]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/fair.c
sched/fair: Fix PELT integrity for new groups
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
172895e6 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
a75cdaa9 738#else
540247fb 739void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
740{
741}
2b8c41da
YD
742void post_init_entity_util_avg(struct sched_entity *se)
743{
744}
a75cdaa9
AS
745#endif
746
bf0f6f24 747/*
9dbdb155 748 * Update the current task's runtime statistics.
bf0f6f24 749 */
b7cc0896 750static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 751{
429d43bc 752 struct sched_entity *curr = cfs_rq->curr;
78becc27 753 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 754 u64 delta_exec;
bf0f6f24
IM
755
756 if (unlikely(!curr))
757 return;
758
9dbdb155
PZ
759 delta_exec = now - curr->exec_start;
760 if (unlikely((s64)delta_exec <= 0))
34f28ecd 761 return;
bf0f6f24 762
8ebc91d9 763 curr->exec_start = now;
d842de87 764
9dbdb155
PZ
765 schedstat_set(curr->statistics.exec_max,
766 max(delta_exec, curr->statistics.exec_max));
767
768 curr->sum_exec_runtime += delta_exec;
769 schedstat_add(cfs_rq, exec_clock, delta_exec);
770
771 curr->vruntime += calc_delta_fair(delta_exec, curr);
772 update_min_vruntime(cfs_rq);
773
d842de87
SV
774 if (entity_is_task(curr)) {
775 struct task_struct *curtask = task_of(curr);
776
f977bb49 777 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 778 cpuacct_charge(curtask, delta_exec);
f06febc9 779 account_group_exec_runtime(curtask, delta_exec);
d842de87 780 }
ec12cb7f
PT
781
782 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
783}
784
6e998916
SG
785static void update_curr_fair(struct rq *rq)
786{
787 update_curr(cfs_rq_of(&rq->curr->se));
788}
789
3ea94de1 790#ifdef CONFIG_SCHEDSTATS
bf0f6f24 791static inline void
5870db5b 792update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 793{
3ea94de1
JP
794 u64 wait_start = rq_clock(rq_of(cfs_rq));
795
796 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
797 likely(wait_start > se->statistics.wait_start))
798 wait_start -= se->statistics.wait_start;
799
800 se->statistics.wait_start = wait_start;
bf0f6f24
IM
801}
802
3ea94de1
JP
803static void
804update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
805{
806 struct task_struct *p;
cb251765
MG
807 u64 delta;
808
809 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
810
811 if (entity_is_task(se)) {
812 p = task_of(se);
813 if (task_on_rq_migrating(p)) {
814 /*
815 * Preserve migrating task's wait time so wait_start
816 * time stamp can be adjusted to accumulate wait time
817 * prior to migration.
818 */
819 se->statistics.wait_start = delta;
820 return;
821 }
822 trace_sched_stat_wait(p, delta);
823 }
824
825 se->statistics.wait_max = max(se->statistics.wait_max, delta);
826 se->statistics.wait_count++;
827 se->statistics.wait_sum += delta;
828 se->statistics.wait_start = 0;
829}
3ea94de1 830
bf0f6f24
IM
831/*
832 * Task is being enqueued - update stats:
833 */
cb251765
MG
834static inline void
835update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 836{
bf0f6f24
IM
837 /*
838 * Are we enqueueing a waiting task? (for current tasks
839 * a dequeue/enqueue event is a NOP)
840 */
429d43bc 841 if (se != cfs_rq->curr)
5870db5b 842 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
843}
844
bf0f6f24 845static inline void
cb251765 846update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 847{
bf0f6f24
IM
848 /*
849 * Mark the end of the wait period if dequeueing a
850 * waiting task:
851 */
429d43bc 852 if (se != cfs_rq->curr)
9ef0a961 853 update_stats_wait_end(cfs_rq, se);
cb251765
MG
854
855 if (flags & DEQUEUE_SLEEP) {
856 if (entity_is_task(se)) {
857 struct task_struct *tsk = task_of(se);
858
859 if (tsk->state & TASK_INTERRUPTIBLE)
860 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
861 if (tsk->state & TASK_UNINTERRUPTIBLE)
862 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
863 }
864 }
865
866}
867#else
868static inline void
869update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
870{
871}
872
873static inline void
874update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
875{
876}
877
878static inline void
879update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
880{
881}
882
883static inline void
884update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
885{
bf0f6f24 886}
cb251765 887#endif
bf0f6f24
IM
888
889/*
890 * We are picking a new current task - update its stats:
891 */
892static inline void
79303e9e 893update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
894{
895 /*
896 * We are starting a new run period:
897 */
78becc27 898 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
899}
900
bf0f6f24
IM
901/**************************************************
902 * Scheduling class queueing methods:
903 */
904
cbee9f88
PZ
905#ifdef CONFIG_NUMA_BALANCING
906/*
598f0ec0
MG
907 * Approximate time to scan a full NUMA task in ms. The task scan period is
908 * calculated based on the tasks virtual memory size and
909 * numa_balancing_scan_size.
cbee9f88 910 */
598f0ec0
MG
911unsigned int sysctl_numa_balancing_scan_period_min = 1000;
912unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
913
914/* Portion of address space to scan in MB */
915unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 916
4b96a29b
PZ
917/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
918unsigned int sysctl_numa_balancing_scan_delay = 1000;
919
598f0ec0
MG
920static unsigned int task_nr_scan_windows(struct task_struct *p)
921{
922 unsigned long rss = 0;
923 unsigned long nr_scan_pages;
924
925 /*
926 * Calculations based on RSS as non-present and empty pages are skipped
927 * by the PTE scanner and NUMA hinting faults should be trapped based
928 * on resident pages
929 */
930 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
931 rss = get_mm_rss(p->mm);
932 if (!rss)
933 rss = nr_scan_pages;
934
935 rss = round_up(rss, nr_scan_pages);
936 return rss / nr_scan_pages;
937}
938
939/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
940#define MAX_SCAN_WINDOW 2560
941
942static unsigned int task_scan_min(struct task_struct *p)
943{
316c1608 944 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
945 unsigned int scan, floor;
946 unsigned int windows = 1;
947
64192658
KT
948 if (scan_size < MAX_SCAN_WINDOW)
949 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
950 floor = 1000 / windows;
951
952 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
953 return max_t(unsigned int, floor, scan);
954}
955
956static unsigned int task_scan_max(struct task_struct *p)
957{
958 unsigned int smin = task_scan_min(p);
959 unsigned int smax;
960
961 /* Watch for min being lower than max due to floor calculations */
962 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
963 return max(smin, smax);
964}
965
0ec8aa00
PZ
966static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
967{
968 rq->nr_numa_running += (p->numa_preferred_nid != -1);
969 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
970}
971
972static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
973{
974 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
975 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
976}
977
8c8a743c
PZ
978struct numa_group {
979 atomic_t refcount;
980
981 spinlock_t lock; /* nr_tasks, tasks */
982 int nr_tasks;
e29cf08b 983 pid_t gid;
4142c3eb 984 int active_nodes;
8c8a743c
PZ
985
986 struct rcu_head rcu;
989348b5 987 unsigned long total_faults;
4142c3eb 988 unsigned long max_faults_cpu;
7e2703e6
RR
989 /*
990 * Faults_cpu is used to decide whether memory should move
991 * towards the CPU. As a consequence, these stats are weighted
992 * more by CPU use than by memory faults.
993 */
50ec8a40 994 unsigned long *faults_cpu;
989348b5 995 unsigned long faults[0];
8c8a743c
PZ
996};
997
be1e4e76
RR
998/* Shared or private faults. */
999#define NR_NUMA_HINT_FAULT_TYPES 2
1000
1001/* Memory and CPU locality */
1002#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1003
1004/* Averaged statistics, and temporary buffers. */
1005#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1006
e29cf08b
MG
1007pid_t task_numa_group_id(struct task_struct *p)
1008{
1009 return p->numa_group ? p->numa_group->gid : 0;
1010}
1011
44dba3d5
IM
1012/*
1013 * The averaged statistics, shared & private, memory & cpu,
1014 * occupy the first half of the array. The second half of the
1015 * array is for current counters, which are averaged into the
1016 * first set by task_numa_placement.
1017 */
1018static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1019{
44dba3d5 1020 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1021}
1022
1023static inline unsigned long task_faults(struct task_struct *p, int nid)
1024{
44dba3d5 1025 if (!p->numa_faults)
ac8e895b
MG
1026 return 0;
1027
44dba3d5
IM
1028 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1029 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1030}
1031
83e1d2cd
MG
1032static inline unsigned long group_faults(struct task_struct *p, int nid)
1033{
1034 if (!p->numa_group)
1035 return 0;
1036
44dba3d5
IM
1037 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1038 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1039}
1040
20e07dea
RR
1041static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1042{
44dba3d5
IM
1043 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1044 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1045}
1046
4142c3eb
RR
1047/*
1048 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1049 * considered part of a numa group's pseudo-interleaving set. Migrations
1050 * between these nodes are slowed down, to allow things to settle down.
1051 */
1052#define ACTIVE_NODE_FRACTION 3
1053
1054static bool numa_is_active_node(int nid, struct numa_group *ng)
1055{
1056 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1057}
1058
6c6b1193
RR
1059/* Handle placement on systems where not all nodes are directly connected. */
1060static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1061 int maxdist, bool task)
1062{
1063 unsigned long score = 0;
1064 int node;
1065
1066 /*
1067 * All nodes are directly connected, and the same distance
1068 * from each other. No need for fancy placement algorithms.
1069 */
1070 if (sched_numa_topology_type == NUMA_DIRECT)
1071 return 0;
1072
1073 /*
1074 * This code is called for each node, introducing N^2 complexity,
1075 * which should be ok given the number of nodes rarely exceeds 8.
1076 */
1077 for_each_online_node(node) {
1078 unsigned long faults;
1079 int dist = node_distance(nid, node);
1080
1081 /*
1082 * The furthest away nodes in the system are not interesting
1083 * for placement; nid was already counted.
1084 */
1085 if (dist == sched_max_numa_distance || node == nid)
1086 continue;
1087
1088 /*
1089 * On systems with a backplane NUMA topology, compare groups
1090 * of nodes, and move tasks towards the group with the most
1091 * memory accesses. When comparing two nodes at distance
1092 * "hoplimit", only nodes closer by than "hoplimit" are part
1093 * of each group. Skip other nodes.
1094 */
1095 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1096 dist > maxdist)
1097 continue;
1098
1099 /* Add up the faults from nearby nodes. */
1100 if (task)
1101 faults = task_faults(p, node);
1102 else
1103 faults = group_faults(p, node);
1104
1105 /*
1106 * On systems with a glueless mesh NUMA topology, there are
1107 * no fixed "groups of nodes". Instead, nodes that are not
1108 * directly connected bounce traffic through intermediate
1109 * nodes; a numa_group can occupy any set of nodes.
1110 * The further away a node is, the less the faults count.
1111 * This seems to result in good task placement.
1112 */
1113 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1114 faults *= (sched_max_numa_distance - dist);
1115 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1116 }
1117
1118 score += faults;
1119 }
1120
1121 return score;
1122}
1123
83e1d2cd
MG
1124/*
1125 * These return the fraction of accesses done by a particular task, or
1126 * task group, on a particular numa node. The group weight is given a
1127 * larger multiplier, in order to group tasks together that are almost
1128 * evenly spread out between numa nodes.
1129 */
7bd95320
RR
1130static inline unsigned long task_weight(struct task_struct *p, int nid,
1131 int dist)
83e1d2cd 1132{
7bd95320 1133 unsigned long faults, total_faults;
83e1d2cd 1134
44dba3d5 1135 if (!p->numa_faults)
83e1d2cd
MG
1136 return 0;
1137
1138 total_faults = p->total_numa_faults;
1139
1140 if (!total_faults)
1141 return 0;
1142
7bd95320 1143 faults = task_faults(p, nid);
6c6b1193
RR
1144 faults += score_nearby_nodes(p, nid, dist, true);
1145
7bd95320 1146 return 1000 * faults / total_faults;
83e1d2cd
MG
1147}
1148
7bd95320
RR
1149static inline unsigned long group_weight(struct task_struct *p, int nid,
1150 int dist)
83e1d2cd 1151{
7bd95320
RR
1152 unsigned long faults, total_faults;
1153
1154 if (!p->numa_group)
1155 return 0;
1156
1157 total_faults = p->numa_group->total_faults;
1158
1159 if (!total_faults)
83e1d2cd
MG
1160 return 0;
1161
7bd95320 1162 faults = group_faults(p, nid);
6c6b1193
RR
1163 faults += score_nearby_nodes(p, nid, dist, false);
1164
7bd95320 1165 return 1000 * faults / total_faults;
83e1d2cd
MG
1166}
1167
10f39042
RR
1168bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1169 int src_nid, int dst_cpu)
1170{
1171 struct numa_group *ng = p->numa_group;
1172 int dst_nid = cpu_to_node(dst_cpu);
1173 int last_cpupid, this_cpupid;
1174
1175 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1176
1177 /*
1178 * Multi-stage node selection is used in conjunction with a periodic
1179 * migration fault to build a temporal task<->page relation. By using
1180 * a two-stage filter we remove short/unlikely relations.
1181 *
1182 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1183 * a task's usage of a particular page (n_p) per total usage of this
1184 * page (n_t) (in a given time-span) to a probability.
1185 *
1186 * Our periodic faults will sample this probability and getting the
1187 * same result twice in a row, given these samples are fully
1188 * independent, is then given by P(n)^2, provided our sample period
1189 * is sufficiently short compared to the usage pattern.
1190 *
1191 * This quadric squishes small probabilities, making it less likely we
1192 * act on an unlikely task<->page relation.
1193 */
1194 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1195 if (!cpupid_pid_unset(last_cpupid) &&
1196 cpupid_to_nid(last_cpupid) != dst_nid)
1197 return false;
1198
1199 /* Always allow migrate on private faults */
1200 if (cpupid_match_pid(p, last_cpupid))
1201 return true;
1202
1203 /* A shared fault, but p->numa_group has not been set up yet. */
1204 if (!ng)
1205 return true;
1206
1207 /*
4142c3eb
RR
1208 * Destination node is much more heavily used than the source
1209 * node? Allow migration.
10f39042 1210 */
4142c3eb
RR
1211 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1212 ACTIVE_NODE_FRACTION)
10f39042
RR
1213 return true;
1214
1215 /*
4142c3eb
RR
1216 * Distribute memory according to CPU & memory use on each node,
1217 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1218 *
1219 * faults_cpu(dst) 3 faults_cpu(src)
1220 * --------------- * - > ---------------
1221 * faults_mem(dst) 4 faults_mem(src)
10f39042 1222 */
4142c3eb
RR
1223 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1224 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1225}
1226
e6628d5b 1227static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1228static unsigned long source_load(int cpu, int type);
1229static unsigned long target_load(int cpu, int type);
ced549fa 1230static unsigned long capacity_of(int cpu);
58d081b5
MG
1231static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1232
fb13c7ee 1233/* Cached statistics for all CPUs within a node */
58d081b5 1234struct numa_stats {
fb13c7ee 1235 unsigned long nr_running;
58d081b5 1236 unsigned long load;
fb13c7ee
MG
1237
1238 /* Total compute capacity of CPUs on a node */
5ef20ca1 1239 unsigned long compute_capacity;
fb13c7ee
MG
1240
1241 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1242 unsigned long task_capacity;
1b6a7495 1243 int has_free_capacity;
58d081b5 1244};
e6628d5b 1245
fb13c7ee
MG
1246/*
1247 * XXX borrowed from update_sg_lb_stats
1248 */
1249static void update_numa_stats(struct numa_stats *ns, int nid)
1250{
83d7f242
RR
1251 int smt, cpu, cpus = 0;
1252 unsigned long capacity;
fb13c7ee
MG
1253
1254 memset(ns, 0, sizeof(*ns));
1255 for_each_cpu(cpu, cpumask_of_node(nid)) {
1256 struct rq *rq = cpu_rq(cpu);
1257
1258 ns->nr_running += rq->nr_running;
1259 ns->load += weighted_cpuload(cpu);
ced549fa 1260 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1261
1262 cpus++;
fb13c7ee
MG
1263 }
1264
5eca82a9
PZ
1265 /*
1266 * If we raced with hotplug and there are no CPUs left in our mask
1267 * the @ns structure is NULL'ed and task_numa_compare() will
1268 * not find this node attractive.
1269 *
1b6a7495
NP
1270 * We'll either bail at !has_free_capacity, or we'll detect a huge
1271 * imbalance and bail there.
5eca82a9
PZ
1272 */
1273 if (!cpus)
1274 return;
1275
83d7f242
RR
1276 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1277 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1278 capacity = cpus / smt; /* cores */
1279
1280 ns->task_capacity = min_t(unsigned, capacity,
1281 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1282 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1283}
1284
58d081b5
MG
1285struct task_numa_env {
1286 struct task_struct *p;
e6628d5b 1287
58d081b5
MG
1288 int src_cpu, src_nid;
1289 int dst_cpu, dst_nid;
e6628d5b 1290
58d081b5 1291 struct numa_stats src_stats, dst_stats;
e6628d5b 1292
40ea2b42 1293 int imbalance_pct;
7bd95320 1294 int dist;
fb13c7ee
MG
1295
1296 struct task_struct *best_task;
1297 long best_imp;
58d081b5
MG
1298 int best_cpu;
1299};
1300
fb13c7ee
MG
1301static void task_numa_assign(struct task_numa_env *env,
1302 struct task_struct *p, long imp)
1303{
1304 if (env->best_task)
1305 put_task_struct(env->best_task);
bac78573
ON
1306 if (p)
1307 get_task_struct(p);
fb13c7ee
MG
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312}
1313
28a21745 1314static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1315 struct task_numa_env *env)
1316{
e4991b24
RR
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
28a21745
RR
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1330
1331 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
e63da036
RR
1334
1335 /* Is the difference below the threshold? */
e4991b24
RR
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
e4991b24 1343 * Compare it with the old imbalance.
e63da036 1344 */
28a21745 1345 orig_src_load = env->src_stats.load;
e4991b24 1346 orig_dst_load = env->dst_stats.load;
28a21745 1347
e4991b24
RR
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
e63da036 1350
e4991b24
RR
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
e63da036
RR
1356}
1357
fb13c7ee
MG
1358/*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
887c290e
RR
1364static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
fb13c7ee
MG
1366{
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
28a21745 1370 long src_load, dst_load;
fb13c7ee 1371 long load;
1c5d3eb3 1372 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1373 long moveimp = imp;
7bd95320 1374 int dist = env->dist;
fb13c7ee
MG
1375
1376 rcu_read_lock();
bac78573
ON
1377 cur = task_rcu_dereference(&dst_rq->curr);
1378 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1379 cur = NULL;
1380
7af68335
PZ
1381 /*
1382 * Because we have preemption enabled we can get migrated around and
1383 * end try selecting ourselves (current == env->p) as a swap candidate.
1384 */
1385 if (cur == env->p)
1386 goto unlock;
1387
fb13c7ee
MG
1388 /*
1389 * "imp" is the fault differential for the source task between the
1390 * source and destination node. Calculate the total differential for
1391 * the source task and potential destination task. The more negative
1392 * the value is, the more rmeote accesses that would be expected to
1393 * be incurred if the tasks were swapped.
1394 */
1395 if (cur) {
1396 /* Skip this swap candidate if cannot move to the source cpu */
1397 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1398 goto unlock;
1399
887c290e
RR
1400 /*
1401 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1402 * in any group then look only at task weights.
887c290e 1403 */
ca28aa53 1404 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1405 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1406 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1407 /*
1408 * Add some hysteresis to prevent swapping the
1409 * tasks within a group over tiny differences.
1410 */
1411 if (cur->numa_group)
1412 imp -= imp/16;
887c290e 1413 } else {
ca28aa53
RR
1414 /*
1415 * Compare the group weights. If a task is all by
1416 * itself (not part of a group), use the task weight
1417 * instead.
1418 */
ca28aa53 1419 if (cur->numa_group)
7bd95320
RR
1420 imp += group_weight(cur, env->src_nid, dist) -
1421 group_weight(cur, env->dst_nid, dist);
ca28aa53 1422 else
7bd95320
RR
1423 imp += task_weight(cur, env->src_nid, dist) -
1424 task_weight(cur, env->dst_nid, dist);
887c290e 1425 }
fb13c7ee
MG
1426 }
1427
0132c3e1 1428 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1429 goto unlock;
1430
1431 if (!cur) {
1432 /* Is there capacity at our destination? */
b932c03c 1433 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1434 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1435 goto unlock;
1436
1437 goto balance;
1438 }
1439
1440 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1441 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1442 dst_rq->nr_running == 1)
fb13c7ee
MG
1443 goto assign;
1444
1445 /*
1446 * In the overloaded case, try and keep the load balanced.
1447 */
1448balance:
e720fff6
PZ
1449 load = task_h_load(env->p);
1450 dst_load = env->dst_stats.load + load;
1451 src_load = env->src_stats.load - load;
fb13c7ee 1452
0132c3e1
RR
1453 if (moveimp > imp && moveimp > env->best_imp) {
1454 /*
1455 * If the improvement from just moving env->p direction is
1456 * better than swapping tasks around, check if a move is
1457 * possible. Store a slightly smaller score than moveimp,
1458 * so an actually idle CPU will win.
1459 */
1460 if (!load_too_imbalanced(src_load, dst_load, env)) {
1461 imp = moveimp - 1;
1462 cur = NULL;
1463 goto assign;
1464 }
1465 }
1466
1467 if (imp <= env->best_imp)
1468 goto unlock;
1469
fb13c7ee 1470 if (cur) {
e720fff6
PZ
1471 load = task_h_load(cur);
1472 dst_load -= load;
1473 src_load += load;
fb13c7ee
MG
1474 }
1475
28a21745 1476 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1477 goto unlock;
1478
ba7e5a27
RR
1479 /*
1480 * One idle CPU per node is evaluated for a task numa move.
1481 * Call select_idle_sibling to maybe find a better one.
1482 */
1483 if (!cur)
1484 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1485
fb13c7ee
MG
1486assign:
1487 task_numa_assign(env, cur, imp);
1488unlock:
1489 rcu_read_unlock();
1490}
1491
887c290e
RR
1492static void task_numa_find_cpu(struct task_numa_env *env,
1493 long taskimp, long groupimp)
2c8a50aa
MG
1494{
1495 int cpu;
1496
1497 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1498 /* Skip this CPU if the source task cannot migrate */
1499 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1500 continue;
1501
1502 env->dst_cpu = cpu;
887c290e 1503 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1504 }
1505}
1506
6f9aad0b
RR
1507/* Only move tasks to a NUMA node less busy than the current node. */
1508static bool numa_has_capacity(struct task_numa_env *env)
1509{
1510 struct numa_stats *src = &env->src_stats;
1511 struct numa_stats *dst = &env->dst_stats;
1512
1513 if (src->has_free_capacity && !dst->has_free_capacity)
1514 return false;
1515
1516 /*
1517 * Only consider a task move if the source has a higher load
1518 * than the destination, corrected for CPU capacity on each node.
1519 *
1520 * src->load dst->load
1521 * --------------------- vs ---------------------
1522 * src->compute_capacity dst->compute_capacity
1523 */
44dcb04f
SD
1524 if (src->load * dst->compute_capacity * env->imbalance_pct >
1525
1526 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1527 return true;
1528
1529 return false;
1530}
1531
58d081b5
MG
1532static int task_numa_migrate(struct task_struct *p)
1533{
58d081b5
MG
1534 struct task_numa_env env = {
1535 .p = p,
fb13c7ee 1536
58d081b5 1537 .src_cpu = task_cpu(p),
b32e86b4 1538 .src_nid = task_node(p),
fb13c7ee
MG
1539
1540 .imbalance_pct = 112,
1541
1542 .best_task = NULL,
1543 .best_imp = 0,
4142c3eb 1544 .best_cpu = -1,
58d081b5
MG
1545 };
1546 struct sched_domain *sd;
887c290e 1547 unsigned long taskweight, groupweight;
7bd95320 1548 int nid, ret, dist;
887c290e 1549 long taskimp, groupimp;
e6628d5b 1550
58d081b5 1551 /*
fb13c7ee
MG
1552 * Pick the lowest SD_NUMA domain, as that would have the smallest
1553 * imbalance and would be the first to start moving tasks about.
1554 *
1555 * And we want to avoid any moving of tasks about, as that would create
1556 * random movement of tasks -- counter the numa conditions we're trying
1557 * to satisfy here.
58d081b5
MG
1558 */
1559 rcu_read_lock();
fb13c7ee 1560 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1561 if (sd)
1562 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1563 rcu_read_unlock();
1564
46a73e8a
RR
1565 /*
1566 * Cpusets can break the scheduler domain tree into smaller
1567 * balance domains, some of which do not cross NUMA boundaries.
1568 * Tasks that are "trapped" in such domains cannot be migrated
1569 * elsewhere, so there is no point in (re)trying.
1570 */
1571 if (unlikely(!sd)) {
de1b301a 1572 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1573 return -EINVAL;
1574 }
1575
2c8a50aa 1576 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1577 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1578 taskweight = task_weight(p, env.src_nid, dist);
1579 groupweight = group_weight(p, env.src_nid, dist);
1580 update_numa_stats(&env.src_stats, env.src_nid);
1581 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1582 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1583 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1584
a43455a1 1585 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1586 if (numa_has_capacity(&env))
1587 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1588
9de05d48
RR
1589 /*
1590 * Look at other nodes in these cases:
1591 * - there is no space available on the preferred_nid
1592 * - the task is part of a numa_group that is interleaved across
1593 * multiple NUMA nodes; in order to better consolidate the group,
1594 * we need to check other locations.
1595 */
4142c3eb 1596 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1597 for_each_online_node(nid) {
1598 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1599 continue;
58d081b5 1600
7bd95320 1601 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1602 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1603 dist != env.dist) {
1604 taskweight = task_weight(p, env.src_nid, dist);
1605 groupweight = group_weight(p, env.src_nid, dist);
1606 }
7bd95320 1607
83e1d2cd 1608 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1609 taskimp = task_weight(p, nid, dist) - taskweight;
1610 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1611 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1612 continue;
1613
7bd95320 1614 env.dist = dist;
2c8a50aa
MG
1615 env.dst_nid = nid;
1616 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1617 if (numa_has_capacity(&env))
1618 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1619 }
1620 }
1621
68d1b02a
RR
1622 /*
1623 * If the task is part of a workload that spans multiple NUMA nodes,
1624 * and is migrating into one of the workload's active nodes, remember
1625 * this node as the task's preferred numa node, so the workload can
1626 * settle down.
1627 * A task that migrated to a second choice node will be better off
1628 * trying for a better one later. Do not set the preferred node here.
1629 */
db015dae 1630 if (p->numa_group) {
4142c3eb
RR
1631 struct numa_group *ng = p->numa_group;
1632
db015dae
RR
1633 if (env.best_cpu == -1)
1634 nid = env.src_nid;
1635 else
1636 nid = env.dst_nid;
1637
4142c3eb 1638 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1639 sched_setnuma(p, env.dst_nid);
1640 }
1641
1642 /* No better CPU than the current one was found. */
1643 if (env.best_cpu == -1)
1644 return -EAGAIN;
0ec8aa00 1645
04bb2f94
RR
1646 /*
1647 * Reset the scan period if the task is being rescheduled on an
1648 * alternative node to recheck if the tasks is now properly placed.
1649 */
1650 p->numa_scan_period = task_scan_min(p);
1651
fb13c7ee 1652 if (env.best_task == NULL) {
286549dc
MG
1653 ret = migrate_task_to(p, env.best_cpu);
1654 if (ret != 0)
1655 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1656 return ret;
1657 }
1658
1659 ret = migrate_swap(p, env.best_task);
286549dc
MG
1660 if (ret != 0)
1661 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1662 put_task_struct(env.best_task);
1663 return ret;
e6628d5b
MG
1664}
1665
6b9a7460
MG
1666/* Attempt to migrate a task to a CPU on the preferred node. */
1667static void numa_migrate_preferred(struct task_struct *p)
1668{
5085e2a3
RR
1669 unsigned long interval = HZ;
1670
2739d3ee 1671 /* This task has no NUMA fault statistics yet */
44dba3d5 1672 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1673 return;
1674
2739d3ee 1675 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1676 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1677 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1678
1679 /* Success if task is already running on preferred CPU */
de1b301a 1680 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1681 return;
1682
1683 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1684 task_numa_migrate(p);
6b9a7460
MG
1685}
1686
20e07dea 1687/*
4142c3eb 1688 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1689 * tracking the nodes from which NUMA hinting faults are triggered. This can
1690 * be different from the set of nodes where the workload's memory is currently
1691 * located.
20e07dea 1692 */
4142c3eb 1693static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1694{
1695 unsigned long faults, max_faults = 0;
4142c3eb 1696 int nid, active_nodes = 0;
20e07dea
RR
1697
1698 for_each_online_node(nid) {
1699 faults = group_faults_cpu(numa_group, nid);
1700 if (faults > max_faults)
1701 max_faults = faults;
1702 }
1703
1704 for_each_online_node(nid) {
1705 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1706 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1707 active_nodes++;
20e07dea 1708 }
4142c3eb
RR
1709
1710 numa_group->max_faults_cpu = max_faults;
1711 numa_group->active_nodes = active_nodes;
20e07dea
RR
1712}
1713
04bb2f94
RR
1714/*
1715 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1716 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1717 * period will be for the next scan window. If local/(local+remote) ratio is
1718 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1719 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1720 */
1721#define NUMA_PERIOD_SLOTS 10
a22b4b01 1722#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1723
1724/*
1725 * Increase the scan period (slow down scanning) if the majority of
1726 * our memory is already on our local node, or if the majority of
1727 * the page accesses are shared with other processes.
1728 * Otherwise, decrease the scan period.
1729 */
1730static void update_task_scan_period(struct task_struct *p,
1731 unsigned long shared, unsigned long private)
1732{
1733 unsigned int period_slot;
1734 int ratio;
1735 int diff;
1736
1737 unsigned long remote = p->numa_faults_locality[0];
1738 unsigned long local = p->numa_faults_locality[1];
1739
1740 /*
1741 * If there were no record hinting faults then either the task is
1742 * completely idle or all activity is areas that are not of interest
074c2381
MG
1743 * to automatic numa balancing. Related to that, if there were failed
1744 * migration then it implies we are migrating too quickly or the local
1745 * node is overloaded. In either case, scan slower
04bb2f94 1746 */
074c2381 1747 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1748 p->numa_scan_period = min(p->numa_scan_period_max,
1749 p->numa_scan_period << 1);
1750
1751 p->mm->numa_next_scan = jiffies +
1752 msecs_to_jiffies(p->numa_scan_period);
1753
1754 return;
1755 }
1756
1757 /*
1758 * Prepare to scale scan period relative to the current period.
1759 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1760 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1761 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1762 */
1763 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1764 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1765 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1766 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1767 if (!slot)
1768 slot = 1;
1769 diff = slot * period_slot;
1770 } else {
1771 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1772
1773 /*
1774 * Scale scan rate increases based on sharing. There is an
1775 * inverse relationship between the degree of sharing and
1776 * the adjustment made to the scanning period. Broadly
1777 * speaking the intent is that there is little point
1778 * scanning faster if shared accesses dominate as it may
1779 * simply bounce migrations uselessly
1780 */
2847c90e 1781 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1782 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1783 }
1784
1785 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1786 task_scan_min(p), task_scan_max(p));
1787 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1788}
1789
7e2703e6
RR
1790/*
1791 * Get the fraction of time the task has been running since the last
1792 * NUMA placement cycle. The scheduler keeps similar statistics, but
1793 * decays those on a 32ms period, which is orders of magnitude off
1794 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1795 * stats only if the task is so new there are no NUMA statistics yet.
