]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
Linux 5.13-rc6
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb 24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 27 *
21805085 28 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
bf0f6f24 32 *
d274a4ce
IM
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 */
2b4d5b25 38unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
1983a922
CE
43 *
44 * Options are:
2b4d5b25
IM
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 51 */
8a99b683 52unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 56 *
864616ee 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 58 */
ed8885a1
MS
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
61
62/*
2b4d5b25 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 64 */
0bf377bb 65static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
66
67/*
2bba22c5 68 * After fork, child runs first. If set to 0 (default) then
b2be5e96 69 * parent will (try to) run first.
21805085 70 */
2bba22c5 71unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 72
bf0f6f24
IM
73/*
74 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 81 */
ed8885a1
MS
82unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 84
2b4d5b25 85const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 86
05289b90
TG
87int sched_thermal_decay_shift;
88static int __init setup_sched_thermal_decay_shift(char *str)
89{
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97}
98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
afe06efd
TC
100#ifdef CONFIG_SMP
101/*
97fb7a0a 102 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
6d101ba6
OJ
108
109/*
60e17f5c 110 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
111 *
112 * (default: ~20%)
113 */
60e17f5c
VK
114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
4aed8aa4
VS
116/*
117 * The margin used when comparing CPU capacities.
118 * is 'cap1' noticeably greater than 'cap2'
119 *
120 * (default: ~5%)
121 */
122#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
afe06efd
TC
123#endif
124
ec12cb7f
PT
125#ifdef CONFIG_CFS_BANDWIDTH
126/*
127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128 * each time a cfs_rq requests quota.
129 *
130 * Note: in the case that the slice exceeds the runtime remaining (either due
131 * to consumption or the quota being specified to be smaller than the slice)
132 * we will always only issue the remaining available time.
133 *
2b4d5b25
IM
134 * (default: 5 msec, units: microseconds)
135 */
136unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
137#endif
138
8527632d
PG
139static inline void update_load_add(struct load_weight *lw, unsigned long inc)
140{
141 lw->weight += inc;
142 lw->inv_weight = 0;
143}
144
145static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
146{
147 lw->weight -= dec;
148 lw->inv_weight = 0;
149}
150
151static inline void update_load_set(struct load_weight *lw, unsigned long w)
152{
153 lw->weight = w;
154 lw->inv_weight = 0;
155}
156
029632fb
PZ
157/*
158 * Increase the granularity value when there are more CPUs,
159 * because with more CPUs the 'effective latency' as visible
160 * to users decreases. But the relationship is not linear,
161 * so pick a second-best guess by going with the log2 of the
162 * number of CPUs.
163 *
164 * This idea comes from the SD scheduler of Con Kolivas:
165 */
58ac93e4 166static unsigned int get_update_sysctl_factor(void)
029632fb 167{
58ac93e4 168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
169 unsigned int factor;
170
171 switch (sysctl_sched_tunable_scaling) {
172 case SCHED_TUNABLESCALING_NONE:
173 factor = 1;
174 break;
175 case SCHED_TUNABLESCALING_LINEAR:
176 factor = cpus;
177 break;
178 case SCHED_TUNABLESCALING_LOG:
179 default:
180 factor = 1 + ilog2(cpus);
181 break;
182 }
183
184 return factor;
185}
186
187static void update_sysctl(void)
188{
189 unsigned int factor = get_update_sysctl_factor();
190
191#define SET_SYSCTL(name) \
192 (sysctl_##name = (factor) * normalized_sysctl_##name)
193 SET_SYSCTL(sched_min_granularity);
194 SET_SYSCTL(sched_latency);
195 SET_SYSCTL(sched_wakeup_granularity);
196#undef SET_SYSCTL
197}
198
f38f12d1 199void __init sched_init_granularity(void)
029632fb
PZ
200{
201 update_sysctl();
202}
203
9dbdb155 204#define WMULT_CONST (~0U)
029632fb
PZ
205#define WMULT_SHIFT 32
206
9dbdb155
PZ
207static void __update_inv_weight(struct load_weight *lw)
208{
209 unsigned long w;
210
211 if (likely(lw->inv_weight))
212 return;
213
214 w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222}
029632fb
PZ
223
224/*
9dbdb155
PZ
225 * delta_exec * weight / lw.weight
226 * OR
227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
228 *
1c3de5e1 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
230 * we're guaranteed shift stays positive because inv_weight is guaranteed to
231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
232 *
233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 235 */
9dbdb155 236static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 237{
9dbdb155 238 u64 fact = scale_load_down(weight);
1e17fb8e 239 u32 fact_hi = (u32)(fact >> 32);
9dbdb155 240 int shift = WMULT_SHIFT;
1e17fb8e 241 int fs;
029632fb 242
9dbdb155 243 __update_inv_weight(lw);
029632fb 244
1e17fb8e
CC
245 if (unlikely(fact_hi)) {
246 fs = fls(fact_hi);
247 shift -= fs;
248 fact >>= fs;
029632fb
PZ
249 }
250
2eeb01a2 251 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 252
1e17fb8e
CC
253 fact_hi = (u32)(fact >> 32);
254 if (fact_hi) {
255 fs = fls(fact_hi);
256 shift -= fs;
257 fact >>= fs;
9dbdb155 258 }
029632fb 259
9dbdb155 260 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
261}
262
263
264const struct sched_class fair_sched_class;
a4c2f00f 265
bf0f6f24
IM
266/**************************************************************
267 * CFS operations on generic schedulable entities:
268 */
269
62160e3f 270#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
271static inline struct task_struct *task_of(struct sched_entity *se)
272{
9148a3a1 273 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
274 return container_of(se, struct task_struct, se);
275}
276
b758149c
PZ
277/* Walk up scheduling entities hierarchy */
278#define for_each_sched_entity(se) \
279 for (; se; se = se->parent)
280
281static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
282{
283 return p->se.cfs_rq;
284}
285
286/* runqueue on which this entity is (to be) queued */
287static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
288{
289 return se->cfs_rq;
290}
291
292/* runqueue "owned" by this group */
293static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
294{
295 return grp->my_q;
296}
297
3c93a0c0
QY
298static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
299{
300 if (!path)
301 return;
302
303 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
304 autogroup_path(cfs_rq->tg, path, len);
305 else if (cfs_rq && cfs_rq->tg->css.cgroup)
306 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
307 else
308 strlcpy(path, "(null)", len);
309}
310
f6783319 311static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 312{
5d299eab
PZ
313 struct rq *rq = rq_of(cfs_rq);
314 int cpu = cpu_of(rq);
315
316 if (cfs_rq->on_list)
f6783319 317 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
318
319 cfs_rq->on_list = 1;
320
321 /*
322 * Ensure we either appear before our parent (if already
323 * enqueued) or force our parent to appear after us when it is
324 * enqueued. The fact that we always enqueue bottom-up
325 * reduces this to two cases and a special case for the root
326 * cfs_rq. Furthermore, it also means that we will always reset
327 * tmp_alone_branch either when the branch is connected
328 * to a tree or when we reach the top of the tree
329 */
330 if (cfs_rq->tg->parent &&
331 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 332 /*
5d299eab
PZ
333 * If parent is already on the list, we add the child
334 * just before. Thanks to circular linked property of
335 * the list, this means to put the child at the tail
336 * of the list that starts by parent.
67e86250 337 */
5d299eab
PZ
338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
340 /*
341 * The branch is now connected to its tree so we can
342 * reset tmp_alone_branch to the beginning of the
343 * list.
344 */
345 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 346 return true;
5d299eab 347 }
3d4b47b4 348
5d299eab
PZ
349 if (!cfs_rq->tg->parent) {
350 /*
351 * cfs rq without parent should be put
352 * at the tail of the list.
353 */
354 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
355 &rq->leaf_cfs_rq_list);
356 /*
357 * We have reach the top of a tree so we can reset
358 * tmp_alone_branch to the beginning of the list.
359 */
360 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 361 return true;
3d4b47b4 362 }
5d299eab
PZ
363
364 /*
365 * The parent has not already been added so we want to
366 * make sure that it will be put after us.
367 * tmp_alone_branch points to the begin of the branch
368 * where we will add parent.
369 */
370 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
371 /*
372 * update tmp_alone_branch to points to the new begin
373 * of the branch
374 */
375 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 376 return false;
3d4b47b4
PZ
377}
378
379static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
380{
381 if (cfs_rq->on_list) {
31bc6aea
VG
382 struct rq *rq = rq_of(cfs_rq);
383
384 /*
385 * With cfs_rq being unthrottled/throttled during an enqueue,
386 * it can happen the tmp_alone_branch points the a leaf that
387 * we finally want to del. In this case, tmp_alone_branch moves
388 * to the prev element but it will point to rq->leaf_cfs_rq_list
389 * at the end of the enqueue.
390 */
391 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
392 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
393
3d4b47b4
PZ
394 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
395 cfs_rq->on_list = 0;
396 }
397}
398
5d299eab
PZ
399static inline void assert_list_leaf_cfs_rq(struct rq *rq)
400{
401 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
402}
403
039ae8bc
VG
404/* Iterate thr' all leaf cfs_rq's on a runqueue */
405#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
406 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
407 leaf_cfs_rq_list)
b758149c
PZ
408
409/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 410static inline struct cfs_rq *
b758149c
PZ
411is_same_group(struct sched_entity *se, struct sched_entity *pse)
412{
413 if (se->cfs_rq == pse->cfs_rq)
fed14d45 414 return se->cfs_rq;
b758149c 415
fed14d45 416 return NULL;
b758149c
PZ
417}
418
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return se->parent;
422}
423
464b7527
PZ
424static void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427 int se_depth, pse_depth;
428
429 /*
430 * preemption test can be made between sibling entities who are in the
431 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
432 * both tasks until we find their ancestors who are siblings of common
433 * parent.
434 */
435
436 /* First walk up until both entities are at same depth */
fed14d45
PZ
437 se_depth = (*se)->depth;
438 pse_depth = (*pse)->depth;
464b7527
PZ
439
440 while (se_depth > pse_depth) {
441 se_depth--;
442 *se = parent_entity(*se);
443 }
444
445 while (pse_depth > se_depth) {
446 pse_depth--;
447 *pse = parent_entity(*pse);
448 }
449
450 while (!is_same_group(*se, *pse)) {
451 *se = parent_entity(*se);
452 *pse = parent_entity(*pse);
453 }
454}
455
8f48894f
PZ
456#else /* !CONFIG_FAIR_GROUP_SCHED */
457
458static inline struct task_struct *task_of(struct sched_entity *se)
459{
460 return container_of(se, struct task_struct, se);
461}
bf0f6f24 462
b758149c
PZ
463#define for_each_sched_entity(se) \
464 for (; se; se = NULL)
bf0f6f24 465
b758149c 466static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 467{
b758149c 468 return &task_rq(p)->cfs;
bf0f6f24
IM
469}
470
b758149c
PZ
471static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
472{
473 struct task_struct *p = task_of(se);
474 struct rq *rq = task_rq(p);
475
476 return &rq->cfs;
477}
478
479/* runqueue "owned" by this group */
480static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
481{
482 return NULL;
483}
484
3c93a0c0
QY
485static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
486{
487 if (path)
488 strlcpy(path, "(null)", len);
489}
490
f6783319 491static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 492{
f6783319 493 return true;
3d4b47b4
PZ
494}
495
496static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
497{
498}
499
5d299eab
PZ
500static inline void assert_list_leaf_cfs_rq(struct rq *rq)
501{
502}
503
039ae8bc
VG
504#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
505 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 506
b758149c
PZ
507static inline struct sched_entity *parent_entity(struct sched_entity *se)
508{
509 return NULL;
510}
511
464b7527
PZ
512static inline void
513find_matching_se(struct sched_entity **se, struct sched_entity **pse)
514{
515}
516
b758149c
PZ
517#endif /* CONFIG_FAIR_GROUP_SCHED */
518
6c16a6dc 519static __always_inline
9dbdb155 520void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
521
522/**************************************************************
523 * Scheduling class tree data structure manipulation methods:
524 */
525
1bf08230 526static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 527{
1bf08230 528 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 529 if (delta > 0)
1bf08230 530 max_vruntime = vruntime;
02e0431a 531
1bf08230 532 return max_vruntime;
02e0431a
PZ
533}
534
0702e3eb 535static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
536{
537 s64 delta = (s64)(vruntime - min_vruntime);
538 if (delta < 0)
539 min_vruntime = vruntime;
540
541 return min_vruntime;
542}
543
bf9be9a1 544static inline bool entity_before(struct sched_entity *a,
54fdc581
FC
545 struct sched_entity *b)
546{
547 return (s64)(a->vruntime - b->vruntime) < 0;
548}
549
bf9be9a1
PZ
550#define __node_2_se(node) \
551 rb_entry((node), struct sched_entity, run_node)
552
1af5f730
PZ
553static void update_min_vruntime(struct cfs_rq *cfs_rq)
554{
b60205c7 555 struct sched_entity *curr = cfs_rq->curr;
bfb06889 556 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 557
1af5f730
PZ
558 u64 vruntime = cfs_rq->min_vruntime;
559
b60205c7
PZ
560 if (curr) {
561 if (curr->on_rq)
562 vruntime = curr->vruntime;
563 else
564 curr = NULL;
565 }
1af5f730 566
bfb06889 567 if (leftmost) { /* non-empty tree */
bf9be9a1 568 struct sched_entity *se = __node_2_se(leftmost);
1af5f730 569
b60205c7 570 if (!curr)
1af5f730
PZ
571 vruntime = se->vruntime;
572 else
573 vruntime = min_vruntime(vruntime, se->vruntime);
574 }
575
1bf08230 576 /* ensure we never gain time by being placed backwards. */
1af5f730 577 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
578#ifndef CONFIG_64BIT
579 smp_wmb();
580 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
581#endif
1af5f730
PZ
582}
583
bf9be9a1
PZ
584static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
585{
586 return entity_before(__node_2_se(a), __node_2_se(b));
587}
588
bf0f6f24
IM
589/*
590 * Enqueue an entity into the rb-tree:
591 */
0702e3eb 592static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 593{
bf9be9a1 594 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
bf0f6f24
IM
595}
596
0702e3eb 597static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 598{
bfb06889 599 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
600}
601
029632fb 602struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 603{
bfb06889 604 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
605
606 if (!left)
607 return NULL;
608
bf9be9a1 609 return __node_2_se(left);
bf0f6f24
IM
610}
611
ac53db59
RR
612static struct sched_entity *__pick_next_entity(struct sched_entity *se)
613{
614 struct rb_node *next = rb_next(&se->run_node);
615
616 if (!next)
617 return NULL;
618
bf9be9a1 619 return __node_2_se(next);
ac53db59
RR
620}
621
622#ifdef CONFIG_SCHED_DEBUG
029632fb 623struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 624{
bfb06889 625 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 626
70eee74b
BS
627 if (!last)
628 return NULL;
7eee3e67 629
bf9be9a1 630 return __node_2_se(last);
aeb73b04
PZ
631}
632
bf0f6f24
IM
633/**************************************************************
634 * Scheduling class statistics methods:
635 */
636
8a99b683 637int sched_update_scaling(void)
b2be5e96 638{
58ac93e4 639 unsigned int factor = get_update_sysctl_factor();
b2be5e96 640
b2be5e96
PZ
641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 sysctl_sched_min_granularity);
643
acb4a848
CE
644#define WRT_SYSCTL(name) \
645 (normalized_sysctl_##name = sysctl_##name / (factor))
646 WRT_SYSCTL(sched_min_granularity);
647 WRT_SYSCTL(sched_latency);
648 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
649#undef WRT_SYSCTL
650
b2be5e96
PZ
651 return 0;
652}
653#endif
647e7cac 654
a7be37ac 655/*
f9c0b095 656 * delta /= w
a7be37ac 657 */
9dbdb155 658static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 659{
f9c0b095 660 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
662
663 return delta;
664}
665
647e7cac
IM
666/*
667 * The idea is to set a period in which each task runs once.
668 *
532b1858 669 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
670 * this period because otherwise the slices get too small.
671 *
672 * p = (nr <= nl) ? l : l*nr/nl
673 */
4d78e7b6
PZ
674static u64 __sched_period(unsigned long nr_running)
675{
8e2b0bf3
BF
676 if (unlikely(nr_running > sched_nr_latency))
677 return nr_running * sysctl_sched_min_granularity;
678 else
679 return sysctl_sched_latency;
4d78e7b6
PZ
680}
681
647e7cac
IM
682/*
683 * We calculate the wall-time slice from the period by taking a part
684 * proportional to the weight.
685 *
f9c0b095 686 * s = p*P[w/rw]
647e7cac 687 */
6d0f0ebd 688static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 689{
0c2de3f0
PZ
690 unsigned int nr_running = cfs_rq->nr_running;
691 u64 slice;
692
693 if (sched_feat(ALT_PERIOD))
694 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
695
696 slice = __sched_period(nr_running + !se->on_rq);
f9c0b095 697
0a582440 698 for_each_sched_entity(se) {
6272d68c 699 struct load_weight *load;
3104bf03 700 struct load_weight lw;
6272d68c
LM
701
702 cfs_rq = cfs_rq_of(se);
703 load = &cfs_rq->load;
f9c0b095 704
0a582440 705 if (unlikely(!se->on_rq)) {
3104bf03 706 lw = cfs_rq->load;
0a582440
MG
707
708 update_load_add(&lw, se->load.weight);
709 load = &lw;
710 }
9dbdb155 711 slice = __calc_delta(slice, se->load.weight, load);
0a582440 712 }
0c2de3f0
PZ
713
714 if (sched_feat(BASE_SLICE))
715 slice = max(slice, (u64)sysctl_sched_min_granularity);
716
0a582440 717 return slice;
bf0f6f24
IM
718}
719
647e7cac 720/*
660cc00f 721 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 722 *
f9c0b095 723 * vs = s/w
647e7cac 724 */
f9c0b095 725static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 726{
f9c0b095 727 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
728}
729
c0796298 730#include "pelt.h"
23127296 731#ifdef CONFIG_SMP
283e2ed3 732
772bd008 733static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 734static unsigned long task_h_load(struct task_struct *p);
3b1baa64 735static unsigned long capacity_of(int cpu);
fb13c7ee 736
540247fb
YD
737/* Give new sched_entity start runnable values to heavy its load in infant time */
738void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 739{
540247fb 740 struct sched_avg *sa = &se->avg;
a75cdaa9 741
f207934f
PZ
742 memset(sa, 0, sizeof(*sa));
743
b5a9b340 744 /*
dfcb245e 745 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 746 * they get a chance to stabilize to their real load level.
dfcb245e 747 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
748 * nothing has been attached to the task group yet.
749 */
750 if (entity_is_task(se))
0dacee1b 751 sa->load_avg = scale_load_down(se->load.weight);
f207934f 752
9d89c257 753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 754}
7ea241af 755
df217913 756static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 757
2b8c41da
YD
758/*
759 * With new tasks being created, their initial util_avgs are extrapolated
760 * based on the cfs_rq's current util_avg:
761 *
762 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
763 *
764 * However, in many cases, the above util_avg does not give a desired
765 * value. Moreover, the sum of the util_avgs may be divergent, such
766 * as when the series is a harmonic series.
767 *
768 * To solve this problem, we also cap the util_avg of successive tasks to
769 * only 1/2 of the left utilization budget:
770 *
8fe5c5a9 771 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 772 *
8fe5c5a9 773 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 774 *
8fe5c5a9
QP
775 * For example, for a CPU with 1024 of capacity, a simplest series from
776 * the beginning would be like:
2b8c41da
YD
777 *
778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780 *
781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782 * if util_avg > util_avg_cap.
783 */
d0fe0b9c 784void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 785{
d0fe0b9c 786 struct sched_entity *se = &p->se;
2b8c41da
YD
787 struct cfs_rq *cfs_rq = cfs_rq_of(se);
788 struct sched_avg *sa = &se->avg;
8ec59c0f 789 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 790 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
791
792 if (cap > 0) {
793 if (cfs_rq->avg.util_avg != 0) {
794 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
795 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
796
797 if (sa->util_avg > cap)
798 sa->util_avg = cap;
799 } else {
800 sa->util_avg = cap;
801 }
2b8c41da 802 }
7dc603c9 803
e21cf434 804 sa->runnable_avg = sa->util_avg;
9f683953 805
d0fe0b9c
DE
806 if (p->sched_class != &fair_sched_class) {
807 /*
808 * For !fair tasks do:
809 *
810 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 811 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
812 switched_from_fair(rq, p);
813 *
814 * such that the next switched_to_fair() has the
815 * expected state.
816 */
817 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
818 return;
7dc603c9
PZ
819 }
820
df217913 821 attach_entity_cfs_rq(se);
2b8c41da
YD
822}
823
7dc603c9 824#else /* !CONFIG_SMP */
540247fb 825void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
826{
827}
d0fe0b9c 828void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
829{
830}
fe749158 831static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
832{
833}
7dc603c9 834#endif /* CONFIG_SMP */
a75cdaa9 835
bf0f6f24 836/*
9dbdb155 837 * Update the current task's runtime statistics.
bf0f6f24 838 */
b7cc0896 839static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 840{
429d43bc 841 struct sched_entity *curr = cfs_rq->curr;
78becc27 842 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 843 u64 delta_exec;
bf0f6f24
IM
844
845 if (unlikely(!curr))
846 return;
847
9dbdb155
PZ
848 delta_exec = now - curr->exec_start;
849 if (unlikely((s64)delta_exec <= 0))
34f28ecd 850 return;
bf0f6f24 851
8ebc91d9 852 curr->exec_start = now;
d842de87 853
9dbdb155
PZ
854 schedstat_set(curr->statistics.exec_max,
855 max(delta_exec, curr->statistics.exec_max));
856
857 curr->sum_exec_runtime += delta_exec;
ae92882e 858 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
859
860 curr->vruntime += calc_delta_fair(delta_exec, curr);
861 update_min_vruntime(cfs_rq);
862
d842de87
SV
863 if (entity_is_task(curr)) {
864 struct task_struct *curtask = task_of(curr);
865
f977bb49 866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 867 cgroup_account_cputime(curtask, delta_exec);
f06febc9 868 account_group_exec_runtime(curtask, delta_exec);
d842de87 869 }
ec12cb7f
PT
870
871 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
872}
873
6e998916
SG
874static void update_curr_fair(struct rq *rq)
875{
876 update_curr(cfs_rq_of(&rq->curr->se));
877}
878
bf0f6f24 879static inline void
5870db5b 880update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 881{
4fa8d299
JP
882 u64 wait_start, prev_wait_start;
883
884 if (!schedstat_enabled())
885 return;
886
887 wait_start = rq_clock(rq_of(cfs_rq));
888 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
889
890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
891 likely(wait_start > prev_wait_start))
892 wait_start -= prev_wait_start;
3ea94de1 893
2ed41a55 894 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
895}
896
4fa8d299 897static inline void
3ea94de1
JP
898update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899{
900 struct task_struct *p;
cb251765
MG
901 u64 delta;
902
4fa8d299
JP
903 if (!schedstat_enabled())
904 return;
905
b9c88f75 906 /*
907 * When the sched_schedstat changes from 0 to 1, some sched se
908 * maybe already in the runqueue, the se->statistics.wait_start
909 * will be 0.So it will let the delta wrong. We need to avoid this
910 * scenario.
911 */
912 if (unlikely(!schedstat_val(se->statistics.wait_start)))
913 return;
914
4fa8d299 915 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
916
917 if (entity_is_task(se)) {
918 p = task_of(se);
919 if (task_on_rq_migrating(p)) {
920 /*
921 * Preserve migrating task's wait time so wait_start
922 * time stamp can be adjusted to accumulate wait time
923 * prior to migration.
924 */
2ed41a55 925 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
926 return;
927 }
928 trace_sched_stat_wait(p, delta);
929 }
930
2ed41a55 931 __schedstat_set(se->statistics.wait_max,
4fa8d299 932 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
933 __schedstat_inc(se->statistics.wait_count);
934 __schedstat_add(se->statistics.wait_sum, delta);
935 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 936}
3ea94de1 937
4fa8d299 938static inline void
1a3d027c
JP
939update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
940{
941 struct task_struct *tsk = NULL;
4fa8d299
JP
942 u64 sleep_start, block_start;
943
944 if (!schedstat_enabled())
945 return;
946
947 sleep_start = schedstat_val(se->statistics.sleep_start);
948 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
949
950 if (entity_is_task(se))
951 tsk = task_of(se);
952
4fa8d299
JP
953 if (sleep_start) {
954 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
955
956 if ((s64)delta < 0)
957 delta = 0;
958
4fa8d299 959 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 960 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 961
2ed41a55
PZ
962 __schedstat_set(se->statistics.sleep_start, 0);
963 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
964
965 if (tsk) {
966 account_scheduler_latency(tsk, delta >> 10, 1);
967 trace_sched_stat_sleep(tsk, delta);
968 }
969 }
4fa8d299
JP
970 if (block_start) {
971 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
972
973 if ((s64)delta < 0)
974 delta = 0;
975
4fa8d299 976 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 977 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 978
2ed41a55
PZ
979 __schedstat_set(se->statistics.block_start, 0);
980 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
981
982 if (tsk) {
983 if (tsk->in_iowait) {
2ed41a55
PZ
984 __schedstat_add(se->statistics.iowait_sum, delta);
985 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
986 trace_sched_stat_iowait(tsk, delta);
987 }
988
989 trace_sched_stat_blocked(tsk, delta);
990
991 /*
992 * Blocking time is in units of nanosecs, so shift by
993 * 20 to get a milliseconds-range estimation of the
994 * amount of time that the task spent sleeping:
995 */
996 if (unlikely(prof_on == SLEEP_PROFILING)) {
997 profile_hits(SLEEP_PROFILING,
998 (void *)get_wchan(tsk),
999 delta >> 20);
1000 }
1001 account_scheduler_latency(tsk, delta >> 10, 0);
1002 }
1003 }
3ea94de1 1004}
3ea94de1 1005
bf0f6f24
IM
1006/*
1007 * Task is being enqueued - update stats:
1008 */
cb251765 1009static inline void
1a3d027c 1010update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1011{
4fa8d299
JP
1012 if (!schedstat_enabled())
1013 return;
1014
bf0f6f24
IM
1015 /*
1016 * Are we enqueueing a waiting task? (for current tasks
1017 * a dequeue/enqueue event is a NOP)
1018 */
429d43bc 1019 if (se != cfs_rq->curr)
5870db5b 1020 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1021
1022 if (flags & ENQUEUE_WAKEUP)
1023 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1024}
1025
bf0f6f24 1026static inline void
cb251765 1027update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1028{
4fa8d299
JP
1029
1030 if (!schedstat_enabled())
1031 return;
1032
bf0f6f24
IM
1033 /*
1034 * Mark the end of the wait period if dequeueing a
1035 * waiting task:
1036 */
429d43bc 1037 if (se != cfs_rq->curr)
9ef0a961 1038 update_stats_wait_end(cfs_rq, se);
cb251765 1039
4fa8d299
JP
1040 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1041 struct task_struct *tsk = task_of(se);
cb251765 1042
4fa8d299 1043 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1044 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1045 rq_clock(rq_of(cfs_rq)));
1046 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1047 __schedstat_set(se->statistics.block_start,
4fa8d299 1048 rq_clock(rq_of(cfs_rq)));
cb251765 1049 }
cb251765
MG
1050}
1051
bf0f6f24
IM
1052/*
1053 * We are picking a new current task - update its stats:
1054 */
1055static inline void
79303e9e 1056update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1057{
1058 /*
1059 * We are starting a new run period:
1060 */
78becc27 1061 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1062}
1063
bf0f6f24
IM
1064/**************************************************
1065 * Scheduling class queueing methods:
1066 */
1067
cbee9f88
PZ
1068#ifdef CONFIG_NUMA_BALANCING
1069/*
598f0ec0
MG
1070 * Approximate time to scan a full NUMA task in ms. The task scan period is
1071 * calculated based on the tasks virtual memory size and
1072 * numa_balancing_scan_size.
cbee9f88 1073 */
598f0ec0
MG
1074unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1075unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1076
1077/* Portion of address space to scan in MB */
1078unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1079
4b96a29b
PZ
1080/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1081unsigned int sysctl_numa_balancing_scan_delay = 1000;
1082
b5dd77c8 1083struct numa_group {
c45a7795 1084 refcount_t refcount;
b5dd77c8
RR
1085
1086 spinlock_t lock; /* nr_tasks, tasks */
1087 int nr_tasks;
1088 pid_t gid;
1089 int active_nodes;
1090
1091 struct rcu_head rcu;
1092 unsigned long total_faults;
1093 unsigned long max_faults_cpu;
1094 /*
1095 * Faults_cpu is used to decide whether memory should move
1096 * towards the CPU. As a consequence, these stats are weighted
1097 * more by CPU use than by memory faults.
1098 */
1099 unsigned long *faults_cpu;
04f5c362 1100 unsigned long faults[];
b5dd77c8
RR
1101};
1102
cb361d8c
JH
1103/*
1104 * For functions that can be called in multiple contexts that permit reading
1105 * ->numa_group (see struct task_struct for locking rules).
1106 */
1107static struct numa_group *deref_task_numa_group(struct task_struct *p)
1108{
1109 return rcu_dereference_check(p->numa_group, p == current ||
1110 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1111}
1112
1113static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1114{
1115 return rcu_dereference_protected(p->numa_group, p == current);
1116}
1117
b5dd77c8
RR
1118static inline unsigned long group_faults_priv(struct numa_group *ng);
1119static inline unsigned long group_faults_shared(struct numa_group *ng);
1120
598f0ec0
MG
1121static unsigned int task_nr_scan_windows(struct task_struct *p)
1122{
1123 unsigned long rss = 0;
1124 unsigned long nr_scan_pages;
1125
1126 /*
1127 * Calculations based on RSS as non-present and empty pages are skipped
1128 * by the PTE scanner and NUMA hinting faults should be trapped based
1129 * on resident pages
1130 */
1131 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1132 rss = get_mm_rss(p->mm);
1133 if (!rss)
1134 rss = nr_scan_pages;
1135
1136 rss = round_up(rss, nr_scan_pages);
1137 return rss / nr_scan_pages;
1138}
1139
3b03706f 1140/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
598f0ec0
MG
1141#define MAX_SCAN_WINDOW 2560
1142
1143static unsigned int task_scan_min(struct task_struct *p)
1144{
316c1608 1145 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1146 unsigned int scan, floor;
1147 unsigned int windows = 1;
1148
64192658
KT
1149 if (scan_size < MAX_SCAN_WINDOW)
1150 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1151 floor = 1000 / windows;
1152
1153 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1154 return max_t(unsigned int, floor, scan);
1155}
1156
b5dd77c8
RR
1157static unsigned int task_scan_start(struct task_struct *p)
1158{
1159 unsigned long smin = task_scan_min(p);
1160 unsigned long period = smin;
cb361d8c 1161 struct numa_group *ng;
b5dd77c8
RR
1162
1163 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1164 rcu_read_lock();
1165 ng = rcu_dereference(p->numa_group);
1166 if (ng) {
b5dd77c8
RR
1167 unsigned long shared = group_faults_shared(ng);
1168 unsigned long private = group_faults_priv(ng);
1169
c45a7795 1170 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1171 period *= shared + 1;
1172 period /= private + shared + 1;
1173 }
cb361d8c 1174 rcu_read_unlock();
b5dd77c8
RR
1175
1176 return max(smin, period);
1177}
1178
598f0ec0
MG
1179static unsigned int task_scan_max(struct task_struct *p)
1180{
b5dd77c8
RR
1181 unsigned long smin = task_scan_min(p);
1182 unsigned long smax;
cb361d8c 1183 struct numa_group *ng;
598f0ec0
MG
1184
1185 /* Watch for min being lower than max due to floor calculations */
1186 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1187
1188 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1189 ng = deref_curr_numa_group(p);
1190 if (ng) {
b5dd77c8
RR
1191 unsigned long shared = group_faults_shared(ng);
1192 unsigned long private = group_faults_priv(ng);
1193 unsigned long period = smax;
1194
c45a7795 1195 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1196 period *= shared + 1;
1197 period /= private + shared + 1;
1198
1199 smax = max(smax, period);
1200 }
1201
598f0ec0
MG
1202 return max(smin, smax);
1203}
1204
0ec8aa00
PZ
1205static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1206{
98fa15f3 1207 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1208 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1209}
1210
1211static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1212{
98fa15f3 1213 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1214 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1215}
1216
be1e4e76
RR
1217/* Shared or private faults. */
1218#define NR_NUMA_HINT_FAULT_TYPES 2
1219
1220/* Memory and CPU locality */
1221#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1222
1223/* Averaged statistics, and temporary buffers. */
1224#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1225
e29cf08b
MG
1226pid_t task_numa_group_id(struct task_struct *p)
1227{
cb361d8c
JH
1228 struct numa_group *ng;
1229 pid_t gid = 0;
1230
1231 rcu_read_lock();
1232 ng = rcu_dereference(p->numa_group);
1233 if (ng)
1234 gid = ng->gid;
1235 rcu_read_unlock();
1236
1237 return gid;
e29cf08b
MG
1238}
1239
44dba3d5 1240/*
97fb7a0a 1241 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1242 * occupy the first half of the array. The second half of the
1243 * array is for current counters, which are averaged into the
1244 * first set by task_numa_placement.
1245 */
1246static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1247{
44dba3d5 1248 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1249}
1250
1251static inline unsigned long task_faults(struct task_struct *p, int nid)
1252{
44dba3d5 1253 if (!p->numa_faults)
ac8e895b
MG
1254 return 0;
1255
44dba3d5
IM
1256 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1257 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1258}
1259
83e1d2cd
MG
1260static inline unsigned long group_faults(struct task_struct *p, int nid)
1261{
cb361d8c
JH
1262 struct numa_group *ng = deref_task_numa_group(p);
1263
1264 if (!ng)
83e1d2cd
MG
1265 return 0;
1266
cb361d8c
JH
1267 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1269}
1270
20e07dea
RR
1271static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1272{
44dba3d5
IM
1273 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1274 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1275}
1276
b5dd77c8
RR
1277static inline unsigned long group_faults_priv(struct numa_group *ng)
1278{
1279 unsigned long faults = 0;
1280 int node;
1281
1282 for_each_online_node(node) {
1283 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1284 }
1285
1286 return faults;
1287}
1288
1289static inline unsigned long group_faults_shared(struct numa_group *ng)
1290{
1291 unsigned long faults = 0;
1292 int node;
1293
1294 for_each_online_node(node) {
1295 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1296 }
1297
1298 return faults;
1299}
1300
4142c3eb
RR
1301/*
1302 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1303 * considered part of a numa group's pseudo-interleaving set. Migrations
1304 * between these nodes are slowed down, to allow things to settle down.
1305 */
1306#define ACTIVE_NODE_FRACTION 3
1307
1308static bool numa_is_active_node(int nid, struct numa_group *ng)
1309{
1310 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1311}
1312
6c6b1193
RR
1313/* Handle placement on systems where not all nodes are directly connected. */
1314static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1315 int maxdist, bool task)
1316{
1317 unsigned long score = 0;
1318 int node;
1319
1320 /*
1321 * All nodes are directly connected, and the same distance
1322 * from each other. No need for fancy placement algorithms.
1323 */
1324 if (sched_numa_topology_type == NUMA_DIRECT)
1325 return 0;
1326
1327 /*
1328 * This code is called for each node, introducing N^2 complexity,
1329 * which should be ok given the number of nodes rarely exceeds 8.
1330 */
1331 for_each_online_node(node) {
1332 unsigned long faults;
1333 int dist = node_distance(nid, node);
1334
1335 /*
1336 * The furthest away nodes in the system are not interesting
1337 * for placement; nid was already counted.
1338 */
1339 if (dist == sched_max_numa_distance || node == nid)
1340 continue;
1341
1342 /*
1343 * On systems with a backplane NUMA topology, compare groups
1344 * of nodes, and move tasks towards the group with the most
1345 * memory accesses. When comparing two nodes at distance
1346 * "hoplimit", only nodes closer by than "hoplimit" are part
1347 * of each group. Skip other nodes.
1348 */
1349 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1350 dist >= maxdist)
6c6b1193
RR
1351 continue;
1352
1353 /* Add up the faults from nearby nodes. */
1354 if (task)
1355 faults = task_faults(p, node);
1356 else
1357 faults = group_faults(p, node);
1358
1359 /*
1360 * On systems with a glueless mesh NUMA topology, there are
1361 * no fixed "groups of nodes". Instead, nodes that are not
1362 * directly connected bounce traffic through intermediate
1363 * nodes; a numa_group can occupy any set of nodes.
1364 * The further away a node is, the less the faults count.
1365 * This seems to result in good task placement.
1366 */
1367 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1368 faults *= (sched_max_numa_distance - dist);
1369 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1370 }
1371
1372 score += faults;
1373 }
1374
1375 return score;
1376}
1377
83e1d2cd
MG
1378/*
1379 * These return the fraction of accesses done by a particular task, or
1380 * task group, on a particular numa node. The group weight is given a
1381 * larger multiplier, in order to group tasks together that are almost
1382 * evenly spread out between numa nodes.
1383 */
7bd95320
RR
1384static inline unsigned long task_weight(struct task_struct *p, int nid,
1385 int dist)
83e1d2cd 1386{
7bd95320 1387 unsigned long faults, total_faults;
83e1d2cd 1388
44dba3d5 1389 if (!p->numa_faults)
83e1d2cd
MG
1390 return 0;
1391
1392 total_faults = p->total_numa_faults;
1393
1394 if (!total_faults)
1395 return 0;
1396
7bd95320 1397 faults = task_faults(p, nid);
6c6b1193
RR
1398 faults += score_nearby_nodes(p, nid, dist, true);
1399
7bd95320 1400 return 1000 * faults / total_faults;
83e1d2cd
MG
1401}
1402
7bd95320
RR
1403static inline unsigned long group_weight(struct task_struct *p, int nid,
1404 int dist)
83e1d2cd 1405{
cb361d8c 1406 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1407 unsigned long faults, total_faults;
1408
cb361d8c 1409 if (!ng)
7bd95320
RR
1410 return 0;
1411
cb361d8c 1412 total_faults = ng->total_faults;
7bd95320
RR
1413
1414 if (!total_faults)
83e1d2cd
MG
1415 return 0;
1416
7bd95320 1417 faults = group_faults(p, nid);
6c6b1193
RR
1418 faults += score_nearby_nodes(p, nid, dist, false);
1419
7bd95320 1420 return 1000 * faults / total_faults;
83e1d2cd
MG
1421}
1422
10f39042
RR
1423bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1424 int src_nid, int dst_cpu)
1425{
cb361d8c 1426 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1427 int dst_nid = cpu_to_node(dst_cpu);
1428 int last_cpupid, this_cpupid;
1429
1430 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1431 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1432
1433 /*
1434 * Allow first faults or private faults to migrate immediately early in
1435 * the lifetime of a task. The magic number 4 is based on waiting for
1436 * two full passes of the "multi-stage node selection" test that is
1437 * executed below.
1438 */
98fa15f3 1439 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1440 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1441 return true;
10f39042
RR
1442
1443 /*
1444 * Multi-stage node selection is used in conjunction with a periodic
1445 * migration fault to build a temporal task<->page relation. By using
1446 * a two-stage filter we remove short/unlikely relations.
1447 *
1448 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1449 * a task's usage of a particular page (n_p) per total usage of this
1450 * page (n_t) (in a given time-span) to a probability.
1451 *
1452 * Our periodic faults will sample this probability and getting the
1453 * same result twice in a row, given these samples are fully
1454 * independent, is then given by P(n)^2, provided our sample period
1455 * is sufficiently short compared to the usage pattern.
1456 *
1457 * This quadric squishes small probabilities, making it less likely we
1458 * act on an unlikely task<->page relation.
1459 */
10f39042
RR
1460 if (!cpupid_pid_unset(last_cpupid) &&
1461 cpupid_to_nid(last_cpupid) != dst_nid)
1462 return false;
1463
1464 /* Always allow migrate on private faults */
1465 if (cpupid_match_pid(p, last_cpupid))
1466 return true;
1467
1468 /* A shared fault, but p->numa_group has not been set up yet. */
1469 if (!ng)
1470 return true;
1471
1472 /*
4142c3eb
RR
1473 * Destination node is much more heavily used than the source
1474 * node? Allow migration.
10f39042 1475 */
4142c3eb
RR
1476 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1477 ACTIVE_NODE_FRACTION)
10f39042
RR
1478 return true;
1479
1480 /*
4142c3eb
RR
1481 * Distribute memory according to CPU & memory use on each node,
1482 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1483 *
1484 * faults_cpu(dst) 3 faults_cpu(src)
1485 * --------------- * - > ---------------
1486 * faults_mem(dst) 4 faults_mem(src)
10f39042 1487 */
4142c3eb
RR
1488 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1489 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1490}
1491
6499b1b2
VG
1492/*
1493 * 'numa_type' describes the node at the moment of load balancing.
1494 */
1495enum numa_type {
1496 /* The node has spare capacity that can be used to run more tasks. */
1497 node_has_spare = 0,
1498 /*
1499 * The node is fully used and the tasks don't compete for more CPU
1500 * cycles. Nevertheless, some tasks might wait before running.
1501 */
1502 node_fully_busy,
1503 /*
1504 * The node is overloaded and can't provide expected CPU cycles to all
1505 * tasks.
1506 */
1507 node_overloaded
1508};
58d081b5 1509
fb13c7ee 1510/* Cached statistics for all CPUs within a node */
58d081b5
MG
1511struct numa_stats {
1512 unsigned long load;
8e0e0eda 1513 unsigned long runnable;
6499b1b2 1514 unsigned long util;
fb13c7ee 1515 /* Total compute capacity of CPUs on a node */
5ef20ca1 1516 unsigned long compute_capacity;
6499b1b2
VG
1517 unsigned int nr_running;
1518 unsigned int weight;
1519 enum numa_type node_type;
ff7db0bf 1520 int idle_cpu;
58d081b5 1521};
e6628d5b 1522
ff7db0bf
MG
1523static inline bool is_core_idle(int cpu)
1524{
1525#ifdef CONFIG_SCHED_SMT
1526 int sibling;
1527
1528 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1529 if (cpu == sibling)
1530 continue;
1531
1532 if (!idle_cpu(cpu))
1533 return false;
1534 }
1535#endif
1536
1537 return true;
1538}
1539
58d081b5
MG
1540struct task_numa_env {
1541 struct task_struct *p;
e6628d5b 1542
58d081b5
MG
1543 int src_cpu, src_nid;
1544 int dst_cpu, dst_nid;
e6628d5b 1545
58d081b5 1546 struct numa_stats src_stats, dst_stats;
e6628d5b 1547
40ea2b42 1548 int imbalance_pct;
7bd95320 1549 int dist;
fb13c7ee
MG
1550
1551 struct task_struct *best_task;
1552 long best_imp;
58d081b5
MG
1553 int best_cpu;
1554};
1555
6499b1b2 1556static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1557static unsigned long cpu_runnable(struct rq *rq);
6499b1b2 1558static unsigned long cpu_util(int cpu);
7d2b5dd0
MG
1559static inline long adjust_numa_imbalance(int imbalance,
1560 int dst_running, int dst_weight);
6499b1b2
VG
1561
1562static inline enum
1563numa_type numa_classify(unsigned int imbalance_pct,
1564 struct numa_stats *ns)
1565{
1566 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1567 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1568 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1569 return node_overloaded;
1570
1571 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1572 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1573 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1574 return node_has_spare;
1575
1576 return node_fully_busy;
1577}
1578
76c389ab
VS
1579#ifdef CONFIG_SCHED_SMT
1580/* Forward declarations of select_idle_sibling helpers */
1581static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1582static inline int numa_idle_core(int idle_core, int cpu)
1583{
ff7db0bf
MG
1584 if (!static_branch_likely(&sched_smt_present) ||
1585 idle_core >= 0 || !test_idle_cores(cpu, false))
1586 return idle_core;
1587
1588 /*
1589 * Prefer cores instead of packing HT siblings
1590 * and triggering future load balancing.
1591 */
1592 if (is_core_idle(cpu))
1593 idle_core = cpu;
ff7db0bf
MG
1594
1595 return idle_core;
1596}
76c389ab
VS
1597#else
1598static inline int numa_idle_core(int idle_core, int cpu)
1599{
1600 return idle_core;
1601}
1602#endif
ff7db0bf 1603
6499b1b2 1604/*
ff7db0bf
MG
1605 * Gather all necessary information to make NUMA balancing placement
1606 * decisions that are compatible with standard load balancer. This
1607 * borrows code and logic from update_sg_lb_stats but sharing a
1608 * common implementation is impractical.
