]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/fair: Prefer sibiling only if local group is under-utilized
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c
PZ
371/* Iterate thr' all leaf cfs_rq's on a runqueue */
372#define for_each_leaf_cfs_rq(rq, cfs_rq) \
373 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
374
375/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 376static inline struct cfs_rq *
b758149c
PZ
377is_same_group(struct sched_entity *se, struct sched_entity *pse)
378{
379 if (se->cfs_rq == pse->cfs_rq)
fed14d45 380 return se->cfs_rq;
b758149c 381
fed14d45 382 return NULL;
b758149c
PZ
383}
384
385static inline struct sched_entity *parent_entity(struct sched_entity *se)
386{
387 return se->parent;
388}
389
464b7527
PZ
390static void
391find_matching_se(struct sched_entity **se, struct sched_entity **pse)
392{
393 int se_depth, pse_depth;
394
395 /*
396 * preemption test can be made between sibling entities who are in the
397 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
398 * both tasks until we find their ancestors who are siblings of common
399 * parent.
400 */
401
402 /* First walk up until both entities are at same depth */
fed14d45
PZ
403 se_depth = (*se)->depth;
404 pse_depth = (*pse)->depth;
464b7527
PZ
405
406 while (se_depth > pse_depth) {
407 se_depth--;
408 *se = parent_entity(*se);
409 }
410
411 while (pse_depth > se_depth) {
412 pse_depth--;
413 *pse = parent_entity(*pse);
414 }
415
416 while (!is_same_group(*se, *pse)) {
417 *se = parent_entity(*se);
418 *pse = parent_entity(*pse);
419 }
420}
421
8f48894f
PZ
422#else /* !CONFIG_FAIR_GROUP_SCHED */
423
424static inline struct task_struct *task_of(struct sched_entity *se)
425{
426 return container_of(se, struct task_struct, se);
427}
bf0f6f24 428
62160e3f
IM
429static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
430{
431 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
432}
433
434#define entity_is_task(se) 1
435
b758149c
PZ
436#define for_each_sched_entity(se) \
437 for (; se; se = NULL)
bf0f6f24 438
b758149c 439static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 440{
b758149c 441 return &task_rq(p)->cfs;
bf0f6f24
IM
442}
443
b758149c
PZ
444static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
445{
446 struct task_struct *p = task_of(se);
447 struct rq *rq = task_rq(p);
448
449 return &rq->cfs;
450}
451
452/* runqueue "owned" by this group */
453static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
454{
455 return NULL;
456}
457
3d4b47b4
PZ
458static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
459{
460}
461
462static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
463{
464}
465
b758149c
PZ
466#define for_each_leaf_cfs_rq(rq, cfs_rq) \
467 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
468
b758149c
PZ
469static inline struct sched_entity *parent_entity(struct sched_entity *se)
470{
471 return NULL;
472}
473
464b7527
PZ
474static inline void
475find_matching_se(struct sched_entity **se, struct sched_entity **pse)
476{
477}
478
b758149c
PZ
479#endif /* CONFIG_FAIR_GROUP_SCHED */
480
6c16a6dc 481static __always_inline
9dbdb155 482void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
483
484/**************************************************************
485 * Scheduling class tree data structure manipulation methods:
486 */
487
1bf08230 488static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 489{
1bf08230 490 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 491 if (delta > 0)
1bf08230 492 max_vruntime = vruntime;
02e0431a 493
1bf08230 494 return max_vruntime;
02e0431a
PZ
495}
496
0702e3eb 497static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
498{
499 s64 delta = (s64)(vruntime - min_vruntime);
500 if (delta < 0)
501 min_vruntime = vruntime;
502
503 return min_vruntime;
504}
505
54fdc581
FC
506static inline int entity_before(struct sched_entity *a,
507 struct sched_entity *b)
508{
509 return (s64)(a->vruntime - b->vruntime) < 0;
510}
511
1af5f730
PZ
512static void update_min_vruntime(struct cfs_rq *cfs_rq)
513{
b60205c7
PZ
514 struct sched_entity *curr = cfs_rq->curr;
515
1af5f730
PZ
516 u64 vruntime = cfs_rq->min_vruntime;
517
b60205c7
PZ
518 if (curr) {
519 if (curr->on_rq)
520 vruntime = curr->vruntime;
521 else
522 curr = NULL;
523 }
1af5f730
PZ
524
525 if (cfs_rq->rb_leftmost) {
526 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
527 struct sched_entity,
528 run_node);
529
b60205c7 530 if (!curr)
1af5f730
PZ
531 vruntime = se->vruntime;
532 else
533 vruntime = min_vruntime(vruntime, se->vruntime);
534 }
535
1bf08230 536 /* ensure we never gain time by being placed backwards. */
1af5f730 537 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
538#ifndef CONFIG_64BIT
539 smp_wmb();
540 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
541#endif
1af5f730
PZ
542}
543
bf0f6f24
IM
544/*
545 * Enqueue an entity into the rb-tree:
546 */
0702e3eb 547static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
548{
549 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
550 struct rb_node *parent = NULL;
551 struct sched_entity *entry;
bf0f6f24
IM
552 int leftmost = 1;
553
554 /*
555 * Find the right place in the rbtree:
556 */
557 while (*link) {
558 parent = *link;
559 entry = rb_entry(parent, struct sched_entity, run_node);
560 /*
561 * We dont care about collisions. Nodes with
562 * the same key stay together.
563 */
2bd2d6f2 564 if (entity_before(se, entry)) {
bf0f6f24
IM
565 link = &parent->rb_left;
566 } else {
567 link = &parent->rb_right;
568 leftmost = 0;
569 }
570 }
571
572 /*
573 * Maintain a cache of leftmost tree entries (it is frequently
574 * used):
575 */
1af5f730 576 if (leftmost)
57cb499d 577 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
578
579 rb_link_node(&se->run_node, parent, link);
580 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
581}
582
0702e3eb 583static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 584{
3fe69747
PZ
585 if (cfs_rq->rb_leftmost == &se->run_node) {
586 struct rb_node *next_node;
3fe69747
PZ
587
588 next_node = rb_next(&se->run_node);
589 cfs_rq->rb_leftmost = next_node;
3fe69747 590 }
e9acbff6 591
bf0f6f24 592 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
593}
594
029632fb 595struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 596{
f4b6755f
PZ
597 struct rb_node *left = cfs_rq->rb_leftmost;
598
599 if (!left)
600 return NULL;
601
602 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
603}
604
ac53db59
RR
605static struct sched_entity *__pick_next_entity(struct sched_entity *se)
606{
607 struct rb_node *next = rb_next(&se->run_node);
608
609 if (!next)
610 return NULL;
611
612 return rb_entry(next, struct sched_entity, run_node);
613}
614
615#ifdef CONFIG_SCHED_DEBUG
029632fb 616struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 617{
7eee3e67 618 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 619
70eee74b
BS
620 if (!last)
621 return NULL;
7eee3e67
IM
622
623 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
624}
625
bf0f6f24
IM
626/**************************************************************
627 * Scheduling class statistics methods:
628 */
629
acb4a848 630int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 631 void __user *buffer, size_t *lenp,
b2be5e96
PZ
632 loff_t *ppos)
633{
8d65af78 634 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 635 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
636
637 if (ret || !write)
638 return ret;
639
640 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
641 sysctl_sched_min_granularity);
642
acb4a848
CE
643#define WRT_SYSCTL(name) \
644 (normalized_sysctl_##name = sysctl_##name / (factor))
645 WRT_SYSCTL(sched_min_granularity);
646 WRT_SYSCTL(sched_latency);
647 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
648#undef WRT_SYSCTL
649
b2be5e96
PZ
650 return 0;
651}
652#endif
647e7cac 653
a7be37ac 654/*
f9c0b095 655 * delta /= w
a7be37ac 656 */
9dbdb155 657static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 658{
f9c0b095 659 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 660 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
661
662 return delta;
663}
664
647e7cac
IM
665/*
666 * The idea is to set a period in which each task runs once.
667 *
532b1858 668 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
669 * this period because otherwise the slices get too small.
670 *
671 * p = (nr <= nl) ? l : l*nr/nl
672 */
4d78e7b6
PZ
673static u64 __sched_period(unsigned long nr_running)
674{
8e2b0bf3
BF
675 if (unlikely(nr_running > sched_nr_latency))
676 return nr_running * sysctl_sched_min_granularity;
677 else
678 return sysctl_sched_latency;
4d78e7b6
PZ
679}
680
647e7cac
IM
681/*
682 * We calculate the wall-time slice from the period by taking a part
683 * proportional to the weight.
684 *
f9c0b095 685 * s = p*P[w/rw]
647e7cac 686 */
6d0f0ebd 687static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 688{
0a582440 689 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 690
0a582440 691 for_each_sched_entity(se) {
6272d68c 692 struct load_weight *load;
3104bf03 693 struct load_weight lw;
6272d68c
LM
694
695 cfs_rq = cfs_rq_of(se);
696 load = &cfs_rq->load;
f9c0b095 697
0a582440 698 if (unlikely(!se->on_rq)) {
3104bf03 699 lw = cfs_rq->load;
0a582440
MG
700
701 update_load_add(&lw, se->load.weight);
702 load = &lw;
703 }
9dbdb155 704 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
705 }
706 return slice;
bf0f6f24
IM
707}
708
647e7cac 709/*
660cc00f 710 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 711 *
f9c0b095 712 * vs = s/w
647e7cac 713 */
f9c0b095 714static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 715{
f9c0b095 716 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
717}
718
a75cdaa9 719#ifdef CONFIG_SMP
772bd008 720static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
721static unsigned long task_h_load(struct task_struct *p);
722
9d89c257
YD
723/*
724 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
725 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
726 * dependent on this value.
9d89c257
YD
727 */
728#define LOAD_AVG_PERIOD 32
729#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 730#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 731
540247fb
YD
732/* Give new sched_entity start runnable values to heavy its load in infant time */
733void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 734{
540247fb 735 struct sched_avg *sa = &se->avg;
a75cdaa9 736
9d89c257
YD
737 sa->last_update_time = 0;
738 /*
739 * sched_avg's period_contrib should be strictly less then 1024, so
740 * we give it 1023 to make sure it is almost a period (1024us), and
741 * will definitely be update (after enqueue).
742 */
743 sa->period_contrib = 1023;
b5a9b340
VG
744 /*
745 * Tasks are intialized with full load to be seen as heavy tasks until
746 * they get a chance to stabilize to their real load level.
747 * Group entities are intialized with zero load to reflect the fact that
748 * nothing has been attached to the task group yet.
749 */
750 if (entity_is_task(se))
751 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 752 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
753 /*
754 * At this point, util_avg won't be used in select_task_rq_fair anyway
755 */
756 sa->util_avg = 0;
757 sa->util_sum = 0;
9d89c257 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 759}
7ea241af 760
7dc603c9 761static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 762static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 763
2b8c41da
YD
764/*
765 * With new tasks being created, their initial util_avgs are extrapolated
766 * based on the cfs_rq's current util_avg:
767 *
768 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
769 *
770 * However, in many cases, the above util_avg does not give a desired
771 * value. Moreover, the sum of the util_avgs may be divergent, such
772 * as when the series is a harmonic series.
773 *
774 * To solve this problem, we also cap the util_avg of successive tasks to
775 * only 1/2 of the left utilization budget:
776 *
777 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
778 *
779 * where n denotes the nth task.
780 *
781 * For example, a simplest series from the beginning would be like:
782 *
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785 *
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
788 */
789void post_init_entity_util_avg(struct sched_entity *se)
790{
791 struct cfs_rq *cfs_rq = cfs_rq_of(se);
792 struct sched_avg *sa = &se->avg;
172895e6 793 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
805 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
806 }
7dc603c9
PZ
807
808 if (entity_is_task(se)) {
809 struct task_struct *p = task_of(se);
810 if (p->sched_class != &fair_sched_class) {
811 /*
812 * For !fair tasks do:
813 *
814 update_cfs_rq_load_avg(now, cfs_rq, false);
815 attach_entity_load_avg(cfs_rq, se);
816 switched_from_fair(rq, p);
817 *
818 * such that the next switched_to_fair() has the
819 * expected state.
820 */
df217913 821 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
822 return;
823 }
824 }
825
df217913 826 attach_entity_cfs_rq(se);
2b8c41da
YD
827}
828
7dc603c9 829#else /* !CONFIG_SMP */
540247fb 830void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
831{
832}
2b8c41da
YD
833void post_init_entity_util_avg(struct sched_entity *se)
834{
835}
3d30544f
PZ
836static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
837{
838}
7dc603c9 839#endif /* CONFIG_SMP */
a75cdaa9 840
bf0f6f24 841/*
9dbdb155 842 * Update the current task's runtime statistics.
bf0f6f24 843 */
b7cc0896 844static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 845{
429d43bc 846 struct sched_entity *curr = cfs_rq->curr;
78becc27 847 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 848 u64 delta_exec;
bf0f6f24
IM
849
850 if (unlikely(!curr))
851 return;
852
9dbdb155
PZ
853 delta_exec = now - curr->exec_start;
854 if (unlikely((s64)delta_exec <= 0))
34f28ecd 855 return;
bf0f6f24 856
8ebc91d9 857 curr->exec_start = now;
d842de87 858
9dbdb155
PZ
859 schedstat_set(curr->statistics.exec_max,
860 max(delta_exec, curr->statistics.exec_max));
861
862 curr->sum_exec_runtime += delta_exec;
ae92882e 863 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
864
865 curr->vruntime += calc_delta_fair(delta_exec, curr);
866 update_min_vruntime(cfs_rq);
867
d842de87
SV
868 if (entity_is_task(curr)) {
869 struct task_struct *curtask = task_of(curr);
870
f977bb49 871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 872 cpuacct_charge(curtask, delta_exec);
f06febc9 873 account_group_exec_runtime(curtask, delta_exec);
d842de87 874 }
ec12cb7f
PT
875
876 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
877}
878
6e998916
SG
879static void update_curr_fair(struct rq *rq)
880{
881 update_curr(cfs_rq_of(&rq->curr->se));
882}
883
bf0f6f24 884static inline void
5870db5b 885update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 886{
4fa8d299
JP
887 u64 wait_start, prev_wait_start;
888
889 if (!schedstat_enabled())
890 return;
891
892 wait_start = rq_clock(rq_of(cfs_rq));
893 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
894
895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
896 likely(wait_start > prev_wait_start))
897 wait_start -= prev_wait_start;
3ea94de1 898
4fa8d299 899 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
900}
901
4fa8d299 902static inline void
3ea94de1
JP
903update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
904{
905 struct task_struct *p;
cb251765
MG
906 u64 delta;
907
4fa8d299
JP
908 if (!schedstat_enabled())
909 return;
910
911 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
912
913 if (entity_is_task(se)) {
914 p = task_of(se);
915 if (task_on_rq_migrating(p)) {
916 /*
917 * Preserve migrating task's wait time so wait_start
918 * time stamp can be adjusted to accumulate wait time
919 * prior to migration.
920 */
4fa8d299 921 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
922 return;
923 }
924 trace_sched_stat_wait(p, delta);
925 }
926
4fa8d299
JP
927 schedstat_set(se->statistics.wait_max,
928 max(schedstat_val(se->statistics.wait_max), delta));
929 schedstat_inc(se->statistics.wait_count);
930 schedstat_add(se->statistics.wait_sum, delta);
931 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 932}
3ea94de1 933
4fa8d299 934static inline void
1a3d027c
JP
935update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
936{
937 struct task_struct *tsk = NULL;
4fa8d299
JP
938 u64 sleep_start, block_start;
939
940 if (!schedstat_enabled())
941 return;
942
943 sleep_start = schedstat_val(se->statistics.sleep_start);
944 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
945
946 if (entity_is_task(se))
947 tsk = task_of(se);
948
4fa8d299
JP
949 if (sleep_start) {
950 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
951
952 if ((s64)delta < 0)
953 delta = 0;
954
4fa8d299
JP
955 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
956 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 957
4fa8d299
JP
958 schedstat_set(se->statistics.sleep_start, 0);
959 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
960
961 if (tsk) {
962 account_scheduler_latency(tsk, delta >> 10, 1);
963 trace_sched_stat_sleep(tsk, delta);
964 }
965 }
4fa8d299
JP
966 if (block_start) {
967 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
968
969 if ((s64)delta < 0)
970 delta = 0;
971
4fa8d299
JP
972 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
973 schedstat_set(se->statistics.block_max, delta);
1a3d027c 974
4fa8d299
JP
975 schedstat_set(se->statistics.block_start, 0);
976 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
977
978 if (tsk) {
979 if (tsk->in_iowait) {
4fa8d299
JP
980 schedstat_add(se->statistics.iowait_sum, delta);
981 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
982 trace_sched_stat_iowait(tsk, delta);
983 }
984
985 trace_sched_stat_blocked(tsk, delta);
986
987 /*
988 * Blocking time is in units of nanosecs, so shift by
989 * 20 to get a milliseconds-range estimation of the
990 * amount of time that the task spent sleeping:
991 */
992 if (unlikely(prof_on == SLEEP_PROFILING)) {
993 profile_hits(SLEEP_PROFILING,
994 (void *)get_wchan(tsk),
995 delta >> 20);
996 }
997 account_scheduler_latency(tsk, delta >> 10, 0);
998 }
999 }
3ea94de1 1000}
3ea94de1 1001
bf0f6f24
IM
1002/*
1003 * Task is being enqueued - update stats:
1004 */
cb251765 1005static inline void
1a3d027c 1006update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1007{
4fa8d299
JP
1008 if (!schedstat_enabled())
1009 return;
1010
bf0f6f24
IM
1011 /*
1012 * Are we enqueueing a waiting task? (for current tasks
1013 * a dequeue/enqueue event is a NOP)
1014 */
429d43bc 1015 if (se != cfs_rq->curr)
5870db5b 1016 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1017
1018 if (flags & ENQUEUE_WAKEUP)
1019 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1020}
1021
bf0f6f24 1022static inline void
cb251765 1023update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1024{
4fa8d299
JP
1025
1026 if (!schedstat_enabled())
1027 return;
1028
bf0f6f24
IM
1029 /*
1030 * Mark the end of the wait period if dequeueing a
1031 * waiting task:
1032 */
429d43bc 1033 if (se != cfs_rq->curr)
9ef0a961 1034 update_stats_wait_end(cfs_rq, se);
cb251765 1035
4fa8d299
JP
1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1037 struct task_struct *tsk = task_of(se);
cb251765 1038
4fa8d299
JP
1039 if (tsk->state & TASK_INTERRUPTIBLE)
1040 schedstat_set(se->statistics.sleep_start,
1041 rq_clock(rq_of(cfs_rq)));
1042 if (tsk->state & TASK_UNINTERRUPTIBLE)
1043 schedstat_set(se->statistics.block_start,
1044 rq_clock(rq_of(cfs_rq)));
cb251765 1045 }
cb251765
MG
1046}
1047
bf0f6f24
IM
1048/*
1049 * We are picking a new current task - update its stats:
1050 */
1051static inline void
79303e9e 1052update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1053{
1054 /*
1055 * We are starting a new run period:
1056 */
78becc27 1057 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1058}
1059
bf0f6f24
IM
1060/**************************************************
1061 * Scheduling class queueing methods:
1062 */
1063
cbee9f88
PZ
1064#ifdef CONFIG_NUMA_BALANCING
1065/*
598f0ec0
MG
1066 * Approximate time to scan a full NUMA task in ms. The task scan period is
1067 * calculated based on the tasks virtual memory size and
1068 * numa_balancing_scan_size.
cbee9f88 1069 */
598f0ec0
MG
1070unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1071unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1072
1073/* Portion of address space to scan in MB */
1074unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1075
4b96a29b
PZ
1076/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1077unsigned int sysctl_numa_balancing_scan_delay = 1000;
1078
598f0ec0
MG
1079static unsigned int task_nr_scan_windows(struct task_struct *p)
1080{
1081 unsigned long rss = 0;
1082 unsigned long nr_scan_pages;
1083
1084 /*
1085 * Calculations based on RSS as non-present and empty pages are skipped
1086 * by the PTE scanner and NUMA hinting faults should be trapped based
1087 * on resident pages
1088 */
1089 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1090 rss = get_mm_rss(p->mm);
1091 if (!rss)
1092 rss = nr_scan_pages;
1093
1094 rss = round_up(rss, nr_scan_pages);
1095 return rss / nr_scan_pages;
1096}
1097
1098/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1099#define MAX_SCAN_WINDOW 2560
1100
1101static unsigned int task_scan_min(struct task_struct *p)
1102{
316c1608 1103 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1104 unsigned int scan, floor;
1105 unsigned int windows = 1;
1106
64192658
KT
1107 if (scan_size < MAX_SCAN_WINDOW)
1108 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1109 floor = 1000 / windows;
1110
1111 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1112 return max_t(unsigned int, floor, scan);
1113}
1114
1115static unsigned int task_scan_max(struct task_struct *p)
1116{
1117 unsigned int smin = task_scan_min(p);
1118 unsigned int smax;
1119
1120 /* Watch for min being lower than max due to floor calculations */
1121 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 return max(smin, smax);
1123}
1124
0ec8aa00
PZ
1125static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1126{
1127 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1128 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1129}
1130
1131static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1132{
1133 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1134 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1135}
1136
8c8a743c
PZ
1137struct numa_group {
1138 atomic_t refcount;
1139
1140 spinlock_t lock; /* nr_tasks, tasks */
1141 int nr_tasks;
e29cf08b 1142 pid_t gid;
4142c3eb 1143 int active_nodes;
8c8a743c
PZ
1144
1145 struct rcu_head rcu;
989348b5 1146 unsigned long total_faults;
4142c3eb 1147 unsigned long max_faults_cpu;
7e2703e6
RR
1148 /*
1149 * Faults_cpu is used to decide whether memory should move
1150 * towards the CPU. As a consequence, these stats are weighted
1151 * more by CPU use than by memory faults.
1152 */
50ec8a40 1153 unsigned long *faults_cpu;
989348b5 1154 unsigned long faults[0];
8c8a743c
PZ
1155};
1156
be1e4e76
RR
1157/* Shared or private faults. */
1158#define NR_NUMA_HINT_FAULT_TYPES 2
1159
1160/* Memory and CPU locality */
1161#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1162
1163/* Averaged statistics, and temporary buffers. */
1164#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1165
e29cf08b
MG
1166pid_t task_numa_group_id(struct task_struct *p)
1167{
1168 return p->numa_group ? p->numa_group->gid : 0;
1169}
1170
44dba3d5
IM
1171/*
1172 * The averaged statistics, shared & private, memory & cpu,
1173 * occupy the first half of the array. The second half of the
1174 * array is for current counters, which are averaged into the
1175 * first set by task_numa_placement.
1176 */
1177static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1178{
44dba3d5 1179 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1180}
1181
1182static inline unsigned long task_faults(struct task_struct *p, int nid)
1183{
44dba3d5 1184 if (!p->numa_faults)
ac8e895b
MG
1185 return 0;
1186
44dba3d5
IM
1187 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1188 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1189}
1190
83e1d2cd
MG
1191static inline unsigned long group_faults(struct task_struct *p, int nid)
1192{
1193 if (!p->numa_group)
1194 return 0;
1195
44dba3d5
IM
1196 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1197 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1198}
1199
20e07dea
RR
1200static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1201{
44dba3d5
IM
1202 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1203 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1204}
1205
4142c3eb
RR
1206/*
1207 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1208 * considered part of a numa group's pseudo-interleaving set. Migrations
1209 * between these nodes are slowed down, to allow things to settle down.
1210 */
1211#define ACTIVE_NODE_FRACTION 3
1212
1213static bool numa_is_active_node(int nid, struct numa_group *ng)
1214{
1215 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1216}
1217
6c6b1193
RR
1218/* Handle placement on systems where not all nodes are directly connected. */
1219static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1220 int maxdist, bool task)
1221{
1222 unsigned long score = 0;
1223 int node;
1224
1225 /*
1226 * All nodes are directly connected, and the same distance
1227 * from each other. No need for fancy placement algorithms.
1228 */
1229 if (sched_numa_topology_type == NUMA_DIRECT)
1230 return 0;
1231
1232 /*
1233 * This code is called for each node, introducing N^2 complexity,
1234 * which should be ok given the number of nodes rarely exceeds 8.
1235 */
1236 for_each_online_node(node) {
1237 unsigned long faults;
1238 int dist = node_distance(nid, node);
1239
1240 /*
1241 * The furthest away nodes in the system are not interesting
1242 * for placement; nid was already counted.
1243 */
1244 if (dist == sched_max_numa_distance || node == nid)
1245 continue;
1246
1247 /*
1248 * On systems with a backplane NUMA topology, compare groups
1249 * of nodes, and move tasks towards the group with the most
1250 * memory accesses. When comparing two nodes at distance
1251 * "hoplimit", only nodes closer by than "hoplimit" are part
1252 * of each group. Skip other nodes.
1253 */
1254 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1255 dist > maxdist)
1256 continue;
1257
1258 /* Add up the faults from nearby nodes. */
1259 if (task)
1260 faults = task_faults(p, node);
1261 else
1262 faults = group_faults(p, node);
1263
1264 /*
1265 * On systems with a glueless mesh NUMA topology, there are
1266 * no fixed "groups of nodes". Instead, nodes that are not
1267 * directly connected bounce traffic through intermediate
1268 * nodes; a numa_group can occupy any set of nodes.
1269 * The further away a node is, the less the faults count.
1270 * This seems to result in good task placement.
1271 */
1272 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1273 faults *= (sched_max_numa_distance - dist);
1274 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1275 }
1276
1277 score += faults;
1278 }
1279
1280 return score;
1281}
1282
83e1d2cd
MG
1283/*
1284 * These return the fraction of accesses done by a particular task, or
1285 * task group, on a particular numa node. The group weight is given a
1286 * larger multiplier, in order to group tasks together that are almost
1287 * evenly spread out between numa nodes.
1288 */
7bd95320
RR
1289static inline unsigned long task_weight(struct task_struct *p, int nid,
1290 int dist)
83e1d2cd 1291{
7bd95320 1292 unsigned long faults, total_faults;
83e1d2cd 1293
44dba3d5 1294 if (!p->numa_faults)
83e1d2cd
MG
1295 return 0;
1296
1297 total_faults = p->total_numa_faults;
1298
1299 if (!total_faults)
1300 return 0;
1301
7bd95320 1302 faults = task_faults(p, nid);
6c6b1193
RR
1303 faults += score_nearby_nodes(p, nid, dist, true);
1304
7bd95320 1305 return 1000 * faults / total_faults;
83e1d2cd
MG
1306}
1307
7bd95320
RR
1308static inline unsigned long group_weight(struct task_struct *p, int nid,
1309 int dist)
83e1d2cd 1310{
7bd95320
RR
1311 unsigned long faults, total_faults;
1312
1313 if (!p->numa_group)
1314 return 0;
1315
1316 total_faults = p->numa_group->total_faults;
1317
1318 if (!total_faults)
83e1d2cd
MG
1319 return 0;
1320
7bd95320 1321 faults = group_faults(p, nid);
6c6b1193
RR
1322 faults += score_nearby_nodes(p, nid, dist, false);
1323
7bd95320 1324 return 1000 * faults / total_faults;
83e1d2cd
MG
1325}
1326
10f39042
RR
1327bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1328 int src_nid, int dst_cpu)
1329{
1330 struct numa_group *ng = p->numa_group;
1331 int dst_nid = cpu_to_node(dst_cpu);
1332 int last_cpupid, this_cpupid;
1333
1334 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1335
1336 /*
1337 * Multi-stage node selection is used in conjunction with a periodic
1338 * migration fault to build a temporal task<->page relation. By using
1339 * a two-stage filter we remove short/unlikely relations.
1340 *
1341 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1342 * a task's usage of a particular page (n_p) per total usage of this
1343 * page (n_t) (in a given time-span) to a probability.
1344 *
1345 * Our periodic faults will sample this probability and getting the
1346 * same result twice in a row, given these samples are fully
1347 * independent, is then given by P(n)^2, provided our sample period
1348 * is sufficiently short compared to the usage pattern.
1349 *
1350 * This quadric squishes small probabilities, making it less likely we
1351 * act on an unlikely task<->page relation.
1352 */
1353 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1354 if (!cpupid_pid_unset(last_cpupid) &&
1355 cpupid_to_nid(last_cpupid) != dst_nid)
1356 return false;
1357
1358 /* Always allow migrate on private faults */
1359 if (cpupid_match_pid(p, last_cpupid))
1360 return true;
1361
1362 /* A shared fault, but p->numa_group has not been set up yet. */
1363 if (!ng)
1364 return true;
1365
1366 /*
4142c3eb
RR
1367 * Destination node is much more heavily used than the source
1368 * node? Allow migration.
10f39042 1369 */
4142c3eb
RR
1370 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1371 ACTIVE_NODE_FRACTION)
10f39042
RR
1372 return true;
1373
1374 /*
4142c3eb
RR
1375 * Distribute memory according to CPU & memory use on each node,
1376 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1377 *
1378 * faults_cpu(dst) 3 faults_cpu(src)
1379 * --------------- * - > ---------------
1380 * faults_mem(dst) 4 faults_mem(src)
10f39042 1381 */
4142c3eb
RR
1382 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1383 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1384}
1385
e6628d5b 1386static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1387static unsigned long source_load(int cpu, int type);
1388static unsigned long target_load(int cpu, int type);
ced549fa 1389static unsigned long capacity_of(int cpu);
58d081b5
MG
1390static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1391
fb13c7ee 1392/* Cached statistics for all CPUs within a node */
58d081b5 1393struct numa_stats {
fb13c7ee 1394 unsigned long nr_running;
58d081b5 1395 unsigned long load;
fb13c7ee
MG
1396
1397 /* Total compute capacity of CPUs on a node */
5ef20ca1 1398 unsigned long compute_capacity;
fb13c7ee
MG
1399
1400 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1401 unsigned long task_capacity;
1b6a7495 1402 int has_free_capacity;
58d081b5 1403};
e6628d5b 1404
fb13c7ee
MG
1405/*
1406 * XXX borrowed from update_sg_lb_stats
1407 */
1408static void update_numa_stats(struct numa_stats *ns, int nid)
1409{
83d7f242
RR
1410 int smt, cpu, cpus = 0;
1411 unsigned long capacity;
fb13c7ee
MG
1412
1413 memset(ns, 0, sizeof(*ns));
1414 for_each_cpu(cpu, cpumask_of_node(nid)) {
1415 struct rq *rq = cpu_rq(cpu);
1416
1417 ns->nr_running += rq->nr_running;
1418 ns->load += weighted_cpuload(cpu);
ced549fa 1419 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1420
1421 cpus++;
fb13c7ee
MG
1422 }
1423
5eca82a9
PZ
1424 /*
1425 * If we raced with hotplug and there are no CPUs left in our mask
1426 * the @ns structure is NULL'ed and task_numa_compare() will
1427 * not find this node attractive.
1428 *
1b6a7495
NP
1429 * We'll either bail at !has_free_capacity, or we'll detect a huge
1430 * imbalance and bail there.
5eca82a9
PZ
1431 */
1432 if (!cpus)
1433 return;
1434
83d7f242
RR
1435 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1436 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1437 capacity = cpus / smt; /* cores */
1438
1439 ns->task_capacity = min_t(unsigned, capacity,
1440 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1441 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1442}
1443
58d081b5
MG
1444struct task_numa_env {
1445 struct task_struct *p;
e6628d5b 1446
58d081b5
MG
1447 int src_cpu, src_nid;
1448 int dst_cpu, dst_nid;
e6628d5b 1449
58d081b5 1450 struct numa_stats src_stats, dst_stats;
e6628d5b 1451
40ea2b42 1452 int imbalance_pct;
7bd95320 1453 int dist;
fb13c7ee
MG
1454
1455 struct task_struct *best_task;
1456 long best_imp;
58d081b5
MG
1457 int best_cpu;
1458};
1459
fb13c7ee
MG
1460static void task_numa_assign(struct task_numa_env *env,
1461 struct task_struct *p, long imp)
1462{
1463 if (env->best_task)
1464 put_task_struct(env->best_task);
bac78573
ON
1465 if (p)
1466 get_task_struct(p);
fb13c7ee
MG
1467
1468 env->best_task = p;
1469 env->best_imp = imp;
1470 env->best_cpu = env->dst_cpu;
1471}
1472
28a21745 1473static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1474 struct task_numa_env *env)
1475{
e4991b24
RR
1476 long imb, old_imb;
1477 long orig_src_load, orig_dst_load;
28a21745
RR
1478 long src_capacity, dst_capacity;
1479
1480 /*
1481 * The load is corrected for the CPU capacity available on each node.
1482 *
1483 * src_load dst_load
1484 * ------------ vs ---------
1485 * src_capacity dst_capacity
1486 */
1487 src_capacity = env->src_stats.compute_capacity;
1488 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1489
1490 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1491 if (dst_load < src_load)
1492 swap(dst_load, src_load);
e63da036
RR
1493
1494 /* Is the difference below the threshold? */
e4991b24
RR
1495 imb = dst_load * src_capacity * 100 -
1496 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1497 if (imb <= 0)
1498 return false;
1499
1500 /*
1501 * The imbalance is above the allowed threshold.
e4991b24 1502 * Compare it with the old imbalance.
e63da036 1503 */
28a21745 1504 orig_src_load = env->src_stats.load;
e4991b24 1505 orig_dst_load = env->dst_stats.load;
28a21745 1506
e4991b24
RR
1507 if (orig_dst_load < orig_src_load)
1508 swap(orig_dst_load, orig_src_load);
e63da036 1509
e4991b24
RR
1510 old_imb = orig_dst_load * src_capacity * 100 -
1511 orig_src_load * dst_capacity * env->imbalance_pct;
1512
1513 /* Would this change make things worse? */
1514 return (imb > old_imb);
e63da036
RR
1515}
1516
fb13c7ee
MG
1517/*
1518 * This checks if the overall compute and NUMA accesses of the system would
1519 * be improved if the source tasks was migrated to the target dst_cpu taking
1520 * into account that it might be best if task running on the dst_cpu should
1521 * be exchanged with the source task
1522 */
887c290e
RR
1523static void task_numa_compare(struct task_numa_env *env,
1524 long taskimp, long groupimp)
fb13c7ee
MG
1525{
1526 struct rq *src_rq = cpu_rq(env->src_cpu);
1527 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1528 struct task_struct *cur;
28a21745 1529 long src_load, dst_load;
fb13c7ee 1530 long load;
1c5d3eb3 1531 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1532 long moveimp = imp;
7bd95320 1533 int dist = env->dist;
fb13c7ee
MG
1534
1535 rcu_read_lock();
bac78573
ON
1536 cur = task_rcu_dereference(&dst_rq->curr);
1537 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1538 cur = NULL;
1539
7af68335
PZ
1540 /*
1541 * Because we have preemption enabled we can get migrated around and
1542 * end try selecting ourselves (current == env->p) as a swap candidate.
1543 */
1544 if (cur == env->p)
1545 goto unlock;
1546
fb13c7ee
MG
1547 /*
1548 * "imp" is the fault differential for the source task between the
1549 * source and destination node. Calculate the total differential for
1550 * the source task and potential destination task. The more negative
1551 * the value is, the more rmeote accesses that would be expected to
1552 * be incurred if the tasks were swapped.
1553 */
1554 if (cur) {
1555 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1556 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1557 goto unlock;
1558
887c290e
RR
1559 /*
1560 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1561 * in any group then look only at task weights.
887c290e 1562 */
ca28aa53 1563 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1564 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1565 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1566 /*
1567 * Add some hysteresis to prevent swapping the
1568 * tasks within a group over tiny differences.
1569 */
1570 if (cur->numa_group)
1571 imp -= imp/16;
887c290e 1572 } else {
ca28aa53
RR
1573 /*
1574 * Compare the group weights. If a task is all by
1575 * itself (not part of a group), use the task weight
1576 * instead.