1796 */
1797static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1798{
1799 u64 runtime, delta, now;
1800 /* Use the start of this time slice to avoid calculations. */
1801 now = p->se.exec_start;
1802 runtime = p->se.sum_exec_runtime;
1803
1804 if (p->last_task_numa_placement) {
1805 delta = runtime - p->last_sum_exec_runtime;
1806 *period = now - p->last_task_numa_placement;
1807 } else {
9d89c257
YD
1808 delta = p->se.avg.load_sum / p->se.load.weight;
1809 *period = LOAD_AVG_MAX;
7e2703e6
RR
1810 }
1811
1812 p->last_sum_exec_runtime = runtime;
1813 p->last_task_numa_placement = now;
1814
1815 return delta;
1816}
1817
54009416
RR
1818/*
1819 * Determine the preferred nid for a task in a numa_group. This needs to
1820 * be done in a way that produces consistent results with group_weight,
1821 * otherwise workloads might not converge.
1822 */
1823static int preferred_group_nid(struct task_struct *p, int nid)
1824{
1825 nodemask_t nodes;
1826 int dist;
1827
1828 /* Direct connections between all NUMA nodes. */
1829 if (sched_numa_topology_type == NUMA_DIRECT)
1830 return nid;
1831
1832 /*
1833 * On a system with glueless mesh NUMA topology, group_weight
1834 * scores nodes according to the number of NUMA hinting faults on
1835 * both the node itself, and on nearby nodes.
1836 */
1837 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1838 unsigned long score, max_score = 0;
1839 int node, max_node = nid;
1840
1841 dist = sched_max_numa_distance;
1842
1843 for_each_online_node(node) {
1844 score = group_weight(p, node, dist);
1845 if (score > max_score) {
1846 max_score = score;
1847 max_node = node;
1848 }
1849 }
1850 return max_node;
1851 }
1852
1853 /*
1854 * Finding the preferred nid in a system with NUMA backplane
1855 * interconnect topology is more involved. The goal is to locate
1856 * tasks from numa_groups near each other in the system, and
1857 * untangle workloads from different sides of the system. This requires
1858 * searching down the hierarchy of node groups, recursively searching
1859 * inside the highest scoring group of nodes. The nodemask tricks
1860 * keep the complexity of the search down.
1861 */
1862 nodes = node_online_map;
1863 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1864 unsigned long max_faults = 0;
81907478 1865 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1866 int a, b;
1867
1868 /* Are there nodes at this distance from each other? */
1869 if (!find_numa_distance(dist))
1870 continue;
1871
1872 for_each_node_mask(a, nodes) {
1873 unsigned long faults = 0;
1874 nodemask_t this_group;
1875 nodes_clear(this_group);
1876
1877 /* Sum group's NUMA faults; includes a==b case. */
1878 for_each_node_mask(b, nodes) {
1879 if (node_distance(a, b) < dist) {
1880 faults += group_faults(p, b);
1881 node_set(b, this_group);
1882 node_clear(b, nodes);
1883 }
1884 }
1885
1886 /* Remember the top group. */
1887 if (faults > max_faults) {
1888 max_faults = faults;
1889 max_group = this_group;
1890 /*
1891 * subtle: at the smallest distance there is
1892 * just one node left in each "group", the
1893 * winner is the preferred nid.
1894 */
1895 nid = a;
1896 }
1897 }
1898 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1899 if (!max_faults)
1900 break;
54009416
RR
1901 nodes = max_group;
1902 }
1903 return nid;
1904}
1905
cbee9f88
PZ
1906static void task_numa_placement(struct task_struct *p)
1907{
83e1d2cd
MG
1908 int seq, nid, max_nid = -1, max_group_nid = -1;
1909 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1910 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1911 unsigned long total_faults;
1912 u64 runtime, period;
7dbd13ed 1913 spinlock_t *group_lock = NULL;
cbee9f88 1914
7e5a2c17
JL
1915 /*
1916 * The p->mm->numa_scan_seq field gets updated without
1917 * exclusive access. Use READ_ONCE() here to ensure
1918 * that the field is read in a single access:
1919 */
316c1608 1920 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1921 if (p->numa_scan_seq == seq)
1922 return;
1923 p->numa_scan_seq = seq;
598f0ec0 1924 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1925
7e2703e6
RR
1926 total_faults = p->numa_faults_locality[0] +
1927 p->numa_faults_locality[1];
1928 runtime = numa_get_avg_runtime(p, &period);
1929
7dbd13ed
MG
1930 /* If the task is part of a group prevent parallel updates to group stats */
1931 if (p->numa_group) {
1932 group_lock = &p->numa_group->lock;
60e69eed 1933 spin_lock_irq(group_lock);
7dbd13ed
MG
1934 }
1935
688b7585
MG
1936 /* Find the node with the highest number of faults */
1937 for_each_online_node(nid) {
44dba3d5
IM
1938 /* Keep track of the offsets in numa_faults array */
1939 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1940 unsigned long faults = 0, group_faults = 0;
44dba3d5 1941 int priv;
745d6147 1942
be1e4e76 1943 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1944 long diff, f_diff, f_weight;
8c8a743c 1945
44dba3d5
IM
1946 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1947 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1948 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1949 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1950
ac8e895b 1951 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1952 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1953 fault_types[priv] += p->numa_faults[membuf_idx];
1954 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1955
7e2703e6
RR
1956 /*
1957 * Normalize the faults_from, so all tasks in a group
1958 * count according to CPU use, instead of by the raw
1959 * number of faults. Tasks with little runtime have
1960 * little over-all impact on throughput, and thus their
1961 * faults are less important.
1962 */
1963 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1964 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1965 (total_faults + 1);
44dba3d5
IM
1966 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1967 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1968
44dba3d5
IM
1969 p->numa_faults[mem_idx] += diff;
1970 p->numa_faults[cpu_idx] += f_diff;
1971 faults += p->numa_faults[mem_idx];
83e1d2cd 1972 p->total_numa_faults += diff;
8c8a743c 1973 if (p->numa_group) {
44dba3d5
IM
1974 /*
1975 * safe because we can only change our own group
1976 *
1977 * mem_idx represents the offset for a given
1978 * nid and priv in a specific region because it
1979 * is at the beginning of the numa_faults array.
1980 */
1981 p->numa_group->faults[mem_idx] += diff;
1982 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1983 p->numa_group->total_faults += diff;
44dba3d5 1984 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1985 }
ac8e895b
MG
1986 }
1987
688b7585
MG
1988 if (faults > max_faults) {
1989 max_faults = faults;
1990 max_nid = nid;
1991 }
83e1d2cd
MG
1992
1993 if (group_faults > max_group_faults) {
1994 max_group_faults = group_faults;
1995 max_group_nid = nid;
1996 }
1997 }
1998
04bb2f94
RR
1999 update_task_scan_period(p, fault_types[0], fault_types[1]);
2000
7dbd13ed 2001 if (p->numa_group) {
4142c3eb 2002 numa_group_count_active_nodes(p->numa_group);
60e69eed 2003 spin_unlock_irq(group_lock);
54009416 2004 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2005 }
2006
bb97fc31
RR
2007 if (max_faults) {
2008 /* Set the new preferred node */
2009 if (max_nid != p->numa_preferred_nid)
2010 sched_setnuma(p, max_nid);
2011
2012 if (task_node(p) != p->numa_preferred_nid)
2013 numa_migrate_preferred(p);
3a7053b3 2014 }
cbee9f88
PZ
2015}
2016
8c8a743c
PZ
2017static inline int get_numa_group(struct numa_group *grp)
2018{
2019 return atomic_inc_not_zero(&grp->refcount);
2020}
2021
2022static inline void put_numa_group(struct numa_group *grp)
2023{
2024 if (atomic_dec_and_test(&grp->refcount))
2025 kfree_rcu(grp, rcu);
2026}
2027
3e6a9418
MG
2028static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2029 int *priv)
8c8a743c
PZ
2030{
2031 struct numa_group *grp, *my_grp;
2032 struct task_struct *tsk;
2033 bool join = false;
2034 int cpu = cpupid_to_cpu(cpupid);
2035 int i;
2036
2037 if (unlikely(!p->numa_group)) {
2038 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2039 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2040
2041 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2042 if (!grp)
2043 return;
2044
2045 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2046 grp->active_nodes = 1;
2047 grp->max_faults_cpu = 0;
8c8a743c 2048 spin_lock_init(&grp->lock);
e29cf08b 2049 grp->gid = p->pid;
50ec8a40 2050 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2051 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2052 nr_node_ids;
8c8a743c 2053
be1e4e76 2054 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2055 grp->faults[i] = p->numa_faults[i];
8c8a743c 2056
989348b5 2057 grp->total_faults = p->total_numa_faults;
83e1d2cd 2058
8c8a743c
PZ
2059 grp->nr_tasks++;
2060 rcu_assign_pointer(p->numa_group, grp);
2061 }
2062
2063 rcu_read_lock();
316c1608 2064 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2065
2066 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2067 goto no_join;
8c8a743c
PZ
2068
2069 grp = rcu_dereference(tsk->numa_group);
2070 if (!grp)
3354781a 2071 goto no_join;
8c8a743c
PZ
2072
2073 my_grp = p->numa_group;
2074 if (grp == my_grp)
3354781a 2075 goto no_join;
8c8a743c
PZ
2076
2077 /*
2078 * Only join the other group if its bigger; if we're the bigger group,
2079 * the other task will join us.
2080 */
2081 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2082 goto no_join;
8c8a743c
PZ
2083
2084 /*
2085 * Tie-break on the grp address.
2086 */
2087 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2088 goto no_join;
8c8a743c 2089
dabe1d99
RR
2090 /* Always join threads in the same process. */
2091 if (tsk->mm == current->mm)
2092 join = true;
2093
2094 /* Simple filter to avoid false positives due to PID collisions */
2095 if (flags & TNF_SHARED)
2096 join = true;
8c8a743c 2097
3e6a9418
MG
2098 /* Update priv based on whether false sharing was detected */
2099 *priv = !join;
2100
dabe1d99 2101 if (join && !get_numa_group(grp))
3354781a 2102 goto no_join;
8c8a743c 2103
8c8a743c
PZ
2104 rcu_read_unlock();
2105
2106 if (!join)
2107 return;
2108
60e69eed
MG
2109 BUG_ON(irqs_disabled());
2110 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2111
be1e4e76 2112 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2113 my_grp->faults[i] -= p->numa_faults[i];
2114 grp->faults[i] += p->numa_faults[i];
8c8a743c 2115 }
989348b5
MG
2116 my_grp->total_faults -= p->total_numa_faults;
2117 grp->total_faults += p->total_numa_faults;
8c8a743c 2118
8c8a743c
PZ
2119 my_grp->nr_tasks--;
2120 grp->nr_tasks++;
2121
2122 spin_unlock(&my_grp->lock);
60e69eed 2123 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2124
2125 rcu_assign_pointer(p->numa_group, grp);
2126
2127 put_numa_group(my_grp);
3354781a
PZ
2128 return;
2129
2130no_join:
2131 rcu_read_unlock();
2132 return;
8c8a743c
PZ
2133}
2134
2135void task_numa_free(struct task_struct *p)
2136{
2137 struct numa_group *grp = p->numa_group;
44dba3d5 2138 void *numa_faults = p->numa_faults;
e9dd685c
SR
2139 unsigned long flags;
2140 int i;
8c8a743c
PZ
2141
2142 if (grp) {
e9dd685c 2143 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2145 grp->faults[i] -= p->numa_faults[i];
989348b5 2146 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2147
8c8a743c 2148 grp->nr_tasks--;
e9dd685c 2149 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2150 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2151 put_numa_group(grp);
2152 }
2153
44dba3d5 2154 p->numa_faults = NULL;
82727018 2155 kfree(numa_faults);
8c8a743c
PZ
2156}
2157
cbee9f88
PZ
2158/*
2159 * Got a PROT_NONE fault for a page on @node.
2160 */
58b46da3 2161void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2162{
2163 struct task_struct *p = current;
6688cc05 2164 bool migrated = flags & TNF_MIGRATED;
58b46da3 2165 int cpu_node = task_node(current);
792568ec 2166 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2167 struct numa_group *ng;
ac8e895b 2168 int priv;
cbee9f88 2169
2a595721 2170 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2171 return;
2172
9ff1d9ff
MG
2173 /* for example, ksmd faulting in a user's mm */
2174 if (!p->mm)
2175 return;
2176
f809ca9a 2177 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2178 if (unlikely(!p->numa_faults)) {
2179 int size = sizeof(*p->numa_faults) *
be1e4e76 2180 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2181
44dba3d5
IM
2182 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2183 if (!p->numa_faults)
f809ca9a 2184 return;
745d6147 2185
83e1d2cd 2186 p->total_numa_faults = 0;
04bb2f94 2187 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2188 }
cbee9f88 2189
8c8a743c
PZ
2190 /*
2191 * First accesses are treated as private, otherwise consider accesses
2192 * to be private if the accessing pid has not changed
2193 */
2194 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2195 priv = 1;
2196 } else {
2197 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2198 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2199 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2200 }
2201
792568ec
RR
2202 /*
2203 * If a workload spans multiple NUMA nodes, a shared fault that
2204 * occurs wholly within the set of nodes that the workload is
2205 * actively using should be counted as local. This allows the
2206 * scan rate to slow down when a workload has settled down.
2207 */
4142c3eb
RR
2208 ng = p->numa_group;
2209 if (!priv && !local && ng && ng->active_nodes > 1 &&
2210 numa_is_active_node(cpu_node, ng) &&
2211 numa_is_active_node(mem_node, ng))
792568ec
RR
2212 local = 1;
2213
cbee9f88 2214 task_numa_placement(p);
f809ca9a 2215
2739d3ee
RR
2216 /*
2217 * Retry task to preferred node migration periodically, in case it
2218 * case it previously failed, or the scheduler moved us.
2219 */
2220 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2221 numa_migrate_preferred(p);
2222
b32e86b4
IM
2223 if (migrated)
2224 p->numa_pages_migrated += pages;
074c2381
MG
2225 if (flags & TNF_MIGRATE_FAIL)
2226 p->numa_faults_locality[2] += pages;
b32e86b4 2227
44dba3d5
IM
2228 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2229 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2230 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2231}
2232
6e5fb223
PZ
2233static void reset_ptenuma_scan(struct task_struct *p)
2234{
7e5a2c17
JL
2235 /*
2236 * We only did a read acquisition of the mmap sem, so
2237 * p->mm->numa_scan_seq is written to without exclusive access
2238 * and the update is not guaranteed to be atomic. That's not
2239 * much of an issue though, since this is just used for
2240 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2241 * expensive, to avoid any form of compiler optimizations:
2242 */
316c1608 2243 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2244 p->mm->numa_scan_offset = 0;
2245}
2246
cbee9f88
PZ
2247/*
2248 * The expensive part of numa migration is done from task_work context.
2249 * Triggered from task_tick_numa().
2250 */
2251void task_numa_work(struct callback_head *work)
2252{
2253 unsigned long migrate, next_scan, now = jiffies;
2254 struct task_struct *p = current;
2255 struct mm_struct *mm = p->mm;
51170840 2256 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2257 struct vm_area_struct *vma;
9f40604c 2258 unsigned long start, end;
598f0ec0 2259 unsigned long nr_pte_updates = 0;
4620f8c1 2260 long pages, virtpages;
cbee9f88
PZ
2261
2262 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2263
2264 work->next = work; /* protect against double add */
2265 /*
2266 * Who cares about NUMA placement when they're dying.
2267 *
2268 * NOTE: make sure not to dereference p->mm before this check,
2269 * exit_task_work() happens _after_ exit_mm() so we could be called
2270 * without p->mm even though we still had it when we enqueued this
2271 * work.
2272 */
2273 if (p->flags & PF_EXITING)
2274 return;
2275
930aa174 2276 if (!mm->numa_next_scan) {
7e8d16b6
MG
2277 mm->numa_next_scan = now +
2278 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2279 }
2280
cbee9f88
PZ
2281 /*
2282 * Enforce maximal scan/migration frequency..
2283 */
2284 migrate = mm->numa_next_scan;
2285 if (time_before(now, migrate))
2286 return;
2287
598f0ec0
MG
2288 if (p->numa_scan_period == 0) {
2289 p->numa_scan_period_max = task_scan_max(p);
2290 p->numa_scan_period = task_scan_min(p);
2291 }
cbee9f88 2292
fb003b80 2293 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2294 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2295 return;
2296
19a78d11
PZ
2297 /*
2298 * Delay this task enough that another task of this mm will likely win
2299 * the next time around.
2300 */
2301 p->node_stamp += 2 * TICK_NSEC;
2302
9f40604c
MG
2303 start = mm->numa_scan_offset;
2304 pages = sysctl_numa_balancing_scan_size;
2305 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2306 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2307 if (!pages)
2308 return;
cbee9f88 2309
4620f8c1 2310
6e5fb223 2311 down_read(&mm->mmap_sem);
9f40604c 2312 vma = find_vma(mm, start);
6e5fb223
PZ
2313 if (!vma) {
2314 reset_ptenuma_scan(p);
9f40604c 2315 start = 0;
6e5fb223
PZ
2316 vma = mm->mmap;
2317 }
9f40604c 2318 for (; vma; vma = vma->vm_next) {
6b79c57b 2319 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2320 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2321 continue;
6b79c57b 2322 }
6e5fb223 2323
4591ce4f
MG
2324 /*
2325 * Shared library pages mapped by multiple processes are not
2326 * migrated as it is expected they are cache replicated. Avoid
2327 * hinting faults in read-only file-backed mappings or the vdso
2328 * as migrating the pages will be of marginal benefit.
2329 */
2330 if (!vma->vm_mm ||
2331 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2332 continue;
2333
3c67f474
MG
2334 /*
2335 * Skip inaccessible VMAs to avoid any confusion between
2336 * PROT_NONE and NUMA hinting ptes
2337 */
2338 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2339 continue;
4591ce4f 2340
9f40604c
MG
2341 do {
2342 start = max(start, vma->vm_start);
2343 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2344 end = min(end, vma->vm_end);
4620f8c1 2345 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2346
2347 /*
4620f8c1
RR
2348 * Try to scan sysctl_numa_balancing_size worth of
2349 * hpages that have at least one present PTE that
2350 * is not already pte-numa. If the VMA contains
2351 * areas that are unused or already full of prot_numa
2352 * PTEs, scan up to virtpages, to skip through those
2353 * areas faster.
598f0ec0
MG
2354 */
2355 if (nr_pte_updates)
2356 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2357 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2358
9f40604c 2359 start = end;
4620f8c1 2360 if (pages <= 0 || virtpages <= 0)
9f40604c 2361 goto out;
3cf1962c
RR
2362
2363 cond_resched();
9f40604c 2364 } while (end != vma->vm_end);
cbee9f88 2365 }
6e5fb223 2366
9f40604c 2367out:
6e5fb223 2368 /*
c69307d5
PZ
2369 * It is possible to reach the end of the VMA list but the last few
2370 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2371 * would find the !migratable VMA on the next scan but not reset the
2372 * scanner to the start so check it now.
6e5fb223
PZ
2373 */
2374 if (vma)
9f40604c 2375 mm->numa_scan_offset = start;
6e5fb223
PZ
2376 else
2377 reset_ptenuma_scan(p);
2378 up_read(&mm->mmap_sem);
51170840
RR
2379
2380 /*
2381 * Make sure tasks use at least 32x as much time to run other code
2382 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2383 * Usually update_task_scan_period slows down scanning enough; on an
2384 * overloaded system we need to limit overhead on a per task basis.
2385 */
2386 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2387 u64 diff = p->se.sum_exec_runtime - runtime;
2388 p->node_stamp += 32 * diff;
2389 }
cbee9f88
PZ
2390}
2391
2392/*
2393 * Drive the periodic memory faults..
2394 */
2395void task_tick_numa(struct rq *rq, struct task_struct *curr)
2396{
2397 struct callback_head *work = &curr->numa_work;
2398 u64 period, now;
2399
2400 /*
2401 * We don't care about NUMA placement if we don't have memory.
2402 */
2403 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2404 return;
2405
2406 /*
2407 * Using runtime rather than walltime has the dual advantage that
2408 * we (mostly) drive the selection from busy threads and that the
2409 * task needs to have done some actual work before we bother with
2410 * NUMA placement.
2411 */
2412 now = curr->se.sum_exec_runtime;
2413 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2414
25b3e5a3 2415 if (now > curr->node_stamp + period) {
4b96a29b 2416 if (!curr->node_stamp)
598f0ec0 2417 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2418 curr->node_stamp += period;
cbee9f88
PZ
2419
2420 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2421 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2422 task_work_add(curr, work, true);
2423 }
2424 }
2425}
2426#else
2427static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2428{
2429}
0ec8aa00
PZ
2430
2431static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2432{
2433}
2434
2435static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2436{
2437}
cbee9f88
PZ
2438#endif /* CONFIG_NUMA_BALANCING */
2439
30cfdcfc
DA
2440static void
2441account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2442{
2443 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2444 if (!parent_entity(se))
029632fb 2445 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2446#ifdef CONFIG_SMP
0ec8aa00
PZ
2447 if (entity_is_task(se)) {
2448 struct rq *rq = rq_of(cfs_rq);
2449
2450 account_numa_enqueue(rq, task_of(se));
2451 list_add(&se->group_node, &rq->cfs_tasks);
2452 }
367456c7 2453#endif
30cfdcfc 2454 cfs_rq->nr_running++;
30cfdcfc
DA
2455}
2456
2457static void
2458account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2459{
2460 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2461 if (!parent_entity(se))
029632fb 2462 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2463#ifdef CONFIG_SMP
0ec8aa00
PZ
2464 if (entity_is_task(se)) {
2465 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2466 list_del_init(&se->group_node);
0ec8aa00 2467 }
bfdb198c 2468#endif
30cfdcfc 2469 cfs_rq->nr_running--;
30cfdcfc
DA
2470}
2471
3ff6dcac
YZ
2472#ifdef CONFIG_FAIR_GROUP_SCHED
2473# ifdef CONFIG_SMP
ea1dc6fc 2474static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2475{
ea1dc6fc 2476 long tg_weight, load, shares;
cf5f0acf
PZ
2477
2478 /*
ea1dc6fc
PZ
2479 * This really should be: cfs_rq->avg.load_avg, but instead we use
2480 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2481 * the shares for small weight interactive tasks.
cf5f0acf 2482 */
ea1dc6fc 2483 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2484
ea1dc6fc 2485 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2486
ea1dc6fc
PZ
2487 /* Ensure tg_weight >= load */
2488 tg_weight -= cfs_rq->tg_load_avg_contrib;
2489 tg_weight += load;
3ff6dcac 2490
3ff6dcac 2491 shares = (tg->shares * load);
cf5f0acf
PZ
2492 if (tg_weight)
2493 shares /= tg_weight;
3ff6dcac
YZ
2494
2495 if (shares < MIN_SHARES)
2496 shares = MIN_SHARES;
2497 if (shares > tg->shares)
2498 shares = tg->shares;
2499
2500 return shares;
2501}
3ff6dcac 2502# else /* CONFIG_SMP */
6d5ab293 2503static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2504{
2505 return tg->shares;
2506}
3ff6dcac 2507# endif /* CONFIG_SMP */
ea1dc6fc 2508
2069dd75
PZ
2509static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2510 unsigned long weight)
2511{
19e5eebb
PT
2512 if (se->on_rq) {
2513 /* commit outstanding execution time */
2514 if (cfs_rq->curr == se)
2515 update_curr(cfs_rq);
2069dd75 2516 account_entity_dequeue(cfs_rq, se);
19e5eebb 2517 }
2069dd75
PZ
2518
2519 update_load_set(&se->load, weight);
2520
2521 if (se->on_rq)
2522 account_entity_enqueue(cfs_rq, se);
2523}
2524
82958366
PT
2525static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2526
6d5ab293 2527static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2528{
2529 struct task_group *tg;
2530 struct sched_entity *se;
3ff6dcac 2531 long shares;
2069dd75 2532
2069dd75
PZ
2533 tg = cfs_rq->tg;
2534 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2535 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2536 return;
3ff6dcac
YZ
2537#ifndef CONFIG_SMP
2538 if (likely(se->load.weight == tg->shares))
2539 return;
2540#endif
6d5ab293 2541 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2542
2543 reweight_entity(cfs_rq_of(se), se, shares);
2544}
2545#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2546static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2547{
2548}
2549#endif /* CONFIG_FAIR_GROUP_SCHED */
2550
141965c7 2551#ifdef CONFIG_SMP
5b51f2f8
PT
2552/* Precomputed fixed inverse multiplies for multiplication by y^n */
2553static const u32 runnable_avg_yN_inv[] = {
2554 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2555 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2556 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2557 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2558 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2559 0x85aac367, 0x82cd8698,
2560};
2561
2562/*
2563 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2564 * over-estimates when re-combining.
2565 */
2566static const u32 runnable_avg_yN_sum[] = {
2567 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2568 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2569 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2570};
2571
7b20b916
YD
2572/*
2573 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2574 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2575 * were generated:
2576 */
2577static const u32 __accumulated_sum_N32[] = {
2578 0, 23371, 35056, 40899, 43820, 45281,
2579 46011, 46376, 46559, 46650, 46696, 46719,
2580};
2581
9d85f21c
PT
2582/*
2583 * Approximate:
2584 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2585 */
2586static __always_inline u64 decay_load(u64 val, u64 n)
2587{
5b51f2f8
PT
2588 unsigned int local_n;
2589
2590 if (!n)
2591 return val;
2592 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2593 return 0;
2594
2595 /* after bounds checking we can collapse to 32-bit */
2596 local_n = n;
2597
2598 /*
2599 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2600 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2601 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2602 *
2603 * To achieve constant time decay_load.
2604 */
2605 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2606 val >>= local_n / LOAD_AVG_PERIOD;
2607 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2608 }
2609
9d89c257
YD
2610 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2611 return val;
5b51f2f8
PT
2612}
2613
2614/*
2615 * For updates fully spanning n periods, the contribution to runnable
2616 * average will be: \Sum 1024*y^n
2617 *
2618 * We can compute this reasonably efficiently by combining:
2619 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2620 */
2621static u32 __compute_runnable_contrib(u64 n)
2622{
2623 u32 contrib = 0;
2624
2625 if (likely(n <= LOAD_AVG_PERIOD))
2626 return runnable_avg_yN_sum[n];
2627 else if (unlikely(n >= LOAD_AVG_MAX_N))
2628 return LOAD_AVG_MAX;
2629
7b20b916
YD
2630 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2631 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2632 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2633 contrib = decay_load(contrib, n);
2634 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2635}
2636
54a21385 2637#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2638
9d85f21c
PT
2639/*
2640 * We can represent the historical contribution to runnable average as the
2641 * coefficients of a geometric series. To do this we sub-divide our runnable
2642 * history into segments of approximately 1ms (1024us); label the segment that
2643 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2644 *
2645 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2646 * p0 p1 p2
2647 * (now) (~1ms ago) (~2ms ago)
2648 *
2649 * Let u_i denote the fraction of p_i that the entity was runnable.
2650 *
2651 * We then designate the fractions u_i as our co-efficients, yielding the
2652 * following representation of historical load:
2653 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2654 *
2655 * We choose y based on the with of a reasonably scheduling period, fixing:
2656 * y^32 = 0.5
2657 *
2658 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2659 * approximately half as much as the contribution to load within the last ms
2660 * (u_0).
2661 *
2662 * When a period "rolls over" and we have new u_0`, multiplying the previous
2663 * sum again by y is sufficient to update:
2664 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2665 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2666 */
9d89c257
YD
2667static __always_inline int
2668__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2669 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2670{
e0f5f3af 2671 u64 delta, scaled_delta, periods;
9d89c257 2672 u32 contrib;
6115c793 2673 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2674 unsigned long scale_freq, scale_cpu;
9d85f21c 2675
9d89c257 2676 delta = now - sa->last_update_time;
9d85f21c
PT
2677 /*
2678 * This should only happen when time goes backwards, which it
2679 * unfortunately does during sched clock init when we swap over to TSC.
2680 */
2681 if ((s64)delta < 0) {
9d89c257 2682 sa->last_update_time = now;
9d85f21c
PT
2683 return 0;
2684 }
2685
2686 /*
2687 * Use 1024ns as the unit of measurement since it's a reasonable
2688 * approximation of 1us and fast to compute.
2689 */
2690 delta >>= 10;
2691 if (!delta)
2692 return 0;
9d89c257 2693 sa->last_update_time = now;
9d85f21c 2694
6f2b0452
DE
2695 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2696 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2697
9d85f21c 2698 /* delta_w is the amount already accumulated against our next period */
9d89c257 2699 delta_w = sa->period_contrib;
9d85f21c 2700 if (delta + delta_w >= 1024) {
9d85f21c
PT
2701 decayed = 1;
2702
9d89c257
YD
2703 /* how much left for next period will start over, we don't know yet */
2704 sa->period_contrib = 0;
2705
9d85f21c
PT
2706 /*
2707 * Now that we know we're crossing a period boundary, figure
2708 * out how much from delta we need to complete the current
2709 * period and accrue it.
2710 */
2711 delta_w = 1024 - delta_w;
54a21385 2712 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2713 if (weight) {
e0f5f3af
DE
2714 sa->load_sum += weight * scaled_delta_w;
2715 if (cfs_rq) {
2716 cfs_rq->runnable_load_sum +=
2717 weight * scaled_delta_w;
2718 }
13962234 2719 }
36ee28e4 2720 if (running)
006cdf02 2721 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2722
2723 delta -= delta_w;
2724
2725 /* Figure out how many additional periods this update spans */
2726 periods = delta / 1024;
2727 delta %= 1024;
2728
9d89c257 2729 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2730 if (cfs_rq) {
2731 cfs_rq->runnable_load_sum =
2732 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2733 }
9d89c257 2734 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2735
2736 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2737 contrib = __compute_runnable_contrib(periods);
54a21385 2738 contrib = cap_scale(contrib, scale_freq);
13962234 2739 if (weight) {
9d89c257 2740 sa->load_sum += weight * contrib;
13962234
YD
2741 if (cfs_rq)
2742 cfs_rq->runnable_load_sum += weight * contrib;
2743 }
36ee28e4 2744 if (running)
006cdf02 2745 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2746 }
2747
2748 /* Remainder of delta accrued against u_0` */
54a21385 2749 scaled_delta = cap_scale(delta, scale_freq);
13962234 2750 if (weight) {
e0f5f3af 2751 sa->load_sum += weight * scaled_delta;
13962234 2752 if (cfs_rq)
e0f5f3af 2753 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2754 }
36ee28e4 2755 if (running)
006cdf02 2756 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2757
9d89c257 2758 sa->period_contrib += delta;
9ee474f5 2759
9d89c257
YD
2760 if (decayed) {
2761 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2762 if (cfs_rq) {
2763 cfs_rq->runnable_load_avg =
2764 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2765 }
006cdf02 2766 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2767 }
aff3e498 2768
9d89c257 2769 return decayed;
9ee474f5
PT
2770}
2771
c566e8e9 2772#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2773/*
9d89c257
YD
2774 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2775 * and effective_load (which is not done because it is too costly).
bb17f655 2776 */
9d89c257 2777static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2778{
9d89c257 2779 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2780
aa0b7ae0
WL
2781 /*
2782 * No need to update load_avg for root_task_group as it is not used.