6499b1b2
VG
1609 */
1610static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1611 struct numa_stats *ns, int nid,
1612 bool find_idle)
6499b1b2 1613{
ff7db0bf 1614 int cpu, idle_core = -1;
6499b1b2
VG
1615
1616 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1617 ns->idle_cpu = -1;
1618
0621df31 1619 rcu_read_lock();
6499b1b2
VG
1620 for_each_cpu(cpu, cpumask_of_node(nid)) {
1621 struct rq *rq = cpu_rq(cpu);
1622
1623 ns->load += cpu_load(rq);
8e0e0eda 1624 ns->runnable += cpu_runnable(rq);
6499b1b2
VG
1625 ns->util += cpu_util(cpu);
1626 ns->nr_running += rq->cfs.h_nr_running;
1627 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1628
1629 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1630 if (READ_ONCE(rq->numa_migrate_on) ||
1631 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1632 continue;
1633
1634 if (ns->idle_cpu == -1)
1635 ns->idle_cpu = cpu;
1636
1637 idle_core = numa_idle_core(idle_core, cpu);
1638 }
6499b1b2 1639 }
0621df31 1640 rcu_read_unlock();
6499b1b2
VG
1641
1642 ns->weight = cpumask_weight(cpumask_of_node(nid));
1643
1644 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1645
1646 if (idle_core >= 0)
1647 ns->idle_cpu = idle_core;
6499b1b2
VG
1648}
1649
fb13c7ee
MG
1650static void task_numa_assign(struct task_numa_env *env,
1651 struct task_struct *p, long imp)
1652{
a4739eca
SD
1653 struct rq *rq = cpu_rq(env->dst_cpu);
1654
5fb52dd9
MG
1655 /* Check if run-queue part of active NUMA balance. */
1656 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1657 int cpu;
1658 int start = env->dst_cpu;
1659
1660 /* Find alternative idle CPU. */
1661 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1662 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1663 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1664 continue;
1665 }
1666
1667 env->dst_cpu = cpu;
1668 rq = cpu_rq(env->dst_cpu);
1669 if (!xchg(&rq->numa_migrate_on, 1))
1670 goto assign;
1671 }
1672
1673 /* Failed to find an alternative idle CPU */
a4739eca 1674 return;
5fb52dd9 1675 }
a4739eca 1676
5fb52dd9 1677assign:
a4739eca
SD
1678 /*
1679 * Clear previous best_cpu/rq numa-migrate flag, since task now
1680 * found a better CPU to move/swap.
1681 */
5fb52dd9 1682 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1683 rq = cpu_rq(env->best_cpu);
1684 WRITE_ONCE(rq->numa_migrate_on, 0);
1685 }
1686
fb13c7ee
MG
1687 if (env->best_task)
1688 put_task_struct(env->best_task);
bac78573
ON
1689 if (p)
1690 get_task_struct(p);
fb13c7ee
MG
1691
1692 env->best_task = p;
1693 env->best_imp = imp;
1694 env->best_cpu = env->dst_cpu;
1695}
1696
28a21745 1697static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1698 struct task_numa_env *env)
1699{
e4991b24
RR
1700 long imb, old_imb;
1701 long orig_src_load, orig_dst_load;
28a21745
RR
1702 long src_capacity, dst_capacity;
1703
1704 /*
1705 * The load is corrected for the CPU capacity available on each node.
1706 *
1707 * src_load dst_load
1708 * ------------ vs ---------
1709 * src_capacity dst_capacity
1710 */
1711 src_capacity = env->src_stats.compute_capacity;
1712 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1713
5f95ba7a 1714 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1715
28a21745 1716 orig_src_load = env->src_stats.load;
e4991b24 1717 orig_dst_load = env->dst_stats.load;
28a21745 1718
5f95ba7a 1719 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1720
1721 /* Would this change make things worse? */
1722 return (imb > old_imb);
e63da036
RR
1723}
1724
6fd98e77
SD
1725/*
1726 * Maximum NUMA importance can be 1998 (2*999);
1727 * SMALLIMP @ 30 would be close to 1998/64.
1728 * Used to deter task migration.
1729 */
1730#define SMALLIMP 30
1731
fb13c7ee
MG
1732/*
1733 * This checks if the overall compute and NUMA accesses of the system would
1734 * be improved if the source tasks was migrated to the target dst_cpu taking
1735 * into account that it might be best if task running on the dst_cpu should
1736 * be exchanged with the source task
1737 */
a0f03b61 1738static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1739 long taskimp, long groupimp, bool maymove)
fb13c7ee 1740{
cb361d8c 1741 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1742 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1743 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1744 struct task_struct *cur;
28a21745 1745 long src_load, dst_load;
7bd95320 1746 int dist = env->dist;
cb361d8c
JH
1747 long moveimp = imp;
1748 long load;
a0f03b61 1749 bool stopsearch = false;
fb13c7ee 1750
a4739eca 1751 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1752 return false;
a4739eca 1753
fb13c7ee 1754 rcu_read_lock();
154abafc 1755 cur = rcu_dereference(dst_rq->curr);
bac78573 1756 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1757 cur = NULL;
1758
7af68335
PZ
1759 /*
1760 * Because we have preemption enabled we can get migrated around and
1761 * end try selecting ourselves (current == env->p) as a swap candidate.
1762 */
a0f03b61
MG
1763 if (cur == env->p) {
1764 stopsearch = true;
7af68335 1765 goto unlock;
a0f03b61 1766 }
7af68335 1767
305c1fac 1768 if (!cur) {
6fd98e77 1769 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1770 goto assign;
1771 else
1772 goto unlock;
1773 }
1774
88cca72c
MG
1775 /* Skip this swap candidate if cannot move to the source cpu. */
1776 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1777 goto unlock;
1778
1779 /*
1780 * Skip this swap candidate if it is not moving to its preferred
1781 * node and the best task is.
1782 */
1783 if (env->best_task &&
1784 env->best_task->numa_preferred_nid == env->src_nid &&
1785 cur->numa_preferred_nid != env->src_nid) {
1786 goto unlock;
1787 }
1788
fb13c7ee
MG
1789 /*
1790 * "imp" is the fault differential for the source task between the
1791 * source and destination node. Calculate the total differential for
1792 * the source task and potential destination task. The more negative
305c1fac 1793 * the value is, the more remote accesses that would be expected to
fb13c7ee 1794 * be incurred if the tasks were swapped.
88cca72c 1795 *
305c1fac
SD
1796 * If dst and source tasks are in the same NUMA group, or not
1797 * in any group then look only at task weights.
1798 */
cb361d8c
JH
1799 cur_ng = rcu_dereference(cur->numa_group);
1800 if (cur_ng == p_ng) {
305c1fac
SD
1801 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1802 task_weight(cur, env->dst_nid, dist);
887c290e 1803 /*
305c1fac
SD
1804 * Add some hysteresis to prevent swapping the
1805 * tasks within a group over tiny differences.
887c290e 1806 */
cb361d8c 1807 if (cur_ng)
305c1fac
SD
1808 imp -= imp / 16;
1809 } else {
1810 /*
1811 * Compare the group weights. If a task is all by itself
1812 * (not part of a group), use the task weight instead.
1813 */
cb361d8c 1814 if (cur_ng && p_ng)
305c1fac
SD
1815 imp += group_weight(cur, env->src_nid, dist) -
1816 group_weight(cur, env->dst_nid, dist);
1817 else
1818 imp += task_weight(cur, env->src_nid, dist) -
1819 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1820 }
1821
88cca72c
MG
1822 /* Discourage picking a task already on its preferred node */
1823 if (cur->numa_preferred_nid == env->dst_nid)
1824 imp -= imp / 16;
1825
1826 /*
1827 * Encourage picking a task that moves to its preferred node.
1828 * This potentially makes imp larger than it's maximum of
1829 * 1998 (see SMALLIMP and task_weight for why) but in this
1830 * case, it does not matter.
1831 */
1832 if (cur->numa_preferred_nid == env->src_nid)
1833 imp += imp / 8;
1834
305c1fac 1835 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1836 imp = moveimp;
305c1fac 1837 cur = NULL;
fb13c7ee 1838 goto assign;
305c1fac 1839 }
fb13c7ee 1840
88cca72c
MG
1841 /*
1842 * Prefer swapping with a task moving to its preferred node over a
1843 * task that is not.
1844 */
1845 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1846 env->best_task->numa_preferred_nid != env->src_nid) {
1847 goto assign;
1848 }
1849
6fd98e77
SD
1850 /*
1851 * If the NUMA importance is less than SMALLIMP,
1852 * task migration might only result in ping pong
1853 * of tasks and also hurt performance due to cache
1854 * misses.
1855 */
1856 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1857 goto unlock;
1858
fb13c7ee
MG
1859 /*
1860 * In the overloaded case, try and keep the load balanced.
1861 */
305c1fac
SD
1862 load = task_h_load(env->p) - task_h_load(cur);
1863 if (!load)
1864 goto assign;
1865
e720fff6
PZ
1866 dst_load = env->dst_stats.load + load;
1867 src_load = env->src_stats.load - load;
fb13c7ee 1868
28a21745 1869 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1870 goto unlock;
1871
305c1fac 1872assign:
ff7db0bf 1873 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1874 if (!cur) {
ff7db0bf
MG
1875 int cpu = env->dst_stats.idle_cpu;
1876
1877 /* Nothing cached so current CPU went idle since the search. */
1878 if (cpu < 0)
1879 cpu = env->dst_cpu;
1880
10e2f1ac 1881 /*
ff7db0bf
MG
1882 * If the CPU is no longer truly idle and the previous best CPU
1883 * is, keep using it.
10e2f1ac 1884 */
ff7db0bf
MG
1885 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1886 idle_cpu(env->best_cpu)) {
1887 cpu = env->best_cpu;
1888 }
1889
ff7db0bf 1890 env->dst_cpu = cpu;
10e2f1ac 1891 }
ba7e5a27 1892
fb13c7ee 1893 task_numa_assign(env, cur, imp);
a0f03b61
MG
1894
1895 /*
1896 * If a move to idle is allowed because there is capacity or load
1897 * balance improves then stop the search. While a better swap
1898 * candidate may exist, a search is not free.
1899 */
1900 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1901 stopsearch = true;
1902
1903 /*
1904 * If a swap candidate must be identified and the current best task
1905 * moves its preferred node then stop the search.
1906 */
1907 if (!maymove && env->best_task &&
1908 env->best_task->numa_preferred_nid == env->src_nid) {
1909 stopsearch = true;
1910 }
fb13c7ee
MG
1911unlock:
1912 rcu_read_unlock();
a0f03b61
MG
1913
1914 return stopsearch;
fb13c7ee
MG
1915}
1916
887c290e
RR
1917static void task_numa_find_cpu(struct task_numa_env *env,
1918 long taskimp, long groupimp)
2c8a50aa 1919{
305c1fac 1920 bool maymove = false;
2c8a50aa
MG
1921 int cpu;
1922
305c1fac 1923 /*
fb86f5b2
MG
1924 * If dst node has spare capacity, then check if there is an
1925 * imbalance that would be overruled by the load balancer.
305c1fac 1926 */
fb86f5b2
MG
1927 if (env->dst_stats.node_type == node_has_spare) {
1928 unsigned int imbalance;
1929 int src_running, dst_running;
1930
1931 /*
1932 * Would movement cause an imbalance? Note that if src has
1933 * more running tasks that the imbalance is ignored as the
1934 * move improves the imbalance from the perspective of the
1935 * CPU load balancer.
1936 * */
1937 src_running = env->src_stats.nr_running - 1;
1938 dst_running = env->dst_stats.nr_running + 1;
1939 imbalance = max(0, dst_running - src_running);
7d2b5dd0
MG
1940 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1941 env->dst_stats.weight);
fb86f5b2
MG
1942
1943 /* Use idle CPU if there is no imbalance */
ff7db0bf 1944 if (!imbalance) {
fb86f5b2 1945 maymove = true;
ff7db0bf
MG
1946 if (env->dst_stats.idle_cpu >= 0) {
1947 env->dst_cpu = env->dst_stats.idle_cpu;
1948 task_numa_assign(env, NULL, 0);
1949 return;
1950 }
1951 }
fb86f5b2
MG
1952 } else {
1953 long src_load, dst_load, load;
1954 /*
1955 * If the improvement from just moving env->p direction is better
1956 * than swapping tasks around, check if a move is possible.
1957 */
1958 load = task_h_load(env->p);
1959 dst_load = env->dst_stats.load + load;
1960 src_load = env->src_stats.load - load;
1961 maymove = !load_too_imbalanced(src_load, dst_load, env);
1962 }
305c1fac 1963
2c8a50aa
MG
1964 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1965 /* Skip this CPU if the source task cannot migrate */
3bd37062 1966 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1967 continue;
1968
1969 env->dst_cpu = cpu;
a0f03b61
MG
1970 if (task_numa_compare(env, taskimp, groupimp, maymove))
1971 break;
2c8a50aa
MG
1972 }
1973}
1974
58d081b5
MG
1975static int task_numa_migrate(struct task_struct *p)
1976{
58d081b5
MG
1977 struct task_numa_env env = {
1978 .p = p,
fb13c7ee 1979
58d081b5 1980 .src_cpu = task_cpu(p),
b32e86b4 1981 .src_nid = task_node(p),
fb13c7ee
MG
1982
1983 .imbalance_pct = 112,
1984
1985 .best_task = NULL,
1986 .best_imp = 0,
4142c3eb 1987 .best_cpu = -1,
58d081b5 1988 };
cb361d8c 1989 unsigned long taskweight, groupweight;
58d081b5 1990 struct sched_domain *sd;
cb361d8c
JH
1991 long taskimp, groupimp;
1992 struct numa_group *ng;
a4739eca 1993 struct rq *best_rq;
7bd95320 1994 int nid, ret, dist;
e6628d5b 1995
58d081b5 1996 /*
fb13c7ee
MG
1997 * Pick the lowest SD_NUMA domain, as that would have the smallest
1998 * imbalance and would be the first to start moving tasks about.
1999 *
2000 * And we want to avoid any moving of tasks about, as that would create
2001 * random movement of tasks -- counter the numa conditions we're trying
2002 * to satisfy here.
58d081b5
MG
2003 */
2004 rcu_read_lock();
fb13c7ee 2005 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
2006 if (sd)
2007 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
2008 rcu_read_unlock();
2009
46a73e8a
RR
2010 /*
2011 * Cpusets can break the scheduler domain tree into smaller
2012 * balance domains, some of which do not cross NUMA boundaries.
2013 * Tasks that are "trapped" in such domains cannot be migrated
2014 * elsewhere, so there is no point in (re)trying.
2015 */
2016 if (unlikely(!sd)) {
8cd45eee 2017 sched_setnuma(p, task_node(p));
46a73e8a
RR
2018 return -EINVAL;
2019 }
2020
2c8a50aa 2021 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2022 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2023 taskweight = task_weight(p, env.src_nid, dist);
2024 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2025 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2026 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2027 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2028 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2029
a43455a1 2030 /* Try to find a spot on the preferred nid. */
2d4056fa 2031 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2032
9de05d48
RR
2033 /*
2034 * Look at other nodes in these cases:
2035 * - there is no space available on the preferred_nid
2036 * - the task is part of a numa_group that is interleaved across
2037 * multiple NUMA nodes; in order to better consolidate the group,
2038 * we need to check other locations.
2039 */
cb361d8c
JH
2040 ng = deref_curr_numa_group(p);
2041 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
2042 for_each_online_node(nid) {
2043 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2044 continue;
58d081b5 2045
7bd95320 2046 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2047 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2048 dist != env.dist) {
2049 taskweight = task_weight(p, env.src_nid, dist);
2050 groupweight = group_weight(p, env.src_nid, dist);
2051 }
7bd95320 2052
83e1d2cd 2053 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2054 taskimp = task_weight(p, nid, dist) - taskweight;
2055 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2056 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2057 continue;
2058
7bd95320 2059 env.dist = dist;
2c8a50aa 2060 env.dst_nid = nid;
ff7db0bf 2061 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2062 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2063 }
2064 }
2065
68d1b02a
RR
2066 /*
2067 * If the task is part of a workload that spans multiple NUMA nodes,
2068 * and is migrating into one of the workload's active nodes, remember
2069 * this node as the task's preferred numa node, so the workload can
2070 * settle down.
2071 * A task that migrated to a second choice node will be better off
2072 * trying for a better one later. Do not set the preferred node here.
2073 */
cb361d8c 2074 if (ng) {
db015dae
RR
2075 if (env.best_cpu == -1)
2076 nid = env.src_nid;
2077 else
8cd45eee 2078 nid = cpu_to_node(env.best_cpu);
db015dae 2079
8cd45eee
SD
2080 if (nid != p->numa_preferred_nid)
2081 sched_setnuma(p, nid);
db015dae
RR
2082 }
2083
2084 /* No better CPU than the current one was found. */
f22aef4a 2085 if (env.best_cpu == -1) {
b2b2042b 2086 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2087 return -EAGAIN;
f22aef4a 2088 }
0ec8aa00 2089
a4739eca 2090 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2091 if (env.best_task == NULL) {
286549dc 2092 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2093 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2094 if (ret != 0)
b2b2042b 2095 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2096 return ret;
2097 }
2098
0ad4e3df 2099 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2100 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2101
286549dc 2102 if (ret != 0)
b2b2042b 2103 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2104 put_task_struct(env.best_task);
2105 return ret;
e6628d5b
MG
2106}
2107
6b9a7460
MG
2108/* Attempt to migrate a task to a CPU on the preferred node. */
2109static void numa_migrate_preferred(struct task_struct *p)
2110{
5085e2a3
RR
2111 unsigned long interval = HZ;
2112
2739d3ee 2113 /* This task has no NUMA fault statistics yet */
98fa15f3 2114 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2115 return;
2116
2739d3ee 2117 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2118 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2119 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2120
2121 /* Success if task is already running on preferred CPU */
de1b301a 2122 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2123 return;
2124
2125 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2126 task_numa_migrate(p);
6b9a7460
MG
2127}
2128
20e07dea 2129/*
4142c3eb 2130 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2131 * tracking the nodes from which NUMA hinting faults are triggered. This can
2132 * be different from the set of nodes where the workload's memory is currently
2133 * located.
20e07dea 2134 */
4142c3eb 2135static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2136{
2137 unsigned long faults, max_faults = 0;
4142c3eb 2138 int nid, active_nodes = 0;
20e07dea
RR
2139
2140 for_each_online_node(nid) {
2141 faults = group_faults_cpu(numa_group, nid);
2142 if (faults > max_faults)
2143 max_faults = faults;
2144 }
2145
2146 for_each_online_node(nid) {
2147 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2148 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2149 active_nodes++;
20e07dea 2150 }
4142c3eb
RR
2151
2152 numa_group->max_faults_cpu = max_faults;
2153 numa_group->active_nodes = active_nodes;
20e07dea
RR
2154}
2155
04bb2f94
RR
2156/*
2157 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2158 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2159 * period will be for the next scan window. If local/(local+remote) ratio is
2160 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2161 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2162 */
2163#define NUMA_PERIOD_SLOTS 10
a22b4b01 2164#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2165
2166/*
2167 * Increase the scan period (slow down scanning) if the majority of
2168 * our memory is already on our local node, or if the majority of
2169 * the page accesses are shared with other processes.
2170 * Otherwise, decrease the scan period.
2171 */
2172static void update_task_scan_period(struct task_struct *p,
2173 unsigned long shared, unsigned long private)
2174{
2175 unsigned int period_slot;
37ec97de 2176 int lr_ratio, ps_ratio;
04bb2f94
RR
2177 int diff;
2178
2179 unsigned long remote = p->numa_faults_locality[0];
2180 unsigned long local = p->numa_faults_locality[1];
2181
2182 /*
2183 * If there were no record hinting faults then either the task is
2184 * completely idle or all activity is areas that are not of interest
074c2381
MG
2185 * to automatic numa balancing. Related to that, if there were failed
2186 * migration then it implies we are migrating too quickly or the local
2187 * node is overloaded. In either case, scan slower
04bb2f94 2188 */
074c2381 2189 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2190 p->numa_scan_period = min(p->numa_scan_period_max,
2191 p->numa_scan_period << 1);
2192
2193 p->mm->numa_next_scan = jiffies +
2194 msecs_to_jiffies(p->numa_scan_period);
2195
2196 return;
2197 }
2198
2199 /*
2200 * Prepare to scale scan period relative to the current period.
2201 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2202 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2203 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2204 */
2205 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2206 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2207 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2208
2209 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2210 /*
2211 * Most memory accesses are local. There is no need to
2212 * do fast NUMA scanning, since memory is already local.
2213 */
2214 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2215 if (!slot)
2216 slot = 1;
2217 diff = slot * period_slot;
2218 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2219 /*
2220 * Most memory accesses are shared with other tasks.
2221 * There is no point in continuing fast NUMA scanning,
2222 * since other tasks may just move the memory elsewhere.
2223 */
2224 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2225 if (!slot)
2226 slot = 1;
2227 diff = slot * period_slot;
2228 } else {
04bb2f94 2229 /*
37ec97de
RR
2230 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2231 * yet they are not on the local NUMA node. Speed up
2232 * NUMA scanning to get the memory moved over.
04bb2f94 2233 */
37ec97de
RR
2234 int ratio = max(lr_ratio, ps_ratio);
2235 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2236 }
2237
2238 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2239 task_scan_min(p), task_scan_max(p));
2240 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2241}
2242
7e2703e6
RR
2243/*
2244 * Get the fraction of time the task has been running since the last
2245 * NUMA placement cycle. The scheduler keeps similar statistics, but
2246 * decays those on a 32ms period, which is orders of magnitude off
2247 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2248 * stats only if the task is so new there are no NUMA statistics yet.
2249 */
2250static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2251{
2252 u64 runtime, delta, now;
2253 /* Use the start of this time slice to avoid calculations. */
2254 now = p->se.exec_start;
2255 runtime = p->se.sum_exec_runtime;
2256
2257 if (p->last_task_numa_placement) {
2258 delta = runtime - p->last_sum_exec_runtime;
2259 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2260
2261 /* Avoid time going backwards, prevent potential divide error: */
2262 if (unlikely((s64)*period < 0))
2263 *period = 0;
7e2703e6 2264 } else {
c7b50216 2265 delta = p->se.avg.load_sum;
9d89c257 2266 *period = LOAD_AVG_MAX;
7e2703e6
RR
2267 }
2268
2269 p->last_sum_exec_runtime = runtime;
2270 p->last_task_numa_placement = now;
2271
2272 return delta;
2273}
2274
54009416
RR
2275/*
2276 * Determine the preferred nid for a task in a numa_group. This needs to
2277 * be done in a way that produces consistent results with group_weight,
2278 * otherwise workloads might not converge.
2279 */
2280static int preferred_group_nid(struct task_struct *p, int nid)
2281{
2282 nodemask_t nodes;
2283 int dist;
2284
2285 /* Direct connections between all NUMA nodes. */
2286 if (sched_numa_topology_type == NUMA_DIRECT)
2287 return nid;
2288
2289 /*
2290 * On a system with glueless mesh NUMA topology, group_weight
2291 * scores nodes according to the number of NUMA hinting faults on
2292 * both the node itself, and on nearby nodes.
2293 */
2294 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2295 unsigned long score, max_score = 0;
2296 int node, max_node = nid;
2297
2298 dist = sched_max_numa_distance;
2299
2300 for_each_online_node(node) {
2301 score = group_weight(p, node, dist);
2302 if (score > max_score) {
2303 max_score = score;
2304 max_node = node;
2305 }
2306 }
2307 return max_node;
2308 }
2309
2310 /*
2311 * Finding the preferred nid in a system with NUMA backplane
2312 * interconnect topology is more involved. The goal is to locate
2313 * tasks from numa_groups near each other in the system, and
2314 * untangle workloads from different sides of the system. This requires
2315 * searching down the hierarchy of node groups, recursively searching
2316 * inside the highest scoring group of nodes. The nodemask tricks
2317 * keep the complexity of the search down.
2318 */
2319 nodes = node_online_map;
2320 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2321 unsigned long max_faults = 0;
81907478 2322 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2323 int a, b;
2324
2325 /* Are there nodes at this distance from each other? */
2326 if (!find_numa_distance(dist))
2327 continue;
2328
2329 for_each_node_mask(a, nodes) {
2330 unsigned long faults = 0;
2331 nodemask_t this_group;
2332 nodes_clear(this_group);
2333
2334 /* Sum group's NUMA faults; includes a==b case. */
2335 for_each_node_mask(b, nodes) {
2336 if (node_distance(a, b) < dist) {
2337 faults += group_faults(p, b);
2338 node_set(b, this_group);
2339 node_clear(b, nodes);
2340 }
2341 }
2342
2343 /* Remember the top group. */
2344 if (faults > max_faults) {
2345 max_faults = faults;
2346 max_group = this_group;
2347 /*
2348 * subtle: at the smallest distance there is
2349 * just one node left in each "group", the
2350 * winner is the preferred nid.
2351 */
2352 nid = a;
2353 }
2354 }
2355 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2356 if (!max_faults)
2357 break;
54009416
RR
2358 nodes = max_group;
2359 }
2360 return nid;
2361}
2362
cbee9f88
PZ
2363static void task_numa_placement(struct task_struct *p)
2364{
98fa15f3 2365 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2366 unsigned long max_faults = 0;
04bb2f94 2367 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2368 unsigned long total_faults;
2369 u64 runtime, period;
7dbd13ed 2370 spinlock_t *group_lock = NULL;
cb361d8c 2371 struct numa_group *ng;
cbee9f88 2372
7e5a2c17
JL
2373 /*
2374 * The p->mm->numa_scan_seq field gets updated without
2375 * exclusive access. Use READ_ONCE() here to ensure
2376 * that the field is read in a single access:
2377 */
316c1608 2378 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2379 if (p->numa_scan_seq == seq)
2380 return;
2381 p->numa_scan_seq = seq;
598f0ec0 2382 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2383
7e2703e6
RR
2384 total_faults = p->numa_faults_locality[0] +
2385 p->numa_faults_locality[1];
2386 runtime = numa_get_avg_runtime(p, &period);
2387
7dbd13ed 2388 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2389 ng = deref_curr_numa_group(p);
2390 if (ng) {
2391 group_lock = &ng->lock;
60e69eed 2392 spin_lock_irq(group_lock);
7dbd13ed
MG
2393 }
2394
688b7585
MG
2395 /* Find the node with the highest number of faults */
2396 for_each_online_node(nid) {
44dba3d5
IM
2397 /* Keep track of the offsets in numa_faults array */
2398 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2399 unsigned long faults = 0, group_faults = 0;
44dba3d5 2400 int priv;
745d6147 2401
be1e4e76 2402 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2403 long diff, f_diff, f_weight;
8c8a743c 2404
44dba3d5
IM
2405 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2406 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2407 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2408 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2409
ac8e895b 2410 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2411 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2412 fault_types[priv] += p->numa_faults[membuf_idx];
2413 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2414
7e2703e6
RR
2415 /*
2416 * Normalize the faults_from, so all tasks in a group
2417 * count according to CPU use, instead of by the raw
2418 * number of faults. Tasks with little runtime have
2419 * little over-all impact on throughput, and thus their
2420 * faults are less important.
2421 */
2422 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2423 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2424 (total_faults + 1);
44dba3d5
IM
2425 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2426 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2427
44dba3d5
IM
2428 p->numa_faults[mem_idx] += diff;
2429 p->numa_faults[cpu_idx] += f_diff;
2430 faults += p->numa_faults[mem_idx];
83e1d2cd 2431 p->total_numa_faults += diff;
cb361d8c 2432 if (ng) {
44dba3d5
IM
2433 /*
2434 * safe because we can only change our own group
2435 *
2436 * mem_idx represents the offset for a given
2437 * nid and priv in a specific region because it
2438 * is at the beginning of the numa_faults array.
2439 */
cb361d8c
JH
2440 ng->faults[mem_idx] += diff;
2441 ng->faults_cpu[mem_idx] += f_diff;
2442 ng->total_faults += diff;
2443 group_faults += ng->faults[mem_idx];
8c8a743c 2444 }
ac8e895b
MG
2445 }
2446
cb361d8c 2447 if (!ng) {
f03bb676
SD
2448 if (faults > max_faults) {
2449 max_faults = faults;
2450 max_nid = nid;
2451 }
2452 } else if (group_faults > max_faults) {
2453 max_faults = group_faults;
688b7585
MG
2454 max_nid = nid;
2455 }
83e1d2cd
MG
2456 }
2457
cb361d8c
JH
2458 if (ng) {
2459 numa_group_count_active_nodes(ng);
60e69eed 2460 spin_unlock_irq(group_lock);
f03bb676 2461 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2462 }
2463
bb97fc31
RR
2464 if (max_faults) {
2465 /* Set the new preferred node */
2466 if (max_nid != p->numa_preferred_nid)
2467 sched_setnuma(p, max_nid);
3a7053b3 2468 }
30619c89
SD
2469
2470 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2471}
2472
8c8a743c
PZ
2473static inline int get_numa_group(struct numa_group *grp)
2474{
c45a7795 2475 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2476}
2477
2478static inline void put_numa_group(struct numa_group *grp)
2479{
c45a7795 2480 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2481 kfree_rcu(grp, rcu);
2482}
2483
3e6a9418
MG
2484static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2485 int *priv)
8c8a743c
PZ
2486{
2487 struct numa_group *grp, *my_grp;
2488 struct task_struct *tsk;
2489 bool join = false;
2490 int cpu = cpupid_to_cpu(cpupid);
2491 int i;
2492
cb361d8c 2493 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2494 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2495 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2496
2497 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2498 if (!grp)
2499 return;
2500
c45a7795 2501 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2502 grp->active_nodes = 1;
2503 grp->max_faults_cpu = 0;
8c8a743c 2504 spin_lock_init(&grp->lock);
e29cf08b 2505 grp->gid = p->pid;
50ec8a40 2506 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2507 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2508 nr_node_ids;
8c8a743c 2509
be1e4e76 2510 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2511 grp->faults[i] = p->numa_faults[i];
8c8a743c 2512
989348b5 2513 grp->total_faults = p->total_numa_faults;
83e1d2cd 2514
8c8a743c
PZ
2515 grp->nr_tasks++;
2516 rcu_assign_pointer(p->numa_group, grp);
2517 }
2518
2519 rcu_read_lock();
316c1608 2520 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2521
2522 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2523 goto no_join;
8c8a743c
PZ
2524
2525 grp = rcu_dereference(tsk->numa_group);
2526 if (!grp)
3354781a 2527 goto no_join;
8c8a743c 2528
cb361d8c 2529 my_grp = deref_curr_numa_group(p);
8c8a743c 2530 if (grp == my_grp)
3354781a 2531 goto no_join;
8c8a743c
PZ
2532
2533 /*
2534 * Only join the other group if its bigger; if we're the bigger group,
2535 * the other task will join us.
2536 */
2537 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2538 goto no_join;
8c8a743c
PZ
2539
2540 /*
2541 * Tie-break on the grp address.
2542 */
2543 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2544 goto no_join;
8c8a743c 2545
dabe1d99
RR
2546 /* Always join threads in the same process. */
2547 if (tsk->mm == current->mm)
2548 join = true;
2549
2550 /* Simple filter to avoid false positives due to PID collisions */
2551 if (flags & TNF_SHARED)
2552 join = true;
8c8a743c 2553
3e6a9418
MG
2554 /* Update priv based on whether false sharing was detected */
2555 *priv = !join;
2556
dabe1d99 2557 if (join && !get_numa_group(grp))
3354781a 2558 goto no_join;
8c8a743c 2559
8c8a743c
PZ
2560 rcu_read_unlock();
2561
2562 if (!join)
2563 return;
2564
60e69eed
MG
2565 BUG_ON(irqs_disabled());
2566 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2567
be1e4e76 2568 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2569 my_grp->faults[i] -= p->numa_faults[i];
2570 grp->faults[i] += p->numa_faults[i];
8c8a743c 2571 }
989348b5
MG
2572 my_grp->total_faults -= p->total_numa_faults;
2573 grp->total_faults += p->total_numa_faults;
8c8a743c 2574
8c8a743c
PZ
2575 my_grp->nr_tasks--;
2576 grp->nr_tasks++;
2577
2578 spin_unlock(&my_grp->lock);
60e69eed 2579 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2580
2581 rcu_assign_pointer(p->numa_group, grp);
2582
2583 put_numa_group(my_grp);
3354781a
PZ
2584 return;
2585
2586no_join:
2587 rcu_read_unlock();
2588 return;
8c8a743c
PZ
2589}
2590
16d51a59 2591/*
3b03706f 2592 * Get rid of NUMA statistics associated with a task (either current or dead).
16d51a59
JH
2593 * If @final is set, the task is dead and has reached refcount zero, so we can
2594 * safely free all relevant data structures. Otherwise, there might be
2595 * concurrent reads from places like load balancing and procfs, and we should
2596 * reset the data back to default state without freeing ->numa_faults.
2597 */
2598void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2599{
cb361d8c
JH
2600 /* safe: p either is current or is being freed by current */
2601 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2602 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2603 unsigned long flags;
2604 int i;
8c8a743c 2605
16d51a59
JH
2606 if (!numa_faults)
2607 return;
2608
8c8a743c 2609 if (grp) {
e9dd685c 2610 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2611 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2612 grp->faults[i] -= p->numa_faults[i];
989348b5 2613 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2614
8c8a743c 2615 grp->nr_tasks--;
e9dd685c 2616 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2617 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2618 put_numa_group(grp);
2619 }
2620
16d51a59
JH
2621 if (final) {
2622 p->numa_faults = NULL;
2623 kfree(numa_faults);
2624 } else {
2625 p->total_numa_faults = 0;
2626 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2627 numa_faults[i] = 0;
2628 }
8c8a743c
PZ
2629}
2630
cbee9f88
PZ
2631/*
2632 * Got a PROT_NONE fault for a page on @node.
2633 */
58b46da3 2634void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2635{
2636 struct task_struct *p = current;
6688cc05 2637 bool migrated = flags & TNF_MIGRATED;
58b46da3 2638 int cpu_node = task_node(current);
792568ec 2639 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2640 struct numa_group *ng;
ac8e895b 2641 int priv;
cbee9f88 2642
2a595721 2643 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2644 return;
2645
9ff1d9ff
MG
2646 /* for example, ksmd faulting in a user's mm */
2647 if (!p->mm)
2648 return;
2649
f809ca9a 2650 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2651 if (unlikely(!p->numa_faults)) {
2652 int size = sizeof(*p->numa_faults) *
be1e4e76 2653 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2654
44dba3d5
IM
2655 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2656 if (!p->numa_faults)
f809ca9a 2657 return;
745d6147 2658
83e1d2cd 2659 p->total_numa_faults = 0;
04bb2f94 2660 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2661 }
cbee9f88 2662
8c8a743c
PZ
2663 /*
2664 * First accesses are treated as private, otherwise consider accesses
2665 * to be private if the accessing pid has not changed
2666 */
2667 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2668 priv = 1;
2669 } else {
2670 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2671 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2672 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2673 }
2674
792568ec
RR
2675 /*
2676 * If a workload spans multiple NUMA nodes, a shared fault that
2677 * occurs wholly within the set of nodes that the workload is
2678 * actively using should be counted as local. This allows the
2679 * scan rate to slow down when a workload has settled down.
2680 */
cb361d8c 2681 ng = deref_curr_numa_group(p);
4142c3eb
RR
2682 if (!priv && !local && ng && ng->active_nodes > 1 &&
2683 numa_is_active_node(cpu_node, ng) &&
2684 numa_is_active_node(mem_node, ng))
792568ec
RR
2685 local = 1;
2686
2739d3ee 2687 /*
e1ff516a
YW
2688 * Retry to migrate task to preferred node periodically, in case it
2689 * previously failed, or the scheduler moved us.
2739d3ee 2690 */
b6a60cf3
SD
2691 if (time_after(jiffies, p->numa_migrate_retry)) {
2692 task_numa_placement(p);
6b9a7460 2693 numa_migrate_preferred(p);
b6a60cf3 2694 }
6b9a7460 2695
b32e86b4
IM
2696 if (migrated)
2697 p->numa_pages_migrated += pages;
074c2381
MG
2698 if (flags & TNF_MIGRATE_FAIL)
2699 p->numa_faults_locality[2] += pages;
b32e86b4 2700
44dba3d5
IM
2701 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2702 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2703 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2704}
2705
6e5fb223
PZ
2706static void reset_ptenuma_scan(struct task_struct *p)
2707{
7e5a2c17
JL
2708 /*
2709 * We only did a read acquisition of the mmap sem, so
2710 * p->mm->numa_scan_seq is written to without exclusive access
2711 * and the update is not guaranteed to be atomic. That's not
2712 * much of an issue though, since this is just used for
2713 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2714 * expensive, to avoid any form of compiler optimizations:
2715 */
316c1608 2716 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2717 p->mm->numa_scan_offset = 0;
2718}
2719
cbee9f88
PZ
2720/*
2721 * The expensive part of numa migration is done from task_work context.
2722 * Triggered from task_tick_numa().
2723 */
9434f9f5 2724static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2725{
2726 unsigned long migrate, next_scan, now = jiffies;
2727 struct task_struct *p = current;
2728 struct mm_struct *mm = p->mm;
51170840 2729 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2730 struct vm_area_struct *vma;
9f40604c 2731 unsigned long start, end;
598f0ec0 2732 unsigned long nr_pte_updates = 0;
4620f8c1 2733 long pages, virtpages;
cbee9f88 2734
9148a3a1 2735 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2736
b34920d4 2737 work->next = work;
cbee9f88
PZ
2738 /*
2739 * Who cares about NUMA placement when they're dying.
2740 *
2741 * NOTE: make sure not to dereference p->mm before this check,
2742 * exit_task_work() happens _after_ exit_mm() so we could be called
2743 * without p->mm even though we still had it when we enqueued this
2744 * work.
2745 */
2746 if (p->flags & PF_EXITING)
2747 return;
2748
930aa174 2749 if (!mm->numa_next_scan) {
7e8d16b6
MG
2750 mm->numa_next_scan = now +
2751 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2752 }
2753
cbee9f88
PZ
2754 /*
2755 * Enforce maximal scan/migration frequency..
2756 */
2757 migrate = mm->numa_next_scan;
2758 if (time_before(now, migrate))
2759 return;
2760
598f0ec0
MG
2761 if (p->numa_scan_period == 0) {
2762 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2763 p->numa_scan_period = task_scan_start(p);
598f0ec0 2764 }
cbee9f88 2765
fb003b80 2766 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2767 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2768 return;
2769
19a78d11
PZ
2770 /*
2771 * Delay this task enough that another task of this mm will likely win
2772 * the next time around.
2773 */
2774 p->node_stamp += 2 * TICK_NSEC;
2775
9f40604c
MG
2776 start = mm->numa_scan_offset;
2777 pages = sysctl_numa_balancing_scan_size;
2778 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2779 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2780 if (!pages)
2781 return;
cbee9f88 2782
4620f8c1 2783
d8ed45c5 2784 if (!mmap_read_trylock(mm))
8655d549 2785 return;
9f40604c 2786 vma = find_vma(mm, start);
6e5fb223
PZ
2787 if (!vma) {
2788 reset_ptenuma_scan(p);
9f40604c 2789 start = 0;
6e5fb223
PZ
2790 vma = mm->mmap;
2791 }
9f40604c 2792 for (; vma; vma = vma->vm_next) {
6b79c57b 2793 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2794 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2795 continue;
6b79c57b 2796 }
6e5fb223 2797
4591ce4f
MG
2798 /*
2799 * Shared library pages mapped by multiple processes are not
2800 * migrated as it is expected they are cache replicated. Avoid
2801 * hinting faults in read-only file-backed mappings or the vdso
2802 * as migrating the pages will be of marginal benefit.
2803 */
2804 if (!vma->vm_mm ||
2805 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2806 continue;
2807
3c67f474
MG
2808 /*
2809 * Skip inaccessible VMAs to avoid any confusion between
2810 * PROT_NONE and NUMA hinting ptes
2811 */
3122e80e 2812 if (!vma_is_accessible(vma))
3c67f474 2813 continue;
4591ce4f 2814
9f40604c
MG
2815 do {
2816 start = max(start, vma->vm_start);
2817 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2818 end = min(end, vma->vm_end);
4620f8c1 2819 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2820
2821 /*
4620f8c1
RR
2822 * Try to scan sysctl_numa_balancing_size worth of
2823 * hpages that have at least one present PTE that
2824 * is not already pte-numa. If the VMA contains
2825 * areas that are unused or already full of prot_numa
2826 * PTEs, scan up to virtpages, to skip through those
2827 * areas faster.
598f0ec0
MG
2828 */
2829 if (nr_pte_updates)
2830 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2831 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2832
9f40604c 2833 start = end;
4620f8c1 2834 if (pages <= 0 || virtpages <= 0)
9f40604c 2835 goto out;
3cf1962c
RR
2836
2837 cond_resched();
9f40604c 2838 } while (end != vma->vm_end);
cbee9f88 2839 }
6e5fb223 2840
9f40604c 2841out:
6e5fb223 2842 /*
c69307d5
PZ
2843 * It is possible to reach the end of the VMA list but the last few
2844 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2845 * would find the !migratable VMA on the next scan but not reset the
2846 * scanner to the start so check it now.
6e5fb223
PZ
2847 */
2848 if (vma)
9f40604c 2849 mm->numa_scan_offset = start;
6e5fb223
PZ
2850 else
2851 reset_ptenuma_scan(p);
d8ed45c5 2852 mmap_read_unlock(mm);
51170840
RR
2853
2854 /*
2855 * Make sure tasks use at least 32x as much time to run other code
2856 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2857 * Usually update_task_scan_period slows down scanning enough; on an
2858 * overloaded system we need to limit overhead on a per task basis.
2859 */
2860 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2861 u64 diff = p->se.sum_exec_runtime - runtime;
2862 p->node_stamp += 32 * diff;
2863 }
cbee9f88
PZ
2864}
2865
d35927a1
VS
2866void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2867{
2868 int mm_users = 0;
2869 struct mm_struct *mm = p->mm;
2870
2871 if (mm) {
2872 mm_users = atomic_read(&mm->mm_users);
2873 if (mm_users == 1) {
2874 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2875 mm->numa_scan_seq = 0;
2876 }
2877 }
2878 p->node_stamp = 0;
2879 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2880 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2881 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2882 p->numa_work.next = &p->numa_work;
2883 p->numa_faults = NULL;
2884 RCU_INIT_POINTER(p->numa_group, NULL);
2885 p->last_task_numa_placement = 0;
2886 p->last_sum_exec_runtime = 0;
2887
b34920d4
VS
2888 init_task_work(&p->numa_work, task_numa_work);
2889
d35927a1
VS
2890 /* New address space, reset the preferred nid */
2891 if (!(clone_flags & CLONE_VM)) {
2892 p->numa_preferred_nid = NUMA_NO_NODE;
2893 return;
2894 }
2895
2896 /*
2897 * New thread, keep existing numa_preferred_nid which should be copied
2898 * already by arch_dup_task_struct but stagger when scans start.
2899 */
2900 if (mm) {
2901 unsigned int delay;
2902
2903 delay = min_t(unsigned int, task_scan_max(current),
2904 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2905 delay += 2 * TICK_NSEC;
2906 p->node_stamp = delay;
2907 }
2908}
2909
cbee9f88
PZ
2910/*
2911 * Drive the periodic memory faults..
2912 */
b1546edc 2913static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2914{
2915 struct callback_head *work = &curr->numa_work;
2916 u64 period, now;
2917
2918 /*
2919 * We don't care about NUMA placement if we don't have memory.
2920 */
18f855e5 2921 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2922 return;
2923
2924 /*
2925 * Using runtime rather than walltime has the dual advantage that
2926 * we (mostly) drive the selection from busy threads and that the
2927 * task needs to have done some actual work before we bother with
2928 * NUMA placement.
2929 */
2930 now = curr->se.sum_exec_runtime;
2931 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2932
25b3e5a3 2933 if (now > curr->node_stamp + period) {
4b96a29b 2934 if (!curr->node_stamp)
b5dd77c8 2935 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2936 curr->node_stamp += period;
cbee9f88 2937
b34920d4 2938 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 2939 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
2940 }
2941}
3fed382b 2942
3f9672ba
SD
2943static void update_scan_period(struct task_struct *p, int new_cpu)
2944{
2945 int src_nid = cpu_to_node(task_cpu(p));
2946 int dst_nid = cpu_to_node(new_cpu);
2947
05cbdf4f
MG
2948 if (!static_branch_likely(&sched_numa_balancing))
2949 return;
2950
3f9672ba
SD
2951 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2952 return;
2953
05cbdf4f
MG
2954 if (src_nid == dst_nid)
2955 return;
2956
2957 /*
2958 * Allow resets if faults have been trapped before one scan
2959 * has completed. This is most likely due to a new task that
2960 * is pulled cross-node due to wakeups or load balancing.
