]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
Merge tag 'devicetree-fixes-for-5.17-1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb 24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 27 *
21805085 28 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
bf0f6f24 32 *
d274a4ce
IM
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 */
2b4d5b25 38unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
1983a922
CE
43 *
44 * Options are:
2b4d5b25
IM
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 51 */
8a99b683 52unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 56 *
864616ee 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 58 */
ed8885a1
MS
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085 61
51ce83ed
JD
62/*
63 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
64 * Applies only when SCHED_IDLE tasks compete with normal tasks.
65 *
66 * (default: 0.75 msec)
67 */
68unsigned int sysctl_sched_idle_min_granularity = 750000ULL;
69
21805085 70/*
2b4d5b25 71 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 72 */
0bf377bb 73static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
74
75/*
2bba22c5 76 * After fork, child runs first. If set to 0 (default) then
b2be5e96 77 * parent will (try to) run first.
21805085 78 */
2bba22c5 79unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 80
bf0f6f24
IM
81/*
82 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
83 *
84 * This option delays the preemption effects of decoupled workloads
85 * and reduces their over-scheduling. Synchronous workloads will still
86 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
87 *
88 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 89 */
ed8885a1
MS
90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
2b4d5b25 93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 94
05289b90
TG
95int sched_thermal_decay_shift;
96static int __init setup_sched_thermal_decay_shift(char *str)
97{
98 int _shift = 0;
99
100 if (kstrtoint(str, 0, &_shift))
101 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
102
103 sched_thermal_decay_shift = clamp(_shift, 0, 10);
104 return 1;
105}
106__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
107
afe06efd
TC
108#ifdef CONFIG_SMP
109/*
97fb7a0a 110 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
111 */
112int __weak arch_asym_cpu_priority(int cpu)
113{
114 return -cpu;
115}
6d101ba6
OJ
116
117/*
60e17f5c 118 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
119 *
120 * (default: ~20%)
121 */
60e17f5c
VK
122#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
123
4aed8aa4
VS
124/*
125 * The margin used when comparing CPU capacities.
126 * is 'cap1' noticeably greater than 'cap2'
127 *
128 * (default: ~5%)
129 */
130#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
afe06efd
TC
131#endif
132
ec12cb7f
PT
133#ifdef CONFIG_CFS_BANDWIDTH
134/*
135 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
136 * each time a cfs_rq requests quota.
137 *
138 * Note: in the case that the slice exceeds the runtime remaining (either due
139 * to consumption or the quota being specified to be smaller than the slice)
140 * we will always only issue the remaining available time.
141 *
2b4d5b25
IM
142 * (default: 5 msec, units: microseconds)
143 */
144unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
145#endif
146
8527632d
PG
147static inline void update_load_add(struct load_weight *lw, unsigned long inc)
148{
149 lw->weight += inc;
150 lw->inv_weight = 0;
151}
152
153static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
154{
155 lw->weight -= dec;
156 lw->inv_weight = 0;
157}
158
159static inline void update_load_set(struct load_weight *lw, unsigned long w)
160{
161 lw->weight = w;
162 lw->inv_weight = 0;
163}
164
029632fb
PZ
165/*
166 * Increase the granularity value when there are more CPUs,
167 * because with more CPUs the 'effective latency' as visible
168 * to users decreases. But the relationship is not linear,
169 * so pick a second-best guess by going with the log2 of the
170 * number of CPUs.