1577 */
ca28aa53 1578 if (cur->numa_group)
7bd95320
RR
1579 imp += group_weight(cur, env->src_nid, dist) -
1580 group_weight(cur, env->dst_nid, dist);
ca28aa53 1581 else
7bd95320
RR
1582 imp += task_weight(cur, env->src_nid, dist) -
1583 task_weight(cur, env->dst_nid, dist);
887c290e 1584 }
fb13c7ee
MG
1585 }
1586
0132c3e1 1587 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1588 goto unlock;
1589
1590 if (!cur) {
1591 /* Is there capacity at our destination? */
b932c03c 1592 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1593 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1594 goto unlock;
1595
1596 goto balance;
1597 }
1598
1599 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1600 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1601 dst_rq->nr_running == 1)
fb13c7ee
MG
1602 goto assign;
1603
1604 /*
1605 * In the overloaded case, try and keep the load balanced.
1606 */
1607balance:
e720fff6
PZ
1608 load = task_h_load(env->p);
1609 dst_load = env->dst_stats.load + load;
1610 src_load = env->src_stats.load - load;
fb13c7ee 1611
0132c3e1
RR
1612 if (moveimp > imp && moveimp > env->best_imp) {
1613 /*
1614 * If the improvement from just moving env->p direction is
1615 * better than swapping tasks around, check if a move is
1616 * possible. Store a slightly smaller score than moveimp,
1617 * so an actually idle CPU will win.
1618 */
1619 if (!load_too_imbalanced(src_load, dst_load, env)) {
1620 imp = moveimp - 1;
1621 cur = NULL;
1622 goto assign;
1623 }
1624 }
1625
1626 if (imp <= env->best_imp)
1627 goto unlock;
1628
fb13c7ee 1629 if (cur) {
e720fff6
PZ
1630 load = task_h_load(cur);
1631 dst_load -= load;
1632 src_load += load;
fb13c7ee
MG
1633 }
1634
28a21745 1635 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1636 goto unlock;
1637
ba7e5a27
RR
1638 /*
1639 * One idle CPU per node is evaluated for a task numa move.
1640 * Call select_idle_sibling to maybe find a better one.
1641 */
10e2f1ac
PZ
1642 if (!cur) {
1643 /*
1644 * select_idle_siblings() uses an per-cpu cpumask that
1645 * can be used from IRQ context.
1646 */
1647 local_irq_disable();
772bd008
MR
1648 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1649 env->dst_cpu);
10e2f1ac
PZ
1650 local_irq_enable();
1651 }
ba7e5a27 1652
fb13c7ee
MG
1653assign:
1654 task_numa_assign(env, cur, imp);
1655unlock:
1656 rcu_read_unlock();
1657}
1658
887c290e
RR
1659static void task_numa_find_cpu(struct task_numa_env *env,
1660 long taskimp, long groupimp)
2c8a50aa
MG
1661{
1662 int cpu;
1663
1664 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1665 /* Skip this CPU if the source task cannot migrate */
0c98d344 1666 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1667 continue;
1668
1669 env->dst_cpu = cpu;
887c290e 1670 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1671 }
1672}
1673
6f9aad0b
RR
1674/* Only move tasks to a NUMA node less busy than the current node. */
1675static bool numa_has_capacity(struct task_numa_env *env)
1676{
1677 struct numa_stats *src = &env->src_stats;
1678 struct numa_stats *dst = &env->dst_stats;
1679
1680 if (src->has_free_capacity && !dst->has_free_capacity)
1681 return false;
1682
1683 /*
1684 * Only consider a task move if the source has a higher load
1685 * than the destination, corrected for CPU capacity on each node.
1686 *
1687 * src->load dst->load
1688 * --------------------- vs ---------------------
1689 * src->compute_capacity dst->compute_capacity
1690 */
44dcb04f
SD
1691 if (src->load * dst->compute_capacity * env->imbalance_pct >
1692
1693 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1694 return true;
1695
1696 return false;
1697}
1698
58d081b5
MG
1699static int task_numa_migrate(struct task_struct *p)
1700{
58d081b5
MG
1701 struct task_numa_env env = {
1702 .p = p,
fb13c7ee 1703
58d081b5 1704 .src_cpu = task_cpu(p),
b32e86b4 1705 .src_nid = task_node(p),
fb13c7ee
MG
1706
1707 .imbalance_pct = 112,
1708
1709 .best_task = NULL,
1710 .best_imp = 0,
4142c3eb 1711 .best_cpu = -1,
58d081b5
MG
1712 };
1713 struct sched_domain *sd;
887c290e 1714 unsigned long taskweight, groupweight;
7bd95320 1715 int nid, ret, dist;
887c290e 1716 long taskimp, groupimp;
e6628d5b 1717
58d081b5 1718 /*
fb13c7ee
MG
1719 * Pick the lowest SD_NUMA domain, as that would have the smallest
1720 * imbalance and would be the first to start moving tasks about.
1721 *
1722 * And we want to avoid any moving of tasks about, as that would create
1723 * random movement of tasks -- counter the numa conditions we're trying
1724 * to satisfy here.
58d081b5
MG
1725 */
1726 rcu_read_lock();
fb13c7ee 1727 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1728 if (sd)
1729 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1730 rcu_read_unlock();
1731
46a73e8a
RR
1732 /*
1733 * Cpusets can break the scheduler domain tree into smaller
1734 * balance domains, some of which do not cross NUMA boundaries.
1735 * Tasks that are "trapped" in such domains cannot be migrated
1736 * elsewhere, so there is no point in (re)trying.
1737 */
1738 if (unlikely(!sd)) {
de1b301a 1739 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1740 return -EINVAL;
1741 }
1742
2c8a50aa 1743 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1744 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1745 taskweight = task_weight(p, env.src_nid, dist);
1746 groupweight = group_weight(p, env.src_nid, dist);
1747 update_numa_stats(&env.src_stats, env.src_nid);
1748 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1749 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1750 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1751
a43455a1 1752 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1753 if (numa_has_capacity(&env))
1754 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1755
9de05d48
RR
1756 /*
1757 * Look at other nodes in these cases:
1758 * - there is no space available on the preferred_nid
1759 * - the task is part of a numa_group that is interleaved across
1760 * multiple NUMA nodes; in order to better consolidate the group,
1761 * we need to check other locations.
1762 */
4142c3eb 1763 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1764 for_each_online_node(nid) {
1765 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1766 continue;
58d081b5 1767
7bd95320 1768 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1769 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1770 dist != env.dist) {
1771 taskweight = task_weight(p, env.src_nid, dist);
1772 groupweight = group_weight(p, env.src_nid, dist);
1773 }
7bd95320 1774
83e1d2cd 1775 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1776 taskimp = task_weight(p, nid, dist) - taskweight;
1777 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1778 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1779 continue;
1780
7bd95320 1781 env.dist = dist;
2c8a50aa
MG
1782 env.dst_nid = nid;
1783 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1784 if (numa_has_capacity(&env))
1785 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1786 }
1787 }
1788
68d1b02a
RR
1789 /*
1790 * If the task is part of a workload that spans multiple NUMA nodes,
1791 * and is migrating into one of the workload's active nodes, remember
1792 * this node as the task's preferred numa node, so the workload can
1793 * settle down.
1794 * A task that migrated to a second choice node will be better off
1795 * trying for a better one later. Do not set the preferred node here.
1796 */
db015dae 1797 if (p->numa_group) {
4142c3eb
RR
1798 struct numa_group *ng = p->numa_group;
1799
db015dae
RR
1800 if (env.best_cpu == -1)
1801 nid = env.src_nid;
1802 else
1803 nid = env.dst_nid;
1804
4142c3eb 1805 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1806 sched_setnuma(p, env.dst_nid);
1807 }
1808
1809 /* No better CPU than the current one was found. */
1810 if (env.best_cpu == -1)
1811 return -EAGAIN;
0ec8aa00 1812
04bb2f94
RR
1813 /*
1814 * Reset the scan period if the task is being rescheduled on an
1815 * alternative node to recheck if the tasks is now properly placed.
1816 */
1817 p->numa_scan_period = task_scan_min(p);
1818
fb13c7ee 1819 if (env.best_task == NULL) {
286549dc
MG
1820 ret = migrate_task_to(p, env.best_cpu);
1821 if (ret != 0)
1822 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1823 return ret;
1824 }
1825
1826 ret = migrate_swap(p, env.best_task);
286549dc
MG
1827 if (ret != 0)
1828 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1829 put_task_struct(env.best_task);
1830 return ret;
e6628d5b
MG
1831}
1832
6b9a7460
MG
1833/* Attempt to migrate a task to a CPU on the preferred node. */
1834static void numa_migrate_preferred(struct task_struct *p)
1835{
5085e2a3
RR
1836 unsigned long interval = HZ;
1837
2739d3ee 1838 /* This task has no NUMA fault statistics yet */
44dba3d5 1839 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1840 return;
1841
2739d3ee 1842 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1843 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1844 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1845
1846 /* Success if task is already running on preferred CPU */
de1b301a 1847 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1848 return;
1849
1850 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1851 task_numa_migrate(p);
6b9a7460
MG
1852}
1853
20e07dea 1854/*
4142c3eb 1855 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1856 * tracking the nodes from which NUMA hinting faults are triggered. This can
1857 * be different from the set of nodes where the workload's memory is currently
1858 * located.
20e07dea 1859 */
4142c3eb 1860static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1861{
1862 unsigned long faults, max_faults = 0;
4142c3eb 1863 int nid, active_nodes = 0;
20e07dea
RR
1864
1865 for_each_online_node(nid) {
1866 faults = group_faults_cpu(numa_group, nid);
1867 if (faults > max_faults)
1868 max_faults = faults;
1869 }
1870
1871 for_each_online_node(nid) {
1872 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1873 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1874 active_nodes++;
20e07dea 1875 }
4142c3eb
RR
1876
1877 numa_group->max_faults_cpu = max_faults;
1878 numa_group->active_nodes = active_nodes;
20e07dea
RR
1879}
1880
04bb2f94
RR
1881/*
1882 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1883 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1884 * period will be for the next scan window. If local/(local+remote) ratio is
1885 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1886 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1887 */
1888#define NUMA_PERIOD_SLOTS 10
a22b4b01 1889#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1890
1891/*
1892 * Increase the scan period (slow down scanning) if the majority of
1893 * our memory is already on our local node, or if the majority of
1894 * the page accesses are shared with other processes.
1895 * Otherwise, decrease the scan period.
1896 */
1897static void update_task_scan_period(struct task_struct *p,
1898 unsigned long shared, unsigned long private)
1899{
1900 unsigned int period_slot;
1901 int ratio;
1902 int diff;
1903
1904 unsigned long remote = p->numa_faults_locality[0];
1905 unsigned long local = p->numa_faults_locality[1];
1906
1907 /*
1908 * If there were no record hinting faults then either the task is
1909 * completely idle or all activity is areas that are not of interest
074c2381
MG
1910 * to automatic numa balancing. Related to that, if there were failed
1911 * migration then it implies we are migrating too quickly or the local
1912 * node is overloaded. In either case, scan slower
04bb2f94 1913 */
074c2381 1914 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1915 p->numa_scan_period = min(p->numa_scan_period_max,
1916 p->numa_scan_period << 1);
1917
1918 p->mm->numa_next_scan = jiffies +
1919 msecs_to_jiffies(p->numa_scan_period);
1920
1921 return;
1922 }
1923
1924 /*
1925 * Prepare to scale scan period relative to the current period.
1926 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1927 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1928 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1929 */
1930 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1931 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1932 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1933 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1934 if (!slot)
1935 slot = 1;
1936 diff = slot * period_slot;
1937 } else {
1938 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1939
1940 /*
1941 * Scale scan rate increases based on sharing. There is an
1942 * inverse relationship between the degree of sharing and
1943 * the adjustment made to the scanning period. Broadly
1944 * speaking the intent is that there is little point
1945 * scanning faster if shared accesses dominate as it may
1946 * simply bounce migrations uselessly
1947 */
2847c90e 1948 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1949 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1950 }
1951
1952 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1953 task_scan_min(p), task_scan_max(p));
1954 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1955}
1956
7e2703e6
RR
1957/*
1958 * Get the fraction of time the task has been running since the last
1959 * NUMA placement cycle. The scheduler keeps similar statistics, but
1960 * decays those on a 32ms period, which is orders of magnitude off
1961 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1962 * stats only if the task is so new there are no NUMA statistics yet.
1963 */
1964static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1965{
1966 u64 runtime, delta, now;
1967 /* Use the start of this time slice to avoid calculations. */
1968 now = p->se.exec_start;
1969 runtime = p->se.sum_exec_runtime;
1970
1971 if (p->last_task_numa_placement) {
1972 delta = runtime - p->last_sum_exec_runtime;
1973 *period = now - p->last_task_numa_placement;
1974 } else {
9d89c257
YD
1975 delta = p->se.avg.load_sum / p->se.load.weight;
1976 *period = LOAD_AVG_MAX;
7e2703e6
RR
1977 }
1978
1979 p->last_sum_exec_runtime = runtime;
1980 p->last_task_numa_placement = now;
1981
1982 return delta;
1983}
1984
54009416
RR
1985/*
1986 * Determine the preferred nid for a task in a numa_group. This needs to
1987 * be done in a way that produces consistent results with group_weight,
1988 * otherwise workloads might not converge.
1989 */
1990static int preferred_group_nid(struct task_struct *p, int nid)
1991{
1992 nodemask_t nodes;
1993 int dist;
1994
1995 /* Direct connections between all NUMA nodes. */
1996 if (sched_numa_topology_type == NUMA_DIRECT)
1997 return nid;
1998
1999 /*
2000 * On a system with glueless mesh NUMA topology, group_weight
2001 * scores nodes according to the number of NUMA hinting faults on
2002 * both the node itself, and on nearby nodes.
2003 */
2004 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2005 unsigned long score, max_score = 0;
2006 int node, max_node = nid;
2007
2008 dist = sched_max_numa_distance;
2009
2010 for_each_online_node(node) {
2011 score = group_weight(p, node, dist);
2012 if (score > max_score) {
2013 max_score = score;
2014 max_node = node;
2015 }
2016 }
2017 return max_node;
2018 }
2019
2020 /*
2021 * Finding the preferred nid in a system with NUMA backplane
2022 * interconnect topology is more involved. The goal is to locate
2023 * tasks from numa_groups near each other in the system, and
2024 * untangle workloads from different sides of the system. This requires
2025 * searching down the hierarchy of node groups, recursively searching
2026 * inside the highest scoring group of nodes. The nodemask tricks
2027 * keep the complexity of the search down.
2028 */
2029 nodes = node_online_map;
2030 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2031 unsigned long max_faults = 0;
81907478 2032 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2033 int a, b;
2034
2035 /* Are there nodes at this distance from each other? */
2036 if (!find_numa_distance(dist))
2037 continue;
2038
2039 for_each_node_mask(a, nodes) {
2040 unsigned long faults = 0;
2041 nodemask_t this_group;
2042 nodes_clear(this_group);
2043
2044 /* Sum group's NUMA faults; includes a==b case. */
2045 for_each_node_mask(b, nodes) {
2046 if (node_distance(a, b) < dist) {
2047 faults += group_faults(p, b);
2048 node_set(b, this_group);
2049 node_clear(b, nodes);
2050 }
2051 }
2052
2053 /* Remember the top group. */
2054 if (faults > max_faults) {
2055 max_faults = faults;
2056 max_group = this_group;
2057 /*
2058 * subtle: at the smallest distance there is
2059 * just one node left in each "group", the
2060 * winner is the preferred nid.
2061 */
2062 nid = a;
2063 }
2064 }
2065 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2066 if (!max_faults)
2067 break;
54009416
RR
2068 nodes = max_group;
2069 }
2070 return nid;
2071}
2072
cbee9f88
PZ
2073static void task_numa_placement(struct task_struct *p)
2074{
83e1d2cd
MG
2075 int seq, nid, max_nid = -1, max_group_nid = -1;
2076 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2077 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2078 unsigned long total_faults;
2079 u64 runtime, period;
7dbd13ed 2080 spinlock_t *group_lock = NULL;
cbee9f88 2081
7e5a2c17
JL
2082 /*
2083 * The p->mm->numa_scan_seq field gets updated without
2084 * exclusive access. Use READ_ONCE() here to ensure
2085 * that the field is read in a single access:
2086 */
316c1608 2087 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2088 if (p->numa_scan_seq == seq)
2089 return;
2090 p->numa_scan_seq = seq;
598f0ec0 2091 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2092
7e2703e6
RR
2093 total_faults = p->numa_faults_locality[0] +
2094 p->numa_faults_locality[1];
2095 runtime = numa_get_avg_runtime(p, &period);
2096
7dbd13ed
MG
2097 /* If the task is part of a group prevent parallel updates to group stats */
2098 if (p->numa_group) {
2099 group_lock = &p->numa_group->lock;
60e69eed 2100 spin_lock_irq(group_lock);
7dbd13ed
MG
2101 }
2102
688b7585
MG
2103 /* Find the node with the highest number of faults */
2104 for_each_online_node(nid) {
44dba3d5
IM
2105 /* Keep track of the offsets in numa_faults array */
2106 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2107 unsigned long faults = 0, group_faults = 0;
44dba3d5 2108 int priv;
745d6147 2109
be1e4e76 2110 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2111 long diff, f_diff, f_weight;
8c8a743c 2112
44dba3d5
IM
2113 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2114 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2115 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2116 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2117
ac8e895b 2118 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2119 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2120 fault_types[priv] += p->numa_faults[membuf_idx];
2121 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2122
7e2703e6
RR
2123 /*
2124 * Normalize the faults_from, so all tasks in a group
2125 * count according to CPU use, instead of by the raw
2126 * number of faults. Tasks with little runtime have
2127 * little over-all impact on throughput, and thus their
2128 * faults are less important.
2129 */
2130 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2131 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2132 (total_faults + 1);
44dba3d5
IM
2133 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2134 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2135
44dba3d5
IM
2136 p->numa_faults[mem_idx] += diff;
2137 p->numa_faults[cpu_idx] += f_diff;
2138 faults += p->numa_faults[mem_idx];
83e1d2cd 2139 p->total_numa_faults += diff;
8c8a743c 2140 if (p->numa_group) {
44dba3d5
IM
2141 /*
2142 * safe because we can only change our own group
2143 *
2144 * mem_idx represents the offset for a given
2145 * nid and priv in a specific region because it
2146 * is at the beginning of the numa_faults array.
2147 */
2148 p->numa_group->faults[mem_idx] += diff;
2149 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2150 p->numa_group->total_faults += diff;
44dba3d5 2151 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2152 }
ac8e895b
MG
2153 }
2154
688b7585
MG
2155 if (faults > max_faults) {
2156 max_faults = faults;
2157 max_nid = nid;
2158 }
83e1d2cd
MG
2159
2160 if (group_faults > max_group_faults) {
2161 max_group_faults = group_faults;
2162 max_group_nid = nid;
2163 }
2164 }
2165
04bb2f94
RR
2166 update_task_scan_period(p, fault_types[0], fault_types[1]);
2167
7dbd13ed 2168 if (p->numa_group) {
4142c3eb 2169 numa_group_count_active_nodes(p->numa_group);
60e69eed 2170 spin_unlock_irq(group_lock);
54009416 2171 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2172 }
2173
bb97fc31
RR
2174 if (max_faults) {
2175 /* Set the new preferred node */
2176 if (max_nid != p->numa_preferred_nid)
2177 sched_setnuma(p, max_nid);
2178
2179 if (task_node(p) != p->numa_preferred_nid)
2180 numa_migrate_preferred(p);
3a7053b3 2181 }
cbee9f88
PZ
2182}
2183
8c8a743c
PZ
2184static inline int get_numa_group(struct numa_group *grp)
2185{
2186 return atomic_inc_not_zero(&grp->refcount);
2187}
2188
2189static inline void put_numa_group(struct numa_group *grp)
2190{
2191 if (atomic_dec_and_test(&grp->refcount))
2192 kfree_rcu(grp, rcu);
2193}
2194
3e6a9418
MG
2195static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2196 int *priv)
8c8a743c
PZ
2197{
2198 struct numa_group *grp, *my_grp;
2199 struct task_struct *tsk;
2200 bool join = false;
2201 int cpu = cpupid_to_cpu(cpupid);
2202 int i;
2203
2204 if (unlikely(!p->numa_group)) {
2205 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2206 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2207
2208 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2209 if (!grp)
2210 return;
2211
2212 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2213 grp->active_nodes = 1;
2214 grp->max_faults_cpu = 0;
8c8a743c 2215 spin_lock_init(&grp->lock);
e29cf08b 2216 grp->gid = p->pid;
50ec8a40 2217 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2218 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2219 nr_node_ids;
8c8a743c 2220
be1e4e76 2221 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2222 grp->faults[i] = p->numa_faults[i];
8c8a743c 2223
989348b5 2224 grp->total_faults = p->total_numa_faults;
83e1d2cd 2225
8c8a743c
PZ
2226 grp->nr_tasks++;
2227 rcu_assign_pointer(p->numa_group, grp);
2228 }
2229
2230 rcu_read_lock();
316c1608 2231 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2232
2233 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2234 goto no_join;
8c8a743c
PZ
2235
2236 grp = rcu_dereference(tsk->numa_group);
2237 if (!grp)
3354781a 2238 goto no_join;
8c8a743c
PZ
2239
2240 my_grp = p->numa_group;
2241 if (grp == my_grp)
3354781a 2242 goto no_join;
8c8a743c
PZ
2243
2244 /*
2245 * Only join the other group if its bigger; if we're the bigger group,
2246 * the other task will join us.
2247 */
2248 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2249 goto no_join;
8c8a743c
PZ
2250
2251 /*
2252 * Tie-break on the grp address.
2253 */
2254 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2255 goto no_join;
8c8a743c 2256
dabe1d99
RR
2257 /* Always join threads in the same process. */
2258 if (tsk->mm == current->mm)
2259 join = true;
2260
2261 /* Simple filter to avoid false positives due to PID collisions */
2262 if (flags & TNF_SHARED)
2263 join = true;
8c8a743c 2264
3e6a9418
MG
2265 /* Update priv based on whether false sharing was detected */
2266 *priv = !join;
2267
dabe1d99 2268 if (join && !get_numa_group(grp))
3354781a 2269 goto no_join;
8c8a743c 2270
8c8a743c
PZ
2271 rcu_read_unlock();
2272
2273 if (!join)
2274 return;
2275
60e69eed
MG
2276 BUG_ON(irqs_disabled());
2277 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2278
be1e4e76 2279 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2280 my_grp->faults[i] -= p->numa_faults[i];
2281 grp->faults[i] += p->numa_faults[i];
8c8a743c 2282 }
989348b5
MG
2283 my_grp->total_faults -= p->total_numa_faults;
2284 grp->total_faults += p->total_numa_faults;
8c8a743c 2285
8c8a743c
PZ
2286 my_grp->nr_tasks--;
2287 grp->nr_tasks++;
2288
2289 spin_unlock(&my_grp->lock);
60e69eed 2290 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2291
2292 rcu_assign_pointer(p->numa_group, grp);
2293
2294 put_numa_group(my_grp);
3354781a
PZ
2295 return;
2296
2297no_join:
2298 rcu_read_unlock();
2299 return;
8c8a743c
PZ
2300}
2301
2302void task_numa_free(struct task_struct *p)
2303{
2304 struct numa_group *grp = p->numa_group;
44dba3d5 2305 void *numa_faults = p->numa_faults;
e9dd685c
SR
2306 unsigned long flags;
2307 int i;
8c8a743c
PZ
2308
2309 if (grp) {
e9dd685c 2310 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2311 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2312 grp->faults[i] -= p->numa_faults[i];
989348b5 2313 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2314
8c8a743c 2315 grp->nr_tasks--;
e9dd685c 2316 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2317 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2318 put_numa_group(grp);
2319 }
2320
44dba3d5 2321 p->numa_faults = NULL;
82727018 2322 kfree(numa_faults);
8c8a743c
PZ
2323}
2324
cbee9f88
PZ
2325/*
2326 * Got a PROT_NONE fault for a page on @node.
2327 */
58b46da3 2328void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2329{
2330 struct task_struct *p = current;
6688cc05 2331 bool migrated = flags & TNF_MIGRATED;
58b46da3 2332 int cpu_node = task_node(current);
792568ec 2333 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2334 struct numa_group *ng;
ac8e895b 2335 int priv;
cbee9f88 2336
2a595721 2337 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2338 return;
2339
9ff1d9ff
MG
2340 /* for example, ksmd faulting in a user's mm */
2341 if (!p->mm)
2342 return;
2343
f809ca9a 2344 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2345 if (unlikely(!p->numa_faults)) {
2346 int size = sizeof(*p->numa_faults) *
be1e4e76 2347 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2348
44dba3d5
IM
2349 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2350 if (!p->numa_faults)
f809ca9a 2351 return;
745d6147 2352
83e1d2cd 2353 p->total_numa_faults = 0;
04bb2f94 2354 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2355 }
cbee9f88 2356
8c8a743c
PZ
2357 /*
2358 * First accesses are treated as private, otherwise consider accesses
2359 * to be private if the accessing pid has not changed
2360 */
2361 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2362 priv = 1;
2363 } else {
2364 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2365 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2366 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2367 }
2368
792568ec
RR
2369 /*
2370 * If a workload spans multiple NUMA nodes, a shared fault that
2371 * occurs wholly within the set of nodes that the workload is
2372 * actively using should be counted as local. This allows the
2373 * scan rate to slow down when a workload has settled down.
2374 */
4142c3eb
RR
2375 ng = p->numa_group;
2376 if (!priv && !local && ng && ng->active_nodes > 1 &&
2377 numa_is_active_node(cpu_node, ng) &&
2378 numa_is_active_node(mem_node, ng))
792568ec
RR
2379 local = 1;
2380
cbee9f88 2381 task_numa_placement(p);
f809ca9a 2382
2739d3ee
RR
2383 /*
2384 * Retry task to preferred node migration periodically, in case it
2385 * case it previously failed, or the scheduler moved us.
2386 */
2387 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2388 numa_migrate_preferred(p);
2389
b32e86b4
IM
2390 if (migrated)
2391 p->numa_pages_migrated += pages;
074c2381
MG
2392 if (flags & TNF_MIGRATE_FAIL)
2393 p->numa_faults_locality[2] += pages;
b32e86b4 2394
44dba3d5
IM
2395 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2396 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2397 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2398}
2399
6e5fb223
PZ
2400static void reset_ptenuma_scan(struct task_struct *p)
2401{
7e5a2c17
JL
2402 /*
2403 * We only did a read acquisition of the mmap sem, so
2404 * p->mm->numa_scan_seq is written to without exclusive access
2405 * and the update is not guaranteed to be atomic. That's not
2406 * much of an issue though, since this is just used for
2407 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2408 * expensive, to avoid any form of compiler optimizations:
2409 */
316c1608 2410 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2411 p->mm->numa_scan_offset = 0;
2412}
2413
cbee9f88
PZ
2414/*
2415 * The expensive part of numa migration is done from task_work context.
2416 * Triggered from task_tick_numa().
2417 */
2418void task_numa_work(struct callback_head *work)
2419{
2420 unsigned long migrate, next_scan, now = jiffies;
2421 struct task_struct *p = current;
2422 struct mm_struct *mm = p->mm;
51170840 2423 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2424 struct vm_area_struct *vma;
9f40604c 2425 unsigned long start, end;
598f0ec0 2426 unsigned long nr_pte_updates = 0;
4620f8c1 2427 long pages, virtpages;
cbee9f88 2428
9148a3a1 2429 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2430
2431 work->next = work; /* protect against double add */
2432 /*
2433 * Who cares about NUMA placement when they're dying.
2434 *
2435 * NOTE: make sure not to dereference p->mm before this check,
2436 * exit_task_work() happens _after_ exit_mm() so we could be called
2437 * without p->mm even though we still had it when we enqueued this
2438 * work.
2439 */
2440 if (p->flags & PF_EXITING)
2441 return;
2442
930aa174 2443 if (!mm->numa_next_scan) {
7e8d16b6
MG
2444 mm->numa_next_scan = now +
2445 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2446 }
2447
cbee9f88
PZ
2448 /*
2449 * Enforce maximal scan/migration frequency..
2450 */
2451 migrate = mm->numa_next_scan;
2452 if (time_before(now, migrate))
2453 return;
2454
598f0ec0
MG
2455 if (p->numa_scan_period == 0) {
2456 p->numa_scan_period_max = task_scan_max(p);
2457 p->numa_scan_period = task_scan_min(p);
2458 }
cbee9f88 2459
fb003b80 2460 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2461 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2462 return;
2463
19a78d11
PZ
2464 /*
2465 * Delay this task enough that another task of this mm will likely win
2466 * the next time around.
2467 */
2468 p->node_stamp += 2 * TICK_NSEC;
2469
9f40604c
MG
2470 start = mm->numa_scan_offset;
2471 pages = sysctl_numa_balancing_scan_size;
2472 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2473 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2474 if (!pages)
2475 return;
cbee9f88 2476
4620f8c1 2477
6e5fb223 2478 down_read(&mm->mmap_sem);
9f40604c 2479 vma = find_vma(mm, start);
6e5fb223
PZ
2480 if (!vma) {
2481 reset_ptenuma_scan(p);
9f40604c 2482 start = 0;
6e5fb223
PZ
2483 vma = mm->mmap;
2484 }
9f40604c 2485 for (; vma; vma = vma->vm_next) {
6b79c57b 2486 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2487 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2488 continue;
6b79c57b 2489 }
6e5fb223 2490
4591ce4f
MG
2491 /*
2492 * Shared library pages mapped by multiple processes are not
2493 * migrated as it is expected they are cache replicated. Avoid
2494 * hinting faults in read-only file-backed mappings or the vdso
2495 * as migrating the pages will be of marginal benefit.
2496 */
2497 if (!vma->vm_mm ||
2498 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2499 continue;
2500
3c67f474
MG
2501 /*
2502 * Skip inaccessible VMAs to avoid any confusion between
2503 * PROT_NONE and NUMA hinting ptes
2504 */
2505 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2506 continue;
4591ce4f 2507
9f40604c
MG
2508 do {
2509 start = max(start, vma->vm_start);
2510 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2511 end = min(end, vma->vm_end);
4620f8c1 2512 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2513
2514 /*
4620f8c1
RR
2515 * Try to scan sysctl_numa_balancing_size worth of
2516 * hpages that have at least one present PTE that
2517 * is not already pte-numa. If the VMA contains
2518 * areas that are unused or already full of prot_numa
2519 * PTEs, scan up to virtpages, to skip through those
2520 * areas faster.
598f0ec0
MG
2521 */
2522 if (nr_pte_updates)
2523 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2524 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2525
9f40604c 2526 start = end;
4620f8c1 2527 if (pages <= 0 || virtpages <= 0)
9f40604c 2528 goto out;
3cf1962c
RR
2529
2530 cond_resched();
9f40604c 2531 } while (end != vma->vm_end);
cbee9f88 2532 }
6e5fb223 2533
9f40604c 2534out:
6e5fb223 2535 /*
c69307d5
PZ
2536 * It is possible to reach the end of the VMA list but the last few
2537 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2538 * would find the !migratable VMA on the next scan but not reset the
2539 * scanner to the start so check it now.
6e5fb223
PZ
2540 */
2541 if (vma)
9f40604c 2542 mm->numa_scan_offset = start;
6e5fb223
PZ
2543 else
2544 reset_ptenuma_scan(p);
2545 up_read(&mm->mmap_sem);
51170840
RR
2546
2547 /*
2548 * Make sure tasks use at least 32x as much time to run other code
2549 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2550 * Usually update_task_scan_period slows down scanning enough; on an
2551 * overloaded system we need to limit overhead on a per task basis.
2552 */
2553 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2554 u64 diff = p->se.sum_exec_runtime - runtime;
2555 p->node_stamp += 32 * diff;
2556 }
cbee9f88
PZ
2557}
2558
2559/*
2560 * Drive the periodic memory faults..
2561 */
2562void task_tick_numa(struct rq *rq, struct task_struct *curr)
2563{
2564 struct callback_head *work = &curr->numa_work;
2565 u64 period, now;
2566
2567 /*
2568 * We don't care about NUMA placement if we don't have memory.
2569 */
2570 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2571 return;
2572
2573 /*
2574 * Using runtime rather than walltime has the dual advantage that
2575 * we (mostly) drive the selection from busy threads and that the
2576 * task needs to have done some actual work before we bother with
2577 * NUMA placement.
2578 */
2579 now = curr->se.sum_exec_runtime;
2580 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2581
25b3e5a3 2582 if (now > curr->node_stamp + period) {
4b96a29b 2583 if (!curr->node_stamp)
598f0ec0 2584 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2585 curr->node_stamp += period;
cbee9f88
PZ
2586
2587 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2588 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2589 task_work_add(curr, work, true);
2590 }
2591 }
2592}
2593#else
2594static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2595{
2596}
0ec8aa00
PZ
2597
2598static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2599{
2600}
2601
2602static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2603{
2604}
cbee9f88
PZ
2605#endif /* CONFIG_NUMA_BALANCING */
2606
30cfdcfc
DA
2607static void
2608account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2609{
2610 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2611 if (!parent_entity(se))
029632fb 2612 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2613#ifdef CONFIG_SMP
0ec8aa00
PZ
2614 if (entity_is_task(se)) {
2615 struct rq *rq = rq_of(cfs_rq);
2616
2617 account_numa_enqueue(rq, task_of(se));
2618 list_add(&se->group_node, &rq->cfs_tasks);
2619 }
367456c7 2620#endif
30cfdcfc 2621 cfs_rq->nr_running++;
30cfdcfc
DA
2622}
2623
2624static void
2625account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2626{
2627 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2628 if (!parent_entity(se))
029632fb 2629 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2630#ifdef CONFIG_SMP
0ec8aa00
PZ
2631 if (entity_is_task(se)) {
2632 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2633 list_del_init(&se->group_node);
0ec8aa00 2634 }
bfdb198c 2635#endif
30cfdcfc 2636 cfs_rq->nr_running--;
30cfdcfc
DA
2637}
2638
3ff6dcac
YZ
2639#ifdef CONFIG_FAIR_GROUP_SCHED
2640# ifdef CONFIG_SMP
ea1dc6fc 2641static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2642{
ea1dc6fc 2643 long tg_weight, load, shares;
cf5f0acf
PZ
2644
2645 /*
ea1dc6fc
PZ
2646 * This really should be: cfs_rq->avg.load_avg, but instead we use
2647 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2648 * the shares for small weight interactive tasks.
cf5f0acf 2649 */
ea1dc6fc 2650 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2651
ea1dc6fc 2652 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2653
ea1dc6fc
PZ
2654 /* Ensure tg_weight >= load */
2655 tg_weight -= cfs_rq->tg_load_avg_contrib;
2656 tg_weight += load;
3ff6dcac 2657
3ff6dcac 2658 shares = (tg->shares * load);
cf5f0acf
PZ
2659 if (tg_weight)
2660 shares /= tg_weight;
3ff6dcac 2661
b8fd8423
DE
2662 /*
2663 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2664 * of a group with small tg->shares value. It is a floor value which is
2665 * assigned as a minimum load.weight to the sched_entity representing
2666 * the group on a CPU.
2667 *
2668 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2669 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2670 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2671 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2672 * instead of 0.
