]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/idle: Remove stale old file
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
fb13c7ee
MG
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
887c290e
RR
1104static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
fb13c7ee
MG
1106{
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
887c290e 1112 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
887c290e
RR
1131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1133 * in any group then look only at task weights.
887c290e 1134 */
ca28aa53 1135 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
ca28aa53
RR
1138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
887c290e 1144 } else {
ca28aa53
RR
1145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
887c290e 1161 }
fb13c7ee
MG
1162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205assign:
1206 task_numa_assign(env, cur, imp);
1207unlock:
1208 rcu_read_unlock();
1209}
1210
887c290e
RR
1211static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
2c8a50aa
MG
1213{
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
887c290e 1222 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1223 }
1224}
1225
58d081b5
MG
1226static int task_numa_migrate(struct task_struct *p)
1227{
58d081b5
MG
1228 struct task_numa_env env = {
1229 .p = p,
fb13c7ee 1230
58d081b5 1231 .src_cpu = task_cpu(p),
b32e86b4 1232 .src_nid = task_node(p),
fb13c7ee
MG
1233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
58d081b5
MG
1239 };
1240 struct sched_domain *sd;
887c290e 1241 unsigned long taskweight, groupweight;
2c8a50aa 1242 int nid, ret;
887c290e 1243 long taskimp, groupimp;
e6628d5b 1244
58d081b5 1245 /*
fb13c7ee
MG
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
58d081b5
MG
1252 */
1253 rcu_read_lock();
fb13c7ee 1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1257 rcu_read_unlock();
1258
46a73e8a
RR
1259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
de1b301a 1266 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1267 return -EINVAL;
1268 }
1269
887c290e
RR
1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1272 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1273 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1276 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1277
e1dda8a7
RR
1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
887c290e 1280 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
2c8a50aa
MG
1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 continue;
58d081b5 1287
83e1d2cd 1288 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1292 continue;
1293
2c8a50aa
MG
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1296 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1297 }
1298 }
1299
fb13c7ee
MG
1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
0ec8aa00
PZ
1304 sched_setnuma(p, env.dst_nid);
1305
04bb2f94
RR
1306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
fb13c7ee 1312 if (env.best_task == NULL) {
286549dc
MG
1313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
286549dc
MG
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1322 put_task_struct(env.best_task);
1323 return ret;
e6628d5b
MG
1324}
1325
6b9a7460
MG
1326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
2739d3ee 1329 /* This task has no NUMA fault statistics yet */
ff1df896 1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1331 return;
1332
2739d3ee
RR
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1335
1336 /* Success if task is already running on preferred CPU */
de1b301a 1337 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1338 return;
1339
1340 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1341 task_numa_migrate(p);
6b9a7460
MG
1342}
1343
20e07dea
RR
1344/*
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357 unsigned long faults, max_faults = 0;
1358 int nid;
1359
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1364 }
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1373 }
1374}
1375
04bb2f94
RR
1376/*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1394{
1395 unsigned int period_slot;
1396 int ratio;
1397 int diff;
1398
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1401
1402 /*
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1406 */
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1410
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1413
1414 return;
1415 }
1416
1417 /*
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot)
1428 slot = 1;
1429 diff = slot * period_slot;
1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433 /*
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1440 */
04bb2f94
RR
1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 }
1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
7e2703e6
RR
1450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1463
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1467 } else {
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1470 }
1471
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1474
1475 return delta;
1476}
1477
cbee9f88
PZ
1478static void task_numa_placement(struct task_struct *p)
1479{
83e1d2cd
MG
1480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1482 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1483 unsigned long total_faults;
1484 u64 runtime, period;
7dbd13ed 1485 spinlock_t *group_lock = NULL;
cbee9f88 1486
2832bc19 1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1488 if (p->numa_scan_seq == seq)
1489 return;
1490 p->numa_scan_seq = seq;
598f0ec0 1491 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1492
7e2703e6
RR
1493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1496
7dbd13ed
MG
1497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
1500 spin_lock(group_lock);
1501 }
1502
688b7585
MG
1503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
83e1d2cd 1505 unsigned long faults = 0, group_faults = 0;
ac8e895b 1506 int priv, i;
745d6147 1507
be1e4e76 1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1509 long diff, f_diff, f_weight;
8c8a743c 1510
ac8e895b 1511 i = task_faults_idx(nid, priv);
745d6147 1512
ac8e895b 1513 /* Decay existing window, copy faults since last scan */
35664fd4 1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1517
7e2703e6
RR
1518 /*
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1);
35664fd4 1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1529 p->numa_faults_buffer_cpu[i] = 0;
1530
35664fd4
RR
1531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
ff1df896 1533 faults += p->numa_faults_memory[i];
83e1d2cd 1534 p->total_numa_faults += diff;
8c8a743c
PZ
1535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
989348b5 1537 p->numa_group->faults[i] += diff;
50ec8a40 1538 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
8c8a743c 1541 }
ac8e895b
MG
1542 }
1543
688b7585
MG
1544 if (faults > max_faults) {
1545 max_faults = faults;
1546 max_nid = nid;
1547 }
83e1d2cd
MG
1548
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1552 }
1553 }
1554
04bb2f94
RR
1555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
7dbd13ed 1557 if (p->numa_group) {
20e07dea 1558 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1559 /*
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1562 */
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
1565
1566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1570 max_nid = nid;
1571 }
83e1d2cd
MG
1572 }
1573 }
7dbd13ed
MG
1574
1575 spin_unlock(group_lock);
688b7585
MG
1576 }
1577
6b9a7460 1578 /* Preferred node as the node with the most faults */
3a7053b3 1579 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1580 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1581 sched_setnuma(p, max_nid);
6b9a7460 1582 numa_migrate_preferred(p);
3a7053b3 1583 }
cbee9f88
PZ
1584}
1585
8c8a743c
PZ
1586static inline int get_numa_group(struct numa_group *grp)
1587{
1588 return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1595}
1596
3e6a9418
MG
1597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv)
8c8a743c
PZ
1599{
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i;
1605
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1608 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp)
1612 return;
1613
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1617 grp->gid = p->pid;
50ec8a40 1618 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids;
8c8a743c 1621
20e07dea
RR
1622 node_set(task_node(current), grp->active_nodes);
1623
be1e4e76 1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1625 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1626
989348b5 1627 grp->total_faults = p->total_numa_faults;
83e1d2cd 1628
8c8a743c
PZ
1629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp);
1632 }
1633
1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1638 goto no_join;
8c8a743c
PZ
1639
1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp)
3354781a 1642 goto no_join;
8c8a743c
PZ
1643
1644 my_grp = p->numa_group;
1645 if (grp == my_grp)
3354781a 1646 goto no_join;
8c8a743c
PZ
1647
1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1653 goto no_join;
8c8a743c
PZ
1654
1655 /*
1656 * Tie-break on the grp address.
1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1659 goto no_join;
8c8a743c 1660
dabe1d99
RR
1661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1663 join = true;
1664
1665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1667 join = true;
8c8a743c 1668
3e6a9418
MG
1669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join;
1671
dabe1d99 1672 if (join && !get_numa_group(grp))
3354781a 1673 goto no_join;
8c8a743c 1674
8c8a743c
PZ
1675 rcu_read_unlock();
1676
1677 if (!join)
1678 return;
1679
989348b5
MG
1680 double_lock(&my_grp->lock, &grp->lock);
1681
be1e4e76 1682 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1683 my_grp->faults[i] -= p->numa_faults_memory[i];
1684 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1685 }
989348b5
MG
1686 my_grp->total_faults -= p->total_numa_faults;
1687 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1688
1689 list_move(&p->numa_entry, &grp->task_list);
1690 my_grp->nr_tasks--;
1691 grp->nr_tasks++;
1692
1693 spin_unlock(&my_grp->lock);
1694 spin_unlock(&grp->lock);
1695
1696 rcu_assign_pointer(p->numa_group, grp);
1697
1698 put_numa_group(my_grp);
3354781a
PZ
1699 return;
1700
1701no_join:
1702 rcu_read_unlock();
1703 return;
8c8a743c
PZ
1704}
1705
1706void task_numa_free(struct task_struct *p)
1707{
1708 struct numa_group *grp = p->numa_group;
1709 int i;
ff1df896 1710 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1711
1712 if (grp) {
989348b5 1713 spin_lock(&grp->lock);
be1e4e76 1714 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1715 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1716 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1717
8c8a743c
PZ
1718 list_del(&p->numa_entry);
1719 grp->nr_tasks--;
1720 spin_unlock(&grp->lock);
1721 rcu_assign_pointer(p->numa_group, NULL);
1722 put_numa_group(grp);
1723 }
1724
ff1df896
RR
1725 p->numa_faults_memory = NULL;
1726 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1727 p->numa_faults_cpu= NULL;
1728 p->numa_faults_buffer_cpu = NULL;
82727018 1729 kfree(numa_faults);
8c8a743c
PZ
1730}
1731
cbee9f88
PZ
1732/*
1733 * Got a PROT_NONE fault for a page on @node.
1734 */
58b46da3 1735void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1736{
1737 struct task_struct *p = current;
6688cc05 1738 bool migrated = flags & TNF_MIGRATED;
58b46da3 1739 int cpu_node = task_node(current);
ac8e895b 1740 int priv;
cbee9f88 1741
10e84b97 1742 if (!numabalancing_enabled)
1a687c2e
MG
1743 return;
1744
9ff1d9ff
MG
1745 /* for example, ksmd faulting in a user's mm */
1746 if (!p->mm)
1747 return;
1748
82727018
RR
1749 /* Do not worry about placement if exiting */
1750 if (p->state == TASK_DEAD)
1751 return;
1752
f809ca9a 1753 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1754 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1755 int size = sizeof(*p->numa_faults_memory) *
1756 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1757
be1e4e76 1758 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1759 if (!p->numa_faults_memory)
f809ca9a 1760 return;
745d6147 1761
ff1df896 1762 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1763 /*
1764 * The averaged statistics, shared & private, memory & cpu,
1765 * occupy the first half of the array. The second half of the
1766 * array is for current counters, which are averaged into the
1767 * first set by task_numa_placement.
1768 */
50ec8a40
RR
1769 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1770 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1771 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1772 p->total_numa_faults = 0;
04bb2f94 1773 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1774 }
cbee9f88 1775
8c8a743c
PZ
1776 /*
1777 * First accesses are treated as private, otherwise consider accesses
1778 * to be private if the accessing pid has not changed
1779 */
1780 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1781 priv = 1;
1782 } else {
1783 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1784 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1785 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1786 }
1787
cbee9f88 1788 task_numa_placement(p);
f809ca9a 1789
2739d3ee
RR
1790 /*
1791 * Retry task to preferred node migration periodically, in case it
1792 * case it previously failed, or the scheduler moved us.
1793 */
1794 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1795 numa_migrate_preferred(p);
1796
b32e86b4
IM
1797 if (migrated)
1798 p->numa_pages_migrated += pages;
1799
58b46da3
RR
1800 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1801 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
04bb2f94 1802 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1803}
1804
6e5fb223
PZ
1805static void reset_ptenuma_scan(struct task_struct *p)
1806{
1807 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1808 p->mm->numa_scan_offset = 0;
1809}
1810
cbee9f88
PZ
1811/*
1812 * The expensive part of numa migration is done from task_work context.
1813 * Triggered from task_tick_numa().
1814 */
1815void task_numa_work(struct callback_head *work)
1816{
1817 unsigned long migrate, next_scan, now = jiffies;
1818 struct task_struct *p = current;
1819 struct mm_struct *mm = p->mm;
6e5fb223 1820 struct vm_area_struct *vma;
9f40604c 1821 unsigned long start, end;
598f0ec0 1822 unsigned long nr_pte_updates = 0;
9f40604c 1823 long pages;
cbee9f88
PZ
1824
1825 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1826
1827 work->next = work; /* protect against double add */
1828 /*
1829 * Who cares about NUMA placement when they're dying.
1830 *
1831 * NOTE: make sure not to dereference p->mm before this check,
1832 * exit_task_work() happens _after_ exit_mm() so we could be called
1833 * without p->mm even though we still had it when we enqueued this
1834 * work.
1835 */
1836 if (p->flags & PF_EXITING)
1837 return;
1838
930aa174 1839 if (!mm->numa_next_scan) {
7e8d16b6
MG
1840 mm->numa_next_scan = now +
1841 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1842 }
1843
cbee9f88
PZ
1844 /*
1845 * Enforce maximal scan/migration frequency..
1846 */
1847 migrate = mm->numa_next_scan;
1848 if (time_before(now, migrate))
1849 return;
1850
598f0ec0
MG
1851 if (p->numa_scan_period == 0) {
1852 p->numa_scan_period_max = task_scan_max(p);
1853 p->numa_scan_period = task_scan_min(p);
1854 }
cbee9f88 1855
fb003b80 1856 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1857 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1858 return;
1859
19a78d11
PZ
1860 /*
1861 * Delay this task enough that another task of this mm will likely win
1862 * the next time around.
1863 */
1864 p->node_stamp += 2 * TICK_NSEC;
1865
9f40604c
MG
1866 start = mm->numa_scan_offset;
1867 pages = sysctl_numa_balancing_scan_size;
1868 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1869 if (!pages)
1870 return;
cbee9f88 1871
6e5fb223 1872 down_read(&mm->mmap_sem);
9f40604c 1873 vma = find_vma(mm, start);
6e5fb223
PZ
1874 if (!vma) {
1875 reset_ptenuma_scan(p);
9f40604c 1876 start = 0;
6e5fb223
PZ
1877 vma = mm->mmap;
1878 }
9f40604c 1879 for (; vma; vma = vma->vm_next) {
fc314724 1880 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1881 continue;
1882
4591ce4f
MG
1883 /*
1884 * Shared library pages mapped by multiple processes are not
1885 * migrated as it is expected they are cache replicated. Avoid
1886 * hinting faults in read-only file-backed mappings or the vdso
1887 * as migrating the pages will be of marginal benefit.
1888 */
1889 if (!vma->vm_mm ||
1890 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1891 continue;
1892
3c67f474
MG
1893 /*
1894 * Skip inaccessible VMAs to avoid any confusion between
1895 * PROT_NONE and NUMA hinting ptes
1896 */
1897 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1898 continue;
4591ce4f 1899
9f40604c
MG
1900 do {
1901 start = max(start, vma->vm_start);
1902 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1903 end = min(end, vma->vm_end);
598f0ec0
MG
1904 nr_pte_updates += change_prot_numa(vma, start, end);
1905
1906 /*
1907 * Scan sysctl_numa_balancing_scan_size but ensure that
1908 * at least one PTE is updated so that unused virtual
1909 * address space is quickly skipped.
1910 */
1911 if (nr_pte_updates)
1912 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1913
9f40604c
MG
1914 start = end;
1915 if (pages <= 0)
1916 goto out;
1917 } while (end != vma->vm_end);
cbee9f88 1918 }
6e5fb223 1919
9f40604c 1920out:
6e5fb223 1921 /*
c69307d5
PZ
1922 * It is possible to reach the end of the VMA list but the last few
1923 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1924 * would find the !migratable VMA on the next scan but not reset the
1925 * scanner to the start so check it now.
6e5fb223
PZ
1926 */
1927 if (vma)
9f40604c 1928 mm->numa_scan_offset = start;
6e5fb223
PZ
1929 else
1930 reset_ptenuma_scan(p);
1931 up_read(&mm->mmap_sem);
cbee9f88
PZ
1932}
1933
1934/*
1935 * Drive the periodic memory faults..
1936 */
1937void task_tick_numa(struct rq *rq, struct task_struct *curr)
1938{
1939 struct callback_head *work = &curr->numa_work;
1940 u64 period, now;
1941
1942 /*
1943 * We don't care about NUMA placement if we don't have memory.
1944 */
1945 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1946 return;
1947
1948 /*
1949 * Using runtime rather than walltime has the dual advantage that
1950 * we (mostly) drive the selection from busy threads and that the
1951 * task needs to have done some actual work before we bother with
1952 * NUMA placement.
1953 */
1954 now = curr->se.sum_exec_runtime;
1955 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1956
1957 if (now - curr->node_stamp > period) {
4b96a29b 1958 if (!curr->node_stamp)
598f0ec0 1959 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1960 curr->node_stamp += period;
cbee9f88
PZ
1961
1962 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1963 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1964 task_work_add(curr, work, true);
1965 }
1966 }
1967}
1968#else
1969static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1970{
1971}
0ec8aa00
PZ
1972
1973static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1974{
1975}
1976
1977static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1978{
1979}
cbee9f88
PZ
1980#endif /* CONFIG_NUMA_BALANCING */
1981
30cfdcfc
DA
1982static void
1983account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1984{
1985 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1986 if (!parent_entity(se))
029632fb 1987 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1988#ifdef CONFIG_SMP
0ec8aa00
PZ
1989 if (entity_is_task(se)) {
1990 struct rq *rq = rq_of(cfs_rq);
1991
1992 account_numa_enqueue(rq, task_of(se));
1993 list_add(&se->group_node, &rq->cfs_tasks);
1994 }
367456c7 1995#endif
30cfdcfc 1996 cfs_rq->nr_running++;
30cfdcfc
DA
1997}
1998
1999static void
2000account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2001{
2002 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2003 if (!parent_entity(se))
029632fb 2004 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2005 if (entity_is_task(se)) {
2006 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2007 list_del_init(&se->group_node);
0ec8aa00 2008 }
30cfdcfc 2009 cfs_rq->nr_running--;
30cfdcfc
DA
2010}
2011
3ff6dcac
YZ
2012#ifdef CONFIG_FAIR_GROUP_SCHED
2013# ifdef CONFIG_SMP
cf5f0acf
PZ
2014static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2015{
2016 long tg_weight;
2017
2018 /*
2019 * Use this CPU's actual weight instead of the last load_contribution
2020 * to gain a more accurate current total weight. See
2021 * update_cfs_rq_load_contribution().
2022 */
bf5b986e 2023 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2024 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2025 tg_weight += cfs_rq->load.weight;
2026
2027 return tg_weight;
2028}
2029
6d5ab293 2030static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2031{
cf5f0acf 2032 long tg_weight, load, shares;
3ff6dcac 2033
cf5f0acf 2034 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2035 load = cfs_rq->load.weight;
3ff6dcac 2036
3ff6dcac 2037 shares = (tg->shares * load);
cf5f0acf
PZ
2038 if (tg_weight)
2039 shares /= tg_weight;
3ff6dcac
YZ
2040
2041 if (shares < MIN_SHARES)
2042 shares = MIN_SHARES;
2043 if (shares > tg->shares)
2044 shares = tg->shares;
2045
2046 return shares;
2047}
3ff6dcac 2048# else /* CONFIG_SMP */
6d5ab293 2049static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2050{
2051 return tg->shares;
2052}
3ff6dcac 2053# endif /* CONFIG_SMP */
2069dd75
PZ
2054static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2055 unsigned long weight)
2056{
19e5eebb
PT
2057 if (se->on_rq) {
2058 /* commit outstanding execution time */
2059 if (cfs_rq->curr == se)
2060 update_curr(cfs_rq);
2069dd75 2061 account_entity_dequeue(cfs_rq, se);
19e5eebb 2062 }
2069dd75
PZ
2063
2064 update_load_set(&se->load, weight);
2065
2066 if (se->on_rq)
2067 account_entity_enqueue(cfs_rq, se);
2068}
2069
82958366
PT
2070static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2071
6d5ab293 2072static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2073{
2074 struct task_group *tg;
2075 struct sched_entity *se;
3ff6dcac 2076 long shares;
2069dd75 2077
2069dd75
PZ
2078 tg = cfs_rq->tg;
2079 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2080 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2081 return;
3ff6dcac
YZ
2082#ifndef CONFIG_SMP
2083 if (likely(se->load.weight == tg->shares))
2084 return;
2085#endif
6d5ab293 2086 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2087
2088 reweight_entity(cfs_rq_of(se), se, shares);
2089}
2090#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2091static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2092{
2093}
2094#endif /* CONFIG_FAIR_GROUP_SCHED */
2095
141965c7 2096#ifdef CONFIG_SMP
5b51f2f8
PT
2097/*
2098 * We choose a half-life close to 1 scheduling period.
2099 * Note: The tables below are dependent on this value.
2100 */
2101#define LOAD_AVG_PERIOD 32
2102#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2103#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2104
2105/* Precomputed fixed inverse multiplies for multiplication by y^n */
2106static const u32 runnable_avg_yN_inv[] = {
2107 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2108 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2109 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2110 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2111 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2112 0x85aac367, 0x82cd8698,
2113};
2114
2115/*
2116 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2117 * over-estimates when re-combining.
2118 */
2119static const u32 runnable_avg_yN_sum[] = {
2120 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2121 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2122 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2123};
2124
9d85f21c
PT
2125/*
2126 * Approximate:
2127 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2128 */
2129static __always_inline u64 decay_load(u64 val, u64 n)
2130{
5b51f2f8
PT
2131 unsigned int local_n;
2132
2133 if (!n)
2134 return val;
2135 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2136 return 0;
2137
2138 /* after bounds checking we can collapse to 32-bit */
2139 local_n = n;
2140
2141 /*
2142 * As y^PERIOD = 1/2, we can combine
2143 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2144 * With a look-up table which covers k^n (n<PERIOD)
2145 *
2146 * To achieve constant time decay_load.
2147 */
2148 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2149 val >>= local_n / LOAD_AVG_PERIOD;
2150 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2151 }
2152
5b51f2f8
PT
2153 val *= runnable_avg_yN_inv[local_n];
2154 /* We don't use SRR here since we always want to round down. */
2155 return val >> 32;
2156}
2157
2158/*
2159 * For updates fully spanning n periods, the contribution to runnable
2160 * average will be: \Sum 1024*y^n
2161 *
2162 * We can compute this reasonably efficiently by combining:
2163 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2164 */
2165static u32 __compute_runnable_contrib(u64 n)
2166{
2167 u32 contrib = 0;
2168
2169 if (likely(n <= LOAD_AVG_PERIOD))
2170 return runnable_avg_yN_sum[n];
2171 else if (unlikely(n >= LOAD_AVG_MAX_N))
2172 return LOAD_AVG_MAX;
2173
2174 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2175 do {
2176 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2177 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2178
2179 n -= LOAD_AVG_PERIOD;
2180 } while (n > LOAD_AVG_PERIOD);
2181
2182 contrib = decay_load(contrib, n);
2183 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2184}
2185
2186/*
2187 * We can represent the historical contribution to runnable average as the
2188 * coefficients of a geometric series. To do this we sub-divide our runnable
2189 * history into segments of approximately 1ms (1024us); label the segment that
2190 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2191 *
2192 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2193 * p0 p1 p2
2194 * (now) (~1ms ago) (~2ms ago)
2195 *
2196 * Let u_i denote the fraction of p_i that the entity was runnable.
2197 *
2198 * We then designate the fractions u_i as our co-efficients, yielding the
2199 * following representation of historical load:
2200 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2201 *
2202 * We choose y based on the with of a reasonably scheduling period, fixing:
2203 * y^32 = 0.5
2204 *
2205 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2206 * approximately half as much as the contribution to load within the last ms
2207 * (u_0).
2208 *
2209 * When a period "rolls over" and we have new u_0`, multiplying the previous
2210 * sum again by y is sufficient to update:
2211 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2212 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2213 */
2214static __always_inline int __update_entity_runnable_avg(u64 now,
2215 struct sched_avg *sa,
2216 int runnable)
2217{
5b51f2f8
PT
2218 u64 delta, periods;
2219 u32 runnable_contrib;
9d85f21c
PT
2220 int delta_w, decayed = 0;
2221
2222 delta = now - sa->last_runnable_update;
2223 /*
2224 * This should only happen when time goes backwards, which it
2225 * unfortunately does during sched clock init when we swap over to TSC.
2226 */
2227 if ((s64)delta < 0) {
2228 sa->last_runnable_update = now;
2229 return 0;
2230 }
2231
2232 /*
2233 * Use 1024ns as the unit of measurement since it's a reasonable
2234 * approximation of 1us and fast to compute.
2235 */
2236 delta >>= 10;
2237 if (!delta)
2238 return 0;
2239 sa->last_runnable_update = now;
2240
2241 /* delta_w is the amount already accumulated against our next period */
2242 delta_w = sa->runnable_avg_period % 1024;
2243 if (delta + delta_w >= 1024) {
2244 /* period roll-over */
2245 decayed = 1;
2246
2247 /*
2248 * Now that we know we're crossing a period boundary, figure
2249 * out how much from delta we need to complete the current
2250 * period and accrue it.