2783 */
2784 if (cfs_rq->tg == &root_task_group)
2785 return;
2786
9d89c257
YD
2787 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2788 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2789 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2790 }
8165e145 2791}
f5f9739d 2792
ad936d86
BP
2793/*
2794 * Called within set_task_rq() right before setting a task's cpu. The
2795 * caller only guarantees p->pi_lock is held; no other assumptions,
2796 * including the state of rq->lock, should be made.
2797 */
2798void set_task_rq_fair(struct sched_entity *se,
2799 struct cfs_rq *prev, struct cfs_rq *next)
2800{
2801 if (!sched_feat(ATTACH_AGE_LOAD))
2802 return;
2803
2804 /*
2805 * We are supposed to update the task to "current" time, then its up to
2806 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2807 * getting what current time is, so simply throw away the out-of-date
2808 * time. This will result in the wakee task is less decayed, but giving
2809 * the wakee more load sounds not bad.
2810 */
2811 if (se->avg.last_update_time && prev) {
2812 u64 p_last_update_time;
2813 u64 n_last_update_time;
2814
2815#ifndef CONFIG_64BIT
2816 u64 p_last_update_time_copy;
2817 u64 n_last_update_time_copy;
2818
2819 do {
2820 p_last_update_time_copy = prev->load_last_update_time_copy;
2821 n_last_update_time_copy = next->load_last_update_time_copy;
2822
2823 smp_rmb();
2824
2825 p_last_update_time = prev->avg.last_update_time;
2826 n_last_update_time = next->avg.last_update_time;
2827
2828 } while (p_last_update_time != p_last_update_time_copy ||
2829 n_last_update_time != n_last_update_time_copy);
2830#else
2831 p_last_update_time = prev->avg.last_update_time;
2832 n_last_update_time = next->avg.last_update_time;
2833#endif
2834 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2835 &se->avg, 0, 0, NULL);
2836 se->avg.last_update_time = n_last_update_time;
2837 }
2838}
6e83125c 2839#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2840static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2841#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2842
9d89c257 2843static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2844
a2c6c91f
SM
2845static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2846{
2847 struct rq *rq = rq_of(cfs_rq);
2848 int cpu = cpu_of(rq);
2849
2850 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2851 unsigned long max = rq->cpu_capacity_orig;
2852
2853 /*
2854 * There are a few boundary cases this might miss but it should
2855 * get called often enough that that should (hopefully) not be
2856 * a real problem -- added to that it only calls on the local
2857 * CPU, so if we enqueue remotely we'll miss an update, but
2858 * the next tick/schedule should update.
2859 *
2860 * It will not get called when we go idle, because the idle
2861 * thread is a different class (!fair), nor will the utilization
2862 * number include things like RT tasks.
2863 *
2864 * As is, the util number is not freq-invariant (we'd have to
2865 * implement arch_scale_freq_capacity() for that).
2866 *
2867 * See cpu_util().
2868 */
2869 cpufreq_update_util(rq_clock(rq),
2870 min(cfs_rq->avg.util_avg, max), max);
2871 }
2872}
2873
89741892
PZ
2874/*
2875 * Unsigned subtract and clamp on underflow.
2876 *
2877 * Explicitly do a load-store to ensure the intermediate value never hits
2878 * memory. This allows lockless observations without ever seeing the negative
2879 * values.
2880 */
2881#define sub_positive(_ptr, _val) do { \
2882 typeof(_ptr) ptr = (_ptr); \
2883 typeof(*ptr) val = (_val); \
2884 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2885 res = var - val; \
2886 if (res > var) \
2887 res = 0; \
2888 WRITE_ONCE(*ptr, res); \
2889} while (0)
2890
9d89c257 2891/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2892static inline int
2893update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2894{
9d89c257 2895 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2896 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2897
9d89c257 2898 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2899 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2900 sub_positive(&sa->load_avg, r);
2901 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2902 removed_load = 1;
8165e145 2903 }
2dac754e 2904
9d89c257
YD
2905 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2906 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2907 sub_positive(&sa->util_avg, r);
2908 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2909 removed_util = 1;
9d89c257 2910 }
36ee28e4 2911
a2c6c91f 2912 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2913 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2914
9d89c257
YD
2915#ifndef CONFIG_64BIT
2916 smp_wmb();
2917 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2918#endif
36ee28e4 2919
a2c6c91f
SM
2920 if (update_freq && (decayed || removed_util))
2921 cfs_rq_util_change(cfs_rq);
21e96f88 2922
41e0d37f 2923 return decayed || removed_load;
21e96f88
SM
2924}
2925
2926/* Update task and its cfs_rq load average */
2927static inline void update_load_avg(struct sched_entity *se, int update_tg)
2928{
2929 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2930 u64 now = cfs_rq_clock_task(cfs_rq);
2931 struct rq *rq = rq_of(cfs_rq);
2932 int cpu = cpu_of(rq);
2933
2934 /*
2935 * Track task load average for carrying it to new CPU after migrated, and
2936 * track group sched_entity load average for task_h_load calc in migration
2937 */
2938 __update_load_avg(now, cpu, &se->avg,
2939 se->on_rq * scale_load_down(se->load.weight),
2940 cfs_rq->curr == se, NULL);
2941
a2c6c91f 2942 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2943 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2944}
2945
a05e8c51
BP
2946static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2947{
a9280514
PZ
2948 if (!sched_feat(ATTACH_AGE_LOAD))
2949 goto skip_aging;
2950
6efdb105
BP
2951 /*
2952 * If we got migrated (either between CPUs or between cgroups) we'll
2953 * have aged the average right before clearing @last_update_time.
2954 */
2955 if (se->avg.last_update_time) {
2956 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2957 &se->avg, 0, 0, NULL);
2958
2959 /*
2960 * XXX: we could have just aged the entire load away if we've been
2961 * absent from the fair class for too long.
2962 */
2963 }
2964
a9280514 2965skip_aging:
a05e8c51
BP
2966 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2967 cfs_rq->avg.load_avg += se->avg.load_avg;
2968 cfs_rq->avg.load_sum += se->avg.load_sum;
2969 cfs_rq->avg.util_avg += se->avg.util_avg;
2970 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
2971
2972 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2973}
2974
2975static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2976{
2977 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2978 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2979 cfs_rq->curr == se, NULL);
2980
89741892
PZ
2981 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2982 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
2983 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
2984 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
2985
2986 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2987}
2988
9d89c257
YD
2989/* Add the load generated by se into cfs_rq's load average */
2990static inline void
2991enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2992{
9d89c257
YD
2993 struct sched_avg *sa = &se->avg;
2994 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2995 int migrated, decayed;
9ee474f5 2996
a05e8c51
BP
2997 migrated = !sa->last_update_time;
2998 if (!migrated) {
9d89c257 2999 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3000 se->on_rq * scale_load_down(se->load.weight),
3001 cfs_rq->curr == se, NULL);
aff3e498 3002 }
c566e8e9 3003
a2c6c91f 3004 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3005
13962234
YD
3006 cfs_rq->runnable_load_avg += sa->load_avg;
3007 cfs_rq->runnable_load_sum += sa->load_sum;
3008
a05e8c51
BP
3009 if (migrated)
3010 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3011
9d89c257
YD
3012 if (decayed || migrated)
3013 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3014}
3015
13962234
YD
3016/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3017static inline void
3018dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3019{
3020 update_load_avg(se, 1);
3021
3022 cfs_rq->runnable_load_avg =
3023 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3024 cfs_rq->runnable_load_sum =
a05e8c51 3025 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3026}
3027
9d89c257 3028#ifndef CONFIG_64BIT
0905f04e
YD
3029static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3030{
9d89c257 3031 u64 last_update_time_copy;
0905f04e 3032 u64 last_update_time;
9ee474f5 3033
9d89c257
YD
3034 do {
3035 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3036 smp_rmb();
3037 last_update_time = cfs_rq->avg.last_update_time;
3038 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3039
3040 return last_update_time;
3041}
9d89c257 3042#else
0905f04e
YD
3043static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3044{
3045 return cfs_rq->avg.last_update_time;
3046}
9d89c257
YD
3047#endif
3048
0905f04e
YD
3049/*
3050 * Task first catches up with cfs_rq, and then subtract
3051 * itself from the cfs_rq (task must be off the queue now).
3052 */
3053void remove_entity_load_avg(struct sched_entity *se)
3054{
3055 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3056 u64 last_update_time;
3057
3058 /*
3059 * Newly created task or never used group entity should not be removed
3060 * from its (source) cfs_rq
3061 */
3062 if (se->avg.last_update_time == 0)
3063 return;
3064
3065 last_update_time = cfs_rq_last_update_time(cfs_rq);
3066
13962234 3067 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3068 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3069 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3070}
642dbc39 3071
7ea241af
YD
3072static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3073{
3074 return cfs_rq->runnable_load_avg;
3075}
3076
3077static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3078{
3079 return cfs_rq->avg.load_avg;
3080}
3081
6e83125c
PZ
3082static int idle_balance(struct rq *this_rq);
3083
38033c37
PZ
3084#else /* CONFIG_SMP */
3085
01011473
PZ
3086static inline int
3087update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3088{
3089 return 0;
3090}
3091
536bd00c
RW
3092static inline void update_load_avg(struct sched_entity *se, int not_used)
3093{
3094 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3095 struct rq *rq = rq_of(cfs_rq);
3096
3097 cpufreq_trigger_update(rq_clock(rq));
3098}
3099
9d89c257
YD
3100static inline void
3101enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3102static inline void
3103dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3104static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3105
a05e8c51
BP
3106static inline void
3107attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3108static inline void
3109detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3110
6e83125c
PZ
3111static inline int idle_balance(struct rq *rq)
3112{
3113 return 0;
3114}
3115
38033c37 3116#endif /* CONFIG_SMP */
9d85f21c 3117
2396af69 3118static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3119{
bf0f6f24 3120#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3121 struct task_struct *tsk = NULL;
3122
3123 if (entity_is_task(se))
3124 tsk = task_of(se);
3125
41acab88 3126 if (se->statistics.sleep_start) {
78becc27 3127 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3128
3129 if ((s64)delta < 0)
3130 delta = 0;
3131
41acab88
LDM
3132 if (unlikely(delta > se->statistics.sleep_max))
3133 se->statistics.sleep_max = delta;
bf0f6f24 3134
8c79a045 3135 se->statistics.sleep_start = 0;
41acab88 3136 se->statistics.sum_sleep_runtime += delta;
9745512c 3137
768d0c27 3138 if (tsk) {
e414314c 3139 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3140 trace_sched_stat_sleep(tsk, delta);
3141 }
bf0f6f24 3142 }
41acab88 3143 if (se->statistics.block_start) {
78becc27 3144 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3145
3146 if ((s64)delta < 0)
3147 delta = 0;
3148
41acab88
LDM
3149 if (unlikely(delta > se->statistics.block_max))
3150 se->statistics.block_max = delta;
bf0f6f24 3151
8c79a045 3152 se->statistics.block_start = 0;
41acab88 3153 se->statistics.sum_sleep_runtime += delta;
30084fbd 3154
e414314c 3155 if (tsk) {
8f0dfc34 3156 if (tsk->in_iowait) {
41acab88
LDM
3157 se->statistics.iowait_sum += delta;
3158 se->statistics.iowait_count++;
768d0c27 3159 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3160 }
3161
b781a602
AV
3162 trace_sched_stat_blocked(tsk, delta);
3163
e414314c
PZ
3164 /*
3165 * Blocking time is in units of nanosecs, so shift by
3166 * 20 to get a milliseconds-range estimation of the
3167 * amount of time that the task spent sleeping:
3168 */
3169 if (unlikely(prof_on == SLEEP_PROFILING)) {
3170 profile_hits(SLEEP_PROFILING,
3171 (void *)get_wchan(tsk),
3172 delta >> 20);
3173 }
3174 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3175 }
bf0f6f24
IM
3176 }
3177#endif
3178}
3179
ddc97297
PZ
3180static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3181{
3182#ifdef CONFIG_SCHED_DEBUG
3183 s64 d = se->vruntime - cfs_rq->min_vruntime;
3184
3185 if (d < 0)
3186 d = -d;
3187
3188 if (d > 3*sysctl_sched_latency)
3189 schedstat_inc(cfs_rq, nr_spread_over);
3190#endif
3191}
3192
aeb73b04
PZ
3193static void
3194place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3195{
1af5f730 3196 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3197
2cb8600e
PZ
3198 /*
3199 * The 'current' period is already promised to the current tasks,
3200 * however the extra weight of the new task will slow them down a
3201 * little, place the new task so that it fits in the slot that
3202 * stays open at the end.
3203 */
94dfb5e7 3204 if (initial && sched_feat(START_DEBIT))
f9c0b095 3205 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3206
a2e7a7eb 3207 /* sleeps up to a single latency don't count. */
5ca9880c 3208 if (!initial) {
a2e7a7eb 3209 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3210
a2e7a7eb
MG
3211 /*
3212 * Halve their sleep time's effect, to allow
3213 * for a gentler effect of sleepers:
3214 */
3215 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3216 thresh >>= 1;
51e0304c 3217
a2e7a7eb 3218 vruntime -= thresh;
aeb73b04
PZ
3219 }
3220
b5d9d734 3221 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3222 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3223}
3224
d3d9dc33
PT
3225static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3226
cb251765
MG
3227static inline void check_schedstat_required(void)
3228{
3229#ifdef CONFIG_SCHEDSTATS
3230 if (schedstat_enabled())
3231 return;
3232
3233 /* Force schedstat enabled if a dependent tracepoint is active */
3234 if (trace_sched_stat_wait_enabled() ||
3235 trace_sched_stat_sleep_enabled() ||
3236 trace_sched_stat_iowait_enabled() ||
3237 trace_sched_stat_blocked_enabled() ||
3238 trace_sched_stat_runtime_enabled()) {
eda8dca5 3239 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3240 "stat_blocked and stat_runtime require the "
3241 "kernel parameter schedstats=enabled or "
3242 "kernel.sched_schedstats=1\n");
3243 }
3244#endif
3245}
3246
b5179ac7
PZ
3247
3248/*
3249 * MIGRATION
3250 *
3251 * dequeue
3252 * update_curr()
3253 * update_min_vruntime()
3254 * vruntime -= min_vruntime
3255 *
3256 * enqueue
3257 * update_curr()
3258 * update_min_vruntime()
3259 * vruntime += min_vruntime
3260 *
3261 * this way the vruntime transition between RQs is done when both
3262 * min_vruntime are up-to-date.
3263 *
3264 * WAKEUP (remote)
3265 *
59efa0ba 3266 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3267 * vruntime -= min_vruntime
3268 *
3269 * enqueue
3270 * update_curr()
3271 * update_min_vruntime()
3272 * vruntime += min_vruntime
3273 *
3274 * this way we don't have the most up-to-date min_vruntime on the originating
3275 * CPU and an up-to-date min_vruntime on the destination CPU.
3276 */
3277
bf0f6f24 3278static void
88ec22d3 3279enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3280{
2f950354
PZ
3281 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3282 bool curr = cfs_rq->curr == se;
3283
88ec22d3 3284 /*
2f950354
PZ
3285 * If we're the current task, we must renormalise before calling
3286 * update_curr().
88ec22d3 3287 */
2f950354 3288 if (renorm && curr)
88ec22d3
PZ
3289 se->vruntime += cfs_rq->min_vruntime;
3290
2f950354
PZ
3291 update_curr(cfs_rq);
3292
bf0f6f24 3293 /*
2f950354
PZ
3294 * Otherwise, renormalise after, such that we're placed at the current
3295 * moment in time, instead of some random moment in the past. Being
3296 * placed in the past could significantly boost this task to the
3297 * fairness detriment of existing tasks.
bf0f6f24 3298 */
2f950354
PZ
3299 if (renorm && !curr)
3300 se->vruntime += cfs_rq->min_vruntime;
3301
9d89c257 3302 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3303 account_entity_enqueue(cfs_rq, se);
3304 update_cfs_shares(cfs_rq);
bf0f6f24 3305
88ec22d3 3306 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3307 place_entity(cfs_rq, se, 0);
cb251765
MG
3308 if (schedstat_enabled())
3309 enqueue_sleeper(cfs_rq, se);
e9acbff6 3310 }
bf0f6f24 3311
cb251765
MG
3312 check_schedstat_required();
3313 if (schedstat_enabled()) {
3314 update_stats_enqueue(cfs_rq, se);
3315 check_spread(cfs_rq, se);
3316 }
2f950354 3317 if (!curr)
83b699ed 3318 __enqueue_entity(cfs_rq, se);
2069dd75 3319 se->on_rq = 1;
3d4b47b4 3320
d3d9dc33 3321 if (cfs_rq->nr_running == 1) {
3d4b47b4 3322 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3323 check_enqueue_throttle(cfs_rq);
3324 }
bf0f6f24
IM
3325}
3326
2c13c919 3327static void __clear_buddies_last(struct sched_entity *se)
2002c695 3328{
2c13c919
RR
3329 for_each_sched_entity(se) {
3330 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3331 if (cfs_rq->last != se)
2c13c919 3332 break;
f1044799
PZ
3333
3334 cfs_rq->last = NULL;
2c13c919
RR
3335 }
3336}
2002c695 3337
2c13c919
RR
3338static void __clear_buddies_next(struct sched_entity *se)
3339{
3340 for_each_sched_entity(se) {
3341 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3342 if (cfs_rq->next != se)
2c13c919 3343 break;
f1044799
PZ
3344
3345 cfs_rq->next = NULL;
2c13c919 3346 }
2002c695
PZ
3347}
3348
ac53db59
RR
3349static void __clear_buddies_skip(struct sched_entity *se)
3350{
3351 for_each_sched_entity(se) {
3352 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3353 if (cfs_rq->skip != se)
ac53db59 3354 break;
f1044799
PZ
3355
3356 cfs_rq->skip = NULL;
ac53db59
RR
3357 }
3358}
3359
a571bbea
PZ
3360static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3361{
2c13c919
RR
3362 if (cfs_rq->last == se)
3363 __clear_buddies_last(se);
3364
3365 if (cfs_rq->next == se)
3366 __clear_buddies_next(se);
ac53db59
RR
3367
3368 if (cfs_rq->skip == se)
3369 __clear_buddies_skip(se);
a571bbea
PZ
3370}
3371
6c16a6dc 3372static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3373
bf0f6f24 3374static void
371fd7e7 3375dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3376{
a2a2d680
DA
3377 /*
3378 * Update run-time statistics of the 'current'.
3379 */
3380 update_curr(cfs_rq);
13962234 3381 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3382
cb251765
MG
3383 if (schedstat_enabled())
3384 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3385
2002c695 3386 clear_buddies(cfs_rq, se);
4793241b 3387
83b699ed 3388 if (se != cfs_rq->curr)
30cfdcfc 3389 __dequeue_entity(cfs_rq, se);
17bc14b7 3390 se->on_rq = 0;
30cfdcfc 3391 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3392
3393 /*
3394 * Normalize the entity after updating the min_vruntime because the
3395 * update can refer to the ->curr item and we need to reflect this
3396 * movement in our normalized position.
3397 */
371fd7e7 3398 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3399 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3400
d8b4986d
PT
3401 /* return excess runtime on last dequeue */
3402 return_cfs_rq_runtime(cfs_rq);
3403
1e876231 3404 update_min_vruntime(cfs_rq);
17bc14b7 3405 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3406}
3407
3408/*
3409 * Preempt the current task with a newly woken task if needed:
3410 */
7c92e54f 3411static void
2e09bf55 3412check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3413{
11697830 3414 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3415 struct sched_entity *se;
3416 s64 delta;
11697830 3417
6d0f0ebd 3418 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3419 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3420 if (delta_exec > ideal_runtime) {
8875125e 3421 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3422 /*
3423 * The current task ran long enough, ensure it doesn't get
3424 * re-elected due to buddy favours.
3425 */
3426 clear_buddies(cfs_rq, curr);
f685ceac
MG
3427 return;
3428 }
3429
3430 /*
3431 * Ensure that a task that missed wakeup preemption by a
3432 * narrow margin doesn't have to wait for a full slice.
3433 * This also mitigates buddy induced latencies under load.
3434 */
f685ceac
MG
3435 if (delta_exec < sysctl_sched_min_granularity)
3436 return;
3437
f4cfb33e
WX
3438 se = __pick_first_entity(cfs_rq);
3439 delta = curr->vruntime - se->vruntime;
f685ceac 3440
f4cfb33e
WX
3441 if (delta < 0)
3442 return;
d7d82944 3443
f4cfb33e 3444 if (delta > ideal_runtime)
8875125e 3445 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3446}
3447
83b699ed 3448static void
8494f412 3449set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3450{
83b699ed
SV
3451 /* 'current' is not kept within the tree. */
3452 if (se->on_rq) {
3453 /*
3454 * Any task has to be enqueued before it get to execute on
3455 * a CPU. So account for the time it spent waiting on the
3456 * runqueue.
3457 */
cb251765
MG
3458 if (schedstat_enabled())
3459 update_stats_wait_end(cfs_rq, se);
83b699ed 3460 __dequeue_entity(cfs_rq, se);
9d89c257 3461 update_load_avg(se, 1);
83b699ed
SV
3462 }
3463
79303e9e 3464 update_stats_curr_start(cfs_rq, se);
429d43bc 3465 cfs_rq->curr = se;
eba1ed4b
IM
3466#ifdef CONFIG_SCHEDSTATS
3467 /*
3468 * Track our maximum slice length, if the CPU's load is at
3469 * least twice that of our own weight (i.e. dont track it
3470 * when there are only lesser-weight tasks around):
3471 */
cb251765 3472 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3473 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3474 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3475 }
3476#endif
4a55b450 3477 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3478}
3479
3f3a4904
PZ
3480static int
3481wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3482
ac53db59
RR
3483/*
3484 * Pick the next process, keeping these things in mind, in this order:
3485 * 1) keep things fair between processes/task groups
3486 * 2) pick the "next" process, since someone really wants that to run
3487 * 3) pick the "last" process, for cache locality
3488 * 4) do not run the "skip" process, if something else is available
3489 */
678d5718
PZ
3490static struct sched_entity *
3491pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3492{
678d5718
PZ
3493 struct sched_entity *left = __pick_first_entity(cfs_rq);
3494 struct sched_entity *se;
3495
3496 /*
3497 * If curr is set we have to see if its left of the leftmost entity
3498 * still in the tree, provided there was anything in the tree at all.
3499 */
3500 if (!left || (curr && entity_before(curr, left)))
3501 left = curr;
3502
3503 se = left; /* ideally we run the leftmost entity */
f4b6755f 3504
ac53db59
RR
3505 /*
3506 * Avoid running the skip buddy, if running something else can
3507 * be done without getting too unfair.
3508 */
3509 if (cfs_rq->skip == se) {
678d5718
PZ
3510 struct sched_entity *second;
3511
3512 if (se == curr) {
3513 second = __pick_first_entity(cfs_rq);
3514 } else {
3515 second = __pick_next_entity(se);
3516 if (!second || (curr && entity_before(curr, second)))
3517 second = curr;
3518 }
3519
ac53db59
RR
3520 if (second && wakeup_preempt_entity(second, left) < 1)
3521 se = second;
3522 }
aa2ac252 3523
f685ceac
MG
3524 /*
3525 * Prefer last buddy, try to return the CPU to a preempted task.
3526 */
3527 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3528 se = cfs_rq->last;
3529
ac53db59
RR
3530 /*
3531 * Someone really wants this to run. If it's not unfair, run it.
3532 */
3533 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3534 se = cfs_rq->next;
3535
f685ceac 3536 clear_buddies(cfs_rq, se);
4793241b
PZ
3537
3538 return se;
aa2ac252
PZ
3539}
3540
678d5718 3541static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3542
ab6cde26 3543static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3544{
3545 /*
3546 * If still on the runqueue then deactivate_task()
3547 * was not called and update_curr() has to be done:
3548 */
3549 if (prev->on_rq)
b7cc0896 3550 update_curr(cfs_rq);
bf0f6f24 3551
d3d9dc33
PT
3552 /* throttle cfs_rqs exceeding runtime */
3553 check_cfs_rq_runtime(cfs_rq);
3554
cb251765
MG
3555 if (schedstat_enabled()) {
3556 check_spread(cfs_rq, prev);
3557 if (prev->on_rq)
3558 update_stats_wait_start(cfs_rq, prev);
3559 }
3560
30cfdcfc 3561 if (prev->on_rq) {
30cfdcfc
DA
3562 /* Put 'current' back into the tree. */
3563 __enqueue_entity(cfs_rq, prev);
9d85f21c 3564 /* in !on_rq case, update occurred at dequeue */
9d89c257 3565 update_load_avg(prev, 0);
30cfdcfc 3566 }
429d43bc 3567 cfs_rq->curr = NULL;
bf0f6f24
IM
3568}
3569
8f4d37ec
PZ
3570static void
3571entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3572{
bf0f6f24 3573 /*
30cfdcfc 3574 * Update run-time statistics of the 'current'.
bf0f6f24 3575 */
30cfdcfc 3576 update_curr(cfs_rq);
bf0f6f24 3577
9d85f21c
PT
3578 /*
3579 * Ensure that runnable average is periodically updated.
3580 */
9d89c257 3581 update_load_avg(curr, 1);
bf0bd948 3582 update_cfs_shares(cfs_rq);
9d85f21c 3583
8f4d37ec
PZ
3584#ifdef CONFIG_SCHED_HRTICK
3585 /*
3586 * queued ticks are scheduled to match the slice, so don't bother
3587 * validating it and just reschedule.
3588 */
983ed7a6 3589 if (queued) {
8875125e 3590 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3591 return;
3592 }
8f4d37ec
PZ
3593 /*
3594 * don't let the period tick interfere with the hrtick preemption
3595 */
3596 if (!sched_feat(DOUBLE_TICK) &&
3597 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3598 return;
3599#endif
3600
2c2efaed 3601 if (cfs_rq->nr_running > 1)
2e09bf55 3602 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3603}
3604
ab84d31e
PT
3605
3606/**************************************************
3607 * CFS bandwidth control machinery
3608 */
3609
3610#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3611
3612#ifdef HAVE_JUMP_LABEL
c5905afb 3613static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3614
3615static inline bool cfs_bandwidth_used(void)
3616{
c5905afb 3617 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3618}
3619
1ee14e6c 3620void cfs_bandwidth_usage_inc(void)
029632fb 3621{
1ee14e6c
BS
3622 static_key_slow_inc(&__cfs_bandwidth_used);
3623}
3624
3625void cfs_bandwidth_usage_dec(void)
3626{
3627 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3628}
3629#else /* HAVE_JUMP_LABEL */
3630static bool cfs_bandwidth_used(void)
3631{
3632 return true;
3633}
3634
1ee14e6c
BS
3635void cfs_bandwidth_usage_inc(void) {}
3636void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3637#endif /* HAVE_JUMP_LABEL */
3638
ab84d31e
PT
3639/*
3640 * default period for cfs group bandwidth.
3641 * default: 0.1s, units: nanoseconds
3642 */
3643static inline u64 default_cfs_period(void)
3644{
3645 return 100000000ULL;
3646}
ec12cb7f
PT
3647
3648static inline u64 sched_cfs_bandwidth_slice(void)
3649{
3650 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3651}
3652
a9cf55b2
PT
3653/*
3654 * Replenish runtime according to assigned quota and update expiration time.
3655 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3656 * additional synchronization around rq->lock.
3657 *
3658 * requires cfs_b->lock
3659 */
029632fb 3660void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3661{
3662 u64 now;
3663
3664 if (cfs_b->quota == RUNTIME_INF)
3665 return;
3666
3667 now = sched_clock_cpu(smp_processor_id());
3668 cfs_b->runtime = cfs_b->quota;
3669 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3670}
3671
029632fb
PZ
3672static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3673{
3674 return &tg->cfs_bandwidth;
3675}
3676
f1b17280
PT
3677/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3678static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3679{
3680 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3681 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3682
78becc27 3683 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3684}
3685
85dac906
PT
3686/* returns 0 on failure to allocate runtime */
3687static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3688{
3689 struct task_group *tg = cfs_rq->tg;
3690 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3691 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3692
3693 /* note: this is a positive sum as runtime_remaining <= 0 */
3694 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3695
3696 raw_spin_lock(&cfs_b->lock);
3697 if (cfs_b->quota == RUNTIME_INF)
3698 amount = min_amount;
58088ad0 3699 else {
77a4d1a1 3700 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3701
3702 if (cfs_b->runtime > 0) {
3703 amount = min(cfs_b->runtime, min_amount);
3704 cfs_b->runtime -= amount;
3705 cfs_b->idle = 0;
3706 }
ec12cb7f 3707 }
a9cf55b2 3708 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3709 raw_spin_unlock(&cfs_b->lock);
3710
3711 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3712 /*
3713 * we may have advanced our local expiration to account for allowed
3714 * spread between our sched_clock and the one on which runtime was
3715 * issued.
3716 */
3717 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3718 cfs_rq->runtime_expires = expires;
85dac906
PT
3719
3720 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3721}
3722
a9cf55b2
PT
3723/*
3724 * Note: This depends on the synchronization provided by sched_clock and the
3725 * fact that rq->clock snapshots this value.
3726 */
3727static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3728{
a9cf55b2 3729 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3730
3731 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3732 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3733 return;
3734
a9cf55b2
PT
3735 if (cfs_rq->runtime_remaining < 0)
3736 return;
3737
3738 /*
3739 * If the local deadline has passed we have to consider the
3740 * possibility that our sched_clock is 'fast' and the global deadline
3741 * has not truly expired.
3742 *
3743 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3744 * whether the global deadline has advanced. It is valid to compare
3745 * cfs_b->runtime_expires without any locks since we only care about
3746 * exact equality, so a partial write will still work.
a9cf55b2
PT
3747 */
3748
51f2176d 3749 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3750 /* extend local deadline, drift is bounded above by 2 ticks */
3751 cfs_rq->runtime_expires += TICK_NSEC;
3752 } else {
3753 /* global deadline is ahead, expiration has passed */
3754 cfs_rq->runtime_remaining = 0;
3755 }
3756}
3757
9dbdb155 3758static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3759{
3760 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3761 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3762 expire_cfs_rq_runtime(cfs_rq);
3763
3764 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3765 return;
3766
85dac906
PT
3767 /*
3768 * if we're unable to extend our runtime we resched so that the active
3769 * hierarchy can be throttled
3770 */
3771 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3772 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3773}
3774
6c16a6dc 3775static __always_inline
9dbdb155 3776void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3777{
56f570e5 3778 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3779 return;
3780
3781 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3782}
3783
85dac906
PT
3784static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3785{
56f570e5 3786 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3787}
3788
64660c86
PT
3789/* check whether cfs_rq, or any parent, is throttled */
3790static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3791{
56f570e5 3792 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3793}
3794
3795/*
3796 * Ensure that neither of the group entities corresponding to src_cpu or
3797 * dest_cpu are members of a throttled hierarchy when performing group
3798 * load-balance operations.
