}
465
b758149c
PZ
466#define for_each_leaf_cfs_rq(rq, cfs_rq) \
467 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
468
b758149c
PZ
469static inline struct sched_entity *parent_entity(struct sched_entity *se)
470{
471 return NULL;
472}
473
464b7527
PZ
474static inline void
475find_matching_se(struct sched_entity **se, struct sched_entity **pse)
476{
477}
478
b758149c
PZ
479#endif /* CONFIG_FAIR_GROUP_SCHED */
480
6c16a6dc 481static __always_inline
9dbdb155 482void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
483
484/**************************************************************
485 * Scheduling class tree data structure manipulation methods:
486 */
487
1bf08230 488static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 489{
1bf08230 490 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 491 if (delta > 0)
1bf08230 492 max_vruntime = vruntime;
02e0431a 493
1bf08230 494 return max_vruntime;
02e0431a
PZ
495}
496
0702e3eb 497static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
498{
499 s64 delta = (s64)(vruntime - min_vruntime);
500 if (delta < 0)
501 min_vruntime = vruntime;
502
503 return min_vruntime;
504}
505
54fdc581
FC
506static inline int entity_before(struct sched_entity *a,
507 struct sched_entity *b)
508{
509 return (s64)(a->vruntime - b->vruntime) < 0;
510}
511
1af5f730
PZ
512static void update_min_vruntime(struct cfs_rq *cfs_rq)
513{
b60205c7
PZ
514 struct sched_entity *curr = cfs_rq->curr;
515
1af5f730
PZ
516 u64 vruntime = cfs_rq->min_vruntime;
517
b60205c7
PZ
518 if (curr) {
519 if (curr->on_rq)
520 vruntime = curr->vruntime;
521 else
522 curr = NULL;
523 }
1af5f730
PZ
524
525 if (cfs_rq->rb_leftmost) {
526 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
527 struct sched_entity,
528 run_node);
529
b60205c7 530 if (!curr)
1af5f730
PZ
531 vruntime = se->vruntime;
532 else
533 vruntime = min_vruntime(vruntime, se->vruntime);
534 }
535
1bf08230 536 /* ensure we never gain time by being placed backwards. */
1af5f730 537 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
538#ifndef CONFIG_64BIT
539 smp_wmb();
540 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
541#endif
1af5f730
PZ
542}
543
bf0f6f24
IM
544/*
545 * Enqueue an entity into the rb-tree:
546 */
0702e3eb 547static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
548{
549 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
550 struct rb_node *parent = NULL;
551 struct sched_entity *entry;
bf0f6f24
IM
552 int leftmost = 1;
553
554 /*
555 * Find the right place in the rbtree:
556 */
557 while (*link) {
558 parent = *link;
559 entry = rb_entry(parent, struct sched_entity, run_node);
560 /*
561 * We dont care about collisions. Nodes with
562 * the same key stay together.
563 */
2bd2d6f2 564 if (entity_before(se, entry)) {
bf0f6f24
IM
565 link = &parent->rb_left;
566 } else {
567 link = &parent->rb_right;
568 leftmost = 0;
569 }
570 }
571
572 /*
573 * Maintain a cache of leftmost tree entries (it is frequently
574 * used):
575 */
1af5f730 576 if (leftmost)
57cb499d 577 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
578
579 rb_link_node(&se->run_node, parent, link);
580 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
581}
582
0702e3eb 583static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 584{
3fe69747
PZ
585 if (cfs_rq->rb_leftmost == &se->run_node) {
586 struct rb_node *next_node;
3fe69747
PZ
587
588 next_node = rb_next(&se->run_node);
589 cfs_rq->rb_leftmost = next_node;
3fe69747 590 }
e9acbff6 591
bf0f6f24 592 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
593}
594
029632fb 595struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 596{
f4b6755f
PZ
597 struct rb_node *left = cfs_rq->rb_leftmost;
598
599 if (!left)
600 return NULL;
601
602 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
603}
604
ac53db59
RR
605static struct sched_entity *__pick_next_entity(struct sched_entity *se)
606{
607 struct rb_node *next = rb_next(&se->run_node);
608
609 if (!next)
610 return NULL;
611
612 return rb_entry(next, struct sched_entity, run_node);
613}
614
615#ifdef CONFIG_SCHED_DEBUG
029632fb 616struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 617{
7eee3e67 618 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 619
70eee74b
BS
620 if (!last)
621 return NULL;
7eee3e67
IM
622
623 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
624}
625
bf0f6f24
IM
626/**************************************************************
627 * Scheduling class statistics methods:
628 */
629
acb4a848 630int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 631 void __user *buffer, size_t *lenp,
b2be5e96
PZ
632 loff_t *ppos)
633{
8d65af78 634 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 635 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
636
637 if (ret || !write)
638 return ret;
639
640 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
641 sysctl_sched_min_granularity);
642
acb4a848
CE
643#define WRT_SYSCTL(name) \
644 (normalized_sysctl_##name = sysctl_##name / (factor))
645 WRT_SYSCTL(sched_min_granularity);
646 WRT_SYSCTL(sched_latency);
647 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
648#undef WRT_SYSCTL
649
b2be5e96
PZ
650 return 0;
651}
652#endif
647e7cac 653
a7be37ac 654/*
f9c0b095 655 * delta /= w
a7be37ac 656 */
9dbdb155 657static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 658{
f9c0b095 659 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 660 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
661
662 return delta;
663}
664
647e7cac
IM
665/*
666 * The idea is to set a period in which each task runs once.
667 *
532b1858 668 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
669 * this period because otherwise the slices get too small.
670 *
671 * p = (nr <= nl) ? l : l*nr/nl
672 */
4d78e7b6
PZ
673static u64 __sched_period(unsigned long nr_running)
674{
8e2b0bf3
BF
675 if (unlikely(nr_running > sched_nr_latency))
676 return nr_running * sysctl_sched_min_granularity;
677 else
678 return sysctl_sched_latency;
4d78e7b6
PZ
679}
680
647e7cac
IM
681/*
682 * We calculate the wall-time slice from the period by taking a part
683 * proportional to the weight.
684 *
f9c0b095 685 * s = p*P[w/rw]
647e7cac 686 */
6d0f0ebd 687static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 688{
0a582440 689 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 690
0a582440 691 for_each_sched_entity(se) {
6272d68c 692 struct load_weight *load;
3104bf03 693 struct load_weight lw;
6272d68c
LM
694
695 cfs_rq = cfs_rq_of(se);
696 load = &cfs_rq->load;
f9c0b095 697
0a582440 698 if (unlikely(!se->on_rq)) {
3104bf03 699 lw = cfs_rq->load;
0a582440
MG
700
701 update_load_add(&lw, se->load.weight);
702 load = &lw;
703 }
9dbdb155 704 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
705 }
706 return slice;
bf0f6f24
IM
707}
708
647e7cac 709/*
660cc00f 710 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 711 *
f9c0b095 712 * vs = s/w
647e7cac 713 */
f9c0b095 714static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 715{
f9c0b095 716 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
717}
718
a75cdaa9 719#ifdef CONFIG_SMP
772bd008 720static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
721static unsigned long task_h_load(struct task_struct *p);
722
9d89c257
YD
723/*
724 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
725 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
726 * dependent on this value.
9d89c257
YD
727 */
728#define LOAD_AVG_PERIOD 32
729#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 730#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 731
540247fb
YD
732/* Give new sched_entity start runnable values to heavy its load in infant time */
733void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 734{
540247fb 735 struct sched_avg *sa = &se->avg;
a75cdaa9 736
9d89c257
YD
737 sa->last_update_time = 0;
738 /*
739 * sched_avg's period_contrib should be strictly less then 1024, so
740 * we give it 1023 to make sure it is almost a period (1024us), and
741 * will definitely be update (after enqueue).
742 */
743 sa->period_contrib = 1023;
b5a9b340
VG
744 /*
745 * Tasks are intialized with full load to be seen as heavy tasks until
746 * they get a chance to stabilize to their real load level.
747 * Group entities are intialized with zero load to reflect the fact that
748 * nothing has been attached to the task group yet.
749 */
750 if (entity_is_task(se))
751 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 752 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
753 /*
754 * At this point, util_avg won't be used in select_task_rq_fair anyway
755 */
756 sa->util_avg = 0;
757 sa->util_sum = 0;
9d89c257 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 759}
7ea241af 760
7dc603c9 761static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 762static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 763
2b8c41da
YD
764/*
765 * With new tasks being created, their initial util_avgs are extrapolated
766 * based on the cfs_rq's current util_avg:
767 *
768 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
769 *
770 * However, in many cases, the above util_avg does not give a desired
771 * value. Moreover, the sum of the util_avgs may be divergent, such
772 * as when the series is a harmonic series.
773 *
774 * To solve this problem, we also cap the util_avg of successive tasks to
775 * only 1/2 of the left utilization budget:
776 *
777 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
778 *
779 * where n denotes the nth task.
780 *
781 * For example, a simplest series from the beginning would be like:
782 *
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785 *
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
788 */
789void post_init_entity_util_avg(struct sched_entity *se)
790{
791 struct cfs_rq *cfs_rq = cfs_rq_of(se);
792 struct sched_avg *sa = &se->avg;
172895e6 793 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
805 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
806 }
7dc603c9
PZ
807
808 if (entity_is_task(se)) {
809 struct task_struct *p = task_of(se);
810 if (p->sched_class != &fair_sched_class) {
811 /*
812 * For !fair tasks do:
813 *
814 update_cfs_rq_load_avg(now, cfs_rq, false);
815 attach_entity_load_avg(cfs_rq, se);
816 switched_from_fair(rq, p);
817 *
818 * such that the next switched_to_fair() has the
819 * expected state.
820 */
df217913 821 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
822 return;
823 }
824 }
825
df217913 826 attach_entity_cfs_rq(se);
2b8c41da
YD
827}
828
7dc603c9 829#else /* !CONFIG_SMP */
540247fb 830void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
831{
832}
2b8c41da
YD
833void post_init_entity_util_avg(struct sched_entity *se)
834{
835}
3d30544f
PZ
836static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
837{
838}
7dc603c9 839#endif /* CONFIG_SMP */
a75cdaa9 840
bf0f6f24 841/*
9dbdb155 842 * Update the current task's runtime statistics.
bf0f6f24 843 */
b7cc0896 844static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 845{
429d43bc 846 struct sched_entity *curr = cfs_rq->curr;
78becc27 847 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 848 u64 delta_exec;
bf0f6f24
IM
849
850 if (unlikely(!curr))
851 return;
852
9dbdb155
PZ
853 delta_exec = now - curr->exec_start;
854 if (unlikely((s64)delta_exec <= 0))
34f28ecd 855 return;
bf0f6f24 856
8ebc91d9 857 curr->exec_start = now;
d842de87 858
9dbdb155
PZ
859 schedstat_set(curr->statistics.exec_max,
860 max(delta_exec, curr->statistics.exec_max));
861
862 curr->sum_exec_runtime += delta_exec;
ae92882e 863 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
864
865 curr->vruntime += calc_delta_fair(delta_exec, curr);
866 update_min_vruntime(cfs_rq);
867
d842de87
SV
868 if (entity_is_task(curr)) {
869 struct task_struct *curtask = task_of(curr);
870
f977bb49 871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 872 cpuacct_charge(curtask, delta_exec);
f06febc9 873 account_group_exec_runtime(curtask, delta_exec);
d842de87 874 }
ec12cb7f
PT
875
876 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
877}
878
6e998916
SG
879static void update_curr_fair(struct rq *rq)
880{
881 update_curr(cfs_rq_of(&rq->curr->se));
882}
883
bf0f6f24 884static inline void
5870db5b 885update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 886{
4fa8d299
JP
887 u64 wait_start, prev_wait_start;
888
889 if (!schedstat_enabled())
890 return;
891
892 wait_start = rq_clock(rq_of(cfs_rq));
893 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
894
895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
896 likely(wait_start > prev_wait_start))
897 wait_start -= prev_wait_start;
3ea94de1 898
4fa8d299 899 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
900}
901
4fa8d299 902static inline void
3ea94de1
JP
903update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
904{
905 struct task_struct *p;
cb251765
MG
906 u64 delta;
907
4fa8d299
JP
908 if (!schedstat_enabled())
909 return;
910
911 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
912
913 if (entity_is_task(se)) {
914 p = task_of(se);
915 if (task_on_rq_migrating(p)) {
916 /*
917 * Preserve migrating task's wait time so wait_start
918 * time stamp can be adjusted to accumulate wait time
919 * prior to migration.
920 */
4fa8d299 921 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
922 return;
923 }
924 trace_sched_stat_wait(p, delta);
925 }
926
4fa8d299
JP
927 schedstat_set(se->statistics.wait_max,
928 max(schedstat_val(se->statistics.wait_max), delta));
929 schedstat_inc(se->statistics.wait_count);
930 schedstat_add(se->statistics.wait_sum, delta);
931 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 932}
3ea94de1 933
4fa8d299 934static inline void
1a3d027c
JP
935update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
936{
937 struct task_struct *tsk = NULL;
4fa8d299
JP
938 u64 sleep_start, block_start;
939
940 if (!schedstat_enabled())
941 return;
942
943 sleep_start = schedstat_val(se->statistics.sleep_start);
944 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
945
946 if (entity_is_task(se))
947 tsk = task_of(se);
948
4fa8d299
JP
949 if (sleep_start) {
950 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
951
952 if ((s64)delta < 0)
953 delta = 0;
954
4fa8d299
JP
955 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
956 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 957
4fa8d299
JP
958 schedstat_set(se->statistics.sleep_start, 0);
959 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
960
961 if (tsk) {
962 account_scheduler_latency(tsk, delta >> 10, 1);
963 trace_sched_stat_sleep(tsk, delta);
964 }
965 }
4fa8d299
JP
966 if (block_start) {
967 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
968
969 if ((s64)delta < 0)
970 delta = 0;
971
4fa8d299
JP
972 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
973 schedstat_set(se->statistics.block_max, delta);
1a3d027c 974
4fa8d299
JP
975 schedstat_set(se->statistics.block_start, 0);
976 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
977
978 if (tsk) {
979 if (tsk->in_iowait) {
4fa8d299
JP
980 schedstat_add(se->statistics.iowait_sum, delta);
981 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
982 trace_sched_stat_iowait(tsk, delta);
983 }
984
985 trace_sched_stat_blocked(tsk, delta);
986
987 /*
988 * Blocking time is in units of nanosecs, so shift by
989 * 20 to get a milliseconds-range estimation of the
990 * amount of time that the task spent sleeping:
991 */
992 if (unlikely(prof_on == SLEEP_PROFILING)) {
993 profile_hits(SLEEP_PROFILING,
994 (void *)get_wchan(tsk),
995 delta >> 20);
996 }
997 account_scheduler_latency(tsk, delta >> 10, 0);
998 }
999 }
3ea94de1 1000}
3ea94de1 1001
bf0f6f24
IM
1002/*
1003 * Task is being enqueued - update stats:
1004 */
cb251765 1005static inline void
1a3d027c 1006update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1007{
4fa8d299
JP
1008 if (!schedstat_enabled())
1009 return;
1010
bf0f6f24
IM
1011 /*
1012 * Are we enqueueing a waiting task? (for current tasks
1013 * a dequeue/enqueue event is a NOP)
1014 */
429d43bc 1015 if (se != cfs_rq->curr)
5870db5b 1016 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1017
1018 if (flags & ENQUEUE_WAKEUP)
1019 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1020}
1021
bf0f6f24 1022static inline void
cb251765 1023update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1024{
4fa8d299
JP
1025
1026 if (!schedstat_enabled())
1027 return;
1028
bf0f6f24
IM
1029 /*
1030 * Mark the end of the wait period if dequeueing a
1031 * waiting task:
1032 */
429d43bc 1033 if (se != cfs_rq->curr)
9ef0a961 1034 update_stats_wait_end(cfs_rq, se);
cb251765 1035
4fa8d299
JP
1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1037 struct task_struct *tsk = task_of(se);
cb251765 1038
4fa8d299
JP
1039 if (tsk->state & TASK_INTERRUPTIBLE)
1040 schedstat_set(se->statistics.sleep_start,
1041 rq_clock(rq_of(cfs_rq)));
1042 if (tsk->state & TASK_UNINTERRUPTIBLE)
1043 schedstat_set(se->statistics.block_start,
1044 rq_clock(rq_of(cfs_rq)));
cb251765 1045 }
cb251765
MG
1046}
1047
bf0f6f24
IM
1048/*
1049 * We are picking a new current task - update its stats:
1050 */
1051static inline void
79303e9e 1052update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1053{
1054 /*
1055 * We are starting a new run period:
1056 */
78becc27 1057 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1058}
1059
bf0f6f24
IM
1060/**************************************************
1061 * Scheduling class queueing methods:
1062 */
1063
cbee9f88
PZ
1064#ifdef CONFIG_NUMA_BALANCING
1065/*
598f0ec0
MG
1066 * Approximate time to scan a full NUMA task in ms. The task scan period is
1067 * calculated based on the tasks virtual memory size and
1068 * numa_balancing_scan_size.
cbee9f88 1069 */
598f0ec0
MG
1070unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1071unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1072
1073/* Portion of address space to scan in MB */
1074unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1075
4b96a29b
PZ
1076/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1077unsigned int sysctl_numa_balancing_scan_delay = 1000;
1078
598f0ec0
MG
1079static unsigned int task_nr_scan_windows(struct task_struct *p)
1080{
1081 unsigned long rss = 0;
1082 unsigned long nr_scan_pages;
1083
1084 /*
1085 * Calculations based on RSS as non-present and empty pages are skipped
1086 * by the PTE scanner and NUMA hinting faults should be trapped based
1087 * on resident pages
1088 */
1089 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1090 rss = get_mm_rss(p->mm);
1091 if (!rss)
1092 rss = nr_scan_pages;
1093
1094 rss = round_up(rss, nr_scan_pages);
1095 return rss / nr_scan_pages;
1096}
1097
1098/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1099#define MAX_SCAN_WINDOW 2560
1100
1101static unsigned int task_scan_min(struct task_struct *p)
1102{
316c1608 1103 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1104 unsigned int scan, floor;
1105 unsigned int windows = 1;
1106
64192658
KT
1107 if (scan_size < MAX_SCAN_WINDOW)
1108 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1109 floor = 1000 / windows;
1110
1111 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1112 return max_t(unsigned int, floor, scan);
1113}
1114
1115static unsigned int task_scan_max(struct task_struct *p)
1116{
1117 unsigned int smin = task_scan_min(p);
1118 unsigned int smax;
1119
1120 /* Watch for min being lower than max due to floor calculations */
1121 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 return max(smin, smax);
1123}
1124
0ec8aa00
PZ
1125static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1126{
1127 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1128 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1129}
1130
1131static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1132{
1133 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1134 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1135}
1136
8c8a743c
PZ
1137struct numa_group {
1138 atomic_t refcount;
1139
1140 spinlock_t lock; /* nr_tasks, tasks */
1141 int nr_tasks;
e29cf08b 1142 pid_t gid;
4142c3eb 1143 int active_nodes;
8c8a743c
PZ
1144
1145 struct rcu_head rcu;
989348b5 1146 unsigned long total_faults;
4142c3eb 1147 unsigned long max_faults_cpu;
7e2703e6
RR
1148 /*
1149 * Faults_cpu is used to decide whether memory should move
1150 * towards the CPU. As a consequence, these stats are weighted
1151 * more by CPU use than by memory faults.
1152 */
50ec8a40 1153 unsigned long *faults_cpu;
989348b5 1154 unsigned long faults[0];
8c8a743c
PZ
1155};
1156
be1e4e76
RR
1157/* Shared or private faults. */
1158#define NR_NUMA_HINT_FAULT_TYPES 2
1159
1160/* Memory and CPU locality */
1161#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1162
1163/* Averaged statistics, and temporary buffers. */
1164#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1165
e29cf08b
MG
1166pid_t task_numa_group_id(struct task_struct *p)
1167{
1168 return p->numa_group ? p->numa_group->gid : 0;
1169}
1170
44dba3d5
IM
1171/*
1172 * The averaged statistics, shared & private, memory & cpu,
1173 * occupy the first half of the array. The second half of the
1174 * array is for current counters, which are averaged into the
1175 * first set by task_numa_placement.
1176 */
1177static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1178{
44dba3d5 1179 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1180}
1181
1182static inline unsigned long task_faults(struct task_struct *p, int nid)
1183{
44dba3d5 1184 if (!p->numa_faults)
ac8e895b
MG
1185 return 0;
1186
44dba3d5
IM
1187 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1188 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1189}
1190
83e1d2cd
MG
1191static inline unsigned long group_faults(struct task_struct *p, int nid)
1192{
1193 if (!p->numa_group)
1194 return 0;
1195
44dba3d5
IM
1196 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1197 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1198}
1199
20e07dea
RR
1200static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1201{
44dba3d5
IM
1202 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1203 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1204}
1205
4142c3eb
RR
1206/*
1207 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1208 * considered part of a numa group's pseudo-interleaving set. Migrations
1209 * between these nodes are slowed down, to allow things to settle down.
1210 */
1211#define ACTIVE_NODE_FRACTION 3
1212
1213static bool numa_is_active_node(int nid, struct numa_group *ng)
1214{
1215 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1216}
1217
6c6b1193
RR
1218/* Handle placement on systems where not all nodes are directly connected. */
1219static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1220 int maxdist, bool task)
1221{
1222 unsigned long score = 0;
1223 int node;
1224
1225 /*
1226 * All nodes are directly connected, and the same distance
1227 * from each other. No need for fancy placement algorithms.
1228 */
1229 if (sched_numa_topology_type == NUMA_DIRECT)
1230 return 0;
1231
1232 /*
1233 * This code is called for each node, introducing N^2 complexity,
1234 * which should be ok given the number of nodes rarely exceeds 8.
1235 */
1236 for_each_online_node(node) {
1237 unsigned long faults;
1238 int dist = node_distance(nid, node);
1239
1240 /*
1241 * The furthest away nodes in the system are not interesting
1242 * for placement; nid was already counted.
1243 */
1244 if (dist == sched_max_numa_distance || node == nid)
1245 continue;
1246
1247 /*
1248 * On systems with a backplane NUMA topology, compare groups
1249 * of nodes, and move tasks towards the group with the most
1250 * memory accesses. When comparing two nodes at distance
1251 * "hoplimit", only nodes closer by than "hoplimit" are part
1252 * of each group. Skip other nodes.
1253 */
1254 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1255 dist > maxdist)
1256 continue;
1257
1258 /* Add up the faults from nearby nodes. */
1259 if (task)
1260 faults = task_faults(p, node);
1261 else
1262 faults = group_faults(p, node);
1263
1264 /*
1265 * On systems with a glueless mesh NUMA topology, there are
1266 * no fixed "groups of nodes". Instead, nodes that are not
1267 * directly connected bounce traffic through intermediate
1268 * nodes; a numa_group can occupy any set of nodes.
1269 * The further away a node is, the less the faults count.
1270 * This seems to result in good task placement.
1271 */
1272 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1273 faults *= (sched_max_numa_distance - dist);
1274 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1275 }
1276
1277 score += faults;
1278 }
1279
1280 return score;
1281}
1282
83e1d2cd
MG
1283/*
1284 * These return the fraction of accesses done by a particular task, or
1285 * task group, on a particular numa node. The group weight is given a
1286 * larger multiplier, in order to group tasks together that are almost
1287 * evenly spread out between numa nodes.
1288 */
7bd95320
RR
1289static inline unsigned long task_weight(struct task_struct *p, int nid,
1290 int dist)
83e1d2cd 1291{
7bd95320 1292 unsigned long faults, total_faults;
83e1d2cd 1293
44dba3d5 1294 if (!p->numa_faults)
83e1d2cd
MG
1295 return 0;
1296
1297 total_faults = p->total_numa_faults;
1298
1299 if (!total_faults)
1300 return 0;
1301
7bd95320 1302 faults = task_faults(p, nid);
6c6b1193
RR
1303 faults += score_nearby_nodes(p, nid, dist, true);
1304
7bd95320 1305 return 1000 * faults / total_faults;
83e1d2cd
MG
1306}
1307
7bd95320
RR
1308static inline unsigned long group_weight(struct task_struct *p, int nid,
1309 int dist)
83e1d2cd 1310{
7bd95320
RR
1311 unsigned long faults, total_faults;
1312
1313 if (!p->numa_group)
1314 return 0;
1315
1316 total_faults = p->numa_group->total_faults;
1317
1318 if (!total_faults)
83e1d2cd
MG
1319 return 0;
1320
7bd95320 1321 faults = group_faults(p, nid);
6c6b1193
RR
1322 faults += score_nearby_nodes(p, nid, dist, false);
1323
7bd95320 1324 return 1000 * faults / total_faults;
83e1d2cd
MG
1325}
1326
10f39042
RR
1327bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1328 int src_nid, int dst_cpu)
1329{
1330 struct numa_group *ng = p->numa_group;
1331 int dst_nid = cpu_to_node(dst_cpu);
1332 int last_cpupid, this_cpupid;
1333
1334 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1335
1336 /*
1337 * Multi-stage node selection is used in conjunction with a periodic
1338 * migration fault to build a temporal task<->page relation. By using
1339 * a two-stage filter we remove short/unlikely relations.
1340 *
1341 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1342 * a task's usage of a particular page (n_p) per total usage of this
1343 * page (n_t) (in a given time-span) to a probability.
1344 *
1345 * Our periodic faults will sample this probability and getting the
1346 * same result twice in a row, given these samples are fully
1347 * independent, is then given by P(n)^2, provided our sample period
1348 * is sufficiently short compared to the usage pattern.
1349 *
1350 * This quadric squishes small probabilities, making it less likely we
1351 * act on an unlikely task<->page relation.
1352 */
1353 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1354 if (!cpupid_pid_unset(last_cpupid) &&
1355 cpupid_to_nid(last_cpupid) != dst_nid)
1356 return false;
1357
1358 /* Always allow migrate on private faults */
1359 if (cpupid_match_pid(p, last_cpupid))
1360 return true;
1361
1362 /* A shared fault, but p->numa_group has not been set up yet. */
1363 if (!ng)
1364 return true;
1365
1366 /*
4142c3eb
RR
1367 * Destination node is much more heavily used than the source
1368 * node? Allow migration.
10f39042 1369 */
4142c3eb
RR
1370 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1371 ACTIVE_NODE_FRACTION)
10f39042
RR
1372 return true;
1373
1374 /*
4142c3eb
RR
1375 * Distribute memory according to CPU & memory use on each node,
1376 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1377 *
1378 * faults_cpu(dst) 3 faults_cpu(src)
1379 * --------------- * - > ---------------
1380 * faults_mem(dst) 4 faults_mem(src)
10f39042 1381 */
4142c3eb
RR
1382 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1383 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1384}
1385
e6628d5b 1386static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1387static unsigned long source_load(int cpu, int type);
1388static unsigned long target_load(int cpu, int type);
ced549fa 1389static unsigned long capacity_of(int cpu);
58d081b5
MG
1390static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1391
fb13c7ee 1392/* Cached statistics for all CPUs within a node */
58d081b5 1393struct numa_stats {
fb13c7ee 1394 unsigned long nr_running;
58d081b5 1395 unsigned long load;
fb13c7ee
MG
1396
1397 /* Total compute capacity of CPUs on a node */
5ef20ca1 1398 unsigned long compute_capacity;
fb13c7ee
MG
1399
1400 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1401 unsigned long task_capacity;
1b6a7495 1402 int has_free_capacity;
58d081b5 1403};
e6628d5b 1404
fb13c7ee
MG
1405/*
1406 * XXX borrowed from update_sg_lb_stats
1407 */
1408static void update_numa_stats(struct numa_stats *ns, int nid)
1409{
83d7f242
RR
1410 int smt, cpu, cpus = 0;
1411 unsigned long capacity;
fb13c7ee
MG
1412
1413 memset(ns, 0, sizeof(*ns));
1414 for_each_cpu(cpu, cpumask_of_node(nid)) {
1415 struct rq *rq = cpu_rq(cpu);
1416
1417 ns->nr_running += rq->nr_running;
1418 ns->load += weighted_cpuload(cpu);
ced549fa 1419 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1420
1421 cpus++;
fb13c7ee
MG
1422 }
1423
5eca82a9
PZ
1424 /*
1425 * If we raced with hotplug and there are no CPUs left in our mask
1426 * the @ns structure is NULL'ed and task_numa_compare() will
1427 * not find this node attractive.
1428 *
1b6a7495
NP
1429 * We'll either bail at !has_free_capacity, or we'll detect a huge
1430 * imbalance and bail there.
5eca82a9
PZ
1431 */
1432 if (!cpus)
1433 return;
1434
83d7f242
RR
1435 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1436 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1437 capacity = cpus / smt; /* cores */
1438
1439 ns->task_capacity = min_t(unsigned, capacity,
1440 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1441 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1442}
1443
58d081b5
MG
1444struct task_numa_env {
1445 struct task_struct *p;
e6628d5b 1446
58d081b5
MG
1447 int src_cpu, src_nid;
1448 int dst_cpu, dst_nid;
e6628d5b 1449
58d081b5 1450 struct numa_stats src_stats, dst_stats;
e6628d5b 1451
40ea2b42 1452 int imbalance_pct;
7bd95320 1453 int dist;
fb13c7ee
MG
1454
1455 struct task_struct *best_task;
1456 long best_imp;
58d081b5
MG
1457 int best_cpu;
1458};
1459
fb13c7ee
MG
1460static void task_numa_assign(struct task_numa_env *env,
1461 struct task_struct *p, long imp)
1462{
1463 if (env->best_task)
1464 put_task_struct(env->best_task);
bac78573
ON
1465 if (p)
1466 get_task_struct(p);
fb13c7ee
MG
1467
1468 env->best_task = p;
1469 env->best_imp = imp;
1470 env->best_cpu = env->dst_cpu;
1471}
1472
28a21745 1473static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1474 struct task_numa_env *env)
1475{
e4991b24
RR
1476 long imb, old_imb;
1477 long orig_src_load, orig_dst_load;
28a21745
RR
1478 long src_capacity, dst_capacity;
1479
1480 /*
1481 * The load is corrected for the CPU capacity available on each node.
1482 *
1483 * src_load dst_load
1484 * ------------ vs ---------
1485 * src_capacity dst_capacity
1486 */
1487 src_capacity = env->src_stats.compute_capacity;
1488 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1489
1490 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1491 if (dst_load < src_load)
1492 swap(dst_load, src_load);
e63da036
RR
1493
1494 /* Is the difference below the threshold? */
e4991b24
RR
1495 imb = dst_load * src_capacity * 100 -
1496 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1497 if (imb <= 0)
1498 return false;
1499
1500 /*
1501 * The imbalance is above the allowed threshold.
e4991b24 1502 * Compare it with the old imbalance.
e63da036 1503 */
28a21745 1504 orig_src_load = env->src_stats.load;
e4991b24 1505 orig_dst_load = env->dst_stats.load;
28a21745 1506
e4991b24
RR
1507 if (orig_dst_load < orig_src_load)
1508 swap(orig_dst_load, orig_src_load);
e63da036 1509
e4991b24
RR
1510 old_imb = orig_dst_load * src_capacity * 100 -
1511 orig_src_load * dst_capacity * env->imbalance_pct;
1512
1513 /* Would this change make things worse? */
1514 return (imb > old_imb);
e63da036
RR
1515}
1516
fb13c7ee
MG
1517/*
1518 * This checks if the overall compute and NUMA accesses of the system would
1519 * be improved if the source tasks was migrated to the target dst_cpu taking
1520 * into account that it might be best if task running on the dst_cpu should
1521 * be exchanged with the source task
1522 */
887c290e
RR
1523static void task_numa_compare(struct task_numa_env *env,
1524 long taskimp, long groupimp)
fb13c7ee
MG
1525{
1526 struct rq *src_rq = cpu_rq(env->src_cpu);
1527 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1528 struct task_struct *cur;
28a21745 1529 long src_load, dst_load;
fb13c7ee 1530 long load;
1c5d3eb3 1531 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1532 long moveimp = imp;
7bd95320 1533 int dist = env->dist;
fb13c7ee
MG
1534
1535 rcu_read_lock();
bac78573
ON
1536 cur = task_rcu_dereference(&dst_rq->curr);
1537 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1538 cur = NULL;
1539
7af68335
PZ
1540 /*
1541 * Because we have preemption enabled we can get migrated around and
1542 * end try selecting ourselves (current == env->p) as a swap candidate.
1543 */
1544 if (cur == env->p)
1545 goto unlock;
1546
fb13c7ee
MG
1547 /*
1548 * "imp" is the fault differential for the source task between the
1549 * source and destination node. Calculate the total differential for
1550 * the source task and potential destination task. The more negative
1551 * the value is, the more rmeote accesses that would be expected to
1552 * be incurred if the tasks were swapped.
1553 */
1554 if (cur) {
1555 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1556 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1557 goto unlock;
1558
887c290e
RR
1559 /*
1560 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1561 * in any group then look only at task weights.
887c290e 1562 */
ca28aa53 1563 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1564 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1565 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1566 /*
1567 * Add some hysteresis to prevent swapping the
1568 * tasks within a group over tiny differences.
1569 */
1570 if (cur->numa_group)
1571 imp -= imp/16;
887c290e 1572 } else {
ca28aa53
RR
1573 /*
1574 * Compare the group weights. If a task is all by
1575 * itself (not part of a group), use the task weight
1576 * instead.
1577 */
ca28aa53 1578 if (cur->numa_group)
7bd95320
RR
1579 imp += group_weight(cur, env->src_nid, dist) -
1580 group_weight(cur, env->dst_nid, dist);
ca28aa53 1581 else
7bd95320
RR
1582 imp += task_weight(cur, env->src_nid, dist) -
1583 task_weight(cur, env->dst_nid, dist);
887c290e 1584 }
fb13c7ee
MG
1585 }
1586
0132c3e1 1587 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1588 goto unlock;
1589
1590 if (!cur) {
1591 /* Is there capacity at our destination? */
b932c03c 1592 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1593 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1594 goto unlock;
1595
1596 goto balance;
1597 }
1598
1599 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1600 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1601 dst_rq->nr_running == 1)
fb13c7ee
MG
1602 goto assign;
1603
1604 /*
1605 * In the overloaded case, try and keep the load balanced.
1606 */
1607balance:
e720fff6
PZ
1608 load = task_h_load(env->p);
1609 dst_load = env->dst_stats.load + load;
1610 src_load = env->src_stats.load - load;
fb13c7ee 1611
0132c3e1
RR
1612 if (moveimp > imp && moveimp > env->best_imp) {
1613 /*
1614 * If the improvement from just moving env->p direction is
1615 * better than swapping tasks around, check if a move is
1616 * possible. Store a slightly smaller score than moveimp,
1617 * so an actually idle CPU will win.
1618 */
1619 if (!load_too_imbalanced(src_load, dst_load, env)) {
1620 imp = moveimp - 1;
1621 cur = NULL;
1622 goto assign;
1623 }
1624 }
1625
1626 if (imp <= env->best_imp)
1627 goto unlock;
1628
fb13c7ee 1629 if (cur) {
e720fff6
PZ
1630 load = task_h_load(cur);
1631 dst_load -= load;
1632 src_load += load;
fb13c7ee
MG
1633 }
1634
28a21745 1635 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1636 goto unlock;
1637
ba7e5a27
RR
1638 /*
1639 * One idle CPU per node is evaluated for a task numa move.