2673 */
3ff6dcac
YZ
2674 if (shares < MIN_SHARES)
2675 shares = MIN_SHARES;
2676 if (shares > tg->shares)
2677 shares = tg->shares;
2678
2679 return shares;
2680}
3ff6dcac 2681# else /* CONFIG_SMP */
6d5ab293 2682static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2683{
2684 return tg->shares;
2685}
3ff6dcac 2686# endif /* CONFIG_SMP */
ea1dc6fc 2687
2069dd75
PZ
2688static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2689 unsigned long weight)
2690{
19e5eebb
PT
2691 if (se->on_rq) {
2692 /* commit outstanding execution time */
2693 if (cfs_rq->curr == se)
2694 update_curr(cfs_rq);
2069dd75 2695 account_entity_dequeue(cfs_rq, se);
19e5eebb 2696 }
2069dd75
PZ
2697
2698 update_load_set(&se->load, weight);
2699
2700 if (se->on_rq)
2701 account_entity_enqueue(cfs_rq, se);
2702}
2703
82958366
PT
2704static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2705
89ee048f 2706static void update_cfs_shares(struct sched_entity *se)
2069dd75 2707{
89ee048f 2708 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2709 struct task_group *tg;
3ff6dcac 2710 long shares;
2069dd75 2711
89ee048f
VG
2712 if (!cfs_rq)
2713 return;
2714
2715 if (throttled_hierarchy(cfs_rq))
2069dd75 2716 return;
89ee048f
VG
2717
2718 tg = cfs_rq->tg;
2719
3ff6dcac
YZ
2720#ifndef CONFIG_SMP
2721 if (likely(se->load.weight == tg->shares))
2722 return;
2723#endif
6d5ab293 2724 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2725
2726 reweight_entity(cfs_rq_of(se), se, shares);
2727}
89ee048f 2728
2069dd75 2729#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2730static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2731{
2732}
2733#endif /* CONFIG_FAIR_GROUP_SCHED */
2734
141965c7 2735#ifdef CONFIG_SMP
5b51f2f8
PT
2736/* Precomputed fixed inverse multiplies for multiplication by y^n */
2737static const u32 runnable_avg_yN_inv[] = {
2738 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2739 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2740 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2741 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2742 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2743 0x85aac367, 0x82cd8698,
2744};
2745
2746/*
2747 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2748 * over-estimates when re-combining.
2749 */
2750static const u32 runnable_avg_yN_sum[] = {
2751 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2752 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2753 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2754};
2755
7b20b916
YD
2756/*
2757 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2758 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2759 * were generated:
2760 */
2761static const u32 __accumulated_sum_N32[] = {
2762 0, 23371, 35056, 40899, 43820, 45281,
2763 46011, 46376, 46559, 46650, 46696, 46719,
2764};
2765
9d85f21c
PT
2766/*
2767 * Approximate:
2768 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2769 */
2770static __always_inline u64 decay_load(u64 val, u64 n)
2771{
5b51f2f8
PT
2772 unsigned int local_n;
2773
2774 if (!n)
2775 return val;
2776 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2777 return 0;
2778
2779 /* after bounds checking we can collapse to 32-bit */
2780 local_n = n;
2781
2782 /*
2783 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2784 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2785 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2786 *
2787 * To achieve constant time decay_load.
2788 */
2789 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2790 val >>= local_n / LOAD_AVG_PERIOD;
2791 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2792 }
2793
9d89c257
YD
2794 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2795 return val;
5b51f2f8
PT
2796}
2797
2798/*
2799 * For updates fully spanning n periods, the contribution to runnable
2800 * average will be: \Sum 1024*y^n
2801 *
2802 * We can compute this reasonably efficiently by combining:
2803 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2804 */
2805static u32 __compute_runnable_contrib(u64 n)
2806{
2807 u32 contrib = 0;
2808
2809 if (likely(n <= LOAD_AVG_PERIOD))
2810 return runnable_avg_yN_sum[n];
2811 else if (unlikely(n >= LOAD_AVG_MAX_N))
2812 return LOAD_AVG_MAX;
2813
7b20b916
YD
2814 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2815 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2816 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2817 contrib = decay_load(contrib, n);
2818 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2819}
2820
54a21385 2821#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2822
9d85f21c
PT
2823/*
2824 * We can represent the historical contribution to runnable average as the
2825 * coefficients of a geometric series. To do this we sub-divide our runnable
2826 * history into segments of approximately 1ms (1024us); label the segment that
2827 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2828 *
2829 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2830 * p0 p1 p2
2831 * (now) (~1ms ago) (~2ms ago)
2832 *
2833 * Let u_i denote the fraction of p_i that the entity was runnable.
2834 *
2835 * We then designate the fractions u_i as our co-efficients, yielding the
2836 * following representation of historical load:
2837 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2838 *
2839 * We choose y based on the with of a reasonably scheduling period, fixing:
2840 * y^32 = 0.5
2841 *
2842 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2843 * approximately half as much as the contribution to load within the last ms
2844 * (u_0).
2845 *
2846 * When a period "rolls over" and we have new u_0`, multiplying the previous
2847 * sum again by y is sufficient to update:
2848 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2849 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2850 */
9d89c257
YD
2851static __always_inline int
2852__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2853 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2854{
e0f5f3af 2855 u64 delta, scaled_delta, periods;
9d89c257 2856 u32 contrib;
6115c793 2857 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2858 unsigned long scale_freq, scale_cpu;
9d85f21c 2859
9d89c257 2860 delta = now - sa->last_update_time;
9d85f21c
PT
2861 /*
2862 * This should only happen when time goes backwards, which it
2863 * unfortunately does during sched clock init when we swap over to TSC.
2864 */
2865 if ((s64)delta < 0) {
9d89c257 2866 sa->last_update_time = now;
9d85f21c
PT
2867 return 0;
2868 }
2869
2870 /*
2871 * Use 1024ns as the unit of measurement since it's a reasonable
2872 * approximation of 1us and fast to compute.
2873 */
2874 delta >>= 10;
2875 if (!delta)
2876 return 0;
9d89c257 2877 sa->last_update_time = now;
9d85f21c 2878
6f2b0452
DE
2879 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2880 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2881
9d85f21c 2882 /* delta_w is the amount already accumulated against our next period */
9d89c257 2883 delta_w = sa->period_contrib;
9d85f21c 2884 if (delta + delta_w >= 1024) {
9d85f21c
PT
2885 decayed = 1;
2886
9d89c257
YD
2887 /* how much left for next period will start over, we don't know yet */
2888 sa->period_contrib = 0;
2889
9d85f21c
PT
2890 /*
2891 * Now that we know we're crossing a period boundary, figure
2892 * out how much from delta we need to complete the current
2893 * period and accrue it.
2894 */
2895 delta_w = 1024 - delta_w;
54a21385 2896 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2897 if (weight) {
e0f5f3af
DE
2898 sa->load_sum += weight * scaled_delta_w;
2899 if (cfs_rq) {
2900 cfs_rq->runnable_load_sum +=
2901 weight * scaled_delta_w;
2902 }
13962234 2903 }
36ee28e4 2904 if (running)
006cdf02 2905 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2906
2907 delta -= delta_w;
2908
2909 /* Figure out how many additional periods this update spans */
2910 periods = delta / 1024;
2911 delta %= 1024;
2912
9d89c257 2913 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2914 if (cfs_rq) {
2915 cfs_rq->runnable_load_sum =
2916 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2917 }
9d89c257 2918 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2919
2920 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2921 contrib = __compute_runnable_contrib(periods);
54a21385 2922 contrib = cap_scale(contrib, scale_freq);
13962234 2923 if (weight) {
9d89c257 2924 sa->load_sum += weight * contrib;
13962234
YD
2925 if (cfs_rq)
2926 cfs_rq->runnable_load_sum += weight * contrib;
2927 }
36ee28e4 2928 if (running)
006cdf02 2929 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2930 }
2931
2932 /* Remainder of delta accrued against u_0` */
54a21385 2933 scaled_delta = cap_scale(delta, scale_freq);
13962234 2934 if (weight) {
e0f5f3af 2935 sa->load_sum += weight * scaled_delta;
13962234 2936 if (cfs_rq)
e0f5f3af 2937 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2938 }
36ee28e4 2939 if (running)
006cdf02 2940 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2941
9d89c257 2942 sa->period_contrib += delta;
9ee474f5 2943
9d89c257
YD
2944 if (decayed) {
2945 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2946 if (cfs_rq) {
2947 cfs_rq->runnable_load_avg =
2948 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2949 }
006cdf02 2950 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2951 }
aff3e498 2952
9d89c257 2953 return decayed;
9ee474f5
PT
2954}
2955
09a43ace
VG
2956/*
2957 * Signed add and clamp on underflow.
2958 *
2959 * Explicitly do a load-store to ensure the intermediate value never hits
2960 * memory. This allows lockless observations without ever seeing the negative
2961 * values.
2962 */
2963#define add_positive(_ptr, _val) do { \
2964 typeof(_ptr) ptr = (_ptr); \
2965 typeof(_val) val = (_val); \
2966 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2967 \
2968 res = var + val; \
2969 \
2970 if (val < 0 && res > var) \
2971 res = 0; \
2972 \
2973 WRITE_ONCE(*ptr, res); \
2974} while (0)
2975
c566e8e9 2976#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2977/**
2978 * update_tg_load_avg - update the tg's load avg
2979 * @cfs_rq: the cfs_rq whose avg changed
2980 * @force: update regardless of how small the difference
2981 *
2982 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2983 * However, because tg->load_avg is a global value there are performance
2984 * considerations.
2985 *
2986 * In order to avoid having to look at the other cfs_rq's, we use a
2987 * differential update where we store the last value we propagated. This in
2988 * turn allows skipping updates if the differential is 'small'.
2989 *
2990 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2991 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2992 */
9d89c257 2993static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2994{
9d89c257 2995 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2996
aa0b7ae0
WL
2997 /*
2998 * No need to update load_avg for root_task_group as it is not used.
2999 */
3000 if (cfs_rq->tg == &root_task_group)
3001 return;
3002
9d89c257
YD
3003 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3004 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3005 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3006 }
8165e145 3007}
f5f9739d 3008
ad936d86
BP
3009/*
3010 * Called within set_task_rq() right before setting a task's cpu. The
3011 * caller only guarantees p->pi_lock is held; no other assumptions,
3012 * including the state of rq->lock, should be made.
3013 */
3014void set_task_rq_fair(struct sched_entity *se,
3015 struct cfs_rq *prev, struct cfs_rq *next)
3016{
3017 if (!sched_feat(ATTACH_AGE_LOAD))
3018 return;
3019
3020 /*
3021 * We are supposed to update the task to "current" time, then its up to
3022 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3023 * getting what current time is, so simply throw away the out-of-date
3024 * time. This will result in the wakee task is less decayed, but giving
3025 * the wakee more load sounds not bad.
3026 */
3027 if (se->avg.last_update_time && prev) {
3028 u64 p_last_update_time;
3029 u64 n_last_update_time;
3030
3031#ifndef CONFIG_64BIT
3032 u64 p_last_update_time_copy;
3033 u64 n_last_update_time_copy;
3034
3035 do {
3036 p_last_update_time_copy = prev->load_last_update_time_copy;
3037 n_last_update_time_copy = next->load_last_update_time_copy;
3038
3039 smp_rmb();
3040
3041 p_last_update_time = prev->avg.last_update_time;
3042 n_last_update_time = next->avg.last_update_time;
3043
3044 } while (p_last_update_time != p_last_update_time_copy ||
3045 n_last_update_time != n_last_update_time_copy);
3046#else
3047 p_last_update_time = prev->avg.last_update_time;
3048 n_last_update_time = next->avg.last_update_time;
3049#endif
3050 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
3051 &se->avg, 0, 0, NULL);
3052 se->avg.last_update_time = n_last_update_time;
3053 }
3054}
09a43ace
VG
3055
3056/* Take into account change of utilization of a child task group */
3057static inline void
3058update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3059{
3060 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3061 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3062
3063 /* Nothing to update */
3064 if (!delta)
3065 return;
3066
3067 /* Set new sched_entity's utilization */
3068 se->avg.util_avg = gcfs_rq->avg.util_avg;
3069 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3070
3071 /* Update parent cfs_rq utilization */
3072 add_positive(&cfs_rq->avg.util_avg, delta);
3073 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3074}
3075
3076/* Take into account change of load of a child task group */
3077static inline void
3078update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3079{
3080 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3081 long delta, load = gcfs_rq->avg.load_avg;
3082
3083 /*
3084 * If the load of group cfs_rq is null, the load of the
3085 * sched_entity will also be null so we can skip the formula
3086 */
3087 if (load) {
3088 long tg_load;
3089
3090 /* Get tg's load and ensure tg_load > 0 */
3091 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3092
3093 /* Ensure tg_load >= load and updated with current load*/
3094 tg_load -= gcfs_rq->tg_load_avg_contrib;
3095 tg_load += load;
3096
3097 /*
3098 * We need to compute a correction term in the case that the
3099 * task group is consuming more CPU than a task of equal
3100 * weight. A task with a weight equals to tg->shares will have
3101 * a load less or equal to scale_load_down(tg->shares).
3102 * Similarly, the sched_entities that represent the task group
3103 * at parent level, can't have a load higher than
3104 * scale_load_down(tg->shares). And the Sum of sched_entities'
3105 * load must be <= scale_load_down(tg->shares).
3106 */
3107 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3108 /* scale gcfs_rq's load into tg's shares*/
3109 load *= scale_load_down(gcfs_rq->tg->shares);
3110 load /= tg_load;
3111 }
3112 }
3113
3114 delta = load - se->avg.load_avg;
3115
3116 /* Nothing to update */
3117 if (!delta)
3118 return;
3119
3120 /* Set new sched_entity's load */
3121 se->avg.load_avg = load;
3122 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3123
3124 /* Update parent cfs_rq load */
3125 add_positive(&cfs_rq->avg.load_avg, delta);
3126 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3127
3128 /*
3129 * If the sched_entity is already enqueued, we also have to update the
3130 * runnable load avg.
3131 */
3132 if (se->on_rq) {
3133 /* Update parent cfs_rq runnable_load_avg */
3134 add_positive(&cfs_rq->runnable_load_avg, delta);
3135 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3136 }
3137}
3138
3139static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3140{
3141 cfs_rq->propagate_avg = 1;
3142}
3143
3144static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3145{
3146 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3147
3148 if (!cfs_rq->propagate_avg)
3149 return 0;
3150
3151 cfs_rq->propagate_avg = 0;
3152 return 1;
3153}
3154
3155/* Update task and its cfs_rq load average */
3156static inline int propagate_entity_load_avg(struct sched_entity *se)
3157{
3158 struct cfs_rq *cfs_rq;
3159
3160 if (entity_is_task(se))
3161 return 0;
3162
3163 if (!test_and_clear_tg_cfs_propagate(se))
3164 return 0;
3165
3166 cfs_rq = cfs_rq_of(se);
3167
3168 set_tg_cfs_propagate(cfs_rq);
3169
3170 update_tg_cfs_util(cfs_rq, se);
3171 update_tg_cfs_load(cfs_rq, se);
3172
3173 return 1;
3174}
3175
bc427898
VG
3176/*
3177 * Check if we need to update the load and the utilization of a blocked
3178 * group_entity:
3179 */
3180static inline bool skip_blocked_update(struct sched_entity *se)
3181{
3182 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3183
3184 /*
3185 * If sched_entity still have not zero load or utilization, we have to
3186 * decay it:
3187 */
3188 if (se->avg.load_avg || se->avg.util_avg)
3189 return false;
3190
3191 /*
3192 * If there is a pending propagation, we have to update the load and
3193 * the utilization of the sched_entity:
3194 */
3195 if (gcfs_rq->propagate_avg)
3196 return false;
3197
3198 /*
3199 * Otherwise, the load and the utilization of the sched_entity is
3200 * already zero and there is no pending propagation, so it will be a
3201 * waste of time to try to decay it:
3202 */
3203 return true;
3204}
3205
6e83125c 3206#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3207
9d89c257 3208static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3209
3210static inline int propagate_entity_load_avg(struct sched_entity *se)
3211{
3212 return 0;
3213}
3214
3215static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3216
6e83125c 3217#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3218
a2c6c91f
SM
3219static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3220{
58919e83 3221 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
3222 /*
3223 * There are a few boundary cases this might miss but it should
3224 * get called often enough that that should (hopefully) not be
3225 * a real problem -- added to that it only calls on the local
3226 * CPU, so if we enqueue remotely we'll miss an update, but
3227 * the next tick/schedule should update.
3228 *
3229 * It will not get called when we go idle, because the idle
3230 * thread is a different class (!fair), nor will the utilization
3231 * number include things like RT tasks.
3232 *
3233 * As is, the util number is not freq-invariant (we'd have to
3234 * implement arch_scale_freq_capacity() for that).
3235 *
3236 * See cpu_util().
3237 */
12bde33d 3238 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
3239 }
3240}
3241
89741892
PZ
3242/*
3243 * Unsigned subtract and clamp on underflow.
3244 *
3245 * Explicitly do a load-store to ensure the intermediate value never hits
3246 * memory. This allows lockless observations without ever seeing the negative
3247 * values.
3248 */
3249#define sub_positive(_ptr, _val) do { \
3250 typeof(_ptr) ptr = (_ptr); \
3251 typeof(*ptr) val = (_val); \
3252 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3253 res = var - val; \
3254 if (res > var) \
3255 res = 0; \
3256 WRITE_ONCE(*ptr, res); \
3257} while (0)
3258
3d30544f
PZ
3259/**
3260 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3261 * @now: current time, as per cfs_rq_clock_task()
3262 * @cfs_rq: cfs_rq to update
3263 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3264 *
3265 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3266 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3267 * post_init_entity_util_avg().
3268 *
3269 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3270 *
7c3edd2c
PZ
3271 * Returns true if the load decayed or we removed load.
3272 *
3273 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3274 * call update_tg_load_avg() when this function returns true.
3d30544f 3275 */
a2c6c91f
SM
3276static inline int
3277update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3278{
9d89c257 3279 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3280 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3281
9d89c257 3282 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3283 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3284 sub_positive(&sa->load_avg, r);
3285 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3286 removed_load = 1;
4e516076 3287 set_tg_cfs_propagate(cfs_rq);
8165e145 3288 }
2dac754e 3289
9d89c257
YD
3290 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3291 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3292 sub_positive(&sa->util_avg, r);
3293 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3294 removed_util = 1;
4e516076 3295 set_tg_cfs_propagate(cfs_rq);
9d89c257 3296 }
36ee28e4 3297
a2c6c91f 3298 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 3299 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 3300
9d89c257
YD
3301#ifndef CONFIG_64BIT
3302 smp_wmb();
3303 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3304#endif
36ee28e4 3305
a2c6c91f
SM
3306 if (update_freq && (decayed || removed_util))
3307 cfs_rq_util_change(cfs_rq);
21e96f88 3308
41e0d37f 3309 return decayed || removed_load;
21e96f88
SM
3310}
3311
d31b1a66
VG
3312/*
3313 * Optional action to be done while updating the load average
3314 */
3315#define UPDATE_TG 0x1
3316#define SKIP_AGE_LOAD 0x2
3317
21e96f88 3318/* Update task and its cfs_rq load average */
d31b1a66 3319static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3320{
3321 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3322 u64 now = cfs_rq_clock_task(cfs_rq);
3323 struct rq *rq = rq_of(cfs_rq);
3324 int cpu = cpu_of(rq);
09a43ace 3325 int decayed;
21e96f88
SM
3326
3327 /*
3328 * Track task load average for carrying it to new CPU after migrated, and
3329 * track group sched_entity load average for task_h_load calc in migration
3330 */
d31b1a66
VG
3331 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
3332 __update_load_avg(now, cpu, &se->avg,
21e96f88
SM
3333 se->on_rq * scale_load_down(se->load.weight),
3334 cfs_rq->curr == se, NULL);
d31b1a66 3335 }
21e96f88 3336
09a43ace
VG
3337 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3338 decayed |= propagate_entity_load_avg(se);
3339
3340 if (decayed && (flags & UPDATE_TG))
21e96f88 3341 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3342}
3343
3d30544f
PZ
3344/**
3345 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3346 * @cfs_rq: cfs_rq to attach to
3347 * @se: sched_entity to attach
3348 *
3349 * Must call update_cfs_rq_load_avg() before this, since we rely on
3350 * cfs_rq->avg.last_update_time being current.
3351 */
a05e8c51
BP
3352static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3353{
3354 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3355 cfs_rq->avg.load_avg += se->avg.load_avg;
3356 cfs_rq->avg.load_sum += se->avg.load_sum;
3357 cfs_rq->avg.util_avg += se->avg.util_avg;
3358 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3359 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3360
3361 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3362}
3363
3d30544f
PZ
3364/**
3365 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3366 * @cfs_rq: cfs_rq to detach from
3367 * @se: sched_entity to detach
3368 *
3369 * Must call update_cfs_rq_load_avg() before this, since we rely on
3370 * cfs_rq->avg.last_update_time being current.
3371 */
a05e8c51
BP
3372static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3373{
a05e8c51 3374
89741892
PZ
3375 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3376 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3377 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3378 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3379 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3380
3381 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3382}
3383
9d89c257
YD
3384/* Add the load generated by se into cfs_rq's load average */
3385static inline void
3386enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3387{
9d89c257 3388 struct sched_avg *sa = &se->avg;
18bf2805 3389
13962234
YD
3390 cfs_rq->runnable_load_avg += sa->load_avg;
3391 cfs_rq->runnable_load_sum += sa->load_sum;
3392
d31b1a66 3393 if (!sa->last_update_time) {
a05e8c51 3394 attach_entity_load_avg(cfs_rq, se);
9d89c257 3395 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3396 }
2dac754e
PT
3397}
3398
13962234
YD
3399/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3400static inline void
3401dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3402{
13962234
YD
3403 cfs_rq->runnable_load_avg =
3404 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3405 cfs_rq->runnable_load_sum =
a05e8c51 3406 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3407}
3408
9d89c257 3409#ifndef CONFIG_64BIT
0905f04e
YD
3410static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3411{
9d89c257 3412 u64 last_update_time_copy;
0905f04e 3413 u64 last_update_time;
9ee474f5 3414
9d89c257
YD
3415 do {
3416 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3417 smp_rmb();
3418 last_update_time = cfs_rq->avg.last_update_time;
3419 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3420
3421 return last_update_time;
3422}
9d89c257 3423#else
0905f04e
YD
3424static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3425{
3426 return cfs_rq->avg.last_update_time;
3427}
9d89c257
YD
3428#endif
3429
104cb16d
MR
3430/*
3431 * Synchronize entity load avg of dequeued entity without locking
3432 * the previous rq.
3433 */
3434void sync_entity_load_avg(struct sched_entity *se)
3435{
3436 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3437 u64 last_update_time;
3438
3439 last_update_time = cfs_rq_last_update_time(cfs_rq);
3440 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3441}
3442
0905f04e
YD
3443/*
3444 * Task first catches up with cfs_rq, and then subtract
3445 * itself from the cfs_rq (task must be off the queue now).
3446 */
3447void remove_entity_load_avg(struct sched_entity *se)
3448{
3449 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3450
3451 /*
7dc603c9
PZ
3452 * tasks cannot exit without having gone through wake_up_new_task() ->
3453 * post_init_entity_util_avg() which will have added things to the
3454 * cfs_rq, so we can remove unconditionally.
3455 *
3456 * Similarly for groups, they will have passed through
3457 * post_init_entity_util_avg() before unregister_sched_fair_group()
3458 * calls this.
0905f04e 3459 */
0905f04e 3460
104cb16d 3461 sync_entity_load_avg(se);
9d89c257
YD
3462 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3463 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3464}
642dbc39 3465
7ea241af
YD
3466static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3467{
3468 return cfs_rq->runnable_load_avg;
3469}
3470
3471static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3472{
3473 return cfs_rq->avg.load_avg;
3474}
3475
46f69fa3 3476static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3477
38033c37
PZ
3478#else /* CONFIG_SMP */
3479
01011473
PZ
3480static inline int
3481update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3482{
3483 return 0;
3484}
3485
d31b1a66
VG
3486#define UPDATE_TG 0x0
3487#define SKIP_AGE_LOAD 0x0
3488
3489static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3490{
12bde33d 3491 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3492}
3493
9d89c257
YD
3494static inline void
3495enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3496static inline void
3497dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3498static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3499
a05e8c51
BP
3500static inline void
3501attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3502static inline void
3503detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3504
46f69fa3 3505static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3506{
3507 return 0;
3508}
3509
38033c37 3510#endif /* CONFIG_SMP */
9d85f21c 3511
ddc97297
PZ
3512static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3513{
3514#ifdef CONFIG_SCHED_DEBUG
3515 s64 d = se->vruntime - cfs_rq->min_vruntime;
3516
3517 if (d < 0)
3518 d = -d;
3519
3520 if (d > 3*sysctl_sched_latency)
ae92882e 3521 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3522#endif
3523}
3524
aeb73b04
PZ
3525static void
3526place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3527{
1af5f730 3528 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3529
2cb8600e
PZ
3530 /*
3531 * The 'current' period is already promised to the current tasks,
3532 * however the extra weight of the new task will slow them down a
3533 * little, place the new task so that it fits in the slot that
3534 * stays open at the end.
3535 */
94dfb5e7 3536 if (initial && sched_feat(START_DEBIT))
f9c0b095 3537 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3538
a2e7a7eb 3539 /* sleeps up to a single latency don't count. */
5ca9880c 3540 if (!initial) {
a2e7a7eb 3541 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3542
a2e7a7eb
MG
3543 /*
3544 * Halve their sleep time's effect, to allow
3545 * for a gentler effect of sleepers:
3546 */
3547 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3548 thresh >>= 1;
51e0304c 3549
a2e7a7eb 3550 vruntime -= thresh;
aeb73b04
PZ
3551 }
3552
b5d9d734 3553 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3554 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3555}
3556
d3d9dc33
PT
3557static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3558
cb251765
MG
3559static inline void check_schedstat_required(void)
3560{
3561#ifdef CONFIG_SCHEDSTATS
3562 if (schedstat_enabled())
3563 return;
3564
3565 /* Force schedstat enabled if a dependent tracepoint is active */
3566 if (trace_sched_stat_wait_enabled() ||
3567 trace_sched_stat_sleep_enabled() ||
3568 trace_sched_stat_iowait_enabled() ||
3569 trace_sched_stat_blocked_enabled() ||
3570 trace_sched_stat_runtime_enabled()) {
eda8dca5 3571 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3572 "stat_blocked and stat_runtime require the "
3573 "kernel parameter schedstats=enabled or "
3574 "kernel.sched_schedstats=1\n");
3575 }
3576#endif
3577}
3578
b5179ac7
PZ
3579
3580/*
3581 * MIGRATION
3582 *
3583 * dequeue
3584 * update_curr()
3585 * update_min_vruntime()
3586 * vruntime -= min_vruntime
3587 *
3588 * enqueue
3589 * update_curr()
3590 * update_min_vruntime()
3591 * vruntime += min_vruntime
3592 *
3593 * this way the vruntime transition between RQs is done when both
3594 * min_vruntime are up-to-date.
3595 *
3596 * WAKEUP (remote)
3597 *
59efa0ba 3598 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3599 * vruntime -= min_vruntime
3600 *
3601 * enqueue
3602 * update_curr()
3603 * update_min_vruntime()
3604 * vruntime += min_vruntime
3605 *
3606 * this way we don't have the most up-to-date min_vruntime on the originating
3607 * CPU and an up-to-date min_vruntime on the destination CPU.
3608 */
3609
bf0f6f24 3610static void
88ec22d3 3611enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3612{
2f950354
PZ
3613 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3614 bool curr = cfs_rq->curr == se;
3615
88ec22d3 3616 /*
2f950354
PZ
3617 * If we're the current task, we must renormalise before calling
3618 * update_curr().
88ec22d3 3619 */
2f950354 3620 if (renorm && curr)
88ec22d3
PZ
3621 se->vruntime += cfs_rq->min_vruntime;
3622
2f950354
PZ
3623 update_curr(cfs_rq);
3624
bf0f6f24 3625 /*
2f950354
PZ
3626 * Otherwise, renormalise after, such that we're placed at the current
3627 * moment in time, instead of some random moment in the past. Being
3628 * placed in the past could significantly boost this task to the
3629 * fairness detriment of existing tasks.
bf0f6f24 3630 */
2f950354
PZ
3631 if (renorm && !curr)
3632 se->vruntime += cfs_rq->min_vruntime;
3633
89ee048f
VG
3634 /*
3635 * When enqueuing a sched_entity, we must:
3636 * - Update loads to have both entity and cfs_rq synced with now.
3637 * - Add its load to cfs_rq->runnable_avg
3638 * - For group_entity, update its weight to reflect the new share of
3639 * its group cfs_rq
3640 * - Add its new weight to cfs_rq->load.weight
3641 */
d31b1a66 3642 update_load_avg(se, UPDATE_TG);
9d89c257 3643 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3644 update_cfs_shares(se);
17bc14b7 3645 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3646
1a3d027c 3647 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3648 place_entity(cfs_rq, se, 0);
bf0f6f24 3649
cb251765 3650 check_schedstat_required();
4fa8d299
JP
3651 update_stats_enqueue(cfs_rq, se, flags);
3652 check_spread(cfs_rq, se);
2f950354 3653 if (!curr)
83b699ed 3654 __enqueue_entity(cfs_rq, se);
2069dd75 3655 se->on_rq = 1;
3d4b47b4 3656
d3d9dc33 3657 if (cfs_rq->nr_running == 1) {
3d4b47b4 3658 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3659 check_enqueue_throttle(cfs_rq);
3660 }
bf0f6f24
IM
3661}
3662
2c13c919 3663static void __clear_buddies_last(struct sched_entity *se)
2002c695 3664{
2c13c919
RR
3665 for_each_sched_entity(se) {
3666 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3667 if (cfs_rq->last != se)
2c13c919 3668 break;
f1044799
PZ
3669
3670 cfs_rq->last = NULL;
2c13c919
RR
3671 }
3672}
2002c695 3673
2c13c919
RR
3674static void __clear_buddies_next(struct sched_entity *se)
3675{
3676 for_each_sched_entity(se) {
3677 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3678 if (cfs_rq->next != se)
2c13c919 3679 break;
f1044799
PZ
3680
3681 cfs_rq->next = NULL;
2c13c919 3682 }
2002c695
PZ
3683}
3684
ac53db59
RR
3685static void __clear_buddies_skip(struct sched_entity *se)
3686{
3687 for_each_sched_entity(se) {
3688 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3689 if (cfs_rq->skip != se)
ac53db59 3690 break;
f1044799
PZ
3691
3692 cfs_rq->skip = NULL;
ac53db59
RR
3693 }
3694}
3695
a571bbea
PZ
3696static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3697{
2c13c919
RR
3698 if (cfs_rq->last == se)
3699 __clear_buddies_last(se);
3700
3701 if (cfs_rq->next == se)
3702 __clear_buddies_next(se);
ac53db59
RR
3703
3704 if (cfs_rq->skip == se)
3705 __clear_buddies_skip(se);
a571bbea
PZ
3706}
3707
6c16a6dc 3708static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3709
bf0f6f24 3710static void
371fd7e7 3711dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3712{
a2a2d680
DA
3713 /*
3714 * Update run-time statistics of the 'current'.
3715 */
3716 update_curr(cfs_rq);
89ee048f
VG
3717
3718 /*
3719 * When dequeuing a sched_entity, we must:
3720 * - Update loads to have both entity and cfs_rq synced with now.
3721 * - Substract its load from the cfs_rq->runnable_avg.
3722 * - Substract its previous weight from cfs_rq->load.weight.
3723 * - For group entity, update its weight to reflect the new share
3724 * of its group cfs_rq.
3725 */
d31b1a66 3726 update_load_avg(se, UPDATE_TG);
13962234 3727 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3728
4fa8d299 3729 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3730
2002c695 3731 clear_buddies(cfs_rq, se);
4793241b 3732
83b699ed 3733 if (se != cfs_rq->curr)
30cfdcfc 3734 __dequeue_entity(cfs_rq, se);
17bc14b7 3735 se->on_rq = 0;
30cfdcfc 3736 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3737
3738 /*
b60205c7
PZ
3739 * Normalize after update_curr(); which will also have moved
3740 * min_vruntime if @se is the one holding it back. But before doing
3741 * update_min_vruntime() again, which will discount @se's position and
3742 * can move min_vruntime forward still more.
88ec22d3 3743 */
371fd7e7 3744 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3745 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3746
d8b4986d
PT
3747 /* return excess runtime on last dequeue */
3748 return_cfs_rq_runtime(cfs_rq);
3749
89ee048f 3750 update_cfs_shares(se);
b60205c7
PZ
3751
3752 /*
3753 * Now advance min_vruntime if @se was the entity holding it back,
3754 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3755 * put back on, and if we advance min_vruntime, we'll be placed back
3756 * further than we started -- ie. we'll be penalized.
3757 */
3758 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3759 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3760}
3761
3762/*
3763 * Preempt the current task with a newly woken task if needed:
3764 */
7c92e54f 3765static void
2e09bf55 3766check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3767{
11697830 3768 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3769 struct sched_entity *se;
3770 s64 delta;
11697830 3771
6d0f0ebd 3772 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3773 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3774 if (delta_exec > ideal_runtime) {
8875125e 3775 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3776 /*
3777 * The current task ran long enough, ensure it doesn't get
3778 * re-elected due to buddy favours.
3779 */
3780 clear_buddies(cfs_rq, curr);
f685ceac
MG
3781 return;
3782 }
3783
3784 /*
3785 * Ensure that a task that missed wakeup preemption by a
3786 * narrow margin doesn't have to wait for a full slice.
3787 * This also mitigates buddy induced latencies under load.
3788 */
f685ceac
MG
3789 if (delta_exec < sysctl_sched_min_granularity)
3790 return;
3791
f4cfb33e
WX
3792 se = __pick_first_entity(cfs_rq);
3793 delta = curr->vruntime - se->vruntime;
f685ceac 3794
f4cfb33e
WX
3795 if (delta < 0)
3796 return;
d7d82944 3797
f4cfb33e 3798 if (delta > ideal_runtime)
8875125e 3799 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3800}
3801
83b699ed 3802static void
8494f412 3803set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3804{
83b699ed
SV
3805 /* 'current' is not kept within the tree. */
3806 if (se->on_rq) {
3807 /*
3808 * Any task has to be enqueued before it get to execute on
3809 * a CPU. So account for the time it spent waiting on the
3810 * runqueue.
3811 */
4fa8d299 3812 update_stats_wait_end(cfs_rq, se);
83b699ed 3813 __dequeue_entity(cfs_rq, se);
d31b1a66 3814 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3815 }
3816
79303e9e 3817 update_stats_curr_start(cfs_rq, se);
429d43bc 3818 cfs_rq->curr = se;
4fa8d299 3819
eba1ed4b
IM
3820 /*
3821 * Track our maximum slice length, if the CPU's load is at
3822 * least twice that of our own weight (i.e. dont track it
3823 * when there are only lesser-weight tasks around):
3824 */
cb251765 3825 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3826 schedstat_set(se->statistics.slice_max,
3827 max((u64)schedstat_val(se->statistics.slice_max),
3828 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3829 }
4fa8d299 3830
4a55b450 3831 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3832}
3833
3f3a4904
PZ
3834static int
3835wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3836
ac53db59
RR
3837/*
3838 * Pick the next process, keeping these things in mind, in this order:
3839 * 1) keep things fair between processes/task groups
3840 * 2) pick the "next" process, since someone really wants that to run
3841 * 3) pick the "last" process, for cache locality
3842 * 4) do not run the "skip" process, if something else is available
3843 */
678d5718
PZ
3844static struct sched_entity *
3845pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3846{
678d5718
PZ
3847 struct sched_entity *left = __pick_first_entity(cfs_rq);
3848 struct sched_entity *se;
3849
3850 /*
3851 * If curr is set we have to see if its left of the leftmost entity
3852 * still in the tree, provided there was anything in the tree at all.
3853 */
3854 if (!left || (curr && entity_before(curr, left)))
3855 left = curr;
3856
3857 se = left; /* ideally we run the leftmost entity */
f4b6755f 3858
ac53db59
RR
3859 /*
3860 * Avoid running the skip buddy, if running something else can
3861 * be done without getting too unfair.
3862 */
3863 if (cfs_rq->skip == se) {
678d5718
PZ
3864 struct sched_entity *second;
3865
3866 if (se == curr) {
3867 second = __pick_first_entity(cfs_rq);
3868 } else {
3869 second = __pick_next_entity(se);
3870 if (!second || (curr && entity_before(curr, second)))
3871 second = curr;
3872 }
3873
ac53db59
RR
3874 if (second && wakeup_preempt_entity(second, left) < 1)
3875 se = second;
3876 }
aa2ac252 3877
f685ceac
MG
3878 /*
3879 * Prefer last buddy, try to return the CPU to a preempted task.