171 *
172 * This idea comes from the SD scheduler of Con Kolivas:
173 */
58ac93e4 174static unsigned int get_update_sysctl_factor(void)
029632fb 175{
58ac93e4 176 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
177 unsigned int factor;
178
179 switch (sysctl_sched_tunable_scaling) {
180 case SCHED_TUNABLESCALING_NONE:
181 factor = 1;
182 break;
183 case SCHED_TUNABLESCALING_LINEAR:
184 factor = cpus;
185 break;
186 case SCHED_TUNABLESCALING_LOG:
187 default:
188 factor = 1 + ilog2(cpus);
189 break;
190 }
191
192 return factor;
193}
194
195static void update_sysctl(void)
196{
197 unsigned int factor = get_update_sysctl_factor();
198
199#define SET_SYSCTL(name) \
200 (sysctl_##name = (factor) * normalized_sysctl_##name)
201 SET_SYSCTL(sched_min_granularity);
202 SET_SYSCTL(sched_latency);
203 SET_SYSCTL(sched_wakeup_granularity);
204#undef SET_SYSCTL
205}
206
f38f12d1 207void __init sched_init_granularity(void)
029632fb
PZ
208{
209 update_sysctl();
210}
211
9dbdb155 212#define WMULT_CONST (~0U)
029632fb
PZ
213#define WMULT_SHIFT 32
214
9dbdb155
PZ
215static void __update_inv_weight(struct load_weight *lw)
216{
217 unsigned long w;
218
219 if (likely(lw->inv_weight))
220 return;
221
222 w = scale_load_down(lw->weight);
223
224 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
225 lw->inv_weight = 1;
226 else if (unlikely(!w))
227 lw->inv_weight = WMULT_CONST;
228 else
229 lw->inv_weight = WMULT_CONST / w;
230}
029632fb
PZ
231
232/*
9dbdb155
PZ
233 * delta_exec * weight / lw.weight
234 * OR
235 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
236 *
1c3de5e1 237 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
238 * we're guaranteed shift stays positive because inv_weight is guaranteed to
239 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
240 *
241 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
242 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 243 */
9dbdb155 244static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 245{
9dbdb155 246 u64 fact = scale_load_down(weight);
1e17fb8e 247 u32 fact_hi = (u32)(fact >> 32);
9dbdb155 248 int shift = WMULT_SHIFT;
1e17fb8e 249 int fs;
029632fb 250
9dbdb155 251 __update_inv_weight(lw);
029632fb 252
1e17fb8e
CC
253 if (unlikely(fact_hi)) {
254 fs = fls(fact_hi);
255 shift -= fs;
256 fact >>= fs;
029632fb
PZ
257 }
258
2eeb01a2 259 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 260
1e17fb8e
CC
261 fact_hi = (u32)(fact >> 32);
262 if (fact_hi) {
263 fs = fls(fact_hi);
264 shift -= fs;
265 fact >>= fs;
9dbdb155 266 }
029632fb 267
9dbdb155 268 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
269}
270
271
272const struct sched_class fair_sched_class;
a4c2f00f 273
bf0f6f24
IM
274/**************************************************************
275 * CFS operations on generic schedulable entities:
276 */
277
62160e3f 278#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f 279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
3c93a0c0
QY
284static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
285{
286 if (!path)
287 return;
288
289 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
290 autogroup_path(cfs_rq->tg, path, len);
291 else if (cfs_rq && cfs_rq->tg->css.cgroup)
292 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
293 else
294 strlcpy(path, "(null)", len);
295}
296
f6783319 297static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 298{
5d299eab
PZ
299 struct rq *rq = rq_of(cfs_rq);
300 int cpu = cpu_of(rq);
301
302 if (cfs_rq->on_list)
f6783319 303 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
304
305 cfs_rq->on_list = 1;
306
307 /*
308 * Ensure we either appear before our parent (if already
309 * enqueued) or force our parent to appear after us when it is
310 * enqueued. The fact that we always enqueue bottom-up
311 * reduces this to two cases and a special case for the root
312 * cfs_rq. Furthermore, it also means that we will always reset
313 * tmp_alone_branch either when the branch is connected
314 * to a tree or when we reach the top of the tree
315 */
316 if (cfs_rq->tg->parent &&
317 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 318 /*
5d299eab
PZ
319 * If parent is already on the list, we add the child
320 * just before. Thanks to circular linked property of
321 * the list, this means to put the child at the tail
322 * of the list that starts by parent.
67e86250 323 */
5d299eab
PZ
324 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
325 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
326 /*
327 * The branch is now connected to its tree so we can
328 * reset tmp_alone_branch to the beginning of the
329 * list.
330 */
331 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 332 return true;
5d299eab 333 }
3d4b47b4 334
5d299eab
PZ
335 if (!cfs_rq->tg->parent) {
336 /*
337 * cfs rq without parent should be put
338 * at the tail of the list.
339 */
340 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
341 &rq->leaf_cfs_rq_list);
342 /*
343 * We have reach the top of a tree so we can reset
344 * tmp_alone_branch to the beginning of the list.
345 */
346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 347 return true;
3d4b47b4 348 }
5d299eab
PZ
349
350 /*
351 * The parent has not already been added so we want to
352 * make sure that it will be put after us.
353 * tmp_alone_branch points to the begin of the branch
354 * where we will add parent.
355 */
356 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
357 /*
358 * update tmp_alone_branch to points to the new begin
359 * of the branch
360 */
361 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 362 return false;
3d4b47b4
PZ
363}
364
365static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
366{
367 if (cfs_rq->on_list) {
31bc6aea
VG
368 struct rq *rq = rq_of(cfs_rq);
369
370 /*
371 * With cfs_rq being unthrottled/throttled during an enqueue,
372 * it can happen the tmp_alone_branch points the a leaf that
373 * we finally want to del. In this case, tmp_alone_branch moves
374 * to the prev element but it will point to rq->leaf_cfs_rq_list
375 * at the end of the enqueue.