3799 */
3800static inline int throttled_lb_pair(struct task_group *tg,
3801 int src_cpu, int dest_cpu)
3802{
3803 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3804
3805 src_cfs_rq = tg->cfs_rq[src_cpu];
3806 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3807
3808 return throttled_hierarchy(src_cfs_rq) ||
3809 throttled_hierarchy(dest_cfs_rq);
3810}
3811
3812/* updated child weight may affect parent so we have to do this bottom up */
3813static int tg_unthrottle_up(struct task_group *tg, void *data)
3814{
3815 struct rq *rq = data;
3816 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3817
3818 cfs_rq->throttle_count--;
64660c86 3819 if (!cfs_rq->throttle_count) {
f1b17280 3820 /* adjust cfs_rq_clock_task() */
78becc27 3821 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3822 cfs_rq->throttled_clock_task;
64660c86 3823 }
64660c86
PT
3824
3825 return 0;
3826}
3827
3828static int tg_throttle_down(struct task_group *tg, void *data)
3829{
3830 struct rq *rq = data;
3831 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3832
82958366
PT
3833 /* group is entering throttled state, stop time */
3834 if (!cfs_rq->throttle_count)
78becc27 3835 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3836 cfs_rq->throttle_count++;
3837
3838 return 0;
3839}
3840
d3d9dc33 3841static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3842{
3843 struct rq *rq = rq_of(cfs_rq);
3844 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3845 struct sched_entity *se;
3846 long task_delta, dequeue = 1;
77a4d1a1 3847 bool empty;
85dac906
PT
3848
3849 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3850
f1b17280 3851 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3852 rcu_read_lock();
3853 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3854 rcu_read_unlock();
85dac906
PT
3855
3856 task_delta = cfs_rq->h_nr_running;
3857 for_each_sched_entity(se) {
3858 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3859 /* throttled entity or throttle-on-deactivate */
3860 if (!se->on_rq)
3861 break;
3862
3863 if (dequeue)
3864 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3865 qcfs_rq->h_nr_running -= task_delta;
3866
3867 if (qcfs_rq->load.weight)
3868 dequeue = 0;
3869 }
3870
3871 if (!se)
72465447 3872 sub_nr_running(rq, task_delta);
85dac906
PT
3873
3874 cfs_rq->throttled = 1;
78becc27 3875 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3876 raw_spin_lock(&cfs_b->lock);
d49db342 3877 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3878
c06f04c7
BS
3879 /*
3880 * Add to the _head_ of the list, so that an already-started
3881 * distribute_cfs_runtime will not see us
3882 */
3883 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3884
3885 /*
3886 * If we're the first throttled task, make sure the bandwidth
3887 * timer is running.
3888 */
3889 if (empty)
3890 start_cfs_bandwidth(cfs_b);
3891
85dac906
PT
3892 raw_spin_unlock(&cfs_b->lock);
3893}
3894
029632fb 3895void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3896{
3897 struct rq *rq = rq_of(cfs_rq);
3898 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3899 struct sched_entity *se;
3900 int enqueue = 1;
3901 long task_delta;
3902
22b958d8 3903 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3904
3905 cfs_rq->throttled = 0;
1a55af2e
FW
3906
3907 update_rq_clock(rq);
3908
671fd9da 3909 raw_spin_lock(&cfs_b->lock);
78becc27 3910 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3911 list_del_rcu(&cfs_rq->throttled_list);
3912 raw_spin_unlock(&cfs_b->lock);
3913
64660c86
PT
3914 /* update hierarchical throttle state */
3915 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3916
671fd9da
PT
3917 if (!cfs_rq->load.weight)
3918 return;
3919
3920 task_delta = cfs_rq->h_nr_running;
3921 for_each_sched_entity(se) {
3922 if (se->on_rq)
3923 enqueue = 0;
3924
3925 cfs_rq = cfs_rq_of(se);
3926 if (enqueue)
3927 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3928 cfs_rq->h_nr_running += task_delta;
3929
3930 if (cfs_rq_throttled(cfs_rq))
3931 break;
3932 }
3933
3934 if (!se)
72465447 3935 add_nr_running(rq, task_delta);
671fd9da
PT
3936
3937 /* determine whether we need to wake up potentially idle cpu */
3938 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3939 resched_curr(rq);
671fd9da
PT
3940}
3941
3942static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3943 u64 remaining, u64 expires)
3944{
3945 struct cfs_rq *cfs_rq;
c06f04c7
BS
3946 u64 runtime;
3947 u64 starting_runtime = remaining;
671fd9da
PT
3948
3949 rcu_read_lock();
3950 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3951 throttled_list) {
3952 struct rq *rq = rq_of(cfs_rq);
3953
3954 raw_spin_lock(&rq->lock);
3955 if (!cfs_rq_throttled(cfs_rq))
3956 goto next;
3957
3958 runtime = -cfs_rq->runtime_remaining + 1;
3959 if (runtime > remaining)
3960 runtime = remaining;
3961 remaining -= runtime;
3962
3963 cfs_rq->runtime_remaining += runtime;
3964 cfs_rq->runtime_expires = expires;
3965
3966 /* we check whether we're throttled above */
3967 if (cfs_rq->runtime_remaining > 0)
3968 unthrottle_cfs_rq(cfs_rq);
3969
3970next:
3971 raw_spin_unlock(&rq->lock);
3972
3973 if (!remaining)
3974 break;
3975 }
3976 rcu_read_unlock();
3977
c06f04c7 3978 return starting_runtime - remaining;
671fd9da
PT
3979}
3980
58088ad0
PT
3981/*
3982 * Responsible for refilling a task_group's bandwidth and unthrottling its
3983 * cfs_rqs as appropriate. If there has been no activity within the last
3984 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3985 * used to track this state.
3986 */
3987static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3988{
671fd9da 3989 u64 runtime, runtime_expires;
51f2176d 3990 int throttled;
58088ad0 3991
58088ad0
PT
3992 /* no need to continue the timer with no bandwidth constraint */
3993 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3994 goto out_deactivate;
58088ad0 3995
671fd9da 3996 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3997 cfs_b->nr_periods += overrun;
671fd9da 3998
51f2176d
BS
3999 /*
4000 * idle depends on !throttled (for the case of a large deficit), and if
4001 * we're going inactive then everything else can be deferred
4002 */
4003 if (cfs_b->idle && !throttled)
4004 goto out_deactivate;
a9cf55b2
PT
4005
4006 __refill_cfs_bandwidth_runtime(cfs_b);
4007
671fd9da
PT
4008 if (!throttled) {
4009 /* mark as potentially idle for the upcoming period */
4010 cfs_b->idle = 1;
51f2176d 4011 return 0;
671fd9da
PT
4012 }
4013
e8da1b18
NR
4014 /* account preceding periods in which throttling occurred */
4015 cfs_b->nr_throttled += overrun;
4016
671fd9da 4017 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4018
4019 /*
c06f04c7
BS
4020 * This check is repeated as we are holding onto the new bandwidth while
4021 * we unthrottle. This can potentially race with an unthrottled group
4022 * trying to acquire new bandwidth from the global pool. This can result
4023 * in us over-using our runtime if it is all used during this loop, but
4024 * only by limited amounts in that extreme case.
671fd9da 4025 */
c06f04c7
BS
4026 while (throttled && cfs_b->runtime > 0) {
4027 runtime = cfs_b->runtime;
671fd9da
PT
4028 raw_spin_unlock(&cfs_b->lock);
4029 /* we can't nest cfs_b->lock while distributing bandwidth */
4030 runtime = distribute_cfs_runtime(cfs_b, runtime,
4031 runtime_expires);
4032 raw_spin_lock(&cfs_b->lock);
4033
4034 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4035
4036 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4037 }
58088ad0 4038
671fd9da
PT
4039 /*
4040 * While we are ensured activity in the period following an
4041 * unthrottle, this also covers the case in which the new bandwidth is
4042 * insufficient to cover the existing bandwidth deficit. (Forcing the
4043 * timer to remain active while there are any throttled entities.)
4044 */
4045 cfs_b->idle = 0;
58088ad0 4046
51f2176d
BS
4047 return 0;
4048
4049out_deactivate:
51f2176d 4050 return 1;
58088ad0 4051}
d3d9dc33 4052
d8b4986d
PT
4053/* a cfs_rq won't donate quota below this amount */
4054static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4055/* minimum remaining period time to redistribute slack quota */
4056static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4057/* how long we wait to gather additional slack before distributing */
4058static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4059
db06e78c
BS
4060/*
4061 * Are we near the end of the current quota period?
4062 *
4063 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4064 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4065 * migrate_hrtimers, base is never cleared, so we are fine.
4066 */
d8b4986d
PT
4067static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4068{
4069 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4070 u64 remaining;
4071
4072 /* if the call-back is running a quota refresh is already occurring */
4073 if (hrtimer_callback_running(refresh_timer))
4074 return 1;
4075
4076 /* is a quota refresh about to occur? */
4077 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4078 if (remaining < min_expire)
4079 return 1;
4080
4081 return 0;
4082}
4083
4084static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4085{
4086 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4087
4088 /* if there's a quota refresh soon don't bother with slack */
4089 if (runtime_refresh_within(cfs_b, min_left))
4090 return;
4091
4cfafd30
PZ
4092 hrtimer_start(&cfs_b->slack_timer,
4093 ns_to_ktime(cfs_bandwidth_slack_period),
4094 HRTIMER_MODE_REL);
d8b4986d
PT
4095}
4096
4097/* we know any runtime found here is valid as update_curr() precedes return */
4098static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4099{
4100 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4101 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4102
4103 if (slack_runtime <= 0)
4104 return;
4105
4106 raw_spin_lock(&cfs_b->lock);
4107 if (cfs_b->quota != RUNTIME_INF &&
4108 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4109 cfs_b->runtime += slack_runtime;
4110
4111 /* we are under rq->lock, defer unthrottling using a timer */
4112 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4113 !list_empty(&cfs_b->throttled_cfs_rq))
4114 start_cfs_slack_bandwidth(cfs_b);
4115 }
4116 raw_spin_unlock(&cfs_b->lock);
4117
4118 /* even if it's not valid for return we don't want to try again */
4119 cfs_rq->runtime_remaining -= slack_runtime;
4120}
4121
4122static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4123{
56f570e5
PT
4124 if (!cfs_bandwidth_used())
4125 return;
4126
fccfdc6f 4127 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4128 return;
4129
4130 __return_cfs_rq_runtime(cfs_rq);
4131}
4132
4133/*
4134 * This is done with a timer (instead of inline with bandwidth return) since
4135 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4136 */
4137static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4138{
4139 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4140 u64 expires;
4141
4142 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4143 raw_spin_lock(&cfs_b->lock);
4144 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4145 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4146 return;
db06e78c 4147 }
d8b4986d 4148
c06f04c7 4149 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4150 runtime = cfs_b->runtime;
c06f04c7 4151
d8b4986d
PT
4152 expires = cfs_b->runtime_expires;
4153 raw_spin_unlock(&cfs_b->lock);
4154
4155 if (!runtime)
4156 return;
4157
4158 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4159
4160 raw_spin_lock(&cfs_b->lock);
4161 if (expires == cfs_b->runtime_expires)
c06f04c7 4162 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4163 raw_spin_unlock(&cfs_b->lock);
4164}
4165
d3d9dc33
PT
4166/*
4167 * When a group wakes up we want to make sure that its quota is not already
4168 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4169 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4170 */
4171static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4172{
56f570e5
PT
4173 if (!cfs_bandwidth_used())
4174 return;
4175
094f4691
KK
4176 /* Synchronize hierarchical throttle counter: */
4177 if (unlikely(!cfs_rq->throttle_uptodate)) {
4178 struct rq *rq = rq_of(cfs_rq);
4179 struct cfs_rq *pcfs_rq;
4180 struct task_group *tg;
4181
4182 cfs_rq->throttle_uptodate = 1;
4183
4184 /* Get closest up-to-date node, because leaves go first: */
4185 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
4186 pcfs_rq = tg->cfs_rq[cpu_of(rq)];
4187 if (pcfs_rq->throttle_uptodate)
4188 break;
4189 }
4190 if (tg) {
4191 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4192 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4193 }
4194 }
4195
d3d9dc33
PT
4196 /* an active group must be handled by the update_curr()->put() path */
4197 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4198 return;
4199
4200 /* ensure the group is not already throttled */
4201 if (cfs_rq_throttled(cfs_rq))
4202 return;
4203
4204 /* update runtime allocation */
4205 account_cfs_rq_runtime(cfs_rq, 0);
4206 if (cfs_rq->runtime_remaining <= 0)
4207 throttle_cfs_rq(cfs_rq);
4208}
4209
4210/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4211static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4212{
56f570e5 4213 if (!cfs_bandwidth_used())
678d5718 4214 return false;
56f570e5 4215
d3d9dc33 4216 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4217 return false;
d3d9dc33
PT
4218
4219 /*
4220 * it's possible for a throttled entity to be forced into a running
4221 * state (e.g. set_curr_task), in this case we're finished.
4222 */
4223 if (cfs_rq_throttled(cfs_rq))
678d5718 4224 return true;
d3d9dc33
PT
4225
4226 throttle_cfs_rq(cfs_rq);
678d5718 4227 return true;
d3d9dc33 4228}
029632fb 4229
029632fb
PZ
4230static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4231{
4232 struct cfs_bandwidth *cfs_b =
4233 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4234
029632fb
PZ
4235 do_sched_cfs_slack_timer(cfs_b);
4236
4237 return HRTIMER_NORESTART;
4238}
4239
4240static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4241{
4242 struct cfs_bandwidth *cfs_b =
4243 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4244 int overrun;
4245 int idle = 0;
4246
51f2176d 4247 raw_spin_lock(&cfs_b->lock);
029632fb 4248 for (;;) {
77a4d1a1 4249 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4250 if (!overrun)
4251 break;
4252
4253 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4254 }
4cfafd30
PZ
4255 if (idle)
4256 cfs_b->period_active = 0;
51f2176d 4257 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4258
4259 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4260}
4261
4262void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4263{
4264 raw_spin_lock_init(&cfs_b->lock);
4265 cfs_b->runtime = 0;
4266 cfs_b->quota = RUNTIME_INF;
4267 cfs_b->period = ns_to_ktime(default_cfs_period());
4268
4269 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4270 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4271 cfs_b->period_timer.function = sched_cfs_period_timer;
4272 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4273 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4274}
4275
4276static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4277{
4278 cfs_rq->runtime_enabled = 0;
4279 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4280}
4281
77a4d1a1 4282void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4283{
4cfafd30 4284 lockdep_assert_held(&cfs_b->lock);
029632fb 4285
4cfafd30
PZ
4286 if (!cfs_b->period_active) {
4287 cfs_b->period_active = 1;
4288 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4289 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4290 }
029632fb
PZ
4291}
4292
4293static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4294{
7f1a169b
TH
4295 /* init_cfs_bandwidth() was not called */
4296 if (!cfs_b->throttled_cfs_rq.next)
4297 return;
4298
029632fb
PZ
4299 hrtimer_cancel(&cfs_b->period_timer);
4300 hrtimer_cancel(&cfs_b->slack_timer);
4301}
4302
0e59bdae
KT
4303static void __maybe_unused update_runtime_enabled(struct rq *rq)
4304{
4305 struct cfs_rq *cfs_rq;
4306
4307 for_each_leaf_cfs_rq(rq, cfs_rq) {
4308 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4309
4310 raw_spin_lock(&cfs_b->lock);
4311 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4312 raw_spin_unlock(&cfs_b->lock);
4313 }
4314}
4315
38dc3348 4316static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4317{
4318 struct cfs_rq *cfs_rq;
4319
4320 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4321 if (!cfs_rq->runtime_enabled)
4322 continue;
4323
4324 /*
4325 * clock_task is not advancing so we just need to make sure
4326 * there's some valid quota amount
4327 */
51f2176d 4328 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4329 /*
4330 * Offline rq is schedulable till cpu is completely disabled
4331 * in take_cpu_down(), so we prevent new cfs throttling here.
4332 */
4333 cfs_rq->runtime_enabled = 0;
4334
029632fb
PZ
4335 if (cfs_rq_throttled(cfs_rq))
4336 unthrottle_cfs_rq(cfs_rq);
4337 }
4338}
4339
4340#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4341static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4342{
78becc27 4343 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4344}
4345
9dbdb155 4346static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4347static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4348static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4349static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4350
4351static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4352{
4353 return 0;
4354}
64660c86
PT
4355
4356static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4357{
4358 return 0;
4359}
4360
4361static inline int throttled_lb_pair(struct task_group *tg,
4362 int src_cpu, int dest_cpu)
4363{
4364 return 0;
4365}
029632fb
PZ
4366
4367void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4368
4369#ifdef CONFIG_FAIR_GROUP_SCHED
4370static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4371#endif
4372
029632fb
PZ
4373static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4374{
4375 return NULL;
4376}
4377static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4378static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4379static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4380
4381#endif /* CONFIG_CFS_BANDWIDTH */
4382
bf0f6f24
IM
4383/**************************************************
4384 * CFS operations on tasks:
4385 */
4386
8f4d37ec
PZ
4387#ifdef CONFIG_SCHED_HRTICK
4388static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4389{
8f4d37ec
PZ
4390 struct sched_entity *se = &p->se;
4391 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4392
4393 WARN_ON(task_rq(p) != rq);
4394
b39e66ea 4395 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4396 u64 slice = sched_slice(cfs_rq, se);
4397 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4398 s64 delta = slice - ran;
4399
4400 if (delta < 0) {
4401 if (rq->curr == p)
8875125e 4402 resched_curr(rq);
8f4d37ec
PZ
4403 return;
4404 }
31656519 4405 hrtick_start(rq, delta);
8f4d37ec
PZ
4406 }
4407}
a4c2f00f
PZ
4408
4409/*
4410 * called from enqueue/dequeue and updates the hrtick when the
4411 * current task is from our class and nr_running is low enough
4412 * to matter.
4413 */
4414static void hrtick_update(struct rq *rq)
4415{
4416 struct task_struct *curr = rq->curr;
4417
b39e66ea 4418 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4419 return;
4420
4421 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4422 hrtick_start_fair(rq, curr);
4423}
55e12e5e 4424#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4425static inline void
4426hrtick_start_fair(struct rq *rq, struct task_struct *p)
4427{
4428}
a4c2f00f
PZ
4429
4430static inline void hrtick_update(struct rq *rq)
4431{
4432}
8f4d37ec
PZ
4433#endif
4434
bf0f6f24
IM
4435/*
4436 * The enqueue_task method is called before nr_running is
4437 * increased. Here we update the fair scheduling stats and
4438 * then put the task into the rbtree:
4439 */
ea87bb78 4440static void
371fd7e7 4441enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4442{
4443 struct cfs_rq *cfs_rq;
62fb1851 4444 struct sched_entity *se = &p->se;
bf0f6f24
IM
4445
4446 for_each_sched_entity(se) {
62fb1851 4447 if (se->on_rq)
bf0f6f24
IM
4448 break;
4449 cfs_rq = cfs_rq_of(se);
88ec22d3 4450 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4451
4452 /*
4453 * end evaluation on encountering a throttled cfs_rq
4454 *
4455 * note: in the case of encountering a throttled cfs_rq we will
4456 * post the final h_nr_running increment below.
e210bffd 4457 */
85dac906
PT
4458 if (cfs_rq_throttled(cfs_rq))
4459 break;
953bfcd1 4460 cfs_rq->h_nr_running++;
85dac906 4461
88ec22d3 4462 flags = ENQUEUE_WAKEUP;
bf0f6f24 4463 }
8f4d37ec 4464
2069dd75 4465 for_each_sched_entity(se) {
0f317143 4466 cfs_rq = cfs_rq_of(se);
953bfcd1 4467 cfs_rq->h_nr_running++;
2069dd75 4468
85dac906
PT
4469 if (cfs_rq_throttled(cfs_rq))
4470 break;
4471
9d89c257 4472 update_load_avg(se, 1);
17bc14b7 4473 update_cfs_shares(cfs_rq);
2069dd75
PZ
4474 }
4475
cd126afe 4476 if (!se)
72465447 4477 add_nr_running(rq, 1);
cd126afe 4478
a4c2f00f 4479 hrtick_update(rq);
bf0f6f24
IM
4480}
4481
2f36825b
VP
4482static void set_next_buddy(struct sched_entity *se);
4483
bf0f6f24
IM
4484/*
4485 * The dequeue_task method is called before nr_running is
4486 * decreased. We remove the task from the rbtree and
4487 * update the fair scheduling stats:
4488 */
371fd7e7 4489static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4490{
4491 struct cfs_rq *cfs_rq;
62fb1851 4492 struct sched_entity *se = &p->se;
2f36825b 4493 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4494
4495 for_each_sched_entity(se) {
4496 cfs_rq = cfs_rq_of(se);
371fd7e7 4497 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4498
4499 /*
4500 * end evaluation on encountering a throttled cfs_rq
4501 *
4502 * note: in the case of encountering a throttled cfs_rq we will
4503 * post the final h_nr_running decrement below.
4504 */
4505 if (cfs_rq_throttled(cfs_rq))
4506 break;
953bfcd1 4507 cfs_rq->h_nr_running--;
2069dd75 4508
bf0f6f24 4509 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4510 if (cfs_rq->load.weight) {
754bd598
KK
4511 /* Avoid re-evaluating load for this entity: */
4512 se = parent_entity(se);
2f36825b
VP
4513 /*
4514 * Bias pick_next to pick a task from this cfs_rq, as
4515 * p is sleeping when it is within its sched_slice.
4516 */
754bd598
KK
4517 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4518 set_next_buddy(se);
bf0f6f24 4519 break;
2f36825b 4520 }
371fd7e7 4521 flags |= DEQUEUE_SLEEP;
bf0f6f24 4522 }
8f4d37ec 4523
2069dd75 4524 for_each_sched_entity(se) {
0f317143 4525 cfs_rq = cfs_rq_of(se);
953bfcd1 4526 cfs_rq->h_nr_running--;
2069dd75 4527
85dac906
PT
4528 if (cfs_rq_throttled(cfs_rq))
4529 break;
4530
9d89c257 4531 update_load_avg(se, 1);
17bc14b7 4532 update_cfs_shares(cfs_rq);
2069dd75
PZ
4533 }
4534
cd126afe 4535 if (!se)
72465447 4536 sub_nr_running(rq, 1);
cd126afe 4537
a4c2f00f 4538 hrtick_update(rq);
bf0f6f24
IM
4539}
4540
e7693a36 4541#ifdef CONFIG_SMP
9fd81dd5 4542#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4543/*
4544 * per rq 'load' arrray crap; XXX kill this.
4545 */
4546
4547/*
d937cdc5 4548 * The exact cpuload calculated at every tick would be:
3289bdb4 4549 *
d937cdc5
PZ
4550 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4551 *
4552 * If a cpu misses updates for n ticks (as it was idle) and update gets
4553 * called on the n+1-th tick when cpu may be busy, then we have:
4554 *
4555 * load_n = (1 - 1/2^i)^n * load_0
4556 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4557 *
4558 * decay_load_missed() below does efficient calculation of
3289bdb4 4559 *
d937cdc5
PZ
4560 * load' = (1 - 1/2^i)^n * load
4561 *
4562 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4563 * This allows us to precompute the above in said factors, thereby allowing the
4564 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4565 * fixed_power_int())
3289bdb4 4566 *
d937cdc5 4567 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4568 */
4569#define DEGRADE_SHIFT 7
d937cdc5
PZ
4570
4571static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4572static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4573 { 0, 0, 0, 0, 0, 0, 0, 0 },
4574 { 64, 32, 8, 0, 0, 0, 0, 0 },
4575 { 96, 72, 40, 12, 1, 0, 0, 0 },
4576 { 112, 98, 75, 43, 15, 1, 0, 0 },
4577 { 120, 112, 98, 76, 45, 16, 2, 0 }
4578};
3289bdb4
PZ
4579
4580/*
4581 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4582 * would be when CPU is idle and so we just decay the old load without
4583 * adding any new load.
4584 */
4585static unsigned long
4586decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4587{
4588 int j = 0;
4589
4590 if (!missed_updates)
4591 return load;
4592
4593 if (missed_updates >= degrade_zero_ticks[idx])
4594 return 0;
4595
4596 if (idx == 1)
4597 return load >> missed_updates;
4598
4599 while (missed_updates) {
4600 if (missed_updates % 2)
4601 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4602
4603 missed_updates >>= 1;
4604 j++;
4605 }
4606 return load;
4607}
9fd81dd5 4608#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4609
59543275 4610/**
cee1afce 4611 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4612 * @this_rq: The rq to update statistics for
4613 * @this_load: The current load
4614 * @pending_updates: The number of missed updates
59543275 4615 *
3289bdb4 4616 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4617 * scheduler tick (TICK_NSEC).
4618 *
4619 * This function computes a decaying average:
4620 *
4621 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4622 *
4623 * Because of NOHZ it might not get called on every tick which gives need for
4624 * the @pending_updates argument.
4625 *
4626 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4627 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4628 * = A * (A * load[i]_n-2 + B) + B
4629 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4630 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4631 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4632 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4633 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4634 *
4635 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4636 * any change in load would have resulted in the tick being turned back on.
4637 *
4638 * For regular NOHZ, this reduces to:
4639 *
4640 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4641 *
4642 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4643 * term.
3289bdb4 4644 */
1f41906a
FW
4645static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4646 unsigned long pending_updates)
3289bdb4 4647{
9fd81dd5 4648 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4649 int i, scale;
4650
4651 this_rq->nr_load_updates++;
4652
4653 /* Update our load: */
4654 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4655 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4656 unsigned long old_load, new_load;
4657
4658 /* scale is effectively 1 << i now, and >> i divides by scale */
4659
7400d3bb 4660 old_load = this_rq->cpu_load[i];
9fd81dd5 4661#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4662 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4663 if (tickless_load) {
4664 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4665 /*
4666 * old_load can never be a negative value because a
4667 * decayed tickless_load cannot be greater than the
4668 * original tickless_load.
4669 */
4670 old_load += tickless_load;
4671 }
9fd81dd5 4672#endif
3289bdb4
PZ
4673 new_load = this_load;
4674 /*
4675 * Round up the averaging division if load is increasing. This
4676 * prevents us from getting stuck on 9 if the load is 10, for
4677 * example.
4678 */
4679 if (new_load > old_load)
4680 new_load += scale - 1;
4681
4682 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4683 }
4684
4685 sched_avg_update(this_rq);
4686}
4687
7ea241af
YD
4688/* Used instead of source_load when we know the type == 0 */
4689static unsigned long weighted_cpuload(const int cpu)
4690{
4691 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4692}
4693
3289bdb4 4694#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4695/*
4696 * There is no sane way to deal with nohz on smp when using jiffies because the
4697 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4698 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4699 *
4700 * Therefore we need to avoid the delta approach from the regular tick when
4701 * possible since that would seriously skew the load calculation. This is why we
4702 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4703 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4704 * loop exit, nohz_idle_balance, nohz full exit...)
4705 *
4706 * This means we might still be one tick off for nohz periods.
4707 */
4708
4709static void cpu_load_update_nohz(struct rq *this_rq,
4710 unsigned long curr_jiffies,
4711 unsigned long load)
be68a682
FW
4712{
4713 unsigned long pending_updates;
4714
4715 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4716 if (pending_updates) {
4717 this_rq->last_load_update_tick = curr_jiffies;
4718 /*
4719 * In the regular NOHZ case, we were idle, this means load 0.
4720 * In the NOHZ_FULL case, we were non-idle, we should consider
4721 * its weighted load.
4722 */
1f41906a 4723 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4724 }
4725}
4726
3289bdb4
PZ
4727/*
4728 * Called from nohz_idle_balance() to update the load ratings before doing the
4729 * idle balance.
4730 */
cee1afce 4731static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4732{
3289bdb4
PZ
4733 /*
4734 * bail if there's load or we're actually up-to-date.
4735 */
be68a682 4736 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4737 return;
4738
1f41906a 4739 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4740}
4741
4742/*
1f41906a
FW
4743 * Record CPU load on nohz entry so we know the tickless load to account
4744 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4745 * than other cpu_load[idx] but it should be fine as cpu_load readers
4746 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4747 */
1f41906a 4748void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4749{
4750 struct rq *this_rq = this_rq();
1f41906a
FW
4751
4752 /*
4753 * This is all lockless but should be fine. If weighted_cpuload changes
4754 * concurrently we'll exit nohz. And cpu_load write can race with
4755 * cpu_load_update_idle() but both updater would be writing the same.
4756 */
4757 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4758}
4759
4760/*
4761 * Account the tickless load in the end of a nohz frame.
4762 */
4763void cpu_load_update_nohz_stop(void)
4764{
316c1608 4765 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4766 struct rq *this_rq = this_rq();
4767 unsigned long load;
3289bdb4
PZ
4768
4769 if (curr_jiffies == this_rq->last_load_update_tick)
4770 return;
4771
1f41906a 4772 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4773 raw_spin_lock(&this_rq->lock);
b52fad2d 4774 update_rq_clock(this_rq);
1f41906a 4775 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4776 raw_spin_unlock(&this_rq->lock);
4777}
1f41906a
FW
4778#else /* !CONFIG_NO_HZ_COMMON */
4779static inline void cpu_load_update_nohz(struct rq *this_rq,
4780 unsigned long curr_jiffies,
4781 unsigned long load) { }
4782#endif /* CONFIG_NO_HZ_COMMON */
4783
4784static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4785{
9fd81dd5 4786#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4787 /* See the mess around cpu_load_update_nohz(). */
4788 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4789#endif
1f41906a
FW
4790 cpu_load_update(this_rq, load, 1);
4791}
3289bdb4
PZ
4792
4793/*
4794 * Called from scheduler_tick()
4795 */
cee1afce 4796void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4797{
7ea241af 4798 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4799
4800 if (tick_nohz_tick_stopped())
4801 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4802 else
4803 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4804}
4805
029632fb
PZ
4806/*
4807 * Return a low guess at the load of a migration-source cpu weighted
4808 * according to the scheduling class and "nice" value.
4809 *
4810 * We want to under-estimate the load of migration sources, to
4811 * balance conservatively.
4812 */
4813static unsigned long source_load(int cpu, int type)
4814{
4815 struct rq *rq = cpu_rq(cpu);
4816 unsigned long total = weighted_cpuload(cpu);
4817
4818 if (type == 0 || !sched_feat(LB_BIAS))
4819 return total;
4820
4821 return min(rq->cpu_load[type-1], total);
4822}
4823
4824/*
4825 * Return a high guess at the load of a migration-target cpu weighted
4826 * according to the scheduling class and "nice" value.
4827 */
4828static unsigned long target_load(int cpu, int type)
4829{
4830 struct rq *rq = cpu_rq(cpu);
4831 unsigned long total = weighted_cpuload(cpu);
4832
4833 if (type == 0 || !sched_feat(LB_BIAS))
4834 return total;
4835
4836 return max(rq->cpu_load[type-1], total);
4837}
4838
ced549fa 4839static unsigned long capacity_of(int cpu)
029632fb 4840{
ced549fa 4841 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4842}
4843
ca6d75e6
VG
4844static unsigned long capacity_orig_of(int cpu)
4845{
4846 return cpu_rq(cpu)->cpu_capacity_orig;
4847}
4848
029632fb
PZ
4849static unsigned long cpu_avg_load_per_task(int cpu)
4850{
4851 struct rq *rq = cpu_rq(cpu);
316c1608 4852 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4853 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4854
4855 if (nr_running)
b92486cb 4856 return load_avg / nr_running;
029632fb
PZ
4857
4858 return 0;
4859}
4860
bb3469ac 4861#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4862/*
4863 * effective_load() calculates the load change as seen from the root_task_group
4864 *
4865 * Adding load to a group doesn't make a group heavier, but can cause movement
4866 * of group shares between cpus. Assuming the shares were perfectly aligned one
4867 * can calculate the shift in shares.
cf5f0acf
PZ
4868 *
4869 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4870 * on this @cpu and results in a total addition (subtraction) of @wg to the
4871 * total group weight.
4872 *
4873 * Given a runqueue weight distribution (rw_i) we can compute a shares
4874 * distribution (s_i) using:
4875 *
4876 * s_i = rw_i / \Sum rw_j (1)
4877 *
4878 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4879 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4880 * shares distribution (s_i):
4881 *
4882 * rw_i = { 2, 4, 1, 0 }
4883 * s_i = { 2/7, 4/7, 1/7, 0 }
4884 *
4885 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4886 * task used to run on and the CPU the waker is running on), we need to
4887 * compute the effect of waking a task on either CPU and, in case of a sync
4888 * wakeup, compute the effect of the current task going to sleep.