2961 */
2962 if (p->numa_scan_seq) {
2963 /*
2964 * Avoid scan adjustments if moving to the preferred
2965 * node or if the task was not previously running on
2966 * the preferred node.
2967 */
2968 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2969 (p->numa_preferred_nid != NUMA_NO_NODE &&
2970 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2971 return;
2972 }
2973
2974 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2975}
2976
cbee9f88
PZ
2977#else
2978static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2979{
2980}
0ec8aa00
PZ
2981
2982static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2983{
2984}
2985
2986static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2987{
2988}
3fed382b 2989
3f9672ba
SD
2990static inline void update_scan_period(struct task_struct *p, int new_cpu)
2991{
2992}
2993
cbee9f88
PZ
2994#endif /* CONFIG_NUMA_BALANCING */
2995
30cfdcfc
DA
2996static void
2997account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2998{
2999 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 3000#ifdef CONFIG_SMP
0ec8aa00
PZ
3001 if (entity_is_task(se)) {
3002 struct rq *rq = rq_of(cfs_rq);
3003
3004 account_numa_enqueue(rq, task_of(se));
3005 list_add(&se->group_node, &rq->cfs_tasks);
3006 }
367456c7 3007#endif
30cfdcfc 3008 cfs_rq->nr_running++;
30cfdcfc
DA
3009}
3010
3011static void
3012account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3013{
3014 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3015#ifdef CONFIG_SMP
0ec8aa00
PZ
3016 if (entity_is_task(se)) {
3017 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3018 list_del_init(&se->group_node);
0ec8aa00 3019 }
bfdb198c 3020#endif
30cfdcfc 3021 cfs_rq->nr_running--;
30cfdcfc
DA
3022}
3023
8d5b9025
PZ
3024/*
3025 * Signed add and clamp on underflow.
3026 *
3027 * Explicitly do a load-store to ensure the intermediate value never hits
3028 * memory. This allows lockless observations without ever seeing the negative
3029 * values.
3030 */
3031#define add_positive(_ptr, _val) do { \
3032 typeof(_ptr) ptr = (_ptr); \
3033 typeof(_val) val = (_val); \
3034 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3035 \
3036 res = var + val; \
3037 \
3038 if (val < 0 && res > var) \
3039 res = 0; \
3040 \
3041 WRITE_ONCE(*ptr, res); \
3042} while (0)
3043
3044/*
3045 * Unsigned subtract and clamp on underflow.
3046 *
3047 * Explicitly do a load-store to ensure the intermediate value never hits
3048 * memory. This allows lockless observations without ever seeing the negative
3049 * values.
3050 */
3051#define sub_positive(_ptr, _val) do { \
3052 typeof(_ptr) ptr = (_ptr); \
3053 typeof(*ptr) val = (_val); \
3054 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3055 res = var - val; \
3056 if (res > var) \
3057 res = 0; \
3058 WRITE_ONCE(*ptr, res); \
3059} while (0)
3060
b5c0ce7b
PB
3061/*
3062 * Remove and clamp on negative, from a local variable.
3063 *
3064 * A variant of sub_positive(), which does not use explicit load-store
3065 * and is thus optimized for local variable updates.
3066 */
3067#define lsub_positive(_ptr, _val) do { \
3068 typeof(_ptr) ptr = (_ptr); \
3069 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3070} while (0)
3071
8d5b9025 3072#ifdef CONFIG_SMP
8d5b9025
PZ
3073static inline void
3074enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3075{
3076 cfs_rq->avg.load_avg += se->avg.load_avg;
3077 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3078}
3079
3080static inline void
3081dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3082{
3083 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3084 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3085}
3086#else
3087static inline void
8d5b9025
PZ
3088enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3089static inline void
3090dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3091#endif
3092
9059393e 3093static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3094 unsigned long weight)
9059393e
VG
3095{
3096 if (se->on_rq) {
3097 /* commit outstanding execution time */
3098 if (cfs_rq->curr == se)
3099 update_curr(cfs_rq);
1724b95b 3100 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3101 }
3102 dequeue_load_avg(cfs_rq, se);
3103
3104 update_load_set(&se->load, weight);
3105
3106#ifdef CONFIG_SMP
1ea6c46a 3107 do {
87e867b4 3108 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3109
3110 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3111 } while (0);
9059393e
VG
3112#endif
3113
3114 enqueue_load_avg(cfs_rq, se);
0dacee1b 3115 if (se->on_rq)
1724b95b 3116 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3117
9059393e
VG
3118}
3119
3120void reweight_task(struct task_struct *p, int prio)
3121{
3122 struct sched_entity *se = &p->se;
3123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3124 struct load_weight *load = &se->load;
3125 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3126
0dacee1b 3127 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3128 load->inv_weight = sched_prio_to_wmult[prio];
3129}
3130
3ff6dcac 3131#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3132#ifdef CONFIG_SMP
cef27403
PZ
3133/*
3134 * All this does is approximate the hierarchical proportion which includes that
3135 * global sum we all love to hate.
3136 *
3137 * That is, the weight of a group entity, is the proportional share of the
3138 * group weight based on the group runqueue weights. That is:
3139 *
3140 * tg->weight * grq->load.weight
3141 * ge->load.weight = ----------------------------- (1)
3142 * \Sum grq->load.weight
3143 *
3144 * Now, because computing that sum is prohibitively expensive to compute (been
3145 * there, done that) we approximate it with this average stuff. The average
3146 * moves slower and therefore the approximation is cheaper and more stable.
3147 *
3148 * So instead of the above, we substitute:
3149 *
3150 * grq->load.weight -> grq->avg.load_avg (2)
3151 *
3152 * which yields the following:
3153 *
3154 * tg->weight * grq->avg.load_avg
3155 * ge->load.weight = ------------------------------ (3)
3156 * tg->load_avg
3157 *
3158 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3159 *
3160 * That is shares_avg, and it is right (given the approximation (2)).
3161 *
3162 * The problem with it is that because the average is slow -- it was designed
3163 * to be exactly that of course -- this leads to transients in boundary
3164 * conditions. In specific, the case where the group was idle and we start the
3165 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3166 * yielding bad latency etc..
3167 *
3168 * Now, in that special case (1) reduces to:
3169 *
3170 * tg->weight * grq->load.weight
17de4ee0 3171 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
3172 * grp->load.weight
3173 *
3174 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3175 *
3176 * So what we do is modify our approximation (3) to approach (4) in the (near)
3177 * UP case, like:
3178 *
3179 * ge->load.weight =
3180 *
3181 * tg->weight * grq->load.weight
3182 * --------------------------------------------------- (5)
3183 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3184 *
17de4ee0
PZ
3185 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3186 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3187 *
3188 *
3189 * tg->weight * grq->load.weight
3190 * ge->load.weight = ----------------------------- (6)
3191 * tg_load_avg'
3192 *
3193 * Where:
3194 *
3195 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3196 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3197 *
3198 * And that is shares_weight and is icky. In the (near) UP case it approaches
3199 * (4) while in the normal case it approaches (3). It consistently
3200 * overestimates the ge->load.weight and therefore:
3201 *
3202 * \Sum ge->load.weight >= tg->weight
3203 *
3204 * hence icky!
3205 */
2c8e4dce 3206static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3207{
7c80cfc9
PZ
3208 long tg_weight, tg_shares, load, shares;
3209 struct task_group *tg = cfs_rq->tg;
3210
3211 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3212
3d4b60d3 3213 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3214
ea1dc6fc 3215 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3216
ea1dc6fc
PZ
3217 /* Ensure tg_weight >= load */
3218 tg_weight -= cfs_rq->tg_load_avg_contrib;
3219 tg_weight += load;
3ff6dcac 3220
7c80cfc9 3221 shares = (tg_shares * load);
cf5f0acf
PZ
3222 if (tg_weight)
3223 shares /= tg_weight;
3ff6dcac 3224
b8fd8423
DE
3225 /*
3226 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3227 * of a group with small tg->shares value. It is a floor value which is
3228 * assigned as a minimum load.weight to the sched_entity representing
3229 * the group on a CPU.
3230 *
3231 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3232 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3233 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3234 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3235 * instead of 0.
3236 */
7c80cfc9 3237 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3238}
387f77cc 3239#endif /* CONFIG_SMP */
ea1dc6fc 3240
82958366
PT
3241static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3242
1ea6c46a
PZ
3243/*
3244 * Recomputes the group entity based on the current state of its group
3245 * runqueue.
3246 */
3247static void update_cfs_group(struct sched_entity *se)
2069dd75 3248{
1ea6c46a 3249 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3250 long shares;
2069dd75 3251
1ea6c46a 3252 if (!gcfs_rq)
89ee048f
VG
3253 return;
3254
1ea6c46a 3255 if (throttled_hierarchy(gcfs_rq))
2069dd75 3256 return;
89ee048f 3257
3ff6dcac 3258#ifndef CONFIG_SMP
0dacee1b 3259 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3260
3261 if (likely(se->load.weight == shares))
3ff6dcac 3262 return;
7c80cfc9 3263#else
2c8e4dce 3264 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3265#endif
2069dd75 3266
0dacee1b 3267 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3268}
89ee048f 3269
2069dd75 3270#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3271static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3272{
3273}
3274#endif /* CONFIG_FAIR_GROUP_SCHED */
3275
ea14b57e 3276static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3277{
43964409
LT
3278 struct rq *rq = rq_of(cfs_rq);
3279
a4f9a0e5 3280 if (&rq->cfs == cfs_rq) {
a030d738
VK
3281 /*
3282 * There are a few boundary cases this might miss but it should
3283 * get called often enough that that should (hopefully) not be
9783be2c 3284 * a real problem.
a030d738
VK
3285 *
3286 * It will not get called when we go idle, because the idle
3287 * thread is a different class (!fair), nor will the utilization
3288 * number include things like RT tasks.
3289 *
3290 * As is, the util number is not freq-invariant (we'd have to
3291 * implement arch_scale_freq_capacity() for that).
3292 *
3293 * See cpu_util().
3294 */
ea14b57e 3295 cpufreq_update_util(rq, flags);
a030d738
VK
3296 }
3297}
3298
141965c7 3299#ifdef CONFIG_SMP
c566e8e9 3300#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3301/**
3302 * update_tg_load_avg - update the tg's load avg
3303 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3304 *
3305 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3306 * However, because tg->load_avg is a global value there are performance
3307 * considerations.
3308 *
3309 * In order to avoid having to look at the other cfs_rq's, we use a
3310 * differential update where we store the last value we propagated. This in
3311 * turn allows skipping updates if the differential is 'small'.
3312 *
815abf5a 3313 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3314 */
fe749158 3315static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3316{
9d89c257 3317 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3318
aa0b7ae0
WL
3319 /*
3320 * No need to update load_avg for root_task_group as it is not used.
3321 */
3322 if (cfs_rq->tg == &root_task_group)
3323 return;
3324
fe749158 3325 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3326 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3327 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3328 }
8165e145 3329}
f5f9739d 3330
ad936d86 3331/*
97fb7a0a 3332 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3333 * caller only guarantees p->pi_lock is held; no other assumptions,
3334 * including the state of rq->lock, should be made.
3335 */
3336void set_task_rq_fair(struct sched_entity *se,
3337 struct cfs_rq *prev, struct cfs_rq *next)
3338{
0ccb977f
PZ
3339 u64 p_last_update_time;
3340 u64 n_last_update_time;
3341
ad936d86
BP
3342 if (!sched_feat(ATTACH_AGE_LOAD))
3343 return;
3344
3345 /*
3346 * We are supposed to update the task to "current" time, then its up to
3347 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3348 * getting what current time is, so simply throw away the out-of-date
3349 * time. This will result in the wakee task is less decayed, but giving
3350 * the wakee more load sounds not bad.
3351 */
0ccb977f
PZ
3352 if (!(se->avg.last_update_time && prev))
3353 return;
ad936d86
BP
3354
3355#ifndef CONFIG_64BIT
0ccb977f 3356 {
ad936d86
BP
3357 u64 p_last_update_time_copy;
3358 u64 n_last_update_time_copy;
3359
3360 do {
3361 p_last_update_time_copy = prev->load_last_update_time_copy;
3362 n_last_update_time_copy = next->load_last_update_time_copy;
3363
3364 smp_rmb();
3365
3366 p_last_update_time = prev->avg.last_update_time;
3367 n_last_update_time = next->avg.last_update_time;
3368
3369 } while (p_last_update_time != p_last_update_time_copy ||
3370 n_last_update_time != n_last_update_time_copy);
0ccb977f 3371 }
ad936d86 3372#else
0ccb977f
PZ
3373 p_last_update_time = prev->avg.last_update_time;
3374 n_last_update_time = next->avg.last_update_time;
ad936d86 3375#endif
23127296 3376 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3377 se->avg.last_update_time = n_last_update_time;
ad936d86 3378}
09a43ace 3379
0e2d2aaa
PZ
3380
3381/*
3382 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3383 * propagate its contribution. The key to this propagation is the invariant
3384 * that for each group:
3385 *
3386 * ge->avg == grq->avg (1)
3387 *
3388 * _IFF_ we look at the pure running and runnable sums. Because they
3389 * represent the very same entity, just at different points in the hierarchy.
3390 *
9f683953
VG
3391 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3392 * and simply copies the running/runnable sum over (but still wrong, because
3393 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3394 *
0dacee1b 3395 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3396 *
3397 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3398 *
3399 * And since, like util, the runnable part should be directly transferable,
3400 * the following would _appear_ to be the straight forward approach:
3401 *
a4c3c049 3402 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3403 *
3404 * And per (1) we have:
3405 *
a4c3c049 3406 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3407 *
3408 * Which gives:
3409 *
3410 * ge->load.weight * grq->avg.load_avg
3411 * ge->avg.load_avg = ----------------------------------- (4)
3412 * grq->load.weight
3413 *
3414 * Except that is wrong!
3415 *
3416 * Because while for entities historical weight is not important and we
3417 * really only care about our future and therefore can consider a pure
3418 * runnable sum, runqueues can NOT do this.
3419 *
3420 * We specifically want runqueues to have a load_avg that includes
3421 * historical weights. Those represent the blocked load, the load we expect
3422 * to (shortly) return to us. This only works by keeping the weights as
3423 * integral part of the sum. We therefore cannot decompose as per (3).
3424 *
a4c3c049
VG
3425 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3426 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3427 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3428 * runnable section of these tasks overlap (or not). If they were to perfectly
3429 * align the rq as a whole would be runnable 2/3 of the time. If however we
3430 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3431 *
a4c3c049 3432 * So we'll have to approximate.. :/
0e2d2aaa 3433 *
a4c3c049 3434 * Given the constraint:
0e2d2aaa 3435 *
a4c3c049 3436 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3437 *
a4c3c049
VG
3438 * We can construct a rule that adds runnable to a rq by assuming minimal
3439 * overlap.
0e2d2aaa 3440 *
a4c3c049 3441 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3442 *
a4c3c049 3443 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3444 *
a4c3c049 3445 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3446 *
0e2d2aaa
PZ
3447 */
3448
09a43ace 3449static inline void
0e2d2aaa 3450update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3451{
09a43ace 3452 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3453 u32 divider;
09a43ace
VG
3454
3455 /* Nothing to update */
3456 if (!delta)
3457 return;
3458
87e867b4
VG
3459 /*
3460 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3461 * See ___update_load_avg() for details.
3462 */
3463 divider = get_pelt_divider(&cfs_rq->avg);
3464
09a43ace
VG
3465 /* Set new sched_entity's utilization */
3466 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3467 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3468
3469 /* Update parent cfs_rq utilization */
3470 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3471 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3472}
3473
9f683953
VG
3474static inline void
3475update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3476{
3477 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3478 u32 divider;
9f683953
VG
3479
3480 /* Nothing to update */
3481 if (!delta)
3482 return;
3483
87e867b4
VG
3484 /*
3485 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3486 * See ___update_load_avg() for details.
3487 */
3488 divider = get_pelt_divider(&cfs_rq->avg);
3489
9f683953
VG
3490 /* Set new sched_entity's runnable */
3491 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3492 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3493
3494 /* Update parent cfs_rq runnable */
3495 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3496 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3497}
3498
09a43ace 3499static inline void
0dacee1b 3500update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3501{
7c7ad626 3502 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3503 unsigned long load_avg;
3504 u64 load_sum = 0;
95d68593 3505 u32 divider;
09a43ace 3506
0e2d2aaa
PZ
3507 if (!runnable_sum)
3508 return;
09a43ace 3509
0e2d2aaa 3510 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3511
95d68593
VG
3512 /*
3513 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3514 * See ___update_load_avg() for details.
3515 */
87e867b4 3516 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3517
a4c3c049
VG
3518 if (runnable_sum >= 0) {
3519 /*
3520 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3521 * the CPU is saturated running == runnable.
3522 */
3523 runnable_sum += se->avg.load_sum;
95d68593 3524 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3525 } else {
3526 /*
3527 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3528 * assuming all tasks are equally runnable.
3529 */
3530 if (scale_load_down(gcfs_rq->load.weight)) {
3531 load_sum = div_s64(gcfs_rq->avg.load_sum,
3532 scale_load_down(gcfs_rq->load.weight));
3533 }
3534
3535 /* But make sure to not inflate se's runnable */
3536 runnable_sum = min(se->avg.load_sum, load_sum);
3537 }
3538
3539 /*
3540 * runnable_sum can't be lower than running_sum
23127296
VG
3541 * Rescale running sum to be in the same range as runnable sum
3542 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3543 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3544 */
23127296 3545 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3546 runnable_sum = max(runnable_sum, running_sum);
3547
0e2d2aaa 3548 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3549 load_avg = div_s64(load_sum, divider);
09a43ace 3550
7c7ad626 3551 delta = load_avg - se->avg.load_avg;
09a43ace 3552
a4c3c049
VG
3553 se->avg.load_sum = runnable_sum;
3554 se->avg.load_avg = load_avg;
7c7ad626
VG
3555
3556 add_positive(&cfs_rq->avg.load_avg, delta);
3557 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
09a43ace
VG
3558}
3559
0e2d2aaa 3560static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3561{
0e2d2aaa
PZ
3562 cfs_rq->propagate = 1;
3563 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3564}
3565
3566/* Update task and its cfs_rq load average */
3567static inline int propagate_entity_load_avg(struct sched_entity *se)
3568{
0e2d2aaa 3569 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3570
3571 if (entity_is_task(se))
3572 return 0;
3573
0e2d2aaa
PZ
3574 gcfs_rq = group_cfs_rq(se);
3575 if (!gcfs_rq->propagate)
09a43ace
VG
3576 return 0;
3577
0e2d2aaa
PZ
3578 gcfs_rq->propagate = 0;
3579
09a43ace
VG
3580 cfs_rq = cfs_rq_of(se);
3581
0e2d2aaa 3582 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3583
0e2d2aaa 3584 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3585 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3586 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3587
ba19f51f 3588 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3589 trace_pelt_se_tp(se);
ba19f51f 3590
09a43ace
VG
3591 return 1;
3592}
3593
bc427898
VG
3594/*
3595 * Check if we need to update the load and the utilization of a blocked
3596 * group_entity:
3597 */
3598static inline bool skip_blocked_update(struct sched_entity *se)
3599{
3600 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3601
3602 /*
3603 * If sched_entity still have not zero load or utilization, we have to
3604 * decay it:
3605 */
3606 if (se->avg.load_avg || se->avg.util_avg)
3607 return false;
3608
3609 /*
3610 * If there is a pending propagation, we have to update the load and
3611 * the utilization of the sched_entity:
3612 */
0e2d2aaa 3613 if (gcfs_rq->propagate)
bc427898
VG
3614 return false;
3615
3616 /*
3617 * Otherwise, the load and the utilization of the sched_entity is
3618 * already zero and there is no pending propagation, so it will be a
3619 * waste of time to try to decay it:
3620 */
3621 return true;
3622}
3623
6e83125c 3624#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3625
fe749158 3626static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3627
3628static inline int propagate_entity_load_avg(struct sched_entity *se)
3629{
3630 return 0;
3631}
3632
0e2d2aaa 3633static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3634
6e83125c 3635#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3636
3d30544f
PZ
3637/**
3638 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3639 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3640 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3641 *
3642 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3643 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3644 * post_init_entity_util_avg().
3645 *
3646 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3647 *
7c3edd2c
PZ
3648 * Returns true if the load decayed or we removed load.
3649 *
3650 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3651 * call update_tg_load_avg() when this function returns true.
3d30544f 3652 */
a2c6c91f 3653static inline int
3a123bbb 3654update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3655{
9f683953 3656 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3657 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3658 int decayed = 0;
2dac754e 3659
2a2f5d4e
PZ
3660 if (cfs_rq->removed.nr) {
3661 unsigned long r;
87e867b4 3662 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3663
3664 raw_spin_lock(&cfs_rq->removed.lock);
3665 swap(cfs_rq->removed.util_avg, removed_util);
3666 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3667 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3668 cfs_rq->removed.nr = 0;
3669 raw_spin_unlock(&cfs_rq->removed.lock);
3670
2a2f5d4e 3671 r = removed_load;
89741892 3672 sub_positive(&sa->load_avg, r);
9a2dd585 3673 sub_positive(&sa->load_sum, r * divider);
2dac754e 3674
2a2f5d4e 3675 r = removed_util;
89741892 3676 sub_positive(&sa->util_avg, r);
9a2dd585 3677 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3678
9f683953
VG
3679 r = removed_runnable;
3680 sub_positive(&sa->runnable_avg, r);
3681 sub_positive(&sa->runnable_sum, r * divider);
3682
3683 /*
3684 * removed_runnable is the unweighted version of removed_load so we
3685 * can use it to estimate removed_load_sum.
3686 */
3687 add_tg_cfs_propagate(cfs_rq,
3688 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3689
3690 decayed = 1;
9d89c257 3691 }
36ee28e4 3692
23127296 3693 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3694
9d89c257
YD
3695#ifndef CONFIG_64BIT
3696 smp_wmb();
3697 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3698#endif
36ee28e4 3699
2a2f5d4e 3700 return decayed;
21e96f88
SM
3701}
3702
3d30544f
PZ
3703/**
3704 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3705 * @cfs_rq: cfs_rq to attach to
3706 * @se: sched_entity to attach
3707 *
3708 * Must call update_cfs_rq_load_avg() before this, since we rely on
3709 * cfs_rq->avg.last_update_time being current.
3710 */
a4f9a0e5 3711static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3712{
95d68593
VG
3713 /*
3714 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3715 * See ___update_load_avg() for details.
3716 */
87e867b4 3717 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3718
3719 /*
3720 * When we attach the @se to the @cfs_rq, we must align the decay
3721 * window because without that, really weird and wonderful things can
3722 * happen.
3723 *
3724 * XXX illustrate
3725 */
a05e8c51 3726 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3727 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3728
3729 /*
3730 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3731 * period_contrib. This isn't strictly correct, but since we're
3732 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3733 * _sum a little.
3734 */
3735 se->avg.util_sum = se->avg.util_avg * divider;
3736
9f683953
VG
3737 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3738
f207934f
PZ
3739 se->avg.load_sum = divider;
3740 if (se_weight(se)) {
3741 se->avg.load_sum =
3742 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3743 }
3744
8d5b9025 3745 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3746 cfs_rq->avg.util_avg += se->avg.util_avg;
3747 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3748 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3749 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3750
3751 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3752
a4f9a0e5 3753 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3754
3755 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3756}
3757
3d30544f
PZ
3758/**
3759 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3760 * @cfs_rq: cfs_rq to detach from
3761 * @se: sched_entity to detach
3762 *
3763 * Must call update_cfs_rq_load_avg() before this, since we rely on
3764 * cfs_rq->avg.last_update_time being current.
3765 */
a05e8c51
BP
3766static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3767{
fcf6631f
VG
3768 /*
3769 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3770 * See ___update_load_avg() for details.
3771 */
3772 u32 divider = get_pelt_divider(&cfs_rq->avg);
3773
8d5b9025 3774 dequeue_load_avg(cfs_rq, se);
89741892 3775 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
fcf6631f 3776 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
9f683953 3777 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
fcf6631f 3778 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
0e2d2aaa
PZ
3779
3780 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3781
ea14b57e 3782 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3783
3784 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3785}
3786
b382a531
PZ
3787/*
3788 * Optional action to be done while updating the load average
3789 */
3790#define UPDATE_TG 0x1
3791#define SKIP_AGE_LOAD 0x2
3792#define DO_ATTACH 0x4
3793
3794/* Update task and its cfs_rq load average */
3795static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3796{
23127296 3797 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3798 int decayed;
3799
3800 /*
3801 * Track task load average for carrying it to new CPU after migrated, and
3802 * track group sched_entity load average for task_h_load calc in migration
3803 */
3804 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3805 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3806
3807 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3808 decayed |= propagate_entity_load_avg(se);
3809
3810 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3811
ea14b57e
PZ
3812 /*
3813 * DO_ATTACH means we're here from enqueue_entity().
3814 * !last_update_time means we've passed through
3815 * migrate_task_rq_fair() indicating we migrated.
3816 *
3817 * IOW we're enqueueing a task on a new CPU.
3818 */
a4f9a0e5 3819 attach_entity_load_avg(cfs_rq, se);
fe749158 3820 update_tg_load_avg(cfs_rq);
b382a531 3821
bef69dd8
VG
3822 } else if (decayed) {
3823 cfs_rq_util_change(cfs_rq, 0);
3824
3825 if (flags & UPDATE_TG)
fe749158 3826 update_tg_load_avg(cfs_rq);
bef69dd8 3827 }
b382a531
PZ
3828}
3829
9d89c257 3830#ifndef CONFIG_64BIT
0905f04e
YD
3831static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3832{
9d89c257 3833 u64 last_update_time_copy;
0905f04e 3834 u64 last_update_time;
9ee474f5 3835
9d89c257
YD
3836 do {
3837 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3838 smp_rmb();
3839 last_update_time = cfs_rq->avg.last_update_time;
3840 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3841
3842 return last_update_time;
3843}
9d89c257 3844#else
0905f04e
YD
3845static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3846{
3847 return cfs_rq->avg.last_update_time;
3848}
9d89c257
YD
3849#endif
3850
104cb16d
MR
3851/*
3852 * Synchronize entity load avg of dequeued entity without locking
3853 * the previous rq.
3854 */
71b47eaf 3855static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3856{
3857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3858 u64 last_update_time;
3859
3860 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3861 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3862}
3863
0905f04e
YD
3864/*
3865 * Task first catches up with cfs_rq, and then subtract
3866 * itself from the cfs_rq (task must be off the queue now).
3867 */
71b47eaf 3868static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3869{
3870 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3871 unsigned long flags;
0905f04e
YD
3872
3873 /*
7dc603c9
PZ
3874 * tasks cannot exit without having gone through wake_up_new_task() ->
3875 * post_init_entity_util_avg() which will have added things to the
3876 * cfs_rq, so we can remove unconditionally.
0905f04e 3877 */
0905f04e 3878
104cb16d 3879 sync_entity_load_avg(se);
2a2f5d4e
PZ
3880
3881 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3882 ++cfs_rq->removed.nr;
3883 cfs_rq->removed.util_avg += se->avg.util_avg;
3884 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3885 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3886 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3887}
642dbc39 3888
9f683953
VG
3889static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3890{
3891 return cfs_rq->avg.runnable_avg;
3892}
3893
7ea241af
YD
3894static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3895{
3896 return cfs_rq->avg.load_avg;
3897}
3898
d91cecc1
CY
3899static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3900
7f65ea42
PB
3901static inline unsigned long task_util(struct task_struct *p)
3902{
3903 return READ_ONCE(p->se.avg.util_avg);
3904}
3905
3906static inline unsigned long _task_util_est(struct task_struct *p)
3907{
3908 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3909
68d7a190 3910 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
7f65ea42
PB
3911}
3912
3913static inline unsigned long task_util_est(struct task_struct *p)
3914{
3915 return max(task_util(p), _task_util_est(p));
3916}
3917
a7008c07
VS
3918#ifdef CONFIG_UCLAMP_TASK
3919static inline unsigned long uclamp_task_util(struct task_struct *p)
3920{
3921 return clamp(task_util_est(p),
3922 uclamp_eff_value(p, UCLAMP_MIN),
3923 uclamp_eff_value(p, UCLAMP_MAX));
3924}
3925#else
3926static inline unsigned long uclamp_task_util(struct task_struct *p)
3927{
3928 return task_util_est(p);
3929}
3930#endif
3931
7f65ea42
PB
3932static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3933 struct task_struct *p)
3934{
3935 unsigned int enqueued;
3936
3937 if (!sched_feat(UTIL_EST))
3938 return;
3939
3940 /* Update root cfs_rq's estimated utilization */
3941 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3942 enqueued += _task_util_est(p);
7f65ea42 3943 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
3944
3945 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
3946}
3947
8c1f560c
XY
3948static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3949 struct task_struct *p)
3950{
3951 unsigned int enqueued;
3952
3953 if (!sched_feat(UTIL_EST))
3954 return;
3955
3956 /* Update root cfs_rq's estimated utilization */
3957 enqueued = cfs_rq->avg.util_est.enqueued;
3958 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3959 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3960
3961 trace_sched_util_est_cfs_tp(cfs_rq);
3962}
3963
b89997aa
VD
3964#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3965
7f65ea42
PB
3966/*
3967 * Check if a (signed) value is within a specified (unsigned) margin,
3968 * based on the observation that:
3969 *
3970 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3971 *
3b03706f 3972 * NOTE: this only works when value + margin < INT_MAX.
7f65ea42
PB
3973 */
3974static inline bool within_margin(int value, int margin)
3975{
3976 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3977}
3978
8c1f560c
XY
3979static inline void util_est_update(struct cfs_rq *cfs_rq,
3980 struct task_struct *p,
3981 bool task_sleep)
7f65ea42 3982{
b89997aa 3983 long last_ewma_diff, last_enqueued_diff;
7f65ea42
PB
3984 struct util_est ue;
3985
3986 if (!sched_feat(UTIL_EST))
3987 return;
3988
7f65ea42
PB
3989 /*
3990 * Skip update of task's estimated utilization when the task has not
3991 * yet completed an activation, e.g. being migrated.
3992 */
3993 if (!task_sleep)
3994 return;
3995
d519329f
PB
3996 /*
3997 * If the PELT values haven't changed since enqueue time,
3998 * skip the util_est update.
3999 */
4000 ue = p->se.avg.util_est;
4001 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4002 return;
4003
b89997aa
VD
4004 last_enqueued_diff = ue.enqueued;
4005
b8c96361
PB
4006 /*
4007 * Reset EWMA on utilization increases, the moving average is used only
4008 * to smooth utilization decreases.
4009 */
68d7a190 4010 ue.enqueued = task_util(p);
b8c96361
PB
4011 if (sched_feat(UTIL_EST_FASTUP)) {
4012 if (ue.ewma < ue.enqueued) {
4013 ue.ewma = ue.enqueued;
4014 goto done;
4015 }
4016 }
4017
7f65ea42 4018 /*
b89997aa 4019 * Skip update of task's estimated utilization when its members are
7f65ea42
PB
4020 * already ~1% close to its last activation value.
4021 */
7f65ea42 4022 last_ewma_diff = ue.enqueued - ue.ewma;
b89997aa
VD
4023 last_enqueued_diff -= ue.enqueued;
4024 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4025 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4026 goto done;
4027
7f65ea42 4028 return;
b89997aa 4029 }
7f65ea42 4030
10a35e68
VG
4031 /*
4032 * To avoid overestimation of actual task utilization, skip updates if
4033 * we cannot grant there is idle time in this CPU.
4034 */
8c1f560c 4035 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
10a35e68
VG
4036 return;
4037
7f65ea42
PB
4038 /*
4039 * Update Task's estimated utilization
4040 *
4041 * When *p completes an activation we can consolidate another sample
4042 * of the task size. This is done by storing the current PELT value
4043 * as ue.enqueued and by using this value to update the Exponential
4044 * Weighted Moving Average (EWMA):
4045 *
4046 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4047 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4048 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4049 * = w * ( last_ewma_diff ) + ewma(t-1)
4050 * = w * (last_ewma_diff + ewma(t-1) / w)
4051 *
4052 * Where 'w' is the weight of new samples, which is configured to be
4053 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4054 */
4055 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4056 ue.ewma += last_ewma_diff;
4057 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4058done:
68d7a190 4059 ue.enqueued |= UTIL_AVG_UNCHANGED;
7f65ea42 4060 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4061
4062 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4063}
4064
3b1baa64
MR
4065static inline int task_fits_capacity(struct task_struct *p, long capacity)
4066{
a7008c07 4067 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4068}
4069
4070static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4071{
4072 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4073 return;
4074
0ae78eec 4075 if (!p || p->nr_cpus_allowed == 1) {
3b1baa64
MR
4076 rq->misfit_task_load = 0;
4077 return;
4078 }
4079
4080 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4081 rq->misfit_task_load = 0;
4082 return;
4083 }
4084
01cfcde9
VG
4085 /*
4086 * Make sure that misfit_task_load will not be null even if
4087 * task_h_load() returns 0.
4088 */
4089 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4090}
4091
38033c37
PZ
4092#else /* CONFIG_SMP */
4093
d31b1a66
VG
4094#define UPDATE_TG 0x0
4095#define SKIP_AGE_LOAD 0x0
b382a531 4096#define DO_ATTACH 0x0
d31b1a66 4097
88c0616e 4098static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4099{
ea14b57e 4100 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4101}
4102
9d89c257 4103static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4104
a05e8c51 4105static inline void
a4f9a0e5 4106attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4107static inline void
4108detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4109
d91cecc1 4110static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4111{
4112 return 0;
4113}
4114
7f65ea42
PB
4115static inline void
4116util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4117
4118static inline void
8c1f560c
XY
4119util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4120
4121static inline void
4122util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4123 bool task_sleep) {}
3b1baa64 4124static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4125
38033c37 4126#endif /* CONFIG_SMP */
9d85f21c 4127
ddc97297
PZ
4128static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4129{
4130#ifdef CONFIG_SCHED_DEBUG
4131 s64 d = se->vruntime - cfs_rq->min_vruntime;
4132
4133 if (d < 0)
4134 d = -d;
4135
4136 if (d > 3*sysctl_sched_latency)
ae92882e 4137 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4138#endif
4139}
4140
aeb73b04
PZ
4141static void
4142place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4143{
1af5f730 4144 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4145
2cb8600e
PZ
4146 /*
4147 * The 'current' period is already promised to the current tasks,
4148 * however the extra weight of the new task will slow them down a
4149 * little, place the new task so that it fits in the slot that
4150 * stays open at the end.
4151 */
94dfb5e7 4152 if (initial && sched_feat(START_DEBIT))
f9c0b095 4153 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4154
a2e7a7eb 4155 /* sleeps up to a single latency don't count. */
5ca9880c 4156 if (!initial) {
a2e7a7eb 4157 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4158
a2e7a7eb
MG
4159 /*
4160 * Halve their sleep time's effect, to allow
4161 * for a gentler effect of sleepers:
4162 */
4163 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4164 thresh >>= 1;
51e0304c 4165
a2e7a7eb 4166 vruntime -= thresh;
aeb73b04
PZ
4167 }
4168
b5d9d734 4169 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4170 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4171}
4172
d3d9dc33
PT
4173static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4174
cb251765
MG
4175static inline void check_schedstat_required(void)
4176{
4177#ifdef CONFIG_SCHEDSTATS
4178 if (schedstat_enabled())
4179 return;
4180
4181 /* Force schedstat enabled if a dependent tracepoint is active */
4182 if (trace_sched_stat_wait_enabled() ||
4183 trace_sched_stat_sleep_enabled() ||
4184 trace_sched_stat_iowait_enabled() ||
4185 trace_sched_stat_blocked_enabled() ||
4186 trace_sched_stat_runtime_enabled()) {
eda8dca5 4187 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4188 "stat_blocked and stat_runtime require the "
f67abed5 4189 "kernel parameter schedstats=enable or "
cb251765
MG
4190 "kernel.sched_schedstats=1\n");
4191 }
4192#endif
4193}
4194
fe61468b 4195static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4196
4197/*
4198 * MIGRATION
4199 *
4200 * dequeue
4201 * update_curr()
4202 * update_min_vruntime()
4203 * vruntime -= min_vruntime
4204 *
4205 * enqueue
4206 * update_curr()
4207 * update_min_vruntime()
4208 * vruntime += min_vruntime
4209 *
4210 * this way the vruntime transition between RQs is done when both
4211 * min_vruntime are up-to-date.
4212 *
4213 * WAKEUP (remote)
4214 *
59efa0ba 4215 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4216 * vruntime -= min_vruntime
4217 *
4218 * enqueue
4219 * update_curr()
4220 * update_min_vruntime()
4221 * vruntime += min_vruntime
4222 *
4223 * this way we don't have the most up-to-date min_vruntime on the originating
4224 * CPU and an up-to-date min_vruntime on the destination CPU.
4225 */
4226
bf0f6f24 4227static void
88ec22d3 4228enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4229{
2f950354
PZ
4230 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4231 bool curr = cfs_rq->curr == se;
4232
88ec22d3 4233 /*
2f950354
PZ
4234 * If we're the current task, we must renormalise before calling
4235 * update_curr().
88ec22d3 4236 */
2f950354 4237 if (renorm && curr)
88ec22d3
PZ
4238 se->vruntime += cfs_rq->min_vruntime;
4239
2f950354
PZ
4240 update_curr(cfs_rq);
4241
bf0f6f24 4242 /*
2f950354
PZ
4243 * Otherwise, renormalise after, such that we're placed at the current
4244 * moment in time, instead of some random moment in the past. Being
4245 * placed in the past could significantly boost this task to the
4246 * fairness detriment of existing tasks.
bf0f6f24 4247 */
2f950354
PZ
4248 if (renorm && !curr)
4249 se->vruntime += cfs_rq->min_vruntime;
4250
89ee048f
VG
4251 /*
4252 * When enqueuing a sched_entity, we must:
4253 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4254 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4255 * - For group_entity, update its weight to reflect the new share of
4256 * its group cfs_rq
4257 * - Add its new weight to cfs_rq->load.weight
4258 */
b382a531 4259 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4260 se_update_runnable(se);
1ea6c46a 4261 update_cfs_group(se);
17bc14b7 4262 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4263
1a3d027c 4264 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4265 place_entity(cfs_rq, se, 0);
bf0f6f24 4266
cb251765 4267 check_schedstat_required();
4fa8d299
JP
4268 update_stats_enqueue(cfs_rq, se, flags);
4269 check_spread(cfs_rq, se);
2f950354 4270 if (!curr)
83b699ed 4271 __enqueue_entity(cfs_rq, se);
2069dd75 4272 se->on_rq = 1;
3d4b47b4 4273
fe61468b
VG
4274 /*
4275 * When bandwidth control is enabled, cfs might have been removed
4276 * because of a parent been throttled but cfs->nr_running > 1. Try to
3b03706f 4277 * add it unconditionally.
fe61468b
VG
4278 */
4279 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4280 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4281
4282 if (cfs_rq->nr_running == 1)
d3d9dc33 4283 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4284}
4285
2c13c919 4286static void __clear_buddies_last(struct sched_entity *se)
2002c695 4287{
2c13c919
RR
4288 for_each_sched_entity(se) {
4289 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4290 if (cfs_rq->last != se)
2c13c919 4291 break;
f1044799
PZ
4292
4293 cfs_rq->last = NULL;
2c13c919
RR
4294 }
4295}
2002c695 4296
2c13c919
RR
4297static void __clear_buddies_next(struct sched_entity *se)
4298{
4299 for_each_sched_entity(se) {
4300 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4301 if (cfs_rq->next != se)
2c13c919 4302 break;
f1044799
PZ
4303
4304 cfs_rq->next = NULL;
2c13c919 4305 }
2002c695
PZ
4306}
4307
ac53db59
RR
4308static void __clear_buddies_skip(struct sched_entity *se)
4309{
4310 for_each_sched_entity(se) {
4311 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4312 if (cfs_rq->skip != se)
ac53db59 4313 break;
f1044799
PZ
4314
4315 cfs_rq->skip = NULL;
ac53db59
RR
4316 }
4317}
4318
a571bbea
PZ
4319static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4320{
2c13c919
RR
4321 if (cfs_rq->last == se)
4322 __clear_buddies_last(se);
4323
4324 if (cfs_rq->next == se)
4325 __clear_buddies_next(se);
ac53db59
RR
4326
4327 if (cfs_rq->skip == se)
4328 __clear_buddies_skip(se);
a571bbea
PZ
4329}
4330
6c16a6dc 4331static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4332
bf0f6f24 4333static void
371fd7e7 4334dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4335{
a2a2d680
DA
4336 /*
4337 * Update run-time statistics of the 'current'.
4338 */
4339 update_curr(cfs_rq);
89ee048f
VG
4340
4341 /*
4342 * When dequeuing a sched_entity, we must:
4343 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4344 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4345 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4346 * - For group entity, update its weight to reflect the new share
4347 * of its group cfs_rq.
4348 */
88c0616e 4349 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4350 se_update_runnable(se);
a2a2d680 4351
4fa8d299 4352 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4353
2002c695 4354 clear_buddies(cfs_rq, se);
4793241b 4355
83b699ed 4356 if (se != cfs_rq->curr)
30cfdcfc 4357 __dequeue_entity(cfs_rq, se);
17bc14b7 4358 se->on_rq = 0;
30cfdcfc 4359 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4360
4361 /*
b60205c7
PZ
4362 * Normalize after update_curr(); which will also have moved
4363 * min_vruntime if @se is the one holding it back. But before doing
4364 * update_min_vruntime() again, which will discount @se's position and
4365 * can move min_vruntime forward still more.
88ec22d3 4366 */
371fd7e7 4367 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4368 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4369
d8b4986d
PT
4370 /* return excess runtime on last dequeue */
4371 return_cfs_rq_runtime(cfs_rq);
4372
1ea6c46a 4373 update_cfs_group(se);
b60205c7
PZ
4374
4375 /*
4376 * Now advance min_vruntime if @se was the entity holding it back,
4377 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4378 * put back on, and if we advance min_vruntime, we'll be placed back
4379 * further than we started -- ie. we'll be penalized.
4380 */
9845c49c 4381 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4382 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4383}
4384
4385/*
4386 * Preempt the current task with a newly woken task if needed:
4387 */
7c92e54f 4388static void
2e09bf55 4389check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4390{
11697830 4391 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4392 struct sched_entity *se;
4393 s64 delta;
11697830 4394
6d0f0ebd 4395 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4396 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4397 if (delta_exec > ideal_runtime) {
8875125e 4398 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4399 /*
4400 * The current task ran long enough, ensure it doesn't get
4401 * re-elected due to buddy favours.
4402 */
4403 clear_buddies(cfs_rq, curr);
f685ceac
MG
4404 return;
4405 }
4406
4407 /*
4408 * Ensure that a task that missed wakeup preemption by a
4409 * narrow margin doesn't have to wait for a full slice.
4410 * This also mitigates buddy induced latencies under load.
4411 */
f685ceac
MG
4412 if (delta_exec < sysctl_sched_min_granularity)
4413 return;
4414
f4cfb33e
WX
4415 se = __pick_first_entity(cfs_rq);
4416 delta = curr->vruntime - se->vruntime;
f685ceac 4417
f4cfb33e
WX
4418 if (delta < 0)
4419 return;
d7d82944 4420
f4cfb33e 4421 if (delta > ideal_runtime)
8875125e 4422 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4423}
4424
83b699ed 4425static void
8494f412 4426set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4427{
83b699ed
SV
4428 /* 'current' is not kept within the tree. */
4429 if (se->on_rq) {
4430 /*
4431 * Any task has to be enqueued before it get to execute on
4432 * a CPU. So account for the time it spent waiting on the
4433 * runqueue.