376 */
377 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
378 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
379
3d4b47b4
PZ
380 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
381 cfs_rq->on_list = 0;
382 }
383}
384
5d299eab
PZ
385static inline void assert_list_leaf_cfs_rq(struct rq *rq)
386{
387 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
388}
389
039ae8bc
VG
390/* Iterate thr' all leaf cfs_rq's on a runqueue */
391#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
392 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
393 leaf_cfs_rq_list)
b758149c
PZ
394
395/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 396static inline struct cfs_rq *
b758149c
PZ
397is_same_group(struct sched_entity *se, struct sched_entity *pse)
398{
399 if (se->cfs_rq == pse->cfs_rq)
fed14d45 400 return se->cfs_rq;
b758149c 401
fed14d45 402 return NULL;
b758149c
PZ
403}
404
405static inline struct sched_entity *parent_entity(struct sched_entity *se)
406{
407 return se->parent;
408}
409
464b7527
PZ
410static void
411find_matching_se(struct sched_entity **se, struct sched_entity **pse)
412{
413 int se_depth, pse_depth;
414
415 /*
416 * preemption test can be made between sibling entities who are in the
417 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
418 * both tasks until we find their ancestors who are siblings of common
419 * parent.
420 */
421
422 /* First walk up until both entities are at same depth */
fed14d45
PZ
423 se_depth = (*se)->depth;
424 pse_depth = (*pse)->depth;
464b7527
PZ
425
426 while (se_depth > pse_depth) {
427 se_depth--;
428 *se = parent_entity(*se);
429 }
430
431 while (pse_depth > se_depth) {
432 pse_depth--;
433 *pse = parent_entity(*pse);
434 }
435
436 while (!is_same_group(*se, *pse)) {
437 *se = parent_entity(*se);
438 *pse = parent_entity(*pse);
439 }
440}
441
30400039
JD
442static int tg_is_idle(struct task_group *tg)
443{
444 return tg->idle > 0;
445}
446
447static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
448{
449 return cfs_rq->idle > 0;
450}
451
452static int se_is_idle(struct sched_entity *se)
453{
454 if (entity_is_task(se))
455 return task_has_idle_policy(task_of(se));
456 return cfs_rq_is_idle(group_cfs_rq(se));
457}
458
8f48894f
PZ
459#else /* !CONFIG_FAIR_GROUP_SCHED */
460
b758149c
PZ
461#define for_each_sched_entity(se) \
462 for (; se; se = NULL)
bf0f6f24 463
3c93a0c0
QY
464static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
465{
466 if (path)
467 strlcpy(path, "(null)", len);
468}
469
f6783319 470static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 471{
f6783319 472 return true;
3d4b47b4
PZ
473}
474
475static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
476{
477}
478
5d299eab
PZ
479static inline void assert_list_leaf_cfs_rq(struct rq *rq)
480{
481}
482
039ae8bc
VG
483#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 485
b758149c
PZ
486static inline struct sched_entity *parent_entity(struct sched_entity *se)
487{
488 return NULL;
489}
490
464b7527
PZ
491static inline void
492find_matching_se(struct sched_entity **se, struct sched_entity **pse)
493{
494}
495
366e7ad6 496static inline int tg_is_idle(struct task_group *tg)
30400039
JD
497{
498 return 0;
499}
500
501static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
502{
503 return 0;
504}
505
506static int se_is_idle(struct sched_entity *se)
507{
508 return 0;
509}
510
b758149c
PZ
511#endif /* CONFIG_FAIR_GROUP_SCHED */
512
6c16a6dc 513static __always_inline
9dbdb155 514void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
515
516/**************************************************************
517 * Scheduling class tree data structure manipulation methods:
518 */
519
1bf08230 520static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 521{
1bf08230 522 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 523 if (delta > 0)
1bf08230 524 max_vruntime = vruntime;
02e0431a 525
1bf08230 526 return max_vruntime;
02e0431a
PZ
527}
528
0702e3eb 529static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
530{
531 s64 delta = (s64)(vruntime - min_vruntime);
532 if (delta < 0)
533 min_vruntime = vruntime;
534
535 return min_vruntime;
536}
537
bf9be9a1 538static inline bool entity_before(struct sched_entity *a,
54fdc581
FC
539 struct sched_entity *b)
540{
541 return (s64)(a->vruntime - b->vruntime) < 0;
542}
543
bf9be9a1
PZ
544#define __node_2_se(node) \
545 rb_entry((node), struct sched_entity, run_node)
546
1af5f730
PZ
547static void update_min_vruntime(struct cfs_rq *cfs_rq)
548{
b60205c7 549 struct sched_entity *curr = cfs_rq->curr;
bfb06889 550 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 551
1af5f730
PZ
552 u64 vruntime = cfs_rq->min_vruntime;
553
b60205c7
PZ
554 if (curr) {
555 if (curr->on_rq)
556 vruntime = curr->vruntime;
557 else
558 curr = NULL;
559 }
1af5f730 560
bfb06889 561 if (leftmost) { /* non-empty tree */
bf9be9a1 562 struct sched_entity *se = __node_2_se(leftmost);
1af5f730 563
b60205c7 564 if (!curr)
1af5f730
PZ
565 vruntime = se->vruntime;
566 else
567 vruntime = min_vruntime(vruntime, se->vruntime);
568 }
569
1bf08230 570 /* ensure we never gain time by being placed backwards. */
1af5f730 571 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
572#ifndef CONFIG_64BIT
573 smp_wmb();