3880 */
3881 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3882 se = cfs_rq->last;
3883
ac53db59
RR
3884 /*
3885 * Someone really wants this to run. If it's not unfair, run it.
3886 */
3887 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3888 se = cfs_rq->next;
3889
f685ceac 3890 clear_buddies(cfs_rq, se);
4793241b
PZ
3891
3892 return se;
aa2ac252
PZ
3893}
3894
678d5718 3895static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3896
ab6cde26 3897static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3898{
3899 /*
3900 * If still on the runqueue then deactivate_task()
3901 * was not called and update_curr() has to be done:
3902 */
3903 if (prev->on_rq)
b7cc0896 3904 update_curr(cfs_rq);
bf0f6f24 3905
d3d9dc33
PT
3906 /* throttle cfs_rqs exceeding runtime */
3907 check_cfs_rq_runtime(cfs_rq);
3908
4fa8d299 3909 check_spread(cfs_rq, prev);
cb251765 3910
30cfdcfc 3911 if (prev->on_rq) {
4fa8d299 3912 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3913 /* Put 'current' back into the tree. */
3914 __enqueue_entity(cfs_rq, prev);
9d85f21c 3915 /* in !on_rq case, update occurred at dequeue */
9d89c257 3916 update_load_avg(prev, 0);
30cfdcfc 3917 }
429d43bc 3918 cfs_rq->curr = NULL;
bf0f6f24
IM
3919}
3920
8f4d37ec
PZ
3921static void
3922entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3923{
bf0f6f24 3924 /*
30cfdcfc 3925 * Update run-time statistics of the 'current'.
bf0f6f24 3926 */
30cfdcfc 3927 update_curr(cfs_rq);
bf0f6f24 3928
9d85f21c
PT
3929 /*
3930 * Ensure that runnable average is periodically updated.
3931 */
d31b1a66 3932 update_load_avg(curr, UPDATE_TG);
89ee048f 3933 update_cfs_shares(curr);
9d85f21c 3934
8f4d37ec
PZ
3935#ifdef CONFIG_SCHED_HRTICK
3936 /*
3937 * queued ticks are scheduled to match the slice, so don't bother
3938 * validating it and just reschedule.
3939 */
983ed7a6 3940 if (queued) {
8875125e 3941 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3942 return;
3943 }
8f4d37ec
PZ
3944 /*
3945 * don't let the period tick interfere with the hrtick preemption
3946 */
3947 if (!sched_feat(DOUBLE_TICK) &&
3948 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3949 return;
3950#endif
3951
2c2efaed 3952 if (cfs_rq->nr_running > 1)
2e09bf55 3953 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3954}
3955
ab84d31e
PT
3956
3957/**************************************************
3958 * CFS bandwidth control machinery
3959 */
3960
3961#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3962
3963#ifdef HAVE_JUMP_LABEL
c5905afb 3964static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3965
3966static inline bool cfs_bandwidth_used(void)
3967{
c5905afb 3968 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3969}
3970
1ee14e6c 3971void cfs_bandwidth_usage_inc(void)
029632fb 3972{
1ee14e6c
BS
3973 static_key_slow_inc(&__cfs_bandwidth_used);
3974}
3975
3976void cfs_bandwidth_usage_dec(void)
3977{
3978 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3979}
3980#else /* HAVE_JUMP_LABEL */
3981static bool cfs_bandwidth_used(void)
3982{
3983 return true;
3984}
3985
1ee14e6c
BS
3986void cfs_bandwidth_usage_inc(void) {}
3987void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3988#endif /* HAVE_JUMP_LABEL */
3989
ab84d31e
PT
3990/*
3991 * default period for cfs group bandwidth.
3992 * default: 0.1s, units: nanoseconds
3993 */
3994static inline u64 default_cfs_period(void)
3995{
3996 return 100000000ULL;
3997}
ec12cb7f
PT
3998
3999static inline u64 sched_cfs_bandwidth_slice(void)
4000{
4001 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4002}
4003
a9cf55b2
PT
4004/*
4005 * Replenish runtime according to assigned quota and update expiration time.
4006 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4007 * additional synchronization around rq->lock.
4008 *
4009 * requires cfs_b->lock
4010 */
029632fb 4011void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4012{
4013 u64 now;
4014
4015 if (cfs_b->quota == RUNTIME_INF)
4016 return;
4017
4018 now = sched_clock_cpu(smp_processor_id());
4019 cfs_b->runtime = cfs_b->quota;
4020 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4021}
4022
029632fb
PZ
4023static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4024{
4025 return &tg->cfs_bandwidth;
4026}
4027
f1b17280
PT
4028/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4029static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4030{
4031 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4032 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4033
78becc27 4034 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4035}
4036
85dac906
PT
4037/* returns 0 on failure to allocate runtime */
4038static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4039{
4040 struct task_group *tg = cfs_rq->tg;
4041 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4042 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4043
4044 /* note: this is a positive sum as runtime_remaining <= 0 */
4045 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4046
4047 raw_spin_lock(&cfs_b->lock);
4048 if (cfs_b->quota == RUNTIME_INF)
4049 amount = min_amount;
58088ad0 4050 else {
77a4d1a1 4051 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4052
4053 if (cfs_b->runtime > 0) {
4054 amount = min(cfs_b->runtime, min_amount);
4055 cfs_b->runtime -= amount;
4056 cfs_b->idle = 0;
4057 }
ec12cb7f 4058 }
a9cf55b2 4059 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4060 raw_spin_unlock(&cfs_b->lock);
4061
4062 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4063 /*
4064 * we may have advanced our local expiration to account for allowed
4065 * spread between our sched_clock and the one on which runtime was
4066 * issued.
4067 */
4068 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4069 cfs_rq->runtime_expires = expires;
85dac906
PT
4070
4071 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4072}
4073
a9cf55b2
PT
4074/*
4075 * Note: This depends on the synchronization provided by sched_clock and the
4076 * fact that rq->clock snapshots this value.
4077 */
4078static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4079{
a9cf55b2 4080 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4081
4082 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4083 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4084 return;
4085
a9cf55b2
PT
4086 if (cfs_rq->runtime_remaining < 0)
4087 return;
4088
4089 /*
4090 * If the local deadline has passed we have to consider the
4091 * possibility that our sched_clock is 'fast' and the global deadline
4092 * has not truly expired.
4093 *
4094 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4095 * whether the global deadline has advanced. It is valid to compare
4096 * cfs_b->runtime_expires without any locks since we only care about
4097 * exact equality, so a partial write will still work.
a9cf55b2
PT
4098 */
4099
51f2176d 4100 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4101 /* extend local deadline, drift is bounded above by 2 ticks */
4102 cfs_rq->runtime_expires += TICK_NSEC;
4103 } else {
4104 /* global deadline is ahead, expiration has passed */
4105 cfs_rq->runtime_remaining = 0;
4106 }
4107}
4108
9dbdb155 4109static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4110{
4111 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4112 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4113 expire_cfs_rq_runtime(cfs_rq);
4114
4115 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4116 return;
4117
85dac906
PT
4118 /*
4119 * if we're unable to extend our runtime we resched so that the active
4120 * hierarchy can be throttled
4121 */
4122 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4123 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4124}
4125
6c16a6dc 4126static __always_inline
9dbdb155 4127void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4128{
56f570e5 4129 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4130 return;
4131
4132 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4133}
4134
85dac906
PT
4135static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4136{
56f570e5 4137 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4138}
4139
64660c86
PT
4140/* check whether cfs_rq, or any parent, is throttled */
4141static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4142{
56f570e5 4143 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4144}
4145
4146/*
4147 * Ensure that neither of the group entities corresponding to src_cpu or
4148 * dest_cpu are members of a throttled hierarchy when performing group
4149 * load-balance operations.
4150 */
4151static inline int throttled_lb_pair(struct task_group *tg,
4152 int src_cpu, int dest_cpu)
4153{
4154 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4155
4156 src_cfs_rq = tg->cfs_rq[src_cpu];
4157 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4158
4159 return throttled_hierarchy(src_cfs_rq) ||
4160 throttled_hierarchy(dest_cfs_rq);
4161}
4162
4163/* updated child weight may affect parent so we have to do this bottom up */
4164static int tg_unthrottle_up(struct task_group *tg, void *data)
4165{
4166 struct rq *rq = data;
4167 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4168
4169 cfs_rq->throttle_count--;
64660c86 4170 if (!cfs_rq->throttle_count) {
f1b17280 4171 /* adjust cfs_rq_clock_task() */
78becc27 4172 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4173 cfs_rq->throttled_clock_task;
64660c86 4174 }
64660c86
PT
4175
4176 return 0;
4177}
4178
4179static int tg_throttle_down(struct task_group *tg, void *data)
4180{
4181 struct rq *rq = data;
4182 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4183
82958366
PT
4184 /* group is entering throttled state, stop time */
4185 if (!cfs_rq->throttle_count)
78becc27 4186 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4187 cfs_rq->throttle_count++;
4188
4189 return 0;
4190}
4191
d3d9dc33 4192static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4193{
4194 struct rq *rq = rq_of(cfs_rq);
4195 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4196 struct sched_entity *se;
4197 long task_delta, dequeue = 1;
77a4d1a1 4198 bool empty;
85dac906
PT
4199
4200 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4201
f1b17280 4202 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4203 rcu_read_lock();
4204 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4205 rcu_read_unlock();
85dac906
PT
4206
4207 task_delta = cfs_rq->h_nr_running;
4208 for_each_sched_entity(se) {
4209 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4210 /* throttled entity or throttle-on-deactivate */
4211 if (!se->on_rq)
4212 break;
4213
4214 if (dequeue)
4215 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4216 qcfs_rq->h_nr_running -= task_delta;
4217
4218 if (qcfs_rq->load.weight)
4219 dequeue = 0;
4220 }
4221
4222 if (!se)
72465447 4223 sub_nr_running(rq, task_delta);
85dac906
PT
4224
4225 cfs_rq->throttled = 1;
78becc27 4226 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4227 raw_spin_lock(&cfs_b->lock);
d49db342 4228 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4229
c06f04c7
BS
4230 /*
4231 * Add to the _head_ of the list, so that an already-started
4232 * distribute_cfs_runtime will not see us
4233 */
4234 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4235
4236 /*
4237 * If we're the first throttled task, make sure the bandwidth
4238 * timer is running.
4239 */
4240 if (empty)
4241 start_cfs_bandwidth(cfs_b);
4242
85dac906
PT
4243 raw_spin_unlock(&cfs_b->lock);
4244}
4245
029632fb 4246void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4247{
4248 struct rq *rq = rq_of(cfs_rq);
4249 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4250 struct sched_entity *se;
4251 int enqueue = 1;
4252 long task_delta;
4253
22b958d8 4254 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4255
4256 cfs_rq->throttled = 0;
1a55af2e
FW
4257
4258 update_rq_clock(rq);
4259
671fd9da 4260 raw_spin_lock(&cfs_b->lock);
78becc27 4261 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4262 list_del_rcu(&cfs_rq->throttled_list);
4263 raw_spin_unlock(&cfs_b->lock);
4264
64660c86
PT
4265 /* update hierarchical throttle state */
4266 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4267
671fd9da
PT
4268 if (!cfs_rq->load.weight)
4269 return;
4270
4271 task_delta = cfs_rq->h_nr_running;
4272 for_each_sched_entity(se) {
4273 if (se->on_rq)
4274 enqueue = 0;
4275
4276 cfs_rq = cfs_rq_of(se);
4277 if (enqueue)
4278 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4279 cfs_rq->h_nr_running += task_delta;
4280
4281 if (cfs_rq_throttled(cfs_rq))
4282 break;
4283 }
4284
4285 if (!se)
72465447 4286 add_nr_running(rq, task_delta);
671fd9da
PT
4287
4288 /* determine whether we need to wake up potentially idle cpu */
4289 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4290 resched_curr(rq);
671fd9da
PT
4291}
4292
4293static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4294 u64 remaining, u64 expires)
4295{
4296 struct cfs_rq *cfs_rq;
c06f04c7
BS
4297 u64 runtime;
4298 u64 starting_runtime = remaining;
671fd9da
PT
4299
4300 rcu_read_lock();
4301 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4302 throttled_list) {
4303 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4304 struct rq_flags rf;
671fd9da 4305
8a8c69c3 4306 rq_lock(rq, &rf);
671fd9da
PT
4307 if (!cfs_rq_throttled(cfs_rq))
4308 goto next;
4309
4310 runtime = -cfs_rq->runtime_remaining + 1;
4311 if (runtime > remaining)
4312 runtime = remaining;
4313 remaining -= runtime;
4314
4315 cfs_rq->runtime_remaining += runtime;
4316 cfs_rq->runtime_expires = expires;
4317
4318 /* we check whether we're throttled above */
4319 if (cfs_rq->runtime_remaining > 0)
4320 unthrottle_cfs_rq(cfs_rq);
4321
4322next:
8a8c69c3 4323 rq_unlock(rq, &rf);
671fd9da
PT
4324
4325 if (!remaining)
4326 break;
4327 }
4328 rcu_read_unlock();
4329
c06f04c7 4330 return starting_runtime - remaining;
671fd9da
PT
4331}
4332
58088ad0
PT
4333/*
4334 * Responsible for refilling a task_group's bandwidth and unthrottling its
4335 * cfs_rqs as appropriate. If there has been no activity within the last
4336 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4337 * used to track this state.
4338 */
4339static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4340{
671fd9da 4341 u64 runtime, runtime_expires;
51f2176d 4342 int throttled;
58088ad0 4343
58088ad0
PT
4344 /* no need to continue the timer with no bandwidth constraint */
4345 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4346 goto out_deactivate;
58088ad0 4347
671fd9da 4348 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4349 cfs_b->nr_periods += overrun;
671fd9da 4350
51f2176d
BS
4351 /*
4352 * idle depends on !throttled (for the case of a large deficit), and if
4353 * we're going inactive then everything else can be deferred
4354 */
4355 if (cfs_b->idle && !throttled)
4356 goto out_deactivate;
a9cf55b2
PT
4357
4358 __refill_cfs_bandwidth_runtime(cfs_b);
4359
671fd9da
PT
4360 if (!throttled) {
4361 /* mark as potentially idle for the upcoming period */
4362 cfs_b->idle = 1;
51f2176d 4363 return 0;
671fd9da
PT
4364 }
4365
e8da1b18
NR
4366 /* account preceding periods in which throttling occurred */
4367 cfs_b->nr_throttled += overrun;
4368
671fd9da 4369 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4370
4371 /*
c06f04c7
BS
4372 * This check is repeated as we are holding onto the new bandwidth while
4373 * we unthrottle. This can potentially race with an unthrottled group
4374 * trying to acquire new bandwidth from the global pool. This can result
4375 * in us over-using our runtime if it is all used during this loop, but
4376 * only by limited amounts in that extreme case.
671fd9da 4377 */
c06f04c7
BS
4378 while (throttled && cfs_b->runtime > 0) {
4379 runtime = cfs_b->runtime;
671fd9da
PT
4380 raw_spin_unlock(&cfs_b->lock);
4381 /* we can't nest cfs_b->lock while distributing bandwidth */
4382 runtime = distribute_cfs_runtime(cfs_b, runtime,
4383 runtime_expires);
4384 raw_spin_lock(&cfs_b->lock);
4385
4386 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4387
4388 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4389 }
58088ad0 4390
671fd9da
PT
4391 /*
4392 * While we are ensured activity in the period following an
4393 * unthrottle, this also covers the case in which the new bandwidth is
4394 * insufficient to cover the existing bandwidth deficit. (Forcing the
4395 * timer to remain active while there are any throttled entities.)
4396 */
4397 cfs_b->idle = 0;
58088ad0 4398
51f2176d
BS
4399 return 0;
4400
4401out_deactivate:
51f2176d 4402 return 1;
58088ad0 4403}
d3d9dc33 4404
d8b4986d
PT
4405/* a cfs_rq won't donate quota below this amount */
4406static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4407/* minimum remaining period time to redistribute slack quota */
4408static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4409/* how long we wait to gather additional slack before distributing */
4410static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4411
db06e78c
BS
4412/*
4413 * Are we near the end of the current quota period?
4414 *
4415 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4416 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4417 * migrate_hrtimers, base is never cleared, so we are fine.
4418 */
d8b4986d
PT
4419static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4420{
4421 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4422 u64 remaining;
4423
4424 /* if the call-back is running a quota refresh is already occurring */
4425 if (hrtimer_callback_running(refresh_timer))
4426 return 1;
4427
4428 /* is a quota refresh about to occur? */
4429 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4430 if (remaining < min_expire)
4431 return 1;
4432
4433 return 0;
4434}
4435
4436static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4437{
4438 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4439
4440 /* if there's a quota refresh soon don't bother with slack */
4441 if (runtime_refresh_within(cfs_b, min_left))
4442 return;
4443
4cfafd30
PZ
4444 hrtimer_start(&cfs_b->slack_timer,
4445 ns_to_ktime(cfs_bandwidth_slack_period),
4446 HRTIMER_MODE_REL);
d8b4986d
PT
4447}
4448
4449/* we know any runtime found here is valid as update_curr() precedes return */
4450static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4451{
4452 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4453 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4454
4455 if (slack_runtime <= 0)
4456 return;
4457
4458 raw_spin_lock(&cfs_b->lock);
4459 if (cfs_b->quota != RUNTIME_INF &&
4460 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4461 cfs_b->runtime += slack_runtime;
4462
4463 /* we are under rq->lock, defer unthrottling using a timer */
4464 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4465 !list_empty(&cfs_b->throttled_cfs_rq))
4466 start_cfs_slack_bandwidth(cfs_b);
4467 }
4468 raw_spin_unlock(&cfs_b->lock);
4469
4470 /* even if it's not valid for return we don't want to try again */
4471 cfs_rq->runtime_remaining -= slack_runtime;
4472}
4473
4474static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4475{
56f570e5
PT
4476 if (!cfs_bandwidth_used())
4477 return;
4478
fccfdc6f 4479 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4480 return;
4481
4482 __return_cfs_rq_runtime(cfs_rq);
4483}
4484
4485/*
4486 * This is done with a timer (instead of inline with bandwidth return) since
4487 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4488 */
4489static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4490{
4491 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4492 u64 expires;
4493
4494 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4495 raw_spin_lock(&cfs_b->lock);
4496 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4497 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4498 return;
db06e78c 4499 }
d8b4986d 4500
c06f04c7 4501 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4502 runtime = cfs_b->runtime;
c06f04c7 4503
d8b4986d
PT
4504 expires = cfs_b->runtime_expires;
4505 raw_spin_unlock(&cfs_b->lock);
4506
4507 if (!runtime)
4508 return;
4509
4510 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4511
4512 raw_spin_lock(&cfs_b->lock);
4513 if (expires == cfs_b->runtime_expires)
c06f04c7 4514 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4515 raw_spin_unlock(&cfs_b->lock);
4516}
4517
d3d9dc33
PT
4518/*
4519 * When a group wakes up we want to make sure that its quota is not already
4520 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4521 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4522 */
4523static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4524{
56f570e5
PT
4525 if (!cfs_bandwidth_used())
4526 return;
4527
d3d9dc33
PT
4528 /* an active group must be handled by the update_curr()->put() path */
4529 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4530 return;
4531
4532 /* ensure the group is not already throttled */
4533 if (cfs_rq_throttled(cfs_rq))
4534 return;
4535
4536 /* update runtime allocation */
4537 account_cfs_rq_runtime(cfs_rq, 0);
4538 if (cfs_rq->runtime_remaining <= 0)
4539 throttle_cfs_rq(cfs_rq);
4540}
4541
55e16d30
PZ
4542static void sync_throttle(struct task_group *tg, int cpu)
4543{
4544 struct cfs_rq *pcfs_rq, *cfs_rq;
4545
4546 if (!cfs_bandwidth_used())
4547 return;
4548
4549 if (!tg->parent)
4550 return;
4551
4552 cfs_rq = tg->cfs_rq[cpu];
4553 pcfs_rq = tg->parent->cfs_rq[cpu];
4554
4555 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4556 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4557}
4558
d3d9dc33 4559/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4560static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4561{
56f570e5 4562 if (!cfs_bandwidth_used())
678d5718 4563 return false;
56f570e5 4564
d3d9dc33 4565 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4566 return false;
d3d9dc33
PT
4567
4568 /*
4569 * it's possible for a throttled entity to be forced into a running
4570 * state (e.g. set_curr_task), in this case we're finished.
4571 */
4572 if (cfs_rq_throttled(cfs_rq))
678d5718 4573 return true;
d3d9dc33
PT
4574
4575 throttle_cfs_rq(cfs_rq);
678d5718 4576 return true;
d3d9dc33 4577}
029632fb 4578
029632fb
PZ
4579static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4580{
4581 struct cfs_bandwidth *cfs_b =
4582 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4583
029632fb
PZ
4584 do_sched_cfs_slack_timer(cfs_b);
4585
4586 return HRTIMER_NORESTART;
4587}
4588
4589static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4590{
4591 struct cfs_bandwidth *cfs_b =
4592 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4593 int overrun;
4594 int idle = 0;
4595
51f2176d 4596 raw_spin_lock(&cfs_b->lock);
029632fb 4597 for (;;) {
77a4d1a1 4598 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4599 if (!overrun)
4600 break;
4601
4602 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4603 }
4cfafd30
PZ
4604 if (idle)
4605 cfs_b->period_active = 0;
51f2176d 4606 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4607
4608 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4609}
4610
4611void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4612{
4613 raw_spin_lock_init(&cfs_b->lock);
4614 cfs_b->runtime = 0;
4615 cfs_b->quota = RUNTIME_INF;
4616 cfs_b->period = ns_to_ktime(default_cfs_period());
4617
4618 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4619 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4620 cfs_b->period_timer.function = sched_cfs_period_timer;
4621 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4622 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4623}
4624
4625static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4626{
4627 cfs_rq->runtime_enabled = 0;
4628 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4629}
4630
77a4d1a1 4631void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4632{
4cfafd30 4633 lockdep_assert_held(&cfs_b->lock);
029632fb 4634
4cfafd30
PZ
4635 if (!cfs_b->period_active) {
4636 cfs_b->period_active = 1;
4637 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4638 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4639 }
029632fb
PZ
4640}
4641
4642static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4643{
7f1a169b
TH
4644 /* init_cfs_bandwidth() was not called */
4645 if (!cfs_b->throttled_cfs_rq.next)
4646 return;
4647
029632fb
PZ
4648 hrtimer_cancel(&cfs_b->period_timer);
4649 hrtimer_cancel(&cfs_b->slack_timer);
4650}
4651
0e59bdae
KT
4652static void __maybe_unused update_runtime_enabled(struct rq *rq)
4653{
4654 struct cfs_rq *cfs_rq;
4655
4656 for_each_leaf_cfs_rq(rq, cfs_rq) {
4657 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4658
4659 raw_spin_lock(&cfs_b->lock);
4660 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4661 raw_spin_unlock(&cfs_b->lock);
4662 }
4663}
4664
38dc3348 4665static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4666{
4667 struct cfs_rq *cfs_rq;
4668
4669 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4670 if (!cfs_rq->runtime_enabled)
4671 continue;
4672
4673 /*
4674 * clock_task is not advancing so we just need to make sure
4675 * there's some valid quota amount
4676 */
51f2176d 4677 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4678 /*
4679 * Offline rq is schedulable till cpu is completely disabled
4680 * in take_cpu_down(), so we prevent new cfs throttling here.
4681 */
4682 cfs_rq->runtime_enabled = 0;
4683
029632fb
PZ
4684 if (cfs_rq_throttled(cfs_rq))
4685 unthrottle_cfs_rq(cfs_rq);
4686 }
4687}
4688
4689#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4690static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4691{
78becc27 4692 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4693}
4694
9dbdb155 4695static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4696static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4697static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4698static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4699static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4700
4701static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4702{
4703 return 0;
4704}
64660c86
PT
4705
4706static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4707{
4708 return 0;
4709}
4710
4711static inline int throttled_lb_pair(struct task_group *tg,
4712 int src_cpu, int dest_cpu)
4713{
4714 return 0;
4715}
029632fb
PZ
4716
4717void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4718
4719#ifdef CONFIG_FAIR_GROUP_SCHED
4720static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4721#endif
4722
029632fb
PZ
4723static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4724{
4725 return NULL;
4726}
4727static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4728static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4729static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4730
4731#endif /* CONFIG_CFS_BANDWIDTH */
4732
bf0f6f24
IM
4733/**************************************************
4734 * CFS operations on tasks:
4735 */
4736
8f4d37ec
PZ
4737#ifdef CONFIG_SCHED_HRTICK
4738static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4739{
8f4d37ec
PZ
4740 struct sched_entity *se = &p->se;
4741 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4742
9148a3a1 4743 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4744
8bf46a39 4745 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4746 u64 slice = sched_slice(cfs_rq, se);
4747 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4748 s64 delta = slice - ran;
4749
4750 if (delta < 0) {
4751 if (rq->curr == p)
8875125e 4752 resched_curr(rq);
8f4d37ec
PZ
4753 return;
4754 }
31656519 4755 hrtick_start(rq, delta);
8f4d37ec
PZ
4756 }
4757}
a4c2f00f
PZ
4758
4759/*
4760 * called from enqueue/dequeue and updates the hrtick when the
4761 * current task is from our class and nr_running is low enough
4762 * to matter.
4763 */
4764static void hrtick_update(struct rq *rq)
4765{
4766 struct task_struct *curr = rq->curr;
4767
b39e66ea 4768 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4769 return;
4770
4771 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4772 hrtick_start_fair(rq, curr);
4773}
55e12e5e 4774#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4775static inline void
4776hrtick_start_fair(struct rq *rq, struct task_struct *p)
4777{
4778}
a4c2f00f
PZ
4779
4780static inline void hrtick_update(struct rq *rq)
4781{
4782}
8f4d37ec
PZ
4783#endif
4784
bf0f6f24
IM
4785/*
4786 * The enqueue_task method is called before nr_running is
4787 * increased. Here we update the fair scheduling stats and
4788 * then put the task into the rbtree:
4789 */
ea87bb78 4790static void
371fd7e7 4791enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4792{
4793 struct cfs_rq *cfs_rq;
62fb1851 4794 struct sched_entity *se = &p->se;
bf0f6f24 4795
8c34ab19
RW
4796 /*
4797 * If in_iowait is set, the code below may not trigger any cpufreq
4798 * utilization updates, so do it here explicitly with the IOWAIT flag
4799 * passed.
4800 */
4801 if (p->in_iowait)
4802 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4803
bf0f6f24 4804 for_each_sched_entity(se) {
62fb1851 4805 if (se->on_rq)
bf0f6f24
IM
4806 break;
4807 cfs_rq = cfs_rq_of(se);
88ec22d3 4808 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4809
4810 /*
4811 * end evaluation on encountering a throttled cfs_rq
4812 *
4813 * note: in the case of encountering a throttled cfs_rq we will
4814 * post the final h_nr_running increment below.
e210bffd 4815 */
85dac906
PT
4816 if (cfs_rq_throttled(cfs_rq))
4817 break;
953bfcd1 4818 cfs_rq->h_nr_running++;
85dac906 4819
88ec22d3 4820 flags = ENQUEUE_WAKEUP;
bf0f6f24 4821 }
8f4d37ec 4822
2069dd75 4823 for_each_sched_entity(se) {
0f317143 4824 cfs_rq = cfs_rq_of(se);
953bfcd1 4825 cfs_rq->h_nr_running++;
2069dd75 4826
85dac906
PT
4827 if (cfs_rq_throttled(cfs_rq))
4828 break;
4829
d31b1a66 4830 update_load_avg(se, UPDATE_TG);
89ee048f 4831 update_cfs_shares(se);
2069dd75
PZ
4832 }
4833
cd126afe 4834 if (!se)
72465447 4835 add_nr_running(rq, 1);
cd126afe 4836
a4c2f00f 4837 hrtick_update(rq);
bf0f6f24
IM
4838}
4839
2f36825b
VP
4840static void set_next_buddy(struct sched_entity *se);
4841
bf0f6f24
IM
4842/*
4843 * The dequeue_task method is called before nr_running is
4844 * decreased. We remove the task from the rbtree and
4845 * update the fair scheduling stats:
4846 */
371fd7e7 4847static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4848{
4849 struct cfs_rq *cfs_rq;
62fb1851 4850 struct sched_entity *se = &p->se;
2f36825b 4851 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4852
4853 for_each_sched_entity(se) {
4854 cfs_rq = cfs_rq_of(se);
371fd7e7 4855 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4856
4857 /*
4858 * end evaluation on encountering a throttled cfs_rq
4859 *
4860 * note: in the case of encountering a throttled cfs_rq we will
4861 * post the final h_nr_running decrement below.
4862 */
4863 if (cfs_rq_throttled(cfs_rq))
4864 break;
953bfcd1 4865 cfs_rq->h_nr_running--;
2069dd75 4866
bf0f6f24 4867 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4868 if (cfs_rq->load.weight) {
754bd598
KK
4869 /* Avoid re-evaluating load for this entity: */
4870 se = parent_entity(se);
2f36825b
VP
4871 /*
4872 * Bias pick_next to pick a task from this cfs_rq, as
4873 * p is sleeping when it is within its sched_slice.
4874 */
754bd598
KK
4875 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4876 set_next_buddy(se);
bf0f6f24 4877 break;
2f36825b 4878 }
371fd7e7 4879 flags |= DEQUEUE_SLEEP;
bf0f6f24 4880 }
8f4d37ec 4881
2069dd75 4882 for_each_sched_entity(se) {
0f317143 4883 cfs_rq = cfs_rq_of(se);
953bfcd1 4884 cfs_rq->h_nr_running--;
2069dd75 4885
85dac906
PT
4886 if (cfs_rq_throttled(cfs_rq))
4887 break;
4888
d31b1a66 4889 update_load_avg(se, UPDATE_TG);
89ee048f 4890 update_cfs_shares(se);
2069dd75
PZ
4891 }
4892
cd126afe 4893 if (!se)
72465447 4894 sub_nr_running(rq, 1);
cd126afe 4895
a4c2f00f 4896 hrtick_update(rq);
bf0f6f24
IM
4897}
4898
e7693a36 4899#ifdef CONFIG_SMP
10e2f1ac
PZ
4900
4901/* Working cpumask for: load_balance, load_balance_newidle. */
4902DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4903DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4904
9fd81dd5 4905#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4906/*
4907 * per rq 'load' arrray crap; XXX kill this.
4908 */
4909
4910/*
d937cdc5 4911 * The exact cpuload calculated at every tick would be:
3289bdb4 4912 *
d937cdc5
PZ
4913 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4914 *
4915 * If a cpu misses updates for n ticks (as it was idle) and update gets
4916 * called on the n+1-th tick when cpu may be busy, then we have:
4917 *
4918 * load_n = (1 - 1/2^i)^n * load_0
4919 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4920 *
4921 * decay_load_missed() below does efficient calculation of
3289bdb4 4922 *
d937cdc5
PZ
4923 * load' = (1 - 1/2^i)^n * load
4924 *
4925 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4926 * This allows us to precompute the above in said factors, thereby allowing the
4927 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4928 * fixed_power_int())
3289bdb4 4929 *
d937cdc5 4930 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4931 */
4932#define DEGRADE_SHIFT 7
d937cdc5
PZ
4933
4934static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4935static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4936 { 0, 0, 0, 0, 0, 0, 0, 0 },
4937 { 64, 32, 8, 0, 0, 0, 0, 0 },
4938 { 96, 72, 40, 12, 1, 0, 0, 0 },
4939 { 112, 98, 75, 43, 15, 1, 0, 0 },
4940 { 120, 112, 98, 76, 45, 16, 2, 0 }
4941};
3289bdb4
PZ
4942
4943/*
4944 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4945 * would be when CPU is idle and so we just decay the old load without
4946 * adding any new load.
4947 */
4948static unsigned long
4949decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4950{
4951 int j = 0;
4952
4953 if (!missed_updates)
4954 return load;
4955
4956 if (missed_updates >= degrade_zero_ticks[idx])
4957 return 0;
4958
4959 if (idx == 1)
4960 return load >> missed_updates;
4961
4962 while (missed_updates) {
4963 if (missed_updates % 2)
4964 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4965
4966 missed_updates >>= 1;
4967 j++;
4968 }
4969 return load;
4970}
9fd81dd5 4971#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4972
59543275 4973/**
cee1afce 4974 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4975 * @this_rq: The rq to update statistics for
4976 * @this_load: The current load
4977 * @pending_updates: The number of missed updates
59543275 4978 *
3289bdb4 4979 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4980 * scheduler tick (TICK_NSEC).
4981 *
4982 * This function computes a decaying average:
4983 *
4984 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4985 *
4986 * Because of NOHZ it might not get called on every tick which gives need for
4987 * the @pending_updates argument.
4988 *
4989 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4990 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4991 * = A * (A * load[i]_n-2 + B) + B
4992 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4993 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4994 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4995 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4996 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4997 *
4998 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4999 * any change in load would have resulted in the tick being turned back on.
5000 *
5001 * For regular NOHZ, this reduces to:
5002 *
5003 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5004 *
5005 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5006 * term.
3289bdb4 5007 */
1f41906a
FW
5008static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5009 unsigned long pending_updates)
3289bdb4 5010{
9fd81dd5 5011 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5012 int i, scale;
5013
5014 this_rq->nr_load_updates++;
5015
5016 /* Update our load: */
5017 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5018 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5019 unsigned long old_load, new_load;
5020
5021 /* scale is effectively 1 << i now, and >> i divides by scale */
5022
7400d3bb 5023 old_load = this_rq->cpu_load[i];
9fd81dd5 5024#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5025 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5026 if (tickless_load) {
5027 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5028 /*
5029 * old_load can never be a negative value because a
5030 * decayed tickless_load cannot be greater than the
5031 * original tickless_load.
5032 */
5033 old_load += tickless_load;
5034 }
9fd81dd5 5035#endif
3289bdb4
PZ
5036 new_load = this_load;
5037 /*
5038 * Round up the averaging division if load is increasing. This
5039 * prevents us from getting stuck on 9 if the load is 10, for
5040 * example.
5041 */
5042 if (new_load > old_load)
5043 new_load += scale - 1;
5044
5045 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5046 }
5047
5048 sched_avg_update(this_rq);
5049}
5050
7ea241af
YD
5051/* Used instead of source_load when we know the type == 0 */
5052static unsigned long weighted_cpuload(const int cpu)
5053{
5054 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5055}
5056
3289bdb4 5057#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5058/*
5059 * There is no sane way to deal with nohz on smp when using jiffies because the
5060 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5061 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5062 *
5063 * Therefore we need to avoid the delta approach from the regular tick when
5064 * possible since that would seriously skew the load calculation. This is why we
5065 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5066 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5067 * loop exit, nohz_idle_balance, nohz full exit...)
5068 *
5069 * This means we might still be one tick off for nohz periods.
5070 */
5071
5072static void cpu_load_update_nohz(struct rq *this_rq,
5073 unsigned long curr_jiffies,
5074 unsigned long load)
be68a682
FW
5075{
5076 unsigned long pending_updates;
5077
5078 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5079 if (pending_updates) {
5080 this_rq->last_load_update_tick = curr_jiffies;
5081 /*
5082 * In the regular NOHZ case, we were idle, this means load 0.
5083 * In the NOHZ_FULL case, we were non-idle, we should consider
5084 * its weighted load.
5085 */
1f41906a 5086 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5087 }
5088}
5089
3289bdb4
PZ
5090/*
5091 * Called from nohz_idle_balance() to update the load ratings before doing the
5092 * idle balance.
5093 */
cee1afce 5094static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5095{
3289bdb4
PZ
5096 /*
5097 * bail if there's load or we're actually up-to-date.