1640 * Call select_idle_sibling to maybe find a better one.
1641 */
10e2f1ac
PZ
1642 if (!cur) {
1643 /*
1644 * select_idle_siblings() uses an per-cpu cpumask that
1645 * can be used from IRQ context.
1646 */
1647 local_irq_disable();
772bd008
MR
1648 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1649 env->dst_cpu);
10e2f1ac
PZ
1650 local_irq_enable();
1651 }
ba7e5a27 1652
fb13c7ee
MG
1653assign:
1654 task_numa_assign(env, cur, imp);
1655unlock:
1656 rcu_read_unlock();
1657}
1658
887c290e
RR
1659static void task_numa_find_cpu(struct task_numa_env *env,
1660 long taskimp, long groupimp)
2c8a50aa
MG
1661{
1662 int cpu;
1663
1664 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1665 /* Skip this CPU if the source task cannot migrate */
0c98d344 1666 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1667 continue;
1668
1669 env->dst_cpu = cpu;
887c290e 1670 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1671 }
1672}
1673
6f9aad0b
RR
1674/* Only move tasks to a NUMA node less busy than the current node. */
1675static bool numa_has_capacity(struct task_numa_env *env)
1676{
1677 struct numa_stats *src = &env->src_stats;
1678 struct numa_stats *dst = &env->dst_stats;
1679
1680 if (src->has_free_capacity && !dst->has_free_capacity)
1681 return false;
1682
1683 /*
1684 * Only consider a task move if the source has a higher load
1685 * than the destination, corrected for CPU capacity on each node.
1686 *
1687 * src->load dst->load
1688 * --------------------- vs ---------------------
1689 * src->compute_capacity dst->compute_capacity
1690 */
44dcb04f
SD
1691 if (src->load * dst->compute_capacity * env->imbalance_pct >
1692
1693 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1694 return true;
1695
1696 return false;
1697}
1698
58d081b5
MG
1699static int task_numa_migrate(struct task_struct *p)
1700{
58d081b5
MG
1701 struct task_numa_env env = {
1702 .p = p,
fb13c7ee 1703
58d081b5 1704 .src_cpu = task_cpu(p),
b32e86b4 1705 .src_nid = task_node(p),
fb13c7ee
MG
1706
1707 .imbalance_pct = 112,
1708
1709 .best_task = NULL,
1710 .best_imp = 0,
4142c3eb 1711 .best_cpu = -1,
58d081b5
MG
1712 };
1713 struct sched_domain *sd;
887c290e 1714 unsigned long taskweight, groupweight;
7bd95320 1715 int nid, ret, dist;
887c290e 1716 long taskimp, groupimp;
e6628d5b 1717
58d081b5 1718 /*
fb13c7ee
MG
1719 * Pick the lowest SD_NUMA domain, as that would have the smallest
1720 * imbalance and would be the first to start moving tasks about.
1721 *
1722 * And we want to avoid any moving of tasks about, as that would create
1723 * random movement of tasks -- counter the numa conditions we're trying
1724 * to satisfy here.
58d081b5
MG
1725 */
1726 rcu_read_lock();
fb13c7ee 1727 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1728 if (sd)
1729 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1730 rcu_read_unlock();
1731
46a73e8a
RR
1732 /*
1733 * Cpusets can break the scheduler domain tree into smaller
1734 * balance domains, some of which do not cross NUMA boundaries.
1735 * Tasks that are "trapped" in such domains cannot be migrated
1736 * elsewhere, so there is no point in (re)trying.
1737 */
1738 if (unlikely(!sd)) {
de1b301a 1739 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1740 return -EINVAL;
1741 }
1742
2c8a50aa 1743 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1744 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1745 taskweight = task_weight(p, env.src_nid, dist);
1746 groupweight = group_weight(p, env.src_nid, dist);
1747 update_numa_stats(&env.src_stats, env.src_nid);
1748 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1749 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1750 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1751
a43455a1 1752 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1753 if (numa_has_capacity(&env))
1754 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1755
9de05d48
RR
1756 /*
1757 * Look at other nodes in these cases:
1758 * - there is no space available on the preferred_nid
1759 * - the task is part of a numa_group that is interleaved across
1760 * multiple NUMA nodes; in order to better consolidate the group,
1761 * we need to check other locations.
1762 */
4142c3eb 1763 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1764 for_each_online_node(nid) {
1765 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1766 continue;
58d081b5 1767
7bd95320 1768 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1769 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1770 dist != env.dist) {
1771 taskweight = task_weight(p, env.src_nid, dist);
1772 groupweight = group_weight(p, env.src_nid, dist);
1773 }
7bd95320 1774
83e1d2cd 1775 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1776 taskimp = task_weight(p, nid, dist) - taskweight;
1777 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1778 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1779 continue;
1780
7bd95320 1781 env.dist = dist;
2c8a50aa
MG
1782 env.dst_nid = nid;
1783 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1784 if (numa_has_capacity(&env))
1785 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1786 }
1787 }
1788
68d1b02a
RR
1789 /*
1790 * If the task is part of a workload that spans multiple NUMA nodes,
1791 * and is migrating into one of the workload's active nodes, remember
1792 * this node as the task's preferred numa node, so the workload can
1793 * settle down.
1794 * A task that migrated to a second choice node will be better off
1795 * trying for a better one later. Do not set the preferred node here.
1796 */
db015dae 1797 if (p->numa_group) {
4142c3eb
RR
1798 struct numa_group *ng = p->numa_group;
1799
db015dae
RR
1800 if (env.best_cpu == -1)
1801 nid = env.src_nid;
1802 else
1803 nid = env.dst_nid;
1804
4142c3eb 1805 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1806 sched_setnuma(p, env.dst_nid);
1807 }
1808
1809 /* No better CPU than the current one was found. */
1810 if (env.best_cpu == -1)
1811 return -EAGAIN;
0ec8aa00 1812
04bb2f94
RR
1813 /*
1814 * Reset the scan period if the task is being rescheduled on an
1815 * alternative node to recheck if the tasks is now properly placed.
1816 */
1817 p->numa_scan_period = task_scan_min(p);
1818
fb13c7ee 1819 if (env.best_task == NULL) {
286549dc
MG
1820 ret = migrate_task_to(p, env.best_cpu);
1821 if (ret != 0)
1822 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1823 return ret;
1824 }
1825
1826 ret = migrate_swap(p, env.best_task);
286549dc
MG
1827 if (ret != 0)
1828 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1829 put_task_struct(env.best_task);
1830 return ret;
e6628d5b
MG
1831}
1832
6b9a7460
MG
1833/* Attempt to migrate a task to a CPU on the preferred node. */
1834static void numa_migrate_preferred(struct task_struct *p)
1835{
5085e2a3
RR
1836 unsigned long interval = HZ;
1837
2739d3ee 1838 /* This task has no NUMA fault statistics yet */
44dba3d5 1839 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1840 return;
1841
2739d3ee 1842 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1843 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1844 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1845
1846 /* Success if task is already running on preferred CPU */
de1b301a 1847 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1848 return;
1849
1850 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1851 task_numa_migrate(p);
6b9a7460
MG
1852}
1853
20e07dea 1854/*
4142c3eb 1855 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1856 * tracking the nodes from which NUMA hinting faults are triggered. This can
1857 * be different from the set of nodes where the workload's memory is currently
1858 * located.
20e07dea 1859 */
4142c3eb 1860static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1861{
1862 unsigned long faults, max_faults = 0;
4142c3eb 1863 int nid, active_nodes = 0;
20e07dea
RR
1864
1865 for_each_online_node(nid) {
1866 faults = group_faults_cpu(numa_group, nid);
1867 if (faults > max_faults)
1868 max_faults = faults;
1869 }
1870
1871 for_each_online_node(nid) {
1872 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1873 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1874 active_nodes++;
20e07dea 1875 }
4142c3eb
RR
1876
1877 numa_group->max_faults_cpu = max_faults;
1878 numa_group->active_nodes = active_nodes;
20e07dea
RR
1879}
1880
04bb2f94
RR
1881/*
1882 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1883 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1884 * period will be for the next scan window. If local/(local+remote) ratio is
1885 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1886 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1887 */
1888#define NUMA_PERIOD_SLOTS 10
a22b4b01 1889#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1890
1891/*
1892 * Increase the scan period (slow down scanning) if the majority of
1893 * our memory is already on our local node, or if the majority of
1894 * the page accesses are shared with other processes.
1895 * Otherwise, decrease the scan period.
1896 */
1897static void update_task_scan_period(struct task_struct *p,
1898 unsigned long shared, unsigned long private)
1899{
1900 unsigned int period_slot;
1901 int ratio;
1902 int diff;
1903
1904 unsigned long remote = p->numa_faults_locality[0];
1905 unsigned long local = p->numa_faults_locality[1];
1906
1907 /*
1908 * If there were no record hinting faults then either the task is
1909 * completely idle or all activity is areas that are not of interest
074c2381
MG
1910 * to automatic numa balancing. Related to that, if there were failed
1911 * migration then it implies we are migrating too quickly or the local
1912 * node is overloaded. In either case, scan slower
04bb2f94 1913 */
074c2381 1914 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1915 p->numa_scan_period = min(p->numa_scan_period_max,
1916 p->numa_scan_period << 1);
1917
1918 p->mm->numa_next_scan = jiffies +
1919 msecs_to_jiffies(p->numa_scan_period);
1920
1921 return;
1922 }
1923
1924 /*
1925 * Prepare to scale scan period relative to the current period.
1926 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1927 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1928 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1929 */
1930 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1931 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1932 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1933 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1934 if (!slot)
1935 slot = 1;
1936 diff = slot * period_slot;
1937 } else {
1938 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1939
1940 /*
1941 * Scale scan rate increases based on sharing. There is an
1942 * inverse relationship between the degree of sharing and
1943 * the adjustment made to the scanning period. Broadly
1944 * speaking the intent is that there is little point
1945 * scanning faster if shared accesses dominate as it may
1946 * simply bounce migrations uselessly
1947 */
2847c90e 1948 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1949 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1950 }
1951
1952 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1953 task_scan_min(p), task_scan_max(p));
1954 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1955}
1956
7e2703e6
RR
1957/*
1958 * Get the fraction of time the task has been running since the last
1959 * NUMA placement cycle. The scheduler keeps similar statistics, but
1960 * decays those on a 32ms period, which is orders of magnitude off
1961 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1962 * stats only if the task is so new there are no NUMA statistics yet.
1963 */
1964static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1965{
1966 u64 runtime, delta, now;
1967 /* Use the start of this time slice to avoid calculations. */
1968 now = p->se.exec_start;
1969 runtime = p->se.sum_exec_runtime;
1970
1971 if (p->last_task_numa_placement) {
1972 delta = runtime - p->last_sum_exec_runtime;
1973 *period = now - p->last_task_numa_placement;
1974 } else {
9d89c257
YD
1975 delta = p->se.avg.load_sum / p->se.load.weight;
1976 *period = LOAD_AVG_MAX;
7e2703e6
RR
1977 }
1978
1979 p->last_sum_exec_runtime = runtime;
1980 p->last_task_numa_placement = now;
1981
1982 return delta;
1983}
1984
54009416
RR
1985/*
1986 * Determine the preferred nid for a task in a numa_group. This needs to
1987 * be done in a way that produces consistent results with group_weight,
1988 * otherwise workloads might not converge.
1989 */
1990static int preferred_group_nid(struct task_struct *p, int nid)
1991{
1992 nodemask_t nodes;
1993 int dist;
1994
1995 /* Direct connections between all NUMA nodes. */
1996 if (sched_numa_topology_type == NUMA_DIRECT)
1997 return nid;
1998
1999 /*
2000 * On a system with glueless mesh NUMA topology, group_weight
2001 * scores nodes according to the number of NUMA hinting faults on
2002 * both the node itself, and on nearby nodes.
2003 */
2004 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2005 unsigned long score, max_score = 0;
2006 int node, max_node = nid;
2007
2008 dist = sched_max_numa_distance;
2009
2010 for_each_online_node(node) {
2011 score = group_weight(p, node, dist);
2012 if (score > max_score) {
2013 max_score = score;
2014 max_node = node;
2015 }
2016 }
2017 return max_node;
2018 }
2019
2020 /*
2021 * Finding the preferred nid in a system with NUMA backplane
2022 * interconnect topology is more involved. The goal is to locate
2023 * tasks from numa_groups near each other in the system, and
2024 * untangle workloads from different sides of the system. This requires
2025 * searching down the hierarchy of node groups, recursively searching
2026 * inside the highest scoring group of nodes. The nodemask tricks
2027 * keep the complexity of the search down.
2028 */
2029 nodes = node_online_map;
2030 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2031 unsigned long max_faults = 0;
81907478 2032 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2033 int a, b;
2034
2035 /* Are there nodes at this distance from each other? */
2036 if (!find_numa_distance(dist))
2037 continue;
2038
2039 for_each_node_mask(a, nodes) {
2040 unsigned long faults = 0;
2041 nodemask_t this_group;
2042 nodes_clear(this_group);
2043
2044 /* Sum group's NUMA faults; includes a==b case. */
2045 for_each_node_mask(b, nodes) {
2046 if (node_distance(a, b) < dist) {
2047 faults += group_faults(p, b);
2048 node_set(b, this_group);
2049 node_clear(b, nodes);
2050 }
2051 }
2052
2053 /* Remember the top group. */
2054 if (faults > max_faults) {
2055 max_faults = faults;
2056 max_group = this_group;
2057 /*
2058 * subtle: at the smallest distance there is
2059 * just one node left in each "group", the
2060 * winner is the preferred nid.
2061 */
2062 nid = a;
2063 }
2064 }
2065 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2066 if (!max_faults)
2067 break;
54009416
RR
2068 nodes = max_group;
2069 }
2070 return nid;
2071}
2072
cbee9f88
PZ
2073static void task_numa_placement(struct task_struct *p)
2074{
83e1d2cd
MG
2075 int seq, nid, max_nid = -1, max_group_nid = -1;
2076 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2077 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2078 unsigned long total_faults;
2079 u64 runtime, period;
7dbd13ed 2080 spinlock_t *group_lock = NULL;
cbee9f88 2081
7e5a2c17
JL
2082 /*
2083 * The p->mm->numa_scan_seq field gets updated without
2084 * exclusive access. Use READ_ONCE() here to ensure
2085 * that the field is read in a single access:
2086 */
316c1608 2087 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2088 if (p->numa_scan_seq == seq)
2089 return;
2090 p->numa_scan_seq = seq;
598f0ec0 2091 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2092
7e2703e6
RR
2093 total_faults = p->numa_faults_locality[0] +
2094 p->numa_faults_locality[1];
2095 runtime = numa_get_avg_runtime(p, &period);
2096
7dbd13ed
MG
2097 /* If the task is part of a group prevent parallel updates to group stats */
2098 if (p->numa_group) {
2099 group_lock = &p->numa_group->lock;
60e69eed 2100 spin_lock_irq(group_lock);
7dbd13ed
MG
2101 }
2102
688b7585
MG
2103 /* Find the node with the highest number of faults */
2104 for_each_online_node(nid) {
44dba3d5
IM
2105 /* Keep track of the offsets in numa_faults array */
2106 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2107 unsigned long faults = 0, group_faults = 0;
44dba3d5 2108 int priv;
745d6147 2109
be1e4e76 2110 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2111 long diff, f_diff, f_weight;
8c8a743c 2112
44dba3d5
IM
2113 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2114 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2115 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2116 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2117
ac8e895b 2118 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2119 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2120 fault_types[priv] += p->numa_faults[membuf_idx];
2121 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2122
7e2703e6
RR
2123 /*
2124 * Normalize the faults_from, so all tasks in a group
2125 * count according to CPU use, instead of by the raw
2126 * number of faults. Tasks with little runtime have
2127 * little over-all impact on throughput, and thus their
2128 * faults are less important.
2129 */
2130 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2131 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2132 (total_faults + 1);
44dba3d5
IM
2133 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2134 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2135
44dba3d5
IM
2136 p->numa_faults[mem_idx] += diff;
2137 p->numa_faults[cpu_idx] += f_diff;
2138 faults += p->numa_faults[mem_idx];
83e1d2cd 2139 p->total_numa_faults += diff;
8c8a743c 2140 if (p->numa_group) {
44dba3d5
IM
2141 /*
2142 * safe because we can only change our own group
2143 *
2144 * mem_idx represents the offset for a given
2145 * nid and priv in a specific region because it
2146 * is at the beginning of the numa_faults array.
2147 */
2148 p->numa_group->faults[mem_idx] += diff;
2149 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2150 p->numa_group->total_faults += diff;
44dba3d5 2151 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2152 }
ac8e895b
MG
2153 }
2154
688b7585
MG
2155 if (faults > max_faults) {
2156 max_faults = faults;
2157 max_nid = nid;
2158 }
83e1d2cd
MG
2159
2160 if (group_faults > max_group_faults) {
2161 max_group_faults = group_faults;
2162 max_group_nid = nid;
2163 }
2164 }
2165
04bb2f94
RR
2166 update_task_scan_period(p, fault_types[0], fault_types[1]);
2167
7dbd13ed 2168 if (p->numa_group) {
4142c3eb 2169 numa_group_count_active_nodes(p->numa_group);
60e69eed 2170 spin_unlock_irq(group_lock);
54009416 2171 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2172 }
2173
bb97fc31
RR
2174 if (max_faults) {
2175 /* Set the new preferred node */
2176 if (max_nid != p->numa_preferred_nid)
2177 sched_setnuma(p, max_nid);
2178
2179 if (task_node(p) != p->numa_preferred_nid)
2180 numa_migrate_preferred(p);
3a7053b3 2181 }
cbee9f88
PZ
2182}
2183
8c8a743c
PZ
2184static inline int get_numa_group(struct numa_group *grp)
2185{
2186 return atomic_inc_not_zero(&grp->refcount);
2187}
2188
2189static inline void put_numa_group(struct numa_group *grp)
2190{
2191 if (atomic_dec_and_test(&grp->refcount))
2192 kfree_rcu(grp, rcu);
2193}
2194
3e6a9418
MG
2195static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2196 int *priv)
8c8a743c
PZ
2197{
2198 struct numa_group *grp, *my_grp;
2199 struct task_struct *tsk;
2200 bool join = false;
2201 int cpu = cpupid_to_cpu(cpupid);
2202 int i;
2203
2204 if (unlikely(!p->numa_group)) {
2205 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2206 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2207
2208 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2209 if (!grp)
2210 return;
2211
2212 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2213 grp->active_nodes = 1;
2214 grp->max_faults_cpu = 0;
8c8a743c 2215 spin_lock_init(&grp->lock);
e29cf08b 2216 grp->gid = p->pid;
50ec8a40 2217 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2218 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2219 nr_node_ids;
8c8a743c 2220
be1e4e76 2221 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2222 grp->faults[i] = p->numa_faults[i];
8c8a743c 2223
989348b5 2224 grp->total_faults = p->total_numa_faults;
83e1d2cd 2225
8c8a743c
PZ
2226 grp->nr_tasks++;
2227 rcu_assign_pointer(p->numa_group, grp);
2228 }
2229
2230 rcu_read_lock();
316c1608 2231 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2232
2233 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2234 goto no_join;
8c8a743c
PZ
2235
2236 grp = rcu_dereference(tsk->numa_group);
2237 if (!grp)
3354781a 2238 goto no_join;
8c8a743c
PZ
2239
2240 my_grp = p->numa_group;
2241 if (grp == my_grp)
3354781a 2242 goto no_join;
8c8a743c
PZ
2243
2244 /*
2245 * Only join the other group if its bigger; if we're the bigger group,
2246 * the other task will join us.
2247 */
2248 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2249 goto no_join;
8c8a743c
PZ
2250
2251 /*
2252 * Tie-break on the grp address.
2253 */
2254 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2255 goto no_join;
8c8a743c 2256
dabe1d99
RR
2257 /* Always join threads in the same process. */
2258 if (tsk->mm == current->mm)
2259 join = true;
2260
2261 /* Simple filter to avoid false positives due to PID collisions */
2262 if (flags & TNF_SHARED)
2263 join = true;
8c8a743c 2264
3e6a9418
MG
2265 /* Update priv based on whether false sharing was detected */
2266 *priv = !join;
2267
dabe1d99 2268 if (join && !get_numa_group(grp))
3354781a 2269 goto no_join;
8c8a743c 2270
8c8a743c
PZ
2271 rcu_read_unlock();
2272
2273 if (!join)
2274 return;
2275
60e69eed
MG
2276 BUG_ON(irqs_disabled());
2277 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2278
be1e4e76 2279 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2280 my_grp->faults[i] -= p->numa_faults[i];
2281 grp->faults[i] += p->numa_faults[i];
8c8a743c 2282 }
989348b5
MG
2283 my_grp->total_faults -= p->total_numa_faults;
2284 grp->total_faults += p->total_numa_faults;
8c8a743c 2285
8c8a743c
PZ
2286 my_grp->nr_tasks--;
2287 grp->nr_tasks++;
2288
2289 spin_unlock(&my_grp->lock);
60e69eed 2290 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2291
2292 rcu_assign_pointer(p->numa_group, grp);
2293
2294 put_numa_group(my_grp);
3354781a
PZ
2295 return;
2296
2297no_join:
2298 rcu_read_unlock();
2299 return;
8c8a743c
PZ
2300}
2301
2302void task_numa_free(struct task_struct *p)
2303{
2304 struct numa_group *grp = p->numa_group;
44dba3d5 2305 void *numa_faults = p->numa_faults;
e9dd685c
SR
2306 unsigned long flags;
2307 int i;
8c8a743c
PZ
2308
2309 if (grp) {
e9dd685c 2310 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2311 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2312 grp->faults[i] -= p->numa_faults[i];
989348b5 2313 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2314
8c8a743c 2315 grp->nr_tasks--;
e9dd685c 2316 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2317 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2318 put_numa_group(grp);
2319 }
2320
44dba3d5 2321 p->numa_faults = NULL;
82727018 2322 kfree(numa_faults);
8c8a743c
PZ
2323}
2324
cbee9f88
PZ
2325/*
2326 * Got a PROT_NONE fault for a page on @node.
2327 */
58b46da3 2328void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2329{
2330 struct task_struct *p = current;
6688cc05 2331 bool migrated = flags & TNF_MIGRATED;
58b46da3 2332 int cpu_node = task_node(current);
792568ec 2333 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2334 struct numa_group *ng;
ac8e895b 2335 int priv;
cbee9f88 2336
2a595721 2337 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2338 return;
2339
9ff1d9ff
MG
2340 /* for example, ksmd faulting in a user's mm */
2341 if (!p->mm)
2342 return;
2343
f809ca9a 2344 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2345 if (unlikely(!p->numa_faults)) {
2346 int size = sizeof(*p->numa_faults) *
be1e4e76 2347 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2348
44dba3d5
IM
2349 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2350 if (!p->numa_faults)
f809ca9a 2351 return;
745d6147 2352
83e1d2cd 2353 p->total_numa_faults = 0;
04bb2f94 2354 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2355 }
cbee9f88 2356
8c8a743c
PZ
2357 /*
2358 * First accesses are treated as private, otherwise consider accesses
2359 * to be private if the accessing pid has not changed
2360 */
2361 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2362 priv = 1;
2363 } else {
2364 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2365 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2366 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2367 }
2368
792568ec
RR
2369 /*
2370 * If a workload spans multiple NUMA nodes, a shared fault that
2371 * occurs wholly within the set of nodes that the workload is
2372 * actively using should be counted as local. This allows the
2373 * scan rate to slow down when a workload has settled down.
2374 */
4142c3eb
RR
2375 ng = p->numa_group;
2376 if (!priv && !local && ng && ng->active_nodes > 1 &&
2377 numa_is_active_node(cpu_node, ng) &&
2378 numa_is_active_node(mem_node, ng))
792568ec
RR
2379 local = 1;
2380
cbee9f88 2381 task_numa_placement(p);
f809ca9a 2382
2739d3ee
RR
2383 /*
2384 * Retry task to preferred node migration periodically, in case it
2385 * case it previously failed, or the scheduler moved us.
2386 */
2387 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2388 numa_migrate_preferred(p);
2389
b32e86b4
IM
2390 if (migrated)
2391 p->numa_pages_migrated += pages;
074c2381
MG
2392 if (flags & TNF_MIGRATE_FAIL)
2393 p->numa_faults_locality[2] += pages;
b32e86b4 2394
44dba3d5
IM
2395 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2396 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2397 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2398}
2399
6e5fb223
PZ
2400static void reset_ptenuma_scan(struct task_struct *p)
2401{
7e5a2c17
JL
2402 /*
2403 * We only did a read acquisition of the mmap sem, so
2404 * p->mm->numa_scan_seq is written to without exclusive access
2405 * and the update is not guaranteed to be atomic. That's not
2406 * much of an issue though, since this is just used for
2407 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2408 * expensive, to avoid any form of compiler optimizations:
2409 */
316c1608 2410 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2411 p->mm->numa_scan_offset = 0;
2412}
2413
cbee9f88
PZ
2414/*
2415 * The expensive part of numa migration is done from task_work context.
2416 * Triggered from task_tick_numa().
2417 */
2418void task_numa_work(struct callback_head *work)
2419{
2420 unsigned long migrate, next_scan, now = jiffies;
2421 struct task_struct *p = current;
2422 struct mm_struct *mm = p->mm;
51170840 2423 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2424 struct vm_area_struct *vma;
9f40604c 2425 unsigned long start, end;
598f0ec0 2426 unsigned long nr_pte_updates = 0;
4620f8c1 2427 long pages, virtpages;
cbee9f88 2428
9148a3a1 2429 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2430
2431 work->next = work; /* protect against double add */
2432 /*
2433 * Who cares about NUMA placement when they're dying.
2434 *
2435 * NOTE: make sure not to dereference p->mm before this check,
2436 * exit_task_work() happens _after_ exit_mm() so we could be called
2437 * without p->mm even though we still had it when we enqueued this
2438 * work.
2439 */
2440 if (p->flags & PF_EXITING)
2441 return;
2442
930aa174 2443 if (!mm->numa_next_scan) {
7e8d16b6
MG
2444 mm->numa_next_scan = now +
2445 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2446 }
2447
cbee9f88
PZ
2448 /*
2449 * Enforce maximal scan/migration frequency..
2450 */
2451 migrate = mm->numa_next_scan;
2452 if (time_before(now, migrate))
2453 return;
2454
598f0ec0
MG
2455 if (p->numa_scan_period == 0) {
2456 p->numa_scan_period_max = task_scan_max(p);
2457 p->numa_scan_period = task_scan_min(p);
2458 }
cbee9f88 2459
fb003b80 2460 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2461 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2462 return;
2463
19a78d11
PZ
2464 /*
2465 * Delay this task enough that another task of this mm will likely win
2466 * the next time around.
2467 */
2468 p->node_stamp += 2 * TICK_NSEC;
2469
9f40604c
MG
2470 start = mm->numa_scan_offset;
2471 pages = sysctl_numa_balancing_scan_size;
2472 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2473 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2474 if (!pages)
2475 return;
cbee9f88 2476
4620f8c1 2477
6e5fb223 2478 down_read(&mm->mmap_sem);
9f40604c 2479 vma = find_vma(mm, start);
6e5fb223
PZ
2480 if (!vma) {
2481 reset_ptenuma_scan(p);
9f40604c 2482 start = 0;
6e5fb223
PZ
2483 vma = mm->mmap;
2484 }
9f40604c 2485 for (; vma; vma = vma->vm_next) {
6b79c57b 2486 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2487 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2488 continue;
6b79c57b 2489 }
6e5fb223 2490
4591ce4f
MG
2491 /*
2492 * Shared library pages mapped by multiple processes are not
2493 * migrated as it is expected they are cache replicated. Avoid
2494 * hinting faults in read-only file-backed mappings or the vdso
2495 * as migrating the pages will be of marginal benefit.
2496 */
2497 if (!vma->vm_mm ||
2498 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2499 continue;
2500
3c67f474
MG
2501 /*
2502 * Skip inaccessible VMAs to avoid any confusion between
2503 * PROT_NONE and NUMA hinting ptes
2504 */
2505 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2506 continue;
4591ce4f 2507
9f40604c
MG
2508 do {
2509 start = max(start, vma->vm_start);
2510 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2511 end = min(end, vma->vm_end);
4620f8c1 2512 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2513
2514 /*
4620f8c1
RR
2515 * Try to scan sysctl_numa_balancing_size worth of
2516 * hpages that have at least one present PTE that
2517 * is not already pte-numa. If the VMA contains
2518 * areas that are unused or already full of prot_numa
2519 * PTEs, scan up to virtpages, to skip through those
2520 * areas faster.
598f0ec0
MG
2521 */
2522 if (nr_pte_updates)
2523 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2524 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2525
9f40604c 2526 start = end;
4620f8c1 2527 if (pages <= 0 || virtpages <= 0)
9f40604c 2528 goto out;
3cf1962c
RR
2529
2530 cond_resched();
9f40604c 2531 } while (end != vma->vm_end);
cbee9f88 2532 }
6e5fb223 2533
9f40604c 2534out:
6e5fb223 2535 /*
c69307d5
PZ
2536 * It is possible to reach the end of the VMA list but the last few
2537 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2538 * would find the !migratable VMA on the next scan but not reset the
2539 * scanner to the start so check it now.
6e5fb223
PZ
2540 */
2541 if (vma)
9f40604c 2542 mm->numa_scan_offset = start;
6e5fb223
PZ
2543 else
2544 reset_ptenuma_scan(p);
2545 up_read(&mm->mmap_sem);
51170840
RR
2546
2547 /*
2548 * Make sure tasks use at least 32x as much time to run other code
2549 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2550 * Usually update_task_scan_period slows down scanning enough; on an
2551 * overloaded system we need to limit overhead on a per task basis.
2552 */
2553 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2554 u64 diff = p->se.sum_exec_runtime - runtime;
2555 p->node_stamp += 32 * diff;
2556 }
cbee9f88
PZ
2557}
2558
2559/*
2560 * Drive the periodic memory faults..
2561 */
2562void task_tick_numa(struct rq *rq, struct task_struct *curr)
2563{
2564 struct callback_head *work = &curr->numa_work;
2565 u64 period, now;
2566
2567 /*
2568 * We don't care about NUMA placement if we don't have memory.
2569 */
2570 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2571 return;
2572
2573 /*
2574 * Using runtime rather than walltime has the dual advantage that
2575 * we (mostly) drive the selection from busy threads and that the
2576 * task needs to have done some actual work before we bother with
2577 * NUMA placement.
2578 */
2579 now = curr->se.sum_exec_runtime;
2580 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2581
25b3e5a3 2582 if (now > curr->node_stamp + period) {
4b96a29b 2583 if (!curr->node_stamp)
598f0ec0 2584 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2585 curr->node_stamp += period;
cbee9f88
PZ
2586
2587 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2588 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2589 task_work_add(curr, work, true);
2590 }
2591 }
2592}
2593#else
2594static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2595{
2596}
0ec8aa00
PZ
2597
2598static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2599{
2600}
2601
2602static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2603{
2604}
cbee9f88
PZ
2605#endif /* CONFIG_NUMA_BALANCING */
2606
30cfdcfc
DA
2607static void
2608account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2609{
2610 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2611 if (!parent_entity(se))
029632fb 2612 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2613#ifdef CONFIG_SMP
0ec8aa00
PZ
2614 if (entity_is_task(se)) {
2615 struct rq *rq = rq_of(cfs_rq);
2616
2617 account_numa_enqueue(rq, task_of(se));
2618 list_add(&se->group_node, &rq->cfs_tasks);
2619 }
367456c7 2620#endif
30cfdcfc 2621 cfs_rq->nr_running++;
30cfdcfc
DA
2622}
2623
2624static void
2625account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2626{
2627 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2628 if (!parent_entity(se))
029632fb 2629 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2630#ifdef CONFIG_SMP
0ec8aa00
PZ
2631 if (entity_is_task(se)) {
2632 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2633 list_del_init(&se->group_node);
0ec8aa00 2634 }
bfdb198c 2635#endif
30cfdcfc 2636 cfs_rq->nr_running--;
30cfdcfc
DA
2637}
2638
3ff6dcac
YZ
2639#ifdef CONFIG_FAIR_GROUP_SCHED
2640# ifdef CONFIG_SMP
ea1dc6fc 2641static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2642{
ea1dc6fc 2643 long tg_weight, load, shares;
cf5f0acf
PZ
2644
2645 /*
ea1dc6fc
PZ
2646 * This really should be: cfs_rq->avg.load_avg, but instead we use
2647 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2648 * the shares for small weight interactive tasks.
cf5f0acf 2649 */
ea1dc6fc 2650 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2651
ea1dc6fc 2652 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2653
ea1dc6fc
PZ
2654 /* Ensure tg_weight >= load */
2655 tg_weight -= cfs_rq->tg_load_avg_contrib;
2656 tg_weight += load;
3ff6dcac 2657
3ff6dcac 2658 shares = (tg->shares * load);
cf5f0acf
PZ
2659 if (tg_weight)
2660 shares /= tg_weight;
3ff6dcac 2661
b8fd8423
DE
2662 /*
2663 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2664 * of a group with small tg->shares value. It is a floor value which is
2665 * assigned as a minimum load.weight to the sched_entity representing
2666 * the group on a CPU.
2667 *
2668 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2669 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2670 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2671 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2672 * instead of 0.
2673 */
3ff6dcac
YZ
2674 if (shares < MIN_SHARES)
2675 shares = MIN_SHARES;
2676 if (shares > tg->shares)
2677 shares = tg->shares;
2678
2679 return shares;
2680}
3ff6dcac 2681# else /* CONFIG_SMP */
6d5ab293 2682static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2683{
2684 return tg->shares;
2685}
3ff6dcac 2686# endif /* CONFIG_SMP */
ea1dc6fc 2687
2069dd75
PZ
2688static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2689 unsigned long weight)
2690{
19e5eebb
PT
2691 if (se->on_rq) {
2692 /* commit outstanding execution time */
2693 if (cfs_rq->curr == se)
2694 update_curr(cfs_rq);
2069dd75 2695 account_entity_dequeue(cfs_rq, se);
19e5eebb 2696 }
2069dd75
PZ
2697
2698 update_load_set(&se->load, weight);
2699
2700 if (se->on_rq)
2701 account_entity_enqueue(cfs_rq, se);
2702}
2703
82958366
PT
2704static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2705
89ee048f 2706static void update_cfs_shares(struct sched_entity *se)
2069dd75 2707{
89ee048f 2708 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2709 struct task_group *tg;
3ff6dcac 2710 long shares;
2069dd75 2711
89ee048f
VG
2712 if (!cfs_rq)
2713 return;
2714
2715 if (throttled_hierarchy(cfs_rq))
2069dd75 2716 return;
89ee048f
VG
2717
2718 tg = cfs_rq->tg;
2719
3ff6dcac
YZ
2720#ifndef CONFIG_SMP
2721 if (likely(se->load.weight == tg->shares))
2722 return;
2723#endif
6d5ab293 2724 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2725
2726 reweight_entity(cfs_rq_of(se), se, shares);
2727}
89ee048f 2728
2069dd75 2729#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2730static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2731{
2732}
2733#endif /* CONFIG_FAIR_GROUP_SCHED */
2734
141965c7 2735#ifdef CONFIG_SMP
5b51f2f8
PT
2736/* Precomputed fixed inverse multiplies for multiplication by y^n */
2737static const u32 runnable_avg_yN_inv[] = {
2738 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2739 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2740 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2741 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2742 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2743 0x85aac367, 0x82cd8698,
2744};
2745
2746/*
2747 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2748 * over-estimates when re-combining.