574 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
575#endif
1af5f730
PZ
576}
577
bf9be9a1
PZ
578static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
579{
580 return entity_before(__node_2_se(a), __node_2_se(b));
581}
582
bf0f6f24
IM
583/*
584 * Enqueue an entity into the rb-tree:
585 */
0702e3eb 586static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 587{
bf9be9a1 588 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
bf0f6f24
IM
589}
590
0702e3eb 591static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 592{
bfb06889 593 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
594}
595
029632fb 596struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 597{
bfb06889 598 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
599
600 if (!left)
601 return NULL;
602
bf9be9a1 603 return __node_2_se(left);
bf0f6f24
IM
604}
605
ac53db59
RR
606static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607{
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
bf9be9a1 613 return __node_2_se(next);
ac53db59
RR
614}
615
616#ifdef CONFIG_SCHED_DEBUG
029632fb 617struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 618{
bfb06889 619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 620
70eee74b
BS
621 if (!last)
622 return NULL;
7eee3e67 623
bf9be9a1 624 return __node_2_se(last);
aeb73b04
PZ
625}
626
bf0f6f24
IM
627/**************************************************************
628 * Scheduling class statistics methods:
629 */
630
8a99b683 631int sched_update_scaling(void)
b2be5e96 632{
58ac93e4 633 unsigned int factor = get_update_sysctl_factor();
b2be5e96 634
b2be5e96
PZ
635 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
636 sysctl_sched_min_granularity);
637
acb4a848
CE
638#define WRT_SYSCTL(name) \
639 (normalized_sysctl_##name = sysctl_##name / (factor))
640 WRT_SYSCTL(sched_min_granularity);
641 WRT_SYSCTL(sched_latency);
642 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
643#undef WRT_SYSCTL
644
b2be5e96
PZ
645 return 0;
646}
647#endif
647e7cac 648
a7be37ac 649/*
f9c0b095 650 * delta /= w
a7be37ac 651 */
9dbdb155 652static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 653{
f9c0b095 654 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 655 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
656
657 return delta;
658}
659
647e7cac
IM
660/*
661 * The idea is to set a period in which each task runs once.
662 *
532b1858 663 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
664 * this period because otherwise the slices get too small.
665 *
666 * p = (nr <= nl) ? l : l*nr/nl
667 */
4d78e7b6
PZ
668static u64 __sched_period(unsigned long nr_running)
669{
8e2b0bf3
BF
670 if (unlikely(nr_running > sched_nr_latency))
671 return nr_running * sysctl_sched_min_granularity;
672 else
673 return sysctl_sched_latency;
4d78e7b6
PZ
674}
675
51ce83ed
JD
676static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
677
647e7cac
IM
678/*
679 * We calculate the wall-time slice from the period by taking a part
680 * proportional to the weight.
681 *
f9c0b095 682 * s = p*P[w/rw]
647e7cac 683 */
6d0f0ebd 684static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 685{
0c2de3f0 686 unsigned int nr_running = cfs_rq->nr_running;
51ce83ed
JD
687 struct sched_entity *init_se = se;
688 unsigned int min_gran;
0c2de3f0
PZ
689 u64 slice;
690
691 if (sched_feat(ALT_PERIOD))
692 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
693
694 slice = __sched_period(nr_running + !se->on_rq);
f9c0b095 695
0a582440 696 for_each_sched_entity(se) {
6272d68c 697 struct load_weight *load;
3104bf03 698 struct load_weight lw;
51ce83ed 699 struct cfs_rq *qcfs_rq;
6272d68c 700
51ce83ed
JD
701 qcfs_rq = cfs_rq_of(se);
702 load = &qcfs_rq->load;
f9c0b095 703
0a582440 704 if (unlikely(!se->on_rq)) {
51ce83ed 705 lw = qcfs_rq->load;
0a582440
MG
706
707 update_load_add(&lw, se->load.weight);
708 load = &lw;
709 }
9dbdb155 710 slice = __calc_delta(slice, se->load.weight, load);
0a582440 711 }
0c2de3f0 712
51ce83ed
JD
713 if (sched_feat(BASE_SLICE)) {
714 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
715 min_gran = sysctl_sched_idle_min_granularity;
716 else
717 min_gran = sysctl_sched_min_granularity;
718
719 slice = max_t(u64, slice, min_gran);
720 }
0c2de3f0 721
0a582440 722 return slice;
bf0f6f24
IM
723}
724
647e7cac 725/*
660cc00f 726 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 727 *
f9c0b095 728 * vs = s/w
647e7cac 729 */
f9c0b095 730static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 731{
f9c0b095 732 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
733}
734
c0796298 735#include "pelt.h"
23127296 736#ifdef CONFIG_SMP
283e2ed3 737
772bd008 738static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 739static unsigned long task_h_load(struct task_struct *p);
3b1baa64 740static unsigned long capacity_of(int cpu);
fb13c7ee 741
540247fb
YD
742/* Give new sched_entity start runnable values to heavy its load in infant time */
743void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 744{
540247fb 745 struct sched_avg *sa = &se->avg;
a75cdaa9 746
f207934f
PZ
747 memset(sa, 0, sizeof(*sa));
748
b5a9b340 749 /*
dfcb245e 750 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 751 * they get a chance to stabilize to their real load level.