4889 *
4890 * So for a change of @wl to the local @cpu with an overall group weight change
4891 * of @wl we can compute the new shares distribution (s'_i) using:
4892 *
4893 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4894 *
4895 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4896 * differences in waking a task to CPU 0. The additional task changes the
4897 * weight and shares distributions like:
4898 *
4899 * rw'_i = { 3, 4, 1, 0 }
4900 * s'_i = { 3/8, 4/8, 1/8, 0 }
4901 *
4902 * We can then compute the difference in effective weight by using:
4903 *
4904 * dw_i = S * (s'_i - s_i) (3)
4905 *
4906 * Where 'S' is the group weight as seen by its parent.
4907 *
4908 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4909 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4910 * 4/7) times the weight of the group.
f5bfb7d9 4911 */
2069dd75 4912static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4913{
4be9daaa 4914 struct sched_entity *se = tg->se[cpu];
f1d239f7 4915
9722c2da 4916 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4917 return wl;
4918
4be9daaa 4919 for_each_sched_entity(se) {
7dd49125
PZ
4920 struct cfs_rq *cfs_rq = se->my_q;
4921 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4922
7dd49125 4923 tg = cfs_rq->tg;
bb3469ac 4924
cf5f0acf
PZ
4925 /*
4926 * W = @wg + \Sum rw_j
4927 */
7dd49125
PZ
4928 W = wg + atomic_long_read(&tg->load_avg);
4929
4930 /* Ensure \Sum rw_j >= rw_i */
4931 W -= cfs_rq->tg_load_avg_contrib;
4932 W += w;
4be9daaa 4933
cf5f0acf
PZ
4934 /*
4935 * w = rw_i + @wl
4936 */
7dd49125 4937 w += wl;
940959e9 4938
cf5f0acf
PZ
4939 /*
4940 * wl = S * s'_i; see (2)
4941 */
4942 if (W > 0 && w < W)
32a8df4e 4943 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4944 else
4945 wl = tg->shares;
940959e9 4946
cf5f0acf
PZ
4947 /*
4948 * Per the above, wl is the new se->load.weight value; since
4949 * those are clipped to [MIN_SHARES, ...) do so now. See
4950 * calc_cfs_shares().
4951 */
977dda7c
PT
4952 if (wl < MIN_SHARES)
4953 wl = MIN_SHARES;
cf5f0acf
PZ
4954
4955 /*
4956 * wl = dw_i = S * (s'_i - s_i); see (3)
4957 */
9d89c257 4958 wl -= se->avg.load_avg;
cf5f0acf
PZ
4959
4960 /*
4961 * Recursively apply this logic to all parent groups to compute
4962 * the final effective load change on the root group. Since
4963 * only the @tg group gets extra weight, all parent groups can
4964 * only redistribute existing shares. @wl is the shift in shares
4965 * resulting from this level per the above.
4966 */
4be9daaa 4967 wg = 0;
4be9daaa 4968 }
bb3469ac 4969
4be9daaa 4970 return wl;
bb3469ac
PZ
4971}
4972#else
4be9daaa 4973
58d081b5 4974static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4975{
83378269 4976 return wl;
bb3469ac 4977}
4be9daaa 4978
bb3469ac
PZ
4979#endif
4980
c58d25f3
PZ
4981static void record_wakee(struct task_struct *p)
4982{
4983 /*
4984 * Only decay a single time; tasks that have less then 1 wakeup per
4985 * jiffy will not have built up many flips.
4986 */
4987 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4988 current->wakee_flips >>= 1;
4989 current->wakee_flip_decay_ts = jiffies;
4990 }
4991
4992 if (current->last_wakee != p) {
4993 current->last_wakee = p;
4994 current->wakee_flips++;
4995 }
4996}
4997
63b0e9ed
MG
4998/*
4999 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5000 *
63b0e9ed 5001 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5002 * at a frequency roughly N times higher than one of its wakees.
5003 *
5004 * In order to determine whether we should let the load spread vs consolidating
5005 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5006 * partner, and a factor of lls_size higher frequency in the other.
5007 *
5008 * With both conditions met, we can be relatively sure that the relationship is
5009 * non-monogamous, with partner count exceeding socket size.
5010 *
5011 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5012 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5013 * socket size.
63b0e9ed 5014 */
62470419
MW
5015static int wake_wide(struct task_struct *p)
5016{
63b0e9ed
MG
5017 unsigned int master = current->wakee_flips;
5018 unsigned int slave = p->wakee_flips;
7d9ffa89 5019 int factor = this_cpu_read(sd_llc_size);
62470419 5020
63b0e9ed
MG
5021 if (master < slave)
5022 swap(master, slave);
5023 if (slave < factor || master < slave * factor)
5024 return 0;
5025 return 1;
62470419
MW
5026}
5027
c88d5910 5028static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 5029{
e37b6a7b 5030 s64 this_load, load;
bd61c98f 5031 s64 this_eff_load, prev_eff_load;
c88d5910 5032 int idx, this_cpu, prev_cpu;
c88d5910 5033 struct task_group *tg;
83378269 5034 unsigned long weight;
b3137bc8 5035 int balanced;
098fb9db 5036
c88d5910
PZ
5037 idx = sd->wake_idx;
5038 this_cpu = smp_processor_id();
5039 prev_cpu = task_cpu(p);
5040 load = source_load(prev_cpu, idx);
5041 this_load = target_load(this_cpu, idx);
098fb9db 5042
b3137bc8
MG
5043 /*
5044 * If sync wakeup then subtract the (maximum possible)
5045 * effect of the currently running task from the load
5046 * of the current CPU:
5047 */
83378269
PZ
5048 if (sync) {
5049 tg = task_group(current);
9d89c257 5050 weight = current->se.avg.load_avg;
83378269 5051
c88d5910 5052 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5053 load += effective_load(tg, prev_cpu, 0, -weight);
5054 }
b3137bc8 5055
83378269 5056 tg = task_group(p);
9d89c257 5057 weight = p->se.avg.load_avg;
b3137bc8 5058
71a29aa7
PZ
5059 /*
5060 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5061 * due to the sync cause above having dropped this_load to 0, we'll
5062 * always have an imbalance, but there's really nothing you can do
5063 * about that, so that's good too.
71a29aa7
PZ
5064 *
5065 * Otherwise check if either cpus are near enough in load to allow this
5066 * task to be woken on this_cpu.
5067 */
bd61c98f
VG
5068 this_eff_load = 100;
5069 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5070
bd61c98f
VG
5071 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5072 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5073
bd61c98f 5074 if (this_load > 0) {
e51fd5e2
PZ
5075 this_eff_load *= this_load +
5076 effective_load(tg, this_cpu, weight, weight);
5077
e51fd5e2 5078 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5079 }
e51fd5e2 5080
bd61c98f 5081 balanced = this_eff_load <= prev_eff_load;
098fb9db 5082
41acab88 5083 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5084
05bfb65f
VG
5085 if (!balanced)
5086 return 0;
098fb9db 5087
05bfb65f
VG
5088 schedstat_inc(sd, ttwu_move_affine);
5089 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5090
5091 return 1;
098fb9db
IM
5092}
5093
aaee1203
PZ
5094/*
5095 * find_idlest_group finds and returns the least busy CPU group within the
5096 * domain.
5097 */
5098static struct sched_group *
78e7ed53 5099find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5100 int this_cpu, int sd_flag)
e7693a36 5101{
b3bd3de6 5102 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5103 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5104 int load_idx = sd->forkexec_idx;
aaee1203 5105 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5106
c44f2a02
VG
5107 if (sd_flag & SD_BALANCE_WAKE)
5108 load_idx = sd->wake_idx;
5109
aaee1203
PZ
5110 do {
5111 unsigned long load, avg_load;
5112 int local_group;
5113 int i;
e7693a36 5114
aaee1203
PZ
5115 /* Skip over this group if it has no CPUs allowed */
5116 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5117 tsk_cpus_allowed(p)))
aaee1203
PZ
5118 continue;
5119
5120 local_group = cpumask_test_cpu(this_cpu,
5121 sched_group_cpus(group));
5122
5123 /* Tally up the load of all CPUs in the group */
5124 avg_load = 0;
5125
5126 for_each_cpu(i, sched_group_cpus(group)) {
5127 /* Bias balancing toward cpus of our domain */
5128 if (local_group)
5129 load = source_load(i, load_idx);
5130 else
5131 load = target_load(i, load_idx);
5132
5133 avg_load += load;
5134 }
5135
63b2ca30 5136 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5137 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5138
5139 if (local_group) {
5140 this_load = avg_load;
aaee1203
PZ
5141 } else if (avg_load < min_load) {
5142 min_load = avg_load;
5143 idlest = group;
5144 }
5145 } while (group = group->next, group != sd->groups);
5146
5147 if (!idlest || 100*this_load < imbalance*min_load)
5148 return NULL;
5149 return idlest;
5150}
5151
5152/*
5153 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5154 */
5155static int
5156find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5157{
5158 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5159 unsigned int min_exit_latency = UINT_MAX;
5160 u64 latest_idle_timestamp = 0;
5161 int least_loaded_cpu = this_cpu;
5162 int shallowest_idle_cpu = -1;
aaee1203
PZ
5163 int i;
5164
5165 /* Traverse only the allowed CPUs */
fa17b507 5166 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5167 if (idle_cpu(i)) {
5168 struct rq *rq = cpu_rq(i);
5169 struct cpuidle_state *idle = idle_get_state(rq);
5170 if (idle && idle->exit_latency < min_exit_latency) {
5171 /*
5172 * We give priority to a CPU whose idle state
5173 * has the smallest exit latency irrespective
5174 * of any idle timestamp.
5175 */
5176 min_exit_latency = idle->exit_latency;
5177 latest_idle_timestamp = rq->idle_stamp;
5178 shallowest_idle_cpu = i;
5179 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5180 rq->idle_stamp > latest_idle_timestamp) {
5181 /*
5182 * If equal or no active idle state, then
5183 * the most recently idled CPU might have
5184 * a warmer cache.
5185 */
5186 latest_idle_timestamp = rq->idle_stamp;
5187 shallowest_idle_cpu = i;
5188 }
9f96742a 5189 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5190 load = weighted_cpuload(i);
5191 if (load < min_load || (load == min_load && i == this_cpu)) {
5192 min_load = load;
5193 least_loaded_cpu = i;
5194 }
e7693a36
GH
5195 }
5196 }
5197
83a0a96a 5198 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5199}
e7693a36 5200
a50bde51
PZ
5201/*
5202 * Try and locate an idle CPU in the sched_domain.
5203 */
99bd5e2f 5204static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5205{
99bd5e2f 5206 struct sched_domain *sd;
37407ea7 5207 struct sched_group *sg;
e0a79f52 5208 int i = task_cpu(p);
a50bde51 5209
e0a79f52
MG
5210 if (idle_cpu(target))
5211 return target;
99bd5e2f
SS
5212
5213 /*
e0a79f52 5214 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5215 */
e0a79f52
MG
5216 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5217 return i;
a50bde51
PZ
5218
5219 /*
d4335581
MF
5220 * Otherwise, iterate the domains and find an eligible idle cpu.
5221 *
5222 * A completely idle sched group at higher domains is more
5223 * desirable than an idle group at a lower level, because lower
5224 * domains have smaller groups and usually share hardware
5225 * resources which causes tasks to contend on them, e.g. x86
5226 * hyperthread siblings in the lowest domain (SMT) can contend
5227 * on the shared cpu pipeline.
5228 *
5229 * However, while we prefer idle groups at higher domains
5230 * finding an idle cpu at the lowest domain is still better than
5231 * returning 'target', which we've already established, isn't
5232 * idle.
a50bde51 5233 */
518cd623 5234 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5235 for_each_lower_domain(sd) {
37407ea7
LT
5236 sg = sd->groups;
5237 do {
5238 if (!cpumask_intersects(sched_group_cpus(sg),
5239 tsk_cpus_allowed(p)))
5240 goto next;
5241
d4335581 5242 /* Ensure the entire group is idle */
37407ea7 5243 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5244 if (i == target || !idle_cpu(i))
37407ea7
LT
5245 goto next;
5246 }
970e1789 5247
d4335581
MF
5248 /*
5249 * It doesn't matter which cpu we pick, the
5250 * whole group is idle.
5251 */
37407ea7
LT
5252 target = cpumask_first_and(sched_group_cpus(sg),
5253 tsk_cpus_allowed(p));
5254 goto done;
5255next:
5256 sg = sg->next;
5257 } while (sg != sd->groups);
5258 }
5259done:
a50bde51
PZ
5260 return target;
5261}
231678b7 5262
8bb5b00c 5263/*
9e91d61d 5264 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5265 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5266 * compare the utilization with the capacity of the CPU that is available for
5267 * CFS task (ie cpu_capacity).
231678b7
DE
5268 *
5269 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5270 * recent utilization of currently non-runnable tasks on a CPU. It represents
5271 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5272 * capacity_orig is the cpu_capacity available at the highest frequency
5273 * (arch_scale_freq_capacity()).
5274 * The utilization of a CPU converges towards a sum equal to or less than the
5275 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5276 * the running time on this CPU scaled by capacity_curr.
5277 *
5278 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5279 * higher than capacity_orig because of unfortunate rounding in
5280 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5281 * the average stabilizes with the new running time. We need to check that the
5282 * utilization stays within the range of [0..capacity_orig] and cap it if
5283 * necessary. Without utilization capping, a group could be seen as overloaded
5284 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5285 * available capacity. We allow utilization to overshoot capacity_curr (but not
5286 * capacity_orig) as it useful for predicting the capacity required after task
5287 * migrations (scheduler-driven DVFS).
8bb5b00c 5288 */
9e91d61d 5289static int cpu_util(int cpu)
8bb5b00c 5290{
9e91d61d 5291 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5292 unsigned long capacity = capacity_orig_of(cpu);
5293
231678b7 5294 return (util >= capacity) ? capacity : util;
8bb5b00c 5295}
a50bde51 5296
aaee1203 5297/*
de91b9cb
MR
5298 * select_task_rq_fair: Select target runqueue for the waking task in domains
5299 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5300 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5301 *
de91b9cb
MR
5302 * Balances load by selecting the idlest cpu in the idlest group, or under
5303 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5304 *
de91b9cb 5305 * Returns the target cpu number.
aaee1203
PZ
5306 *
5307 * preempt must be disabled.
5308 */
0017d735 5309static int
ac66f547 5310select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5311{
29cd8bae 5312 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5313 int cpu = smp_processor_id();
63b0e9ed 5314 int new_cpu = prev_cpu;
99bd5e2f 5315 int want_affine = 0;
5158f4e4 5316 int sync = wake_flags & WF_SYNC;
c88d5910 5317
c58d25f3
PZ
5318 if (sd_flag & SD_BALANCE_WAKE) {
5319 record_wakee(p);
63b0e9ed 5320 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5321 }
aaee1203 5322
dce840a0 5323 rcu_read_lock();
aaee1203 5324 for_each_domain(cpu, tmp) {
e4f42888 5325 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5326 break;
e4f42888 5327
fe3bcfe1 5328 /*
99bd5e2f
SS
5329 * If both cpu and prev_cpu are part of this domain,
5330 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5331 */
99bd5e2f
SS
5332 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5333 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5334 affine_sd = tmp;
29cd8bae 5335 break;
f03542a7 5336 }
29cd8bae 5337
f03542a7 5338 if (tmp->flags & sd_flag)
29cd8bae 5339 sd = tmp;
63b0e9ed
MG
5340 else if (!want_affine)
5341 break;
29cd8bae
PZ
5342 }
5343
63b0e9ed
MG
5344 if (affine_sd) {
5345 sd = NULL; /* Prefer wake_affine over balance flags */
5346 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5347 new_cpu = cpu;
8b911acd 5348 }
e7693a36 5349
63b0e9ed
MG
5350 if (!sd) {
5351 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5352 new_cpu = select_idle_sibling(p, new_cpu);
5353
5354 } else while (sd) {
aaee1203 5355 struct sched_group *group;
c88d5910 5356 int weight;
098fb9db 5357
0763a660 5358 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5359 sd = sd->child;
5360 continue;
5361 }
098fb9db 5362
c44f2a02 5363 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5364 if (!group) {
5365 sd = sd->child;
5366 continue;
5367 }
4ae7d5ce 5368
d7c33c49 5369 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5370 if (new_cpu == -1 || new_cpu == cpu) {
5371 /* Now try balancing at a lower domain level of cpu */
5372 sd = sd->child;
5373 continue;
e7693a36 5374 }
aaee1203
PZ
5375
5376 /* Now try balancing at a lower domain level of new_cpu */
5377 cpu = new_cpu;
669c55e9 5378 weight = sd->span_weight;
aaee1203
PZ
5379 sd = NULL;
5380 for_each_domain(cpu, tmp) {
669c55e9 5381 if (weight <= tmp->span_weight)
aaee1203 5382 break;
0763a660 5383 if (tmp->flags & sd_flag)
aaee1203
PZ
5384 sd = tmp;
5385 }
5386 /* while loop will break here if sd == NULL */
e7693a36 5387 }
dce840a0 5388 rcu_read_unlock();
e7693a36 5389
c88d5910 5390 return new_cpu;
e7693a36 5391}
0a74bef8
PT
5392
5393/*
5394 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5395 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5396 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5397 */
5a4fd036 5398static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5399{
59efa0ba
PZ
5400 /*
5401 * As blocked tasks retain absolute vruntime the migration needs to
5402 * deal with this by subtracting the old and adding the new
5403 * min_vruntime -- the latter is done by enqueue_entity() when placing
5404 * the task on the new runqueue.
5405 */
5406 if (p->state == TASK_WAKING) {
5407 struct sched_entity *se = &p->se;
5408 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5409 u64 min_vruntime;
5410
5411#ifndef CONFIG_64BIT
5412 u64 min_vruntime_copy;
5413
5414 do {
5415 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5416 smp_rmb();
5417 min_vruntime = cfs_rq->min_vruntime;
5418 } while (min_vruntime != min_vruntime_copy);
5419#else
5420 min_vruntime = cfs_rq->min_vruntime;
5421#endif
5422
5423 se->vruntime -= min_vruntime;
5424 }
5425
aff3e498 5426 /*
9d89c257
YD
5427 * We are supposed to update the task to "current" time, then its up to date
5428 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5429 * what current time is, so simply throw away the out-of-date time. This
5430 * will result in the wakee task is less decayed, but giving the wakee more
5431 * load sounds not bad.
aff3e498 5432 */
9d89c257
YD
5433 remove_entity_load_avg(&p->se);
5434
5435 /* Tell new CPU we are migrated */
5436 p->se.avg.last_update_time = 0;
3944a927
BS
5437
5438 /* We have migrated, no longer consider this task hot */
9d89c257 5439 p->se.exec_start = 0;
0a74bef8 5440}
12695578
YD
5441
5442static void task_dead_fair(struct task_struct *p)
5443{
5444 remove_entity_load_avg(&p->se);
5445}
e7693a36
GH
5446#endif /* CONFIG_SMP */
5447
e52fb7c0
PZ
5448static unsigned long
5449wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5450{
5451 unsigned long gran = sysctl_sched_wakeup_granularity;
5452
5453 /*
e52fb7c0
PZ
5454 * Since its curr running now, convert the gran from real-time
5455 * to virtual-time in his units.
13814d42
MG
5456 *
5457 * By using 'se' instead of 'curr' we penalize light tasks, so
5458 * they get preempted easier. That is, if 'se' < 'curr' then
5459 * the resulting gran will be larger, therefore penalizing the
5460 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5461 * be smaller, again penalizing the lighter task.
5462 *
5463 * This is especially important for buddies when the leftmost
5464 * task is higher priority than the buddy.
0bbd3336 5465 */
f4ad9bd2 5466 return calc_delta_fair(gran, se);
0bbd3336
PZ
5467}
5468
464b7527
PZ
5469/*
5470 * Should 'se' preempt 'curr'.
5471 *
5472 * |s1
5473 * |s2
5474 * |s3
5475 * g
5476 * |<--->|c
5477 *
5478 * w(c, s1) = -1
5479 * w(c, s2) = 0
5480 * w(c, s3) = 1
5481 *
5482 */
5483static int
5484wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5485{
5486 s64 gran, vdiff = curr->vruntime - se->vruntime;
5487
5488 if (vdiff <= 0)
5489 return -1;
5490
e52fb7c0 5491 gran = wakeup_gran(curr, se);
464b7527
PZ
5492 if (vdiff > gran)
5493 return 1;
5494
5495 return 0;
5496}
5497
02479099
PZ
5498static void set_last_buddy(struct sched_entity *se)
5499{
69c80f3e
VP
5500 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5501 return;
5502
5503 for_each_sched_entity(se)
5504 cfs_rq_of(se)->last = se;
02479099
PZ
5505}
5506
5507static void set_next_buddy(struct sched_entity *se)
5508{
69c80f3e
VP
5509 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5510 return;
5511
5512 for_each_sched_entity(se)
5513 cfs_rq_of(se)->next = se;
02479099
PZ
5514}
5515
ac53db59
RR
5516static void set_skip_buddy(struct sched_entity *se)
5517{
69c80f3e
VP
5518 for_each_sched_entity(se)
5519 cfs_rq_of(se)->skip = se;
ac53db59
RR
5520}
5521
bf0f6f24
IM
5522/*
5523 * Preempt the current task with a newly woken task if needed:
5524 */
5a9b86f6 5525static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5526{
5527 struct task_struct *curr = rq->curr;
8651a86c 5528 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5529 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5530 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5531 int next_buddy_marked = 0;
bf0f6f24 5532
4ae7d5ce
IM
5533 if (unlikely(se == pse))
5534 return;
5535
5238cdd3 5536 /*
163122b7 5537 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5538 * unconditionally check_prempt_curr() after an enqueue (which may have
5539 * lead to a throttle). This both saves work and prevents false
5540 * next-buddy nomination below.
5541 */
5542 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5543 return;
5544
2f36825b 5545 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5546 set_next_buddy(pse);
2f36825b
VP
5547 next_buddy_marked = 1;
5548 }
57fdc26d 5549
aec0a514
BR
5550 /*
5551 * We can come here with TIF_NEED_RESCHED already set from new task
5552 * wake up path.
5238cdd3
PT
5553 *
5554 * Note: this also catches the edge-case of curr being in a throttled
5555 * group (e.g. via set_curr_task), since update_curr() (in the
5556 * enqueue of curr) will have resulted in resched being set. This
5557 * prevents us from potentially nominating it as a false LAST_BUDDY
5558 * below.
aec0a514
BR
5559 */
5560 if (test_tsk_need_resched(curr))
5561 return;
5562
a2f5c9ab
DH
5563 /* Idle tasks are by definition preempted by non-idle tasks. */
5564 if (unlikely(curr->policy == SCHED_IDLE) &&
5565 likely(p->policy != SCHED_IDLE))
5566 goto preempt;
5567
91c234b4 5568 /*
a2f5c9ab
DH
5569 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5570 * is driven by the tick):
91c234b4 5571 */
8ed92e51 5572 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5573 return;
bf0f6f24 5574
464b7527 5575 find_matching_se(&se, &pse);
9bbd7374 5576 update_curr(cfs_rq_of(se));
002f128b 5577 BUG_ON(!pse);
2f36825b
VP
5578 if (wakeup_preempt_entity(se, pse) == 1) {
5579 /*
5580 * Bias pick_next to pick the sched entity that is
5581 * triggering this preemption.
5582 */
5583 if (!next_buddy_marked)
5584 set_next_buddy(pse);
3a7e73a2 5585 goto preempt;
2f36825b 5586 }
464b7527 5587
3a7e73a2 5588 return;
a65ac745 5589
3a7e73a2 5590preempt:
8875125e 5591 resched_curr(rq);
3a7e73a2
PZ
5592 /*
5593 * Only set the backward buddy when the current task is still
5594 * on the rq. This can happen when a wakeup gets interleaved
5595 * with schedule on the ->pre_schedule() or idle_balance()
5596 * point, either of which can * drop the rq lock.
5597 *
5598 * Also, during early boot the idle thread is in the fair class,
5599 * for obvious reasons its a bad idea to schedule back to it.
5600 */
5601 if (unlikely(!se->on_rq || curr == rq->idle))
5602 return;
5603
5604 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5605 set_last_buddy(se);
bf0f6f24
IM
5606}
5607
606dba2e 5608static struct task_struct *
e7904a28 5609pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5610{
5611 struct cfs_rq *cfs_rq = &rq->cfs;
5612 struct sched_entity *se;
678d5718 5613 struct task_struct *p;
37e117c0 5614 int new_tasks;
678d5718 5615
6e83125c 5616again:
678d5718
PZ
5617#ifdef CONFIG_FAIR_GROUP_SCHED
5618 if (!cfs_rq->nr_running)
38033c37 5619 goto idle;
678d5718 5620
3f1d2a31 5621 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5622 goto simple;
5623
5624 /*
5625 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5626 * likely that a next task is from the same cgroup as the current.
5627 *
5628 * Therefore attempt to avoid putting and setting the entire cgroup
5629 * hierarchy, only change the part that actually changes.
5630 */
5631
5632 do {
5633 struct sched_entity *curr = cfs_rq->curr;
5634
5635 /*
5636 * Since we got here without doing put_prev_entity() we also
5637 * have to consider cfs_rq->curr. If it is still a runnable
5638 * entity, update_curr() will update its vruntime, otherwise
5639 * forget we've ever seen it.
5640 */
54d27365
BS
5641 if (curr) {
5642 if (curr->on_rq)
5643 update_curr(cfs_rq);
5644 else
5645 curr = NULL;
678d5718 5646
54d27365
BS
5647 /*
5648 * This call to check_cfs_rq_runtime() will do the
5649 * throttle and dequeue its entity in the parent(s).
5650 * Therefore the 'simple' nr_running test will indeed
5651 * be correct.
5652 */
5653 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5654 goto simple;
5655 }
678d5718
PZ
5656
5657 se = pick_next_entity(cfs_rq, curr);
5658 cfs_rq = group_cfs_rq(se);
5659 } while (cfs_rq);
5660
5661 p = task_of(se);
5662
5663 /*
5664 * Since we haven't yet done put_prev_entity and if the selected task
5665 * is a different task than we started out with, try and touch the
5666 * least amount of cfs_rqs.
5667 */
5668 if (prev != p) {
5669 struct sched_entity *pse = &prev->se;
5670
5671 while (!(cfs_rq = is_same_group(se, pse))) {
5672 int se_depth = se->depth;
5673 int pse_depth = pse->depth;
5674
5675 if (se_depth <= pse_depth) {
5676 put_prev_entity(cfs_rq_of(pse), pse);
5677 pse = parent_entity(pse);
5678 }
5679 if (se_depth >= pse_depth) {
5680 set_next_entity(cfs_rq_of(se), se);
5681 se = parent_entity(se);
5682 }
5683 }
5684
5685 put_prev_entity(cfs_rq, pse);
5686 set_next_entity(cfs_rq, se);
5687 }
5688
5689 if (hrtick_enabled(rq))
5690 hrtick_start_fair(rq, p);
5691
5692 return p;
5693simple:
5694 cfs_rq = &rq->cfs;
5695#endif
bf0f6f24 5696
36ace27e 5697 if (!cfs_rq->nr_running)
38033c37 5698 goto idle;
bf0f6f24 5699
3f1d2a31 5700 put_prev_task(rq, prev);
606dba2e 5701
bf0f6f24 5702 do {
678d5718 5703 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5704 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5705 cfs_rq = group_cfs_rq(se);
5706 } while (cfs_rq);
5707
8f4d37ec 5708 p = task_of(se);
678d5718 5709
b39e66ea
MG
5710 if (hrtick_enabled(rq))
5711 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5712
5713 return p;
38033c37
PZ
5714
5715idle:
cbce1a68
PZ
5716 /*
5717 * This is OK, because current is on_cpu, which avoids it being picked
5718 * for load-balance and preemption/IRQs are still disabled avoiding
5719 * further scheduler activity on it and we're being very careful to
5720 * re-start the picking loop.
5721 */
e7904a28 5722 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5723 new_tasks = idle_balance(rq);
e7904a28 5724 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5725 /*
5726 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5727 * possible for any higher priority task to appear. In that case we
5728 * must re-start the pick_next_entity() loop.
5729 */
e4aa358b 5730 if (new_tasks < 0)
37e117c0
PZ
5731 return RETRY_TASK;
5732
e4aa358b 5733 if (new_tasks > 0)
38033c37 5734 goto again;
38033c37
PZ
5735
5736 return NULL;
bf0f6f24
IM
5737}
5738
5739/*
5740 * Account for a descheduled task:
5741 */
31ee529c 5742static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5743{
5744 struct sched_entity *se = &prev->se;
5745 struct cfs_rq *cfs_rq;
5746
5747 for_each_sched_entity(se) {
5748 cfs_rq = cfs_rq_of(se);
ab6cde26 5749 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5750 }
5751}
5752
ac53db59
RR
5753/*
5754 * sched_yield() is very simple
5755 *
5756 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5757 */
5758static void yield_task_fair(struct rq *rq)
5759{
5760 struct task_struct *curr = rq->curr;
5761 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5762 struct sched_entity *se = &curr->se;
5763
5764 /*
5765 * Are we the only task in the tree?
5766 */
5767 if (unlikely(rq->nr_running == 1))
5768 return;
5769
5770 clear_buddies(cfs_rq, se);
5771
5772 if (curr->policy != SCHED_BATCH) {
5773 update_rq_clock(rq);
5774 /*
5775 * Update run-time statistics of the 'current'.
5776 */
5777 update_curr(cfs_rq);
916671c0
MG
5778 /*
5779 * Tell update_rq_clock() that we've just updated,
5780 * so we don't do microscopic update in schedule()
5781 * and double the fastpath cost.
5782 */
9edfbfed 5783 rq_clock_skip_update(rq, true);
ac53db59
RR
5784 }
5785
5786 set_skip_buddy(se);
5787}
5788
d95f4122
MG
5789static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5790{
5791 struct sched_entity *se = &p->se;
5792
5238cdd3
PT
5793 /* throttled hierarchies are not runnable */
5794 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5795 return false;
5796
5797 /* Tell the scheduler that we'd really like pse to run next. */
5798 set_next_buddy(se);
5799
d95f4122
MG
5800 yield_task_fair(rq);
5801
5802 return true;
5803}
5804
681f3e68 5805#ifdef CONFIG_SMP
bf0f6f24 5806/**************************************************
e9c84cb8
PZ
5807 * Fair scheduling class load-balancing methods.
5808 *
5809 * BASICS
5810 *
5811 * The purpose of load-balancing is to achieve the same basic fairness the
5812 * per-cpu scheduler provides, namely provide a proportional amount of compute
5813 * time to each task. This is expressed in the following equation:
5814 *
5815 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5816 *
5817 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5818 * W_i,0 is defined as:
5819 *
5820 * W_i,0 = \Sum_j w_i,j (2)
5821 *
5822 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5823 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5824 *
5825 * The weight average is an exponential decay average of the instantaneous
5826 * weight:
5827 *
5828 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5829 *
ced549fa 5830 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5831 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5832 * can also include other factors [XXX].
5833 *
5834 * To achieve this balance we define a measure of imbalance which follows
5835 * directly from (1):
5836 *
ced549fa 5837 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5838 *
5839 * We them move tasks around to minimize the imbalance. In the continuous
5840 * function space it is obvious this converges, in the discrete case we get
5841 * a few fun cases generally called infeasible weight scenarios.
