]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/fair.c
sched/numa: Examine a task move when examining a task swap
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
ced549fa 1020static unsigned long capacity_of(int cpu);
58d081b5
MG
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
ced549fa 1049 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1b6a7495
NP
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
5eca82a9
PZ
1061 */
1062 if (!cpus)
1063 return;
1064
5ef20ca1 1065 ns->task_capacity =
ca8ce3d0 1066 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1b6a7495 1067 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
28a21745 1098static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1099 struct task_numa_env *env)
1100{
1101 long imb, old_imb;
28a21745
RR
1102 long orig_src_load, orig_dst_load;
1103 long src_capacity, dst_capacity;
1104
1105 /*
1106 * The load is corrected for the CPU capacity available on each node.
1107 *
1108 * src_load dst_load
1109 * ------------ vs ---------
1110 * src_capacity dst_capacity
1111 */
1112 src_capacity = env->src_stats.compute_capacity;
1113 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1114
1115 /* We care about the slope of the imbalance, not the direction. */
1116 if (dst_load < src_load)
1117 swap(dst_load, src_load);
1118
1119 /* Is the difference below the threshold? */
28a21745
RR
1120 imb = dst_load * src_capacity * 100 -
1121 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1122 if (imb <= 0)
1123 return false;
1124
1125 /*
1126 * The imbalance is above the allowed threshold.
1127 * Compare it with the old imbalance.
1128 */
28a21745
RR
1129 orig_src_load = env->src_stats.load;
1130 orig_dst_load = env->dst_stats.load;
1131
e63da036
RR
1132 if (orig_dst_load < orig_src_load)
1133 swap(orig_dst_load, orig_src_load);
1134
28a21745
RR
1135 old_imb = orig_dst_load * src_capacity * 100 -
1136 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1137
1138 /* Would this change make things worse? */
1662867a 1139 return (imb > old_imb);
e63da036
RR
1140}
1141
fb13c7ee
MG
1142/*
1143 * This checks if the overall compute and NUMA accesses of the system would
1144 * be improved if the source tasks was migrated to the target dst_cpu taking
1145 * into account that it might be best if task running on the dst_cpu should
1146 * be exchanged with the source task
1147 */
887c290e
RR
1148static void task_numa_compare(struct task_numa_env *env,
1149 long taskimp, long groupimp)
fb13c7ee
MG
1150{
1151 struct rq *src_rq = cpu_rq(env->src_cpu);
1152 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1153 struct task_struct *cur;
6dc1a672 1154 struct task_group *tg;
28a21745 1155 long src_load, dst_load;
fb13c7ee 1156 long load;
1c5d3eb3 1157 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1158 long moveimp = imp;
fb13c7ee
MG
1159
1160 rcu_read_lock();
1161 cur = ACCESS_ONCE(dst_rq->curr);
1162 if (cur->pid == 0) /* idle */
1163 cur = NULL;
1164
1165 /*
1166 * "imp" is the fault differential for the source task between the
1167 * source and destination node. Calculate the total differential for
1168 * the source task and potential destination task. The more negative
1169 * the value is, the more rmeote accesses that would be expected to
1170 * be incurred if the tasks were swapped.
1171 */
1172 if (cur) {
1173 /* Skip this swap candidate if cannot move to the source cpu */
1174 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1175 goto unlock;
1176
887c290e
RR
1177 /*
1178 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1179 * in any group then look only at task weights.
887c290e 1180 */
ca28aa53 1181 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1182 imp = taskimp + task_weight(cur, env->src_nid) -
1183 task_weight(cur, env->dst_nid);
ca28aa53
RR
1184 /*
1185 * Add some hysteresis to prevent swapping the
1186 * tasks within a group over tiny differences.
1187 */
1188 if (cur->numa_group)
1189 imp -= imp/16;
887c290e 1190 } else {
ca28aa53
RR
1191 /*
1192 * Compare the group weights. If a task is all by
1193 * itself (not part of a group), use the task weight
1194 * instead.
1195 */
ca28aa53
RR
1196 if (cur->numa_group)
1197 imp += group_weight(cur, env->src_nid) -
1198 group_weight(cur, env->dst_nid);
1199 else
1200 imp += task_weight(cur, env->src_nid) -
1201 task_weight(cur, env->dst_nid);
887c290e 1202 }
fb13c7ee
MG
1203 }
1204
0132c3e1 1205 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1206 goto unlock;
1207
1208 if (!cur) {
1209 /* Is there capacity at our destination? */
1b6a7495
NP
1210 if (env->src_stats.has_free_capacity &&
1211 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1212 goto unlock;
1213
1214 goto balance;
1215 }
1216
1217 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1218 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1219 dst_rq->nr_running == 1)
fb13c7ee
MG
1220 goto assign;
1221
1222 /*
1223 * In the overloaded case, try and keep the load balanced.
1224 */
1225balance:
6dc1a672
RR
1226 src_load = env->src_stats.load;
1227 dst_load = env->dst_stats.load;
1228
1229 /* Calculate the effect of moving env->p from src to dst. */
1230 load = env->p->se.load.weight;
1231 tg = task_group(env->p);
1232 src_load += effective_load(tg, env->src_cpu, -load, -load);
1233 dst_load += effective_load(tg, env->dst_cpu, load, load);
fb13c7ee 1234
0132c3e1
RR
1235 if (moveimp > imp && moveimp > env->best_imp) {
1236 /*
1237 * If the improvement from just moving env->p direction is
1238 * better than swapping tasks around, check if a move is
1239 * possible. Store a slightly smaller score than moveimp,
1240 * so an actually idle CPU will win.
1241 */
1242 if (!load_too_imbalanced(src_load, dst_load, env)) {
1243 imp = moveimp - 1;
1244 cur = NULL;
1245 goto assign;
1246 }
1247 }
1248
1249 if (imp <= env->best_imp)
1250 goto unlock;
1251
fb13c7ee 1252 if (cur) {
6dc1a672
RR
1253 /* Cur moves in the opposite direction. */
1254 load = cur->se.load.weight;
1255 tg = task_group(cur);
1256 src_load += effective_load(tg, env->src_cpu, load, load);
1257 dst_load += effective_load(tg, env->dst_cpu, -load, -load);
fb13c7ee
MG
1258 }
1259
28a21745 1260 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1261 goto unlock;
1262
1263assign:
1264 task_numa_assign(env, cur, imp);
1265unlock:
1266 rcu_read_unlock();
1267}
1268
887c290e
RR
1269static void task_numa_find_cpu(struct task_numa_env *env,
1270 long taskimp, long groupimp)
2c8a50aa
MG
1271{
1272 int cpu;
1273
1274 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1275 /* Skip this CPU if the source task cannot migrate */
1276 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1277 continue;
1278
1279 env->dst_cpu = cpu;
887c290e 1280 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1281 }
1282}
1283
58d081b5
MG
1284static int task_numa_migrate(struct task_struct *p)
1285{
58d081b5
MG
1286 struct task_numa_env env = {
1287 .p = p,
fb13c7ee 1288
58d081b5 1289 .src_cpu = task_cpu(p),
b32e86b4 1290 .src_nid = task_node(p),
fb13c7ee
MG
1291
1292 .imbalance_pct = 112,
1293
1294 .best_task = NULL,
1295 .best_imp = 0,
1296 .best_cpu = -1
58d081b5
MG
1297 };
1298 struct sched_domain *sd;
887c290e 1299 unsigned long taskweight, groupweight;
2c8a50aa 1300 int nid, ret;
887c290e 1301 long taskimp, groupimp;
e6628d5b 1302
58d081b5 1303 /*
fb13c7ee
MG
1304 * Pick the lowest SD_NUMA domain, as that would have the smallest
1305 * imbalance and would be the first to start moving tasks about.
1306 *
1307 * And we want to avoid any moving of tasks about, as that would create
1308 * random movement of tasks -- counter the numa conditions we're trying
1309 * to satisfy here.
58d081b5
MG
1310 */
1311 rcu_read_lock();
fb13c7ee 1312 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1313 if (sd)
1314 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1315 rcu_read_unlock();
1316
46a73e8a
RR
1317 /*
1318 * Cpusets can break the scheduler domain tree into smaller
1319 * balance domains, some of which do not cross NUMA boundaries.
1320 * Tasks that are "trapped" in such domains cannot be migrated
1321 * elsewhere, so there is no point in (re)trying.
1322 */
1323 if (unlikely(!sd)) {
de1b301a 1324 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1325 return -EINVAL;
1326 }
1327
887c290e
RR
1328 taskweight = task_weight(p, env.src_nid);
1329 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1330 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1331 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1332 taskimp = task_weight(p, env.dst_nid) - taskweight;
1333 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1334 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1335
a43455a1
RR
1336 /* Try to find a spot on the preferred nid. */
1337 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1338
1339 /* No space available on the preferred nid. Look elsewhere. */
1340 if (env.best_cpu == -1) {
2c8a50aa
MG
1341 for_each_online_node(nid) {
1342 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1343 continue;
58d081b5 1344
83e1d2cd 1345 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1346 taskimp = task_weight(p, nid) - taskweight;
1347 groupimp = group_weight(p, nid) - groupweight;
1348 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1349 continue;
1350
2c8a50aa
MG
1351 env.dst_nid = nid;
1352 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1353 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1354 }
1355 }
1356
fb13c7ee
MG
1357 /* No better CPU than the current one was found. */
1358 if (env.best_cpu == -1)
1359 return -EAGAIN;
1360
68d1b02a
RR
1361 /*
1362 * If the task is part of a workload that spans multiple NUMA nodes,
1363 * and is migrating into one of the workload's active nodes, remember
1364 * this node as the task's preferred numa node, so the workload can
1365 * settle down.
1366 * A task that migrated to a second choice node will be better off
1367 * trying for a better one later. Do not set the preferred node here.
1368 */
1369 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1370 sched_setnuma(p, env.dst_nid);
0ec8aa00 1371
04bb2f94
RR
1372 /*
1373 * Reset the scan period if the task is being rescheduled on an
1374 * alternative node to recheck if the tasks is now properly placed.
1375 */
1376 p->numa_scan_period = task_scan_min(p);
1377
fb13c7ee 1378 if (env.best_task == NULL) {
286549dc
MG
1379 ret = migrate_task_to(p, env.best_cpu);
1380 if (ret != 0)
1381 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1382 return ret;
1383 }
1384
1385 ret = migrate_swap(p, env.best_task);
286549dc
MG
1386 if (ret != 0)
1387 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1388 put_task_struct(env.best_task);
1389 return ret;
e6628d5b
MG
1390}
1391
6b9a7460
MG
1392/* Attempt to migrate a task to a CPU on the preferred node. */
1393static void numa_migrate_preferred(struct task_struct *p)
1394{
5085e2a3
RR
1395 unsigned long interval = HZ;
1396
2739d3ee 1397 /* This task has no NUMA fault statistics yet */
ff1df896 1398 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1399 return;
1400
2739d3ee 1401 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1402 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1403 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1404
1405 /* Success if task is already running on preferred CPU */
de1b301a 1406 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1407 return;
1408
1409 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1410 task_numa_migrate(p);
6b9a7460
MG
1411}
1412
20e07dea
RR
1413/*
1414 * Find the nodes on which the workload is actively running. We do this by
1415 * tracking the nodes from which NUMA hinting faults are triggered. This can
1416 * be different from the set of nodes where the workload's memory is currently
1417 * located.
1418 *
1419 * The bitmask is used to make smarter decisions on when to do NUMA page
1420 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1421 * are added when they cause over 6/16 of the maximum number of faults, but
1422 * only removed when they drop below 3/16.
1423 */
1424static void update_numa_active_node_mask(struct numa_group *numa_group)
1425{
1426 unsigned long faults, max_faults = 0;
1427 int nid;
1428
1429 for_each_online_node(nid) {
1430 faults = group_faults_cpu(numa_group, nid);
1431 if (faults > max_faults)
1432 max_faults = faults;
1433 }
1434
1435 for_each_online_node(nid) {
1436 faults = group_faults_cpu(numa_group, nid);
1437 if (!node_isset(nid, numa_group->active_nodes)) {
1438 if (faults > max_faults * 6 / 16)
1439 node_set(nid, numa_group->active_nodes);
1440 } else if (faults < max_faults * 3 / 16)
1441 node_clear(nid, numa_group->active_nodes);
1442 }
1443}
1444
04bb2f94
RR
1445/*
1446 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1447 * increments. The more local the fault statistics are, the higher the scan
1448 * period will be for the next scan window. If local/remote ratio is below
1449 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1450 * scan period will decrease
1451 */
1452#define NUMA_PERIOD_SLOTS 10
1453#define NUMA_PERIOD_THRESHOLD 3
1454
1455/*
1456 * Increase the scan period (slow down scanning) if the majority of
1457 * our memory is already on our local node, or if the majority of
1458 * the page accesses are shared with other processes.
1459 * Otherwise, decrease the scan period.
1460 */
1461static void update_task_scan_period(struct task_struct *p,
1462 unsigned long shared, unsigned long private)
1463{
1464 unsigned int period_slot;
1465 int ratio;
1466 int diff;
1467
1468 unsigned long remote = p->numa_faults_locality[0];
1469 unsigned long local = p->numa_faults_locality[1];
1470
1471 /*
1472 * If there were no record hinting faults then either the task is
1473 * completely idle or all activity is areas that are not of interest
1474 * to automatic numa balancing. Scan slower
1475 */
1476 if (local + shared == 0) {
1477 p->numa_scan_period = min(p->numa_scan_period_max,
1478 p->numa_scan_period << 1);
1479
1480 p->mm->numa_next_scan = jiffies +
1481 msecs_to_jiffies(p->numa_scan_period);
1482
1483 return;
1484 }
1485
1486 /*
1487 * Prepare to scale scan period relative to the current period.
1488 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1489 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1490 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1491 */
1492 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1493 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1494 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1495 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1496 if (!slot)
1497 slot = 1;
1498 diff = slot * period_slot;
1499 } else {
1500 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1501
1502 /*
1503 * Scale scan rate increases based on sharing. There is an
1504 * inverse relationship between the degree of sharing and
1505 * the adjustment made to the scanning period. Broadly
1506 * speaking the intent is that there is little point
1507 * scanning faster if shared accesses dominate as it may
1508 * simply bounce migrations uselessly
1509 */
04bb2f94
RR
1510 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1511 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1512 }
1513
1514 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1515 task_scan_min(p), task_scan_max(p));
1516 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1517}
1518
7e2703e6
RR
1519/*
1520 * Get the fraction of time the task has been running since the last
1521 * NUMA placement cycle. The scheduler keeps similar statistics, but
1522 * decays those on a 32ms period, which is orders of magnitude off
1523 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1524 * stats only if the task is so new there are no NUMA statistics yet.
1525 */
1526static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1527{
1528 u64 runtime, delta, now;
1529 /* Use the start of this time slice to avoid calculations. */
1530 now = p->se.exec_start;
1531 runtime = p->se.sum_exec_runtime;
1532
1533 if (p->last_task_numa_placement) {
1534 delta = runtime - p->last_sum_exec_runtime;
1535 *period = now - p->last_task_numa_placement;
1536 } else {
1537 delta = p->se.avg.runnable_avg_sum;
1538 *period = p->se.avg.runnable_avg_period;
1539 }
1540
1541 p->last_sum_exec_runtime = runtime;
1542 p->last_task_numa_placement = now;
1543
1544 return delta;
1545}
1546
cbee9f88
PZ
1547static void task_numa_placement(struct task_struct *p)
1548{
83e1d2cd
MG
1549 int seq, nid, max_nid = -1, max_group_nid = -1;
1550 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1551 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1552 unsigned long total_faults;
1553 u64 runtime, period;
7dbd13ed 1554 spinlock_t *group_lock = NULL;
cbee9f88 1555
2832bc19 1556 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1557 if (p->numa_scan_seq == seq)
1558 return;
1559 p->numa_scan_seq = seq;
598f0ec0 1560 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1561
7e2703e6
RR
1562 total_faults = p->numa_faults_locality[0] +
1563 p->numa_faults_locality[1];
1564 runtime = numa_get_avg_runtime(p, &period);
1565
7dbd13ed
MG
1566 /* If the task is part of a group prevent parallel updates to group stats */
1567 if (p->numa_group) {
1568 group_lock = &p->numa_group->lock;
60e69eed 1569 spin_lock_irq(group_lock);
7dbd13ed
MG
1570 }
1571
688b7585
MG
1572 /* Find the node with the highest number of faults */
1573 for_each_online_node(nid) {
83e1d2cd 1574 unsigned long faults = 0, group_faults = 0;
ac8e895b 1575 int priv, i;
745d6147 1576
be1e4e76 1577 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1578 long diff, f_diff, f_weight;
8c8a743c 1579
ac8e895b 1580 i = task_faults_idx(nid, priv);
745d6147 1581
ac8e895b 1582 /* Decay existing window, copy faults since last scan */
35664fd4 1583 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1584 fault_types[priv] += p->numa_faults_buffer_memory[i];
1585 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1586
7e2703e6
RR
1587 /*
1588 * Normalize the faults_from, so all tasks in a group
1589 * count according to CPU use, instead of by the raw
1590 * number of faults. Tasks with little runtime have
1591 * little over-all impact on throughput, and thus their
1592 * faults are less important.
1593 */
1594 f_weight = div64_u64(runtime << 16, period + 1);
1595 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1596 (total_faults + 1);
35664fd4 1597 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1598 p->numa_faults_buffer_cpu[i] = 0;
1599
35664fd4
RR
1600 p->numa_faults_memory[i] += diff;
1601 p->numa_faults_cpu[i] += f_diff;
ff1df896 1602 faults += p->numa_faults_memory[i];
83e1d2cd 1603 p->total_numa_faults += diff;
8c8a743c
PZ
1604 if (p->numa_group) {
1605 /* safe because we can only change our own group */
989348b5 1606 p->numa_group->faults[i] += diff;
50ec8a40 1607 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1608 p->numa_group->total_faults += diff;
1609 group_faults += p->numa_group->faults[i];
8c8a743c 1610 }
ac8e895b
MG
1611 }
1612
688b7585
MG
1613 if (faults > max_faults) {
1614 max_faults = faults;
1615 max_nid = nid;
1616 }
83e1d2cd
MG
1617
1618 if (group_faults > max_group_faults) {
1619 max_group_faults = group_faults;
1620 max_group_nid = nid;
1621 }
1622 }
1623
04bb2f94
RR
1624 update_task_scan_period(p, fault_types[0], fault_types[1]);
1625
7dbd13ed 1626 if (p->numa_group) {
20e07dea 1627 update_numa_active_node_mask(p->numa_group);
60e69eed 1628 spin_unlock_irq(group_lock);
f0b8a4af 1629 max_nid = max_group_nid;
688b7585
MG
1630 }
1631
bb97fc31
RR
1632 if (max_faults) {
1633 /* Set the new preferred node */
1634 if (max_nid != p->numa_preferred_nid)
1635 sched_setnuma(p, max_nid);
1636
1637 if (task_node(p) != p->numa_preferred_nid)
1638 numa_migrate_preferred(p);
3a7053b3 1639 }
cbee9f88
PZ
1640}
1641
8c8a743c
PZ
1642static inline int get_numa_group(struct numa_group *grp)
1643{
1644 return atomic_inc_not_zero(&grp->refcount);
1645}
1646
1647static inline void put_numa_group(struct numa_group *grp)
1648{
1649 if (atomic_dec_and_test(&grp->refcount))
1650 kfree_rcu(grp, rcu);
1651}
1652
3e6a9418
MG
1653static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1654 int *priv)
8c8a743c
PZ
1655{
1656 struct numa_group *grp, *my_grp;
1657 struct task_struct *tsk;
1658 bool join = false;
1659 int cpu = cpupid_to_cpu(cpupid);
1660 int i;
1661
1662 if (unlikely(!p->numa_group)) {
1663 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1664 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1665
1666 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1667 if (!grp)
1668 return;
1669
1670 atomic_set(&grp->refcount, 1);
1671 spin_lock_init(&grp->lock);
1672 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1673 grp->gid = p->pid;
50ec8a40 1674 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1675 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1676 nr_node_ids;
8c8a743c 1677
20e07dea
RR
1678 node_set(task_node(current), grp->active_nodes);
1679
be1e4e76 1680 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1681 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1682
989348b5 1683 grp->total_faults = p->total_numa_faults;
83e1d2cd 1684
8c8a743c
PZ
1685 list_add(&p->numa_entry, &grp->task_list);
1686 grp->nr_tasks++;
1687 rcu_assign_pointer(p->numa_group, grp);
1688 }
1689
1690 rcu_read_lock();
1691 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1692
1693 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1694 goto no_join;
8c8a743c
PZ
1695
1696 grp = rcu_dereference(tsk->numa_group);
1697 if (!grp)
3354781a 1698 goto no_join;
8c8a743c
PZ
1699
1700 my_grp = p->numa_group;
1701 if (grp == my_grp)
3354781a 1702 goto no_join;
8c8a743c
PZ
1703
1704 /*
1705 * Only join the other group if its bigger; if we're the bigger group,
1706 * the other task will join us.
1707 */
1708 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1709 goto no_join;
8c8a743c
PZ
1710
1711 /*
1712 * Tie-break on the grp address.
1713 */
1714 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1715 goto no_join;
8c8a743c 1716
dabe1d99
RR
1717 /* Always join threads in the same process. */
1718 if (tsk->mm == current->mm)
1719 join = true;
1720
1721 /* Simple filter to avoid false positives due to PID collisions */
1722 if (flags & TNF_SHARED)
1723 join = true;
8c8a743c 1724
3e6a9418
MG
1725 /* Update priv based on whether false sharing was detected */
1726 *priv = !join;
1727
dabe1d99 1728 if (join && !get_numa_group(grp))
3354781a 1729 goto no_join;
8c8a743c 1730
8c8a743c
PZ
1731 rcu_read_unlock();
1732
1733 if (!join)
1734 return;
1735
60e69eed
MG
1736 BUG_ON(irqs_disabled());
1737 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1738
be1e4e76 1739 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1740 my_grp->faults[i] -= p->numa_faults_memory[i];
1741 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1742 }
989348b5
MG
1743 my_grp->total_faults -= p->total_numa_faults;
1744 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1745
1746 list_move(&p->numa_entry, &grp->task_list);
1747 my_grp->nr_tasks--;
1748 grp->nr_tasks++;
1749
1750 spin_unlock(&my_grp->lock);
60e69eed 1751 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1752
1753 rcu_assign_pointer(p->numa_group, grp);
1754
1755 put_numa_group(my_grp);
3354781a
PZ
1756 return;
1757
1758no_join:
1759 rcu_read_unlock();
1760 return;
8c8a743c
PZ
1761}
1762
1763void task_numa_free(struct task_struct *p)
1764{
1765 struct numa_group *grp = p->numa_group;
ff1df896 1766 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1767 unsigned long flags;
1768 int i;
8c8a743c
PZ
1769
1770 if (grp) {
e9dd685c 1771 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1772 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1773 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1774 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1775
8c8a743c
PZ
1776 list_del(&p->numa_entry);
1777 grp->nr_tasks--;
e9dd685c 1778 spin_unlock_irqrestore(&grp->lock, flags);
8c8a743c
PZ
1779 rcu_assign_pointer(p->numa_group, NULL);
1780 put_numa_group(grp);
1781 }
1782
ff1df896
RR
1783 p->numa_faults_memory = NULL;
1784 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1785 p->numa_faults_cpu= NULL;
1786 p->numa_faults_buffer_cpu = NULL;
82727018 1787 kfree(numa_faults);
8c8a743c
PZ
1788}
1789
cbee9f88
PZ
1790/*
1791 * Got a PROT_NONE fault for a page on @node.
1792 */
58b46da3 1793void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1794{
1795 struct task_struct *p = current;
6688cc05 1796 bool migrated = flags & TNF_MIGRATED;
58b46da3 1797 int cpu_node = task_node(current);
792568ec 1798 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1799 int priv;
cbee9f88 1800
10e84b97 1801 if (!numabalancing_enabled)
1a687c2e
MG
1802 return;
1803
9ff1d9ff
MG
1804 /* for example, ksmd faulting in a user's mm */
1805 if (!p->mm)
1806 return;
1807
82727018
RR
1808 /* Do not worry about placement if exiting */
1809 if (p->state == TASK_DEAD)
1810 return;
1811
f809ca9a 1812 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1813 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1814 int size = sizeof(*p->numa_faults_memory) *
1815 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1816
be1e4e76 1817 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1818 if (!p->numa_faults_memory)
f809ca9a 1819 return;
745d6147 1820
ff1df896 1821 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1822 /*
1823 * The averaged statistics, shared & private, memory & cpu,
1824 * occupy the first half of the array. The second half of the
1825 * array is for current counters, which are averaged into the
1826 * first set by task_numa_placement.
1827 */
50ec8a40
RR
1828 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1829 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1830 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1831 p->total_numa_faults = 0;
04bb2f94 1832 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1833 }
cbee9f88 1834
8c8a743c
PZ
1835 /*
1836 * First accesses are treated as private, otherwise consider accesses
1837 * to be private if the accessing pid has not changed
1838 */
1839 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1840 priv = 1;
1841 } else {
1842 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1843 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1844 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1845 }
1846
792568ec
RR
1847 /*
1848 * If a workload spans multiple NUMA nodes, a shared fault that
1849 * occurs wholly within the set of nodes that the workload is
1850 * actively using should be counted as local. This allows the
1851 * scan rate to slow down when a workload has settled down.
1852 */
1853 if (!priv && !local && p->numa_group &&
1854 node_isset(cpu_node, p->numa_group->active_nodes) &&
1855 node_isset(mem_node, p->numa_group->active_nodes))
1856 local = 1;
1857
cbee9f88 1858 task_numa_placement(p);
f809ca9a 1859
2739d3ee
RR
1860 /*
1861 * Retry task to preferred node migration periodically, in case it
1862 * case it previously failed, or the scheduler moved us.
1863 */
1864 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1865 numa_migrate_preferred(p);
1866
b32e86b4
IM
1867 if (migrated)
1868 p->numa_pages_migrated += pages;
1869
58b46da3
RR
1870 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1871 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1872 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1873}
1874
6e5fb223
PZ
1875static void reset_ptenuma_scan(struct task_struct *p)
1876{
1877 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1878 p->mm->numa_scan_offset = 0;
1879}
1880
cbee9f88
PZ
1881/*
1882 * The expensive part of numa migration is done from task_work context.
1883 * Triggered from task_tick_numa().