dfcb245e 752 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
753 * nothing has been attached to the task group yet.
754 */
755 if (entity_is_task(se))
0dacee1b 756 sa->load_avg = scale_load_down(se->load.weight);
f207934f 757
9d89c257 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 759}
7ea241af 760
df217913 761static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 762
2b8c41da
YD
763/*
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
766 *
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768 *
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
772 *
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
775 *
8fe5c5a9 776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 777 *
8fe5c5a9 778 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 779 *
8fe5c5a9
QP
780 * For example, for a CPU with 1024 of capacity, a simplest series from
781 * the beginning would be like:
2b8c41da
YD
782 *
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785 *
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
788 */
d0fe0b9c 789void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 790{
d0fe0b9c 791 struct sched_entity *se = &p->se;
2b8c41da
YD
792 struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 struct sched_avg *sa = &se->avg;
8ec59c0f 794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
796
797 if (cap > 0) {
798 if (cfs_rq->avg.util_avg != 0) {
799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
800 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801
802 if (sa->util_avg > cap)
803 sa->util_avg = cap;
804 } else {
805 sa->util_avg = cap;
806 }
2b8c41da 807 }
7dc603c9 808
e21cf434 809 sa->runnable_avg = sa->util_avg;
9f683953 810
d0fe0b9c
DE
811 if (p->sched_class != &fair_sched_class) {
812 /*
813 * For !fair tasks do:
814 *
815 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 816 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
817 switched_from_fair(rq, p);
818 *
819 * such that the next switched_to_fair() has the
820 * expected state.
821 */
822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 return;
7dc603c9
PZ
824 }
825
df217913 826 attach_entity_cfs_rq(se);
2b8c41da
YD
827}
828
7dc603c9 829#else /* !CONFIG_SMP */
540247fb 830void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
831{
832}
d0fe0b9c 833void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
834{
835}
fe749158 836static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
837{
838}
7dc603c9 839#endif /* CONFIG_SMP */
a75cdaa9 840
bf0f6f24 841/*
9dbdb155 842 * Update the current task's runtime statistics.
bf0f6f24 843 */
b7cc0896 844static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 845{
429d43bc 846 struct sched_entity *curr = cfs_rq->curr;
78becc27 847 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 848 u64 delta_exec;
bf0f6f24
IM
849
850 if (unlikely(!curr))
851 return;
852
9dbdb155
PZ
853 delta_exec = now - curr->exec_start;
854 if (unlikely((s64)delta_exec <= 0))
34f28ecd 855 return;
bf0f6f24 856
8ebc91d9 857 curr->exec_start = now;
d842de87 858
ceeadb83
YS
859 if (schedstat_enabled()) {
860 struct sched_statistics *stats;
861
862 stats = __schedstats_from_se(curr);
863 __schedstat_set(stats->exec_max,
864 max(delta_exec, stats->exec_max));
865 }
9dbdb155
PZ
866
867 curr->sum_exec_runtime += delta_exec;
ae92882e 868 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
869
870 curr->vruntime += calc_delta_fair(delta_exec, curr);
871 update_min_vruntime(cfs_rq);
872
d842de87
SV
873 if (entity_is_task(curr)) {
874 struct task_struct *curtask = task_of(curr);
875
f977bb49 876 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 877 cgroup_account_cputime(curtask, delta_exec);
f06febc9 878 account_group_exec_runtime(curtask, delta_exec);
d842de87 879 }
ec12cb7f
PT
880
881 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
882}
883
6e998916
SG
884static void update_curr_fair(struct rq *rq)
885{
886 update_curr(cfs_rq_of(&rq->curr->se));
887}
888
bf0f6f24 889static inline void
60f2415e 890update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 891{
ceeadb83 892 struct sched_statistics *stats;
60f2415e 893 struct task_struct *p = NULL;
4fa8d299
JP
894
895 if (!schedstat_enabled())
896 return;
897
ceeadb83
YS
898 stats = __schedstats_from_se(se);
899
60f2415e
YS
900 if (entity_is_task(se))
901 p = task_of(se);
3ea94de1 902
60f2415e 903 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
bf0f6f24
IM
904}
905
4fa8d299 906static inline void
60f2415e 907update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
3ea94de1 908{
ceeadb83
YS
909 struct sched_statistics *stats;
910 struct task_struct *p = NULL;
cb251765 911
4fa8d299
JP
912 if (!schedstat_enabled())
913 return;
914
ceeadb83
YS
915 stats = __schedstats_from_se(se);
916
b9c88f75 917 /*
918 * When the sched_schedstat changes from 0 to 1, some sched se
919 * maybe already in the runqueue, the se->statistics.wait_start
920 * will be 0.So it will let the delta wrong. We need to avoid this
921 * scenario.