5842 *
5843 * [XXX expand on:
5844 * - infeasible weights;
5845 * - local vs global optima in the discrete case. ]
5846 *
5847 *
5848 * SCHED DOMAINS
5849 *
5850 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5851 * for all i,j solution, we create a tree of cpus that follows the hardware
5852 * topology where each level pairs two lower groups (or better). This results
5853 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5854 * tree to only the first of the previous level and we decrease the frequency
5855 * of load-balance at each level inv. proportional to the number of cpus in
5856 * the groups.
5857 *
5858 * This yields:
5859 *
5860 * log_2 n 1 n
5861 * \Sum { --- * --- * 2^i } = O(n) (5)
5862 * i = 0 2^i 2^i
5863 * `- size of each group
5864 * | | `- number of cpus doing load-balance
5865 * | `- freq
5866 * `- sum over all levels
5867 *
5868 * Coupled with a limit on how many tasks we can migrate every balance pass,
5869 * this makes (5) the runtime complexity of the balancer.
5870 *
5871 * An important property here is that each CPU is still (indirectly) connected
5872 * to every other cpu in at most O(log n) steps:
5873 *
5874 * The adjacency matrix of the resulting graph is given by:
5875 *
5876 * log_2 n
5877 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5878 * k = 0
5879 *
5880 * And you'll find that:
5881 *
5882 * A^(log_2 n)_i,j != 0 for all i,j (7)
5883 *
5884 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5885 * The task movement gives a factor of O(m), giving a convergence complexity
5886 * of:
5887 *
5888 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5889 *
5890 *
5891 * WORK CONSERVING
5892 *
5893 * In order to avoid CPUs going idle while there's still work to do, new idle
5894 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5895 * tree itself instead of relying on other CPUs to bring it work.
5896 *
5897 * This adds some complexity to both (5) and (8) but it reduces the total idle
5898 * time.
5899 *
5900 * [XXX more?]
5901 *
5902 *
5903 * CGROUPS
5904 *
5905 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5906 *
5907 * s_k,i
5908 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5909 * S_k
5910 *
5911 * Where
5912 *
5913 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5914 *
5915 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5916 *
5917 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5918 * property.
5919 *
5920 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5921 * rewrite all of this once again.]
5922 */
bf0f6f24 5923
ed387b78
HS
5924static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5925
0ec8aa00
PZ
5926enum fbq_type { regular, remote, all };
5927
ddcdf6e7 5928#define LBF_ALL_PINNED 0x01
367456c7 5929#define LBF_NEED_BREAK 0x02
6263322c
PZ
5930#define LBF_DST_PINNED 0x04
5931#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5932
5933struct lb_env {
5934 struct sched_domain *sd;
5935
ddcdf6e7 5936 struct rq *src_rq;
85c1e7da 5937 int src_cpu;
ddcdf6e7
PZ
5938
5939 int dst_cpu;
5940 struct rq *dst_rq;
5941
88b8dac0
SV
5942 struct cpumask *dst_grpmask;
5943 int new_dst_cpu;
ddcdf6e7 5944 enum cpu_idle_type idle;
bd939f45 5945 long imbalance;
b9403130
MW
5946 /* The set of CPUs under consideration for load-balancing */
5947 struct cpumask *cpus;
5948
ddcdf6e7 5949 unsigned int flags;
367456c7
PZ
5950
5951 unsigned int loop;
5952 unsigned int loop_break;
5953 unsigned int loop_max;
0ec8aa00
PZ
5954
5955 enum fbq_type fbq_type;
163122b7 5956 struct list_head tasks;
ddcdf6e7
PZ
5957};
5958
029632fb
PZ
5959/*
5960 * Is this task likely cache-hot:
5961 */
5d5e2b1b 5962static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5963{
5964 s64 delta;
5965
e5673f28
KT
5966 lockdep_assert_held(&env->src_rq->lock);
5967
029632fb
PZ
5968 if (p->sched_class != &fair_sched_class)
5969 return 0;
5970
5971 if (unlikely(p->policy == SCHED_IDLE))
5972 return 0;
5973
5974 /*
5975 * Buddy candidates are cache hot:
5976 */
5d5e2b1b 5977 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5978 (&p->se == cfs_rq_of(&p->se)->next ||
5979 &p->se == cfs_rq_of(&p->se)->last))
5980 return 1;
5981
5982 if (sysctl_sched_migration_cost == -1)
5983 return 1;
5984 if (sysctl_sched_migration_cost == 0)
5985 return 0;
5986
5d5e2b1b 5987 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5988
5989 return delta < (s64)sysctl_sched_migration_cost;
5990}
5991
3a7053b3 5992#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5993/*
2a1ed24c
SD
5994 * Returns 1, if task migration degrades locality
5995 * Returns 0, if task migration improves locality i.e migration preferred.
5996 * Returns -1, if task migration is not affected by locality.
c1ceac62 5997 */
2a1ed24c 5998static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5999{
b1ad065e 6000 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6001 unsigned long src_faults, dst_faults;
3a7053b3
MG
6002 int src_nid, dst_nid;
6003
2a595721 6004 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6005 return -1;
6006
c3b9bc5b 6007 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6008 return -1;
7a0f3083
MG
6009
6010 src_nid = cpu_to_node(env->src_cpu);
6011 dst_nid = cpu_to_node(env->dst_cpu);
6012
83e1d2cd 6013 if (src_nid == dst_nid)
2a1ed24c 6014 return -1;
7a0f3083 6015
2a1ed24c
SD
6016 /* Migrating away from the preferred node is always bad. */
6017 if (src_nid == p->numa_preferred_nid) {
6018 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6019 return 1;
6020 else
6021 return -1;
6022 }
b1ad065e 6023
c1ceac62
RR
6024 /* Encourage migration to the preferred node. */
6025 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6026 return 0;
b1ad065e 6027
c1ceac62
RR
6028 if (numa_group) {
6029 src_faults = group_faults(p, src_nid);
6030 dst_faults = group_faults(p, dst_nid);
6031 } else {
6032 src_faults = task_faults(p, src_nid);
6033 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6034 }
6035
c1ceac62 6036 return dst_faults < src_faults;
7a0f3083
MG
6037}
6038
3a7053b3 6039#else
2a1ed24c 6040static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6041 struct lb_env *env)
6042{
2a1ed24c 6043 return -1;
7a0f3083 6044}
3a7053b3
MG
6045#endif
6046
1e3c88bd
PZ
6047/*
6048 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6049 */
6050static
8e45cb54 6051int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6052{
2a1ed24c 6053 int tsk_cache_hot;
e5673f28
KT
6054
6055 lockdep_assert_held(&env->src_rq->lock);
6056
1e3c88bd
PZ
6057 /*
6058 * We do not migrate tasks that are:
d3198084 6059 * 1) throttled_lb_pair, or
1e3c88bd 6060 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6061 * 3) running (obviously), or
6062 * 4) are cache-hot on their current CPU.
1e3c88bd 6063 */
d3198084
JK
6064 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6065 return 0;
6066
ddcdf6e7 6067 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6068 int cpu;
88b8dac0 6069
41acab88 6070 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6071
6263322c
PZ
6072 env->flags |= LBF_SOME_PINNED;
6073
88b8dac0
SV
6074 /*
6075 * Remember if this task can be migrated to any other cpu in
6076 * our sched_group. We may want to revisit it if we couldn't
6077 * meet load balance goals by pulling other tasks on src_cpu.
6078 *
6079 * Also avoid computing new_dst_cpu if we have already computed
6080 * one in current iteration.
6081 */
6263322c 6082 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6083 return 0;
6084
e02e60c1
JK
6085 /* Prevent to re-select dst_cpu via env's cpus */
6086 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6087 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6088 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6089 env->new_dst_cpu = cpu;
6090 break;
6091 }
88b8dac0 6092 }
e02e60c1 6093
1e3c88bd
PZ
6094 return 0;
6095 }
88b8dac0
SV
6096
6097 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6098 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6099
ddcdf6e7 6100 if (task_running(env->src_rq, p)) {
41acab88 6101 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6102 return 0;
6103 }
6104
6105 /*
6106 * Aggressive migration if:
3a7053b3
MG
6107 * 1) destination numa is preferred
6108 * 2) task is cache cold, or
6109 * 3) too many balance attempts have failed.
1e3c88bd 6110 */
2a1ed24c
SD
6111 tsk_cache_hot = migrate_degrades_locality(p, env);
6112 if (tsk_cache_hot == -1)
6113 tsk_cache_hot = task_hot(p, env);
3a7053b3 6114
2a1ed24c 6115 if (tsk_cache_hot <= 0 ||
7a96c231 6116 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6117 if (tsk_cache_hot == 1) {
3a7053b3
MG
6118 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6119 schedstat_inc(p, se.statistics.nr_forced_migrations);
6120 }
1e3c88bd
PZ
6121 return 1;
6122 }
6123
4e2dcb73
ZH
6124 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6125 return 0;
1e3c88bd
PZ
6126}
6127
897c395f 6128/*
163122b7
KT
6129 * detach_task() -- detach the task for the migration specified in env
6130 */
6131static void detach_task(struct task_struct *p, struct lb_env *env)
6132{
6133 lockdep_assert_held(&env->src_rq->lock);
6134
163122b7 6135 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6136 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6137 set_task_cpu(p, env->dst_cpu);
6138}
6139
897c395f 6140/*
e5673f28 6141 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6142 * part of active balancing operations within "domain".
897c395f 6143 *
e5673f28 6144 * Returns a task if successful and NULL otherwise.
897c395f 6145 */
e5673f28 6146static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6147{
6148 struct task_struct *p, *n;
897c395f 6149
e5673f28
KT
6150 lockdep_assert_held(&env->src_rq->lock);
6151
367456c7 6152 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6153 if (!can_migrate_task(p, env))
6154 continue;
897c395f 6155
163122b7 6156 detach_task(p, env);
e5673f28 6157
367456c7 6158 /*
e5673f28 6159 * Right now, this is only the second place where
163122b7 6160 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6161 * so we can safely collect stats here rather than
163122b7 6162 * inside detach_tasks().
367456c7
PZ
6163 */
6164 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6165 return p;
897c395f 6166 }
e5673f28 6167 return NULL;
897c395f
PZ
6168}
6169
eb95308e
PZ
6170static const unsigned int sched_nr_migrate_break = 32;
6171
5d6523eb 6172/*
163122b7
KT
6173 * detach_tasks() -- tries to detach up to imbalance weighted load from
6174 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6175 *
163122b7 6176 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6177 */
163122b7 6178static int detach_tasks(struct lb_env *env)
1e3c88bd 6179{
5d6523eb
PZ
6180 struct list_head *tasks = &env->src_rq->cfs_tasks;
6181 struct task_struct *p;
367456c7 6182 unsigned long load;
163122b7
KT
6183 int detached = 0;
6184
6185 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6186
bd939f45 6187 if (env->imbalance <= 0)
5d6523eb 6188 return 0;
1e3c88bd 6189
5d6523eb 6190 while (!list_empty(tasks)) {
985d3a4c
YD
6191 /*
6192 * We don't want to steal all, otherwise we may be treated likewise,
6193 * which could at worst lead to a livelock crash.
6194 */
6195 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6196 break;
6197
5d6523eb 6198 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6199
367456c7
PZ
6200 env->loop++;
6201 /* We've more or less seen every task there is, call it quits */
5d6523eb 6202 if (env->loop > env->loop_max)
367456c7 6203 break;
5d6523eb
PZ
6204
6205 /* take a breather every nr_migrate tasks */
367456c7 6206 if (env->loop > env->loop_break) {
eb95308e 6207 env->loop_break += sched_nr_migrate_break;
8e45cb54 6208 env->flags |= LBF_NEED_BREAK;
ee00e66f 6209 break;
a195f004 6210 }
1e3c88bd 6211
d3198084 6212 if (!can_migrate_task(p, env))
367456c7
PZ
6213 goto next;
6214
6215 load = task_h_load(p);
5d6523eb 6216
eb95308e 6217 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6218 goto next;
6219
bd939f45 6220 if ((load / 2) > env->imbalance)
367456c7 6221 goto next;
1e3c88bd 6222
163122b7
KT
6223 detach_task(p, env);
6224 list_add(&p->se.group_node, &env->tasks);
6225
6226 detached++;
bd939f45 6227 env->imbalance -= load;
1e3c88bd
PZ
6228
6229#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6230 /*
6231 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6232 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6233 * the critical section.
6234 */
5d6523eb 6235 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6236 break;
1e3c88bd
PZ
6237#endif
6238
ee00e66f
PZ
6239 /*
6240 * We only want to steal up to the prescribed amount of
6241 * weighted load.
6242 */
bd939f45 6243 if (env->imbalance <= 0)
ee00e66f 6244 break;
367456c7
PZ
6245
6246 continue;
6247next:
5d6523eb 6248 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6249 }
5d6523eb 6250
1e3c88bd 6251 /*
163122b7
KT
6252 * Right now, this is one of only two places we collect this stat
6253 * so we can safely collect detach_one_task() stats here rather
6254 * than inside detach_one_task().
1e3c88bd 6255 */
163122b7 6256 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6257
163122b7
KT
6258 return detached;
6259}
6260
6261/*
6262 * attach_task() -- attach the task detached by detach_task() to its new rq.
6263 */
6264static void attach_task(struct rq *rq, struct task_struct *p)
6265{
6266 lockdep_assert_held(&rq->lock);
6267
6268 BUG_ON(task_rq(p) != rq);
163122b7 6269 activate_task(rq, p, 0);
3ea94de1 6270 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6271 check_preempt_curr(rq, p, 0);
6272}
6273
6274/*
6275 * attach_one_task() -- attaches the task returned from detach_one_task() to
6276 * its new rq.
6277 */
6278static void attach_one_task(struct rq *rq, struct task_struct *p)
6279{
6280 raw_spin_lock(&rq->lock);
6281 attach_task(rq, p);
6282 raw_spin_unlock(&rq->lock);
6283}
6284
6285/*
6286 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6287 * new rq.
6288 */
6289static void attach_tasks(struct lb_env *env)
6290{
6291 struct list_head *tasks = &env->tasks;
6292 struct task_struct *p;
6293
6294 raw_spin_lock(&env->dst_rq->lock);
6295
6296 while (!list_empty(tasks)) {
6297 p = list_first_entry(tasks, struct task_struct, se.group_node);
6298 list_del_init(&p->se.group_node);
1e3c88bd 6299
163122b7
KT
6300 attach_task(env->dst_rq, p);
6301 }
6302
6303 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6304}
6305
230059de 6306#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6307static void update_blocked_averages(int cpu)
9e3081ca 6308{
9e3081ca 6309 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6310 struct cfs_rq *cfs_rq;
6311 unsigned long flags;
9e3081ca 6312
48a16753
PT
6313 raw_spin_lock_irqsave(&rq->lock, flags);
6314 update_rq_clock(rq);
9d89c257 6315
9763b67f
PZ
6316 /*
6317 * Iterates the task_group tree in a bottom up fashion, see
6318 * list_add_leaf_cfs_rq() for details.
6319 */
64660c86 6320 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6321 /* throttled entities do not contribute to load */
6322 if (throttled_hierarchy(cfs_rq))
6323 continue;
48a16753 6324
a2c6c91f 6325 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6326 update_tg_load_avg(cfs_rq, 0);
6327 }
48a16753 6328 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6329}
6330
9763b67f 6331/*
68520796 6332 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6333 * This needs to be done in a top-down fashion because the load of a child
6334 * group is a fraction of its parents load.
6335 */
68520796 6336static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6337{
68520796
VD
6338 struct rq *rq = rq_of(cfs_rq);
6339 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6340 unsigned long now = jiffies;
68520796 6341 unsigned long load;
a35b6466 6342
68520796 6343 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6344 return;
6345
68520796
VD
6346 cfs_rq->h_load_next = NULL;
6347 for_each_sched_entity(se) {
6348 cfs_rq = cfs_rq_of(se);
6349 cfs_rq->h_load_next = se;
6350 if (cfs_rq->last_h_load_update == now)
6351 break;
6352 }
a35b6466 6353
68520796 6354 if (!se) {
7ea241af 6355 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6356 cfs_rq->last_h_load_update = now;
6357 }
6358
6359 while ((se = cfs_rq->h_load_next) != NULL) {
6360 load = cfs_rq->h_load;
7ea241af
YD
6361 load = div64_ul(load * se->avg.load_avg,
6362 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6363 cfs_rq = group_cfs_rq(se);
6364 cfs_rq->h_load = load;
6365 cfs_rq->last_h_load_update = now;
6366 }
9763b67f
PZ
6367}
6368
367456c7 6369static unsigned long task_h_load(struct task_struct *p)
230059de 6370{
367456c7 6371 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6372
68520796 6373 update_cfs_rq_h_load(cfs_rq);
9d89c257 6374 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6375 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6376}
6377#else
48a16753 6378static inline void update_blocked_averages(int cpu)
9e3081ca 6379{
6c1d47c0
VG
6380 struct rq *rq = cpu_rq(cpu);
6381 struct cfs_rq *cfs_rq = &rq->cfs;
6382 unsigned long flags;
6383
6384 raw_spin_lock_irqsave(&rq->lock, flags);
6385 update_rq_clock(rq);
a2c6c91f 6386 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6387 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6388}
6389
367456c7 6390static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6391{
9d89c257 6392 return p->se.avg.load_avg;
1e3c88bd 6393}
230059de 6394#endif
1e3c88bd 6395
1e3c88bd 6396/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6397
6398enum group_type {
6399 group_other = 0,
6400 group_imbalanced,
6401 group_overloaded,
6402};
6403
1e3c88bd
PZ
6404/*
6405 * sg_lb_stats - stats of a sched_group required for load_balancing
6406 */
6407struct sg_lb_stats {
6408 unsigned long avg_load; /*Avg load across the CPUs of the group */
6409 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6410 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6411 unsigned long load_per_task;
63b2ca30 6412 unsigned long group_capacity;
9e91d61d 6413 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6414 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6415 unsigned int idle_cpus;
6416 unsigned int group_weight;
caeb178c 6417 enum group_type group_type;
ea67821b 6418 int group_no_capacity;
0ec8aa00
PZ
6419#ifdef CONFIG_NUMA_BALANCING
6420 unsigned int nr_numa_running;
6421 unsigned int nr_preferred_running;
6422#endif
1e3c88bd
PZ
6423};
6424
56cf515b
JK
6425/*
6426 * sd_lb_stats - Structure to store the statistics of a sched_domain
6427 * during load balancing.
6428 */
6429struct sd_lb_stats {
6430 struct sched_group *busiest; /* Busiest group in this sd */
6431 struct sched_group *local; /* Local group in this sd */
6432 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6433 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6434 unsigned long avg_load; /* Average load across all groups in sd */
6435
56cf515b 6436 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6437 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6438};
6439
147c5fc2
PZ
6440static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6441{
6442 /*
6443 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6444 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6445 * We must however clear busiest_stat::avg_load because
6446 * update_sd_pick_busiest() reads this before assignment.
6447 */
6448 *sds = (struct sd_lb_stats){
6449 .busiest = NULL,
6450 .local = NULL,
6451 .total_load = 0UL,
63b2ca30 6452 .total_capacity = 0UL,
147c5fc2
PZ
6453 .busiest_stat = {
6454 .avg_load = 0UL,
caeb178c
RR
6455 .sum_nr_running = 0,
6456 .group_type = group_other,
147c5fc2
PZ
6457 },
6458 };
6459}
6460
1e3c88bd
PZ
6461/**
6462 * get_sd_load_idx - Obtain the load index for a given sched domain.
6463 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6464 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6465 *
6466 * Return: The load index.
1e3c88bd
PZ
6467 */
6468static inline int get_sd_load_idx(struct sched_domain *sd,
6469 enum cpu_idle_type idle)
6470{
6471 int load_idx;
6472
6473 switch (idle) {
6474 case CPU_NOT_IDLE:
6475 load_idx = sd->busy_idx;
6476 break;
6477
6478 case CPU_NEWLY_IDLE:
6479 load_idx = sd->newidle_idx;
6480 break;
6481 default:
6482 load_idx = sd->idle_idx;
6483 break;
6484 }
6485
6486 return load_idx;
6487}
6488
ced549fa 6489static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6490{
6491 struct rq *rq = cpu_rq(cpu);
b5b4860d 6492 u64 total, used, age_stamp, avg;
cadefd3d 6493 s64 delta;
1e3c88bd 6494
b654f7de
PZ
6495 /*
6496 * Since we're reading these variables without serialization make sure
6497 * we read them once before doing sanity checks on them.
6498 */
316c1608
JL
6499 age_stamp = READ_ONCE(rq->age_stamp);
6500 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6501 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6502
cadefd3d
PZ
6503 if (unlikely(delta < 0))
6504 delta = 0;
6505
6506 total = sched_avg_period() + delta;
aa483808 6507
b5b4860d 6508 used = div_u64(avg, total);
1e3c88bd 6509
b5b4860d
VG
6510 if (likely(used < SCHED_CAPACITY_SCALE))
6511 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6512
b5b4860d 6513 return 1;
1e3c88bd
PZ
6514}
6515
ced549fa 6516static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6517{
8cd5601c 6518 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6519 struct sched_group *sdg = sd->groups;
6520
ca6d75e6 6521 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6522
ced549fa 6523 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6524 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6525
ced549fa
NP
6526 if (!capacity)
6527 capacity = 1;
1e3c88bd 6528
ced549fa
NP
6529 cpu_rq(cpu)->cpu_capacity = capacity;
6530 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6531}
6532
63b2ca30 6533void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6534{
6535 struct sched_domain *child = sd->child;
6536 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6537 unsigned long capacity;
4ec4412e
VG
6538 unsigned long interval;
6539
6540 interval = msecs_to_jiffies(sd->balance_interval);
6541 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6542 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6543
6544 if (!child) {
ced549fa 6545 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6546 return;
6547 }
6548
dc7ff76e 6549 capacity = 0;
1e3c88bd 6550
74a5ce20
PZ
6551 if (child->flags & SD_OVERLAP) {
6552 /*
6553 * SD_OVERLAP domains cannot assume that child groups
6554 * span the current group.
6555 */
6556
863bffc8 6557 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6558 struct sched_group_capacity *sgc;
9abf24d4 6559 struct rq *rq = cpu_rq(cpu);
863bffc8 6560
9abf24d4 6561 /*
63b2ca30 6562 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6563 * gets here before we've attached the domains to the
6564 * runqueues.
6565 *
ced549fa
NP
6566 * Use capacity_of(), which is set irrespective of domains
6567 * in update_cpu_capacity().
9abf24d4 6568 *
dc7ff76e 6569 * This avoids capacity from being 0 and
9abf24d4 6570 * causing divide-by-zero issues on boot.
9abf24d4
SD
6571 */
6572 if (unlikely(!rq->sd)) {
ced549fa 6573 capacity += capacity_of(cpu);
9abf24d4
SD
6574 continue;
6575 }
863bffc8 6576
63b2ca30 6577 sgc = rq->sd->groups->sgc;
63b2ca30 6578 capacity += sgc->capacity;
863bffc8 6579 }
74a5ce20
PZ
6580 } else {
6581 /*
6582 * !SD_OVERLAP domains can assume that child groups
6583 * span the current group.
6584 */
6585
6586 group = child->groups;
6587 do {
63b2ca30 6588 capacity += group->sgc->capacity;
74a5ce20
PZ
6589 group = group->next;
6590 } while (group != child->groups);
6591 }
1e3c88bd 6592
63b2ca30 6593 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6594}
6595
9d5efe05 6596/*
ea67821b
VG
6597 * Check whether the capacity of the rq has been noticeably reduced by side
6598 * activity. The imbalance_pct is used for the threshold.
6599 * Return true is the capacity is reduced
9d5efe05
SV
6600 */
6601static inline int
ea67821b 6602check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6603{
ea67821b
VG
6604 return ((rq->cpu_capacity * sd->imbalance_pct) <
6605 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6606}
6607
30ce5dab
PZ
6608/*
6609 * Group imbalance indicates (and tries to solve) the problem where balancing
6610 * groups is inadequate due to tsk_cpus_allowed() constraints.
6611 *
6612 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6613 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6614 * Something like:
6615 *
6616 * { 0 1 2 3 } { 4 5 6 7 }
6617 * * * * *
6618 *
6619 * If we were to balance group-wise we'd place two tasks in the first group and
6620 * two tasks in the second group. Clearly this is undesired as it will overload
6621 * cpu 3 and leave one of the cpus in the second group unused.
6622 *
6623 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6624 * by noticing the lower domain failed to reach balance and had difficulty
6625 * moving tasks due to affinity constraints.
30ce5dab
PZ
6626 *
6627 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6628 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6629 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6630 * to create an effective group imbalance.
6631 *
6632 * This is a somewhat tricky proposition since the next run might not find the
6633 * group imbalance and decide the groups need to be balanced again. A most
6634 * subtle and fragile situation.
6635 */
6636
6263322c 6637static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6638{
63b2ca30 6639 return group->sgc->imbalance;
30ce5dab
PZ
6640}
6641
b37d9316 6642/*
ea67821b
VG
6643 * group_has_capacity returns true if the group has spare capacity that could
6644 * be used by some tasks.
6645 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6646 * smaller than the number of CPUs or if the utilization is lower than the
6647 * available capacity for CFS tasks.
ea67821b
VG
6648 * For the latter, we use a threshold to stabilize the state, to take into
6649 * account the variance of the tasks' load and to return true if the available
6650 * capacity in meaningful for the load balancer.
6651 * As an example, an available capacity of 1% can appear but it doesn't make
6652 * any benefit for the load balance.
b37d9316 6653 */
ea67821b
VG
6654static inline bool
6655group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6656{
ea67821b
VG
6657 if (sgs->sum_nr_running < sgs->group_weight)
6658 return true;
c61037e9 6659
ea67821b 6660 if ((sgs->group_capacity * 100) >
9e91d61d 6661 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6662 return true;
b37d9316 6663
ea67821b
VG
6664 return false;
6665}
6666
6667/*
6668 * group_is_overloaded returns true if the group has more tasks than it can
6669 * handle.
6670 * group_is_overloaded is not equals to !group_has_capacity because a group
6671 * with the exact right number of tasks, has no more spare capacity but is not
6672 * overloaded so both group_has_capacity and group_is_overloaded return
6673 * false.
6674 */
6675static inline bool
6676group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6677{
6678 if (sgs->sum_nr_running <= sgs->group_weight)
6679 return false;
b37d9316 6680
ea67821b 6681 if ((sgs->group_capacity * 100) <
9e91d61d 6682 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6683 return true;
b37d9316 6684
ea67821b 6685 return false;
b37d9316
PZ
6686}
6687
79a89f92
LY
6688static inline enum
6689group_type group_classify(struct sched_group *group,
6690 struct sg_lb_stats *sgs)
caeb178c 6691{
ea67821b 6692 if (sgs->group_no_capacity)
caeb178c
RR
6693 return group_overloaded;
6694
6695 if (sg_imbalanced(group))
6696 return group_imbalanced;
6697
6698 return group_other;
6699}
6700
1e3c88bd
PZ
6701/**
6702 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6703 * @env: The load balancing environment.
1e3c88bd 6704 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6705 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6706 * @local_group: Does group contain this_cpu.
1e3c88bd 6707 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6708 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6709 */
bd939f45
PZ
6710static inline void update_sg_lb_stats(struct lb_env *env,
6711 struct sched_group *group, int load_idx,
4486edd1
TC
6712 int local_group, struct sg_lb_stats *sgs,
6713 bool *overload)
1e3c88bd 6714{
30ce5dab 6715 unsigned long load;
a426f99c 6716 int i, nr_running;
1e3c88bd 6717
b72ff13c
PZ
6718 memset(sgs, 0, sizeof(*sgs));
6719
b9403130 6720 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6721 struct rq *rq = cpu_rq(i);
6722
1e3c88bd 6723 /* Bias balancing toward cpus of our domain */
6263322c 6724 if (local_group)
04f733b4 6725 load = target_load(i, load_idx);
6263322c 6726 else
1e3c88bd 6727 load = source_load(i, load_idx);
1e3c88bd
PZ
6728
6729 sgs->group_load += load;
9e91d61d 6730 sgs->group_util += cpu_util(i);
65fdac08 6731 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6732
a426f99c
WL
6733 nr_running = rq->nr_running;
6734 if (nr_running > 1)
4486edd1
TC
6735 *overload = true;
6736
0ec8aa00
PZ
6737#ifdef CONFIG_NUMA_BALANCING
6738 sgs->nr_numa_running += rq->nr_numa_running;
6739 sgs->nr_preferred_running += rq->nr_preferred_running;
6740#endif
1e3c88bd 6741 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6742 /*
6743 * No need to call idle_cpu() if nr_running is not 0
6744 */
6745 if (!nr_running && idle_cpu(i))
aae6d3dd 6746 sgs->idle_cpus++;
1e3c88bd
PZ
6747 }
6748
63b2ca30
NP
6749 /* Adjust by relative CPU capacity of the group */
6750 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6751 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6752
dd5feea1 6753 if (sgs->sum_nr_running)
38d0f770 6754 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6755
aae6d3dd 6756 sgs->group_weight = group->group_weight;
b37d9316 6757
ea67821b 6758 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6759 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6760}
6761
532cb4c4
MN
6762/**
6763 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6764 * @env: The load balancing environment.
532cb4c4
MN
6765 * @sds: sched_domain statistics
6766 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6767 * @sgs: sched_group statistics
532cb4c4
MN
6768 *
6769 * Determine if @sg is a busier group than the previously selected
6770 * busiest group.
e69f6186
YB
6771 *
6772 * Return: %true if @sg is a busier group than the previously selected
6773 * busiest group. %false otherwise.
532cb4c4 6774 */
bd939f45 6775static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6776 struct sd_lb_stats *sds,
6777 struct sched_group *sg,
bd939f45 6778 struct sg_lb_stats *sgs)
532cb4c4 6779{
caeb178c 6780 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6781
caeb178c 6782 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6783 return true;
6784
caeb178c
RR
6785 if (sgs->group_type < busiest->group_type)
6786 return false;
6787
6788 if (sgs->avg_load <= busiest->avg_load)
6789 return false;
6790
6791 /* This is the busiest node in its class. */
6792 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6793 return true;
6794
1f621e02
SD
6795 /* No ASYM_PACKING if target cpu is already busy */
6796 if (env->idle == CPU_NOT_IDLE)
6797 return true;
532cb4c4
MN
6798 /*
6799 * ASYM_PACKING needs to move all the work to the lowest
6800 * numbered CPUs in the group, therefore mark all groups
6801 * higher than ourself as busy.
6802 */
caeb178c 6803 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6804 if (!sds->busiest)
6805 return true;
6806
1f621e02
SD
6807 /* Prefer to move from highest possible cpu's work */
6808 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6809 return true;
6810 }
6811
6812 return false;
6813}
6814
0ec8aa00
PZ
6815#ifdef CONFIG_NUMA_BALANCING
6816static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6817{
6818 if (sgs->sum_nr_running > sgs->nr_numa_running)
6819 return regular;
6820 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6821 return remote;
6822 return all;
6823}
6824
6825static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6826{
6827 if (rq->nr_running > rq->nr_numa_running)
6828 return regular;
6829 if (rq->nr_running > rq->nr_preferred_running)
6830 return remote;
6831 return all;
6832}
6833#else
6834static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6835{
6836 return all;
6837}
6838
6839static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6840{
6841 return regular;
6842}
6843#endif /* CONFIG_NUMA_BALANCING */
6844
1e3c88bd 6845/**
461819ac 6846 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6847 * @env: The load balancing environment.