1884 */
1885void task_numa_work(struct callback_head *work)
1886{
1887 unsigned long migrate, next_scan, now = jiffies;
1888 struct task_struct *p = current;
1889 struct mm_struct *mm = p->mm;
6e5fb223 1890 struct vm_area_struct *vma;
9f40604c 1891 unsigned long start, end;
598f0ec0 1892 unsigned long nr_pte_updates = 0;
9f40604c 1893 long pages;
cbee9f88
PZ
1894
1895 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1896
1897 work->next = work; /* protect against double add */
1898 /*
1899 * Who cares about NUMA placement when they're dying.
1900 *
1901 * NOTE: make sure not to dereference p->mm before this check,
1902 * exit_task_work() happens _after_ exit_mm() so we could be called
1903 * without p->mm even though we still had it when we enqueued this
1904 * work.
1905 */
1906 if (p->flags & PF_EXITING)
1907 return;
1908
930aa174 1909 if (!mm->numa_next_scan) {
7e8d16b6
MG
1910 mm->numa_next_scan = now +
1911 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1912 }
1913
cbee9f88
PZ
1914 /*
1915 * Enforce maximal scan/migration frequency..
1916 */
1917 migrate = mm->numa_next_scan;
1918 if (time_before(now, migrate))
1919 return;
1920
598f0ec0
MG
1921 if (p->numa_scan_period == 0) {
1922 p->numa_scan_period_max = task_scan_max(p);
1923 p->numa_scan_period = task_scan_min(p);
1924 }
cbee9f88 1925
fb003b80 1926 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1927 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1928 return;
1929
19a78d11
PZ
1930 /*
1931 * Delay this task enough that another task of this mm will likely win
1932 * the next time around.
1933 */
1934 p->node_stamp += 2 * TICK_NSEC;
1935
9f40604c
MG
1936 start = mm->numa_scan_offset;
1937 pages = sysctl_numa_balancing_scan_size;
1938 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1939 if (!pages)
1940 return;
cbee9f88 1941
6e5fb223 1942 down_read(&mm->mmap_sem);
9f40604c 1943 vma = find_vma(mm, start);
6e5fb223
PZ
1944 if (!vma) {
1945 reset_ptenuma_scan(p);
9f40604c 1946 start = 0;
6e5fb223
PZ
1947 vma = mm->mmap;
1948 }
9f40604c 1949 for (; vma; vma = vma->vm_next) {
fc314724 1950 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1951 continue;
1952
4591ce4f
MG
1953 /*
1954 * Shared library pages mapped by multiple processes are not
1955 * migrated as it is expected they are cache replicated. Avoid
1956 * hinting faults in read-only file-backed mappings or the vdso
1957 * as migrating the pages will be of marginal benefit.
1958 */
1959 if (!vma->vm_mm ||
1960 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1961 continue;
1962
3c67f474
MG
1963 /*
1964 * Skip inaccessible VMAs to avoid any confusion between
1965 * PROT_NONE and NUMA hinting ptes
1966 */
1967 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1968 continue;
4591ce4f 1969
9f40604c
MG
1970 do {
1971 start = max(start, vma->vm_start);
1972 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1973 end = min(end, vma->vm_end);
598f0ec0
MG
1974 nr_pte_updates += change_prot_numa(vma, start, end);
1975
1976 /*
1977 * Scan sysctl_numa_balancing_scan_size but ensure that
1978 * at least one PTE is updated so that unused virtual
1979 * address space is quickly skipped.
1980 */
1981 if (nr_pte_updates)
1982 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1983
9f40604c
MG
1984 start = end;
1985 if (pages <= 0)
1986 goto out;
3cf1962c
RR
1987
1988 cond_resched();
9f40604c 1989 } while (end != vma->vm_end);
cbee9f88 1990 }
6e5fb223 1991
9f40604c 1992out:
6e5fb223 1993 /*
c69307d5
PZ
1994 * It is possible to reach the end of the VMA list but the last few
1995 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1996 * would find the !migratable VMA on the next scan but not reset the
1997 * scanner to the start so check it now.
6e5fb223
PZ
1998 */
1999 if (vma)
9f40604c 2000 mm->numa_scan_offset = start;
6e5fb223
PZ
2001 else
2002 reset_ptenuma_scan(p);
2003 up_read(&mm->mmap_sem);
cbee9f88
PZ
2004}
2005
2006/*
2007 * Drive the periodic memory faults..
2008 */
2009void task_tick_numa(struct rq *rq, struct task_struct *curr)
2010{
2011 struct callback_head *work = &curr->numa_work;
2012 u64 period, now;
2013
2014 /*
2015 * We don't care about NUMA placement if we don't have memory.
2016 */
2017 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2018 return;
2019
2020 /*
2021 * Using runtime rather than walltime has the dual advantage that
2022 * we (mostly) drive the selection from busy threads and that the
2023 * task needs to have done some actual work before we bother with
2024 * NUMA placement.
2025 */
2026 now = curr->se.sum_exec_runtime;
2027 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2028
2029 if (now - curr->node_stamp > period) {
4b96a29b 2030 if (!curr->node_stamp)
598f0ec0 2031 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2032 curr->node_stamp += period;
cbee9f88
PZ
2033
2034 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2035 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2036 task_work_add(curr, work, true);
2037 }
2038 }
2039}
2040#else
2041static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2042{
2043}
0ec8aa00
PZ
2044
2045static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2046{
2047}
2048
2049static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2050{
2051}
cbee9f88
PZ
2052#endif /* CONFIG_NUMA_BALANCING */
2053
30cfdcfc
DA
2054static void
2055account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2056{
2057 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2058 if (!parent_entity(se))
029632fb 2059 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2060#ifdef CONFIG_SMP
0ec8aa00
PZ
2061 if (entity_is_task(se)) {
2062 struct rq *rq = rq_of(cfs_rq);
2063
2064 account_numa_enqueue(rq, task_of(se));
2065 list_add(&se->group_node, &rq->cfs_tasks);
2066 }
367456c7 2067#endif
30cfdcfc 2068 cfs_rq->nr_running++;
30cfdcfc
DA
2069}
2070
2071static void
2072account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2073{
2074 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2075 if (!parent_entity(se))
029632fb 2076 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2077 if (entity_is_task(se)) {
2078 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2079 list_del_init(&se->group_node);
0ec8aa00 2080 }
30cfdcfc 2081 cfs_rq->nr_running--;
30cfdcfc
DA
2082}
2083
3ff6dcac
YZ
2084#ifdef CONFIG_FAIR_GROUP_SCHED
2085# ifdef CONFIG_SMP
cf5f0acf
PZ
2086static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2087{
2088 long tg_weight;
2089
2090 /*
2091 * Use this CPU's actual weight instead of the last load_contribution
2092 * to gain a more accurate current total weight. See
2093 * update_cfs_rq_load_contribution().
2094 */
bf5b986e 2095 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2096 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2097 tg_weight += cfs_rq->load.weight;
2098
2099 return tg_weight;
2100}
2101
6d5ab293 2102static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2103{
cf5f0acf 2104 long tg_weight, load, shares;
3ff6dcac 2105
cf5f0acf 2106 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2107 load = cfs_rq->load.weight;
3ff6dcac 2108
3ff6dcac 2109 shares = (tg->shares * load);
cf5f0acf
PZ
2110 if (tg_weight)
2111 shares /= tg_weight;
3ff6dcac
YZ
2112
2113 if (shares < MIN_SHARES)
2114 shares = MIN_SHARES;
2115 if (shares > tg->shares)
2116 shares = tg->shares;
2117
2118 return shares;
2119}
3ff6dcac 2120# else /* CONFIG_SMP */
6d5ab293 2121static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2122{
2123 return tg->shares;
2124}
3ff6dcac 2125# endif /* CONFIG_SMP */
2069dd75
PZ
2126static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2127 unsigned long weight)
2128{
19e5eebb
PT
2129 if (se->on_rq) {
2130 /* commit outstanding execution time */
2131 if (cfs_rq->curr == se)
2132 update_curr(cfs_rq);
2069dd75 2133 account_entity_dequeue(cfs_rq, se);
19e5eebb 2134 }
2069dd75
PZ
2135
2136 update_load_set(&se->load, weight);
2137
2138 if (se->on_rq)
2139 account_entity_enqueue(cfs_rq, se);
2140}
2141
82958366
PT
2142static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2143
6d5ab293 2144static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2145{
2146 struct task_group *tg;
2147 struct sched_entity *se;
3ff6dcac 2148 long shares;
2069dd75 2149
2069dd75
PZ
2150 tg = cfs_rq->tg;
2151 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2152 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2153 return;
3ff6dcac
YZ
2154#ifndef CONFIG_SMP
2155 if (likely(se->load.weight == tg->shares))
2156 return;
2157#endif
6d5ab293 2158 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2159
2160 reweight_entity(cfs_rq_of(se), se, shares);
2161}
2162#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2163static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2164{
2165}
2166#endif /* CONFIG_FAIR_GROUP_SCHED */
2167
141965c7 2168#ifdef CONFIG_SMP
5b51f2f8
PT
2169/*
2170 * We choose a half-life close to 1 scheduling period.
2171 * Note: The tables below are dependent on this value.
2172 */
2173#define LOAD_AVG_PERIOD 32
2174#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2175#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2176
2177/* Precomputed fixed inverse multiplies for multiplication by y^n */
2178static const u32 runnable_avg_yN_inv[] = {
2179 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2180 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2181 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2182 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2183 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2184 0x85aac367, 0x82cd8698,
2185};
2186
2187/*
2188 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2189 * over-estimates when re-combining.
2190 */
2191static const u32 runnable_avg_yN_sum[] = {
2192 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2193 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2194 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2195};
2196
9d85f21c
PT
2197/*
2198 * Approximate:
2199 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2200 */
2201static __always_inline u64 decay_load(u64 val, u64 n)
2202{
5b51f2f8
PT
2203 unsigned int local_n;
2204
2205 if (!n)
2206 return val;
2207 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2208 return 0;
2209
2210 /* after bounds checking we can collapse to 32-bit */
2211 local_n = n;
2212
2213 /*
2214 * As y^PERIOD = 1/2, we can combine
2215 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2216 * With a look-up table which covers k^n (n<PERIOD)
2217 *
2218 * To achieve constant time decay_load.
2219 */
2220 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2221 val >>= local_n / LOAD_AVG_PERIOD;
2222 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2223 }
2224
5b51f2f8
PT
2225 val *= runnable_avg_yN_inv[local_n];
2226 /* We don't use SRR here since we always want to round down. */
2227 return val >> 32;
2228}
2229
2230/*
2231 * For updates fully spanning n periods, the contribution to runnable
2232 * average will be: \Sum 1024*y^n
2233 *
2234 * We can compute this reasonably efficiently by combining:
2235 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2236 */
2237static u32 __compute_runnable_contrib(u64 n)
2238{
2239 u32 contrib = 0;
2240
2241 if (likely(n <= LOAD_AVG_PERIOD))
2242 return runnable_avg_yN_sum[n];
2243 else if (unlikely(n >= LOAD_AVG_MAX_N))
2244 return LOAD_AVG_MAX;
2245
2246 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2247 do {
2248 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2249 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2250
2251 n -= LOAD_AVG_PERIOD;
2252 } while (n > LOAD_AVG_PERIOD);
2253
2254 contrib = decay_load(contrib, n);
2255 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2256}
2257
2258/*
2259 * We can represent the historical contribution to runnable average as the
2260 * coefficients of a geometric series. To do this we sub-divide our runnable
2261 * history into segments of approximately 1ms (1024us); label the segment that
2262 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2263 *
2264 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2265 * p0 p1 p2
2266 * (now) (~1ms ago) (~2ms ago)
2267 *
2268 * Let u_i denote the fraction of p_i that the entity was runnable.
2269 *
2270 * We then designate the fractions u_i as our co-efficients, yielding the
2271 * following representation of historical load:
2272 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2273 *
2274 * We choose y based on the with of a reasonably scheduling period, fixing:
2275 * y^32 = 0.5
2276 *
2277 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2278 * approximately half as much as the contribution to load within the last ms
2279 * (u_0).
2280 *
2281 * When a period "rolls over" and we have new u_0`, multiplying the previous
2282 * sum again by y is sufficient to update:
2283 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2284 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2285 */
2286static __always_inline int __update_entity_runnable_avg(u64 now,
2287 struct sched_avg *sa,
2288 int runnable)
2289{
5b51f2f8
PT
2290 u64 delta, periods;
2291 u32 runnable_contrib;
9d85f21c
PT
2292 int delta_w, decayed = 0;
2293
2294 delta = now - sa->last_runnable_update;
2295 /*
2296 * This should only happen when time goes backwards, which it
2297 * unfortunately does during sched clock init when we swap over to TSC.
2298 */
2299 if ((s64)delta < 0) {
2300 sa->last_runnable_update = now;
2301 return 0;
2302 }
2303
2304 /*
2305 * Use 1024ns as the unit of measurement since it's a reasonable
2306 * approximation of 1us and fast to compute.
2307 */
2308 delta >>= 10;
2309 if (!delta)
2310 return 0;
2311 sa->last_runnable_update = now;
2312
2313 /* delta_w is the amount already accumulated against our next period */
2314 delta_w = sa->runnable_avg_period % 1024;
2315 if (delta + delta_w >= 1024) {
2316 /* period roll-over */
2317 decayed = 1;
2318
2319 /*
2320 * Now that we know we're crossing a period boundary, figure
2321 * out how much from delta we need to complete the current
2322 * period and accrue it.
2323 */
2324 delta_w = 1024 - delta_w;
5b51f2f8
PT
2325 if (runnable)
2326 sa->runnable_avg_sum += delta_w;
2327 sa->runnable_avg_period += delta_w;
2328
2329 delta -= delta_w;
2330
2331 /* Figure out how many additional periods this update spans */
2332 periods = delta / 1024;
2333 delta %= 1024;
2334
2335 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2336 periods + 1);
2337 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2338 periods + 1);
2339
2340 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2341 runnable_contrib = __compute_runnable_contrib(periods);
2342 if (runnable)
2343 sa->runnable_avg_sum += runnable_contrib;
2344 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2345 }
2346
2347 /* Remainder of delta accrued against u_0` */
2348 if (runnable)
2349 sa->runnable_avg_sum += delta;
2350 sa->runnable_avg_period += delta;
2351
2352 return decayed;
2353}
2354
9ee474f5 2355/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2356static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2357{
2358 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2359 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2360
2361 decays -= se->avg.decay_count;
2362 if (!decays)
aff3e498 2363 return 0;
9ee474f5
PT
2364
2365 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2366 se->avg.decay_count = 0;
aff3e498
PT
2367
2368 return decays;
9ee474f5
PT
2369}
2370
c566e8e9
PT
2371#ifdef CONFIG_FAIR_GROUP_SCHED
2372static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2373 int force_update)
2374{
2375 struct task_group *tg = cfs_rq->tg;
bf5b986e 2376 long tg_contrib;
c566e8e9
PT
2377
2378 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2379 tg_contrib -= cfs_rq->tg_load_contrib;
2380
bf5b986e
AS
2381 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2382 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2383 cfs_rq->tg_load_contrib += tg_contrib;
2384 }
2385}
8165e145 2386
bb17f655
PT
2387/*
2388 * Aggregate cfs_rq runnable averages into an equivalent task_group
2389 * representation for computing load contributions.
2390 */
2391static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2392 struct cfs_rq *cfs_rq)
2393{
2394 struct task_group *tg = cfs_rq->tg;
2395 long contrib;
2396
2397 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2398 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2399 sa->runnable_avg_period + 1);
2400 contrib -= cfs_rq->tg_runnable_contrib;
2401
2402 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2403 atomic_add(contrib, &tg->runnable_avg);
2404 cfs_rq->tg_runnable_contrib += contrib;
2405 }
2406}
2407
8165e145
PT
2408static inline void __update_group_entity_contrib(struct sched_entity *se)
2409{
2410 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2411 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2412 int runnable_avg;
2413
8165e145
PT
2414 u64 contrib;
2415
2416 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2417 se->avg.load_avg_contrib = div_u64(contrib,
2418 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2419
2420 /*
2421 * For group entities we need to compute a correction term in the case
2422 * that they are consuming <1 cpu so that we would contribute the same
2423 * load as a task of equal weight.
2424 *
2425 * Explicitly co-ordinating this measurement would be expensive, but
2426 * fortunately the sum of each cpus contribution forms a usable
2427 * lower-bound on the true value.
2428 *
2429 * Consider the aggregate of 2 contributions. Either they are disjoint
2430 * (and the sum represents true value) or they are disjoint and we are
2431 * understating by the aggregate of their overlap.
2432 *
2433 * Extending this to N cpus, for a given overlap, the maximum amount we
2434 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2435 * cpus that overlap for this interval and w_i is the interval width.
2436 *
2437 * On a small machine; the first term is well-bounded which bounds the
2438 * total error since w_i is a subset of the period. Whereas on a
2439 * larger machine, while this first term can be larger, if w_i is the
2440 * of consequential size guaranteed to see n_i*w_i quickly converge to
2441 * our upper bound of 1-cpu.
2442 */
2443 runnable_avg = atomic_read(&tg->runnable_avg);
2444 if (runnable_avg < NICE_0_LOAD) {
2445 se->avg.load_avg_contrib *= runnable_avg;
2446 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2447 }
8165e145 2448}
f5f9739d
DE
2449
2450static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2451{
2452 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2453 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2454}
6e83125c 2455#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2456static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2457 int force_update) {}
bb17f655
PT
2458static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2459 struct cfs_rq *cfs_rq) {}
8165e145 2460static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2461static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2462#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2463
8165e145
PT
2464static inline void __update_task_entity_contrib(struct sched_entity *se)
2465{
2466 u32 contrib;
2467
2468 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2469 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2470 contrib /= (se->avg.runnable_avg_period + 1);
2471 se->avg.load_avg_contrib = scale_load(contrib);
2472}
2473
2dac754e
PT
2474/* Compute the current contribution to load_avg by se, return any delta */
2475static long __update_entity_load_avg_contrib(struct sched_entity *se)
2476{
2477 long old_contrib = se->avg.load_avg_contrib;
2478
8165e145
PT
2479 if (entity_is_task(se)) {
2480 __update_task_entity_contrib(se);
2481 } else {
bb17f655 2482 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2483 __update_group_entity_contrib(se);
2484 }
2dac754e
PT
2485
2486 return se->avg.load_avg_contrib - old_contrib;
2487}
2488
9ee474f5
PT
2489static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2490 long load_contrib)
2491{
2492 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2493 cfs_rq->blocked_load_avg -= load_contrib;
2494 else
2495 cfs_rq->blocked_load_avg = 0;
2496}
2497
f1b17280
PT
2498static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2499
9d85f21c 2500/* Update a sched_entity's runnable average */
9ee474f5
PT
2501static inline void update_entity_load_avg(struct sched_entity *se,
2502 int update_cfs_rq)
9d85f21c 2503{
2dac754e
PT
2504 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2505 long contrib_delta;
f1b17280 2506 u64 now;
2dac754e 2507
f1b17280
PT
2508 /*
2509 * For a group entity we need to use their owned cfs_rq_clock_task() in
2510 * case they are the parent of a throttled hierarchy.
2511 */
2512 if (entity_is_task(se))
2513 now = cfs_rq_clock_task(cfs_rq);
2514 else
2515 now = cfs_rq_clock_task(group_cfs_rq(se));
2516
2517 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2518 return;
2519
2520 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2521
2522 if (!update_cfs_rq)
2523 return;
2524
2dac754e
PT
2525 if (se->on_rq)
2526 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2527 else
2528 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2529}
2530
2531/*
2532 * Decay the load contributed by all blocked children and account this so that
2533 * their contribution may appropriately discounted when they wake up.
2534 */
aff3e498 2535static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2536{
f1b17280 2537 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2538 u64 decays;
2539
2540 decays = now - cfs_rq->last_decay;
aff3e498 2541 if (!decays && !force_update)
9ee474f5
PT
2542 return;
2543
2509940f
AS
2544 if (atomic_long_read(&cfs_rq->removed_load)) {
2545 unsigned long removed_load;
2546 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2547 subtract_blocked_load_contrib(cfs_rq, removed_load);
2548 }
9ee474f5 2549
aff3e498
PT
2550 if (decays) {
2551 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2552 decays);
2553 atomic64_add(decays, &cfs_rq->decay_counter);
2554 cfs_rq->last_decay = now;
2555 }
c566e8e9
PT
2556
2557 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2558}
18bf2805 2559
2dac754e
PT
2560/* Add the load generated by se into cfs_rq's child load-average */
2561static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2562 struct sched_entity *se,
2563 int wakeup)
2dac754e 2564{
aff3e498
PT
2565 /*
2566 * We track migrations using entity decay_count <= 0, on a wake-up
2567 * migration we use a negative decay count to track the remote decays
2568 * accumulated while sleeping.
a75cdaa9
AS
2569 *
2570 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2571 * are seen by enqueue_entity_load_avg() as a migration with an already
2572 * constructed load_avg_contrib.
aff3e498
PT
2573 */
2574 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2575 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2576 if (se->avg.decay_count) {
2577 /*
2578 * In a wake-up migration we have to approximate the
2579 * time sleeping. This is because we can't synchronize
2580 * clock_task between the two cpus, and it is not
2581 * guaranteed to be read-safe. Instead, we can
2582 * approximate this using our carried decays, which are
2583 * explicitly atomically readable.
2584 */
2585 se->avg.last_runnable_update -= (-se->avg.decay_count)
2586 << 20;
2587 update_entity_load_avg(se, 0);
2588 /* Indicate that we're now synchronized and on-rq */
2589 se->avg.decay_count = 0;
2590 }
9ee474f5
PT
2591 wakeup = 0;
2592 } else {
9390675a 2593 __synchronize_entity_decay(se);
9ee474f5
PT
2594 }
2595
aff3e498
PT
2596 /* migrated tasks did not contribute to our blocked load */
2597 if (wakeup) {
9ee474f5 2598 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2599 update_entity_load_avg(se, 0);
2600 }
9ee474f5 2601
2dac754e 2602 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2603 /* we force update consideration on load-balancer moves */
2604 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2605}
2606
9ee474f5
PT
2607/*
2608 * Remove se's load from this cfs_rq child load-average, if the entity is
2609 * transitioning to a blocked state we track its projected decay using
2610 * blocked_load_avg.
2611 */
2dac754e 2612static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2613 struct sched_entity *se,
2614 int sleep)
2dac754e 2615{
9ee474f5 2616 update_entity_load_avg(se, 1);
aff3e498
PT
2617 /* we force update consideration on load-balancer moves */
2618 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2619
2dac754e 2620 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2621 if (sleep) {
2622 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2623 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2624 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2625}
642dbc39
VG
2626
2627/*
2628 * Update the rq's load with the elapsed running time before entering
2629 * idle. if the last scheduled task is not a CFS task, idle_enter will
2630 * be the only way to update the runnable statistic.
2631 */
2632void idle_enter_fair(struct rq *this_rq)
2633{
2634 update_rq_runnable_avg(this_rq, 1);
2635}
2636
2637/*
2638 * Update the rq's load with the elapsed idle time before a task is
2639 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2640 * be the only way to update the runnable statistic.
2641 */
2642void idle_exit_fair(struct rq *this_rq)
2643{
2644 update_rq_runnable_avg(this_rq, 0);
2645}
2646
6e83125c
PZ
2647static int idle_balance(struct rq *this_rq);
2648
38033c37
PZ
2649#else /* CONFIG_SMP */
2650
9ee474f5
PT
2651static inline void update_entity_load_avg(struct sched_entity *se,
2652 int update_cfs_rq) {}
18bf2805 2653static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2654static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2655 struct sched_entity *se,
2656 int wakeup) {}
2dac754e 2657static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2658 struct sched_entity *se,
2659 int sleep) {}
aff3e498
PT
2660static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2661 int force_update) {}
6e83125c
PZ
2662
2663static inline int idle_balance(struct rq *rq)
2664{
2665 return 0;
2666}
2667
38033c37 2668#endif /* CONFIG_SMP */
9d85f21c 2669
2396af69 2670static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2671{
bf0f6f24 2672#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2673 struct task_struct *tsk = NULL;
2674
2675 if (entity_is_task(se))
2676 tsk = task_of(se);
2677
41acab88 2678 if (se->statistics.sleep_start) {
78becc27 2679 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2680
2681 if ((s64)delta < 0)
2682 delta = 0;
2683
41acab88
LDM
2684 if (unlikely(delta > se->statistics.sleep_max))
2685 se->statistics.sleep_max = delta;
bf0f6f24 2686
8c79a045 2687 se->statistics.sleep_start = 0;
41acab88 2688 se->statistics.sum_sleep_runtime += delta;
9745512c 2689
768d0c27 2690 if (tsk) {
e414314c 2691 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2692 trace_sched_stat_sleep(tsk, delta);
2693 }
bf0f6f24 2694 }
41acab88 2695 if (se->statistics.block_start) {
78becc27 2696 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2697
2698 if ((s64)delta < 0)
2699 delta = 0;
2700
41acab88
LDM
2701 if (unlikely(delta > se->statistics.block_max))
2702 se->statistics.block_max = delta;
bf0f6f24 2703
8c79a045 2704 se->statistics.block_start = 0;
41acab88 2705 se->statistics.sum_sleep_runtime += delta;
30084fbd 2706
e414314c 2707 if (tsk) {
8f0dfc34 2708 if (tsk->in_iowait) {
41acab88
LDM
2709 se->statistics.iowait_sum += delta;
2710 se->statistics.iowait_count++;
768d0c27 2711 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2712 }
2713
b781a602
AV
2714 trace_sched_stat_blocked(tsk, delta);
2715
e414314c
PZ
2716 /*
2717 * Blocking time is in units of nanosecs, so shift by
2718 * 20 to get a milliseconds-range estimation of the
2719 * amount of time that the task spent sleeping:
2720 */
2721 if (unlikely(prof_on == SLEEP_PROFILING)) {
2722 profile_hits(SLEEP_PROFILING,
2723 (void *)get_wchan(tsk),
2724 delta >> 20);
2725 }
2726 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2727 }
bf0f6f24
IM
2728 }
2729#endif
2730}
2731
ddc97297
PZ
2732static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2733{
2734#ifdef CONFIG_SCHED_DEBUG
2735 s64 d = se->vruntime - cfs_rq->min_vruntime;
2736
2737 if (d < 0)
2738 d = -d;
2739
2740 if (d > 3*sysctl_sched_latency)
2741 schedstat_inc(cfs_rq, nr_spread_over);
2742#endif
2743}
2744
aeb73b04
PZ
2745static void
2746place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2747{
1af5f730 2748 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2749
2cb8600e
PZ
2750 /*
2751 * The 'current' period is already promised to the current tasks,
2752 * however the extra weight of the new task will slow them down a
2753 * little, place the new task so that it fits in the slot that
2754 * stays open at the end.