2251 */
2252 delta_w = 1024 - delta_w;
5b51f2f8
PT
2253 if (runnable)
2254 sa->runnable_avg_sum += delta_w;
2255 sa->runnable_avg_period += delta_w;
2256
2257 delta -= delta_w;
2258
2259 /* Figure out how many additional periods this update spans */
2260 periods = delta / 1024;
2261 delta %= 1024;
2262
2263 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2264 periods + 1);
2265 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2266 periods + 1);
2267
2268 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2269 runnable_contrib = __compute_runnable_contrib(periods);
2270 if (runnable)
2271 sa->runnable_avg_sum += runnable_contrib;
2272 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2273 }
2274
2275 /* Remainder of delta accrued against u_0` */
2276 if (runnable)
2277 sa->runnable_avg_sum += delta;
2278 sa->runnable_avg_period += delta;
2279
2280 return decayed;
2281}
2282
9ee474f5 2283/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2284static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2285{
2286 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2287 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2288
2289 decays -= se->avg.decay_count;
2290 if (!decays)
aff3e498 2291 return 0;
9ee474f5
PT
2292
2293 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2294 se->avg.decay_count = 0;
aff3e498
PT
2295
2296 return decays;
9ee474f5
PT
2297}
2298
c566e8e9
PT
2299#ifdef CONFIG_FAIR_GROUP_SCHED
2300static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2301 int force_update)
2302{
2303 struct task_group *tg = cfs_rq->tg;
bf5b986e 2304 long tg_contrib;
c566e8e9
PT
2305
2306 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2307 tg_contrib -= cfs_rq->tg_load_contrib;
2308
bf5b986e
AS
2309 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2310 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2311 cfs_rq->tg_load_contrib += tg_contrib;
2312 }
2313}
8165e145 2314
bb17f655
PT
2315/*
2316 * Aggregate cfs_rq runnable averages into an equivalent task_group
2317 * representation for computing load contributions.
2318 */
2319static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2320 struct cfs_rq *cfs_rq)
2321{
2322 struct task_group *tg = cfs_rq->tg;
2323 long contrib;
2324
2325 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2326 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2327 sa->runnable_avg_period + 1);
2328 contrib -= cfs_rq->tg_runnable_contrib;
2329
2330 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2331 atomic_add(contrib, &tg->runnable_avg);
2332 cfs_rq->tg_runnable_contrib += contrib;
2333 }
2334}
2335
8165e145
PT
2336static inline void __update_group_entity_contrib(struct sched_entity *se)
2337{
2338 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2339 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2340 int runnable_avg;
2341
8165e145
PT
2342 u64 contrib;
2343
2344 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2345 se->avg.load_avg_contrib = div_u64(contrib,
2346 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2347
2348 /*
2349 * For group entities we need to compute a correction term in the case
2350 * that they are consuming <1 cpu so that we would contribute the same
2351 * load as a task of equal weight.
2352 *
2353 * Explicitly co-ordinating this measurement would be expensive, but
2354 * fortunately the sum of each cpus contribution forms a usable
2355 * lower-bound on the true value.
2356 *
2357 * Consider the aggregate of 2 contributions. Either they are disjoint
2358 * (and the sum represents true value) or they are disjoint and we are
2359 * understating by the aggregate of their overlap.
2360 *
2361 * Extending this to N cpus, for a given overlap, the maximum amount we
2362 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2363 * cpus that overlap for this interval and w_i is the interval width.
2364 *
2365 * On a small machine; the first term is well-bounded which bounds the
2366 * total error since w_i is a subset of the period. Whereas on a
2367 * larger machine, while this first term can be larger, if w_i is the
2368 * of consequential size guaranteed to see n_i*w_i quickly converge to
2369 * our upper bound of 1-cpu.
2370 */
2371 runnable_avg = atomic_read(&tg->runnable_avg);
2372 if (runnable_avg < NICE_0_LOAD) {
2373 se->avg.load_avg_contrib *= runnable_avg;
2374 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2375 }
8165e145 2376}
f5f9739d
DE
2377
2378static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2379{
2380 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2381 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2382}
6e83125c 2383#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2384static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2385 int force_update) {}
bb17f655
PT
2386static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2387 struct cfs_rq *cfs_rq) {}
8165e145 2388static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2389static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2390#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2391
8165e145
PT
2392static inline void __update_task_entity_contrib(struct sched_entity *se)
2393{
2394 u32 contrib;
2395
2396 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2397 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2398 contrib /= (se->avg.runnable_avg_period + 1);
2399 se->avg.load_avg_contrib = scale_load(contrib);
2400}
2401
2dac754e
PT
2402/* Compute the current contribution to load_avg by se, return any delta */
2403static long __update_entity_load_avg_contrib(struct sched_entity *se)
2404{
2405 long old_contrib = se->avg.load_avg_contrib;
2406
8165e145
PT
2407 if (entity_is_task(se)) {
2408 __update_task_entity_contrib(se);
2409 } else {
bb17f655 2410 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2411 __update_group_entity_contrib(se);
2412 }
2dac754e
PT
2413
2414 return se->avg.load_avg_contrib - old_contrib;
2415}
2416
9ee474f5
PT
2417static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2418 long load_contrib)
2419{
2420 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2421 cfs_rq->blocked_load_avg -= load_contrib;
2422 else
2423 cfs_rq->blocked_load_avg = 0;
2424}
2425
f1b17280
PT
2426static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2427
9d85f21c 2428/* Update a sched_entity's runnable average */
9ee474f5
PT
2429static inline void update_entity_load_avg(struct sched_entity *se,
2430 int update_cfs_rq)
9d85f21c 2431{
2dac754e
PT
2432 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2433 long contrib_delta;
f1b17280 2434 u64 now;
2dac754e 2435
f1b17280
PT
2436 /*
2437 * For a group entity we need to use their owned cfs_rq_clock_task() in
2438 * case they are the parent of a throttled hierarchy.
2439 */
2440 if (entity_is_task(se))
2441 now = cfs_rq_clock_task(cfs_rq);
2442 else
2443 now = cfs_rq_clock_task(group_cfs_rq(se));
2444
2445 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2446 return;
2447
2448 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2449
2450 if (!update_cfs_rq)
2451 return;
2452
2dac754e
PT
2453 if (se->on_rq)
2454 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2455 else
2456 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2457}
2458
2459/*
2460 * Decay the load contributed by all blocked children and account this so that
2461 * their contribution may appropriately discounted when they wake up.
2462 */
aff3e498 2463static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2464{
f1b17280 2465 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2466 u64 decays;
2467
2468 decays = now - cfs_rq->last_decay;
aff3e498 2469 if (!decays && !force_update)
9ee474f5
PT
2470 return;
2471
2509940f
AS
2472 if (atomic_long_read(&cfs_rq->removed_load)) {
2473 unsigned long removed_load;
2474 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2475 subtract_blocked_load_contrib(cfs_rq, removed_load);
2476 }
9ee474f5 2477
aff3e498
PT
2478 if (decays) {
2479 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2480 decays);
2481 atomic64_add(decays, &cfs_rq->decay_counter);
2482 cfs_rq->last_decay = now;
2483 }
c566e8e9
PT
2484
2485 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2486}
18bf2805 2487
2dac754e
PT
2488/* Add the load generated by se into cfs_rq's child load-average */
2489static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2490 struct sched_entity *se,
2491 int wakeup)
2dac754e 2492{
aff3e498
PT
2493 /*
2494 * We track migrations using entity decay_count <= 0, on a wake-up
2495 * migration we use a negative decay count to track the remote decays
2496 * accumulated while sleeping.
a75cdaa9
AS
2497 *
2498 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2499 * are seen by enqueue_entity_load_avg() as a migration with an already
2500 * constructed load_avg_contrib.
aff3e498
PT
2501 */
2502 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2503 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2504 if (se->avg.decay_count) {
2505 /*
2506 * In a wake-up migration we have to approximate the
2507 * time sleeping. This is because we can't synchronize
2508 * clock_task between the two cpus, and it is not
2509 * guaranteed to be read-safe. Instead, we can
2510 * approximate this using our carried decays, which are
2511 * explicitly atomically readable.
2512 */
2513 se->avg.last_runnable_update -= (-se->avg.decay_count)
2514 << 20;
2515 update_entity_load_avg(se, 0);
2516 /* Indicate that we're now synchronized and on-rq */
2517 se->avg.decay_count = 0;
2518 }
9ee474f5
PT
2519 wakeup = 0;
2520 } else {
9390675a 2521 __synchronize_entity_decay(se);
9ee474f5
PT
2522 }
2523
aff3e498
PT
2524 /* migrated tasks did not contribute to our blocked load */
2525 if (wakeup) {
9ee474f5 2526 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2527 update_entity_load_avg(se, 0);
2528 }
9ee474f5 2529
2dac754e 2530 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2531 /* we force update consideration on load-balancer moves */
2532 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2533}
2534
9ee474f5
PT
2535/*
2536 * Remove se's load from this cfs_rq child load-average, if the entity is
2537 * transitioning to a blocked state we track its projected decay using
2538 * blocked_load_avg.
2539 */
2dac754e 2540static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2541 struct sched_entity *se,
2542 int sleep)
2dac754e 2543{
9ee474f5 2544 update_entity_load_avg(se, 1);
aff3e498
PT
2545 /* we force update consideration on load-balancer moves */
2546 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2547
2dac754e 2548 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2549 if (sleep) {
2550 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2551 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2552 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2553}
642dbc39
VG
2554
2555/*
2556 * Update the rq's load with the elapsed running time before entering
2557 * idle. if the last scheduled task is not a CFS task, idle_enter will
2558 * be the only way to update the runnable statistic.
2559 */
2560void idle_enter_fair(struct rq *this_rq)
2561{
2562 update_rq_runnable_avg(this_rq, 1);
2563}
2564
2565/*
2566 * Update the rq's load with the elapsed idle time before a task is
2567 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2568 * be the only way to update the runnable statistic.
2569 */
2570void idle_exit_fair(struct rq *this_rq)
2571{
2572 update_rq_runnable_avg(this_rq, 0);
2573}
2574
6e83125c
PZ
2575static int idle_balance(struct rq *this_rq);
2576
38033c37
PZ
2577#else /* CONFIG_SMP */
2578
9ee474f5
PT
2579static inline void update_entity_load_avg(struct sched_entity *se,
2580 int update_cfs_rq) {}
18bf2805 2581static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2582static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2583 struct sched_entity *se,
2584 int wakeup) {}
2dac754e 2585static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2586 struct sched_entity *se,
2587 int sleep) {}
aff3e498
PT
2588static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2589 int force_update) {}
6e83125c
PZ
2590
2591static inline int idle_balance(struct rq *rq)
2592{
2593 return 0;
2594}
2595
38033c37 2596#endif /* CONFIG_SMP */
9d85f21c 2597
2396af69 2598static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2599{
bf0f6f24 2600#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2601 struct task_struct *tsk = NULL;
2602
2603 if (entity_is_task(se))
2604 tsk = task_of(se);
2605
41acab88 2606 if (se->statistics.sleep_start) {
78becc27 2607 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2608
2609 if ((s64)delta < 0)
2610 delta = 0;
2611
41acab88
LDM
2612 if (unlikely(delta > se->statistics.sleep_max))
2613 se->statistics.sleep_max = delta;
bf0f6f24 2614
8c79a045 2615 se->statistics.sleep_start = 0;
41acab88 2616 se->statistics.sum_sleep_runtime += delta;
9745512c 2617
768d0c27 2618 if (tsk) {
e414314c 2619 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2620 trace_sched_stat_sleep(tsk, delta);
2621 }
bf0f6f24 2622 }
41acab88 2623 if (se->statistics.block_start) {
78becc27 2624 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2625
2626 if ((s64)delta < 0)
2627 delta = 0;
2628
41acab88
LDM
2629 if (unlikely(delta > se->statistics.block_max))
2630 se->statistics.block_max = delta;
bf0f6f24 2631
8c79a045 2632 se->statistics.block_start = 0;
41acab88 2633 se->statistics.sum_sleep_runtime += delta;
30084fbd 2634
e414314c 2635 if (tsk) {
8f0dfc34 2636 if (tsk->in_iowait) {
41acab88
LDM
2637 se->statistics.iowait_sum += delta;
2638 se->statistics.iowait_count++;
768d0c27 2639 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2640 }
2641
b781a602
AV
2642 trace_sched_stat_blocked(tsk, delta);
2643
e414314c
PZ
2644 /*
2645 * Blocking time is in units of nanosecs, so shift by
2646 * 20 to get a milliseconds-range estimation of the
2647 * amount of time that the task spent sleeping:
2648 */
2649 if (unlikely(prof_on == SLEEP_PROFILING)) {
2650 profile_hits(SLEEP_PROFILING,
2651 (void *)get_wchan(tsk),
2652 delta >> 20);
2653 }
2654 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2655 }
bf0f6f24
IM
2656 }
2657#endif
2658}
2659
ddc97297
PZ
2660static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2661{
2662#ifdef CONFIG_SCHED_DEBUG
2663 s64 d = se->vruntime - cfs_rq->min_vruntime;
2664
2665 if (d < 0)
2666 d = -d;
2667
2668 if (d > 3*sysctl_sched_latency)
2669 schedstat_inc(cfs_rq, nr_spread_over);
2670#endif
2671}
2672
aeb73b04
PZ
2673static void
2674place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2675{
1af5f730 2676 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2677
2cb8600e
PZ
2678 /*
2679 * The 'current' period is already promised to the current tasks,
2680 * however the extra weight of the new task will slow them down a
2681 * little, place the new task so that it fits in the slot that
2682 * stays open at the end.
2683 */
94dfb5e7 2684 if (initial && sched_feat(START_DEBIT))
f9c0b095 2685 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2686
a2e7a7eb 2687 /* sleeps up to a single latency don't count. */
5ca9880c 2688 if (!initial) {
a2e7a7eb 2689 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2690
a2e7a7eb
MG
2691 /*
2692 * Halve their sleep time's effect, to allow
2693 * for a gentler effect of sleepers:
2694 */
2695 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2696 thresh >>= 1;
51e0304c 2697
a2e7a7eb 2698 vruntime -= thresh;
aeb73b04
PZ
2699 }
2700
b5d9d734 2701 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2702 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2703}
2704
d3d9dc33
PT
2705static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2706
bf0f6f24 2707static void
88ec22d3 2708enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2709{
88ec22d3
PZ
2710 /*
2711 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2712 * through calling update_curr().
88ec22d3 2713 */
371fd7e7 2714 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2715 se->vruntime += cfs_rq->min_vruntime;
2716
bf0f6f24 2717 /*
a2a2d680 2718 * Update run-time statistics of the 'current'.
bf0f6f24 2719 */
b7cc0896 2720 update_curr(cfs_rq);
f269ae04 2721 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2722 account_entity_enqueue(cfs_rq, se);
2723 update_cfs_shares(cfs_rq);
bf0f6f24 2724
88ec22d3 2725 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2726 place_entity(cfs_rq, se, 0);
2396af69 2727 enqueue_sleeper(cfs_rq, se);
e9acbff6 2728 }
bf0f6f24 2729
d2417e5a 2730 update_stats_enqueue(cfs_rq, se);
ddc97297 2731 check_spread(cfs_rq, se);
83b699ed
SV
2732 if (se != cfs_rq->curr)
2733 __enqueue_entity(cfs_rq, se);
2069dd75 2734 se->on_rq = 1;
3d4b47b4 2735
d3d9dc33 2736 if (cfs_rq->nr_running == 1) {
3d4b47b4 2737 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2738 check_enqueue_throttle(cfs_rq);
2739 }
bf0f6f24
IM
2740}
2741
2c13c919 2742static void __clear_buddies_last(struct sched_entity *se)
2002c695 2743{
2c13c919
RR
2744 for_each_sched_entity(se) {
2745 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2746 if (cfs_rq->last != se)
2c13c919 2747 break;
f1044799
PZ
2748
2749 cfs_rq->last = NULL;
2c13c919
RR
2750 }
2751}
2002c695 2752
2c13c919
RR
2753static void __clear_buddies_next(struct sched_entity *se)
2754{
2755 for_each_sched_entity(se) {
2756 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2757 if (cfs_rq->next != se)
2c13c919 2758 break;
f1044799
PZ
2759
2760 cfs_rq->next = NULL;
2c13c919 2761 }
2002c695
PZ
2762}
2763
ac53db59
RR
2764static void __clear_buddies_skip(struct sched_entity *se)
2765{
2766 for_each_sched_entity(se) {
2767 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2768 if (cfs_rq->skip != se)
ac53db59 2769 break;
f1044799
PZ
2770
2771 cfs_rq->skip = NULL;
ac53db59
RR
2772 }
2773}
2774
a571bbea
PZ
2775static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2776{
2c13c919
RR
2777 if (cfs_rq->last == se)
2778 __clear_buddies_last(se);
2779
2780 if (cfs_rq->next == se)
2781 __clear_buddies_next(se);
ac53db59
RR
2782
2783 if (cfs_rq->skip == se)
2784 __clear_buddies_skip(se);
a571bbea
PZ
2785}
2786
6c16a6dc 2787static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2788
bf0f6f24 2789static void
371fd7e7 2790dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2791{
a2a2d680
DA
2792 /*
2793 * Update run-time statistics of the 'current'.
2794 */
2795 update_curr(cfs_rq);
17bc14b7 2796 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2797
19b6a2e3 2798 update_stats_dequeue(cfs_rq, se);
371fd7e7 2799 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2800#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2801 if (entity_is_task(se)) {
2802 struct task_struct *tsk = task_of(se);
2803
2804 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2805 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2806 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2807 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2808 }
db36cc7d 2809#endif
67e9fb2a
PZ
2810 }
2811
2002c695 2812 clear_buddies(cfs_rq, se);
4793241b 2813
83b699ed 2814 if (se != cfs_rq->curr)
30cfdcfc 2815 __dequeue_entity(cfs_rq, se);
17bc14b7 2816 se->on_rq = 0;
30cfdcfc 2817 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2818
2819 /*
2820 * Normalize the entity after updating the min_vruntime because the
2821 * update can refer to the ->curr item and we need to reflect this
2822 * movement in our normalized position.
2823 */
371fd7e7 2824 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2825 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2826
d8b4986d
PT
2827 /* return excess runtime on last dequeue */
2828 return_cfs_rq_runtime(cfs_rq);
2829
1e876231 2830 update_min_vruntime(cfs_rq);
17bc14b7 2831 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2832}
2833
2834/*
2835 * Preempt the current task with a newly woken task if needed:
2836 */
7c92e54f 2837static void
2e09bf55 2838check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2839{
11697830 2840 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2841 struct sched_entity *se;
2842 s64 delta;
11697830 2843
6d0f0ebd 2844 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2845 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2846 if (delta_exec > ideal_runtime) {
bf0f6f24 2847 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2848 /*
2849 * The current task ran long enough, ensure it doesn't get
2850 * re-elected due to buddy favours.
2851 */
2852 clear_buddies(cfs_rq, curr);
f685ceac
MG
2853 return;
2854 }
2855
2856 /*
2857 * Ensure that a task that missed wakeup preemption by a
2858 * narrow margin doesn't have to wait for a full slice.
2859 * This also mitigates buddy induced latencies under load.
2860 */
f685ceac
MG
2861 if (delta_exec < sysctl_sched_min_granularity)
2862 return;
2863
f4cfb33e
WX
2864 se = __pick_first_entity(cfs_rq);
2865 delta = curr->vruntime - se->vruntime;
f685ceac 2866
f4cfb33e
WX
2867 if (delta < 0)
2868 return;
d7d82944 2869
f4cfb33e
WX
2870 if (delta > ideal_runtime)
2871 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2872}
2873
83b699ed 2874static void
8494f412 2875set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2876{
83b699ed
SV
2877 /* 'current' is not kept within the tree. */
2878 if (se->on_rq) {
2879 /*
2880 * Any task has to be enqueued before it get to execute on
2881 * a CPU. So account for the time it spent waiting on the
2882 * runqueue.
2883 */
2884 update_stats_wait_end(cfs_rq, se);
2885 __dequeue_entity(cfs_rq, se);
2886 }
2887
79303e9e 2888 update_stats_curr_start(cfs_rq, se);
429d43bc 2889 cfs_rq->curr = se;
eba1ed4b
IM
2890#ifdef CONFIG_SCHEDSTATS
2891 /*
2892 * Track our maximum slice length, if the CPU's load is at
2893 * least twice that of our own weight (i.e. dont track it
2894 * when there are only lesser-weight tasks around):
2895 */
495eca49 2896 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2897 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2898 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2899 }
2900#endif
4a55b450 2901 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2902}
2903
3f3a4904
PZ
2904static int
2905wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2906
ac53db59
RR
2907/*
2908 * Pick the next process, keeping these things in mind, in this order:
2909 * 1) keep things fair between processes/task groups
2910 * 2) pick the "next" process, since someone really wants that to run
2911 * 3) pick the "last" process, for cache locality
2912 * 4) do not run the "skip" process, if something else is available
2913 */
678d5718
PZ
2914static struct sched_entity *
2915pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2916{
678d5718
PZ
2917 struct sched_entity *left = __pick_first_entity(cfs_rq);
2918 struct sched_entity *se;
2919
2920 /*
2921 * If curr is set we have to see if its left of the leftmost entity
2922 * still in the tree, provided there was anything in the tree at all.
2923 */
2924 if (!left || (curr && entity_before(curr, left)))
2925 left = curr;
2926
2927 se = left; /* ideally we run the leftmost entity */
f4b6755f 2928
ac53db59
RR
2929 /*
2930 * Avoid running the skip buddy, if running something else can
2931 * be done without getting too unfair.
2932 */
2933 if (cfs_rq->skip == se) {
678d5718
PZ
2934 struct sched_entity *second;
2935
2936 if (se == curr) {
2937 second = __pick_first_entity(cfs_rq);
2938 } else {
2939 second = __pick_next_entity(se);
2940 if (!second || (curr && entity_before(curr, second)))
2941 second = curr;
2942 }
2943
ac53db59
RR
2944 if (second && wakeup_preempt_entity(second, left) < 1)
2945 se = second;
2946 }
aa2ac252 2947
f685ceac
MG
2948 /*
2949 * Prefer last buddy, try to return the CPU to a preempted task.
2950 */
2951 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2952 se = cfs_rq->last;
2953
ac53db59
RR
2954 /*
2955 * Someone really wants this to run. If it's not unfair, run it.
2956 */
2957 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2958 se = cfs_rq->next;
2959
f685ceac 2960 clear_buddies(cfs_rq, se);
4793241b
PZ
2961
2962 return se;
aa2ac252
PZ
2963}
2964
678d5718 2965static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 2966
ab6cde26 2967static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2968{
2969 /*
2970 * If still on the runqueue then deactivate_task()
2971 * was not called and update_curr() has to be done:
2972 */
2973 if (prev->on_rq)
b7cc0896 2974 update_curr(cfs_rq);
bf0f6f24 2975
d3d9dc33
PT
2976 /* throttle cfs_rqs exceeding runtime */
2977 check_cfs_rq_runtime(cfs_rq);
2978
ddc97297 2979 check_spread(cfs_rq, prev);
30cfdcfc 2980 if (prev->on_rq) {
5870db5b 2981 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2982 /* Put 'current' back into the tree. */
2983 __enqueue_entity(cfs_rq, prev);
9d85f21c 2984 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2985 update_entity_load_avg(prev, 1);
30cfdcfc 2986 }
429d43bc 2987 cfs_rq->curr = NULL;
bf0f6f24
IM
2988}
2989
8f4d37ec
PZ
2990static void
2991entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2992{
bf0f6f24 2993 /*
30cfdcfc 2994 * Update run-time statistics of the 'current'.
bf0f6f24 2995 */
30cfdcfc 2996 update_curr(cfs_rq);
bf0f6f24 2997
9d85f21c
PT
2998 /*
2999 * Ensure that runnable average is periodically updated.
3000 */
9ee474f5 3001 update_entity_load_avg(curr, 1);
aff3e498 3002 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3003 update_cfs_shares(cfs_rq);
9d85f21c 3004
8f4d37ec
PZ
3005#ifdef CONFIG_SCHED_HRTICK
3006 /*
3007 * queued ticks are scheduled to match the slice, so don't bother
3008 * validating it and just reschedule.