2749 */
2750static const u32 runnable_avg_yN_sum[] = {
2751 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2752 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2753 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2754};
2755
7b20b916
YD
2756/*
2757 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2758 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2759 * were generated:
2760 */
2761static const u32 __accumulated_sum_N32[] = {
2762 0, 23371, 35056, 40899, 43820, 45281,
2763 46011, 46376, 46559, 46650, 46696, 46719,
2764};
2765
9d85f21c
PT
2766/*
2767 * Approximate:
2768 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2769 */
2770static __always_inline u64 decay_load(u64 val, u64 n)
2771{
5b51f2f8
PT
2772 unsigned int local_n;
2773
2774 if (!n)
2775 return val;
2776 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2777 return 0;
2778
2779 /* after bounds checking we can collapse to 32-bit */
2780 local_n = n;
2781
2782 /*
2783 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2784 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2785 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2786 *
2787 * To achieve constant time decay_load.
2788 */
2789 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2790 val >>= local_n / LOAD_AVG_PERIOD;
2791 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2792 }
2793
9d89c257
YD
2794 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2795 return val;
5b51f2f8
PT
2796}
2797
2798/*
2799 * For updates fully spanning n periods, the contribution to runnable
2800 * average will be: \Sum 1024*y^n
2801 *
2802 * We can compute this reasonably efficiently by combining:
2803 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2804 */
2805static u32 __compute_runnable_contrib(u64 n)
2806{
2807 u32 contrib = 0;
2808
2809 if (likely(n <= LOAD_AVG_PERIOD))
2810 return runnable_avg_yN_sum[n];
2811 else if (unlikely(n >= LOAD_AVG_MAX_N))
2812 return LOAD_AVG_MAX;
2813
7b20b916
YD
2814 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2815 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2816 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2817 contrib = decay_load(contrib, n);
2818 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2819}
2820
54a21385 2821#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2822
9d85f21c
PT
2823/*
2824 * We can represent the historical contribution to runnable average as the
2825 * coefficients of a geometric series. To do this we sub-divide our runnable
2826 * history into segments of approximately 1ms (1024us); label the segment that
2827 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2828 *
2829 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2830 * p0 p1 p2
2831 * (now) (~1ms ago) (~2ms ago)
2832 *
2833 * Let u_i denote the fraction of p_i that the entity was runnable.
2834 *
2835 * We then designate the fractions u_i as our co-efficients, yielding the
2836 * following representation of historical load:
2837 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2838 *
2839 * We choose y based on the with of a reasonably scheduling period, fixing:
2840 * y^32 = 0.5
2841 *
2842 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2843 * approximately half as much as the contribution to load within the last ms
2844 * (u_0).
2845 *
2846 * When a period "rolls over" and we have new u_0`, multiplying the previous
2847 * sum again by y is sufficient to update:
2848 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2849 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2850 */
9d89c257
YD
2851static __always_inline int
2852__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2853 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2854{
e0f5f3af 2855 u64 delta, scaled_delta, periods;
9d89c257 2856 u32 contrib;
6115c793 2857 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2858 unsigned long scale_freq, scale_cpu;
9d85f21c 2859
9d89c257 2860 delta = now - sa->last_update_time;
9d85f21c
PT
2861 /*
2862 * This should only happen when time goes backwards, which it
2863 * unfortunately does during sched clock init when we swap over to TSC.
2864 */
2865 if ((s64)delta < 0) {
9d89c257 2866 sa->last_update_time = now;
9d85f21c
PT
2867 return 0;
2868 }
2869
2870 /*
2871 * Use 1024ns as the unit of measurement since it's a reasonable
2872 * approximation of 1us and fast to compute.
2873 */
2874 delta >>= 10;
2875 if (!delta)
2876 return 0;
9d89c257 2877 sa->last_update_time = now;
9d85f21c 2878
6f2b0452
DE
2879 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2880 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2881
9d85f21c 2882 /* delta_w is the amount already accumulated against our next period */
9d89c257 2883 delta_w = sa->period_contrib;
9d85f21c 2884 if (delta + delta_w >= 1024) {
9d85f21c
PT
2885 decayed = 1;
2886
9d89c257
YD
2887 /* how much left for next period will start over, we don't know yet */
2888 sa->period_contrib = 0;
2889
9d85f21c
PT
2890 /*
2891 * Now that we know we're crossing a period boundary, figure
2892 * out how much from delta we need to complete the current
2893 * period and accrue it.
2894 */
2895 delta_w = 1024 - delta_w;
54a21385 2896 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2897 if (weight) {
e0f5f3af
DE
2898 sa->load_sum += weight * scaled_delta_w;
2899 if (cfs_rq) {
2900 cfs_rq->runnable_load_sum +=
2901 weight * scaled_delta_w;
2902 }
13962234 2903 }
36ee28e4 2904 if (running)
006cdf02 2905 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2906
2907 delta -= delta_w;
2908
2909 /* Figure out how many additional periods this update spans */
2910 periods = delta / 1024;
2911 delta %= 1024;
2912
9d89c257 2913 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2914 if (cfs_rq) {
2915 cfs_rq->runnable_load_sum =
2916 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2917 }
9d89c257 2918 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2919
2920 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2921 contrib = __compute_runnable_contrib(periods);
54a21385 2922 contrib = cap_scale(contrib, scale_freq);
13962234 2923 if (weight) {
9d89c257 2924 sa->load_sum += weight * contrib;
13962234
YD
2925 if (cfs_rq)
2926 cfs_rq->runnable_load_sum += weight * contrib;
2927 }
36ee28e4 2928 if (running)
006cdf02 2929 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2930 }
2931
2932 /* Remainder of delta accrued against u_0` */
54a21385 2933 scaled_delta = cap_scale(delta, scale_freq);
13962234 2934 if (weight) {
e0f5f3af 2935 sa->load_sum += weight * scaled_delta;
13962234 2936 if (cfs_rq)
e0f5f3af 2937 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2938 }
36ee28e4 2939 if (running)
006cdf02 2940 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2941
9d89c257 2942 sa->period_contrib += delta;
9ee474f5 2943
9d89c257
YD
2944 if (decayed) {
2945 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2946 if (cfs_rq) {
2947 cfs_rq->runnable_load_avg =
2948 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2949 }
006cdf02 2950 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2951 }
aff3e498 2952
9d89c257 2953 return decayed;
9ee474f5
PT
2954}
2955
09a43ace
VG
2956/*
2957 * Signed add and clamp on underflow.
2958 *
2959 * Explicitly do a load-store to ensure the intermediate value never hits
2960 * memory. This allows lockless observations without ever seeing the negative
2961 * values.
2962 */
2963#define add_positive(_ptr, _val) do { \
2964 typeof(_ptr) ptr = (_ptr); \
2965 typeof(_val) val = (_val); \
2966 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2967 \
2968 res = var + val; \
2969 \
2970 if (val < 0 && res > var) \
2971 res = 0; \
2972 \
2973 WRITE_ONCE(*ptr, res); \
2974} while (0)
2975
c566e8e9 2976#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2977/**
2978 * update_tg_load_avg - update the tg's load avg
2979 * @cfs_rq: the cfs_rq whose avg changed
2980 * @force: update regardless of how small the difference
2981 *
2982 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2983 * However, because tg->load_avg is a global value there are performance
2984 * considerations.
2985 *
2986 * In order to avoid having to look at the other cfs_rq's, we use a
2987 * differential update where we store the last value we propagated. This in
2988 * turn allows skipping updates if the differential is 'small'.
2989 *
2990 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2991 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2992 */
9d89c257 2993static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2994{
9d89c257 2995 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2996
aa0b7ae0
WL
2997 /*
2998 * No need to update load_avg for root_task_group as it is not used.
2999 */
3000 if (cfs_rq->tg == &root_task_group)
3001 return;
3002
9d89c257
YD
3003 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3004 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3005 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3006 }
8165e145 3007}
f5f9739d 3008
ad936d86
BP
3009/*
3010 * Called within set_task_rq() right before setting a task's cpu. The
3011 * caller only guarantees p->pi_lock is held; no other assumptions,
3012 * including the state of rq->lock, should be made.
3013 */
3014void set_task_rq_fair(struct sched_entity *se,
3015 struct cfs_rq *prev, struct cfs_rq *next)
3016{
3017 if (!sched_feat(ATTACH_AGE_LOAD))
3018 return;
3019
3020 /*
3021 * We are supposed to update the task to "current" time, then its up to
3022 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3023 * getting what current time is, so simply throw away the out-of-date
3024 * time. This will result in the wakee task is less decayed, but giving
3025 * the wakee more load sounds not bad.
3026 */
3027 if (se->avg.last_update_time && prev) {
3028 u64 p_last_update_time;
3029 u64 n_last_update_time;
3030
3031#ifndef CONFIG_64BIT
3032 u64 p_last_update_time_copy;
3033 u64 n_last_update_time_copy;
3034
3035 do {
3036 p_last_update_time_copy = prev->load_last_update_time_copy;
3037 n_last_update_time_copy = next->load_last_update_time_copy;
3038
3039 smp_rmb();
3040
3041 p_last_update_time = prev->avg.last_update_time;
3042 n_last_update_time = next->avg.last_update_time;
3043
3044 } while (p_last_update_time != p_last_update_time_copy ||
3045 n_last_update_time != n_last_update_time_copy);
3046#else
3047 p_last_update_time = prev->avg.last_update_time;
3048 n_last_update_time = next->avg.last_update_time;
3049#endif
3050 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
3051 &se->avg, 0, 0, NULL);
3052 se->avg.last_update_time = n_last_update_time;
3053 }
3054}
09a43ace
VG
3055
3056/* Take into account change of utilization of a child task group */
3057static inline void
3058update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3059{
3060 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3061 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3062
3063 /* Nothing to update */
3064 if (!delta)
3065 return;
3066
3067 /* Set new sched_entity's utilization */
3068 se->avg.util_avg = gcfs_rq->avg.util_avg;
3069 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3070
3071 /* Update parent cfs_rq utilization */
3072 add_positive(&cfs_rq->avg.util_avg, delta);
3073 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3074}
3075
3076/* Take into account change of load of a child task group */
3077static inline void
3078update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3079{
3080 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3081 long delta, load = gcfs_rq->avg.load_avg;
3082
3083 /*
3084 * If the load of group cfs_rq is null, the load of the
3085 * sched_entity will also be null so we can skip the formula
3086 */
3087 if (load) {
3088 long tg_load;
3089
3090 /* Get tg's load and ensure tg_load > 0 */
3091 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3092
3093 /* Ensure tg_load >= load and updated with current load*/
3094 tg_load -= gcfs_rq->tg_load_avg_contrib;
3095 tg_load += load;
3096
3097 /*
3098 * We need to compute a correction term in the case that the
3099 * task group is consuming more CPU than a task of equal
3100 * weight. A task with a weight equals to tg->shares will have
3101 * a load less or equal to scale_load_down(tg->shares).
3102 * Similarly, the sched_entities that represent the task group
3103 * at parent level, can't have a load higher than
3104 * scale_load_down(tg->shares). And the Sum of sched_entities'
3105 * load must be <= scale_load_down(tg->shares).
3106 */
3107 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3108 /* scale gcfs_rq's load into tg's shares*/
3109 load *= scale_load_down(gcfs_rq->tg->shares);
3110 load /= tg_load;
3111 }
3112 }
3113
3114 delta = load - se->avg.load_avg;
3115
3116 /* Nothing to update */
3117 if (!delta)
3118 return;
3119
3120 /* Set new sched_entity's load */
3121 se->avg.load_avg = load;
3122 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3123
3124 /* Update parent cfs_rq load */
3125 add_positive(&cfs_rq->avg.load_avg, delta);
3126 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3127
3128 /*
3129 * If the sched_entity is already enqueued, we also have to update the
3130 * runnable load avg.
3131 */
3132 if (se->on_rq) {
3133 /* Update parent cfs_rq runnable_load_avg */
3134 add_positive(&cfs_rq->runnable_load_avg, delta);
3135 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3136 }
3137}
3138
3139static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3140{
3141 cfs_rq->propagate_avg = 1;
3142}
3143
3144static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3145{
3146 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3147
3148 if (!cfs_rq->propagate_avg)
3149 return 0;
3150
3151 cfs_rq->propagate_avg = 0;
3152 return 1;
3153}
3154
3155/* Update task and its cfs_rq load average */
3156static inline int propagate_entity_load_avg(struct sched_entity *se)
3157{
3158 struct cfs_rq *cfs_rq;
3159
3160 if (entity_is_task(se))
3161 return 0;
3162
3163 if (!test_and_clear_tg_cfs_propagate(se))
3164 return 0;
3165
3166 cfs_rq = cfs_rq_of(se);
3167
3168 set_tg_cfs_propagate(cfs_rq);
3169
3170 update_tg_cfs_util(cfs_rq, se);
3171 update_tg_cfs_load(cfs_rq, se);
3172
3173 return 1;
3174}
3175
6e83125c 3176#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3177
9d89c257 3178static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3179
3180static inline int propagate_entity_load_avg(struct sched_entity *se)
3181{
3182 return 0;
3183}
3184
3185static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3186
6e83125c 3187#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3188
a2c6c91f
SM
3189static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3190{
58919e83 3191 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
3192 /*
3193 * There are a few boundary cases this might miss but it should
3194 * get called often enough that that should (hopefully) not be
3195 * a real problem -- added to that it only calls on the local
3196 * CPU, so if we enqueue remotely we'll miss an update, but
3197 * the next tick/schedule should update.
3198 *
3199 * It will not get called when we go idle, because the idle
3200 * thread is a different class (!fair), nor will the utilization
3201 * number include things like RT tasks.
3202 *
3203 * As is, the util number is not freq-invariant (we'd have to
3204 * implement arch_scale_freq_capacity() for that).
3205 *
3206 * See cpu_util().
3207 */
12bde33d 3208 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
3209 }
3210}
3211
89741892
PZ
3212/*
3213 * Unsigned subtract and clamp on underflow.
3214 *
3215 * Explicitly do a load-store to ensure the intermediate value never hits
3216 * memory. This allows lockless observations without ever seeing the negative
3217 * values.
3218 */
3219#define sub_positive(_ptr, _val) do { \
3220 typeof(_ptr) ptr = (_ptr); \
3221 typeof(*ptr) val = (_val); \
3222 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3223 res = var - val; \
3224 if (res > var) \
3225 res = 0; \
3226 WRITE_ONCE(*ptr, res); \
3227} while (0)
3228
3d30544f
PZ
3229/**
3230 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3231 * @now: current time, as per cfs_rq_clock_task()
3232 * @cfs_rq: cfs_rq to update
3233 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3234 *
3235 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3236 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3237 * post_init_entity_util_avg().
3238 *
3239 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3240 *
7c3edd2c
PZ
3241 * Returns true if the load decayed or we removed load.
3242 *
3243 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3244 * call update_tg_load_avg() when this function returns true.
3d30544f 3245 */
a2c6c91f
SM
3246static inline int
3247update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3248{
9d89c257 3249 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3250 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3251
9d89c257 3252 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3253 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3254 sub_positive(&sa->load_avg, r);
3255 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3256 removed_load = 1;
4e516076 3257 set_tg_cfs_propagate(cfs_rq);
8165e145 3258 }
2dac754e 3259
9d89c257
YD
3260 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3261 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3262 sub_positive(&sa->util_avg, r);
3263 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3264 removed_util = 1;
4e516076 3265 set_tg_cfs_propagate(cfs_rq);
9d89c257 3266 }
36ee28e4 3267
a2c6c91f 3268 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 3269 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 3270
9d89c257
YD
3271#ifndef CONFIG_64BIT
3272 smp_wmb();
3273 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3274#endif
36ee28e4 3275
a2c6c91f
SM
3276 if (update_freq && (decayed || removed_util))
3277 cfs_rq_util_change(cfs_rq);
21e96f88 3278
41e0d37f 3279 return decayed || removed_load;
21e96f88
SM
3280}
3281
d31b1a66
VG
3282/*
3283 * Optional action to be done while updating the load average
3284 */
3285#define UPDATE_TG 0x1
3286#define SKIP_AGE_LOAD 0x2
3287
21e96f88 3288/* Update task and its cfs_rq load average */
d31b1a66 3289static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3290{
3291 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3292 u64 now = cfs_rq_clock_task(cfs_rq);
3293 struct rq *rq = rq_of(cfs_rq);
3294 int cpu = cpu_of(rq);
09a43ace 3295 int decayed;
21e96f88
SM
3296
3297 /*
3298 * Track task load average for carrying it to new CPU after migrated, and
3299 * track group sched_entity load average for task_h_load calc in migration
3300 */
d31b1a66
VG
3301 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
3302 __update_load_avg(now, cpu, &se->avg,
21e96f88
SM
3303 se->on_rq * scale_load_down(se->load.weight),
3304 cfs_rq->curr == se, NULL);
d31b1a66 3305 }
21e96f88 3306
09a43ace
VG
3307 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3308 decayed |= propagate_entity_load_avg(se);
3309
3310 if (decayed && (flags & UPDATE_TG))
21e96f88 3311 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3312}
3313
3d30544f
PZ
3314/**
3315 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3316 * @cfs_rq: cfs_rq to attach to
3317 * @se: sched_entity to attach
3318 *
3319 * Must call update_cfs_rq_load_avg() before this, since we rely on
3320 * cfs_rq->avg.last_update_time being current.
3321 */
a05e8c51
BP
3322static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3323{
3324 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3325 cfs_rq->avg.load_avg += se->avg.load_avg;
3326 cfs_rq->avg.load_sum += se->avg.load_sum;
3327 cfs_rq->avg.util_avg += se->avg.util_avg;
3328 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3329 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3330
3331 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3332}
3333
3d30544f
PZ
3334/**
3335 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3336 * @cfs_rq: cfs_rq to detach from
3337 * @se: sched_entity to detach
3338 *
3339 * Must call update_cfs_rq_load_avg() before this, since we rely on
3340 * cfs_rq->avg.last_update_time being current.
3341 */
a05e8c51
BP
3342static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3343{
a05e8c51 3344
89741892
PZ
3345 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3346 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3347 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3348 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3349 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3350
3351 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3352}
3353
9d89c257
YD
3354/* Add the load generated by se into cfs_rq's load average */
3355static inline void
3356enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3357{
9d89c257 3358 struct sched_avg *sa = &se->avg;
18bf2805 3359
13962234
YD
3360 cfs_rq->runnable_load_avg += sa->load_avg;
3361 cfs_rq->runnable_load_sum += sa->load_sum;
3362
d31b1a66 3363 if (!sa->last_update_time) {
a05e8c51 3364 attach_entity_load_avg(cfs_rq, se);
9d89c257 3365 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3366 }
2dac754e
PT
3367}
3368
13962234
YD
3369/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3370static inline void
3371dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3372{
13962234
YD
3373 cfs_rq->runnable_load_avg =
3374 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3375 cfs_rq->runnable_load_sum =
a05e8c51 3376 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3377}
3378
9d89c257 3379#ifndef CONFIG_64BIT
0905f04e
YD
3380static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3381{
9d89c257 3382 u64 last_update_time_copy;
0905f04e 3383 u64 last_update_time;
9ee474f5 3384
9d89c257
YD
3385 do {
3386 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3387 smp_rmb();
3388 last_update_time = cfs_rq->avg.last_update_time;
3389 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3390
3391 return last_update_time;
3392}
9d89c257 3393#else
0905f04e
YD
3394static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3395{
3396 return cfs_rq->avg.last_update_time;
3397}
9d89c257
YD
3398#endif
3399
104cb16d
MR
3400/*
3401 * Synchronize entity load avg of dequeued entity without locking
3402 * the previous rq.
3403 */
3404void sync_entity_load_avg(struct sched_entity *se)
3405{
3406 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3407 u64 last_update_time;
3408
3409 last_update_time = cfs_rq_last_update_time(cfs_rq);
3410 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3411}
3412
0905f04e
YD
3413/*
3414 * Task first catches up with cfs_rq, and then subtract
3415 * itself from the cfs_rq (task must be off the queue now).
3416 */
3417void remove_entity_load_avg(struct sched_entity *se)
3418{
3419 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3420
3421 /*
7dc603c9
PZ
3422 * tasks cannot exit without having gone through wake_up_new_task() ->
3423 * post_init_entity_util_avg() which will have added things to the
3424 * cfs_rq, so we can remove unconditionally.
3425 *
3426 * Similarly for groups, they will have passed through
3427 * post_init_entity_util_avg() before unregister_sched_fair_group()
3428 * calls this.
0905f04e 3429 */
0905f04e 3430
104cb16d 3431 sync_entity_load_avg(se);
9d89c257
YD
3432 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3433 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3434}
642dbc39 3435
7ea241af
YD
3436static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3437{
3438 return cfs_rq->runnable_load_avg;
3439}
3440
3441static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3442{
3443 return cfs_rq->avg.load_avg;
3444}
3445
46f69fa3 3446static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3447
38033c37
PZ
3448#else /* CONFIG_SMP */
3449
01011473
PZ
3450static inline int
3451update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3452{
3453 return 0;
3454}
3455
d31b1a66
VG
3456#define UPDATE_TG 0x0
3457#define SKIP_AGE_LOAD 0x0
3458
3459static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3460{
12bde33d 3461 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3462}
3463
9d89c257
YD
3464static inline void
3465enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3466static inline void
3467dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3468static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3469
a05e8c51
BP
3470static inline void
3471attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3472static inline void
3473detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3474
46f69fa3 3475static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3476{
3477 return 0;
3478}
3479
38033c37 3480#endif /* CONFIG_SMP */
9d85f21c 3481
ddc97297
PZ
3482static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3483{
3484#ifdef CONFIG_SCHED_DEBUG
3485 s64 d = se->vruntime - cfs_rq->min_vruntime;
3486
3487 if (d < 0)
3488 d = -d;
3489
3490 if (d > 3*sysctl_sched_latency)
ae92882e 3491 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3492#endif
3493}
3494
aeb73b04
PZ
3495static void
3496place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3497{
1af5f730 3498 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3499
2cb8600e
PZ
3500 /*
3501 * The 'current' period is already promised to the current tasks,
3502 * however the extra weight of the new task will slow them down a
3503 * little, place the new task so that it fits in the slot that
3504 * stays open at the end.
3505 */
94dfb5e7 3506 if (initial && sched_feat(START_DEBIT))
f9c0b095 3507 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3508
a2e7a7eb 3509 /* sleeps up to a single latency don't count. */
5ca9880c 3510 if (!initial) {
a2e7a7eb 3511 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3512
a2e7a7eb
MG
3513 /*
3514 * Halve their sleep time's effect, to allow
3515 * for a gentler effect of sleepers:
3516 */
3517 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3518 thresh >>= 1;
51e0304c 3519
a2e7a7eb 3520 vruntime -= thresh;
aeb73b04
PZ
3521 }
3522
b5d9d734 3523 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3524 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3525}
3526
d3d9dc33
PT
3527static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3528
cb251765
MG
3529static inline void check_schedstat_required(void)
3530{
3531#ifdef CONFIG_SCHEDSTATS
3532 if (schedstat_enabled())
3533 return;
3534
3535 /* Force schedstat enabled if a dependent tracepoint is active */
3536 if (trace_sched_stat_wait_enabled() ||
3537 trace_sched_stat_sleep_enabled() ||
3538 trace_sched_stat_iowait_enabled() ||
3539 trace_sched_stat_blocked_enabled() ||
3540 trace_sched_stat_runtime_enabled()) {
eda8dca5 3541 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3542 "stat_blocked and stat_runtime require the "
3543 "kernel parameter schedstats=enabled or "
3544 "kernel.sched_schedstats=1\n");
3545 }
3546#endif
3547}
3548
b5179ac7
PZ
3549
3550/*
3551 * MIGRATION
3552 *
3553 * dequeue
3554 * update_curr()
3555 * update_min_vruntime()
3556 * vruntime -= min_vruntime
3557 *
3558 * enqueue
3559 * update_curr()
3560 * update_min_vruntime()
3561 * vruntime += min_vruntime
3562 *
3563 * this way the vruntime transition between RQs is done when both
3564 * min_vruntime are up-to-date.
3565 *
3566 * WAKEUP (remote)
3567 *
59efa0ba 3568 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3569 * vruntime -= min_vruntime
3570 *
3571 * enqueue
3572 * update_curr()
3573 * update_min_vruntime()
3574 * vruntime += min_vruntime
3575 *
3576 * this way we don't have the most up-to-date min_vruntime on the originating
3577 * CPU and an up-to-date min_vruntime on the destination CPU.
3578 */
3579
bf0f6f24 3580static void
88ec22d3 3581enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3582{
2f950354
PZ
3583 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3584 bool curr = cfs_rq->curr == se;
3585
88ec22d3 3586 /*
2f950354
PZ
3587 * If we're the current task, we must renormalise before calling
3588 * update_curr().
88ec22d3 3589 */
2f950354 3590 if (renorm && curr)
88ec22d3
PZ
3591 se->vruntime += cfs_rq->min_vruntime;
3592
2f950354
PZ
3593 update_curr(cfs_rq);
3594
bf0f6f24 3595 /*
2f950354
PZ
3596 * Otherwise, renormalise after, such that we're placed at the current
3597 * moment in time, instead of some random moment in the past. Being
3598 * placed in the past could significantly boost this task to the
3599 * fairness detriment of existing tasks.
bf0f6f24 3600 */
2f950354
PZ
3601 if (renorm && !curr)
3602 se->vruntime += cfs_rq->min_vruntime;
3603
89ee048f
VG
3604 /*
3605 * When enqueuing a sched_entity, we must:
3606 * - Update loads to have both entity and cfs_rq synced with now.
3607 * - Add its load to cfs_rq->runnable_avg
3608 * - For group_entity, update its weight to reflect the new share of
3609 * its group cfs_rq
3610 * - Add its new weight to cfs_rq->load.weight
3611 */
d31b1a66 3612 update_load_avg(se, UPDATE_TG);
9d89c257 3613 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3614 update_cfs_shares(se);
17bc14b7 3615 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3616
1a3d027c 3617 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3618 place_entity(cfs_rq, se, 0);
bf0f6f24 3619
cb251765 3620 check_schedstat_required();
4fa8d299
JP
3621 update_stats_enqueue(cfs_rq, se, flags);
3622 check_spread(cfs_rq, se);
2f950354 3623 if (!curr)
83b699ed 3624 __enqueue_entity(cfs_rq, se);
2069dd75 3625 se->on_rq = 1;
3d4b47b4 3626
d3d9dc33 3627 if (cfs_rq->nr_running == 1) {
3d4b47b4 3628 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3629 check_enqueue_throttle(cfs_rq);
3630 }
bf0f6f24
IM
3631}
3632
2c13c919 3633static void __clear_buddies_last(struct sched_entity *se)
2002c695 3634{
2c13c919
RR
3635 for_each_sched_entity(se) {
3636 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3637 if (cfs_rq->last != se)
2c13c919 3638 break;
f1044799
PZ
3639
3640 cfs_rq->last = NULL;
2c13c919
RR
3641 }
3642}
2002c695 3643
2c13c919
RR
3644static void __clear_buddies_next(struct sched_entity *se)
3645{
3646 for_each_sched_entity(se) {
3647 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3648 if (cfs_rq->next != se)
2c13c919 3649 break;
f1044799
PZ
3650
3651 cfs_rq->next = NULL;
2c13c919 3652 }
2002c695
PZ
3653}
3654
ac53db59
RR
3655static void __clear_buddies_skip(struct sched_entity *se)
3656{
3657 for_each_sched_entity(se) {
3658 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3659 if (cfs_rq->skip != se)
ac53db59 3660 break;
f1044799
PZ
3661
3662 cfs_rq->skip = NULL;
ac53db59
RR
3663 }
3664}
3665
a571bbea
PZ
3666static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3667{
2c13c919
RR
3668 if (cfs_rq->last == se)
3669 __clear_buddies_last(se);
3670
3671 if (cfs_rq->next == se)
3672 __clear_buddies_next(se);
ac53db59
RR
3673
3674 if (cfs_rq->skip == se)
3675 __clear_buddies_skip(se);
a571bbea
PZ
3676}
3677
6c16a6dc 3678static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3679
bf0f6f24 3680static void
371fd7e7 3681dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3682{
a2a2d680
DA
3683 /*
3684 * Update run-time statistics of the 'current'.
3685 */
3686 update_curr(cfs_rq);
89ee048f
VG
3687
3688 /*
3689 * When dequeuing a sched_entity, we must:
3690 * - Update loads to have both entity and cfs_rq synced with now.
3691 * - Substract its load from the cfs_rq->runnable_avg.
3692 * - Substract its previous weight from cfs_rq->load.weight.
3693 * - For group entity, update its weight to reflect the new share
3694 * of its group cfs_rq.
3695 */
d31b1a66 3696 update_load_avg(se, UPDATE_TG);
13962234 3697 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3698
4fa8d299 3699 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3700
2002c695 3701 clear_buddies(cfs_rq, se);
4793241b 3702
83b699ed 3703 if (se != cfs_rq->curr)
30cfdcfc 3704 __dequeue_entity(cfs_rq, se);
17bc14b7 3705 se->on_rq = 0;
30cfdcfc 3706 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3707
3708 /*
b60205c7
PZ
3709 * Normalize after update_curr(); which will also have moved
3710 * min_vruntime if @se is the one holding it back. But before doing
3711 * update_min_vruntime() again, which will discount @se's position and
3712 * can move min_vruntime forward still more.
88ec22d3 3713 */
371fd7e7 3714 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3715 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3716
d8b4986d
PT
3717 /* return excess runtime on last dequeue */
3718 return_cfs_rq_runtime(cfs_rq);
3719
89ee048f 3720 update_cfs_shares(se);
b60205c7
PZ
3721
3722 /*
3723 * Now advance min_vruntime if @se was the entity holding it back,
3724 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3725 * put back on, and if we advance min_vruntime, we'll be placed back
3726 * further than we started -- ie. we'll be penalized.
3727 */
3728 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3729 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3730}
3731
3732/*
3733 * Preempt the current task with a newly woken task if needed:
3734 */
7c92e54f 3735static void
2e09bf55 3736check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3737{
11697830 3738 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3739 struct sched_entity *se;
3740 s64 delta;
11697830 3741
6d0f0ebd 3742 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3743 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3744 if (delta_exec > ideal_runtime) {
8875125e 3745 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3746 /*
3747 * The current task ran long enough, ensure it doesn't get
3748 * re-elected due to buddy favours.
3749 */
3750 clear_buddies(cfs_rq, curr);
f685ceac
MG
3751 return;
3752 }
3753
3754 /*
3755 * Ensure that a task that missed wakeup preemption by a
3756 * narrow margin doesn't have to wait for a full slice.
3757 * This also mitigates buddy induced latencies under load.
3758 */
f685ceac
MG
3759 if (delta_exec < sysctl_sched_min_granularity)
3760 return;
3761
f4cfb33e
WX
3762 se = __pick_first_entity(cfs_rq);
3763 delta = curr->vruntime - se->vruntime;
f685ceac 3764
f4cfb33e
WX
3765 if (delta < 0)
3766 return;
d7d82944 3767
f4cfb33e 3768 if (delta > ideal_runtime)
8875125e 3769 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3770}
3771
83b699ed 3772static void
8494f412 3773set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3774{
83b699ed
SV
3775 /* 'current' is not kept within the tree. */
3776 if (se->on_rq) {
3777 /*
3778 * Any task has to be enqueued before it get to execute on
3779 * a CPU. So account for the time it spent waiting on the
3780 * runqueue.
3781 */
4fa8d299 3782 update_stats_wait_end(cfs_rq, se);
83b699ed 3783 __dequeue_entity(cfs_rq, se);
d31b1a66 3784 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3785 }
3786
79303e9e 3787 update_stats_curr_start(cfs_rq, se);
429d43bc 3788 cfs_rq->curr = se;
4fa8d299 3789
eba1ed4b
IM
3790 /*
3791 * Track our maximum slice length, if the CPU's load is at
3792 * least twice that of our own weight (i.e. dont track it
3793 * when there are only lesser-weight tasks around):
3794 */
cb251765 3795 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3796 schedstat_set(se->statistics.slice_max,
3797 max((u64)schedstat_val(se->statistics.slice_max),
3798 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3799 }
4fa8d299 3800
4a55b450 3801 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3802}
3803
3f3a4904
PZ
3804static int
3805wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3806
ac53db59
RR
3807/*
3808 * Pick the next process, keeping these things in mind, in this order:
3809 * 1) keep things fair between processes/task groups
3810 * 2) pick the "next" process, since someone really wants that to run
3811 * 3) pick the "last" process, for cache locality
3812 * 4) do not run the "skip" process, if something else is available
3813 */
678d5718
PZ
3814static struct sched_entity *
3815pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3816{
678d5718
PZ
3817 struct sched_entity *left = __pick_first_entity(cfs_rq);
3818 struct sched_entity *se;
3819
3820 /*
3821 * If curr is set we have to see if its left of the leftmost entity
3822 * still in the tree, provided there was anything in the tree at all.
3823 */
3824 if (!left || (curr && entity_before(curr, left)))
3825 left = curr;
3826
3827 se = left; /* ideally we run the leftmost entity */
f4b6755f 3828
ac53db59
RR
3829 /*
3830 * Avoid running the skip buddy, if running something else can
3831 * be done without getting too unfair.
3832 */
3833 if (cfs_rq->skip == se) {
678d5718
PZ
3834 struct sched_entity *second;
3835
3836 if (se == curr) {
3837 second = __pick_first_entity(cfs_rq);
3838 } else {
3839 second = __pick_next_entity(se);
3840 if (!second || (curr && entity_before(curr, second)))
3841 second = curr;
3842 }
3843
ac53db59
RR
3844 if (second && wakeup_preempt_entity(second, left) < 1)
3845 se = second;
3846 }
aa2ac252 3847
f685ceac
MG
3848 /*
3849 * Prefer last buddy, try to return the CPU to a preempted task.
3850 */
3851 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3852 se = cfs_rq->last;
3853
ac53db59
RR
3854 /*
3855 * Someone really wants this to run. If it's not unfair, run it.
3856 */
3857 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3858 se = cfs_rq->next;
3859
f685ceac 3860 clear_buddies(cfs_rq, se);
4793241b
PZ
3861
3862 return se;
aa2ac252
PZ
3863}
3864
678d5718 3865static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3866
ab6cde26 3867static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3868{
3869 /*
3870 * If still on the runqueue then deactivate_task()
3871 * was not called and update_curr() has to be done:
3872 */
3873 if (prev->on_rq)
b7cc0896 3874 update_curr(cfs_rq);
bf0f6f24 3875
d3d9dc33
PT
3876 /* throttle cfs_rqs exceeding runtime */
3877 check_cfs_rq_runtime(cfs_rq);
3878
4fa8d299 3879 check_spread(cfs_rq, prev);
cb251765 3880
30cfdcfc 3881 if (prev->on_rq) {
4fa8d299 3882 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3883 /* Put 'current' back into the tree. */
3884 __enqueue_entity(cfs_rq, prev);
9d85f21c 3885 /* in !on_rq case, update occurred at dequeue */
9d89c257 3886 update_load_avg(prev, 0);
30cfdcfc 3887 }
429d43bc 3888 cfs_rq->curr = NULL;
bf0f6f24
IM
3889}
3890
8f4d37ec
PZ
3891static void
3892entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3893{
bf0f6f24 3894 /*
30cfdcfc 3895 * Update run-time statistics of the 'current'.
bf0f6f24 3896 */
30cfdcfc 3897 update_curr(cfs_rq);
bf0f6f24 3898
9d85f21c
PT
3899 /*
3900 * Ensure that runnable average is periodically updated.