1e3c88bd
PZ
6848 * @sds: variable to hold the statistics for this sched_domain.
6849 */
0ec8aa00 6850static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6851{
bd939f45
PZ
6852 struct sched_domain *child = env->sd->child;
6853 struct sched_group *sg = env->sd->groups;
56cf515b 6854 struct sg_lb_stats tmp_sgs;
1e3c88bd 6855 int load_idx, prefer_sibling = 0;
4486edd1 6856 bool overload = false;
1e3c88bd
PZ
6857
6858 if (child && child->flags & SD_PREFER_SIBLING)
6859 prefer_sibling = 1;
6860
bd939f45 6861 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6862
6863 do {
56cf515b 6864 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6865 int local_group;
6866
bd939f45 6867 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6868 if (local_group) {
6869 sds->local = sg;
6870 sgs = &sds->local_stat;
b72ff13c
PZ
6871
6872 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6873 time_after_eq(jiffies, sg->sgc->next_update))
6874 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6875 }
1e3c88bd 6876
4486edd1
TC
6877 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6878 &overload);
1e3c88bd 6879
b72ff13c
PZ
6880 if (local_group)
6881 goto next_group;
6882
1e3c88bd
PZ
6883 /*
6884 * In case the child domain prefers tasks go to siblings
ea67821b 6885 * first, lower the sg capacity so that we'll try
75dd321d
NR
6886 * and move all the excess tasks away. We lower the capacity
6887 * of a group only if the local group has the capacity to fit
ea67821b
VG
6888 * these excess tasks. The extra check prevents the case where
6889 * you always pull from the heaviest group when it is already
6890 * under-utilized (possible with a large weight task outweighs
6891 * the tasks on the system).
1e3c88bd 6892 */
b72ff13c 6893 if (prefer_sibling && sds->local &&
ea67821b
VG
6894 group_has_capacity(env, &sds->local_stat) &&
6895 (sgs->sum_nr_running > 1)) {
6896 sgs->group_no_capacity = 1;
79a89f92 6897 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6898 }
1e3c88bd 6899
b72ff13c 6900 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6901 sds->busiest = sg;
56cf515b 6902 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6903 }
6904
b72ff13c
PZ
6905next_group:
6906 /* Now, start updating sd_lb_stats */
6907 sds->total_load += sgs->group_load;
63b2ca30 6908 sds->total_capacity += sgs->group_capacity;
b72ff13c 6909
532cb4c4 6910 sg = sg->next;
bd939f45 6911 } while (sg != env->sd->groups);
0ec8aa00
PZ
6912
6913 if (env->sd->flags & SD_NUMA)
6914 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6915
6916 if (!env->sd->parent) {
6917 /* update overload indicator if we are at root domain */
6918 if (env->dst_rq->rd->overload != overload)
6919 env->dst_rq->rd->overload = overload;
6920 }
6921
532cb4c4
MN
6922}
6923
532cb4c4
MN
6924/**
6925 * check_asym_packing - Check to see if the group is packed into the
6926 * sched doman.
6927 *
6928 * This is primarily intended to used at the sibling level. Some
6929 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6930 * case of POWER7, it can move to lower SMT modes only when higher
6931 * threads are idle. When in lower SMT modes, the threads will
6932 * perform better since they share less core resources. Hence when we
6933 * have idle threads, we want them to be the higher ones.
6934 *
6935 * This packing function is run on idle threads. It checks to see if
6936 * the busiest CPU in this domain (core in the P7 case) has a higher
6937 * CPU number than the packing function is being run on. Here we are
6938 * assuming lower CPU number will be equivalent to lower a SMT thread
6939 * number.
6940 *
e69f6186 6941 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6942 * this CPU. The amount of the imbalance is returned in *imbalance.
6943 *
cd96891d 6944 * @env: The load balancing environment.
532cb4c4 6945 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6946 */
bd939f45 6947static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6948{
6949 int busiest_cpu;
6950
bd939f45 6951 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6952 return 0;
6953
1f621e02
SD
6954 if (env->idle == CPU_NOT_IDLE)
6955 return 0;
6956
532cb4c4
MN
6957 if (!sds->busiest)
6958 return 0;
6959
6960 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6961 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6962 return 0;
6963
bd939f45 6964 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6965 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6966 SCHED_CAPACITY_SCALE);
bd939f45 6967
532cb4c4 6968 return 1;
1e3c88bd
PZ
6969}
6970
6971/**
6972 * fix_small_imbalance - Calculate the minor imbalance that exists
6973 * amongst the groups of a sched_domain, during
6974 * load balancing.
cd96891d 6975 * @env: The load balancing environment.
1e3c88bd 6976 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6977 */
bd939f45
PZ
6978static inline
6979void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6980{
63b2ca30 6981 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6982 unsigned int imbn = 2;
dd5feea1 6983 unsigned long scaled_busy_load_per_task;
56cf515b 6984 struct sg_lb_stats *local, *busiest;
1e3c88bd 6985
56cf515b
JK
6986 local = &sds->local_stat;
6987 busiest = &sds->busiest_stat;
1e3c88bd 6988
56cf515b
JK
6989 if (!local->sum_nr_running)
6990 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6991 else if (busiest->load_per_task > local->load_per_task)
6992 imbn = 1;
dd5feea1 6993
56cf515b 6994 scaled_busy_load_per_task =
ca8ce3d0 6995 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6996 busiest->group_capacity;
56cf515b 6997
3029ede3
VD
6998 if (busiest->avg_load + scaled_busy_load_per_task >=
6999 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7000 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7001 return;
7002 }
7003
7004 /*
7005 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7006 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7007 * moving them.
7008 */
7009
63b2ca30 7010 capa_now += busiest->group_capacity *
56cf515b 7011 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7012 capa_now += local->group_capacity *
56cf515b 7013 min(local->load_per_task, local->avg_load);
ca8ce3d0 7014 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7015
7016 /* Amount of load we'd subtract */
a2cd4260 7017 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7018 capa_move += busiest->group_capacity *
56cf515b 7019 min(busiest->load_per_task,
a2cd4260 7020 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7021 }
1e3c88bd
PZ
7022
7023 /* Amount of load we'd add */
63b2ca30 7024 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7025 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7026 tmp = (busiest->avg_load * busiest->group_capacity) /
7027 local->group_capacity;
56cf515b 7028 } else {
ca8ce3d0 7029 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7030 local->group_capacity;
56cf515b 7031 }
63b2ca30 7032 capa_move += local->group_capacity *
3ae11c90 7033 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7034 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7035
7036 /* Move if we gain throughput */
63b2ca30 7037 if (capa_move > capa_now)
56cf515b 7038 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7039}
7040
7041/**
7042 * calculate_imbalance - Calculate the amount of imbalance present within the
7043 * groups of a given sched_domain during load balance.
bd939f45 7044 * @env: load balance environment
1e3c88bd 7045 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7046 */
bd939f45 7047static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7048{
dd5feea1 7049 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7050 struct sg_lb_stats *local, *busiest;
7051
7052 local = &sds->local_stat;
56cf515b 7053 busiest = &sds->busiest_stat;
dd5feea1 7054
caeb178c 7055 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7056 /*
7057 * In the group_imb case we cannot rely on group-wide averages
7058 * to ensure cpu-load equilibrium, look at wider averages. XXX
7059 */
56cf515b
JK
7060 busiest->load_per_task =
7061 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7062 }
7063
1e3c88bd 7064 /*
885e542c
DE
7065 * Avg load of busiest sg can be less and avg load of local sg can
7066 * be greater than avg load across all sgs of sd because avg load
7067 * factors in sg capacity and sgs with smaller group_type are
7068 * skipped when updating the busiest sg:
1e3c88bd 7069 */
b1885550
VD
7070 if (busiest->avg_load <= sds->avg_load ||
7071 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7072 env->imbalance = 0;
7073 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7074 }
7075
9a5d9ba6
PZ
7076 /*
7077 * If there aren't any idle cpus, avoid creating some.
7078 */
7079 if (busiest->group_type == group_overloaded &&
7080 local->group_type == group_overloaded) {
1be0eb2a 7081 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7082 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7083 load_above_capacity -= busiest->group_capacity;
cfa10334
MR
7084 load_above_capacity *= NICE_0_LOAD;
7085 load_above_capacity /= busiest->group_capacity;
7086 } else
ea67821b 7087 load_above_capacity = ~0UL;
dd5feea1
SS
7088 }
7089
7090 /*
7091 * We're trying to get all the cpus to the average_load, so we don't
7092 * want to push ourselves above the average load, nor do we wish to
7093 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7094 * we also don't want to reduce the group load below the group
7095 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7096 */
30ce5dab 7097 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7098
7099 /* How much load to actually move to equalise the imbalance */
56cf515b 7100 env->imbalance = min(
63b2ca30
NP
7101 max_pull * busiest->group_capacity,
7102 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7103 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7104
7105 /*
7106 * if *imbalance is less than the average load per runnable task
25985edc 7107 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7108 * a think about bumping its value to force at least one task to be
7109 * moved
7110 */
56cf515b 7111 if (env->imbalance < busiest->load_per_task)
bd939f45 7112 return fix_small_imbalance(env, sds);
1e3c88bd 7113}
fab47622 7114
1e3c88bd
PZ
7115/******* find_busiest_group() helpers end here *********************/
7116
7117/**
7118 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7119 * if there is an imbalance.
1e3c88bd
PZ
7120 *
7121 * Also calculates the amount of weighted load which should be moved
7122 * to restore balance.
7123 *
cd96891d 7124 * @env: The load balancing environment.
1e3c88bd 7125 *
e69f6186 7126 * Return: - The busiest group if imbalance exists.
1e3c88bd 7127 */
56cf515b 7128static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7129{
56cf515b 7130 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7131 struct sd_lb_stats sds;
7132
147c5fc2 7133 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7134
7135 /*
7136 * Compute the various statistics relavent for load balancing at
7137 * this level.
7138 */
23f0d209 7139 update_sd_lb_stats(env, &sds);
56cf515b
JK
7140 local = &sds.local_stat;
7141 busiest = &sds.busiest_stat;
1e3c88bd 7142
ea67821b 7143 /* ASYM feature bypasses nice load balance check */
1f621e02 7144 if (check_asym_packing(env, &sds))
532cb4c4
MN
7145 return sds.busiest;
7146
cc57aa8f 7147 /* There is no busy sibling group to pull tasks from */
56cf515b 7148 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7149 goto out_balanced;
7150
ca8ce3d0
NP
7151 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7152 / sds.total_capacity;
b0432d8f 7153
866ab43e
PZ
7154 /*
7155 * If the busiest group is imbalanced the below checks don't
30ce5dab 7156 * work because they assume all things are equal, which typically
866ab43e
PZ
7157 * isn't true due to cpus_allowed constraints and the like.
7158 */
caeb178c 7159 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7160 goto force_balance;
7161
cc57aa8f 7162 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7163 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7164 busiest->group_no_capacity)
fab47622
NR
7165 goto force_balance;
7166
cc57aa8f 7167 /*
9c58c79a 7168 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7169 * don't try and pull any tasks.
7170 */
56cf515b 7171 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7172 goto out_balanced;
7173
cc57aa8f
PZ
7174 /*
7175 * Don't pull any tasks if this group is already above the domain
7176 * average load.
7177 */
56cf515b 7178 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7179 goto out_balanced;
7180
bd939f45 7181 if (env->idle == CPU_IDLE) {
aae6d3dd 7182 /*
43f4d666
VG
7183 * This cpu is idle. If the busiest group is not overloaded
7184 * and there is no imbalance between this and busiest group
7185 * wrt idle cpus, it is balanced. The imbalance becomes
7186 * significant if the diff is greater than 1 otherwise we
7187 * might end up to just move the imbalance on another group
aae6d3dd 7188 */
43f4d666
VG
7189 if ((busiest->group_type != group_overloaded) &&
7190 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7191 goto out_balanced;
c186fafe
PZ
7192 } else {
7193 /*
7194 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7195 * imbalance_pct to be conservative.
7196 */
56cf515b
JK
7197 if (100 * busiest->avg_load <=
7198 env->sd->imbalance_pct * local->avg_load)
c186fafe 7199 goto out_balanced;
aae6d3dd 7200 }
1e3c88bd 7201
fab47622 7202force_balance:
1e3c88bd 7203 /* Looks like there is an imbalance. Compute it */
bd939f45 7204 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7205 return sds.busiest;
7206
7207out_balanced:
bd939f45 7208 env->imbalance = 0;
1e3c88bd
PZ
7209 return NULL;
7210}
7211
7212/*
7213 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7214 */
bd939f45 7215static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7216 struct sched_group *group)
1e3c88bd
PZ
7217{
7218 struct rq *busiest = NULL, *rq;
ced549fa 7219 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7220 int i;
7221
6906a408 7222 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7223 unsigned long capacity, wl;
0ec8aa00
PZ
7224 enum fbq_type rt;
7225
7226 rq = cpu_rq(i);
7227 rt = fbq_classify_rq(rq);
1e3c88bd 7228
0ec8aa00
PZ
7229 /*
7230 * We classify groups/runqueues into three groups:
7231 * - regular: there are !numa tasks
7232 * - remote: there are numa tasks that run on the 'wrong' node
7233 * - all: there is no distinction
7234 *
7235 * In order to avoid migrating ideally placed numa tasks,
7236 * ignore those when there's better options.
7237 *
7238 * If we ignore the actual busiest queue to migrate another
7239 * task, the next balance pass can still reduce the busiest
7240 * queue by moving tasks around inside the node.
7241 *
7242 * If we cannot move enough load due to this classification
7243 * the next pass will adjust the group classification and
7244 * allow migration of more tasks.
7245 *
7246 * Both cases only affect the total convergence complexity.
7247 */
7248 if (rt > env->fbq_type)
7249 continue;
7250
ced549fa 7251 capacity = capacity_of(i);
9d5efe05 7252
6e40f5bb 7253 wl = weighted_cpuload(i);
1e3c88bd 7254
6e40f5bb
TG
7255 /*
7256 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7257 * which is not scaled with the cpu capacity.
6e40f5bb 7258 */
ea67821b
VG
7259
7260 if (rq->nr_running == 1 && wl > env->imbalance &&
7261 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7262 continue;
7263
6e40f5bb
TG
7264 /*
7265 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7266 * the weighted_cpuload() scaled with the cpu capacity, so
7267 * that the load can be moved away from the cpu that is
7268 * potentially running at a lower capacity.
95a79b80 7269 *
ced549fa 7270 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7271 * multiplication to rid ourselves of the division works out
ced549fa
NP
7272 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7273 * our previous maximum.
6e40f5bb 7274 */
ced549fa 7275 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7276 busiest_load = wl;
ced549fa 7277 busiest_capacity = capacity;
1e3c88bd
PZ
7278 busiest = rq;
7279 }
7280 }
7281
7282 return busiest;
7283}
7284
7285/*
7286 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7287 * so long as it is large enough.
7288 */
7289#define MAX_PINNED_INTERVAL 512
7290
7291/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7292DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7293
bd939f45 7294static int need_active_balance(struct lb_env *env)
1af3ed3d 7295{
bd939f45
PZ
7296 struct sched_domain *sd = env->sd;
7297
7298 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7299
7300 /*
7301 * ASYM_PACKING needs to force migrate tasks from busy but
7302 * higher numbered CPUs in order to pack all tasks in the
7303 * lowest numbered CPUs.
7304 */
bd939f45 7305 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7306 return 1;
1af3ed3d
PZ
7307 }
7308
1aaf90a4
VG
7309 /*
7310 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7311 * It's worth migrating the task if the src_cpu's capacity is reduced
7312 * because of other sched_class or IRQs if more capacity stays
7313 * available on dst_cpu.
7314 */
7315 if ((env->idle != CPU_NOT_IDLE) &&
7316 (env->src_rq->cfs.h_nr_running == 1)) {
7317 if ((check_cpu_capacity(env->src_rq, sd)) &&
7318 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7319 return 1;
7320 }
7321
1af3ed3d
PZ
7322 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7323}
7324
969c7921
TH
7325static int active_load_balance_cpu_stop(void *data);
7326
23f0d209
JK
7327static int should_we_balance(struct lb_env *env)
7328{
7329 struct sched_group *sg = env->sd->groups;
7330 struct cpumask *sg_cpus, *sg_mask;
7331 int cpu, balance_cpu = -1;
7332
7333 /*
7334 * In the newly idle case, we will allow all the cpu's
7335 * to do the newly idle load balance.
7336 */
7337 if (env->idle == CPU_NEWLY_IDLE)
7338 return 1;
7339
7340 sg_cpus = sched_group_cpus(sg);
7341 sg_mask = sched_group_mask(sg);
7342 /* Try to find first idle cpu */
7343 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7344 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7345 continue;
7346
7347 balance_cpu = cpu;
7348 break;
7349 }
7350
7351 if (balance_cpu == -1)
7352 balance_cpu = group_balance_cpu(sg);
7353
7354 /*
7355 * First idle cpu or the first cpu(busiest) in this sched group
7356 * is eligible for doing load balancing at this and above domains.
7357 */
b0cff9d8 7358 return balance_cpu == env->dst_cpu;
23f0d209
JK
7359}
7360
1e3c88bd
PZ
7361/*
7362 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7363 * tasks if there is an imbalance.
7364 */
7365static int load_balance(int this_cpu, struct rq *this_rq,
7366 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7367 int *continue_balancing)
1e3c88bd 7368{
88b8dac0 7369 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7370 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7371 struct sched_group *group;
1e3c88bd
PZ
7372 struct rq *busiest;
7373 unsigned long flags;
4ba29684 7374 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7375
8e45cb54
PZ
7376 struct lb_env env = {
7377 .sd = sd,
ddcdf6e7
PZ
7378 .dst_cpu = this_cpu,
7379 .dst_rq = this_rq,
88b8dac0 7380 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7381 .idle = idle,
eb95308e 7382 .loop_break = sched_nr_migrate_break,
b9403130 7383 .cpus = cpus,
0ec8aa00 7384 .fbq_type = all,
163122b7 7385 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7386 };
7387
cfc03118
JK
7388 /*
7389 * For NEWLY_IDLE load_balancing, we don't need to consider
7390 * other cpus in our group
7391 */
e02e60c1 7392 if (idle == CPU_NEWLY_IDLE)
cfc03118 7393 env.dst_grpmask = NULL;
cfc03118 7394
1e3c88bd
PZ
7395 cpumask_copy(cpus, cpu_active_mask);
7396
1e3c88bd
PZ
7397 schedstat_inc(sd, lb_count[idle]);
7398
7399redo:
23f0d209
JK
7400 if (!should_we_balance(&env)) {
7401 *continue_balancing = 0;
1e3c88bd 7402 goto out_balanced;
23f0d209 7403 }
1e3c88bd 7404
23f0d209 7405 group = find_busiest_group(&env);
1e3c88bd
PZ
7406 if (!group) {
7407 schedstat_inc(sd, lb_nobusyg[idle]);
7408 goto out_balanced;
7409 }
7410
b9403130 7411 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7412 if (!busiest) {
7413 schedstat_inc(sd, lb_nobusyq[idle]);
7414 goto out_balanced;
7415 }
7416
78feefc5 7417 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7418
bd939f45 7419 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7420
1aaf90a4
VG
7421 env.src_cpu = busiest->cpu;
7422 env.src_rq = busiest;
7423
1e3c88bd
PZ
7424 ld_moved = 0;
7425 if (busiest->nr_running > 1) {
7426 /*
7427 * Attempt to move tasks. If find_busiest_group has found
7428 * an imbalance but busiest->nr_running <= 1, the group is
7429 * still unbalanced. ld_moved simply stays zero, so it is
7430 * correctly treated as an imbalance.
7431 */
8e45cb54 7432 env.flags |= LBF_ALL_PINNED;
c82513e5 7433 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7434
5d6523eb 7435more_balance:
163122b7 7436 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7437
7438 /*
7439 * cur_ld_moved - load moved in current iteration
7440 * ld_moved - cumulative load moved across iterations
7441 */
163122b7 7442 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7443
7444 /*
163122b7
KT
7445 * We've detached some tasks from busiest_rq. Every
7446 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7447 * unlock busiest->lock, and we are able to be sure
7448 * that nobody can manipulate the tasks in parallel.
7449 * See task_rq_lock() family for the details.
1e3c88bd 7450 */
163122b7
KT
7451
7452 raw_spin_unlock(&busiest->lock);
7453
7454 if (cur_ld_moved) {
7455 attach_tasks(&env);
7456 ld_moved += cur_ld_moved;
7457 }
7458
1e3c88bd 7459 local_irq_restore(flags);
88b8dac0 7460
f1cd0858
JK
7461 if (env.flags & LBF_NEED_BREAK) {
7462 env.flags &= ~LBF_NEED_BREAK;
7463 goto more_balance;
7464 }
7465
88b8dac0
SV
7466 /*
7467 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7468 * us and move them to an alternate dst_cpu in our sched_group
7469 * where they can run. The upper limit on how many times we
7470 * iterate on same src_cpu is dependent on number of cpus in our
7471 * sched_group.
7472 *
7473 * This changes load balance semantics a bit on who can move
7474 * load to a given_cpu. In addition to the given_cpu itself
7475 * (or a ilb_cpu acting on its behalf where given_cpu is
7476 * nohz-idle), we now have balance_cpu in a position to move
7477 * load to given_cpu. In rare situations, this may cause
7478 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7479 * _independently_ and at _same_ time to move some load to
7480 * given_cpu) causing exceess load to be moved to given_cpu.
7481 * This however should not happen so much in practice and
7482 * moreover subsequent load balance cycles should correct the
7483 * excess load moved.
7484 */
6263322c 7485 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7486
7aff2e3a
VD
7487 /* Prevent to re-select dst_cpu via env's cpus */
7488 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7489
78feefc5 7490 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7491 env.dst_cpu = env.new_dst_cpu;
6263322c 7492 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7493 env.loop = 0;
7494 env.loop_break = sched_nr_migrate_break;
e02e60c1 7495
88b8dac0
SV
7496 /*
7497 * Go back to "more_balance" rather than "redo" since we
7498 * need to continue with same src_cpu.
7499 */
7500 goto more_balance;
7501 }
1e3c88bd 7502
6263322c
PZ
7503 /*
7504 * We failed to reach balance because of affinity.
7505 */
7506 if (sd_parent) {
63b2ca30 7507 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7508
afdeee05 7509 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7510 *group_imbalance = 1;
6263322c
PZ
7511 }
7512
1e3c88bd 7513 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7514 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7515 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7516 if (!cpumask_empty(cpus)) {
7517 env.loop = 0;
7518 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7519 goto redo;
bbf18b19 7520 }
afdeee05 7521 goto out_all_pinned;
1e3c88bd
PZ
7522 }
7523 }
7524
7525 if (!ld_moved) {
7526 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7527 /*
7528 * Increment the failure counter only on periodic balance.
7529 * We do not want newidle balance, which can be very
7530 * frequent, pollute the failure counter causing
7531 * excessive cache_hot migrations and active balances.
7532 */
7533 if (idle != CPU_NEWLY_IDLE)
7534 sd->nr_balance_failed++;
1e3c88bd 7535
bd939f45 7536 if (need_active_balance(&env)) {
1e3c88bd
PZ
7537 raw_spin_lock_irqsave(&busiest->lock, flags);
7538
969c7921
TH
7539 /* don't kick the active_load_balance_cpu_stop,
7540 * if the curr task on busiest cpu can't be
7541 * moved to this_cpu
1e3c88bd
PZ
7542 */
7543 if (!cpumask_test_cpu(this_cpu,
fa17b507 7544 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7545 raw_spin_unlock_irqrestore(&busiest->lock,
7546 flags);
8e45cb54 7547 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7548 goto out_one_pinned;
7549 }
7550
969c7921
TH
7551 /*
7552 * ->active_balance synchronizes accesses to
7553 * ->active_balance_work. Once set, it's cleared
7554 * only after active load balance is finished.
7555 */
1e3c88bd
PZ
7556 if (!busiest->active_balance) {
7557 busiest->active_balance = 1;
7558 busiest->push_cpu = this_cpu;
7559 active_balance = 1;
7560 }
7561 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7562
bd939f45 7563 if (active_balance) {
969c7921
TH
7564 stop_one_cpu_nowait(cpu_of(busiest),
7565 active_load_balance_cpu_stop, busiest,
7566 &busiest->active_balance_work);
bd939f45 7567 }
1e3c88bd 7568
d02c0711 7569 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7570 sd->nr_balance_failed = sd->cache_nice_tries+1;
7571 }
7572 } else
7573 sd->nr_balance_failed = 0;
7574
7575 if (likely(!active_balance)) {
7576 /* We were unbalanced, so reset the balancing interval */
7577 sd->balance_interval = sd->min_interval;
7578 } else {
7579 /*
7580 * If we've begun active balancing, start to back off. This
7581 * case may not be covered by the all_pinned logic if there
7582 * is only 1 task on the busy runqueue (because we don't call
163122b7 7583 * detach_tasks).
1e3c88bd
PZ
7584 */
7585 if (sd->balance_interval < sd->max_interval)
7586 sd->balance_interval *= 2;
7587 }
7588
1e3c88bd
PZ
7589 goto out;
7590
7591out_balanced:
afdeee05
VG
7592 /*
7593 * We reach balance although we may have faced some affinity
7594 * constraints. Clear the imbalance flag if it was set.
7595 */
7596 if (sd_parent) {
7597 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7598
7599 if (*group_imbalance)
7600 *group_imbalance = 0;
7601 }
7602
7603out_all_pinned:
7604 /*
7605 * We reach balance because all tasks are pinned at this level so
7606 * we can't migrate them. Let the imbalance flag set so parent level
7607 * can try to migrate them.
7608 */
1e3c88bd
PZ
7609 schedstat_inc(sd, lb_balanced[idle]);
7610
7611 sd->nr_balance_failed = 0;
7612
7613out_one_pinned:
7614 /* tune up the balancing interval */
8e45cb54 7615 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7616 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7617 (sd->balance_interval < sd->max_interval))
7618 sd->balance_interval *= 2;
7619
46e49b38 7620 ld_moved = 0;
1e3c88bd 7621out:
1e3c88bd
PZ
7622 return ld_moved;
7623}
7624
52a08ef1
JL
7625static inline unsigned long
7626get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7627{
7628 unsigned long interval = sd->balance_interval;
7629
7630 if (cpu_busy)
7631 interval *= sd->busy_factor;
7632
7633 /* scale ms to jiffies */
7634 interval = msecs_to_jiffies(interval);
7635 interval = clamp(interval, 1UL, max_load_balance_interval);
7636
7637 return interval;
7638}
7639
7640static inline void
7641update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7642{
7643 unsigned long interval, next;
7644
7645 interval = get_sd_balance_interval(sd, cpu_busy);
7646 next = sd->last_balance + interval;
7647
7648 if (time_after(*next_balance, next))
7649 *next_balance = next;
7650}
7651
1e3c88bd
PZ
7652/*
7653 * idle_balance is called by schedule() if this_cpu is about to become
7654 * idle. Attempts to pull tasks from other CPUs.
7655 */
6e83125c 7656static int idle_balance(struct rq *this_rq)
1e3c88bd 7657{
52a08ef1
JL
7658 unsigned long next_balance = jiffies + HZ;
7659 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7660 struct sched_domain *sd;
7661 int pulled_task = 0;
9bd721c5 7662 u64 curr_cost = 0;
1e3c88bd 7663
6e83125c
PZ
7664 /*
7665 * We must set idle_stamp _before_ calling idle_balance(), such that we
7666 * measure the duration of idle_balance() as idle time.
7667 */
7668 this_rq->idle_stamp = rq_clock(this_rq);
7669
4486edd1
TC
7670 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7671 !this_rq->rd->overload) {
52a08ef1
JL
7672 rcu_read_lock();
7673 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7674 if (sd)
7675 update_next_balance(sd, 0, &next_balance);
7676 rcu_read_unlock();
7677
6e83125c 7678 goto out;
52a08ef1 7679 }
1e3c88bd 7680
f492e12e
PZ
7681 raw_spin_unlock(&this_rq->lock);
7682
48a16753 7683 update_blocked_averages(this_cpu);
dce840a0 7684 rcu_read_lock();
1e3c88bd 7685 for_each_domain(this_cpu, sd) {
23f0d209 7686 int continue_balancing = 1;
9bd721c5 7687 u64 t0, domain_cost;
1e3c88bd
PZ
7688
7689 if (!(sd->flags & SD_LOAD_BALANCE))
7690 continue;
7691
52a08ef1
JL
7692 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7693 update_next_balance(sd, 0, &next_balance);
9bd721c5 7694 break;
52a08ef1 7695 }
9bd721c5 7696
f492e12e 7697 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7698 t0 = sched_clock_cpu(this_cpu);
7699
f492e12e 7700 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7701 sd, CPU_NEWLY_IDLE,
7702 &continue_balancing);
9bd721c5
JL
7703
7704 domain_cost = sched_clock_cpu(this_cpu) - t0;
7705 if (domain_cost > sd->max_newidle_lb_cost)
7706 sd->max_newidle_lb_cost = domain_cost;
7707
7708 curr_cost += domain_cost;
f492e12e 7709 }
1e3c88bd 7710
52a08ef1 7711 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7712
7713 /*
7714 * Stop searching for tasks to pull if there are
7715 * now runnable tasks on this rq.
7716 */
7717 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7718 break;
1e3c88bd 7719 }
dce840a0 7720 rcu_read_unlock();
f492e12e
PZ
7721
7722 raw_spin_lock(&this_rq->lock);
7723
0e5b5337
JL
7724 if (curr_cost > this_rq->max_idle_balance_cost)
7725 this_rq->max_idle_balance_cost = curr_cost;
7726
e5fc6611 7727 /*
0e5b5337
JL
7728 * While browsing the domains, we released the rq lock, a task could
7729 * have been enqueued in the meantime. Since we're not going idle,
7730 * pretend we pulled a task.
e5fc6611 7731 */
0e5b5337 7732 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7733 pulled_task = 1;
e5fc6611 7734
52a08ef1
JL
7735out:
7736 /* Move the next balance forward */
7737 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7738 this_rq->next_balance = next_balance;
9bd721c5 7739
e4aa358b 7740 /* Is there a task of a high priority class? */
46383648 7741 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7742 pulled_task = -1;
7743
38c6ade2 7744 if (pulled_task)
6e83125c
PZ
7745 this_rq->idle_stamp = 0;
7746
3c4017c1 7747 return pulled_task;
1e3c88bd
PZ
7748}
7749
7750/*
969c7921
TH
7751 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7752 * running tasks off the busiest CPU onto idle CPUs. It requires at
7753 * least 1 task to be running on each physical CPU where possible, and
7754 * avoids physical / logical imbalances.
1e3c88bd 7755 */
969c7921 7756static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7757{
969c7921
TH
7758 struct rq *busiest_rq = data;
7759 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7760 int target_cpu = busiest_rq->push_cpu;
969c7921 7761 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7762 struct sched_domain *sd;
e5673f28 7763 struct task_struct *p = NULL;
969c7921
TH
7764
7765 raw_spin_lock_irq(&busiest_rq->lock);
7766
7767 /* make sure the requested cpu hasn't gone down in the meantime */
7768 if (unlikely(busiest_cpu != smp_processor_id() ||
7769 !busiest_rq->active_balance))
7770 goto out_unlock;
1e3c88bd
PZ
7771
7772 /* Is there any task to move? */
7773 if (busiest_rq->nr_running <= 1)
969c7921 7774 goto out_unlock;
1e3c88bd
PZ
7775
7776 /*
7777 * This condition is "impossible", if it occurs
7778 * we need to fix it. Originally reported by
7779 * Bjorn Helgaas on a 128-cpu setup.