2755 */
94dfb5e7 2756 if (initial && sched_feat(START_DEBIT))
f9c0b095 2757 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2758
a2e7a7eb 2759 /* sleeps up to a single latency don't count. */
5ca9880c 2760 if (!initial) {
a2e7a7eb 2761 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2762
a2e7a7eb
MG
2763 /*
2764 * Halve their sleep time's effect, to allow
2765 * for a gentler effect of sleepers:
2766 */
2767 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2768 thresh >>= 1;
51e0304c 2769
a2e7a7eb 2770 vruntime -= thresh;
aeb73b04
PZ
2771 }
2772
b5d9d734 2773 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2774 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2775}
2776
d3d9dc33
PT
2777static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2778
bf0f6f24 2779static void
88ec22d3 2780enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2781{
88ec22d3
PZ
2782 /*
2783 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2784 * through calling update_curr().
88ec22d3 2785 */
371fd7e7 2786 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2787 se->vruntime += cfs_rq->min_vruntime;
2788
bf0f6f24 2789 /*
a2a2d680 2790 * Update run-time statistics of the 'current'.
bf0f6f24 2791 */
b7cc0896 2792 update_curr(cfs_rq);
f269ae04 2793 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2794 account_entity_enqueue(cfs_rq, se);
2795 update_cfs_shares(cfs_rq);
bf0f6f24 2796
88ec22d3 2797 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2798 place_entity(cfs_rq, se, 0);
2396af69 2799 enqueue_sleeper(cfs_rq, se);
e9acbff6 2800 }
bf0f6f24 2801
d2417e5a 2802 update_stats_enqueue(cfs_rq, se);
ddc97297 2803 check_spread(cfs_rq, se);
83b699ed
SV
2804 if (se != cfs_rq->curr)
2805 __enqueue_entity(cfs_rq, se);
2069dd75 2806 se->on_rq = 1;
3d4b47b4 2807
d3d9dc33 2808 if (cfs_rq->nr_running == 1) {
3d4b47b4 2809 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2810 check_enqueue_throttle(cfs_rq);
2811 }
bf0f6f24
IM
2812}
2813
2c13c919 2814static void __clear_buddies_last(struct sched_entity *se)
2002c695 2815{
2c13c919
RR
2816 for_each_sched_entity(se) {
2817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2818 if (cfs_rq->last != se)
2c13c919 2819 break;
f1044799
PZ
2820
2821 cfs_rq->last = NULL;
2c13c919
RR
2822 }
2823}
2002c695 2824
2c13c919
RR
2825static void __clear_buddies_next(struct sched_entity *se)
2826{
2827 for_each_sched_entity(se) {
2828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2829 if (cfs_rq->next != se)
2c13c919 2830 break;
f1044799
PZ
2831
2832 cfs_rq->next = NULL;
2c13c919 2833 }
2002c695
PZ
2834}
2835
ac53db59
RR
2836static void __clear_buddies_skip(struct sched_entity *se)
2837{
2838 for_each_sched_entity(se) {
2839 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2840 if (cfs_rq->skip != se)
ac53db59 2841 break;
f1044799
PZ
2842
2843 cfs_rq->skip = NULL;
ac53db59
RR
2844 }
2845}
2846
a571bbea
PZ
2847static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2848{
2c13c919
RR
2849 if (cfs_rq->last == se)
2850 __clear_buddies_last(se);
2851
2852 if (cfs_rq->next == se)
2853 __clear_buddies_next(se);
ac53db59
RR
2854
2855 if (cfs_rq->skip == se)
2856 __clear_buddies_skip(se);
a571bbea
PZ
2857}
2858
6c16a6dc 2859static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2860
bf0f6f24 2861static void
371fd7e7 2862dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2863{
a2a2d680
DA
2864 /*
2865 * Update run-time statistics of the 'current'.
2866 */
2867 update_curr(cfs_rq);
17bc14b7 2868 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2869
19b6a2e3 2870 update_stats_dequeue(cfs_rq, se);
371fd7e7 2871 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2872#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2873 if (entity_is_task(se)) {
2874 struct task_struct *tsk = task_of(se);
2875
2876 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2877 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2878 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2879 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2880 }
db36cc7d 2881#endif
67e9fb2a
PZ
2882 }
2883
2002c695 2884 clear_buddies(cfs_rq, se);
4793241b 2885
83b699ed 2886 if (se != cfs_rq->curr)
30cfdcfc 2887 __dequeue_entity(cfs_rq, se);
17bc14b7 2888 se->on_rq = 0;
30cfdcfc 2889 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2890
2891 /*
2892 * Normalize the entity after updating the min_vruntime because the
2893 * update can refer to the ->curr item and we need to reflect this
2894 * movement in our normalized position.
2895 */
371fd7e7 2896 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2897 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2898
d8b4986d
PT
2899 /* return excess runtime on last dequeue */
2900 return_cfs_rq_runtime(cfs_rq);
2901
1e876231 2902 update_min_vruntime(cfs_rq);
17bc14b7 2903 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2904}
2905
2906/*
2907 * Preempt the current task with a newly woken task if needed:
2908 */
7c92e54f 2909static void
2e09bf55 2910check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2911{
11697830 2912 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2913 struct sched_entity *se;
2914 s64 delta;
11697830 2915
6d0f0ebd 2916 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2917 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2918 if (delta_exec > ideal_runtime) {
bf0f6f24 2919 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2920 /*
2921 * The current task ran long enough, ensure it doesn't get
2922 * re-elected due to buddy favours.
2923 */
2924 clear_buddies(cfs_rq, curr);
f685ceac
MG
2925 return;
2926 }
2927
2928 /*
2929 * Ensure that a task that missed wakeup preemption by a
2930 * narrow margin doesn't have to wait for a full slice.
2931 * This also mitigates buddy induced latencies under load.
2932 */
f685ceac
MG
2933 if (delta_exec < sysctl_sched_min_granularity)
2934 return;
2935
f4cfb33e
WX
2936 se = __pick_first_entity(cfs_rq);
2937 delta = curr->vruntime - se->vruntime;
f685ceac 2938
f4cfb33e
WX
2939 if (delta < 0)
2940 return;
d7d82944 2941
f4cfb33e
WX
2942 if (delta > ideal_runtime)
2943 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2944}
2945
83b699ed 2946static void
8494f412 2947set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2948{
83b699ed
SV
2949 /* 'current' is not kept within the tree. */
2950 if (se->on_rq) {
2951 /*
2952 * Any task has to be enqueued before it get to execute on
2953 * a CPU. So account for the time it spent waiting on the
2954 * runqueue.
2955 */
2956 update_stats_wait_end(cfs_rq, se);
2957 __dequeue_entity(cfs_rq, se);
2958 }
2959
79303e9e 2960 update_stats_curr_start(cfs_rq, se);
429d43bc 2961 cfs_rq->curr = se;
eba1ed4b
IM
2962#ifdef CONFIG_SCHEDSTATS
2963 /*
2964 * Track our maximum slice length, if the CPU's load is at
2965 * least twice that of our own weight (i.e. dont track it
2966 * when there are only lesser-weight tasks around):
2967 */
495eca49 2968 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2969 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2970 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2971 }
2972#endif
4a55b450 2973 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2974}
2975
3f3a4904
PZ
2976static int
2977wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2978
ac53db59
RR
2979/*
2980 * Pick the next process, keeping these things in mind, in this order:
2981 * 1) keep things fair between processes/task groups
2982 * 2) pick the "next" process, since someone really wants that to run
2983 * 3) pick the "last" process, for cache locality
2984 * 4) do not run the "skip" process, if something else is available
2985 */
678d5718
PZ
2986static struct sched_entity *
2987pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2988{
678d5718
PZ
2989 struct sched_entity *left = __pick_first_entity(cfs_rq);
2990 struct sched_entity *se;
2991
2992 /*
2993 * If curr is set we have to see if its left of the leftmost entity
2994 * still in the tree, provided there was anything in the tree at all.
2995 */
2996 if (!left || (curr && entity_before(curr, left)))
2997 left = curr;
2998
2999 se = left; /* ideally we run the leftmost entity */
f4b6755f 3000
ac53db59
RR
3001 /*
3002 * Avoid running the skip buddy, if running something else can
3003 * be done without getting too unfair.
3004 */
3005 if (cfs_rq->skip == se) {
678d5718
PZ
3006 struct sched_entity *second;
3007
3008 if (se == curr) {
3009 second = __pick_first_entity(cfs_rq);
3010 } else {
3011 second = __pick_next_entity(se);
3012 if (!second || (curr && entity_before(curr, second)))
3013 second = curr;
3014 }
3015
ac53db59
RR
3016 if (second && wakeup_preempt_entity(second, left) < 1)
3017 se = second;
3018 }
aa2ac252 3019
f685ceac
MG
3020 /*
3021 * Prefer last buddy, try to return the CPU to a preempted task.
3022 */
3023 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3024 se = cfs_rq->last;
3025
ac53db59
RR
3026 /*
3027 * Someone really wants this to run. If it's not unfair, run it.
3028 */
3029 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3030 se = cfs_rq->next;
3031
f685ceac 3032 clear_buddies(cfs_rq, se);
4793241b
PZ
3033
3034 return se;
aa2ac252
PZ
3035}
3036
678d5718 3037static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3038
ab6cde26 3039static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3040{
3041 /*
3042 * If still on the runqueue then deactivate_task()
3043 * was not called and update_curr() has to be done:
3044 */
3045 if (prev->on_rq)
b7cc0896 3046 update_curr(cfs_rq);
bf0f6f24 3047
d3d9dc33
PT
3048 /* throttle cfs_rqs exceeding runtime */
3049 check_cfs_rq_runtime(cfs_rq);
3050
ddc97297 3051 check_spread(cfs_rq, prev);
30cfdcfc 3052 if (prev->on_rq) {
5870db5b 3053 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3054 /* Put 'current' back into the tree. */
3055 __enqueue_entity(cfs_rq, prev);
9d85f21c 3056 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3057 update_entity_load_avg(prev, 1);
30cfdcfc 3058 }
429d43bc 3059 cfs_rq->curr = NULL;
bf0f6f24
IM
3060}
3061
8f4d37ec
PZ
3062static void
3063entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3064{
bf0f6f24 3065 /*
30cfdcfc 3066 * Update run-time statistics of the 'current'.
bf0f6f24 3067 */
30cfdcfc 3068 update_curr(cfs_rq);
bf0f6f24 3069
9d85f21c
PT
3070 /*
3071 * Ensure that runnable average is periodically updated.
3072 */
9ee474f5 3073 update_entity_load_avg(curr, 1);
aff3e498 3074 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3075 update_cfs_shares(cfs_rq);
9d85f21c 3076
8f4d37ec
PZ
3077#ifdef CONFIG_SCHED_HRTICK
3078 /*
3079 * queued ticks are scheduled to match the slice, so don't bother
3080 * validating it and just reschedule.
3081 */
983ed7a6
HH
3082 if (queued) {
3083 resched_task(rq_of(cfs_rq)->curr);
3084 return;
3085 }
8f4d37ec
PZ
3086 /*
3087 * don't let the period tick interfere with the hrtick preemption
3088 */
3089 if (!sched_feat(DOUBLE_TICK) &&
3090 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3091 return;
3092#endif
3093
2c2efaed 3094 if (cfs_rq->nr_running > 1)
2e09bf55 3095 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3096}
3097
ab84d31e
PT
3098
3099/**************************************************
3100 * CFS bandwidth control machinery
3101 */
3102
3103#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3104
3105#ifdef HAVE_JUMP_LABEL
c5905afb 3106static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3107
3108static inline bool cfs_bandwidth_used(void)
3109{
c5905afb 3110 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3111}
3112
1ee14e6c 3113void cfs_bandwidth_usage_inc(void)
029632fb 3114{
1ee14e6c
BS
3115 static_key_slow_inc(&__cfs_bandwidth_used);
3116}
3117
3118void cfs_bandwidth_usage_dec(void)
3119{
3120 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3121}
3122#else /* HAVE_JUMP_LABEL */
3123static bool cfs_bandwidth_used(void)
3124{
3125 return true;
3126}
3127
1ee14e6c
BS
3128void cfs_bandwidth_usage_inc(void) {}
3129void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3130#endif /* HAVE_JUMP_LABEL */
3131
ab84d31e
PT
3132/*
3133 * default period for cfs group bandwidth.
3134 * default: 0.1s, units: nanoseconds
3135 */
3136static inline u64 default_cfs_period(void)
3137{
3138 return 100000000ULL;
3139}
ec12cb7f
PT
3140
3141static inline u64 sched_cfs_bandwidth_slice(void)
3142{
3143 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3144}
3145
a9cf55b2
PT
3146/*
3147 * Replenish runtime according to assigned quota and update expiration time.
3148 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3149 * additional synchronization around rq->lock.
3150 *
3151 * requires cfs_b->lock
3152 */
029632fb 3153void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3154{
3155 u64 now;
3156
3157 if (cfs_b->quota == RUNTIME_INF)
3158 return;
3159
3160 now = sched_clock_cpu(smp_processor_id());
3161 cfs_b->runtime = cfs_b->quota;
3162 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3163}
3164
029632fb
PZ
3165static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3166{
3167 return &tg->cfs_bandwidth;
3168}
3169
f1b17280
PT
3170/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3171static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3172{
3173 if (unlikely(cfs_rq->throttle_count))
3174 return cfs_rq->throttled_clock_task;
3175
78becc27 3176 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3177}
3178
85dac906
PT
3179/* returns 0 on failure to allocate runtime */
3180static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3181{
3182 struct task_group *tg = cfs_rq->tg;
3183 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3184 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3185
3186 /* note: this is a positive sum as runtime_remaining <= 0 */
3187 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3188
3189 raw_spin_lock(&cfs_b->lock);
3190 if (cfs_b->quota == RUNTIME_INF)
3191 amount = min_amount;
58088ad0 3192 else {
a9cf55b2
PT
3193 /*
3194 * If the bandwidth pool has become inactive, then at least one
3195 * period must have elapsed since the last consumption.
3196 * Refresh the global state and ensure bandwidth timer becomes
3197 * active.
3198 */
3199 if (!cfs_b->timer_active) {
3200 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3201 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3202 }
58088ad0
PT
3203
3204 if (cfs_b->runtime > 0) {
3205 amount = min(cfs_b->runtime, min_amount);
3206 cfs_b->runtime -= amount;
3207 cfs_b->idle = 0;
3208 }
ec12cb7f 3209 }
a9cf55b2 3210 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3211 raw_spin_unlock(&cfs_b->lock);
3212
3213 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3214 /*
3215 * we may have advanced our local expiration to account for allowed
3216 * spread between our sched_clock and the one on which runtime was
3217 * issued.
3218 */
3219 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3220 cfs_rq->runtime_expires = expires;
85dac906
PT
3221
3222 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3223}
3224
a9cf55b2
PT
3225/*
3226 * Note: This depends on the synchronization provided by sched_clock and the
3227 * fact that rq->clock snapshots this value.
3228 */
3229static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3230{
a9cf55b2 3231 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3232
3233 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3234 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3235 return;
3236
a9cf55b2
PT
3237 if (cfs_rq->runtime_remaining < 0)
3238 return;
3239
3240 /*
3241 * If the local deadline has passed we have to consider the
3242 * possibility that our sched_clock is 'fast' and the global deadline
3243 * has not truly expired.
3244 *
3245 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3246 * whether the global deadline has advanced. It is valid to compare
3247 * cfs_b->runtime_expires without any locks since we only care about
3248 * exact equality, so a partial write will still work.
a9cf55b2
PT
3249 */
3250
51f2176d 3251 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3252 /* extend local deadline, drift is bounded above by 2 ticks */
3253 cfs_rq->runtime_expires += TICK_NSEC;
3254 } else {
3255 /* global deadline is ahead, expiration has passed */
3256 cfs_rq->runtime_remaining = 0;
3257 }
3258}
3259
9dbdb155 3260static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3261{
3262 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3263 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3264 expire_cfs_rq_runtime(cfs_rq);
3265
3266 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3267 return;
3268
85dac906
PT
3269 /*
3270 * if we're unable to extend our runtime we resched so that the active
3271 * hierarchy can be throttled
3272 */
3273 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3274 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3275}
3276
6c16a6dc 3277static __always_inline
9dbdb155 3278void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3279{
56f570e5 3280 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3281 return;
3282
3283 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3284}
3285
85dac906
PT
3286static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3287{
56f570e5 3288 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3289}
3290
64660c86
PT
3291/* check whether cfs_rq, or any parent, is throttled */
3292static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3293{
56f570e5 3294 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3295}
3296
3297/*
3298 * Ensure that neither of the group entities corresponding to src_cpu or
3299 * dest_cpu are members of a throttled hierarchy when performing group
3300 * load-balance operations.
3301 */
3302static inline int throttled_lb_pair(struct task_group *tg,
3303 int src_cpu, int dest_cpu)
3304{
3305 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3306
3307 src_cfs_rq = tg->cfs_rq[src_cpu];
3308 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3309
3310 return throttled_hierarchy(src_cfs_rq) ||
3311 throttled_hierarchy(dest_cfs_rq);
3312}
3313
3314/* updated child weight may affect parent so we have to do this bottom up */
3315static int tg_unthrottle_up(struct task_group *tg, void *data)
3316{
3317 struct rq *rq = data;
3318 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3319
3320 cfs_rq->throttle_count--;
3321#ifdef CONFIG_SMP
3322 if (!cfs_rq->throttle_count) {
f1b17280 3323 /* adjust cfs_rq_clock_task() */
78becc27 3324 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3325 cfs_rq->throttled_clock_task;
64660c86
PT
3326 }
3327#endif
3328
3329 return 0;
3330}
3331
3332static int tg_throttle_down(struct task_group *tg, void *data)
3333{
3334 struct rq *rq = data;
3335 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3336
82958366
PT
3337 /* group is entering throttled state, stop time */
3338 if (!cfs_rq->throttle_count)
78becc27 3339 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3340 cfs_rq->throttle_count++;
3341
3342 return 0;
3343}
3344
d3d9dc33 3345static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3346{
3347 struct rq *rq = rq_of(cfs_rq);
3348 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3349 struct sched_entity *se;
3350 long task_delta, dequeue = 1;
3351
3352 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3353
f1b17280 3354 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3355 rcu_read_lock();
3356 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3357 rcu_read_unlock();
85dac906
PT
3358
3359 task_delta = cfs_rq->h_nr_running;
3360 for_each_sched_entity(se) {
3361 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3362 /* throttled entity or throttle-on-deactivate */
3363 if (!se->on_rq)
3364 break;
3365
3366 if (dequeue)
3367 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3368 qcfs_rq->h_nr_running -= task_delta;
3369
3370 if (qcfs_rq->load.weight)
3371 dequeue = 0;
3372 }
3373
3374 if (!se)
72465447 3375 sub_nr_running(rq, task_delta);
85dac906
PT
3376
3377 cfs_rq->throttled = 1;
78becc27 3378 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3379 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3380 /*
3381 * Add to the _head_ of the list, so that an already-started
3382 * distribute_cfs_runtime will not see us
3383 */
3384 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3385 if (!cfs_b->timer_active)
09dc4ab0 3386 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3387 raw_spin_unlock(&cfs_b->lock);
3388}
3389
029632fb 3390void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3391{
3392 struct rq *rq = rq_of(cfs_rq);
3393 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3394 struct sched_entity *se;
3395 int enqueue = 1;
3396 long task_delta;
3397
22b958d8 3398 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3399
3400 cfs_rq->throttled = 0;
1a55af2e
FW
3401
3402 update_rq_clock(rq);
3403
671fd9da 3404 raw_spin_lock(&cfs_b->lock);
78becc27 3405 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3406 list_del_rcu(&cfs_rq->throttled_list);
3407 raw_spin_unlock(&cfs_b->lock);
3408
64660c86
PT
3409 /* update hierarchical throttle state */
3410 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3411
671fd9da
PT
3412 if (!cfs_rq->load.weight)
3413 return;
3414
3415 task_delta = cfs_rq->h_nr_running;
3416 for_each_sched_entity(se) {
3417 if (se->on_rq)
3418 enqueue = 0;
3419
3420 cfs_rq = cfs_rq_of(se);
3421 if (enqueue)
3422 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3423 cfs_rq->h_nr_running += task_delta;
3424
3425 if (cfs_rq_throttled(cfs_rq))
3426 break;
3427 }
3428
3429 if (!se)
72465447 3430 add_nr_running(rq, task_delta);
671fd9da
PT
3431
3432 /* determine whether we need to wake up potentially idle cpu */
3433 if (rq->curr == rq->idle && rq->cfs.nr_running)
3434 resched_task(rq->curr);
3435}
3436
3437static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3438 u64 remaining, u64 expires)
3439{
3440 struct cfs_rq *cfs_rq;
c06f04c7
BS
3441 u64 runtime;
3442 u64 starting_runtime = remaining;
671fd9da
PT
3443
3444 rcu_read_lock();
3445 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3446 throttled_list) {
3447 struct rq *rq = rq_of(cfs_rq);
3448
3449 raw_spin_lock(&rq->lock);
3450 if (!cfs_rq_throttled(cfs_rq))
3451 goto next;
3452
3453 runtime = -cfs_rq->runtime_remaining + 1;
3454 if (runtime > remaining)
3455 runtime = remaining;
3456 remaining -= runtime;
3457
3458 cfs_rq->runtime_remaining += runtime;
3459 cfs_rq->runtime_expires = expires;
3460
3461 /* we check whether we're throttled above */
3462 if (cfs_rq->runtime_remaining > 0)
3463 unthrottle_cfs_rq(cfs_rq);
3464
3465next:
3466 raw_spin_unlock(&rq->lock);
3467
3468 if (!remaining)
3469 break;
3470 }
3471 rcu_read_unlock();
3472
c06f04c7 3473 return starting_runtime - remaining;
671fd9da
PT
3474}
3475
58088ad0
PT
3476/*
3477 * Responsible for refilling a task_group's bandwidth and unthrottling its
3478 * cfs_rqs as appropriate. If there has been no activity within the last
3479 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3480 * used to track this state.
3481 */
3482static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3483{
671fd9da 3484 u64 runtime, runtime_expires;
51f2176d 3485 int throttled;
58088ad0 3486
58088ad0
PT
3487 /* no need to continue the timer with no bandwidth constraint */
3488 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3489 goto out_deactivate;
58088ad0 3490
671fd9da 3491 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3492 cfs_b->nr_periods += overrun;
671fd9da 3493
51f2176d
BS
3494 /*
3495 * idle depends on !throttled (for the case of a large deficit), and if
3496 * we're going inactive then everything else can be deferred
3497 */
3498 if (cfs_b->idle && !throttled)
3499 goto out_deactivate;
a9cf55b2 3500
927b54fc
BS
3501 /*
3502 * if we have relooped after returning idle once, we need to update our
3503 * status as actually running, so that other cpus doing
3504 * __start_cfs_bandwidth will stop trying to cancel us.
3505 */
3506 cfs_b->timer_active = 1;
3507
a9cf55b2
PT
3508 __refill_cfs_bandwidth_runtime(cfs_b);
3509
671fd9da
PT
3510 if (!throttled) {
3511 /* mark as potentially idle for the upcoming period */
3512 cfs_b->idle = 1;
51f2176d 3513 return 0;
671fd9da
PT
3514 }
3515
e8da1b18
NR
3516 /* account preceding periods in which throttling occurred */
3517 cfs_b->nr_throttled += overrun;
3518
671fd9da 3519 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3520
3521 /*
c06f04c7
BS
3522 * This check is repeated as we are holding onto the new bandwidth while
3523 * we unthrottle. This can potentially race with an unthrottled group
3524 * trying to acquire new bandwidth from the global pool. This can result
3525 * in us over-using our runtime if it is all used during this loop, but
3526 * only by limited amounts in that extreme case.
671fd9da 3527 */
c06f04c7
BS
3528 while (throttled && cfs_b->runtime > 0) {
3529 runtime = cfs_b->runtime;
671fd9da
PT
3530 raw_spin_unlock(&cfs_b->lock);
3531 /* we can't nest cfs_b->lock while distributing bandwidth */
3532 runtime = distribute_cfs_runtime(cfs_b, runtime,
3533 runtime_expires);
3534 raw_spin_lock(&cfs_b->lock);
3535
3536 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3537
3538 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3539 }
58088ad0 3540
671fd9da
PT
3541 /*
3542 * While we are ensured activity in the period following an
3543 * unthrottle, this also covers the case in which the new bandwidth is
3544 * insufficient to cover the existing bandwidth deficit. (Forcing the
3545 * timer to remain active while there are any throttled entities.)
3546 */
3547 cfs_b->idle = 0;
58088ad0 3548
51f2176d
BS
3549 return 0;
3550
3551out_deactivate:
3552 cfs_b->timer_active = 0;
3553 return 1;
58088ad0 3554}
d3d9dc33 3555
d8b4986d
PT
3556/* a cfs_rq won't donate quota below this amount */
3557static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3558/* minimum remaining period time to redistribute slack quota */
3559static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3560/* how long we wait to gather additional slack before distributing */
3561static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3562
db06e78c
BS
3563/*
3564 * Are we near the end of the current quota period?
3565 *
3566 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3567 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3568 * migrate_hrtimers, base is never cleared, so we are fine.