3901 */
d31b1a66 3902 update_load_avg(curr, UPDATE_TG);
89ee048f 3903 update_cfs_shares(curr);
9d85f21c 3904
8f4d37ec
PZ
3905#ifdef CONFIG_SCHED_HRTICK
3906 /*
3907 * queued ticks are scheduled to match the slice, so don't bother
3908 * validating it and just reschedule.
3909 */
983ed7a6 3910 if (queued) {
8875125e 3911 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3912 return;
3913 }
8f4d37ec
PZ
3914 /*
3915 * don't let the period tick interfere with the hrtick preemption
3916 */
3917 if (!sched_feat(DOUBLE_TICK) &&
3918 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3919 return;
3920#endif
3921
2c2efaed 3922 if (cfs_rq->nr_running > 1)
2e09bf55 3923 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3924}
3925
ab84d31e
PT
3926
3927/**************************************************
3928 * CFS bandwidth control machinery
3929 */
3930
3931#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3932
3933#ifdef HAVE_JUMP_LABEL
c5905afb 3934static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3935
3936static inline bool cfs_bandwidth_used(void)
3937{
c5905afb 3938 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3939}
3940
1ee14e6c 3941void cfs_bandwidth_usage_inc(void)
029632fb 3942{
1ee14e6c
BS
3943 static_key_slow_inc(&__cfs_bandwidth_used);
3944}
3945
3946void cfs_bandwidth_usage_dec(void)
3947{
3948 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3949}
3950#else /* HAVE_JUMP_LABEL */
3951static bool cfs_bandwidth_used(void)
3952{
3953 return true;
3954}
3955
1ee14e6c
BS
3956void cfs_bandwidth_usage_inc(void) {}
3957void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3958#endif /* HAVE_JUMP_LABEL */
3959
ab84d31e
PT
3960/*
3961 * default period for cfs group bandwidth.
3962 * default: 0.1s, units: nanoseconds
3963 */
3964static inline u64 default_cfs_period(void)
3965{
3966 return 100000000ULL;
3967}
ec12cb7f
PT
3968
3969static inline u64 sched_cfs_bandwidth_slice(void)
3970{
3971 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3972}
3973
a9cf55b2
PT
3974/*
3975 * Replenish runtime according to assigned quota and update expiration time.
3976 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3977 * additional synchronization around rq->lock.
3978 *
3979 * requires cfs_b->lock
3980 */
029632fb 3981void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3982{
3983 u64 now;
3984
3985 if (cfs_b->quota == RUNTIME_INF)
3986 return;
3987
3988 now = sched_clock_cpu(smp_processor_id());
3989 cfs_b->runtime = cfs_b->quota;
3990 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3991}
3992
029632fb
PZ
3993static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3994{
3995 return &tg->cfs_bandwidth;
3996}
3997
f1b17280
PT
3998/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3999static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4000{
4001 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4002 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4003
78becc27 4004 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4005}
4006
85dac906
PT
4007/* returns 0 on failure to allocate runtime */
4008static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4009{
4010 struct task_group *tg = cfs_rq->tg;
4011 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4012 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4013
4014 /* note: this is a positive sum as runtime_remaining <= 0 */
4015 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4016
4017 raw_spin_lock(&cfs_b->lock);
4018 if (cfs_b->quota == RUNTIME_INF)
4019 amount = min_amount;
58088ad0 4020 else {
77a4d1a1 4021 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4022
4023 if (cfs_b->runtime > 0) {
4024 amount = min(cfs_b->runtime, min_amount);
4025 cfs_b->runtime -= amount;
4026 cfs_b->idle = 0;
4027 }
ec12cb7f 4028 }
a9cf55b2 4029 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4030 raw_spin_unlock(&cfs_b->lock);
4031
4032 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4033 /*
4034 * we may have advanced our local expiration to account for allowed
4035 * spread between our sched_clock and the one on which runtime was
4036 * issued.
4037 */
4038 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4039 cfs_rq->runtime_expires = expires;
85dac906
PT
4040
4041 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4042}
4043
a9cf55b2
PT
4044/*
4045 * Note: This depends on the synchronization provided by sched_clock and the
4046 * fact that rq->clock snapshots this value.
4047 */
4048static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4049{
a9cf55b2 4050 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4051
4052 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4053 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4054 return;
4055
a9cf55b2
PT
4056 if (cfs_rq->runtime_remaining < 0)
4057 return;
4058
4059 /*
4060 * If the local deadline has passed we have to consider the
4061 * possibility that our sched_clock is 'fast' and the global deadline
4062 * has not truly expired.
4063 *
4064 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4065 * whether the global deadline has advanced. It is valid to compare
4066 * cfs_b->runtime_expires without any locks since we only care about
4067 * exact equality, so a partial write will still work.
a9cf55b2
PT
4068 */
4069
51f2176d 4070 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4071 /* extend local deadline, drift is bounded above by 2 ticks */
4072 cfs_rq->runtime_expires += TICK_NSEC;
4073 } else {
4074 /* global deadline is ahead, expiration has passed */
4075 cfs_rq->runtime_remaining = 0;
4076 }
4077}
4078
9dbdb155 4079static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4080{
4081 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4082 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4083 expire_cfs_rq_runtime(cfs_rq);
4084
4085 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4086 return;
4087
85dac906
PT
4088 /*
4089 * if we're unable to extend our runtime we resched so that the active
4090 * hierarchy can be throttled
4091 */
4092 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4093 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4094}
4095
6c16a6dc 4096static __always_inline
9dbdb155 4097void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4098{
56f570e5 4099 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4100 return;
4101
4102 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4103}
4104
85dac906
PT
4105static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4106{
56f570e5 4107 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4108}
4109
64660c86
PT
4110/* check whether cfs_rq, or any parent, is throttled */
4111static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4112{
56f570e5 4113 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4114}
4115
4116/*
4117 * Ensure that neither of the group entities corresponding to src_cpu or
4118 * dest_cpu are members of a throttled hierarchy when performing group
4119 * load-balance operations.
4120 */
4121static inline int throttled_lb_pair(struct task_group *tg,
4122 int src_cpu, int dest_cpu)
4123{
4124 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4125
4126 src_cfs_rq = tg->cfs_rq[src_cpu];
4127 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4128
4129 return throttled_hierarchy(src_cfs_rq) ||
4130 throttled_hierarchy(dest_cfs_rq);
4131}
4132
4133/* updated child weight may affect parent so we have to do this bottom up */
4134static int tg_unthrottle_up(struct task_group *tg, void *data)
4135{
4136 struct rq *rq = data;
4137 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4138
4139 cfs_rq->throttle_count--;
64660c86 4140 if (!cfs_rq->throttle_count) {
f1b17280 4141 /* adjust cfs_rq_clock_task() */
78becc27 4142 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4143 cfs_rq->throttled_clock_task;
64660c86 4144 }
64660c86
PT
4145
4146 return 0;
4147}
4148
4149static int tg_throttle_down(struct task_group *tg, void *data)
4150{
4151 struct rq *rq = data;
4152 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4153
82958366
PT
4154 /* group is entering throttled state, stop time */
4155 if (!cfs_rq->throttle_count)
78becc27 4156 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4157 cfs_rq->throttle_count++;
4158
4159 return 0;
4160}
4161
d3d9dc33 4162static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4163{
4164 struct rq *rq = rq_of(cfs_rq);
4165 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4166 struct sched_entity *se;
4167 long task_delta, dequeue = 1;
77a4d1a1 4168 bool empty;
85dac906
PT
4169
4170 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4171
f1b17280 4172 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4173 rcu_read_lock();
4174 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4175 rcu_read_unlock();
85dac906
PT
4176
4177 task_delta = cfs_rq->h_nr_running;
4178 for_each_sched_entity(se) {
4179 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4180 /* throttled entity or throttle-on-deactivate */
4181 if (!se->on_rq)
4182 break;
4183
4184 if (dequeue)
4185 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4186 qcfs_rq->h_nr_running -= task_delta;
4187
4188 if (qcfs_rq->load.weight)
4189 dequeue = 0;
4190 }
4191
4192 if (!se)
72465447 4193 sub_nr_running(rq, task_delta);
85dac906
PT
4194
4195 cfs_rq->throttled = 1;
78becc27 4196 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4197 raw_spin_lock(&cfs_b->lock);
d49db342 4198 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4199
c06f04c7
BS
4200 /*
4201 * Add to the _head_ of the list, so that an already-started
4202 * distribute_cfs_runtime will not see us
4203 */
4204 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4205
4206 /*
4207 * If we're the first throttled task, make sure the bandwidth
4208 * timer is running.
4209 */
4210 if (empty)
4211 start_cfs_bandwidth(cfs_b);
4212
85dac906
PT
4213 raw_spin_unlock(&cfs_b->lock);
4214}
4215
029632fb 4216void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4217{
4218 struct rq *rq = rq_of(cfs_rq);
4219 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4220 struct sched_entity *se;
4221 int enqueue = 1;
4222 long task_delta;
4223
22b958d8 4224 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4225
4226 cfs_rq->throttled = 0;
1a55af2e
FW
4227
4228 update_rq_clock(rq);
4229
671fd9da 4230 raw_spin_lock(&cfs_b->lock);
78becc27 4231 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4232 list_del_rcu(&cfs_rq->throttled_list);
4233 raw_spin_unlock(&cfs_b->lock);
4234
64660c86
PT
4235 /* update hierarchical throttle state */
4236 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4237
671fd9da
PT
4238 if (!cfs_rq->load.weight)
4239 return;
4240
4241 task_delta = cfs_rq->h_nr_running;
4242 for_each_sched_entity(se) {
4243 if (se->on_rq)
4244 enqueue = 0;
4245
4246 cfs_rq = cfs_rq_of(se);
4247 if (enqueue)
4248 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4249 cfs_rq->h_nr_running += task_delta;
4250
4251 if (cfs_rq_throttled(cfs_rq))
4252 break;
4253 }
4254
4255 if (!se)
72465447 4256 add_nr_running(rq, task_delta);
671fd9da
PT
4257
4258 /* determine whether we need to wake up potentially idle cpu */
4259 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4260 resched_curr(rq);
671fd9da
PT
4261}
4262
4263static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4264 u64 remaining, u64 expires)
4265{
4266 struct cfs_rq *cfs_rq;
c06f04c7
BS
4267 u64 runtime;
4268 u64 starting_runtime = remaining;
671fd9da
PT
4269
4270 rcu_read_lock();
4271 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4272 throttled_list) {
4273 struct rq *rq = rq_of(cfs_rq);
4274
4275 raw_spin_lock(&rq->lock);
4276 if (!cfs_rq_throttled(cfs_rq))
4277 goto next;
4278
4279 runtime = -cfs_rq->runtime_remaining + 1;
4280 if (runtime > remaining)
4281 runtime = remaining;
4282 remaining -= runtime;
4283
4284 cfs_rq->runtime_remaining += runtime;
4285 cfs_rq->runtime_expires = expires;
4286
4287 /* we check whether we're throttled above */
4288 if (cfs_rq->runtime_remaining > 0)
4289 unthrottle_cfs_rq(cfs_rq);
4290
4291next:
4292 raw_spin_unlock(&rq->lock);
4293
4294 if (!remaining)
4295 break;
4296 }
4297 rcu_read_unlock();
4298
c06f04c7 4299 return starting_runtime - remaining;
671fd9da
PT
4300}
4301
58088ad0
PT
4302/*
4303 * Responsible for refilling a task_group's bandwidth and unthrottling its
4304 * cfs_rqs as appropriate. If there has been no activity within the last
4305 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4306 * used to track this state.
4307 */
4308static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4309{
671fd9da 4310 u64 runtime, runtime_expires;
51f2176d 4311 int throttled;
58088ad0 4312
58088ad0
PT
4313 /* no need to continue the timer with no bandwidth constraint */
4314 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4315 goto out_deactivate;
58088ad0 4316
671fd9da 4317 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4318 cfs_b->nr_periods += overrun;
671fd9da 4319
51f2176d
BS
4320 /*
4321 * idle depends on !throttled (for the case of a large deficit), and if
4322 * we're going inactive then everything else can be deferred
4323 */
4324 if (cfs_b->idle && !throttled)
4325 goto out_deactivate;
a9cf55b2
PT
4326
4327 __refill_cfs_bandwidth_runtime(cfs_b);
4328
671fd9da
PT
4329 if (!throttled) {
4330 /* mark as potentially idle for the upcoming period */
4331 cfs_b->idle = 1;
51f2176d 4332 return 0;
671fd9da
PT
4333 }
4334
e8da1b18
NR
4335 /* account preceding periods in which throttling occurred */
4336 cfs_b->nr_throttled += overrun;
4337
671fd9da 4338 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4339
4340 /*
c06f04c7
BS
4341 * This check is repeated as we are holding onto the new bandwidth while
4342 * we unthrottle. This can potentially race with an unthrottled group
4343 * trying to acquire new bandwidth from the global pool. This can result
4344 * in us over-using our runtime if it is all used during this loop, but
4345 * only by limited amounts in that extreme case.
671fd9da 4346 */
c06f04c7
BS
4347 while (throttled && cfs_b->runtime > 0) {
4348 runtime = cfs_b->runtime;
671fd9da
PT
4349 raw_spin_unlock(&cfs_b->lock);
4350 /* we can't nest cfs_b->lock while distributing bandwidth */
4351 runtime = distribute_cfs_runtime(cfs_b, runtime,
4352 runtime_expires);
4353 raw_spin_lock(&cfs_b->lock);
4354
4355 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4356
4357 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4358 }
58088ad0 4359
671fd9da
PT
4360 /*
4361 * While we are ensured activity in the period following an
4362 * unthrottle, this also covers the case in which the new bandwidth is
4363 * insufficient to cover the existing bandwidth deficit. (Forcing the
4364 * timer to remain active while there are any throttled entities.)
4365 */
4366 cfs_b->idle = 0;
58088ad0 4367
51f2176d
BS
4368 return 0;
4369
4370out_deactivate:
51f2176d 4371 return 1;
58088ad0 4372}
d3d9dc33 4373
d8b4986d
PT
4374/* a cfs_rq won't donate quota below this amount */
4375static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4376/* minimum remaining period time to redistribute slack quota */
4377static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4378/* how long we wait to gather additional slack before distributing */
4379static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4380
db06e78c
BS
4381/*
4382 * Are we near the end of the current quota period?
4383 *
4384 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4385 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4386 * migrate_hrtimers, base is never cleared, so we are fine.
4387 */
d8b4986d
PT
4388static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4389{
4390 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4391 u64 remaining;
4392
4393 /* if the call-back is running a quota refresh is already occurring */
4394 if (hrtimer_callback_running(refresh_timer))
4395 return 1;
4396
4397 /* is a quota refresh about to occur? */
4398 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4399 if (remaining < min_expire)
4400 return 1;
4401
4402 return 0;
4403}
4404
4405static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4406{
4407 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4408
4409 /* if there's a quota refresh soon don't bother with slack */
4410 if (runtime_refresh_within(cfs_b, min_left))
4411 return;
4412
4cfafd30
PZ
4413 hrtimer_start(&cfs_b->slack_timer,
4414 ns_to_ktime(cfs_bandwidth_slack_period),
4415 HRTIMER_MODE_REL);
d8b4986d
PT
4416}
4417
4418/* we know any runtime found here is valid as update_curr() precedes return */
4419static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4420{
4421 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4422 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4423
4424 if (slack_runtime <= 0)
4425 return;
4426
4427 raw_spin_lock(&cfs_b->lock);
4428 if (cfs_b->quota != RUNTIME_INF &&
4429 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4430 cfs_b->runtime += slack_runtime;
4431
4432 /* we are under rq->lock, defer unthrottling using a timer */
4433 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4434 !list_empty(&cfs_b->throttled_cfs_rq))
4435 start_cfs_slack_bandwidth(cfs_b);
4436 }
4437 raw_spin_unlock(&cfs_b->lock);
4438
4439 /* even if it's not valid for return we don't want to try again */
4440 cfs_rq->runtime_remaining -= slack_runtime;
4441}
4442
4443static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4444{
56f570e5
PT
4445 if (!cfs_bandwidth_used())
4446 return;
4447
fccfdc6f 4448 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4449 return;
4450
4451 __return_cfs_rq_runtime(cfs_rq);
4452}
4453
4454/*
4455 * This is done with a timer (instead of inline with bandwidth return) since
4456 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4457 */
4458static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4459{
4460 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4461 u64 expires;
4462
4463 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4464 raw_spin_lock(&cfs_b->lock);
4465 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4466 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4467 return;
db06e78c 4468 }
d8b4986d 4469
c06f04c7 4470 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4471 runtime = cfs_b->runtime;
c06f04c7 4472
d8b4986d
PT
4473 expires = cfs_b->runtime_expires;
4474 raw_spin_unlock(&cfs_b->lock);
4475
4476 if (!runtime)
4477 return;
4478
4479 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4480
4481 raw_spin_lock(&cfs_b->lock);
4482 if (expires == cfs_b->runtime_expires)
c06f04c7 4483 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4484 raw_spin_unlock(&cfs_b->lock);
4485}
4486
d3d9dc33
PT
4487/*
4488 * When a group wakes up we want to make sure that its quota is not already
4489 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4490 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4491 */
4492static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4493{
56f570e5
PT
4494 if (!cfs_bandwidth_used())
4495 return;
4496
d3d9dc33
PT
4497 /* an active group must be handled by the update_curr()->put() path */
4498 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4499 return;
4500
4501 /* ensure the group is not already throttled */
4502 if (cfs_rq_throttled(cfs_rq))
4503 return;
4504
4505 /* update runtime allocation */
4506 account_cfs_rq_runtime(cfs_rq, 0);
4507 if (cfs_rq->runtime_remaining <= 0)
4508 throttle_cfs_rq(cfs_rq);
4509}
4510
55e16d30
PZ
4511static void sync_throttle(struct task_group *tg, int cpu)
4512{
4513 struct cfs_rq *pcfs_rq, *cfs_rq;
4514
4515 if (!cfs_bandwidth_used())
4516 return;
4517
4518 if (!tg->parent)
4519 return;
4520
4521 cfs_rq = tg->cfs_rq[cpu];
4522 pcfs_rq = tg->parent->cfs_rq[cpu];
4523
4524 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4525 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4526}
4527
d3d9dc33 4528/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4529static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4530{
56f570e5 4531 if (!cfs_bandwidth_used())
678d5718 4532 return false;
56f570e5 4533
d3d9dc33 4534 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4535 return false;
d3d9dc33
PT
4536
4537 /*
4538 * it's possible for a throttled entity to be forced into a running
4539 * state (e.g. set_curr_task), in this case we're finished.
4540 */
4541 if (cfs_rq_throttled(cfs_rq))
678d5718 4542 return true;
d3d9dc33
PT
4543
4544 throttle_cfs_rq(cfs_rq);
678d5718 4545 return true;
d3d9dc33 4546}
029632fb 4547
029632fb
PZ
4548static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4549{
4550 struct cfs_bandwidth *cfs_b =
4551 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4552
029632fb
PZ
4553 do_sched_cfs_slack_timer(cfs_b);
4554
4555 return HRTIMER_NORESTART;
4556}
4557
4558static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4559{
4560 struct cfs_bandwidth *cfs_b =
4561 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4562 int overrun;
4563 int idle = 0;
4564
51f2176d 4565 raw_spin_lock(&cfs_b->lock);
029632fb 4566 for (;;) {
77a4d1a1 4567 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4568 if (!overrun)
4569 break;
4570
4571 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4572 }
4cfafd30
PZ
4573 if (idle)
4574 cfs_b->period_active = 0;
51f2176d 4575 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4576
4577 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4578}
4579
4580void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4581{
4582 raw_spin_lock_init(&cfs_b->lock);
4583 cfs_b->runtime = 0;
4584 cfs_b->quota = RUNTIME_INF;
4585 cfs_b->period = ns_to_ktime(default_cfs_period());
4586
4587 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4588 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4589 cfs_b->period_timer.function = sched_cfs_period_timer;
4590 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4591 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4592}
4593
4594static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4595{
4596 cfs_rq->runtime_enabled = 0;
4597 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4598}
4599
77a4d1a1 4600void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4601{
4cfafd30 4602 lockdep_assert_held(&cfs_b->lock);
029632fb 4603
4cfafd30
PZ
4604 if (!cfs_b->period_active) {
4605 cfs_b->period_active = 1;
4606 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4607 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4608 }
029632fb
PZ
4609}
4610
4611static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4612{
7f1a169b
TH
4613 /* init_cfs_bandwidth() was not called */
4614 if (!cfs_b->throttled_cfs_rq.next)
4615 return;
4616
029632fb
PZ
4617 hrtimer_cancel(&cfs_b->period_timer);
4618 hrtimer_cancel(&cfs_b->slack_timer);
4619}
4620
0e59bdae
KT
4621static void __maybe_unused update_runtime_enabled(struct rq *rq)
4622{
4623 struct cfs_rq *cfs_rq;
4624
4625 for_each_leaf_cfs_rq(rq, cfs_rq) {
4626 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4627
4628 raw_spin_lock(&cfs_b->lock);
4629 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4630 raw_spin_unlock(&cfs_b->lock);
4631 }
4632}
4633
38dc3348 4634static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4635{
4636 struct cfs_rq *cfs_rq;
4637
4638 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4639 if (!cfs_rq->runtime_enabled)
4640 continue;
4641
4642 /*
4643 * clock_task is not advancing so we just need to make sure
4644 * there's some valid quota amount
4645 */
51f2176d 4646 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4647 /*
4648 * Offline rq is schedulable till cpu is completely disabled
4649 * in take_cpu_down(), so we prevent new cfs throttling here.
4650 */
4651 cfs_rq->runtime_enabled = 0;
4652
029632fb
PZ
4653 if (cfs_rq_throttled(cfs_rq))
4654 unthrottle_cfs_rq(cfs_rq);
4655 }
4656}
4657
4658#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4659static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4660{
78becc27 4661 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4662}
4663
9dbdb155 4664static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4665static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4666static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4667static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4668static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4669
4670static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4671{
4672 return 0;
4673}
64660c86
PT
4674
4675static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4676{
4677 return 0;
4678}
4679
4680static inline int throttled_lb_pair(struct task_group *tg,
4681 int src_cpu, int dest_cpu)
4682{
4683 return 0;
4684}
029632fb
PZ
4685
4686void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4687
4688#ifdef CONFIG_FAIR_GROUP_SCHED
4689static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4690#endif
4691
029632fb
PZ
4692static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4693{
4694 return NULL;
4695}
4696static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4697static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4698static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4699
4700#endif /* CONFIG_CFS_BANDWIDTH */
4701
bf0f6f24
IM
4702/**************************************************
4703 * CFS operations on tasks:
4704 */
4705
8f4d37ec
PZ
4706#ifdef CONFIG_SCHED_HRTICK
4707static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4708{
8f4d37ec
PZ
4709 struct sched_entity *se = &p->se;
4710 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4711
9148a3a1 4712 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4713
8bf46a39 4714 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4715 u64 slice = sched_slice(cfs_rq, se);
4716 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4717 s64 delta = slice - ran;
4718
4719 if (delta < 0) {
4720 if (rq->curr == p)
8875125e 4721 resched_curr(rq);
8f4d37ec
PZ
4722 return;
4723 }
31656519 4724 hrtick_start(rq, delta);
8f4d37ec
PZ
4725 }
4726}
a4c2f00f
PZ
4727
4728/*
4729 * called from enqueue/dequeue and updates the hrtick when the
4730 * current task is from our class and nr_running is low enough
4731 * to matter.
4732 */
4733static void hrtick_update(struct rq *rq)
4734{
4735 struct task_struct *curr = rq->curr;
4736
b39e66ea 4737 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4738 return;
4739
4740 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4741 hrtick_start_fair(rq, curr);
4742}
55e12e5e 4743#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4744static inline void
4745hrtick_start_fair(struct rq *rq, struct task_struct *p)
4746{
4747}
a4c2f00f
PZ
4748
4749static inline void hrtick_update(struct rq *rq)
4750{
4751}
8f4d37ec
PZ
4752#endif
4753
bf0f6f24
IM
4754/*
4755 * The enqueue_task method is called before nr_running is
4756 * increased. Here we update the fair scheduling stats and
4757 * then put the task into the rbtree:
4758 */
ea87bb78 4759static void
371fd7e7 4760enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4761{
4762 struct cfs_rq *cfs_rq;
62fb1851 4763 struct sched_entity *se = &p->se;
bf0f6f24 4764
8c34ab19
RW
4765 /*
4766 * If in_iowait is set, the code below may not trigger any cpufreq
4767 * utilization updates, so do it here explicitly with the IOWAIT flag
4768 * passed.
4769 */
4770 if (p->in_iowait)
4771 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4772
bf0f6f24 4773 for_each_sched_entity(se) {
62fb1851 4774 if (se->on_rq)
bf0f6f24
IM
4775 break;
4776 cfs_rq = cfs_rq_of(se);
88ec22d3 4777 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4778
4779 /*
4780 * end evaluation on encountering a throttled cfs_rq
4781 *
4782 * note: in the case of encountering a throttled cfs_rq we will
4783 * post the final h_nr_running increment below.
e210bffd 4784 */
85dac906
PT
4785 if (cfs_rq_throttled(cfs_rq))
4786 break;
953bfcd1 4787 cfs_rq->h_nr_running++;
85dac906 4788
88ec22d3 4789 flags = ENQUEUE_WAKEUP;
bf0f6f24 4790 }
8f4d37ec 4791
2069dd75 4792 for_each_sched_entity(se) {
0f317143 4793 cfs_rq = cfs_rq_of(se);
953bfcd1 4794 cfs_rq->h_nr_running++;
2069dd75 4795
85dac906
PT
4796 if (cfs_rq_throttled(cfs_rq))
4797 break;
4798
d31b1a66 4799 update_load_avg(se, UPDATE_TG);
89ee048f 4800 update_cfs_shares(se);
2069dd75
PZ
4801 }
4802
cd126afe 4803 if (!se)
72465447 4804 add_nr_running(rq, 1);
cd126afe 4805
a4c2f00f 4806 hrtick_update(rq);
bf0f6f24
IM
4807}
4808
2f36825b
VP
4809static void set_next_buddy(struct sched_entity *se);
4810
bf0f6f24
IM
4811/*
4812 * The dequeue_task method is called before nr_running is
4813 * decreased. We remove the task from the rbtree and
4814 * update the fair scheduling stats:
4815 */
371fd7e7 4816static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4817{
4818 struct cfs_rq *cfs_rq;
62fb1851 4819 struct sched_entity *se = &p->se;
2f36825b 4820 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4821
4822 for_each_sched_entity(se) {
4823 cfs_rq = cfs_rq_of(se);
371fd7e7 4824 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4825
4826 /*
4827 * end evaluation on encountering a throttled cfs_rq
4828 *
4829 * note: in the case of encountering a throttled cfs_rq we will
4830 * post the final h_nr_running decrement below.
4831 */
4832 if (cfs_rq_throttled(cfs_rq))
4833 break;
953bfcd1 4834 cfs_rq->h_nr_running--;
2069dd75 4835
bf0f6f24 4836 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4837 if (cfs_rq->load.weight) {
754bd598
KK
4838 /* Avoid re-evaluating load for this entity: */
4839 se = parent_entity(se);
2f36825b
VP
4840 /*
4841 * Bias pick_next to pick a task from this cfs_rq, as
4842 * p is sleeping when it is within its sched_slice.
4843 */
754bd598
KK
4844 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4845 set_next_buddy(se);
bf0f6f24 4846 break;
2f36825b 4847 }
371fd7e7 4848 flags |= DEQUEUE_SLEEP;
bf0f6f24 4849 }
8f4d37ec 4850
2069dd75 4851 for_each_sched_entity(se) {
0f317143 4852 cfs_rq = cfs_rq_of(se);
953bfcd1 4853 cfs_rq->h_nr_running--;
2069dd75 4854
85dac906
PT
4855 if (cfs_rq_throttled(cfs_rq))
4856 break;
4857
d31b1a66 4858 update_load_avg(se, UPDATE_TG);
89ee048f 4859 update_cfs_shares(se);
2069dd75
PZ
4860 }
4861
cd126afe 4862 if (!se)
72465447 4863 sub_nr_running(rq, 1);
cd126afe 4864
a4c2f00f 4865 hrtick_update(rq);
bf0f6f24
IM
4866}
4867
e7693a36 4868#ifdef CONFIG_SMP
10e2f1ac
PZ
4869
4870/* Working cpumask for: load_balance, load_balance_newidle. */
4871DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4872DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4873
9fd81dd5 4874#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4875/*
4876 * per rq 'load' arrray crap; XXX kill this.
4877 */
4878
4879/*
d937cdc5 4880 * The exact cpuload calculated at every tick would be:
3289bdb4 4881 *
d937cdc5
PZ
4882 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4883 *
4884 * If a cpu misses updates for n ticks (as it was idle) and update gets
4885 * called on the n+1-th tick when cpu may be busy, then we have:
4886 *
4887 * load_n = (1 - 1/2^i)^n * load_0
4888 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4889 *
4890 * decay_load_missed() below does efficient calculation of
3289bdb4 4891 *
d937cdc5
PZ
4892 * load' = (1 - 1/2^i)^n * load
4893 *
4894 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4895 * This allows us to precompute the above in said factors, thereby allowing the
4896 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4897 * fixed_power_int())
3289bdb4 4898 *
d937cdc5 4899 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4900 */
4901#define DEGRADE_SHIFT 7
d937cdc5
PZ
4902
4903static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4904static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4905 { 0, 0, 0, 0, 0, 0, 0, 0 },
4906 { 64, 32, 8, 0, 0, 0, 0, 0 },
4907 { 96, 72, 40, 12, 1, 0, 0, 0 },
4908 { 112, 98, 75, 43, 15, 1, 0, 0 },
4909 { 120, 112, 98, 76, 45, 16, 2, 0 }
4910};
3289bdb4
PZ
4911
4912/*
4913 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4914 * would be when CPU is idle and so we just decay the old load without
4915 * adding any new load.
4916 */
4917static unsigned long
4918decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4919{
4920 int j = 0;
4921
4922 if (!missed_updates)
4923 return load;
4924
4925 if (missed_updates >= degrade_zero_ticks[idx])
4926 return 0;
4927
4928 if (idx == 1)
4929 return load >> missed_updates;
4930
4931 while (missed_updates) {
4932 if (missed_updates % 2)
4933 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4934
4935 missed_updates >>= 1;
4936 j++;
4937 }
4938 return load;
4939}
9fd81dd5 4940#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4941
59543275 4942/**
cee1afce 4943 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4944 * @this_rq: The rq to update statistics for
4945 * @this_load: The current load
4946 * @pending_updates: The number of missed updates
59543275 4947 *
3289bdb4 4948 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4949 * scheduler tick (TICK_NSEC).
4950 *
4951 * This function computes a decaying average:
4952 *
4953 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4954 *
4955 * Because of NOHZ it might not get called on every tick which gives need for
4956 * the @pending_updates argument.
4957 *
4958 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4959 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4960 * = A * (A * load[i]_n-2 + B) + B
4961 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4962 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4963 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4964 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4965 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4966 *
4967 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4968 * any change in load would have resulted in the tick being turned back on.
4969 *
4970 * For regular NOHZ, this reduces to:
4971 *
4972 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4973 *
4974 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4975 * term.
3289bdb4 4976 */
1f41906a
FW
4977static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4978 unsigned long pending_updates)
3289bdb4 4979{
9fd81dd5 4980 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4981 int i, scale;
4982
4983 this_rq->nr_load_updates++;
4984
4985 /* Update our load: */
4986 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4987 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4988 unsigned long old_load, new_load;
4989
4990 /* scale is effectively 1 << i now, and >> i divides by scale */
4991
7400d3bb 4992 old_load = this_rq->cpu_load[i];
9fd81dd5 4993#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4994 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4995 if (tickless_load) {
4996 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4997 /*
4998 * old_load can never be a negative value because a
4999 * decayed tickless_load cannot be greater than the
5000 * original tickless_load.
5001 */
5002 old_load += tickless_load;
5003 }
9fd81dd5 5004#endif
3289bdb4
PZ
5005 new_load = this_load;
5006 /*
5007 * Round up the averaging division if load is increasing. This
5008 * prevents us from getting stuck on 9 if the load is 10, for
5009 * example.
5010 */
5011 if (new_load > old_load)
5012 new_load += scale - 1;
5013
5014 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5015 }
5016
5017 sched_avg_update(this_rq);
5018}
5019
7ea241af
YD
5020/* Used instead of source_load when we know the type == 0 */
5021static unsigned long weighted_cpuload(const int cpu)
5022{
5023 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5024}
5025
3289bdb4 5026#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5027/*
5028 * There is no sane way to deal with nohz on smp when using jiffies because the
5029 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5030 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5031 *
5032 * Therefore we need to avoid the delta approach from the regular tick when
5033 * possible since that would seriously skew the load calculation. This is why we
5034 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5035 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5036 * loop exit, nohz_idle_balance, nohz full exit...)
5037 *
5038 * This means we might still be one tick off for nohz periods.
5039 */
5040
5041static void cpu_load_update_nohz(struct rq *this_rq,
5042 unsigned long curr_jiffies,
5043 unsigned long load)
be68a682
FW
5044{
5045 unsigned long pending_updates;
5046
5047 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5048 if (pending_updates) {
5049 this_rq->last_load_update_tick = curr_jiffies;
5050 /*
5051 * In the regular NOHZ case, we were idle, this means load 0.
5052 * In the NOHZ_FULL case, we were non-idle, we should consider
5053 * its weighted load.
5054 */
1f41906a 5055 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5056 }
5057}
5058
3289bdb4
PZ
5059/*
5060 * Called from nohz_idle_balance() to update the load ratings before doing the
5061 * idle balance.
5062 */
cee1afce 5063static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5064{
3289bdb4
PZ
5065 /*
5066 * bail if there's load or we're actually up-to-date.
5067 */
be68a682 5068 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
5069 return;
5070
1f41906a 5071 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5072}
5073
5074/*
1f41906a
FW
5075 * Record CPU load on nohz entry so we know the tickless load to account
5076 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5077 * than other cpu_load[idx] but it should be fine as cpu_load readers
5078 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5079 */
1f41906a 5080void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5081{
5082 struct rq *this_rq = this_rq();
1f41906a
FW
5083
5084 /*
5085 * This is all lockless but should be fine. If weighted_cpuload changes
5086 * concurrently we'll exit nohz. And cpu_load write can race with
5087 * cpu_load_update_idle() but both updater would be writing the same.
5088 */
5089 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5090}
5091
5092/*
5093 * Account the tickless load in the end of a nohz frame.