7780 */
7781 BUG_ON(busiest_rq == target_rq);
7782
1e3c88bd 7783 /* Search for an sd spanning us and the target CPU. */
dce840a0 7784 rcu_read_lock();
1e3c88bd
PZ
7785 for_each_domain(target_cpu, sd) {
7786 if ((sd->flags & SD_LOAD_BALANCE) &&
7787 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7788 break;
7789 }
7790
7791 if (likely(sd)) {
8e45cb54
PZ
7792 struct lb_env env = {
7793 .sd = sd,
ddcdf6e7
PZ
7794 .dst_cpu = target_cpu,
7795 .dst_rq = target_rq,
7796 .src_cpu = busiest_rq->cpu,
7797 .src_rq = busiest_rq,
8e45cb54
PZ
7798 .idle = CPU_IDLE,
7799 };
7800
1e3c88bd
PZ
7801 schedstat_inc(sd, alb_count);
7802
e5673f28 7803 p = detach_one_task(&env);
d02c0711 7804 if (p) {
1e3c88bd 7805 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7806 /* Active balancing done, reset the failure counter. */
7807 sd->nr_balance_failed = 0;
7808 } else {
1e3c88bd 7809 schedstat_inc(sd, alb_failed);
d02c0711 7810 }
1e3c88bd 7811 }
dce840a0 7812 rcu_read_unlock();
969c7921
TH
7813out_unlock:
7814 busiest_rq->active_balance = 0;
e5673f28
KT
7815 raw_spin_unlock(&busiest_rq->lock);
7816
7817 if (p)
7818 attach_one_task(target_rq, p);
7819
7820 local_irq_enable();
7821
969c7921 7822 return 0;
1e3c88bd
PZ
7823}
7824
d987fc7f
MG
7825static inline int on_null_domain(struct rq *rq)
7826{
7827 return unlikely(!rcu_dereference_sched(rq->sd));
7828}
7829
3451d024 7830#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7831/*
7832 * idle load balancing details
83cd4fe2
VP
7833 * - When one of the busy CPUs notice that there may be an idle rebalancing
7834 * needed, they will kick the idle load balancer, which then does idle
7835 * load balancing for all the idle CPUs.
7836 */
1e3c88bd 7837static struct {
83cd4fe2 7838 cpumask_var_t idle_cpus_mask;
0b005cf5 7839 atomic_t nr_cpus;
83cd4fe2
VP
7840 unsigned long next_balance; /* in jiffy units */
7841} nohz ____cacheline_aligned;
1e3c88bd 7842
3dd0337d 7843static inline int find_new_ilb(void)
1e3c88bd 7844{
0b005cf5 7845 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7846
786d6dc7
SS
7847 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7848 return ilb;
7849
7850 return nr_cpu_ids;
1e3c88bd 7851}
1e3c88bd 7852
83cd4fe2
VP
7853/*
7854 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7855 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7856 * CPU (if there is one).
7857 */
0aeeeeba 7858static void nohz_balancer_kick(void)
83cd4fe2
VP
7859{
7860 int ilb_cpu;
7861
7862 nohz.next_balance++;
7863
3dd0337d 7864 ilb_cpu = find_new_ilb();
83cd4fe2 7865
0b005cf5
SS
7866 if (ilb_cpu >= nr_cpu_ids)
7867 return;
83cd4fe2 7868
cd490c5b 7869 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7870 return;
7871 /*
7872 * Use smp_send_reschedule() instead of resched_cpu().
7873 * This way we generate a sched IPI on the target cpu which
7874 * is idle. And the softirq performing nohz idle load balance
7875 * will be run before returning from the IPI.
7876 */
7877 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7878 return;
7879}
7880
20a5c8cc 7881void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7882{
7883 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7884 /*
7885 * Completely isolated CPUs don't ever set, so we must test.
7886 */
7887 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7888 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7889 atomic_dec(&nohz.nr_cpus);
7890 }
71325960
SS
7891 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7892 }
7893}
7894
69e1e811
SS
7895static inline void set_cpu_sd_state_busy(void)
7896{
7897 struct sched_domain *sd;
37dc6b50 7898 int cpu = smp_processor_id();
69e1e811 7899
69e1e811 7900 rcu_read_lock();
37dc6b50 7901 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7902
7903 if (!sd || !sd->nohz_idle)
7904 goto unlock;
7905 sd->nohz_idle = 0;
7906
63b2ca30 7907 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7908unlock:
69e1e811
SS
7909 rcu_read_unlock();
7910}
7911
7912void set_cpu_sd_state_idle(void)
7913{
7914 struct sched_domain *sd;
37dc6b50 7915 int cpu = smp_processor_id();
69e1e811 7916
69e1e811 7917 rcu_read_lock();
37dc6b50 7918 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7919
7920 if (!sd || sd->nohz_idle)
7921 goto unlock;
7922 sd->nohz_idle = 1;
7923
63b2ca30 7924 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7925unlock:
69e1e811
SS
7926 rcu_read_unlock();
7927}
7928
1e3c88bd 7929/*
c1cc017c 7930 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7931 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7932 */
c1cc017c 7933void nohz_balance_enter_idle(int cpu)
1e3c88bd 7934{
71325960
SS
7935 /*
7936 * If this cpu is going down, then nothing needs to be done.
7937 */
7938 if (!cpu_active(cpu))
7939 return;
7940
c1cc017c
AS
7941 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7942 return;
1e3c88bd 7943
d987fc7f
MG
7944 /*
7945 * If we're a completely isolated CPU, we don't play.
7946 */
7947 if (on_null_domain(cpu_rq(cpu)))
7948 return;
7949
c1cc017c
AS
7950 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7951 atomic_inc(&nohz.nr_cpus);
7952 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
7953}
7954#endif
7955
7956static DEFINE_SPINLOCK(balancing);
7957
49c022e6
PZ
7958/*
7959 * Scale the max load_balance interval with the number of CPUs in the system.
7960 * This trades load-balance latency on larger machines for less cross talk.
7961 */
029632fb 7962void update_max_interval(void)
49c022e6
PZ
7963{
7964 max_load_balance_interval = HZ*num_online_cpus()/10;
7965}
7966
1e3c88bd
PZ
7967/*
7968 * It checks each scheduling domain to see if it is due to be balanced,
7969 * and initiates a balancing operation if so.
7970 *
b9b0853a 7971 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7972 */
f7ed0a89 7973static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7974{
23f0d209 7975 int continue_balancing = 1;
f7ed0a89 7976 int cpu = rq->cpu;
1e3c88bd 7977 unsigned long interval;
04f733b4 7978 struct sched_domain *sd;
1e3c88bd
PZ
7979 /* Earliest time when we have to do rebalance again */
7980 unsigned long next_balance = jiffies + 60*HZ;
7981 int update_next_balance = 0;
f48627e6
JL
7982 int need_serialize, need_decay = 0;
7983 u64 max_cost = 0;
1e3c88bd 7984
48a16753 7985 update_blocked_averages(cpu);
2069dd75 7986
dce840a0 7987 rcu_read_lock();
1e3c88bd 7988 for_each_domain(cpu, sd) {
f48627e6
JL
7989 /*
7990 * Decay the newidle max times here because this is a regular
7991 * visit to all the domains. Decay ~1% per second.
7992 */
7993 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7994 sd->max_newidle_lb_cost =
7995 (sd->max_newidle_lb_cost * 253) / 256;
7996 sd->next_decay_max_lb_cost = jiffies + HZ;
7997 need_decay = 1;
7998 }
7999 max_cost += sd->max_newidle_lb_cost;
8000
1e3c88bd
PZ
8001 if (!(sd->flags & SD_LOAD_BALANCE))
8002 continue;
8003
f48627e6
JL
8004 /*
8005 * Stop the load balance at this level. There is another
8006 * CPU in our sched group which is doing load balancing more
8007 * actively.
8008 */
8009 if (!continue_balancing) {
8010 if (need_decay)
8011 continue;
8012 break;
8013 }
8014
52a08ef1 8015 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8016
8017 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8018 if (need_serialize) {
8019 if (!spin_trylock(&balancing))
8020 goto out;
8021 }
8022
8023 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8024 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8025 /*
6263322c 8026 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8027 * env->dst_cpu, so we can't know our idle
8028 * state even if we migrated tasks. Update it.
1e3c88bd 8029 */
de5eb2dd 8030 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8031 }
8032 sd->last_balance = jiffies;
52a08ef1 8033 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8034 }
8035 if (need_serialize)
8036 spin_unlock(&balancing);
8037out:
8038 if (time_after(next_balance, sd->last_balance + interval)) {
8039 next_balance = sd->last_balance + interval;
8040 update_next_balance = 1;
8041 }
f48627e6
JL
8042 }
8043 if (need_decay) {
1e3c88bd 8044 /*
f48627e6
JL
8045 * Ensure the rq-wide value also decays but keep it at a
8046 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8047 */
f48627e6
JL
8048 rq->max_idle_balance_cost =
8049 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8050 }
dce840a0 8051 rcu_read_unlock();
1e3c88bd
PZ
8052
8053 /*
8054 * next_balance will be updated only when there is a need.
8055 * When the cpu is attached to null domain for ex, it will not be
8056 * updated.
8057 */
c5afb6a8 8058 if (likely(update_next_balance)) {
1e3c88bd 8059 rq->next_balance = next_balance;
c5afb6a8
VG
8060
8061#ifdef CONFIG_NO_HZ_COMMON
8062 /*
8063 * If this CPU has been elected to perform the nohz idle
8064 * balance. Other idle CPUs have already rebalanced with
8065 * nohz_idle_balance() and nohz.next_balance has been
8066 * updated accordingly. This CPU is now running the idle load
8067 * balance for itself and we need to update the
8068 * nohz.next_balance accordingly.
8069 */
8070 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8071 nohz.next_balance = rq->next_balance;
8072#endif
8073 }
1e3c88bd
PZ
8074}
8075
3451d024 8076#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8077/*
3451d024 8078 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8079 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8080 */
208cb16b 8081static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8082{
208cb16b 8083 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8084 struct rq *rq;
8085 int balance_cpu;
c5afb6a8
VG
8086 /* Earliest time when we have to do rebalance again */
8087 unsigned long next_balance = jiffies + 60*HZ;
8088 int update_next_balance = 0;
83cd4fe2 8089
1c792db7
SS
8090 if (idle != CPU_IDLE ||
8091 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8092 goto end;
83cd4fe2
VP
8093
8094 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8095 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8096 continue;
8097
8098 /*
8099 * If this cpu gets work to do, stop the load balancing
8100 * work being done for other cpus. Next load
8101 * balancing owner will pick it up.
8102 */
1c792db7 8103 if (need_resched())
83cd4fe2 8104 break;
83cd4fe2 8105
5ed4f1d9
VG
8106 rq = cpu_rq(balance_cpu);
8107
ed61bbc6
TC
8108 /*
8109 * If time for next balance is due,
8110 * do the balance.
8111 */
8112 if (time_after_eq(jiffies, rq->next_balance)) {
8113 raw_spin_lock_irq(&rq->lock);
8114 update_rq_clock(rq);
cee1afce 8115 cpu_load_update_idle(rq);
ed61bbc6
TC
8116 raw_spin_unlock_irq(&rq->lock);
8117 rebalance_domains(rq, CPU_IDLE);
8118 }
83cd4fe2 8119
c5afb6a8
VG
8120 if (time_after(next_balance, rq->next_balance)) {
8121 next_balance = rq->next_balance;
8122 update_next_balance = 1;
8123 }
83cd4fe2 8124 }
c5afb6a8
VG
8125
8126 /*
8127 * next_balance will be updated only when there is a need.
8128 * When the CPU is attached to null domain for ex, it will not be
8129 * updated.
8130 */
8131 if (likely(update_next_balance))
8132 nohz.next_balance = next_balance;
1c792db7
SS
8133end:
8134 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8135}
8136
8137/*
0b005cf5 8138 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8139 * of an idle cpu in the system.
0b005cf5 8140 * - This rq has more than one task.
1aaf90a4
VG
8141 * - This rq has at least one CFS task and the capacity of the CPU is
8142 * significantly reduced because of RT tasks or IRQs.
8143 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8144 * multiple busy cpu.
0b005cf5
SS
8145 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8146 * domain span are idle.
83cd4fe2 8147 */
1aaf90a4 8148static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8149{
8150 unsigned long now = jiffies;
0b005cf5 8151 struct sched_domain *sd;
63b2ca30 8152 struct sched_group_capacity *sgc;
4a725627 8153 int nr_busy, cpu = rq->cpu;
1aaf90a4 8154 bool kick = false;
83cd4fe2 8155
4a725627 8156 if (unlikely(rq->idle_balance))
1aaf90a4 8157 return false;
83cd4fe2 8158
1c792db7
SS
8159 /*
8160 * We may be recently in ticked or tickless idle mode. At the first
8161 * busy tick after returning from idle, we will update the busy stats.
8162 */
69e1e811 8163 set_cpu_sd_state_busy();
c1cc017c 8164 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8165
8166 /*
8167 * None are in tickless mode and hence no need for NOHZ idle load
8168 * balancing.
8169 */
8170 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8171 return false;
1c792db7
SS
8172
8173 if (time_before(now, nohz.next_balance))
1aaf90a4 8174 return false;
83cd4fe2 8175
0b005cf5 8176 if (rq->nr_running >= 2)
1aaf90a4 8177 return true;
83cd4fe2 8178
067491b7 8179 rcu_read_lock();
37dc6b50 8180 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8181 if (sd) {
63b2ca30
NP
8182 sgc = sd->groups->sgc;
8183 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8184
1aaf90a4
VG
8185 if (nr_busy > 1) {
8186 kick = true;
8187 goto unlock;
8188 }
8189
83cd4fe2 8190 }
37dc6b50 8191
1aaf90a4
VG
8192 sd = rcu_dereference(rq->sd);
8193 if (sd) {
8194 if ((rq->cfs.h_nr_running >= 1) &&
8195 check_cpu_capacity(rq, sd)) {
8196 kick = true;
8197 goto unlock;
8198 }
8199 }
37dc6b50 8200
1aaf90a4 8201 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8202 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8203 sched_domain_span(sd)) < cpu)) {
8204 kick = true;
8205 goto unlock;
8206 }
067491b7 8207
1aaf90a4 8208unlock:
067491b7 8209 rcu_read_unlock();
1aaf90a4 8210 return kick;
83cd4fe2
VP
8211}
8212#else
208cb16b 8213static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8214#endif
8215
8216/*
8217 * run_rebalance_domains is triggered when needed from the scheduler tick.
8218 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8219 */
1e3c88bd
PZ
8220static void run_rebalance_domains(struct softirq_action *h)
8221{
208cb16b 8222 struct rq *this_rq = this_rq();
6eb57e0d 8223 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8224 CPU_IDLE : CPU_NOT_IDLE;
8225
1e3c88bd 8226 /*
83cd4fe2 8227 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8228 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8229 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8230 * give the idle cpus a chance to load balance. Else we may
8231 * load balance only within the local sched_domain hierarchy
8232 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8233 */
208cb16b 8234 nohz_idle_balance(this_rq, idle);
d4573c3e 8235 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8236}
8237
1e3c88bd
PZ
8238/*
8239 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8240 */
7caff66f 8241void trigger_load_balance(struct rq *rq)
1e3c88bd 8242{
1e3c88bd 8243 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8244 if (unlikely(on_null_domain(rq)))
8245 return;
8246
8247 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8248 raise_softirq(SCHED_SOFTIRQ);
3451d024 8249#ifdef CONFIG_NO_HZ_COMMON
c726099e 8250 if (nohz_kick_needed(rq))
0aeeeeba 8251 nohz_balancer_kick();
83cd4fe2 8252#endif
1e3c88bd
PZ
8253}
8254
0bcdcf28
CE
8255static void rq_online_fair(struct rq *rq)
8256{
8257 update_sysctl();
0e59bdae
KT
8258
8259 update_runtime_enabled(rq);
0bcdcf28
CE
8260}
8261
8262static void rq_offline_fair(struct rq *rq)
8263{
8264 update_sysctl();
a4c96ae3
PB
8265
8266 /* Ensure any throttled groups are reachable by pick_next_task */
8267 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8268}
8269
55e12e5e 8270#endif /* CONFIG_SMP */
e1d1484f 8271
bf0f6f24
IM
8272/*
8273 * scheduler tick hitting a task of our scheduling class:
8274 */
8f4d37ec 8275static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8276{
8277 struct cfs_rq *cfs_rq;
8278 struct sched_entity *se = &curr->se;
8279
8280 for_each_sched_entity(se) {
8281 cfs_rq = cfs_rq_of(se);
8f4d37ec 8282 entity_tick(cfs_rq, se, queued);
bf0f6f24 8283 }
18bf2805 8284
b52da86e 8285 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8286 task_tick_numa(rq, curr);
bf0f6f24
IM
8287}
8288
8289/*
cd29fe6f
PZ
8290 * called on fork with the child task as argument from the parent's context
8291 * - child not yet on the tasklist
8292 * - preemption disabled
bf0f6f24 8293 */
cd29fe6f 8294static void task_fork_fair(struct task_struct *p)
bf0f6f24 8295{
4fc420c9
DN
8296 struct cfs_rq *cfs_rq;
8297 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8298 struct rq *rq = this_rq();
bf0f6f24 8299
e210bffd 8300 raw_spin_lock(&rq->lock);
861d034e
PZ
8301 update_rq_clock(rq);
8302
4fc420c9
DN
8303 cfs_rq = task_cfs_rq(current);
8304 curr = cfs_rq->curr;
e210bffd
PZ
8305 if (curr) {
8306 update_curr(cfs_rq);
b5d9d734 8307 se->vruntime = curr->vruntime;
e210bffd 8308 }
aeb73b04 8309 place_entity(cfs_rq, se, 1);
4d78e7b6 8310
cd29fe6f 8311 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8312 /*
edcb60a3
IM
8313 * Upon rescheduling, sched_class::put_prev_task() will place
8314 * 'current' within the tree based on its new key value.
8315 */
4d78e7b6 8316 swap(curr->vruntime, se->vruntime);
8875125e 8317 resched_curr(rq);
4d78e7b6 8318 }
bf0f6f24 8319
88ec22d3 8320 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8321 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8322}
8323
cb469845
SR
8324/*
8325 * Priority of the task has changed. Check to see if we preempt
8326 * the current task.
8327 */
da7a735e
PZ
8328static void
8329prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8330{
da0c1e65 8331 if (!task_on_rq_queued(p))
da7a735e
PZ
8332 return;
8333
cb469845
SR
8334 /*
8335 * Reschedule if we are currently running on this runqueue and
8336 * our priority decreased, or if we are not currently running on
8337 * this runqueue and our priority is higher than the current's
8338 */
da7a735e 8339 if (rq->curr == p) {
cb469845 8340 if (p->prio > oldprio)
8875125e 8341 resched_curr(rq);
cb469845 8342 } else
15afe09b 8343 check_preempt_curr(rq, p, 0);
cb469845
SR
8344}
8345
daa59407 8346static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8347{
8348 struct sched_entity *se = &p->se;
da7a735e
PZ
8349
8350 /*
daa59407
BP
8351 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8352 * the dequeue_entity(.flags=0) will already have normalized the
8353 * vruntime.
8354 */
8355 if (p->on_rq)
8356 return true;
8357
8358 /*
8359 * When !on_rq, vruntime of the task has usually NOT been normalized.
8360 * But there are some cases where it has already been normalized:
da7a735e 8361 *
daa59407
BP
8362 * - A forked child which is waiting for being woken up by
8363 * wake_up_new_task().
8364 * - A task which has been woken up by try_to_wake_up() and
8365 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8366 */
daa59407
BP
8367 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8368 return true;
8369
8370 return false;
8371}
8372
8373static void detach_task_cfs_rq(struct task_struct *p)
8374{
8375 struct sched_entity *se = &p->se;
8376 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8377 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8378
8379 if (!vruntime_normalized(p)) {
da7a735e
PZ
8380 /*
8381 * Fix up our vruntime so that the current sleep doesn't
8382 * cause 'unlimited' sleep bonus.
8383 */
8384 place_entity(cfs_rq, se, 0);
8385 se->vruntime -= cfs_rq->min_vruntime;
8386 }
9ee474f5 8387
9d89c257 8388 /* Catch up with the cfs_rq and remove our load when we leave */
01011473 8389 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8390 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8391}
8392
daa59407 8393static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8394{
f36c019c 8395 struct sched_entity *se = &p->se;
daa59407 8396 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8397 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8398
8399#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8400 /*
8401 * Since the real-depth could have been changed (only FAIR
8402 * class maintain depth value), reset depth properly.
8403 */
8404 se->depth = se->parent ? se->parent->depth + 1 : 0;
8405#endif
7855a35a 8406
6efdb105 8407 /* Synchronize task with its cfs_rq */
01011473 8408 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407
BP
8409 attach_entity_load_avg(cfs_rq, se);
8410
8411 if (!vruntime_normalized(p))
8412 se->vruntime += cfs_rq->min_vruntime;
8413}
6efdb105 8414
daa59407
BP
8415static void switched_from_fair(struct rq *rq, struct task_struct *p)
8416{
8417 detach_task_cfs_rq(p);
8418}
8419
8420static void switched_to_fair(struct rq *rq, struct task_struct *p)
8421{
8422 attach_task_cfs_rq(p);
7855a35a 8423
daa59407 8424 if (task_on_rq_queued(p)) {
7855a35a 8425 /*
daa59407
BP
8426 * We were most likely switched from sched_rt, so
8427 * kick off the schedule if running, otherwise just see
8428 * if we can still preempt the current task.
7855a35a 8429 */
daa59407
BP
8430 if (rq->curr == p)
8431 resched_curr(rq);
8432 else
8433 check_preempt_curr(rq, p, 0);
7855a35a 8434 }
cb469845
SR
8435}
8436
83b699ed
SV
8437/* Account for a task changing its policy or group.
8438 *
8439 * This routine is mostly called to set cfs_rq->curr field when a task
8440 * migrates between groups/classes.
8441 */
8442static void set_curr_task_fair(struct rq *rq)
8443{
8444 struct sched_entity *se = &rq->curr->se;
8445
ec12cb7f
PT
8446 for_each_sched_entity(se) {
8447 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8448
8449 set_next_entity(cfs_rq, se);
8450 /* ensure bandwidth has been allocated on our new cfs_rq */
8451 account_cfs_rq_runtime(cfs_rq, 0);
8452 }
83b699ed
SV
8453}
8454
029632fb
PZ
8455void init_cfs_rq(struct cfs_rq *cfs_rq)
8456{
8457 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8458 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8459#ifndef CONFIG_64BIT
8460 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8461#endif
141965c7 8462#ifdef CONFIG_SMP
9d89c257
YD
8463 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8464 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8465#endif
029632fb
PZ
8466}
8467
810b3817 8468#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8469static void task_move_group_fair(struct task_struct *p)
810b3817 8470{
daa59407 8471 detach_task_cfs_rq(p);
b2b5ce02 8472 set_task_rq(p, task_cpu(p));
6efdb105
BP
8473
8474#ifdef CONFIG_SMP
8475 /* Tell se's cfs_rq has been changed -- migrated */
8476 p->se.avg.last_update_time = 0;
8477#endif
daa59407 8478 attach_task_cfs_rq(p);
810b3817 8479}
029632fb
PZ
8480
8481void free_fair_sched_group(struct task_group *tg)
8482{
8483 int i;
8484
8485 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8486
8487 for_each_possible_cpu(i) {
8488 if (tg->cfs_rq)
8489 kfree(tg->cfs_rq[i]);
6fe1f348 8490 if (tg->se)
029632fb
PZ
8491 kfree(tg->se[i]);
8492 }
8493
8494 kfree(tg->cfs_rq);
8495 kfree(tg->se);
8496}
8497
8498int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8499{
029632fb 8500 struct sched_entity *se;
b7fa30c9
PZ
8501 struct cfs_rq *cfs_rq;
8502 struct rq *rq;
029632fb
PZ
8503 int i;
8504
8505 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8506 if (!tg->cfs_rq)
8507 goto err;
8508 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8509 if (!tg->se)
8510 goto err;
8511
8512 tg->shares = NICE_0_LOAD;
8513
8514 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8515
8516 for_each_possible_cpu(i) {
b7fa30c9
PZ
8517 rq = cpu_rq(i);
8518
029632fb
PZ
8519 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8520 GFP_KERNEL, cpu_to_node(i));
8521 if (!cfs_rq)
8522 goto err;
8523
8524 se = kzalloc_node(sizeof(struct sched_entity),
8525 GFP_KERNEL, cpu_to_node(i));
8526 if (!se)
8527 goto err_free_rq;
8528
8529 init_cfs_rq(cfs_rq);
8530 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8531 init_entity_runnable_average(se);
b7fa30c9
PZ
8532
8533 raw_spin_lock_irq(&rq->lock);
2b8c41da 8534 post_init_entity_util_avg(se);
b7fa30c9 8535 raw_spin_unlock_irq(&rq->lock);
029632fb
PZ
8536 }
8537
8538 return 1;
8539
8540err_free_rq:
8541 kfree(cfs_rq);
8542err:
8543 return 0;
8544}
8545
6fe1f348 8546void unregister_fair_sched_group(struct task_group *tg)
029632fb 8547{
029632fb 8548 unsigned long flags;
6fe1f348
PZ
8549 struct rq *rq;
8550 int cpu;
029632fb 8551
6fe1f348
PZ
8552 for_each_possible_cpu(cpu) {
8553 if (tg->se[cpu])
8554 remove_entity_load_avg(tg->se[cpu]);
029632fb 8555
6fe1f348
PZ
8556 /*
8557 * Only empty task groups can be destroyed; so we can speculatively
8558 * check on_list without danger of it being re-added.
8559 */
8560 if (!tg->cfs_rq[cpu]->on_list)
8561 continue;
8562
8563 rq = cpu_rq(cpu);
8564
8565 raw_spin_lock_irqsave(&rq->lock, flags);
8566 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8567 raw_spin_unlock_irqrestore(&rq->lock, flags);
8568 }
029632fb
PZ
8569}
8570
8571void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8572 struct sched_entity *se, int cpu,
8573 struct sched_entity *parent)
8574{
8575 struct rq *rq = cpu_rq(cpu);
8576
8577 cfs_rq->tg = tg;
8578 cfs_rq->rq = rq;
029632fb
PZ
8579 init_cfs_rq_runtime(cfs_rq);
8580
8581 tg->cfs_rq[cpu] = cfs_rq;
8582 tg->se[cpu] = se;
8583
8584 /* se could be NULL for root_task_group */
8585 if (!se)
8586 return;
8587
fed14d45 8588 if (!parent) {
029632fb 8589 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8590 se->depth = 0;
8591 } else {
029632fb 8592 se->cfs_rq = parent->my_q;
fed14d45
PZ
8593 se->depth = parent->depth + 1;
8594 }
029632fb
PZ
8595
8596 se->my_q = cfs_rq;
0ac9b1c2
PT
8597 /* guarantee group entities always have weight */
8598 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8599 se->parent = parent;
8600}
8601
8602static DEFINE_MUTEX(shares_mutex);
8603
8604int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8605{
8606 int i;
8607 unsigned long flags;
8608
8609 /*
8610 * We can't change the weight of the root cgroup.
8611 */
8612 if (!tg->se[0])
8613 return -EINVAL;
8614
8615 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8616
8617 mutex_lock(&shares_mutex);
8618 if (tg->shares == shares)
8619 goto done;
8620
8621 tg->shares = shares;
8622 for_each_possible_cpu(i) {
8623 struct rq *rq = cpu_rq(i);
8624 struct sched_entity *se;
8625
8626 se = tg->se[i];
8627 /* Propagate contribution to hierarchy */
8628 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8629
8630 /* Possible calls to update_curr() need rq clock */
8631 update_rq_clock(rq);
17bc14b7 8632 for_each_sched_entity(se)
029632fb
PZ
8633 update_cfs_shares(group_cfs_rq(se));
8634 raw_spin_unlock_irqrestore(&rq->lock, flags);
8635 }
8636
8637done:
8638 mutex_unlock(&shares_mutex);
8639 return 0;
8640}
8641#else /* CONFIG_FAIR_GROUP_SCHED */
8642
8643void free_fair_sched_group(struct task_group *tg) { }
8644
8645int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8646{
8647 return 1;
8648}
8649
6fe1f348 8650void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8651
8652#endif /* CONFIG_FAIR_GROUP_SCHED */
8653
810b3817 8654
6d686f45 8655static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8656{
8657 struct sched_entity *se = &task->se;
0d721cea
PW
8658 unsigned int rr_interval = 0;
8659
8660 /*
8661 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8662 * idle runqueue:
8663 */
0d721cea 8664 if (rq->cfs.load.weight)
a59f4e07 8665 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8666
8667 return rr_interval;
8668}
8669
bf0f6f24
IM
8670/*
8671 * All the scheduling class methods:
8672 */
029632fb 8673const struct sched_class fair_sched_class = {
5522d5d5 8674 .next = &idle_sched_class,
bf0f6f24
IM
8675 .enqueue_task = enqueue_task_fair,
8676 .dequeue_task = dequeue_task_fair,
8677 .yield_task = yield_task_fair,
d95f4122 8678 .yield_to_task = yield_to_task_fair,
bf0f6f24 8679
2e09bf55 8680 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8681
8682 .pick_next_task = pick_next_task_fair,
8683 .put_prev_task = put_prev_task_fair,
8684
681f3e68 8685#ifdef CONFIG_SMP
4ce72a2c 8686 .select_task_rq = select_task_rq_fair,
0a74bef8 8687 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8688
0bcdcf28
CE
8689 .rq_online = rq_online_fair,
8690 .rq_offline = rq_offline_fair,
88ec22d3 8691
12695578 8692 .task_dead = task_dead_fair,
c5b28038 8693 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8694#endif
bf0f6f24 8695
83b699ed 8696 .set_curr_task = set_curr_task_fair,
bf0f6f24 8697 .task_tick = task_tick_fair,
cd29fe6f 8698 .task_fork = task_fork_fair,
cb469845
SR
8699
8700 .prio_changed = prio_changed_fair,
da7a735e 8701 .switched_from = switched_from_fair,
cb469845 8702 .switched_to = switched_to_fair,
810b3817 8703
0d721cea
PW
8704 .get_rr_interval = get_rr_interval_fair,
8705
6e998916
SG
8706 .update_curr = update_curr_fair,
8707
810b3817 8708#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8709 .task_move_group = task_move_group_fair,
810b3817 8710#endif
bf0f6f24
IM
8711};
8712
8713#ifdef CONFIG_SCHED_DEBUG
029632fb 8714void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8715{
bf0f6f24
IM
8716 struct cfs_rq *cfs_rq;
8717
5973e5b9 8718 rcu_read_lock();
c3b64f1e 8719 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8720 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8721 rcu_read_unlock();
bf0f6f24 8722}
397f2378
SD
8723
8724#ifdef CONFIG_NUMA_BALANCING
8725void show_numa_stats(struct task_struct *p, struct seq_file *m)
8726{
8727 int node;
8728 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8729
8730 for_each_online_node(node) {
8731 if (p->numa_faults) {
8732 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8733 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8734 }
8735 if (p->numa_group) {
8736 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8737 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8738 }
8739 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8740 }
8741}
8742#endif /* CONFIG_NUMA_BALANCING */
8743#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8744
8745__init void init_sched_fair_class(void)
8746{
8747#ifdef CONFIG_SMP
8748 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8749
3451d024 8750#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8751 nohz.next_balance = jiffies;
029632fb 8752 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8753#endif
8754#endif /* SMP */
8755
8756}