3569 */
d8b4986d
PT
3570static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3571{
3572 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3573 u64 remaining;
3574
3575 /* if the call-back is running a quota refresh is already occurring */
3576 if (hrtimer_callback_running(refresh_timer))
3577 return 1;
3578
3579 /* is a quota refresh about to occur? */
3580 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3581 if (remaining < min_expire)
3582 return 1;
3583
3584 return 0;
3585}
3586
3587static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3588{
3589 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3590
3591 /* if there's a quota refresh soon don't bother with slack */
3592 if (runtime_refresh_within(cfs_b, min_left))
3593 return;
3594
3595 start_bandwidth_timer(&cfs_b->slack_timer,
3596 ns_to_ktime(cfs_bandwidth_slack_period));
3597}
3598
3599/* we know any runtime found here is valid as update_curr() precedes return */
3600static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3601{
3602 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3603 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3604
3605 if (slack_runtime <= 0)
3606 return;
3607
3608 raw_spin_lock(&cfs_b->lock);
3609 if (cfs_b->quota != RUNTIME_INF &&
3610 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3611 cfs_b->runtime += slack_runtime;
3612
3613 /* we are under rq->lock, defer unthrottling using a timer */
3614 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3615 !list_empty(&cfs_b->throttled_cfs_rq))
3616 start_cfs_slack_bandwidth(cfs_b);
3617 }
3618 raw_spin_unlock(&cfs_b->lock);
3619
3620 /* even if it's not valid for return we don't want to try again */
3621 cfs_rq->runtime_remaining -= slack_runtime;
3622}
3623
3624static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3625{
56f570e5
PT
3626 if (!cfs_bandwidth_used())
3627 return;
3628
fccfdc6f 3629 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3630 return;
3631
3632 __return_cfs_rq_runtime(cfs_rq);
3633}
3634
3635/*
3636 * This is done with a timer (instead of inline with bandwidth return) since
3637 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3638 */
3639static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3640{
3641 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3642 u64 expires;
3643
3644 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3645 raw_spin_lock(&cfs_b->lock);
3646 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3647 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3648 return;
db06e78c 3649 }
d8b4986d 3650
c06f04c7 3651 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3652 runtime = cfs_b->runtime;
c06f04c7 3653
d8b4986d
PT
3654 expires = cfs_b->runtime_expires;
3655 raw_spin_unlock(&cfs_b->lock);
3656
3657 if (!runtime)
3658 return;
3659
3660 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3661
3662 raw_spin_lock(&cfs_b->lock);
3663 if (expires == cfs_b->runtime_expires)
c06f04c7 3664 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3665 raw_spin_unlock(&cfs_b->lock);
3666}
3667
d3d9dc33
PT
3668/*
3669 * When a group wakes up we want to make sure that its quota is not already
3670 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3671 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3672 */
3673static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3674{
56f570e5
PT
3675 if (!cfs_bandwidth_used())
3676 return;
3677
d3d9dc33
PT
3678 /* an active group must be handled by the update_curr()->put() path */
3679 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3680 return;
3681
3682 /* ensure the group is not already throttled */
3683 if (cfs_rq_throttled(cfs_rq))
3684 return;
3685
3686 /* update runtime allocation */
3687 account_cfs_rq_runtime(cfs_rq, 0);
3688 if (cfs_rq->runtime_remaining <= 0)
3689 throttle_cfs_rq(cfs_rq);
3690}
3691
3692/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3693static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3694{
56f570e5 3695 if (!cfs_bandwidth_used())
678d5718 3696 return false;
56f570e5 3697
d3d9dc33 3698 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3699 return false;
d3d9dc33
PT
3700
3701 /*
3702 * it's possible for a throttled entity to be forced into a running
3703 * state (e.g. set_curr_task), in this case we're finished.
3704 */
3705 if (cfs_rq_throttled(cfs_rq))
678d5718 3706 return true;
d3d9dc33
PT
3707
3708 throttle_cfs_rq(cfs_rq);
678d5718 3709 return true;
d3d9dc33 3710}
029632fb 3711
029632fb
PZ
3712static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3713{
3714 struct cfs_bandwidth *cfs_b =
3715 container_of(timer, struct cfs_bandwidth, slack_timer);
3716 do_sched_cfs_slack_timer(cfs_b);
3717
3718 return HRTIMER_NORESTART;
3719}
3720
3721static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3722{
3723 struct cfs_bandwidth *cfs_b =
3724 container_of(timer, struct cfs_bandwidth, period_timer);
3725 ktime_t now;
3726 int overrun;
3727 int idle = 0;
3728
51f2176d 3729 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3730 for (;;) {
3731 now = hrtimer_cb_get_time(timer);
3732 overrun = hrtimer_forward(timer, now, cfs_b->period);
3733
3734 if (!overrun)
3735 break;
3736
3737 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3738 }
51f2176d 3739 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3740
3741 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3742}
3743
3744void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3745{
3746 raw_spin_lock_init(&cfs_b->lock);
3747 cfs_b->runtime = 0;
3748 cfs_b->quota = RUNTIME_INF;
3749 cfs_b->period = ns_to_ktime(default_cfs_period());
3750
3751 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3752 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3753 cfs_b->period_timer.function = sched_cfs_period_timer;
3754 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3755 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3756}
3757
3758static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3759{
3760 cfs_rq->runtime_enabled = 0;
3761 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3762}
3763
3764/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3765void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3766{
3767 /*
3768 * The timer may be active because we're trying to set a new bandwidth
3769 * period or because we're racing with the tear-down path
3770 * (timer_active==0 becomes visible before the hrtimer call-back
3771 * terminates). In either case we ensure that it's re-programmed
3772 */
927b54fc
BS
3773 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3774 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3775 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3776 raw_spin_unlock(&cfs_b->lock);
927b54fc 3777 cpu_relax();
029632fb
PZ
3778 raw_spin_lock(&cfs_b->lock);
3779 /* if someone else restarted the timer then we're done */
09dc4ab0 3780 if (!force && cfs_b->timer_active)
029632fb
PZ
3781 return;
3782 }
3783
3784 cfs_b->timer_active = 1;
3785 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3786}
3787
3788static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3789{
3790 hrtimer_cancel(&cfs_b->period_timer);
3791 hrtimer_cancel(&cfs_b->slack_timer);
3792}
3793
38dc3348 3794static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3795{
3796 struct cfs_rq *cfs_rq;
3797
3798 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3799 if (!cfs_rq->runtime_enabled)
3800 continue;
3801
3802 /*
3803 * clock_task is not advancing so we just need to make sure
3804 * there's some valid quota amount
3805 */
51f2176d 3806 cfs_rq->runtime_remaining = 1;
029632fb
PZ
3807 if (cfs_rq_throttled(cfs_rq))
3808 unthrottle_cfs_rq(cfs_rq);
3809 }
3810}
3811
3812#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3813static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3814{
78becc27 3815 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3816}
3817
9dbdb155 3818static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3819static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3820static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3821static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3822
3823static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3824{
3825 return 0;
3826}
64660c86
PT
3827
3828static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3829{
3830 return 0;
3831}
3832
3833static inline int throttled_lb_pair(struct task_group *tg,
3834 int src_cpu, int dest_cpu)
3835{
3836 return 0;
3837}
029632fb
PZ
3838
3839void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3840
3841#ifdef CONFIG_FAIR_GROUP_SCHED
3842static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3843#endif
3844
029632fb
PZ
3845static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3846{
3847 return NULL;
3848}
3849static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3850static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3851
3852#endif /* CONFIG_CFS_BANDWIDTH */
3853
bf0f6f24
IM
3854/**************************************************
3855 * CFS operations on tasks:
3856 */
3857
8f4d37ec
PZ
3858#ifdef CONFIG_SCHED_HRTICK
3859static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3860{
8f4d37ec
PZ
3861 struct sched_entity *se = &p->se;
3862 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3863
3864 WARN_ON(task_rq(p) != rq);
3865
b39e66ea 3866 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3867 u64 slice = sched_slice(cfs_rq, se);
3868 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3869 s64 delta = slice - ran;
3870
3871 if (delta < 0) {
3872 if (rq->curr == p)
3873 resched_task(p);
3874 return;
3875 }
3876
3877 /*
3878 * Don't schedule slices shorter than 10000ns, that just
3879 * doesn't make sense. Rely on vruntime for fairness.
3880 */
31656519 3881 if (rq->curr != p)
157124c1 3882 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3883
31656519 3884 hrtick_start(rq, delta);
8f4d37ec
PZ
3885 }
3886}
a4c2f00f
PZ
3887
3888/*
3889 * called from enqueue/dequeue and updates the hrtick when the
3890 * current task is from our class and nr_running is low enough
3891 * to matter.
3892 */
3893static void hrtick_update(struct rq *rq)
3894{
3895 struct task_struct *curr = rq->curr;
3896
b39e66ea 3897 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3898 return;
3899
3900 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3901 hrtick_start_fair(rq, curr);
3902}
55e12e5e 3903#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3904static inline void
3905hrtick_start_fair(struct rq *rq, struct task_struct *p)
3906{
3907}
a4c2f00f
PZ
3908
3909static inline void hrtick_update(struct rq *rq)
3910{
3911}
8f4d37ec
PZ
3912#endif
3913
bf0f6f24
IM
3914/*
3915 * The enqueue_task method is called before nr_running is
3916 * increased. Here we update the fair scheduling stats and
3917 * then put the task into the rbtree:
3918 */
ea87bb78 3919static void
371fd7e7 3920enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3921{
3922 struct cfs_rq *cfs_rq;
62fb1851 3923 struct sched_entity *se = &p->se;
bf0f6f24
IM
3924
3925 for_each_sched_entity(se) {
62fb1851 3926 if (se->on_rq)
bf0f6f24
IM
3927 break;
3928 cfs_rq = cfs_rq_of(se);
88ec22d3 3929 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3930
3931 /*
3932 * end evaluation on encountering a throttled cfs_rq
3933 *
3934 * note: in the case of encountering a throttled cfs_rq we will
3935 * post the final h_nr_running increment below.
3936 */
3937 if (cfs_rq_throttled(cfs_rq))
3938 break;
953bfcd1 3939 cfs_rq->h_nr_running++;
85dac906 3940
88ec22d3 3941 flags = ENQUEUE_WAKEUP;
bf0f6f24 3942 }
8f4d37ec 3943
2069dd75 3944 for_each_sched_entity(se) {
0f317143 3945 cfs_rq = cfs_rq_of(se);
953bfcd1 3946 cfs_rq->h_nr_running++;
2069dd75 3947
85dac906
PT
3948 if (cfs_rq_throttled(cfs_rq))
3949 break;
3950
17bc14b7 3951 update_cfs_shares(cfs_rq);
9ee474f5 3952 update_entity_load_avg(se, 1);
2069dd75
PZ
3953 }
3954
18bf2805
BS
3955 if (!se) {
3956 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3957 add_nr_running(rq, 1);
18bf2805 3958 }
a4c2f00f 3959 hrtick_update(rq);
bf0f6f24
IM
3960}
3961
2f36825b
VP
3962static void set_next_buddy(struct sched_entity *se);
3963
bf0f6f24
IM
3964/*
3965 * The dequeue_task method is called before nr_running is
3966 * decreased. We remove the task from the rbtree and
3967 * update the fair scheduling stats:
3968 */
371fd7e7 3969static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3970{
3971 struct cfs_rq *cfs_rq;
62fb1851 3972 struct sched_entity *se = &p->se;
2f36825b 3973 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3974
3975 for_each_sched_entity(se) {
3976 cfs_rq = cfs_rq_of(se);
371fd7e7 3977 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3978
3979 /*
3980 * end evaluation on encountering a throttled cfs_rq
3981 *
3982 * note: in the case of encountering a throttled cfs_rq we will
3983 * post the final h_nr_running decrement below.
3984 */
3985 if (cfs_rq_throttled(cfs_rq))
3986 break;
953bfcd1 3987 cfs_rq->h_nr_running--;
2069dd75 3988
bf0f6f24 3989 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3990 if (cfs_rq->load.weight) {
3991 /*
3992 * Bias pick_next to pick a task from this cfs_rq, as
3993 * p is sleeping when it is within its sched_slice.
3994 */
3995 if (task_sleep && parent_entity(se))
3996 set_next_buddy(parent_entity(se));
9598c82d
PT
3997
3998 /* avoid re-evaluating load for this entity */
3999 se = parent_entity(se);
bf0f6f24 4000 break;
2f36825b 4001 }
371fd7e7 4002 flags |= DEQUEUE_SLEEP;
bf0f6f24 4003 }
8f4d37ec 4004
2069dd75 4005 for_each_sched_entity(se) {
0f317143 4006 cfs_rq = cfs_rq_of(se);
953bfcd1 4007 cfs_rq->h_nr_running--;
2069dd75 4008
85dac906
PT
4009 if (cfs_rq_throttled(cfs_rq))
4010 break;
4011
17bc14b7 4012 update_cfs_shares(cfs_rq);
9ee474f5 4013 update_entity_load_avg(se, 1);
2069dd75
PZ
4014 }
4015
18bf2805 4016 if (!se) {
72465447 4017 sub_nr_running(rq, 1);
18bf2805
BS
4018 update_rq_runnable_avg(rq, 1);
4019 }
a4c2f00f 4020 hrtick_update(rq);
bf0f6f24
IM
4021}
4022
e7693a36 4023#ifdef CONFIG_SMP
029632fb
PZ
4024/* Used instead of source_load when we know the type == 0 */
4025static unsigned long weighted_cpuload(const int cpu)
4026{
b92486cb 4027 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4028}
4029
4030/*
4031 * Return a low guess at the load of a migration-source cpu weighted
4032 * according to the scheduling class and "nice" value.
4033 *
4034 * We want to under-estimate the load of migration sources, to
4035 * balance conservatively.
4036 */
4037static unsigned long source_load(int cpu, int type)
4038{
4039 struct rq *rq = cpu_rq(cpu);
4040 unsigned long total = weighted_cpuload(cpu);
4041
4042 if (type == 0 || !sched_feat(LB_BIAS))
4043 return total;
4044
4045 return min(rq->cpu_load[type-1], total);
4046}
4047
4048/*
4049 * Return a high guess at the load of a migration-target cpu weighted
4050 * according to the scheduling class and "nice" value.
4051 */
4052static unsigned long target_load(int cpu, int type)
4053{
4054 struct rq *rq = cpu_rq(cpu);
4055 unsigned long total = weighted_cpuload(cpu);
4056
4057 if (type == 0 || !sched_feat(LB_BIAS))
4058 return total;
4059
4060 return max(rq->cpu_load[type-1], total);
4061}
4062
ced549fa 4063static unsigned long capacity_of(int cpu)
029632fb 4064{
ced549fa 4065 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4066}
4067
4068static unsigned long cpu_avg_load_per_task(int cpu)
4069{
4070 struct rq *rq = cpu_rq(cpu);
4071 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4072 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4073
4074 if (nr_running)
b92486cb 4075 return load_avg / nr_running;
029632fb
PZ
4076
4077 return 0;
4078}
4079
62470419
MW
4080static void record_wakee(struct task_struct *p)
4081{
4082 /*
4083 * Rough decay (wiping) for cost saving, don't worry
4084 * about the boundary, really active task won't care
4085 * about the loss.
4086 */
2538d960 4087 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4088 current->wakee_flips >>= 1;
62470419
MW
4089 current->wakee_flip_decay_ts = jiffies;
4090 }
4091
4092 if (current->last_wakee != p) {
4093 current->last_wakee = p;
4094 current->wakee_flips++;
4095 }
4096}
098fb9db 4097
74f8e4b2 4098static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4099{
4100 struct sched_entity *se = &p->se;
4101 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4102 u64 min_vruntime;
4103
4104#ifndef CONFIG_64BIT
4105 u64 min_vruntime_copy;
88ec22d3 4106
3fe1698b
PZ
4107 do {
4108 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4109 smp_rmb();
4110 min_vruntime = cfs_rq->min_vruntime;
4111 } while (min_vruntime != min_vruntime_copy);
4112#else
4113 min_vruntime = cfs_rq->min_vruntime;
4114#endif
88ec22d3 4115
3fe1698b 4116 se->vruntime -= min_vruntime;
62470419 4117 record_wakee(p);
88ec22d3
PZ
4118}
4119
bb3469ac 4120#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4121/*
4122 * effective_load() calculates the load change as seen from the root_task_group
4123 *
4124 * Adding load to a group doesn't make a group heavier, but can cause movement
4125 * of group shares between cpus. Assuming the shares were perfectly aligned one
4126 * can calculate the shift in shares.
cf5f0acf
PZ
4127 *
4128 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4129 * on this @cpu and results in a total addition (subtraction) of @wg to the
4130 * total group weight.
4131 *
4132 * Given a runqueue weight distribution (rw_i) we can compute a shares
4133 * distribution (s_i) using:
4134 *
4135 * s_i = rw_i / \Sum rw_j (1)
4136 *
4137 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4138 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4139 * shares distribution (s_i):
4140 *
4141 * rw_i = { 2, 4, 1, 0 }
4142 * s_i = { 2/7, 4/7, 1/7, 0 }
4143 *
4144 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4145 * task used to run on and the CPU the waker is running on), we need to
4146 * compute the effect of waking a task on either CPU and, in case of a sync
4147 * wakeup, compute the effect of the current task going to sleep.
4148 *
4149 * So for a change of @wl to the local @cpu with an overall group weight change
4150 * of @wl we can compute the new shares distribution (s'_i) using:
4151 *
4152 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4153 *
4154 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4155 * differences in waking a task to CPU 0. The additional task changes the
4156 * weight and shares distributions like:
4157 *
4158 * rw'_i = { 3, 4, 1, 0 }
4159 * s'_i = { 3/8, 4/8, 1/8, 0 }
4160 *
4161 * We can then compute the difference in effective weight by using:
4162 *
4163 * dw_i = S * (s'_i - s_i) (3)
4164 *
4165 * Where 'S' is the group weight as seen by its parent.
4166 *
4167 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4168 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4169 * 4/7) times the weight of the group.
f5bfb7d9 4170 */
2069dd75 4171static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4172{
4be9daaa 4173 struct sched_entity *se = tg->se[cpu];
f1d239f7 4174
9722c2da 4175 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4176 return wl;
4177
4be9daaa 4178 for_each_sched_entity(se) {
cf5f0acf 4179 long w, W;
4be9daaa 4180
977dda7c 4181 tg = se->my_q->tg;
bb3469ac 4182
cf5f0acf
PZ
4183 /*
4184 * W = @wg + \Sum rw_j
4185 */
4186 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4187
cf5f0acf
PZ
4188 /*
4189 * w = rw_i + @wl
4190 */
4191 w = se->my_q->load.weight + wl;
940959e9 4192
cf5f0acf
PZ
4193 /*
4194 * wl = S * s'_i; see (2)
4195 */
4196 if (W > 0 && w < W)
4197 wl = (w * tg->shares) / W;
977dda7c
PT
4198 else
4199 wl = tg->shares;
940959e9 4200
cf5f0acf
PZ
4201 /*
4202 * Per the above, wl is the new se->load.weight value; since
4203 * those are clipped to [MIN_SHARES, ...) do so now. See
4204 * calc_cfs_shares().
4205 */
977dda7c
PT
4206 if (wl < MIN_SHARES)
4207 wl = MIN_SHARES;
cf5f0acf
PZ
4208
4209 /*
4210 * wl = dw_i = S * (s'_i - s_i); see (3)
4211 */
977dda7c 4212 wl -= se->load.weight;
cf5f0acf
PZ
4213
4214 /*
4215 * Recursively apply this logic to all parent groups to compute
4216 * the final effective load change on the root group. Since
4217 * only the @tg group gets extra weight, all parent groups can
4218 * only redistribute existing shares. @wl is the shift in shares
4219 * resulting from this level per the above.
4220 */
4be9daaa 4221 wg = 0;
4be9daaa 4222 }
bb3469ac 4223
4be9daaa 4224 return wl;
bb3469ac
PZ
4225}
4226#else
4be9daaa 4227
58d081b5 4228static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4229{
83378269 4230 return wl;
bb3469ac 4231}
4be9daaa 4232
bb3469ac
PZ
4233#endif
4234
62470419
MW
4235static int wake_wide(struct task_struct *p)
4236{
7d9ffa89 4237 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4238
4239 /*
4240 * Yeah, it's the switching-frequency, could means many wakee or
4241 * rapidly switch, use factor here will just help to automatically
4242 * adjust the loose-degree, so bigger node will lead to more pull.
4243 */
4244 if (p->wakee_flips > factor) {
4245 /*
4246 * wakee is somewhat hot, it needs certain amount of cpu
4247 * resource, so if waker is far more hot, prefer to leave
4248 * it alone.
4249 */
4250 if (current->wakee_flips > (factor * p->wakee_flips))
4251 return 1;
4252 }
4253
4254 return 0;
4255}
4256
c88d5910 4257static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4258{
e37b6a7b 4259 s64 this_load, load;
c88d5910 4260 int idx, this_cpu, prev_cpu;
098fb9db 4261 unsigned long tl_per_task;
c88d5910 4262 struct task_group *tg;
83378269 4263 unsigned long weight;
b3137bc8 4264 int balanced;
098fb9db 4265
62470419
MW
4266 /*
4267 * If we wake multiple tasks be careful to not bounce
4268 * ourselves around too much.
4269 */
4270 if (wake_wide(p))
4271 return 0;
4272
c88d5910
PZ
4273 idx = sd->wake_idx;
4274 this_cpu = smp_processor_id();
4275 prev_cpu = task_cpu(p);
4276 load = source_load(prev_cpu, idx);
4277 this_load = target_load(this_cpu, idx);
098fb9db 4278
b3137bc8
MG
4279 /*
4280 * If sync wakeup then subtract the (maximum possible)
4281 * effect of the currently running task from the load
4282 * of the current CPU:
4283 */
83378269
PZ
4284 if (sync) {
4285 tg = task_group(current);
4286 weight = current->se.load.weight;
4287
c88d5910 4288 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4289 load += effective_load(tg, prev_cpu, 0, -weight);
4290 }
b3137bc8 4291
83378269
PZ
4292 tg = task_group(p);
4293 weight = p->se.load.weight;
b3137bc8 4294
71a29aa7
PZ
4295 /*
4296 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4297 * due to the sync cause above having dropped this_load to 0, we'll
4298 * always have an imbalance, but there's really nothing you can do
4299 * about that, so that's good too.
71a29aa7
PZ
4300 *
4301 * Otherwise check if either cpus are near enough in load to allow this
4302 * task to be woken on this_cpu.
4303 */
e37b6a7b
PT
4304 if (this_load > 0) {
4305 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4306
4307 this_eff_load = 100;
ced549fa 4308 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4309 this_eff_load *= this_load +
4310 effective_load(tg, this_cpu, weight, weight);
4311
4312 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4313 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4314 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4315
4316 balanced = this_eff_load <= prev_eff_load;
4317 } else
4318 balanced = true;
b3137bc8 4319
098fb9db 4320 /*
4ae7d5ce
IM
4321 * If the currently running task will sleep within
4322 * a reasonable amount of time then attract this newly
4323 * woken task:
098fb9db 4324 */
2fb7635c
PZ
4325 if (sync && balanced)
4326 return 1;
098fb9db 4327
41acab88 4328 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4329 tl_per_task = cpu_avg_load_per_task(this_cpu);
4330
c88d5910
PZ
4331 if (balanced ||
4332 (this_load <= load &&
4333 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4334 /*
4335 * This domain has SD_WAKE_AFFINE and
4336 * p is cache cold in this domain, and
4337 * there is no bad imbalance.
4338 */
c88d5910 4339 schedstat_inc(sd, ttwu_move_affine);
41acab88 4340 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4341
4342 return 1;
4343 }
4344 return 0;
4345}
4346
aaee1203
PZ
4347/*
4348 * find_idlest_group finds and returns the least busy CPU group within the
4349 * domain.
4350 */
4351static struct sched_group *
78e7ed53 4352find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4353 int this_cpu, int sd_flag)
e7693a36 4354{
b3bd3de6 4355 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4356 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4357 int load_idx = sd->forkexec_idx;
aaee1203 4358 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4359
c44f2a02
VG
4360 if (sd_flag & SD_BALANCE_WAKE)
4361 load_idx = sd->wake_idx;
4362
aaee1203
PZ
4363 do {
4364 unsigned long load, avg_load;
4365 int local_group;
4366 int i;
e7693a36 4367
aaee1203
PZ
4368 /* Skip over this group if it has no CPUs allowed */
4369 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4370 tsk_cpus_allowed(p)))
aaee1203
PZ
4371 continue;
4372
4373 local_group = cpumask_test_cpu(this_cpu,
4374 sched_group_cpus(group));
4375
4376 /* Tally up the load of all CPUs in the group */
4377 avg_load = 0;
4378
4379 for_each_cpu(i, sched_group_cpus(group)) {
4380 /* Bias balancing toward cpus of our domain */
4381 if (local_group)
4382 load = source_load(i, load_idx);
4383 else
4384 load = target_load(i, load_idx);
4385
4386 avg_load += load;
4387 }
4388
63b2ca30 4389 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4390 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4391
4392 if (local_group) {
4393 this_load = avg_load;
aaee1203
PZ
4394 } else if (avg_load < min_load) {
4395 min_load = avg_load;
4396 idlest = group;
4397 }
4398 } while (group = group->next, group != sd->groups);
4399
4400 if (!idlest || 100*this_load < imbalance*min_load)
4401 return NULL;
4402 return idlest;
4403}
4404
4405/*
4406 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4407 */
4408static int
4409find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4410{
4411 unsigned long load, min_load = ULONG_MAX;
4412 int idlest = -1;
4413 int i;
4414
4415 /* Traverse only the allowed CPUs */
fa17b507 4416 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4417 load = weighted_cpuload(i);
4418
4419 if (load < min_load || (load == min_load && i == this_cpu)) {
4420 min_load = load;
4421 idlest = i;
e7693a36
GH
4422 }
4423 }
4424
aaee1203
PZ
4425 return idlest;
4426}
e7693a36 4427
a50bde51
PZ
4428/*
4429 * Try and locate an idle CPU in the sched_domain.
4430 */
99bd5e2f 4431static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4432{
99bd5e2f 4433 struct sched_domain *sd;
37407ea7 4434 struct sched_group *sg;
e0a79f52 4435 int i = task_cpu(p);
a50bde51 4436
e0a79f52
MG
4437 if (idle_cpu(target))
4438 return target;
99bd5e2f
SS
4439
4440 /*
e0a79f52 4441 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4442 */
e0a79f52
MG
4443 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4444 return i;
a50bde51
PZ
4445
4446 /*
37407ea7 4447 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4448 */
518cd623 4449 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4450 for_each_lower_domain(sd) {
37407ea7
LT
4451 sg = sd->groups;
4452 do {
4453 if (!cpumask_intersects(sched_group_cpus(sg),
4454 tsk_cpus_allowed(p)))
4455 goto next;
4456
4457 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4458 if (i == target || !idle_cpu(i))
37407ea7
LT
4459 goto next;
4460 }
970e1789 4461
37407ea7
LT
4462 target = cpumask_first_and(sched_group_cpus(sg),
4463 tsk_cpus_allowed(p));
4464 goto done;
4465next:
4466 sg = sg->next;
4467 } while (sg != sd->groups);
4468 }
4469done:
a50bde51
PZ
4470 return target;
4471}
4472
aaee1203 4473/*
de91b9cb
MR
4474 * select_task_rq_fair: Select target runqueue for the waking task in domains
4475 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4476 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4477 *
de91b9cb
MR
4478 * Balances load by selecting the idlest cpu in the idlest group, or under
4479 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4480 *
de91b9cb 4481 * Returns the target cpu number.
aaee1203
PZ
4482 *
4483 * preempt must be disabled.