3009 */
983ed7a6
HH
3010 if (queued) {
3011 resched_task(rq_of(cfs_rq)->curr);
3012 return;
3013 }
8f4d37ec
PZ
3014 /*
3015 * don't let the period tick interfere with the hrtick preemption
3016 */
3017 if (!sched_feat(DOUBLE_TICK) &&
3018 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3019 return;
3020#endif
3021
2c2efaed 3022 if (cfs_rq->nr_running > 1)
2e09bf55 3023 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3024}
3025
ab84d31e
PT
3026
3027/**************************************************
3028 * CFS bandwidth control machinery
3029 */
3030
3031#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3032
3033#ifdef HAVE_JUMP_LABEL
c5905afb 3034static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3035
3036static inline bool cfs_bandwidth_used(void)
3037{
c5905afb 3038 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3039}
3040
1ee14e6c 3041void cfs_bandwidth_usage_inc(void)
029632fb 3042{
1ee14e6c
BS
3043 static_key_slow_inc(&__cfs_bandwidth_used);
3044}
3045
3046void cfs_bandwidth_usage_dec(void)
3047{
3048 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3049}
3050#else /* HAVE_JUMP_LABEL */
3051static bool cfs_bandwidth_used(void)
3052{
3053 return true;
3054}
3055
1ee14e6c
BS
3056void cfs_bandwidth_usage_inc(void) {}
3057void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3058#endif /* HAVE_JUMP_LABEL */
3059
ab84d31e
PT
3060/*
3061 * default period for cfs group bandwidth.
3062 * default: 0.1s, units: nanoseconds
3063 */
3064static inline u64 default_cfs_period(void)
3065{
3066 return 100000000ULL;
3067}
ec12cb7f
PT
3068
3069static inline u64 sched_cfs_bandwidth_slice(void)
3070{
3071 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3072}
3073
a9cf55b2
PT
3074/*
3075 * Replenish runtime according to assigned quota and update expiration time.
3076 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3077 * additional synchronization around rq->lock.
3078 *
3079 * requires cfs_b->lock
3080 */
029632fb 3081void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3082{
3083 u64 now;
3084
3085 if (cfs_b->quota == RUNTIME_INF)
3086 return;
3087
3088 now = sched_clock_cpu(smp_processor_id());
3089 cfs_b->runtime = cfs_b->quota;
3090 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3091}
3092
029632fb
PZ
3093static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3094{
3095 return &tg->cfs_bandwidth;
3096}
3097
f1b17280
PT
3098/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3099static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3100{
3101 if (unlikely(cfs_rq->throttle_count))
3102 return cfs_rq->throttled_clock_task;
3103
78becc27 3104 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3105}
3106
85dac906
PT
3107/* returns 0 on failure to allocate runtime */
3108static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3109{
3110 struct task_group *tg = cfs_rq->tg;
3111 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3112 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3113
3114 /* note: this is a positive sum as runtime_remaining <= 0 */
3115 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3116
3117 raw_spin_lock(&cfs_b->lock);
3118 if (cfs_b->quota == RUNTIME_INF)
3119 amount = min_amount;
58088ad0 3120 else {
a9cf55b2
PT
3121 /*
3122 * If the bandwidth pool has become inactive, then at least one
3123 * period must have elapsed since the last consumption.
3124 * Refresh the global state and ensure bandwidth timer becomes
3125 * active.
3126 */
3127 if (!cfs_b->timer_active) {
3128 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3129 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3130 }
58088ad0
PT
3131
3132 if (cfs_b->runtime > 0) {
3133 amount = min(cfs_b->runtime, min_amount);
3134 cfs_b->runtime -= amount;
3135 cfs_b->idle = 0;
3136 }
ec12cb7f 3137 }
a9cf55b2 3138 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3139 raw_spin_unlock(&cfs_b->lock);
3140
3141 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3142 /*
3143 * we may have advanced our local expiration to account for allowed
3144 * spread between our sched_clock and the one on which runtime was
3145 * issued.
3146 */
3147 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3148 cfs_rq->runtime_expires = expires;
85dac906
PT
3149
3150 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3151}
3152
a9cf55b2
PT
3153/*
3154 * Note: This depends on the synchronization provided by sched_clock and the
3155 * fact that rq->clock snapshots this value.
3156 */
3157static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3158{
a9cf55b2 3159 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3160
3161 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3162 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3163 return;
3164
a9cf55b2
PT
3165 if (cfs_rq->runtime_remaining < 0)
3166 return;
3167
3168 /*
3169 * If the local deadline has passed we have to consider the
3170 * possibility that our sched_clock is 'fast' and the global deadline
3171 * has not truly expired.
3172 *
3173 * Fortunately we can check determine whether this the case by checking
3174 * whether the global deadline has advanced.
3175 */
3176
3177 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3178 /* extend local deadline, drift is bounded above by 2 ticks */
3179 cfs_rq->runtime_expires += TICK_NSEC;
3180 } else {
3181 /* global deadline is ahead, expiration has passed */
3182 cfs_rq->runtime_remaining = 0;
3183 }
3184}
3185
9dbdb155 3186static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3187{
3188 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3189 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3190 expire_cfs_rq_runtime(cfs_rq);
3191
3192 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3193 return;
3194
85dac906
PT
3195 /*
3196 * if we're unable to extend our runtime we resched so that the active
3197 * hierarchy can be throttled
3198 */
3199 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3200 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3201}
3202
6c16a6dc 3203static __always_inline
9dbdb155 3204void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3205{
56f570e5 3206 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3207 return;
3208
3209 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3210}
3211
85dac906
PT
3212static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3213{
56f570e5 3214 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3215}
3216
64660c86
PT
3217/* check whether cfs_rq, or any parent, is throttled */
3218static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3219{
56f570e5 3220 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3221}
3222
3223/*
3224 * Ensure that neither of the group entities corresponding to src_cpu or
3225 * dest_cpu are members of a throttled hierarchy when performing group
3226 * load-balance operations.
3227 */
3228static inline int throttled_lb_pair(struct task_group *tg,
3229 int src_cpu, int dest_cpu)
3230{
3231 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3232
3233 src_cfs_rq = tg->cfs_rq[src_cpu];
3234 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3235
3236 return throttled_hierarchy(src_cfs_rq) ||
3237 throttled_hierarchy(dest_cfs_rq);
3238}
3239
3240/* updated child weight may affect parent so we have to do this bottom up */
3241static int tg_unthrottle_up(struct task_group *tg, void *data)
3242{
3243 struct rq *rq = data;
3244 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3245
3246 cfs_rq->throttle_count--;
3247#ifdef CONFIG_SMP
3248 if (!cfs_rq->throttle_count) {
f1b17280 3249 /* adjust cfs_rq_clock_task() */
78becc27 3250 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3251 cfs_rq->throttled_clock_task;
64660c86
PT
3252 }
3253#endif
3254
3255 return 0;
3256}
3257
3258static int tg_throttle_down(struct task_group *tg, void *data)
3259{
3260 struct rq *rq = data;
3261 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3262
82958366
PT
3263 /* group is entering throttled state, stop time */
3264 if (!cfs_rq->throttle_count)
78becc27 3265 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3266 cfs_rq->throttle_count++;
3267
3268 return 0;
3269}
3270
d3d9dc33 3271static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3272{
3273 struct rq *rq = rq_of(cfs_rq);
3274 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3275 struct sched_entity *se;
3276 long task_delta, dequeue = 1;
3277
3278 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3279
f1b17280 3280 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3281 rcu_read_lock();
3282 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3283 rcu_read_unlock();
85dac906
PT
3284
3285 task_delta = cfs_rq->h_nr_running;
3286 for_each_sched_entity(se) {
3287 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3288 /* throttled entity or throttle-on-deactivate */
3289 if (!se->on_rq)
3290 break;
3291
3292 if (dequeue)
3293 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3294 qcfs_rq->h_nr_running -= task_delta;
3295
3296 if (qcfs_rq->load.weight)
3297 dequeue = 0;
3298 }
3299
3300 if (!se)
3301 rq->nr_running -= task_delta;
3302
3303 cfs_rq->throttled = 1;
78becc27 3304 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3305 raw_spin_lock(&cfs_b->lock);
3306 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3307 if (!cfs_b->timer_active)
3308 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3309 raw_spin_unlock(&cfs_b->lock);
3310}
3311
029632fb 3312void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3313{
3314 struct rq *rq = rq_of(cfs_rq);
3315 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3316 struct sched_entity *se;
3317 int enqueue = 1;
3318 long task_delta;
3319
22b958d8 3320 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3321
3322 cfs_rq->throttled = 0;
1a55af2e
FW
3323
3324 update_rq_clock(rq);
3325
671fd9da 3326 raw_spin_lock(&cfs_b->lock);
78becc27 3327 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3328 list_del_rcu(&cfs_rq->throttled_list);
3329 raw_spin_unlock(&cfs_b->lock);
3330
64660c86
PT
3331 /* update hierarchical throttle state */
3332 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3333
671fd9da
PT
3334 if (!cfs_rq->load.weight)
3335 return;
3336
3337 task_delta = cfs_rq->h_nr_running;
3338 for_each_sched_entity(se) {
3339 if (se->on_rq)
3340 enqueue = 0;
3341
3342 cfs_rq = cfs_rq_of(se);
3343 if (enqueue)
3344 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3345 cfs_rq->h_nr_running += task_delta;
3346
3347 if (cfs_rq_throttled(cfs_rq))
3348 break;
3349 }
3350
3351 if (!se)
3352 rq->nr_running += task_delta;
3353
3354 /* determine whether we need to wake up potentially idle cpu */
3355 if (rq->curr == rq->idle && rq->cfs.nr_running)
3356 resched_task(rq->curr);
3357}
3358
3359static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3360 u64 remaining, u64 expires)
3361{
3362 struct cfs_rq *cfs_rq;
3363 u64 runtime = remaining;
3364
3365 rcu_read_lock();
3366 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3367 throttled_list) {
3368 struct rq *rq = rq_of(cfs_rq);
3369
3370 raw_spin_lock(&rq->lock);
3371 if (!cfs_rq_throttled(cfs_rq))
3372 goto next;
3373
3374 runtime = -cfs_rq->runtime_remaining + 1;
3375 if (runtime > remaining)
3376 runtime = remaining;
3377 remaining -= runtime;
3378
3379 cfs_rq->runtime_remaining += runtime;
3380 cfs_rq->runtime_expires = expires;
3381
3382 /* we check whether we're throttled above */
3383 if (cfs_rq->runtime_remaining > 0)
3384 unthrottle_cfs_rq(cfs_rq);
3385
3386next:
3387 raw_spin_unlock(&rq->lock);
3388
3389 if (!remaining)
3390 break;
3391 }
3392 rcu_read_unlock();
3393
3394 return remaining;
3395}
3396
58088ad0
PT
3397/*
3398 * Responsible for refilling a task_group's bandwidth and unthrottling its
3399 * cfs_rqs as appropriate. If there has been no activity within the last
3400 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3401 * used to track this state.
3402 */
3403static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3404{
671fd9da
PT
3405 u64 runtime, runtime_expires;
3406 int idle = 1, throttled;
58088ad0
PT
3407
3408 raw_spin_lock(&cfs_b->lock);
3409 /* no need to continue the timer with no bandwidth constraint */
3410 if (cfs_b->quota == RUNTIME_INF)
3411 goto out_unlock;
3412
671fd9da
PT
3413 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3414 /* idle depends on !throttled (for the case of a large deficit) */
3415 idle = cfs_b->idle && !throttled;
e8da1b18 3416 cfs_b->nr_periods += overrun;
671fd9da 3417
a9cf55b2
PT
3418 /* if we're going inactive then everything else can be deferred */
3419 if (idle)
3420 goto out_unlock;
3421
927b54fc
BS
3422 /*
3423 * if we have relooped after returning idle once, we need to update our
3424 * status as actually running, so that other cpus doing
3425 * __start_cfs_bandwidth will stop trying to cancel us.
3426 */
3427 cfs_b->timer_active = 1;
3428
a9cf55b2
PT
3429 __refill_cfs_bandwidth_runtime(cfs_b);
3430
671fd9da
PT
3431 if (!throttled) {
3432 /* mark as potentially idle for the upcoming period */
3433 cfs_b->idle = 1;
3434 goto out_unlock;
3435 }
3436
e8da1b18
NR
3437 /* account preceding periods in which throttling occurred */
3438 cfs_b->nr_throttled += overrun;
3439
671fd9da
PT
3440 /*
3441 * There are throttled entities so we must first use the new bandwidth
3442 * to unthrottle them before making it generally available. This
3443 * ensures that all existing debts will be paid before a new cfs_rq is
3444 * allowed to run.
3445 */
3446 runtime = cfs_b->runtime;
3447 runtime_expires = cfs_b->runtime_expires;
3448 cfs_b->runtime = 0;
3449
3450 /*
3451 * This check is repeated as we are holding onto the new bandwidth
3452 * while we unthrottle. This can potentially race with an unthrottled
3453 * group trying to acquire new bandwidth from the global pool.
3454 */
3455 while (throttled && runtime > 0) {
3456 raw_spin_unlock(&cfs_b->lock);
3457 /* we can't nest cfs_b->lock while distributing bandwidth */
3458 runtime = distribute_cfs_runtime(cfs_b, runtime,
3459 runtime_expires);
3460 raw_spin_lock(&cfs_b->lock);
3461
3462 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3463 }
58088ad0 3464
671fd9da
PT
3465 /* return (any) remaining runtime */
3466 cfs_b->runtime = runtime;
3467 /*
3468 * While we are ensured activity in the period following an
3469 * unthrottle, this also covers the case in which the new bandwidth is
3470 * insufficient to cover the existing bandwidth deficit. (Forcing the
3471 * timer to remain active while there are any throttled entities.)
3472 */
3473 cfs_b->idle = 0;
58088ad0
PT
3474out_unlock:
3475 if (idle)
3476 cfs_b->timer_active = 0;
3477 raw_spin_unlock(&cfs_b->lock);
3478
3479 return idle;
3480}
d3d9dc33 3481
d8b4986d
PT
3482/* a cfs_rq won't donate quota below this amount */
3483static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3484/* minimum remaining period time to redistribute slack quota */
3485static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3486/* how long we wait to gather additional slack before distributing */
3487static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3488
db06e78c
BS
3489/*
3490 * Are we near the end of the current quota period?
3491 *
3492 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3493 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3494 * migrate_hrtimers, base is never cleared, so we are fine.
3495 */
d8b4986d
PT
3496static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3497{
3498 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3499 u64 remaining;
3500
3501 /* if the call-back is running a quota refresh is already occurring */
3502 if (hrtimer_callback_running(refresh_timer))
3503 return 1;
3504
3505 /* is a quota refresh about to occur? */
3506 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3507 if (remaining < min_expire)
3508 return 1;
3509
3510 return 0;
3511}
3512
3513static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3514{
3515 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3516
3517 /* if there's a quota refresh soon don't bother with slack */
3518 if (runtime_refresh_within(cfs_b, min_left))
3519 return;
3520
3521 start_bandwidth_timer(&cfs_b->slack_timer,
3522 ns_to_ktime(cfs_bandwidth_slack_period));
3523}
3524
3525/* we know any runtime found here is valid as update_curr() precedes return */
3526static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3527{
3528 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3529 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3530
3531 if (slack_runtime <= 0)
3532 return;
3533
3534 raw_spin_lock(&cfs_b->lock);
3535 if (cfs_b->quota != RUNTIME_INF &&
3536 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3537 cfs_b->runtime += slack_runtime;
3538
3539 /* we are under rq->lock, defer unthrottling using a timer */
3540 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3541 !list_empty(&cfs_b->throttled_cfs_rq))
3542 start_cfs_slack_bandwidth(cfs_b);
3543 }
3544 raw_spin_unlock(&cfs_b->lock);
3545
3546 /* even if it's not valid for return we don't want to try again */
3547 cfs_rq->runtime_remaining -= slack_runtime;
3548}
3549
3550static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3551{
56f570e5
PT
3552 if (!cfs_bandwidth_used())
3553 return;
3554
fccfdc6f 3555 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3556 return;
3557
3558 __return_cfs_rq_runtime(cfs_rq);
3559}
3560
3561/*
3562 * This is done with a timer (instead of inline with bandwidth return) since
3563 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3564 */
3565static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3566{
3567 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3568 u64 expires;
3569
3570 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3571 raw_spin_lock(&cfs_b->lock);
3572 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3573 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3574 return;
db06e78c 3575 }
d8b4986d 3576
d8b4986d
PT
3577 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3578 runtime = cfs_b->runtime;
3579 cfs_b->runtime = 0;
3580 }
3581 expires = cfs_b->runtime_expires;
3582 raw_spin_unlock(&cfs_b->lock);
3583
3584 if (!runtime)
3585 return;
3586
3587 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3588
3589 raw_spin_lock(&cfs_b->lock);
3590 if (expires == cfs_b->runtime_expires)
3591 cfs_b->runtime = runtime;
3592 raw_spin_unlock(&cfs_b->lock);
3593}
3594
d3d9dc33
PT
3595/*
3596 * When a group wakes up we want to make sure that its quota is not already
3597 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3598 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3599 */
3600static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3601{
56f570e5
PT
3602 if (!cfs_bandwidth_used())
3603 return;
3604
d3d9dc33
PT
3605 /* an active group must be handled by the update_curr()->put() path */
3606 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3607 return;
3608
3609 /* ensure the group is not already throttled */
3610 if (cfs_rq_throttled(cfs_rq))
3611 return;
3612
3613 /* update runtime allocation */
3614 account_cfs_rq_runtime(cfs_rq, 0);
3615 if (cfs_rq->runtime_remaining <= 0)
3616 throttle_cfs_rq(cfs_rq);
3617}
3618
3619/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3620static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3621{
56f570e5 3622 if (!cfs_bandwidth_used())
678d5718 3623 return false;
56f570e5 3624
d3d9dc33 3625 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3626 return false;
d3d9dc33
PT
3627
3628 /*
3629 * it's possible for a throttled entity to be forced into a running
3630 * state (e.g. set_curr_task), in this case we're finished.
3631 */
3632 if (cfs_rq_throttled(cfs_rq))
678d5718 3633 return true;
d3d9dc33
PT
3634
3635 throttle_cfs_rq(cfs_rq);
678d5718 3636 return true;
d3d9dc33 3637}
029632fb 3638
029632fb
PZ
3639static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3640{
3641 struct cfs_bandwidth *cfs_b =
3642 container_of(timer, struct cfs_bandwidth, slack_timer);
3643 do_sched_cfs_slack_timer(cfs_b);
3644
3645 return HRTIMER_NORESTART;
3646}
3647
3648static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3649{
3650 struct cfs_bandwidth *cfs_b =
3651 container_of(timer, struct cfs_bandwidth, period_timer);
3652 ktime_t now;
3653 int overrun;
3654 int idle = 0;
3655
3656 for (;;) {
3657 now = hrtimer_cb_get_time(timer);
3658 overrun = hrtimer_forward(timer, now, cfs_b->period);
3659
3660 if (!overrun)
3661 break;
3662
3663 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3664 }
3665
3666 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3667}
3668
3669void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3670{
3671 raw_spin_lock_init(&cfs_b->lock);
3672 cfs_b->runtime = 0;
3673 cfs_b->quota = RUNTIME_INF;
3674 cfs_b->period = ns_to_ktime(default_cfs_period());
3675
3676 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3677 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3678 cfs_b->period_timer.function = sched_cfs_period_timer;
3679 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3680 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3681}
3682
3683static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3684{
3685 cfs_rq->runtime_enabled = 0;
3686 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3687}
3688
3689/* requires cfs_b->lock, may release to reprogram timer */
3690void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3691{
3692 /*
3693 * The timer may be active because we're trying to set a new bandwidth
3694 * period or because we're racing with the tear-down path
3695 * (timer_active==0 becomes visible before the hrtimer call-back
3696 * terminates). In either case we ensure that it's re-programmed
3697 */
927b54fc
BS
3698 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3699 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3700 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3701 raw_spin_unlock(&cfs_b->lock);
927b54fc 3702 cpu_relax();
029632fb
PZ
3703 raw_spin_lock(&cfs_b->lock);
3704 /* if someone else restarted the timer then we're done */
3705 if (cfs_b->timer_active)
3706 return;
3707 }
3708
3709 cfs_b->timer_active = 1;
3710 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3711}
3712
3713static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3714{
3715 hrtimer_cancel(&cfs_b->period_timer);
3716 hrtimer_cancel(&cfs_b->slack_timer);
3717}
3718
38dc3348 3719static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3720{
3721 struct cfs_rq *cfs_rq;
3722
3723 for_each_leaf_cfs_rq(rq, cfs_rq) {
3724 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3725
3726 if (!cfs_rq->runtime_enabled)
3727 continue;
3728
3729 /*
3730 * clock_task is not advancing so we just need to make sure
3731 * there's some valid quota amount
3732 */
3733 cfs_rq->runtime_remaining = cfs_b->quota;
3734 if (cfs_rq_throttled(cfs_rq))
3735 unthrottle_cfs_rq(cfs_rq);
3736 }
3737}
3738
3739#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3740static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3741{
78becc27 3742 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3743}
3744
9dbdb155 3745static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3746static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3747static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3748static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3749
3750static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3751{
3752 return 0;
3753}
64660c86
PT
3754
3755static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3756{
3757 return 0;
3758}
3759
3760static inline int throttled_lb_pair(struct task_group *tg,
3761 int src_cpu, int dest_cpu)
3762{
3763 return 0;
3764}
029632fb
PZ
3765
3766void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3767
3768#ifdef CONFIG_FAIR_GROUP_SCHED
3769static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3770#endif
3771
029632fb
PZ
3772static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3773{
3774 return NULL;
3775}
3776static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3777static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3778
3779#endif /* CONFIG_CFS_BANDWIDTH */
3780
bf0f6f24
IM
3781/**************************************************
3782 * CFS operations on tasks:
3783 */
3784
8f4d37ec
PZ
3785#ifdef CONFIG_SCHED_HRTICK
3786static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3787{
8f4d37ec
PZ
3788 struct sched_entity *se = &p->se;
3789 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3790
3791 WARN_ON(task_rq(p) != rq);
3792
b39e66ea 3793 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3794 u64 slice = sched_slice(cfs_rq, se);
3795 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3796 s64 delta = slice - ran;
3797
3798 if (delta < 0) {
3799 if (rq->curr == p)
3800 resched_task(p);
3801 return;
3802 }
3803
3804 /*
3805 * Don't schedule slices shorter than 10000ns, that just
3806 * doesn't make sense. Rely on vruntime for fairness.
3807 */
31656519 3808 if (rq->curr != p)
157124c1 3809 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3810
31656519 3811 hrtick_start(rq, delta);
8f4d37ec
PZ
3812 }
3813}
a4c2f00f
PZ
3814
3815/*
3816 * called from enqueue/dequeue and updates the hrtick when the
3817 * current task is from our class and nr_running is low enough
3818 * to matter.
3819 */
3820static void hrtick_update(struct rq *rq)
3821{
3822 struct task_struct *curr = rq->curr;
3823
b39e66ea 3824 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3825 return;
3826
3827 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3828 hrtick_start_fair(rq, curr);
3829}
55e12e5e 3830#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3831static inline void
3832hrtick_start_fair(struct rq *rq, struct task_struct *p)
3833{
3834}
a4c2f00f
PZ
3835
3836static inline void hrtick_update(struct rq *rq)
3837{
3838}
8f4d37ec
PZ
3839#endif
3840
bf0f6f24
IM
3841/*
3842 * The enqueue_task method is called before nr_running is
3843 * increased. Here we update the fair scheduling stats and
3844 * then put the task into the rbtree:
3845 */
ea87bb78 3846static void
371fd7e7 3847enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3848{
3849 struct cfs_rq *cfs_rq;
62fb1851 3850 struct sched_entity *se = &p->se;
bf0f6f24
IM
3851
3852 for_each_sched_entity(se) {
62fb1851 3853 if (se->on_rq)
bf0f6f24
IM
3854 break;
3855 cfs_rq = cfs_rq_of(se);
88ec22d3 3856 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3857
3858 /*
3859 * end evaluation on encountering a throttled cfs_rq
3860 *
3861 * note: in the case of encountering a throttled cfs_rq we will
3862 * post the final h_nr_running increment below.