5098 */
be68a682 5099 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
5100 return;
5101
1f41906a 5102 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5103}
5104
5105/*
1f41906a
FW
5106 * Record CPU load on nohz entry so we know the tickless load to account
5107 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5108 * than other cpu_load[idx] but it should be fine as cpu_load readers
5109 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5110 */
1f41906a 5111void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5112{
5113 struct rq *this_rq = this_rq();
1f41906a
FW
5114
5115 /*
5116 * This is all lockless but should be fine. If weighted_cpuload changes
5117 * concurrently we'll exit nohz. And cpu_load write can race with
5118 * cpu_load_update_idle() but both updater would be writing the same.
5119 */
5120 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5121}
5122
5123/*
5124 * Account the tickless load in the end of a nohz frame.
5125 */
5126void cpu_load_update_nohz_stop(void)
5127{
316c1608 5128 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5129 struct rq *this_rq = this_rq();
5130 unsigned long load;
8a8c69c3 5131 struct rq_flags rf;
3289bdb4
PZ
5132
5133 if (curr_jiffies == this_rq->last_load_update_tick)
5134 return;
5135
1f41906a 5136 load = weighted_cpuload(cpu_of(this_rq));
8a8c69c3 5137 rq_lock(this_rq, &rf);
b52fad2d 5138 update_rq_clock(this_rq);
1f41906a 5139 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5140 rq_unlock(this_rq, &rf);
3289bdb4 5141}
1f41906a
FW
5142#else /* !CONFIG_NO_HZ_COMMON */
5143static inline void cpu_load_update_nohz(struct rq *this_rq,
5144 unsigned long curr_jiffies,
5145 unsigned long load) { }
5146#endif /* CONFIG_NO_HZ_COMMON */
5147
5148static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5149{
9fd81dd5 5150#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5151 /* See the mess around cpu_load_update_nohz(). */
5152 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5153#endif
1f41906a
FW
5154 cpu_load_update(this_rq, load, 1);
5155}
3289bdb4
PZ
5156
5157/*
5158 * Called from scheduler_tick()
5159 */
cee1afce 5160void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5161{
7ea241af 5162 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
5163
5164 if (tick_nohz_tick_stopped())
5165 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5166 else
5167 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5168}
5169
029632fb
PZ
5170/*
5171 * Return a low guess at the load of a migration-source cpu weighted
5172 * according to the scheduling class and "nice" value.
5173 *
5174 * We want to under-estimate the load of migration sources, to
5175 * balance conservatively.
5176 */
5177static unsigned long source_load(int cpu, int type)
5178{
5179 struct rq *rq = cpu_rq(cpu);
5180 unsigned long total = weighted_cpuload(cpu);
5181
5182 if (type == 0 || !sched_feat(LB_BIAS))
5183 return total;
5184
5185 return min(rq->cpu_load[type-1], total);
5186}
5187
5188/*
5189 * Return a high guess at the load of a migration-target cpu weighted
5190 * according to the scheduling class and "nice" value.
5191 */
5192static unsigned long target_load(int cpu, int type)
5193{
5194 struct rq *rq = cpu_rq(cpu);
5195 unsigned long total = weighted_cpuload(cpu);
5196
5197 if (type == 0 || !sched_feat(LB_BIAS))
5198 return total;
5199
5200 return max(rq->cpu_load[type-1], total);
5201}
5202
ced549fa 5203static unsigned long capacity_of(int cpu)
029632fb 5204{
ced549fa 5205 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5206}
5207
ca6d75e6
VG
5208static unsigned long capacity_orig_of(int cpu)
5209{
5210 return cpu_rq(cpu)->cpu_capacity_orig;
5211}
5212
029632fb
PZ
5213static unsigned long cpu_avg_load_per_task(int cpu)
5214{
5215 struct rq *rq = cpu_rq(cpu);
316c1608 5216 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 5217 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
5218
5219 if (nr_running)
b92486cb 5220 return load_avg / nr_running;
029632fb
PZ
5221
5222 return 0;
5223}
5224
bb3469ac 5225#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
5226/*
5227 * effective_load() calculates the load change as seen from the root_task_group
5228 *
5229 * Adding load to a group doesn't make a group heavier, but can cause movement
5230 * of group shares between cpus. Assuming the shares were perfectly aligned one
5231 * can calculate the shift in shares.
cf5f0acf
PZ
5232 *
5233 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5234 * on this @cpu and results in a total addition (subtraction) of @wg to the
5235 * total group weight.
5236 *
5237 * Given a runqueue weight distribution (rw_i) we can compute a shares
5238 * distribution (s_i) using:
5239 *
5240 * s_i = rw_i / \Sum rw_j (1)
5241 *
5242 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5243 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5244 * shares distribution (s_i):
5245 *
5246 * rw_i = { 2, 4, 1, 0 }
5247 * s_i = { 2/7, 4/7, 1/7, 0 }
5248 *
5249 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5250 * task used to run on and the CPU the waker is running on), we need to
5251 * compute the effect of waking a task on either CPU and, in case of a sync
5252 * wakeup, compute the effect of the current task going to sleep.
5253 *
5254 * So for a change of @wl to the local @cpu with an overall group weight change
5255 * of @wl we can compute the new shares distribution (s'_i) using:
5256 *
5257 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5258 *
5259 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5260 * differences in waking a task to CPU 0. The additional task changes the
5261 * weight and shares distributions like:
5262 *
5263 * rw'_i = { 3, 4, 1, 0 }
5264 * s'_i = { 3/8, 4/8, 1/8, 0 }
5265 *
5266 * We can then compute the difference in effective weight by using:
5267 *
5268 * dw_i = S * (s'_i - s_i) (3)
5269 *
5270 * Where 'S' is the group weight as seen by its parent.
5271 *
5272 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5273 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5274 * 4/7) times the weight of the group.
f5bfb7d9 5275 */
2069dd75 5276static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5277{
4be9daaa 5278 struct sched_entity *se = tg->se[cpu];
f1d239f7 5279
9722c2da 5280 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5281 return wl;
5282
4be9daaa 5283 for_each_sched_entity(se) {
7dd49125
PZ
5284 struct cfs_rq *cfs_rq = se->my_q;
5285 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5286
7dd49125 5287 tg = cfs_rq->tg;
bb3469ac 5288
cf5f0acf
PZ
5289 /*
5290 * W = @wg + \Sum rw_j
5291 */
7dd49125
PZ
5292 W = wg + atomic_long_read(&tg->load_avg);
5293
5294 /* Ensure \Sum rw_j >= rw_i */
5295 W -= cfs_rq->tg_load_avg_contrib;
5296 W += w;
4be9daaa 5297
cf5f0acf
PZ
5298 /*
5299 * w = rw_i + @wl
5300 */
7dd49125 5301 w += wl;
940959e9 5302
cf5f0acf
PZ
5303 /*
5304 * wl = S * s'_i; see (2)
5305 */
5306 if (W > 0 && w < W)
ab522e33 5307 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5308 else
ab522e33 5309 wl = scale_load_down(tg->shares);
940959e9 5310
cf5f0acf
PZ
5311 /*
5312 * Per the above, wl is the new se->load.weight value; since
5313 * those are clipped to [MIN_SHARES, ...) do so now. See
5314 * calc_cfs_shares().
5315 */
977dda7c
PT
5316 if (wl < MIN_SHARES)
5317 wl = MIN_SHARES;
cf5f0acf
PZ
5318
5319 /*
5320 * wl = dw_i = S * (s'_i - s_i); see (3)
5321 */
9d89c257 5322 wl -= se->avg.load_avg;
cf5f0acf
PZ
5323
5324 /*
5325 * Recursively apply this logic to all parent groups to compute
5326 * the final effective load change on the root group. Since
5327 * only the @tg group gets extra weight, all parent groups can
5328 * only redistribute existing shares. @wl is the shift in shares
5329 * resulting from this level per the above.
5330 */
4be9daaa 5331 wg = 0;
4be9daaa 5332 }
bb3469ac 5333
4be9daaa 5334 return wl;
bb3469ac
PZ
5335}
5336#else
4be9daaa 5337
58d081b5 5338static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5339{
83378269 5340 return wl;
bb3469ac 5341}
4be9daaa 5342
bb3469ac
PZ
5343#endif
5344
c58d25f3
PZ
5345static void record_wakee(struct task_struct *p)
5346{
5347 /*
5348 * Only decay a single time; tasks that have less then 1 wakeup per
5349 * jiffy will not have built up many flips.
5350 */
5351 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5352 current->wakee_flips >>= 1;
5353 current->wakee_flip_decay_ts = jiffies;
5354 }
5355
5356 if (current->last_wakee != p) {
5357 current->last_wakee = p;
5358 current->wakee_flips++;
5359 }
5360}
5361
63b0e9ed
MG
5362/*
5363 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5364 *
63b0e9ed 5365 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5366 * at a frequency roughly N times higher than one of its wakees.
5367 *
5368 * In order to determine whether we should let the load spread vs consolidating
5369 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5370 * partner, and a factor of lls_size higher frequency in the other.
5371 *
5372 * With both conditions met, we can be relatively sure that the relationship is
5373 * non-monogamous, with partner count exceeding socket size.
5374 *
5375 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5376 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5377 * socket size.
63b0e9ed 5378 */
62470419
MW
5379static int wake_wide(struct task_struct *p)
5380{
63b0e9ed
MG
5381 unsigned int master = current->wakee_flips;
5382 unsigned int slave = p->wakee_flips;
7d9ffa89 5383 int factor = this_cpu_read(sd_llc_size);
62470419 5384
63b0e9ed
MG
5385 if (master < slave)
5386 swap(master, slave);
5387 if (slave < factor || master < slave * factor)
5388 return 0;
5389 return 1;
62470419
MW
5390}
5391
772bd008
MR
5392static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5393 int prev_cpu, int sync)
098fb9db 5394{
e37b6a7b 5395 s64 this_load, load;
bd61c98f 5396 s64 this_eff_load, prev_eff_load;
772bd008 5397 int idx, this_cpu;
c88d5910 5398 struct task_group *tg;
83378269 5399 unsigned long weight;
b3137bc8 5400 int balanced;
098fb9db 5401
c88d5910
PZ
5402 idx = sd->wake_idx;
5403 this_cpu = smp_processor_id();
c88d5910
PZ
5404 load = source_load(prev_cpu, idx);
5405 this_load = target_load(this_cpu, idx);
098fb9db 5406
b3137bc8
MG
5407 /*
5408 * If sync wakeup then subtract the (maximum possible)
5409 * effect of the currently running task from the load
5410 * of the current CPU:
5411 */
83378269
PZ
5412 if (sync) {
5413 tg = task_group(current);
9d89c257 5414 weight = current->se.avg.load_avg;
83378269 5415
c88d5910 5416 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5417 load += effective_load(tg, prev_cpu, 0, -weight);
5418 }
b3137bc8 5419
83378269 5420 tg = task_group(p);
9d89c257 5421 weight = p->se.avg.load_avg;
b3137bc8 5422
71a29aa7
PZ
5423 /*
5424 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5425 * due to the sync cause above having dropped this_load to 0, we'll
5426 * always have an imbalance, but there's really nothing you can do
5427 * about that, so that's good too.
71a29aa7
PZ
5428 *
5429 * Otherwise check if either cpus are near enough in load to allow this
5430 * task to be woken on this_cpu.
5431 */
bd61c98f
VG
5432 this_eff_load = 100;
5433 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5434
bd61c98f
VG
5435 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5436 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5437
bd61c98f 5438 if (this_load > 0) {
e51fd5e2
PZ
5439 this_eff_load *= this_load +
5440 effective_load(tg, this_cpu, weight, weight);
5441
e51fd5e2 5442 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5443 }
e51fd5e2 5444
bd61c98f 5445 balanced = this_eff_load <= prev_eff_load;
098fb9db 5446
ae92882e 5447 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5448
05bfb65f
VG
5449 if (!balanced)
5450 return 0;
098fb9db 5451
ae92882e
JP
5452 schedstat_inc(sd->ttwu_move_affine);
5453 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5454
5455 return 1;
098fb9db
IM
5456}
5457
6a0b19c0
MR
5458static inline int task_util(struct task_struct *p);
5459static int cpu_util_wake(int cpu, struct task_struct *p);
5460
5461static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5462{
5463 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5464}
5465
aaee1203
PZ
5466/*
5467 * find_idlest_group finds and returns the least busy CPU group within the
5468 * domain.
5469 */
5470static struct sched_group *
78e7ed53 5471find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5472 int this_cpu, int sd_flag)
e7693a36 5473{
b3bd3de6 5474 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5475 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5476 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5477 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5478 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5479 int load_idx = sd->forkexec_idx;
6b94780e
VG
5480 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5481 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5482 (sd->imbalance_pct-100) / 100;
e7693a36 5483
c44f2a02
VG
5484 if (sd_flag & SD_BALANCE_WAKE)
5485 load_idx = sd->wake_idx;
5486
aaee1203 5487 do {
6b94780e
VG
5488 unsigned long load, avg_load, runnable_load;
5489 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5490 int local_group;
5491 int i;
e7693a36 5492
aaee1203
PZ
5493 /* Skip over this group if it has no CPUs allowed */
5494 if (!cpumask_intersects(sched_group_cpus(group),
0c98d344 5495 &p->cpus_allowed))
aaee1203
PZ
5496 continue;
5497
5498 local_group = cpumask_test_cpu(this_cpu,
5499 sched_group_cpus(group));
5500
6a0b19c0
MR
5501 /*
5502 * Tally up the load of all CPUs in the group and find
5503 * the group containing the CPU with most spare capacity.
5504 */
aaee1203 5505 avg_load = 0;
6b94780e 5506 runnable_load = 0;
6a0b19c0 5507 max_spare_cap = 0;
aaee1203
PZ
5508
5509 for_each_cpu(i, sched_group_cpus(group)) {
5510 /* Bias balancing toward cpus of our domain */
5511 if (local_group)
5512 load = source_load(i, load_idx);
5513 else
5514 load = target_load(i, load_idx);
5515
6b94780e
VG
5516 runnable_load += load;
5517
5518 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5519
5520 spare_cap = capacity_spare_wake(i, p);
5521
5522 if (spare_cap > max_spare_cap)
5523 max_spare_cap = spare_cap;
aaee1203
PZ
5524 }
5525
63b2ca30 5526 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5527 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5528 group->sgc->capacity;
5529 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5530 group->sgc->capacity;
aaee1203
PZ
5531
5532 if (local_group) {
6b94780e
VG
5533 this_runnable_load = runnable_load;
5534 this_avg_load = avg_load;
6a0b19c0
MR
5535 this_spare = max_spare_cap;
5536 } else {
6b94780e
VG
5537 if (min_runnable_load > (runnable_load + imbalance)) {
5538 /*
5539 * The runnable load is significantly smaller
5540 * so we can pick this new cpu
5541 */
5542 min_runnable_load = runnable_load;
5543 min_avg_load = avg_load;
5544 idlest = group;
5545 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5546 (100*min_avg_load > imbalance_scale*avg_load)) {
5547 /*
5548 * The runnable loads are close so take the
5549 * blocked load into account through avg_load.
5550 */
5551 min_avg_load = avg_load;
6a0b19c0
MR
5552 idlest = group;
5553 }
5554
5555 if (most_spare < max_spare_cap) {
5556 most_spare = max_spare_cap;
5557 most_spare_sg = group;
5558 }
aaee1203
PZ
5559 }
5560 } while (group = group->next, group != sd->groups);
5561
6a0b19c0
MR
5562 /*
5563 * The cross-over point between using spare capacity or least load
5564 * is too conservative for high utilization tasks on partially
5565 * utilized systems if we require spare_capacity > task_util(p),
5566 * so we allow for some task stuffing by using
5567 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5568 *
5569 * Spare capacity can't be used for fork because the utilization has
5570 * not been set yet, we must first select a rq to compute the initial
5571 * utilization.
6a0b19c0 5572 */
f519a3f1
VG
5573 if (sd_flag & SD_BALANCE_FORK)
5574 goto skip_spare;
5575
6a0b19c0 5576 if (this_spare > task_util(p) / 2 &&
6b94780e 5577 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5578 return NULL;
6b94780e
VG
5579
5580 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5581 return most_spare_sg;
5582
f519a3f1 5583skip_spare:
6b94780e
VG
5584 if (!idlest)
5585 return NULL;
5586
5587 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5588 return NULL;
6b94780e
VG
5589
5590 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5591 (100*this_avg_load < imbalance_scale*min_avg_load))
5592 return NULL;
5593
aaee1203
PZ
5594 return idlest;
5595}
5596
5597/*
5598 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5599 */
5600static int
5601find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5602{
5603 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5604 unsigned int min_exit_latency = UINT_MAX;
5605 u64 latest_idle_timestamp = 0;
5606 int least_loaded_cpu = this_cpu;
5607 int shallowest_idle_cpu = -1;
aaee1203
PZ
5608 int i;
5609
eaecf41f
MR
5610 /* Check if we have any choice: */
5611 if (group->group_weight == 1)
5612 return cpumask_first(sched_group_cpus(group));
5613
aaee1203 5614 /* Traverse only the allowed CPUs */
0c98d344 5615 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
83a0a96a
NP
5616 if (idle_cpu(i)) {
5617 struct rq *rq = cpu_rq(i);
5618 struct cpuidle_state *idle = idle_get_state(rq);
5619 if (idle && idle->exit_latency < min_exit_latency) {
5620 /*
5621 * We give priority to a CPU whose idle state
5622 * has the smallest exit latency irrespective
5623 * of any idle timestamp.
5624 */
5625 min_exit_latency = idle->exit_latency;
5626 latest_idle_timestamp = rq->idle_stamp;
5627 shallowest_idle_cpu = i;
5628 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5629 rq->idle_stamp > latest_idle_timestamp) {
5630 /*
5631 * If equal or no active idle state, then
5632 * the most recently idled CPU might have
5633 * a warmer cache.
5634 */
5635 latest_idle_timestamp = rq->idle_stamp;
5636 shallowest_idle_cpu = i;
5637 }
9f96742a 5638 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5639 load = weighted_cpuload(i);
5640 if (load < min_load || (load == min_load && i == this_cpu)) {
5641 min_load = load;
5642 least_loaded_cpu = i;
5643 }
e7693a36
GH
5644 }
5645 }
5646
83a0a96a 5647 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5648}
e7693a36 5649
a50bde51 5650/*
10e2f1ac
PZ
5651 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5652 * (@start), and wraps around.
5653 *
5654 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5655 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5656 * through the LLC domain.
5657 *
5658 * Especially tbench is found sensitive to this.
5659 */
5660
5661static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5662{
5663 int next;
5664
5665again:
5666 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5667
5668 if (*wrapped) {
5669 if (next >= start)
5670 return nr_cpumask_bits;
5671 } else {
5672 if (next >= nr_cpumask_bits) {
5673 *wrapped = 1;
5674 n = -1;
5675 goto again;
5676 }
5677 }
5678
5679 return next;
5680}
5681
5682#define for_each_cpu_wrap(cpu, mask, start, wrap) \
5683 for ((wrap) = 0, (cpu) = (start)-1; \
5684 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5685 (cpu) < nr_cpumask_bits; )
5686
5687#ifdef CONFIG_SCHED_SMT
5688
5689static inline void set_idle_cores(int cpu, int val)
5690{
5691 struct sched_domain_shared *sds;
5692
5693 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5694 if (sds)
5695 WRITE_ONCE(sds->has_idle_cores, val);
5696}
5697
5698static inline bool test_idle_cores(int cpu, bool def)
5699{
5700 struct sched_domain_shared *sds;
5701
5702 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5703 if (sds)
5704 return READ_ONCE(sds->has_idle_cores);
5705
5706 return def;
5707}
5708
5709/*
5710 * Scans the local SMT mask to see if the entire core is idle, and records this
5711 * information in sd_llc_shared->has_idle_cores.
5712 *
5713 * Since SMT siblings share all cache levels, inspecting this limited remote
5714 * state should be fairly cheap.
5715 */
1b568f0a 5716void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5717{
5718 int core = cpu_of(rq);
5719 int cpu;
5720
5721 rcu_read_lock();
5722 if (test_idle_cores(core, true))
5723 goto unlock;
5724
5725 for_each_cpu(cpu, cpu_smt_mask(core)) {
5726 if (cpu == core)
5727 continue;
5728
5729 if (!idle_cpu(cpu))
5730 goto unlock;
5731 }
5732
5733 set_idle_cores(core, 1);
5734unlock:
5735 rcu_read_unlock();
5736}
5737
5738/*
5739 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5740 * there are no idle cores left in the system; tracked through
5741 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5742 */
5743static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5744{
5745 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5746 int core, cpu, wrap;
5747
1b568f0a
PZ
5748 if (!static_branch_likely(&sched_smt_present))
5749 return -1;
5750
10e2f1ac
PZ
5751 if (!test_idle_cores(target, false))
5752 return -1;
5753
0c98d344 5754 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac
PZ
5755
5756 for_each_cpu_wrap(core, cpus, target, wrap) {
5757 bool idle = true;
5758
5759 for_each_cpu(cpu, cpu_smt_mask(core)) {
5760 cpumask_clear_cpu(cpu, cpus);
5761 if (!idle_cpu(cpu))
5762 idle = false;
5763 }
5764
5765 if (idle)
5766 return core;
5767 }
5768
5769 /*
5770 * Failed to find an idle core; stop looking for one.
5771 */
5772 set_idle_cores(target, 0);
5773
5774 return -1;
5775}
5776
5777/*
5778 * Scan the local SMT mask for idle CPUs.
5779 */
5780static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5781{
5782 int cpu;
5783
1b568f0a
PZ
5784 if (!static_branch_likely(&sched_smt_present))
5785 return -1;
5786
10e2f1ac 5787 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5788 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5789 continue;
5790 if (idle_cpu(cpu))
5791 return cpu;
5792 }
5793
5794 return -1;
5795}
5796
5797#else /* CONFIG_SCHED_SMT */
5798
5799static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5800{
5801 return -1;
5802}
5803
5804static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5805{
5806 return -1;
5807}
5808
5809#endif /* CONFIG_SCHED_SMT */
5810
5811/*
5812 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5813 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5814 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5815 */
10e2f1ac
PZ
5816static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5817{
9cfb38a7
WL
5818 struct sched_domain *this_sd;
5819 u64 avg_cost, avg_idle = this_rq()->avg_idle;
10e2f1ac
PZ
5820 u64 time, cost;
5821 s64 delta;
5822 int cpu, wrap;
5823
9cfb38a7
WL
5824 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5825 if (!this_sd)
5826 return -1;
5827
5828 avg_cost = this_sd->avg_scan_cost;
5829
10e2f1ac
PZ
5830 /*
5831 * Due to large variance we need a large fuzz factor; hackbench in
5832 * particularly is sensitive here.
5833 */
4c77b18c 5834 if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
10e2f1ac
PZ
5835 return -1;
5836
5837 time = local_clock();
5838
5839 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
0c98d344 5840 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5841 continue;
5842 if (idle_cpu(cpu))
5843 break;
5844 }
5845
5846 time = local_clock() - time;
5847 cost = this_sd->avg_scan_cost;
5848 delta = (s64)(time - cost) / 8;
5849 this_sd->avg_scan_cost += delta;
5850
5851 return cpu;
5852}
5853
5854/*
5855 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5856 */
772bd008 5857static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5858{
99bd5e2f 5859 struct sched_domain *sd;
10e2f1ac 5860 int i;
a50bde51 5861
e0a79f52
MG
5862 if (idle_cpu(target))
5863 return target;
99bd5e2f
SS
5864
5865 /*
10e2f1ac 5866 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5867 */
772bd008
MR
5868 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5869 return prev;
a50bde51 5870
518cd623 5871 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5872 if (!sd)
5873 return target;
772bd008 5874
10e2f1ac
PZ
5875 i = select_idle_core(p, sd, target);
5876 if ((unsigned)i < nr_cpumask_bits)
5877 return i;
37407ea7 5878
10e2f1ac
PZ
5879 i = select_idle_cpu(p, sd, target);
5880 if ((unsigned)i < nr_cpumask_bits)
5881 return i;
5882
5883 i = select_idle_smt(p, sd, target);
5884 if ((unsigned)i < nr_cpumask_bits)
5885 return i;
970e1789 5886
a50bde51
PZ
5887 return target;
5888}
231678b7 5889
8bb5b00c 5890/*
9e91d61d 5891 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5892 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5893 * compare the utilization with the capacity of the CPU that is available for
5894 * CFS task (ie cpu_capacity).
231678b7
DE
5895 *
5896 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5897 * recent utilization of currently non-runnable tasks on a CPU. It represents
5898 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5899 * capacity_orig is the cpu_capacity available at the highest frequency
5900 * (arch_scale_freq_capacity()).
5901 * The utilization of a CPU converges towards a sum equal to or less than the
5902 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5903 * the running time on this CPU scaled by capacity_curr.
5904 *
5905 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5906 * higher than capacity_orig because of unfortunate rounding in
5907 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5908 * the average stabilizes with the new running time. We need to check that the
5909 * utilization stays within the range of [0..capacity_orig] and cap it if
5910 * necessary. Without utilization capping, a group could be seen as overloaded
5911 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5912 * available capacity. We allow utilization to overshoot capacity_curr (but not
5913 * capacity_orig) as it useful for predicting the capacity required after task
5914 * migrations (scheduler-driven DVFS).
8bb5b00c 5915 */
9e91d61d 5916static int cpu_util(int cpu)
8bb5b00c 5917{
9e91d61d 5918 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5919 unsigned long capacity = capacity_orig_of(cpu);
5920
231678b7 5921 return (util >= capacity) ? capacity : util;
8bb5b00c 5922}
a50bde51 5923
3273163c
MR
5924static inline int task_util(struct task_struct *p)
5925{
5926 return p->se.avg.util_avg;
5927}
5928
104cb16d
MR
5929/*
5930 * cpu_util_wake: Compute cpu utilization with any contributions from
5931 * the waking task p removed.
5932 */
5933static int cpu_util_wake(int cpu, struct task_struct *p)
5934{
5935 unsigned long util, capacity;
5936
5937 /* Task has no contribution or is new */
5938 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5939 return cpu_util(cpu);
5940
5941 capacity = capacity_orig_of(cpu);
5942 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5943
5944 return (util >= capacity) ? capacity : util;
5945}
5946
3273163c
MR
5947/*
5948 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5949 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5950 *
5951 * In that case WAKE_AFFINE doesn't make sense and we'll let
5952 * BALANCE_WAKE sort things out.
5953 */
5954static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5955{
5956 long min_cap, max_cap;
5957
5958 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5959 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5960
5961 /* Minimum capacity is close to max, no need to abort wake_affine */
5962 if (max_cap - min_cap < max_cap >> 3)
5963 return 0;
5964
104cb16d
MR
5965 /* Bring task utilization in sync with prev_cpu */
5966 sync_entity_load_avg(&p->se);
5967
3273163c
MR
5968 return min_cap * 1024 < task_util(p) * capacity_margin;
5969}
5970
aaee1203 5971/*
de91b9cb
MR
5972 * select_task_rq_fair: Select target runqueue for the waking task in domains
5973 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5974 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5975 *
de91b9cb
MR
5976 * Balances load by selecting the idlest cpu in the idlest group, or under
5977 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5978 *
de91b9cb 5979 * Returns the target cpu number.
aaee1203
PZ
5980 *
5981 * preempt must be disabled.
5982 */
0017d735 5983static int
ac66f547 5984select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5985{
29cd8bae 5986 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5987 int cpu = smp_processor_id();
63b0e9ed 5988 int new_cpu = prev_cpu;
99bd5e2f 5989 int want_affine = 0;
5158f4e4 5990 int sync = wake_flags & WF_SYNC;
c88d5910 5991
c58d25f3
PZ
5992 if (sd_flag & SD_BALANCE_WAKE) {
5993 record_wakee(p);
3273163c 5994 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 5995 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 5996 }
aaee1203 5997
dce840a0 5998 rcu_read_lock();
aaee1203 5999 for_each_domain(cpu, tmp) {
e4f42888 6000 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6001 break;
e4f42888 6002
fe3bcfe1 6003 /*
99bd5e2f
SS
6004 * If both cpu and prev_cpu are part of this domain,
6005 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6006 */
99bd5e2f
SS
6007 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6008 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6009 affine_sd = tmp;
29cd8bae 6010 break;
f03542a7 6011 }
29cd8bae 6012
f03542a7 6013 if (tmp->flags & sd_flag)
29cd8bae 6014 sd = tmp;
63b0e9ed
MG
6015 else if (!want_affine)
6016 break;
29cd8bae
PZ
6017 }
6018
63b0e9ed
MG
6019 if (affine_sd) {
6020 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 6021 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 6022 new_cpu = cpu;
8b911acd 6023 }
e7693a36 6024
63b0e9ed
MG
6025 if (!sd) {
6026 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 6027 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
6028
6029 } else while (sd) {
aaee1203 6030 struct sched_group *group;
c88d5910 6031 int weight;
098fb9db 6032
0763a660 6033 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
6034 sd = sd->child;
6035 continue;
6036 }
098fb9db 6037
c44f2a02 6038 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
6039 if (!group) {
6040 sd = sd->child;
6041 continue;
6042 }
4ae7d5ce 6043
d7c33c49 6044 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6045 if (new_cpu == -1 || new_cpu == cpu) {
6046 /* Now try balancing at a lower domain level of cpu */
6047 sd = sd->child;
6048 continue;
e7693a36 6049 }
aaee1203
PZ
6050
6051 /* Now try balancing at a lower domain level of new_cpu */
6052 cpu = new_cpu;
669c55e9 6053 weight = sd->span_weight;
aaee1203
PZ
6054 sd = NULL;
6055 for_each_domain(cpu, tmp) {
669c55e9 6056 if (weight <= tmp->span_weight)
aaee1203 6057 break;
0763a660 6058 if (tmp->flags & sd_flag)
aaee1203
PZ
6059 sd = tmp;
6060 }
6061 /* while loop will break here if sd == NULL */
e7693a36 6062 }
dce840a0 6063 rcu_read_unlock();
e7693a36 6064
c88d5910 6065 return new_cpu;
e7693a36 6066}
0a74bef8
PT
6067
6068/*
6069 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6070 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6071 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6072 */
5a4fd036 6073static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6074{
59efa0ba
PZ
6075 /*
6076 * As blocked tasks retain absolute vruntime the migration needs to
6077 * deal with this by subtracting the old and adding the new
6078 * min_vruntime -- the latter is done by enqueue_entity() when placing
6079 * the task on the new runqueue.
6080 */
6081 if (p->state == TASK_WAKING) {
6082 struct sched_entity *se = &p->se;
6083 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6084 u64 min_vruntime;
6085
6086#ifndef CONFIG_64BIT
6087 u64 min_vruntime_copy;
6088
6089 do {
6090 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6091 smp_rmb();
6092 min_vruntime = cfs_rq->min_vruntime;
6093 } while (min_vruntime != min_vruntime_copy);
6094#else
6095 min_vruntime = cfs_rq->min_vruntime;
6096#endif
6097
6098 se->vruntime -= min_vruntime;
6099 }
6100
aff3e498 6101 /*
9d89c257
YD
6102 * We are supposed to update the task to "current" time, then its up to date
6103 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6104 * what current time is, so simply throw away the out-of-date time. This
6105 * will result in the wakee task is less decayed, but giving the wakee more
6106 * load sounds not bad.
aff3e498 6107 */
9d89c257
YD
6108 remove_entity_load_avg(&p->se);
6109
6110 /* Tell new CPU we are migrated */
6111 p->se.avg.last_update_time = 0;
3944a927
BS
6112
6113 /* We have migrated, no longer consider this task hot */
9d89c257 6114 p->se.exec_start = 0;
0a74bef8 6115}
12695578
YD
6116
6117static void task_dead_fair(struct task_struct *p)
6118{
6119 remove_entity_load_avg(&p->se);
6120}
e7693a36
GH
6121#endif /* CONFIG_SMP */
6122
e52fb7c0
PZ
6123static unsigned long
6124wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6125{
6126 unsigned long gran = sysctl_sched_wakeup_granularity;
6127
6128 /*
e52fb7c0
PZ
6129 * Since its curr running now, convert the gran from real-time
6130 * to virtual-time in his units.
13814d42
MG
6131 *
6132 * By using 'se' instead of 'curr' we penalize light tasks, so
6133 * they get preempted easier. That is, if 'se' < 'curr' then
6134 * the resulting gran will be larger, therefore penalizing the
6135 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6136 * be smaller, again penalizing the lighter task.
6137 *
6138 * This is especially important for buddies when the leftmost
6139 * task is higher priority than the buddy.
0bbd3336 6140 */
f4ad9bd2 6141 return calc_delta_fair(gran, se);
0bbd3336
PZ
6142}
6143
464b7527
PZ
6144/*
6145 * Should 'se' preempt 'curr'.
6146 *
6147 * |s1
6148 * |s2
6149 * |s3
6150 * g
6151 * |<--->|c
6152 *
6153 * w(c, s1) = -1
6154 * w(c, s2) = 0
6155 * w(c, s3) = 1
6156 *
6157 */
6158static int
6159wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6160{
6161 s64 gran, vdiff = curr->vruntime - se->vruntime;
6162
6163 if (vdiff <= 0)
6164 return -1;
6165
e52fb7c0 6166 gran = wakeup_gran(curr, se);
464b7527
PZ
6167 if (vdiff > gran)
6168 return 1;
6169
6170 return 0;
6171}
6172
02479099
PZ
6173static void set_last_buddy(struct sched_entity *se)
6174{
69c80f3e
VP
6175 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6176 return;
6177
6178 for_each_sched_entity(se)
6179 cfs_rq_of(se)->last = se;
02479099
PZ
6180}
6181
6182static void set_next_buddy(struct sched_entity *se)
6183{
69c80f3e
VP
6184 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6185 return;
6186
6187 for_each_sched_entity(se)
6188 cfs_rq_of(se)->next = se;
02479099
PZ
6189}
6190
ac53db59
RR
6191static void set_skip_buddy(struct sched_entity *se)
6192{
69c80f3e
VP
6193 for_each_sched_entity(se)
6194 cfs_rq_of(se)->skip = se;
ac53db59
RR
6195}
6196
bf0f6f24
IM
6197/*
6198 * Preempt the current task with a newly woken task if needed:
6199 */
5a9b86f6 6200static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6201{
6202 struct task_struct *curr = rq->curr;
8651a86c 6203 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6204 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6205 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6206 int next_buddy_marked = 0;
bf0f6f24 6207
4ae7d5ce
IM
6208 if (unlikely(se == pse))
6209 return;
6210
5238cdd3 6211 /*
163122b7 6212 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6213 * unconditionally check_prempt_curr() after an enqueue (which may have
6214 * lead to a throttle). This both saves work and prevents false
6215 * next-buddy nomination below.
6216 */
6217 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6218 return;
6219
2f36825b 6220 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6221 set_next_buddy(pse);
2f36825b
VP
6222 next_buddy_marked = 1;
6223 }
57fdc26d 6224
aec0a514
BR
6225 /*
6226 * We can come here with TIF_NEED_RESCHED already set from new task
6227 * wake up path.
5238cdd3
PT
6228 *
6229 * Note: this also catches the edge-case of curr being in a throttled
6230 * group (e.g. via set_curr_task), since update_curr() (in the
6231 * enqueue of curr) will have resulted in resched being set. This
6232 * prevents us from potentially nominating it as a false LAST_BUDDY
6233 * below.
aec0a514
BR
6234 */
6235 if (test_tsk_need_resched(curr))
6236 return;
6237
a2f5c9ab
DH
6238 /* Idle tasks are by definition preempted by non-idle tasks. */
6239 if (unlikely(curr->policy == SCHED_IDLE) &&
6240 likely(p->policy != SCHED_IDLE))
6241 goto preempt;
6242
91c234b4 6243 /*
a2f5c9ab
DH
6244 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6245 * is driven by the tick):
91c234b4 6246 */
8ed92e51 6247 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6248 return;
bf0f6f24 6249
464b7527 6250 find_matching_se(&se, &pse);
9bbd7374 6251 update_curr(cfs_rq_of(se));
002f128b 6252 BUG_ON(!pse);
2f36825b
VP
6253 if (wakeup_preempt_entity(se, pse) == 1) {
6254 /*
6255 * Bias pick_next to pick the sched entity that is
6256 * triggering this preemption.