922 */
ceeadb83 923 if (unlikely(!schedstat_val(stats->wait_start)))
b9c88f75 924 return;
925
60f2415e 926 if (entity_is_task(se))
3ea94de1 927 p = task_of(se);
3ea94de1 928
60f2415e 929 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
3ea94de1 930}
3ea94de1 931
4fa8d299 932static inline void
60f2415e 933update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1a3d027c 934{
ceeadb83 935 struct sched_statistics *stats;
1a3d027c 936 struct task_struct *tsk = NULL;
4fa8d299
JP
937
938 if (!schedstat_enabled())
939 return;
940
ceeadb83
YS
941 stats = __schedstats_from_se(se);
942
1a3d027c
JP
943 if (entity_is_task(se))
944 tsk = task_of(se);
945
60f2415e 946 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
3ea94de1 947}
3ea94de1 948
bf0f6f24
IM
949/*
950 * Task is being enqueued - update stats:
951 */
cb251765 952static inline void
60f2415e 953update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 954{
4fa8d299
JP
955 if (!schedstat_enabled())
956 return;
957
bf0f6f24
IM
958 /*
959 * Are we enqueueing a waiting task? (for current tasks
960 * a dequeue/enqueue event is a NOP)
961 */
429d43bc 962 if (se != cfs_rq->curr)
60f2415e 963 update_stats_wait_start_fair(cfs_rq, se);
1a3d027c
JP
964
965 if (flags & ENQUEUE_WAKEUP)
60f2415e 966 update_stats_enqueue_sleeper_fair(cfs_rq, se);
bf0f6f24
IM
967}
968
bf0f6f24 969static inline void
60f2415e 970update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 971{
4fa8d299
JP
972
973 if (!schedstat_enabled())
974 return;
975
bf0f6f24
IM
976 /*
977 * Mark the end of the wait period if dequeueing a
978 * waiting task:
979 */
429d43bc 980 if (se != cfs_rq->curr)
60f2415e 981 update_stats_wait_end_fair(cfs_rq, se);
cb251765 982
4fa8d299
JP
983 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
984 struct task_struct *tsk = task_of(se);
2f064a59 985 unsigned int state;
cb251765 986
2f064a59
PZ
987 /* XXX racy against TTWU */
988 state = READ_ONCE(tsk->__state);
989 if (state & TASK_INTERRUPTIBLE)
ceeadb83 990 __schedstat_set(tsk->stats.sleep_start,
4fa8d299 991 rq_clock(rq_of(cfs_rq)));
2f064a59 992 if (state & TASK_UNINTERRUPTIBLE)
ceeadb83 993 __schedstat_set(tsk->stats.block_start,
4fa8d299 994 rq_clock(rq_of(cfs_rq)));
cb251765 995 }
cb251765
MG
996}
997
bf0f6f24
IM
998/*
999 * We are picking a new current task - update its stats:
1000 */
1001static inline void
79303e9e 1002update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1003{
1004 /*
1005 * We are starting a new run period:
1006 */
78becc27 1007 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1008}
1009
bf0f6f24
IM
1010/**************************************************
1011 * Scheduling class queueing methods:
1012 */
1013
cbee9f88
PZ
1014#ifdef CONFIG_NUMA_BALANCING
1015/*
598f0ec0
MG
1016 * Approximate time to scan a full NUMA task in ms. The task scan period is
1017 * calculated based on the tasks virtual memory size and
1018 * numa_balancing_scan_size.
cbee9f88 1019 */
598f0ec0
MG
1020unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1021unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1022
1023/* Portion of address space to scan in MB */
1024unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1025
4b96a29b
PZ
1026/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1027unsigned int sysctl_numa_balancing_scan_delay = 1000;
1028
b5dd77c8 1029struct numa_group {
c45a7795 1030 refcount_t refcount;
b5dd77c8
RR
1031
1032 spinlock_t lock; /* nr_tasks, tasks */
1033 int nr_tasks;
1034 pid_t gid;
1035 int active_nodes;
1036
1037 struct rcu_head rcu;
1038 unsigned long total_faults;
1039 unsigned long max_faults_cpu;
1040 /*
5b763a14
BR
1041 * faults[] array is split into two regions: faults_mem and faults_cpu.