4434 */
4fa8d299 4435 update_stats_wait_end(cfs_rq, se);
83b699ed 4436 __dequeue_entity(cfs_rq, se);
88c0616e 4437 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4438 }
4439
79303e9e 4440 update_stats_curr_start(cfs_rq, se);
429d43bc 4441 cfs_rq->curr = se;
4fa8d299 4442
eba1ed4b
IM
4443 /*
4444 * Track our maximum slice length, if the CPU's load is at
4445 * least twice that of our own weight (i.e. dont track it
4446 * when there are only lesser-weight tasks around):
4447 */
f2bedc47
DE
4448 if (schedstat_enabled() &&
4449 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4450 schedstat_set(se->statistics.slice_max,
4451 max((u64)schedstat_val(se->statistics.slice_max),
4452 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4453 }
4fa8d299 4454
4a55b450 4455 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4456}
4457
3f3a4904
PZ
4458static int
4459wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4460
ac53db59
RR
4461/*
4462 * Pick the next process, keeping these things in mind, in this order:
4463 * 1) keep things fair between processes/task groups
4464 * 2) pick the "next" process, since someone really wants that to run
4465 * 3) pick the "last" process, for cache locality
4466 * 4) do not run the "skip" process, if something else is available
4467 */
678d5718
PZ
4468static struct sched_entity *
4469pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4470{
678d5718
PZ
4471 struct sched_entity *left = __pick_first_entity(cfs_rq);
4472 struct sched_entity *se;
4473
4474 /*
4475 * If curr is set we have to see if its left of the leftmost entity
4476 * still in the tree, provided there was anything in the tree at all.
4477 */
4478 if (!left || (curr && entity_before(curr, left)))
4479 left = curr;
4480
4481 se = left; /* ideally we run the leftmost entity */
f4b6755f 4482
ac53db59
RR
4483 /*
4484 * Avoid running the skip buddy, if running something else can
4485 * be done without getting too unfair.
4486 */
4487 if (cfs_rq->skip == se) {
678d5718
PZ
4488 struct sched_entity *second;
4489
4490 if (se == curr) {
4491 second = __pick_first_entity(cfs_rq);
4492 } else {
4493 second = __pick_next_entity(se);
4494 if (!second || (curr && entity_before(curr, second)))
4495 second = curr;
4496 }
4497
ac53db59
RR
4498 if (second && wakeup_preempt_entity(second, left) < 1)
4499 se = second;
4500 }
aa2ac252 4501
9abb8973
PO
4502 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4503 /*
4504 * Someone really wants this to run. If it's not unfair, run it.
4505 */
ac53db59 4506 se = cfs_rq->next;
9abb8973
PO
4507 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4508 /*
4509 * Prefer last buddy, try to return the CPU to a preempted task.
4510 */
4511 se = cfs_rq->last;
4512 }
ac53db59 4513
f685ceac 4514 clear_buddies(cfs_rq, se);
4793241b
PZ
4515
4516 return se;
aa2ac252
PZ
4517}
4518
678d5718 4519static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4520
ab6cde26 4521static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4522{
4523 /*
4524 * If still on the runqueue then deactivate_task()
4525 * was not called and update_curr() has to be done:
4526 */
4527 if (prev->on_rq)
b7cc0896 4528 update_curr(cfs_rq);
bf0f6f24 4529
d3d9dc33
PT
4530 /* throttle cfs_rqs exceeding runtime */
4531 check_cfs_rq_runtime(cfs_rq);
4532
4fa8d299 4533 check_spread(cfs_rq, prev);
cb251765 4534
30cfdcfc 4535 if (prev->on_rq) {
4fa8d299 4536 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4537 /* Put 'current' back into the tree. */
4538 __enqueue_entity(cfs_rq, prev);
9d85f21c 4539 /* in !on_rq case, update occurred at dequeue */
88c0616e 4540 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4541 }
429d43bc 4542 cfs_rq->curr = NULL;
bf0f6f24
IM
4543}
4544
8f4d37ec
PZ
4545static void
4546entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4547{
bf0f6f24 4548 /*
30cfdcfc 4549 * Update run-time statistics of the 'current'.
bf0f6f24 4550 */
30cfdcfc 4551 update_curr(cfs_rq);
bf0f6f24 4552
9d85f21c
PT
4553 /*
4554 * Ensure that runnable average is periodically updated.
4555 */
88c0616e 4556 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4557 update_cfs_group(curr);
9d85f21c 4558
8f4d37ec
PZ
4559#ifdef CONFIG_SCHED_HRTICK
4560 /*
4561 * queued ticks are scheduled to match the slice, so don't bother
4562 * validating it and just reschedule.
4563 */
983ed7a6 4564 if (queued) {
8875125e 4565 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4566 return;
4567 }
8f4d37ec
PZ
4568 /*
4569 * don't let the period tick interfere with the hrtick preemption
4570 */
4571 if (!sched_feat(DOUBLE_TICK) &&
4572 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4573 return;
4574#endif
4575
2c2efaed 4576 if (cfs_rq->nr_running > 1)
2e09bf55 4577 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4578}
4579
ab84d31e
PT
4580
4581/**************************************************
4582 * CFS bandwidth control machinery
4583 */
4584
4585#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4586
e9666d10 4587#ifdef CONFIG_JUMP_LABEL
c5905afb 4588static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4589
4590static inline bool cfs_bandwidth_used(void)
4591{
c5905afb 4592 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4593}
4594
1ee14e6c 4595void cfs_bandwidth_usage_inc(void)
029632fb 4596{
ce48c146 4597 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4598}
4599
4600void cfs_bandwidth_usage_dec(void)
4601{
ce48c146 4602 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4603}
e9666d10 4604#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4605static bool cfs_bandwidth_used(void)
4606{
4607 return true;
4608}
4609
1ee14e6c
BS
4610void cfs_bandwidth_usage_inc(void) {}
4611void cfs_bandwidth_usage_dec(void) {}
e9666d10 4612#endif /* CONFIG_JUMP_LABEL */
029632fb 4613
ab84d31e
PT
4614/*
4615 * default period for cfs group bandwidth.
4616 * default: 0.1s, units: nanoseconds
4617 */
4618static inline u64 default_cfs_period(void)
4619{
4620 return 100000000ULL;
4621}
ec12cb7f
PT
4622
4623static inline u64 sched_cfs_bandwidth_slice(void)
4624{
4625 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4626}
4627
a9cf55b2 4628/*
763a9ec0
QC
4629 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4630 * directly instead of rq->clock to avoid adding additional synchronization
4631 * around rq->lock.
a9cf55b2
PT
4632 *
4633 * requires cfs_b->lock
4634 */
029632fb 4635void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4636{
763a9ec0
QC
4637 if (cfs_b->quota != RUNTIME_INF)
4638 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4639}
4640
029632fb
PZ
4641static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4642{
4643 return &tg->cfs_bandwidth;
4644}
4645
85dac906 4646/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4647static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4648 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4649{
e98fa02c
PT
4650 u64 min_amount, amount = 0;
4651
4652 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4653
4654 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4655 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4656
ec12cb7f
PT
4657 if (cfs_b->quota == RUNTIME_INF)
4658 amount = min_amount;
58088ad0 4659 else {
77a4d1a1 4660 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4661
4662 if (cfs_b->runtime > 0) {
4663 amount = min(cfs_b->runtime, min_amount);
4664 cfs_b->runtime -= amount;
4665 cfs_b->idle = 0;
4666 }
ec12cb7f 4667 }
ec12cb7f
PT
4668
4669 cfs_rq->runtime_remaining += amount;
85dac906
PT
4670
4671 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4672}
4673
e98fa02c
PT
4674/* returns 0 on failure to allocate runtime */
4675static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4676{
4677 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4678 int ret;
4679
4680 raw_spin_lock(&cfs_b->lock);
4681 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4682 raw_spin_unlock(&cfs_b->lock);
4683
4684 return ret;
4685}
4686
9dbdb155 4687static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4688{
4689 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4690 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4691
4692 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4693 return;
4694
5e2d2cc2
L
4695 if (cfs_rq->throttled)
4696 return;
85dac906
PT
4697 /*
4698 * if we're unable to extend our runtime we resched so that the active
4699 * hierarchy can be throttled
4700 */
4701 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4702 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4703}
4704
6c16a6dc 4705static __always_inline
9dbdb155 4706void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4707{
56f570e5 4708 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4709 return;
4710
4711 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4712}
4713
85dac906
PT
4714static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4715{
56f570e5 4716 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4717}
4718
64660c86
PT
4719/* check whether cfs_rq, or any parent, is throttled */
4720static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4721{
56f570e5 4722 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4723}
4724
4725/*
4726 * Ensure that neither of the group entities corresponding to src_cpu or
4727 * dest_cpu are members of a throttled hierarchy when performing group
4728 * load-balance operations.
4729 */
4730static inline int throttled_lb_pair(struct task_group *tg,
4731 int src_cpu, int dest_cpu)
4732{
4733 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4734
4735 src_cfs_rq = tg->cfs_rq[src_cpu];
4736 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4737
4738 return throttled_hierarchy(src_cfs_rq) ||
4739 throttled_hierarchy(dest_cfs_rq);
4740}
4741
64660c86
PT
4742static int tg_unthrottle_up(struct task_group *tg, void *data)
4743{
4744 struct rq *rq = data;
4745 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4746
4747 cfs_rq->throttle_count--;
64660c86 4748 if (!cfs_rq->throttle_count) {
78becc27 4749 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4750 cfs_rq->throttled_clock_task;
31bc6aea
VG
4751
4752 /* Add cfs_rq with already running entity in the list */
4753 if (cfs_rq->nr_running >= 1)
4754 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4755 }
64660c86
PT
4756
4757 return 0;
4758}
4759
4760static int tg_throttle_down(struct task_group *tg, void *data)
4761{
4762 struct rq *rq = data;
4763 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4764
82958366 4765 /* group is entering throttled state, stop time */
31bc6aea 4766 if (!cfs_rq->throttle_count) {
78becc27 4767 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4768 list_del_leaf_cfs_rq(cfs_rq);
4769 }
64660c86
PT
4770 cfs_rq->throttle_count++;
4771
4772 return 0;
4773}
4774
e98fa02c 4775static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4776{
4777 struct rq *rq = rq_of(cfs_rq);
4778 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4779 struct sched_entity *se;
43e9f7f2 4780 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4781
4782 raw_spin_lock(&cfs_b->lock);
4783 /* This will start the period timer if necessary */
4784 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4785 /*
4786 * We have raced with bandwidth becoming available, and if we
4787 * actually throttled the timer might not unthrottle us for an
4788 * entire period. We additionally needed to make sure that any
4789 * subsequent check_cfs_rq_runtime calls agree not to throttle
4790 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4791 * for 1ns of runtime rather than just check cfs_b.
4792 */
4793 dequeue = 0;
4794 } else {
4795 list_add_tail_rcu(&cfs_rq->throttled_list,
4796 &cfs_b->throttled_cfs_rq);
4797 }
4798 raw_spin_unlock(&cfs_b->lock);
4799
4800 if (!dequeue)
4801 return false; /* Throttle no longer required. */
85dac906
PT
4802
4803 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4804
f1b17280 4805 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4806 rcu_read_lock();
4807 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4808 rcu_read_unlock();
85dac906
PT
4809
4810 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4811 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4812 for_each_sched_entity(se) {
4813 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4814 /* throttled entity or throttle-on-deactivate */
4815 if (!se->on_rq)
b6d37a76 4816 goto done;
85dac906 4817
b6d37a76 4818 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f 4819
85dac906 4820 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4821 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906 4822
b6d37a76
PW
4823 if (qcfs_rq->load.weight) {
4824 /* Avoid re-evaluating load for this entity: */
4825 se = parent_entity(se);
4826 break;
4827 }
4828 }
4829
4830 for_each_sched_entity(se) {
4831 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4832 /* throttled entity or throttle-on-deactivate */
4833 if (!se->on_rq)
4834 goto done;
4835
4836 update_load_avg(qcfs_rq, se, 0);
4837 se_update_runnable(se);
4838
4839 qcfs_rq->h_nr_running -= task_delta;
4840 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4841 }
4842
b6d37a76
PW
4843 /* At this point se is NULL and we are at root level*/
4844 sub_nr_running(rq, task_delta);
85dac906 4845
b6d37a76 4846done:
c06f04c7 4847 /*
e98fa02c
PT
4848 * Note: distribution will already see us throttled via the
4849 * throttled-list. rq->lock protects completion.
c06f04c7 4850 */
e98fa02c
PT
4851 cfs_rq->throttled = 1;
4852 cfs_rq->throttled_clock = rq_clock(rq);
4853 return true;
85dac906
PT
4854}
4855
029632fb 4856void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4857{
4858 struct rq *rq = rq_of(cfs_rq);
4859 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4860 struct sched_entity *se;
43e9f7f2 4861 long task_delta, idle_task_delta;
671fd9da 4862
22b958d8 4863 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4864
4865 cfs_rq->throttled = 0;
1a55af2e
FW
4866
4867 update_rq_clock(rq);
4868
671fd9da 4869 raw_spin_lock(&cfs_b->lock);
78becc27 4870 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4871 list_del_rcu(&cfs_rq->throttled_list);
4872 raw_spin_unlock(&cfs_b->lock);
4873
64660c86
PT
4874 /* update hierarchical throttle state */
4875 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4876
671fd9da
PT
4877 if (!cfs_rq->load.weight)
4878 return;
4879
4880 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4881 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4882 for_each_sched_entity(se) {
4883 if (se->on_rq)
39f23ce0
VG
4884 break;
4885 cfs_rq = cfs_rq_of(se);
4886 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4887
4888 cfs_rq->h_nr_running += task_delta;
4889 cfs_rq->idle_h_nr_running += idle_task_delta;
4890
4891 /* end evaluation on encountering a throttled cfs_rq */
4892 if (cfs_rq_throttled(cfs_rq))
4893 goto unthrottle_throttle;
4894 }
671fd9da 4895
39f23ce0 4896 for_each_sched_entity(se) {
671fd9da 4897 cfs_rq = cfs_rq_of(se);
39f23ce0
VG
4898
4899 update_load_avg(cfs_rq, se, UPDATE_TG);
4900 se_update_runnable(se);
6212437f 4901
671fd9da 4902 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4903 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da 4904
39f23ce0
VG
4905
4906 /* end evaluation on encountering a throttled cfs_rq */
671fd9da 4907 if (cfs_rq_throttled(cfs_rq))
39f23ce0
VG
4908 goto unthrottle_throttle;
4909
4910 /*
4911 * One parent has been throttled and cfs_rq removed from the
4912 * list. Add it back to not break the leaf list.
4913 */
4914 if (throttled_hierarchy(cfs_rq))
4915 list_add_leaf_cfs_rq(cfs_rq);
671fd9da
PT
4916 }
4917
39f23ce0
VG
4918 /* At this point se is NULL and we are at root level*/
4919 add_nr_running(rq, task_delta);
671fd9da 4920
39f23ce0 4921unthrottle_throttle:
fe61468b
VG
4922 /*
4923 * The cfs_rq_throttled() breaks in the above iteration can result in
4924 * incomplete leaf list maintenance, resulting in triggering the
4925 * assertion below.
4926 */
4927 for_each_sched_entity(se) {
4928 cfs_rq = cfs_rq_of(se);
4929
39f23ce0
VG
4930 if (list_add_leaf_cfs_rq(cfs_rq))
4931 break;
fe61468b
VG
4932 }
4933
4934 assert_list_leaf_cfs_rq(rq);
4935
97fb7a0a 4936 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4937 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4938 resched_curr(rq);
671fd9da
PT
4939}
4940
26a8b127 4941static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4942{
4943 struct cfs_rq *cfs_rq;
26a8b127 4944 u64 runtime, remaining = 1;
671fd9da
PT
4945
4946 rcu_read_lock();
4947 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4948 throttled_list) {
4949 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4950 struct rq_flags rf;
671fd9da 4951
c0ad4aa4 4952 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4953 if (!cfs_rq_throttled(cfs_rq))
4954 goto next;
4955
5e2d2cc2
L
4956 /* By the above check, this should never be true */
4957 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4958
26a8b127 4959 raw_spin_lock(&cfs_b->lock);
671fd9da 4960 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4961 if (runtime > cfs_b->runtime)
4962 runtime = cfs_b->runtime;
4963 cfs_b->runtime -= runtime;
4964 remaining = cfs_b->runtime;
4965 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4966
4967 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4968
4969 /* we check whether we're throttled above */
4970 if (cfs_rq->runtime_remaining > 0)
4971 unthrottle_cfs_rq(cfs_rq);
4972
4973next:
c0ad4aa4 4974 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4975
4976 if (!remaining)
4977 break;
4978 }
4979 rcu_read_unlock();
671fd9da
PT
4980}
4981
58088ad0
PT
4982/*
4983 * Responsible for refilling a task_group's bandwidth and unthrottling its
4984 * cfs_rqs as appropriate. If there has been no activity within the last
4985 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4986 * used to track this state.
4987 */
c0ad4aa4 4988static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4989{
51f2176d 4990 int throttled;
58088ad0 4991
58088ad0
PT
4992 /* no need to continue the timer with no bandwidth constraint */
4993 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4994 goto out_deactivate;
58088ad0 4995
671fd9da 4996 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4997 cfs_b->nr_periods += overrun;
671fd9da 4998
51f2176d
BS
4999 /*
5000 * idle depends on !throttled (for the case of a large deficit), and if
5001 * we're going inactive then everything else can be deferred
5002 */
5003 if (cfs_b->idle && !throttled)
5004 goto out_deactivate;
a9cf55b2
PT
5005
5006 __refill_cfs_bandwidth_runtime(cfs_b);
5007
671fd9da
PT
5008 if (!throttled) {
5009 /* mark as potentially idle for the upcoming period */
5010 cfs_b->idle = 1;
51f2176d 5011 return 0;
671fd9da
PT
5012 }
5013
e8da1b18
NR
5014 /* account preceding periods in which throttling occurred */
5015 cfs_b->nr_throttled += overrun;
5016
671fd9da 5017 /*
26a8b127 5018 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 5019 */
ab93a4bc 5020 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 5021 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 5022 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 5023 distribute_cfs_runtime(cfs_b);
c0ad4aa4 5024 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
5025
5026 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5027 }
58088ad0 5028
671fd9da
PT
5029 /*
5030 * While we are ensured activity in the period following an
5031 * unthrottle, this also covers the case in which the new bandwidth is
5032 * insufficient to cover the existing bandwidth deficit. (Forcing the
5033 * timer to remain active while there are any throttled entities.)
5034 */
5035 cfs_b->idle = 0;
58088ad0 5036
51f2176d
BS
5037 return 0;
5038
5039out_deactivate:
51f2176d 5040 return 1;
58088ad0 5041}
d3d9dc33 5042
d8b4986d
PT
5043/* a cfs_rq won't donate quota below this amount */
5044static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5045/* minimum remaining period time to redistribute slack quota */
5046static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5047/* how long we wait to gather additional slack before distributing */
5048static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5049
db06e78c
BS
5050/*
5051 * Are we near the end of the current quota period?
5052 *
5053 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5054 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5055 * migrate_hrtimers, base is never cleared, so we are fine.
5056 */
d8b4986d
PT
5057static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5058{
5059 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5060 u64 remaining;
5061
5062 /* if the call-back is running a quota refresh is already occurring */
5063 if (hrtimer_callback_running(refresh_timer))
5064 return 1;
5065
5066 /* is a quota refresh about to occur? */
5067 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5068 if (remaining < min_expire)
5069 return 1;
5070
5071 return 0;
5072}
5073
5074static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5075{
5076 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5077
5078 /* if there's a quota refresh soon don't bother with slack */
5079 if (runtime_refresh_within(cfs_b, min_left))
5080 return;
5081
66567fcb 5082 /* don't push forwards an existing deferred unthrottle */
5083 if (cfs_b->slack_started)
5084 return;
5085 cfs_b->slack_started = true;
5086
4cfafd30
PZ
5087 hrtimer_start(&cfs_b->slack_timer,
5088 ns_to_ktime(cfs_bandwidth_slack_period),
5089 HRTIMER_MODE_REL);
d8b4986d
PT
5090}
5091
5092/* we know any runtime found here is valid as update_curr() precedes return */
5093static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5094{
5095 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5096 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5097
5098 if (slack_runtime <= 0)
5099 return;
5100
5101 raw_spin_lock(&cfs_b->lock);
de53fd7a 5102 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5103 cfs_b->runtime += slack_runtime;
5104
5105 /* we are under rq->lock, defer unthrottling using a timer */
5106 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5107 !list_empty(&cfs_b->throttled_cfs_rq))
5108 start_cfs_slack_bandwidth(cfs_b);
5109 }
5110 raw_spin_unlock(&cfs_b->lock);
5111
5112 /* even if it's not valid for return we don't want to try again */
5113 cfs_rq->runtime_remaining -= slack_runtime;
5114}
5115
5116static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5117{
56f570e5
PT
5118 if (!cfs_bandwidth_used())
5119 return;
5120
fccfdc6f 5121 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5122 return;
5123
5124 __return_cfs_rq_runtime(cfs_rq);
5125}
5126
5127/*
5128 * This is done with a timer (instead of inline with bandwidth return) since
5129 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5130 */
5131static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5132{
5133 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5134 unsigned long flags;
d8b4986d
PT
5135
5136 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5137 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5138 cfs_b->slack_started = false;
baa9be4f 5139
db06e78c 5140 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5141 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5142 return;
db06e78c 5143 }
d8b4986d 5144
c06f04c7 5145 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5146 runtime = cfs_b->runtime;
c06f04c7 5147
c0ad4aa4 5148 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5149
5150 if (!runtime)
5151 return;
5152
26a8b127 5153 distribute_cfs_runtime(cfs_b);
d8b4986d
PT
5154}
5155
d3d9dc33
PT
5156/*
5157 * When a group wakes up we want to make sure that its quota is not already
5158 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
c034f48e 5159 * runtime as update_curr() throttling can not trigger until it's on-rq.
d3d9dc33
PT
5160 */
5161static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5162{
56f570e5
PT
5163 if (!cfs_bandwidth_used())
5164 return;
5165
d3d9dc33
PT
5166 /* an active group must be handled by the update_curr()->put() path */
5167 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5168 return;
5169
5170 /* ensure the group is not already throttled */
5171 if (cfs_rq_throttled(cfs_rq))
5172 return;
5173
5174 /* update runtime allocation */
5175 account_cfs_rq_runtime(cfs_rq, 0);
5176 if (cfs_rq->runtime_remaining <= 0)
5177 throttle_cfs_rq(cfs_rq);
5178}
5179
55e16d30
PZ
5180static void sync_throttle(struct task_group *tg, int cpu)
5181{
5182 struct cfs_rq *pcfs_rq, *cfs_rq;
5183
5184 if (!cfs_bandwidth_used())
5185 return;
5186
5187 if (!tg->parent)
5188 return;
5189
5190 cfs_rq = tg->cfs_rq[cpu];
5191 pcfs_rq = tg->parent->cfs_rq[cpu];
5192
5193 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5194 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5195}
5196
d3d9dc33 5197/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5198static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5199{
56f570e5 5200 if (!cfs_bandwidth_used())
678d5718 5201 return false;
56f570e5 5202
d3d9dc33 5203 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5204 return false;
d3d9dc33
PT
5205
5206 /*
5207 * it's possible for a throttled entity to be forced into a running
5208 * state (e.g. set_curr_task), in this case we're finished.
5209 */
5210 if (cfs_rq_throttled(cfs_rq))
678d5718 5211 return true;
d3d9dc33 5212
e98fa02c 5213 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5214}
029632fb 5215
029632fb
PZ
5216static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5217{
5218 struct cfs_bandwidth *cfs_b =
5219 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5220
029632fb
PZ
5221 do_sched_cfs_slack_timer(cfs_b);
5222
5223 return HRTIMER_NORESTART;
5224}
5225
2e8e1922
PA
5226extern const u64 max_cfs_quota_period;
5227
029632fb
PZ
5228static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5229{
5230 struct cfs_bandwidth *cfs_b =
5231 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5232 unsigned long flags;
029632fb
PZ
5233 int overrun;
5234 int idle = 0;
2e8e1922 5235 int count = 0;
029632fb 5236
c0ad4aa4 5237 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5238 for (;;) {
77a4d1a1 5239 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5240 if (!overrun)
5241 break;
5242
5a6d6a6c
HC
5243 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5244
2e8e1922
PA
5245 if (++count > 3) {
5246 u64 new, old = ktime_to_ns(cfs_b->period);
5247
4929a4e6
XZ
5248 /*
5249 * Grow period by a factor of 2 to avoid losing precision.
5250 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5251 * to fail.
5252 */
5253 new = old * 2;
5254 if (new < max_cfs_quota_period) {
5255 cfs_b->period = ns_to_ktime(new);
5256 cfs_b->quota *= 2;
5257
5258 pr_warn_ratelimited(
5259 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5260 smp_processor_id(),
5261 div_u64(new, NSEC_PER_USEC),
5262 div_u64(cfs_b->quota, NSEC_PER_USEC));
5263 } else {
5264 pr_warn_ratelimited(
5265 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5266 smp_processor_id(),
5267 div_u64(old, NSEC_PER_USEC),
5268 div_u64(cfs_b->quota, NSEC_PER_USEC));
5269 }
2e8e1922
PA
5270
5271 /* reset count so we don't come right back in here */
5272 count = 0;
5273 }
029632fb 5274 }
4cfafd30
PZ
5275 if (idle)
5276 cfs_b->period_active = 0;
c0ad4aa4 5277 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5278
5279 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5280}
5281
5282void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5283{
5284 raw_spin_lock_init(&cfs_b->lock);
5285 cfs_b->runtime = 0;
5286 cfs_b->quota = RUNTIME_INF;
5287 cfs_b->period = ns_to_ktime(default_cfs_period());
5288
5289 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5290 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5291 cfs_b->period_timer.function = sched_cfs_period_timer;
5292 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5293 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5294 cfs_b->slack_started = false;
029632fb
PZ
5295}
5296
5297static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5298{
5299 cfs_rq->runtime_enabled = 0;
5300 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5301}
5302
77a4d1a1 5303void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5304{
4cfafd30 5305 lockdep_assert_held(&cfs_b->lock);
029632fb 5306
f1d1be8a
XP
5307 if (cfs_b->period_active)
5308 return;
5309
5310 cfs_b->period_active = 1;
763a9ec0 5311 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5312 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5313}
5314
5315static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5316{
7f1a169b
TH
5317 /* init_cfs_bandwidth() was not called */
5318 if (!cfs_b->throttled_cfs_rq.next)
5319 return;
5320
029632fb
PZ
5321 hrtimer_cancel(&cfs_b->period_timer);
5322 hrtimer_cancel(&cfs_b->slack_timer);
5323}
5324
502ce005 5325/*
97fb7a0a 5326 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5327 *
5328 * The race is harmless, since modifying bandwidth settings of unhooked group
5329 * bits doesn't do much.
5330 */
5331
3b03706f 5332/* cpu online callback */
0e59bdae
KT
5333static void __maybe_unused update_runtime_enabled(struct rq *rq)
5334{
502ce005 5335 struct task_group *tg;
0e59bdae 5336
502ce005
PZ
5337 lockdep_assert_held(&rq->lock);
5338
5339 rcu_read_lock();
5340 list_for_each_entry_rcu(tg, &task_groups, list) {
5341 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5342 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5343
5344 raw_spin_lock(&cfs_b->lock);
5345 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5346 raw_spin_unlock(&cfs_b->lock);
5347 }
502ce005 5348 rcu_read_unlock();
0e59bdae
KT
5349}
5350
502ce005 5351/* cpu offline callback */
38dc3348 5352static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5353{
502ce005
PZ
5354 struct task_group *tg;
5355
5356 lockdep_assert_held(&rq->lock);
5357
5358 rcu_read_lock();
5359 list_for_each_entry_rcu(tg, &task_groups, list) {
5360 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5361
029632fb
PZ
5362 if (!cfs_rq->runtime_enabled)
5363 continue;
5364
5365 /*
5366 * clock_task is not advancing so we just need to make sure
5367 * there's some valid quota amount
5368 */
51f2176d 5369 cfs_rq->runtime_remaining = 1;
0e59bdae 5370 /*
97fb7a0a 5371 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5372 * in take_cpu_down(), so we prevent new cfs throttling here.
5373 */
5374 cfs_rq->runtime_enabled = 0;
5375
029632fb
PZ
5376 if (cfs_rq_throttled(cfs_rq))
5377 unthrottle_cfs_rq(cfs_rq);
5378 }
502ce005 5379 rcu_read_unlock();
029632fb
PZ
5380}
5381
5382#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5383
5384static inline bool cfs_bandwidth_used(void)
5385{
5386 return false;
5387}
5388
9dbdb155 5389static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5390static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5391static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5392static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5393static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5394
5395static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5396{
5397 return 0;
5398}
64660c86
PT
5399
5400static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5401{
5402 return 0;
5403}
5404
5405static inline int throttled_lb_pair(struct task_group *tg,
5406 int src_cpu, int dest_cpu)
5407{
5408 return 0;
5409}
029632fb
PZ
5410
5411void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5412
5413#ifdef CONFIG_FAIR_GROUP_SCHED
5414static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5415#endif
5416
029632fb
PZ
5417static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5418{
5419 return NULL;
5420}
5421static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5422static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5423static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5424
5425#endif /* CONFIG_CFS_BANDWIDTH */
5426
bf0f6f24
IM
5427/**************************************************
5428 * CFS operations on tasks:
5429 */
5430
8f4d37ec
PZ
5431#ifdef CONFIG_SCHED_HRTICK
5432static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5433{
8f4d37ec
PZ
5434 struct sched_entity *se = &p->se;
5435 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5436
9148a3a1 5437 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5438
8bf46a39 5439 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5440 u64 slice = sched_slice(cfs_rq, se);
5441 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5442 s64 delta = slice - ran;
5443
5444 if (delta < 0) {
65bcf072 5445 if (task_current(rq, p))
8875125e 5446 resched_curr(rq);
8f4d37ec
PZ
5447 return;
5448 }
31656519 5449 hrtick_start(rq, delta);
8f4d37ec
PZ
5450 }
5451}
a4c2f00f
PZ
5452
5453/*
5454 * called from enqueue/dequeue and updates the hrtick when the
5455 * current task is from our class and nr_running is low enough
5456 * to matter.
5457 */
5458static void hrtick_update(struct rq *rq)
5459{
5460 struct task_struct *curr = rq->curr;
5461
e0ee463c 5462 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5463 return;
5464
5465 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5466 hrtick_start_fair(rq, curr);
5467}
55e12e5e 5468#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5469static inline void
5470hrtick_start_fair(struct rq *rq, struct task_struct *p)
5471{
5472}
a4c2f00f
PZ
5473
5474static inline void hrtick_update(struct rq *rq)
5475{
5476}
8f4d37ec
PZ
5477#endif
5478
2802bf3c
MR
5479#ifdef CONFIG_SMP
5480static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5481
5482static inline bool cpu_overutilized(int cpu)
5483{
60e17f5c 5484 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5485}
5486
5487static inline void update_overutilized_status(struct rq *rq)
5488{
f9f240f9 5489 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5490 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5491 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5492 }
2802bf3c
MR
5493}
5494#else
5495static inline void update_overutilized_status(struct rq *rq) { }
5496#endif
5497
323af6de
VK
5498/* Runqueue only has SCHED_IDLE tasks enqueued */
5499static int sched_idle_rq(struct rq *rq)
5500{
5501 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5502 rq->nr_running);
5503}
5504
afa70d94 5505#ifdef CONFIG_SMP
323af6de
VK
5506static int sched_idle_cpu(int cpu)
5507{
5508 return sched_idle_rq(cpu_rq(cpu));
5509}
afa70d94 5510#endif
323af6de 5511
bf0f6f24
IM
5512/*
5513 * The enqueue_task method is called before nr_running is
5514 * increased. Here we update the fair scheduling stats and
5515 * then put the task into the rbtree:
5516 */
ea87bb78 5517static void
371fd7e7 5518enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5519{
5520 struct cfs_rq *cfs_rq;
62fb1851 5521 struct sched_entity *se = &p->se;
43e9f7f2 5522 int idle_h_nr_running = task_has_idle_policy(p);
8e1ac429 5523 int task_new = !(flags & ENQUEUE_WAKEUP);
bf0f6f24 5524
2539fc82
PB
5525 /*
5526 * The code below (indirectly) updates schedutil which looks at
5527 * the cfs_rq utilization to select a frequency.
5528 * Let's add the task's estimated utilization to the cfs_rq's
5529 * estimated utilization, before we update schedutil.
5530 */
5531 util_est_enqueue(&rq->cfs, p);
5532
8c34ab19
RW
5533 /*
5534 * If in_iowait is set, the code below may not trigger any cpufreq
5535 * utilization updates, so do it here explicitly with the IOWAIT flag
5536 * passed.
5537 */
5538 if (p->in_iowait)
674e7541 5539 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5540
bf0f6f24 5541 for_each_sched_entity(se) {
62fb1851 5542 if (se->on_rq)
bf0f6f24
IM
5543 break;
5544 cfs_rq = cfs_rq_of(se);
88ec22d3 5545 enqueue_entity(cfs_rq, se, flags);
85dac906 5546
953bfcd1 5547 cfs_rq->h_nr_running++;
43e9f7f2 5548 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5549
6d4d2246
VG
5550 /* end evaluation on encountering a throttled cfs_rq */
5551 if (cfs_rq_throttled(cfs_rq))
5552 goto enqueue_throttle;
5553
88ec22d3 5554 flags = ENQUEUE_WAKEUP;
bf0f6f24 5555 }
8f4d37ec 5556
2069dd75 5557 for_each_sched_entity(se) {
0f317143 5558 cfs_rq = cfs_rq_of(se);
2069dd75 5559
88c0616e 5560 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5561 se_update_runnable(se);
1ea6c46a 5562 update_cfs_group(se);
6d4d2246
VG
5563
5564 cfs_rq->h_nr_running++;
5565 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba
VG
5566
5567 /* end evaluation on encountering a throttled cfs_rq */
5568 if (cfs_rq_throttled(cfs_rq))
5569 goto enqueue_throttle;
b34cb07d
PA
5570
5571 /*
5572 * One parent has been throttled and cfs_rq removed from the
5573 * list. Add it back to not break the leaf list.
5574 */
5575 if (throttled_hierarchy(cfs_rq))
5576 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5577 }
5578
7d148be6
VG
5579 /* At this point se is NULL and we are at root level*/
5580 add_nr_running(rq, 1);
2802bf3c 5581
7d148be6
VG
5582 /*
5583 * Since new tasks are assigned an initial util_avg equal to
5584 * half of the spare capacity of their CPU, tiny tasks have the
5585 * ability to cross the overutilized threshold, which will
5586 * result in the load balancer ruining all the task placement
5587 * done by EAS. As a way to mitigate that effect, do not account
5588 * for the first enqueue operation of new tasks during the
5589 * overutilized flag detection.
5590 *
5591 * A better way of solving this problem would be to wait for
5592 * the PELT signals of tasks to converge before taking them
5593 * into account, but that is not straightforward to implement,
5594 * and the following generally works well enough in practice.
5595 */
8e1ac429 5596 if (!task_new)
7d148be6 5597 update_overutilized_status(rq);
cd126afe 5598
7d148be6 5599enqueue_throttle:
f6783319
VG
5600 if (cfs_bandwidth_used()) {
5601 /*
5602 * When bandwidth control is enabled; the cfs_rq_throttled()
5603 * breaks in the above iteration can result in incomplete
5604 * leaf list maintenance, resulting in triggering the assertion
5605 * below.
5606 */
5607 for_each_sched_entity(se) {
5608 cfs_rq = cfs_rq_of(se);
5609
5610 if (list_add_leaf_cfs_rq(cfs_rq))
5611 break;
5612 }
5613 }
5614
5d299eab
PZ
5615 assert_list_leaf_cfs_rq(rq);
5616
a4c2f00f 5617 hrtick_update(rq);
bf0f6f24
IM
5618}
5619
2f36825b
VP
5620static void set_next_buddy(struct sched_entity *se);
5621
bf0f6f24
IM
5622/*
5623 * The dequeue_task method is called before nr_running is
5624 * decreased. We remove the task from the rbtree and
5625 * update the fair scheduling stats:
5626 */
371fd7e7 5627static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5628{
5629 struct cfs_rq *cfs_rq;
62fb1851 5630 struct sched_entity *se = &p->se;
2f36825b 5631 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5632 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5633 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24 5634
8c1f560c
XY
5635 util_est_dequeue(&rq->cfs, p);
5636
bf0f6f24
IM
5637 for_each_sched_entity(se) {
5638 cfs_rq = cfs_rq_of(se);
371fd7e7 5639 dequeue_entity(cfs_rq, se, flags);
85dac906 5640
953bfcd1 5641 cfs_rq->h_nr_running--;
43e9f7f2 5642 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5643
6d4d2246
VG
5644 /* end evaluation on encountering a throttled cfs_rq */
5645 if (cfs_rq_throttled(cfs_rq))
5646 goto dequeue_throttle;
5647
bf0f6f24 5648 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5649 if (cfs_rq->load.weight) {
754bd598
KK
5650 /* Avoid re-evaluating load for this entity: */
5651 se = parent_entity(se);
2f36825b
VP
5652 /*
5653 * Bias pick_next to pick a task from this cfs_rq, as
5654 * p is sleeping when it is within its sched_slice.
5655 */
754bd598
KK
5656 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5657 set_next_buddy(se);
bf0f6f24 5658 break;
2f36825b 5659 }
371fd7e7 5660 flags |= DEQUEUE_SLEEP;
bf0f6f24 5661 }
8f4d37ec 5662
2069dd75 5663 for_each_sched_entity(se) {
0f317143 5664 cfs_rq = cfs_rq_of(se);
2069dd75 5665
88c0616e 5666 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5667 se_update_runnable(se);
1ea6c46a 5668 update_cfs_group(se);
6d4d2246
VG
5669
5670 cfs_rq->h_nr_running--;
5671 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba
VG
5672
5673 /* end evaluation on encountering a throttled cfs_rq */
5674 if (cfs_rq_throttled(cfs_rq))
5675 goto dequeue_throttle;
5676
2069dd75
PZ
5677 }
5678
423d02e1
PW
5679 /* At this point se is NULL and we are at root level*/
5680 sub_nr_running(rq, 1);
cd126afe 5681
323af6de
VK
5682 /* balance early to pull high priority tasks */
5683 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5684 rq->next_balance = jiffies;
5685
423d02e1 5686dequeue_throttle:
8c1f560c 5687 util_est_update(&rq->cfs, p, task_sleep);
a4c2f00f 5688 hrtick_update(rq);
bf0f6f24
IM
5689}
5690
e7693a36 5691#ifdef CONFIG_SMP
10e2f1ac
PZ
5692
5693/* Working cpumask for: load_balance, load_balance_newidle. */
5694DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5695DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5696
9fd81dd5 5697#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5698
5699static struct {
5700 cpumask_var_t idle_cpus_mask;
5701 atomic_t nr_cpus;
f643ea22 5702 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5703 unsigned long next_balance; /* in jiffy units */
f643ea22 5704 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5705} nohz ____cacheline_aligned;
5706
9fd81dd5 5707#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5708
b0fb1eb4
VG
5709static unsigned long cpu_load(struct rq *rq)
5710{
5711 return cfs_rq_load_avg(&rq->cfs);
5712}
5713
3318544b
VG
5714/*
5715 * cpu_load_without - compute CPU load without any contributions from *p
5716 * @cpu: the CPU which load is requested
5717 * @p: the task which load should be discounted
5718 *
5719 * The load of a CPU is defined by the load of tasks currently enqueued on that
5720 * CPU as well as tasks which are currently sleeping after an execution on that
5721 * CPU.
5722 *
5723 * This method returns the load of the specified CPU by discounting the load of
5724 * the specified task, whenever the task is currently contributing to the CPU
5725 * load.
5726 */
5727static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5728{
5729 struct cfs_rq *cfs_rq;
5730 unsigned int load;
5731
5732 /* Task has no contribution or is new */
5733 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5734 return cpu_load(rq);
5735
5736 cfs_rq = &rq->cfs;
5737 load = READ_ONCE(cfs_rq->avg.load_avg);
5738
5739 /* Discount task's util from CPU's util */
5740 lsub_positive(&load, task_h_load(p));
5741
5742 return load;
5743}
5744
9f683953
VG
5745static unsigned long cpu_runnable(struct rq *rq)
5746{
5747 return cfs_rq_runnable_avg(&rq->cfs);
5748}
5749
070f5e86
VG
5750static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5751{
5752 struct cfs_rq *cfs_rq;
5753 unsigned int runnable;
5754
5755 /* Task has no contribution or is new */
5756 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5757 return cpu_runnable(rq);
5758
5759 cfs_rq = &rq->cfs;
5760 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5761
5762 /* Discount task's runnable from CPU's runnable */
5763 lsub_positive(&runnable, p->se.avg.runnable_avg);
5764
5765 return runnable;
5766}
5767
ced549fa 5768static unsigned long capacity_of(int cpu)
029632fb 5769{
ced549fa 5770 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5771}
5772
c58d25f3
PZ
5773static void record_wakee(struct task_struct *p)
5774{
5775 /*
5776 * Only decay a single time; tasks that have less then 1 wakeup per
5777 * jiffy will not have built up many flips.
5778 */
5779 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5780 current->wakee_flips >>= 1;
5781 current->wakee_flip_decay_ts = jiffies;
5782 }
5783
5784 if (current->last_wakee != p) {
5785 current->last_wakee = p;
5786 current->wakee_flips++;
5787 }
5788}
5789
63b0e9ed
MG
5790/*
5791 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5792 *
63b0e9ed 5793 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5794 * at a frequency roughly N times higher than one of its wakees.
5795 *
5796 * In order to determine whether we should let the load spread vs consolidating
5797 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5798 * partner, and a factor of lls_size higher frequency in the other.
5799 *
5800 * With both conditions met, we can be relatively sure that the relationship is
5801 * non-monogamous, with partner count exceeding socket size.
5802 *
5803 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5804 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5805 * socket size.
63b0e9ed 5806 */
62470419
MW
5807static int wake_wide(struct task_struct *p)
5808{
63b0e9ed
MG
5809 unsigned int master = current->wakee_flips;
5810 unsigned int slave = p->wakee_flips;
17c891ab 5811 int factor = __this_cpu_read(sd_llc_size);
62470419 5812
63b0e9ed
MG
5813 if (master < slave)
5814 swap(master, slave);
5815 if (slave < factor || master < slave * factor)
5816 return 0;
5817 return 1;
62470419
MW
5818}
5819
90001d67 5820/*
d153b153
PZ
5821 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5822 * soonest. For the purpose of speed we only consider the waking and previous
5823 * CPU.
90001d67 5824 *
7332dec0
MG
5825 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5826 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5827 *
5828 * wake_affine_weight() - considers the weight to reflect the average
5829 * scheduling latency of the CPUs. This seems to work
5830 * for the overloaded case.
90001d67 5831 */
3b76c4a3 5832static int
89a55f56 5833wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5834{
7332dec0
MG
5835 /*
5836 * If this_cpu is idle, it implies the wakeup is from interrupt
5837 * context. Only allow the move if cache is shared. Otherwise an
5838 * interrupt intensive workload could force all tasks onto one
5839 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5840 *
5841 * If the prev_cpu is idle and cache affine then avoid a migration.
5842 * There is no guarantee that the cache hot data from an interrupt
5843 * is more important than cache hot data on the prev_cpu and from
5844 * a cpufreq perspective, it's better to have higher utilisation
5845 * on one CPU.
7332dec0 5846 */
943d355d
RJ
5847 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5848 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5849
d153b153 5850 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5851 return this_cpu;
90001d67 5852
d8fcb81f
JL
5853 if (available_idle_cpu(prev_cpu))
5854 return prev_cpu;
5855
3b76c4a3 5856 return nr_cpumask_bits;
90001d67
PZ
5857}
5858
3b76c4a3 5859static int
f2cdd9cc
PZ
5860wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5861 int this_cpu, int prev_cpu, int sync)
90001d67 5862{
90001d67
PZ
5863 s64 this_eff_load, prev_eff_load;
5864 unsigned long task_load;
5865
11f10e54 5866 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5867
90001d67
PZ
5868 if (sync) {
5869 unsigned long current_load = task_h_load(current);
5870
f2cdd9cc 5871 if (current_load > this_eff_load)
3b76c4a3 5872 return this_cpu;
90001d67 5873
f2cdd9cc 5874 this_eff_load -= current_load;
90001d67
PZ
5875 }
5876
90001d67
PZ
5877 task_load = task_h_load(p);
5878
f2cdd9cc
PZ
5879 this_eff_load += task_load;
5880 if (sched_feat(WA_BIAS))
5881 this_eff_load *= 100;
5882 this_eff_load *= capacity_of(prev_cpu);
90001d67 5883
11f10e54 5884 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5885 prev_eff_load -= task_load;
5886 if (sched_feat(WA_BIAS))
5887 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5888 prev_eff_load *= capacity_of(this_cpu);
90001d67 5889
082f764a
MG
5890 /*
5891 * If sync, adjust the weight of prev_eff_load such that if
5892 * prev_eff == this_eff that select_idle_sibling() will consider
5893 * stacking the wakee on top of the waker if no other CPU is
5894 * idle.