6257 */
6258 if (!next_buddy_marked)
6259 set_next_buddy(pse);
3a7e73a2 6260 goto preempt;
2f36825b 6261 }
464b7527 6262
3a7e73a2 6263 return;
a65ac745 6264
3a7e73a2 6265preempt:
8875125e 6266 resched_curr(rq);
3a7e73a2
PZ
6267 /*
6268 * Only set the backward buddy when the current task is still
6269 * on the rq. This can happen when a wakeup gets interleaved
6270 * with schedule on the ->pre_schedule() or idle_balance()
6271 * point, either of which can * drop the rq lock.
6272 *
6273 * Also, during early boot the idle thread is in the fair class,
6274 * for obvious reasons its a bad idea to schedule back to it.
6275 */
6276 if (unlikely(!se->on_rq || curr == rq->idle))
6277 return;
6278
6279 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6280 set_last_buddy(se);
bf0f6f24
IM
6281}
6282
606dba2e 6283static struct task_struct *
d8ac8971 6284pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6285{
6286 struct cfs_rq *cfs_rq = &rq->cfs;
6287 struct sched_entity *se;
678d5718 6288 struct task_struct *p;
37e117c0 6289 int new_tasks;
678d5718 6290
6e83125c 6291again:
678d5718
PZ
6292#ifdef CONFIG_FAIR_GROUP_SCHED
6293 if (!cfs_rq->nr_running)
38033c37 6294 goto idle;
678d5718 6295
3f1d2a31 6296 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6297 goto simple;
6298
6299 /*
6300 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6301 * likely that a next task is from the same cgroup as the current.
6302 *
6303 * Therefore attempt to avoid putting and setting the entire cgroup
6304 * hierarchy, only change the part that actually changes.
6305 */
6306
6307 do {
6308 struct sched_entity *curr = cfs_rq->curr;
6309
6310 /*
6311 * Since we got here without doing put_prev_entity() we also
6312 * have to consider cfs_rq->curr. If it is still a runnable
6313 * entity, update_curr() will update its vruntime, otherwise
6314 * forget we've ever seen it.
6315 */
54d27365
BS
6316 if (curr) {
6317 if (curr->on_rq)
6318 update_curr(cfs_rq);
6319 else
6320 curr = NULL;
678d5718 6321
54d27365
BS
6322 /*
6323 * This call to check_cfs_rq_runtime() will do the
6324 * throttle and dequeue its entity in the parent(s).
6325 * Therefore the 'simple' nr_running test will indeed
6326 * be correct.
6327 */
6328 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6329 goto simple;
6330 }
678d5718
PZ
6331
6332 se = pick_next_entity(cfs_rq, curr);
6333 cfs_rq = group_cfs_rq(se);
6334 } while (cfs_rq);
6335
6336 p = task_of(se);
6337
6338 /*
6339 * Since we haven't yet done put_prev_entity and if the selected task
6340 * is a different task than we started out with, try and touch the
6341 * least amount of cfs_rqs.
6342 */
6343 if (prev != p) {
6344 struct sched_entity *pse = &prev->se;
6345
6346 while (!(cfs_rq = is_same_group(se, pse))) {
6347 int se_depth = se->depth;
6348 int pse_depth = pse->depth;
6349
6350 if (se_depth <= pse_depth) {
6351 put_prev_entity(cfs_rq_of(pse), pse);
6352 pse = parent_entity(pse);
6353 }
6354 if (se_depth >= pse_depth) {
6355 set_next_entity(cfs_rq_of(se), se);
6356 se = parent_entity(se);
6357 }
6358 }
6359
6360 put_prev_entity(cfs_rq, pse);
6361 set_next_entity(cfs_rq, se);
6362 }
6363
6364 if (hrtick_enabled(rq))
6365 hrtick_start_fair(rq, p);
6366
6367 return p;
6368simple:
6369 cfs_rq = &rq->cfs;
6370#endif
bf0f6f24 6371
36ace27e 6372 if (!cfs_rq->nr_running)
38033c37 6373 goto idle;
bf0f6f24 6374
3f1d2a31 6375 put_prev_task(rq, prev);
606dba2e 6376
bf0f6f24 6377 do {
678d5718 6378 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6379 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6380 cfs_rq = group_cfs_rq(se);
6381 } while (cfs_rq);
6382
8f4d37ec 6383 p = task_of(se);
678d5718 6384
b39e66ea
MG
6385 if (hrtick_enabled(rq))
6386 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6387
6388 return p;
38033c37
PZ
6389
6390idle:
46f69fa3
MF
6391 new_tasks = idle_balance(rq, rf);
6392
37e117c0
PZ
6393 /*
6394 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6395 * possible for any higher priority task to appear. In that case we
6396 * must re-start the pick_next_entity() loop.
6397 */
e4aa358b 6398 if (new_tasks < 0)
37e117c0
PZ
6399 return RETRY_TASK;
6400
e4aa358b 6401 if (new_tasks > 0)
38033c37 6402 goto again;
38033c37
PZ
6403
6404 return NULL;
bf0f6f24
IM
6405}
6406
6407/*
6408 * Account for a descheduled task:
6409 */
31ee529c 6410static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6411{
6412 struct sched_entity *se = &prev->se;
6413 struct cfs_rq *cfs_rq;
6414
6415 for_each_sched_entity(se) {
6416 cfs_rq = cfs_rq_of(se);
ab6cde26 6417 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6418 }
6419}
6420
ac53db59
RR
6421/*
6422 * sched_yield() is very simple
6423 *
6424 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6425 */
6426static void yield_task_fair(struct rq *rq)
6427{
6428 struct task_struct *curr = rq->curr;
6429 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6430 struct sched_entity *se = &curr->se;
6431
6432 /*
6433 * Are we the only task in the tree?
6434 */
6435 if (unlikely(rq->nr_running == 1))
6436 return;
6437
6438 clear_buddies(cfs_rq, se);
6439
6440 if (curr->policy != SCHED_BATCH) {
6441 update_rq_clock(rq);
6442 /*
6443 * Update run-time statistics of the 'current'.
6444 */
6445 update_curr(cfs_rq);
916671c0
MG
6446 /*
6447 * Tell update_rq_clock() that we've just updated,
6448 * so we don't do microscopic update in schedule()
6449 * and double the fastpath cost.
6450 */
9edfbfed 6451 rq_clock_skip_update(rq, true);
ac53db59
RR
6452 }
6453
6454 set_skip_buddy(se);
6455}
6456
d95f4122
MG
6457static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6458{
6459 struct sched_entity *se = &p->se;
6460
5238cdd3
PT
6461 /* throttled hierarchies are not runnable */
6462 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6463 return false;
6464
6465 /* Tell the scheduler that we'd really like pse to run next. */
6466 set_next_buddy(se);
6467
d95f4122
MG
6468 yield_task_fair(rq);
6469
6470 return true;
6471}
6472
681f3e68 6473#ifdef CONFIG_SMP
bf0f6f24 6474/**************************************************
e9c84cb8
PZ
6475 * Fair scheduling class load-balancing methods.
6476 *
6477 * BASICS
6478 *
6479 * The purpose of load-balancing is to achieve the same basic fairness the
6480 * per-cpu scheduler provides, namely provide a proportional amount of compute
6481 * time to each task. This is expressed in the following equation:
6482 *
6483 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6484 *
6485 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6486 * W_i,0 is defined as:
6487 *
6488 * W_i,0 = \Sum_j w_i,j (2)
6489 *
6490 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6491 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6492 *
6493 * The weight average is an exponential decay average of the instantaneous
6494 * weight:
6495 *
6496 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6497 *
ced549fa 6498 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6499 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6500 * can also include other factors [XXX].
6501 *
6502 * To achieve this balance we define a measure of imbalance which follows
6503 * directly from (1):
6504 *
ced549fa 6505 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6506 *
6507 * We them move tasks around to minimize the imbalance. In the continuous
6508 * function space it is obvious this converges, in the discrete case we get
6509 * a few fun cases generally called infeasible weight scenarios.
6510 *
6511 * [XXX expand on:
6512 * - infeasible weights;
6513 * - local vs global optima in the discrete case. ]
6514 *
6515 *
6516 * SCHED DOMAINS
6517 *
6518 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6519 * for all i,j solution, we create a tree of cpus that follows the hardware
6520 * topology where each level pairs two lower groups (or better). This results
6521 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6522 * tree to only the first of the previous level and we decrease the frequency
6523 * of load-balance at each level inv. proportional to the number of cpus in
6524 * the groups.
6525 *
6526 * This yields:
6527 *
6528 * log_2 n 1 n
6529 * \Sum { --- * --- * 2^i } = O(n) (5)
6530 * i = 0 2^i 2^i
6531 * `- size of each group
6532 * | | `- number of cpus doing load-balance
6533 * | `- freq
6534 * `- sum over all levels
6535 *
6536 * Coupled with a limit on how many tasks we can migrate every balance pass,
6537 * this makes (5) the runtime complexity of the balancer.
6538 *
6539 * An important property here is that each CPU is still (indirectly) connected
6540 * to every other cpu in at most O(log n) steps:
6541 *
6542 * The adjacency matrix of the resulting graph is given by:
6543 *
97a7142f 6544 * log_2 n
e9c84cb8
PZ
6545 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6546 * k = 0
6547 *
6548 * And you'll find that:
6549 *
6550 * A^(log_2 n)_i,j != 0 for all i,j (7)
6551 *
6552 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6553 * The task movement gives a factor of O(m), giving a convergence complexity
6554 * of:
6555 *
6556 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6557 *
6558 *
6559 * WORK CONSERVING
6560 *
6561 * In order to avoid CPUs going idle while there's still work to do, new idle
6562 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6563 * tree itself instead of relying on other CPUs to bring it work.
6564 *
6565 * This adds some complexity to both (5) and (8) but it reduces the total idle
6566 * time.
6567 *
6568 * [XXX more?]
6569 *
6570 *
6571 * CGROUPS
6572 *
6573 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6574 *
6575 * s_k,i
6576 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6577 * S_k
6578 *
6579 * Where
6580 *
6581 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6582 *
6583 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6584 *
6585 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6586 * property.
6587 *
6588 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6589 * rewrite all of this once again.]
97a7142f 6590 */
bf0f6f24 6591
ed387b78
HS
6592static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6593
0ec8aa00
PZ
6594enum fbq_type { regular, remote, all };
6595
ddcdf6e7 6596#define LBF_ALL_PINNED 0x01
367456c7 6597#define LBF_NEED_BREAK 0x02
6263322c
PZ
6598#define LBF_DST_PINNED 0x04
6599#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6600
6601struct lb_env {
6602 struct sched_domain *sd;
6603
ddcdf6e7 6604 struct rq *src_rq;
85c1e7da 6605 int src_cpu;
ddcdf6e7
PZ
6606
6607 int dst_cpu;
6608 struct rq *dst_rq;
6609
88b8dac0
SV
6610 struct cpumask *dst_grpmask;
6611 int new_dst_cpu;
ddcdf6e7 6612 enum cpu_idle_type idle;
bd939f45 6613 long imbalance;
b9403130
MW
6614 /* The set of CPUs under consideration for load-balancing */
6615 struct cpumask *cpus;
6616
ddcdf6e7 6617 unsigned int flags;
367456c7
PZ
6618
6619 unsigned int loop;
6620 unsigned int loop_break;
6621 unsigned int loop_max;
0ec8aa00
PZ
6622
6623 enum fbq_type fbq_type;
163122b7 6624 struct list_head tasks;
ddcdf6e7
PZ
6625};
6626
029632fb
PZ
6627/*
6628 * Is this task likely cache-hot:
6629 */
5d5e2b1b 6630static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6631{
6632 s64 delta;
6633
e5673f28
KT
6634 lockdep_assert_held(&env->src_rq->lock);
6635
029632fb
PZ
6636 if (p->sched_class != &fair_sched_class)
6637 return 0;
6638
6639 if (unlikely(p->policy == SCHED_IDLE))
6640 return 0;
6641
6642 /*
6643 * Buddy candidates are cache hot:
6644 */
5d5e2b1b 6645 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6646 (&p->se == cfs_rq_of(&p->se)->next ||
6647 &p->se == cfs_rq_of(&p->se)->last))
6648 return 1;
6649
6650 if (sysctl_sched_migration_cost == -1)
6651 return 1;
6652 if (sysctl_sched_migration_cost == 0)
6653 return 0;
6654
5d5e2b1b 6655 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6656
6657 return delta < (s64)sysctl_sched_migration_cost;
6658}
6659
3a7053b3 6660#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6661/*
2a1ed24c
SD
6662 * Returns 1, if task migration degrades locality
6663 * Returns 0, if task migration improves locality i.e migration preferred.
6664 * Returns -1, if task migration is not affected by locality.
c1ceac62 6665 */
2a1ed24c 6666static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6667{
b1ad065e 6668 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6669 unsigned long src_faults, dst_faults;
3a7053b3
MG
6670 int src_nid, dst_nid;
6671
2a595721 6672 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6673 return -1;
6674
c3b9bc5b 6675 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6676 return -1;
7a0f3083
MG
6677
6678 src_nid = cpu_to_node(env->src_cpu);
6679 dst_nid = cpu_to_node(env->dst_cpu);
6680
83e1d2cd 6681 if (src_nid == dst_nid)
2a1ed24c 6682 return -1;
7a0f3083 6683
2a1ed24c
SD
6684 /* Migrating away from the preferred node is always bad. */
6685 if (src_nid == p->numa_preferred_nid) {
6686 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6687 return 1;
6688 else
6689 return -1;
6690 }
b1ad065e 6691
c1ceac62
RR
6692 /* Encourage migration to the preferred node. */
6693 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6694 return 0;
b1ad065e 6695
c1ceac62
RR
6696 if (numa_group) {
6697 src_faults = group_faults(p, src_nid);
6698 dst_faults = group_faults(p, dst_nid);
6699 } else {
6700 src_faults = task_faults(p, src_nid);
6701 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6702 }
6703
c1ceac62 6704 return dst_faults < src_faults;
7a0f3083
MG
6705}
6706
3a7053b3 6707#else
2a1ed24c 6708static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6709 struct lb_env *env)
6710{
2a1ed24c 6711 return -1;
7a0f3083 6712}
3a7053b3
MG
6713#endif
6714
1e3c88bd
PZ
6715/*
6716 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6717 */
6718static
8e45cb54 6719int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6720{
2a1ed24c 6721 int tsk_cache_hot;
e5673f28
KT
6722
6723 lockdep_assert_held(&env->src_rq->lock);
6724
1e3c88bd
PZ
6725 /*
6726 * We do not migrate tasks that are:
d3198084 6727 * 1) throttled_lb_pair, or
1e3c88bd 6728 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6729 * 3) running (obviously), or
6730 * 4) are cache-hot on their current CPU.
1e3c88bd 6731 */
d3198084
JK
6732 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6733 return 0;
6734
0c98d344 6735 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6736 int cpu;
88b8dac0 6737
ae92882e 6738 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6739
6263322c
PZ
6740 env->flags |= LBF_SOME_PINNED;
6741
88b8dac0
SV
6742 /*
6743 * Remember if this task can be migrated to any other cpu in
6744 * our sched_group. We may want to revisit it if we couldn't
6745 * meet load balance goals by pulling other tasks on src_cpu.
6746 *
6747 * Also avoid computing new_dst_cpu if we have already computed
6748 * one in current iteration.
6749 */
6263322c 6750 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6751 return 0;
6752
e02e60c1
JK
6753 /* Prevent to re-select dst_cpu via env's cpus */
6754 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6755 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6756 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6757 env->new_dst_cpu = cpu;
6758 break;
6759 }
88b8dac0 6760 }
e02e60c1 6761
1e3c88bd
PZ
6762 return 0;
6763 }
88b8dac0
SV
6764
6765 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6766 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6767
ddcdf6e7 6768 if (task_running(env->src_rq, p)) {
ae92882e 6769 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6770 return 0;
6771 }
6772
6773 /*
6774 * Aggressive migration if:
3a7053b3
MG
6775 * 1) destination numa is preferred
6776 * 2) task is cache cold, or
6777 * 3) too many balance attempts have failed.
1e3c88bd 6778 */
2a1ed24c
SD
6779 tsk_cache_hot = migrate_degrades_locality(p, env);
6780 if (tsk_cache_hot == -1)
6781 tsk_cache_hot = task_hot(p, env);
3a7053b3 6782
2a1ed24c 6783 if (tsk_cache_hot <= 0 ||
7a96c231 6784 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6785 if (tsk_cache_hot == 1) {
ae92882e
JP
6786 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6787 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6788 }
1e3c88bd
PZ
6789 return 1;
6790 }
6791
ae92882e 6792 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6793 return 0;
1e3c88bd
PZ
6794}
6795
897c395f 6796/*
163122b7
KT
6797 * detach_task() -- detach the task for the migration specified in env
6798 */
6799static void detach_task(struct task_struct *p, struct lb_env *env)
6800{
6801 lockdep_assert_held(&env->src_rq->lock);
6802
163122b7 6803 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6804 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6805 set_task_cpu(p, env->dst_cpu);
6806}
6807
897c395f 6808/*
e5673f28 6809 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6810 * part of active balancing operations within "domain".
897c395f 6811 *
e5673f28 6812 * Returns a task if successful and NULL otherwise.
897c395f 6813 */
e5673f28 6814static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6815{
6816 struct task_struct *p, *n;
897c395f 6817
e5673f28
KT
6818 lockdep_assert_held(&env->src_rq->lock);
6819
367456c7 6820 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6821 if (!can_migrate_task(p, env))
6822 continue;
897c395f 6823
163122b7 6824 detach_task(p, env);
e5673f28 6825
367456c7 6826 /*
e5673f28 6827 * Right now, this is only the second place where
163122b7 6828 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6829 * so we can safely collect stats here rather than
163122b7 6830 * inside detach_tasks().
367456c7 6831 */
ae92882e 6832 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6833 return p;
897c395f 6834 }
e5673f28 6835 return NULL;
897c395f
PZ
6836}
6837
eb95308e
PZ
6838static const unsigned int sched_nr_migrate_break = 32;
6839
5d6523eb 6840/*
163122b7
KT
6841 * detach_tasks() -- tries to detach up to imbalance weighted load from
6842 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6843 *
163122b7 6844 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6845 */
163122b7 6846static int detach_tasks(struct lb_env *env)
1e3c88bd 6847{
5d6523eb
PZ
6848 struct list_head *tasks = &env->src_rq->cfs_tasks;
6849 struct task_struct *p;
367456c7 6850 unsigned long load;
163122b7
KT
6851 int detached = 0;
6852
6853 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6854
bd939f45 6855 if (env->imbalance <= 0)
5d6523eb 6856 return 0;
1e3c88bd 6857
5d6523eb 6858 while (!list_empty(tasks)) {
985d3a4c
YD
6859 /*
6860 * We don't want to steal all, otherwise we may be treated likewise,
6861 * which could at worst lead to a livelock crash.
6862 */
6863 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6864 break;
6865
5d6523eb 6866 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6867
367456c7
PZ
6868 env->loop++;
6869 /* We've more or less seen every task there is, call it quits */
5d6523eb 6870 if (env->loop > env->loop_max)
367456c7 6871 break;
5d6523eb
PZ
6872
6873 /* take a breather every nr_migrate tasks */
367456c7 6874 if (env->loop > env->loop_break) {
eb95308e 6875 env->loop_break += sched_nr_migrate_break;
8e45cb54 6876 env->flags |= LBF_NEED_BREAK;
ee00e66f 6877 break;
a195f004 6878 }
1e3c88bd 6879
d3198084 6880 if (!can_migrate_task(p, env))
367456c7
PZ
6881 goto next;
6882
6883 load = task_h_load(p);
5d6523eb 6884
eb95308e 6885 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6886 goto next;
6887
bd939f45 6888 if ((load / 2) > env->imbalance)
367456c7 6889 goto next;
1e3c88bd 6890
163122b7
KT
6891 detach_task(p, env);
6892 list_add(&p->se.group_node, &env->tasks);
6893
6894 detached++;
bd939f45 6895 env->imbalance -= load;
1e3c88bd
PZ
6896
6897#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6898 /*
6899 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6900 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6901 * the critical section.
6902 */
5d6523eb 6903 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6904 break;
1e3c88bd
PZ
6905#endif
6906
ee00e66f
PZ
6907 /*
6908 * We only want to steal up to the prescribed amount of
6909 * weighted load.
6910 */
bd939f45 6911 if (env->imbalance <= 0)
ee00e66f 6912 break;
367456c7
PZ
6913
6914 continue;
6915next:
5d6523eb 6916 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6917 }
5d6523eb 6918
1e3c88bd 6919 /*
163122b7
KT
6920 * Right now, this is one of only two places we collect this stat
6921 * so we can safely collect detach_one_task() stats here rather
6922 * than inside detach_one_task().
1e3c88bd 6923 */
ae92882e 6924 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6925
163122b7
KT
6926 return detached;
6927}
6928
6929/*
6930 * attach_task() -- attach the task detached by detach_task() to its new rq.
6931 */
6932static void attach_task(struct rq *rq, struct task_struct *p)
6933{
6934 lockdep_assert_held(&rq->lock);
6935
6936 BUG_ON(task_rq(p) != rq);
5704ac0a 6937 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 6938 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6939 check_preempt_curr(rq, p, 0);
6940}
6941
6942/*
6943 * attach_one_task() -- attaches the task returned from detach_one_task() to
6944 * its new rq.
6945 */
6946static void attach_one_task(struct rq *rq, struct task_struct *p)
6947{
8a8c69c3
PZ
6948 struct rq_flags rf;
6949
6950 rq_lock(rq, &rf);
5704ac0a 6951 update_rq_clock(rq);
163122b7 6952 attach_task(rq, p);
8a8c69c3 6953 rq_unlock(rq, &rf);
163122b7
KT
6954}
6955
6956/*
6957 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6958 * new rq.
6959 */
6960static void attach_tasks(struct lb_env *env)
6961{
6962 struct list_head *tasks = &env->tasks;
6963 struct task_struct *p;
8a8c69c3 6964 struct rq_flags rf;
163122b7 6965
8a8c69c3 6966 rq_lock(env->dst_rq, &rf);
5704ac0a 6967 update_rq_clock(env->dst_rq);
163122b7
KT
6968
6969 while (!list_empty(tasks)) {
6970 p = list_first_entry(tasks, struct task_struct, se.group_node);
6971 list_del_init(&p->se.group_node);
1e3c88bd 6972
163122b7
KT
6973 attach_task(env->dst_rq, p);
6974 }
6975
8a8c69c3 6976 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
6977}
6978
230059de 6979#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6980static void update_blocked_averages(int cpu)
9e3081ca 6981{
9e3081ca 6982 struct rq *rq = cpu_rq(cpu);
48a16753 6983 struct cfs_rq *cfs_rq;
8a8c69c3 6984 struct rq_flags rf;
9e3081ca 6985
8a8c69c3 6986 rq_lock_irqsave(rq, &rf);
48a16753 6987 update_rq_clock(rq);
9d89c257 6988
9763b67f
PZ
6989 /*
6990 * Iterates the task_group tree in a bottom up fashion, see
6991 * list_add_leaf_cfs_rq() for details.
6992 */
64660c86 6993 for_each_leaf_cfs_rq(rq, cfs_rq) {
bc427898
VG
6994 struct sched_entity *se;
6995
9d89c257
YD
6996 /* throttled entities do not contribute to load */
6997 if (throttled_hierarchy(cfs_rq))
6998 continue;
48a16753 6999
a2c6c91f 7000 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257 7001 update_tg_load_avg(cfs_rq, 0);
4e516076 7002
bc427898
VG
7003 /* Propagate pending load changes to the parent, if any: */
7004 se = cfs_rq->tg->se[cpu];
7005 if (se && !skip_blocked_update(se))
7006 update_load_avg(se, 0);
9d89c257 7007 }
8a8c69c3 7008 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7009}
7010
9763b67f 7011/*
68520796 7012 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7013 * This needs to be done in a top-down fashion because the load of a child
7014 * group is a fraction of its parents load.
7015 */
68520796 7016static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7017{
68520796
VD
7018 struct rq *rq = rq_of(cfs_rq);
7019 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7020 unsigned long now = jiffies;
68520796 7021 unsigned long load;
a35b6466 7022
68520796 7023 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7024 return;
7025
68520796
VD
7026 cfs_rq->h_load_next = NULL;
7027 for_each_sched_entity(se) {
7028 cfs_rq = cfs_rq_of(se);
7029 cfs_rq->h_load_next = se;
7030 if (cfs_rq->last_h_load_update == now)
7031 break;
7032 }
a35b6466 7033
68520796 7034 if (!se) {
7ea241af 7035 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7036 cfs_rq->last_h_load_update = now;
7037 }
7038
7039 while ((se = cfs_rq->h_load_next) != NULL) {
7040 load = cfs_rq->h_load;
7ea241af
YD
7041 load = div64_ul(load * se->avg.load_avg,
7042 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7043 cfs_rq = group_cfs_rq(se);
7044 cfs_rq->h_load = load;
7045 cfs_rq->last_h_load_update = now;
7046 }
9763b67f
PZ
7047}
7048
367456c7 7049static unsigned long task_h_load(struct task_struct *p)
230059de 7050{
367456c7 7051 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7052
68520796 7053 update_cfs_rq_h_load(cfs_rq);
9d89c257 7054 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7055 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7056}
7057#else
48a16753 7058static inline void update_blocked_averages(int cpu)
9e3081ca 7059{
6c1d47c0
VG
7060 struct rq *rq = cpu_rq(cpu);
7061 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7062 struct rq_flags rf;
6c1d47c0 7063
8a8c69c3 7064 rq_lock_irqsave(rq, &rf);
6c1d47c0 7065 update_rq_clock(rq);
a2c6c91f 7066 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
8a8c69c3 7067 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7068}
7069
367456c7 7070static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7071{
9d89c257 7072 return p->se.avg.load_avg;
1e3c88bd 7073}
230059de 7074#endif
1e3c88bd 7075
1e3c88bd 7076/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7077
7078enum group_type {
7079 group_other = 0,
7080 group_imbalanced,
7081 group_overloaded,
7082};
7083
1e3c88bd
PZ
7084/*
7085 * sg_lb_stats - stats of a sched_group required for load_balancing
7086 */
7087struct sg_lb_stats {
7088 unsigned long avg_load; /*Avg load across the CPUs of the group */
7089 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7090 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7091 unsigned long load_per_task;
63b2ca30 7092 unsigned long group_capacity;
9e91d61d 7093 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7094 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7095 unsigned int idle_cpus;
7096 unsigned int group_weight;
caeb178c 7097 enum group_type group_type;
ea67821b 7098 int group_no_capacity;
0ec8aa00
PZ
7099#ifdef CONFIG_NUMA_BALANCING
7100 unsigned int nr_numa_running;
7101 unsigned int nr_preferred_running;
7102#endif
1e3c88bd
PZ
7103};
7104
56cf515b
JK
7105/*
7106 * sd_lb_stats - Structure to store the statistics of a sched_domain
7107 * during load balancing.
7108 */
7109struct sd_lb_stats {
7110 struct sched_group *busiest; /* Busiest group in this sd */
7111 struct sched_group *local; /* Local group in this sd */
7112 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7113 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7114 unsigned long avg_load; /* Average load across all groups in sd */
7115
56cf515b 7116 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7117 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7118};
7119
147c5fc2
PZ
7120static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7121{
7122 /*
7123 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7124 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7125 * We must however clear busiest_stat::avg_load because
7126 * update_sd_pick_busiest() reads this before assignment.
7127 */
7128 *sds = (struct sd_lb_stats){
7129 .busiest = NULL,
7130 .local = NULL,
7131 .total_load = 0UL,
63b2ca30 7132 .total_capacity = 0UL,
147c5fc2
PZ
7133 .busiest_stat = {
7134 .avg_load = 0UL,
caeb178c
RR
7135 .sum_nr_running = 0,
7136 .group_type = group_other,
147c5fc2
PZ
7137 },
7138 };
7139}
7140
1e3c88bd
PZ
7141/**
7142 * get_sd_load_idx - Obtain the load index for a given sched domain.
7143 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7144 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7145 *
7146 * Return: The load index.
1e3c88bd
PZ
7147 */
7148static inline int get_sd_load_idx(struct sched_domain *sd,
7149 enum cpu_idle_type idle)
7150{
7151 int load_idx;
7152
7153 switch (idle) {
7154 case CPU_NOT_IDLE:
7155 load_idx = sd->busy_idx;
7156 break;
7157
7158 case CPU_NEWLY_IDLE:
7159 load_idx = sd->newidle_idx;
7160 break;
7161 default:
7162 load_idx = sd->idle_idx;
7163 break;
7164 }
7165
7166 return load_idx;
7167}
7168
ced549fa 7169static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7170{
7171 struct rq *rq = cpu_rq(cpu);
b5b4860d 7172 u64 total, used, age_stamp, avg;
cadefd3d 7173 s64 delta;
1e3c88bd 7174
b654f7de
PZ
7175 /*
7176 * Since we're reading these variables without serialization make sure
7177 * we read them once before doing sanity checks on them.
7178 */
316c1608
JL
7179 age_stamp = READ_ONCE(rq->age_stamp);
7180 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7181 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7182
cadefd3d
PZ
7183 if (unlikely(delta < 0))
7184 delta = 0;
7185
7186 total = sched_avg_period() + delta;
aa483808 7187
b5b4860d 7188 used = div_u64(avg, total);
1e3c88bd 7189
b5b4860d
VG
7190 if (likely(used < SCHED_CAPACITY_SCALE))
7191 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7192
b5b4860d 7193 return 1;
1e3c88bd
PZ
7194}
7195
ced549fa 7196static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7197{
8cd5601c 7198 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7199 struct sched_group *sdg = sd->groups;
7200
ca6d75e6 7201 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7202
ced549fa 7203 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7204 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7205
ced549fa
NP
7206 if (!capacity)
7207 capacity = 1;
1e3c88bd 7208
ced549fa
NP
7209 cpu_rq(cpu)->cpu_capacity = capacity;
7210 sdg->sgc->capacity = capacity;
bf475ce0 7211 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7212}
7213
63b2ca30 7214void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7215{
7216 struct sched_domain *child = sd->child;
7217 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7218 unsigned long capacity, min_capacity;
4ec4412e
VG
7219 unsigned long interval;
7220
7221 interval = msecs_to_jiffies(sd->balance_interval);
7222 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7223 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7224
7225 if (!child) {
ced549fa 7226 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7227 return;
7228 }
7229
dc7ff76e 7230 capacity = 0;
bf475ce0 7231 min_capacity = ULONG_MAX;
1e3c88bd 7232
74a5ce20
PZ
7233 if (child->flags & SD_OVERLAP) {
7234 /*
7235 * SD_OVERLAP domains cannot assume that child groups
7236 * span the current group.
7237 */
7238
863bffc8 7239 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 7240 struct sched_group_capacity *sgc;
9abf24d4 7241 struct rq *rq = cpu_rq(cpu);
863bffc8 7242
9abf24d4 7243 /*
63b2ca30 7244 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7245 * gets here before we've attached the domains to the
7246 * runqueues.
7247 *
ced549fa
NP
7248 * Use capacity_of(), which is set irrespective of domains
7249 * in update_cpu_capacity().
9abf24d4 7250 *
dc7ff76e 7251 * This avoids capacity from being 0 and
9abf24d4 7252 * causing divide-by-zero issues on boot.
9abf24d4
SD
7253 */
7254 if (unlikely(!rq->sd)) {
ced549fa 7255 capacity += capacity_of(cpu);
bf475ce0
MR
7256 } else {
7257 sgc = rq->sd->groups->sgc;
7258 capacity += sgc->capacity;
9abf24d4 7259 }
863bffc8 7260
bf475ce0 7261 min_capacity = min(capacity, min_capacity);
863bffc8 7262 }
74a5ce20
PZ
7263 } else {
7264 /*
7265 * !SD_OVERLAP domains can assume that child groups
7266 * span the current group.
97a7142f 7267 */
74a5ce20
PZ
7268
7269 group = child->groups;
7270 do {
bf475ce0
MR
7271 struct sched_group_capacity *sgc = group->sgc;
7272
7273 capacity += sgc->capacity;
7274 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7275 group = group->next;
7276 } while (group != child->groups);
7277 }
1e3c88bd 7278
63b2ca30 7279 sdg->sgc->capacity = capacity;
bf475ce0 7280 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7281}
7282
9d5efe05 7283/*
ea67821b
VG
7284 * Check whether the capacity of the rq has been noticeably reduced by side
7285 * activity. The imbalance_pct is used for the threshold.
7286 * Return true is the capacity is reduced
9d5efe05
SV
7287 */
7288static inline int
ea67821b 7289check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7290{
ea67821b
VG
7291 return ((rq->cpu_capacity * sd->imbalance_pct) <
7292 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7293}
7294
30ce5dab
PZ
7295/*
7296 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7297 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7298 *
7299 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7300 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7301 * Something like:
7302 *
2b4d5b25
IM
7303 * { 0 1 2 3 } { 4 5 6 7 }
7304 * * * * *
30ce5dab
PZ
7305 *
7306 * If we were to balance group-wise we'd place two tasks in the first group and
7307 * two tasks in the second group. Clearly this is undesired as it will overload
7308 * cpu 3 and leave one of the cpus in the second group unused.
7309 *
7310 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7311 * by noticing the lower domain failed to reach balance and had difficulty
7312 * moving tasks due to affinity constraints.
30ce5dab
PZ
7313 *
7314 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7315 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7316 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7317 * to create an effective group imbalance.
7318 *
7319 * This is a somewhat tricky proposition since the next run might not find the
7320 * group imbalance and decide the groups need to be balanced again. A most
7321 * subtle and fragile situation.
7322 */
7323
6263322c 7324static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7325{
63b2ca30 7326 return group->sgc->imbalance;
30ce5dab
PZ
7327}
7328
b37d9316 7329/*
ea67821b
VG
7330 * group_has_capacity returns true if the group has spare capacity that could
7331 * be used by some tasks.
7332 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7333 * smaller than the number of CPUs or if the utilization is lower than the
7334 * available capacity for CFS tasks.
ea67821b
VG
7335 * For the latter, we use a threshold to stabilize the state, to take into
7336 * account the variance of the tasks' load and to return true if the available
7337 * capacity in meaningful for the load balancer.
7338 * As an example, an available capacity of 1% can appear but it doesn't make
7339 * any benefit for the load balance.
b37d9316 7340 */
ea67821b
VG
7341static inline bool
7342group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7343{
ea67821b
VG
7344 if (sgs->sum_nr_running < sgs->group_weight)
7345 return true;
c61037e9 7346
ea67821b 7347 if ((sgs->group_capacity * 100) >
9e91d61d 7348 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7349 return true;
b37d9316 7350
ea67821b
VG
7351 return false;
7352}
7353
7354/*
7355 * group_is_overloaded returns true if the group has more tasks than it can
7356 * handle.
7357 * group_is_overloaded is not equals to !group_has_capacity because a group
7358 * with the exact right number of tasks, has no more spare capacity but is not
7359 * overloaded so both group_has_capacity and group_is_overloaded return
7360 * false.
7361 */
7362static inline bool
7363group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7364{
7365 if (sgs->sum_nr_running <= sgs->group_weight)
7366 return false;
b37d9316 7367
ea67821b 7368 if ((sgs->group_capacity * 100) <
9e91d61d 7369 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7370 return true;
b37d9316 7371
ea67821b 7372 return false;
b37d9316
PZ
7373}
7374
9e0994c0
MR
7375/*
7376 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7377 * per-CPU capacity than sched_group ref.