3863 */
3864 if (cfs_rq_throttled(cfs_rq))
3865 break;
953bfcd1 3866 cfs_rq->h_nr_running++;
85dac906 3867
88ec22d3 3868 flags = ENQUEUE_WAKEUP;
bf0f6f24 3869 }
8f4d37ec 3870
2069dd75 3871 for_each_sched_entity(se) {
0f317143 3872 cfs_rq = cfs_rq_of(se);
953bfcd1 3873 cfs_rq->h_nr_running++;
2069dd75 3874
85dac906
PT
3875 if (cfs_rq_throttled(cfs_rq))
3876 break;
3877
17bc14b7 3878 update_cfs_shares(cfs_rq);
9ee474f5 3879 update_entity_load_avg(se, 1);
2069dd75
PZ
3880 }
3881
18bf2805
BS
3882 if (!se) {
3883 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3884 inc_nr_running(rq);
18bf2805 3885 }
a4c2f00f 3886 hrtick_update(rq);
bf0f6f24
IM
3887}
3888
2f36825b
VP
3889static void set_next_buddy(struct sched_entity *se);
3890
bf0f6f24
IM
3891/*
3892 * The dequeue_task method is called before nr_running is
3893 * decreased. We remove the task from the rbtree and
3894 * update the fair scheduling stats:
3895 */
371fd7e7 3896static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3897{
3898 struct cfs_rq *cfs_rq;
62fb1851 3899 struct sched_entity *se = &p->se;
2f36825b 3900 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3901
3902 for_each_sched_entity(se) {
3903 cfs_rq = cfs_rq_of(se);
371fd7e7 3904 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3905
3906 /*
3907 * end evaluation on encountering a throttled cfs_rq
3908 *
3909 * note: in the case of encountering a throttled cfs_rq we will
3910 * post the final h_nr_running decrement below.
3911 */
3912 if (cfs_rq_throttled(cfs_rq))
3913 break;
953bfcd1 3914 cfs_rq->h_nr_running--;
2069dd75 3915
bf0f6f24 3916 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3917 if (cfs_rq->load.weight) {
3918 /*
3919 * Bias pick_next to pick a task from this cfs_rq, as
3920 * p is sleeping when it is within its sched_slice.
3921 */
3922 if (task_sleep && parent_entity(se))
3923 set_next_buddy(parent_entity(se));
9598c82d
PT
3924
3925 /* avoid re-evaluating load for this entity */
3926 se = parent_entity(se);
bf0f6f24 3927 break;
2f36825b 3928 }
371fd7e7 3929 flags |= DEQUEUE_SLEEP;
bf0f6f24 3930 }
8f4d37ec 3931
2069dd75 3932 for_each_sched_entity(se) {
0f317143 3933 cfs_rq = cfs_rq_of(se);
953bfcd1 3934 cfs_rq->h_nr_running--;
2069dd75 3935
85dac906
PT
3936 if (cfs_rq_throttled(cfs_rq))
3937 break;
3938
17bc14b7 3939 update_cfs_shares(cfs_rq);
9ee474f5 3940 update_entity_load_avg(se, 1);
2069dd75
PZ
3941 }
3942
18bf2805 3943 if (!se) {
85dac906 3944 dec_nr_running(rq);
18bf2805
BS
3945 update_rq_runnable_avg(rq, 1);
3946 }
a4c2f00f 3947 hrtick_update(rq);
bf0f6f24
IM
3948}
3949
e7693a36 3950#ifdef CONFIG_SMP
029632fb
PZ
3951/* Used instead of source_load when we know the type == 0 */
3952static unsigned long weighted_cpuload(const int cpu)
3953{
b92486cb 3954 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3955}
3956
3957/*
3958 * Return a low guess at the load of a migration-source cpu weighted
3959 * according to the scheduling class and "nice" value.
3960 *
3961 * We want to under-estimate the load of migration sources, to
3962 * balance conservatively.
3963 */
3964static unsigned long source_load(int cpu, int type)
3965{
3966 struct rq *rq = cpu_rq(cpu);
3967 unsigned long total = weighted_cpuload(cpu);
3968
3969 if (type == 0 || !sched_feat(LB_BIAS))
3970 return total;
3971
3972 return min(rq->cpu_load[type-1], total);
3973}
3974
3975/*
3976 * Return a high guess at the load of a migration-target cpu weighted
3977 * according to the scheduling class and "nice" value.
3978 */
3979static unsigned long target_load(int cpu, int type)
3980{
3981 struct rq *rq = cpu_rq(cpu);
3982 unsigned long total = weighted_cpuload(cpu);
3983
3984 if (type == 0 || !sched_feat(LB_BIAS))
3985 return total;
3986
3987 return max(rq->cpu_load[type-1], total);
3988}
3989
3990static unsigned long power_of(int cpu)
3991{
3992 return cpu_rq(cpu)->cpu_power;
3993}
3994
3995static unsigned long cpu_avg_load_per_task(int cpu)
3996{
3997 struct rq *rq = cpu_rq(cpu);
3998 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3999 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4000
4001 if (nr_running)
b92486cb 4002 return load_avg / nr_running;
029632fb
PZ
4003
4004 return 0;
4005}
4006
62470419
MW
4007static void record_wakee(struct task_struct *p)
4008{
4009 /*
4010 * Rough decay (wiping) for cost saving, don't worry
4011 * about the boundary, really active task won't care
4012 * about the loss.
4013 */
4014 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4015 current->wakee_flips = 0;
4016 current->wakee_flip_decay_ts = jiffies;
4017 }
4018
4019 if (current->last_wakee != p) {
4020 current->last_wakee = p;
4021 current->wakee_flips++;
4022 }
4023}
098fb9db 4024
74f8e4b2 4025static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4026{
4027 struct sched_entity *se = &p->se;
4028 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4029 u64 min_vruntime;
4030
4031#ifndef CONFIG_64BIT
4032 u64 min_vruntime_copy;
88ec22d3 4033
3fe1698b
PZ
4034 do {
4035 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4036 smp_rmb();
4037 min_vruntime = cfs_rq->min_vruntime;
4038 } while (min_vruntime != min_vruntime_copy);
4039#else
4040 min_vruntime = cfs_rq->min_vruntime;
4041#endif
88ec22d3 4042
3fe1698b 4043 se->vruntime -= min_vruntime;
62470419 4044 record_wakee(p);
88ec22d3
PZ
4045}
4046
bb3469ac 4047#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4048/*
4049 * effective_load() calculates the load change as seen from the root_task_group
4050 *
4051 * Adding load to a group doesn't make a group heavier, but can cause movement
4052 * of group shares between cpus. Assuming the shares were perfectly aligned one
4053 * can calculate the shift in shares.
cf5f0acf
PZ
4054 *
4055 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4056 * on this @cpu and results in a total addition (subtraction) of @wg to the
4057 * total group weight.
4058 *
4059 * Given a runqueue weight distribution (rw_i) we can compute a shares
4060 * distribution (s_i) using:
4061 *
4062 * s_i = rw_i / \Sum rw_j (1)
4063 *
4064 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4065 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4066 * shares distribution (s_i):
4067 *
4068 * rw_i = { 2, 4, 1, 0 }
4069 * s_i = { 2/7, 4/7, 1/7, 0 }
4070 *
4071 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4072 * task used to run on and the CPU the waker is running on), we need to
4073 * compute the effect of waking a task on either CPU and, in case of a sync
4074 * wakeup, compute the effect of the current task going to sleep.
4075 *
4076 * So for a change of @wl to the local @cpu with an overall group weight change
4077 * of @wl we can compute the new shares distribution (s'_i) using:
4078 *
4079 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4080 *
4081 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4082 * differences in waking a task to CPU 0. The additional task changes the
4083 * weight and shares distributions like:
4084 *
4085 * rw'_i = { 3, 4, 1, 0 }
4086 * s'_i = { 3/8, 4/8, 1/8, 0 }
4087 *
4088 * We can then compute the difference in effective weight by using:
4089 *
4090 * dw_i = S * (s'_i - s_i) (3)
4091 *
4092 * Where 'S' is the group weight as seen by its parent.
4093 *
4094 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4095 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4096 * 4/7) times the weight of the group.
f5bfb7d9 4097 */
2069dd75 4098static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4099{
4be9daaa 4100 struct sched_entity *se = tg->se[cpu];
f1d239f7 4101
9722c2da 4102 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4103 return wl;
4104
4be9daaa 4105 for_each_sched_entity(se) {
cf5f0acf 4106 long w, W;
4be9daaa 4107
977dda7c 4108 tg = se->my_q->tg;
bb3469ac 4109
cf5f0acf
PZ
4110 /*
4111 * W = @wg + \Sum rw_j
4112 */
4113 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4114
cf5f0acf
PZ
4115 /*
4116 * w = rw_i + @wl
4117 */
4118 w = se->my_q->load.weight + wl;
940959e9 4119
cf5f0acf
PZ
4120 /*
4121 * wl = S * s'_i; see (2)
4122 */
4123 if (W > 0 && w < W)
4124 wl = (w * tg->shares) / W;
977dda7c
PT
4125 else
4126 wl = tg->shares;
940959e9 4127
cf5f0acf
PZ
4128 /*
4129 * Per the above, wl is the new se->load.weight value; since
4130 * those are clipped to [MIN_SHARES, ...) do so now. See
4131 * calc_cfs_shares().
4132 */
977dda7c
PT
4133 if (wl < MIN_SHARES)
4134 wl = MIN_SHARES;
cf5f0acf
PZ
4135
4136 /*
4137 * wl = dw_i = S * (s'_i - s_i); see (3)
4138 */
977dda7c 4139 wl -= se->load.weight;
cf5f0acf
PZ
4140
4141 /*
4142 * Recursively apply this logic to all parent groups to compute
4143 * the final effective load change on the root group. Since
4144 * only the @tg group gets extra weight, all parent groups can
4145 * only redistribute existing shares. @wl is the shift in shares
4146 * resulting from this level per the above.
4147 */
4be9daaa 4148 wg = 0;
4be9daaa 4149 }
bb3469ac 4150
4be9daaa 4151 return wl;
bb3469ac
PZ
4152}
4153#else
4be9daaa 4154
58d081b5 4155static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4156{
83378269 4157 return wl;
bb3469ac 4158}
4be9daaa 4159
bb3469ac
PZ
4160#endif
4161
62470419
MW
4162static int wake_wide(struct task_struct *p)
4163{
7d9ffa89 4164 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4165
4166 /*
4167 * Yeah, it's the switching-frequency, could means many wakee or
4168 * rapidly switch, use factor here will just help to automatically
4169 * adjust the loose-degree, so bigger node will lead to more pull.
4170 */
4171 if (p->wakee_flips > factor) {
4172 /*
4173 * wakee is somewhat hot, it needs certain amount of cpu
4174 * resource, so if waker is far more hot, prefer to leave
4175 * it alone.
4176 */
4177 if (current->wakee_flips > (factor * p->wakee_flips))
4178 return 1;
4179 }
4180
4181 return 0;
4182}
4183
c88d5910 4184static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4185{
e37b6a7b 4186 s64 this_load, load;
c88d5910 4187 int idx, this_cpu, prev_cpu;
098fb9db 4188 unsigned long tl_per_task;
c88d5910 4189 struct task_group *tg;
83378269 4190 unsigned long weight;
b3137bc8 4191 int balanced;
098fb9db 4192
62470419
MW
4193 /*
4194 * If we wake multiple tasks be careful to not bounce
4195 * ourselves around too much.
4196 */
4197 if (wake_wide(p))
4198 return 0;
4199
c88d5910
PZ
4200 idx = sd->wake_idx;
4201 this_cpu = smp_processor_id();
4202 prev_cpu = task_cpu(p);
4203 load = source_load(prev_cpu, idx);
4204 this_load = target_load(this_cpu, idx);
098fb9db 4205
b3137bc8
MG
4206 /*
4207 * If sync wakeup then subtract the (maximum possible)
4208 * effect of the currently running task from the load
4209 * of the current CPU:
4210 */
83378269
PZ
4211 if (sync) {
4212 tg = task_group(current);
4213 weight = current->se.load.weight;
4214
c88d5910 4215 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4216 load += effective_load(tg, prev_cpu, 0, -weight);
4217 }
b3137bc8 4218
83378269
PZ
4219 tg = task_group(p);
4220 weight = p->se.load.weight;
b3137bc8 4221
71a29aa7
PZ
4222 /*
4223 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4224 * due to the sync cause above having dropped this_load to 0, we'll
4225 * always have an imbalance, but there's really nothing you can do
4226 * about that, so that's good too.
71a29aa7
PZ
4227 *
4228 * Otherwise check if either cpus are near enough in load to allow this
4229 * task to be woken on this_cpu.
4230 */
e37b6a7b
PT
4231 if (this_load > 0) {
4232 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4233
4234 this_eff_load = 100;
4235 this_eff_load *= power_of(prev_cpu);
4236 this_eff_load *= this_load +
4237 effective_load(tg, this_cpu, weight, weight);
4238
4239 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4240 prev_eff_load *= power_of(this_cpu);
4241 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4242
4243 balanced = this_eff_load <= prev_eff_load;
4244 } else
4245 balanced = true;
b3137bc8 4246
098fb9db 4247 /*
4ae7d5ce
IM
4248 * If the currently running task will sleep within
4249 * a reasonable amount of time then attract this newly
4250 * woken task:
098fb9db 4251 */
2fb7635c
PZ
4252 if (sync && balanced)
4253 return 1;
098fb9db 4254
41acab88 4255 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4256 tl_per_task = cpu_avg_load_per_task(this_cpu);
4257
c88d5910
PZ
4258 if (balanced ||
4259 (this_load <= load &&
4260 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4261 /*
4262 * This domain has SD_WAKE_AFFINE and
4263 * p is cache cold in this domain, and
4264 * there is no bad imbalance.
4265 */
c88d5910 4266 schedstat_inc(sd, ttwu_move_affine);
41acab88 4267 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4268
4269 return 1;
4270 }
4271 return 0;
4272}
4273
aaee1203
PZ
4274/*
4275 * find_idlest_group finds and returns the least busy CPU group within the
4276 * domain.
4277 */
4278static struct sched_group *
78e7ed53 4279find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4280 int this_cpu, int sd_flag)
e7693a36 4281{
b3bd3de6 4282 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4283 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4284 int load_idx = sd->forkexec_idx;
aaee1203 4285 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4286
c44f2a02
VG
4287 if (sd_flag & SD_BALANCE_WAKE)
4288 load_idx = sd->wake_idx;
4289
aaee1203
PZ
4290 do {
4291 unsigned long load, avg_load;
4292 int local_group;
4293 int i;
e7693a36 4294
aaee1203
PZ
4295 /* Skip over this group if it has no CPUs allowed */
4296 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4297 tsk_cpus_allowed(p)))
aaee1203
PZ
4298 continue;
4299
4300 local_group = cpumask_test_cpu(this_cpu,
4301 sched_group_cpus(group));
4302
4303 /* Tally up the load of all CPUs in the group */
4304 avg_load = 0;
4305
4306 for_each_cpu(i, sched_group_cpus(group)) {
4307 /* Bias balancing toward cpus of our domain */
4308 if (local_group)
4309 load = source_load(i, load_idx);
4310 else
4311 load = target_load(i, load_idx);
4312
4313 avg_load += load;
4314 }
4315
4316 /* Adjust by relative CPU power of the group */
9c3f75cb 4317 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4318
4319 if (local_group) {
4320 this_load = avg_load;
aaee1203
PZ
4321 } else if (avg_load < min_load) {
4322 min_load = avg_load;
4323 idlest = group;
4324 }
4325 } while (group = group->next, group != sd->groups);
4326
4327 if (!idlest || 100*this_load < imbalance*min_load)
4328 return NULL;
4329 return idlest;
4330}
4331
4332/*
4333 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4334 */
4335static int
4336find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4337{
4338 unsigned long load, min_load = ULONG_MAX;
4339 int idlest = -1;
4340 int i;
4341
4342 /* Traverse only the allowed CPUs */
fa17b507 4343 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4344 load = weighted_cpuload(i);
4345
4346 if (load < min_load || (load == min_load && i == this_cpu)) {
4347 min_load = load;
4348 idlest = i;
e7693a36
GH
4349 }
4350 }
4351
aaee1203
PZ
4352 return idlest;
4353}
e7693a36 4354
a50bde51
PZ
4355/*
4356 * Try and locate an idle CPU in the sched_domain.
4357 */
99bd5e2f 4358static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4359{
99bd5e2f 4360 struct sched_domain *sd;
37407ea7 4361 struct sched_group *sg;
e0a79f52 4362 int i = task_cpu(p);
a50bde51 4363
e0a79f52
MG
4364 if (idle_cpu(target))
4365 return target;
99bd5e2f
SS
4366
4367 /*
e0a79f52 4368 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4369 */
e0a79f52
MG
4370 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4371 return i;
a50bde51
PZ
4372
4373 /*
37407ea7 4374 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4375 */
518cd623 4376 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4377 for_each_lower_domain(sd) {
37407ea7
LT
4378 sg = sd->groups;
4379 do {
4380 if (!cpumask_intersects(sched_group_cpus(sg),
4381 tsk_cpus_allowed(p)))
4382 goto next;
4383
4384 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4385 if (i == target || !idle_cpu(i))
37407ea7
LT
4386 goto next;
4387 }
970e1789 4388
37407ea7
LT
4389 target = cpumask_first_and(sched_group_cpus(sg),
4390 tsk_cpus_allowed(p));
4391 goto done;
4392next:
4393 sg = sg->next;
4394 } while (sg != sd->groups);
4395 }
4396done:
a50bde51
PZ
4397 return target;
4398}
4399
aaee1203 4400/*
de91b9cb
MR
4401 * select_task_rq_fair: Select target runqueue for the waking task in domains
4402 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4403 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4404 *
de91b9cb
MR
4405 * Balances load by selecting the idlest cpu in the idlest group, or under
4406 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4407 *
de91b9cb 4408 * Returns the target cpu number.
aaee1203
PZ
4409 *
4410 * preempt must be disabled.
4411 */
0017d735 4412static int
ac66f547 4413select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4414{
29cd8bae 4415 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4416 int cpu = smp_processor_id();
c88d5910 4417 int new_cpu = cpu;
99bd5e2f 4418 int want_affine = 0;
5158f4e4 4419 int sync = wake_flags & WF_SYNC;
c88d5910 4420
29baa747 4421 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4422 return prev_cpu;
4423
0763a660 4424 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4425 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4426 want_affine = 1;
4427 new_cpu = prev_cpu;
4428 }
aaee1203 4429
dce840a0 4430 rcu_read_lock();
aaee1203 4431 for_each_domain(cpu, tmp) {
e4f42888
PZ
4432 if (!(tmp->flags & SD_LOAD_BALANCE))
4433 continue;
4434
fe3bcfe1 4435 /*
99bd5e2f
SS
4436 * If both cpu and prev_cpu are part of this domain,
4437 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4438 */
99bd5e2f
SS
4439 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4440 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4441 affine_sd = tmp;
29cd8bae 4442 break;
f03542a7 4443 }
29cd8bae 4444
f03542a7 4445 if (tmp->flags & sd_flag)
29cd8bae
PZ
4446 sd = tmp;
4447 }
4448
8b911acd 4449 if (affine_sd) {
f03542a7 4450 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4451 prev_cpu = cpu;
4452
4453 new_cpu = select_idle_sibling(p, prev_cpu);
4454 goto unlock;
8b911acd 4455 }
e7693a36 4456
aaee1203
PZ
4457 while (sd) {
4458 struct sched_group *group;
c88d5910 4459 int weight;
098fb9db 4460
0763a660 4461 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4462 sd = sd->child;
4463 continue;
4464 }
098fb9db 4465
c44f2a02 4466 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4467 if (!group) {
4468 sd = sd->child;
4469 continue;
4470 }
4ae7d5ce 4471
d7c33c49 4472 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4473 if (new_cpu == -1 || new_cpu == cpu) {
4474 /* Now try balancing at a lower domain level of cpu */
4475 sd = sd->child;
4476 continue;
e7693a36 4477 }
aaee1203
PZ
4478
4479 /* Now try balancing at a lower domain level of new_cpu */
4480 cpu = new_cpu;
669c55e9 4481 weight = sd->span_weight;
aaee1203
PZ
4482 sd = NULL;
4483 for_each_domain(cpu, tmp) {
669c55e9 4484 if (weight <= tmp->span_weight)
aaee1203 4485 break;
0763a660 4486 if (tmp->flags & sd_flag)
aaee1203
PZ
4487 sd = tmp;
4488 }
4489 /* while loop will break here if sd == NULL */
e7693a36 4490 }
dce840a0
PZ
4491unlock:
4492 rcu_read_unlock();
e7693a36 4493
c88d5910 4494 return new_cpu;
e7693a36 4495}
0a74bef8
PT
4496
4497/*
4498 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4499 * cfs_rq_of(p) references at time of call are still valid and identify the
4500 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4501 * other assumptions, including the state of rq->lock, should be made.
4502 */
4503static void
4504migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4505{
aff3e498
PT
4506 struct sched_entity *se = &p->se;
4507 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4508
4509 /*
4510 * Load tracking: accumulate removed load so that it can be processed
4511 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4512 * to blocked load iff they have a positive decay-count. It can never
4513 * be negative here since on-rq tasks have decay-count == 0.
4514 */
4515 if (se->avg.decay_count) {
4516 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4517 atomic_long_add(se->avg.load_avg_contrib,
4518 &cfs_rq->removed_load);
aff3e498 4519 }
0a74bef8 4520}
e7693a36
GH
4521#endif /* CONFIG_SMP */
4522
e52fb7c0
PZ
4523static unsigned long
4524wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4525{
4526 unsigned long gran = sysctl_sched_wakeup_granularity;
4527
4528 /*
e52fb7c0
PZ
4529 * Since its curr running now, convert the gran from real-time
4530 * to virtual-time in his units.
13814d42
MG
4531 *
4532 * By using 'se' instead of 'curr' we penalize light tasks, so
4533 * they get preempted easier. That is, if 'se' < 'curr' then
4534 * the resulting gran will be larger, therefore penalizing the
4535 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4536 * be smaller, again penalizing the lighter task.
4537 *
4538 * This is especially important for buddies when the leftmost
4539 * task is higher priority than the buddy.
0bbd3336 4540 */
f4ad9bd2 4541 return calc_delta_fair(gran, se);
0bbd3336
PZ
4542}
4543
464b7527
PZ
4544/*
4545 * Should 'se' preempt 'curr'.
4546 *
4547 * |s1
4548 * |s2
4549 * |s3
4550 * g
4551 * |<--->|c
4552 *
4553 * w(c, s1) = -1
4554 * w(c, s2) = 0
4555 * w(c, s3) = 1
4556 *
4557 */
4558static int
4559wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4560{
4561 s64 gran, vdiff = curr->vruntime - se->vruntime;
4562
4563 if (vdiff <= 0)
4564 return -1;
4565
e52fb7c0 4566 gran = wakeup_gran(curr, se);
464b7527
PZ
4567 if (vdiff > gran)
4568 return 1;
4569
4570 return 0;
4571}
4572
02479099
PZ
4573static void set_last_buddy(struct sched_entity *se)
4574{
69c80f3e
VP
4575 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4576 return;
4577
4578 for_each_sched_entity(se)
4579 cfs_rq_of(se)->last = se;
02479099
PZ
4580}
4581
4582static void set_next_buddy(struct sched_entity *se)
4583{
69c80f3e
VP
4584 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4585 return;
4586
4587 for_each_sched_entity(se)
4588 cfs_rq_of(se)->next = se;
02479099
PZ
4589}
4590
ac53db59
RR
4591static void set_skip_buddy(struct sched_entity *se)
4592{
69c80f3e
VP
4593 for_each_sched_entity(se)
4594 cfs_rq_of(se)->skip = se;
ac53db59
RR
4595}
4596
bf0f6f24
IM
4597/*
4598 * Preempt the current task with a newly woken task if needed:
4599 */
5a9b86f6 4600static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4601{
4602 struct task_struct *curr = rq->curr;
8651a86c 4603 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4604 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4605 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4606 int next_buddy_marked = 0;
bf0f6f24 4607
4ae7d5ce
IM
4608 if (unlikely(se == pse))
4609 return;
4610
5238cdd3 4611 /*
ddcdf6e7 4612 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4613 * unconditionally check_prempt_curr() after an enqueue (which may have
4614 * lead to a throttle). This both saves work and prevents false
4615 * next-buddy nomination below.
4616 */
4617 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4618 return;
4619
2f36825b 4620 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4621 set_next_buddy(pse);
2f36825b
VP
4622 next_buddy_marked = 1;
4623 }
57fdc26d 4624
aec0a514
BR
4625 /*
4626 * We can come here with TIF_NEED_RESCHED already set from new task
4627 * wake up path.