5895 */
5896 if (sync)
5897 prev_eff_load += 1;
5898
5899 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5900}
5901
772bd008 5902static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5903 int this_cpu, int prev_cpu, int sync)
098fb9db 5904{
3b76c4a3 5905 int target = nr_cpumask_bits;
098fb9db 5906
89a55f56 5907 if (sched_feat(WA_IDLE))
3b76c4a3 5908 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5909
3b76c4a3
MG
5910 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5911 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5912
ae92882e 5913 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5914 if (target == nr_cpumask_bits)
5915 return prev_cpu;
098fb9db 5916
3b76c4a3
MG
5917 schedstat_inc(sd->ttwu_move_affine);
5918 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5919 return target;
098fb9db
IM
5920}
5921
aaee1203 5922static struct sched_group *
45da2773 5923find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5924
5925/*
97fb7a0a 5926 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5927 */
5928static int
18bd1b4b 5929find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5930{
5931 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5932 unsigned int min_exit_latency = UINT_MAX;
5933 u64 latest_idle_timestamp = 0;
5934 int least_loaded_cpu = this_cpu;
17346452 5935 int shallowest_idle_cpu = -1;
aaee1203
PZ
5936 int i;
5937
eaecf41f
MR
5938 /* Check if we have any choice: */
5939 if (group->group_weight == 1)
ae4df9d6 5940 return cpumask_first(sched_group_span(group));
eaecf41f 5941
aaee1203 5942 /* Traverse only the allowed CPUs */
3bd37062 5943 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
17346452
VK
5944 if (sched_idle_cpu(i))
5945 return i;
5946
943d355d 5947 if (available_idle_cpu(i)) {
83a0a96a
NP
5948 struct rq *rq = cpu_rq(i);
5949 struct cpuidle_state *idle = idle_get_state(rq);
5950 if (idle && idle->exit_latency < min_exit_latency) {
5951 /*
5952 * We give priority to a CPU whose idle state
5953 * has the smallest exit latency irrespective
5954 * of any idle timestamp.
5955 */
5956 min_exit_latency = idle->exit_latency;
5957 latest_idle_timestamp = rq->idle_stamp;
5958 shallowest_idle_cpu = i;
5959 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5960 rq->idle_stamp > latest_idle_timestamp) {
5961 /*
5962 * If equal or no active idle state, then
5963 * the most recently idled CPU might have
5964 * a warmer cache.
5965 */
5966 latest_idle_timestamp = rq->idle_stamp;
5967 shallowest_idle_cpu = i;
5968 }
17346452 5969 } else if (shallowest_idle_cpu == -1) {
11f10e54 5970 load = cpu_load(cpu_rq(i));
18cec7e0 5971 if (load < min_load) {
83a0a96a
NP
5972 min_load = load;
5973 least_loaded_cpu = i;
5974 }
e7693a36
GH
5975 }
5976 }
5977
17346452 5978 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5979}
e7693a36 5980
18bd1b4b
BJ
5981static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5982 int cpu, int prev_cpu, int sd_flag)
5983{
93f50f90 5984 int new_cpu = cpu;
18bd1b4b 5985
3bd37062 5986 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5987 return prev_cpu;
5988
c976a862 5989 /*
57abff06 5990 * We need task's util for cpu_util_without, sync it up to
c469933e 5991 * prev_cpu's last_update_time.
c976a862
VK
5992 */
5993 if (!(sd_flag & SD_BALANCE_FORK))
5994 sync_entity_load_avg(&p->se);
5995
18bd1b4b
BJ
5996 while (sd) {
5997 struct sched_group *group;
5998 struct sched_domain *tmp;
5999 int weight;
6000
6001 if (!(sd->flags & sd_flag)) {
6002 sd = sd->child;
6003 continue;
6004 }
6005
45da2773 6006 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
6007 if (!group) {
6008 sd = sd->child;
6009 continue;
6010 }
6011
6012 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 6013 if (new_cpu == cpu) {
97fb7a0a 6014 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
6015 sd = sd->child;
6016 continue;
6017 }
6018
97fb7a0a 6019 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
6020 cpu = new_cpu;
6021 weight = sd->span_weight;
6022 sd = NULL;
6023 for_each_domain(cpu, tmp) {
6024 if (weight <= tmp->span_weight)
6025 break;
6026 if (tmp->flags & sd_flag)
6027 sd = tmp;
6028 }
18bd1b4b
BJ
6029 }
6030
6031 return new_cpu;
6032}
6033
9fe1f127
MG
6034static inline int __select_idle_cpu(int cpu)
6035{
6036 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6037 return cpu;
6038
6039 return -1;
6040}
6041
10e2f1ac 6042#ifdef CONFIG_SCHED_SMT
ba2591a5 6043DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6044EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6045
6046static inline void set_idle_cores(int cpu, int val)
6047{
6048 struct sched_domain_shared *sds;
6049
6050 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6051 if (sds)
6052 WRITE_ONCE(sds->has_idle_cores, val);
6053}
6054
6055static inline bool test_idle_cores(int cpu, bool def)
6056{
6057 struct sched_domain_shared *sds;
6058
c722f35b
RR
6059 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6060 if (sds)
6061 return READ_ONCE(sds->has_idle_cores);
10e2f1ac
PZ
6062
6063 return def;
6064}
6065
6066/*
6067 * Scans the local SMT mask to see if the entire core is idle, and records this
6068 * information in sd_llc_shared->has_idle_cores.
6069 *
6070 * Since SMT siblings share all cache levels, inspecting this limited remote
6071 * state should be fairly cheap.
6072 */
1b568f0a 6073void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6074{
6075 int core = cpu_of(rq);
6076 int cpu;
6077
6078 rcu_read_lock();
6079 if (test_idle_cores(core, true))
6080 goto unlock;
6081
6082 for_each_cpu(cpu, cpu_smt_mask(core)) {
6083 if (cpu == core)
6084 continue;
6085
943d355d 6086 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6087 goto unlock;
6088 }
6089
6090 set_idle_cores(core, 1);
6091unlock:
6092 rcu_read_unlock();
6093}
6094
6095/*
6096 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6097 * there are no idle cores left in the system; tracked through
6098 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6099 */
9fe1f127 6100static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
10e2f1ac 6101{
9fe1f127
MG
6102 bool idle = true;
6103 int cpu;
10e2f1ac 6104
1b568f0a 6105 if (!static_branch_likely(&sched_smt_present))
9fe1f127 6106 return __select_idle_cpu(core);
10e2f1ac 6107
9fe1f127
MG
6108 for_each_cpu(cpu, cpu_smt_mask(core)) {
6109 if (!available_idle_cpu(cpu)) {
6110 idle = false;
6111 if (*idle_cpu == -1) {
6112 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6113 *idle_cpu = cpu;
6114 break;
6115 }
6116 continue;
bec2860a 6117 }
9fe1f127 6118 break;
10e2f1ac 6119 }
9fe1f127
MG
6120 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6121 *idle_cpu = cpu;
10e2f1ac
PZ
6122 }
6123
9fe1f127
MG
6124 if (idle)
6125 return core;
10e2f1ac 6126
9fe1f127 6127 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6128 return -1;
6129}
6130
c722f35b
RR
6131/*
6132 * Scan the local SMT mask for idle CPUs.
6133 */
6134static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6135{
6136 int cpu;
6137
6138 for_each_cpu(cpu, cpu_smt_mask(target)) {
6139 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6140 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6141 continue;
6142 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6143 return cpu;
6144 }
6145
6146 return -1;
6147}
6148
10e2f1ac
PZ
6149#else /* CONFIG_SCHED_SMT */
6150
9fe1f127 6151static inline void set_idle_cores(int cpu, int val)
10e2f1ac 6152{
9fe1f127
MG
6153}
6154
6155static inline bool test_idle_cores(int cpu, bool def)
6156{
6157 return def;
6158}
6159
6160static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6161{
6162 return __select_idle_cpu(core);
10e2f1ac
PZ
6163}
6164
c722f35b
RR
6165static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6166{
6167 return -1;
6168}
6169
10e2f1ac
PZ
6170#endif /* CONFIG_SCHED_SMT */
6171
6172/*
6173 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6174 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6175 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6176 */
c722f35b 6177static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
10e2f1ac 6178{
60588bfa 6179 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9fe1f127 6180 int i, cpu, idle_cpu = -1, nr = INT_MAX;
9fe1f127 6181 int this = smp_processor_id();
9cfb38a7 6182 struct sched_domain *this_sd;
d76343c6 6183 u64 time;
10e2f1ac 6184
9cfb38a7
WL
6185 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6186 if (!this_sd)
6187 return -1;
6188
bae4ec13
MG
6189 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6190
c722f35b 6191 if (sched_feat(SIS_PROP) && !has_idle_core) {
e6e0dc2d 6192 u64 avg_cost, avg_idle, span_avg;
1ad3aaf3 6193
e6e0dc2d
MG
6194 /*
6195 * Due to large variance we need a large fuzz factor;
6196 * hackbench in particularly is sensitive here.
6197 */
6198 avg_idle = this_rq()->avg_idle / 512;
6199 avg_cost = this_sd->avg_scan_cost + 1;
10e2f1ac 6200
e6e0dc2d 6201 span_avg = sd->span_weight * avg_idle;
1ad3aaf3
PZ
6202 if (span_avg > 4*avg_cost)
6203 nr = div_u64(span_avg, avg_cost);
6204 else
6205 nr = 4;
10e2f1ac 6206
bae4ec13
MG
6207 time = cpu_clock(this);
6208 }
60588bfa
CJ
6209
6210 for_each_cpu_wrap(cpu, cpus, target) {
c722f35b 6211 if (has_idle_core) {
9fe1f127
MG
6212 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6213 if ((unsigned int)i < nr_cpumask_bits)
6214 return i;
6215
6216 } else {
6217 if (!--nr)
6218 return -1;
6219 idle_cpu = __select_idle_cpu(cpu);
6220 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6221 break;
6222 }
10e2f1ac
PZ
6223 }
6224
c722f35b 6225 if (has_idle_core)
02dbb724 6226 set_idle_cores(target, false);
9fe1f127 6227
c722f35b 6228 if (sched_feat(SIS_PROP) && !has_idle_core) {
bae4ec13
MG
6229 time = cpu_clock(this) - time;
6230 update_avg(&this_sd->avg_scan_cost, time);
6231 }
10e2f1ac 6232
9fe1f127 6233 return idle_cpu;
10e2f1ac
PZ
6234}
6235
b7a33161
MR
6236/*
6237 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6238 * the task fits. If no CPU is big enough, but there are idle ones, try to
6239 * maximize capacity.
6240 */
6241static int
6242select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6243{
b4c9c9f1 6244 unsigned long task_util, best_cap = 0;
b7a33161
MR
6245 int cpu, best_cpu = -1;
6246 struct cpumask *cpus;
6247
b7a33161
MR
6248 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6249 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6250
b4c9c9f1
VG
6251 task_util = uclamp_task_util(p);
6252
b7a33161
MR
6253 for_each_cpu_wrap(cpu, cpus, target) {
6254 unsigned long cpu_cap = capacity_of(cpu);
6255
6256 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6257 continue;
b4c9c9f1 6258 if (fits_capacity(task_util, cpu_cap))
b7a33161
MR
6259 return cpu;
6260
6261 if (cpu_cap > best_cap) {
6262 best_cap = cpu_cap;
6263 best_cpu = cpu;
6264 }
6265 }
6266
6267 return best_cpu;
6268}
6269
b4c9c9f1
VG
6270static inline bool asym_fits_capacity(int task_util, int cpu)
6271{
6272 if (static_branch_unlikely(&sched_asym_cpucapacity))
6273 return fits_capacity(task_util, capacity_of(cpu));
6274
6275 return true;
6276}
6277
10e2f1ac
PZ
6278/*
6279 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6280 */
772bd008 6281static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6282{
c722f35b 6283 bool has_idle_core = false;
99bd5e2f 6284 struct sched_domain *sd;
b4c9c9f1 6285 unsigned long task_util;
32e839dd 6286 int i, recent_used_cpu;
a50bde51 6287
b7a33161 6288 /*
b4c9c9f1
VG
6289 * On asymmetric system, update task utilization because we will check
6290 * that the task fits with cpu's capacity.
b7a33161
MR
6291 */
6292 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
b4c9c9f1
VG
6293 sync_entity_load_avg(&p->se);
6294 task_util = uclamp_task_util(p);
b7a33161
MR
6295 }
6296
b4c9c9f1
VG
6297 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6298 asym_fits_capacity(task_util, target))
e0a79f52 6299 return target;
99bd5e2f
SS
6300
6301 /*
97fb7a0a 6302 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6303 */
3c29e651 6304 if (prev != target && cpus_share_cache(prev, target) &&
b4c9c9f1
VG
6305 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6306 asym_fits_capacity(task_util, prev))
772bd008 6307 return prev;
a50bde51 6308
52262ee5
MG
6309 /*
6310 * Allow a per-cpu kthread to stack with the wakee if the
6311 * kworker thread and the tasks previous CPUs are the same.
6312 * The assumption is that the wakee queued work for the
6313 * per-cpu kthread that is now complete and the wakeup is
6314 * essentially a sync wakeup. An obvious example of this
6315 * pattern is IO completions.
6316 */
6317 if (is_per_cpu_kthread(current) &&
6318 prev == smp_processor_id() &&
6319 this_rq()->nr_running <= 1) {
6320 return prev;
6321 }
6322
97fb7a0a 6323 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6324 recent_used_cpu = p->recent_used_cpu;
6325 if (recent_used_cpu != prev &&
6326 recent_used_cpu != target &&
6327 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6328 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
b4c9c9f1
VG
6329 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6330 asym_fits_capacity(task_util, recent_used_cpu)) {
32e839dd
MG
6331 /*
6332 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6333 * candidate for the next wake:
32e839dd
MG
6334 */
6335 p->recent_used_cpu = prev;
6336 return recent_used_cpu;
6337 }
6338
b4c9c9f1
VG
6339 /*
6340 * For asymmetric CPU capacity systems, our domain of interest is
6341 * sd_asym_cpucapacity rather than sd_llc.
6342 */
6343 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6344 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6345 /*
6346 * On an asymmetric CPU capacity system where an exclusive
6347 * cpuset defines a symmetric island (i.e. one unique
6348 * capacity_orig value through the cpuset), the key will be set
6349 * but the CPUs within that cpuset will not have a domain with
6350 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6351 * capacity path.
6352 */
6353 if (sd) {
6354 i = select_idle_capacity(p, sd, target);
6355 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6356 }
6357 }
6358
518cd623 6359 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6360 if (!sd)
6361 return target;
772bd008 6362
c722f35b
RR
6363 if (sched_smt_active()) {
6364 has_idle_core = test_idle_cores(target, false);
6365
6366 if (!has_idle_core && cpus_share_cache(prev, target)) {
6367 i = select_idle_smt(p, sd, prev);
6368 if ((unsigned int)i < nr_cpumask_bits)
6369 return i;
6370 }
6371 }
6372
6373 i = select_idle_cpu(p, sd, has_idle_core, target);
10e2f1ac
PZ
6374 if ((unsigned)i < nr_cpumask_bits)
6375 return i;
6376
a50bde51
PZ
6377 return target;
6378}
231678b7 6379
f9be3e59 6380/**
59a74b15 6381 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
f9be3e59
PB
6382 * @cpu: the CPU to get the utilization of
6383 *
6384 * The unit of the return value must be the one of capacity so we can compare
6385 * the utilization with the capacity of the CPU that is available for CFS task
6386 * (ie cpu_capacity).
231678b7
DE
6387 *
6388 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6389 * recent utilization of currently non-runnable tasks on a CPU. It represents
6390 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6391 * capacity_orig is the cpu_capacity available at the highest frequency
6392 * (arch_scale_freq_capacity()).
6393 * The utilization of a CPU converges towards a sum equal to or less than the
6394 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6395 * the running time on this CPU scaled by capacity_curr.
6396 *
f9be3e59
PB
6397 * The estimated utilization of a CPU is defined to be the maximum between its
6398 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6399 * currently RUNNABLE on that CPU.
6400 * This allows to properly represent the expected utilization of a CPU which
6401 * has just got a big task running since a long sleep period. At the same time
6402 * however it preserves the benefits of the "blocked utilization" in
6403 * describing the potential for other tasks waking up on the same CPU.
6404 *
231678b7
DE
6405 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6406 * higher than capacity_orig because of unfortunate rounding in
6407 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6408 * the average stabilizes with the new running time. We need to check that the
6409 * utilization stays within the range of [0..capacity_orig] and cap it if
6410 * necessary. Without utilization capping, a group could be seen as overloaded
6411 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6412 * available capacity. We allow utilization to overshoot capacity_curr (but not
6413 * capacity_orig) as it useful for predicting the capacity required after task
6414 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6415 *
6416 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6417 */
f9be3e59 6418static inline unsigned long cpu_util(int cpu)
8bb5b00c 6419{
f9be3e59
PB
6420 struct cfs_rq *cfs_rq;
6421 unsigned int util;
6422
6423 cfs_rq = &cpu_rq(cpu)->cfs;
6424 util = READ_ONCE(cfs_rq->avg.util_avg);
6425
6426 if (sched_feat(UTIL_EST))
6427 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6428
f9be3e59 6429 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6430}
a50bde51 6431
104cb16d 6432/*
c469933e
PB
6433 * cpu_util_without: compute cpu utilization without any contributions from *p
6434 * @cpu: the CPU which utilization is requested
6435 * @p: the task which utilization should be discounted
6436 *
6437 * The utilization of a CPU is defined by the utilization of tasks currently
6438 * enqueued on that CPU as well as tasks which are currently sleeping after an
6439 * execution on that CPU.
6440 *
6441 * This method returns the utilization of the specified CPU by discounting the
6442 * utilization of the specified task, whenever the task is currently
6443 * contributing to the CPU utilization.
104cb16d 6444 */
c469933e 6445static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6446{
f9be3e59
PB
6447 struct cfs_rq *cfs_rq;
6448 unsigned int util;
104cb16d
MR
6449
6450 /* Task has no contribution or is new */
f9be3e59 6451 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6452 return cpu_util(cpu);
6453
f9be3e59
PB
6454 cfs_rq = &cpu_rq(cpu)->cfs;
6455 util = READ_ONCE(cfs_rq->avg.util_avg);
6456
c469933e 6457 /* Discount task's util from CPU's util */
b5c0ce7b 6458 lsub_positive(&util, task_util(p));
104cb16d 6459
f9be3e59
PB
6460 /*
6461 * Covered cases:
6462 *
6463 * a) if *p is the only task sleeping on this CPU, then:
6464 * cpu_util (== task_util) > util_est (== 0)
6465 * and thus we return:
c469933e 6466 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6467 *
6468 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6469 * IDLE, then:
6470 * cpu_util >= task_util
6471 * cpu_util > util_est (== 0)
6472 * and thus we discount *p's blocked utilization to return:
c469933e 6473 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6474 *
6475 * c) if other tasks are RUNNABLE on that CPU and
6476 * util_est > cpu_util
6477 * then we use util_est since it returns a more restrictive
6478 * estimation of the spare capacity on that CPU, by just
6479 * considering the expected utilization of tasks already
6480 * runnable on that CPU.
6481 *
6482 * Cases a) and b) are covered by the above code, while case c) is
6483 * covered by the following code when estimated utilization is
6484 * enabled.
6485 */
c469933e
PB
6486 if (sched_feat(UTIL_EST)) {
6487 unsigned int estimated =
6488 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6489
6490 /*
6491 * Despite the following checks we still have a small window
6492 * for a possible race, when an execl's select_task_rq_fair()
6493 * races with LB's detach_task():
6494 *
6495 * detach_task()
6496 * p->on_rq = TASK_ON_RQ_MIGRATING;
6497 * ---------------------------------- A
6498 * deactivate_task() \
6499 * dequeue_task() + RaceTime
6500 * util_est_dequeue() /
6501 * ---------------------------------- B
6502 *
6503 * The additional check on "current == p" it's required to
6504 * properly fix the execl regression and it helps in further
6505 * reducing the chances for the above race.
6506 */
b5c0ce7b
PB
6507 if (unlikely(task_on_rq_queued(p) || current == p))
6508 lsub_positive(&estimated, _task_util_est(p));
6509
c469933e
PB
6510 util = max(util, estimated);
6511 }
f9be3e59
PB
6512
6513 /*
6514 * Utilization (estimated) can exceed the CPU capacity, thus let's
6515 * clamp to the maximum CPU capacity to ensure consistency with
6516 * the cpu_util call.
6517 */
6518 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6519}
6520
390031e4
QP
6521/*
6522 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6523 * to @dst_cpu.
6524 */
6525static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6526{
6527 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6528 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6529
6530 /*
6531 * If @p migrates from @cpu to another, remove its contribution. Or,
6532 * if @p migrates from another CPU to @cpu, add its contribution. In
6533 * the other cases, @cpu is not impacted by the migration, so the
6534 * util_avg should already be correct.
6535 */
6536 if (task_cpu(p) == cpu && dst_cpu != cpu)
736cc6b3 6537 lsub_positive(&util, task_util(p));
390031e4
QP
6538 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6539 util += task_util(p);
6540
6541 if (sched_feat(UTIL_EST)) {
6542 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6543
6544 /*
6545 * During wake-up, the task isn't enqueued yet and doesn't
6546 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6547 * so just add it (if needed) to "simulate" what will be
6548 * cpu_util() after the task has been enqueued.
6549 */
6550 if (dst_cpu == cpu)
6551 util_est += _task_util_est(p);
6552
6553 util = max(util, util_est);
6554 }
6555
6556 return min(util, capacity_orig_of(cpu));
6557}
6558
6559/*
eb92692b 6560 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6561 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6562 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6563 * to compute what would be the energy if we decided to actually migrate that
6564 * task.
6565 */
6566static long
6567compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6568{
eb92692b
QP
6569 struct cpumask *pd_mask = perf_domain_span(pd);
6570 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6571 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6572 int cpu;
6573
eb92692b
QP
6574 /*
6575 * The capacity state of CPUs of the current rd can be driven by CPUs
6576 * of another rd if they belong to the same pd. So, account for the
6577 * utilization of these CPUs too by masking pd with cpu_online_mask
6578 * instead of the rd span.
6579 *
6580 * If an entire pd is outside of the current rd, it will not appear in
6581 * its pd list and will not be accounted by compute_energy().
6582 */
6583 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
0372e1cf
VD
6584 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6585 unsigned long cpu_util, util_running = util_freq;
6586 struct task_struct *tsk = NULL;
6587
6588 /*
6589 * When @p is placed on @cpu:
6590 *
6591 * util_running = max(cpu_util, cpu_util_est) +
6592 * max(task_util, _task_util_est)
6593 *
6594 * while cpu_util_next is: max(cpu_util + task_util,
6595 * cpu_util_est + _task_util_est)
6596 */
6597 if (cpu == dst_cpu) {
6598 tsk = p;
6599 util_running =
6600 cpu_util_next(cpu, p, -1) + task_util_est(p);
6601 }
af24bde8
PB
6602
6603 /*
eb92692b
QP
6604 * Busy time computation: utilization clamping is not
6605 * required since the ratio (sum_util / cpu_capacity)
6606 * is already enough to scale the EM reported power
6607 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6608 */
0372e1cf 6609 sum_util += effective_cpu_util(cpu, util_running, cpu_cap,
eb92692b 6610 ENERGY_UTIL, NULL);
af24bde8 6611
390031e4 6612 /*
eb92692b
QP
6613 * Performance domain frequency: utilization clamping
6614 * must be considered since it affects the selection
6615 * of the performance domain frequency.
6616 * NOTE: in case RT tasks are running, by default the
6617 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6618 */
0372e1cf 6619 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
eb92692b
QP
6620 FREQUENCY_UTIL, tsk);
6621 max_util = max(max_util, cpu_util);
390031e4
QP
6622 }
6623
f0b56947 6624 return em_cpu_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6625}
6626
732cd75b
QP
6627/*
6628 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6629 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6630 * spare capacity in each performance domain and uses it as a potential
6631 * candidate to execute the task. Then, it uses the Energy Model to figure
6632 * out which of the CPU candidates is the most energy-efficient.
6633 *
6634 * The rationale for this heuristic is as follows. In a performance domain,
6635 * all the most energy efficient CPU candidates (according to the Energy
6636 * Model) are those for which we'll request a low frequency. When there are
6637 * several CPUs for which the frequency request will be the same, we don't
6638 * have enough data to break the tie between them, because the Energy Model
6639 * only includes active power costs. With this model, if we assume that
6640 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6641 * the maximum spare capacity in a performance domain is guaranteed to be among
6642 * the best candidates of the performance domain.
6643 *
6644 * In practice, it could be preferable from an energy standpoint to pack
6645 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6646 * but that could also hurt our chances to go cluster idle, and we have no
6647 * ways to tell with the current Energy Model if this is actually a good
6648 * idea or not. So, find_energy_efficient_cpu() basically favors
6649 * cluster-packing, and spreading inside a cluster. That should at least be
6650 * a good thing for latency, and this is consistent with the idea that most
6651 * of the energy savings of EAS come from the asymmetry of the system, and
6652 * not so much from breaking the tie between identical CPUs. That's also the
6653 * reason why EAS is enabled in the topology code only for systems where
6654 * SD_ASYM_CPUCAPACITY is set.
6655 *
6656 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6657 * they don't have any useful utilization data yet and it's not possible to
6658 * forecast their impact on energy consumption. Consequently, they will be
6659 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6660 * to be energy-inefficient in some use-cases. The alternative would be to
6661 * bias new tasks towards specific types of CPUs first, or to try to infer
6662 * their util_avg from the parent task, but those heuristics could hurt
6663 * other use-cases too. So, until someone finds a better way to solve this,
6664 * let's keep things simple by re-using the existing slow path.
6665 */
732cd75b
QP
6666static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6667{
eb92692b 6668 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6669 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6670 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6671 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6672 struct sched_domain *sd;
eb92692b 6673 struct perf_domain *pd;
732cd75b
QP
6674
6675 rcu_read_lock();
6676 pd = rcu_dereference(rd->pd);
6677 if (!pd || READ_ONCE(rd->overutilized))
6678 goto fail;
732cd75b
QP
6679
6680 /*
6681 * Energy-aware wake-up happens on the lowest sched_domain starting
6682 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6683 */
6684 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6685 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6686 sd = sd->parent;
6687 if (!sd)
6688 goto fail;
6689
6690 sync_entity_load_avg(&p->se);
6691 if (!task_util_est(p))
6692 goto unlock;
6693
6694 for (; pd; pd = pd->next) {
eb92692b
QP
6695 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6696 unsigned long base_energy_pd;
732cd75b
QP
6697 int max_spare_cap_cpu = -1;
6698
eb92692b
QP
6699 /* Compute the 'base' energy of the pd, without @p */
6700 base_energy_pd = compute_energy(p, -1, pd);
6701 base_energy += base_energy_pd;
6702
732cd75b 6703 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6704 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6705 continue;
6706
732cd75b
QP
6707 util = cpu_util_next(cpu, p, cpu);
6708 cpu_cap = capacity_of(cpu);
da0777d3
LL
6709 spare_cap = cpu_cap;
6710 lsub_positive(&spare_cap, util);
1d42509e
VS
6711
6712 /*
6713 * Skip CPUs that cannot satisfy the capacity request.
6714 * IOW, placing the task there would make the CPU
6715 * overutilized. Take uclamp into account to see how
6716 * much capacity we can get out of the CPU; this is
a5418be9 6717 * aligned with sched_cpu_util().
1d42509e
VS
6718 */
6719 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6720 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6721 continue;
6722
6723 /* Always use prev_cpu as a candidate. */
6724 if (cpu == prev_cpu) {
eb92692b
QP
6725 prev_delta = compute_energy(p, prev_cpu, pd);
6726 prev_delta -= base_energy_pd;
6727 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6728 }
6729
6730 /*
6731 * Find the CPU with the maximum spare capacity in
6732 * the performance domain
6733 */
732cd75b
QP
6734 if (spare_cap > max_spare_cap) {
6735 max_spare_cap = spare_cap;
6736 max_spare_cap_cpu = cpu;
6737 }
6738 }
6739
6740 /* Evaluate the energy impact of using this CPU. */
4892f51a 6741 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6742 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6743 cur_delta -= base_energy_pd;
6744 if (cur_delta < best_delta) {
6745 best_delta = cur_delta;
732cd75b
QP
6746 best_energy_cpu = max_spare_cap_cpu;
6747 }
6748 }
6749 }
6750unlock:
6751 rcu_read_unlock();
6752
6753 /*
6754 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6755 * least 6% of the energy used by prev_cpu.
6756 */
eb92692b 6757 if (prev_delta == ULONG_MAX)
732cd75b
QP
6758 return best_energy_cpu;
6759
eb92692b 6760 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6761 return best_energy_cpu;
6762
6763 return prev_cpu;
6764
6765fail:
6766 rcu_read_unlock();
6767
6768 return -1;
6769}
6770
aaee1203 6771/*
de91b9cb 6772 * select_task_rq_fair: Select target runqueue for the waking task in domains
3aef1551 6773 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
de91b9cb 6774 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6775 *
97fb7a0a
IM
6776 * Balances load by selecting the idlest CPU in the idlest group, or under
6777 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6778 *
97fb7a0a 6779 * Returns the target CPU number.
aaee1203
PZ
6780 *
6781 * preempt must be disabled.
6782 */
0017d735 6783static int
3aef1551 6784select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
aaee1203 6785{
3aef1551 6786 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
f1d88b44 6787 struct sched_domain *tmp, *sd = NULL;
c88d5910 6788 int cpu = smp_processor_id();
63b0e9ed 6789 int new_cpu = prev_cpu;
99bd5e2f 6790 int want_affine = 0;
3aef1551
VS
6791 /* SD_flags and WF_flags share the first nibble */
6792 int sd_flag = wake_flags & 0xF;
c88d5910 6793
dc824eb8 6794 if (wake_flags & WF_TTWU) {
c58d25f3 6795 record_wakee(p);
732cd75b 6796
f8a696f2 6797 if (sched_energy_enabled()) {
732cd75b
QP
6798 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6799 if (new_cpu >= 0)
6800 return new_cpu;
6801 new_cpu = prev_cpu;
6802 }
6803
00061968 6804 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6805 }
aaee1203 6806
dce840a0 6807 rcu_read_lock();
aaee1203 6808 for_each_domain(cpu, tmp) {
fe3bcfe1 6809 /*
97fb7a0a 6810 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6811 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6812 */
99bd5e2f
SS
6813 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6814 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6815 if (cpu != prev_cpu)
6816 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6817
6818 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6819 break;
f03542a7 6820 }
29cd8bae 6821
f03542a7 6822 if (tmp->flags & sd_flag)
29cd8bae 6823 sd = tmp;
63b0e9ed
MG
6824 else if (!want_affine)
6825 break;
29cd8bae
PZ
6826 }
6827
f1d88b44
VK
6828 if (unlikely(sd)) {
6829 /* Slow path */
18bd1b4b 6830 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
dc824eb8 6831 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
f1d88b44 6832 /* Fast path */
f1d88b44
VK
6833 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6834
6835 if (want_affine)
6836 current->recent_used_cpu = cpu;
e7693a36 6837 }
dce840a0 6838 rcu_read_unlock();
e7693a36 6839
c88d5910 6840 return new_cpu;
e7693a36 6841}
0a74bef8 6842
144d8487
PZ
6843static void detach_entity_cfs_rq(struct sched_entity *se);
6844
0a74bef8 6845/*
97fb7a0a 6846 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6847 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6848 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6849 */
3f9672ba 6850static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6851{
59efa0ba
PZ
6852 /*
6853 * As blocked tasks retain absolute vruntime the migration needs to
6854 * deal with this by subtracting the old and adding the new
6855 * min_vruntime -- the latter is done by enqueue_entity() when placing
6856 * the task on the new runqueue.
6857 */
6858 if (p->state == TASK_WAKING) {
6859 struct sched_entity *se = &p->se;
6860 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6861 u64 min_vruntime;
6862
6863#ifndef CONFIG_64BIT
6864 u64 min_vruntime_copy;
6865
6866 do {
6867 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6868 smp_rmb();
6869 min_vruntime = cfs_rq->min_vruntime;
6870 } while (min_vruntime != min_vruntime_copy);
6871#else
6872 min_vruntime = cfs_rq->min_vruntime;
6873#endif
6874
6875 se->vruntime -= min_vruntime;
6876 }
6877
144d8487
PZ
6878 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6879 /*
6880 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6881 * rq->lock and can modify state directly.
6882 */
6883 lockdep_assert_held(&task_rq(p)->lock);
6884 detach_entity_cfs_rq(&p->se);
6885
6886 } else {
6887 /*
6888 * We are supposed to update the task to "current" time, then
6889 * its up to date and ready to go to new CPU/cfs_rq. But we
6890 * have difficulty in getting what current time is, so simply
6891 * throw away the out-of-date time. This will result in the
6892 * wakee task is less decayed, but giving the wakee more load
6893 * sounds not bad.
6894 */
6895 remove_entity_load_avg(&p->se);
6896 }
9d89c257
YD
6897
6898 /* Tell new CPU we are migrated */
6899 p->se.avg.last_update_time = 0;
3944a927
BS
6900
6901 /* We have migrated, no longer consider this task hot */
9d89c257 6902 p->se.exec_start = 0;
3f9672ba
SD
6903
6904 update_scan_period(p, new_cpu);
0a74bef8 6905}
12695578
YD
6906
6907static void task_dead_fair(struct task_struct *p)
6908{
6909 remove_entity_load_avg(&p->se);
6910}
6e2df058
PZ
6911
6912static int
6913balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6914{
6915 if (rq->nr_running)
6916 return 1;
6917
6918 return newidle_balance(rq, rf) != 0;
6919}
e7693a36
GH
6920#endif /* CONFIG_SMP */
6921
a555e9d8 6922static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6923{
6924 unsigned long gran = sysctl_sched_wakeup_granularity;
6925
6926 /*
e52fb7c0
PZ
6927 * Since its curr running now, convert the gran from real-time
6928 * to virtual-time in his units.
13814d42
MG
6929 *
6930 * By using 'se' instead of 'curr' we penalize light tasks, so
6931 * they get preempted easier. That is, if 'se' < 'curr' then
6932 * the resulting gran will be larger, therefore penalizing the
6933 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6934 * be smaller, again penalizing the lighter task.
6935 *
6936 * This is especially important for buddies when the leftmost
6937 * task is higher priority than the buddy.
0bbd3336 6938 */
f4ad9bd2 6939 return calc_delta_fair(gran, se);
0bbd3336
PZ
6940}
6941
464b7527
PZ
6942/*
6943 * Should 'se' preempt 'curr'.
6944 *
6945 * |s1
6946 * |s2
6947 * |s3
6948 * g
6949 * |<--->|c
6950 *
6951 * w(c, s1) = -1
6952 * w(c, s2) = 0
6953 * w(c, s3) = 1
6954 *
6955 */
6956static int
6957wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6958{
6959 s64 gran, vdiff = curr->vruntime - se->vruntime;
6960
6961 if (vdiff <= 0)
6962 return -1;
6963
a555e9d8 6964 gran = wakeup_gran(se);
464b7527
PZ
6965 if (vdiff > gran)
6966 return 1;
6967
6968 return 0;
6969}
6970
02479099
PZ
6971static void set_last_buddy(struct sched_entity *se)
6972{
1da1843f 6973 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6974 return;
6975
c5ae366e
DA
6976 for_each_sched_entity(se) {
6977 if (SCHED_WARN_ON(!se->on_rq))
6978 return;
69c80f3e 6979 cfs_rq_of(se)->last = se;
c5ae366e 6980 }
02479099
PZ
6981}
6982
6983static void set_next_buddy(struct sched_entity *se)
6984{
1da1843f 6985 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6986 return;
6987
c5ae366e
DA
6988 for_each_sched_entity(se) {
6989 if (SCHED_WARN_ON(!se->on_rq))
6990 return;
69c80f3e 6991 cfs_rq_of(se)->next = se;
c5ae366e 6992 }
02479099
PZ
6993}
6994
ac53db59
RR
6995static void set_skip_buddy(struct sched_entity *se)
6996{
69c80f3e
VP
6997 for_each_sched_entity(se)
6998 cfs_rq_of(se)->skip = se;
ac53db59
RR
6999}
7000
bf0f6f24
IM
7001/*
7002 * Preempt the current task with a newly woken task if needed:
7003 */
5a9b86f6 7004static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
7005{
7006 struct task_struct *curr = rq->curr;
8651a86c 7007 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 7008 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 7009 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 7010 int next_buddy_marked = 0;
bf0f6f24 7011
4ae7d5ce
IM
7012 if (unlikely(se == pse))
7013 return;
7014
5238cdd3 7015 /*
163122b7 7016 * This is possible from callers such as attach_tasks(), in which we
3b03706f 7017 * unconditionally check_preempt_curr() after an enqueue (which may have
5238cdd3
PT
7018 * lead to a throttle). This both saves work and prevents false
7019 * next-buddy nomination below.
7020 */
7021 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7022 return;
7023
2f36825b 7024 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 7025 set_next_buddy(pse);
2f36825b
VP
7026 next_buddy_marked = 1;
7027 }
57fdc26d 7028
aec0a514
BR
7029 /*
7030 * We can come here with TIF_NEED_RESCHED already set from new task
7031 * wake up path.
5238cdd3
PT
7032 *
7033 * Note: this also catches the edge-case of curr being in a throttled
7034 * group (e.g. via set_curr_task), since update_curr() (in the
7035 * enqueue of curr) will have resulted in resched being set. This
7036 * prevents us from potentially nominating it as a false LAST_BUDDY
7037 * below.
aec0a514
BR
7038 */
7039 if (test_tsk_need_resched(curr))
7040 return;
7041
a2f5c9ab 7042 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
7043 if (unlikely(task_has_idle_policy(curr)) &&
7044 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
7045 goto preempt;
7046
91c234b4 7047 /*
a2f5c9ab
DH
7048 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7049 * is driven by the tick):
91c234b4 7050 */
8ed92e51 7051 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 7052 return;
bf0f6f24 7053
464b7527 7054 find_matching_se(&se, &pse);
9bbd7374 7055 update_curr(cfs_rq_of(se));
002f128b 7056 BUG_ON(!pse);
2f36825b
VP
7057 if (wakeup_preempt_entity(se, pse) == 1) {
7058 /*
7059 * Bias pick_next to pick the sched entity that is
7060 * triggering this preemption.
7061 */
7062 if (!next_buddy_marked)
7063 set_next_buddy(pse);
3a7e73a2 7064 goto preempt;
2f36825b 7065 }
464b7527 7066
3a7e73a2 7067 return;
a65ac745 7068
3a7e73a2 7069preempt:
8875125e 7070 resched_curr(rq);
3a7e73a2
PZ
7071 /*
7072 * Only set the backward buddy when the current task is still
7073 * on the rq. This can happen when a wakeup gets interleaved
7074 * with schedule on the ->pre_schedule() or idle_balance()
7075 * point, either of which can * drop the rq lock.
7076 *
7077 * Also, during early boot the idle thread is in the fair class,
7078 * for obvious reasons its a bad idea to schedule back to it.
7079 */
7080 if (unlikely(!se->on_rq || curr == rq->idle))
7081 return;
7082
7083 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7084 set_last_buddy(se);
bf0f6f24
IM
7085}
7086
5d7d6056 7087struct task_struct *
d8ac8971 7088pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
7089{
7090 struct cfs_rq *cfs_rq = &rq->cfs;
7091 struct sched_entity *se;
678d5718 7092 struct task_struct *p;
37e117c0 7093 int new_tasks;
678d5718 7094
6e83125c 7095again:
6e2df058 7096 if (!sched_fair_runnable(rq))
38033c37 7097 goto idle;
678d5718 7098
9674f5ca 7099#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 7100 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
7101 goto simple;
7102
7103 /*
7104 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7105 * likely that a next task is from the same cgroup as the current.
7106 *
7107 * Therefore attempt to avoid putting and setting the entire cgroup
7108 * hierarchy, only change the part that actually changes.
7109 */
7110
7111 do {
7112 struct sched_entity *curr = cfs_rq->curr;
7113
7114 /*
7115 * Since we got here without doing put_prev_entity() we also
7116 * have to consider cfs_rq->curr. If it is still a runnable
7117 * entity, update_curr() will update its vruntime, otherwise
7118 * forget we've ever seen it.
7119 */
54d27365
BS
7120 if (curr) {
7121 if (curr->on_rq)
7122 update_curr(cfs_rq);
7123 else
7124 curr = NULL;
678d5718 7125
54d27365
BS
7126 /*
7127 * This call to check_cfs_rq_runtime() will do the
7128 * throttle and dequeue its entity in the parent(s).
9674f5ca 7129 * Therefore the nr_running test will indeed
54d27365
BS
7130 * be correct.
7131 */
9674f5ca
VK
7132 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7133 cfs_rq = &rq->cfs;
7134
7135 if (!cfs_rq->nr_running)
7136 goto idle;
7137
54d27365 7138 goto simple;
9674f5ca 7139 }
54d27365 7140 }
678d5718
PZ
7141
7142 se = pick_next_entity(cfs_rq, curr);
7143 cfs_rq = group_cfs_rq(se);
7144 } while (cfs_rq);
7145
7146 p = task_of(se);
7147
7148 /*
7149 * Since we haven't yet done put_prev_entity and if the selected task
7150 * is a different task than we started out with, try and touch the
7151 * least amount of cfs_rqs.
7152 */
7153 if (prev != p) {
7154 struct sched_entity *pse = &prev->se;
7155
7156 while (!(cfs_rq = is_same_group(se, pse))) {
7157 int se_depth = se->depth;
7158 int pse_depth = pse->depth;
7159
7160 if (se_depth <= pse_depth) {
7161 put_prev_entity(cfs_rq_of(pse), pse);
7162 pse = parent_entity(pse);
7163 }
7164 if (se_depth >= pse_depth) {
7165 set_next_entity(cfs_rq_of(se), se);
7166 se = parent_entity(se);
7167 }
7168 }
7169
7170 put_prev_entity(cfs_rq, pse);
7171 set_next_entity(cfs_rq, se);
7172 }
7173
93824900 7174 goto done;
678d5718 7175simple:
678d5718 7176#endif
67692435
PZ
7177 if (prev)
7178 put_prev_task(rq, prev);
606dba2e 7179
bf0f6f24 7180 do {
678d5718 7181 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7182 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7183 cfs_rq = group_cfs_rq(se);
7184 } while (cfs_rq);
7185
8f4d37ec 7186 p = task_of(se);
678d5718 7187
13a453c2 7188done: __maybe_unused;
93824900
UR
7189#ifdef CONFIG_SMP
7190 /*
7191 * Move the next running task to the front of
7192 * the list, so our cfs_tasks list becomes MRU
7193 * one.
7194 */
7195 list_move(&p->se.group_node, &rq->cfs_tasks);
7196#endif
7197
e0ee463c 7198 if (hrtick_enabled_fair(rq))
b39e66ea 7199 hrtick_start_fair(rq, p);
8f4d37ec 7200
3b1baa64
MR
7201 update_misfit_status(p, rq);
7202
8f4d37ec 7203 return p;
38033c37
PZ
7204
7205idle:
67692435
PZ
7206 if (!rf)
7207 return NULL;
7208
5ba553ef 7209 new_tasks = newidle_balance(rq, rf);
46f69fa3 7210
37e117c0 7211 /*
5ba553ef 7212 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7213 * possible for any higher priority task to appear. In that case we
7214 * must re-start the pick_next_entity() loop.