7378 */
7379static inline bool
7380group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7381{
7382 return sg->sgc->min_capacity * capacity_margin <
7383 ref->sgc->min_capacity * 1024;
7384}
7385
79a89f92
LY
7386static inline enum
7387group_type group_classify(struct sched_group *group,
7388 struct sg_lb_stats *sgs)
caeb178c 7389{
ea67821b 7390 if (sgs->group_no_capacity)
caeb178c
RR
7391 return group_overloaded;
7392
7393 if (sg_imbalanced(group))
7394 return group_imbalanced;
7395
7396 return group_other;
7397}
7398
1e3c88bd
PZ
7399/**
7400 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7401 * @env: The load balancing environment.
1e3c88bd 7402 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7403 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7404 * @local_group: Does group contain this_cpu.
1e3c88bd 7405 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7406 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7407 */
bd939f45
PZ
7408static inline void update_sg_lb_stats(struct lb_env *env,
7409 struct sched_group *group, int load_idx,
4486edd1
TC
7410 int local_group, struct sg_lb_stats *sgs,
7411 bool *overload)
1e3c88bd 7412{
30ce5dab 7413 unsigned long load;
a426f99c 7414 int i, nr_running;
1e3c88bd 7415
b72ff13c
PZ
7416 memset(sgs, 0, sizeof(*sgs));
7417
b9403130 7418 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
7419 struct rq *rq = cpu_rq(i);
7420
1e3c88bd 7421 /* Bias balancing toward cpus of our domain */
6263322c 7422 if (local_group)
04f733b4 7423 load = target_load(i, load_idx);
6263322c 7424 else
1e3c88bd 7425 load = source_load(i, load_idx);
1e3c88bd
PZ
7426
7427 sgs->group_load += load;
9e91d61d 7428 sgs->group_util += cpu_util(i);
65fdac08 7429 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7430
a426f99c
WL
7431 nr_running = rq->nr_running;
7432 if (nr_running > 1)
4486edd1
TC
7433 *overload = true;
7434
0ec8aa00
PZ
7435#ifdef CONFIG_NUMA_BALANCING
7436 sgs->nr_numa_running += rq->nr_numa_running;
7437 sgs->nr_preferred_running += rq->nr_preferred_running;
7438#endif
1e3c88bd 7439 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7440 /*
7441 * No need to call idle_cpu() if nr_running is not 0
7442 */
7443 if (!nr_running && idle_cpu(i))
aae6d3dd 7444 sgs->idle_cpus++;
1e3c88bd
PZ
7445 }
7446
63b2ca30
NP
7447 /* Adjust by relative CPU capacity of the group */
7448 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7449 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7450
dd5feea1 7451 if (sgs->sum_nr_running)
38d0f770 7452 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7453
aae6d3dd 7454 sgs->group_weight = group->group_weight;
b37d9316 7455
ea67821b 7456 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7457 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7458}
7459
532cb4c4
MN
7460/**
7461 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7462 * @env: The load balancing environment.
532cb4c4
MN
7463 * @sds: sched_domain statistics
7464 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7465 * @sgs: sched_group statistics
532cb4c4
MN
7466 *
7467 * Determine if @sg is a busier group than the previously selected
7468 * busiest group.
e69f6186
YB
7469 *
7470 * Return: %true if @sg is a busier group than the previously selected
7471 * busiest group. %false otherwise.
532cb4c4 7472 */
bd939f45 7473static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7474 struct sd_lb_stats *sds,
7475 struct sched_group *sg,
bd939f45 7476 struct sg_lb_stats *sgs)
532cb4c4 7477{
caeb178c 7478 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7479
caeb178c 7480 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7481 return true;
7482
caeb178c
RR
7483 if (sgs->group_type < busiest->group_type)
7484 return false;
7485
7486 if (sgs->avg_load <= busiest->avg_load)
7487 return false;
7488
9e0994c0
MR
7489 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7490 goto asym_packing;
7491
7492 /*
7493 * Candidate sg has no more than one task per CPU and
7494 * has higher per-CPU capacity. Migrating tasks to less
7495 * capable CPUs may harm throughput. Maximize throughput,
7496 * power/energy consequences are not considered.
7497 */
7498 if (sgs->sum_nr_running <= sgs->group_weight &&
7499 group_smaller_cpu_capacity(sds->local, sg))
7500 return false;
7501
7502asym_packing:
caeb178c
RR
7503 /* This is the busiest node in its class. */
7504 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7505 return true;
7506
1f621e02
SD
7507 /* No ASYM_PACKING if target cpu is already busy */
7508 if (env->idle == CPU_NOT_IDLE)
7509 return true;
532cb4c4 7510 /*
afe06efd
TC
7511 * ASYM_PACKING needs to move all the work to the highest
7512 * prority CPUs in the group, therefore mark all groups
7513 * of lower priority than ourself as busy.
532cb4c4 7514 */
afe06efd
TC
7515 if (sgs->sum_nr_running &&
7516 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7517 if (!sds->busiest)
7518 return true;
7519
afe06efd
TC
7520 /* Prefer to move from lowest priority cpu's work */
7521 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7522 sg->asym_prefer_cpu))
532cb4c4
MN
7523 return true;
7524 }
7525
7526 return false;
7527}
7528
0ec8aa00
PZ
7529#ifdef CONFIG_NUMA_BALANCING
7530static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7531{
7532 if (sgs->sum_nr_running > sgs->nr_numa_running)
7533 return regular;
7534 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7535 return remote;
7536 return all;
7537}
7538
7539static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7540{
7541 if (rq->nr_running > rq->nr_numa_running)
7542 return regular;
7543 if (rq->nr_running > rq->nr_preferred_running)
7544 return remote;
7545 return all;
7546}
7547#else
7548static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7549{
7550 return all;
7551}
7552
7553static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7554{
7555 return regular;
7556}
7557#endif /* CONFIG_NUMA_BALANCING */
7558
1e3c88bd 7559/**
461819ac 7560 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7561 * @env: The load balancing environment.
1e3c88bd
PZ
7562 * @sds: variable to hold the statistics for this sched_domain.
7563 */
0ec8aa00 7564static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7565{
bd939f45
PZ
7566 struct sched_domain *child = env->sd->child;
7567 struct sched_group *sg = env->sd->groups;
05b40e05 7568 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7569 struct sg_lb_stats tmp_sgs;
1e3c88bd 7570 int load_idx, prefer_sibling = 0;
4486edd1 7571 bool overload = false;
1e3c88bd
PZ
7572
7573 if (child && child->flags & SD_PREFER_SIBLING)
7574 prefer_sibling = 1;
7575
bd939f45 7576 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7577
7578 do {
56cf515b 7579 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7580 int local_group;
7581
bd939f45 7582 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
7583 if (local_group) {
7584 sds->local = sg;
05b40e05 7585 sgs = local;
b72ff13c
PZ
7586
7587 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7588 time_after_eq(jiffies, sg->sgc->next_update))
7589 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7590 }
1e3c88bd 7591
4486edd1
TC
7592 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7593 &overload);
1e3c88bd 7594
b72ff13c
PZ
7595 if (local_group)
7596 goto next_group;
7597
1e3c88bd
PZ
7598 /*
7599 * In case the child domain prefers tasks go to siblings
ea67821b 7600 * first, lower the sg capacity so that we'll try
75dd321d
NR
7601 * and move all the excess tasks away. We lower the capacity
7602 * of a group only if the local group has the capacity to fit
ea67821b
VG
7603 * these excess tasks. The extra check prevents the case where
7604 * you always pull from the heaviest group when it is already
7605 * under-utilized (possible with a large weight task outweighs
7606 * the tasks on the system).
1e3c88bd 7607 */
b72ff13c 7608 if (prefer_sibling && sds->local &&
05b40e05
SD
7609 group_has_capacity(env, local) &&
7610 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7611 sgs->group_no_capacity = 1;
79a89f92 7612 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7613 }
1e3c88bd 7614
b72ff13c 7615 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7616 sds->busiest = sg;
56cf515b 7617 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7618 }
7619
b72ff13c
PZ
7620next_group:
7621 /* Now, start updating sd_lb_stats */
7622 sds->total_load += sgs->group_load;
63b2ca30 7623 sds->total_capacity += sgs->group_capacity;
b72ff13c 7624
532cb4c4 7625 sg = sg->next;
bd939f45 7626 } while (sg != env->sd->groups);
0ec8aa00
PZ
7627
7628 if (env->sd->flags & SD_NUMA)
7629 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7630
7631 if (!env->sd->parent) {
7632 /* update overload indicator if we are at root domain */
7633 if (env->dst_rq->rd->overload != overload)
7634 env->dst_rq->rd->overload = overload;
7635 }
7636
532cb4c4
MN
7637}
7638
532cb4c4
MN
7639/**
7640 * check_asym_packing - Check to see if the group is packed into the
7641 * sched doman.
7642 *
7643 * This is primarily intended to used at the sibling level. Some
7644 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7645 * case of POWER7, it can move to lower SMT modes only when higher
7646 * threads are idle. When in lower SMT modes, the threads will
7647 * perform better since they share less core resources. Hence when we
7648 * have idle threads, we want them to be the higher ones.
7649 *
7650 * This packing function is run on idle threads. It checks to see if
7651 * the busiest CPU in this domain (core in the P7 case) has a higher
7652 * CPU number than the packing function is being run on. Here we are
7653 * assuming lower CPU number will be equivalent to lower a SMT thread
7654 * number.
7655 *
e69f6186 7656 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7657 * this CPU. The amount of the imbalance is returned in *imbalance.
7658 *
cd96891d 7659 * @env: The load balancing environment.
532cb4c4 7660 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7661 */
bd939f45 7662static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7663{
7664 int busiest_cpu;
7665
bd939f45 7666 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7667 return 0;
7668
1f621e02
SD
7669 if (env->idle == CPU_NOT_IDLE)
7670 return 0;
7671
532cb4c4
MN
7672 if (!sds->busiest)
7673 return 0;
7674
afe06efd
TC
7675 busiest_cpu = sds->busiest->asym_prefer_cpu;
7676 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7677 return 0;
7678
bd939f45 7679 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7680 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7681 SCHED_CAPACITY_SCALE);
bd939f45 7682
532cb4c4 7683 return 1;
1e3c88bd
PZ
7684}
7685
7686/**
7687 * fix_small_imbalance - Calculate the minor imbalance that exists
7688 * amongst the groups of a sched_domain, during
7689 * load balancing.
cd96891d 7690 * @env: The load balancing environment.
1e3c88bd 7691 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7692 */
bd939f45
PZ
7693static inline
7694void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7695{
63b2ca30 7696 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7697 unsigned int imbn = 2;
dd5feea1 7698 unsigned long scaled_busy_load_per_task;
56cf515b 7699 struct sg_lb_stats *local, *busiest;
1e3c88bd 7700
56cf515b
JK
7701 local = &sds->local_stat;
7702 busiest = &sds->busiest_stat;
1e3c88bd 7703
56cf515b
JK
7704 if (!local->sum_nr_running)
7705 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7706 else if (busiest->load_per_task > local->load_per_task)
7707 imbn = 1;
dd5feea1 7708
56cf515b 7709 scaled_busy_load_per_task =
ca8ce3d0 7710 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7711 busiest->group_capacity;
56cf515b 7712
3029ede3
VD
7713 if (busiest->avg_load + scaled_busy_load_per_task >=
7714 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7715 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7716 return;
7717 }
7718
7719 /*
7720 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7721 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7722 * moving them.
7723 */
7724
63b2ca30 7725 capa_now += busiest->group_capacity *
56cf515b 7726 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7727 capa_now += local->group_capacity *
56cf515b 7728 min(local->load_per_task, local->avg_load);
ca8ce3d0 7729 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7730
7731 /* Amount of load we'd subtract */
a2cd4260 7732 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7733 capa_move += busiest->group_capacity *
56cf515b 7734 min(busiest->load_per_task,
a2cd4260 7735 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7736 }
1e3c88bd
PZ
7737
7738 /* Amount of load we'd add */
63b2ca30 7739 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7740 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7741 tmp = (busiest->avg_load * busiest->group_capacity) /
7742 local->group_capacity;
56cf515b 7743 } else {
ca8ce3d0 7744 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7745 local->group_capacity;
56cf515b 7746 }
63b2ca30 7747 capa_move += local->group_capacity *
3ae11c90 7748 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7749 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7750
7751 /* Move if we gain throughput */
63b2ca30 7752 if (capa_move > capa_now)
56cf515b 7753 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7754}
7755
7756/**
7757 * calculate_imbalance - Calculate the amount of imbalance present within the
7758 * groups of a given sched_domain during load balance.
bd939f45 7759 * @env: load balance environment
1e3c88bd 7760 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7761 */
bd939f45 7762static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7763{
dd5feea1 7764 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7765 struct sg_lb_stats *local, *busiest;
7766
7767 local = &sds->local_stat;
56cf515b 7768 busiest = &sds->busiest_stat;
dd5feea1 7769
caeb178c 7770 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7771 /*
7772 * In the group_imb case we cannot rely on group-wide averages
7773 * to ensure cpu-load equilibrium, look at wider averages. XXX
7774 */
56cf515b
JK
7775 busiest->load_per_task =
7776 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7777 }
7778
1e3c88bd 7779 /*
885e542c
DE
7780 * Avg load of busiest sg can be less and avg load of local sg can
7781 * be greater than avg load across all sgs of sd because avg load
7782 * factors in sg capacity and sgs with smaller group_type are
7783 * skipped when updating the busiest sg:
1e3c88bd 7784 */
b1885550
VD
7785 if (busiest->avg_load <= sds->avg_load ||
7786 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7787 env->imbalance = 0;
7788 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7789 }
7790
9a5d9ba6
PZ
7791 /*
7792 * If there aren't any idle cpus, avoid creating some.
7793 */
7794 if (busiest->group_type == group_overloaded &&
7795 local->group_type == group_overloaded) {
1be0eb2a 7796 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7797 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7798 load_above_capacity -= busiest->group_capacity;
26656215 7799 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7800 load_above_capacity /= busiest->group_capacity;
7801 } else
ea67821b 7802 load_above_capacity = ~0UL;
dd5feea1
SS
7803 }
7804
7805 /*
7806 * We're trying to get all the cpus to the average_load, so we don't
7807 * want to push ourselves above the average load, nor do we wish to
7808 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7809 * we also don't want to reduce the group load below the group
7810 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7811 */
30ce5dab 7812 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7813
7814 /* How much load to actually move to equalise the imbalance */
56cf515b 7815 env->imbalance = min(
63b2ca30
NP
7816 max_pull * busiest->group_capacity,
7817 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7818 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7819
7820 /*
7821 * if *imbalance is less than the average load per runnable task
25985edc 7822 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7823 * a think about bumping its value to force at least one task to be
7824 * moved
7825 */
56cf515b 7826 if (env->imbalance < busiest->load_per_task)
bd939f45 7827 return fix_small_imbalance(env, sds);
1e3c88bd 7828}
fab47622 7829
1e3c88bd
PZ
7830/******* find_busiest_group() helpers end here *********************/
7831
7832/**
7833 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7834 * if there is an imbalance.
1e3c88bd
PZ
7835 *
7836 * Also calculates the amount of weighted load which should be moved
7837 * to restore balance.
7838 *
cd96891d 7839 * @env: The load balancing environment.
1e3c88bd 7840 *
e69f6186 7841 * Return: - The busiest group if imbalance exists.
1e3c88bd 7842 */
56cf515b 7843static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7844{
56cf515b 7845 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7846 struct sd_lb_stats sds;
7847
147c5fc2 7848 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7849
7850 /*
7851 * Compute the various statistics relavent for load balancing at
7852 * this level.
7853 */
23f0d209 7854 update_sd_lb_stats(env, &sds);
56cf515b
JK
7855 local = &sds.local_stat;
7856 busiest = &sds.busiest_stat;
1e3c88bd 7857
ea67821b 7858 /* ASYM feature bypasses nice load balance check */
1f621e02 7859 if (check_asym_packing(env, &sds))
532cb4c4
MN
7860 return sds.busiest;
7861
cc57aa8f 7862 /* There is no busy sibling group to pull tasks from */
56cf515b 7863 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7864 goto out_balanced;
7865
ca8ce3d0
NP
7866 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7867 / sds.total_capacity;
b0432d8f 7868
866ab43e
PZ
7869 /*
7870 * If the busiest group is imbalanced the below checks don't
30ce5dab 7871 * work because they assume all things are equal, which typically
866ab43e
PZ
7872 * isn't true due to cpus_allowed constraints and the like.
7873 */
caeb178c 7874 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7875 goto force_balance;
7876
cc57aa8f 7877 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7878 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7879 busiest->group_no_capacity)
fab47622
NR
7880 goto force_balance;
7881
cc57aa8f 7882 /*
9c58c79a 7883 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7884 * don't try and pull any tasks.
7885 */
56cf515b 7886 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7887 goto out_balanced;
7888
cc57aa8f
PZ
7889 /*
7890 * Don't pull any tasks if this group is already above the domain
7891 * average load.
7892 */
56cf515b 7893 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7894 goto out_balanced;
7895
bd939f45 7896 if (env->idle == CPU_IDLE) {
aae6d3dd 7897 /*
43f4d666
VG
7898 * This cpu is idle. If the busiest group is not overloaded
7899 * and there is no imbalance between this and busiest group
7900 * wrt idle cpus, it is balanced. The imbalance becomes
7901 * significant if the diff is greater than 1 otherwise we
7902 * might end up to just move the imbalance on another group
aae6d3dd 7903 */
43f4d666
VG
7904 if ((busiest->group_type != group_overloaded) &&
7905 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7906 goto out_balanced;
c186fafe
PZ
7907 } else {
7908 /*
7909 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7910 * imbalance_pct to be conservative.
7911 */
56cf515b
JK
7912 if (100 * busiest->avg_load <=
7913 env->sd->imbalance_pct * local->avg_load)
c186fafe 7914 goto out_balanced;
aae6d3dd 7915 }
1e3c88bd 7916
fab47622 7917force_balance:
1e3c88bd 7918 /* Looks like there is an imbalance. Compute it */
bd939f45 7919 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7920 return sds.busiest;
7921
7922out_balanced:
bd939f45 7923 env->imbalance = 0;
1e3c88bd
PZ
7924 return NULL;
7925}
7926
7927/*
7928 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7929 */
bd939f45 7930static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7931 struct sched_group *group)
1e3c88bd
PZ
7932{
7933 struct rq *busiest = NULL, *rq;
ced549fa 7934 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7935 int i;
7936
6906a408 7937 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7938 unsigned long capacity, wl;
0ec8aa00
PZ
7939 enum fbq_type rt;
7940
7941 rq = cpu_rq(i);
7942 rt = fbq_classify_rq(rq);
1e3c88bd 7943
0ec8aa00
PZ
7944 /*
7945 * We classify groups/runqueues into three groups:
7946 * - regular: there are !numa tasks
7947 * - remote: there are numa tasks that run on the 'wrong' node
7948 * - all: there is no distinction
7949 *
7950 * In order to avoid migrating ideally placed numa tasks,
7951 * ignore those when there's better options.
7952 *
7953 * If we ignore the actual busiest queue to migrate another
7954 * task, the next balance pass can still reduce the busiest
7955 * queue by moving tasks around inside the node.
7956 *
7957 * If we cannot move enough load due to this classification
7958 * the next pass will adjust the group classification and
7959 * allow migration of more tasks.
7960 *
7961 * Both cases only affect the total convergence complexity.
7962 */
7963 if (rt > env->fbq_type)
7964 continue;
7965
ced549fa 7966 capacity = capacity_of(i);
9d5efe05 7967
6e40f5bb 7968 wl = weighted_cpuload(i);
1e3c88bd 7969
6e40f5bb
TG
7970 /*
7971 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7972 * which is not scaled with the cpu capacity.
6e40f5bb 7973 */
ea67821b
VG
7974
7975 if (rq->nr_running == 1 && wl > env->imbalance &&
7976 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7977 continue;
7978
6e40f5bb
TG
7979 /*
7980 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7981 * the weighted_cpuload() scaled with the cpu capacity, so
7982 * that the load can be moved away from the cpu that is
7983 * potentially running at a lower capacity.
95a79b80 7984 *
ced549fa 7985 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7986 * multiplication to rid ourselves of the division works out
ced549fa
NP
7987 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7988 * our previous maximum.
6e40f5bb 7989 */
ced549fa 7990 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7991 busiest_load = wl;
ced549fa 7992 busiest_capacity = capacity;
1e3c88bd
PZ
7993 busiest = rq;
7994 }
7995 }
7996
7997 return busiest;
7998}
7999
8000/*
8001 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8002 * so long as it is large enough.
8003 */
8004#define MAX_PINNED_INTERVAL 512
8005
bd939f45 8006static int need_active_balance(struct lb_env *env)
1af3ed3d 8007{
bd939f45
PZ
8008 struct sched_domain *sd = env->sd;
8009
8010 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8011
8012 /*
8013 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8014 * lower priority CPUs in order to pack all tasks in the
8015 * highest priority CPUs.
532cb4c4 8016 */
afe06efd
TC
8017 if ((sd->flags & SD_ASYM_PACKING) &&
8018 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8019 return 1;
1af3ed3d
PZ
8020 }
8021
1aaf90a4
VG
8022 /*
8023 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8024 * It's worth migrating the task if the src_cpu's capacity is reduced
8025 * because of other sched_class or IRQs if more capacity stays
8026 * available on dst_cpu.
8027 */
8028 if ((env->idle != CPU_NOT_IDLE) &&
8029 (env->src_rq->cfs.h_nr_running == 1)) {
8030 if ((check_cpu_capacity(env->src_rq, sd)) &&
8031 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8032 return 1;
8033 }
8034
1af3ed3d
PZ
8035 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8036}
8037
969c7921
TH
8038static int active_load_balance_cpu_stop(void *data);
8039
23f0d209
JK
8040static int should_we_balance(struct lb_env *env)
8041{
8042 struct sched_group *sg = env->sd->groups;
8043 struct cpumask *sg_cpus, *sg_mask;
8044 int cpu, balance_cpu = -1;
8045
8046 /*
8047 * In the newly idle case, we will allow all the cpu's
8048 * to do the newly idle load balance.
8049 */
8050 if (env->idle == CPU_NEWLY_IDLE)
8051 return 1;
8052
8053 sg_cpus = sched_group_cpus(sg);
8054 sg_mask = sched_group_mask(sg);
8055 /* Try to find first idle cpu */
8056 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
8057 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
8058 continue;
8059
8060 balance_cpu = cpu;
8061 break;
8062 }
8063
8064 if (balance_cpu == -1)
8065 balance_cpu = group_balance_cpu(sg);
8066
8067 /*
8068 * First idle cpu or the first cpu(busiest) in this sched group
8069 * is eligible for doing load balancing at this and above domains.
8070 */
b0cff9d8 8071 return balance_cpu == env->dst_cpu;
23f0d209
JK
8072}
8073
1e3c88bd
PZ
8074/*
8075 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8076 * tasks if there is an imbalance.
8077 */
8078static int load_balance(int this_cpu, struct rq *this_rq,
8079 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8080 int *continue_balancing)
1e3c88bd 8081{
88b8dac0 8082 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8083 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8084 struct sched_group *group;
1e3c88bd 8085 struct rq *busiest;
8a8c69c3 8086 struct rq_flags rf;
4ba29684 8087 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8088
8e45cb54
PZ
8089 struct lb_env env = {
8090 .sd = sd,
ddcdf6e7
PZ
8091 .dst_cpu = this_cpu,
8092 .dst_rq = this_rq,
88b8dac0 8093 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 8094 .idle = idle,
eb95308e 8095 .loop_break = sched_nr_migrate_break,
b9403130 8096 .cpus = cpus,
0ec8aa00 8097 .fbq_type = all,
163122b7 8098 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8099 };
8100
cfc03118
JK
8101 /*
8102 * For NEWLY_IDLE load_balancing, we don't need to consider
8103 * other cpus in our group
8104 */
e02e60c1 8105 if (idle == CPU_NEWLY_IDLE)
cfc03118 8106 env.dst_grpmask = NULL;
cfc03118 8107
1e3c88bd
PZ
8108 cpumask_copy(cpus, cpu_active_mask);
8109
ae92882e 8110 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8111
8112redo:
23f0d209
JK
8113 if (!should_we_balance(&env)) {
8114 *continue_balancing = 0;
1e3c88bd 8115 goto out_balanced;
23f0d209 8116 }
1e3c88bd 8117
23f0d209 8118 group = find_busiest_group(&env);
1e3c88bd 8119 if (!group) {
ae92882e 8120 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8121 goto out_balanced;
8122 }
8123
b9403130 8124 busiest = find_busiest_queue(&env, group);
1e3c88bd 8125 if (!busiest) {
ae92882e 8126 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8127 goto out_balanced;
8128 }
8129
78feefc5 8130 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8131
ae92882e 8132 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8133
1aaf90a4
VG
8134 env.src_cpu = busiest->cpu;
8135 env.src_rq = busiest;
8136
1e3c88bd
PZ
8137 ld_moved = 0;
8138 if (busiest->nr_running > 1) {
8139 /*
8140 * Attempt to move tasks. If find_busiest_group has found
8141 * an imbalance but busiest->nr_running <= 1, the group is
8142 * still unbalanced. ld_moved simply stays zero, so it is
8143 * correctly treated as an imbalance.
8144 */
8e45cb54 8145 env.flags |= LBF_ALL_PINNED;
c82513e5 8146 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8147
5d6523eb 8148more_balance:
8a8c69c3 8149 rq_lock_irqsave(busiest, &rf);
3bed5e21 8150 update_rq_clock(busiest);
88b8dac0
SV
8151
8152 /*
8153 * cur_ld_moved - load moved in current iteration
8154 * ld_moved - cumulative load moved across iterations
8155 */
163122b7 8156 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8157
8158 /*
163122b7
KT
8159 * We've detached some tasks from busiest_rq. Every
8160 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8161 * unlock busiest->lock, and we are able to be sure
8162 * that nobody can manipulate the tasks in parallel.
8163 * See task_rq_lock() family for the details.
1e3c88bd 8164 */
163122b7 8165
8a8c69c3 8166 rq_unlock(busiest, &rf);
163122b7
KT
8167
8168 if (cur_ld_moved) {
8169 attach_tasks(&env);
8170 ld_moved += cur_ld_moved;
8171 }
8172
8a8c69c3 8173 local_irq_restore(rf.flags);
88b8dac0 8174
f1cd0858
JK
8175 if (env.flags & LBF_NEED_BREAK) {
8176 env.flags &= ~LBF_NEED_BREAK;
8177 goto more_balance;
8178 }
8179
88b8dac0
SV
8180 /*
8181 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8182 * us and move them to an alternate dst_cpu in our sched_group
8183 * where they can run. The upper limit on how many times we
8184 * iterate on same src_cpu is dependent on number of cpus in our
8185 * sched_group.
8186 *
8187 * This changes load balance semantics a bit on who can move
8188 * load to a given_cpu. In addition to the given_cpu itself
8189 * (or a ilb_cpu acting on its behalf where given_cpu is
8190 * nohz-idle), we now have balance_cpu in a position to move
8191 * load to given_cpu. In rare situations, this may cause
8192 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8193 * _independently_ and at _same_ time to move some load to
8194 * given_cpu) causing exceess load to be moved to given_cpu.
8195 * This however should not happen so much in practice and
8196 * moreover subsequent load balance cycles should correct the
8197 * excess load moved.
8198 */
6263322c 8199 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8200
7aff2e3a
VD
8201 /* Prevent to re-select dst_cpu via env's cpus */
8202 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8203
78feefc5 8204 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8205 env.dst_cpu = env.new_dst_cpu;
6263322c 8206 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8207 env.loop = 0;
8208 env.loop_break = sched_nr_migrate_break;
e02e60c1 8209
88b8dac0
SV
8210 /*
8211 * Go back to "more_balance" rather than "redo" since we
8212 * need to continue with same src_cpu.
8213 */
8214 goto more_balance;
8215 }
1e3c88bd 8216
6263322c
PZ
8217 /*
8218 * We failed to reach balance because of affinity.
8219 */
8220 if (sd_parent) {
63b2ca30 8221 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8222
afdeee05 8223 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8224 *group_imbalance = 1;
6263322c
PZ
8225 }
8226
1e3c88bd 8227 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8228 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8229 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
8230 if (!cpumask_empty(cpus)) {
8231 env.loop = 0;
8232 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8233 goto redo;
bbf18b19 8234 }
afdeee05 8235 goto out_all_pinned;
1e3c88bd
PZ
8236 }
8237 }
8238
8239 if (!ld_moved) {
ae92882e 8240 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8241 /*
8242 * Increment the failure counter only on periodic balance.
8243 * We do not want newidle balance, which can be very
8244 * frequent, pollute the failure counter causing
8245 * excessive cache_hot migrations and active balances.
8246 */
8247 if (idle != CPU_NEWLY_IDLE)
8248 sd->nr_balance_failed++;
1e3c88bd 8249
bd939f45 8250 if (need_active_balance(&env)) {
8a8c69c3
PZ
8251 unsigned long flags;
8252
1e3c88bd
PZ
8253 raw_spin_lock_irqsave(&busiest->lock, flags);
8254
969c7921
TH
8255 /* don't kick the active_load_balance_cpu_stop,
8256 * if the curr task on busiest cpu can't be
8257 * moved to this_cpu
1e3c88bd 8258 */
0c98d344 8259 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8260 raw_spin_unlock_irqrestore(&busiest->lock,
8261 flags);
8e45cb54 8262 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8263 goto out_one_pinned;
8264 }
8265
969c7921
TH
8266 /*
8267 * ->active_balance synchronizes accesses to
8268 * ->active_balance_work. Once set, it's cleared
8269 * only after active load balance is finished.
8270 */
1e3c88bd
PZ
8271 if (!busiest->active_balance) {
8272 busiest->active_balance = 1;
8273 busiest->push_cpu = this_cpu;
8274 active_balance = 1;
8275 }
8276 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8277
bd939f45 8278 if (active_balance) {
969c7921
TH
8279 stop_one_cpu_nowait(cpu_of(busiest),
8280 active_load_balance_cpu_stop, busiest,
8281 &busiest->active_balance_work);
bd939f45 8282 }
1e3c88bd 8283
d02c0711 8284 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8285 sd->nr_balance_failed = sd->cache_nice_tries+1;
8286 }
8287 } else
8288 sd->nr_balance_failed = 0;
8289
8290 if (likely(!active_balance)) {
8291 /* We were unbalanced, so reset the balancing interval */
8292 sd->balance_interval = sd->min_interval;
8293 } else {
8294 /*
8295 * If we've begun active balancing, start to back off. This
8296 * case may not be covered by the all_pinned logic if there
8297 * is only 1 task on the busy runqueue (because we don't call
163122b7 8298 * detach_tasks).
1e3c88bd
PZ
8299 */
8300 if (sd->balance_interval < sd->max_interval)
8301 sd->balance_interval *= 2;
8302 }
8303
1e3c88bd
PZ
8304 goto out;
8305
8306out_balanced:
afdeee05
VG
8307 /*
8308 * We reach balance although we may have faced some affinity
8309 * constraints. Clear the imbalance flag if it was set.
8310 */
8311 if (sd_parent) {
8312 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8313
8314 if (*group_imbalance)
8315 *group_imbalance = 0;
8316 }
8317
8318out_all_pinned:
8319 /*
8320 * We reach balance because all tasks are pinned at this level so
8321 * we can't migrate them. Let the imbalance flag set so parent level
8322 * can try to migrate them.
8323 */
ae92882e 8324 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8325
8326 sd->nr_balance_failed = 0;
8327
8328out_one_pinned:
8329 /* tune up the balancing interval */
8e45cb54 8330 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8331 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8332 (sd->balance_interval < sd->max_interval))
8333 sd->balance_interval *= 2;
8334
46e49b38 8335 ld_moved = 0;
1e3c88bd 8336out:
1e3c88bd
PZ
8337 return ld_moved;
8338}
8339
52a08ef1
JL
8340static inline unsigned long
8341get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8342{
8343 unsigned long interval = sd->balance_interval;
8344
8345 if (cpu_busy)
8346 interval *= sd->busy_factor;
8347
8348 /* scale ms to jiffies */
8349 interval = msecs_to_jiffies(interval);
8350 interval = clamp(interval, 1UL, max_load_balance_interval);
8351
8352 return interval;
8353}
8354
8355static inline void
31851a98 8356update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8357{
8358 unsigned long interval, next;
8359
31851a98
LY
8360 /* used by idle balance, so cpu_busy = 0 */
8361 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8362 next = sd->last_balance + interval;
8363
8364 if (time_after(*next_balance, next))
8365 *next_balance = next;
8366}
8367
1e3c88bd
PZ
8368/*
8369 * idle_balance is called by schedule() if this_cpu is about to become
8370 * idle. Attempts to pull tasks from other CPUs.
8371 */
46f69fa3 8372static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8373{
52a08ef1
JL
8374 unsigned long next_balance = jiffies + HZ;
8375 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8376 struct sched_domain *sd;
8377 int pulled_task = 0;
9bd721c5 8378 u64 curr_cost = 0;
1e3c88bd 8379
6e83125c
PZ
8380 /*
8381 * We must set idle_stamp _before_ calling idle_balance(), such that we
8382 * measure the duration of idle_balance() as idle time.
8383 */
8384 this_rq->idle_stamp = rq_clock(this_rq);
8385
46f69fa3
MF
8386 /*
8387 * This is OK, because current is on_cpu, which avoids it being picked
8388 * for load-balance and preemption/IRQs are still disabled avoiding
8389 * further scheduler activity on it and we're being very careful to
8390 * re-start the picking loop.
8391 */
8392 rq_unpin_lock(this_rq, rf);
8393
4486edd1
TC
8394 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8395 !this_rq->rd->overload) {
52a08ef1
JL
8396 rcu_read_lock();
8397 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8398 if (sd)
31851a98 8399 update_next_balance(sd, &next_balance);
52a08ef1
JL
8400 rcu_read_unlock();
8401
6e83125c 8402 goto out;
52a08ef1 8403 }
1e3c88bd 8404
f492e12e
PZ
8405 raw_spin_unlock(&this_rq->lock);
8406
48a16753 8407 update_blocked_averages(this_cpu);
dce840a0 8408 rcu_read_lock();
1e3c88bd 8409 for_each_domain(this_cpu, sd) {
23f0d209 8410 int continue_balancing = 1;
9bd721c5 8411 u64 t0, domain_cost;
1e3c88bd
PZ
8412
8413 if (!(sd->flags & SD_LOAD_BALANCE))
8414 continue;
8415
52a08ef1 8416 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8417 update_next_balance(sd, &next_balance);
9bd721c5 8418 break;
52a08ef1 8419 }
9bd721c5 8420
f492e12e 8421 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8422 t0 = sched_clock_cpu(this_cpu);
8423
f492e12e 8424 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8425 sd, CPU_NEWLY_IDLE,
8426 &continue_balancing);
9bd721c5
JL
8427
8428 domain_cost = sched_clock_cpu(this_cpu) - t0;
8429 if (domain_cost > sd->max_newidle_lb_cost)
8430 sd->max_newidle_lb_cost = domain_cost;
8431
8432 curr_cost += domain_cost;
f492e12e 8433 }
1e3c88bd 8434
31851a98 8435 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8436
8437 /*
8438 * Stop searching for tasks to pull if there are
8439 * now runnable tasks on this rq.