5094 */
5095void cpu_load_update_nohz_stop(void)
5096{
316c1608 5097 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5098 struct rq *this_rq = this_rq();
5099 unsigned long load;
3289bdb4
PZ
5100
5101 if (curr_jiffies == this_rq->last_load_update_tick)
5102 return;
5103
1f41906a 5104 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 5105 raw_spin_lock(&this_rq->lock);
b52fad2d 5106 update_rq_clock(this_rq);
1f41906a 5107 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
5108 raw_spin_unlock(&this_rq->lock);
5109}
1f41906a
FW
5110#else /* !CONFIG_NO_HZ_COMMON */
5111static inline void cpu_load_update_nohz(struct rq *this_rq,
5112 unsigned long curr_jiffies,
5113 unsigned long load) { }
5114#endif /* CONFIG_NO_HZ_COMMON */
5115
5116static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5117{
9fd81dd5 5118#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5119 /* See the mess around cpu_load_update_nohz(). */
5120 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5121#endif
1f41906a
FW
5122 cpu_load_update(this_rq, load, 1);
5123}
3289bdb4
PZ
5124
5125/*
5126 * Called from scheduler_tick()
5127 */
cee1afce 5128void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5129{
7ea241af 5130 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
5131
5132 if (tick_nohz_tick_stopped())
5133 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5134 else
5135 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5136}
5137
029632fb
PZ
5138/*
5139 * Return a low guess at the load of a migration-source cpu weighted
5140 * according to the scheduling class and "nice" value.
5141 *
5142 * We want to under-estimate the load of migration sources, to
5143 * balance conservatively.
5144 */
5145static unsigned long source_load(int cpu, int type)
5146{
5147 struct rq *rq = cpu_rq(cpu);
5148 unsigned long total = weighted_cpuload(cpu);
5149
5150 if (type == 0 || !sched_feat(LB_BIAS))
5151 return total;
5152
5153 return min(rq->cpu_load[type-1], total);
5154}
5155
5156/*
5157 * Return a high guess at the load of a migration-target cpu weighted
5158 * according to the scheduling class and "nice" value.
5159 */
5160static unsigned long target_load(int cpu, int type)
5161{
5162 struct rq *rq = cpu_rq(cpu);
5163 unsigned long total = weighted_cpuload(cpu);
5164
5165 if (type == 0 || !sched_feat(LB_BIAS))
5166 return total;
5167
5168 return max(rq->cpu_load[type-1], total);
5169}
5170
ced549fa 5171static unsigned long capacity_of(int cpu)
029632fb 5172{
ced549fa 5173 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5174}
5175
ca6d75e6
VG
5176static unsigned long capacity_orig_of(int cpu)
5177{
5178 return cpu_rq(cpu)->cpu_capacity_orig;
5179}
5180
029632fb
PZ
5181static unsigned long cpu_avg_load_per_task(int cpu)
5182{
5183 struct rq *rq = cpu_rq(cpu);
316c1608 5184 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 5185 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
5186
5187 if (nr_running)
b92486cb 5188 return load_avg / nr_running;
029632fb
PZ
5189
5190 return 0;
5191}
5192
bb3469ac 5193#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
5194/*
5195 * effective_load() calculates the load change as seen from the root_task_group
5196 *
5197 * Adding load to a group doesn't make a group heavier, but can cause movement
5198 * of group shares between cpus. Assuming the shares were perfectly aligned one
5199 * can calculate the shift in shares.
cf5f0acf
PZ
5200 *
5201 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5202 * on this @cpu and results in a total addition (subtraction) of @wg to the
5203 * total group weight.
5204 *
5205 * Given a runqueue weight distribution (rw_i) we can compute a shares
5206 * distribution (s_i) using:
5207 *
5208 * s_i = rw_i / \Sum rw_j (1)
5209 *
5210 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5211 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5212 * shares distribution (s_i):
5213 *
5214 * rw_i = { 2, 4, 1, 0 }
5215 * s_i = { 2/7, 4/7, 1/7, 0 }
5216 *
5217 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5218 * task used to run on and the CPU the waker is running on), we need to
5219 * compute the effect of waking a task on either CPU and, in case of a sync
5220 * wakeup, compute the effect of the current task going to sleep.
5221 *
5222 * So for a change of @wl to the local @cpu with an overall group weight change
5223 * of @wl we can compute the new shares distribution (s'_i) using:
5224 *
5225 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5226 *
5227 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5228 * differences in waking a task to CPU 0. The additional task changes the
5229 * weight and shares distributions like:
5230 *
5231 * rw'_i = { 3, 4, 1, 0 }
5232 * s'_i = { 3/8, 4/8, 1/8, 0 }
5233 *
5234 * We can then compute the difference in effective weight by using:
5235 *
5236 * dw_i = S * (s'_i - s_i) (3)
5237 *
5238 * Where 'S' is the group weight as seen by its parent.
5239 *
5240 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5241 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5242 * 4/7) times the weight of the group.
f5bfb7d9 5243 */
2069dd75 5244static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5245{
4be9daaa 5246 struct sched_entity *se = tg->se[cpu];
f1d239f7 5247
9722c2da 5248 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5249 return wl;
5250
4be9daaa 5251 for_each_sched_entity(se) {
7dd49125
PZ
5252 struct cfs_rq *cfs_rq = se->my_q;
5253 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5254
7dd49125 5255 tg = cfs_rq->tg;
bb3469ac 5256
cf5f0acf
PZ
5257 /*
5258 * W = @wg + \Sum rw_j
5259 */
7dd49125
PZ
5260 W = wg + atomic_long_read(&tg->load_avg);
5261
5262 /* Ensure \Sum rw_j >= rw_i */
5263 W -= cfs_rq->tg_load_avg_contrib;
5264 W += w;
4be9daaa 5265
cf5f0acf
PZ
5266 /*
5267 * w = rw_i + @wl
5268 */
7dd49125 5269 w += wl;
940959e9 5270
cf5f0acf
PZ
5271 /*
5272 * wl = S * s'_i; see (2)
5273 */
5274 if (W > 0 && w < W)
ab522e33 5275 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5276 else
ab522e33 5277 wl = scale_load_down(tg->shares);
940959e9 5278
cf5f0acf
PZ
5279 /*
5280 * Per the above, wl is the new se->load.weight value; since
5281 * those are clipped to [MIN_SHARES, ...) do so now. See
5282 * calc_cfs_shares().
5283 */
977dda7c
PT
5284 if (wl < MIN_SHARES)
5285 wl = MIN_SHARES;
cf5f0acf
PZ
5286
5287 /*
5288 * wl = dw_i = S * (s'_i - s_i); see (3)
5289 */
9d89c257 5290 wl -= se->avg.load_avg;
cf5f0acf
PZ
5291
5292 /*
5293 * Recursively apply this logic to all parent groups to compute
5294 * the final effective load change on the root group. Since
5295 * only the @tg group gets extra weight, all parent groups can
5296 * only redistribute existing shares. @wl is the shift in shares
5297 * resulting from this level per the above.
5298 */
4be9daaa 5299 wg = 0;
4be9daaa 5300 }
bb3469ac 5301
4be9daaa 5302 return wl;
bb3469ac
PZ
5303}
5304#else
4be9daaa 5305
58d081b5 5306static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5307{
83378269 5308 return wl;
bb3469ac 5309}
4be9daaa 5310
bb3469ac
PZ
5311#endif
5312
c58d25f3
PZ
5313static void record_wakee(struct task_struct *p)
5314{
5315 /*
5316 * Only decay a single time; tasks that have less then 1 wakeup per
5317 * jiffy will not have built up many flips.
5318 */
5319 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5320 current->wakee_flips >>= 1;
5321 current->wakee_flip_decay_ts = jiffies;
5322 }
5323
5324 if (current->last_wakee != p) {
5325 current->last_wakee = p;
5326 current->wakee_flips++;
5327 }
5328}
5329
63b0e9ed
MG
5330/*
5331 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5332 *
63b0e9ed 5333 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5334 * at a frequency roughly N times higher than one of its wakees.
5335 *
5336 * In order to determine whether we should let the load spread vs consolidating
5337 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5338 * partner, and a factor of lls_size higher frequency in the other.
5339 *
5340 * With both conditions met, we can be relatively sure that the relationship is
5341 * non-monogamous, with partner count exceeding socket size.
5342 *
5343 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5344 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5345 * socket size.
63b0e9ed 5346 */
62470419
MW
5347static int wake_wide(struct task_struct *p)
5348{
63b0e9ed
MG
5349 unsigned int master = current->wakee_flips;
5350 unsigned int slave = p->wakee_flips;
7d9ffa89 5351 int factor = this_cpu_read(sd_llc_size);
62470419 5352
63b0e9ed
MG
5353 if (master < slave)
5354 swap(master, slave);
5355 if (slave < factor || master < slave * factor)
5356 return 0;
5357 return 1;
62470419
MW
5358}
5359
772bd008
MR
5360static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5361 int prev_cpu, int sync)
098fb9db 5362{
e37b6a7b 5363 s64 this_load, load;
bd61c98f 5364 s64 this_eff_load, prev_eff_load;
772bd008 5365 int idx, this_cpu;
c88d5910 5366 struct task_group *tg;
83378269 5367 unsigned long weight;
b3137bc8 5368 int balanced;
098fb9db 5369
c88d5910
PZ
5370 idx = sd->wake_idx;
5371 this_cpu = smp_processor_id();
c88d5910
PZ
5372 load = source_load(prev_cpu, idx);
5373 this_load = target_load(this_cpu, idx);
098fb9db 5374
b3137bc8
MG
5375 /*
5376 * If sync wakeup then subtract the (maximum possible)
5377 * effect of the currently running task from the load
5378 * of the current CPU:
5379 */
83378269
PZ
5380 if (sync) {
5381 tg = task_group(current);
9d89c257 5382 weight = current->se.avg.load_avg;
83378269 5383
c88d5910 5384 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5385 load += effective_load(tg, prev_cpu, 0, -weight);
5386 }
b3137bc8 5387
83378269 5388 tg = task_group(p);
9d89c257 5389 weight = p->se.avg.load_avg;
b3137bc8 5390
71a29aa7
PZ
5391 /*
5392 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5393 * due to the sync cause above having dropped this_load to 0, we'll
5394 * always have an imbalance, but there's really nothing you can do
5395 * about that, so that's good too.
71a29aa7
PZ
5396 *
5397 * Otherwise check if either cpus are near enough in load to allow this
5398 * task to be woken on this_cpu.
5399 */
bd61c98f
VG
5400 this_eff_load = 100;
5401 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5402
bd61c98f
VG
5403 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5404 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5405
bd61c98f 5406 if (this_load > 0) {
e51fd5e2
PZ
5407 this_eff_load *= this_load +
5408 effective_load(tg, this_cpu, weight, weight);
5409
e51fd5e2 5410 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5411 }
e51fd5e2 5412
bd61c98f 5413 balanced = this_eff_load <= prev_eff_load;
098fb9db 5414
ae92882e 5415 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5416
05bfb65f
VG
5417 if (!balanced)
5418 return 0;
098fb9db 5419
ae92882e
JP
5420 schedstat_inc(sd->ttwu_move_affine);
5421 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5422
5423 return 1;
098fb9db
IM
5424}
5425
6a0b19c0
MR
5426static inline int task_util(struct task_struct *p);
5427static int cpu_util_wake(int cpu, struct task_struct *p);
5428
5429static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5430{
5431 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5432}
5433
aaee1203
PZ
5434/*
5435 * find_idlest_group finds and returns the least busy CPU group within the
5436 * domain.
5437 */
5438static struct sched_group *
78e7ed53 5439find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5440 int this_cpu, int sd_flag)
e7693a36 5441{
b3bd3de6 5442 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5443 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5444 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5445 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5446 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5447 int load_idx = sd->forkexec_idx;
6b94780e
VG
5448 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5449 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5450 (sd->imbalance_pct-100) / 100;
e7693a36 5451
c44f2a02
VG
5452 if (sd_flag & SD_BALANCE_WAKE)
5453 load_idx = sd->wake_idx;
5454
aaee1203 5455 do {
6b94780e
VG
5456 unsigned long load, avg_load, runnable_load;
5457 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5458 int local_group;
5459 int i;
e7693a36 5460
aaee1203
PZ
5461 /* Skip over this group if it has no CPUs allowed */
5462 if (!cpumask_intersects(sched_group_cpus(group),
0c98d344 5463 &p->cpus_allowed))
aaee1203
PZ
5464 continue;
5465
5466 local_group = cpumask_test_cpu(this_cpu,
5467 sched_group_cpus(group));
5468
6a0b19c0
MR
5469 /*
5470 * Tally up the load of all CPUs in the group and find
5471 * the group containing the CPU with most spare capacity.
5472 */
aaee1203 5473 avg_load = 0;
6b94780e 5474 runnable_load = 0;
6a0b19c0 5475 max_spare_cap = 0;
aaee1203
PZ
5476
5477 for_each_cpu(i, sched_group_cpus(group)) {
5478 /* Bias balancing toward cpus of our domain */
5479 if (local_group)
5480 load = source_load(i, load_idx);
5481 else
5482 load = target_load(i, load_idx);
5483
6b94780e
VG
5484 runnable_load += load;
5485
5486 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5487
5488 spare_cap = capacity_spare_wake(i, p);
5489
5490 if (spare_cap > max_spare_cap)
5491 max_spare_cap = spare_cap;
aaee1203
PZ
5492 }
5493
63b2ca30 5494 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5495 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5496 group->sgc->capacity;
5497 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5498 group->sgc->capacity;
aaee1203
PZ
5499
5500 if (local_group) {
6b94780e
VG
5501 this_runnable_load = runnable_load;
5502 this_avg_load = avg_load;
6a0b19c0
MR
5503 this_spare = max_spare_cap;
5504 } else {
6b94780e
VG
5505 if (min_runnable_load > (runnable_load + imbalance)) {
5506 /*
5507 * The runnable load is significantly smaller
5508 * so we can pick this new cpu
5509 */
5510 min_runnable_load = runnable_load;
5511 min_avg_load = avg_load;
5512 idlest = group;
5513 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5514 (100*min_avg_load > imbalance_scale*avg_load)) {
5515 /*
5516 * The runnable loads are close so take the
5517 * blocked load into account through avg_load.
5518 */
5519 min_avg_load = avg_load;
6a0b19c0
MR
5520 idlest = group;
5521 }
5522
5523 if (most_spare < max_spare_cap) {
5524 most_spare = max_spare_cap;
5525 most_spare_sg = group;
5526 }
aaee1203
PZ
5527 }
5528 } while (group = group->next, group != sd->groups);
5529
6a0b19c0
MR
5530 /*
5531 * The cross-over point between using spare capacity or least load
5532 * is too conservative for high utilization tasks on partially
5533 * utilized systems if we require spare_capacity > task_util(p),
5534 * so we allow for some task stuffing by using
5535 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5536 *
5537 * Spare capacity can't be used for fork because the utilization has
5538 * not been set yet, we must first select a rq to compute the initial
5539 * utilization.
6a0b19c0 5540 */
f519a3f1
VG
5541 if (sd_flag & SD_BALANCE_FORK)
5542 goto skip_spare;
5543
6a0b19c0 5544 if (this_spare > task_util(p) / 2 &&
6b94780e 5545 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5546 return NULL;
6b94780e
VG
5547
5548 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5549 return most_spare_sg;
5550
f519a3f1 5551skip_spare:
6b94780e
VG
5552 if (!idlest)
5553 return NULL;
5554
5555 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5556 return NULL;
6b94780e
VG
5557
5558 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5559 (100*this_avg_load < imbalance_scale*min_avg_load))
5560 return NULL;
5561
aaee1203
PZ
5562 return idlest;
5563}
5564
5565/*
5566 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5567 */
5568static int
5569find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5570{
5571 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5572 unsigned int min_exit_latency = UINT_MAX;
5573 u64 latest_idle_timestamp = 0;
5574 int least_loaded_cpu = this_cpu;
5575 int shallowest_idle_cpu = -1;
aaee1203
PZ
5576 int i;
5577
eaecf41f
MR
5578 /* Check if we have any choice: */
5579 if (group->group_weight == 1)
5580 return cpumask_first(sched_group_cpus(group));
5581
aaee1203 5582 /* Traverse only the allowed CPUs */
0c98d344 5583 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
83a0a96a
NP
5584 if (idle_cpu(i)) {
5585 struct rq *rq = cpu_rq(i);
5586 struct cpuidle_state *idle = idle_get_state(rq);
5587 if (idle && idle->exit_latency < min_exit_latency) {
5588 /*
5589 * We give priority to a CPU whose idle state
5590 * has the smallest exit latency irrespective
5591 * of any idle timestamp.
5592 */
5593 min_exit_latency = idle->exit_latency;
5594 latest_idle_timestamp = rq->idle_stamp;
5595 shallowest_idle_cpu = i;
5596 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5597 rq->idle_stamp > latest_idle_timestamp) {
5598 /*
5599 * If equal or no active idle state, then
5600 * the most recently idled CPU might have
5601 * a warmer cache.
5602 */
5603 latest_idle_timestamp = rq->idle_stamp;
5604 shallowest_idle_cpu = i;
5605 }
9f96742a 5606 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5607 load = weighted_cpuload(i);
5608 if (load < min_load || (load == min_load && i == this_cpu)) {
5609 min_load = load;
5610 least_loaded_cpu = i;
5611 }
e7693a36
GH
5612 }
5613 }
5614
83a0a96a 5615 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5616}
e7693a36 5617
a50bde51 5618/*
10e2f1ac
PZ
5619 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5620 * (@start), and wraps around.
5621 *
5622 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5623 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5624 * through the LLC domain.
5625 *
5626 * Especially tbench is found sensitive to this.
5627 */
5628
5629static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5630{
5631 int next;
5632
5633again:
5634 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5635
5636 if (*wrapped) {
5637 if (next >= start)
5638 return nr_cpumask_bits;
5639 } else {
5640 if (next >= nr_cpumask_bits) {
5641 *wrapped = 1;
5642 n = -1;
5643 goto again;
5644 }
5645 }
5646
5647 return next;
5648}
5649
5650#define for_each_cpu_wrap(cpu, mask, start, wrap) \
5651 for ((wrap) = 0, (cpu) = (start)-1; \
5652 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5653 (cpu) < nr_cpumask_bits; )
5654
5655#ifdef CONFIG_SCHED_SMT
5656
5657static inline void set_idle_cores(int cpu, int val)
5658{
5659 struct sched_domain_shared *sds;
5660
5661 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5662 if (sds)
5663 WRITE_ONCE(sds->has_idle_cores, val);
5664}
5665
5666static inline bool test_idle_cores(int cpu, bool def)
5667{
5668 struct sched_domain_shared *sds;
5669
5670 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5671 if (sds)
5672 return READ_ONCE(sds->has_idle_cores);
5673
5674 return def;
5675}
5676
5677/*
5678 * Scans the local SMT mask to see if the entire core is idle, and records this
5679 * information in sd_llc_shared->has_idle_cores.
5680 *
5681 * Since SMT siblings share all cache levels, inspecting this limited remote
5682 * state should be fairly cheap.
5683 */
1b568f0a 5684void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5685{
5686 int core = cpu_of(rq);
5687 int cpu;
5688
5689 rcu_read_lock();
5690 if (test_idle_cores(core, true))
5691 goto unlock;
5692
5693 for_each_cpu(cpu, cpu_smt_mask(core)) {
5694 if (cpu == core)
5695 continue;
5696
5697 if (!idle_cpu(cpu))
5698 goto unlock;
5699 }
5700
5701 set_idle_cores(core, 1);
5702unlock:
5703 rcu_read_unlock();
5704}
5705
5706/*
5707 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5708 * there are no idle cores left in the system; tracked through
5709 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5710 */
5711static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5712{
5713 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5714 int core, cpu, wrap;
5715
1b568f0a
PZ
5716 if (!static_branch_likely(&sched_smt_present))
5717 return -1;
5718
10e2f1ac
PZ
5719 if (!test_idle_cores(target, false))
5720 return -1;
5721
0c98d344 5722 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac
PZ
5723
5724 for_each_cpu_wrap(core, cpus, target, wrap) {
5725 bool idle = true;
5726
5727 for_each_cpu(cpu, cpu_smt_mask(core)) {
5728 cpumask_clear_cpu(cpu, cpus);
5729 if (!idle_cpu(cpu))
5730 idle = false;
5731 }
5732
5733 if (idle)
5734 return core;
5735 }
5736
5737 /*
5738 * Failed to find an idle core; stop looking for one.
5739 */
5740 set_idle_cores(target, 0);
5741
5742 return -1;
5743}
5744
5745/*
5746 * Scan the local SMT mask for idle CPUs.
5747 */
5748static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5749{
5750 int cpu;
5751
1b568f0a
PZ
5752 if (!static_branch_likely(&sched_smt_present))
5753 return -1;
5754
10e2f1ac 5755 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5756 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5757 continue;
5758 if (idle_cpu(cpu))
5759 return cpu;
5760 }
5761
5762 return -1;
5763}
5764
5765#else /* CONFIG_SCHED_SMT */
5766
5767static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5768{
5769 return -1;
5770}
5771
5772static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5773{
5774 return -1;
5775}
5776
5777#endif /* CONFIG_SCHED_SMT */
5778
5779/*
5780 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5781 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5782 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5783 */
10e2f1ac
PZ
5784static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5785{
9cfb38a7
WL
5786 struct sched_domain *this_sd;
5787 u64 avg_cost, avg_idle = this_rq()->avg_idle;
10e2f1ac
PZ
5788 u64 time, cost;
5789 s64 delta;
5790 int cpu, wrap;
5791
9cfb38a7
WL
5792 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5793 if (!this_sd)
5794 return -1;
5795
5796 avg_cost = this_sd->avg_scan_cost;
5797
10e2f1ac
PZ
5798 /*
5799 * Due to large variance we need a large fuzz factor; hackbench in
5800 * particularly is sensitive here.
5801 */
4c77b18c 5802 if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
10e2f1ac
PZ
5803 return -1;
5804
5805 time = local_clock();
5806
5807 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
0c98d344 5808 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5809 continue;
5810 if (idle_cpu(cpu))
5811 break;
5812 }
5813
5814 time = local_clock() - time;
5815 cost = this_sd->avg_scan_cost;
5816 delta = (s64)(time - cost) / 8;
5817 this_sd->avg_scan_cost += delta;
5818
5819 return cpu;
5820}
5821
5822/*
5823 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5824 */
772bd008 5825static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5826{
99bd5e2f 5827 struct sched_domain *sd;
10e2f1ac 5828 int i;
a50bde51 5829
e0a79f52
MG
5830 if (idle_cpu(target))
5831 return target;
99bd5e2f
SS
5832
5833 /*
10e2f1ac 5834 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5835 */
772bd008
MR
5836 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5837 return prev;
a50bde51 5838
518cd623 5839 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5840 if (!sd)
5841 return target;
772bd008 5842
10e2f1ac
PZ
5843 i = select_idle_core(p, sd, target);
5844 if ((unsigned)i < nr_cpumask_bits)
5845 return i;
37407ea7 5846
10e2f1ac
PZ
5847 i = select_idle_cpu(p, sd, target);
5848 if ((unsigned)i < nr_cpumask_bits)
5849 return i;
5850
5851 i = select_idle_smt(p, sd, target);
5852 if ((unsigned)i < nr_cpumask_bits)
5853 return i;
970e1789 5854
a50bde51
PZ
5855 return target;
5856}
231678b7 5857
8bb5b00c 5858/*
9e91d61d 5859 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5860 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5861 * compare the utilization with the capacity of the CPU that is available for
5862 * CFS task (ie cpu_capacity).
231678b7
DE
5863 *
5864 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5865 * recent utilization of currently non-runnable tasks on a CPU. It represents
5866 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5867 * capacity_orig is the cpu_capacity available at the highest frequency
5868 * (arch_scale_freq_capacity()).
5869 * The utilization of a CPU converges towards a sum equal to or less than the
5870 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5871 * the running time on this CPU scaled by capacity_curr.
5872 *
5873 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5874 * higher than capacity_orig because of unfortunate rounding in
5875 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5876 * the average stabilizes with the new running time. We need to check that the
5877 * utilization stays within the range of [0..capacity_orig] and cap it if
5878 * necessary. Without utilization capping, a group could be seen as overloaded
5879 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5880 * available capacity. We allow utilization to overshoot capacity_curr (but not
5881 * capacity_orig) as it useful for predicting the capacity required after task
5882 * migrations (scheduler-driven DVFS).
8bb5b00c 5883 */
9e91d61d 5884static int cpu_util(int cpu)
8bb5b00c 5885{
9e91d61d 5886 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5887 unsigned long capacity = capacity_orig_of(cpu);
5888
231678b7 5889 return (util >= capacity) ? capacity : util;
8bb5b00c 5890}
a50bde51 5891
3273163c
MR
5892static inline int task_util(struct task_struct *p)
5893{
5894 return p->se.avg.util_avg;
5895}
5896
104cb16d
MR
5897/*
5898 * cpu_util_wake: Compute cpu utilization with any contributions from
5899 * the waking task p removed.
5900 */
5901static int cpu_util_wake(int cpu, struct task_struct *p)
5902{
5903 unsigned long util, capacity;
5904
5905 /* Task has no contribution or is new */
5906 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5907 return cpu_util(cpu);
5908
5909 capacity = capacity_orig_of(cpu);
5910 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5911
5912 return (util >= capacity) ? capacity : util;
5913}
5914
3273163c
MR
5915/*
5916 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5917 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5918 *
5919 * In that case WAKE_AFFINE doesn't make sense and we'll let
5920 * BALANCE_WAKE sort things out.
5921 */
5922static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5923{
5924 long min_cap, max_cap;
5925
5926 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5927 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5928
5929 /* Minimum capacity is close to max, no need to abort wake_affine */
5930 if (max_cap - min_cap < max_cap >> 3)
5931 return 0;
5932
104cb16d
MR
5933 /* Bring task utilization in sync with prev_cpu */
5934 sync_entity_load_avg(&p->se);
5935
3273163c
MR
5936 return min_cap * 1024 < task_util(p) * capacity_margin;
5937}
5938
aaee1203 5939/*
de91b9cb
MR
5940 * select_task_rq_fair: Select target runqueue for the waking task in domains
5941 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5942 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5943 *
de91b9cb
MR
5944 * Balances load by selecting the idlest cpu in the idlest group, or under
5945 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5946 *
de91b9cb 5947 * Returns the target cpu number.
aaee1203
PZ
5948 *
5949 * preempt must be disabled.
5950 */
0017d735 5951static int
ac66f547 5952select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5953{
29cd8bae 5954 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5955 int cpu = smp_processor_id();
63b0e9ed 5956 int new_cpu = prev_cpu;
99bd5e2f 5957 int want_affine = 0;
5158f4e4 5958 int sync = wake_flags & WF_SYNC;
c88d5910 5959
c58d25f3
PZ
5960 if (sd_flag & SD_BALANCE_WAKE) {
5961 record_wakee(p);
3273163c 5962 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 5963 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 5964 }
aaee1203 5965
dce840a0 5966 rcu_read_lock();
aaee1203 5967 for_each_domain(cpu, tmp) {
e4f42888 5968 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5969 break;
e4f42888 5970
fe3bcfe1 5971 /*
99bd5e2f
SS
5972 * If both cpu and prev_cpu are part of this domain,
5973 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5974 */
99bd5e2f
SS
5975 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5976 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5977 affine_sd = tmp;
29cd8bae 5978 break;
f03542a7 5979 }
29cd8bae 5980
f03542a7 5981 if (tmp->flags & sd_flag)
29cd8bae 5982 sd = tmp;
63b0e9ed
MG
5983 else if (!want_affine)
5984 break;
29cd8bae
PZ
5985 }
5986
63b0e9ed
MG
5987 if (affine_sd) {
5988 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5989 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5990 new_cpu = cpu;
8b911acd 5991 }
e7693a36 5992
63b0e9ed
MG
5993 if (!sd) {
5994 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5995 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5996
5997 } else while (sd) {
aaee1203 5998 struct sched_group *group;
c88d5910 5999 int weight;
098fb9db 6000
0763a660 6001 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
6002 sd = sd->child;
6003 continue;
6004 }
098fb9db 6005
c44f2a02 6006 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
6007 if (!group) {
6008 sd = sd->child;
6009 continue;
6010 }
4ae7d5ce 6011
d7c33c49 6012 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6013 if (new_cpu == -1 || new_cpu == cpu) {
6014 /* Now try balancing at a lower domain level of cpu */
6015 sd = sd->child;
6016 continue;
e7693a36 6017 }
aaee1203
PZ
6018
6019 /* Now try balancing at a lower domain level of new_cpu */
6020 cpu = new_cpu;
669c55e9 6021 weight = sd->span_weight;
aaee1203
PZ
6022 sd = NULL;
6023 for_each_domain(cpu, tmp) {
669c55e9 6024 if (weight <= tmp->span_weight)
aaee1203 6025 break;
0763a660 6026 if (tmp->flags & sd_flag)
aaee1203
PZ
6027 sd = tmp;
6028 }
6029 /* while loop will break here if sd == NULL */
e7693a36 6030 }
dce840a0 6031 rcu_read_unlock();
e7693a36 6032
c88d5910 6033 return new_cpu;
e7693a36 6034}
0a74bef8
PT
6035
6036/*
6037 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6038 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6039 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6040 */
5a4fd036 6041static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6042{
59efa0ba
PZ
6043 /*
6044 * As blocked tasks retain absolute vruntime the migration needs to
6045 * deal with this by subtracting the old and adding the new
6046 * min_vruntime -- the latter is done by enqueue_entity() when placing
6047 * the task on the new runqueue.
6048 */
6049 if (p->state == TASK_WAKING) {
6050 struct sched_entity *se = &p->se;
6051 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6052 u64 min_vruntime;
6053
6054#ifndef CONFIG_64BIT
6055 u64 min_vruntime_copy;
6056
6057 do {
6058 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6059 smp_rmb();
6060 min_vruntime = cfs_rq->min_vruntime;
6061 } while (min_vruntime != min_vruntime_copy);
6062#else
6063 min_vruntime = cfs_rq->min_vruntime;
6064#endif
6065
6066 se->vruntime -= min_vruntime;
6067 }
6068
aff3e498 6069 /*
9d89c257
YD
6070 * We are supposed to update the task to "current" time, then its up to date
6071 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6072 * what current time is, so simply throw away the out-of-date time. This
6073 * will result in the wakee task is less decayed, but giving the wakee more
6074 * load sounds not bad.
aff3e498 6075 */
9d89c257
YD
6076 remove_entity_load_avg(&p->se);
6077
6078 /* Tell new CPU we are migrated */
6079 p->se.avg.last_update_time = 0;
3944a927
BS
6080
6081 /* We have migrated, no longer consider this task hot */
9d89c257 6082 p->se.exec_start = 0;
0a74bef8 6083}
12695578
YD
6084
6085static void task_dead_fair(struct task_struct *p)
6086{
6087 remove_entity_load_avg(&p->se);
6088}
e7693a36
GH
6089#endif /* CONFIG_SMP */
6090
e52fb7c0
PZ
6091static unsigned long
6092wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6093{
6094 unsigned long gran = sysctl_sched_wakeup_granularity;
6095
6096 /*
e52fb7c0
PZ
6097 * Since its curr running now, convert the gran from real-time
6098 * to virtual-time in his units.
13814d42
MG
6099 *
6100 * By using 'se' instead of 'curr' we penalize light tasks, so
6101 * they get preempted easier. That is, if 'se' < 'curr' then
6102 * the resulting gran will be larger, therefore penalizing the
6103 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6104 * be smaller, again penalizing the lighter task.
6105 *
6106 * This is especially important for buddies when the leftmost
6107 * task is higher priority than the buddy.
0bbd3336 6108 */
f4ad9bd2 6109 return calc_delta_fair(gran, se);
0bbd3336
PZ
6110}
6111
464b7527
PZ
6112/*
6113 * Should 'se' preempt 'curr'.
6114 *
6115 * |s1
6116 * |s2
6117 * |s3
6118 * g
6119 * |<--->|c
6120 *
6121 * w(c, s1) = -1
6122 * w(c, s2) = 0
6123 * w(c, s3) = 1
6124 *
6125 */
6126static int
6127wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6128{
6129 s64 gran, vdiff = curr->vruntime - se->vruntime;
6130
6131 if (vdiff <= 0)
6132 return -1;
6133
e52fb7c0 6134 gran = wakeup_gran(curr, se);
464b7527
PZ
6135 if (vdiff > gran)
6136 return 1;
6137
6138 return 0;
6139}
6140
02479099
PZ
6141static void set_last_buddy(struct sched_entity *se)
6142{
69c80f3e
VP
6143 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6144 return;
6145
6146 for_each_sched_entity(se)
6147 cfs_rq_of(se)->last = se;
02479099
PZ
6148}
6149
6150static void set_next_buddy(struct sched_entity *se)
6151{
69c80f3e
VP
6152 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6153 return;
6154
6155 for_each_sched_entity(se)
6156 cfs_rq_of(se)->next = se;
02479099
PZ
6157}
6158
ac53db59
RR
6159static void set_skip_buddy(struct sched_entity *se)
6160{
69c80f3e
VP
6161 for_each_sched_entity(se)
6162 cfs_rq_of(se)->skip = se;
ac53db59
RR
6163}
6164
bf0f6f24
IM
6165/*
6166 * Preempt the current task with a newly woken task if needed:
6167 */
5a9b86f6 6168static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6169{
6170 struct task_struct *curr = rq->curr;
8651a86c 6171 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6172 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6173 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6174 int next_buddy_marked = 0;
bf0f6f24 6175
4ae7d5ce
IM
6176 if (unlikely(se == pse))
6177 return;
6178
5238cdd3 6179 /*
163122b7 6180 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6181 * unconditionally check_prempt_curr() after an enqueue (which may have
6182 * lead to a throttle). This both saves work and prevents false
6183 * next-buddy nomination below.
6184 */
6185 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6186 return;
6187
2f36825b 6188 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6189 set_next_buddy(pse);
2f36825b
VP
6190 next_buddy_marked = 1;
6191 }
57fdc26d 6192
aec0a514
BR
6193 /*
6194 * We can come here with TIF_NEED_RESCHED already set from new task
6195 * wake up path.
5238cdd3
PT
6196 *
6197 * Note: this also catches the edge-case of curr being in a throttled
6198 * group (e.g. via set_curr_task), since update_curr() (in the
6199 * enqueue of curr) will have resulted in resched being set. This
6200 * prevents us from potentially nominating it as a false LAST_BUDDY
6201 * below.
aec0a514
BR
6202 */
6203 if (test_tsk_need_resched(curr))
6204 return;
6205
a2f5c9ab
DH
6206 /* Idle tasks are by definition preempted by non-idle tasks. */
6207 if (unlikely(curr->policy == SCHED_IDLE) &&
6208 likely(p->policy != SCHED_IDLE))
6209 goto preempt;
6210
91c234b4 6211 /*
a2f5c9ab
DH
6212 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6213 * is driven by the tick):
91c234b4 6214 */
8ed92e51 6215 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6216 return;
bf0f6f24 6217
464b7527 6218 find_matching_se(&se, &pse);
9bbd7374 6219 update_curr(cfs_rq_of(se));
002f128b 6220 BUG_ON(!pse);
2f36825b
VP
6221 if (wakeup_preempt_entity(se, pse) == 1) {
6222 /*
6223 * Bias pick_next to pick the sched entity that is
6224 * triggering this preemption.
6225 */
6226 if (!next_buddy_marked)
6227 set_next_buddy(pse);
3a7e73a2 6228 goto preempt;
2f36825b 6229 }
464b7527 6230
3a7e73a2 6231 return;
a65ac745 6232
3a7e73a2 6233preempt:
8875125e 6234 resched_curr(rq);
3a7e73a2
PZ
6235 /*
6236 * Only set the backward buddy when the current task is still
6237 * on the rq. This can happen when a wakeup gets interleaved
6238 * with schedule on the ->pre_schedule() or idle_balance()
6239 * point, either of which can * drop the rq lock.