4484 */
0017d735 4485static int
ac66f547 4486select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4487{
29cd8bae 4488 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4489 int cpu = smp_processor_id();
c88d5910 4490 int new_cpu = cpu;
99bd5e2f 4491 int want_affine = 0;
5158f4e4 4492 int sync = wake_flags & WF_SYNC;
c88d5910 4493
29baa747 4494 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4495 return prev_cpu;
4496
0763a660 4497 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4498 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4499 want_affine = 1;
4500 new_cpu = prev_cpu;
4501 }
aaee1203 4502
dce840a0 4503 rcu_read_lock();
aaee1203 4504 for_each_domain(cpu, tmp) {
e4f42888
PZ
4505 if (!(tmp->flags & SD_LOAD_BALANCE))
4506 continue;
4507
fe3bcfe1 4508 /*
99bd5e2f
SS
4509 * If both cpu and prev_cpu are part of this domain,
4510 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4511 */
99bd5e2f
SS
4512 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4513 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4514 affine_sd = tmp;
29cd8bae 4515 break;
f03542a7 4516 }
29cd8bae 4517
f03542a7 4518 if (tmp->flags & sd_flag)
29cd8bae
PZ
4519 sd = tmp;
4520 }
4521
8bf21433
RR
4522 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4523 prev_cpu = cpu;
dce840a0 4524
8bf21433 4525 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4526 new_cpu = select_idle_sibling(p, prev_cpu);
4527 goto unlock;
8b911acd 4528 }
e7693a36 4529
aaee1203
PZ
4530 while (sd) {
4531 struct sched_group *group;
c88d5910 4532 int weight;
098fb9db 4533
0763a660 4534 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4535 sd = sd->child;
4536 continue;
4537 }
098fb9db 4538
c44f2a02 4539 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4540 if (!group) {
4541 sd = sd->child;
4542 continue;
4543 }
4ae7d5ce 4544
d7c33c49 4545 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4546 if (new_cpu == -1 || new_cpu == cpu) {
4547 /* Now try balancing at a lower domain level of cpu */
4548 sd = sd->child;
4549 continue;
e7693a36 4550 }
aaee1203
PZ
4551
4552 /* Now try balancing at a lower domain level of new_cpu */
4553 cpu = new_cpu;
669c55e9 4554 weight = sd->span_weight;
aaee1203
PZ
4555 sd = NULL;
4556 for_each_domain(cpu, tmp) {
669c55e9 4557 if (weight <= tmp->span_weight)
aaee1203 4558 break;
0763a660 4559 if (tmp->flags & sd_flag)
aaee1203
PZ
4560 sd = tmp;
4561 }
4562 /* while loop will break here if sd == NULL */
e7693a36 4563 }
dce840a0
PZ
4564unlock:
4565 rcu_read_unlock();
e7693a36 4566
c88d5910 4567 return new_cpu;
e7693a36 4568}
0a74bef8
PT
4569
4570/*
4571 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4572 * cfs_rq_of(p) references at time of call are still valid and identify the
4573 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4574 * other assumptions, including the state of rq->lock, should be made.
4575 */
4576static void
4577migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4578{
aff3e498
PT
4579 struct sched_entity *se = &p->se;
4580 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4581
4582 /*
4583 * Load tracking: accumulate removed load so that it can be processed
4584 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4585 * to blocked load iff they have a positive decay-count. It can never
4586 * be negative here since on-rq tasks have decay-count == 0.
4587 */
4588 if (se->avg.decay_count) {
4589 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4590 atomic_long_add(se->avg.load_avg_contrib,
4591 &cfs_rq->removed_load);
aff3e498 4592 }
3944a927
BS
4593
4594 /* We have migrated, no longer consider this task hot */
4595 se->exec_start = 0;
0a74bef8 4596}
e7693a36
GH
4597#endif /* CONFIG_SMP */
4598
e52fb7c0
PZ
4599static unsigned long
4600wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4601{
4602 unsigned long gran = sysctl_sched_wakeup_granularity;
4603
4604 /*
e52fb7c0
PZ
4605 * Since its curr running now, convert the gran from real-time
4606 * to virtual-time in his units.
13814d42
MG
4607 *
4608 * By using 'se' instead of 'curr' we penalize light tasks, so
4609 * they get preempted easier. That is, if 'se' < 'curr' then
4610 * the resulting gran will be larger, therefore penalizing the
4611 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4612 * be smaller, again penalizing the lighter task.
4613 *
4614 * This is especially important for buddies when the leftmost
4615 * task is higher priority than the buddy.
0bbd3336 4616 */
f4ad9bd2 4617 return calc_delta_fair(gran, se);
0bbd3336
PZ
4618}
4619
464b7527
PZ
4620/*
4621 * Should 'se' preempt 'curr'.
4622 *
4623 * |s1
4624 * |s2
4625 * |s3
4626 * g
4627 * |<--->|c
4628 *
4629 * w(c, s1) = -1
4630 * w(c, s2) = 0
4631 * w(c, s3) = 1
4632 *
4633 */
4634static int
4635wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4636{
4637 s64 gran, vdiff = curr->vruntime - se->vruntime;
4638
4639 if (vdiff <= 0)
4640 return -1;
4641
e52fb7c0 4642 gran = wakeup_gran(curr, se);
464b7527
PZ
4643 if (vdiff > gran)
4644 return 1;
4645
4646 return 0;
4647}
4648
02479099
PZ
4649static void set_last_buddy(struct sched_entity *se)
4650{
69c80f3e
VP
4651 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4652 return;
4653
4654 for_each_sched_entity(se)
4655 cfs_rq_of(se)->last = se;
02479099
PZ
4656}
4657
4658static void set_next_buddy(struct sched_entity *se)
4659{
69c80f3e
VP
4660 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4661 return;
4662
4663 for_each_sched_entity(se)
4664 cfs_rq_of(se)->next = se;
02479099
PZ
4665}
4666
ac53db59
RR
4667static void set_skip_buddy(struct sched_entity *se)
4668{
69c80f3e
VP
4669 for_each_sched_entity(se)
4670 cfs_rq_of(se)->skip = se;
ac53db59
RR
4671}
4672
bf0f6f24
IM
4673/*
4674 * Preempt the current task with a newly woken task if needed:
4675 */
5a9b86f6 4676static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4677{
4678 struct task_struct *curr = rq->curr;
8651a86c 4679 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4680 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4681 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4682 int next_buddy_marked = 0;
bf0f6f24 4683
4ae7d5ce
IM
4684 if (unlikely(se == pse))
4685 return;
4686
5238cdd3 4687 /*
ddcdf6e7 4688 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4689 * unconditionally check_prempt_curr() after an enqueue (which may have
4690 * lead to a throttle). This both saves work and prevents false
4691 * next-buddy nomination below.
4692 */
4693 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4694 return;
4695
2f36825b 4696 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4697 set_next_buddy(pse);
2f36825b
VP
4698 next_buddy_marked = 1;
4699 }
57fdc26d 4700
aec0a514
BR
4701 /*
4702 * We can come here with TIF_NEED_RESCHED already set from new task
4703 * wake up path.
5238cdd3
PT
4704 *
4705 * Note: this also catches the edge-case of curr being in a throttled
4706 * group (e.g. via set_curr_task), since update_curr() (in the
4707 * enqueue of curr) will have resulted in resched being set. This
4708 * prevents us from potentially nominating it as a false LAST_BUDDY
4709 * below.
aec0a514
BR
4710 */
4711 if (test_tsk_need_resched(curr))
4712 return;
4713
a2f5c9ab
DH
4714 /* Idle tasks are by definition preempted by non-idle tasks. */
4715 if (unlikely(curr->policy == SCHED_IDLE) &&
4716 likely(p->policy != SCHED_IDLE))
4717 goto preempt;
4718
91c234b4 4719 /*
a2f5c9ab
DH
4720 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4721 * is driven by the tick):
91c234b4 4722 */
8ed92e51 4723 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4724 return;
bf0f6f24 4725
464b7527 4726 find_matching_se(&se, &pse);
9bbd7374 4727 update_curr(cfs_rq_of(se));
002f128b 4728 BUG_ON(!pse);
2f36825b
VP
4729 if (wakeup_preempt_entity(se, pse) == 1) {
4730 /*
4731 * Bias pick_next to pick the sched entity that is
4732 * triggering this preemption.
4733 */
4734 if (!next_buddy_marked)
4735 set_next_buddy(pse);
3a7e73a2 4736 goto preempt;
2f36825b 4737 }
464b7527 4738
3a7e73a2 4739 return;
a65ac745 4740
3a7e73a2
PZ
4741preempt:
4742 resched_task(curr);
4743 /*
4744 * Only set the backward buddy when the current task is still
4745 * on the rq. This can happen when a wakeup gets interleaved
4746 * with schedule on the ->pre_schedule() or idle_balance()
4747 * point, either of which can * drop the rq lock.
4748 *
4749 * Also, during early boot the idle thread is in the fair class,
4750 * for obvious reasons its a bad idea to schedule back to it.
4751 */
4752 if (unlikely(!se->on_rq || curr == rq->idle))
4753 return;
4754
4755 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4756 set_last_buddy(se);
bf0f6f24
IM
4757}
4758
606dba2e
PZ
4759static struct task_struct *
4760pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4761{
4762 struct cfs_rq *cfs_rq = &rq->cfs;
4763 struct sched_entity *se;
678d5718 4764 struct task_struct *p;
37e117c0 4765 int new_tasks;
678d5718 4766
6e83125c 4767again:
678d5718
PZ
4768#ifdef CONFIG_FAIR_GROUP_SCHED
4769 if (!cfs_rq->nr_running)
38033c37 4770 goto idle;
678d5718 4771
3f1d2a31 4772 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4773 goto simple;
4774
4775 /*
4776 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4777 * likely that a next task is from the same cgroup as the current.
4778 *
4779 * Therefore attempt to avoid putting and setting the entire cgroup
4780 * hierarchy, only change the part that actually changes.
4781 */
4782
4783 do {
4784 struct sched_entity *curr = cfs_rq->curr;
4785
4786 /*
4787 * Since we got here without doing put_prev_entity() we also
4788 * have to consider cfs_rq->curr. If it is still a runnable
4789 * entity, update_curr() will update its vruntime, otherwise
4790 * forget we've ever seen it.
4791 */
4792 if (curr && curr->on_rq)
4793 update_curr(cfs_rq);
4794 else
4795 curr = NULL;
4796
4797 /*
4798 * This call to check_cfs_rq_runtime() will do the throttle and
4799 * dequeue its entity in the parent(s). Therefore the 'simple'
4800 * nr_running test will indeed be correct.
4801 */
4802 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4803 goto simple;
4804
4805 se = pick_next_entity(cfs_rq, curr);
4806 cfs_rq = group_cfs_rq(se);
4807 } while (cfs_rq);
4808
4809 p = task_of(se);
4810
4811 /*
4812 * Since we haven't yet done put_prev_entity and if the selected task
4813 * is a different task than we started out with, try and touch the
4814 * least amount of cfs_rqs.
4815 */
4816 if (prev != p) {
4817 struct sched_entity *pse = &prev->se;
4818
4819 while (!(cfs_rq = is_same_group(se, pse))) {
4820 int se_depth = se->depth;
4821 int pse_depth = pse->depth;
4822
4823 if (se_depth <= pse_depth) {
4824 put_prev_entity(cfs_rq_of(pse), pse);
4825 pse = parent_entity(pse);
4826 }
4827 if (se_depth >= pse_depth) {
4828 set_next_entity(cfs_rq_of(se), se);
4829 se = parent_entity(se);
4830 }
4831 }
4832
4833 put_prev_entity(cfs_rq, pse);
4834 set_next_entity(cfs_rq, se);
4835 }
4836
4837 if (hrtick_enabled(rq))
4838 hrtick_start_fair(rq, p);
4839
4840 return p;
4841simple:
4842 cfs_rq = &rq->cfs;
4843#endif
bf0f6f24 4844
36ace27e 4845 if (!cfs_rq->nr_running)
38033c37 4846 goto idle;
bf0f6f24 4847
3f1d2a31 4848 put_prev_task(rq, prev);
606dba2e 4849
bf0f6f24 4850 do {
678d5718 4851 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4852 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4853 cfs_rq = group_cfs_rq(se);
4854 } while (cfs_rq);
4855
8f4d37ec 4856 p = task_of(se);
678d5718 4857
b39e66ea
MG
4858 if (hrtick_enabled(rq))
4859 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4860
4861 return p;
38033c37
PZ
4862
4863idle:
e4aa358b 4864 new_tasks = idle_balance(rq);
37e117c0
PZ
4865 /*
4866 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4867 * possible for any higher priority task to appear. In that case we
4868 * must re-start the pick_next_entity() loop.
4869 */
e4aa358b 4870 if (new_tasks < 0)
37e117c0
PZ
4871 return RETRY_TASK;
4872
e4aa358b 4873 if (new_tasks > 0)
38033c37 4874 goto again;
38033c37
PZ
4875
4876 return NULL;
bf0f6f24
IM
4877}
4878
4879/*
4880 * Account for a descheduled task:
4881 */
31ee529c 4882static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4883{
4884 struct sched_entity *se = &prev->se;
4885 struct cfs_rq *cfs_rq;
4886
4887 for_each_sched_entity(se) {
4888 cfs_rq = cfs_rq_of(se);
ab6cde26 4889 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4890 }
4891}
4892
ac53db59
RR
4893/*
4894 * sched_yield() is very simple
4895 *
4896 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4897 */
4898static void yield_task_fair(struct rq *rq)
4899{
4900 struct task_struct *curr = rq->curr;
4901 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4902 struct sched_entity *se = &curr->se;
4903
4904 /*
4905 * Are we the only task in the tree?
4906 */
4907 if (unlikely(rq->nr_running == 1))
4908 return;
4909
4910 clear_buddies(cfs_rq, se);
4911
4912 if (curr->policy != SCHED_BATCH) {
4913 update_rq_clock(rq);
4914 /*
4915 * Update run-time statistics of the 'current'.
4916 */
4917 update_curr(cfs_rq);
916671c0
MG
4918 /*
4919 * Tell update_rq_clock() that we've just updated,
4920 * so we don't do microscopic update in schedule()
4921 * and double the fastpath cost.
4922 */
4923 rq->skip_clock_update = 1;
ac53db59
RR
4924 }
4925
4926 set_skip_buddy(se);
4927}
4928
d95f4122
MG
4929static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4930{
4931 struct sched_entity *se = &p->se;
4932
5238cdd3
PT
4933 /* throttled hierarchies are not runnable */
4934 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4935 return false;
4936
4937 /* Tell the scheduler that we'd really like pse to run next. */
4938 set_next_buddy(se);
4939
d95f4122
MG
4940 yield_task_fair(rq);
4941
4942 return true;
4943}
4944
681f3e68 4945#ifdef CONFIG_SMP
bf0f6f24 4946/**************************************************
e9c84cb8
PZ
4947 * Fair scheduling class load-balancing methods.
4948 *
4949 * BASICS
4950 *
4951 * The purpose of load-balancing is to achieve the same basic fairness the
4952 * per-cpu scheduler provides, namely provide a proportional amount of compute
4953 * time to each task. This is expressed in the following equation:
4954 *
4955 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4956 *
4957 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4958 * W_i,0 is defined as:
4959 *
4960 * W_i,0 = \Sum_j w_i,j (2)
4961 *
4962 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4963 * is derived from the nice value as per prio_to_weight[].
4964 *
4965 * The weight average is an exponential decay average of the instantaneous
4966 * weight:
4967 *
4968 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4969 *
ced549fa 4970 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4971 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4972 * can also include other factors [XXX].
4973 *
4974 * To achieve this balance we define a measure of imbalance which follows
4975 * directly from (1):
4976 *
ced549fa 4977 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
4978 *
4979 * We them move tasks around to minimize the imbalance. In the continuous
4980 * function space it is obvious this converges, in the discrete case we get
4981 * a few fun cases generally called infeasible weight scenarios.
4982 *
4983 * [XXX expand on:
4984 * - infeasible weights;
4985 * - local vs global optima in the discrete case. ]
4986 *
4987 *
4988 * SCHED DOMAINS
4989 *
4990 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4991 * for all i,j solution, we create a tree of cpus that follows the hardware
4992 * topology where each level pairs two lower groups (or better). This results
4993 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4994 * tree to only the first of the previous level and we decrease the frequency
4995 * of load-balance at each level inv. proportional to the number of cpus in
4996 * the groups.
4997 *
4998 * This yields:
4999 *
5000 * log_2 n 1 n
5001 * \Sum { --- * --- * 2^i } = O(n) (5)
5002 * i = 0 2^i 2^i
5003 * `- size of each group
5004 * | | `- number of cpus doing load-balance
5005 * | `- freq
5006 * `- sum over all levels
5007 *
5008 * Coupled with a limit on how many tasks we can migrate every balance pass,
5009 * this makes (5) the runtime complexity of the balancer.
5010 *
5011 * An important property here is that each CPU is still (indirectly) connected
5012 * to every other cpu in at most O(log n) steps:
5013 *
5014 * The adjacency matrix of the resulting graph is given by:
5015 *
5016 * log_2 n
5017 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5018 * k = 0
5019 *
5020 * And you'll find that:
5021 *
5022 * A^(log_2 n)_i,j != 0 for all i,j (7)
5023 *
5024 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5025 * The task movement gives a factor of O(m), giving a convergence complexity
5026 * of:
5027 *
5028 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5029 *
5030 *
5031 * WORK CONSERVING
5032 *
5033 * In order to avoid CPUs going idle while there's still work to do, new idle
5034 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5035 * tree itself instead of relying on other CPUs to bring it work.
5036 *
5037 * This adds some complexity to both (5) and (8) but it reduces the total idle
5038 * time.
5039 *
5040 * [XXX more?]
5041 *
5042 *
5043 * CGROUPS
5044 *
5045 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5046 *
5047 * s_k,i
5048 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5049 * S_k
5050 *
5051 * Where
5052 *
5053 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5054 *
5055 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5056 *
5057 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5058 * property.
5059 *
5060 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5061 * rewrite all of this once again.]
5062 */
bf0f6f24 5063
ed387b78
HS
5064static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5065
0ec8aa00
PZ
5066enum fbq_type { regular, remote, all };
5067
ddcdf6e7 5068#define LBF_ALL_PINNED 0x01
367456c7 5069#define LBF_NEED_BREAK 0x02
6263322c
PZ
5070#define LBF_DST_PINNED 0x04
5071#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5072
5073struct lb_env {
5074 struct sched_domain *sd;
5075
ddcdf6e7 5076 struct rq *src_rq;
85c1e7da 5077 int src_cpu;
ddcdf6e7
PZ
5078
5079 int dst_cpu;
5080 struct rq *dst_rq;
5081
88b8dac0
SV
5082 struct cpumask *dst_grpmask;
5083 int new_dst_cpu;
ddcdf6e7 5084 enum cpu_idle_type idle;
bd939f45 5085 long imbalance;
b9403130
MW
5086 /* The set of CPUs under consideration for load-balancing */
5087 struct cpumask *cpus;
5088
ddcdf6e7 5089 unsigned int flags;
367456c7
PZ
5090
5091 unsigned int loop;
5092 unsigned int loop_break;
5093 unsigned int loop_max;
0ec8aa00
PZ
5094
5095 enum fbq_type fbq_type;
ddcdf6e7
PZ
5096};
5097
1e3c88bd 5098/*
ddcdf6e7 5099 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5100 * Both runqueues must be locked.
5101 */
ddcdf6e7 5102static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5103{
ddcdf6e7
PZ
5104 deactivate_task(env->src_rq, p, 0);
5105 set_task_cpu(p, env->dst_cpu);
5106 activate_task(env->dst_rq, p, 0);
5107 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5108}
5109
029632fb
PZ
5110/*
5111 * Is this task likely cache-hot:
5112 */
5d5e2b1b 5113static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5114{
5115 s64 delta;
5116
5117 if (p->sched_class != &fair_sched_class)
5118 return 0;
5119
5120 if (unlikely(p->policy == SCHED_IDLE))
5121 return 0;
5122
5123 /*
5124 * Buddy candidates are cache hot:
5125 */
5d5e2b1b 5126 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5127 (&p->se == cfs_rq_of(&p->se)->next ||
5128 &p->se == cfs_rq_of(&p->se)->last))
5129 return 1;
5130
5131 if (sysctl_sched_migration_cost == -1)
5132 return 1;
5133 if (sysctl_sched_migration_cost == 0)
5134 return 0;
5135
5d5e2b1b 5136 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5137
5138 return delta < (s64)sysctl_sched_migration_cost;
5139}
5140
3a7053b3
MG
5141#ifdef CONFIG_NUMA_BALANCING
5142/* Returns true if the destination node has incurred more faults */
5143static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5144{
b1ad065e 5145 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5146 int src_nid, dst_nid;
5147
ff1df896 5148 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5149 !(env->sd->flags & SD_NUMA)) {
5150 return false;
5151 }
5152
5153 src_nid = cpu_to_node(env->src_cpu);
5154 dst_nid = cpu_to_node(env->dst_cpu);
5155
83e1d2cd 5156 if (src_nid == dst_nid)
3a7053b3
MG
5157 return false;
5158
b1ad065e
RR
5159 if (numa_group) {
5160 /* Task is already in the group's interleave set. */
5161 if (node_isset(src_nid, numa_group->active_nodes))
5162 return false;
83e1d2cd 5163
b1ad065e
RR
5164 /* Task is moving into the group's interleave set. */
5165 if (node_isset(dst_nid, numa_group->active_nodes))
5166 return true;
83e1d2cd 5167
b1ad065e
RR
5168 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5169 }
5170
5171 /* Encourage migration to the preferred node. */
5172 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5173 return true;
5174
b1ad065e 5175 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5176}
7a0f3083
MG
5177
5178
5179static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5180{
b1ad065e 5181 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5182 int src_nid, dst_nid;
5183
5184 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5185 return false;
5186
ff1df896 5187 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5188 return false;
5189
5190 src_nid = cpu_to_node(env->src_cpu);
5191 dst_nid = cpu_to_node(env->dst_cpu);
5192
83e1d2cd 5193 if (src_nid == dst_nid)
7a0f3083
MG
5194 return false;
5195
b1ad065e
RR
5196 if (numa_group) {
5197 /* Task is moving within/into the group's interleave set. */
5198 if (node_isset(dst_nid, numa_group->active_nodes))
5199 return false;
5200
5201 /* Task is moving out of the group's interleave set. */
5202 if (node_isset(src_nid, numa_group->active_nodes))
5203 return true;
5204
5205 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5206 }
5207
83e1d2cd
MG
5208 /* Migrating away from the preferred node is always bad. */
5209 if (src_nid == p->numa_preferred_nid)
5210 return true;
5211
b1ad065e 5212 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5213}
5214
3a7053b3
MG
5215#else
5216static inline bool migrate_improves_locality(struct task_struct *p,
5217 struct lb_env *env)
5218{
5219 return false;
5220}
7a0f3083
MG
5221
5222static inline bool migrate_degrades_locality(struct task_struct *p,
5223 struct lb_env *env)
5224{
5225 return false;
5226}
3a7053b3
MG
5227#endif
5228
1e3c88bd
PZ
5229/*
5230 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5231 */
5232static
8e45cb54 5233int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5234{
5235 int tsk_cache_hot = 0;
5236 /*
5237 * We do not migrate tasks that are:
d3198084 5238 * 1) throttled_lb_pair, or
1e3c88bd 5239 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5240 * 3) running (obviously), or
5241 * 4) are cache-hot on their current CPU.
1e3c88bd 5242 */
d3198084
JK
5243 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5244 return 0;
5245
ddcdf6e7 5246 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5247 int cpu;
88b8dac0 5248
41acab88 5249 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5250
6263322c
PZ
5251 env->flags |= LBF_SOME_PINNED;
5252
88b8dac0
SV
5253 /*
5254 * Remember if this task can be migrated to any other cpu in
5255 * our sched_group. We may want to revisit it if we couldn't
5256 * meet load balance goals by pulling other tasks on src_cpu.
5257 *
5258 * Also avoid computing new_dst_cpu if we have already computed
5259 * one in current iteration.
5260 */
6263322c 5261 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5262 return 0;
5263
e02e60c1
JK
5264 /* Prevent to re-select dst_cpu via env's cpus */
5265 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5266 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5267 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5268 env->new_dst_cpu = cpu;
5269 break;
5270 }
88b8dac0 5271 }
e02e60c1 5272
1e3c88bd
PZ
5273 return 0;
5274 }
88b8dac0
SV
5275
5276 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5277 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5278
ddcdf6e7 5279 if (task_running(env->src_rq, p)) {
41acab88 5280 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5281 return 0;
5282 }
5283
5284 /*
5285 * Aggressive migration if:
3a7053b3
MG
5286 * 1) destination numa is preferred
5287 * 2) task is cache cold, or
5288 * 3) too many balance attempts have failed.
1e3c88bd 5289 */
5d5e2b1b 5290 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5291 if (!tsk_cache_hot)
5292 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5293
5294 if (migrate_improves_locality(p, env)) {
5295#ifdef CONFIG_SCHEDSTATS
5296 if (tsk_cache_hot) {
5297 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5298 schedstat_inc(p, se.statistics.nr_forced_migrations);
5299 }
5300#endif
5301 return 1;
5302 }
5303
1e3c88bd 5304 if (!tsk_cache_hot ||
8e45cb54 5305 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5306
1e3c88bd 5307 if (tsk_cache_hot) {
8e45cb54 5308 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5309 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5310 }
4e2dcb73 5311
1e3c88bd
PZ
5312 return 1;
5313 }
5314
4e2dcb73
ZH
5315 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5316 return 0;
1e3c88bd
PZ
5317}
5318
897c395f
PZ
5319/*
5320 * move_one_task tries to move exactly one task from busiest to this_rq, as
5321 * part of active balancing operations within "domain".
5322 * Returns 1 if successful and 0 otherwise.
5323 *
5324 * Called with both runqueues locked.
5325 */
8e45cb54 5326static int move_one_task(struct lb_env *env)
897c395f
PZ
5327{
5328 struct task_struct *p, *n;
897c395f 5329
367456c7 5330 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5331 if (!can_migrate_task(p, env))
5332 continue;
897c395f 5333
367456c7
PZ
5334 move_task(p, env);
5335 /*
5336 * Right now, this is only the second place move_task()
5337 * is called, so we can safely collect move_task()
5338 * stats here rather than inside move_task().
5339 */
5340 schedstat_inc(env->sd, lb_gained[env->idle]);
5341 return 1;
897c395f 5342 }
897c395f
PZ
5343 return 0;
5344}
5345
eb95308e
PZ
5346static const unsigned int sched_nr_migrate_break = 32;
5347
5d6523eb 5348/*
bd939f45 5349 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5350 * this_rq, as part of a balancing operation within domain "sd".
5351 * Returns 1 if successful and 0 otherwise.