8440 */
8441 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8442 break;
1e3c88bd 8443 }
dce840a0 8444 rcu_read_unlock();
f492e12e
PZ
8445
8446 raw_spin_lock(&this_rq->lock);
8447
0e5b5337
JL
8448 if (curr_cost > this_rq->max_idle_balance_cost)
8449 this_rq->max_idle_balance_cost = curr_cost;
8450
e5fc6611 8451 /*
0e5b5337
JL
8452 * While browsing the domains, we released the rq lock, a task could
8453 * have been enqueued in the meantime. Since we're not going idle,
8454 * pretend we pulled a task.
e5fc6611 8455 */
0e5b5337 8456 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8457 pulled_task = 1;
e5fc6611 8458
52a08ef1
JL
8459out:
8460 /* Move the next balance forward */
8461 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8462 this_rq->next_balance = next_balance;
9bd721c5 8463
e4aa358b 8464 /* Is there a task of a high priority class? */
46383648 8465 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8466 pulled_task = -1;
8467
38c6ade2 8468 if (pulled_task)
6e83125c
PZ
8469 this_rq->idle_stamp = 0;
8470
46f69fa3
MF
8471 rq_repin_lock(this_rq, rf);
8472
3c4017c1 8473 return pulled_task;
1e3c88bd
PZ
8474}
8475
8476/*
969c7921
TH
8477 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8478 * running tasks off the busiest CPU onto idle CPUs. It requires at
8479 * least 1 task to be running on each physical CPU where possible, and
8480 * avoids physical / logical imbalances.
1e3c88bd 8481 */
969c7921 8482static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8483{
969c7921
TH
8484 struct rq *busiest_rq = data;
8485 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8486 int target_cpu = busiest_rq->push_cpu;
969c7921 8487 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8488 struct sched_domain *sd;
e5673f28 8489 struct task_struct *p = NULL;
8a8c69c3 8490 struct rq_flags rf;
969c7921 8491
8a8c69c3 8492 rq_lock_irq(busiest_rq, &rf);
969c7921
TH
8493
8494 /* make sure the requested cpu hasn't gone down in the meantime */
8495 if (unlikely(busiest_cpu != smp_processor_id() ||
8496 !busiest_rq->active_balance))
8497 goto out_unlock;
1e3c88bd
PZ
8498
8499 /* Is there any task to move? */
8500 if (busiest_rq->nr_running <= 1)
969c7921 8501 goto out_unlock;
1e3c88bd
PZ
8502
8503 /*
8504 * This condition is "impossible", if it occurs
8505 * we need to fix it. Originally reported by
8506 * Bjorn Helgaas on a 128-cpu setup.
8507 */
8508 BUG_ON(busiest_rq == target_rq);
8509
1e3c88bd 8510 /* Search for an sd spanning us and the target CPU. */
dce840a0 8511 rcu_read_lock();
1e3c88bd
PZ
8512 for_each_domain(target_cpu, sd) {
8513 if ((sd->flags & SD_LOAD_BALANCE) &&
8514 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8515 break;
8516 }
8517
8518 if (likely(sd)) {
8e45cb54
PZ
8519 struct lb_env env = {
8520 .sd = sd,
ddcdf6e7
PZ
8521 .dst_cpu = target_cpu,
8522 .dst_rq = target_rq,
8523 .src_cpu = busiest_rq->cpu,
8524 .src_rq = busiest_rq,
8e45cb54
PZ
8525 .idle = CPU_IDLE,
8526 };
8527
ae92882e 8528 schedstat_inc(sd->alb_count);
3bed5e21 8529 update_rq_clock(busiest_rq);
1e3c88bd 8530
e5673f28 8531 p = detach_one_task(&env);
d02c0711 8532 if (p) {
ae92882e 8533 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8534 /* Active balancing done, reset the failure counter. */
8535 sd->nr_balance_failed = 0;
8536 } else {
ae92882e 8537 schedstat_inc(sd->alb_failed);
d02c0711 8538 }
1e3c88bd 8539 }
dce840a0 8540 rcu_read_unlock();
969c7921
TH
8541out_unlock:
8542 busiest_rq->active_balance = 0;
8a8c69c3 8543 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8544
8545 if (p)
8546 attach_one_task(target_rq, p);
8547
8548 local_irq_enable();
8549
969c7921 8550 return 0;
1e3c88bd
PZ
8551}
8552
d987fc7f
MG
8553static inline int on_null_domain(struct rq *rq)
8554{
8555 return unlikely(!rcu_dereference_sched(rq->sd));
8556}
8557
3451d024 8558#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8559/*
8560 * idle load balancing details
83cd4fe2
VP
8561 * - When one of the busy CPUs notice that there may be an idle rebalancing
8562 * needed, they will kick the idle load balancer, which then does idle
8563 * load balancing for all the idle CPUs.
8564 */
1e3c88bd 8565static struct {
83cd4fe2 8566 cpumask_var_t idle_cpus_mask;
0b005cf5 8567 atomic_t nr_cpus;
83cd4fe2
VP
8568 unsigned long next_balance; /* in jiffy units */
8569} nohz ____cacheline_aligned;
1e3c88bd 8570
3dd0337d 8571static inline int find_new_ilb(void)
1e3c88bd 8572{
0b005cf5 8573 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8574
786d6dc7
SS
8575 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8576 return ilb;
8577
8578 return nr_cpu_ids;
1e3c88bd 8579}
1e3c88bd 8580
83cd4fe2
VP
8581/*
8582 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8583 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8584 * CPU (if there is one).
8585 */
0aeeeeba 8586static void nohz_balancer_kick(void)
83cd4fe2
VP
8587{
8588 int ilb_cpu;
8589
8590 nohz.next_balance++;
8591
3dd0337d 8592 ilb_cpu = find_new_ilb();
83cd4fe2 8593
0b005cf5
SS
8594 if (ilb_cpu >= nr_cpu_ids)
8595 return;
83cd4fe2 8596
cd490c5b 8597 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8598 return;
8599 /*
8600 * Use smp_send_reschedule() instead of resched_cpu().
8601 * This way we generate a sched IPI on the target cpu which
8602 * is idle. And the softirq performing nohz idle load balance
8603 * will be run before returning from the IPI.
8604 */
8605 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8606 return;
8607}
8608
20a5c8cc 8609void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8610{
8611 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8612 /*
8613 * Completely isolated CPUs don't ever set, so we must test.
8614 */
8615 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8616 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8617 atomic_dec(&nohz.nr_cpus);
8618 }
71325960
SS
8619 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8620 }
8621}
8622
69e1e811
SS
8623static inline void set_cpu_sd_state_busy(void)
8624{
8625 struct sched_domain *sd;
37dc6b50 8626 int cpu = smp_processor_id();
69e1e811 8627
69e1e811 8628 rcu_read_lock();
0e369d75 8629 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8630
8631 if (!sd || !sd->nohz_idle)
8632 goto unlock;
8633 sd->nohz_idle = 0;
8634
0e369d75 8635 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8636unlock:
69e1e811
SS
8637 rcu_read_unlock();
8638}
8639
8640void set_cpu_sd_state_idle(void)
8641{
8642 struct sched_domain *sd;
37dc6b50 8643 int cpu = smp_processor_id();
69e1e811 8644
69e1e811 8645 rcu_read_lock();
0e369d75 8646 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8647
8648 if (!sd || sd->nohz_idle)
8649 goto unlock;
8650 sd->nohz_idle = 1;
8651
0e369d75 8652 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8653unlock:
69e1e811
SS
8654 rcu_read_unlock();
8655}
8656
1e3c88bd 8657/*
c1cc017c 8658 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8659 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8660 */
c1cc017c 8661void nohz_balance_enter_idle(int cpu)
1e3c88bd 8662{
71325960
SS
8663 /*
8664 * If this cpu is going down, then nothing needs to be done.
8665 */
8666 if (!cpu_active(cpu))
8667 return;
8668
c1cc017c
AS
8669 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8670 return;
1e3c88bd 8671
d987fc7f
MG
8672 /*
8673 * If we're a completely isolated CPU, we don't play.
8674 */
8675 if (on_null_domain(cpu_rq(cpu)))
8676 return;
8677
c1cc017c
AS
8678 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8679 atomic_inc(&nohz.nr_cpus);
8680 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8681}
8682#endif
8683
8684static DEFINE_SPINLOCK(balancing);
8685
49c022e6
PZ
8686/*
8687 * Scale the max load_balance interval with the number of CPUs in the system.
8688 * This trades load-balance latency on larger machines for less cross talk.
8689 */
029632fb 8690void update_max_interval(void)
49c022e6
PZ
8691{
8692 max_load_balance_interval = HZ*num_online_cpus()/10;
8693}
8694
1e3c88bd
PZ
8695/*
8696 * It checks each scheduling domain to see if it is due to be balanced,
8697 * and initiates a balancing operation if so.
8698 *
b9b0853a 8699 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8700 */
f7ed0a89 8701static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8702{
23f0d209 8703 int continue_balancing = 1;
f7ed0a89 8704 int cpu = rq->cpu;
1e3c88bd 8705 unsigned long interval;
04f733b4 8706 struct sched_domain *sd;
1e3c88bd
PZ
8707 /* Earliest time when we have to do rebalance again */
8708 unsigned long next_balance = jiffies + 60*HZ;
8709 int update_next_balance = 0;
f48627e6
JL
8710 int need_serialize, need_decay = 0;
8711 u64 max_cost = 0;
1e3c88bd 8712
48a16753 8713 update_blocked_averages(cpu);
2069dd75 8714
dce840a0 8715 rcu_read_lock();
1e3c88bd 8716 for_each_domain(cpu, sd) {
f48627e6
JL
8717 /*
8718 * Decay the newidle max times here because this is a regular
8719 * visit to all the domains. Decay ~1% per second.
8720 */
8721 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8722 sd->max_newidle_lb_cost =
8723 (sd->max_newidle_lb_cost * 253) / 256;
8724 sd->next_decay_max_lb_cost = jiffies + HZ;
8725 need_decay = 1;
8726 }
8727 max_cost += sd->max_newidle_lb_cost;
8728
1e3c88bd
PZ
8729 if (!(sd->flags & SD_LOAD_BALANCE))
8730 continue;
8731
f48627e6
JL
8732 /*
8733 * Stop the load balance at this level. There is another
8734 * CPU in our sched group which is doing load balancing more
8735 * actively.
8736 */
8737 if (!continue_balancing) {
8738 if (need_decay)
8739 continue;
8740 break;
8741 }
8742
52a08ef1 8743 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8744
8745 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8746 if (need_serialize) {
8747 if (!spin_trylock(&balancing))
8748 goto out;
8749 }
8750
8751 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8752 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8753 /*
6263322c 8754 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8755 * env->dst_cpu, so we can't know our idle
8756 * state even if we migrated tasks. Update it.
1e3c88bd 8757 */
de5eb2dd 8758 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8759 }
8760 sd->last_balance = jiffies;
52a08ef1 8761 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8762 }
8763 if (need_serialize)
8764 spin_unlock(&balancing);
8765out:
8766 if (time_after(next_balance, sd->last_balance + interval)) {
8767 next_balance = sd->last_balance + interval;
8768 update_next_balance = 1;
8769 }
f48627e6
JL
8770 }
8771 if (need_decay) {
1e3c88bd 8772 /*
f48627e6
JL
8773 * Ensure the rq-wide value also decays but keep it at a
8774 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8775 */
f48627e6
JL
8776 rq->max_idle_balance_cost =
8777 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8778 }
dce840a0 8779 rcu_read_unlock();
1e3c88bd
PZ
8780
8781 /*
8782 * next_balance will be updated only when there is a need.
8783 * When the cpu is attached to null domain for ex, it will not be
8784 * updated.
8785 */
c5afb6a8 8786 if (likely(update_next_balance)) {
1e3c88bd 8787 rq->next_balance = next_balance;
c5afb6a8
VG
8788
8789#ifdef CONFIG_NO_HZ_COMMON
8790 /*
8791 * If this CPU has been elected to perform the nohz idle
8792 * balance. Other idle CPUs have already rebalanced with
8793 * nohz_idle_balance() and nohz.next_balance has been
8794 * updated accordingly. This CPU is now running the idle load
8795 * balance for itself and we need to update the
8796 * nohz.next_balance accordingly.
8797 */
8798 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8799 nohz.next_balance = rq->next_balance;
8800#endif
8801 }
1e3c88bd
PZ
8802}
8803
3451d024 8804#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8805/*
3451d024 8806 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8807 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8808 */
208cb16b 8809static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8810{
208cb16b 8811 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8812 struct rq *rq;
8813 int balance_cpu;
c5afb6a8
VG
8814 /* Earliest time when we have to do rebalance again */
8815 unsigned long next_balance = jiffies + 60*HZ;
8816 int update_next_balance = 0;
83cd4fe2 8817
1c792db7
SS
8818 if (idle != CPU_IDLE ||
8819 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8820 goto end;
83cd4fe2
VP
8821
8822 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8823 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8824 continue;
8825
8826 /*
8827 * If this cpu gets work to do, stop the load balancing
8828 * work being done for other cpus. Next load
8829 * balancing owner will pick it up.
8830 */
1c792db7 8831 if (need_resched())
83cd4fe2 8832 break;
83cd4fe2 8833
5ed4f1d9
VG
8834 rq = cpu_rq(balance_cpu);
8835
ed61bbc6
TC
8836 /*
8837 * If time for next balance is due,
8838 * do the balance.
8839 */
8840 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
8841 struct rq_flags rf;
8842
8843 rq_lock_irq(rq, &rf);
ed61bbc6 8844 update_rq_clock(rq);
cee1afce 8845 cpu_load_update_idle(rq);
8a8c69c3
PZ
8846 rq_unlock_irq(rq, &rf);
8847
ed61bbc6
TC
8848 rebalance_domains(rq, CPU_IDLE);
8849 }
83cd4fe2 8850
c5afb6a8
VG
8851 if (time_after(next_balance, rq->next_balance)) {
8852 next_balance = rq->next_balance;
8853 update_next_balance = 1;
8854 }
83cd4fe2 8855 }
c5afb6a8
VG
8856
8857 /*
8858 * next_balance will be updated only when there is a need.
8859 * When the CPU is attached to null domain for ex, it will not be
8860 * updated.
8861 */
8862 if (likely(update_next_balance))
8863 nohz.next_balance = next_balance;
1c792db7
SS
8864end:
8865 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8866}
8867
8868/*
0b005cf5 8869 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8870 * of an idle cpu in the system.
0b005cf5 8871 * - This rq has more than one task.
1aaf90a4
VG
8872 * - This rq has at least one CFS task and the capacity of the CPU is
8873 * significantly reduced because of RT tasks or IRQs.
8874 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8875 * multiple busy cpu.
0b005cf5
SS
8876 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8877 * domain span are idle.
83cd4fe2 8878 */
1aaf90a4 8879static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8880{
8881 unsigned long now = jiffies;
0e369d75 8882 struct sched_domain_shared *sds;
0b005cf5 8883 struct sched_domain *sd;
afe06efd 8884 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8885 bool kick = false;
83cd4fe2 8886
4a725627 8887 if (unlikely(rq->idle_balance))
1aaf90a4 8888 return false;
83cd4fe2 8889
1c792db7
SS
8890 /*
8891 * We may be recently in ticked or tickless idle mode. At the first
8892 * busy tick after returning from idle, we will update the busy stats.
8893 */
69e1e811 8894 set_cpu_sd_state_busy();
c1cc017c 8895 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8896
8897 /*
8898 * None are in tickless mode and hence no need for NOHZ idle load
8899 * balancing.
8900 */
8901 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8902 return false;
1c792db7
SS
8903
8904 if (time_before(now, nohz.next_balance))
1aaf90a4 8905 return false;
83cd4fe2 8906
0b005cf5 8907 if (rq->nr_running >= 2)
1aaf90a4 8908 return true;
83cd4fe2 8909
067491b7 8910 rcu_read_lock();
0e369d75
PZ
8911 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8912 if (sds) {
8913 /*
8914 * XXX: write a coherent comment on why we do this.
8915 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8916 */
8917 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8918 if (nr_busy > 1) {
8919 kick = true;
8920 goto unlock;
8921 }
8922
83cd4fe2 8923 }
37dc6b50 8924
1aaf90a4
VG
8925 sd = rcu_dereference(rq->sd);
8926 if (sd) {
8927 if ((rq->cfs.h_nr_running >= 1) &&
8928 check_cpu_capacity(rq, sd)) {
8929 kick = true;
8930 goto unlock;
8931 }
8932 }
37dc6b50 8933
1aaf90a4 8934 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8935 if (sd) {
8936 for_each_cpu(i, sched_domain_span(sd)) {
8937 if (i == cpu ||
8938 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8939 continue;
067491b7 8940
afe06efd
TC
8941 if (sched_asym_prefer(i, cpu)) {
8942 kick = true;
8943 goto unlock;
8944 }
8945 }
8946 }
1aaf90a4 8947unlock:
067491b7 8948 rcu_read_unlock();
1aaf90a4 8949 return kick;
83cd4fe2
VP
8950}
8951#else
208cb16b 8952static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8953#endif
8954
8955/*
8956 * run_rebalance_domains is triggered when needed from the scheduler tick.
8957 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8958 */
0766f788 8959static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8960{
208cb16b 8961 struct rq *this_rq = this_rq();
6eb57e0d 8962 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8963 CPU_IDLE : CPU_NOT_IDLE;
8964
1e3c88bd 8965 /*
83cd4fe2 8966 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8967 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8968 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8969 * give the idle cpus a chance to load balance. Else we may
8970 * load balance only within the local sched_domain hierarchy
8971 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8972 */
208cb16b 8973 nohz_idle_balance(this_rq, idle);
d4573c3e 8974 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8975}
8976
1e3c88bd
PZ
8977/*
8978 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8979 */
7caff66f 8980void trigger_load_balance(struct rq *rq)
1e3c88bd 8981{
1e3c88bd 8982 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8983 if (unlikely(on_null_domain(rq)))
8984 return;
8985
8986 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8987 raise_softirq(SCHED_SOFTIRQ);
3451d024 8988#ifdef CONFIG_NO_HZ_COMMON
c726099e 8989 if (nohz_kick_needed(rq))
0aeeeeba 8990 nohz_balancer_kick();
83cd4fe2 8991#endif
1e3c88bd
PZ
8992}
8993
0bcdcf28
CE
8994static void rq_online_fair(struct rq *rq)
8995{
8996 update_sysctl();
0e59bdae
KT
8997
8998 update_runtime_enabled(rq);
0bcdcf28
CE
8999}
9000
9001static void rq_offline_fair(struct rq *rq)
9002{
9003 update_sysctl();
a4c96ae3
PB
9004
9005 /* Ensure any throttled groups are reachable by pick_next_task */
9006 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9007}
9008
55e12e5e 9009#endif /* CONFIG_SMP */
e1d1484f 9010
bf0f6f24
IM
9011/*
9012 * scheduler tick hitting a task of our scheduling class:
9013 */
8f4d37ec 9014static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9015{
9016 struct cfs_rq *cfs_rq;
9017 struct sched_entity *se = &curr->se;
9018
9019 for_each_sched_entity(se) {
9020 cfs_rq = cfs_rq_of(se);
8f4d37ec 9021 entity_tick(cfs_rq, se, queued);
bf0f6f24 9022 }
18bf2805 9023
b52da86e 9024 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9025 task_tick_numa(rq, curr);
bf0f6f24
IM
9026}
9027
9028/*
cd29fe6f
PZ
9029 * called on fork with the child task as argument from the parent's context
9030 * - child not yet on the tasklist
9031 * - preemption disabled
bf0f6f24 9032 */
cd29fe6f 9033static void task_fork_fair(struct task_struct *p)
bf0f6f24 9034{
4fc420c9
DN
9035 struct cfs_rq *cfs_rq;
9036 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9037 struct rq *rq = this_rq();
8a8c69c3 9038 struct rq_flags rf;
bf0f6f24 9039
8a8c69c3 9040 rq_lock(rq, &rf);
861d034e
PZ
9041 update_rq_clock(rq);
9042
4fc420c9
DN
9043 cfs_rq = task_cfs_rq(current);
9044 curr = cfs_rq->curr;
e210bffd
PZ
9045 if (curr) {
9046 update_curr(cfs_rq);
b5d9d734 9047 se->vruntime = curr->vruntime;
e210bffd 9048 }
aeb73b04 9049 place_entity(cfs_rq, se, 1);
4d78e7b6 9050
cd29fe6f 9051 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9052 /*
edcb60a3
IM
9053 * Upon rescheduling, sched_class::put_prev_task() will place
9054 * 'current' within the tree based on its new key value.
9055 */
4d78e7b6 9056 swap(curr->vruntime, se->vruntime);
8875125e 9057 resched_curr(rq);
4d78e7b6 9058 }
bf0f6f24 9059
88ec22d3 9060 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9061 rq_unlock(rq, &rf);
bf0f6f24
IM
9062}
9063
cb469845
SR
9064/*
9065 * Priority of the task has changed. Check to see if we preempt
9066 * the current task.
9067 */
da7a735e
PZ
9068static void
9069prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9070{
da0c1e65 9071 if (!task_on_rq_queued(p))
da7a735e
PZ
9072 return;
9073
cb469845
SR
9074 /*
9075 * Reschedule if we are currently running on this runqueue and
9076 * our priority decreased, or if we are not currently running on
9077 * this runqueue and our priority is higher than the current's
9078 */
da7a735e 9079 if (rq->curr == p) {
cb469845 9080 if (p->prio > oldprio)
8875125e 9081 resched_curr(rq);
cb469845 9082 } else
15afe09b 9083 check_preempt_curr(rq, p, 0);
cb469845
SR
9084}
9085
daa59407 9086static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9087{
9088 struct sched_entity *se = &p->se;
da7a735e
PZ
9089
9090 /*
daa59407
BP
9091 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9092 * the dequeue_entity(.flags=0) will already have normalized the
9093 * vruntime.
9094 */
9095 if (p->on_rq)
9096 return true;
9097
9098 /*
9099 * When !on_rq, vruntime of the task has usually NOT been normalized.
9100 * But there are some cases where it has already been normalized:
da7a735e 9101 *
daa59407
BP
9102 * - A forked child which is waiting for being woken up by
9103 * wake_up_new_task().
9104 * - A task which has been woken up by try_to_wake_up() and
9105 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9106 */
daa59407
BP
9107 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9108 return true;
9109
9110 return false;
9111}
9112
09a43ace
VG
9113#ifdef CONFIG_FAIR_GROUP_SCHED
9114/*
9115 * Propagate the changes of the sched_entity across the tg tree to make it
9116 * visible to the root
9117 */
9118static void propagate_entity_cfs_rq(struct sched_entity *se)
9119{
9120 struct cfs_rq *cfs_rq;
9121
9122 /* Start to propagate at parent */
9123 se = se->parent;
9124
9125 for_each_sched_entity(se) {
9126 cfs_rq = cfs_rq_of(se);
9127
9128 if (cfs_rq_throttled(cfs_rq))
9129 break;
9130
9131 update_load_avg(se, UPDATE_TG);
9132 }
9133}
9134#else
9135static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9136#endif
9137
df217913 9138static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9139{
daa59407
BP
9140 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9141
9d89c257 9142 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9143 update_load_avg(se, 0);
a05e8c51 9144 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9145 update_tg_load_avg(cfs_rq, false);
09a43ace 9146 propagate_entity_cfs_rq(se);
da7a735e
PZ
9147}
9148
df217913 9149static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9150{
daa59407 9151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9152
9153#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9154 /*
9155 * Since the real-depth could have been changed (only FAIR
9156 * class maintain depth value), reset depth properly.
9157 */
9158 se->depth = se->parent ? se->parent->depth + 1 : 0;
9159#endif
7855a35a 9160
df217913 9161 /* Synchronize entity with its cfs_rq */
d31b1a66 9162 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9163 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9164 update_tg_load_avg(cfs_rq, false);
09a43ace 9165 propagate_entity_cfs_rq(se);
df217913
VG
9166}
9167
9168static void detach_task_cfs_rq(struct task_struct *p)
9169{
9170 struct sched_entity *se = &p->se;
9171 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9172
9173 if (!vruntime_normalized(p)) {
9174 /*
9175 * Fix up our vruntime so that the current sleep doesn't
9176 * cause 'unlimited' sleep bonus.
9177 */
9178 place_entity(cfs_rq, se, 0);
9179 se->vruntime -= cfs_rq->min_vruntime;
9180 }
9181
9182 detach_entity_cfs_rq(se);
9183}
9184
9185static void attach_task_cfs_rq(struct task_struct *p)
9186{
9187 struct sched_entity *se = &p->se;
9188 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9189
9190 attach_entity_cfs_rq(se);
daa59407
BP
9191
9192 if (!vruntime_normalized(p))
9193 se->vruntime += cfs_rq->min_vruntime;
9194}
6efdb105 9195
daa59407
BP
9196static void switched_from_fair(struct rq *rq, struct task_struct *p)
9197{
9198 detach_task_cfs_rq(p);
9199}
9200
9201static void switched_to_fair(struct rq *rq, struct task_struct *p)
9202{
9203 attach_task_cfs_rq(p);
7855a35a 9204
daa59407 9205 if (task_on_rq_queued(p)) {
7855a35a 9206 /*
daa59407
BP
9207 * We were most likely switched from sched_rt, so
9208 * kick off the schedule if running, otherwise just see
9209 * if we can still preempt the current task.
7855a35a 9210 */
daa59407
BP
9211 if (rq->curr == p)
9212 resched_curr(rq);
9213 else
9214 check_preempt_curr(rq, p, 0);
7855a35a 9215 }
cb469845
SR
9216}
9217
83b699ed
SV
9218/* Account for a task changing its policy or group.
9219 *
9220 * This routine is mostly called to set cfs_rq->curr field when a task
9221 * migrates between groups/classes.
9222 */
9223static void set_curr_task_fair(struct rq *rq)
9224{
9225 struct sched_entity *se = &rq->curr->se;
9226
ec12cb7f
PT
9227 for_each_sched_entity(se) {
9228 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9229
9230 set_next_entity(cfs_rq, se);
9231 /* ensure bandwidth has been allocated on our new cfs_rq */
9232 account_cfs_rq_runtime(cfs_rq, 0);
9233 }
83b699ed
SV
9234}
9235
029632fb
PZ
9236void init_cfs_rq(struct cfs_rq *cfs_rq)
9237{
9238 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9239 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9240#ifndef CONFIG_64BIT
9241 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9242#endif
141965c7 9243#ifdef CONFIG_SMP
09a43ace
VG
9244#ifdef CONFIG_FAIR_GROUP_SCHED
9245 cfs_rq->propagate_avg = 0;
9246#endif
9d89c257
YD
9247 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9248 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9249#endif
029632fb
PZ
9250}
9251
810b3817 9252#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9253static void task_set_group_fair(struct task_struct *p)
9254{
9255 struct sched_entity *se = &p->se;
9256
9257 set_task_rq(p, task_cpu(p));
9258 se->depth = se->parent ? se->parent->depth + 1 : 0;
9259}
9260
bc54da21 9261static void task_move_group_fair(struct task_struct *p)
810b3817 9262{
daa59407 9263 detach_task_cfs_rq(p);
b2b5ce02 9264 set_task_rq(p, task_cpu(p));
6efdb105
BP
9265
9266#ifdef CONFIG_SMP
9267 /* Tell se's cfs_rq has been changed -- migrated */
9268 p->se.avg.last_update_time = 0;
9269#endif
daa59407 9270 attach_task_cfs_rq(p);
810b3817 9271}
029632fb 9272
ea86cb4b
VG
9273static void task_change_group_fair(struct task_struct *p, int type)
9274{
9275 switch (type) {
9276 case TASK_SET_GROUP:
9277 task_set_group_fair(p);
9278 break;
9279
9280 case TASK_MOVE_GROUP:
9281 task_move_group_fair(p);
9282 break;
9283 }
9284}
9285
029632fb
PZ
9286void free_fair_sched_group(struct task_group *tg)
9287{
9288 int i;
9289
9290 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9291
9292 for_each_possible_cpu(i) {
9293 if (tg->cfs_rq)
9294 kfree(tg->cfs_rq[i]);
6fe1f348 9295 if (tg->se)
029632fb
PZ
9296 kfree(tg->se[i]);
9297 }
9298
9299 kfree(tg->cfs_rq);
9300 kfree(tg->se);
9301}
9302
9303int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9304{
029632fb 9305 struct sched_entity *se;
b7fa30c9 9306 struct cfs_rq *cfs_rq;
029632fb
PZ
9307 int i;
9308
9309 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9310 if (!tg->cfs_rq)
9311 goto err;
9312 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9313 if (!tg->se)
9314 goto err;
9315
9316 tg->shares = NICE_0_LOAD;
9317
9318 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9319
9320 for_each_possible_cpu(i) {
9321 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9322 GFP_KERNEL, cpu_to_node(i));
9323 if (!cfs_rq)
9324 goto err;
9325
9326 se = kzalloc_node(sizeof(struct sched_entity),
9327 GFP_KERNEL, cpu_to_node(i));
9328 if (!se)
9329 goto err_free_rq;
9330
9331 init_cfs_rq(cfs_rq);
9332 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9333 init_entity_runnable_average(se);
029632fb
PZ
9334 }
9335
9336 return 1;
9337
9338err_free_rq:
9339 kfree(cfs_rq);
9340err:
9341 return 0;
9342}
9343
8663e24d
PZ
9344void online_fair_sched_group(struct task_group *tg)
9345{
9346 struct sched_entity *se;
9347 struct rq *rq;
9348 int i;
9349
9350 for_each_possible_cpu(i) {
9351 rq = cpu_rq(i);
9352 se = tg->se[i];
9353
9354 raw_spin_lock_irq(&rq->lock);
4126bad6 9355 update_rq_clock(rq);
d0326691 9356 attach_entity_cfs_rq(se);
55e16d30 9357 sync_throttle(tg, i);
8663e24d
PZ
9358 raw_spin_unlock_irq(&rq->lock);
9359 }
9360}
9361
6fe1f348 9362void unregister_fair_sched_group(struct task_group *tg)
029632fb 9363{
029632fb 9364 unsigned long flags;
6fe1f348
PZ
9365 struct rq *rq;
9366 int cpu;
029632fb 9367
6fe1f348
PZ
9368 for_each_possible_cpu(cpu) {
9369 if (tg->se[cpu])
9370 remove_entity_load_avg(tg->se[cpu]);
029632fb 9371
6fe1f348
PZ
9372 /*
9373 * Only empty task groups can be destroyed; so we can speculatively
9374 * check on_list without danger of it being re-added.
9375 */
9376 if (!tg->cfs_rq[cpu]->on_list)
9377 continue;
9378
9379 rq = cpu_rq(cpu);
9380
9381 raw_spin_lock_irqsave(&rq->lock, flags);
9382 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9383 raw_spin_unlock_irqrestore(&rq->lock, flags);
9384 }
029632fb
PZ
9385}
9386
9387void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9388 struct sched_entity *se, int cpu,
9389 struct sched_entity *parent)
9390{
9391 struct rq *rq = cpu_rq(cpu);
9392
9393 cfs_rq->tg = tg;
9394 cfs_rq->rq = rq;
029632fb
PZ
9395 init_cfs_rq_runtime(cfs_rq);
9396
9397 tg->cfs_rq[cpu] = cfs_rq;
9398 tg->se[cpu] = se;
9399
9400 /* se could be NULL for root_task_group */
9401 if (!se)
9402 return;
9403
fed14d45 9404 if (!parent) {
029632fb 9405 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9406 se->depth = 0;
9407 } else {
029632fb 9408 se->cfs_rq = parent->my_q;
fed14d45
PZ
9409 se->depth = parent->depth + 1;
9410 }
029632fb
PZ
9411
9412 se->my_q = cfs_rq;
0ac9b1c2
PT
9413 /* guarantee group entities always have weight */
9414 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9415 se->parent = parent;
9416}
9417
9418static DEFINE_MUTEX(shares_mutex);
9419
9420int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9421{
9422 int i;
029632fb
PZ
9423
9424 /*
9425 * We can't change the weight of the root cgroup.
9426 */
9427 if (!tg->se[0])
9428 return -EINVAL;
9429
9430 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9431
9432 mutex_lock(&shares_mutex);
9433 if (tg->shares == shares)
9434 goto done;
9435
9436 tg->shares = shares;
9437 for_each_possible_cpu(i) {
9438 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9439 struct sched_entity *se = tg->se[i];
9440 struct rq_flags rf;
029632fb 9441
029632fb 9442 /* Propagate contribution to hierarchy */
8a8c69c3 9443 rq_lock_irqsave(rq, &rf);
71b1da46 9444 update_rq_clock(rq);
89ee048f
VG
9445 for_each_sched_entity(se) {
9446 update_load_avg(se, UPDATE_TG);
9447 update_cfs_shares(se);
9448 }
8a8c69c3 9449 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9450 }
9451
9452done:
9453 mutex_unlock(&shares_mutex);
9454 return 0;
9455}
9456#else /* CONFIG_FAIR_GROUP_SCHED */
9457
9458void free_fair_sched_group(struct task_group *tg) { }
9459
9460int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9461{
9462 return 1;
9463}
9464
8663e24d
PZ
9465void online_fair_sched_group(struct task_group *tg) { }
9466
6fe1f348 9467void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9468
9469#endif /* CONFIG_FAIR_GROUP_SCHED */
9470
810b3817 9471
6d686f45 9472static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9473{
9474 struct sched_entity *se = &task->se;
0d721cea
PW
9475 unsigned int rr_interval = 0;
9476
9477 /*
9478 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9479 * idle runqueue:
9480 */
0d721cea 9481 if (rq->cfs.load.weight)
a59f4e07 9482 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9483
9484 return rr_interval;
9485}
9486
bf0f6f24
IM
9487/*
9488 * All the scheduling class methods:
9489 */
029632fb 9490const struct sched_class fair_sched_class = {
5522d5d5 9491 .next = &idle_sched_class,
bf0f6f24
IM
9492 .enqueue_task = enqueue_task_fair,
9493 .dequeue_task = dequeue_task_fair,
9494 .yield_task = yield_task_fair,
d95f4122 9495 .yield_to_task = yield_to_task_fair,
bf0f6f24 9496
2e09bf55 9497 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9498
9499 .pick_next_task = pick_next_task_fair,
9500 .put_prev_task = put_prev_task_fair,
9501
681f3e68 9502#ifdef CONFIG_SMP
4ce72a2c 9503 .select_task_rq = select_task_rq_fair,
0a74bef8 9504 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9505
0bcdcf28
CE
9506 .rq_online = rq_online_fair,
9507 .rq_offline = rq_offline_fair,
88ec22d3 9508
12695578 9509 .task_dead = task_dead_fair,
c5b28038 9510 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9511#endif
bf0f6f24 9512
83b699ed 9513 .set_curr_task = set_curr_task_fair,
bf0f6f24 9514 .task_tick = task_tick_fair,
cd29fe6f 9515 .task_fork = task_fork_fair,
cb469845
SR
9516
9517 .prio_changed = prio_changed_fair,
da7a735e 9518 .switched_from = switched_from_fair,
cb469845 9519 .switched_to = switched_to_fair,
810b3817 9520
0d721cea
PW
9521 .get_rr_interval = get_rr_interval_fair,
9522
6e998916
SG
9523 .update_curr = update_curr_fair,
9524
810b3817 9525#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9526 .task_change_group = task_change_group_fair,
810b3817 9527#endif
bf0f6f24
IM
9528};
9529
9530#ifdef CONFIG_SCHED_DEBUG
029632fb 9531void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9532{
bf0f6f24
IM
9533 struct cfs_rq *cfs_rq;
9534
5973e5b9 9535 rcu_read_lock();
c3b64f1e 9536 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 9537 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9538 rcu_read_unlock();
bf0f6f24 9539}
397f2378
SD
9540
9541#ifdef CONFIG_NUMA_BALANCING
9542void show_numa_stats(struct task_struct *p, struct seq_file *m)
9543{
9544 int node;
9545 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9546
9547 for_each_online_node(node) {
9548 if (p->numa_faults) {
9549 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9550 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9551 }
9552 if (p->numa_group) {
9553 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9554 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9555 }
9556 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9557 }
9558}
9559#endif /* CONFIG_NUMA_BALANCING */
9560#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9561
9562__init void init_sched_fair_class(void)
9563{
9564#ifdef CONFIG_SMP
9565 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9566
3451d024 9567#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9568 nohz.next_balance = jiffies;
029632fb 9569 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9570#endif
9571#endif /* SMP */
9572
9573}