1042 *
b5dd77c8
RR
1043 * Faults_cpu is used to decide whether memory should move
1044 * towards the CPU. As a consequence, these stats are weighted
1045 * more by CPU use than by memory faults.
1046 */
04f5c362 1047 unsigned long faults[];
b5dd77c8
RR
1048};
1049
cb361d8c
JH
1050/*
1051 * For functions that can be called in multiple contexts that permit reading
1052 * ->numa_group (see struct task_struct for locking rules).
1053 */
1054static struct numa_group *deref_task_numa_group(struct task_struct *p)
1055{
1056 return rcu_dereference_check(p->numa_group, p == current ||
9ef7e7e3 1057 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
cb361d8c
JH
1058}
1059
1060static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1061{
1062 return rcu_dereference_protected(p->numa_group, p == current);
1063}
1064
b5dd77c8
RR
1065static inline unsigned long group_faults_priv(struct numa_group *ng);
1066static inline unsigned long group_faults_shared(struct numa_group *ng);
1067
598f0ec0
MG
1068static unsigned int task_nr_scan_windows(struct task_struct *p)
1069{
1070 unsigned long rss = 0;
1071 unsigned long nr_scan_pages;
1072
1073 /*
1074 * Calculations based on RSS as non-present and empty pages are skipped
1075 * by the PTE scanner and NUMA hinting faults should be trapped based
1076 * on resident pages
1077 */
1078 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1079 rss = get_mm_rss(p->mm);
1080 if (!rss)
1081 rss = nr_scan_pages;
1082
1083 rss = round_up(rss, nr_scan_pages);
1084 return rss / nr_scan_pages;
1085}
1086
3b03706f 1087/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
598f0ec0
MG
1088#define MAX_SCAN_WINDOW 2560
1089
1090static unsigned int task_scan_min(struct task_struct *p)
1091{
316c1608 1092 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1093 unsigned int scan, floor;
1094 unsigned int windows = 1;
1095
64192658
KT
1096 if (scan_size < MAX_SCAN_WINDOW)
1097 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1098 floor = 1000 / windows;
1099
1100 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1101 return max_t(unsigned int, floor, scan);
1102}
1103
b5dd77c8
RR
1104static unsigned int task_scan_start(struct task_struct *p)
1105{
1106 unsigned long smin = task_scan_min(p);
1107 unsigned long period = smin;
cb361d8c 1108 struct numa_group *ng;
b5dd77c8
RR
1109
1110 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1111 rcu_read_lock();
1112 ng = rcu_dereference(p->numa_group);
1113 if (ng) {
b5dd77c8
RR
1114 unsigned long shared = group_faults_shared(ng);
1115 unsigned long private = group_faults_priv(ng);
1116
c45a7795 1117 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1118 period *= shared + 1;
1119 period /= private + shared + 1;
1120 }
cb361d8c 1121 rcu_read_unlock();
b5dd77c8
RR
1122
1123 return max(smin, period);
1124}
1125
598f0ec0
MG
1126static unsigned int task_scan_max(struct task_struct *p)
1127{
b5dd77c8
RR
1128 unsigned long smin = task_scan_min(p);
1129 unsigned long smax;
cb361d8c 1130 struct numa_group *ng;
598f0ec0
MG
1131
1132 /* Watch for min being lower than max due to floor calculations */
1133 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1134
1135 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1136 ng = deref_curr_numa_group(p);
1137 if (ng) {
b5dd77c8
RR
1138 unsigned long shared = group_faults_shared(ng);
1139 unsigned long private = group_faults_priv(ng);
1140 unsigned long period = smax;
1141
c45a7795 1142 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1143 period *= shared + 1;
1144 period /= private + shared + 1;
1145
1146 smax = max(smax, period);
1147 }
1148
598f0ec0
MG
1149 return max(smin, smax);
1150}
1151
0ec8aa00
PZ
1152static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1153{
98fa15f3 1154 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1155 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1156}
1157
1158static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1159{
98fa15f3 1160 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1161 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1162}
1163
be1e4e76
RR
1164/* Shared or private faults. */
1165#define NR_NUMA_HINT_FAULT_TYPES 2
1166
1167/* Memory and CPU locality */
1168#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1169
1170/* Averaged statistics, and temporary buffers. */
1171#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1172
e29cf08b
MG
1173pid_t task_numa_group_id(struct task_struct *p)
1174{
cb361d8c
JH
1175 struct numa_group *ng;
1176 pid_t gid = 0;
1177
1178 rcu_read_lock();
1179 ng = rcu_dereference(p->numa_group);
1180 if (ng)
1181 gid = ng->gid;
1182 rcu_read_unlock();
1183
1184 return gid;
e29cf08b
MG
1185}
1186
44dba3d5 1187/*
97fb7a0a 1188 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1189 * occupy the first half of the array. The second half of the
1190 * array is for current counters, which are averaged into the
1191 * first set by task_numa_placement.