5352 *
5353 * Called with both runqueues locked.
5354 */
5355static int move_tasks(struct lb_env *env)
1e3c88bd 5356{
5d6523eb
PZ
5357 struct list_head *tasks = &env->src_rq->cfs_tasks;
5358 struct task_struct *p;
367456c7
PZ
5359 unsigned long load;
5360 int pulled = 0;
1e3c88bd 5361
bd939f45 5362 if (env->imbalance <= 0)
5d6523eb 5363 return 0;
1e3c88bd 5364
5d6523eb
PZ
5365 while (!list_empty(tasks)) {
5366 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5367
367456c7
PZ
5368 env->loop++;
5369 /* We've more or less seen every task there is, call it quits */
5d6523eb 5370 if (env->loop > env->loop_max)
367456c7 5371 break;
5d6523eb
PZ
5372
5373 /* take a breather every nr_migrate tasks */
367456c7 5374 if (env->loop > env->loop_break) {
eb95308e 5375 env->loop_break += sched_nr_migrate_break;
8e45cb54 5376 env->flags |= LBF_NEED_BREAK;
ee00e66f 5377 break;
a195f004 5378 }
1e3c88bd 5379
d3198084 5380 if (!can_migrate_task(p, env))
367456c7
PZ
5381 goto next;
5382
5383 load = task_h_load(p);
5d6523eb 5384
eb95308e 5385 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5386 goto next;
5387
bd939f45 5388 if ((load / 2) > env->imbalance)
367456c7 5389 goto next;
1e3c88bd 5390
ddcdf6e7 5391 move_task(p, env);
ee00e66f 5392 pulled++;
bd939f45 5393 env->imbalance -= load;
1e3c88bd
PZ
5394
5395#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5396 /*
5397 * NEWIDLE balancing is a source of latency, so preemptible
5398 * kernels will stop after the first task is pulled to minimize
5399 * the critical section.
5400 */
5d6523eb 5401 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5402 break;
1e3c88bd
PZ
5403#endif
5404
ee00e66f
PZ
5405 /*
5406 * We only want to steal up to the prescribed amount of
5407 * weighted load.
5408 */
bd939f45 5409 if (env->imbalance <= 0)
ee00e66f 5410 break;
367456c7
PZ
5411
5412 continue;
5413next:
5d6523eb 5414 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5415 }
5d6523eb 5416
1e3c88bd 5417 /*
ddcdf6e7
PZ
5418 * Right now, this is one of only two places move_task() is called,
5419 * so we can safely collect move_task() stats here rather than
5420 * inside move_task().
1e3c88bd 5421 */
8e45cb54 5422 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5423
5d6523eb 5424 return pulled;
1e3c88bd
PZ
5425}
5426
230059de 5427#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5428/*
5429 * update tg->load_weight by folding this cpu's load_avg
5430 */
48a16753 5431static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5432{
48a16753
PT
5433 struct sched_entity *se = tg->se[cpu];
5434 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5435
48a16753
PT
5436 /* throttled entities do not contribute to load */
5437 if (throttled_hierarchy(cfs_rq))
5438 return;
9e3081ca 5439
aff3e498 5440 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5441
82958366
PT
5442 if (se) {
5443 update_entity_load_avg(se, 1);
5444 /*
5445 * We pivot on our runnable average having decayed to zero for
5446 * list removal. This generally implies that all our children
5447 * have also been removed (modulo rounding error or bandwidth
5448 * control); however, such cases are rare and we can fix these
5449 * at enqueue.
5450 *
5451 * TODO: fix up out-of-order children on enqueue.
5452 */
5453 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5454 list_del_leaf_cfs_rq(cfs_rq);
5455 } else {
48a16753 5456 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5457 update_rq_runnable_avg(rq, rq->nr_running);
5458 }
9e3081ca
PZ
5459}
5460
48a16753 5461static void update_blocked_averages(int cpu)
9e3081ca 5462{
9e3081ca 5463 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5464 struct cfs_rq *cfs_rq;
5465 unsigned long flags;
9e3081ca 5466
48a16753
PT
5467 raw_spin_lock_irqsave(&rq->lock, flags);
5468 update_rq_clock(rq);
9763b67f
PZ
5469 /*
5470 * Iterates the task_group tree in a bottom up fashion, see
5471 * list_add_leaf_cfs_rq() for details.
5472 */
64660c86 5473 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5474 /*
5475 * Note: We may want to consider periodically releasing
5476 * rq->lock about these updates so that creating many task
5477 * groups does not result in continually extending hold time.
5478 */
5479 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5480 }
48a16753
PT
5481
5482 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5483}
5484
9763b67f 5485/*
68520796 5486 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5487 * This needs to be done in a top-down fashion because the load of a child
5488 * group is a fraction of its parents load.
5489 */
68520796 5490static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5491{
68520796
VD
5492 struct rq *rq = rq_of(cfs_rq);
5493 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5494 unsigned long now = jiffies;
68520796 5495 unsigned long load;
a35b6466 5496
68520796 5497 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5498 return;
5499
68520796
VD
5500 cfs_rq->h_load_next = NULL;
5501 for_each_sched_entity(se) {
5502 cfs_rq = cfs_rq_of(se);
5503 cfs_rq->h_load_next = se;
5504 if (cfs_rq->last_h_load_update == now)
5505 break;
5506 }
a35b6466 5507
68520796 5508 if (!se) {
7e3115ef 5509 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5510 cfs_rq->last_h_load_update = now;
5511 }
5512
5513 while ((se = cfs_rq->h_load_next) != NULL) {
5514 load = cfs_rq->h_load;
5515 load = div64_ul(load * se->avg.load_avg_contrib,
5516 cfs_rq->runnable_load_avg + 1);
5517 cfs_rq = group_cfs_rq(se);
5518 cfs_rq->h_load = load;
5519 cfs_rq->last_h_load_update = now;
5520 }
9763b67f
PZ
5521}
5522
367456c7 5523static unsigned long task_h_load(struct task_struct *p)
230059de 5524{
367456c7 5525 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5526
68520796 5527 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5528 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5529 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5530}
5531#else
48a16753 5532static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5533{
5534}
5535
367456c7 5536static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5537{
a003a25b 5538 return p->se.avg.load_avg_contrib;
1e3c88bd 5539}
230059de 5540#endif
1e3c88bd 5541
1e3c88bd 5542/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5543/*
5544 * sg_lb_stats - stats of a sched_group required for load_balancing
5545 */
5546struct sg_lb_stats {
5547 unsigned long avg_load; /*Avg load across the CPUs of the group */
5548 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5549 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5550 unsigned long load_per_task;
63b2ca30 5551 unsigned long group_capacity;
147c5fc2 5552 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5553 unsigned int group_capacity_factor;
147c5fc2
PZ
5554 unsigned int idle_cpus;
5555 unsigned int group_weight;
1e3c88bd 5556 int group_imb; /* Is there an imbalance in the group ? */
1b6a7495 5557 int group_has_free_capacity;
0ec8aa00
PZ
5558#ifdef CONFIG_NUMA_BALANCING
5559 unsigned int nr_numa_running;
5560 unsigned int nr_preferred_running;
5561#endif
1e3c88bd
PZ
5562};
5563
56cf515b
JK
5564/*
5565 * sd_lb_stats - Structure to store the statistics of a sched_domain
5566 * during load balancing.
5567 */
5568struct sd_lb_stats {
5569 struct sched_group *busiest; /* Busiest group in this sd */
5570 struct sched_group *local; /* Local group in this sd */
5571 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5572 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5573 unsigned long avg_load; /* Average load across all groups in sd */
5574
56cf515b 5575 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5576 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5577};
5578
147c5fc2
PZ
5579static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5580{
5581 /*
5582 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5583 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5584 * We must however clear busiest_stat::avg_load because
5585 * update_sd_pick_busiest() reads this before assignment.
5586 */
5587 *sds = (struct sd_lb_stats){
5588 .busiest = NULL,
5589 .local = NULL,
5590 .total_load = 0UL,
63b2ca30 5591 .total_capacity = 0UL,
147c5fc2
PZ
5592 .busiest_stat = {
5593 .avg_load = 0UL,
5594 },
5595 };
5596}
5597
1e3c88bd
PZ
5598/**
5599 * get_sd_load_idx - Obtain the load index for a given sched domain.
5600 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5601 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5602 *
5603 * Return: The load index.
1e3c88bd
PZ
5604 */
5605static inline int get_sd_load_idx(struct sched_domain *sd,
5606 enum cpu_idle_type idle)
5607{
5608 int load_idx;
5609
5610 switch (idle) {
5611 case CPU_NOT_IDLE:
5612 load_idx = sd->busy_idx;
5613 break;
5614
5615 case CPU_NEWLY_IDLE:
5616 load_idx = sd->newidle_idx;
5617 break;
5618 default:
5619 load_idx = sd->idle_idx;
5620 break;
5621 }
5622
5623 return load_idx;
5624}
5625
ced549fa 5626static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5627{
ca8ce3d0 5628 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5629}
5630
ca8ce3d0 5631unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5632{
ced549fa 5633 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5634}
5635
ced549fa 5636static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5637{
669c55e9 5638 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5639 unsigned long smt_gain = sd->smt_gain;
5640
5641 smt_gain /= weight;
5642
5643 return smt_gain;
5644}
5645
ca8ce3d0 5646unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5647{
ced549fa 5648 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5649}
5650
ced549fa 5651static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5652{
5653 struct rq *rq = cpu_rq(cpu);
b654f7de 5654 u64 total, available, age_stamp, avg;
cadefd3d 5655 s64 delta;
1e3c88bd 5656
b654f7de
PZ
5657 /*
5658 * Since we're reading these variables without serialization make sure
5659 * we read them once before doing sanity checks on them.
5660 */
5661 age_stamp = ACCESS_ONCE(rq->age_stamp);
5662 avg = ACCESS_ONCE(rq->rt_avg);
5663
cadefd3d
PZ
5664 delta = rq_clock(rq) - age_stamp;
5665 if (unlikely(delta < 0))
5666 delta = 0;
5667
5668 total = sched_avg_period() + delta;
aa483808 5669
b654f7de 5670 if (unlikely(total < avg)) {
ced549fa 5671 /* Ensures that capacity won't end up being negative */
aa483808
VP
5672 available = 0;
5673 } else {
b654f7de 5674 available = total - avg;
aa483808 5675 }
1e3c88bd 5676
ca8ce3d0
NP
5677 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5678 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5679
ca8ce3d0 5680 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5681
5682 return div_u64(available, total);
5683}
5684
ced549fa 5685static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5686{
669c55e9 5687 unsigned long weight = sd->span_weight;
ca8ce3d0 5688 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5689 struct sched_group *sdg = sd->groups;
5690
5d4dfddd
NP
5691 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5692 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5693 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5694 else
ced549fa 5695 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5696
ca8ce3d0 5697 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5698 }
5699
ced549fa 5700 sdg->sgc->capacity_orig = capacity;
9d5efe05 5701
5d4dfddd 5702 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5703 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5704 else
ced549fa 5705 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5706
ca8ce3d0 5707 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5708
ced549fa 5709 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5710 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5711
ced549fa
NP
5712 if (!capacity)
5713 capacity = 1;
1e3c88bd 5714
ced549fa
NP
5715 cpu_rq(cpu)->cpu_capacity = capacity;
5716 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5717}
5718
63b2ca30 5719void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5720{
5721 struct sched_domain *child = sd->child;
5722 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5723 unsigned long capacity, capacity_orig;
4ec4412e
VG
5724 unsigned long interval;
5725
5726 interval = msecs_to_jiffies(sd->balance_interval);
5727 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5728 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5729
5730 if (!child) {
ced549fa 5731 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5732 return;
5733 }
5734
63b2ca30 5735 capacity_orig = capacity = 0;
1e3c88bd 5736
74a5ce20
PZ
5737 if (child->flags & SD_OVERLAP) {
5738 /*
5739 * SD_OVERLAP domains cannot assume that child groups
5740 * span the current group.
5741 */
5742
863bffc8 5743 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5744 struct sched_group_capacity *sgc;
9abf24d4 5745 struct rq *rq = cpu_rq(cpu);
863bffc8 5746
9abf24d4 5747 /*
63b2ca30 5748 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5749 * gets here before we've attached the domains to the
5750 * runqueues.
5751 *
ced549fa
NP
5752 * Use capacity_of(), which is set irrespective of domains
5753 * in update_cpu_capacity().
9abf24d4 5754 *
63b2ca30 5755 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5756 * causing divide-by-zero issues on boot.
5757 *
63b2ca30 5758 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5759 */
5760 if (unlikely(!rq->sd)) {
ced549fa
NP
5761 capacity_orig += capacity_of(cpu);
5762 capacity += capacity_of(cpu);
9abf24d4
SD
5763 continue;
5764 }
863bffc8 5765
63b2ca30
NP
5766 sgc = rq->sd->groups->sgc;
5767 capacity_orig += sgc->capacity_orig;
5768 capacity += sgc->capacity;
863bffc8 5769 }
74a5ce20
PZ
5770 } else {
5771 /*
5772 * !SD_OVERLAP domains can assume that child groups
5773 * span the current group.
5774 */
5775
5776 group = child->groups;
5777 do {
63b2ca30
NP
5778 capacity_orig += group->sgc->capacity_orig;
5779 capacity += group->sgc->capacity;
74a5ce20
PZ
5780 group = group->next;
5781 } while (group != child->groups);
5782 }
1e3c88bd 5783
63b2ca30
NP
5784 sdg->sgc->capacity_orig = capacity_orig;
5785 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5786}
5787
9d5efe05
SV
5788/*
5789 * Try and fix up capacity for tiny siblings, this is needed when
5790 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5791 * which on its own isn't powerful enough.
5792 *
5793 * See update_sd_pick_busiest() and check_asym_packing().
5794 */
5795static inline int
5796fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5797{
5798 /*
ca8ce3d0 5799 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5800 */
5d4dfddd 5801 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5802 return 0;
5803
5804 /*
63b2ca30 5805 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5806 */
63b2ca30 5807 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5808 return 1;
5809
5810 return 0;
5811}
5812
30ce5dab
PZ
5813/*
5814 * Group imbalance indicates (and tries to solve) the problem where balancing
5815 * groups is inadequate due to tsk_cpus_allowed() constraints.
5816 *
5817 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5818 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5819 * Something like:
5820 *
5821 * { 0 1 2 3 } { 4 5 6 7 }
5822 * * * * *
5823 *
5824 * If we were to balance group-wise we'd place two tasks in the first group and
5825 * two tasks in the second group. Clearly this is undesired as it will overload
5826 * cpu 3 and leave one of the cpus in the second group unused.
5827 *
5828 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5829 * by noticing the lower domain failed to reach balance and had difficulty
5830 * moving tasks due to affinity constraints.
30ce5dab
PZ
5831 *
5832 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5833 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5834 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5835 * to create an effective group imbalance.
5836 *
5837 * This is a somewhat tricky proposition since the next run might not find the
5838 * group imbalance and decide the groups need to be balanced again. A most
5839 * subtle and fragile situation.
5840 */
5841
6263322c 5842static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5843{
63b2ca30 5844 return group->sgc->imbalance;
30ce5dab
PZ
5845}
5846
b37d9316 5847/*
0fedc6c8 5848 * Compute the group capacity factor.
b37d9316 5849 *
ced549fa 5850 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5851 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5852 * and limit unit capacity with that.
b37d9316 5853 */
0fedc6c8 5854static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5855{
0fedc6c8 5856 unsigned int capacity_factor, smt, cpus;
63b2ca30 5857 unsigned int capacity, capacity_orig;
c61037e9 5858
63b2ca30
NP
5859 capacity = group->sgc->capacity;
5860 capacity_orig = group->sgc->capacity_orig;
c61037e9 5861 cpus = group->group_weight;
b37d9316 5862
63b2ca30 5863 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5864 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5865 capacity_factor = cpus / smt; /* cores */
b37d9316 5866
63b2ca30 5867 capacity_factor = min_t(unsigned,
ca8ce3d0 5868 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5869 if (!capacity_factor)
5870 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5871
0fedc6c8 5872 return capacity_factor;
b37d9316
PZ
5873}
5874
1e3c88bd
PZ
5875/**
5876 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5877 * @env: The load balancing environment.
1e3c88bd 5878 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5879 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5880 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5881 * @sgs: variable to hold the statistics for this group.
5882 */
bd939f45
PZ
5883static inline void update_sg_lb_stats(struct lb_env *env,
5884 struct sched_group *group, int load_idx,
4486edd1
TC
5885 int local_group, struct sg_lb_stats *sgs,
5886 bool *overload)
1e3c88bd 5887{
30ce5dab 5888 unsigned long load;
bd939f45 5889 int i;
1e3c88bd 5890
b72ff13c
PZ
5891 memset(sgs, 0, sizeof(*sgs));
5892
b9403130 5893 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5894 struct rq *rq = cpu_rq(i);
5895
1e3c88bd 5896 /* Bias balancing toward cpus of our domain */
6263322c 5897 if (local_group)
04f733b4 5898 load = target_load(i, load_idx);
6263322c 5899 else
1e3c88bd 5900 load = source_load(i, load_idx);
1e3c88bd
PZ
5901
5902 sgs->group_load += load;
380c9077 5903 sgs->sum_nr_running += rq->nr_running;
4486edd1
TC
5904
5905 if (rq->nr_running > 1)
5906 *overload = true;
5907
0ec8aa00
PZ
5908#ifdef CONFIG_NUMA_BALANCING
5909 sgs->nr_numa_running += rq->nr_numa_running;
5910 sgs->nr_preferred_running += rq->nr_preferred_running;
5911#endif
1e3c88bd 5912 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5913 if (idle_cpu(i))
5914 sgs->idle_cpus++;
1e3c88bd
PZ
5915 }
5916
63b2ca30
NP
5917 /* Adjust by relative CPU capacity of the group */
5918 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 5919 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 5920
dd5feea1 5921 if (sgs->sum_nr_running)
38d0f770 5922 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5923
aae6d3dd 5924 sgs->group_weight = group->group_weight;
fab47622 5925
b37d9316 5926 sgs->group_imb = sg_imbalanced(group);
0fedc6c8 5927 sgs->group_capacity_factor = sg_capacity_factor(env, group);
b37d9316 5928
0fedc6c8 5929 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 5930 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
5931}
5932
532cb4c4
MN
5933/**
5934 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5935 * @env: The load balancing environment.
532cb4c4
MN
5936 * @sds: sched_domain statistics
5937 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5938 * @sgs: sched_group statistics
532cb4c4
MN
5939 *
5940 * Determine if @sg is a busier group than the previously selected
5941 * busiest group.
e69f6186
YB
5942 *
5943 * Return: %true if @sg is a busier group than the previously selected
5944 * busiest group. %false otherwise.
532cb4c4 5945 */
bd939f45 5946static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5947 struct sd_lb_stats *sds,
5948 struct sched_group *sg,
bd939f45 5949 struct sg_lb_stats *sgs)
532cb4c4 5950{
56cf515b 5951 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5952 return false;
5953
0fedc6c8 5954 if (sgs->sum_nr_running > sgs->group_capacity_factor)
532cb4c4
MN
5955 return true;
5956
5957 if (sgs->group_imb)
5958 return true;
5959
5960 /*
5961 * ASYM_PACKING needs to move all the work to the lowest
5962 * numbered CPUs in the group, therefore mark all groups
5963 * higher than ourself as busy.
5964 */
bd939f45
PZ
5965 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5966 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5967 if (!sds->busiest)
5968 return true;
5969
5970 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5971 return true;
5972 }
5973
5974 return false;
5975}
5976
0ec8aa00
PZ
5977#ifdef CONFIG_NUMA_BALANCING
5978static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5979{
5980 if (sgs->sum_nr_running > sgs->nr_numa_running)
5981 return regular;
5982 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5983 return remote;
5984 return all;
5985}
5986
5987static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5988{
5989 if (rq->nr_running > rq->nr_numa_running)
5990 return regular;
5991 if (rq->nr_running > rq->nr_preferred_running)
5992 return remote;
5993 return all;
5994}
5995#else
5996static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5997{
5998 return all;
5999}
6000
6001static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6002{
6003 return regular;
6004}
6005#endif /* CONFIG_NUMA_BALANCING */
6006
1e3c88bd 6007/**
461819ac 6008 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6009 * @env: The load balancing environment.
1e3c88bd
PZ
6010 * @sds: variable to hold the statistics for this sched_domain.
6011 */
0ec8aa00 6012static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6013{
bd939f45
PZ
6014 struct sched_domain *child = env->sd->child;
6015 struct sched_group *sg = env->sd->groups;
56cf515b 6016 struct sg_lb_stats tmp_sgs;
1e3c88bd 6017 int load_idx, prefer_sibling = 0;
4486edd1 6018 bool overload = false;
1e3c88bd
PZ
6019
6020 if (child && child->flags & SD_PREFER_SIBLING)
6021 prefer_sibling = 1;
6022
bd939f45 6023 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6024
6025 do {
56cf515b 6026 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6027 int local_group;
6028
bd939f45 6029 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6030 if (local_group) {
6031 sds->local = sg;
6032 sgs = &sds->local_stat;
b72ff13c
PZ
6033
6034 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6035 time_after_eq(jiffies, sg->sgc->next_update))
6036 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6037 }
1e3c88bd 6038
4486edd1
TC
6039 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6040 &overload);
1e3c88bd 6041
b72ff13c
PZ
6042 if (local_group)
6043 goto next_group;
6044
1e3c88bd
PZ
6045 /*
6046 * In case the child domain prefers tasks go to siblings
0fedc6c8 6047 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6048 * and move all the excess tasks away. We lower the capacity
6049 * of a group only if the local group has the capacity to fit
0fedc6c8 6050 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6051 * extra check prevents the case where you always pull from the
6052 * heaviest group when it is already under-utilized (possible
6053 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6054 */
b72ff13c 6055 if (prefer_sibling && sds->local &&
1b6a7495 6056 sds->local_stat.group_has_free_capacity)
0fedc6c8 6057 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6058
b72ff13c 6059 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6060 sds->busiest = sg;
56cf515b 6061 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6062 }
6063
b72ff13c
PZ
6064next_group:
6065 /* Now, start updating sd_lb_stats */
6066 sds->total_load += sgs->group_load;
63b2ca30 6067 sds->total_capacity += sgs->group_capacity;
b72ff13c 6068
532cb4c4 6069 sg = sg->next;
bd939f45 6070 } while (sg != env->sd->groups);
0ec8aa00
PZ
6071
6072 if (env->sd->flags & SD_NUMA)
6073 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6074
6075 if (!env->sd->parent) {
6076 /* update overload indicator if we are at root domain */
6077 if (env->dst_rq->rd->overload != overload)
6078 env->dst_rq->rd->overload = overload;
6079 }
6080
532cb4c4
MN
6081}
6082
532cb4c4
MN
6083/**
6084 * check_asym_packing - Check to see if the group is packed into the
6085 * sched doman.
6086 *
6087 * This is primarily intended to used at the sibling level. Some
6088 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6089 * case of POWER7, it can move to lower SMT modes only when higher
6090 * threads are idle. When in lower SMT modes, the threads will
6091 * perform better since they share less core resources. Hence when we
6092 * have idle threads, we want them to be the higher ones.
6093 *
6094 * This packing function is run on idle threads. It checks to see if
6095 * the busiest CPU in this domain (core in the P7 case) has a higher
6096 * CPU number than the packing function is being run on. Here we are
6097 * assuming lower CPU number will be equivalent to lower a SMT thread
6098 * number.
6099 *
e69f6186 6100 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6101 * this CPU. The amount of the imbalance is returned in *imbalance.
6102 *
cd96891d 6103 * @env: The load balancing environment.
532cb4c4 6104 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6105 */
bd939f45 6106static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6107{
6108 int busiest_cpu;
6109
bd939f45 6110 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6111 return 0;
6112
6113 if (!sds->busiest)
6114 return 0;
6115
6116 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6117 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6118 return 0;
6119
bd939f45 6120 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6121 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6122 SCHED_CAPACITY_SCALE);
bd939f45 6123
532cb4c4 6124 return 1;
1e3c88bd
PZ
6125}
6126
6127/**
6128 * fix_small_imbalance - Calculate the minor imbalance that exists
6129 * amongst the groups of a sched_domain, during
6130 * load balancing.
cd96891d 6131 * @env: The load balancing environment.
1e3c88bd 6132 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6133 */
bd939f45
PZ
6134static inline
6135void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6136{
63b2ca30 6137 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6138 unsigned int imbn = 2;
dd5feea1 6139 unsigned long scaled_busy_load_per_task;
56cf515b 6140 struct sg_lb_stats *local, *busiest;
1e3c88bd 6141
56cf515b
JK
6142 local = &sds->local_stat;
6143 busiest = &sds->busiest_stat;
1e3c88bd 6144
56cf515b
JK
6145 if (!local->sum_nr_running)
6146 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6147 else if (busiest->load_per_task > local->load_per_task)
6148 imbn = 1;
dd5feea1 6149
56cf515b 6150 scaled_busy_load_per_task =
ca8ce3d0 6151 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6152 busiest->group_capacity;
56cf515b 6153
3029ede3
VD
6154 if (busiest->avg_load + scaled_busy_load_per_task >=
6155 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6156 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6157 return;
6158 }
6159
6160 /*
6161 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6162 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6163 * moving them.