5238cdd3
PT
4628 *
4629 * Note: this also catches the edge-case of curr being in a throttled
4630 * group (e.g. via set_curr_task), since update_curr() (in the
4631 * enqueue of curr) will have resulted in resched being set. This
4632 * prevents us from potentially nominating it as a false LAST_BUDDY
4633 * below.
aec0a514
BR
4634 */
4635 if (test_tsk_need_resched(curr))
4636 return;
4637
a2f5c9ab
DH
4638 /* Idle tasks are by definition preempted by non-idle tasks. */
4639 if (unlikely(curr->policy == SCHED_IDLE) &&
4640 likely(p->policy != SCHED_IDLE))
4641 goto preempt;
4642
91c234b4 4643 /*
a2f5c9ab
DH
4644 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4645 * is driven by the tick):
91c234b4 4646 */
8ed92e51 4647 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4648 return;
bf0f6f24 4649
464b7527 4650 find_matching_se(&se, &pse);
9bbd7374 4651 update_curr(cfs_rq_of(se));
002f128b 4652 BUG_ON(!pse);
2f36825b
VP
4653 if (wakeup_preempt_entity(se, pse) == 1) {
4654 /*
4655 * Bias pick_next to pick the sched entity that is
4656 * triggering this preemption.
4657 */
4658 if (!next_buddy_marked)
4659 set_next_buddy(pse);
3a7e73a2 4660 goto preempt;
2f36825b 4661 }
464b7527 4662
3a7e73a2 4663 return;
a65ac745 4664
3a7e73a2
PZ
4665preempt:
4666 resched_task(curr);
4667 /*
4668 * Only set the backward buddy when the current task is still
4669 * on the rq. This can happen when a wakeup gets interleaved
4670 * with schedule on the ->pre_schedule() or idle_balance()
4671 * point, either of which can * drop the rq lock.
4672 *
4673 * Also, during early boot the idle thread is in the fair class,
4674 * for obvious reasons its a bad idea to schedule back to it.
4675 */
4676 if (unlikely(!se->on_rq || curr == rq->idle))
4677 return;
4678
4679 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4680 set_last_buddy(se);
bf0f6f24
IM
4681}
4682
606dba2e
PZ
4683static struct task_struct *
4684pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4685{
4686 struct cfs_rq *cfs_rq = &rq->cfs;
4687 struct sched_entity *se;
678d5718
PZ
4688 struct task_struct *p;
4689
6e83125c 4690again:
678d5718
PZ
4691#ifdef CONFIG_FAIR_GROUP_SCHED
4692 if (!cfs_rq->nr_running)
38033c37 4693 goto idle;
678d5718 4694
3f1d2a31 4695 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4696 goto simple;
4697
4698 /*
4699 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4700 * likely that a next task is from the same cgroup as the current.
4701 *
4702 * Therefore attempt to avoid putting and setting the entire cgroup
4703 * hierarchy, only change the part that actually changes.
4704 */
4705
4706 do {
4707 struct sched_entity *curr = cfs_rq->curr;
4708
4709 /*
4710 * Since we got here without doing put_prev_entity() we also
4711 * have to consider cfs_rq->curr. If it is still a runnable
4712 * entity, update_curr() will update its vruntime, otherwise
4713 * forget we've ever seen it.
4714 */
4715 if (curr && curr->on_rq)
4716 update_curr(cfs_rq);
4717 else
4718 curr = NULL;
4719
4720 /*
4721 * This call to check_cfs_rq_runtime() will do the throttle and
4722 * dequeue its entity in the parent(s). Therefore the 'simple'
4723 * nr_running test will indeed be correct.
4724 */
4725 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4726 goto simple;
4727
4728 se = pick_next_entity(cfs_rq, curr);
4729 cfs_rq = group_cfs_rq(se);
4730 } while (cfs_rq);
4731
4732 p = task_of(se);
4733
4734 /*
4735 * Since we haven't yet done put_prev_entity and if the selected task
4736 * is a different task than we started out with, try and touch the
4737 * least amount of cfs_rqs.
4738 */
4739 if (prev != p) {
4740 struct sched_entity *pse = &prev->se;
4741
4742 while (!(cfs_rq = is_same_group(se, pse))) {
4743 int se_depth = se->depth;
4744 int pse_depth = pse->depth;
4745
4746 if (se_depth <= pse_depth) {
4747 put_prev_entity(cfs_rq_of(pse), pse);
4748 pse = parent_entity(pse);
4749 }
4750 if (se_depth >= pse_depth) {
4751 set_next_entity(cfs_rq_of(se), se);
4752 se = parent_entity(se);
4753 }
4754 }
4755
4756 put_prev_entity(cfs_rq, pse);
4757 set_next_entity(cfs_rq, se);
4758 }
4759
4760 if (hrtick_enabled(rq))
4761 hrtick_start_fair(rq, p);
4762
4763 return p;
4764simple:
4765 cfs_rq = &rq->cfs;
4766#endif
bf0f6f24 4767
36ace27e 4768 if (!cfs_rq->nr_running)
38033c37 4769 goto idle;
bf0f6f24 4770
3f1d2a31 4771 put_prev_task(rq, prev);
606dba2e 4772
bf0f6f24 4773 do {
678d5718 4774 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4775 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4776 cfs_rq = group_cfs_rq(se);
4777 } while (cfs_rq);
4778
8f4d37ec 4779 p = task_of(se);
678d5718 4780
b39e66ea
MG
4781 if (hrtick_enabled(rq))
4782 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4783
4784 return p;
38033c37
PZ
4785
4786idle:
6e83125c 4787 if (idle_balance(rq)) /* drops rq->lock */
38033c37 4788 goto again;
38033c37
PZ
4789
4790 return NULL;
bf0f6f24
IM
4791}
4792
4793/*
4794 * Account for a descheduled task:
4795 */
31ee529c 4796static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4797{
4798 struct sched_entity *se = &prev->se;
4799 struct cfs_rq *cfs_rq;
4800
4801 for_each_sched_entity(se) {
4802 cfs_rq = cfs_rq_of(se);
ab6cde26 4803 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4804 }
4805}
4806
ac53db59
RR
4807/*
4808 * sched_yield() is very simple
4809 *
4810 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4811 */
4812static void yield_task_fair(struct rq *rq)
4813{
4814 struct task_struct *curr = rq->curr;
4815 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4816 struct sched_entity *se = &curr->se;
4817
4818 /*
4819 * Are we the only task in the tree?
4820 */
4821 if (unlikely(rq->nr_running == 1))
4822 return;
4823
4824 clear_buddies(cfs_rq, se);
4825
4826 if (curr->policy != SCHED_BATCH) {
4827 update_rq_clock(rq);
4828 /*
4829 * Update run-time statistics of the 'current'.
4830 */
4831 update_curr(cfs_rq);
916671c0
MG
4832 /*
4833 * Tell update_rq_clock() that we've just updated,
4834 * so we don't do microscopic update in schedule()
4835 * and double the fastpath cost.
4836 */
4837 rq->skip_clock_update = 1;
ac53db59
RR
4838 }
4839
4840 set_skip_buddy(se);
4841}
4842
d95f4122
MG
4843static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4844{
4845 struct sched_entity *se = &p->se;
4846
5238cdd3
PT
4847 /* throttled hierarchies are not runnable */
4848 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4849 return false;
4850
4851 /* Tell the scheduler that we'd really like pse to run next. */
4852 set_next_buddy(se);
4853
d95f4122
MG
4854 yield_task_fair(rq);
4855
4856 return true;
4857}
4858
681f3e68 4859#ifdef CONFIG_SMP
bf0f6f24 4860/**************************************************
e9c84cb8
PZ
4861 * Fair scheduling class load-balancing methods.
4862 *
4863 * BASICS
4864 *
4865 * The purpose of load-balancing is to achieve the same basic fairness the
4866 * per-cpu scheduler provides, namely provide a proportional amount of compute
4867 * time to each task. This is expressed in the following equation:
4868 *
4869 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4870 *
4871 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4872 * W_i,0 is defined as:
4873 *
4874 * W_i,0 = \Sum_j w_i,j (2)
4875 *
4876 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4877 * is derived from the nice value as per prio_to_weight[].
4878 *
4879 * The weight average is an exponential decay average of the instantaneous
4880 * weight:
4881 *
4882 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4883 *
4884 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4885 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4886 * can also include other factors [XXX].
4887 *
4888 * To achieve this balance we define a measure of imbalance which follows
4889 * directly from (1):
4890 *
4891 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4892 *
4893 * We them move tasks around to minimize the imbalance. In the continuous
4894 * function space it is obvious this converges, in the discrete case we get
4895 * a few fun cases generally called infeasible weight scenarios.
4896 *
4897 * [XXX expand on:
4898 * - infeasible weights;
4899 * - local vs global optima in the discrete case. ]
4900 *
4901 *
4902 * SCHED DOMAINS
4903 *
4904 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4905 * for all i,j solution, we create a tree of cpus that follows the hardware
4906 * topology where each level pairs two lower groups (or better). This results
4907 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4908 * tree to only the first of the previous level and we decrease the frequency
4909 * of load-balance at each level inv. proportional to the number of cpus in
4910 * the groups.
4911 *
4912 * This yields:
4913 *
4914 * log_2 n 1 n
4915 * \Sum { --- * --- * 2^i } = O(n) (5)
4916 * i = 0 2^i 2^i
4917 * `- size of each group
4918 * | | `- number of cpus doing load-balance
4919 * | `- freq
4920 * `- sum over all levels
4921 *
4922 * Coupled with a limit on how many tasks we can migrate every balance pass,
4923 * this makes (5) the runtime complexity of the balancer.
4924 *
4925 * An important property here is that each CPU is still (indirectly) connected
4926 * to every other cpu in at most O(log n) steps:
4927 *
4928 * The adjacency matrix of the resulting graph is given by:
4929 *
4930 * log_2 n
4931 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4932 * k = 0
4933 *
4934 * And you'll find that:
4935 *
4936 * A^(log_2 n)_i,j != 0 for all i,j (7)
4937 *
4938 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4939 * The task movement gives a factor of O(m), giving a convergence complexity
4940 * of:
4941 *
4942 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4943 *
4944 *
4945 * WORK CONSERVING
4946 *
4947 * In order to avoid CPUs going idle while there's still work to do, new idle
4948 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4949 * tree itself instead of relying on other CPUs to bring it work.
4950 *
4951 * This adds some complexity to both (5) and (8) but it reduces the total idle
4952 * time.
4953 *
4954 * [XXX more?]
4955 *
4956 *
4957 * CGROUPS
4958 *
4959 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4960 *
4961 * s_k,i
4962 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4963 * S_k
4964 *
4965 * Where
4966 *
4967 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4968 *
4969 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4970 *
4971 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4972 * property.
4973 *
4974 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4975 * rewrite all of this once again.]
4976 */
bf0f6f24 4977
ed387b78
HS
4978static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4979
0ec8aa00
PZ
4980enum fbq_type { regular, remote, all };
4981
ddcdf6e7 4982#define LBF_ALL_PINNED 0x01
367456c7 4983#define LBF_NEED_BREAK 0x02
6263322c
PZ
4984#define LBF_DST_PINNED 0x04
4985#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4986
4987struct lb_env {
4988 struct sched_domain *sd;
4989
ddcdf6e7 4990 struct rq *src_rq;
85c1e7da 4991 int src_cpu;
ddcdf6e7
PZ
4992
4993 int dst_cpu;
4994 struct rq *dst_rq;
4995
88b8dac0
SV
4996 struct cpumask *dst_grpmask;
4997 int new_dst_cpu;
ddcdf6e7 4998 enum cpu_idle_type idle;
bd939f45 4999 long imbalance;
b9403130
MW
5000 /* The set of CPUs under consideration for load-balancing */
5001 struct cpumask *cpus;
5002
ddcdf6e7 5003 unsigned int flags;
367456c7
PZ
5004
5005 unsigned int loop;
5006 unsigned int loop_break;
5007 unsigned int loop_max;
0ec8aa00
PZ
5008
5009 enum fbq_type fbq_type;
ddcdf6e7
PZ
5010};
5011
1e3c88bd 5012/*
ddcdf6e7 5013 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5014 * Both runqueues must be locked.
5015 */
ddcdf6e7 5016static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5017{
ddcdf6e7
PZ
5018 deactivate_task(env->src_rq, p, 0);
5019 set_task_cpu(p, env->dst_cpu);
5020 activate_task(env->dst_rq, p, 0);
5021 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5022}
5023
029632fb
PZ
5024/*
5025 * Is this task likely cache-hot:
5026 */
5027static int
5028task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
5029{
5030 s64 delta;
5031
5032 if (p->sched_class != &fair_sched_class)
5033 return 0;
5034
5035 if (unlikely(p->policy == SCHED_IDLE))
5036 return 0;
5037
5038 /*
5039 * Buddy candidates are cache hot:
5040 */
5041 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5042 (&p->se == cfs_rq_of(&p->se)->next ||
5043 &p->se == cfs_rq_of(&p->se)->last))
5044 return 1;
5045
5046 if (sysctl_sched_migration_cost == -1)
5047 return 1;
5048 if (sysctl_sched_migration_cost == 0)
5049 return 0;
5050
5051 delta = now - p->se.exec_start;
5052
5053 return delta < (s64)sysctl_sched_migration_cost;
5054}
5055
3a7053b3
MG
5056#ifdef CONFIG_NUMA_BALANCING
5057/* Returns true if the destination node has incurred more faults */
5058static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5059{
5060 int src_nid, dst_nid;
5061
ff1df896 5062 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5063 !(env->sd->flags & SD_NUMA)) {
5064 return false;
5065 }
5066
5067 src_nid = cpu_to_node(env->src_cpu);
5068 dst_nid = cpu_to_node(env->dst_cpu);
5069
83e1d2cd 5070 if (src_nid == dst_nid)
3a7053b3
MG
5071 return false;
5072
83e1d2cd
MG
5073 /* Always encourage migration to the preferred node. */
5074 if (dst_nid == p->numa_preferred_nid)
5075 return true;
5076
887c290e
RR
5077 /* If both task and group weight improve, this move is a winner. */
5078 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5079 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
5080 return true;
5081
5082 return false;
5083}
7a0f3083
MG
5084
5085
5086static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5087{
5088 int src_nid, dst_nid;
5089
5090 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5091 return false;
5092
ff1df896 5093 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5094 return false;
5095
5096 src_nid = cpu_to_node(env->src_cpu);
5097 dst_nid = cpu_to_node(env->dst_cpu);
5098
83e1d2cd 5099 if (src_nid == dst_nid)
7a0f3083
MG
5100 return false;
5101
83e1d2cd
MG
5102 /* Migrating away from the preferred node is always bad. */
5103 if (src_nid == p->numa_preferred_nid)
5104 return true;
5105
887c290e
RR
5106 /* If either task or group weight get worse, don't do it. */
5107 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5108 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
5109 return true;
5110
5111 return false;
5112}
5113
3a7053b3
MG
5114#else
5115static inline bool migrate_improves_locality(struct task_struct *p,
5116 struct lb_env *env)
5117{
5118 return false;
5119}
7a0f3083
MG
5120
5121static inline bool migrate_degrades_locality(struct task_struct *p,
5122 struct lb_env *env)
5123{
5124 return false;
5125}
3a7053b3
MG
5126#endif
5127
1e3c88bd
PZ
5128/*
5129 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5130 */
5131static
8e45cb54 5132int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5133{
5134 int tsk_cache_hot = 0;
5135 /*
5136 * We do not migrate tasks that are:
d3198084 5137 * 1) throttled_lb_pair, or
1e3c88bd 5138 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5139 * 3) running (obviously), or
5140 * 4) are cache-hot on their current CPU.
1e3c88bd 5141 */
d3198084
JK
5142 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5143 return 0;
5144
ddcdf6e7 5145 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5146 int cpu;
88b8dac0 5147
41acab88 5148 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5149
6263322c
PZ
5150 env->flags |= LBF_SOME_PINNED;
5151
88b8dac0
SV
5152 /*
5153 * Remember if this task can be migrated to any other cpu in
5154 * our sched_group. We may want to revisit it if we couldn't
5155 * meet load balance goals by pulling other tasks on src_cpu.
5156 *
5157 * Also avoid computing new_dst_cpu if we have already computed
5158 * one in current iteration.
5159 */
6263322c 5160 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5161 return 0;
5162
e02e60c1
JK
5163 /* Prevent to re-select dst_cpu via env's cpus */
5164 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5165 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5166 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5167 env->new_dst_cpu = cpu;
5168 break;
5169 }
88b8dac0 5170 }
e02e60c1 5171
1e3c88bd
PZ
5172 return 0;
5173 }
88b8dac0
SV
5174
5175 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5176 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5177
ddcdf6e7 5178 if (task_running(env->src_rq, p)) {
41acab88 5179 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5180 return 0;
5181 }
5182
5183 /*
5184 * Aggressive migration if:
3a7053b3
MG
5185 * 1) destination numa is preferred
5186 * 2) task is cache cold, or
5187 * 3) too many balance attempts have failed.
1e3c88bd 5188 */
78becc27 5189 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
5190 if (!tsk_cache_hot)
5191 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5192
5193 if (migrate_improves_locality(p, env)) {
5194#ifdef CONFIG_SCHEDSTATS
5195 if (tsk_cache_hot) {
5196 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5197 schedstat_inc(p, se.statistics.nr_forced_migrations);
5198 }
5199#endif
5200 return 1;
5201 }
5202
1e3c88bd 5203 if (!tsk_cache_hot ||
8e45cb54 5204 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5205
1e3c88bd 5206 if (tsk_cache_hot) {
8e45cb54 5207 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5208 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5209 }
4e2dcb73 5210
1e3c88bd
PZ
5211 return 1;
5212 }
5213
4e2dcb73
ZH
5214 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5215 return 0;
1e3c88bd
PZ
5216}
5217
897c395f
PZ
5218/*
5219 * move_one_task tries to move exactly one task from busiest to this_rq, as
5220 * part of active balancing operations within "domain".
5221 * Returns 1 if successful and 0 otherwise.
5222 *
5223 * Called with both runqueues locked.
5224 */
8e45cb54 5225static int move_one_task(struct lb_env *env)
897c395f
PZ
5226{
5227 struct task_struct *p, *n;
897c395f 5228
367456c7 5229 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5230 if (!can_migrate_task(p, env))
5231 continue;
897c395f 5232
367456c7
PZ
5233 move_task(p, env);
5234 /*
5235 * Right now, this is only the second place move_task()
5236 * is called, so we can safely collect move_task()
5237 * stats here rather than inside move_task().
5238 */
5239 schedstat_inc(env->sd, lb_gained[env->idle]);
5240 return 1;
897c395f 5241 }
897c395f
PZ
5242 return 0;
5243}
5244
eb95308e
PZ
5245static const unsigned int sched_nr_migrate_break = 32;
5246
5d6523eb 5247/*
bd939f45 5248 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5249 * this_rq, as part of a balancing operation within domain "sd".
5250 * Returns 1 if successful and 0 otherwise.
5251 *
5252 * Called with both runqueues locked.
5253 */
5254static int move_tasks(struct lb_env *env)
1e3c88bd 5255{
5d6523eb
PZ
5256 struct list_head *tasks = &env->src_rq->cfs_tasks;
5257 struct task_struct *p;
367456c7
PZ
5258 unsigned long load;
5259 int pulled = 0;
1e3c88bd 5260
bd939f45 5261 if (env->imbalance <= 0)
5d6523eb 5262 return 0;
1e3c88bd 5263
5d6523eb
PZ
5264 while (!list_empty(tasks)) {
5265 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5266
367456c7
PZ
5267 env->loop++;
5268 /* We've more or less seen every task there is, call it quits */
5d6523eb 5269 if (env->loop > env->loop_max)
367456c7 5270 break;
5d6523eb
PZ
5271
5272 /* take a breather every nr_migrate tasks */
367456c7 5273 if (env->loop > env->loop_break) {
eb95308e 5274 env->loop_break += sched_nr_migrate_break;
8e45cb54 5275 env->flags |= LBF_NEED_BREAK;
ee00e66f 5276 break;
a195f004 5277 }
1e3c88bd 5278
d3198084 5279 if (!can_migrate_task(p, env))
367456c7
PZ
5280 goto next;
5281
5282 load = task_h_load(p);
5d6523eb 5283
eb95308e 5284 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5285 goto next;
5286
bd939f45 5287 if ((load / 2) > env->imbalance)
367456c7 5288 goto next;
1e3c88bd 5289
ddcdf6e7 5290 move_task(p, env);
ee00e66f 5291 pulled++;
bd939f45 5292 env->imbalance -= load;
1e3c88bd
PZ
5293
5294#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5295 /*
5296 * NEWIDLE balancing is a source of latency, so preemptible
5297 * kernels will stop after the first task is pulled to minimize
5298 * the critical section.
5299 */
5d6523eb 5300 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5301 break;
1e3c88bd
PZ
5302#endif
5303
ee00e66f
PZ
5304 /*
5305 * We only want to steal up to the prescribed amount of
5306 * weighted load.
5307 */
bd939f45 5308 if (env->imbalance <= 0)
ee00e66f 5309 break;
367456c7
PZ
5310
5311 continue;
5312next:
5d6523eb 5313 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5314 }
5d6523eb 5315
1e3c88bd 5316 /*
ddcdf6e7
PZ
5317 * Right now, this is one of only two places move_task() is called,
5318 * so we can safely collect move_task() stats here rather than
5319 * inside move_task().
1e3c88bd 5320 */
8e45cb54 5321 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5322
5d6523eb 5323 return pulled;
1e3c88bd
PZ
5324}
5325
230059de 5326#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5327/*
5328 * update tg->load_weight by folding this cpu's load_avg
5329 */
48a16753 5330static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5331{
48a16753
PT
5332 struct sched_entity *se = tg->se[cpu];
5333 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5334
48a16753
PT
5335 /* throttled entities do not contribute to load */
5336 if (throttled_hierarchy(cfs_rq))
5337 return;
9e3081ca 5338
aff3e498 5339 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5340
82958366
PT
5341 if (se) {
5342 update_entity_load_avg(se, 1);
5343 /*
5344 * We pivot on our runnable average having decayed to zero for
5345 * list removal. This generally implies that all our children
5346 * have also been removed (modulo rounding error or bandwidth
5347 * control); however, such cases are rare and we can fix these
5348 * at enqueue.
5349 *
5350 * TODO: fix up out-of-order children on enqueue.
5351 */
5352 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5353 list_del_leaf_cfs_rq(cfs_rq);
5354 } else {
48a16753 5355 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5356 update_rq_runnable_avg(rq, rq->nr_running);
5357 }
9e3081ca
PZ
5358}
5359
48a16753 5360static void update_blocked_averages(int cpu)
9e3081ca 5361{
9e3081ca 5362 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5363 struct cfs_rq *cfs_rq;
5364 unsigned long flags;
9e3081ca 5365
48a16753
PT
5366 raw_spin_lock_irqsave(&rq->lock, flags);
5367 update_rq_clock(rq);
9763b67f
PZ
5368 /*
5369 * Iterates the task_group tree in a bottom up fashion, see
5370 * list_add_leaf_cfs_rq() for details.
5371 */
64660c86 5372 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5373 /*
5374 * Note: We may want to consider periodically releasing
5375 * rq->lock about these updates so that creating many task
5376 * groups does not result in continually extending hold time.
5377 */
5378 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5379 }
48a16753
PT
5380
5381 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5382}
5383
9763b67f 5384/*
68520796 5385 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5386 * This needs to be done in a top-down fashion because the load of a child
5387 * group is a fraction of its parents load.