6240 *
6241 * Also, during early boot the idle thread is in the fair class,
6242 * for obvious reasons its a bad idea to schedule back to it.
6243 */
6244 if (unlikely(!se->on_rq || curr == rq->idle))
6245 return;
6246
6247 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6248 set_last_buddy(se);
bf0f6f24
IM
6249}
6250
606dba2e 6251static struct task_struct *
d8ac8971 6252pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6253{
6254 struct cfs_rq *cfs_rq = &rq->cfs;
6255 struct sched_entity *se;
678d5718 6256 struct task_struct *p;
37e117c0 6257 int new_tasks;
678d5718 6258
6e83125c 6259again:
678d5718
PZ
6260#ifdef CONFIG_FAIR_GROUP_SCHED
6261 if (!cfs_rq->nr_running)
38033c37 6262 goto idle;
678d5718 6263
3f1d2a31 6264 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6265 goto simple;
6266
6267 /*
6268 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6269 * likely that a next task is from the same cgroup as the current.
6270 *
6271 * Therefore attempt to avoid putting and setting the entire cgroup
6272 * hierarchy, only change the part that actually changes.
6273 */
6274
6275 do {
6276 struct sched_entity *curr = cfs_rq->curr;
6277
6278 /*
6279 * Since we got here without doing put_prev_entity() we also
6280 * have to consider cfs_rq->curr. If it is still a runnable
6281 * entity, update_curr() will update its vruntime, otherwise
6282 * forget we've ever seen it.
6283 */
54d27365
BS
6284 if (curr) {
6285 if (curr->on_rq)
6286 update_curr(cfs_rq);
6287 else
6288 curr = NULL;
678d5718 6289
54d27365
BS
6290 /*
6291 * This call to check_cfs_rq_runtime() will do the
6292 * throttle and dequeue its entity in the parent(s).
6293 * Therefore the 'simple' nr_running test will indeed
6294 * be correct.
6295 */
6296 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6297 goto simple;
6298 }
678d5718
PZ
6299
6300 se = pick_next_entity(cfs_rq, curr);
6301 cfs_rq = group_cfs_rq(se);
6302 } while (cfs_rq);
6303
6304 p = task_of(se);
6305
6306 /*
6307 * Since we haven't yet done put_prev_entity and if the selected task
6308 * is a different task than we started out with, try and touch the
6309 * least amount of cfs_rqs.
6310 */
6311 if (prev != p) {
6312 struct sched_entity *pse = &prev->se;
6313
6314 while (!(cfs_rq = is_same_group(se, pse))) {
6315 int se_depth = se->depth;
6316 int pse_depth = pse->depth;
6317
6318 if (se_depth <= pse_depth) {
6319 put_prev_entity(cfs_rq_of(pse), pse);
6320 pse = parent_entity(pse);
6321 }
6322 if (se_depth >= pse_depth) {
6323 set_next_entity(cfs_rq_of(se), se);
6324 se = parent_entity(se);
6325 }
6326 }
6327
6328 put_prev_entity(cfs_rq, pse);
6329 set_next_entity(cfs_rq, se);
6330 }
6331
6332 if (hrtick_enabled(rq))
6333 hrtick_start_fair(rq, p);
6334
6335 return p;
6336simple:
6337 cfs_rq = &rq->cfs;
6338#endif
bf0f6f24 6339
36ace27e 6340 if (!cfs_rq->nr_running)
38033c37 6341 goto idle;
bf0f6f24 6342
3f1d2a31 6343 put_prev_task(rq, prev);
606dba2e 6344
bf0f6f24 6345 do {
678d5718 6346 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6347 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6348 cfs_rq = group_cfs_rq(se);
6349 } while (cfs_rq);
6350
8f4d37ec 6351 p = task_of(se);
678d5718 6352
b39e66ea
MG
6353 if (hrtick_enabled(rq))
6354 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6355
6356 return p;
38033c37
PZ
6357
6358idle:
46f69fa3
MF
6359 new_tasks = idle_balance(rq, rf);
6360
37e117c0
PZ
6361 /*
6362 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6363 * possible for any higher priority task to appear. In that case we
6364 * must re-start the pick_next_entity() loop.
6365 */
e4aa358b 6366 if (new_tasks < 0)
37e117c0
PZ
6367 return RETRY_TASK;
6368
e4aa358b 6369 if (new_tasks > 0)
38033c37 6370 goto again;
38033c37
PZ
6371
6372 return NULL;
bf0f6f24
IM
6373}
6374
6375/*
6376 * Account for a descheduled task:
6377 */
31ee529c 6378static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6379{
6380 struct sched_entity *se = &prev->se;
6381 struct cfs_rq *cfs_rq;
6382
6383 for_each_sched_entity(se) {
6384 cfs_rq = cfs_rq_of(se);
ab6cde26 6385 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6386 }
6387}
6388
ac53db59
RR
6389/*
6390 * sched_yield() is very simple
6391 *
6392 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6393 */
6394static void yield_task_fair(struct rq *rq)
6395{
6396 struct task_struct *curr = rq->curr;
6397 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6398 struct sched_entity *se = &curr->se;
6399
6400 /*
6401 * Are we the only task in the tree?
6402 */
6403 if (unlikely(rq->nr_running == 1))
6404 return;
6405
6406 clear_buddies(cfs_rq, se);
6407
6408 if (curr->policy != SCHED_BATCH) {
6409 update_rq_clock(rq);
6410 /*
6411 * Update run-time statistics of the 'current'.
6412 */
6413 update_curr(cfs_rq);
916671c0
MG
6414 /*
6415 * Tell update_rq_clock() that we've just updated,
6416 * so we don't do microscopic update in schedule()
6417 * and double the fastpath cost.
6418 */
9edfbfed 6419 rq_clock_skip_update(rq, true);
ac53db59
RR
6420 }
6421
6422 set_skip_buddy(se);
6423}
6424
d95f4122
MG
6425static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6426{
6427 struct sched_entity *se = &p->se;
6428
5238cdd3
PT
6429 /* throttled hierarchies are not runnable */
6430 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6431 return false;
6432
6433 /* Tell the scheduler that we'd really like pse to run next. */
6434 set_next_buddy(se);
6435
d95f4122
MG
6436 yield_task_fair(rq);
6437
6438 return true;
6439}
6440
681f3e68 6441#ifdef CONFIG_SMP
bf0f6f24 6442/**************************************************
e9c84cb8
PZ
6443 * Fair scheduling class load-balancing methods.
6444 *
6445 * BASICS
6446 *
6447 * The purpose of load-balancing is to achieve the same basic fairness the
6448 * per-cpu scheduler provides, namely provide a proportional amount of compute
6449 * time to each task. This is expressed in the following equation:
6450 *
6451 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6452 *
6453 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6454 * W_i,0 is defined as:
6455 *
6456 * W_i,0 = \Sum_j w_i,j (2)
6457 *
6458 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6459 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6460 *
6461 * The weight average is an exponential decay average of the instantaneous
6462 * weight:
6463 *
6464 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6465 *
ced549fa 6466 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6467 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6468 * can also include other factors [XXX].
6469 *
6470 * To achieve this balance we define a measure of imbalance which follows
6471 * directly from (1):
6472 *
ced549fa 6473 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6474 *
6475 * We them move tasks around to minimize the imbalance. In the continuous
6476 * function space it is obvious this converges, in the discrete case we get
6477 * a few fun cases generally called infeasible weight scenarios.
6478 *
6479 * [XXX expand on:
6480 * - infeasible weights;
6481 * - local vs global optima in the discrete case. ]
6482 *
6483 *
6484 * SCHED DOMAINS
6485 *
6486 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6487 * for all i,j solution, we create a tree of cpus that follows the hardware
6488 * topology where each level pairs two lower groups (or better). This results
6489 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6490 * tree to only the first of the previous level and we decrease the frequency
6491 * of load-balance at each level inv. proportional to the number of cpus in
6492 * the groups.
6493 *
6494 * This yields:
6495 *
6496 * log_2 n 1 n
6497 * \Sum { --- * --- * 2^i } = O(n) (5)
6498 * i = 0 2^i 2^i
6499 * `- size of each group
6500 * | | `- number of cpus doing load-balance
6501 * | `- freq
6502 * `- sum over all levels
6503 *
6504 * Coupled with a limit on how many tasks we can migrate every balance pass,
6505 * this makes (5) the runtime complexity of the balancer.
6506 *
6507 * An important property here is that each CPU is still (indirectly) connected
6508 * to every other cpu in at most O(log n) steps:
6509 *
6510 * The adjacency matrix of the resulting graph is given by:
6511 *
97a7142f 6512 * log_2 n
e9c84cb8
PZ
6513 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6514 * k = 0
6515 *
6516 * And you'll find that:
6517 *
6518 * A^(log_2 n)_i,j != 0 for all i,j (7)
6519 *
6520 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6521 * The task movement gives a factor of O(m), giving a convergence complexity
6522 * of:
6523 *
6524 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6525 *
6526 *
6527 * WORK CONSERVING
6528 *
6529 * In order to avoid CPUs going idle while there's still work to do, new idle
6530 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6531 * tree itself instead of relying on other CPUs to bring it work.
6532 *
6533 * This adds some complexity to both (5) and (8) but it reduces the total idle
6534 * time.
6535 *
6536 * [XXX more?]
6537 *
6538 *
6539 * CGROUPS
6540 *
6541 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6542 *
6543 * s_k,i
6544 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6545 * S_k
6546 *
6547 * Where
6548 *
6549 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6550 *
6551 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6552 *
6553 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6554 * property.
6555 *
6556 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6557 * rewrite all of this once again.]
97a7142f 6558 */
bf0f6f24 6559
ed387b78
HS
6560static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6561
0ec8aa00
PZ
6562enum fbq_type { regular, remote, all };
6563
ddcdf6e7 6564#define LBF_ALL_PINNED 0x01
367456c7 6565#define LBF_NEED_BREAK 0x02
6263322c
PZ
6566#define LBF_DST_PINNED 0x04
6567#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6568
6569struct lb_env {
6570 struct sched_domain *sd;
6571
ddcdf6e7 6572 struct rq *src_rq;
85c1e7da 6573 int src_cpu;
ddcdf6e7
PZ
6574
6575 int dst_cpu;
6576 struct rq *dst_rq;
6577
88b8dac0
SV
6578 struct cpumask *dst_grpmask;
6579 int new_dst_cpu;
ddcdf6e7 6580 enum cpu_idle_type idle;
bd939f45 6581 long imbalance;
b9403130
MW
6582 /* The set of CPUs under consideration for load-balancing */
6583 struct cpumask *cpus;
6584
ddcdf6e7 6585 unsigned int flags;
367456c7
PZ
6586
6587 unsigned int loop;
6588 unsigned int loop_break;
6589 unsigned int loop_max;
0ec8aa00
PZ
6590
6591 enum fbq_type fbq_type;
163122b7 6592 struct list_head tasks;
ddcdf6e7
PZ
6593};
6594
029632fb
PZ
6595/*
6596 * Is this task likely cache-hot:
6597 */
5d5e2b1b 6598static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6599{
6600 s64 delta;
6601
e5673f28
KT
6602 lockdep_assert_held(&env->src_rq->lock);
6603
029632fb
PZ
6604 if (p->sched_class != &fair_sched_class)
6605 return 0;
6606
6607 if (unlikely(p->policy == SCHED_IDLE))
6608 return 0;
6609
6610 /*
6611 * Buddy candidates are cache hot:
6612 */
5d5e2b1b 6613 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6614 (&p->se == cfs_rq_of(&p->se)->next ||
6615 &p->se == cfs_rq_of(&p->se)->last))
6616 return 1;
6617
6618 if (sysctl_sched_migration_cost == -1)
6619 return 1;
6620 if (sysctl_sched_migration_cost == 0)
6621 return 0;
6622
5d5e2b1b 6623 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6624
6625 return delta < (s64)sysctl_sched_migration_cost;
6626}
6627
3a7053b3 6628#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6629/*
2a1ed24c
SD
6630 * Returns 1, if task migration degrades locality
6631 * Returns 0, if task migration improves locality i.e migration preferred.
6632 * Returns -1, if task migration is not affected by locality.
c1ceac62 6633 */
2a1ed24c 6634static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6635{
b1ad065e 6636 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6637 unsigned long src_faults, dst_faults;
3a7053b3
MG
6638 int src_nid, dst_nid;
6639
2a595721 6640 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6641 return -1;
6642
c3b9bc5b 6643 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6644 return -1;
7a0f3083
MG
6645
6646 src_nid = cpu_to_node(env->src_cpu);
6647 dst_nid = cpu_to_node(env->dst_cpu);
6648
83e1d2cd 6649 if (src_nid == dst_nid)
2a1ed24c 6650 return -1;
7a0f3083 6651
2a1ed24c
SD
6652 /* Migrating away from the preferred node is always bad. */
6653 if (src_nid == p->numa_preferred_nid) {
6654 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6655 return 1;
6656 else
6657 return -1;
6658 }
b1ad065e 6659
c1ceac62
RR
6660 /* Encourage migration to the preferred node. */
6661 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6662 return 0;
b1ad065e 6663
c1ceac62
RR
6664 if (numa_group) {
6665 src_faults = group_faults(p, src_nid);
6666 dst_faults = group_faults(p, dst_nid);
6667 } else {
6668 src_faults = task_faults(p, src_nid);
6669 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6670 }
6671
c1ceac62 6672 return dst_faults < src_faults;
7a0f3083
MG
6673}
6674
3a7053b3 6675#else
2a1ed24c 6676static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6677 struct lb_env *env)
6678{
2a1ed24c 6679 return -1;
7a0f3083 6680}
3a7053b3
MG
6681#endif
6682
1e3c88bd
PZ
6683/*
6684 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6685 */
6686static
8e45cb54 6687int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6688{
2a1ed24c 6689 int tsk_cache_hot;
e5673f28
KT
6690
6691 lockdep_assert_held(&env->src_rq->lock);
6692
1e3c88bd
PZ
6693 /*
6694 * We do not migrate tasks that are:
d3198084 6695 * 1) throttled_lb_pair, or
1e3c88bd 6696 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6697 * 3) running (obviously), or
6698 * 4) are cache-hot on their current CPU.
1e3c88bd 6699 */
d3198084
JK
6700 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6701 return 0;
6702
0c98d344 6703 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6704 int cpu;
88b8dac0 6705
ae92882e 6706 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6707
6263322c
PZ
6708 env->flags |= LBF_SOME_PINNED;
6709
88b8dac0
SV
6710 /*
6711 * Remember if this task can be migrated to any other cpu in
6712 * our sched_group. We may want to revisit it if we couldn't
6713 * meet load balance goals by pulling other tasks on src_cpu.
6714 *
6715 * Also avoid computing new_dst_cpu if we have already computed
6716 * one in current iteration.
6717 */
6263322c 6718 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6719 return 0;
6720
e02e60c1
JK
6721 /* Prevent to re-select dst_cpu via env's cpus */
6722 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6723 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6724 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6725 env->new_dst_cpu = cpu;
6726 break;
6727 }
88b8dac0 6728 }
e02e60c1 6729
1e3c88bd
PZ
6730 return 0;
6731 }
88b8dac0
SV
6732
6733 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6734 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6735
ddcdf6e7 6736 if (task_running(env->src_rq, p)) {
ae92882e 6737 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6738 return 0;
6739 }
6740
6741 /*
6742 * Aggressive migration if:
3a7053b3
MG
6743 * 1) destination numa is preferred
6744 * 2) task is cache cold, or
6745 * 3) too many balance attempts have failed.
1e3c88bd 6746 */
2a1ed24c
SD
6747 tsk_cache_hot = migrate_degrades_locality(p, env);
6748 if (tsk_cache_hot == -1)
6749 tsk_cache_hot = task_hot(p, env);
3a7053b3 6750
2a1ed24c 6751 if (tsk_cache_hot <= 0 ||
7a96c231 6752 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6753 if (tsk_cache_hot == 1) {
ae92882e
JP
6754 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6755 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6756 }
1e3c88bd
PZ
6757 return 1;
6758 }
6759
ae92882e 6760 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6761 return 0;
1e3c88bd
PZ
6762}
6763
897c395f 6764/*
163122b7
KT
6765 * detach_task() -- detach the task for the migration specified in env
6766 */
6767static void detach_task(struct task_struct *p, struct lb_env *env)
6768{
6769 lockdep_assert_held(&env->src_rq->lock);
6770
163122b7 6771 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6772 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6773 set_task_cpu(p, env->dst_cpu);
6774}
6775
897c395f 6776/*
e5673f28 6777 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6778 * part of active balancing operations within "domain".
897c395f 6779 *
e5673f28 6780 * Returns a task if successful and NULL otherwise.
897c395f 6781 */
e5673f28 6782static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6783{
6784 struct task_struct *p, *n;
897c395f 6785
e5673f28
KT
6786 lockdep_assert_held(&env->src_rq->lock);
6787
367456c7 6788 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6789 if (!can_migrate_task(p, env))
6790 continue;
897c395f 6791
163122b7 6792 detach_task(p, env);
e5673f28 6793
367456c7 6794 /*
e5673f28 6795 * Right now, this is only the second place where
163122b7 6796 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6797 * so we can safely collect stats here rather than
163122b7 6798 * inside detach_tasks().
367456c7 6799 */
ae92882e 6800 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6801 return p;
897c395f 6802 }
e5673f28 6803 return NULL;
897c395f
PZ
6804}
6805
eb95308e
PZ
6806static const unsigned int sched_nr_migrate_break = 32;
6807
5d6523eb 6808/*
163122b7
KT
6809 * detach_tasks() -- tries to detach up to imbalance weighted load from
6810 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6811 *
163122b7 6812 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6813 */
163122b7 6814static int detach_tasks(struct lb_env *env)
1e3c88bd 6815{
5d6523eb
PZ
6816 struct list_head *tasks = &env->src_rq->cfs_tasks;
6817 struct task_struct *p;
367456c7 6818 unsigned long load;
163122b7
KT
6819 int detached = 0;
6820
6821 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6822
bd939f45 6823 if (env->imbalance <= 0)
5d6523eb 6824 return 0;
1e3c88bd 6825
5d6523eb 6826 while (!list_empty(tasks)) {
985d3a4c
YD
6827 /*
6828 * We don't want to steal all, otherwise we may be treated likewise,
6829 * which could at worst lead to a livelock crash.
6830 */
6831 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6832 break;
6833
5d6523eb 6834 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6835
367456c7
PZ
6836 env->loop++;
6837 /* We've more or less seen every task there is, call it quits */
5d6523eb 6838 if (env->loop > env->loop_max)
367456c7 6839 break;
5d6523eb
PZ
6840
6841 /* take a breather every nr_migrate tasks */
367456c7 6842 if (env->loop > env->loop_break) {
eb95308e 6843 env->loop_break += sched_nr_migrate_break;
8e45cb54 6844 env->flags |= LBF_NEED_BREAK;
ee00e66f 6845 break;
a195f004 6846 }
1e3c88bd 6847
d3198084 6848 if (!can_migrate_task(p, env))
367456c7
PZ
6849 goto next;
6850
6851 load = task_h_load(p);
5d6523eb 6852
eb95308e 6853 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6854 goto next;
6855
bd939f45 6856 if ((load / 2) > env->imbalance)
367456c7 6857 goto next;
1e3c88bd 6858
163122b7
KT
6859 detach_task(p, env);
6860 list_add(&p->se.group_node, &env->tasks);
6861
6862 detached++;
bd939f45 6863 env->imbalance -= load;
1e3c88bd
PZ
6864
6865#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6866 /*
6867 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6868 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6869 * the critical section.
6870 */
5d6523eb 6871 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6872 break;
1e3c88bd
PZ
6873#endif
6874
ee00e66f
PZ
6875 /*
6876 * We only want to steal up to the prescribed amount of
6877 * weighted load.
6878 */
bd939f45 6879 if (env->imbalance <= 0)
ee00e66f 6880 break;
367456c7
PZ
6881
6882 continue;
6883next:
5d6523eb 6884 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6885 }
5d6523eb 6886
1e3c88bd 6887 /*
163122b7
KT
6888 * Right now, this is one of only two places we collect this stat
6889 * so we can safely collect detach_one_task() stats here rather
6890 * than inside detach_one_task().
1e3c88bd 6891 */
ae92882e 6892 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6893
163122b7
KT
6894 return detached;
6895}
6896
6897/*
6898 * attach_task() -- attach the task detached by detach_task() to its new rq.
6899 */
6900static void attach_task(struct rq *rq, struct task_struct *p)
6901{
6902 lockdep_assert_held(&rq->lock);
6903
6904 BUG_ON(task_rq(p) != rq);
163122b7 6905 activate_task(rq, p, 0);
3ea94de1 6906 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6907 check_preempt_curr(rq, p, 0);
6908}
6909
6910/*
6911 * attach_one_task() -- attaches the task returned from detach_one_task() to
6912 * its new rq.
6913 */
6914static void attach_one_task(struct rq *rq, struct task_struct *p)
6915{
6916 raw_spin_lock(&rq->lock);
6917 attach_task(rq, p);
6918 raw_spin_unlock(&rq->lock);
6919}
6920
6921/*
6922 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6923 * new rq.
6924 */
6925static void attach_tasks(struct lb_env *env)
6926{
6927 struct list_head *tasks = &env->tasks;
6928 struct task_struct *p;
6929
6930 raw_spin_lock(&env->dst_rq->lock);
6931
6932 while (!list_empty(tasks)) {
6933 p = list_first_entry(tasks, struct task_struct, se.group_node);
6934 list_del_init(&p->se.group_node);
1e3c88bd 6935
163122b7
KT
6936 attach_task(env->dst_rq, p);
6937 }
6938
6939 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6940}
6941
230059de 6942#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6943static void update_blocked_averages(int cpu)
9e3081ca 6944{
9e3081ca 6945 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6946 struct cfs_rq *cfs_rq;
6947 unsigned long flags;
9e3081ca 6948
48a16753
PT
6949 raw_spin_lock_irqsave(&rq->lock, flags);
6950 update_rq_clock(rq);
9d89c257 6951
9763b67f
PZ
6952 /*
6953 * Iterates the task_group tree in a bottom up fashion, see
6954 * list_add_leaf_cfs_rq() for details.
6955 */
64660c86 6956 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6957 /* throttled entities do not contribute to load */
6958 if (throttled_hierarchy(cfs_rq))
6959 continue;
48a16753 6960
a2c6c91f 6961 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257 6962 update_tg_load_avg(cfs_rq, 0);
4e516076
VG
6963
6964 /* Propagate pending load changes to the parent */
6965 if (cfs_rq->tg->se[cpu])
6966 update_load_avg(cfs_rq->tg->se[cpu], 0);
9d89c257 6967 }
48a16753 6968 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6969}
6970
9763b67f 6971/*
68520796 6972 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6973 * This needs to be done in a top-down fashion because the load of a child
6974 * group is a fraction of its parents load.
6975 */
68520796 6976static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6977{
68520796
VD
6978 struct rq *rq = rq_of(cfs_rq);
6979 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6980 unsigned long now = jiffies;
68520796 6981 unsigned long load;
a35b6466 6982
68520796 6983 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6984 return;
6985
68520796
VD
6986 cfs_rq->h_load_next = NULL;
6987 for_each_sched_entity(se) {
6988 cfs_rq = cfs_rq_of(se);
6989 cfs_rq->h_load_next = se;
6990 if (cfs_rq->last_h_load_update == now)
6991 break;
6992 }
a35b6466 6993
68520796 6994 if (!se) {
7ea241af 6995 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6996 cfs_rq->last_h_load_update = now;
6997 }
6998
6999 while ((se = cfs_rq->h_load_next) != NULL) {
7000 load = cfs_rq->h_load;
7ea241af
YD
7001 load = div64_ul(load * se->avg.load_avg,
7002 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7003 cfs_rq = group_cfs_rq(se);
7004 cfs_rq->h_load = load;
7005 cfs_rq->last_h_load_update = now;
7006 }
9763b67f
PZ
7007}
7008
367456c7 7009static unsigned long task_h_load(struct task_struct *p)
230059de 7010{
367456c7 7011 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7012
68520796 7013 update_cfs_rq_h_load(cfs_rq);
9d89c257 7014 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7015 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7016}
7017#else
48a16753 7018static inline void update_blocked_averages(int cpu)
9e3081ca 7019{
6c1d47c0
VG
7020 struct rq *rq = cpu_rq(cpu);
7021 struct cfs_rq *cfs_rq = &rq->cfs;
7022 unsigned long flags;
7023
7024 raw_spin_lock_irqsave(&rq->lock, flags);
7025 update_rq_clock(rq);
a2c6c91f 7026 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 7027 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
7028}
7029
367456c7 7030static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7031{
9d89c257 7032 return p->se.avg.load_avg;
1e3c88bd 7033}
230059de 7034#endif
1e3c88bd 7035
1e3c88bd 7036/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7037
7038enum group_type {
7039 group_other = 0,
7040 group_imbalanced,
7041 group_overloaded,
7042};
7043
1e3c88bd
PZ
7044/*
7045 * sg_lb_stats - stats of a sched_group required for load_balancing
7046 */
7047struct sg_lb_stats {
7048 unsigned long avg_load; /*Avg load across the CPUs of the group */
7049 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7050 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7051 unsigned long load_per_task;
63b2ca30 7052 unsigned long group_capacity;
9e91d61d 7053 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7054 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7055 unsigned int idle_cpus;
7056 unsigned int group_weight;
caeb178c 7057 enum group_type group_type;
ea67821b 7058 int group_no_capacity;
0ec8aa00
PZ
7059#ifdef CONFIG_NUMA_BALANCING
7060 unsigned int nr_numa_running;
7061 unsigned int nr_preferred_running;
7062#endif
1e3c88bd
PZ
7063};
7064
56cf515b
JK
7065/*
7066 * sd_lb_stats - Structure to store the statistics of a sched_domain
7067 * during load balancing.
7068 */
7069struct sd_lb_stats {
7070 struct sched_group *busiest; /* Busiest group in this sd */
7071 struct sched_group *local; /* Local group in this sd */
7072 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7073 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7074 unsigned long avg_load; /* Average load across all groups in sd */
7075
56cf515b 7076 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7077 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7078};
7079
147c5fc2
PZ
7080static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7081{
7082 /*
7083 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7084 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7085 * We must however clear busiest_stat::avg_load because
7086 * update_sd_pick_busiest() reads this before assignment.
7087 */
7088 *sds = (struct sd_lb_stats){
7089 .busiest = NULL,
7090 .local = NULL,
7091 .total_load = 0UL,
63b2ca30 7092 .total_capacity = 0UL,
147c5fc2
PZ
7093 .busiest_stat = {
7094 .avg_load = 0UL,
caeb178c
RR
7095 .sum_nr_running = 0,
7096 .group_type = group_other,
147c5fc2
PZ
7097 },
7098 };
7099}
7100
1e3c88bd
PZ
7101/**
7102 * get_sd_load_idx - Obtain the load index for a given sched domain.
7103 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7104 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7105 *
7106 * Return: The load index.
1e3c88bd
PZ
7107 */
7108static inline int get_sd_load_idx(struct sched_domain *sd,
7109 enum cpu_idle_type idle)
7110{
7111 int load_idx;
7112
7113 switch (idle) {
7114 case CPU_NOT_IDLE:
7115 load_idx = sd->busy_idx;
7116 break;
7117
7118 case CPU_NEWLY_IDLE:
7119 load_idx = sd->newidle_idx;
7120 break;
7121 default:
7122 load_idx = sd->idle_idx;
7123 break;
7124 }
7125
7126 return load_idx;
7127}
7128
ced549fa 7129static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7130{
7131 struct rq *rq = cpu_rq(cpu);
b5b4860d 7132 u64 total, used, age_stamp, avg;
cadefd3d 7133 s64 delta;
1e3c88bd 7134
b654f7de
PZ
7135 /*
7136 * Since we're reading these variables without serialization make sure
7137 * we read them once before doing sanity checks on them.
7138 */
316c1608
JL
7139 age_stamp = READ_ONCE(rq->age_stamp);
7140 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7141 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7142
cadefd3d
PZ
7143 if (unlikely(delta < 0))
7144 delta = 0;
7145
7146 total = sched_avg_period() + delta;
aa483808 7147
b5b4860d 7148 used = div_u64(avg, total);
1e3c88bd 7149
b5b4860d
VG
7150 if (likely(used < SCHED_CAPACITY_SCALE))
7151 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7152
b5b4860d 7153 return 1;
1e3c88bd
PZ
7154}
7155
ced549fa 7156static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7157{
8cd5601c 7158 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7159 struct sched_group *sdg = sd->groups;
7160
ca6d75e6 7161 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7162
ced549fa 7163 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7164 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7165
ced549fa
NP
7166 if (!capacity)
7167 capacity = 1;
1e3c88bd 7168
ced549fa
NP
7169 cpu_rq(cpu)->cpu_capacity = capacity;
7170 sdg->sgc->capacity = capacity;
bf475ce0 7171 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7172}
7173
63b2ca30 7174void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7175{
7176 struct sched_domain *child = sd->child;
7177 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7178 unsigned long capacity, min_capacity;
4ec4412e
VG
7179 unsigned long interval;
7180
7181 interval = msecs_to_jiffies(sd->balance_interval);
7182 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7183 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7184
7185 if (!child) {
ced549fa 7186 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7187 return;
7188 }
7189
dc7ff76e 7190 capacity = 0;
bf475ce0 7191 min_capacity = ULONG_MAX;
1e3c88bd 7192
74a5ce20
PZ
7193 if (child->flags & SD_OVERLAP) {
7194 /*
7195 * SD_OVERLAP domains cannot assume that child groups
7196 * span the current group.
7197 */
7198
863bffc8 7199 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 7200 struct sched_group_capacity *sgc;
9abf24d4 7201 struct rq *rq = cpu_rq(cpu);
863bffc8 7202
9abf24d4 7203 /*
63b2ca30 7204 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7205 * gets here before we've attached the domains to the
7206 * runqueues.
7207 *
ced549fa
NP
7208 * Use capacity_of(), which is set irrespective of domains
7209 * in update_cpu_capacity().
9abf24d4 7210 *
dc7ff76e 7211 * This avoids capacity from being 0 and
9abf24d4 7212 * causing divide-by-zero issues on boot.
9abf24d4
SD
7213 */
7214 if (unlikely(!rq->sd)) {
ced549fa 7215 capacity += capacity_of(cpu);
bf475ce0
MR
7216 } else {
7217 sgc = rq->sd->groups->sgc;
7218 capacity += sgc->capacity;
9abf24d4 7219 }
863bffc8 7220
bf475ce0 7221 min_capacity = min(capacity, min_capacity);
863bffc8 7222 }
74a5ce20
PZ
7223 } else {
7224 /*
7225 * !SD_OVERLAP domains can assume that child groups
7226 * span the current group.
97a7142f 7227 */
74a5ce20
PZ
7228
7229 group = child->groups;
7230 do {
bf475ce0
MR
7231 struct sched_group_capacity *sgc = group->sgc;
7232
7233 capacity += sgc->capacity;
7234 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7235 group = group->next;
7236 } while (group != child->groups);
7237 }
1e3c88bd 7238
63b2ca30 7239 sdg->sgc->capacity = capacity;
bf475ce0 7240 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7241}
7242
9d5efe05 7243/*
ea67821b
VG
7244 * Check whether the capacity of the rq has been noticeably reduced by side
7245 * activity. The imbalance_pct is used for the threshold.
7246 * Return true is the capacity is reduced
9d5efe05
SV
7247 */
7248static inline int
ea67821b 7249check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7250{
ea67821b
VG
7251 return ((rq->cpu_capacity * sd->imbalance_pct) <
7252 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7253}
7254
30ce5dab
PZ
7255/*
7256 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7257 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7258 *
7259 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7260 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7261 * Something like:
7262 *
2b4d5b25
IM
7263 * { 0 1 2 3 } { 4 5 6 7 }
7264 * * * * *
30ce5dab
PZ
7265 *
7266 * If we were to balance group-wise we'd place two tasks in the first group and
7267 * two tasks in the second group. Clearly this is undesired as it will overload
7268 * cpu 3 and leave one of the cpus in the second group unused.
7269 *
7270 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7271 * by noticing the lower domain failed to reach balance and had difficulty
7272 * moving tasks due to affinity constraints.
30ce5dab
PZ
7273 *
7274 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7275 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7276 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7277 * to create an effective group imbalance.
7278 *
7279 * This is a somewhat tricky proposition since the next run might not find the
7280 * group imbalance and decide the groups need to be balanced again. A most
7281 * subtle and fragile situation.
7282 */
7283
6263322c 7284static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7285{
63b2ca30 7286 return group->sgc->imbalance;
30ce5dab
PZ
7287}
7288
b37d9316 7289/*
ea67821b
VG
7290 * group_has_capacity returns true if the group has spare capacity that could
7291 * be used by some tasks.
7292 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7293 * smaller than the number of CPUs or if the utilization is lower than the
7294 * available capacity for CFS tasks.
ea67821b
VG
7295 * For the latter, we use a threshold to stabilize the state, to take into
7296 * account the variance of the tasks' load and to return true if the available
7297 * capacity in meaningful for the load balancer.
7298 * As an example, an available capacity of 1% can appear but it doesn't make
7299 * any benefit for the load balance.
b37d9316 7300 */
ea67821b
VG
7301static inline bool
7302group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7303{
ea67821b
VG
7304 if (sgs->sum_nr_running < sgs->group_weight)
7305 return true;
c61037e9 7306
ea67821b 7307 if ((sgs->group_capacity * 100) >
9e91d61d 7308 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7309 return true;
b37d9316 7310
ea67821b
VG
7311 return false;
7312}
7313
7314/*
7315 * group_is_overloaded returns true if the group has more tasks than it can
7316 * handle.
7317 * group_is_overloaded is not equals to !group_has_capacity because a group
7318 * with the exact right number of tasks, has no more spare capacity but is not
7319 * overloaded so both group_has_capacity and group_is_overloaded return
7320 * false.
7321 */
7322static inline bool
7323group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7324{
7325 if (sgs->sum_nr_running <= sgs->group_weight)
7326 return false;
b37d9316 7327
ea67821b 7328 if ((sgs->group_capacity * 100) <
9e91d61d 7329 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7330 return true;
b37d9316 7331
ea67821b 7332 return false;
b37d9316
PZ
7333}
7334
9e0994c0
MR
7335/*
7336 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7337 * per-CPU capacity than sched_group ref.
7338 */
7339static inline bool
7340group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7341{
7342 return sg->sgc->min_capacity * capacity_margin <
7343 ref->sgc->min_capacity * 1024;
7344}
7345
79a89f92
LY
7346static inline enum
7347group_type group_classify(struct sched_group *group,
7348 struct sg_lb_stats *sgs)
caeb178c 7349{
ea67821b 7350 if (sgs->group_no_capacity)
caeb178c
RR
7351 return group_overloaded;
7352
7353 if (sg_imbalanced(group))
7354 return group_imbalanced;
7355
7356 return group_other;
7357}
7358
1e3c88bd
PZ
7359/**
7360 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7361 * @env: The load balancing environment.
1e3c88bd 7362 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7363 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7364 * @local_group: Does group contain this_cpu.