6164 */
6165
63b2ca30 6166 capa_now += busiest->group_capacity *
56cf515b 6167 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6168 capa_now += local->group_capacity *
56cf515b 6169 min(local->load_per_task, local->avg_load);
ca8ce3d0 6170 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6171
6172 /* Amount of load we'd subtract */
a2cd4260 6173 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6174 capa_move += busiest->group_capacity *
56cf515b 6175 min(busiest->load_per_task,
a2cd4260 6176 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6177 }
1e3c88bd
PZ
6178
6179 /* Amount of load we'd add */
63b2ca30 6180 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6181 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6182 tmp = (busiest->avg_load * busiest->group_capacity) /
6183 local->group_capacity;
56cf515b 6184 } else {
ca8ce3d0 6185 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6186 local->group_capacity;
56cf515b 6187 }
63b2ca30 6188 capa_move += local->group_capacity *
3ae11c90 6189 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6190 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6191
6192 /* Move if we gain throughput */
63b2ca30 6193 if (capa_move > capa_now)
56cf515b 6194 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6195}
6196
6197/**
6198 * calculate_imbalance - Calculate the amount of imbalance present within the
6199 * groups of a given sched_domain during load balance.
bd939f45 6200 * @env: load balance environment
1e3c88bd 6201 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6202 */
bd939f45 6203static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6204{
dd5feea1 6205 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6206 struct sg_lb_stats *local, *busiest;
6207
6208 local = &sds->local_stat;
56cf515b 6209 busiest = &sds->busiest_stat;
dd5feea1 6210
56cf515b 6211 if (busiest->group_imb) {
30ce5dab
PZ
6212 /*
6213 * In the group_imb case we cannot rely on group-wide averages
6214 * to ensure cpu-load equilibrium, look at wider averages. XXX
6215 */
56cf515b
JK
6216 busiest->load_per_task =
6217 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6218 }
6219
1e3c88bd
PZ
6220 /*
6221 * In the presence of smp nice balancing, certain scenarios can have
6222 * max load less than avg load(as we skip the groups at or below
ced549fa 6223 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6224 */
b1885550
VD
6225 if (busiest->avg_load <= sds->avg_load ||
6226 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6227 env->imbalance = 0;
6228 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6229 }
6230
56cf515b 6231 if (!busiest->group_imb) {
dd5feea1
SS
6232 /*
6233 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6234 * Except of course for the group_imb case, since then we might
6235 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6236 */
56cf515b 6237 load_above_capacity =
0fedc6c8 6238 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6239
ca8ce3d0 6240 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6241 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6242 }
6243
6244 /*
6245 * We're trying to get all the cpus to the average_load, so we don't
6246 * want to push ourselves above the average load, nor do we wish to
6247 * reduce the max loaded cpu below the average load. At the same time,
6248 * we also don't want to reduce the group load below the group capacity
6249 * (so that we can implement power-savings policies etc). Thus we look
6250 * for the minimum possible imbalance.
dd5feea1 6251 */
30ce5dab 6252 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6253
6254 /* How much load to actually move to equalise the imbalance */
56cf515b 6255 env->imbalance = min(
63b2ca30
NP
6256 max_pull * busiest->group_capacity,
6257 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6258 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6259
6260 /*
6261 * if *imbalance is less than the average load per runnable task
25985edc 6262 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6263 * a think about bumping its value to force at least one task to be
6264 * moved
6265 */
56cf515b 6266 if (env->imbalance < busiest->load_per_task)
bd939f45 6267 return fix_small_imbalance(env, sds);
1e3c88bd 6268}
fab47622 6269
1e3c88bd
PZ
6270/******* find_busiest_group() helpers end here *********************/
6271
6272/**
6273 * find_busiest_group - Returns the busiest group within the sched_domain
6274 * if there is an imbalance. If there isn't an imbalance, and
6275 * the user has opted for power-savings, it returns a group whose
6276 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6277 * such a group exists.
6278 *
6279 * Also calculates the amount of weighted load which should be moved
6280 * to restore balance.
6281 *
cd96891d 6282 * @env: The load balancing environment.
1e3c88bd 6283 *
e69f6186 6284 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6285 * - If no imbalance and user has opted for power-savings balance,
6286 * return the least loaded group whose CPUs can be
6287 * put to idle by rebalancing its tasks onto our group.
6288 */
56cf515b 6289static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6290{
56cf515b 6291 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6292 struct sd_lb_stats sds;
6293
147c5fc2 6294 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6295
6296 /*
6297 * Compute the various statistics relavent for load balancing at
6298 * this level.
6299 */
23f0d209 6300 update_sd_lb_stats(env, &sds);
56cf515b
JK
6301 local = &sds.local_stat;
6302 busiest = &sds.busiest_stat;
1e3c88bd 6303
bd939f45
PZ
6304 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6305 check_asym_packing(env, &sds))
532cb4c4
MN
6306 return sds.busiest;
6307
cc57aa8f 6308 /* There is no busy sibling group to pull tasks from */
56cf515b 6309 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6310 goto out_balanced;
6311
ca8ce3d0
NP
6312 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6313 / sds.total_capacity;
b0432d8f 6314
866ab43e
PZ
6315 /*
6316 * If the busiest group is imbalanced the below checks don't
30ce5dab 6317 * work because they assume all things are equal, which typically
866ab43e
PZ
6318 * isn't true due to cpus_allowed constraints and the like.
6319 */
56cf515b 6320 if (busiest->group_imb)
866ab43e
PZ
6321 goto force_balance;
6322
cc57aa8f 6323 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6324 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6325 !busiest->group_has_free_capacity)
fab47622
NR
6326 goto force_balance;
6327
cc57aa8f
PZ
6328 /*
6329 * If the local group is more busy than the selected busiest group
6330 * don't try and pull any tasks.
6331 */
56cf515b 6332 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6333 goto out_balanced;
6334
cc57aa8f
PZ
6335 /*
6336 * Don't pull any tasks if this group is already above the domain
6337 * average load.
6338 */
56cf515b 6339 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6340 goto out_balanced;
6341
bd939f45 6342 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6343 /*
6344 * This cpu is idle. If the busiest group load doesn't
6345 * have more tasks than the number of available cpu's and
6346 * there is no imbalance between this and busiest group
6347 * wrt to idle cpu's, it is balanced.
6348 */
56cf515b
JK
6349 if ((local->idle_cpus < busiest->idle_cpus) &&
6350 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6351 goto out_balanced;
c186fafe
PZ
6352 } else {
6353 /*
6354 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6355 * imbalance_pct to be conservative.
6356 */
56cf515b
JK
6357 if (100 * busiest->avg_load <=
6358 env->sd->imbalance_pct * local->avg_load)
c186fafe 6359 goto out_balanced;
aae6d3dd 6360 }
1e3c88bd 6361
fab47622 6362force_balance:
1e3c88bd 6363 /* Looks like there is an imbalance. Compute it */
bd939f45 6364 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6365 return sds.busiest;
6366
6367out_balanced:
bd939f45 6368 env->imbalance = 0;
1e3c88bd
PZ
6369 return NULL;
6370}
6371
6372/*
6373 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6374 */
bd939f45 6375static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6376 struct sched_group *group)
1e3c88bd
PZ
6377{
6378 struct rq *busiest = NULL, *rq;
ced549fa 6379 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6380 int i;
6381
6906a408 6382 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6383 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6384 enum fbq_type rt;
6385
6386 rq = cpu_rq(i);
6387 rt = fbq_classify_rq(rq);
1e3c88bd 6388
0ec8aa00
PZ
6389 /*
6390 * We classify groups/runqueues into three groups:
6391 * - regular: there are !numa tasks
6392 * - remote: there are numa tasks that run on the 'wrong' node
6393 * - all: there is no distinction
6394 *
6395 * In order to avoid migrating ideally placed numa tasks,
6396 * ignore those when there's better options.
6397 *
6398 * If we ignore the actual busiest queue to migrate another
6399 * task, the next balance pass can still reduce the busiest
6400 * queue by moving tasks around inside the node.
6401 *
6402 * If we cannot move enough load due to this classification
6403 * the next pass will adjust the group classification and
6404 * allow migration of more tasks.
6405 *
6406 * Both cases only affect the total convergence complexity.
6407 */
6408 if (rt > env->fbq_type)
6409 continue;
6410
ced549fa 6411 capacity = capacity_of(i);
ca8ce3d0 6412 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6413 if (!capacity_factor)
6414 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6415
6e40f5bb 6416 wl = weighted_cpuload(i);
1e3c88bd 6417
6e40f5bb
TG
6418 /*
6419 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6420 * which is not scaled with the cpu capacity.
6e40f5bb 6421 */
0fedc6c8 6422 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6423 continue;
6424
6e40f5bb
TG
6425 /*
6426 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6427 * the weighted_cpuload() scaled with the cpu capacity, so
6428 * that the load can be moved away from the cpu that is
6429 * potentially running at a lower capacity.
95a79b80 6430 *
ced549fa 6431 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6432 * multiplication to rid ourselves of the division works out
ced549fa
NP
6433 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6434 * our previous maximum.
6e40f5bb 6435 */
ced549fa 6436 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6437 busiest_load = wl;
ced549fa 6438 busiest_capacity = capacity;
1e3c88bd
PZ
6439 busiest = rq;
6440 }
6441 }
6442
6443 return busiest;
6444}
6445
6446/*
6447 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6448 * so long as it is large enough.
6449 */
6450#define MAX_PINNED_INTERVAL 512
6451
6452/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6453DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6454
bd939f45 6455static int need_active_balance(struct lb_env *env)
1af3ed3d 6456{
bd939f45
PZ
6457 struct sched_domain *sd = env->sd;
6458
6459 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6460
6461 /*
6462 * ASYM_PACKING needs to force migrate tasks from busy but
6463 * higher numbered CPUs in order to pack all tasks in the
6464 * lowest numbered CPUs.
6465 */
bd939f45 6466 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6467 return 1;
1af3ed3d
PZ
6468 }
6469
6470 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6471}
6472
969c7921
TH
6473static int active_load_balance_cpu_stop(void *data);
6474
23f0d209
JK
6475static int should_we_balance(struct lb_env *env)
6476{
6477 struct sched_group *sg = env->sd->groups;
6478 struct cpumask *sg_cpus, *sg_mask;
6479 int cpu, balance_cpu = -1;
6480
6481 /*
6482 * In the newly idle case, we will allow all the cpu's
6483 * to do the newly idle load balance.
6484 */
6485 if (env->idle == CPU_NEWLY_IDLE)
6486 return 1;
6487
6488 sg_cpus = sched_group_cpus(sg);
6489 sg_mask = sched_group_mask(sg);
6490 /* Try to find first idle cpu */
6491 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6492 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6493 continue;
6494
6495 balance_cpu = cpu;
6496 break;
6497 }
6498
6499 if (balance_cpu == -1)
6500 balance_cpu = group_balance_cpu(sg);
6501
6502 /*
6503 * First idle cpu or the first cpu(busiest) in this sched group
6504 * is eligible for doing load balancing at this and above domains.
6505 */
b0cff9d8 6506 return balance_cpu == env->dst_cpu;
23f0d209
JK
6507}
6508
1e3c88bd
PZ
6509/*
6510 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6511 * tasks if there is an imbalance.
6512 */
6513static int load_balance(int this_cpu, struct rq *this_rq,
6514 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6515 int *continue_balancing)
1e3c88bd 6516{
88b8dac0 6517 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6518 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6519 struct sched_group *group;
1e3c88bd
PZ
6520 struct rq *busiest;
6521 unsigned long flags;
e6252c3e 6522 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6523
8e45cb54
PZ
6524 struct lb_env env = {
6525 .sd = sd,
ddcdf6e7
PZ
6526 .dst_cpu = this_cpu,
6527 .dst_rq = this_rq,
88b8dac0 6528 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6529 .idle = idle,
eb95308e 6530 .loop_break = sched_nr_migrate_break,
b9403130 6531 .cpus = cpus,
0ec8aa00 6532 .fbq_type = all,
8e45cb54
PZ
6533 };
6534
cfc03118
JK
6535 /*
6536 * For NEWLY_IDLE load_balancing, we don't need to consider
6537 * other cpus in our group
6538 */
e02e60c1 6539 if (idle == CPU_NEWLY_IDLE)
cfc03118 6540 env.dst_grpmask = NULL;
cfc03118 6541
1e3c88bd
PZ
6542 cpumask_copy(cpus, cpu_active_mask);
6543
1e3c88bd
PZ
6544 schedstat_inc(sd, lb_count[idle]);
6545
6546redo:
23f0d209
JK
6547 if (!should_we_balance(&env)) {
6548 *continue_balancing = 0;
1e3c88bd 6549 goto out_balanced;
23f0d209 6550 }
1e3c88bd 6551
23f0d209 6552 group = find_busiest_group(&env);
1e3c88bd
PZ
6553 if (!group) {
6554 schedstat_inc(sd, lb_nobusyg[idle]);
6555 goto out_balanced;
6556 }
6557
b9403130 6558 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6559 if (!busiest) {
6560 schedstat_inc(sd, lb_nobusyq[idle]);
6561 goto out_balanced;
6562 }
6563
78feefc5 6564 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6565
bd939f45 6566 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6567
6568 ld_moved = 0;
6569 if (busiest->nr_running > 1) {
6570 /*
6571 * Attempt to move tasks. If find_busiest_group has found
6572 * an imbalance but busiest->nr_running <= 1, the group is
6573 * still unbalanced. ld_moved simply stays zero, so it is
6574 * correctly treated as an imbalance.
6575 */
8e45cb54 6576 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6577 env.src_cpu = busiest->cpu;
6578 env.src_rq = busiest;
6579 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6580
5d6523eb 6581more_balance:
1e3c88bd 6582 local_irq_save(flags);
78feefc5 6583 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6584
6585 /*
6586 * cur_ld_moved - load moved in current iteration
6587 * ld_moved - cumulative load moved across iterations
6588 */
6589 cur_ld_moved = move_tasks(&env);
6590 ld_moved += cur_ld_moved;
78feefc5 6591 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6592 local_irq_restore(flags);
6593
6594 /*
6595 * some other cpu did the load balance for us.
6596 */
88b8dac0
SV
6597 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6598 resched_cpu(env.dst_cpu);
6599
f1cd0858
JK
6600 if (env.flags & LBF_NEED_BREAK) {
6601 env.flags &= ~LBF_NEED_BREAK;
6602 goto more_balance;
6603 }
6604
88b8dac0
SV
6605 /*
6606 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6607 * us and move them to an alternate dst_cpu in our sched_group
6608 * where they can run. The upper limit on how many times we
6609 * iterate on same src_cpu is dependent on number of cpus in our
6610 * sched_group.
6611 *
6612 * This changes load balance semantics a bit on who can move
6613 * load to a given_cpu. In addition to the given_cpu itself
6614 * (or a ilb_cpu acting on its behalf where given_cpu is
6615 * nohz-idle), we now have balance_cpu in a position to move
6616 * load to given_cpu. In rare situations, this may cause
6617 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6618 * _independently_ and at _same_ time to move some load to
6619 * given_cpu) causing exceess load to be moved to given_cpu.
6620 * This however should not happen so much in practice and
6621 * moreover subsequent load balance cycles should correct the
6622 * excess load moved.
6623 */
6263322c 6624 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6625
7aff2e3a
VD
6626 /* Prevent to re-select dst_cpu via env's cpus */
6627 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6628
78feefc5 6629 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6630 env.dst_cpu = env.new_dst_cpu;
6263322c 6631 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6632 env.loop = 0;
6633 env.loop_break = sched_nr_migrate_break;
e02e60c1 6634
88b8dac0
SV
6635 /*
6636 * Go back to "more_balance" rather than "redo" since we
6637 * need to continue with same src_cpu.
6638 */
6639 goto more_balance;
6640 }
1e3c88bd 6641
6263322c
PZ
6642 /*
6643 * We failed to reach balance because of affinity.
6644 */
6645 if (sd_parent) {
63b2ca30 6646 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c
PZ
6647
6648 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6649 *group_imbalance = 1;
6650 } else if (*group_imbalance)
6651 *group_imbalance = 0;
6652 }
6653
1e3c88bd 6654 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6655 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6656 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6657 if (!cpumask_empty(cpus)) {
6658 env.loop = 0;
6659 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6660 goto redo;
bbf18b19 6661 }
1e3c88bd
PZ
6662 goto out_balanced;
6663 }
6664 }
6665
6666 if (!ld_moved) {
6667 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6668 /*
6669 * Increment the failure counter only on periodic balance.
6670 * We do not want newidle balance, which can be very
6671 * frequent, pollute the failure counter causing
6672 * excessive cache_hot migrations and active balances.
6673 */
6674 if (idle != CPU_NEWLY_IDLE)
6675 sd->nr_balance_failed++;
1e3c88bd 6676
bd939f45 6677 if (need_active_balance(&env)) {
1e3c88bd
PZ
6678 raw_spin_lock_irqsave(&busiest->lock, flags);
6679
969c7921
TH
6680 /* don't kick the active_load_balance_cpu_stop,
6681 * if the curr task on busiest cpu can't be
6682 * moved to this_cpu
1e3c88bd
PZ
6683 */
6684 if (!cpumask_test_cpu(this_cpu,
fa17b507 6685 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6686 raw_spin_unlock_irqrestore(&busiest->lock,
6687 flags);
8e45cb54 6688 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6689 goto out_one_pinned;
6690 }
6691
969c7921
TH
6692 /*
6693 * ->active_balance synchronizes accesses to
6694 * ->active_balance_work. Once set, it's cleared
6695 * only after active load balance is finished.
6696 */
1e3c88bd
PZ
6697 if (!busiest->active_balance) {
6698 busiest->active_balance = 1;
6699 busiest->push_cpu = this_cpu;
6700 active_balance = 1;
6701 }
6702 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6703
bd939f45 6704 if (active_balance) {
969c7921
TH
6705 stop_one_cpu_nowait(cpu_of(busiest),
6706 active_load_balance_cpu_stop, busiest,
6707 &busiest->active_balance_work);
bd939f45 6708 }
1e3c88bd
PZ
6709
6710 /*
6711 * We've kicked active balancing, reset the failure
6712 * counter.
6713 */
6714 sd->nr_balance_failed = sd->cache_nice_tries+1;
6715 }
6716 } else
6717 sd->nr_balance_failed = 0;
6718
6719 if (likely(!active_balance)) {
6720 /* We were unbalanced, so reset the balancing interval */
6721 sd->balance_interval = sd->min_interval;
6722 } else {
6723 /*
6724 * If we've begun active balancing, start to back off. This
6725 * case may not be covered by the all_pinned logic if there
6726 * is only 1 task on the busy runqueue (because we don't call
6727 * move_tasks).
6728 */
6729 if (sd->balance_interval < sd->max_interval)
6730 sd->balance_interval *= 2;
6731 }
6732
1e3c88bd
PZ
6733 goto out;
6734
6735out_balanced:
6736 schedstat_inc(sd, lb_balanced[idle]);
6737
6738 sd->nr_balance_failed = 0;
6739
6740out_one_pinned:
6741 /* tune up the balancing interval */
8e45cb54 6742 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6743 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6744 (sd->balance_interval < sd->max_interval))
6745 sd->balance_interval *= 2;
6746
46e49b38 6747 ld_moved = 0;
1e3c88bd 6748out:
1e3c88bd
PZ
6749 return ld_moved;
6750}
6751
52a08ef1
JL
6752static inline unsigned long
6753get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6754{
6755 unsigned long interval = sd->balance_interval;
6756
6757 if (cpu_busy)
6758 interval *= sd->busy_factor;
6759
6760 /* scale ms to jiffies */
6761 interval = msecs_to_jiffies(interval);
6762 interval = clamp(interval, 1UL, max_load_balance_interval);
6763
6764 return interval;
6765}
6766
6767static inline void
6768update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6769{
6770 unsigned long interval, next;
6771
6772 interval = get_sd_balance_interval(sd, cpu_busy);
6773 next = sd->last_balance + interval;
6774
6775 if (time_after(*next_balance, next))
6776 *next_balance = next;
6777}
6778
1e3c88bd
PZ
6779/*
6780 * idle_balance is called by schedule() if this_cpu is about to become
6781 * idle. Attempts to pull tasks from other CPUs.
6782 */
6e83125c 6783static int idle_balance(struct rq *this_rq)
1e3c88bd 6784{
52a08ef1
JL
6785 unsigned long next_balance = jiffies + HZ;
6786 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6787 struct sched_domain *sd;
6788 int pulled_task = 0;
9bd721c5 6789 u64 curr_cost = 0;
1e3c88bd 6790
6e83125c 6791 idle_enter_fair(this_rq);
0e5b5337 6792
6e83125c
PZ
6793 /*
6794 * We must set idle_stamp _before_ calling idle_balance(), such that we
6795 * measure the duration of idle_balance() as idle time.
6796 */
6797 this_rq->idle_stamp = rq_clock(this_rq);
6798
4486edd1
TC
6799 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6800 !this_rq->rd->overload) {
52a08ef1
JL
6801 rcu_read_lock();
6802 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6803 if (sd)
6804 update_next_balance(sd, 0, &next_balance);
6805 rcu_read_unlock();
6806
6e83125c 6807 goto out;
52a08ef1 6808 }
1e3c88bd 6809
f492e12e
PZ
6810 /*
6811 * Drop the rq->lock, but keep IRQ/preempt disabled.
6812 */
6813 raw_spin_unlock(&this_rq->lock);
6814
48a16753 6815 update_blocked_averages(this_cpu);
dce840a0 6816 rcu_read_lock();
1e3c88bd 6817 for_each_domain(this_cpu, sd) {
23f0d209 6818 int continue_balancing = 1;
9bd721c5 6819 u64 t0, domain_cost;
1e3c88bd
PZ
6820
6821 if (!(sd->flags & SD_LOAD_BALANCE))
6822 continue;
6823
52a08ef1
JL
6824 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6825 update_next_balance(sd, 0, &next_balance);
9bd721c5 6826 break;
52a08ef1 6827 }
9bd721c5 6828
f492e12e 6829 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6830 t0 = sched_clock_cpu(this_cpu);
6831
f492e12e 6832 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6833 sd, CPU_NEWLY_IDLE,
6834 &continue_balancing);
9bd721c5
JL
6835
6836 domain_cost = sched_clock_cpu(this_cpu) - t0;
6837 if (domain_cost > sd->max_newidle_lb_cost)
6838 sd->max_newidle_lb_cost = domain_cost;
6839
6840 curr_cost += domain_cost;
f492e12e 6841 }
1e3c88bd 6842
52a08ef1 6843 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6844
6845 /*
6846 * Stop searching for tasks to pull if there are
6847 * now runnable tasks on this rq.
6848 */
6849 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6850 break;
1e3c88bd 6851 }
dce840a0 6852 rcu_read_unlock();
f492e12e
PZ
6853
6854 raw_spin_lock(&this_rq->lock);
6855
0e5b5337
JL
6856 if (curr_cost > this_rq->max_idle_balance_cost)
6857 this_rq->max_idle_balance_cost = curr_cost;
6858
e5fc6611 6859 /*
0e5b5337
JL
6860 * While browsing the domains, we released the rq lock, a task could
6861 * have been enqueued in the meantime. Since we're not going idle,
6862 * pretend we pulled a task.
e5fc6611 6863 */
0e5b5337 6864 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6865 pulled_task = 1;
e5fc6611 6866
52a08ef1
JL
6867out:
6868 /* Move the next balance forward */
6869 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6870 this_rq->next_balance = next_balance;
9bd721c5 6871
e4aa358b 6872 /* Is there a task of a high priority class? */
46383648 6873 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6874 pulled_task = -1;
6875
6876 if (pulled_task) {
6877 idle_exit_fair(this_rq);
6e83125c 6878 this_rq->idle_stamp = 0;
e4aa358b 6879 }
6e83125c 6880
3c4017c1 6881 return pulled_task;
1e3c88bd
PZ
6882}
6883
6884/*
969c7921
TH
6885 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6886 * running tasks off the busiest CPU onto idle CPUs. It requires at
6887 * least 1 task to be running on each physical CPU where possible, and
6888 * avoids physical / logical imbalances.
1e3c88bd 6889 */
969c7921 6890static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6891{
969c7921
TH
6892 struct rq *busiest_rq = data;
6893 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6894 int target_cpu = busiest_rq->push_cpu;
969c7921 6895 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6896 struct sched_domain *sd;
969c7921
TH
6897
6898 raw_spin_lock_irq(&busiest_rq->lock);
6899
6900 /* make sure the requested cpu hasn't gone down in the meantime */
6901 if (unlikely(busiest_cpu != smp_processor_id() ||
6902 !busiest_rq->active_balance))
6903 goto out_unlock;
1e3c88bd
PZ
6904
6905 /* Is there any task to move? */
6906 if (busiest_rq->nr_running <= 1)
969c7921 6907 goto out_unlock;
1e3c88bd
PZ
6908
6909 /*
6910 * This condition is "impossible", if it occurs
6911 * we need to fix it. Originally reported by
6912 * Bjorn Helgaas on a 128-cpu setup.
6913 */
6914 BUG_ON(busiest_rq == target_rq);
6915
6916 /* move a task from busiest_rq to target_rq */
6917 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6918
6919 /* Search for an sd spanning us and the target CPU. */
dce840a0 6920 rcu_read_lock();
1e3c88bd
PZ
6921 for_each_domain(target_cpu, sd) {
6922 if ((sd->flags & SD_LOAD_BALANCE) &&
6923 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6924 break;
6925 }
6926
6927 if (likely(sd)) {
8e45cb54
PZ
6928 struct lb_env env = {
6929 .sd = sd,
ddcdf6e7
PZ
6930 .dst_cpu = target_cpu,
6931 .dst_rq = target_rq,
6932 .src_cpu = busiest_rq->cpu,
6933 .src_rq = busiest_rq,
8e45cb54
PZ
6934 .idle = CPU_IDLE,
6935 };
6936
1e3c88bd
PZ
6937 schedstat_inc(sd, alb_count);
6938
8e45cb54 6939 if (move_one_task(&env))
1e3c88bd
PZ
6940 schedstat_inc(sd, alb_pushed);
6941 else
6942 schedstat_inc(sd, alb_failed);
6943 }
dce840a0 6944 rcu_read_unlock();
1e3c88bd 6945 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6946out_unlock:
6947 busiest_rq->active_balance = 0;
6948 raw_spin_unlock_irq(&busiest_rq->lock);
6949 return 0;
1e3c88bd
PZ
6950}
6951
d987fc7f
MG
6952static inline int on_null_domain(struct rq *rq)
6953{
6954 return unlikely(!rcu_dereference_sched(rq->sd));
6955}
6956
3451d024 6957#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6958/*
6959 * idle load balancing details
83cd4fe2
VP
6960 * - When one of the busy CPUs notice that there may be an idle rebalancing
6961 * needed, they will kick the idle load balancer, which then does idle
6962 * load balancing for all the idle CPUs.
6963 */
1e3c88bd 6964static struct {
83cd4fe2 6965 cpumask_var_t idle_cpus_mask;
0b005cf5 6966 atomic_t nr_cpus;
83cd4fe2
VP
6967 unsigned long next_balance; /* in jiffy units */
6968} nohz ____cacheline_aligned;
1e3c88bd 6969
3dd0337d 6970static inline int find_new_ilb(void)
1e3c88bd 6971{
0b005cf5 6972 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6973
786d6dc7
SS
6974 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6975 return ilb;
6976
6977 return nr_cpu_ids;
1e3c88bd 6978}
1e3c88bd 6979
83cd4fe2
VP
6980/*
6981 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6982 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6983 * CPU (if there is one).
6984 */
0aeeeeba 6985static void nohz_balancer_kick(void)
83cd4fe2
VP
6986{
6987 int ilb_cpu;
6988
6989 nohz.next_balance++;
6990
3dd0337d 6991 ilb_cpu = find_new_ilb();
83cd4fe2 6992
0b005cf5
SS
6993 if (ilb_cpu >= nr_cpu_ids)
6994 return;
83cd4fe2 6995
cd490c5b 6996 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6997 return;
6998 /*
6999 * Use smp_send_reschedule() instead of resched_cpu().