5388 */
68520796 5389static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5390{
68520796
VD
5391 struct rq *rq = rq_of(cfs_rq);
5392 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5393 unsigned long now = jiffies;
68520796 5394 unsigned long load;
a35b6466 5395
68520796 5396 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5397 return;
5398
68520796
VD
5399 cfs_rq->h_load_next = NULL;
5400 for_each_sched_entity(se) {
5401 cfs_rq = cfs_rq_of(se);
5402 cfs_rq->h_load_next = se;
5403 if (cfs_rq->last_h_load_update == now)
5404 break;
5405 }
a35b6466 5406
68520796 5407 if (!se) {
7e3115ef 5408 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5409 cfs_rq->last_h_load_update = now;
5410 }
5411
5412 while ((se = cfs_rq->h_load_next) != NULL) {
5413 load = cfs_rq->h_load;
5414 load = div64_ul(load * se->avg.load_avg_contrib,
5415 cfs_rq->runnable_load_avg + 1);
5416 cfs_rq = group_cfs_rq(se);
5417 cfs_rq->h_load = load;
5418 cfs_rq->last_h_load_update = now;
5419 }
9763b67f
PZ
5420}
5421
367456c7 5422static unsigned long task_h_load(struct task_struct *p)
230059de 5423{
367456c7 5424 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5425
68520796 5426 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5427 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5428 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5429}
5430#else
48a16753 5431static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5432{
5433}
5434
367456c7 5435static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5436{
a003a25b 5437 return p->se.avg.load_avg_contrib;
1e3c88bd 5438}
230059de 5439#endif
1e3c88bd 5440
1e3c88bd 5441/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5442/*
5443 * sg_lb_stats - stats of a sched_group required for load_balancing
5444 */
5445struct sg_lb_stats {
5446 unsigned long avg_load; /*Avg load across the CPUs of the group */
5447 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5448 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5449 unsigned long load_per_task;
3ae11c90 5450 unsigned long group_power;
147c5fc2
PZ
5451 unsigned int sum_nr_running; /* Nr tasks running in the group */
5452 unsigned int group_capacity;
5453 unsigned int idle_cpus;
5454 unsigned int group_weight;
1e3c88bd 5455 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5456 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5457#ifdef CONFIG_NUMA_BALANCING
5458 unsigned int nr_numa_running;
5459 unsigned int nr_preferred_running;
5460#endif
1e3c88bd
PZ
5461};
5462
56cf515b
JK
5463/*
5464 * sd_lb_stats - Structure to store the statistics of a sched_domain
5465 * during load balancing.
5466 */
5467struct sd_lb_stats {
5468 struct sched_group *busiest; /* Busiest group in this sd */
5469 struct sched_group *local; /* Local group in this sd */
5470 unsigned long total_load; /* Total load of all groups in sd */
5471 unsigned long total_pwr; /* Total power of all groups in sd */
5472 unsigned long avg_load; /* Average load across all groups in sd */
5473
56cf515b 5474 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5475 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5476};
5477
147c5fc2
PZ
5478static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5479{
5480 /*
5481 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5482 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5483 * We must however clear busiest_stat::avg_load because
5484 * update_sd_pick_busiest() reads this before assignment.
5485 */
5486 *sds = (struct sd_lb_stats){
5487 .busiest = NULL,
5488 .local = NULL,
5489 .total_load = 0UL,
5490 .total_pwr = 0UL,
5491 .busiest_stat = {
5492 .avg_load = 0UL,
5493 },
5494 };
5495}
5496
1e3c88bd
PZ
5497/**
5498 * get_sd_load_idx - Obtain the load index for a given sched domain.
5499 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5500 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5501 *
5502 * Return: The load index.
1e3c88bd
PZ
5503 */
5504static inline int get_sd_load_idx(struct sched_domain *sd,
5505 enum cpu_idle_type idle)
5506{
5507 int load_idx;
5508
5509 switch (idle) {
5510 case CPU_NOT_IDLE:
5511 load_idx = sd->busy_idx;
5512 break;
5513
5514 case CPU_NEWLY_IDLE:
5515 load_idx = sd->newidle_idx;
5516 break;
5517 default:
5518 load_idx = sd->idle_idx;
5519 break;
5520 }
5521
5522 return load_idx;
5523}
5524
15f803c9 5525static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5526{
1399fa78 5527 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5528}
5529
5530unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5531{
5532 return default_scale_freq_power(sd, cpu);
5533}
5534
15f803c9 5535static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5536{
669c55e9 5537 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5538 unsigned long smt_gain = sd->smt_gain;
5539
5540 smt_gain /= weight;
5541
5542 return smt_gain;
5543}
5544
5545unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5546{
5547 return default_scale_smt_power(sd, cpu);
5548}
5549
15f803c9 5550static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5551{
5552 struct rq *rq = cpu_rq(cpu);
b654f7de 5553 u64 total, available, age_stamp, avg;
1e3c88bd 5554
b654f7de
PZ
5555 /*
5556 * Since we're reading these variables without serialization make sure
5557 * we read them once before doing sanity checks on them.
5558 */
5559 age_stamp = ACCESS_ONCE(rq->age_stamp);
5560 avg = ACCESS_ONCE(rq->rt_avg);
5561
78becc27 5562 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5563
b654f7de 5564 if (unlikely(total < avg)) {
aa483808
VP
5565 /* Ensures that power won't end up being negative */
5566 available = 0;
5567 } else {
b654f7de 5568 available = total - avg;
aa483808 5569 }
1e3c88bd 5570
1399fa78
NR
5571 if (unlikely((s64)total < SCHED_POWER_SCALE))
5572 total = SCHED_POWER_SCALE;
1e3c88bd 5573
1399fa78 5574 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5575
5576 return div_u64(available, total);
5577}
5578
5579static void update_cpu_power(struct sched_domain *sd, int cpu)
5580{
669c55e9 5581 unsigned long weight = sd->span_weight;
1399fa78 5582 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5583 struct sched_group *sdg = sd->groups;
5584
1e3c88bd
PZ
5585 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5586 if (sched_feat(ARCH_POWER))
5587 power *= arch_scale_smt_power(sd, cpu);
5588 else
5589 power *= default_scale_smt_power(sd, cpu);
5590
1399fa78 5591 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5592 }
5593
9c3f75cb 5594 sdg->sgp->power_orig = power;
9d5efe05
SV
5595
5596 if (sched_feat(ARCH_POWER))
5597 power *= arch_scale_freq_power(sd, cpu);
5598 else
5599 power *= default_scale_freq_power(sd, cpu);
5600
1399fa78 5601 power >>= SCHED_POWER_SHIFT;
9d5efe05 5602
1e3c88bd 5603 power *= scale_rt_power(cpu);
1399fa78 5604 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5605
5606 if (!power)
5607 power = 1;
5608
e51fd5e2 5609 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5610 sdg->sgp->power = power;
1e3c88bd
PZ
5611}
5612
029632fb 5613void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5614{
5615 struct sched_domain *child = sd->child;
5616 struct sched_group *group, *sdg = sd->groups;
863bffc8 5617 unsigned long power, power_orig;
4ec4412e
VG
5618 unsigned long interval;
5619
5620 interval = msecs_to_jiffies(sd->balance_interval);
5621 interval = clamp(interval, 1UL, max_load_balance_interval);
5622 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5623
5624 if (!child) {
5625 update_cpu_power(sd, cpu);
5626 return;
5627 }
5628
863bffc8 5629 power_orig = power = 0;
1e3c88bd 5630
74a5ce20
PZ
5631 if (child->flags & SD_OVERLAP) {
5632 /*
5633 * SD_OVERLAP domains cannot assume that child groups
5634 * span the current group.
5635 */
5636
863bffc8 5637 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5638 struct sched_group_power *sgp;
5639 struct rq *rq = cpu_rq(cpu);
863bffc8 5640
9abf24d4
SD
5641 /*
5642 * build_sched_domains() -> init_sched_groups_power()
5643 * gets here before we've attached the domains to the
5644 * runqueues.
5645 *
5646 * Use power_of(), which is set irrespective of domains
5647 * in update_cpu_power().
5648 *
5649 * This avoids power/power_orig from being 0 and
5650 * causing divide-by-zero issues on boot.
5651 *
5652 * Runtime updates will correct power_orig.
5653 */
5654 if (unlikely(!rq->sd)) {
5655 power_orig += power_of(cpu);
5656 power += power_of(cpu);
5657 continue;
5658 }
863bffc8 5659
9abf24d4
SD
5660 sgp = rq->sd->groups->sgp;
5661 power_orig += sgp->power_orig;
5662 power += sgp->power;
863bffc8 5663 }
74a5ce20
PZ
5664 } else {
5665 /*
5666 * !SD_OVERLAP domains can assume that child groups
5667 * span the current group.
5668 */
5669
5670 group = child->groups;
5671 do {
863bffc8 5672 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5673 power += group->sgp->power;
5674 group = group->next;
5675 } while (group != child->groups);
5676 }
1e3c88bd 5677
863bffc8
PZ
5678 sdg->sgp->power_orig = power_orig;
5679 sdg->sgp->power = power;
1e3c88bd
PZ
5680}
5681
9d5efe05
SV
5682/*
5683 * Try and fix up capacity for tiny siblings, this is needed when
5684 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5685 * which on its own isn't powerful enough.
5686 *
5687 * See update_sd_pick_busiest() and check_asym_packing().
5688 */
5689static inline int
5690fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5691{
5692 /*
1399fa78 5693 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5694 */
a6c75f2f 5695 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5696 return 0;
5697
5698 /*
5699 * If ~90% of the cpu_power is still there, we're good.
5700 */
9c3f75cb 5701 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5702 return 1;
5703
5704 return 0;
5705}
5706
30ce5dab
PZ
5707/*
5708 * Group imbalance indicates (and tries to solve) the problem where balancing
5709 * groups is inadequate due to tsk_cpus_allowed() constraints.
5710 *
5711 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5712 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5713 * Something like:
5714 *
5715 * { 0 1 2 3 } { 4 5 6 7 }
5716 * * * * *
5717 *
5718 * If we were to balance group-wise we'd place two tasks in the first group and
5719 * two tasks in the second group. Clearly this is undesired as it will overload
5720 * cpu 3 and leave one of the cpus in the second group unused.
5721 *
5722 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5723 * by noticing the lower domain failed to reach balance and had difficulty
5724 * moving tasks due to affinity constraints.
30ce5dab
PZ
5725 *
5726 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5727 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5728 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5729 * to create an effective group imbalance.
5730 *
5731 * This is a somewhat tricky proposition since the next run might not find the
5732 * group imbalance and decide the groups need to be balanced again. A most
5733 * subtle and fragile situation.
5734 */
5735
6263322c 5736static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5737{
6263322c 5738 return group->sgp->imbalance;
30ce5dab
PZ
5739}
5740
b37d9316
PZ
5741/*
5742 * Compute the group capacity.
5743 *
c61037e9
PZ
5744 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5745 * first dividing out the smt factor and computing the actual number of cores
5746 * and limit power unit capacity with that.
b37d9316
PZ
5747 */
5748static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5749{
c61037e9
PZ
5750 unsigned int capacity, smt, cpus;
5751 unsigned int power, power_orig;
5752
5753 power = group->sgp->power;
5754 power_orig = group->sgp->power_orig;
5755 cpus = group->group_weight;
b37d9316 5756
c61037e9
PZ
5757 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5758 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5759 capacity = cpus / smt; /* cores */
b37d9316 5760
c61037e9 5761 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5762 if (!capacity)
5763 capacity = fix_small_capacity(env->sd, group);
5764
5765 return capacity;
5766}
5767
1e3c88bd
PZ
5768/**
5769 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5770 * @env: The load balancing environment.
1e3c88bd 5771 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5772 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5773 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5774 * @sgs: variable to hold the statistics for this group.
5775 */
bd939f45
PZ
5776static inline void update_sg_lb_stats(struct lb_env *env,
5777 struct sched_group *group, int load_idx,
23f0d209 5778 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5779{
30ce5dab 5780 unsigned long load;
bd939f45 5781 int i;
1e3c88bd 5782
b72ff13c
PZ
5783 memset(sgs, 0, sizeof(*sgs));
5784
b9403130 5785 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5786 struct rq *rq = cpu_rq(i);
5787
1e3c88bd 5788 /* Bias balancing toward cpus of our domain */
6263322c 5789 if (local_group)
04f733b4 5790 load = target_load(i, load_idx);
6263322c 5791 else
1e3c88bd 5792 load = source_load(i, load_idx);
1e3c88bd
PZ
5793
5794 sgs->group_load += load;
380c9077 5795 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5796#ifdef CONFIG_NUMA_BALANCING
5797 sgs->nr_numa_running += rq->nr_numa_running;
5798 sgs->nr_preferred_running += rq->nr_preferred_running;
5799#endif
1e3c88bd 5800 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5801 if (idle_cpu(i))
5802 sgs->idle_cpus++;
1e3c88bd
PZ
5803 }
5804
1e3c88bd 5805 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5806 sgs->group_power = group->sgp->power;
5807 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5808
dd5feea1 5809 if (sgs->sum_nr_running)
38d0f770 5810 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5811
aae6d3dd 5812 sgs->group_weight = group->group_weight;
fab47622 5813
b37d9316
PZ
5814 sgs->group_imb = sg_imbalanced(group);
5815 sgs->group_capacity = sg_capacity(env, group);
5816
fab47622
NR
5817 if (sgs->group_capacity > sgs->sum_nr_running)
5818 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5819}
5820
532cb4c4
MN
5821/**
5822 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5823 * @env: The load balancing environment.
532cb4c4
MN
5824 * @sds: sched_domain statistics
5825 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5826 * @sgs: sched_group statistics
532cb4c4
MN
5827 *
5828 * Determine if @sg is a busier group than the previously selected
5829 * busiest group.
e69f6186
YB
5830 *
5831 * Return: %true if @sg is a busier group than the previously selected
5832 * busiest group. %false otherwise.
532cb4c4 5833 */
bd939f45 5834static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5835 struct sd_lb_stats *sds,
5836 struct sched_group *sg,
bd939f45 5837 struct sg_lb_stats *sgs)
532cb4c4 5838{
56cf515b 5839 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5840 return false;
5841
5842 if (sgs->sum_nr_running > sgs->group_capacity)
5843 return true;
5844
5845 if (sgs->group_imb)
5846 return true;
5847
5848 /*
5849 * ASYM_PACKING needs to move all the work to the lowest
5850 * numbered CPUs in the group, therefore mark all groups
5851 * higher than ourself as busy.
5852 */
bd939f45
PZ
5853 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5854 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5855 if (!sds->busiest)
5856 return true;
5857
5858 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5859 return true;
5860 }
5861
5862 return false;
5863}
5864
0ec8aa00
PZ
5865#ifdef CONFIG_NUMA_BALANCING
5866static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5867{
5868 if (sgs->sum_nr_running > sgs->nr_numa_running)
5869 return regular;
5870 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5871 return remote;
5872 return all;
5873}
5874
5875static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5876{
5877 if (rq->nr_running > rq->nr_numa_running)
5878 return regular;
5879 if (rq->nr_running > rq->nr_preferred_running)
5880 return remote;
5881 return all;
5882}
5883#else
5884static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5885{
5886 return all;
5887}
5888
5889static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5890{
5891 return regular;
5892}
5893#endif /* CONFIG_NUMA_BALANCING */
5894
1e3c88bd 5895/**
461819ac 5896 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5897 * @env: The load balancing environment.
1e3c88bd
PZ
5898 * @sds: variable to hold the statistics for this sched_domain.
5899 */
0ec8aa00 5900static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5901{
bd939f45
PZ
5902 struct sched_domain *child = env->sd->child;
5903 struct sched_group *sg = env->sd->groups;
56cf515b 5904 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5905 int load_idx, prefer_sibling = 0;
5906
5907 if (child && child->flags & SD_PREFER_SIBLING)
5908 prefer_sibling = 1;
5909
bd939f45 5910 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5911
5912 do {
56cf515b 5913 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5914 int local_group;
5915
bd939f45 5916 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5917 if (local_group) {
5918 sds->local = sg;
5919 sgs = &sds->local_stat;
b72ff13c
PZ
5920
5921 if (env->idle != CPU_NEWLY_IDLE ||
5922 time_after_eq(jiffies, sg->sgp->next_update))
5923 update_group_power(env->sd, env->dst_cpu);
56cf515b 5924 }
1e3c88bd 5925
56cf515b 5926 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5927
b72ff13c
PZ
5928 if (local_group)
5929 goto next_group;
5930
1e3c88bd
PZ
5931 /*
5932 * In case the child domain prefers tasks go to siblings
532cb4c4 5933 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5934 * and move all the excess tasks away. We lower the capacity
5935 * of a group only if the local group has the capacity to fit
5936 * these excess tasks, i.e. nr_running < group_capacity. The
5937 * extra check prevents the case where you always pull from the
5938 * heaviest group when it is already under-utilized (possible
5939 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5940 */
b72ff13c
PZ
5941 if (prefer_sibling && sds->local &&
5942 sds->local_stat.group_has_capacity)
147c5fc2 5943 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5944
b72ff13c 5945 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5946 sds->busiest = sg;
56cf515b 5947 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5948 }
5949
b72ff13c
PZ
5950next_group:
5951 /* Now, start updating sd_lb_stats */
5952 sds->total_load += sgs->group_load;
5953 sds->total_pwr += sgs->group_power;
5954
532cb4c4 5955 sg = sg->next;
bd939f45 5956 } while (sg != env->sd->groups);
0ec8aa00
PZ
5957
5958 if (env->sd->flags & SD_NUMA)
5959 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5960}
5961
532cb4c4
MN
5962/**
5963 * check_asym_packing - Check to see if the group is packed into the
5964 * sched doman.
5965 *
5966 * This is primarily intended to used at the sibling level. Some
5967 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5968 * case of POWER7, it can move to lower SMT modes only when higher
5969 * threads are idle. When in lower SMT modes, the threads will
5970 * perform better since they share less core resources. Hence when we
5971 * have idle threads, we want them to be the higher ones.
5972 *
5973 * This packing function is run on idle threads. It checks to see if
5974 * the busiest CPU in this domain (core in the P7 case) has a higher
5975 * CPU number than the packing function is being run on. Here we are
5976 * assuming lower CPU number will be equivalent to lower a SMT thread
5977 * number.
5978 *
e69f6186 5979 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5980 * this CPU. The amount of the imbalance is returned in *imbalance.
5981 *
cd96891d 5982 * @env: The load balancing environment.
532cb4c4 5983 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5984 */
bd939f45 5985static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5986{
5987 int busiest_cpu;
5988
bd939f45 5989 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5990 return 0;
5991
5992 if (!sds->busiest)
5993 return 0;
5994
5995 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5996 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5997 return 0;
5998
bd939f45 5999 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
6000 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6001 SCHED_POWER_SCALE);
bd939f45 6002
532cb4c4 6003 return 1;
1e3c88bd
PZ
6004}
6005
6006/**
6007 * fix_small_imbalance - Calculate the minor imbalance that exists
6008 * amongst the groups of a sched_domain, during
6009 * load balancing.
cd96891d 6010 * @env: The load balancing environment.
1e3c88bd 6011 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6012 */
bd939f45
PZ
6013static inline
6014void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
6015{
6016 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6017 unsigned int imbn = 2;
dd5feea1 6018 unsigned long scaled_busy_load_per_task;
56cf515b 6019 struct sg_lb_stats *local, *busiest;
1e3c88bd 6020
56cf515b
JK
6021 local = &sds->local_stat;
6022 busiest = &sds->busiest_stat;
1e3c88bd 6023
56cf515b
JK
6024 if (!local->sum_nr_running)
6025 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6026 else if (busiest->load_per_task > local->load_per_task)
6027 imbn = 1;
dd5feea1 6028
56cf515b
JK
6029 scaled_busy_load_per_task =
6030 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6031 busiest->group_power;
56cf515b 6032
3029ede3
VD
6033 if (busiest->avg_load + scaled_busy_load_per_task >=
6034 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6035 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6036 return;
6037 }
6038
6039 /*
6040 * OK, we don't have enough imbalance to justify moving tasks,
6041 * however we may be able to increase total CPU power used by
6042 * moving them.
6043 */
6044
3ae11c90 6045 pwr_now += busiest->group_power *
56cf515b 6046 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 6047 pwr_now += local->group_power *
56cf515b 6048 min(local->load_per_task, local->avg_load);
1399fa78 6049 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6050
6051 /* Amount of load we'd subtract */
56cf515b 6052 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6053 busiest->group_power;
56cf515b 6054 if (busiest->avg_load > tmp) {
3ae11c90 6055 pwr_move += busiest->group_power *
56cf515b
JK
6056 min(busiest->load_per_task,
6057 busiest->avg_load - tmp);
6058 }
1e3c88bd
PZ
6059
6060 /* Amount of load we'd add */
3ae11c90 6061 if (busiest->avg_load * busiest->group_power <
56cf515b 6062 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
6063 tmp = (busiest->avg_load * busiest->group_power) /
6064 local->group_power;
56cf515b
JK
6065 } else {
6066 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6067 local->group_power;
56cf515b 6068 }
3ae11c90
PZ
6069 pwr_move += local->group_power *
6070 min(local->load_per_task, local->avg_load + tmp);
1399fa78 6071 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6072
6073 /* Move if we gain throughput */
6074 if (pwr_move > pwr_now)
56cf515b 6075 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6076}
6077
6078/**
6079 * calculate_imbalance - Calculate the amount of imbalance present within the
6080 * groups of a given sched_domain during load balance.
bd939f45 6081 * @env: load balance environment
1e3c88bd 6082 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6083 */
bd939f45 6084static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6085{
dd5feea1 6086 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6087 struct sg_lb_stats *local, *busiest;
6088
6089 local = &sds->local_stat;
56cf515b 6090 busiest = &sds->busiest_stat;
dd5feea1 6091
56cf515b 6092 if (busiest->group_imb) {
30ce5dab
PZ
6093 /*
6094 * In the group_imb case we cannot rely on group-wide averages
6095 * to ensure cpu-load equilibrium, look at wider averages. XXX
6096 */
56cf515b
JK
6097 busiest->load_per_task =
6098 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6099 }
6100
1e3c88bd
PZ
6101 /*
6102 * In the presence of smp nice balancing, certain scenarios can have
6103 * max load less than avg load(as we skip the groups at or below
6104 * its cpu_power, while calculating max_load..)
6105 */
b1885550
VD
6106 if (busiest->avg_load <= sds->avg_load ||
6107 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6108 env->imbalance = 0;
6109 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6110 }
6111
56cf515b 6112 if (!busiest->group_imb) {
dd5feea1
SS
6113 /*
6114 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6115 * Except of course for the group_imb case, since then we might
6116 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6117 */
56cf515b
JK
6118 load_above_capacity =
6119 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 6120
1399fa78 6121 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6122 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6123 }
6124
6125 /*
6126 * We're trying to get all the cpus to the average_load, so we don't
6127 * want to push ourselves above the average load, nor do we wish to
6128 * reduce the max loaded cpu below the average load. At the same time,
6129 * we also don't want to reduce the group load below the group capacity
6130 * (so that we can implement power-savings policies etc). Thus we look
6131 * for the minimum possible imbalance.
dd5feea1 6132 */
30ce5dab 6133 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6134
6135 /* How much load to actually move to equalise the imbalance */
56cf515b 6136 env->imbalance = min(
3ae11c90
PZ
6137 max_pull * busiest->group_power,
6138 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6139 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6140
6141 /*
6142 * if *imbalance is less than the average load per runnable task
25985edc 6143 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6144 * a think about bumping its value to force at least one task to be
6145 * moved
6146 */
56cf515b 6147 if (env->imbalance < busiest->load_per_task)
bd939f45 6148 return fix_small_imbalance(env, sds);
1e3c88bd 6149}
fab47622 6150
1e3c88bd
PZ
6151/******* find_busiest_group() helpers end here *********************/
6152
6153/**
6154 * find_busiest_group - Returns the busiest group within the sched_domain
6155 * if there is an imbalance. If there isn't an imbalance, and
6156 * the user has opted for power-savings, it returns a group whose
6157 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6158 * such a group exists.
6159 *
6160 * Also calculates the amount of weighted load which should be moved
6161 * to restore balance.
6162 *
cd96891d 6163 * @env: The load balancing environment.
1e3c88bd 6164 *
e69f6186 6165 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6166 * - If no imbalance and user has opted for power-savings balance,
6167 * return the least loaded group whose CPUs can be
6168 * put to idle by rebalancing its tasks onto our group.
6169 */
56cf515b 6170static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6171{
56cf515b 6172 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6173 struct sd_lb_stats sds;
6174
147c5fc2 6175 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6176
6177 /*
6178 * Compute the various statistics relavent for load balancing at
6179 * this level.
6180 */
23f0d209 6181 update_sd_lb_stats(env, &sds);
56cf515b
JK
6182 local = &sds.local_stat;
6183 busiest = &sds.busiest_stat;
1e3c88bd 6184
bd939f45
PZ
6185 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6186 check_asym_packing(env, &sds))
532cb4c4
MN
6187 return sds.busiest;
6188
cc57aa8f 6189 /* There is no busy sibling group to pull tasks from */
56cf515b 6190 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6191 goto out_balanced;
6192
1399fa78 6193 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6194
866ab43e
PZ
6195 /*
6196 * If the busiest group is imbalanced the below checks don't
30ce5dab 6197 * work because they assume all things are equal, which typically
866ab43e
PZ
6198 * isn't true due to cpus_allowed constraints and the like.