7215 */
e4aa358b 7216 if (new_tasks < 0)
37e117c0
PZ
7217 return RETRY_TASK;
7218
e4aa358b 7219 if (new_tasks > 0)
38033c37 7220 goto again;
38033c37 7221
23127296
VG
7222 /*
7223 * rq is about to be idle, check if we need to update the
7224 * lost_idle_time of clock_pelt
7225 */
7226 update_idle_rq_clock_pelt(rq);
7227
38033c37 7228 return NULL;
bf0f6f24
IM
7229}
7230
98c2f700
PZ
7231static struct task_struct *__pick_next_task_fair(struct rq *rq)
7232{
7233 return pick_next_task_fair(rq, NULL, NULL);
7234}
7235
bf0f6f24
IM
7236/*
7237 * Account for a descheduled task:
7238 */
6e2df058 7239static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7240{
7241 struct sched_entity *se = &prev->se;
7242 struct cfs_rq *cfs_rq;
7243
7244 for_each_sched_entity(se) {
7245 cfs_rq = cfs_rq_of(se);
ab6cde26 7246 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7247 }
7248}
7249
ac53db59
RR
7250/*
7251 * sched_yield() is very simple
7252 *
7253 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7254 */
7255static void yield_task_fair(struct rq *rq)
7256{
7257 struct task_struct *curr = rq->curr;
7258 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7259 struct sched_entity *se = &curr->se;
7260
7261 /*
7262 * Are we the only task in the tree?
7263 */
7264 if (unlikely(rq->nr_running == 1))
7265 return;
7266
7267 clear_buddies(cfs_rq, se);
7268
7269 if (curr->policy != SCHED_BATCH) {
7270 update_rq_clock(rq);
7271 /*
7272 * Update run-time statistics of the 'current'.
7273 */
7274 update_curr(cfs_rq);
916671c0
MG
7275 /*
7276 * Tell update_rq_clock() that we've just updated,
7277 * so we don't do microscopic update in schedule()
7278 * and double the fastpath cost.
7279 */
adcc8da8 7280 rq_clock_skip_update(rq);
ac53db59
RR
7281 }
7282
7283 set_skip_buddy(se);
7284}
7285
0900acf2 7286static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7287{
7288 struct sched_entity *se = &p->se;
7289
5238cdd3
PT
7290 /* throttled hierarchies are not runnable */
7291 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7292 return false;
7293
7294 /* Tell the scheduler that we'd really like pse to run next. */
7295 set_next_buddy(se);
7296
d95f4122
MG
7297 yield_task_fair(rq);
7298
7299 return true;
7300}
7301
681f3e68 7302#ifdef CONFIG_SMP
bf0f6f24 7303/**************************************************
e9c84cb8
PZ
7304 * Fair scheduling class load-balancing methods.
7305 *
7306 * BASICS
7307 *
7308 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7309 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7310 * time to each task. This is expressed in the following equation:
7311 *
7312 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7313 *
97fb7a0a 7314 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7315 * W_i,0 is defined as:
7316 *
7317 * W_i,0 = \Sum_j w_i,j (2)
7318 *
97fb7a0a 7319 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7320 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7321 *
7322 * The weight average is an exponential decay average of the instantaneous
7323 * weight:
7324 *
7325 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7326 *
97fb7a0a 7327 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7328 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7329 * can also include other factors [XXX].
7330 *
7331 * To achieve this balance we define a measure of imbalance which follows
7332 * directly from (1):
7333 *
ced549fa 7334 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7335 *
7336 * We them move tasks around to minimize the imbalance. In the continuous
7337 * function space it is obvious this converges, in the discrete case we get
7338 * a few fun cases generally called infeasible weight scenarios.
7339 *
7340 * [XXX expand on:
7341 * - infeasible weights;
7342 * - local vs global optima in the discrete case. ]
7343 *
7344 *
7345 * SCHED DOMAINS
7346 *
7347 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7348 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7349 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7350 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7351 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7352 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7353 * the groups.
7354 *
7355 * This yields:
7356 *
7357 * log_2 n 1 n
7358 * \Sum { --- * --- * 2^i } = O(n) (5)
7359 * i = 0 2^i 2^i
7360 * `- size of each group
97fb7a0a 7361 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7362 * | `- freq
7363 * `- sum over all levels
7364 *
7365 * Coupled with a limit on how many tasks we can migrate every balance pass,
7366 * this makes (5) the runtime complexity of the balancer.
7367 *
7368 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7369 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7370 *
7371 * The adjacency matrix of the resulting graph is given by:
7372 *
97a7142f 7373 * log_2 n
e9c84cb8
PZ
7374 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7375 * k = 0
7376 *
7377 * And you'll find that:
7378 *
7379 * A^(log_2 n)_i,j != 0 for all i,j (7)
7380 *
97fb7a0a 7381 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7382 * The task movement gives a factor of O(m), giving a convergence complexity
7383 * of:
7384 *
7385 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7386 *
7387 *
7388 * WORK CONSERVING
7389 *
7390 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7391 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7392 * tree itself instead of relying on other CPUs to bring it work.
7393 *
7394 * This adds some complexity to both (5) and (8) but it reduces the total idle
7395 * time.
7396 *
7397 * [XXX more?]
7398 *
7399 *
7400 * CGROUPS
7401 *
7402 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7403 *
7404 * s_k,i
7405 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7406 * S_k
7407 *
7408 * Where
7409 *
7410 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7411 *
97fb7a0a 7412 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7413 *
7414 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7415 * property.
7416 *
7417 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7418 * rewrite all of this once again.]
97a7142f 7419 */
bf0f6f24 7420
ed387b78
HS
7421static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7422
0ec8aa00
PZ
7423enum fbq_type { regular, remote, all };
7424
0b0695f2 7425/*
a9723389
VG
7426 * 'group_type' describes the group of CPUs at the moment of load balancing.
7427 *
0b0695f2 7428 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7429 * first so the group_type can simply be compared when selecting the busiest
7430 * group. See update_sd_pick_busiest().
0b0695f2 7431 */
3b1baa64 7432enum group_type {
a9723389 7433 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7434 group_has_spare = 0,
a9723389
VG
7435 /*
7436 * The group is fully used and the tasks don't compete for more CPU
7437 * cycles. Nevertheless, some tasks might wait before running.
7438 */
0b0695f2 7439 group_fully_busy,
a9723389
VG
7440 /*
7441 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7442 * and must be migrated to a more powerful CPU.
7443 */
3b1baa64 7444 group_misfit_task,
a9723389
VG
7445 /*
7446 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7447 * and the task should be migrated to it instead of running on the
7448 * current CPU.
7449 */
0b0695f2 7450 group_asym_packing,
a9723389
VG
7451 /*
7452 * The tasks' affinity constraints previously prevented the scheduler
7453 * from balancing the load across the system.
7454 */
3b1baa64 7455 group_imbalanced,
a9723389
VG
7456 /*
7457 * The CPU is overloaded and can't provide expected CPU cycles to all
7458 * tasks.
7459 */
0b0695f2
VG
7460 group_overloaded
7461};
7462
7463enum migration_type {
7464 migrate_load = 0,
7465 migrate_util,
7466 migrate_task,
7467 migrate_misfit
3b1baa64
MR
7468};
7469
ddcdf6e7 7470#define LBF_ALL_PINNED 0x01
367456c7 7471#define LBF_NEED_BREAK 0x02
6263322c
PZ
7472#define LBF_DST_PINNED 0x04
7473#define LBF_SOME_PINNED 0x08
23fb06d9 7474#define LBF_ACTIVE_LB 0x10
ddcdf6e7
PZ
7475
7476struct lb_env {
7477 struct sched_domain *sd;
7478
ddcdf6e7 7479 struct rq *src_rq;
85c1e7da 7480 int src_cpu;
ddcdf6e7
PZ
7481
7482 int dst_cpu;
7483 struct rq *dst_rq;
7484
88b8dac0
SV
7485 struct cpumask *dst_grpmask;
7486 int new_dst_cpu;
ddcdf6e7 7487 enum cpu_idle_type idle;
bd939f45 7488 long imbalance;
b9403130
MW
7489 /* The set of CPUs under consideration for load-balancing */
7490 struct cpumask *cpus;
7491
ddcdf6e7 7492 unsigned int flags;
367456c7
PZ
7493
7494 unsigned int loop;
7495 unsigned int loop_break;
7496 unsigned int loop_max;
0ec8aa00
PZ
7497
7498 enum fbq_type fbq_type;
0b0695f2 7499 enum migration_type migration_type;
163122b7 7500 struct list_head tasks;
ddcdf6e7
PZ
7501};
7502
029632fb
PZ
7503/*
7504 * Is this task likely cache-hot:
7505 */
5d5e2b1b 7506static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7507{
7508 s64 delta;
7509
e5673f28
KT
7510 lockdep_assert_held(&env->src_rq->lock);
7511
029632fb
PZ
7512 if (p->sched_class != &fair_sched_class)
7513 return 0;
7514
1da1843f 7515 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7516 return 0;
7517
ec73240b
JD
7518 /* SMT siblings share cache */
7519 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7520 return 0;
7521
029632fb
PZ
7522 /*
7523 * Buddy candidates are cache hot:
7524 */
5d5e2b1b 7525 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7526 (&p->se == cfs_rq_of(&p->se)->next ||
7527 &p->se == cfs_rq_of(&p->se)->last))
7528 return 1;
7529
7530 if (sysctl_sched_migration_cost == -1)
7531 return 1;
7532 if (sysctl_sched_migration_cost == 0)
7533 return 0;
7534
5d5e2b1b 7535 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7536
7537 return delta < (s64)sysctl_sched_migration_cost;
7538}
7539
3a7053b3 7540#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7541/*
2a1ed24c
SD
7542 * Returns 1, if task migration degrades locality
7543 * Returns 0, if task migration improves locality i.e migration preferred.
7544 * Returns -1, if task migration is not affected by locality.
c1ceac62 7545 */
2a1ed24c 7546static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7547{
b1ad065e 7548 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7549 unsigned long src_weight, dst_weight;
7550 int src_nid, dst_nid, dist;
3a7053b3 7551
2a595721 7552 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7553 return -1;
7554
c3b9bc5b 7555 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7556 return -1;
7a0f3083
MG
7557
7558 src_nid = cpu_to_node(env->src_cpu);
7559 dst_nid = cpu_to_node(env->dst_cpu);
7560
83e1d2cd 7561 if (src_nid == dst_nid)
2a1ed24c 7562 return -1;
7a0f3083 7563
2a1ed24c
SD
7564 /* Migrating away from the preferred node is always bad. */
7565 if (src_nid == p->numa_preferred_nid) {
7566 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7567 return 1;
7568 else
7569 return -1;
7570 }
b1ad065e 7571
c1ceac62
RR
7572 /* Encourage migration to the preferred node. */
7573 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7574 return 0;
b1ad065e 7575
739294fb 7576 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7577 if (env->idle == CPU_IDLE)
739294fb
RR
7578 return -1;
7579
f35678b6 7580 dist = node_distance(src_nid, dst_nid);
c1ceac62 7581 if (numa_group) {
f35678b6
SD
7582 src_weight = group_weight(p, src_nid, dist);
7583 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7584 } else {
f35678b6
SD
7585 src_weight = task_weight(p, src_nid, dist);
7586 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7587 }
7588
f35678b6 7589 return dst_weight < src_weight;
7a0f3083
MG
7590}
7591
3a7053b3 7592#else
2a1ed24c 7593static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7594 struct lb_env *env)
7595{
2a1ed24c 7596 return -1;
7a0f3083 7597}
3a7053b3
MG
7598#endif
7599
1e3c88bd
PZ
7600/*
7601 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7602 */
7603static
8e45cb54 7604int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7605{
2a1ed24c 7606 int tsk_cache_hot;
e5673f28
KT
7607
7608 lockdep_assert_held(&env->src_rq->lock);
7609
1e3c88bd
PZ
7610 /*
7611 * We do not migrate tasks that are:
d3198084 7612 * 1) throttled_lb_pair, or
3bd37062 7613 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7614 * 3) running (obviously), or
7615 * 4) are cache-hot on their current CPU.
1e3c88bd 7616 */
d3198084
JK
7617 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7618 return 0;
7619
9bcb959d 7620 /* Disregard pcpu kthreads; they are where they need to be. */
3a7956e2 7621 if (kthread_is_per_cpu(p))
9bcb959d
LC
7622 return 0;
7623
3bd37062 7624 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7625 int cpu;
88b8dac0 7626
ae92882e 7627 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7628
6263322c
PZ
7629 env->flags |= LBF_SOME_PINNED;
7630
88b8dac0 7631 /*
97fb7a0a 7632 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7633 * our sched_group. We may want to revisit it if we couldn't
7634 * meet load balance goals by pulling other tasks on src_cpu.
7635 *
23fb06d9
VS
7636 * Avoid computing new_dst_cpu
7637 * - for NEWLY_IDLE
7638 * - if we have already computed one in current iteration
7639 * - if it's an active balance
88b8dac0 7640 */
23fb06d9
VS
7641 if (env->idle == CPU_NEWLY_IDLE ||
7642 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
88b8dac0
SV
7643 return 0;
7644
97fb7a0a 7645 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7646 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7647 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7648 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7649 env->new_dst_cpu = cpu;
7650 break;
7651 }
88b8dac0 7652 }
e02e60c1 7653
1e3c88bd
PZ
7654 return 0;
7655 }
88b8dac0 7656
3b03706f 7657 /* Record that we found at least one task that could run on dst_cpu */
8e45cb54 7658 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7659
ddcdf6e7 7660 if (task_running(env->src_rq, p)) {
ae92882e 7661 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7662 return 0;
7663 }
7664
7665 /*
7666 * Aggressive migration if:
23fb06d9
VS
7667 * 1) active balance
7668 * 2) destination numa is preferred
7669 * 3) task is cache cold, or
7670 * 4) too many balance attempts have failed.
1e3c88bd 7671 */
23fb06d9
VS
7672 if (env->flags & LBF_ACTIVE_LB)
7673 return 1;
7674
2a1ed24c
SD
7675 tsk_cache_hot = migrate_degrades_locality(p, env);
7676 if (tsk_cache_hot == -1)
7677 tsk_cache_hot = task_hot(p, env);
3a7053b3 7678
2a1ed24c 7679 if (tsk_cache_hot <= 0 ||
7a96c231 7680 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7681 if (tsk_cache_hot == 1) {
ae92882e
JP
7682 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7683 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7684 }
1e3c88bd
PZ
7685 return 1;
7686 }
7687
ae92882e 7688 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7689 return 0;
1e3c88bd
PZ
7690}
7691
897c395f 7692/*
163122b7
KT
7693 * detach_task() -- detach the task for the migration specified in env
7694 */
7695static void detach_task(struct task_struct *p, struct lb_env *env)
7696{
7697 lockdep_assert_held(&env->src_rq->lock);
7698
5704ac0a 7699 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7700 set_task_cpu(p, env->dst_cpu);
7701}
7702
897c395f 7703/*
e5673f28 7704 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7705 * part of active balancing operations within "domain".
897c395f 7706 *
e5673f28 7707 * Returns a task if successful and NULL otherwise.
897c395f 7708 */
e5673f28 7709static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7710{
93824900 7711 struct task_struct *p;
897c395f 7712
e5673f28
KT
7713 lockdep_assert_held(&env->src_rq->lock);
7714
93824900
UR
7715 list_for_each_entry_reverse(p,
7716 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7717 if (!can_migrate_task(p, env))
7718 continue;
897c395f 7719
163122b7 7720 detach_task(p, env);
e5673f28 7721
367456c7 7722 /*
e5673f28 7723 * Right now, this is only the second place where
163122b7 7724 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7725 * so we can safely collect stats here rather than
163122b7 7726 * inside detach_tasks().
367456c7 7727 */
ae92882e 7728 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7729 return p;
897c395f 7730 }
e5673f28 7731 return NULL;
897c395f
PZ
7732}
7733
eb95308e
PZ
7734static const unsigned int sched_nr_migrate_break = 32;
7735
5d6523eb 7736/*
0b0695f2 7737 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7738 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7739 *
163122b7 7740 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7741 */
163122b7 7742static int detach_tasks(struct lb_env *env)
1e3c88bd 7743{
5d6523eb 7744 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7745 unsigned long util, load;
5d6523eb 7746 struct task_struct *p;
163122b7
KT
7747 int detached = 0;
7748
7749 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7750
acb4decc
AL
7751 /*
7752 * Source run queue has been emptied by another CPU, clear
7753 * LBF_ALL_PINNED flag as we will not test any task.
7754 */
7755 if (env->src_rq->nr_running <= 1) {
7756 env->flags &= ~LBF_ALL_PINNED;
7757 return 0;
7758 }
7759
bd939f45 7760 if (env->imbalance <= 0)
5d6523eb 7761 return 0;
1e3c88bd 7762
5d6523eb 7763 while (!list_empty(tasks)) {
985d3a4c
YD
7764 /*
7765 * We don't want to steal all, otherwise we may be treated likewise,
7766 * which could at worst lead to a livelock crash.
7767 */
7768 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7769 break;
7770
93824900 7771 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7772
367456c7
PZ
7773 env->loop++;
7774 /* We've more or less seen every task there is, call it quits */
5d6523eb 7775 if (env->loop > env->loop_max)
367456c7 7776 break;
5d6523eb
PZ
7777
7778 /* take a breather every nr_migrate tasks */
367456c7 7779 if (env->loop > env->loop_break) {
eb95308e 7780 env->loop_break += sched_nr_migrate_break;
8e45cb54 7781 env->flags |= LBF_NEED_BREAK;
ee00e66f 7782 break;
a195f004 7783 }
1e3c88bd 7784
d3198084 7785 if (!can_migrate_task(p, env))
367456c7
PZ
7786 goto next;
7787
0b0695f2
VG
7788 switch (env->migration_type) {
7789 case migrate_load:
01cfcde9
VG
7790 /*
7791 * Depending of the number of CPUs and tasks and the
7792 * cgroup hierarchy, task_h_load() can return a null
7793 * value. Make sure that env->imbalance decreases
7794 * otherwise detach_tasks() will stop only after
7795 * detaching up to loop_max tasks.
7796 */
7797 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 7798
0b0695f2
VG
7799 if (sched_feat(LB_MIN) &&
7800 load < 16 && !env->sd->nr_balance_failed)
7801 goto next;
367456c7 7802
6cf82d55
VG
7803 /*
7804 * Make sure that we don't migrate too much load.
7805 * Nevertheless, let relax the constraint if
7806 * scheduler fails to find a good waiting task to
7807 * migrate.
7808 */
39a2a6eb 7809 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
7810 goto next;
7811
7812 env->imbalance -= load;
7813 break;
7814
7815 case migrate_util:
7816 util = task_util_est(p);
7817
7818 if (util > env->imbalance)
7819 goto next;
7820
7821 env->imbalance -= util;
7822 break;
7823
7824 case migrate_task:
7825 env->imbalance--;
7826 break;
7827
7828 case migrate_misfit:
c63be7be
VG
7829 /* This is not a misfit task */
7830 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7831 goto next;
7832
7833 env->imbalance = 0;
7834 break;
7835 }
1e3c88bd 7836
163122b7
KT
7837 detach_task(p, env);
7838 list_add(&p->se.group_node, &env->tasks);
7839
7840 detached++;
1e3c88bd 7841
c1a280b6 7842#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7843 /*
7844 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7845 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7846 * the critical section.
7847 */
5d6523eb 7848 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7849 break;
1e3c88bd
PZ
7850#endif
7851
ee00e66f
PZ
7852 /*
7853 * We only want to steal up to the prescribed amount of
0b0695f2 7854 * load/util/tasks.
ee00e66f 7855 */
bd939f45 7856 if (env->imbalance <= 0)
ee00e66f 7857 break;
367456c7
PZ
7858
7859 continue;
7860next:
93824900 7861 list_move(&p->se.group_node, tasks);
1e3c88bd 7862 }
5d6523eb 7863
1e3c88bd 7864 /*
163122b7
KT
7865 * Right now, this is one of only two places we collect this stat
7866 * so we can safely collect detach_one_task() stats here rather
7867 * than inside detach_one_task().
1e3c88bd 7868 */
ae92882e 7869 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7870
163122b7
KT
7871 return detached;
7872}
7873
7874/*
7875 * attach_task() -- attach the task detached by detach_task() to its new rq.
7876 */
7877static void attach_task(struct rq *rq, struct task_struct *p)
7878{
7879 lockdep_assert_held(&rq->lock);
7880
7881 BUG_ON(task_rq(p) != rq);
5704ac0a 7882 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7883 check_preempt_curr(rq, p, 0);
7884}
7885
7886/*
7887 * attach_one_task() -- attaches the task returned from detach_one_task() to
7888 * its new rq.
7889 */
7890static void attach_one_task(struct rq *rq, struct task_struct *p)
7891{
8a8c69c3
PZ
7892 struct rq_flags rf;
7893
7894 rq_lock(rq, &rf);
5704ac0a 7895 update_rq_clock(rq);
163122b7 7896 attach_task(rq, p);
8a8c69c3 7897 rq_unlock(rq, &rf);
163122b7
KT
7898}
7899
7900/*
7901 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7902 * new rq.
7903 */
7904static void attach_tasks(struct lb_env *env)
7905{
7906 struct list_head *tasks = &env->tasks;
7907 struct task_struct *p;
8a8c69c3 7908 struct rq_flags rf;
163122b7 7909
8a8c69c3 7910 rq_lock(env->dst_rq, &rf);
5704ac0a 7911 update_rq_clock(env->dst_rq);
163122b7
KT
7912
7913 while (!list_empty(tasks)) {
7914 p = list_first_entry(tasks, struct task_struct, se.group_node);
7915 list_del_init(&p->se.group_node);
1e3c88bd 7916
163122b7
KT
7917 attach_task(env->dst_rq, p);
7918 }
7919
8a8c69c3 7920 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7921}
7922
b0c79224 7923#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7924static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7925{
7926 if (cfs_rq->avg.load_avg)
7927 return true;
7928
7929 if (cfs_rq->avg.util_avg)
7930 return true;
7931
7932 return false;
7933}
7934
91c27493 7935static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7936{
7937 if (READ_ONCE(rq->avg_rt.util_avg))
7938 return true;
7939
3727e0e1
VG
7940 if (READ_ONCE(rq->avg_dl.util_avg))
7941 return true;
7942
b4eccf5f
TG
7943 if (thermal_load_avg(rq))
7944 return true;
7945
11d4afd4 7946#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7947 if (READ_ONCE(rq->avg_irq.util_avg))
7948 return true;
7949#endif
7950
371bf427
VG
7951 return false;
7952}
7953
39b6a429 7954static inline void update_blocked_load_tick(struct rq *rq)
b0c79224 7955{
39b6a429
VG
7956 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
7957}
b0c79224 7958
39b6a429
VG
7959static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7960{
b0c79224
VS
7961 if (!has_blocked)
7962 rq->has_blocked_load = 0;
7963}
7964#else
7965static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7966static inline bool others_have_blocked(struct rq *rq) { return false; }
39b6a429 7967static inline void update_blocked_load_tick(struct rq *rq) {}
b0c79224
VS
7968static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7969#endif
7970
bef69dd8
VG
7971static bool __update_blocked_others(struct rq *rq, bool *done)
7972{
7973 const struct sched_class *curr_class;
7974 u64 now = rq_clock_pelt(rq);
b4eccf5f 7975 unsigned long thermal_pressure;
bef69dd8
VG
7976 bool decayed;
7977
7978 /*
7979 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7980 * DL and IRQ signals have been updated before updating CFS.
7981 */
7982 curr_class = rq->curr->sched_class;
7983
b4eccf5f
TG
7984 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7985
bef69dd8
VG
7986 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7987 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 7988 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
7989 update_irq_load_avg(rq, 0);
7990
7991 if (others_have_blocked(rq))
7992 *done = false;
7993
7994 return decayed;
7995}
7996
1936c53c
VG
7997#ifdef CONFIG_FAIR_GROUP_SCHED
7998
039ae8bc
VG
7999static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
8000{
8001 if (cfs_rq->load.weight)
8002 return false;
8003
8004 if (cfs_rq->avg.load_sum)
8005 return false;
8006
8007 if (cfs_rq->avg.util_sum)
8008 return false;
8009
9f683953
VG
8010 if (cfs_rq->avg.runnable_sum)
8011 return false;
8012
039ae8bc
VG
8013 return true;
8014}
8015
bef69dd8 8016static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8017{
039ae8bc 8018 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
8019 bool decayed = false;
8020 int cpu = cpu_of(rq);
b90f7c9d 8021
9763b67f
PZ
8022 /*
8023 * Iterates the task_group tree in a bottom up fashion, see
8024 * list_add_leaf_cfs_rq() for details.
8025 */
039ae8bc 8026 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
8027 struct sched_entity *se;
8028
bef69dd8 8029 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 8030 update_tg_load_avg(cfs_rq);
4e516076 8031
bef69dd8
VG
8032 if (cfs_rq == &rq->cfs)
8033 decayed = true;
8034 }
8035
bc427898
VG
8036 /* Propagate pending load changes to the parent, if any: */
8037 se = cfs_rq->tg->se[cpu];
8038 if (se && !skip_blocked_update(se))
02da26ad 8039 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
a9e7f654 8040
039ae8bc
VG
8041 /*
8042 * There can be a lot of idle CPU cgroups. Don't let fully
8043 * decayed cfs_rqs linger on the list.
8044 */
8045 if (cfs_rq_is_decayed(cfs_rq))
8046 list_del_leaf_cfs_rq(cfs_rq);
8047
1936c53c
VG
8048 /* Don't need periodic decay once load/util_avg are null */
8049 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 8050 *done = false;
9d89c257 8051 }
12b04875 8052
bef69dd8 8053 return decayed;
9e3081ca
PZ
8054}
8055
9763b67f 8056/*
68520796 8057 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
8058 * This needs to be done in a top-down fashion because the load of a child
8059 * group is a fraction of its parents load.
8060 */
68520796 8061static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 8062{
68520796
VD
8063 struct rq *rq = rq_of(cfs_rq);
8064 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 8065 unsigned long now = jiffies;
68520796 8066 unsigned long load;
a35b6466 8067
68520796 8068 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
8069 return;
8070
0e9f0245 8071 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
8072 for_each_sched_entity(se) {
8073 cfs_rq = cfs_rq_of(se);
0e9f0245 8074 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
8075 if (cfs_rq->last_h_load_update == now)
8076 break;
8077 }
a35b6466 8078
68520796 8079 if (!se) {
7ea241af 8080 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
8081 cfs_rq->last_h_load_update = now;
8082 }
8083
0e9f0245 8084 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 8085 load = cfs_rq->h_load;
7ea241af
YD
8086 load = div64_ul(load * se->avg.load_avg,
8087 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
8088 cfs_rq = group_cfs_rq(se);
8089 cfs_rq->h_load = load;
8090 cfs_rq->last_h_load_update = now;
8091 }
9763b67f
PZ
8092}
8093
367456c7 8094static unsigned long task_h_load(struct task_struct *p)
230059de 8095{
367456c7 8096 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 8097
68520796 8098 update_cfs_rq_h_load(cfs_rq);
9d89c257 8099 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 8100 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
8101}
8102#else
bef69dd8 8103static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8104{
6c1d47c0 8105 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 8106 bool decayed;
b90f7c9d 8107
bef69dd8
VG
8108 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8109 if (cfs_rq_has_blocked(cfs_rq))
8110 *done = false;
b90f7c9d 8111
bef69dd8 8112 return decayed;
9e3081ca
PZ
8113}
8114
367456c7 8115static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 8116{
9d89c257 8117 return p->se.avg.load_avg;
1e3c88bd 8118}
230059de 8119#endif
1e3c88bd 8120
bef69dd8
VG
8121static void update_blocked_averages(int cpu)
8122{
8123 bool decayed = false, done = true;
8124 struct rq *rq = cpu_rq(cpu);
8125 struct rq_flags rf;
8126
8127 rq_lock_irqsave(rq, &rf);
39b6a429 8128 update_blocked_load_tick(rq);
bef69dd8
VG
8129 update_rq_clock(rq);
8130
8131 decayed |= __update_blocked_others(rq, &done);
8132 decayed |= __update_blocked_fair(rq, &done);
8133
8134 update_blocked_load_status(rq, !done);
8135 if (decayed)
8136 cpufreq_update_util(rq, 0);
8137 rq_unlock_irqrestore(rq, &rf);
8138}
8139
1e3c88bd 8140/********** Helpers for find_busiest_group ************************/
caeb178c 8141
1e3c88bd
PZ
8142/*
8143 * sg_lb_stats - stats of a sched_group required for load_balancing
8144 */
8145struct sg_lb_stats {
8146 unsigned long avg_load; /*Avg load across the CPUs of the group */
8147 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8148 unsigned long group_capacity;
070f5e86
VG
8149 unsigned long group_util; /* Total utilization over the CPUs of the group */
8150 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8151 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8152 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8153 unsigned int idle_cpus;
8154 unsigned int group_weight;
caeb178c 8155 enum group_type group_type;
490ba971 8156 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8157 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8158#ifdef CONFIG_NUMA_BALANCING
8159 unsigned int nr_numa_running;
8160 unsigned int nr_preferred_running;
8161#endif
1e3c88bd
PZ
8162};
8163
56cf515b
JK
8164/*
8165 * sd_lb_stats - Structure to store the statistics of a sched_domain
8166 * during load balancing.
8167 */
8168struct sd_lb_stats {
8169 struct sched_group *busiest; /* Busiest group in this sd */
8170 struct sched_group *local; /* Local group in this sd */
8171 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8172 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8173 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8174 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8175
56cf515b 8176 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8177 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8178};
8179
147c5fc2
PZ
8180static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8181{
8182 /*
8183 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8184 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8185 * We must however set busiest_stat::group_type and
8186 * busiest_stat::idle_cpus to the worst busiest group because
8187 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8188 */
8189 *sds = (struct sd_lb_stats){
8190 .busiest = NULL,
8191 .local = NULL,
8192 .total_load = 0UL,
63b2ca30 8193 .total_capacity = 0UL,
147c5fc2 8194 .busiest_stat = {
0b0695f2
VG
8195 .idle_cpus = UINT_MAX,
8196 .group_type = group_has_spare,
147c5fc2
PZ
8197 },
8198 };
8199}
8200
1ca2034e 8201static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8202{
8203 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8204 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8205 unsigned long used, free;
523e979d 8206 unsigned long irq;
b654f7de 8207
2e62c474 8208 irq = cpu_util_irq(rq);
cadefd3d 8209
523e979d
VG
8210 if (unlikely(irq >= max))
8211 return 1;
aa483808 8212
467b7d01
TG
8213 /*
8214 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8215 * (running and not running) with weights 0 and 1024 respectively.
8216 * avg_thermal.load_avg tracks thermal pressure and the weighted
8217 * average uses the actual delta max capacity(load).
8218 */
523e979d
VG
8219 used = READ_ONCE(rq->avg_rt.util_avg);
8220 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8221 used += thermal_load_avg(rq);
1e3c88bd 8222
523e979d
VG
8223 if (unlikely(used >= max))
8224 return 1;
1e3c88bd 8225
523e979d 8226 free = max - used;
2e62c474
VG
8227
8228 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8229}
8230
ced549fa 8231static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8232{
1ca2034e 8233 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8234 struct sched_group *sdg = sd->groups;
8235
8ec59c0f 8236 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8237
ced549fa
NP
8238 if (!capacity)
8239 capacity = 1;
1e3c88bd 8240
ced549fa 8241 cpu_rq(cpu)->cpu_capacity = capacity;
51cf18c9
VD
8242 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8243
ced549fa 8244 sdg->sgc->capacity = capacity;
bf475ce0 8245 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8246 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8247}
8248
63b2ca30 8249void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8250{
8251 struct sched_domain *child = sd->child;
8252 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8253 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8254 unsigned long interval;
8255
8256 interval = msecs_to_jiffies(sd->balance_interval);
8257 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8258 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8259
8260 if (!child) {
ced549fa 8261 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8262 return;
8263 }
8264
dc7ff76e 8265 capacity = 0;
bf475ce0 8266 min_capacity = ULONG_MAX;
e3d6d0cb 8267 max_capacity = 0;
1e3c88bd 8268
74a5ce20
PZ
8269 if (child->flags & SD_OVERLAP) {
8270 /*
8271 * SD_OVERLAP domains cannot assume that child groups
8272 * span the current group.
8273 */
8274
ae4df9d6 8275 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8276 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8277
4c58f57f
PL
8278 capacity += cpu_cap;
8279 min_capacity = min(cpu_cap, min_capacity);
8280 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8281 }
74a5ce20
PZ
8282 } else {
8283 /*
8284 * !SD_OVERLAP domains can assume that child groups
8285 * span the current group.
97a7142f 8286 */
74a5ce20
PZ
8287
8288 group = child->groups;
8289 do {
bf475ce0
MR
8290 struct sched_group_capacity *sgc = group->sgc;
8291
8292 capacity += sgc->capacity;
8293 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8294 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8295 group = group->next;
8296 } while (group != child->groups);
8297 }
1e3c88bd 8298
63b2ca30 8299 sdg->sgc->capacity = capacity;
bf475ce0 8300 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8301 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8302}
8303
9d5efe05 8304/*
ea67821b
VG
8305 * Check whether the capacity of the rq has been noticeably reduced by side
8306 * activity. The imbalance_pct is used for the threshold.
8307 * Return true is the capacity is reduced
9d5efe05
SV
8308 */
8309static inline int
ea67821b 8310check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8311{
ea67821b
VG
8312 return ((rq->cpu_capacity * sd->imbalance_pct) <
8313 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8314}
8315
a0fe2cf0
VS
8316/*
8317 * Check whether a rq has a misfit task and if it looks like we can actually
8318 * help that task: we can migrate the task to a CPU of higher capacity, or
8319 * the task's current CPU is heavily pressured.
8320 */
8321static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8322{
8323 return rq->misfit_task_load &&
8324 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8325 check_cpu_capacity(rq, sd));
8326}
8327
30ce5dab
PZ
8328/*
8329 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8330 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8331 *
97fb7a0a
IM
8332 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8333 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8334 * Something like:
8335 *
2b4d5b25
IM
8336 * { 0 1 2 3 } { 4 5 6 7 }
8337 * * * * *
30ce5dab
PZ
8338 *
8339 * If we were to balance group-wise we'd place two tasks in the first group and
8340 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8341 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8342 *
8343 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8344 * by noticing the lower domain failed to reach balance and had difficulty
8345 * moving tasks due to affinity constraints.
30ce5dab
PZ
8346 *
8347 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8348 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8349 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8350 * to create an effective group imbalance.
8351 *
8352 * This is a somewhat tricky proposition since the next run might not find the
8353 * group imbalance and decide the groups need to be balanced again. A most
8354 * subtle and fragile situation.
8355 */
8356
6263322c 8357static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8358{
63b2ca30 8359 return group->sgc->imbalance;
30ce5dab
PZ
8360}
8361
b37d9316 8362/*
ea67821b
VG
8363 * group_has_capacity returns true if the group has spare capacity that could
8364 * be used by some tasks.
8365 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8366 * smaller than the number of CPUs or if the utilization is lower than the
8367 * available capacity for CFS tasks.
ea67821b
VG
8368 * For the latter, we use a threshold to stabilize the state, to take into
8369 * account the variance of the tasks' load and to return true if the available
8370 * capacity in meaningful for the load balancer.
8371 * As an example, an available capacity of 1% can appear but it doesn't make
8372 * any benefit for the load balance.
b37d9316 8373 */
ea67821b 8374static inline bool
57abff06 8375group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8376{
5e23e474 8377 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8378 return true;
c61037e9 8379
070f5e86
VG
8380 if ((sgs->group_capacity * imbalance_pct) <
8381 (sgs->group_runnable * 100))
8382 return false;
8383
ea67821b 8384 if ((sgs->group_capacity * 100) >
57abff06 8385 (sgs->group_util * imbalance_pct))
ea67821b 8386 return true;
b37d9316 8387
ea67821b
VG
8388 return false;
8389}
8390
8391/*
8392 * group_is_overloaded returns true if the group has more tasks than it can
8393 * handle.
8394 * group_is_overloaded is not equals to !group_has_capacity because a group
8395 * with the exact right number of tasks, has no more spare capacity but is not
8396 * overloaded so both group_has_capacity and group_is_overloaded return
8397 * false.
8398 */
8399static inline bool
57abff06 8400group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8401{
5e23e474 8402 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8403 return false;
b37d9316 8404
ea67821b 8405 if ((sgs->group_capacity * 100) <
57abff06 8406 (sgs->group_util * imbalance_pct))
ea67821b 8407 return true;
b37d9316 8408
070f5e86
VG
8409 if ((sgs->group_capacity * imbalance_pct) <
8410 (sgs->group_runnable * 100))
8411 return true;
8412
ea67821b 8413 return false;
b37d9316
PZ
8414}
8415
79a89f92 8416static inline enum
57abff06 8417group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8418 struct sched_group *group,
79a89f92 8419 struct sg_lb_stats *sgs)
caeb178c 8420{
57abff06 8421 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8422 return group_overloaded;
8423
8424 if (sg_imbalanced(group))
8425 return group_imbalanced;
8426
0b0695f2
VG
8427 if (sgs->group_asym_packing)
8428 return group_asym_packing;
8429
3b1baa64
MR
8430 if (sgs->group_misfit_task_load)
8431 return group_misfit_task;
8432
57abff06 8433 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8434 return group_fully_busy;
8435
8436 return group_has_spare;
caeb178c
RR
8437}
8438
1e3c88bd
PZ
8439/**
8440 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8441 * @env: The load balancing environment.
1e3c88bd 8442 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8443 * @sgs: variable to hold the statistics for this group.
630246a0 8444 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8445 */
bd939f45 8446static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8447 struct sched_group *group,
8448 struct sg_lb_stats *sgs,
8449 int *sg_status)
1e3c88bd 8450{
0b0695f2 8451 int i, nr_running, local_group;
1e3c88bd 8452
b72ff13c
PZ
8453 memset(sgs, 0, sizeof(*sgs));
8454
0b0695f2
VG
8455 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8456
ae4df9d6 8457 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8458 struct rq *rq = cpu_rq(i);
8459
b0fb1eb4 8460 sgs->group_load += cpu_load(rq);
9e91d61d 8461 sgs->group_util += cpu_util(i);
070f5e86 8462 sgs->group_runnable += cpu_runnable(rq);
a3498347 8463 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8464
a426f99c 8465 nr_running = rq->nr_running;
5e23e474
VG
8466 sgs->sum_nr_running += nr_running;
8467
a426f99c 8468 if (nr_running > 1)
630246a0 8469 *sg_status |= SG_OVERLOAD;
4486edd1 8470
2802bf3c
MR
8471 if (cpu_overutilized(i))
8472 *sg_status |= SG_OVERUTILIZED;
4486edd1 8473
0ec8aa00
PZ
8474#ifdef CONFIG_NUMA_BALANCING
8475 sgs->nr_numa_running += rq->nr_numa_running;
8476 sgs->nr_preferred_running += rq->nr_preferred_running;
8477#endif
a426f99c
WL
8478 /*
8479 * No need to call idle_cpu() if nr_running is not 0
8480 */
0b0695f2 8481 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8482 sgs->idle_cpus++;
0b0695f2
VG
8483 /* Idle cpu can't have misfit task */
8484 continue;
8485 }
8486
8487 if (local_group)
8488 continue;
3b1baa64 8489
0b0695f2 8490 /* Check for a misfit task on the cpu */
3b1baa64 8491 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8492 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8493 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8494 *sg_status |= SG_OVERLOAD;
757ffdd7 8495 }
1e3c88bd
PZ
8496 }
8497
0b0695f2
VG
8498 /* Check if dst CPU is idle and preferred to this group */
8499 if (env->sd->flags & SD_ASYM_PACKING &&
8500 env->idle != CPU_NOT_IDLE &&
8501 sgs->sum_h_nr_running &&
8502 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8503 sgs->group_asym_packing = 1;
8504 }
8505
63b2ca30 8506 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8507
aae6d3dd 8508 sgs->group_weight = group->group_weight;
b37d9316 8509
57abff06 8510 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8511
8512 /* Computing avg_load makes sense only when group is overloaded */
8513 if (sgs->group_type == group_overloaded)
8514 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8515 sgs->group_capacity;
1e3c88bd
PZ
8516}
8517
532cb4c4
MN
8518/**
8519 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8520 * @env: The load balancing environment.
532cb4c4
MN
8521 * @sds: sched_domain statistics
8522 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8523 * @sgs: sched_group statistics
532cb4c4
MN
8524 *
8525 * Determine if @sg is a busier group than the previously selected
8526 * busiest group.
e69f6186
YB
8527 *
8528 * Return: %true if @sg is a busier group than the previously selected
8529 * busiest group. %false otherwise.
532cb4c4 8530 */
bd939f45 8531static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8532 struct sd_lb_stats *sds,
8533 struct sched_group *sg,
bd939f45 8534 struct sg_lb_stats *sgs)
532cb4c4 8535{
caeb178c 8536 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8537
0b0695f2
VG
8538 /* Make sure that there is at least one task to pull */
8539 if (!sgs->sum_h_nr_running)
8540 return false;
8541
cad68e55
MR
8542 /*
8543 * Don't try to pull misfit tasks we can't help.
8544 * We can use max_capacity here as reduction in capacity on some
8545 * CPUs in the group should either be possible to resolve
8546 * internally or be covered by avg_load imbalance (eventually).
8547 */
8548 if (sgs->group_type == group_misfit_task &&
4aed8aa4 8549 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
0b0695f2 8550 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8551 return false;
8552
caeb178c 8553 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8554 return true;
8555
caeb178c
RR
8556 if (sgs->group_type < busiest->group_type)
8557 return false;
8558
9e0994c0 8559 /*
0b0695f2
VG
8560 * The candidate and the current busiest group are the same type of
8561 * group. Let check which one is the busiest according to the type.
9e0994c0 8562 */
9e0994c0 8563
0b0695f2
VG
8564 switch (sgs->group_type) {
8565 case group_overloaded:
8566 /* Select the overloaded group with highest avg_load. */
8567 if (sgs->avg_load <= busiest->avg_load)
8568 return false;
8569 break;
8570
8571 case group_imbalanced:
8572 /*
8573 * Select the 1st imbalanced group as we don't have any way to
8574 * choose one more than another.
8575 */
9e0994c0
MR
8576 return false;
8577
0b0695f2
VG
8578 case group_asym_packing:
8579 /* Prefer to move from lowest priority CPU's work */
8580 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8581 return false;
8582 break;
532cb4c4 8583
0b0695f2
VG
8584 case group_misfit_task:
8585 /*
8586 * If we have more than one misfit sg go with the biggest
8587 * misfit.
8588 */
8589 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8590 return false;
8591 break;
532cb4c4 8592
0b0695f2
VG
8593 case group_fully_busy:
8594 /*
8595 * Select the fully busy group with highest avg_load. In
8596 * theory, there is no need to pull task from such kind of
8597 * group because tasks have all compute capacity that they need
8598 * but we can still improve the overall throughput by reducing
8599 * contention when accessing shared HW resources.
8600 *
8601 * XXX for now avg_load is not computed and always 0 so we
8602 * select the 1st one.
8603 */
8604 if (sgs->avg_load <= busiest->avg_load)
8605 return false;
8606 break;
8607
8608 case group_has_spare:
8609 /*
5f68eb19
VG
8610 * Select not overloaded group with lowest number of idle cpus
8611 * and highest number of running tasks. We could also compare
8612 * the spare capacity which is more stable but it can end up
8613 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8614 * CPUs which means less opportunity to pull tasks.
8615 */
5f68eb19 8616 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8617 return false;
5f68eb19
VG
8618 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8619 (sgs->sum_nr_running <= busiest->sum_nr_running))
8620 return false;
8621
0b0695f2 8622 break;
532cb4c4
MN
8623 }
8624
0b0695f2
VG
8625 /*
8626 * Candidate sg has no more than one task per CPU and has higher
8627 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8628 * throughput. Maximize throughput, power/energy consequences are not
8629 * considered.
8630 */
8631 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8632 (sgs->group_type <= group_fully_busy) &&
4aed8aa4 8633 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
0b0695f2
VG
8634 return false;
8635
8636 return true;
532cb4c4
MN
8637}
8638
0ec8aa00
PZ
8639#ifdef CONFIG_NUMA_BALANCING
8640static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8641{
a3498347 8642 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8643 return regular;
a3498347 8644 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8645 return remote;
8646 return all;
8647}
8648
8649static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8650{
8651 if (rq->nr_running > rq->nr_numa_running)
8652 return regular;
8653 if (rq->nr_running > rq->nr_preferred_running)
8654 return remote;
8655 return all;
8656}
8657#else
8658static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8659{
8660 return all;
8661}
8662
8663static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8664{
8665 return regular;
8666}
8667#endif /* CONFIG_NUMA_BALANCING */
8668
57abff06
VG
8669
8670struct sg_lb_stats;
8671
3318544b
VG
8672/*
8673 * task_running_on_cpu - return 1 if @p is running on @cpu.