1e3c88bd 7365 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7366 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7367 */
bd939f45
PZ
7368static inline void update_sg_lb_stats(struct lb_env *env,
7369 struct sched_group *group, int load_idx,
4486edd1
TC
7370 int local_group, struct sg_lb_stats *sgs,
7371 bool *overload)
1e3c88bd 7372{
30ce5dab 7373 unsigned long load;
a426f99c 7374 int i, nr_running;
1e3c88bd 7375
b72ff13c
PZ
7376 memset(sgs, 0, sizeof(*sgs));
7377
b9403130 7378 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
7379 struct rq *rq = cpu_rq(i);
7380
1e3c88bd 7381 /* Bias balancing toward cpus of our domain */
6263322c 7382 if (local_group)
04f733b4 7383 load = target_load(i, load_idx);
6263322c 7384 else
1e3c88bd 7385 load = source_load(i, load_idx);
1e3c88bd
PZ
7386
7387 sgs->group_load += load;
9e91d61d 7388 sgs->group_util += cpu_util(i);
65fdac08 7389 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7390
a426f99c
WL
7391 nr_running = rq->nr_running;
7392 if (nr_running > 1)
4486edd1
TC
7393 *overload = true;
7394
0ec8aa00
PZ
7395#ifdef CONFIG_NUMA_BALANCING
7396 sgs->nr_numa_running += rq->nr_numa_running;
7397 sgs->nr_preferred_running += rq->nr_preferred_running;
7398#endif
1e3c88bd 7399 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7400 /*
7401 * No need to call idle_cpu() if nr_running is not 0
7402 */
7403 if (!nr_running && idle_cpu(i))
aae6d3dd 7404 sgs->idle_cpus++;
1e3c88bd
PZ
7405 }
7406
63b2ca30
NP
7407 /* Adjust by relative CPU capacity of the group */
7408 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7409 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7410
dd5feea1 7411 if (sgs->sum_nr_running)
38d0f770 7412 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7413
aae6d3dd 7414 sgs->group_weight = group->group_weight;
b37d9316 7415
ea67821b 7416 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7417 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7418}
7419
532cb4c4
MN
7420/**
7421 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7422 * @env: The load balancing environment.
532cb4c4
MN
7423 * @sds: sched_domain statistics
7424 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7425 * @sgs: sched_group statistics
532cb4c4
MN
7426 *
7427 * Determine if @sg is a busier group than the previously selected
7428 * busiest group.
e69f6186
YB
7429 *
7430 * Return: %true if @sg is a busier group than the previously selected
7431 * busiest group. %false otherwise.
532cb4c4 7432 */
bd939f45 7433static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7434 struct sd_lb_stats *sds,
7435 struct sched_group *sg,
bd939f45 7436 struct sg_lb_stats *sgs)
532cb4c4 7437{
caeb178c 7438 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7439
caeb178c 7440 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7441 return true;
7442
caeb178c
RR
7443 if (sgs->group_type < busiest->group_type)
7444 return false;
7445
7446 if (sgs->avg_load <= busiest->avg_load)
7447 return false;
7448
9e0994c0
MR
7449 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7450 goto asym_packing;
7451
7452 /*
7453 * Candidate sg has no more than one task per CPU and
7454 * has higher per-CPU capacity. Migrating tasks to less
7455 * capable CPUs may harm throughput. Maximize throughput,
7456 * power/energy consequences are not considered.
7457 */
7458 if (sgs->sum_nr_running <= sgs->group_weight &&
7459 group_smaller_cpu_capacity(sds->local, sg))
7460 return false;
7461
7462asym_packing:
caeb178c
RR
7463 /* This is the busiest node in its class. */
7464 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7465 return true;
7466
1f621e02
SD
7467 /* No ASYM_PACKING if target cpu is already busy */
7468 if (env->idle == CPU_NOT_IDLE)
7469 return true;
532cb4c4 7470 /*
afe06efd
TC
7471 * ASYM_PACKING needs to move all the work to the highest
7472 * prority CPUs in the group, therefore mark all groups
7473 * of lower priority than ourself as busy.
532cb4c4 7474 */
afe06efd
TC
7475 if (sgs->sum_nr_running &&
7476 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7477 if (!sds->busiest)
7478 return true;
7479
afe06efd
TC
7480 /* Prefer to move from lowest priority cpu's work */
7481 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7482 sg->asym_prefer_cpu))
532cb4c4
MN
7483 return true;
7484 }
7485
7486 return false;
7487}
7488
0ec8aa00
PZ
7489#ifdef CONFIG_NUMA_BALANCING
7490static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7491{
7492 if (sgs->sum_nr_running > sgs->nr_numa_running)
7493 return regular;
7494 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7495 return remote;
7496 return all;
7497}
7498
7499static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7500{
7501 if (rq->nr_running > rq->nr_numa_running)
7502 return regular;
7503 if (rq->nr_running > rq->nr_preferred_running)
7504 return remote;
7505 return all;
7506}
7507#else
7508static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7509{
7510 return all;
7511}
7512
7513static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7514{
7515 return regular;
7516}
7517#endif /* CONFIG_NUMA_BALANCING */
7518
1e3c88bd 7519/**
461819ac 7520 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7521 * @env: The load balancing environment.
1e3c88bd
PZ
7522 * @sds: variable to hold the statistics for this sched_domain.
7523 */
0ec8aa00 7524static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7525{
bd939f45
PZ
7526 struct sched_domain *child = env->sd->child;
7527 struct sched_group *sg = env->sd->groups;
56cf515b 7528 struct sg_lb_stats tmp_sgs;
1e3c88bd 7529 int load_idx, prefer_sibling = 0;
4486edd1 7530 bool overload = false;
1e3c88bd
PZ
7531
7532 if (child && child->flags & SD_PREFER_SIBLING)
7533 prefer_sibling = 1;
7534
bd939f45 7535 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7536
7537 do {
56cf515b 7538 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7539 int local_group;
7540
bd939f45 7541 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
7542 if (local_group) {
7543 sds->local = sg;
7544 sgs = &sds->local_stat;
b72ff13c
PZ
7545
7546 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7547 time_after_eq(jiffies, sg->sgc->next_update))
7548 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7549 }
1e3c88bd 7550
4486edd1
TC
7551 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7552 &overload);
1e3c88bd 7553
b72ff13c
PZ
7554 if (local_group)
7555 goto next_group;
7556
1e3c88bd
PZ
7557 /*
7558 * In case the child domain prefers tasks go to siblings
ea67821b 7559 * first, lower the sg capacity so that we'll try
75dd321d
NR
7560 * and move all the excess tasks away. We lower the capacity
7561 * of a group only if the local group has the capacity to fit
ea67821b
VG
7562 * these excess tasks. The extra check prevents the case where
7563 * you always pull from the heaviest group when it is already
7564 * under-utilized (possible with a large weight task outweighs
7565 * the tasks on the system).
1e3c88bd 7566 */
b72ff13c 7567 if (prefer_sibling && sds->local &&
ea67821b
VG
7568 group_has_capacity(env, &sds->local_stat) &&
7569 (sgs->sum_nr_running > 1)) {
7570 sgs->group_no_capacity = 1;
79a89f92 7571 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7572 }
1e3c88bd 7573
b72ff13c 7574 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7575 sds->busiest = sg;
56cf515b 7576 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7577 }
7578
b72ff13c
PZ
7579next_group:
7580 /* Now, start updating sd_lb_stats */
7581 sds->total_load += sgs->group_load;
63b2ca30 7582 sds->total_capacity += sgs->group_capacity;
b72ff13c 7583
532cb4c4 7584 sg = sg->next;
bd939f45 7585 } while (sg != env->sd->groups);
0ec8aa00
PZ
7586
7587 if (env->sd->flags & SD_NUMA)
7588 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7589
7590 if (!env->sd->parent) {
7591 /* update overload indicator if we are at root domain */
7592 if (env->dst_rq->rd->overload != overload)
7593 env->dst_rq->rd->overload = overload;
7594 }
7595
532cb4c4
MN
7596}
7597
532cb4c4
MN
7598/**
7599 * check_asym_packing - Check to see if the group is packed into the
7600 * sched doman.
7601 *
7602 * This is primarily intended to used at the sibling level. Some
7603 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7604 * case of POWER7, it can move to lower SMT modes only when higher
7605 * threads are idle. When in lower SMT modes, the threads will
7606 * perform better since they share less core resources. Hence when we
7607 * have idle threads, we want them to be the higher ones.
7608 *
7609 * This packing function is run on idle threads. It checks to see if
7610 * the busiest CPU in this domain (core in the P7 case) has a higher
7611 * CPU number than the packing function is being run on. Here we are
7612 * assuming lower CPU number will be equivalent to lower a SMT thread
7613 * number.
7614 *
e69f6186 7615 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7616 * this CPU. The amount of the imbalance is returned in *imbalance.
7617 *
cd96891d 7618 * @env: The load balancing environment.
532cb4c4 7619 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7620 */
bd939f45 7621static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7622{
7623 int busiest_cpu;
7624
bd939f45 7625 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7626 return 0;
7627
1f621e02
SD
7628 if (env->idle == CPU_NOT_IDLE)
7629 return 0;
7630
532cb4c4
MN
7631 if (!sds->busiest)
7632 return 0;
7633
afe06efd
TC
7634 busiest_cpu = sds->busiest->asym_prefer_cpu;
7635 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7636 return 0;
7637
bd939f45 7638 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7639 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7640 SCHED_CAPACITY_SCALE);
bd939f45 7641
532cb4c4 7642 return 1;
1e3c88bd
PZ
7643}
7644
7645/**
7646 * fix_small_imbalance - Calculate the minor imbalance that exists
7647 * amongst the groups of a sched_domain, during
7648 * load balancing.
cd96891d 7649 * @env: The load balancing environment.
1e3c88bd 7650 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7651 */
bd939f45
PZ
7652static inline
7653void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7654{
63b2ca30 7655 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7656 unsigned int imbn = 2;
dd5feea1 7657 unsigned long scaled_busy_load_per_task;
56cf515b 7658 struct sg_lb_stats *local, *busiest;
1e3c88bd 7659
56cf515b
JK
7660 local = &sds->local_stat;
7661 busiest = &sds->busiest_stat;
1e3c88bd 7662
56cf515b
JK
7663 if (!local->sum_nr_running)
7664 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7665 else if (busiest->load_per_task > local->load_per_task)
7666 imbn = 1;
dd5feea1 7667
56cf515b 7668 scaled_busy_load_per_task =
ca8ce3d0 7669 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7670 busiest->group_capacity;
56cf515b 7671
3029ede3
VD
7672 if (busiest->avg_load + scaled_busy_load_per_task >=
7673 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7674 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7675 return;
7676 }
7677
7678 /*
7679 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7680 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7681 * moving them.
7682 */
7683
63b2ca30 7684 capa_now += busiest->group_capacity *
56cf515b 7685 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7686 capa_now += local->group_capacity *
56cf515b 7687 min(local->load_per_task, local->avg_load);
ca8ce3d0 7688 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7689
7690 /* Amount of load we'd subtract */
a2cd4260 7691 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7692 capa_move += busiest->group_capacity *
56cf515b 7693 min(busiest->load_per_task,
a2cd4260 7694 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7695 }
1e3c88bd
PZ
7696
7697 /* Amount of load we'd add */
63b2ca30 7698 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7699 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7700 tmp = (busiest->avg_load * busiest->group_capacity) /
7701 local->group_capacity;
56cf515b 7702 } else {
ca8ce3d0 7703 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7704 local->group_capacity;
56cf515b 7705 }
63b2ca30 7706 capa_move += local->group_capacity *
3ae11c90 7707 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7708 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7709
7710 /* Move if we gain throughput */
63b2ca30 7711 if (capa_move > capa_now)
56cf515b 7712 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7713}
7714
7715/**
7716 * calculate_imbalance - Calculate the amount of imbalance present within the
7717 * groups of a given sched_domain during load balance.
bd939f45 7718 * @env: load balance environment
1e3c88bd 7719 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7720 */
bd939f45 7721static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7722{
dd5feea1 7723 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7724 struct sg_lb_stats *local, *busiest;
7725
7726 local = &sds->local_stat;
56cf515b 7727 busiest = &sds->busiest_stat;
dd5feea1 7728
caeb178c 7729 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7730 /*
7731 * In the group_imb case we cannot rely on group-wide averages
7732 * to ensure cpu-load equilibrium, look at wider averages. XXX
7733 */
56cf515b
JK
7734 busiest->load_per_task =
7735 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7736 }
7737
1e3c88bd 7738 /*
885e542c
DE
7739 * Avg load of busiest sg can be less and avg load of local sg can
7740 * be greater than avg load across all sgs of sd because avg load
7741 * factors in sg capacity and sgs with smaller group_type are
7742 * skipped when updating the busiest sg:
1e3c88bd 7743 */
b1885550
VD
7744 if (busiest->avg_load <= sds->avg_load ||
7745 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7746 env->imbalance = 0;
7747 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7748 }
7749
9a5d9ba6
PZ
7750 /*
7751 * If there aren't any idle cpus, avoid creating some.
7752 */
7753 if (busiest->group_type == group_overloaded &&
7754 local->group_type == group_overloaded) {
1be0eb2a 7755 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7756 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7757 load_above_capacity -= busiest->group_capacity;
26656215 7758 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7759 load_above_capacity /= busiest->group_capacity;
7760 } else
ea67821b 7761 load_above_capacity = ~0UL;
dd5feea1
SS
7762 }
7763
7764 /*
7765 * We're trying to get all the cpus to the average_load, so we don't
7766 * want to push ourselves above the average load, nor do we wish to
7767 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7768 * we also don't want to reduce the group load below the group
7769 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7770 */
30ce5dab 7771 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7772
7773 /* How much load to actually move to equalise the imbalance */
56cf515b 7774 env->imbalance = min(
63b2ca30
NP
7775 max_pull * busiest->group_capacity,
7776 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7777 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7778
7779 /*
7780 * if *imbalance is less than the average load per runnable task
25985edc 7781 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7782 * a think about bumping its value to force at least one task to be
7783 * moved
7784 */
56cf515b 7785 if (env->imbalance < busiest->load_per_task)
bd939f45 7786 return fix_small_imbalance(env, sds);
1e3c88bd 7787}
fab47622 7788
1e3c88bd
PZ
7789/******* find_busiest_group() helpers end here *********************/
7790
7791/**
7792 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7793 * if there is an imbalance.
1e3c88bd
PZ
7794 *
7795 * Also calculates the amount of weighted load which should be moved
7796 * to restore balance.
7797 *
cd96891d 7798 * @env: The load balancing environment.
1e3c88bd 7799 *
e69f6186 7800 * Return: - The busiest group if imbalance exists.
1e3c88bd 7801 */
56cf515b 7802static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7803{
56cf515b 7804 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7805 struct sd_lb_stats sds;
7806
147c5fc2 7807 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7808
7809 /*
7810 * Compute the various statistics relavent for load balancing at
7811 * this level.
7812 */
23f0d209 7813 update_sd_lb_stats(env, &sds);
56cf515b
JK
7814 local = &sds.local_stat;
7815 busiest = &sds.busiest_stat;
1e3c88bd 7816
ea67821b 7817 /* ASYM feature bypasses nice load balance check */
1f621e02 7818 if (check_asym_packing(env, &sds))
532cb4c4
MN
7819 return sds.busiest;
7820
cc57aa8f 7821 /* There is no busy sibling group to pull tasks from */
56cf515b 7822 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7823 goto out_balanced;
7824
ca8ce3d0
NP
7825 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7826 / sds.total_capacity;
b0432d8f 7827
866ab43e
PZ
7828 /*
7829 * If the busiest group is imbalanced the below checks don't
30ce5dab 7830 * work because they assume all things are equal, which typically
866ab43e
PZ
7831 * isn't true due to cpus_allowed constraints and the like.
7832 */
caeb178c 7833 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7834 goto force_balance;
7835
cc57aa8f 7836 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7837 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7838 busiest->group_no_capacity)
fab47622
NR
7839 goto force_balance;
7840
cc57aa8f 7841 /*
9c58c79a 7842 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7843 * don't try and pull any tasks.
7844 */
56cf515b 7845 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7846 goto out_balanced;
7847
cc57aa8f
PZ
7848 /*
7849 * Don't pull any tasks if this group is already above the domain
7850 * average load.
7851 */
56cf515b 7852 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7853 goto out_balanced;
7854
bd939f45 7855 if (env->idle == CPU_IDLE) {
aae6d3dd 7856 /*
43f4d666
VG
7857 * This cpu is idle. If the busiest group is not overloaded
7858 * and there is no imbalance between this and busiest group
7859 * wrt idle cpus, it is balanced. The imbalance becomes
7860 * significant if the diff is greater than 1 otherwise we
7861 * might end up to just move the imbalance on another group
aae6d3dd 7862 */
43f4d666
VG
7863 if ((busiest->group_type != group_overloaded) &&
7864 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7865 goto out_balanced;
c186fafe
PZ
7866 } else {
7867 /*
7868 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7869 * imbalance_pct to be conservative.
7870 */
56cf515b
JK
7871 if (100 * busiest->avg_load <=
7872 env->sd->imbalance_pct * local->avg_load)
c186fafe 7873 goto out_balanced;
aae6d3dd 7874 }
1e3c88bd 7875
fab47622 7876force_balance:
1e3c88bd 7877 /* Looks like there is an imbalance. Compute it */
bd939f45 7878 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7879 return sds.busiest;
7880
7881out_balanced:
bd939f45 7882 env->imbalance = 0;
1e3c88bd
PZ
7883 return NULL;
7884}
7885
7886/*
7887 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7888 */
bd939f45 7889static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7890 struct sched_group *group)
1e3c88bd
PZ
7891{
7892 struct rq *busiest = NULL, *rq;
ced549fa 7893 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7894 int i;
7895
6906a408 7896 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7897 unsigned long capacity, wl;
0ec8aa00
PZ
7898 enum fbq_type rt;
7899
7900 rq = cpu_rq(i);
7901 rt = fbq_classify_rq(rq);
1e3c88bd 7902
0ec8aa00
PZ
7903 /*
7904 * We classify groups/runqueues into three groups:
7905 * - regular: there are !numa tasks
7906 * - remote: there are numa tasks that run on the 'wrong' node
7907 * - all: there is no distinction
7908 *
7909 * In order to avoid migrating ideally placed numa tasks,
7910 * ignore those when there's better options.
7911 *
7912 * If we ignore the actual busiest queue to migrate another
7913 * task, the next balance pass can still reduce the busiest
7914 * queue by moving tasks around inside the node.
7915 *
7916 * If we cannot move enough load due to this classification
7917 * the next pass will adjust the group classification and
7918 * allow migration of more tasks.
7919 *
7920 * Both cases only affect the total convergence complexity.
7921 */
7922 if (rt > env->fbq_type)
7923 continue;
7924
ced549fa 7925 capacity = capacity_of(i);
9d5efe05 7926
6e40f5bb 7927 wl = weighted_cpuload(i);
1e3c88bd 7928
6e40f5bb
TG
7929 /*
7930 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7931 * which is not scaled with the cpu capacity.
6e40f5bb 7932 */
ea67821b
VG
7933
7934 if (rq->nr_running == 1 && wl > env->imbalance &&
7935 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7936 continue;
7937
6e40f5bb
TG
7938 /*
7939 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7940 * the weighted_cpuload() scaled with the cpu capacity, so
7941 * that the load can be moved away from the cpu that is
7942 * potentially running at a lower capacity.
95a79b80 7943 *
ced549fa 7944 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7945 * multiplication to rid ourselves of the division works out
ced549fa
NP
7946 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7947 * our previous maximum.
6e40f5bb 7948 */
ced549fa 7949 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7950 busiest_load = wl;
ced549fa 7951 busiest_capacity = capacity;
1e3c88bd
PZ
7952 busiest = rq;
7953 }
7954 }
7955
7956 return busiest;
7957}
7958
7959/*
7960 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7961 * so long as it is large enough.
7962 */
7963#define MAX_PINNED_INTERVAL 512
7964
bd939f45 7965static int need_active_balance(struct lb_env *env)
1af3ed3d 7966{
bd939f45
PZ
7967 struct sched_domain *sd = env->sd;
7968
7969 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7970
7971 /*
7972 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
7973 * lower priority CPUs in order to pack all tasks in the
7974 * highest priority CPUs.
532cb4c4 7975 */
afe06efd
TC
7976 if ((sd->flags & SD_ASYM_PACKING) &&
7977 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 7978 return 1;
1af3ed3d
PZ
7979 }
7980
1aaf90a4
VG
7981 /*
7982 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7983 * It's worth migrating the task if the src_cpu's capacity is reduced
7984 * because of other sched_class or IRQs if more capacity stays
7985 * available on dst_cpu.
7986 */
7987 if ((env->idle != CPU_NOT_IDLE) &&
7988 (env->src_rq->cfs.h_nr_running == 1)) {
7989 if ((check_cpu_capacity(env->src_rq, sd)) &&
7990 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7991 return 1;
7992 }
7993
1af3ed3d
PZ
7994 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7995}
7996
969c7921
TH
7997static int active_load_balance_cpu_stop(void *data);
7998
23f0d209
JK
7999static int should_we_balance(struct lb_env *env)
8000{
8001 struct sched_group *sg = env->sd->groups;
8002 struct cpumask *sg_cpus, *sg_mask;
8003 int cpu, balance_cpu = -1;
8004
8005 /*
8006 * In the newly idle case, we will allow all the cpu's
8007 * to do the newly idle load balance.
8008 */
8009 if (env->idle == CPU_NEWLY_IDLE)
8010 return 1;
8011
8012 sg_cpus = sched_group_cpus(sg);
8013 sg_mask = sched_group_mask(sg);
8014 /* Try to find first idle cpu */
8015 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
8016 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
8017 continue;
8018
8019 balance_cpu = cpu;
8020 break;
8021 }
8022
8023 if (balance_cpu == -1)
8024 balance_cpu = group_balance_cpu(sg);
8025
8026 /*
8027 * First idle cpu or the first cpu(busiest) in this sched group
8028 * is eligible for doing load balancing at this and above domains.
8029 */
b0cff9d8 8030 return balance_cpu == env->dst_cpu;
23f0d209
JK
8031}
8032
1e3c88bd
PZ
8033/*
8034 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8035 * tasks if there is an imbalance.
8036 */
8037static int load_balance(int this_cpu, struct rq *this_rq,
8038 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8039 int *continue_balancing)
1e3c88bd 8040{
88b8dac0 8041 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8042 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8043 struct sched_group *group;
1e3c88bd
PZ
8044 struct rq *busiest;
8045 unsigned long flags;
4ba29684 8046 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8047
8e45cb54
PZ
8048 struct lb_env env = {
8049 .sd = sd,
ddcdf6e7
PZ
8050 .dst_cpu = this_cpu,
8051 .dst_rq = this_rq,
88b8dac0 8052 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 8053 .idle = idle,
eb95308e 8054 .loop_break = sched_nr_migrate_break,
b9403130 8055 .cpus = cpus,
0ec8aa00 8056 .fbq_type = all,
163122b7 8057 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8058 };
8059
cfc03118
JK
8060 /*
8061 * For NEWLY_IDLE load_balancing, we don't need to consider
8062 * other cpus in our group
8063 */
e02e60c1 8064 if (idle == CPU_NEWLY_IDLE)
cfc03118 8065 env.dst_grpmask = NULL;
cfc03118 8066
1e3c88bd
PZ
8067 cpumask_copy(cpus, cpu_active_mask);
8068
ae92882e 8069 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8070
8071redo:
23f0d209
JK
8072 if (!should_we_balance(&env)) {
8073 *continue_balancing = 0;
1e3c88bd 8074 goto out_balanced;
23f0d209 8075 }
1e3c88bd 8076
23f0d209 8077 group = find_busiest_group(&env);
1e3c88bd 8078 if (!group) {
ae92882e 8079 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8080 goto out_balanced;
8081 }
8082
b9403130 8083 busiest = find_busiest_queue(&env, group);
1e3c88bd 8084 if (!busiest) {
ae92882e 8085 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8086 goto out_balanced;
8087 }
8088
78feefc5 8089 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8090
ae92882e 8091 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8092
1aaf90a4
VG
8093 env.src_cpu = busiest->cpu;
8094 env.src_rq = busiest;
8095
1e3c88bd
PZ
8096 ld_moved = 0;
8097 if (busiest->nr_running > 1) {
8098 /*
8099 * Attempt to move tasks. If find_busiest_group has found
8100 * an imbalance but busiest->nr_running <= 1, the group is
8101 * still unbalanced. ld_moved simply stays zero, so it is
8102 * correctly treated as an imbalance.
8103 */
8e45cb54 8104 env.flags |= LBF_ALL_PINNED;
c82513e5 8105 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8106
5d6523eb 8107more_balance:
163122b7 8108 raw_spin_lock_irqsave(&busiest->lock, flags);
3bed5e21 8109 update_rq_clock(busiest);
88b8dac0
SV
8110
8111 /*
8112 * cur_ld_moved - load moved in current iteration
8113 * ld_moved - cumulative load moved across iterations
8114 */
163122b7 8115 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8116
8117 /*
163122b7
KT
8118 * We've detached some tasks from busiest_rq. Every
8119 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8120 * unlock busiest->lock, and we are able to be sure
8121 * that nobody can manipulate the tasks in parallel.
8122 * See task_rq_lock() family for the details.
1e3c88bd 8123 */
163122b7
KT
8124
8125 raw_spin_unlock(&busiest->lock);
8126
8127 if (cur_ld_moved) {
8128 attach_tasks(&env);
8129 ld_moved += cur_ld_moved;
8130 }
8131
1e3c88bd 8132 local_irq_restore(flags);
88b8dac0 8133
f1cd0858
JK
8134 if (env.flags & LBF_NEED_BREAK) {
8135 env.flags &= ~LBF_NEED_BREAK;
8136 goto more_balance;
8137 }
8138
88b8dac0
SV
8139 /*
8140 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8141 * us and move them to an alternate dst_cpu in our sched_group
8142 * where they can run. The upper limit on how many times we
8143 * iterate on same src_cpu is dependent on number of cpus in our
8144 * sched_group.
8145 *
8146 * This changes load balance semantics a bit on who can move
8147 * load to a given_cpu. In addition to the given_cpu itself
8148 * (or a ilb_cpu acting on its behalf where given_cpu is
8149 * nohz-idle), we now have balance_cpu in a position to move
8150 * load to given_cpu. In rare situations, this may cause
8151 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8152 * _independently_ and at _same_ time to move some load to
8153 * given_cpu) causing exceess load to be moved to given_cpu.
8154 * This however should not happen so much in practice and
8155 * moreover subsequent load balance cycles should correct the
8156 * excess load moved.
8157 */
6263322c 8158 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8159
7aff2e3a
VD
8160 /* Prevent to re-select dst_cpu via env's cpus */
8161 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8162
78feefc5 8163 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8164 env.dst_cpu = env.new_dst_cpu;
6263322c 8165 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8166 env.loop = 0;
8167 env.loop_break = sched_nr_migrate_break;
e02e60c1 8168
88b8dac0
SV
8169 /*
8170 * Go back to "more_balance" rather than "redo" since we
8171 * need to continue with same src_cpu.
8172 */
8173 goto more_balance;
8174 }
1e3c88bd 8175
6263322c
PZ
8176 /*
8177 * We failed to reach balance because of affinity.
8178 */
8179 if (sd_parent) {
63b2ca30 8180 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8181
afdeee05 8182 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8183 *group_imbalance = 1;
6263322c
PZ
8184 }
8185
1e3c88bd 8186 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8187 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8188 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
8189 if (!cpumask_empty(cpus)) {
8190 env.loop = 0;
8191 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8192 goto redo;
bbf18b19 8193 }
afdeee05 8194 goto out_all_pinned;
1e3c88bd
PZ
8195 }
8196 }
8197
8198 if (!ld_moved) {
ae92882e 8199 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8200 /*
8201 * Increment the failure counter only on periodic balance.
8202 * We do not want newidle balance, which can be very
8203 * frequent, pollute the failure counter causing
8204 * excessive cache_hot migrations and active balances.
8205 */
8206 if (idle != CPU_NEWLY_IDLE)
8207 sd->nr_balance_failed++;
1e3c88bd 8208
bd939f45 8209 if (need_active_balance(&env)) {
1e3c88bd
PZ
8210 raw_spin_lock_irqsave(&busiest->lock, flags);
8211
969c7921
TH
8212 /* don't kick the active_load_balance_cpu_stop,
8213 * if the curr task on busiest cpu can't be
8214 * moved to this_cpu
1e3c88bd 8215 */
0c98d344 8216 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8217 raw_spin_unlock_irqrestore(&busiest->lock,
8218 flags);
8e45cb54 8219 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8220 goto out_one_pinned;
8221 }
8222
969c7921
TH
8223 /*
8224 * ->active_balance synchronizes accesses to
8225 * ->active_balance_work. Once set, it's cleared
8226 * only after active load balance is finished.
8227 */
1e3c88bd
PZ
8228 if (!busiest->active_balance) {
8229 busiest->active_balance = 1;
8230 busiest->push_cpu = this_cpu;
8231 active_balance = 1;
8232 }
8233 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8234
bd939f45 8235 if (active_balance) {
969c7921
TH
8236 stop_one_cpu_nowait(cpu_of(busiest),
8237 active_load_balance_cpu_stop, busiest,
8238 &busiest->active_balance_work);
bd939f45 8239 }
1e3c88bd 8240
d02c0711 8241 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8242 sd->nr_balance_failed = sd->cache_nice_tries+1;
8243 }
8244 } else
8245 sd->nr_balance_failed = 0;
8246
8247 if (likely(!active_balance)) {
8248 /* We were unbalanced, so reset the balancing interval */
8249 sd->balance_interval = sd->min_interval;
8250 } else {
8251 /*
8252 * If we've begun active balancing, start to back off. This
8253 * case may not be covered by the all_pinned logic if there
8254 * is only 1 task on the busy runqueue (because we don't call
163122b7 8255 * detach_tasks).
1e3c88bd
PZ
8256 */
8257 if (sd->balance_interval < sd->max_interval)
8258 sd->balance_interval *= 2;
8259 }
8260
1e3c88bd
PZ
8261 goto out;
8262
8263out_balanced:
afdeee05
VG
8264 /*
8265 * We reach balance although we may have faced some affinity
8266 * constraints. Clear the imbalance flag if it was set.
8267 */
8268 if (sd_parent) {
8269 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8270
8271 if (*group_imbalance)
8272 *group_imbalance = 0;
8273 }
8274
8275out_all_pinned:
8276 /*
8277 * We reach balance because all tasks are pinned at this level so
8278 * we can't migrate them. Let the imbalance flag set so parent level
8279 * can try to migrate them.
8280 */
ae92882e 8281 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8282
8283 sd->nr_balance_failed = 0;
8284
8285out_one_pinned:
8286 /* tune up the balancing interval */
8e45cb54 8287 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8288 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8289 (sd->balance_interval < sd->max_interval))
8290 sd->balance_interval *= 2;
8291
46e49b38 8292 ld_moved = 0;
1e3c88bd 8293out:
1e3c88bd
PZ
8294 return ld_moved;
8295}
8296
52a08ef1
JL
8297static inline unsigned long
8298get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8299{
8300 unsigned long interval = sd->balance_interval;
8301
8302 if (cpu_busy)
8303 interval *= sd->busy_factor;
8304
8305 /* scale ms to jiffies */
8306 interval = msecs_to_jiffies(interval);
8307 interval = clamp(interval, 1UL, max_load_balance_interval);
8308
8309 return interval;
8310}
8311
8312static inline void
31851a98 8313update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8314{
8315 unsigned long interval, next;
8316
31851a98
LY
8317 /* used by idle balance, so cpu_busy = 0 */
8318 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8319 next = sd->last_balance + interval;
8320
8321 if (time_after(*next_balance, next))
8322 *next_balance = next;
8323}
8324
1e3c88bd
PZ
8325/*
8326 * idle_balance is called by schedule() if this_cpu is about to become
8327 * idle. Attempts to pull tasks from other CPUs.
8328 */
46f69fa3 8329static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8330{
52a08ef1
JL
8331 unsigned long next_balance = jiffies + HZ;
8332 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8333 struct sched_domain *sd;
8334 int pulled_task = 0;
9bd721c5 8335 u64 curr_cost = 0;
1e3c88bd 8336
6e83125c
PZ
8337 /*
8338 * We must set idle_stamp _before_ calling idle_balance(), such that we
8339 * measure the duration of idle_balance() as idle time.
8340 */
8341 this_rq->idle_stamp = rq_clock(this_rq);
8342
46f69fa3
MF
8343 /*
8344 * This is OK, because current is on_cpu, which avoids it being picked
8345 * for load-balance and preemption/IRQs are still disabled avoiding
8346 * further scheduler activity on it and we're being very careful to
8347 * re-start the picking loop.
8348 */
8349 rq_unpin_lock(this_rq, rf);
8350
4486edd1
TC
8351 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8352 !this_rq->rd->overload) {
52a08ef1
JL
8353 rcu_read_lock();
8354 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8355 if (sd)
31851a98 8356 update_next_balance(sd, &next_balance);
52a08ef1
JL
8357 rcu_read_unlock();
8358
6e83125c 8359 goto out;
52a08ef1 8360 }
1e3c88bd 8361
f492e12e
PZ
8362 raw_spin_unlock(&this_rq->lock);
8363
48a16753 8364 update_blocked_averages(this_cpu);
dce840a0 8365 rcu_read_lock();
1e3c88bd 8366 for_each_domain(this_cpu, sd) {
23f0d209 8367 int continue_balancing = 1;
9bd721c5 8368 u64 t0, domain_cost;
1e3c88bd
PZ
8369
8370 if (!(sd->flags & SD_LOAD_BALANCE))
8371 continue;
8372
52a08ef1 8373 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8374 update_next_balance(sd, &next_balance);
9bd721c5 8375 break;
52a08ef1 8376 }
9bd721c5 8377
f492e12e 8378 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8379 t0 = sched_clock_cpu(this_cpu);
8380
f492e12e 8381 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8382 sd, CPU_NEWLY_IDLE,
8383 &continue_balancing);
9bd721c5
JL
8384
8385 domain_cost = sched_clock_cpu(this_cpu) - t0;
8386 if (domain_cost > sd->max_newidle_lb_cost)
8387 sd->max_newidle_lb_cost = domain_cost;
8388
8389 curr_cost += domain_cost;
f492e12e 8390 }
1e3c88bd 8391
31851a98 8392 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8393
8394 /*
8395 * Stop searching for tasks to pull if there are
8396 * now runnable tasks on this rq.
8397 */
8398 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8399 break;
1e3c88bd 8400 }
dce840a0 8401 rcu_read_unlock();
f492e12e
PZ
8402
8403 raw_spin_lock(&this_rq->lock);
8404
0e5b5337
JL
8405 if (curr_cost > this_rq->max_idle_balance_cost)
8406 this_rq->max_idle_balance_cost = curr_cost;
8407
e5fc6611 8408 /*
0e5b5337
JL
8409 * While browsing the domains, we released the rq lock, a task could
8410 * have been enqueued in the meantime. Since we're not going idle,
8411 * pretend we pulled a task.
e5fc6611 8412 */
0e5b5337 8413 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8414 pulled_task = 1;
e5fc6611 8415
52a08ef1
JL
8416out:
8417 /* Move the next balance forward */
8418 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8419 this_rq->next_balance = next_balance;
9bd721c5 8420
e4aa358b 8421 /* Is there a task of a high priority class? */
46383648 8422 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8423 pulled_task = -1;
8424
38c6ade2 8425 if (pulled_task)
6e83125c
PZ
8426 this_rq->idle_stamp = 0;
8427
46f69fa3
MF
8428 rq_repin_lock(this_rq, rf);
8429
3c4017c1 8430 return pulled_task;
1e3c88bd
PZ
8431}
8432
8433/*
969c7921
TH
8434 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8435 * running tasks off the busiest CPU onto idle CPUs. It requires at
8436 * least 1 task to be running on each physical CPU where possible, and
8437 * avoids physical / logical imbalances.