6199 */
56cf515b 6200 if (busiest->group_imb)
866ab43e
PZ
6201 goto force_balance;
6202
cc57aa8f 6203 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6204 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6205 !busiest->group_has_capacity)
fab47622
NR
6206 goto force_balance;
6207
cc57aa8f
PZ
6208 /*
6209 * If the local group is more busy than the selected busiest group
6210 * don't try and pull any tasks.
6211 */
56cf515b 6212 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6213 goto out_balanced;
6214
cc57aa8f
PZ
6215 /*
6216 * Don't pull any tasks if this group is already above the domain
6217 * average load.
6218 */
56cf515b 6219 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6220 goto out_balanced;
6221
bd939f45 6222 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6223 /*
6224 * This cpu is idle. If the busiest group load doesn't
6225 * have more tasks than the number of available cpu's and
6226 * there is no imbalance between this and busiest group
6227 * wrt to idle cpu's, it is balanced.
6228 */
56cf515b
JK
6229 if ((local->idle_cpus < busiest->idle_cpus) &&
6230 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6231 goto out_balanced;
c186fafe
PZ
6232 } else {
6233 /*
6234 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6235 * imbalance_pct to be conservative.
6236 */
56cf515b
JK
6237 if (100 * busiest->avg_load <=
6238 env->sd->imbalance_pct * local->avg_load)
c186fafe 6239 goto out_balanced;
aae6d3dd 6240 }
1e3c88bd 6241
fab47622 6242force_balance:
1e3c88bd 6243 /* Looks like there is an imbalance. Compute it */
bd939f45 6244 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6245 return sds.busiest;
6246
6247out_balanced:
bd939f45 6248 env->imbalance = 0;
1e3c88bd
PZ
6249 return NULL;
6250}
6251
6252/*
6253 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6254 */
bd939f45 6255static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6256 struct sched_group *group)
1e3c88bd
PZ
6257{
6258 struct rq *busiest = NULL, *rq;
95a79b80 6259 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6260 int i;
6261
6906a408 6262 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6263 unsigned long power, capacity, wl;
6264 enum fbq_type rt;
6265
6266 rq = cpu_rq(i);
6267 rt = fbq_classify_rq(rq);
1e3c88bd 6268
0ec8aa00
PZ
6269 /*
6270 * We classify groups/runqueues into three groups:
6271 * - regular: there are !numa tasks
6272 * - remote: there are numa tasks that run on the 'wrong' node
6273 * - all: there is no distinction
6274 *
6275 * In order to avoid migrating ideally placed numa tasks,
6276 * ignore those when there's better options.
6277 *
6278 * If we ignore the actual busiest queue to migrate another
6279 * task, the next balance pass can still reduce the busiest
6280 * queue by moving tasks around inside the node.
6281 *
6282 * If we cannot move enough load due to this classification
6283 * the next pass will adjust the group classification and
6284 * allow migration of more tasks.
6285 *
6286 * Both cases only affect the total convergence complexity.
6287 */
6288 if (rt > env->fbq_type)
6289 continue;
6290
6291 power = power_of(i);
6292 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6293 if (!capacity)
bd939f45 6294 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6295
6e40f5bb 6296 wl = weighted_cpuload(i);
1e3c88bd 6297
6e40f5bb
TG
6298 /*
6299 * When comparing with imbalance, use weighted_cpuload()
6300 * which is not scaled with the cpu power.
6301 */
bd939f45 6302 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6303 continue;
6304
6e40f5bb
TG
6305 /*
6306 * For the load comparisons with the other cpu's, consider
6307 * the weighted_cpuload() scaled with the cpu power, so that
6308 * the load can be moved away from the cpu that is potentially
6309 * running at a lower capacity.
95a79b80
JK
6310 *
6311 * Thus we're looking for max(wl_i / power_i), crosswise
6312 * multiplication to rid ourselves of the division works out
6313 * to: wl_i * power_j > wl_j * power_i; where j is our
6314 * previous maximum.
6e40f5bb 6315 */
95a79b80
JK
6316 if (wl * busiest_power > busiest_load * power) {
6317 busiest_load = wl;
6318 busiest_power = power;
1e3c88bd
PZ
6319 busiest = rq;
6320 }
6321 }
6322
6323 return busiest;
6324}
6325
6326/*
6327 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6328 * so long as it is large enough.
6329 */
6330#define MAX_PINNED_INTERVAL 512
6331
6332/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6333DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6334
bd939f45 6335static int need_active_balance(struct lb_env *env)
1af3ed3d 6336{
bd939f45
PZ
6337 struct sched_domain *sd = env->sd;
6338
6339 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6340
6341 /*
6342 * ASYM_PACKING needs to force migrate tasks from busy but
6343 * higher numbered CPUs in order to pack all tasks in the
6344 * lowest numbered CPUs.
6345 */
bd939f45 6346 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6347 return 1;
1af3ed3d
PZ
6348 }
6349
6350 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6351}
6352
969c7921
TH
6353static int active_load_balance_cpu_stop(void *data);
6354
23f0d209
JK
6355static int should_we_balance(struct lb_env *env)
6356{
6357 struct sched_group *sg = env->sd->groups;
6358 struct cpumask *sg_cpus, *sg_mask;
6359 int cpu, balance_cpu = -1;
6360
6361 /*
6362 * In the newly idle case, we will allow all the cpu's
6363 * to do the newly idle load balance.
6364 */
6365 if (env->idle == CPU_NEWLY_IDLE)
6366 return 1;
6367
6368 sg_cpus = sched_group_cpus(sg);
6369 sg_mask = sched_group_mask(sg);
6370 /* Try to find first idle cpu */
6371 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6372 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6373 continue;
6374
6375 balance_cpu = cpu;
6376 break;
6377 }
6378
6379 if (balance_cpu == -1)
6380 balance_cpu = group_balance_cpu(sg);
6381
6382 /*
6383 * First idle cpu or the first cpu(busiest) in this sched group
6384 * is eligible for doing load balancing at this and above domains.
6385 */
b0cff9d8 6386 return balance_cpu == env->dst_cpu;
23f0d209
JK
6387}
6388
1e3c88bd
PZ
6389/*
6390 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6391 * tasks if there is an imbalance.
6392 */
6393static int load_balance(int this_cpu, struct rq *this_rq,
6394 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6395 int *continue_balancing)
1e3c88bd 6396{
88b8dac0 6397 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6398 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6399 struct sched_group *group;
1e3c88bd
PZ
6400 struct rq *busiest;
6401 unsigned long flags;
e6252c3e 6402 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6403
8e45cb54
PZ
6404 struct lb_env env = {
6405 .sd = sd,
ddcdf6e7
PZ
6406 .dst_cpu = this_cpu,
6407 .dst_rq = this_rq,
88b8dac0 6408 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6409 .idle = idle,
eb95308e 6410 .loop_break = sched_nr_migrate_break,
b9403130 6411 .cpus = cpus,
0ec8aa00 6412 .fbq_type = all,
8e45cb54
PZ
6413 };
6414
cfc03118
JK
6415 /*
6416 * For NEWLY_IDLE load_balancing, we don't need to consider
6417 * other cpus in our group
6418 */
e02e60c1 6419 if (idle == CPU_NEWLY_IDLE)
cfc03118 6420 env.dst_grpmask = NULL;
cfc03118 6421
1e3c88bd
PZ
6422 cpumask_copy(cpus, cpu_active_mask);
6423
1e3c88bd
PZ
6424 schedstat_inc(sd, lb_count[idle]);
6425
6426redo:
23f0d209
JK
6427 if (!should_we_balance(&env)) {
6428 *continue_balancing = 0;
1e3c88bd 6429 goto out_balanced;
23f0d209 6430 }
1e3c88bd 6431
23f0d209 6432 group = find_busiest_group(&env);
1e3c88bd
PZ
6433 if (!group) {
6434 schedstat_inc(sd, lb_nobusyg[idle]);
6435 goto out_balanced;
6436 }
6437
b9403130 6438 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6439 if (!busiest) {
6440 schedstat_inc(sd, lb_nobusyq[idle]);
6441 goto out_balanced;
6442 }
6443
78feefc5 6444 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6445
bd939f45 6446 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6447
6448 ld_moved = 0;
6449 if (busiest->nr_running > 1) {
6450 /*
6451 * Attempt to move tasks. If find_busiest_group has found
6452 * an imbalance but busiest->nr_running <= 1, the group is
6453 * still unbalanced. ld_moved simply stays zero, so it is
6454 * correctly treated as an imbalance.
6455 */
8e45cb54 6456 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6457 env.src_cpu = busiest->cpu;
6458 env.src_rq = busiest;
6459 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6460
5d6523eb 6461more_balance:
1e3c88bd 6462 local_irq_save(flags);
78feefc5 6463 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6464
6465 /*
6466 * cur_ld_moved - load moved in current iteration
6467 * ld_moved - cumulative load moved across iterations
6468 */
6469 cur_ld_moved = move_tasks(&env);
6470 ld_moved += cur_ld_moved;
78feefc5 6471 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6472 local_irq_restore(flags);
6473
6474 /*
6475 * some other cpu did the load balance for us.
6476 */
88b8dac0
SV
6477 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6478 resched_cpu(env.dst_cpu);
6479
f1cd0858
JK
6480 if (env.flags & LBF_NEED_BREAK) {
6481 env.flags &= ~LBF_NEED_BREAK;
6482 goto more_balance;
6483 }
6484
88b8dac0
SV
6485 /*
6486 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6487 * us and move them to an alternate dst_cpu in our sched_group
6488 * where they can run. The upper limit on how many times we
6489 * iterate on same src_cpu is dependent on number of cpus in our
6490 * sched_group.
6491 *
6492 * This changes load balance semantics a bit on who can move
6493 * load to a given_cpu. In addition to the given_cpu itself
6494 * (or a ilb_cpu acting on its behalf where given_cpu is
6495 * nohz-idle), we now have balance_cpu in a position to move
6496 * load to given_cpu. In rare situations, this may cause
6497 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6498 * _independently_ and at _same_ time to move some load to
6499 * given_cpu) causing exceess load to be moved to given_cpu.
6500 * This however should not happen so much in practice and
6501 * moreover subsequent load balance cycles should correct the
6502 * excess load moved.
6503 */
6263322c 6504 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6505
7aff2e3a
VD
6506 /* Prevent to re-select dst_cpu via env's cpus */
6507 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6508
78feefc5 6509 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6510 env.dst_cpu = env.new_dst_cpu;
6263322c 6511 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6512 env.loop = 0;
6513 env.loop_break = sched_nr_migrate_break;
e02e60c1 6514
88b8dac0
SV
6515 /*
6516 * Go back to "more_balance" rather than "redo" since we
6517 * need to continue with same src_cpu.
6518 */
6519 goto more_balance;
6520 }
1e3c88bd 6521
6263322c
PZ
6522 /*
6523 * We failed to reach balance because of affinity.
6524 */
6525 if (sd_parent) {
6526 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6527
6528 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6529 *group_imbalance = 1;
6530 } else if (*group_imbalance)
6531 *group_imbalance = 0;
6532 }
6533
1e3c88bd 6534 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6535 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6536 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6537 if (!cpumask_empty(cpus)) {
6538 env.loop = 0;
6539 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6540 goto redo;
bbf18b19 6541 }
1e3c88bd
PZ
6542 goto out_balanced;
6543 }
6544 }
6545
6546 if (!ld_moved) {
6547 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6548 /*
6549 * Increment the failure counter only on periodic balance.
6550 * We do not want newidle balance, which can be very
6551 * frequent, pollute the failure counter causing
6552 * excessive cache_hot migrations and active balances.
6553 */
6554 if (idle != CPU_NEWLY_IDLE)
6555 sd->nr_balance_failed++;
1e3c88bd 6556
bd939f45 6557 if (need_active_balance(&env)) {
1e3c88bd
PZ
6558 raw_spin_lock_irqsave(&busiest->lock, flags);
6559
969c7921
TH
6560 /* don't kick the active_load_balance_cpu_stop,
6561 * if the curr task on busiest cpu can't be
6562 * moved to this_cpu
1e3c88bd
PZ
6563 */
6564 if (!cpumask_test_cpu(this_cpu,
fa17b507 6565 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6566 raw_spin_unlock_irqrestore(&busiest->lock,
6567 flags);
8e45cb54 6568 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6569 goto out_one_pinned;
6570 }
6571
969c7921
TH
6572 /*
6573 * ->active_balance synchronizes accesses to
6574 * ->active_balance_work. Once set, it's cleared
6575 * only after active load balance is finished.
6576 */
1e3c88bd
PZ
6577 if (!busiest->active_balance) {
6578 busiest->active_balance = 1;
6579 busiest->push_cpu = this_cpu;
6580 active_balance = 1;
6581 }
6582 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6583
bd939f45 6584 if (active_balance) {
969c7921
TH
6585 stop_one_cpu_nowait(cpu_of(busiest),
6586 active_load_balance_cpu_stop, busiest,
6587 &busiest->active_balance_work);
bd939f45 6588 }
1e3c88bd
PZ
6589
6590 /*
6591 * We've kicked active balancing, reset the failure
6592 * counter.
6593 */
6594 sd->nr_balance_failed = sd->cache_nice_tries+1;
6595 }
6596 } else
6597 sd->nr_balance_failed = 0;
6598
6599 if (likely(!active_balance)) {
6600 /* We were unbalanced, so reset the balancing interval */
6601 sd->balance_interval = sd->min_interval;
6602 } else {
6603 /*
6604 * If we've begun active balancing, start to back off. This
6605 * case may not be covered by the all_pinned logic if there
6606 * is only 1 task on the busy runqueue (because we don't call
6607 * move_tasks).
6608 */
6609 if (sd->balance_interval < sd->max_interval)
6610 sd->balance_interval *= 2;
6611 }
6612
1e3c88bd
PZ
6613 goto out;
6614
6615out_balanced:
6616 schedstat_inc(sd, lb_balanced[idle]);
6617
6618 sd->nr_balance_failed = 0;
6619
6620out_one_pinned:
6621 /* tune up the balancing interval */
8e45cb54 6622 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6623 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6624 (sd->balance_interval < sd->max_interval))
6625 sd->balance_interval *= 2;
6626
46e49b38 6627 ld_moved = 0;
1e3c88bd 6628out:
1e3c88bd
PZ
6629 return ld_moved;
6630}
6631
1e3c88bd
PZ
6632/*
6633 * idle_balance is called by schedule() if this_cpu is about to become
6634 * idle. Attempts to pull tasks from other CPUs.
6635 */
6e83125c 6636static int idle_balance(struct rq *this_rq)
1e3c88bd
PZ
6637{
6638 struct sched_domain *sd;
6639 int pulled_task = 0;
6640 unsigned long next_balance = jiffies + HZ;
9bd721c5 6641 u64 curr_cost = 0;
b4f2ab43 6642 int this_cpu = this_rq->cpu;
1e3c88bd 6643
6e83125c
PZ
6644 idle_enter_fair(this_rq);
6645 /*
6646 * We must set idle_stamp _before_ calling idle_balance(), such that we
6647 * measure the duration of idle_balance() as idle time.
6648 */
6649 this_rq->idle_stamp = rq_clock(this_rq);
6650
1e3c88bd 6651 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6e83125c 6652 goto out;
1e3c88bd 6653
f492e12e
PZ
6654 /*
6655 * Drop the rq->lock, but keep IRQ/preempt disabled.
6656 */
6657 raw_spin_unlock(&this_rq->lock);
6658
48a16753 6659 update_blocked_averages(this_cpu);
dce840a0 6660 rcu_read_lock();
1e3c88bd
PZ
6661 for_each_domain(this_cpu, sd) {
6662 unsigned long interval;
23f0d209 6663 int continue_balancing = 1;
9bd721c5 6664 u64 t0, domain_cost;
1e3c88bd
PZ
6665
6666 if (!(sd->flags & SD_LOAD_BALANCE))
6667 continue;
6668
9bd721c5
JL
6669 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6670 break;
6671
f492e12e 6672 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6673 t0 = sched_clock_cpu(this_cpu);
6674
1e3c88bd 6675 /* If we've pulled tasks over stop searching: */
f492e12e 6676 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6677 sd, CPU_NEWLY_IDLE,
6678 &continue_balancing);
9bd721c5
JL
6679
6680 domain_cost = sched_clock_cpu(this_cpu) - t0;
6681 if (domain_cost > sd->max_newidle_lb_cost)
6682 sd->max_newidle_lb_cost = domain_cost;
6683
6684 curr_cost += domain_cost;
f492e12e 6685 }
1e3c88bd
PZ
6686
6687 interval = msecs_to_jiffies(sd->balance_interval);
6688 if (time_after(next_balance, sd->last_balance + interval))
6689 next_balance = sd->last_balance + interval;
3c4017c1 6690 if (pulled_task)
1e3c88bd 6691 break;
1e3c88bd 6692 }
dce840a0 6693 rcu_read_unlock();
f492e12e
PZ
6694
6695 raw_spin_lock(&this_rq->lock);
6696
e5fc6611
DL
6697 /*
6698 * While browsing the domains, we released the rq lock.
6699 * A task could have be enqueued in the meantime
6700 */
6e83125c
PZ
6701 if (this_rq->nr_running && !pulled_task) {
6702 pulled_task = 1;
6703 goto out;
6704 }
e5fc6611 6705
1e3c88bd
PZ
6706 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6707 /*
6708 * We are going idle. next_balance may be set based on
6709 * a busy processor. So reset next_balance.
6710 */
6711 this_rq->next_balance = next_balance;
6712 }
9bd721c5
JL
6713
6714 if (curr_cost > this_rq->max_idle_balance_cost)
6715 this_rq->max_idle_balance_cost = curr_cost;
3c4017c1 6716
6e83125c
PZ
6717out:
6718 if (pulled_task)
6719 this_rq->idle_stamp = 0;
6720
3c4017c1 6721 return pulled_task;
1e3c88bd
PZ
6722}
6723
6724/*
969c7921
TH
6725 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6726 * running tasks off the busiest CPU onto idle CPUs. It requires at
6727 * least 1 task to be running on each physical CPU where possible, and
6728 * avoids physical / logical imbalances.
1e3c88bd 6729 */
969c7921 6730static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6731{
969c7921
TH
6732 struct rq *busiest_rq = data;
6733 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6734 int target_cpu = busiest_rq->push_cpu;
969c7921 6735 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6736 struct sched_domain *sd;
969c7921
TH
6737
6738 raw_spin_lock_irq(&busiest_rq->lock);
6739
6740 /* make sure the requested cpu hasn't gone down in the meantime */
6741 if (unlikely(busiest_cpu != smp_processor_id() ||
6742 !busiest_rq->active_balance))
6743 goto out_unlock;
1e3c88bd
PZ
6744
6745 /* Is there any task to move? */
6746 if (busiest_rq->nr_running <= 1)
969c7921 6747 goto out_unlock;
1e3c88bd
PZ
6748
6749 /*
6750 * This condition is "impossible", if it occurs
6751 * we need to fix it. Originally reported by
6752 * Bjorn Helgaas on a 128-cpu setup.
6753 */
6754 BUG_ON(busiest_rq == target_rq);
6755
6756 /* move a task from busiest_rq to target_rq */
6757 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6758
6759 /* Search for an sd spanning us and the target CPU. */
dce840a0 6760 rcu_read_lock();
1e3c88bd
PZ
6761 for_each_domain(target_cpu, sd) {
6762 if ((sd->flags & SD_LOAD_BALANCE) &&
6763 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6764 break;
6765 }
6766
6767 if (likely(sd)) {
8e45cb54
PZ
6768 struct lb_env env = {
6769 .sd = sd,
ddcdf6e7
PZ
6770 .dst_cpu = target_cpu,
6771 .dst_rq = target_rq,
6772 .src_cpu = busiest_rq->cpu,
6773 .src_rq = busiest_rq,
8e45cb54
PZ
6774 .idle = CPU_IDLE,
6775 };
6776
1e3c88bd
PZ
6777 schedstat_inc(sd, alb_count);
6778
8e45cb54 6779 if (move_one_task(&env))
1e3c88bd
PZ
6780 schedstat_inc(sd, alb_pushed);
6781 else
6782 schedstat_inc(sd, alb_failed);
6783 }
dce840a0 6784 rcu_read_unlock();
1e3c88bd 6785 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6786out_unlock:
6787 busiest_rq->active_balance = 0;
6788 raw_spin_unlock_irq(&busiest_rq->lock);
6789 return 0;
1e3c88bd
PZ
6790}
6791
d987fc7f
MG
6792static inline int on_null_domain(struct rq *rq)
6793{
6794 return unlikely(!rcu_dereference_sched(rq->sd));
6795}
6796
3451d024 6797#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6798/*
6799 * idle load balancing details
83cd4fe2
VP
6800 * - When one of the busy CPUs notice that there may be an idle rebalancing
6801 * needed, they will kick the idle load balancer, which then does idle
6802 * load balancing for all the idle CPUs.
6803 */
1e3c88bd 6804static struct {
83cd4fe2 6805 cpumask_var_t idle_cpus_mask;
0b005cf5 6806 atomic_t nr_cpus;
83cd4fe2
VP
6807 unsigned long next_balance; /* in jiffy units */
6808} nohz ____cacheline_aligned;
1e3c88bd 6809
3dd0337d 6810static inline int find_new_ilb(void)
1e3c88bd 6811{
0b005cf5 6812 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6813
786d6dc7
SS
6814 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6815 return ilb;
6816
6817 return nr_cpu_ids;
1e3c88bd 6818}
1e3c88bd 6819
83cd4fe2
VP
6820/*
6821 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6822 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6823 * CPU (if there is one).
6824 */
0aeeeeba 6825static void nohz_balancer_kick(void)
83cd4fe2
VP
6826{
6827 int ilb_cpu;
6828
6829 nohz.next_balance++;
6830
3dd0337d 6831 ilb_cpu = find_new_ilb();
83cd4fe2 6832
0b005cf5
SS
6833 if (ilb_cpu >= nr_cpu_ids)
6834 return;
83cd4fe2 6835
cd490c5b 6836 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6837 return;
6838 /*
6839 * Use smp_send_reschedule() instead of resched_cpu().
6840 * This way we generate a sched IPI on the target cpu which
6841 * is idle. And the softirq performing nohz idle load balance
6842 * will be run before returning from the IPI.
6843 */
6844 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6845 return;
6846}
6847
c1cc017c 6848static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6849{
6850 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6851 /*
6852 * Completely isolated CPUs don't ever set, so we must test.
6853 */
6854 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6855 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6856 atomic_dec(&nohz.nr_cpus);
6857 }
71325960
SS
6858 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6859 }
6860}
6861
69e1e811
SS
6862static inline void set_cpu_sd_state_busy(void)
6863{
6864 struct sched_domain *sd;
37dc6b50 6865 int cpu = smp_processor_id();
69e1e811 6866
69e1e811 6867 rcu_read_lock();
37dc6b50 6868 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6869
6870 if (!sd || !sd->nohz_idle)
6871 goto unlock;
6872 sd->nohz_idle = 0;
6873
37dc6b50 6874 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6875unlock:
69e1e811
SS
6876 rcu_read_unlock();
6877}
6878
6879void set_cpu_sd_state_idle(void)
6880{
6881 struct sched_domain *sd;
37dc6b50 6882 int cpu = smp_processor_id();
69e1e811 6883
69e1e811 6884 rcu_read_lock();
37dc6b50 6885 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6886
6887 if (!sd || sd->nohz_idle)
6888 goto unlock;
6889 sd->nohz_idle = 1;
6890
37dc6b50 6891 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6892unlock:
69e1e811
SS
6893 rcu_read_unlock();
6894}
6895
1e3c88bd 6896/*
c1cc017c 6897 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6898 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6899 */
c1cc017c 6900void nohz_balance_enter_idle(int cpu)
1e3c88bd 6901{
71325960
SS
6902 /*
6903 * If this cpu is going down, then nothing needs to be done.
6904 */
6905 if (!cpu_active(cpu))
6906 return;
6907
c1cc017c
AS
6908 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6909 return;
1e3c88bd 6910
d987fc7f
MG
6911 /*
6912 * If we're a completely isolated CPU, we don't play.