8674 */
8675
8676static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8677{
8678 /* Task has no contribution or is new */
8679 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8680 return 0;
8681
8682 if (task_on_rq_queued(p))
8683 return 1;
8684
8685 return 0;
8686}
8687
8688/**
8689 * idle_cpu_without - would a given CPU be idle without p ?
8690 * @cpu: the processor on which idleness is tested.
8691 * @p: task which should be ignored.
8692 *
8693 * Return: 1 if the CPU would be idle. 0 otherwise.
8694 */
8695static int idle_cpu_without(int cpu, struct task_struct *p)
8696{
8697 struct rq *rq = cpu_rq(cpu);
8698
8699 if (rq->curr != rq->idle && rq->curr != p)
8700 return 0;
8701
8702 /*
8703 * rq->nr_running can't be used but an updated version without the
8704 * impact of p on cpu must be used instead. The updated nr_running
8705 * be computed and tested before calling idle_cpu_without().
8706 */
8707
8708#ifdef CONFIG_SMP
126c2092 8709 if (rq->ttwu_pending)
3318544b
VG
8710 return 0;
8711#endif
8712
8713 return 1;
8714}
8715
57abff06
VG
8716/*
8717 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8718 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8719 * @group: sched_group whose statistics are to be updated.
8720 * @sgs: variable to hold the statistics for this group.
3318544b 8721 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8722 */
8723static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8724 struct sched_group *group,
8725 struct sg_lb_stats *sgs,
8726 struct task_struct *p)
8727{
8728 int i, nr_running;
8729
8730 memset(sgs, 0, sizeof(*sgs));
8731
8732 for_each_cpu(i, sched_group_span(group)) {
8733 struct rq *rq = cpu_rq(i);
3318544b 8734 unsigned int local;
57abff06 8735
3318544b 8736 sgs->group_load += cpu_load_without(rq, p);
57abff06 8737 sgs->group_util += cpu_util_without(i, p);
070f5e86 8738 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8739 local = task_running_on_cpu(i, p);
8740 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8741
3318544b 8742 nr_running = rq->nr_running - local;
57abff06
VG
8743 sgs->sum_nr_running += nr_running;
8744
8745 /*
3318544b 8746 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8747 */
3318544b 8748 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8749 sgs->idle_cpus++;
8750
57abff06
VG
8751 }
8752
8753 /* Check if task fits in the group */
8754 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8755 !task_fits_capacity(p, group->sgc->max_capacity)) {
8756 sgs->group_misfit_task_load = 1;
8757 }
8758
8759 sgs->group_capacity = group->sgc->capacity;
8760
289de359
VG
8761 sgs->group_weight = group->group_weight;
8762
57abff06
VG
8763 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8764
8765 /*
8766 * Computing avg_load makes sense only when group is fully busy or
8767 * overloaded
8768 */
6c8116c9
TZ
8769 if (sgs->group_type == group_fully_busy ||
8770 sgs->group_type == group_overloaded)
57abff06
VG
8771 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8772 sgs->group_capacity;
8773}
8774
8775static bool update_pick_idlest(struct sched_group *idlest,
8776 struct sg_lb_stats *idlest_sgs,
8777 struct sched_group *group,
8778 struct sg_lb_stats *sgs)
8779{
8780 if (sgs->group_type < idlest_sgs->group_type)
8781 return true;
8782
8783 if (sgs->group_type > idlest_sgs->group_type)
8784 return false;
8785
8786 /*
8787 * The candidate and the current idlest group are the same type of
8788 * group. Let check which one is the idlest according to the type.
8789 */
8790
8791 switch (sgs->group_type) {
8792 case group_overloaded:
8793 case group_fully_busy:
8794 /* Select the group with lowest avg_load. */
8795 if (idlest_sgs->avg_load <= sgs->avg_load)
8796 return false;
8797 break;
8798
8799 case group_imbalanced:
8800 case group_asym_packing:
8801 /* Those types are not used in the slow wakeup path */
8802 return false;
8803
8804 case group_misfit_task:
8805 /* Select group with the highest max capacity */
8806 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8807 return false;
8808 break;
8809
8810 case group_has_spare:
8811 /* Select group with most idle CPUs */
3edecfef 8812 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 8813 return false;
3edecfef
PP
8814
8815 /* Select group with lowest group_util */
8816 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8817 idlest_sgs->group_util <= sgs->group_util)
8818 return false;
8819
57abff06
VG
8820 break;
8821 }
8822
8823 return true;
8824}
8825
23e6082a
MG
8826/*
8827 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8828 * This is an approximation as the number of running tasks may not be
8829 * related to the number of busy CPUs due to sched_setaffinity.
8830 */
8831static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8832{
8833 return (dst_running < (dst_weight >> 2));
8834}
8835
57abff06
VG
8836/*
8837 * find_idlest_group() finds and returns the least busy CPU group within the
8838 * domain.
8839 *
8840 * Assumes p is allowed on at least one CPU in sd.
8841 */
8842static struct sched_group *
45da2773 8843find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
8844{
8845 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8846 struct sg_lb_stats local_sgs, tmp_sgs;
8847 struct sg_lb_stats *sgs;
8848 unsigned long imbalance;
8849 struct sg_lb_stats idlest_sgs = {
8850 .avg_load = UINT_MAX,
8851 .group_type = group_overloaded,
8852 };
8853
57abff06
VG
8854 do {
8855 int local_group;
8856
8857 /* Skip over this group if it has no CPUs allowed */
8858 if (!cpumask_intersects(sched_group_span(group),
8859 p->cpus_ptr))
8860 continue;
8861
8862 local_group = cpumask_test_cpu(this_cpu,
8863 sched_group_span(group));
8864
8865 if (local_group) {
8866 sgs = &local_sgs;
8867 local = group;
8868 } else {
8869 sgs = &tmp_sgs;
8870 }
8871
8872 update_sg_wakeup_stats(sd, group, sgs, p);
8873
8874 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8875 idlest = group;
8876 idlest_sgs = *sgs;
8877 }
8878
8879 } while (group = group->next, group != sd->groups);
8880
8881
8882 /* There is no idlest group to push tasks to */
8883 if (!idlest)
8884 return NULL;
8885
7ed735c3
VG
8886 /* The local group has been skipped because of CPU affinity */
8887 if (!local)
8888 return idlest;
8889
57abff06
VG
8890 /*
8891 * If the local group is idler than the selected idlest group
8892 * don't try and push the task.
8893 */
8894 if (local_sgs.group_type < idlest_sgs.group_type)
8895 return NULL;
8896
8897 /*
8898 * If the local group is busier than the selected idlest group
8899 * try and push the task.
8900 */
8901 if (local_sgs.group_type > idlest_sgs.group_type)
8902 return idlest;
8903
8904 switch (local_sgs.group_type) {
8905 case group_overloaded:
8906 case group_fully_busy:
5c339005
MG
8907
8908 /* Calculate allowed imbalance based on load */
8909 imbalance = scale_load_down(NICE_0_LOAD) *
8910 (sd->imbalance_pct-100) / 100;
8911
57abff06
VG
8912 /*
8913 * When comparing groups across NUMA domains, it's possible for
8914 * the local domain to be very lightly loaded relative to the
8915 * remote domains but "imbalance" skews the comparison making
8916 * remote CPUs look much more favourable. When considering
8917 * cross-domain, add imbalance to the load on the remote node
8918 * and consider staying local.
8919 */
8920
8921 if ((sd->flags & SD_NUMA) &&
8922 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8923 return NULL;
8924
8925 /*
8926 * If the local group is less loaded than the selected
8927 * idlest group don't try and push any tasks.
8928 */
8929 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8930 return NULL;
8931
8932 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8933 return NULL;
8934 break;
8935
8936 case group_imbalanced:
8937 case group_asym_packing:
8938 /* Those type are not used in the slow wakeup path */
8939 return NULL;
8940
8941 case group_misfit_task:
8942 /* Select group with the highest max capacity */
8943 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8944 return NULL;
8945 break;
8946
8947 case group_has_spare:
8948 if (sd->flags & SD_NUMA) {
8949#ifdef CONFIG_NUMA_BALANCING
8950 int idlest_cpu;
8951 /*
8952 * If there is spare capacity at NUMA, try to select
8953 * the preferred node
8954 */
8955 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8956 return NULL;
8957
8958 idlest_cpu = cpumask_first(sched_group_span(idlest));
8959 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8960 return idlest;
8961#endif
8962 /*
8963 * Otherwise, keep the task on this node to stay close
8964 * its wakeup source and improve locality. If there is
8965 * a real need of migration, periodic load balance will
8966 * take care of it.
8967 */
23e6082a 8968 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
57abff06
VG
8969 return NULL;
8970 }
8971
8972 /*
8973 * Select group with highest number of idle CPUs. We could also
8974 * compare the utilization which is more stable but it can end
8975 * up that the group has less spare capacity but finally more
8976 * idle CPUs which means more opportunity to run task.
8977 */
8978 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8979 return NULL;
8980 break;
8981 }
8982
8983 return idlest;
8984}
8985
1e3c88bd 8986/**
461819ac 8987 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8988 * @env: The load balancing environment.
1e3c88bd
PZ
8989 * @sds: variable to hold the statistics for this sched_domain.
8990 */
0b0695f2 8991
0ec8aa00 8992static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8993{
bd939f45
PZ
8994 struct sched_domain *child = env->sd->child;
8995 struct sched_group *sg = env->sd->groups;
05b40e05 8996 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8997 struct sg_lb_stats tmp_sgs;
630246a0 8998 int sg_status = 0;
1e3c88bd 8999
1e3c88bd 9000 do {
56cf515b 9001 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
9002 int local_group;
9003
ae4df9d6 9004 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
9005 if (local_group) {
9006 sds->local = sg;
05b40e05 9007 sgs = local;
b72ff13c
PZ
9008
9009 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
9010 time_after_eq(jiffies, sg->sgc->next_update))
9011 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 9012 }
1e3c88bd 9013
630246a0 9014 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 9015
b72ff13c
PZ
9016 if (local_group)
9017 goto next_group;
9018
1e3c88bd 9019
b72ff13c 9020 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 9021 sds->busiest = sg;
56cf515b 9022 sds->busiest_stat = *sgs;
1e3c88bd
PZ
9023 }
9024
b72ff13c
PZ
9025next_group:
9026 /* Now, start updating sd_lb_stats */
9027 sds->total_load += sgs->group_load;
63b2ca30 9028 sds->total_capacity += sgs->group_capacity;
b72ff13c 9029
532cb4c4 9030 sg = sg->next;
bd939f45 9031 } while (sg != env->sd->groups);
0ec8aa00 9032
0b0695f2
VG
9033 /* Tag domain that child domain prefers tasks go to siblings first */
9034 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9035
f643ea22 9036
0ec8aa00
PZ
9037 if (env->sd->flags & SD_NUMA)
9038 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
9039
9040 if (!env->sd->parent) {
2802bf3c
MR
9041 struct root_domain *rd = env->dst_rq->rd;
9042
4486edd1 9043 /* update overload indicator if we are at root domain */
2802bf3c
MR
9044 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9045
9046 /* Update over-utilization (tipping point, U >= 0) indicator */
9047 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 9048 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 9049 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
9050 struct root_domain *rd = env->dst_rq->rd;
9051
9052 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9053 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 9054 }
532cb4c4
MN
9055}
9056
abeae76a
MG
9057#define NUMA_IMBALANCE_MIN 2
9058
7d2b5dd0
MG
9059static inline long adjust_numa_imbalance(int imbalance,
9060 int dst_running, int dst_weight)
fb86f5b2 9061{
23e6082a
MG
9062 if (!allow_numa_imbalance(dst_running, dst_weight))
9063 return imbalance;
9064
fb86f5b2
MG
9065 /*
9066 * Allow a small imbalance based on a simple pair of communicating
7d2b5dd0 9067 * tasks that remain local when the destination is lightly loaded.
fb86f5b2 9068 */
23e6082a 9069 if (imbalance <= NUMA_IMBALANCE_MIN)
fb86f5b2
MG
9070 return 0;
9071
9072 return imbalance;
9073}
9074
1e3c88bd
PZ
9075/**
9076 * calculate_imbalance - Calculate the amount of imbalance present within the
9077 * groups of a given sched_domain during load balance.
bd939f45 9078 * @env: load balance environment
1e3c88bd 9079 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 9080 */
bd939f45 9081static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9082{
56cf515b
JK
9083 struct sg_lb_stats *local, *busiest;
9084
9085 local = &sds->local_stat;
56cf515b 9086 busiest = &sds->busiest_stat;
dd5feea1 9087
0b0695f2
VG
9088 if (busiest->group_type == group_misfit_task) {
9089 /* Set imbalance to allow misfit tasks to be balanced. */
9090 env->migration_type = migrate_misfit;
c63be7be 9091 env->imbalance = 1;
0b0695f2
VG
9092 return;
9093 }
9094
9095 if (busiest->group_type == group_asym_packing) {
9096 /*
9097 * In case of asym capacity, we will try to migrate all load to
9098 * the preferred CPU.
9099 */
9100 env->migration_type = migrate_task;
9101 env->imbalance = busiest->sum_h_nr_running;
9102 return;
9103 }
9104
9105 if (busiest->group_type == group_imbalanced) {
9106 /*
9107 * In the group_imb case we cannot rely on group-wide averages
9108 * to ensure CPU-load equilibrium, try to move any task to fix
9109 * the imbalance. The next load balance will take care of
9110 * balancing back the system.
9111 */
9112 env->migration_type = migrate_task;
9113 env->imbalance = 1;
490ba971
VG
9114 return;
9115 }
9116
1e3c88bd 9117 /*
0b0695f2 9118 * Try to use spare capacity of local group without overloading it or
a9723389 9119 * emptying busiest.
1e3c88bd 9120 */
0b0695f2 9121 if (local->group_type == group_has_spare) {
16b0a7a1
VG
9122 if ((busiest->group_type > group_fully_busy) &&
9123 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
0b0695f2
VG
9124 /*
9125 * If busiest is overloaded, try to fill spare
9126 * capacity. This might end up creating spare capacity
9127 * in busiest or busiest still being overloaded but
9128 * there is no simple way to directly compute the
9129 * amount of load to migrate in order to balance the
9130 * system.
9131 */
9132 env->migration_type = migrate_util;
9133 env->imbalance = max(local->group_capacity, local->group_util) -
9134 local->group_util;
9135
9136 /*
9137 * In some cases, the group's utilization is max or even
9138 * higher than capacity because of migrations but the
9139 * local CPU is (newly) idle. There is at least one
9140 * waiting task in this overloaded busiest group. Let's
9141 * try to pull it.
9142 */
9143 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9144 env->migration_type = migrate_task;
9145 env->imbalance = 1;
9146 }
9147
9148 return;
9149 }
9150
9151 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9152 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9153 /*
9154 * When prefer sibling, evenly spread running tasks on
9155 * groups.
9156 */
9157 env->migration_type = migrate_task;
5e23e474 9158 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9159 env->imbalance = nr_diff >> 1;
b396f523 9160 } else {
0b0695f2 9161
b396f523
MG
9162 /*
9163 * If there is no overload, we just want to even the number of
9164 * idle cpus.
9165 */
9166 env->migration_type = migrate_task;
9167 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9168 busiest->idle_cpus) >> 1);
b396f523
MG
9169 }
9170
9171 /* Consider allowing a small imbalance between NUMA groups */
7d2b5dd0 9172 if (env->sd->flags & SD_NUMA) {
fb86f5b2 9173 env->imbalance = adjust_numa_imbalance(env->imbalance,
7d2b5dd0
MG
9174 busiest->sum_nr_running, busiest->group_weight);
9175 }
b396f523 9176
fcf0553d 9177 return;
1e3c88bd
PZ
9178 }
9179
9a5d9ba6 9180 /*
0b0695f2
VG
9181 * Local is fully busy but has to take more load to relieve the
9182 * busiest group
9a5d9ba6 9183 */
0b0695f2
VG
9184 if (local->group_type < group_overloaded) {
9185 /*
9186 * Local will become overloaded so the avg_load metrics are
9187 * finally needed.
9188 */
9189
9190 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9191 local->group_capacity;
9192
9193 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9194 sds->total_capacity;
111688ca
AL
9195 /*
9196 * If the local group is more loaded than the selected
9197 * busiest group don't try to pull any tasks.
9198 */
9199 if (local->avg_load >= busiest->avg_load) {
9200 env->imbalance = 0;
9201 return;
9202 }
dd5feea1
SS
9203 }
9204
9205 /*
0b0695f2
VG
9206 * Both group are or will become overloaded and we're trying to get all
9207 * the CPUs to the average_load, so we don't want to push ourselves
9208 * above the average load, nor do we wish to reduce the max loaded CPU
9209 * below the average load. At the same time, we also don't want to
9210 * reduce the group load below the group capacity. Thus we look for
9211 * the minimum possible imbalance.
dd5feea1 9212 */
0b0695f2 9213 env->migration_type = migrate_load;
56cf515b 9214 env->imbalance = min(
0b0695f2 9215 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9216 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9217 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9218}
fab47622 9219
1e3c88bd
PZ
9220/******* find_busiest_group() helpers end here *********************/
9221
0b0695f2
VG
9222/*
9223 * Decision matrix according to the local and busiest group type:
9224 *
9225 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9226 * has_spare nr_idle balanced N/A N/A balanced balanced
9227 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9228 * misfit_task force N/A N/A N/A force force
9229 * asym_packing force force N/A N/A force force
9230 * imbalanced force force N/A N/A force force
9231 * overloaded force force N/A N/A force avg_load
9232 *
9233 * N/A : Not Applicable because already filtered while updating
9234 * statistics.
9235 * balanced : The system is balanced for these 2 groups.
9236 * force : Calculate the imbalance as load migration is probably needed.
9237 * avg_load : Only if imbalance is significant enough.
9238 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9239 * different in groups.
9240 */
9241
1e3c88bd
PZ
9242/**
9243 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9244 * if there is an imbalance.
1e3c88bd 9245 *
a3df0679 9246 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9247 * to restore balance.
9248 *
cd96891d 9249 * @env: The load balancing environment.
1e3c88bd 9250 *
e69f6186 9251 * Return: - The busiest group if imbalance exists.
1e3c88bd 9252 */
56cf515b 9253static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9254{
56cf515b 9255 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9256 struct sd_lb_stats sds;
9257
147c5fc2 9258 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9259
9260 /*
b0fb1eb4 9261 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9262 * this level.
9263 */
23f0d209 9264 update_sd_lb_stats(env, &sds);
2802bf3c 9265
f8a696f2 9266 if (sched_energy_enabled()) {
2802bf3c
MR
9267 struct root_domain *rd = env->dst_rq->rd;
9268
9269 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9270 goto out_balanced;
9271 }
9272
56cf515b
JK
9273 local = &sds.local_stat;
9274 busiest = &sds.busiest_stat;
1e3c88bd 9275
cc57aa8f 9276 /* There is no busy sibling group to pull tasks from */
0b0695f2 9277 if (!sds.busiest)
1e3c88bd
PZ
9278 goto out_balanced;
9279
0b0695f2
VG
9280 /* Misfit tasks should be dealt with regardless of the avg load */
9281 if (busiest->group_type == group_misfit_task)
9282 goto force_balance;
9283
9284 /* ASYM feature bypasses nice load balance check */
9285 if (busiest->group_type == group_asym_packing)
9286 goto force_balance;
b0432d8f 9287
866ab43e
PZ
9288 /*
9289 * If the busiest group is imbalanced the below checks don't
30ce5dab 9290 * work because they assume all things are equal, which typically
3bd37062 9291 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9292 */
caeb178c 9293 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9294 goto force_balance;
9295
cc57aa8f 9296 /*
9c58c79a 9297 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9298 * don't try and pull any tasks.
9299 */
0b0695f2 9300 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9301 goto out_balanced;
9302
cc57aa8f 9303 /*
0b0695f2
VG
9304 * When groups are overloaded, use the avg_load to ensure fairness
9305 * between tasks.
cc57aa8f 9306 */
0b0695f2
VG
9307 if (local->group_type == group_overloaded) {
9308 /*
9309 * If the local group is more loaded than the selected
9310 * busiest group don't try to pull any tasks.
9311 */
9312 if (local->avg_load >= busiest->avg_load)
9313 goto out_balanced;
9314
9315 /* XXX broken for overlapping NUMA groups */
9316 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9317 sds.total_capacity;
1e3c88bd 9318
aae6d3dd 9319 /*
0b0695f2
VG
9320 * Don't pull any tasks if this group is already above the
9321 * domain average load.
aae6d3dd 9322 */
0b0695f2 9323 if (local->avg_load >= sds.avg_load)
aae6d3dd 9324 goto out_balanced;
0b0695f2 9325
c186fafe 9326 /*
0b0695f2
VG
9327 * If the busiest group is more loaded, use imbalance_pct to be
9328 * conservative.
c186fafe 9329 */
56cf515b
JK
9330 if (100 * busiest->avg_load <=
9331 env->sd->imbalance_pct * local->avg_load)
c186fafe 9332 goto out_balanced;
aae6d3dd 9333 }
1e3c88bd 9334
0b0695f2
VG
9335 /* Try to move all excess tasks to child's sibling domain */
9336 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9337 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9338 goto force_balance;
9339
2ab4092f
VG
9340 if (busiest->group_type != group_overloaded) {
9341 if (env->idle == CPU_NOT_IDLE)
9342 /*
9343 * If the busiest group is not overloaded (and as a
9344 * result the local one too) but this CPU is already
9345 * busy, let another idle CPU try to pull task.
9346 */
9347 goto out_balanced;
9348
9349 if (busiest->group_weight > 1 &&
9350 local->idle_cpus <= (busiest->idle_cpus + 1))
9351 /*
9352 * If the busiest group is not overloaded
9353 * and there is no imbalance between this and busiest
9354 * group wrt idle CPUs, it is balanced. The imbalance
9355 * becomes significant if the diff is greater than 1
9356 * otherwise we might end up to just move the imbalance
9357 * on another group. Of course this applies only if
9358 * there is more than 1 CPU per group.
9359 */
9360 goto out_balanced;
9361
9362 if (busiest->sum_h_nr_running == 1)
9363 /*
9364 * busiest doesn't have any tasks waiting to run
9365 */
9366 goto out_balanced;
9367 }
0b0695f2 9368
fab47622 9369force_balance:
1e3c88bd 9370 /* Looks like there is an imbalance. Compute it */
bd939f45 9371 calculate_imbalance(env, &sds);
bb3485c8 9372 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9373
9374out_balanced:
bd939f45 9375 env->imbalance = 0;
1e3c88bd
PZ
9376 return NULL;
9377}
9378
9379/*
97fb7a0a 9380 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9381 */
bd939f45 9382static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9383 struct sched_group *group)
1e3c88bd
PZ
9384{
9385 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9386 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9387 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9388 int i;
9389
ae4df9d6 9390 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9391 unsigned long capacity, load, util;
9392 unsigned int nr_running;
0ec8aa00
PZ
9393 enum fbq_type rt;
9394
9395 rq = cpu_rq(i);
9396 rt = fbq_classify_rq(rq);
1e3c88bd 9397
0ec8aa00
PZ
9398 /*
9399 * We classify groups/runqueues into three groups:
9400 * - regular: there are !numa tasks
9401 * - remote: there are numa tasks that run on the 'wrong' node
9402 * - all: there is no distinction
9403 *
9404 * In order to avoid migrating ideally placed numa tasks,
9405 * ignore those when there's better options.
9406 *
9407 * If we ignore the actual busiest queue to migrate another
9408 * task, the next balance pass can still reduce the busiest
9409 * queue by moving tasks around inside the node.
9410 *
9411 * If we cannot move enough load due to this classification
9412 * the next pass will adjust the group classification and
9413 * allow migration of more tasks.
9414 *
9415 * Both cases only affect the total convergence complexity.
9416 */
9417 if (rt > env->fbq_type)
9418 continue;
9419
0b0695f2 9420 nr_running = rq->cfs.h_nr_running;
fc488ffd
VG
9421 if (!nr_running)
9422 continue;
9423
9424 capacity = capacity_of(i);
9d5efe05 9425
4ad3831a
CR
9426 /*
9427 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9428 * eventually lead to active_balancing high->low capacity.
9429 * Higher per-CPU capacity is considered better than balancing
9430 * average load.
9431 */
9432 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
4aed8aa4 9433 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
0b0695f2 9434 nr_running == 1)
4ad3831a
CR
9435 continue;
9436
0b0695f2
VG
9437 switch (env->migration_type) {
9438 case migrate_load:
9439 /*
b0fb1eb4
VG
9440 * When comparing with load imbalance, use cpu_load()
9441 * which is not scaled with the CPU capacity.
0b0695f2 9442 */
b0fb1eb4 9443 load = cpu_load(rq);
1e3c88bd 9444
0b0695f2
VG
9445 if (nr_running == 1 && load > env->imbalance &&
9446 !check_cpu_capacity(rq, env->sd))
9447 break;
ea67821b 9448
0b0695f2
VG
9449 /*
9450 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9451 * consider the cpu_load() scaled with the CPU
9452 * capacity, so that the load can be moved away
9453 * from the CPU that is potentially running at a
9454 * lower capacity.
0b0695f2
VG
9455 *
9456 * Thus we're looking for max(load_i / capacity_i),
9457 * crosswise multiplication to rid ourselves of the
9458 * division works out to:
9459 * load_i * capacity_j > load_j * capacity_i;
9460 * where j is our previous maximum.
9461 */
9462 if (load * busiest_capacity > busiest_load * capacity) {
9463 busiest_load = load;
9464 busiest_capacity = capacity;
9465 busiest = rq;
9466 }
9467 break;
9468
9469 case migrate_util:
9470 util = cpu_util(cpu_of(rq));
9471
c32b4308
VG
9472 /*
9473 * Don't try to pull utilization from a CPU with one
9474 * running task. Whatever its utilization, we will fail
9475 * detach the task.
9476 */
9477 if (nr_running <= 1)
9478 continue;
9479
0b0695f2
VG
9480 if (busiest_util < util) {
9481 busiest_util = util;
9482 busiest = rq;
9483 }
9484 break;
9485
9486 case migrate_task:
9487 if (busiest_nr < nr_running) {
9488 busiest_nr = nr_running;
9489 busiest = rq;
9490 }
9491 break;
9492
9493 case migrate_misfit:
9494 /*
9495 * For ASYM_CPUCAPACITY domains with misfit tasks we
9496 * simply seek the "biggest" misfit task.
9497 */
9498 if (rq->misfit_task_load > busiest_load) {
9499 busiest_load = rq->misfit_task_load;
9500 busiest = rq;
9501 }
9502
9503 break;
1e3c88bd 9504
1e3c88bd
PZ
9505 }
9506 }
9507
9508 return busiest;
9509}
9510
9511/*
9512 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9513 * so long as it is large enough.
9514 */
9515#define MAX_PINNED_INTERVAL 512
9516
46a745d9
VG
9517static inline bool
9518asym_active_balance(struct lb_env *env)
1af3ed3d 9519{
46a745d9
VG
9520 /*
9521 * ASYM_PACKING needs to force migrate tasks from busy but
9522 * lower priority CPUs in order to pack all tasks in the
9523 * highest priority CPUs.
9524 */
9525 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9526 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9527}
bd939f45 9528
46a745d9 9529static inline bool
e9b9734b
VG
9530imbalanced_active_balance(struct lb_env *env)
9531{
9532 struct sched_domain *sd = env->sd;
9533
9534 /*
9535 * The imbalanced case includes the case of pinned tasks preventing a fair
9536 * distribution of the load on the system but also the even distribution of the
9537 * threads on a system with spare capacity
9538 */
9539 if ((env->migration_type == migrate_task) &&
9540 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9541 return 1;
9542
9543 return 0;
9544}
9545
9546static int need_active_balance(struct lb_env *env)
46a745d9
VG
9547{
9548 struct sched_domain *sd = env->sd;
532cb4c4 9549
46a745d9
VG
9550 if (asym_active_balance(env))
9551 return 1;
1af3ed3d 9552
e9b9734b
VG
9553 if (imbalanced_active_balance(env))
9554 return 1;
9555
1aaf90a4
VG
9556 /*
9557 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9558 * It's worth migrating the task if the src_cpu's capacity is reduced
9559 * because of other sched_class or IRQs if more capacity stays
9560 * available on dst_cpu.
9561 */
9562 if ((env->idle != CPU_NOT_IDLE) &&
9563 (env->src_rq->cfs.h_nr_running == 1)) {
9564 if ((check_cpu_capacity(env->src_rq, sd)) &&
9565 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9566 return 1;
9567 }
9568
0b0695f2 9569 if (env->migration_type == migrate_misfit)
cad68e55
MR
9570 return 1;
9571
46a745d9
VG
9572 return 0;
9573}
9574
969c7921
TH
9575static int active_load_balance_cpu_stop(void *data);
9576
23f0d209
JK
9577static int should_we_balance(struct lb_env *env)
9578{
9579 struct sched_group *sg = env->sd->groups;
64297f2b 9580 int cpu;
23f0d209 9581
024c9d2f
PZ
9582 /*
9583 * Ensure the balancing environment is consistent; can happen
9584 * when the softirq triggers 'during' hotplug.
9585 */
9586 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9587 return 0;
9588
23f0d209 9589 /*
97fb7a0a 9590 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9591 * to do the newly idle load balance.
9592 */
9593 if (env->idle == CPU_NEWLY_IDLE)
9594 return 1;
9595
97fb7a0a 9596 /* Try to find first idle CPU */
e5c14b1f 9597 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9598 if (!idle_cpu(cpu))
23f0d209
JK
9599 continue;
9600
64297f2b
PW
9601 /* Are we the first idle CPU? */
9602 return cpu == env->dst_cpu;
23f0d209
JK
9603 }
9604
64297f2b
PW
9605 /* Are we the first CPU of this group ? */
9606 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9607}
9608
1e3c88bd
PZ
9609/*
9610 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9611 * tasks if there is an imbalance.
9612 */
9613static int load_balance(int this_cpu, struct rq *this_rq,
9614 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9615 int *continue_balancing)
1e3c88bd 9616{
88b8dac0 9617 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9618 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9619 struct sched_group *group;
1e3c88bd 9620 struct rq *busiest;
8a8c69c3 9621 struct rq_flags rf;
4ba29684 9622 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9623
8e45cb54
PZ
9624 struct lb_env env = {
9625 .sd = sd,
ddcdf6e7
PZ
9626 .dst_cpu = this_cpu,
9627 .dst_rq = this_rq,
ae4df9d6 9628 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9629 .idle = idle,
eb95308e 9630 .loop_break = sched_nr_migrate_break,
b9403130 9631 .cpus = cpus,
0ec8aa00 9632 .fbq_type = all,
163122b7 9633 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9634 };
9635
65a4433a 9636 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9637
ae92882e 9638 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9639
9640redo:
23f0d209
JK
9641 if (!should_we_balance(&env)) {
9642 *continue_balancing = 0;
1e3c88bd 9643 goto out_balanced;
23f0d209 9644 }
1e3c88bd 9645
23f0d209 9646 group = find_busiest_group(&env);
1e3c88bd 9647 if (!group) {
ae92882e 9648 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9649 goto out_balanced;
9650 }
9651
b9403130 9652 busiest = find_busiest_queue(&env, group);
1e3c88bd 9653 if (!busiest) {
ae92882e 9654 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9655 goto out_balanced;
9656 }
9657
78feefc5 9658 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9659
ae92882e 9660 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9661
1aaf90a4
VG
9662 env.src_cpu = busiest->cpu;
9663 env.src_rq = busiest;
9664
1e3c88bd 9665 ld_moved = 0;
8a41dfcd
VG
9666 /* Clear this flag as soon as we find a pullable task */
9667 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9668 if (busiest->nr_running > 1) {
9669 /*
9670 * Attempt to move tasks. If find_busiest_group has found
9671 * an imbalance but busiest->nr_running <= 1, the group is
9672 * still unbalanced. ld_moved simply stays zero, so it is
9673 * correctly treated as an imbalance.
9674 */
c82513e5 9675 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9676
5d6523eb 9677more_balance:
8a8c69c3 9678 rq_lock_irqsave(busiest, &rf);
3bed5e21 9679 update_rq_clock(busiest);
88b8dac0
SV
9680
9681 /*
9682 * cur_ld_moved - load moved in current iteration
9683 * ld_moved - cumulative load moved across iterations
9684 */
163122b7 9685 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9686
9687 /*
163122b7
KT
9688 * We've detached some tasks from busiest_rq. Every
9689 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9690 * unlock busiest->lock, and we are able to be sure
9691 * that nobody can manipulate the tasks in parallel.
9692 * See task_rq_lock() family for the details.
1e3c88bd 9693 */
163122b7 9694
8a8c69c3 9695 rq_unlock(busiest, &rf);
163122b7
KT
9696
9697 if (cur_ld_moved) {
9698 attach_tasks(&env);
9699 ld_moved += cur_ld_moved;
9700 }
9701
8a8c69c3 9702 local_irq_restore(rf.flags);
88b8dac0 9703
f1cd0858
JK
9704 if (env.flags & LBF_NEED_BREAK) {
9705 env.flags &= ~LBF_NEED_BREAK;
9706 goto more_balance;
9707 }
9708
88b8dac0
SV
9709 /*
9710 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9711 * us and move them to an alternate dst_cpu in our sched_group
9712 * where they can run. The upper limit on how many times we
97fb7a0a 9713 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9714 * sched_group.
9715 *
9716 * This changes load balance semantics a bit on who can move
9717 * load to a given_cpu. In addition to the given_cpu itself
9718 * (or a ilb_cpu acting on its behalf where given_cpu is
9719 * nohz-idle), we now have balance_cpu in a position to move
9720 * load to given_cpu. In rare situations, this may cause
9721 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9722 * _independently_ and at _same_ time to move some load to
3b03706f 9723 * given_cpu) causing excess load to be moved to given_cpu.
88b8dac0
SV
9724 * This however should not happen so much in practice and
9725 * moreover subsequent load balance cycles should correct the
9726 * excess load moved.
9727 */
6263322c 9728 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9729
97fb7a0a 9730 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9731 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9732
78feefc5 9733 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9734 env.dst_cpu = env.new_dst_cpu;
6263322c 9735 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9736 env.loop = 0;
9737 env.loop_break = sched_nr_migrate_break;
e02e60c1 9738
88b8dac0
SV
9739 /*
9740 * Go back to "more_balance" rather than "redo" since we
9741 * need to continue with same src_cpu.
9742 */
9743 goto more_balance;
9744 }
1e3c88bd 9745
6263322c
PZ
9746 /*
9747 * We failed to reach balance because of affinity.
9748 */
9749 if (sd_parent) {
63b2ca30 9750 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9751
afdeee05 9752 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9753 *group_imbalance = 1;
6263322c
PZ
9754 }
9755
1e3c88bd 9756 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9757 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9758 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9759 /*
9760 * Attempting to continue load balancing at the current
9761 * sched_domain level only makes sense if there are
9762 * active CPUs remaining as possible busiest CPUs to
9763 * pull load from which are not contained within the
9764 * destination group that is receiving any migrated
9765 * load.
9766 */
9767 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9768 env.loop = 0;
9769 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9770 goto redo;
bbf18b19 9771 }
afdeee05 9772 goto out_all_pinned;
1e3c88bd
PZ
9773 }
9774 }
9775
9776 if (!ld_moved) {
ae92882e 9777 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9778 /*
9779 * Increment the failure counter only on periodic balance.
9780 * We do not want newidle balance, which can be very
9781 * frequent, pollute the failure counter causing
9782 * excessive cache_hot migrations and active balances.
9783 */
9784 if (idle != CPU_NEWLY_IDLE)
9785 sd->nr_balance_failed++;
1e3c88bd 9786
bd939f45 9787 if (need_active_balance(&env)) {
8a8c69c3
PZ
9788 unsigned long flags;
9789
1e3c88bd
PZ
9790 raw_spin_lock_irqsave(&busiest->lock, flags);
9791
97fb7a0a
IM
9792 /*
9793 * Don't kick the active_load_balance_cpu_stop,
9794 * if the curr task on busiest CPU can't be
9795 * moved to this_cpu:
1e3c88bd 9796 */
3bd37062 9797 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9798 raw_spin_unlock_irqrestore(&busiest->lock,
9799 flags);
1e3c88bd
PZ
9800 goto out_one_pinned;
9801 }
9802
8a41dfcd
VG
9803 /* Record that we found at least one task that could run on this_cpu */
9804 env.flags &= ~LBF_ALL_PINNED;
9805
969c7921
TH
9806 /*
9807 * ->active_balance synchronizes accesses to
9808 * ->active_balance_work. Once set, it's cleared
9809 * only after active load balance is finished.
9810 */
1e3c88bd
PZ
9811 if (!busiest->active_balance) {
9812 busiest->active_balance = 1;
9813 busiest->push_cpu = this_cpu;
9814 active_balance = 1;
9815 }
9816 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9817
bd939f45 9818 if (active_balance) {
969c7921
TH
9819 stop_one_cpu_nowait(cpu_of(busiest),
9820 active_load_balance_cpu_stop, busiest,
9821 &busiest->active_balance_work);
bd939f45 9822 }
1e3c88bd 9823 }
e9b9734b 9824 } else {
1e3c88bd 9825 sd->nr_balance_failed = 0;
e9b9734b 9826 }
1e3c88bd 9827
e9b9734b 9828 if (likely(!active_balance) || need_active_balance(&env)) {
1e3c88bd
PZ
9829 /* We were unbalanced, so reset the balancing interval */
9830 sd->balance_interval = sd->min_interval;
1e3c88bd
PZ
9831 }
9832
1e3c88bd
PZ
9833 goto out;
9834
9835out_balanced:
afdeee05
VG
9836 /*
9837 * We reach balance although we may have faced some affinity
f6cad8df
VG
9838 * constraints. Clear the imbalance flag only if other tasks got
9839 * a chance to move and fix the imbalance.
afdeee05 9840 */
f6cad8df 9841 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9842 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9843
9844 if (*group_imbalance)
9845 *group_imbalance = 0;
9846 }
9847
9848out_all_pinned:
9849 /*
9850 * We reach balance because all tasks are pinned at this level so
9851 * we can't migrate them. Let the imbalance flag set so parent level
9852 * can try to migrate them.
9853 */
ae92882e 9854 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9855
9856 sd->nr_balance_failed = 0;
9857
9858out_one_pinned:
3f130a37
VS
9859 ld_moved = 0;
9860
9861 /*
5ba553ef
PZ
9862 * newidle_balance() disregards balance intervals, so we could
9863 * repeatedly reach this code, which would lead to balance_interval
3b03706f 9864 * skyrocketing in a short amount of time. Skip the balance_interval
5ba553ef 9865 * increase logic to avoid that.
3f130a37
VS
9866 */
9867 if (env.idle == CPU_NEWLY_IDLE)
9868 goto out;
9869
1e3c88bd 9870 /* tune up the balancing interval */
47b7aee1
VS
9871 if ((env.flags & LBF_ALL_PINNED &&
9872 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9873 sd->balance_interval < sd->max_interval)
1e3c88bd 9874 sd->balance_interval *= 2;
1e3c88bd 9875out:
1e3c88bd
PZ
9876 return ld_moved;
9877}
9878
52a08ef1
JL
9879static inline unsigned long
9880get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9881{
9882 unsigned long interval = sd->balance_interval;
9883
9884 if (cpu_busy)
9885 interval *= sd->busy_factor;
9886
9887 /* scale ms to jiffies */
9888 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
9889
9890 /*
9891 * Reduce likelihood of busy balancing at higher domains racing with
9892 * balancing at lower domains by preventing their balancing periods
9893 * from being multiples of each other.
9894 */
9895 if (cpu_busy)
9896 interval -= 1;
9897
52a08ef1
JL
9898 interval = clamp(interval, 1UL, max_load_balance_interval);
9899
9900 return interval;
9901}
9902
9903static inline void
31851a98 9904update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9905{
9906 unsigned long interval, next;
9907
31851a98
LY
9908 /* used by idle balance, so cpu_busy = 0 */
9909 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9910 next = sd->last_balance + interval;
9911
9912 if (time_after(*next_balance, next))
9913 *next_balance = next;
9914}
9915
1e3c88bd 9916/*
97fb7a0a 9917 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9918 * running tasks off the busiest CPU onto idle CPUs. It requires at
9919 * least 1 task to be running on each physical CPU where possible, and
9920 * avoids physical / logical imbalances.
1e3c88bd 9921 */
969c7921 9922static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9923{
969c7921
TH
9924 struct rq *busiest_rq = data;
9925 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9926 int target_cpu = busiest_rq->push_cpu;
969c7921 9927 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9928 struct sched_domain *sd;
e5673f28 9929 struct task_struct *p = NULL;
8a8c69c3 9930 struct rq_flags rf;
969c7921 9931
8a8c69c3 9932 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9933 /*
9934 * Between queueing the stop-work and running it is a hole in which
9935 * CPUs can become inactive. We should not move tasks from or to
9936 * inactive CPUs.
9937 */
9938 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9939 goto out_unlock;
969c7921 9940
97fb7a0a 9941 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9942 if (unlikely(busiest_cpu != smp_processor_id() ||
9943 !busiest_rq->active_balance))
9944 goto out_unlock;
1e3c88bd
PZ
9945
9946 /* Is there any task to move? */
9947 if (busiest_rq->nr_running <= 1)
969c7921 9948 goto out_unlock;
1e3c88bd
PZ
9949
9950 /*
9951 * This condition is "impossible", if it occurs
9952 * we need to fix it. Originally reported by
97fb7a0a 9953 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9954 */
9955 BUG_ON(busiest_rq == target_rq);
9956
1e3c88bd 9957 /* Search for an sd spanning us and the target CPU. */
dce840a0 9958 rcu_read_lock();
1e3c88bd 9959 for_each_domain(target_cpu, sd) {
e669ac8a
VS
9960 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9961 break;
1e3c88bd
PZ
9962 }
9963
9964 if (likely(sd)) {
8e45cb54
PZ
9965 struct lb_env env = {
9966 .sd = sd,
ddcdf6e7
PZ
9967 .dst_cpu = target_cpu,
9968 .dst_rq = target_rq,
9969 .src_cpu = busiest_rq->cpu,
9970 .src_rq = busiest_rq,
8e45cb54 9971 .idle = CPU_IDLE,
23fb06d9 9972 .flags = LBF_ACTIVE_LB,
8e45cb54
PZ
9973 };
9974
ae92882e 9975 schedstat_inc(sd->alb_count);
3bed5e21 9976 update_rq_clock(busiest_rq);
1e3c88bd 9977
e5673f28 9978 p = detach_one_task(&env);
d02c0711 9979 if (p) {
ae92882e 9980 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9981 /* Active balancing done, reset the failure counter. */
9982 sd->nr_balance_failed = 0;
9983 } else {
ae92882e 9984 schedstat_inc(sd->alb_failed);
d02c0711 9985 }
1e3c88bd 9986 }
dce840a0 9987 rcu_read_unlock();
969c7921
TH
9988out_unlock:
9989 busiest_rq->active_balance = 0;
8a8c69c3 9990 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9991
9992 if (p)
9993 attach_one_task(target_rq, p);
9994
9995 local_irq_enable();
9996
969c7921 9997 return 0;
1e3c88bd
PZ
9998}
9999
af3fe03c
PZ
10000static DEFINE_SPINLOCK(balancing);
10001
10002/*
10003 * Scale the max load_balance interval with the number of CPUs in the system.
10004 * This trades load-balance latency on larger machines for less cross talk.
10005 */
10006void update_max_interval(void)
10007{
10008 max_load_balance_interval = HZ*num_online_cpus()/10;
10009}
10010
10011/*
10012 * It checks each scheduling domain to see if it is due to be balanced,
10013 * and initiates a balancing operation if so.
10014 *
10015 * Balancing parameters are set up in init_sched_domains.
10016 */
10017static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10018{
10019 int continue_balancing = 1;
10020 int cpu = rq->cpu;
323af6de 10021 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10022 unsigned long interval;
10023 struct sched_domain *sd;
10024 /* Earliest time when we have to do rebalance again */
10025 unsigned long next_balance = jiffies + 60*HZ;
10026 int update_next_balance = 0;
10027 int need_serialize, need_decay = 0;
10028 u64 max_cost = 0;
10029
10030 rcu_read_lock();
10031 for_each_domain(cpu, sd) {
10032 /*
10033 * Decay the newidle max times here because this is a regular
10034 * visit to all the domains. Decay ~1% per second.