7000 * This way we generate a sched IPI on the target cpu which
7001 * is idle. And the softirq performing nohz idle load balance
7002 * will be run before returning from the IPI.
7003 */
7004 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7005 return;
7006}
7007
c1cc017c 7008static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7009{
7010 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7011 /*
7012 * Completely isolated CPUs don't ever set, so we must test.
7013 */
7014 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7015 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7016 atomic_dec(&nohz.nr_cpus);
7017 }
71325960
SS
7018 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7019 }
7020}
7021
69e1e811
SS
7022static inline void set_cpu_sd_state_busy(void)
7023{
7024 struct sched_domain *sd;
37dc6b50 7025 int cpu = smp_processor_id();
69e1e811 7026
69e1e811 7027 rcu_read_lock();
37dc6b50 7028 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7029
7030 if (!sd || !sd->nohz_idle)
7031 goto unlock;
7032 sd->nohz_idle = 0;
7033
63b2ca30 7034 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7035unlock:
69e1e811
SS
7036 rcu_read_unlock();
7037}
7038
7039void set_cpu_sd_state_idle(void)
7040{
7041 struct sched_domain *sd;
37dc6b50 7042 int cpu = smp_processor_id();
69e1e811 7043
69e1e811 7044 rcu_read_lock();
37dc6b50 7045 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7046
7047 if (!sd || sd->nohz_idle)
7048 goto unlock;
7049 sd->nohz_idle = 1;
7050
63b2ca30 7051 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7052unlock:
69e1e811
SS
7053 rcu_read_unlock();
7054}
7055
1e3c88bd 7056/*
c1cc017c 7057 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7058 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7059 */
c1cc017c 7060void nohz_balance_enter_idle(int cpu)
1e3c88bd 7061{
71325960
SS
7062 /*
7063 * If this cpu is going down, then nothing needs to be done.
7064 */
7065 if (!cpu_active(cpu))
7066 return;
7067
c1cc017c
AS
7068 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7069 return;
1e3c88bd 7070
d987fc7f
MG
7071 /*
7072 * If we're a completely isolated CPU, we don't play.
7073 */
7074 if (on_null_domain(cpu_rq(cpu)))
7075 return;
7076
c1cc017c
AS
7077 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7078 atomic_inc(&nohz.nr_cpus);
7079 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7080}
71325960 7081
0db0628d 7082static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7083 unsigned long action, void *hcpu)
7084{
7085 switch (action & ~CPU_TASKS_FROZEN) {
7086 case CPU_DYING:
c1cc017c 7087 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7088 return NOTIFY_OK;
7089 default:
7090 return NOTIFY_DONE;
7091 }
7092}
1e3c88bd
PZ
7093#endif
7094
7095static DEFINE_SPINLOCK(balancing);
7096
49c022e6
PZ
7097/*
7098 * Scale the max load_balance interval with the number of CPUs in the system.
7099 * This trades load-balance latency on larger machines for less cross talk.
7100 */
029632fb 7101void update_max_interval(void)
49c022e6
PZ
7102{
7103 max_load_balance_interval = HZ*num_online_cpus()/10;
7104}
7105
1e3c88bd
PZ
7106/*
7107 * It checks each scheduling domain to see if it is due to be balanced,
7108 * and initiates a balancing operation if so.
7109 *
b9b0853a 7110 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7111 */
f7ed0a89 7112static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7113{
23f0d209 7114 int continue_balancing = 1;
f7ed0a89 7115 int cpu = rq->cpu;
1e3c88bd 7116 unsigned long interval;
04f733b4 7117 struct sched_domain *sd;
1e3c88bd
PZ
7118 /* Earliest time when we have to do rebalance again */
7119 unsigned long next_balance = jiffies + 60*HZ;
7120 int update_next_balance = 0;
f48627e6
JL
7121 int need_serialize, need_decay = 0;
7122 u64 max_cost = 0;
1e3c88bd 7123
48a16753 7124 update_blocked_averages(cpu);
2069dd75 7125
dce840a0 7126 rcu_read_lock();
1e3c88bd 7127 for_each_domain(cpu, sd) {
f48627e6
JL
7128 /*
7129 * Decay the newidle max times here because this is a regular
7130 * visit to all the domains. Decay ~1% per second.
7131 */
7132 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7133 sd->max_newidle_lb_cost =
7134 (sd->max_newidle_lb_cost * 253) / 256;
7135 sd->next_decay_max_lb_cost = jiffies + HZ;
7136 need_decay = 1;
7137 }
7138 max_cost += sd->max_newidle_lb_cost;
7139
1e3c88bd
PZ
7140 if (!(sd->flags & SD_LOAD_BALANCE))
7141 continue;
7142
f48627e6
JL
7143 /*
7144 * Stop the load balance at this level. There is another
7145 * CPU in our sched group which is doing load balancing more
7146 * actively.
7147 */
7148 if (!continue_balancing) {
7149 if (need_decay)
7150 continue;
7151 break;
7152 }
7153
52a08ef1 7154 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7155
7156 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7157 if (need_serialize) {
7158 if (!spin_trylock(&balancing))
7159 goto out;
7160 }
7161
7162 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7163 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7164 /*
6263322c 7165 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7166 * env->dst_cpu, so we can't know our idle
7167 * state even if we migrated tasks. Update it.
1e3c88bd 7168 */
de5eb2dd 7169 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7170 }
7171 sd->last_balance = jiffies;
52a08ef1 7172 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7173 }
7174 if (need_serialize)
7175 spin_unlock(&balancing);
7176out:
7177 if (time_after(next_balance, sd->last_balance + interval)) {
7178 next_balance = sd->last_balance + interval;
7179 update_next_balance = 1;
7180 }
f48627e6
JL
7181 }
7182 if (need_decay) {
1e3c88bd 7183 /*
f48627e6
JL
7184 * Ensure the rq-wide value also decays but keep it at a
7185 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7186 */
f48627e6
JL
7187 rq->max_idle_balance_cost =
7188 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7189 }
dce840a0 7190 rcu_read_unlock();
1e3c88bd
PZ
7191
7192 /*
7193 * next_balance will be updated only when there is a need.
7194 * When the cpu is attached to null domain for ex, it will not be
7195 * updated.
7196 */
7197 if (likely(update_next_balance))
7198 rq->next_balance = next_balance;
7199}
7200
3451d024 7201#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7202/*
3451d024 7203 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7204 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7205 */
208cb16b 7206static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7207{
208cb16b 7208 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7209 struct rq *rq;
7210 int balance_cpu;
7211
1c792db7
SS
7212 if (idle != CPU_IDLE ||
7213 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7214 goto end;
83cd4fe2
VP
7215
7216 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7217 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7218 continue;
7219
7220 /*
7221 * If this cpu gets work to do, stop the load balancing
7222 * work being done for other cpus. Next load
7223 * balancing owner will pick it up.
7224 */
1c792db7 7225 if (need_resched())
83cd4fe2 7226 break;
83cd4fe2 7227
5ed4f1d9
VG
7228 rq = cpu_rq(balance_cpu);
7229
ed61bbc6
TC
7230 /*
7231 * If time for next balance is due,
7232 * do the balance.
7233 */
7234 if (time_after_eq(jiffies, rq->next_balance)) {
7235 raw_spin_lock_irq(&rq->lock);
7236 update_rq_clock(rq);
7237 update_idle_cpu_load(rq);
7238 raw_spin_unlock_irq(&rq->lock);
7239 rebalance_domains(rq, CPU_IDLE);
7240 }
83cd4fe2 7241
83cd4fe2
VP
7242 if (time_after(this_rq->next_balance, rq->next_balance))
7243 this_rq->next_balance = rq->next_balance;
7244 }
7245 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7246end:
7247 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7248}
7249
7250/*
0b005cf5
SS
7251 * Current heuristic for kicking the idle load balancer in the presence
7252 * of an idle cpu is the system.
7253 * - This rq has more than one task.
7254 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7255 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7256 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7257 * domain span are idle.
83cd4fe2 7258 */
4a725627 7259static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7260{
7261 unsigned long now = jiffies;
0b005cf5 7262 struct sched_domain *sd;
63b2ca30 7263 struct sched_group_capacity *sgc;
4a725627 7264 int nr_busy, cpu = rq->cpu;
83cd4fe2 7265
4a725627 7266 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7267 return 0;
7268
1c792db7
SS
7269 /*
7270 * We may be recently in ticked or tickless idle mode. At the first
7271 * busy tick after returning from idle, we will update the busy stats.
7272 */
69e1e811 7273 set_cpu_sd_state_busy();
c1cc017c 7274 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7275
7276 /*
7277 * None are in tickless mode and hence no need for NOHZ idle load
7278 * balancing.
7279 */
7280 if (likely(!atomic_read(&nohz.nr_cpus)))
7281 return 0;
1c792db7
SS
7282
7283 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7284 return 0;
7285
0b005cf5
SS
7286 if (rq->nr_running >= 2)
7287 goto need_kick;
83cd4fe2 7288
067491b7 7289 rcu_read_lock();
37dc6b50 7290 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7291
37dc6b50 7292 if (sd) {
63b2ca30
NP
7293 sgc = sd->groups->sgc;
7294 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7295
37dc6b50 7296 if (nr_busy > 1)
067491b7 7297 goto need_kick_unlock;
83cd4fe2 7298 }
37dc6b50
PM
7299
7300 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7301
7302 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7303 sched_domain_span(sd)) < cpu))
7304 goto need_kick_unlock;
7305
067491b7 7306 rcu_read_unlock();
83cd4fe2 7307 return 0;
067491b7
PZ
7308
7309need_kick_unlock:
7310 rcu_read_unlock();
0b005cf5
SS
7311need_kick:
7312 return 1;
83cd4fe2
VP
7313}
7314#else
208cb16b 7315static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7316#endif
7317
7318/*
7319 * run_rebalance_domains is triggered when needed from the scheduler tick.
7320 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7321 */
1e3c88bd
PZ
7322static void run_rebalance_domains(struct softirq_action *h)
7323{
208cb16b 7324 struct rq *this_rq = this_rq();
6eb57e0d 7325 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7326 CPU_IDLE : CPU_NOT_IDLE;
7327
f7ed0a89 7328 rebalance_domains(this_rq, idle);
1e3c88bd 7329
1e3c88bd 7330 /*
83cd4fe2 7331 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7332 * balancing on behalf of the other idle cpus whose ticks are
7333 * stopped.
7334 */
208cb16b 7335 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7336}
7337
1e3c88bd
PZ
7338/*
7339 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7340 */
7caff66f 7341void trigger_load_balance(struct rq *rq)
1e3c88bd 7342{
1e3c88bd 7343 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7344 if (unlikely(on_null_domain(rq)))
7345 return;
7346
7347 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7348 raise_softirq(SCHED_SOFTIRQ);
3451d024 7349#ifdef CONFIG_NO_HZ_COMMON
c726099e 7350 if (nohz_kick_needed(rq))
0aeeeeba 7351 nohz_balancer_kick();
83cd4fe2 7352#endif
1e3c88bd
PZ
7353}
7354
0bcdcf28
CE
7355static void rq_online_fair(struct rq *rq)
7356{
7357 update_sysctl();
7358}
7359
7360static void rq_offline_fair(struct rq *rq)
7361{
7362 update_sysctl();
a4c96ae3
PB
7363
7364 /* Ensure any throttled groups are reachable by pick_next_task */
7365 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7366}
7367
55e12e5e 7368#endif /* CONFIG_SMP */
e1d1484f 7369
bf0f6f24
IM
7370/*
7371 * scheduler tick hitting a task of our scheduling class:
7372 */
8f4d37ec 7373static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7374{
7375 struct cfs_rq *cfs_rq;
7376 struct sched_entity *se = &curr->se;
7377
7378 for_each_sched_entity(se) {
7379 cfs_rq = cfs_rq_of(se);
8f4d37ec 7380 entity_tick(cfs_rq, se, queued);
bf0f6f24 7381 }
18bf2805 7382
10e84b97 7383 if (numabalancing_enabled)
cbee9f88 7384 task_tick_numa(rq, curr);
3d59eebc 7385
18bf2805 7386 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7387}
7388
7389/*
cd29fe6f
PZ
7390 * called on fork with the child task as argument from the parent's context
7391 * - child not yet on the tasklist
7392 * - preemption disabled
bf0f6f24 7393 */
cd29fe6f 7394static void task_fork_fair(struct task_struct *p)
bf0f6f24 7395{
4fc420c9
DN
7396 struct cfs_rq *cfs_rq;
7397 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7398 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7399 struct rq *rq = this_rq();
7400 unsigned long flags;
7401
05fa785c 7402 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7403
861d034e
PZ
7404 update_rq_clock(rq);
7405
4fc420c9
DN
7406 cfs_rq = task_cfs_rq(current);
7407 curr = cfs_rq->curr;
7408
6c9a27f5
DN
7409 /*
7410 * Not only the cpu but also the task_group of the parent might have
7411 * been changed after parent->se.parent,cfs_rq were copied to
7412 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7413 * of child point to valid ones.
7414 */
7415 rcu_read_lock();
7416 __set_task_cpu(p, this_cpu);
7417 rcu_read_unlock();
bf0f6f24 7418
7109c442 7419 update_curr(cfs_rq);
cd29fe6f 7420
b5d9d734
MG
7421 if (curr)
7422 se->vruntime = curr->vruntime;
aeb73b04 7423 place_entity(cfs_rq, se, 1);
4d78e7b6 7424
cd29fe6f 7425 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7426 /*
edcb60a3
IM
7427 * Upon rescheduling, sched_class::put_prev_task() will place
7428 * 'current' within the tree based on its new key value.
7429 */
4d78e7b6 7430 swap(curr->vruntime, se->vruntime);
aec0a514 7431 resched_task(rq->curr);
4d78e7b6 7432 }
bf0f6f24 7433
88ec22d3
PZ
7434 se->vruntime -= cfs_rq->min_vruntime;
7435
05fa785c 7436 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7437}
7438
cb469845
SR
7439/*
7440 * Priority of the task has changed. Check to see if we preempt
7441 * the current task.
7442 */
da7a735e
PZ
7443static void
7444prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7445{
da7a735e
PZ
7446 if (!p->se.on_rq)
7447 return;
7448
cb469845
SR
7449 /*
7450 * Reschedule if we are currently running on this runqueue and
7451 * our priority decreased, or if we are not currently running on
7452 * this runqueue and our priority is higher than the current's
7453 */
da7a735e 7454 if (rq->curr == p) {
cb469845
SR
7455 if (p->prio > oldprio)
7456 resched_task(rq->curr);
7457 } else
15afe09b 7458 check_preempt_curr(rq, p, 0);
cb469845
SR
7459}
7460
da7a735e
PZ
7461static void switched_from_fair(struct rq *rq, struct task_struct *p)
7462{
7463 struct sched_entity *se = &p->se;
7464 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7465
7466 /*
791c9e02 7467 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7468 * switched back to the fair class the enqueue_entity(.flags=0) will
7469 * do the right thing.
7470 *
791c9e02
GM
7471 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7472 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7473 * the task is sleeping will it still have non-normalized vruntime.
7474 */
791c9e02 7475 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7476 /*
7477 * Fix up our vruntime so that the current sleep doesn't
7478 * cause 'unlimited' sleep bonus.
7479 */
7480 place_entity(cfs_rq, se, 0);
7481 se->vruntime -= cfs_rq->min_vruntime;
7482 }
9ee474f5 7483
141965c7 7484#ifdef CONFIG_SMP
9ee474f5
PT
7485 /*
7486 * Remove our load from contribution when we leave sched_fair
7487 * and ensure we don't carry in an old decay_count if we
7488 * switch back.
7489 */
87e3c8ae
KT
7490 if (se->avg.decay_count) {
7491 __synchronize_entity_decay(se);
7492 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7493 }
7494#endif
da7a735e
PZ
7495}
7496
cb469845
SR
7497/*
7498 * We switched to the sched_fair class.
7499 */
da7a735e 7500static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7501{
eb7a59b2
M
7502 struct sched_entity *se = &p->se;
7503#ifdef CONFIG_FAIR_GROUP_SCHED
7504 /*
7505 * Since the real-depth could have been changed (only FAIR
7506 * class maintain depth value), reset depth properly.
7507 */
7508 se->depth = se->parent ? se->parent->depth + 1 : 0;
7509#endif
7510 if (!se->on_rq)
da7a735e
PZ
7511 return;
7512
cb469845
SR
7513 /*
7514 * We were most likely switched from sched_rt, so
7515 * kick off the schedule if running, otherwise just see
7516 * if we can still preempt the current task.
7517 */
da7a735e 7518 if (rq->curr == p)
cb469845
SR
7519 resched_task(rq->curr);
7520 else
15afe09b 7521 check_preempt_curr(rq, p, 0);
cb469845
SR
7522}
7523
83b699ed
SV
7524/* Account for a task changing its policy or group.
7525 *
7526 * This routine is mostly called to set cfs_rq->curr field when a task
7527 * migrates between groups/classes.
7528 */
7529static void set_curr_task_fair(struct rq *rq)
7530{
7531 struct sched_entity *se = &rq->curr->se;
7532
ec12cb7f
PT
7533 for_each_sched_entity(se) {
7534 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7535
7536 set_next_entity(cfs_rq, se);
7537 /* ensure bandwidth has been allocated on our new cfs_rq */
7538 account_cfs_rq_runtime(cfs_rq, 0);
7539 }
83b699ed
SV
7540}
7541
029632fb
PZ
7542void init_cfs_rq(struct cfs_rq *cfs_rq)
7543{
7544 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7545 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7546#ifndef CONFIG_64BIT
7547 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7548#endif
141965c7 7549#ifdef CONFIG_SMP
9ee474f5 7550 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7551 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7552#endif
029632fb
PZ
7553}
7554
810b3817 7555#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7556static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7557{
fed14d45 7558 struct sched_entity *se = &p->se;
aff3e498 7559 struct cfs_rq *cfs_rq;
fed14d45 7560
b2b5ce02
PZ
7561 /*
7562 * If the task was not on the rq at the time of this cgroup movement
7563 * it must have been asleep, sleeping tasks keep their ->vruntime
7564 * absolute on their old rq until wakeup (needed for the fair sleeper
7565 * bonus in place_entity()).
7566 *
7567 * If it was on the rq, we've just 'preempted' it, which does convert
7568 * ->vruntime to a relative base.
7569 *
7570 * Make sure both cases convert their relative position when migrating
7571 * to another cgroup's rq. This does somewhat interfere with the
7572 * fair sleeper stuff for the first placement, but who cares.
7573 */
7ceff013
DN
7574 /*
7575 * When !on_rq, vruntime of the task has usually NOT been normalized.
7576 * But there are some cases where it has already been normalized:
7577 *
7578 * - Moving a forked child which is waiting for being woken up by
7579 * wake_up_new_task().
62af3783
DN
7580 * - Moving a task which has been woken up by try_to_wake_up() and
7581 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7582 *
7583 * To prevent boost or penalty in the new cfs_rq caused by delta
7584 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7585 */
fed14d45 7586 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7587 on_rq = 1;
7588
b2b5ce02 7589 if (!on_rq)
fed14d45 7590 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7591 set_task_rq(p, task_cpu(p));
fed14d45 7592 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7593 if (!on_rq) {
fed14d45
PZ
7594 cfs_rq = cfs_rq_of(se);
7595 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7596#ifdef CONFIG_SMP
7597 /*
7598 * migrate_task_rq_fair() will have removed our previous
7599 * contribution, but we must synchronize for ongoing future
7600 * decay.
7601 */
fed14d45
PZ
7602 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7603 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7604#endif
7605 }
810b3817 7606}
029632fb
PZ
7607
7608void free_fair_sched_group(struct task_group *tg)
7609{
7610 int i;
7611
7612 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7613
7614 for_each_possible_cpu(i) {
7615 if (tg->cfs_rq)
7616 kfree(tg->cfs_rq[i]);
7617 if (tg->se)
7618 kfree(tg->se[i]);
7619 }
7620
7621 kfree(tg->cfs_rq);
7622 kfree(tg->se);
7623}
7624
7625int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7626{
7627 struct cfs_rq *cfs_rq;
7628 struct sched_entity *se;
7629 int i;
7630
7631 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7632 if (!tg->cfs_rq)
7633 goto err;
7634 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7635 if (!tg->se)
7636 goto err;
7637
7638 tg->shares = NICE_0_LOAD;
7639
7640 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7641
7642 for_each_possible_cpu(i) {
7643 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7644 GFP_KERNEL, cpu_to_node(i));
7645 if (!cfs_rq)
7646 goto err;
7647
7648 se = kzalloc_node(sizeof(struct sched_entity),
7649 GFP_KERNEL, cpu_to_node(i));
7650 if (!se)
7651 goto err_free_rq;
7652
7653 init_cfs_rq(cfs_rq);
7654 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7655 }
7656
7657 return 1;
7658
7659err_free_rq:
7660 kfree(cfs_rq);
7661err:
7662 return 0;
7663}
7664
7665void unregister_fair_sched_group(struct task_group *tg, int cpu)
7666{
7667 struct rq *rq = cpu_rq(cpu);
7668 unsigned long flags;
7669
7670 /*
7671 * Only empty task groups can be destroyed; so we can speculatively
7672 * check on_list without danger of it being re-added.
7673 */
7674 if (!tg->cfs_rq[cpu]->on_list)
7675 return;
7676
7677 raw_spin_lock_irqsave(&rq->lock, flags);
7678 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7679 raw_spin_unlock_irqrestore(&rq->lock, flags);
7680}
7681
7682void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7683 struct sched_entity *se, int cpu,
7684 struct sched_entity *parent)
7685{
7686 struct rq *rq = cpu_rq(cpu);
7687
7688 cfs_rq->tg = tg;
7689 cfs_rq->rq = rq;
029632fb
PZ
7690 init_cfs_rq_runtime(cfs_rq);
7691
7692 tg->cfs_rq[cpu] = cfs_rq;
7693 tg->se[cpu] = se;
7694
7695 /* se could be NULL for root_task_group */
7696 if (!se)
7697 return;
7698
fed14d45 7699 if (!parent) {
029632fb 7700 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7701 se->depth = 0;
7702 } else {
029632fb 7703 se->cfs_rq = parent->my_q;
fed14d45
PZ
7704 se->depth = parent->depth + 1;
7705 }
029632fb
PZ
7706
7707 se->my_q = cfs_rq;
0ac9b1c2
PT
7708 /* guarantee group entities always have weight */
7709 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7710 se->parent = parent;
7711}
7712
7713static DEFINE_MUTEX(shares_mutex);
7714
7715int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7716{
7717 int i;
7718 unsigned long flags;
7719
7720 /*
7721 * We can't change the weight of the root cgroup.
7722 */
7723 if (!tg->se[0])
7724 return -EINVAL;
7725
7726 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7727
7728 mutex_lock(&shares_mutex);
7729 if (tg->shares == shares)
7730 goto done;
7731
7732 tg->shares = shares;
7733 for_each_possible_cpu(i) {
7734 struct rq *rq = cpu_rq(i);
7735 struct sched_entity *se;
7736
7737 se = tg->se[i];
7738 /* Propagate contribution to hierarchy */
7739 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7740
7741 /* Possible calls to update_curr() need rq clock */
7742 update_rq_clock(rq);
17bc14b7 7743 for_each_sched_entity(se)
029632fb
PZ
7744 update_cfs_shares(group_cfs_rq(se));
7745 raw_spin_unlock_irqrestore(&rq->lock, flags);
7746 }
7747
7748done:
7749 mutex_unlock(&shares_mutex);
7750 return 0;
7751}
7752#else /* CONFIG_FAIR_GROUP_SCHED */
7753
7754void free_fair_sched_group(struct task_group *tg) { }
7755
7756int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7757{
7758 return 1;
7759}
7760
7761void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7762
7763#endif /* CONFIG_FAIR_GROUP_SCHED */
7764
810b3817 7765
6d686f45 7766static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7767{
7768 struct sched_entity *se = &task->se;
0d721cea
PW
7769 unsigned int rr_interval = 0;
7770
7771 /*
7772 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7773 * idle runqueue:
7774 */
0d721cea 7775 if (rq->cfs.load.weight)
a59f4e07 7776 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7777
7778 return rr_interval;
7779}
7780
bf0f6f24
IM
7781/*
7782 * All the scheduling class methods:
7783 */
029632fb 7784const struct sched_class fair_sched_class = {
5522d5d5 7785 .next = &idle_sched_class,
bf0f6f24
IM
7786 .enqueue_task = enqueue_task_fair,
7787 .dequeue_task = dequeue_task_fair,
7788 .yield_task = yield_task_fair,
d95f4122 7789 .yield_to_task = yield_to_task_fair,
bf0f6f24 7790
2e09bf55 7791 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7792
7793 .pick_next_task = pick_next_task_fair,
7794 .put_prev_task = put_prev_task_fair,
7795
681f3e68 7796#ifdef CONFIG_SMP
4ce72a2c 7797 .select_task_rq = select_task_rq_fair,
0a74bef8 7798 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7799
0bcdcf28
CE
7800 .rq_online = rq_online_fair,
7801 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7802
7803 .task_waking = task_waking_fair,
681f3e68 7804#endif
bf0f6f24 7805
83b699ed 7806 .set_curr_task = set_curr_task_fair,
bf0f6f24 7807 .task_tick = task_tick_fair,
cd29fe6f 7808 .task_fork = task_fork_fair,
cb469845
SR
7809
7810 .prio_changed = prio_changed_fair,
da7a735e 7811 .switched_from = switched_from_fair,
cb469845 7812 .switched_to = switched_to_fair,
810b3817 7813
0d721cea
PW
7814 .get_rr_interval = get_rr_interval_fair,
7815
810b3817 7816#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7817 .task_move_group = task_move_group_fair,
810b3817 7818#endif
bf0f6f24
IM
7819};
7820
7821#ifdef CONFIG_SCHED_DEBUG
029632fb 7822void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7823{
bf0f6f24
IM
7824 struct cfs_rq *cfs_rq;
7825
5973e5b9 7826 rcu_read_lock();
c3b64f1e 7827 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7828 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7829 rcu_read_unlock();
bf0f6f24
IM
7830}
7831#endif
029632fb
PZ
7832
7833__init void init_sched_fair_class(void)
7834{
7835#ifdef CONFIG_SMP
7836 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7837
3451d024 7838#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7839 nohz.next_balance = jiffies;
029632fb 7840 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7841 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7842#endif
7843#endif /* SMP */
7844
7845}