6913 */
6914 if (on_null_domain(cpu_rq(cpu)))
6915 return;
6916
c1cc017c
AS
6917 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6918 atomic_inc(&nohz.nr_cpus);
6919 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6920}
71325960 6921
0db0628d 6922static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6923 unsigned long action, void *hcpu)
6924{
6925 switch (action & ~CPU_TASKS_FROZEN) {
6926 case CPU_DYING:
c1cc017c 6927 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6928 return NOTIFY_OK;
6929 default:
6930 return NOTIFY_DONE;
6931 }
6932}
1e3c88bd
PZ
6933#endif
6934
6935static DEFINE_SPINLOCK(balancing);
6936
49c022e6
PZ
6937/*
6938 * Scale the max load_balance interval with the number of CPUs in the system.
6939 * This trades load-balance latency on larger machines for less cross talk.
6940 */
029632fb 6941void update_max_interval(void)
49c022e6
PZ
6942{
6943 max_load_balance_interval = HZ*num_online_cpus()/10;
6944}
6945
1e3c88bd
PZ
6946/*
6947 * It checks each scheduling domain to see if it is due to be balanced,
6948 * and initiates a balancing operation if so.
6949 *
b9b0853a 6950 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6951 */
f7ed0a89 6952static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6953{
23f0d209 6954 int continue_balancing = 1;
f7ed0a89 6955 int cpu = rq->cpu;
1e3c88bd 6956 unsigned long interval;
04f733b4 6957 struct sched_domain *sd;
1e3c88bd
PZ
6958 /* Earliest time when we have to do rebalance again */
6959 unsigned long next_balance = jiffies + 60*HZ;
6960 int update_next_balance = 0;
f48627e6
JL
6961 int need_serialize, need_decay = 0;
6962 u64 max_cost = 0;
1e3c88bd 6963
48a16753 6964 update_blocked_averages(cpu);
2069dd75 6965
dce840a0 6966 rcu_read_lock();
1e3c88bd 6967 for_each_domain(cpu, sd) {
f48627e6
JL
6968 /*
6969 * Decay the newidle max times here because this is a regular
6970 * visit to all the domains. Decay ~1% per second.
6971 */
6972 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6973 sd->max_newidle_lb_cost =
6974 (sd->max_newidle_lb_cost * 253) / 256;
6975 sd->next_decay_max_lb_cost = jiffies + HZ;
6976 need_decay = 1;
6977 }
6978 max_cost += sd->max_newidle_lb_cost;
6979
1e3c88bd
PZ
6980 if (!(sd->flags & SD_LOAD_BALANCE))
6981 continue;
6982
f48627e6
JL
6983 /*
6984 * Stop the load balance at this level. There is another
6985 * CPU in our sched group which is doing load balancing more
6986 * actively.
6987 */
6988 if (!continue_balancing) {
6989 if (need_decay)
6990 continue;
6991 break;
6992 }
6993
1e3c88bd
PZ
6994 interval = sd->balance_interval;
6995 if (idle != CPU_IDLE)
6996 interval *= sd->busy_factor;
6997
6998 /* scale ms to jiffies */
6999 interval = msecs_to_jiffies(interval);
49c022e6 7000 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
7001
7002 need_serialize = sd->flags & SD_SERIALIZE;
7003
7004 if (need_serialize) {
7005 if (!spin_trylock(&balancing))
7006 goto out;
7007 }
7008
7009 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7010 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7011 /*
6263322c 7012 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7013 * env->dst_cpu, so we can't know our idle
7014 * state even if we migrated tasks. Update it.
1e3c88bd 7015 */
de5eb2dd 7016 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7017 }
7018 sd->last_balance = jiffies;
7019 }
7020 if (need_serialize)
7021 spin_unlock(&balancing);
7022out:
7023 if (time_after(next_balance, sd->last_balance + interval)) {
7024 next_balance = sd->last_balance + interval;
7025 update_next_balance = 1;
7026 }
f48627e6
JL
7027 }
7028 if (need_decay) {
1e3c88bd 7029 /*
f48627e6
JL
7030 * Ensure the rq-wide value also decays but keep it at a
7031 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7032 */
f48627e6
JL
7033 rq->max_idle_balance_cost =
7034 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7035 }
dce840a0 7036 rcu_read_unlock();
1e3c88bd
PZ
7037
7038 /*
7039 * next_balance will be updated only when there is a need.
7040 * When the cpu is attached to null domain for ex, it will not be
7041 * updated.
7042 */
7043 if (likely(update_next_balance))
7044 rq->next_balance = next_balance;
7045}
7046
3451d024 7047#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7048/*
3451d024 7049 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7050 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7051 */
208cb16b 7052static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7053{
208cb16b 7054 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7055 struct rq *rq;
7056 int balance_cpu;
7057
1c792db7
SS
7058 if (idle != CPU_IDLE ||
7059 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7060 goto end;
83cd4fe2
VP
7061
7062 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7063 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7064 continue;
7065
7066 /*
7067 * If this cpu gets work to do, stop the load balancing
7068 * work being done for other cpus. Next load
7069 * balancing owner will pick it up.
7070 */
1c792db7 7071 if (need_resched())
83cd4fe2 7072 break;
83cd4fe2 7073
5ed4f1d9
VG
7074 rq = cpu_rq(balance_cpu);
7075
7076 raw_spin_lock_irq(&rq->lock);
7077 update_rq_clock(rq);
7078 update_idle_cpu_load(rq);
7079 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 7080
f7ed0a89 7081 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 7082
83cd4fe2
VP
7083 if (time_after(this_rq->next_balance, rq->next_balance))
7084 this_rq->next_balance = rq->next_balance;
7085 }
7086 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7087end:
7088 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7089}
7090
7091/*
0b005cf5
SS
7092 * Current heuristic for kicking the idle load balancer in the presence
7093 * of an idle cpu is the system.
7094 * - This rq has more than one task.
7095 * - At any scheduler domain level, this cpu's scheduler group has multiple
7096 * busy cpu's exceeding the group's power.
7097 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7098 * domain span are idle.
83cd4fe2 7099 */
4a725627 7100static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7101{
7102 unsigned long now = jiffies;
0b005cf5 7103 struct sched_domain *sd;
37dc6b50 7104 struct sched_group_power *sgp;
4a725627 7105 int nr_busy, cpu = rq->cpu;
83cd4fe2 7106
4a725627 7107 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7108 return 0;
7109
1c792db7
SS
7110 /*
7111 * We may be recently in ticked or tickless idle mode. At the first
7112 * busy tick after returning from idle, we will update the busy stats.
7113 */
69e1e811 7114 set_cpu_sd_state_busy();
c1cc017c 7115 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7116
7117 /*
7118 * None are in tickless mode and hence no need for NOHZ idle load
7119 * balancing.
7120 */
7121 if (likely(!atomic_read(&nohz.nr_cpus)))
7122 return 0;
1c792db7
SS
7123
7124 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7125 return 0;
7126
0b005cf5
SS
7127 if (rq->nr_running >= 2)
7128 goto need_kick;
83cd4fe2 7129
067491b7 7130 rcu_read_lock();
37dc6b50 7131 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7132
37dc6b50
PM
7133 if (sd) {
7134 sgp = sd->groups->sgp;
7135 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 7136
37dc6b50 7137 if (nr_busy > 1)
067491b7 7138 goto need_kick_unlock;
83cd4fe2 7139 }
37dc6b50
PM
7140
7141 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7142
7143 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7144 sched_domain_span(sd)) < cpu))
7145 goto need_kick_unlock;
7146
067491b7 7147 rcu_read_unlock();
83cd4fe2 7148 return 0;
067491b7
PZ
7149
7150need_kick_unlock:
7151 rcu_read_unlock();
0b005cf5
SS
7152need_kick:
7153 return 1;
83cd4fe2
VP
7154}
7155#else
208cb16b 7156static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7157#endif
7158
7159/*
7160 * run_rebalance_domains is triggered when needed from the scheduler tick.
7161 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7162 */
1e3c88bd
PZ
7163static void run_rebalance_domains(struct softirq_action *h)
7164{
208cb16b 7165 struct rq *this_rq = this_rq();
6eb57e0d 7166 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7167 CPU_IDLE : CPU_NOT_IDLE;
7168
f7ed0a89 7169 rebalance_domains(this_rq, idle);
1e3c88bd 7170
1e3c88bd 7171 /*
83cd4fe2 7172 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7173 * balancing on behalf of the other idle cpus whose ticks are
7174 * stopped.
7175 */
208cb16b 7176 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7177}
7178
1e3c88bd
PZ
7179/*
7180 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7181 */
7caff66f 7182void trigger_load_balance(struct rq *rq)
1e3c88bd 7183{
1e3c88bd 7184 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7185 if (unlikely(on_null_domain(rq)))
7186 return;
7187
7188 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7189 raise_softirq(SCHED_SOFTIRQ);
3451d024 7190#ifdef CONFIG_NO_HZ_COMMON
c726099e 7191 if (nohz_kick_needed(rq))
0aeeeeba 7192 nohz_balancer_kick();
83cd4fe2 7193#endif
1e3c88bd
PZ
7194}
7195
0bcdcf28
CE
7196static void rq_online_fair(struct rq *rq)
7197{
7198 update_sysctl();
7199}
7200
7201static void rq_offline_fair(struct rq *rq)
7202{
7203 update_sysctl();
a4c96ae3
PB
7204
7205 /* Ensure any throttled groups are reachable by pick_next_task */
7206 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7207}
7208
55e12e5e 7209#endif /* CONFIG_SMP */
e1d1484f 7210
bf0f6f24
IM
7211/*
7212 * scheduler tick hitting a task of our scheduling class:
7213 */
8f4d37ec 7214static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7215{
7216 struct cfs_rq *cfs_rq;
7217 struct sched_entity *se = &curr->se;
7218
7219 for_each_sched_entity(se) {
7220 cfs_rq = cfs_rq_of(se);
8f4d37ec 7221 entity_tick(cfs_rq, se, queued);
bf0f6f24 7222 }
18bf2805 7223
10e84b97 7224 if (numabalancing_enabled)
cbee9f88 7225 task_tick_numa(rq, curr);
3d59eebc 7226
18bf2805 7227 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7228}
7229
7230/*
cd29fe6f
PZ
7231 * called on fork with the child task as argument from the parent's context
7232 * - child not yet on the tasklist
7233 * - preemption disabled
bf0f6f24 7234 */
cd29fe6f 7235static void task_fork_fair(struct task_struct *p)
bf0f6f24 7236{
4fc420c9
DN
7237 struct cfs_rq *cfs_rq;
7238 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7239 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7240 struct rq *rq = this_rq();
7241 unsigned long flags;
7242
05fa785c 7243 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7244
861d034e
PZ
7245 update_rq_clock(rq);
7246
4fc420c9
DN
7247 cfs_rq = task_cfs_rq(current);
7248 curr = cfs_rq->curr;
7249
6c9a27f5
DN
7250 /*
7251 * Not only the cpu but also the task_group of the parent might have
7252 * been changed after parent->se.parent,cfs_rq were copied to
7253 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7254 * of child point to valid ones.
7255 */
7256 rcu_read_lock();
7257 __set_task_cpu(p, this_cpu);
7258 rcu_read_unlock();
bf0f6f24 7259
7109c442 7260 update_curr(cfs_rq);
cd29fe6f 7261
b5d9d734
MG
7262 if (curr)
7263 se->vruntime = curr->vruntime;
aeb73b04 7264 place_entity(cfs_rq, se, 1);
4d78e7b6 7265
cd29fe6f 7266 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7267 /*
edcb60a3
IM
7268 * Upon rescheduling, sched_class::put_prev_task() will place
7269 * 'current' within the tree based on its new key value.
7270 */
4d78e7b6 7271 swap(curr->vruntime, se->vruntime);
aec0a514 7272 resched_task(rq->curr);
4d78e7b6 7273 }
bf0f6f24 7274
88ec22d3
PZ
7275 se->vruntime -= cfs_rq->min_vruntime;
7276
05fa785c 7277 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7278}
7279
cb469845
SR
7280/*
7281 * Priority of the task has changed. Check to see if we preempt
7282 * the current task.
7283 */
da7a735e
PZ
7284static void
7285prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7286{
da7a735e
PZ
7287 if (!p->se.on_rq)
7288 return;
7289
cb469845
SR
7290 /*
7291 * Reschedule if we are currently running on this runqueue and
7292 * our priority decreased, or if we are not currently running on
7293 * this runqueue and our priority is higher than the current's
7294 */
da7a735e 7295 if (rq->curr == p) {
cb469845
SR
7296 if (p->prio > oldprio)
7297 resched_task(rq->curr);
7298 } else
15afe09b 7299 check_preempt_curr(rq, p, 0);
cb469845
SR
7300}
7301
da7a735e
PZ
7302static void switched_from_fair(struct rq *rq, struct task_struct *p)
7303{
7304 struct sched_entity *se = &p->se;
7305 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7306
7307 /*
7308 * Ensure the task's vruntime is normalized, so that when its
7309 * switched back to the fair class the enqueue_entity(.flags=0) will
7310 * do the right thing.
7311 *
7312 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7313 * have normalized the vruntime, if it was !on_rq, then only when
7314 * the task is sleeping will it still have non-normalized vruntime.
7315 */
7316 if (!se->on_rq && p->state != TASK_RUNNING) {
7317 /*
7318 * Fix up our vruntime so that the current sleep doesn't
7319 * cause 'unlimited' sleep bonus.
7320 */
7321 place_entity(cfs_rq, se, 0);
7322 se->vruntime -= cfs_rq->min_vruntime;
7323 }
9ee474f5 7324
141965c7 7325#ifdef CONFIG_SMP
9ee474f5
PT
7326 /*
7327 * Remove our load from contribution when we leave sched_fair
7328 * and ensure we don't carry in an old decay_count if we
7329 * switch back.
7330 */
87e3c8ae
KT
7331 if (se->avg.decay_count) {
7332 __synchronize_entity_decay(se);
7333 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7334 }
7335#endif
da7a735e
PZ
7336}
7337
cb469845
SR
7338/*
7339 * We switched to the sched_fair class.
7340 */
da7a735e 7341static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7342{
eb7a59b2
M
7343 struct sched_entity *se = &p->se;
7344#ifdef CONFIG_FAIR_GROUP_SCHED
7345 /*
7346 * Since the real-depth could have been changed (only FAIR
7347 * class maintain depth value), reset depth properly.
7348 */
7349 se->depth = se->parent ? se->parent->depth + 1 : 0;
7350#endif
7351 if (!se->on_rq)
da7a735e
PZ
7352 return;
7353
cb469845
SR
7354 /*
7355 * We were most likely switched from sched_rt, so
7356 * kick off the schedule if running, otherwise just see
7357 * if we can still preempt the current task.
7358 */
da7a735e 7359 if (rq->curr == p)
cb469845
SR
7360 resched_task(rq->curr);
7361 else
15afe09b 7362 check_preempt_curr(rq, p, 0);
cb469845
SR
7363}
7364
83b699ed
SV
7365/* Account for a task changing its policy or group.
7366 *
7367 * This routine is mostly called to set cfs_rq->curr field when a task
7368 * migrates between groups/classes.
7369 */
7370static void set_curr_task_fair(struct rq *rq)
7371{
7372 struct sched_entity *se = &rq->curr->se;
7373
ec12cb7f
PT
7374 for_each_sched_entity(se) {
7375 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7376
7377 set_next_entity(cfs_rq, se);
7378 /* ensure bandwidth has been allocated on our new cfs_rq */
7379 account_cfs_rq_runtime(cfs_rq, 0);
7380 }
83b699ed
SV
7381}
7382
029632fb
PZ
7383void init_cfs_rq(struct cfs_rq *cfs_rq)
7384{
7385 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7386 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7387#ifndef CONFIG_64BIT
7388 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7389#endif
141965c7 7390#ifdef CONFIG_SMP
9ee474f5 7391 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7392 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7393#endif
029632fb
PZ
7394}
7395
810b3817 7396#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7397static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7398{
fed14d45 7399 struct sched_entity *se = &p->se;
aff3e498 7400 struct cfs_rq *cfs_rq;
fed14d45 7401
b2b5ce02
PZ
7402 /*
7403 * If the task was not on the rq at the time of this cgroup movement
7404 * it must have been asleep, sleeping tasks keep their ->vruntime
7405 * absolute on their old rq until wakeup (needed for the fair sleeper
7406 * bonus in place_entity()).
7407 *
7408 * If it was on the rq, we've just 'preempted' it, which does convert
7409 * ->vruntime to a relative base.
7410 *
7411 * Make sure both cases convert their relative position when migrating
7412 * to another cgroup's rq. This does somewhat interfere with the
7413 * fair sleeper stuff for the first placement, but who cares.
7414 */
7ceff013
DN
7415 /*
7416 * When !on_rq, vruntime of the task has usually NOT been normalized.
7417 * But there are some cases where it has already been normalized:
7418 *
7419 * - Moving a forked child which is waiting for being woken up by
7420 * wake_up_new_task().
62af3783
DN
7421 * - Moving a task which has been woken up by try_to_wake_up() and
7422 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7423 *
7424 * To prevent boost or penalty in the new cfs_rq caused by delta
7425 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7426 */
fed14d45 7427 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7428 on_rq = 1;
7429
b2b5ce02 7430 if (!on_rq)
fed14d45 7431 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7432 set_task_rq(p, task_cpu(p));
fed14d45 7433 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7434 if (!on_rq) {
fed14d45
PZ
7435 cfs_rq = cfs_rq_of(se);
7436 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7437#ifdef CONFIG_SMP
7438 /*
7439 * migrate_task_rq_fair() will have removed our previous
7440 * contribution, but we must synchronize for ongoing future
7441 * decay.
7442 */
fed14d45
PZ
7443 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7444 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7445#endif
7446 }
810b3817 7447}
029632fb
PZ
7448
7449void free_fair_sched_group(struct task_group *tg)
7450{
7451 int i;
7452
7453 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7454
7455 for_each_possible_cpu(i) {
7456 if (tg->cfs_rq)
7457 kfree(tg->cfs_rq[i]);
7458 if (tg->se)
7459 kfree(tg->se[i]);
7460 }
7461
7462 kfree(tg->cfs_rq);
7463 kfree(tg->se);
7464}
7465
7466int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7467{
7468 struct cfs_rq *cfs_rq;
7469 struct sched_entity *se;
7470 int i;
7471
7472 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7473 if (!tg->cfs_rq)
7474 goto err;
7475 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7476 if (!tg->se)
7477 goto err;
7478
7479 tg->shares = NICE_0_LOAD;
7480
7481 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7482
7483 for_each_possible_cpu(i) {
7484 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7485 GFP_KERNEL, cpu_to_node(i));
7486 if (!cfs_rq)
7487 goto err;
7488
7489 se = kzalloc_node(sizeof(struct sched_entity),
7490 GFP_KERNEL, cpu_to_node(i));
7491 if (!se)
7492 goto err_free_rq;
7493
7494 init_cfs_rq(cfs_rq);
7495 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7496 }
7497
7498 return 1;
7499
7500err_free_rq:
7501 kfree(cfs_rq);
7502err:
7503 return 0;
7504}
7505
7506void unregister_fair_sched_group(struct task_group *tg, int cpu)
7507{
7508 struct rq *rq = cpu_rq(cpu);
7509 unsigned long flags;
7510
7511 /*
7512 * Only empty task groups can be destroyed; so we can speculatively
7513 * check on_list without danger of it being re-added.
7514 */
7515 if (!tg->cfs_rq[cpu]->on_list)
7516 return;
7517
7518 raw_spin_lock_irqsave(&rq->lock, flags);
7519 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7520 raw_spin_unlock_irqrestore(&rq->lock, flags);
7521}
7522
7523void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7524 struct sched_entity *se, int cpu,
7525 struct sched_entity *parent)
7526{
7527 struct rq *rq = cpu_rq(cpu);
7528
7529 cfs_rq->tg = tg;
7530 cfs_rq->rq = rq;
029632fb
PZ
7531 init_cfs_rq_runtime(cfs_rq);
7532
7533 tg->cfs_rq[cpu] = cfs_rq;
7534 tg->se[cpu] = se;
7535
7536 /* se could be NULL for root_task_group */
7537 if (!se)
7538 return;
7539
fed14d45 7540 if (!parent) {
029632fb 7541 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7542 se->depth = 0;
7543 } else {
029632fb 7544 se->cfs_rq = parent->my_q;
fed14d45
PZ
7545 se->depth = parent->depth + 1;
7546 }
029632fb
PZ
7547
7548 se->my_q = cfs_rq;
0ac9b1c2
PT
7549 /* guarantee group entities always have weight */
7550 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7551 se->parent = parent;
7552}
7553
7554static DEFINE_MUTEX(shares_mutex);
7555
7556int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7557{
7558 int i;
7559 unsigned long flags;
7560
7561 /*
7562 * We can't change the weight of the root cgroup.
7563 */
7564 if (!tg->se[0])
7565 return -EINVAL;
7566
7567 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7568
7569 mutex_lock(&shares_mutex);
7570 if (tg->shares == shares)
7571 goto done;
7572
7573 tg->shares = shares;
7574 for_each_possible_cpu(i) {
7575 struct rq *rq = cpu_rq(i);
7576 struct sched_entity *se;
7577
7578 se = tg->se[i];
7579 /* Propagate contribution to hierarchy */
7580 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7581
7582 /* Possible calls to update_curr() need rq clock */
7583 update_rq_clock(rq);
17bc14b7 7584 for_each_sched_entity(se)
029632fb
PZ
7585 update_cfs_shares(group_cfs_rq(se));
7586 raw_spin_unlock_irqrestore(&rq->lock, flags);
7587 }
7588
7589done:
7590 mutex_unlock(&shares_mutex);
7591 return 0;
7592}
7593#else /* CONFIG_FAIR_GROUP_SCHED */
7594
7595void free_fair_sched_group(struct task_group *tg) { }
7596
7597int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7598{
7599 return 1;
7600}
7601
7602void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7603
7604#endif /* CONFIG_FAIR_GROUP_SCHED */
7605
810b3817 7606
6d686f45 7607static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7608{
7609 struct sched_entity *se = &task->se;
0d721cea
PW
7610 unsigned int rr_interval = 0;
7611
7612 /*
7613 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7614 * idle runqueue:
7615 */
0d721cea 7616 if (rq->cfs.load.weight)
a59f4e07 7617 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7618
7619 return rr_interval;
7620}
7621
bf0f6f24
IM
7622/*
7623 * All the scheduling class methods:
7624 */
029632fb 7625const struct sched_class fair_sched_class = {
5522d5d5 7626 .next = &idle_sched_class,
bf0f6f24
IM
7627 .enqueue_task = enqueue_task_fair,
7628 .dequeue_task = dequeue_task_fair,
7629 .yield_task = yield_task_fair,
d95f4122 7630 .yield_to_task = yield_to_task_fair,
bf0f6f24 7631
2e09bf55 7632 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7633
7634 .pick_next_task = pick_next_task_fair,
7635 .put_prev_task = put_prev_task_fair,
7636
681f3e68 7637#ifdef CONFIG_SMP
4ce72a2c 7638 .select_task_rq = select_task_rq_fair,
0a74bef8 7639 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7640
0bcdcf28
CE
7641 .rq_online = rq_online_fair,
7642 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7643
7644 .task_waking = task_waking_fair,
681f3e68 7645#endif
bf0f6f24 7646
83b699ed 7647 .set_curr_task = set_curr_task_fair,
bf0f6f24 7648 .task_tick = task_tick_fair,
cd29fe6f 7649 .task_fork = task_fork_fair,
cb469845
SR
7650
7651 .prio_changed = prio_changed_fair,
da7a735e 7652 .switched_from = switched_from_fair,
cb469845 7653 .switched_to = switched_to_fair,
810b3817 7654
0d721cea
PW
7655 .get_rr_interval = get_rr_interval_fair,
7656
810b3817 7657#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7658 .task_move_group = task_move_group_fair,
810b3817 7659#endif
bf0f6f24
IM
7660};
7661
7662#ifdef CONFIG_SCHED_DEBUG
029632fb 7663void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7664{
bf0f6f24
IM
7665 struct cfs_rq *cfs_rq;
7666
5973e5b9 7667 rcu_read_lock();
c3b64f1e 7668 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7669 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7670 rcu_read_unlock();
bf0f6f24
IM
7671}
7672#endif
029632fb
PZ
7673
7674__init void init_sched_fair_class(void)
7675{
7676#ifdef CONFIG_SMP
7677 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7678
3451d024 7679#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7680 nohz.next_balance = jiffies;
029632fb 7681 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7682 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7683#endif
7684#endif /* SMP */
7685
7686}