1e3c88bd 8438 */
969c7921 8439static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8440{
969c7921
TH
8441 struct rq *busiest_rq = data;
8442 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8443 int target_cpu = busiest_rq->push_cpu;
969c7921 8444 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8445 struct sched_domain *sd;
e5673f28 8446 struct task_struct *p = NULL;
969c7921
TH
8447
8448 raw_spin_lock_irq(&busiest_rq->lock);
8449
8450 /* make sure the requested cpu hasn't gone down in the meantime */
8451 if (unlikely(busiest_cpu != smp_processor_id() ||
8452 !busiest_rq->active_balance))
8453 goto out_unlock;
1e3c88bd
PZ
8454
8455 /* Is there any task to move? */
8456 if (busiest_rq->nr_running <= 1)
969c7921 8457 goto out_unlock;
1e3c88bd
PZ
8458
8459 /*
8460 * This condition is "impossible", if it occurs
8461 * we need to fix it. Originally reported by
8462 * Bjorn Helgaas on a 128-cpu setup.
8463 */
8464 BUG_ON(busiest_rq == target_rq);
8465
1e3c88bd 8466 /* Search for an sd spanning us and the target CPU. */
dce840a0 8467 rcu_read_lock();
1e3c88bd
PZ
8468 for_each_domain(target_cpu, sd) {
8469 if ((sd->flags & SD_LOAD_BALANCE) &&
8470 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8471 break;
8472 }
8473
8474 if (likely(sd)) {
8e45cb54
PZ
8475 struct lb_env env = {
8476 .sd = sd,
ddcdf6e7
PZ
8477 .dst_cpu = target_cpu,
8478 .dst_rq = target_rq,
8479 .src_cpu = busiest_rq->cpu,
8480 .src_rq = busiest_rq,
8e45cb54
PZ
8481 .idle = CPU_IDLE,
8482 };
8483
ae92882e 8484 schedstat_inc(sd->alb_count);
3bed5e21 8485 update_rq_clock(busiest_rq);
1e3c88bd 8486
e5673f28 8487 p = detach_one_task(&env);
d02c0711 8488 if (p) {
ae92882e 8489 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8490 /* Active balancing done, reset the failure counter. */
8491 sd->nr_balance_failed = 0;
8492 } else {
ae92882e 8493 schedstat_inc(sd->alb_failed);
d02c0711 8494 }
1e3c88bd 8495 }
dce840a0 8496 rcu_read_unlock();
969c7921
TH
8497out_unlock:
8498 busiest_rq->active_balance = 0;
e5673f28
KT
8499 raw_spin_unlock(&busiest_rq->lock);
8500
8501 if (p)
8502 attach_one_task(target_rq, p);
8503
8504 local_irq_enable();
8505
969c7921 8506 return 0;
1e3c88bd
PZ
8507}
8508
d987fc7f
MG
8509static inline int on_null_domain(struct rq *rq)
8510{
8511 return unlikely(!rcu_dereference_sched(rq->sd));
8512}
8513
3451d024 8514#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8515/*
8516 * idle load balancing details
83cd4fe2
VP
8517 * - When one of the busy CPUs notice that there may be an idle rebalancing
8518 * needed, they will kick the idle load balancer, which then does idle
8519 * load balancing for all the idle CPUs.
8520 */
1e3c88bd 8521static struct {
83cd4fe2 8522 cpumask_var_t idle_cpus_mask;
0b005cf5 8523 atomic_t nr_cpus;
83cd4fe2
VP
8524 unsigned long next_balance; /* in jiffy units */
8525} nohz ____cacheline_aligned;
1e3c88bd 8526
3dd0337d 8527static inline int find_new_ilb(void)
1e3c88bd 8528{
0b005cf5 8529 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8530
786d6dc7
SS
8531 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8532 return ilb;
8533
8534 return nr_cpu_ids;
1e3c88bd 8535}
1e3c88bd 8536
83cd4fe2
VP
8537/*
8538 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8539 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8540 * CPU (if there is one).
8541 */
0aeeeeba 8542static void nohz_balancer_kick(void)
83cd4fe2
VP
8543{
8544 int ilb_cpu;
8545
8546 nohz.next_balance++;
8547
3dd0337d 8548 ilb_cpu = find_new_ilb();
83cd4fe2 8549
0b005cf5
SS
8550 if (ilb_cpu >= nr_cpu_ids)
8551 return;
83cd4fe2 8552
cd490c5b 8553 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8554 return;
8555 /*
8556 * Use smp_send_reschedule() instead of resched_cpu().
8557 * This way we generate a sched IPI on the target cpu which
8558 * is idle. And the softirq performing nohz idle load balance
8559 * will be run before returning from the IPI.
8560 */
8561 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8562 return;
8563}
8564
20a5c8cc 8565void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8566{
8567 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8568 /*
8569 * Completely isolated CPUs don't ever set, so we must test.
8570 */
8571 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8572 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8573 atomic_dec(&nohz.nr_cpus);
8574 }
71325960
SS
8575 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8576 }
8577}
8578
69e1e811
SS
8579static inline void set_cpu_sd_state_busy(void)
8580{
8581 struct sched_domain *sd;
37dc6b50 8582 int cpu = smp_processor_id();
69e1e811 8583
69e1e811 8584 rcu_read_lock();
0e369d75 8585 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8586
8587 if (!sd || !sd->nohz_idle)
8588 goto unlock;
8589 sd->nohz_idle = 0;
8590
0e369d75 8591 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8592unlock:
69e1e811
SS
8593 rcu_read_unlock();
8594}
8595
8596void set_cpu_sd_state_idle(void)
8597{
8598 struct sched_domain *sd;
37dc6b50 8599 int cpu = smp_processor_id();
69e1e811 8600
69e1e811 8601 rcu_read_lock();
0e369d75 8602 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8603
8604 if (!sd || sd->nohz_idle)
8605 goto unlock;
8606 sd->nohz_idle = 1;
8607
0e369d75 8608 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8609unlock:
69e1e811
SS
8610 rcu_read_unlock();
8611}
8612
1e3c88bd 8613/*
c1cc017c 8614 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8615 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8616 */
c1cc017c 8617void nohz_balance_enter_idle(int cpu)
1e3c88bd 8618{
71325960
SS
8619 /*
8620 * If this cpu is going down, then nothing needs to be done.
8621 */
8622 if (!cpu_active(cpu))
8623 return;
8624
c1cc017c
AS
8625 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8626 return;
1e3c88bd 8627
d987fc7f
MG
8628 /*
8629 * If we're a completely isolated CPU, we don't play.
8630 */
8631 if (on_null_domain(cpu_rq(cpu)))
8632 return;
8633
c1cc017c
AS
8634 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8635 atomic_inc(&nohz.nr_cpus);
8636 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8637}
8638#endif
8639
8640static DEFINE_SPINLOCK(balancing);
8641
49c022e6
PZ
8642/*
8643 * Scale the max load_balance interval with the number of CPUs in the system.
8644 * This trades load-balance latency on larger machines for less cross talk.
8645 */
029632fb 8646void update_max_interval(void)
49c022e6
PZ
8647{
8648 max_load_balance_interval = HZ*num_online_cpus()/10;
8649}
8650
1e3c88bd
PZ
8651/*
8652 * It checks each scheduling domain to see if it is due to be balanced,
8653 * and initiates a balancing operation if so.
8654 *
b9b0853a 8655 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8656 */
f7ed0a89 8657static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8658{
23f0d209 8659 int continue_balancing = 1;
f7ed0a89 8660 int cpu = rq->cpu;
1e3c88bd 8661 unsigned long interval;
04f733b4 8662 struct sched_domain *sd;
1e3c88bd
PZ
8663 /* Earliest time when we have to do rebalance again */
8664 unsigned long next_balance = jiffies + 60*HZ;
8665 int update_next_balance = 0;
f48627e6
JL
8666 int need_serialize, need_decay = 0;
8667 u64 max_cost = 0;
1e3c88bd 8668
48a16753 8669 update_blocked_averages(cpu);
2069dd75 8670
dce840a0 8671 rcu_read_lock();
1e3c88bd 8672 for_each_domain(cpu, sd) {
f48627e6
JL
8673 /*
8674 * Decay the newidle max times here because this is a regular
8675 * visit to all the domains. Decay ~1% per second.
8676 */
8677 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8678 sd->max_newidle_lb_cost =
8679 (sd->max_newidle_lb_cost * 253) / 256;
8680 sd->next_decay_max_lb_cost = jiffies + HZ;
8681 need_decay = 1;
8682 }
8683 max_cost += sd->max_newidle_lb_cost;
8684
1e3c88bd
PZ
8685 if (!(sd->flags & SD_LOAD_BALANCE))
8686 continue;
8687
f48627e6
JL
8688 /*
8689 * Stop the load balance at this level. There is another
8690 * CPU in our sched group which is doing load balancing more
8691 * actively.
8692 */
8693 if (!continue_balancing) {
8694 if (need_decay)
8695 continue;
8696 break;
8697 }
8698
52a08ef1 8699 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8700
8701 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8702 if (need_serialize) {
8703 if (!spin_trylock(&balancing))
8704 goto out;
8705 }
8706
8707 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8708 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8709 /*
6263322c 8710 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8711 * env->dst_cpu, so we can't know our idle
8712 * state even if we migrated tasks. Update it.
1e3c88bd 8713 */
de5eb2dd 8714 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8715 }
8716 sd->last_balance = jiffies;
52a08ef1 8717 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8718 }
8719 if (need_serialize)
8720 spin_unlock(&balancing);
8721out:
8722 if (time_after(next_balance, sd->last_balance + interval)) {
8723 next_balance = sd->last_balance + interval;
8724 update_next_balance = 1;
8725 }
f48627e6
JL
8726 }
8727 if (need_decay) {
1e3c88bd 8728 /*
f48627e6
JL
8729 * Ensure the rq-wide value also decays but keep it at a
8730 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8731 */
f48627e6
JL
8732 rq->max_idle_balance_cost =
8733 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8734 }
dce840a0 8735 rcu_read_unlock();
1e3c88bd
PZ
8736
8737 /*
8738 * next_balance will be updated only when there is a need.
8739 * When the cpu is attached to null domain for ex, it will not be
8740 * updated.
8741 */
c5afb6a8 8742 if (likely(update_next_balance)) {
1e3c88bd 8743 rq->next_balance = next_balance;
c5afb6a8
VG
8744
8745#ifdef CONFIG_NO_HZ_COMMON
8746 /*
8747 * If this CPU has been elected to perform the nohz idle
8748 * balance. Other idle CPUs have already rebalanced with
8749 * nohz_idle_balance() and nohz.next_balance has been
8750 * updated accordingly. This CPU is now running the idle load
8751 * balance for itself and we need to update the
8752 * nohz.next_balance accordingly.
8753 */
8754 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8755 nohz.next_balance = rq->next_balance;
8756#endif
8757 }
1e3c88bd
PZ
8758}
8759
3451d024 8760#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8761/*
3451d024 8762 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8763 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8764 */
208cb16b 8765static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8766{
208cb16b 8767 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8768 struct rq *rq;
8769 int balance_cpu;
c5afb6a8
VG
8770 /* Earliest time when we have to do rebalance again */
8771 unsigned long next_balance = jiffies + 60*HZ;
8772 int update_next_balance = 0;
83cd4fe2 8773
1c792db7
SS
8774 if (idle != CPU_IDLE ||
8775 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8776 goto end;
83cd4fe2
VP
8777
8778 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8779 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8780 continue;
8781
8782 /*
8783 * If this cpu gets work to do, stop the load balancing
8784 * work being done for other cpus. Next load
8785 * balancing owner will pick it up.
8786 */
1c792db7 8787 if (need_resched())
83cd4fe2 8788 break;
83cd4fe2 8789
5ed4f1d9
VG
8790 rq = cpu_rq(balance_cpu);
8791
ed61bbc6
TC
8792 /*
8793 * If time for next balance is due,
8794 * do the balance.
8795 */
8796 if (time_after_eq(jiffies, rq->next_balance)) {
8797 raw_spin_lock_irq(&rq->lock);
8798 update_rq_clock(rq);
cee1afce 8799 cpu_load_update_idle(rq);
ed61bbc6
TC
8800 raw_spin_unlock_irq(&rq->lock);
8801 rebalance_domains(rq, CPU_IDLE);
8802 }
83cd4fe2 8803
c5afb6a8
VG
8804 if (time_after(next_balance, rq->next_balance)) {
8805 next_balance = rq->next_balance;
8806 update_next_balance = 1;
8807 }
83cd4fe2 8808 }
c5afb6a8
VG
8809
8810 /*
8811 * next_balance will be updated only when there is a need.
8812 * When the CPU is attached to null domain for ex, it will not be
8813 * updated.
8814 */
8815 if (likely(update_next_balance))
8816 nohz.next_balance = next_balance;
1c792db7
SS
8817end:
8818 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8819}
8820
8821/*
0b005cf5 8822 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8823 * of an idle cpu in the system.
0b005cf5 8824 * - This rq has more than one task.
1aaf90a4
VG
8825 * - This rq has at least one CFS task and the capacity of the CPU is
8826 * significantly reduced because of RT tasks or IRQs.
8827 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8828 * multiple busy cpu.
0b005cf5
SS
8829 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8830 * domain span are idle.
83cd4fe2 8831 */
1aaf90a4 8832static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8833{
8834 unsigned long now = jiffies;
0e369d75 8835 struct sched_domain_shared *sds;
0b005cf5 8836 struct sched_domain *sd;
afe06efd 8837 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8838 bool kick = false;
83cd4fe2 8839
4a725627 8840 if (unlikely(rq->idle_balance))
1aaf90a4 8841 return false;
83cd4fe2 8842
1c792db7
SS
8843 /*
8844 * We may be recently in ticked or tickless idle mode. At the first
8845 * busy tick after returning from idle, we will update the busy stats.
8846 */
69e1e811 8847 set_cpu_sd_state_busy();
c1cc017c 8848 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8849
8850 /*
8851 * None are in tickless mode and hence no need for NOHZ idle load
8852 * balancing.
8853 */
8854 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8855 return false;
1c792db7
SS
8856
8857 if (time_before(now, nohz.next_balance))
1aaf90a4 8858 return false;
83cd4fe2 8859
0b005cf5 8860 if (rq->nr_running >= 2)
1aaf90a4 8861 return true;
83cd4fe2 8862
067491b7 8863 rcu_read_lock();
0e369d75
PZ
8864 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8865 if (sds) {
8866 /*
8867 * XXX: write a coherent comment on why we do this.
8868 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8869 */
8870 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8871 if (nr_busy > 1) {
8872 kick = true;
8873 goto unlock;
8874 }
8875
83cd4fe2 8876 }
37dc6b50 8877
1aaf90a4
VG
8878 sd = rcu_dereference(rq->sd);
8879 if (sd) {
8880 if ((rq->cfs.h_nr_running >= 1) &&
8881 check_cpu_capacity(rq, sd)) {
8882 kick = true;
8883 goto unlock;
8884 }
8885 }
37dc6b50 8886
1aaf90a4 8887 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8888 if (sd) {
8889 for_each_cpu(i, sched_domain_span(sd)) {
8890 if (i == cpu ||
8891 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8892 continue;
067491b7 8893
afe06efd
TC
8894 if (sched_asym_prefer(i, cpu)) {
8895 kick = true;
8896 goto unlock;
8897 }
8898 }
8899 }
1aaf90a4 8900unlock:
067491b7 8901 rcu_read_unlock();
1aaf90a4 8902 return kick;
83cd4fe2
VP
8903}
8904#else
208cb16b 8905static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8906#endif
8907
8908/*
8909 * run_rebalance_domains is triggered when needed from the scheduler tick.
8910 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8911 */
0766f788 8912static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8913{
208cb16b 8914 struct rq *this_rq = this_rq();
6eb57e0d 8915 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8916 CPU_IDLE : CPU_NOT_IDLE;
8917
1e3c88bd 8918 /*
83cd4fe2 8919 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8920 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8921 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8922 * give the idle cpus a chance to load balance. Else we may
8923 * load balance only within the local sched_domain hierarchy
8924 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8925 */
208cb16b 8926 nohz_idle_balance(this_rq, idle);
d4573c3e 8927 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8928}
8929
1e3c88bd
PZ
8930/*
8931 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8932 */
7caff66f 8933void trigger_load_balance(struct rq *rq)
1e3c88bd 8934{
1e3c88bd 8935 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8936 if (unlikely(on_null_domain(rq)))
8937 return;
8938
8939 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8940 raise_softirq(SCHED_SOFTIRQ);
3451d024 8941#ifdef CONFIG_NO_HZ_COMMON
c726099e 8942 if (nohz_kick_needed(rq))
0aeeeeba 8943 nohz_balancer_kick();
83cd4fe2 8944#endif
1e3c88bd
PZ
8945}
8946
0bcdcf28
CE
8947static void rq_online_fair(struct rq *rq)
8948{
8949 update_sysctl();
0e59bdae
KT
8950
8951 update_runtime_enabled(rq);
0bcdcf28
CE
8952}
8953
8954static void rq_offline_fair(struct rq *rq)
8955{
8956 update_sysctl();
a4c96ae3
PB
8957
8958 /* Ensure any throttled groups are reachable by pick_next_task */
8959 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8960}
8961
55e12e5e 8962#endif /* CONFIG_SMP */
e1d1484f 8963
bf0f6f24
IM
8964/*
8965 * scheduler tick hitting a task of our scheduling class:
8966 */
8f4d37ec 8967static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8968{
8969 struct cfs_rq *cfs_rq;
8970 struct sched_entity *se = &curr->se;
8971
8972 for_each_sched_entity(se) {
8973 cfs_rq = cfs_rq_of(se);
8f4d37ec 8974 entity_tick(cfs_rq, se, queued);
bf0f6f24 8975 }
18bf2805 8976
b52da86e 8977 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8978 task_tick_numa(rq, curr);
bf0f6f24
IM
8979}
8980
8981/*
cd29fe6f
PZ
8982 * called on fork with the child task as argument from the parent's context
8983 * - child not yet on the tasklist
8984 * - preemption disabled
bf0f6f24 8985 */
cd29fe6f 8986static void task_fork_fair(struct task_struct *p)
bf0f6f24 8987{
4fc420c9
DN
8988 struct cfs_rq *cfs_rq;
8989 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8990 struct rq *rq = this_rq();
bf0f6f24 8991
e210bffd 8992 raw_spin_lock(&rq->lock);
861d034e
PZ
8993 update_rq_clock(rq);
8994
4fc420c9
DN
8995 cfs_rq = task_cfs_rq(current);
8996 curr = cfs_rq->curr;
e210bffd
PZ
8997 if (curr) {
8998 update_curr(cfs_rq);
b5d9d734 8999 se->vruntime = curr->vruntime;
e210bffd 9000 }
aeb73b04 9001 place_entity(cfs_rq, se, 1);
4d78e7b6 9002
cd29fe6f 9003 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9004 /*
edcb60a3
IM
9005 * Upon rescheduling, sched_class::put_prev_task() will place
9006 * 'current' within the tree based on its new key value.
9007 */
4d78e7b6 9008 swap(curr->vruntime, se->vruntime);
8875125e 9009 resched_curr(rq);
4d78e7b6 9010 }
bf0f6f24 9011
88ec22d3 9012 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 9013 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
9014}
9015
cb469845
SR
9016/*
9017 * Priority of the task has changed. Check to see if we preempt
9018 * the current task.
9019 */
da7a735e
PZ
9020static void
9021prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9022{
da0c1e65 9023 if (!task_on_rq_queued(p))
da7a735e
PZ
9024 return;
9025
cb469845
SR
9026 /*
9027 * Reschedule if we are currently running on this runqueue and
9028 * our priority decreased, or if we are not currently running on
9029 * this runqueue and our priority is higher than the current's
9030 */
da7a735e 9031 if (rq->curr == p) {
cb469845 9032 if (p->prio > oldprio)
8875125e 9033 resched_curr(rq);
cb469845 9034 } else
15afe09b 9035 check_preempt_curr(rq, p, 0);
cb469845
SR
9036}
9037
daa59407 9038static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9039{
9040 struct sched_entity *se = &p->se;
da7a735e
PZ
9041
9042 /*
daa59407
BP
9043 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9044 * the dequeue_entity(.flags=0) will already have normalized the
9045 * vruntime.
9046 */
9047 if (p->on_rq)
9048 return true;
9049
9050 /*
9051 * When !on_rq, vruntime of the task has usually NOT been normalized.
9052 * But there are some cases where it has already been normalized:
da7a735e 9053 *
daa59407
BP
9054 * - A forked child which is waiting for being woken up by
9055 * wake_up_new_task().
9056 * - A task which has been woken up by try_to_wake_up() and
9057 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9058 */
daa59407
BP
9059 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9060 return true;
9061
9062 return false;
9063}
9064
09a43ace
VG
9065#ifdef CONFIG_FAIR_GROUP_SCHED
9066/*
9067 * Propagate the changes of the sched_entity across the tg tree to make it
9068 * visible to the root
9069 */
9070static void propagate_entity_cfs_rq(struct sched_entity *se)
9071{
9072 struct cfs_rq *cfs_rq;
9073
9074 /* Start to propagate at parent */
9075 se = se->parent;
9076
9077 for_each_sched_entity(se) {
9078 cfs_rq = cfs_rq_of(se);
9079
9080 if (cfs_rq_throttled(cfs_rq))
9081 break;
9082
9083 update_load_avg(se, UPDATE_TG);
9084 }
9085}
9086#else
9087static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9088#endif
9089
df217913 9090static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9091{
daa59407
BP
9092 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9093
9d89c257 9094 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9095 update_load_avg(se, 0);
a05e8c51 9096 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9097 update_tg_load_avg(cfs_rq, false);
09a43ace 9098 propagate_entity_cfs_rq(se);
da7a735e
PZ
9099}
9100
df217913 9101static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9102{
daa59407 9103 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9104
9105#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9106 /*
9107 * Since the real-depth could have been changed (only FAIR
9108 * class maintain depth value), reset depth properly.
9109 */
9110 se->depth = se->parent ? se->parent->depth + 1 : 0;
9111#endif
7855a35a 9112
df217913 9113 /* Synchronize entity with its cfs_rq */
d31b1a66 9114 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9115 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9116 update_tg_load_avg(cfs_rq, false);
09a43ace 9117 propagate_entity_cfs_rq(se);
df217913
VG
9118}
9119
9120static void detach_task_cfs_rq(struct task_struct *p)
9121{
9122 struct sched_entity *se = &p->se;
9123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9124
9125 if (!vruntime_normalized(p)) {
9126 /*
9127 * Fix up our vruntime so that the current sleep doesn't
9128 * cause 'unlimited' sleep bonus.
9129 */
9130 place_entity(cfs_rq, se, 0);
9131 se->vruntime -= cfs_rq->min_vruntime;
9132 }
9133
9134 detach_entity_cfs_rq(se);
9135}
9136
9137static void attach_task_cfs_rq(struct task_struct *p)
9138{
9139 struct sched_entity *se = &p->se;
9140 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9141
9142 attach_entity_cfs_rq(se);
daa59407
BP
9143
9144 if (!vruntime_normalized(p))
9145 se->vruntime += cfs_rq->min_vruntime;
9146}
6efdb105 9147
daa59407
BP
9148static void switched_from_fair(struct rq *rq, struct task_struct *p)
9149{
9150 detach_task_cfs_rq(p);
9151}
9152
9153static void switched_to_fair(struct rq *rq, struct task_struct *p)
9154{
9155 attach_task_cfs_rq(p);
7855a35a 9156
daa59407 9157 if (task_on_rq_queued(p)) {
7855a35a 9158 /*
daa59407
BP
9159 * We were most likely switched from sched_rt, so
9160 * kick off the schedule if running, otherwise just see
9161 * if we can still preempt the current task.
7855a35a 9162 */
daa59407
BP
9163 if (rq->curr == p)
9164 resched_curr(rq);
9165 else
9166 check_preempt_curr(rq, p, 0);
7855a35a 9167 }
cb469845
SR
9168}
9169
83b699ed
SV
9170/* Account for a task changing its policy or group.
9171 *
9172 * This routine is mostly called to set cfs_rq->curr field when a task
9173 * migrates between groups/classes.
9174 */
9175static void set_curr_task_fair(struct rq *rq)
9176{
9177 struct sched_entity *se = &rq->curr->se;
9178
ec12cb7f
PT
9179 for_each_sched_entity(se) {
9180 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9181
9182 set_next_entity(cfs_rq, se);
9183 /* ensure bandwidth has been allocated on our new cfs_rq */
9184 account_cfs_rq_runtime(cfs_rq, 0);
9185 }
83b699ed
SV
9186}
9187
029632fb
PZ
9188void init_cfs_rq(struct cfs_rq *cfs_rq)
9189{
9190 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9191 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9192#ifndef CONFIG_64BIT
9193 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9194#endif
141965c7 9195#ifdef CONFIG_SMP
09a43ace
VG
9196#ifdef CONFIG_FAIR_GROUP_SCHED
9197 cfs_rq->propagate_avg = 0;
9198#endif
9d89c257
YD
9199 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9200 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9201#endif
029632fb
PZ
9202}
9203
810b3817 9204#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9205static void task_set_group_fair(struct task_struct *p)
9206{
9207 struct sched_entity *se = &p->se;
9208
9209 set_task_rq(p, task_cpu(p));
9210 se->depth = se->parent ? se->parent->depth + 1 : 0;
9211}
9212
bc54da21 9213static void task_move_group_fair(struct task_struct *p)
810b3817 9214{
daa59407 9215 detach_task_cfs_rq(p);
b2b5ce02 9216 set_task_rq(p, task_cpu(p));
6efdb105
BP
9217
9218#ifdef CONFIG_SMP
9219 /* Tell se's cfs_rq has been changed -- migrated */
9220 p->se.avg.last_update_time = 0;
9221#endif
daa59407 9222 attach_task_cfs_rq(p);
810b3817 9223}
029632fb 9224
ea86cb4b
VG
9225static void task_change_group_fair(struct task_struct *p, int type)
9226{
9227 switch (type) {
9228 case TASK_SET_GROUP:
9229 task_set_group_fair(p);
9230 break;
9231
9232 case TASK_MOVE_GROUP:
9233 task_move_group_fair(p);
9234 break;
9235 }
9236}
9237
029632fb
PZ
9238void free_fair_sched_group(struct task_group *tg)
9239{
9240 int i;
9241
9242 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9243
9244 for_each_possible_cpu(i) {
9245 if (tg->cfs_rq)
9246 kfree(tg->cfs_rq[i]);
6fe1f348 9247 if (tg->se)
029632fb
PZ
9248 kfree(tg->se[i]);
9249 }
9250
9251 kfree(tg->cfs_rq);
9252 kfree(tg->se);
9253}
9254
9255int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9256{
029632fb 9257 struct sched_entity *se;
b7fa30c9 9258 struct cfs_rq *cfs_rq;
029632fb
PZ
9259 int i;
9260
9261 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9262 if (!tg->cfs_rq)
9263 goto err;
9264 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9265 if (!tg->se)
9266 goto err;
9267
9268 tg->shares = NICE_0_LOAD;
9269
9270 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9271
9272 for_each_possible_cpu(i) {
9273 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9274 GFP_KERNEL, cpu_to_node(i));
9275 if (!cfs_rq)
9276 goto err;
9277
9278 se = kzalloc_node(sizeof(struct sched_entity),
9279 GFP_KERNEL, cpu_to_node(i));
9280 if (!se)
9281 goto err_free_rq;
9282
9283 init_cfs_rq(cfs_rq);
9284 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9285 init_entity_runnable_average(se);
029632fb
PZ
9286 }
9287
9288 return 1;
9289
9290err_free_rq:
9291 kfree(cfs_rq);
9292err:
9293 return 0;
9294}
9295
8663e24d
PZ
9296void online_fair_sched_group(struct task_group *tg)
9297{
9298 struct sched_entity *se;
9299 struct rq *rq;
9300 int i;
9301
9302 for_each_possible_cpu(i) {
9303 rq = cpu_rq(i);
9304 se = tg->se[i];
9305
9306 raw_spin_lock_irq(&rq->lock);
4126bad6 9307 update_rq_clock(rq);
d0326691 9308 attach_entity_cfs_rq(se);
55e16d30 9309 sync_throttle(tg, i);
8663e24d
PZ
9310 raw_spin_unlock_irq(&rq->lock);
9311 }
9312}
9313
6fe1f348 9314void unregister_fair_sched_group(struct task_group *tg)
029632fb 9315{
029632fb 9316 unsigned long flags;
6fe1f348
PZ
9317 struct rq *rq;
9318 int cpu;
029632fb 9319
6fe1f348
PZ
9320 for_each_possible_cpu(cpu) {
9321 if (tg->se[cpu])
9322 remove_entity_load_avg(tg->se[cpu]);
029632fb 9323
6fe1f348
PZ
9324 /*
9325 * Only empty task groups can be destroyed; so we can speculatively
9326 * check on_list without danger of it being re-added.
9327 */
9328 if (!tg->cfs_rq[cpu]->on_list)
9329 continue;
9330
9331 rq = cpu_rq(cpu);
9332
9333 raw_spin_lock_irqsave(&rq->lock, flags);
9334 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9335 raw_spin_unlock_irqrestore(&rq->lock, flags);
9336 }
029632fb
PZ
9337}
9338
9339void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9340 struct sched_entity *se, int cpu,
9341 struct sched_entity *parent)
9342{
9343 struct rq *rq = cpu_rq(cpu);
9344
9345 cfs_rq->tg = tg;
9346 cfs_rq->rq = rq;
029632fb
PZ
9347 init_cfs_rq_runtime(cfs_rq);
9348
9349 tg->cfs_rq[cpu] = cfs_rq;
9350 tg->se[cpu] = se;
9351
9352 /* se could be NULL for root_task_group */
9353 if (!se)
9354 return;
9355
fed14d45 9356 if (!parent) {
029632fb 9357 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9358 se->depth = 0;
9359 } else {
029632fb 9360 se->cfs_rq = parent->my_q;
fed14d45
PZ
9361 se->depth = parent->depth + 1;
9362 }
029632fb
PZ
9363
9364 se->my_q = cfs_rq;
0ac9b1c2
PT
9365 /* guarantee group entities always have weight */
9366 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9367 se->parent = parent;
9368}
9369
9370static DEFINE_MUTEX(shares_mutex);
9371
9372int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9373{
9374 int i;
9375 unsigned long flags;
9376
9377 /*
9378 * We can't change the weight of the root cgroup.
9379 */
9380 if (!tg->se[0])
9381 return -EINVAL;
9382
9383 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9384
9385 mutex_lock(&shares_mutex);
9386 if (tg->shares == shares)
9387 goto done;
9388
9389 tg->shares = shares;
9390 for_each_possible_cpu(i) {
9391 struct rq *rq = cpu_rq(i);
9392 struct sched_entity *se;
9393
9394 se = tg->se[i];
9395 /* Propagate contribution to hierarchy */
9396 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
9397
9398 /* Possible calls to update_curr() need rq clock */
9399 update_rq_clock(rq);
89ee048f
VG
9400 for_each_sched_entity(se) {
9401 update_load_avg(se, UPDATE_TG);
9402 update_cfs_shares(se);
9403 }
029632fb
PZ
9404 raw_spin_unlock_irqrestore(&rq->lock, flags);
9405 }
9406
9407done:
9408 mutex_unlock(&shares_mutex);
9409 return 0;
9410}
9411#else /* CONFIG_FAIR_GROUP_SCHED */
9412
9413void free_fair_sched_group(struct task_group *tg) { }
9414
9415int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9416{
9417 return 1;
9418}
9419
8663e24d
PZ
9420void online_fair_sched_group(struct task_group *tg) { }
9421
6fe1f348 9422void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9423
9424#endif /* CONFIG_FAIR_GROUP_SCHED */
9425
810b3817 9426
6d686f45 9427static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9428{
9429 struct sched_entity *se = &task->se;
0d721cea
PW
9430 unsigned int rr_interval = 0;
9431
9432 /*
9433 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9434 * idle runqueue:
9435 */
0d721cea 9436 if (rq->cfs.load.weight)
a59f4e07 9437 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9438
9439 return rr_interval;
9440}
9441
bf0f6f24
IM
9442/*
9443 * All the scheduling class methods:
9444 */
029632fb 9445const struct sched_class fair_sched_class = {
5522d5d5 9446 .next = &idle_sched_class,
bf0f6f24
IM
9447 .enqueue_task = enqueue_task_fair,
9448 .dequeue_task = dequeue_task_fair,
9449 .yield_task = yield_task_fair,
d95f4122 9450 .yield_to_task = yield_to_task_fair,
bf0f6f24 9451
2e09bf55 9452 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9453
9454 .pick_next_task = pick_next_task_fair,
9455 .put_prev_task = put_prev_task_fair,
9456
681f3e68 9457#ifdef CONFIG_SMP
4ce72a2c 9458 .select_task_rq = select_task_rq_fair,
0a74bef8 9459 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9460
0bcdcf28
CE
9461 .rq_online = rq_online_fair,
9462 .rq_offline = rq_offline_fair,
88ec22d3 9463
12695578 9464 .task_dead = task_dead_fair,
c5b28038 9465 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9466#endif
bf0f6f24 9467
83b699ed 9468 .set_curr_task = set_curr_task_fair,
bf0f6f24 9469 .task_tick = task_tick_fair,
cd29fe6f 9470 .task_fork = task_fork_fair,
cb469845
SR
9471
9472 .prio_changed = prio_changed_fair,
da7a735e 9473 .switched_from = switched_from_fair,
cb469845 9474 .switched_to = switched_to_fair,
810b3817 9475
0d721cea
PW
9476 .get_rr_interval = get_rr_interval_fair,
9477
6e998916
SG
9478 .update_curr = update_curr_fair,
9479
810b3817 9480#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9481 .task_change_group = task_change_group_fair,
810b3817 9482#endif
bf0f6f24
IM
9483};
9484
9485#ifdef CONFIG_SCHED_DEBUG
029632fb 9486void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9487{
bf0f6f24
IM
9488 struct cfs_rq *cfs_rq;
9489
5973e5b9 9490 rcu_read_lock();
c3b64f1e 9491 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 9492 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9493 rcu_read_unlock();
bf0f6f24 9494}
397f2378
SD
9495
9496#ifdef CONFIG_NUMA_BALANCING
9497void show_numa_stats(struct task_struct *p, struct seq_file *m)
9498{
9499 int node;
9500 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9501
9502 for_each_online_node(node) {
9503 if (p->numa_faults) {
9504 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9505 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9506 }
9507 if (p->numa_group) {
9508 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9509 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9510 }
9511 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9512 }
9513}
9514#endif /* CONFIG_NUMA_BALANCING */
9515#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9516
9517__init void init_sched_fair_class(void)
9518{
9519#ifdef CONFIG_SMP
9520 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9521
3451d024 9522#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9523 nohz.next_balance = jiffies;
029632fb 9524 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9525#endif
9526#endif /* SMP */
9527
9528}