10035 */
10036 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10037 sd->max_newidle_lb_cost =
10038 (sd->max_newidle_lb_cost * 253) / 256;
10039 sd->next_decay_max_lb_cost = jiffies + HZ;
10040 need_decay = 1;
10041 }
10042 max_cost += sd->max_newidle_lb_cost;
10043
af3fe03c
PZ
10044 /*
10045 * Stop the load balance at this level. There is another
10046 * CPU in our sched group which is doing load balancing more
10047 * actively.
10048 */
10049 if (!continue_balancing) {
10050 if (need_decay)
10051 continue;
10052 break;
10053 }
10054
323af6de 10055 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10056
10057 need_serialize = sd->flags & SD_SERIALIZE;
10058 if (need_serialize) {
10059 if (!spin_trylock(&balancing))
10060 goto out;
10061 }
10062
10063 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10064 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10065 /*
10066 * The LBF_DST_PINNED logic could have changed
10067 * env->dst_cpu, so we can't know our idle
10068 * state even if we migrated tasks. Update it.
10069 */
10070 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 10071 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10072 }
10073 sd->last_balance = jiffies;
323af6de 10074 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10075 }
10076 if (need_serialize)
10077 spin_unlock(&balancing);
10078out:
10079 if (time_after(next_balance, sd->last_balance + interval)) {
10080 next_balance = sd->last_balance + interval;
10081 update_next_balance = 1;
10082 }
10083 }
10084 if (need_decay) {
10085 /*
10086 * Ensure the rq-wide value also decays but keep it at a
10087 * reasonable floor to avoid funnies with rq->avg_idle.
10088 */
10089 rq->max_idle_balance_cost =
10090 max((u64)sysctl_sched_migration_cost, max_cost);
10091 }
10092 rcu_read_unlock();
10093
10094 /*
10095 * next_balance will be updated only when there is a need.
10096 * When the cpu is attached to null domain for ex, it will not be
10097 * updated.
10098 */
7a82e5f5 10099 if (likely(update_next_balance))
af3fe03c
PZ
10100 rq->next_balance = next_balance;
10101
af3fe03c
PZ
10102}
10103
d987fc7f
MG
10104static inline int on_null_domain(struct rq *rq)
10105{
10106 return unlikely(!rcu_dereference_sched(rq->sd));
10107}
10108
3451d024 10109#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10110/*
10111 * idle load balancing details
83cd4fe2
VP
10112 * - When one of the busy CPUs notice that there may be an idle rebalancing
10113 * needed, they will kick the idle load balancer, which then does idle
10114 * load balancing for all the idle CPUs.
9b019acb
NP
10115 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10116 * anywhere yet.
83cd4fe2 10117 */
1e3c88bd 10118
3dd0337d 10119static inline int find_new_ilb(void)
1e3c88bd 10120{
9b019acb 10121 int ilb;
1e3c88bd 10122
9b019acb
NP
10123 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10124 housekeeping_cpumask(HK_FLAG_MISC)) {
45da7a2b
PZ
10125
10126 if (ilb == smp_processor_id())
10127 continue;
10128
9b019acb
NP
10129 if (idle_cpu(ilb))
10130 return ilb;
10131 }
786d6dc7
SS
10132
10133 return nr_cpu_ids;
1e3c88bd 10134}
1e3c88bd 10135
83cd4fe2 10136/*
9b019acb
NP
10137 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10138 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10139 */
a4064fb6 10140static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10141{
10142 int ilb_cpu;
10143
3ea2f097
VG
10144 /*
10145 * Increase nohz.next_balance only when if full ilb is triggered but
10146 * not if we only update stats.
10147 */
10148 if (flags & NOHZ_BALANCE_KICK)
10149 nohz.next_balance = jiffies+1;
83cd4fe2 10150
3dd0337d 10151 ilb_cpu = find_new_ilb();
83cd4fe2 10152
0b005cf5
SS
10153 if (ilb_cpu >= nr_cpu_ids)
10154 return;
83cd4fe2 10155
19a1f5ec
PZ
10156 /*
10157 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10158 * the first flag owns it; cleared by nohz_csd_func().
10159 */
a4064fb6 10160 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10161 if (flags & NOHZ_KICK_MASK)
1c792db7 10162 return;
4550487a 10163
1c792db7 10164 /*
90b5363a 10165 * This way we generate an IPI on the target CPU which
1c792db7
SS
10166 * is idle. And the softirq performing nohz idle load balance
10167 * will be run before returning from the IPI.
10168 */
90b5363a 10169 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10170}
10171
10172/*
9f132742
VS
10173 * Current decision point for kicking the idle load balancer in the presence
10174 * of idle CPUs in the system.
4550487a
PZ
10175 */
10176static void nohz_balancer_kick(struct rq *rq)
10177{
10178 unsigned long now = jiffies;
10179 struct sched_domain_shared *sds;
10180 struct sched_domain *sd;
10181 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10182 unsigned int flags = 0;
4550487a
PZ
10183
10184 if (unlikely(rq->idle_balance))
10185 return;
10186
10187 /*
10188 * We may be recently in ticked or tickless idle mode. At the first
10189 * busy tick after returning from idle, we will update the busy stats.
10190 */
00357f5e 10191 nohz_balance_exit_idle(rq);
4550487a
PZ
10192
10193 /*
10194 * None are in tickless mode and hence no need for NOHZ idle load
10195 * balancing.
10196 */
10197 if (likely(!atomic_read(&nohz.nr_cpus)))
10198 return;
10199
f643ea22
VG
10200 if (READ_ONCE(nohz.has_blocked) &&
10201 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10202 flags = NOHZ_STATS_KICK;
10203
4550487a 10204 if (time_before(now, nohz.next_balance))
a4064fb6 10205 goto out;
4550487a 10206
a0fe2cf0 10207 if (rq->nr_running >= 2) {
a4064fb6 10208 flags = NOHZ_KICK_MASK;
4550487a
PZ
10209 goto out;
10210 }
10211
10212 rcu_read_lock();
4550487a
PZ
10213
10214 sd = rcu_dereference(rq->sd);
10215 if (sd) {
e25a7a94
VS
10216 /*
10217 * If there's a CFS task and the current CPU has reduced
10218 * capacity; kick the ILB to see if there's a better CPU to run
10219 * on.
10220 */
10221 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10222 flags = NOHZ_KICK_MASK;
4550487a
PZ
10223 goto unlock;
10224 }
10225 }
10226
011b27bb 10227 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10228 if (sd) {
b9a7b883
VS
10229 /*
10230 * When ASYM_PACKING; see if there's a more preferred CPU
10231 * currently idle; in which case, kick the ILB to move tasks
10232 * around.
10233 */
7edab78d 10234 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10235 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10236 flags = NOHZ_KICK_MASK;
4550487a
PZ
10237 goto unlock;
10238 }
10239 }
10240 }
b9a7b883 10241
a0fe2cf0
VS
10242 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10243 if (sd) {
10244 /*
10245 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10246 * to run the misfit task on.
10247 */
10248 if (check_misfit_status(rq, sd)) {
10249 flags = NOHZ_KICK_MASK;
10250 goto unlock;
10251 }
b9a7b883
VS
10252
10253 /*
10254 * For asymmetric systems, we do not want to nicely balance
10255 * cache use, instead we want to embrace asymmetry and only
10256 * ensure tasks have enough CPU capacity.
10257 *
10258 * Skip the LLC logic because it's not relevant in that case.
10259 */
10260 goto unlock;
a0fe2cf0
VS
10261 }
10262
b9a7b883
VS
10263 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10264 if (sds) {
e25a7a94 10265 /*
b9a7b883
VS
10266 * If there is an imbalance between LLC domains (IOW we could
10267 * increase the overall cache use), we need some less-loaded LLC
10268 * domain to pull some load. Likewise, we may need to spread
10269 * load within the current LLC domain (e.g. packed SMT cores but
10270 * other CPUs are idle). We can't really know from here how busy
10271 * the others are - so just get a nohz balance going if it looks
10272 * like this LLC domain has tasks we could move.
e25a7a94 10273 */
b9a7b883
VS
10274 nr_busy = atomic_read(&sds->nr_busy_cpus);
10275 if (nr_busy > 1) {
10276 flags = NOHZ_KICK_MASK;
10277 goto unlock;
4550487a
PZ
10278 }
10279 }
10280unlock:
10281 rcu_read_unlock();
10282out:
a4064fb6
PZ
10283 if (flags)
10284 kick_ilb(flags);
83cd4fe2
VP
10285}
10286
00357f5e 10287static void set_cpu_sd_state_busy(int cpu)
71325960 10288{
00357f5e 10289 struct sched_domain *sd;
a22e47a4 10290
00357f5e
PZ
10291 rcu_read_lock();
10292 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10293
00357f5e
PZ
10294 if (!sd || !sd->nohz_idle)
10295 goto unlock;
10296 sd->nohz_idle = 0;
10297
10298 atomic_inc(&sd->shared->nr_busy_cpus);
10299unlock:
10300 rcu_read_unlock();
71325960
SS
10301}
10302
00357f5e
PZ
10303void nohz_balance_exit_idle(struct rq *rq)
10304{
10305 SCHED_WARN_ON(rq != this_rq());
10306
10307 if (likely(!rq->nohz_tick_stopped))
10308 return;
10309
10310 rq->nohz_tick_stopped = 0;
10311 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10312 atomic_dec(&nohz.nr_cpus);
10313
10314 set_cpu_sd_state_busy(rq->cpu);
10315}
10316
10317static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10318{
10319 struct sched_domain *sd;
69e1e811 10320
69e1e811 10321 rcu_read_lock();
0e369d75 10322 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10323
10324 if (!sd || sd->nohz_idle)
10325 goto unlock;
10326 sd->nohz_idle = 1;
10327
0e369d75 10328 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10329unlock:
69e1e811
SS
10330 rcu_read_unlock();
10331}
10332
1e3c88bd 10333/*
97fb7a0a 10334 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10335 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10336 */
c1cc017c 10337void nohz_balance_enter_idle(int cpu)
1e3c88bd 10338{
00357f5e
PZ
10339 struct rq *rq = cpu_rq(cpu);
10340
10341 SCHED_WARN_ON(cpu != smp_processor_id());
10342
97fb7a0a 10343 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10344 if (!cpu_active(cpu))
10345 return;
10346
387bc8b5 10347 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10348 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10349 return;
10350
f643ea22
VG
10351 /*
10352 * Can be set safely without rq->lock held
10353 * If a clear happens, it will have evaluated last additions because
10354 * rq->lock is held during the check and the clear
10355 */
10356 rq->has_blocked_load = 1;
10357
10358 /*
10359 * The tick is still stopped but load could have been added in the
10360 * meantime. We set the nohz.has_blocked flag to trig a check of the
10361 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10362 * of nohz.has_blocked can only happen after checking the new load
10363 */
00357f5e 10364 if (rq->nohz_tick_stopped)
f643ea22 10365 goto out;
1e3c88bd 10366
97fb7a0a 10367 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10368 if (on_null_domain(rq))
d987fc7f
MG
10369 return;
10370
00357f5e
PZ
10371 rq->nohz_tick_stopped = 1;
10372
c1cc017c
AS
10373 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10374 atomic_inc(&nohz.nr_cpus);
00357f5e 10375
f643ea22
VG
10376 /*
10377 * Ensures that if nohz_idle_balance() fails to observe our
10378 * @idle_cpus_mask store, it must observe the @has_blocked
10379 * store.
10380 */
10381 smp_mb__after_atomic();
10382
00357f5e 10383 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10384
10385out:
10386 /*
10387 * Each time a cpu enter idle, we assume that it has blocked load and
10388 * enable the periodic update of the load of idle cpus
10389 */
10390 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10391}
1e3c88bd 10392
3f5ad914
Y
10393static bool update_nohz_stats(struct rq *rq)
10394{
10395 unsigned int cpu = rq->cpu;
10396
10397 if (!rq->has_blocked_load)
10398 return false;
10399
10400 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10401 return false;
10402
10403 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10404 return true;
10405
10406 update_blocked_averages(cpu);
10407
10408 return rq->has_blocked_load;
10409}
10410
1e3c88bd 10411/*
31e77c93
VG
10412 * Internal function that runs load balance for all idle cpus. The load balance
10413 * can be a simple update of blocked load or a complete load balance with
10414 * tasks movement depending of flags.
1e3c88bd 10415 */
ab2dde5e 10416static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
31e77c93 10417 enum cpu_idle_type idle)
83cd4fe2 10418{
c5afb6a8 10419 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10420 unsigned long now = jiffies;
10421 unsigned long next_balance = now + 60*HZ;
f643ea22 10422 bool has_blocked_load = false;
c5afb6a8 10423 int update_next_balance = 0;
b7031a02 10424 int this_cpu = this_rq->cpu;
b7031a02
PZ
10425 int balance_cpu;
10426 struct rq *rq;
83cd4fe2 10427
b7031a02 10428 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10429
f643ea22
VG
10430 /*
10431 * We assume there will be no idle load after this update and clear
10432 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10433 * set the has_blocked flag and trig another update of idle load.
10434 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10435 * setting the flag, we are sure to not clear the state and not
10436 * check the load of an idle cpu.
10437 */
10438 WRITE_ONCE(nohz.has_blocked, 0);
10439
10440 /*
10441 * Ensures that if we miss the CPU, we must see the has_blocked
10442 * store from nohz_balance_enter_idle().
10443 */
10444 smp_mb();
10445
7a82e5f5
VG
10446 /*
10447 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10448 * chance for other idle cpu to pull load.
10449 */
10450 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10451 if (!idle_cpu(balance_cpu))
83cd4fe2
VP
10452 continue;
10453
10454 /*
97fb7a0a
IM
10455 * If this CPU gets work to do, stop the load balancing
10456 * work being done for other CPUs. Next load
83cd4fe2
VP
10457 * balancing owner will pick it up.
10458 */
f643ea22
VG
10459 if (need_resched()) {
10460 has_blocked_load = true;
10461 goto abort;
10462 }
83cd4fe2 10463
5ed4f1d9
VG
10464 rq = cpu_rq(balance_cpu);
10465
64f84f27 10466 has_blocked_load |= update_nohz_stats(rq);
f643ea22 10467
ed61bbc6
TC
10468 /*
10469 * If time for next balance is due,
10470 * do the balance.
10471 */
10472 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10473 struct rq_flags rf;
10474
31e77c93 10475 rq_lock_irqsave(rq, &rf);
ed61bbc6 10476 update_rq_clock(rq);
31e77c93 10477 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10478
b7031a02
PZ
10479 if (flags & NOHZ_BALANCE_KICK)
10480 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10481 }
83cd4fe2 10482
c5afb6a8
VG
10483 if (time_after(next_balance, rq->next_balance)) {
10484 next_balance = rq->next_balance;
10485 update_next_balance = 1;
10486 }
83cd4fe2 10487 }
c5afb6a8 10488
3ea2f097
VG
10489 /*
10490 * next_balance will be updated only when there is a need.
10491 * When the CPU is attached to null domain for ex, it will not be
10492 * updated.
10493 */
10494 if (likely(update_next_balance))
10495 nohz.next_balance = next_balance;
10496
f643ea22
VG
10497 WRITE_ONCE(nohz.next_blocked,
10498 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10499
10500abort:
10501 /* There is still blocked load, enable periodic update */
10502 if (has_blocked_load)
10503 WRITE_ONCE(nohz.has_blocked, 1);
31e77c93
VG
10504}
10505
10506/*
10507 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10508 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10509 */
10510static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10511{
19a1f5ec 10512 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10513
19a1f5ec 10514 if (!flags)
31e77c93
VG
10515 return false;
10516
19a1f5ec 10517 this_rq->nohz_idle_balance = 0;
31e77c93 10518
19a1f5ec 10519 if (idle != CPU_IDLE)
31e77c93
VG
10520 return false;
10521
10522 _nohz_idle_balance(this_rq, flags, idle);
10523
b7031a02 10524 return true;
83cd4fe2 10525}
31e77c93 10526
c6f88654
VG
10527/*
10528 * Check if we need to run the ILB for updating blocked load before entering
10529 * idle state.
10530 */
10531void nohz_run_idle_balance(int cpu)
10532{
10533 unsigned int flags;
10534
10535 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10536
10537 /*
10538 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10539 * (ie NOHZ_STATS_KICK set) and will do the same.
10540 */
10541 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10542 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10543}
10544
31e77c93
VG
10545static void nohz_newidle_balance(struct rq *this_rq)
10546{
10547 int this_cpu = this_rq->cpu;
10548
10549 /*
10550 * This CPU doesn't want to be disturbed by scheduler
10551 * housekeeping
10552 */
10553 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10554 return;
10555
10556 /* Will wake up very soon. No time for doing anything else*/
10557 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10558 return;
10559
10560 /* Don't need to update blocked load of idle CPUs*/
10561 if (!READ_ONCE(nohz.has_blocked) ||
10562 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10563 return;
10564
31e77c93 10565 /*
c6f88654
VG
10566 * Set the need to trigger ILB in order to update blocked load
10567 * before entering idle state.
31e77c93 10568 */
c6f88654 10569 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
31e77c93
VG
10570}
10571
dd707247
PZ
10572#else /* !CONFIG_NO_HZ_COMMON */
10573static inline void nohz_balancer_kick(struct rq *rq) { }
10574
31e77c93 10575static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10576{
10577 return false;
10578}
31e77c93
VG
10579
10580static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10581#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10582
47ea5412 10583/*
5b78f2dc 10584 * newidle_balance is called by schedule() if this_cpu is about to become
47ea5412 10585 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10586 *
10587 * Returns:
10588 * < 0 - we released the lock and there are !fair tasks present
10589 * 0 - failed, no new tasks
10590 * > 0 - success, new (fair) tasks present
47ea5412 10591 */
d91cecc1 10592static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10593{
10594 unsigned long next_balance = jiffies + HZ;
10595 int this_cpu = this_rq->cpu;
10596 struct sched_domain *sd;
10597 int pulled_task = 0;
10598 u64 curr_cost = 0;
10599
5ba553ef 10600 update_misfit_status(NULL, this_rq);
47ea5412
PZ
10601 /*
10602 * We must set idle_stamp _before_ calling idle_balance(), such that we
10603 * measure the duration of idle_balance() as idle time.
10604 */
10605 this_rq->idle_stamp = rq_clock(this_rq);
10606
10607 /*
10608 * Do not pull tasks towards !active CPUs...
10609 */
10610 if (!cpu_active(this_cpu))
10611 return 0;
10612
10613 /*
10614 * This is OK, because current is on_cpu, which avoids it being picked
10615 * for load-balance and preemption/IRQs are still disabled avoiding
10616 * further scheduler activity on it and we're being very careful to
10617 * re-start the picking loop.
10618 */
10619 rq_unpin_lock(this_rq, rf);
10620
10621 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10622 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10623
47ea5412
PZ
10624 rcu_read_lock();
10625 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10626 if (sd)
10627 update_next_balance(sd, &next_balance);
10628 rcu_read_unlock();
10629
10630 goto out;
10631 }
10632
10633 raw_spin_unlock(&this_rq->lock);
10634
10635 update_blocked_averages(this_cpu);
10636 rcu_read_lock();
10637 for_each_domain(this_cpu, sd) {
10638 int continue_balancing = 1;
10639 u64 t0, domain_cost;
10640
47ea5412
PZ
10641 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10642 update_next_balance(sd, &next_balance);
10643 break;
10644 }
10645
10646 if (sd->flags & SD_BALANCE_NEWIDLE) {
10647 t0 = sched_clock_cpu(this_cpu);
10648
10649 pulled_task = load_balance(this_cpu, this_rq,
10650 sd, CPU_NEWLY_IDLE,
10651 &continue_balancing);
10652
10653 domain_cost = sched_clock_cpu(this_cpu) - t0;
10654 if (domain_cost > sd->max_newidle_lb_cost)
10655 sd->max_newidle_lb_cost = domain_cost;
10656
10657 curr_cost += domain_cost;
10658 }
10659
10660 update_next_balance(sd, &next_balance);
10661
10662 /*
10663 * Stop searching for tasks to pull if there are
10664 * now runnable tasks on this rq.
10665 */
10666 if (pulled_task || this_rq->nr_running > 0)
10667 break;
10668 }
10669 rcu_read_unlock();
10670
10671 raw_spin_lock(&this_rq->lock);
10672
10673 if (curr_cost > this_rq->max_idle_balance_cost)
10674 this_rq->max_idle_balance_cost = curr_cost;
10675
10676 /*
10677 * While browsing the domains, we released the rq lock, a task could
10678 * have been enqueued in the meantime. Since we're not going idle,
10679 * pretend we pulled a task.
10680 */
10681 if (this_rq->cfs.h_nr_running && !pulled_task)
10682 pulled_task = 1;
10683
47ea5412
PZ
10684 /* Is there a task of a high priority class? */
10685 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10686 pulled_task = -1;
10687
6553fc18
VG
10688out:
10689 /* Move the next balance forward */
10690 if (time_after(this_rq->next_balance, next_balance))
10691 this_rq->next_balance = next_balance;
10692
47ea5412
PZ
10693 if (pulled_task)
10694 this_rq->idle_stamp = 0;
0826530d
VG
10695 else
10696 nohz_newidle_balance(this_rq);
47ea5412
PZ
10697
10698 rq_repin_lock(this_rq, rf);
10699
10700 return pulled_task;
10701}
10702
83cd4fe2
VP
10703/*
10704 * run_rebalance_domains is triggered when needed from the scheduler tick.
10705 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10706 */
0766f788 10707static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10708{
208cb16b 10709 struct rq *this_rq = this_rq();
6eb57e0d 10710 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10711 CPU_IDLE : CPU_NOT_IDLE;
10712
1e3c88bd 10713 /*
97fb7a0a
IM
10714 * If this CPU has a pending nohz_balance_kick, then do the
10715 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10716 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10717 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10718 * load balance only within the local sched_domain hierarchy
10719 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10720 */
b7031a02
PZ
10721 if (nohz_idle_balance(this_rq, idle))
10722 return;
10723
10724 /* normal load balance */
10725 update_blocked_averages(this_rq->cpu);
d4573c3e 10726 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10727}
10728
1e3c88bd
PZ
10729/*
10730 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10731 */
7caff66f 10732void trigger_load_balance(struct rq *rq)
1e3c88bd 10733{
e0b257c3
AMB
10734 /*
10735 * Don't need to rebalance while attached to NULL domain or
10736 * runqueue CPU is not active
10737 */
10738 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
c726099e
DL
10739 return;
10740
10741 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10742 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10743
10744 nohz_balancer_kick(rq);
1e3c88bd
PZ
10745}
10746
0bcdcf28
CE
10747static void rq_online_fair(struct rq *rq)
10748{
10749 update_sysctl();
0e59bdae
KT
10750
10751 update_runtime_enabled(rq);
0bcdcf28
CE
10752}
10753
10754static void rq_offline_fair(struct rq *rq)
10755{
10756 update_sysctl();
a4c96ae3
PB
10757
10758 /* Ensure any throttled groups are reachable by pick_next_task */
10759 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10760}
10761
55e12e5e 10762#endif /* CONFIG_SMP */
e1d1484f 10763
bf0f6f24 10764/*
d84b3131
FW
10765 * scheduler tick hitting a task of our scheduling class.
10766 *
10767 * NOTE: This function can be called remotely by the tick offload that
10768 * goes along full dynticks. Therefore no local assumption can be made
10769 * and everything must be accessed through the @rq and @curr passed in
10770 * parameters.
bf0f6f24 10771 */
8f4d37ec 10772static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10773{
10774 struct cfs_rq *cfs_rq;
10775 struct sched_entity *se = &curr->se;
10776
10777 for_each_sched_entity(se) {
10778 cfs_rq = cfs_rq_of(se);
8f4d37ec 10779 entity_tick(cfs_rq, se, queued);
bf0f6f24 10780 }
18bf2805 10781
b52da86e 10782 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10783 task_tick_numa(rq, curr);
3b1baa64
MR
10784
10785 update_misfit_status(curr, rq);
2802bf3c 10786 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10787}
10788
10789/*
cd29fe6f
PZ
10790 * called on fork with the child task as argument from the parent's context
10791 * - child not yet on the tasklist
10792 * - preemption disabled
bf0f6f24 10793 */
cd29fe6f 10794static void task_fork_fair(struct task_struct *p)
bf0f6f24 10795{
4fc420c9
DN
10796 struct cfs_rq *cfs_rq;
10797 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10798 struct rq *rq = this_rq();
8a8c69c3 10799 struct rq_flags rf;
bf0f6f24 10800
8a8c69c3 10801 rq_lock(rq, &rf);
861d034e
PZ
10802 update_rq_clock(rq);
10803
4fc420c9
DN
10804 cfs_rq = task_cfs_rq(current);
10805 curr = cfs_rq->curr;
e210bffd
PZ
10806 if (curr) {
10807 update_curr(cfs_rq);
b5d9d734 10808 se->vruntime = curr->vruntime;
e210bffd 10809 }
aeb73b04 10810 place_entity(cfs_rq, se, 1);
4d78e7b6 10811
cd29fe6f 10812 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10813 /*
edcb60a3
IM
10814 * Upon rescheduling, sched_class::put_prev_task() will place
10815 * 'current' within the tree based on its new key value.
10816 */
4d78e7b6 10817 swap(curr->vruntime, se->vruntime);
8875125e 10818 resched_curr(rq);
4d78e7b6 10819 }
bf0f6f24 10820
88ec22d3 10821 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10822 rq_unlock(rq, &rf);
bf0f6f24
IM
10823}
10824
cb469845
SR
10825/*
10826 * Priority of the task has changed. Check to see if we preempt
10827 * the current task.
10828 */
da7a735e
PZ
10829static void
10830prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10831{
da0c1e65 10832 if (!task_on_rq_queued(p))
da7a735e
PZ
10833 return;
10834
7c2e8bbd
FW
10835 if (rq->cfs.nr_running == 1)
10836 return;
10837
cb469845
SR
10838 /*
10839 * Reschedule if we are currently running on this runqueue and
10840 * our priority decreased, or if we are not currently running on
10841 * this runqueue and our priority is higher than the current's
10842 */
65bcf072 10843 if (task_current(rq, p)) {
cb469845 10844 if (p->prio > oldprio)
8875125e 10845 resched_curr(rq);
cb469845 10846 } else
15afe09b 10847 check_preempt_curr(rq, p, 0);
cb469845
SR
10848}
10849
daa59407 10850static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10851{
10852 struct sched_entity *se = &p->se;
da7a735e
PZ
10853
10854 /*
daa59407
BP
10855 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10856 * the dequeue_entity(.flags=0) will already have normalized the
10857 * vruntime.
10858 */
10859 if (p->on_rq)
10860 return true;
10861
10862 /*
10863 * When !on_rq, vruntime of the task has usually NOT been normalized.
10864 * But there are some cases where it has already been normalized:
da7a735e 10865 *
daa59407
BP
10866 * - A forked child which is waiting for being woken up by
10867 * wake_up_new_task().
10868 * - A task which has been woken up by try_to_wake_up() and
10869 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10870 */
d0cdb3ce
SM
10871 if (!se->sum_exec_runtime ||
10872 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10873 return true;
10874
10875 return false;
10876}
10877
09a43ace
VG
10878#ifdef CONFIG_FAIR_GROUP_SCHED
10879/*
10880 * Propagate the changes of the sched_entity across the tg tree to make it
10881 * visible to the root
10882 */
10883static void propagate_entity_cfs_rq(struct sched_entity *se)
10884{
10885 struct cfs_rq *cfs_rq;
10886
0258bdfa
OU
10887 list_add_leaf_cfs_rq(cfs_rq_of(se));
10888
09a43ace
VG
10889 /* Start to propagate at parent */
10890 se = se->parent;
10891
10892 for_each_sched_entity(se) {
10893 cfs_rq = cfs_rq_of(se);
10894
0258bdfa
OU
10895 if (!cfs_rq_throttled(cfs_rq)){
10896 update_load_avg(cfs_rq, se, UPDATE_TG);
10897 list_add_leaf_cfs_rq(cfs_rq);
10898 continue;
10899 }
09a43ace 10900
0258bdfa
OU
10901 if (list_add_leaf_cfs_rq(cfs_rq))
10902 break;
09a43ace
VG
10903 }
10904}
10905#else
10906static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10907#endif
10908
df217913 10909static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10910{
daa59407
BP
10911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10912
9d89c257 10913 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10914 update_load_avg(cfs_rq, se, 0);
a05e8c51 10915 detach_entity_load_avg(cfs_rq, se);
fe749158 10916 update_tg_load_avg(cfs_rq);
09a43ace 10917 propagate_entity_cfs_rq(se);
da7a735e
PZ
10918}
10919
df217913 10920static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10921{
daa59407 10922 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10923
10924#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10925 /*
10926 * Since the real-depth could have been changed (only FAIR
10927 * class maintain depth value), reset depth properly.
10928 */
10929 se->depth = se->parent ? se->parent->depth + 1 : 0;
10930#endif
7855a35a 10931
df217913 10932 /* Synchronize entity with its cfs_rq */
88c0616e 10933 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 10934 attach_entity_load_avg(cfs_rq, se);
fe749158 10935 update_tg_load_avg(cfs_rq);
09a43ace 10936 propagate_entity_cfs_rq(se);
df217913
VG
10937}
10938
10939static void detach_task_cfs_rq(struct task_struct *p)
10940{
10941 struct sched_entity *se = &p->se;
10942 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10943
10944 if (!vruntime_normalized(p)) {
10945 /*
10946 * Fix up our vruntime so that the current sleep doesn't
10947 * cause 'unlimited' sleep bonus.
10948 */
10949 place_entity(cfs_rq, se, 0);
10950 se->vruntime -= cfs_rq->min_vruntime;
10951 }
10952
10953 detach_entity_cfs_rq(se);
10954}
10955
10956static void attach_task_cfs_rq(struct task_struct *p)
10957{
10958 struct sched_entity *se = &p->se;
10959 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10960
10961 attach_entity_cfs_rq(se);
daa59407
BP
10962
10963 if (!vruntime_normalized(p))
10964 se->vruntime += cfs_rq->min_vruntime;
10965}
6efdb105 10966
daa59407
BP
10967static void switched_from_fair(struct rq *rq, struct task_struct *p)
10968{
10969 detach_task_cfs_rq(p);
10970}
10971
10972static void switched_to_fair(struct rq *rq, struct task_struct *p)
10973{
10974 attach_task_cfs_rq(p);
7855a35a 10975
daa59407 10976 if (task_on_rq_queued(p)) {
7855a35a 10977 /*
daa59407
BP
10978 * We were most likely switched from sched_rt, so
10979 * kick off the schedule if running, otherwise just see
10980 * if we can still preempt the current task.
7855a35a 10981 */
65bcf072 10982 if (task_current(rq, p))
daa59407
BP
10983 resched_curr(rq);
10984 else
10985 check_preempt_curr(rq, p, 0);
7855a35a 10986 }
cb469845
SR
10987}
10988
83b699ed
SV
10989/* Account for a task changing its policy or group.
10990 *
10991 * This routine is mostly called to set cfs_rq->curr field when a task
10992 * migrates between groups/classes.
10993 */
a0e813f2 10994static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10995{
03b7fad1
PZ
10996 struct sched_entity *se = &p->se;
10997
10998#ifdef CONFIG_SMP
10999 if (task_on_rq_queued(p)) {
11000 /*
11001 * Move the next running task to the front of the list, so our
11002 * cfs_tasks list becomes MRU one.
11003 */
11004 list_move(&se->group_node, &rq->cfs_tasks);
11005 }
11006#endif
83b699ed 11007
ec12cb7f
PT
11008 for_each_sched_entity(se) {
11009 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11010
11011 set_next_entity(cfs_rq, se);
11012 /* ensure bandwidth has been allocated on our new cfs_rq */
11013 account_cfs_rq_runtime(cfs_rq, 0);
11014 }
83b699ed
SV
11015}
11016
029632fb
PZ
11017void init_cfs_rq(struct cfs_rq *cfs_rq)
11018{
bfb06889 11019 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
11020 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11021#ifndef CONFIG_64BIT
11022 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11023#endif
141965c7 11024#ifdef CONFIG_SMP
2a2f5d4e 11025 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 11026#endif
029632fb
PZ
11027}
11028
810b3817 11029#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
11030static void task_set_group_fair(struct task_struct *p)
11031{
11032 struct sched_entity *se = &p->se;
11033
11034 set_task_rq(p, task_cpu(p));
11035 se->depth = se->parent ? se->parent->depth + 1 : 0;
11036}
11037
bc54da21 11038static void task_move_group_fair(struct task_struct *p)
810b3817 11039{
daa59407 11040 detach_task_cfs_rq(p);
b2b5ce02 11041 set_task_rq(p, task_cpu(p));
6efdb105
BP
11042
11043#ifdef CONFIG_SMP
11044 /* Tell se's cfs_rq has been changed -- migrated */
11045 p->se.avg.last_update_time = 0;
11046#endif
daa59407 11047 attach_task_cfs_rq(p);
810b3817 11048}
029632fb 11049
ea86cb4b
VG
11050static void task_change_group_fair(struct task_struct *p, int type)
11051{
11052 switch (type) {
11053 case TASK_SET_GROUP:
11054 task_set_group_fair(p);
11055 break;
11056
11057 case TASK_MOVE_GROUP:
11058 task_move_group_fair(p);
11059 break;
11060 }
11061}
11062
029632fb
PZ
11063void free_fair_sched_group(struct task_group *tg)
11064{
11065 int i;
11066
11067 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11068
11069 for_each_possible_cpu(i) {
11070 if (tg->cfs_rq)
11071 kfree(tg->cfs_rq[i]);
6fe1f348 11072 if (tg->se)
029632fb
PZ
11073 kfree(tg->se[i]);
11074 }
11075
11076 kfree(tg->cfs_rq);
11077 kfree(tg->se);
11078}
11079
11080int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11081{
029632fb 11082 struct sched_entity *se;
b7fa30c9 11083 struct cfs_rq *cfs_rq;
029632fb
PZ
11084 int i;
11085
6396bb22 11086 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
11087 if (!tg->cfs_rq)
11088 goto err;
6396bb22 11089 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
11090 if (!tg->se)
11091 goto err;
11092
11093 tg->shares = NICE_0_LOAD;
11094
11095 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11096
11097 for_each_possible_cpu(i) {
11098 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11099 GFP_KERNEL, cpu_to_node(i));
11100 if (!cfs_rq)
11101 goto err;
11102
11103 se = kzalloc_node(sizeof(struct sched_entity),
11104 GFP_KERNEL, cpu_to_node(i));
11105 if (!se)
11106 goto err_free_rq;
11107
11108 init_cfs_rq(cfs_rq);
11109 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11110 init_entity_runnable_average(se);
029632fb
PZ
11111 }
11112
11113 return 1;
11114
11115err_free_rq:
11116 kfree(cfs_rq);
11117err:
11118 return 0;
11119}
11120
8663e24d
PZ
11121void online_fair_sched_group(struct task_group *tg)
11122{
11123 struct sched_entity *se;
a46d14ec 11124 struct rq_flags rf;
8663e24d
PZ
11125 struct rq *rq;
11126 int i;
11127
11128 for_each_possible_cpu(i) {
11129 rq = cpu_rq(i);
11130 se = tg->se[i];
a46d14ec 11131 rq_lock_irq(rq, &rf);
4126bad6 11132 update_rq_clock(rq);
d0326691 11133 attach_entity_cfs_rq(se);
55e16d30 11134 sync_throttle(tg, i);
a46d14ec 11135 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11136 }
11137}
11138
6fe1f348 11139void unregister_fair_sched_group(struct task_group *tg)
029632fb 11140{
029632fb 11141 unsigned long flags;
6fe1f348
PZ
11142 struct rq *rq;
11143 int cpu;
029632fb 11144
6fe1f348
PZ
11145 for_each_possible_cpu(cpu) {
11146 if (tg->se[cpu])
11147 remove_entity_load_avg(tg->se[cpu]);
029632fb 11148
6fe1f348
PZ
11149 /*
11150 * Only empty task groups can be destroyed; so we can speculatively
11151 * check on_list without danger of it being re-added.
11152 */
11153 if (!tg->cfs_rq[cpu]->on_list)
11154 continue;
11155
11156 rq = cpu_rq(cpu);
11157
11158 raw_spin_lock_irqsave(&rq->lock, flags);
11159 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11160 raw_spin_unlock_irqrestore(&rq->lock, flags);
11161 }
029632fb
PZ
11162}
11163
11164void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11165 struct sched_entity *se, int cpu,
11166 struct sched_entity *parent)
11167{
11168 struct rq *rq = cpu_rq(cpu);
11169
11170 cfs_rq->tg = tg;
11171 cfs_rq->rq = rq;
029632fb
PZ
11172 init_cfs_rq_runtime(cfs_rq);
11173
11174 tg->cfs_rq[cpu] = cfs_rq;
11175 tg->se[cpu] = se;
11176
11177 /* se could be NULL for root_task_group */
11178 if (!se)
11179 return;
11180
fed14d45 11181 if (!parent) {
029632fb 11182 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11183 se->depth = 0;
11184 } else {
029632fb 11185 se->cfs_rq = parent->my_q;
fed14d45
PZ
11186 se->depth = parent->depth + 1;
11187 }
029632fb
PZ
11188
11189 se->my_q = cfs_rq;
0ac9b1c2
PT
11190 /* guarantee group entities always have weight */
11191 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11192 se->parent = parent;
11193}
11194
11195static DEFINE_MUTEX(shares_mutex);
11196
11197int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11198{
11199 int i;
029632fb
PZ
11200
11201 /*
11202 * We can't change the weight of the root cgroup.
11203 */
11204 if (!tg->se[0])
11205 return -EINVAL;
11206
11207 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11208
11209 mutex_lock(&shares_mutex);
11210 if (tg->shares == shares)
11211 goto done;
11212
11213 tg->shares = shares;
11214 for_each_possible_cpu(i) {
11215 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11216 struct sched_entity *se = tg->se[i];
11217 struct rq_flags rf;
029632fb 11218
029632fb 11219 /* Propagate contribution to hierarchy */
8a8c69c3 11220 rq_lock_irqsave(rq, &rf);
71b1da46 11221 update_rq_clock(rq);
89ee048f 11222 for_each_sched_entity(se) {
88c0616e 11223 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11224 update_cfs_group(se);
89ee048f 11225 }
8a8c69c3 11226 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11227 }
11228
11229done:
11230 mutex_unlock(&shares_mutex);
11231 return 0;
11232}
11233#else /* CONFIG_FAIR_GROUP_SCHED */
11234
11235void free_fair_sched_group(struct task_group *tg) { }
11236
11237int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11238{
11239 return 1;
11240}
11241
8663e24d
PZ
11242void online_fair_sched_group(struct task_group *tg) { }
11243
6fe1f348 11244void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11245
11246#endif /* CONFIG_FAIR_GROUP_SCHED */
11247
810b3817 11248
6d686f45 11249static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11250{
11251 struct sched_entity *se = &task->se;
0d721cea
PW
11252 unsigned int rr_interval = 0;
11253
11254 /*
11255 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11256 * idle runqueue:
11257 */
0d721cea 11258 if (rq->cfs.load.weight)
a59f4e07 11259 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11260
11261 return rr_interval;
11262}
11263
bf0f6f24
IM
11264/*
11265 * All the scheduling class methods:
11266 */
43c31ac0
PZ
11267DEFINE_SCHED_CLASS(fair) = {
11268
bf0f6f24
IM
11269 .enqueue_task = enqueue_task_fair,
11270 .dequeue_task = dequeue_task_fair,
11271 .yield_task = yield_task_fair,
d95f4122 11272 .yield_to_task = yield_to_task_fair,
bf0f6f24 11273
2e09bf55 11274 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11275
98c2f700 11276 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11277 .put_prev_task = put_prev_task_fair,
03b7fad1 11278 .set_next_task = set_next_task_fair,
bf0f6f24 11279
681f3e68 11280#ifdef CONFIG_SMP
6e2df058 11281 .balance = balance_fair,
4ce72a2c 11282 .select_task_rq = select_task_rq_fair,
0a74bef8 11283 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11284
0bcdcf28
CE
11285 .rq_online = rq_online_fair,
11286 .rq_offline = rq_offline_fair,
88ec22d3 11287
12695578 11288 .task_dead = task_dead_fair,
c5b28038 11289 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11290#endif
bf0f6f24 11291
bf0f6f24 11292 .task_tick = task_tick_fair,
cd29fe6f 11293 .task_fork = task_fork_fair,
cb469845
SR
11294
11295 .prio_changed = prio_changed_fair,
da7a735e 11296 .switched_from = switched_from_fair,
cb469845 11297 .switched_to = switched_to_fair,
810b3817 11298
0d721cea
PW
11299 .get_rr_interval = get_rr_interval_fair,
11300
6e998916
SG
11301 .update_curr = update_curr_fair,
11302
810b3817 11303#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11304 .task_change_group = task_change_group_fair,
810b3817 11305#endif
982d9cdc
PB
11306
11307#ifdef CONFIG_UCLAMP_TASK
11308 .uclamp_enabled = 1,
11309#endif
bf0f6f24
IM
11310};
11311
11312#ifdef CONFIG_SCHED_DEBUG
029632fb 11313void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11314{
039ae8bc 11315 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11316
5973e5b9 11317 rcu_read_lock();
039ae8bc 11318 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11319 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11320 rcu_read_unlock();
bf0f6f24 11321}
397f2378
SD
11322
11323#ifdef CONFIG_NUMA_BALANCING
11324void show_numa_stats(struct task_struct *p, struct seq_file *m)
11325{
11326 int node;
11327 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11328 struct numa_group *ng;
397f2378 11329
cb361d8c
JH
11330 rcu_read_lock();
11331 ng = rcu_dereference(p->numa_group);
397f2378
SD
11332 for_each_online_node(node) {
11333 if (p->numa_faults) {
11334 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11335 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11336 }
cb361d8c
JH
11337 if (ng) {
11338 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11339 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11340 }
11341 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11342 }
cb361d8c 11343 rcu_read_unlock();
397f2378
SD
11344}
11345#endif /* CONFIG_NUMA_BALANCING */
11346#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11347
11348__init void init_sched_fair_class(void)
11349{
11350#ifdef CONFIG_SMP
11351 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11352
3451d024 11353#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11354 nohz.next_balance = jiffies;
f643ea22 11355 nohz.next_blocked = jiffies;
029632fb 11356 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11357#endif
11358#endif /* SMP */
11359
11360}
3c93a0c0
QY
11361
11362/*
11363 * Helper functions to facilitate extracting info from tracepoints.
11364 */
11365
11366const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11367{
11368#ifdef CONFIG_SMP
11369 return cfs_rq ? &cfs_rq->avg : NULL;
11370#else
11371 return NULL;
11372#endif
11373}
11374EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11375
11376char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11377{
11378 if (!cfs_rq) {
11379 if (str)
11380 strlcpy(str, "(null)", len);
11381 else
11382 return NULL;
11383 }
11384
11385 cfs_rq_tg_path(cfs_rq, str, len);
11386 return str;
11387}
11388EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11389
11390int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11391{
11392 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11393}
11394EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11395
11396const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11397{
11398#ifdef CONFIG_SMP
11399 return rq ? &rq->avg_rt : NULL;
11400#else
11401 return NULL;
11402#endif
11403}
11404EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11405
11406const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11407{
11408#ifdef CONFIG_SMP
11409 return rq ? &rq->avg_dl : NULL;
11410#else
11411 return NULL;
11412#endif
11413}
11414EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11415
11416const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11417{
11418#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11419 return rq ? &rq->avg_irq : NULL;
11420#else
11421 return NULL;
11422#endif
11423}
11424EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11425
11426int sched_trace_rq_cpu(struct rq *rq)
11427{
11428 return rq ? cpu_of(rq) : -1;
11429}
11430EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11431
51cf18c9
VD
11432int sched_trace_rq_cpu_capacity(struct rq *rq)
11433{
11434 return rq ?
11435#ifdef CONFIG_SMP
11436 rq->cpu_capacity
11437#else
11438 SCHED_CAPACITY_SCALE
11439#endif
11440 : -1;
11441}
11442EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11443
3c93a0c0
QY
11444const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11445{
11446#ifdef CONFIG_SMP
11447 return rd ? rd->span : NULL;
11448#else
11449 return NULL;
11450#endif
11451}
11452EXPORT_SYMBOL_GPL(sched_trace_rd_span);
9d246053
PA
11453
11454int sched_trace_rq_nr_running(struct rq *rq)
11455{
11456 return rq ? rq->nr_running : -1;
11457}
11458EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);