1192 */
1193static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1194{
44dba3d5 1195 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1196}
1197
1198static inline unsigned long task_faults(struct task_struct *p, int nid)
1199{
44dba3d5 1200 if (!p->numa_faults)
ac8e895b
MG
1201 return 0;
1202
44dba3d5
IM
1203 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1204 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1205}
1206
83e1d2cd
MG
1207static inline unsigned long group_faults(struct task_struct *p, int nid)
1208{
cb361d8c
JH
1209 struct numa_group *ng = deref_task_numa_group(p);
1210
1211 if (!ng)
83e1d2cd
MG
1212 return 0;
1213
cb361d8c
JH
1214 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1215 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1216}
1217
20e07dea
RR
1218static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1219{
5b763a14
BR
1220 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1221 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
20e07dea
RR
1222}
1223
b5dd77c8
RR
1224static inline unsigned long group_faults_priv(struct numa_group *ng)
1225{
1226 unsigned long faults = 0;
1227 int node;
1228
1229 for_each_online_node(node) {
1230 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1231 }
1232
1233 return faults;
1234}
1235
1236static inline unsigned long group_faults_shared(struct numa_group *ng)
1237{
1238 unsigned long faults = 0;
1239 int node;
1240
1241 for_each_online_node(node) {
1242 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1243 }
1244
1245 return faults;
1246}
1247
4142c3eb
RR
1248/*
1249 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1250 * considered part of a numa group's pseudo-interleaving set. Migrations
1251 * between these nodes are slowed down, to allow things to settle down.
1252 */
1253#define ACTIVE_NODE_FRACTION 3
1254
1255static bool numa_is_active_node(int nid, struct numa_group *ng)
1256{
1257 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1258}
1259
6c6b1193
RR
1260/* Handle placement on systems where not all nodes are directly connected. */
1261static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1262 int maxdist, bool task)
1263{
1264 unsigned long score = 0;
1265 int node;
1266
1267 /*
1268 * All nodes are directly connected, and the same distance
1269 * from each other. No need for fancy placement algorithms.
1270 */
1271 if (sched_numa_topology_type == NUMA_DIRECT)
1272 return 0;
1273
1274 /*
1275 * This code is called for each node, introducing N^2 complexity,
1276 * which should be ok given the number of nodes rarely exceeds 8.
1277 */
1278 for_each_online_node(node) {
1279 unsigned long faults;
1280 int dist = node_distance(nid, node);
1281
1282 /*
1283 * The furthest away nodes in the system are not interesting
1284 * for placement; nid was already counted.
1285 */
1286 if (dist == sched_max_numa_distance || node == nid)
1287 continue;
1288
1289 /*
1290 * On systems with a backplane NUMA topology, compare groups
1291 * of nodes, and move tasks towards the group with the most
1292 * memory accesses. When comparing two nodes at distance
1293 * "hoplimit", only nodes closer by than "hoplimit" are part
1294 * of each group. Skip other nodes.
1295 */
1296 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1297 dist >= maxdist)
6c6b1193
RR
1298 continue;
1299
1300 /* Add up the faults from nearby nodes. */
1301 if (task)
1302 faults = task_faults(p, node);
1303 else
1304 faults = group_faults(p, node);
1305
1306 /*
1307 * On systems with a glueless mesh NUMA topology, there are
1308 * no fixed "groups of nodes". Instead, nodes that are not
1309 * directly connected bounce traffic through intermediate
1310 * nodes; a numa_group can occupy any set of nodes.
1311 * The further away a node is, the less the faults count.
1312 * This seems to result in good task placement.
1313 */
1314 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1315 faults *= (sched_max_numa_distance - dist);
1316 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1317 }
1318
1319 score += faults;
1320 }
1321
1322 return score;
1323}
1324
83e1d2cd
MG
1325/*
1326 * These return the fraction of accesses done by a particular task, or
1327 * task group, on a particular numa node. The group weight is given a
1328 * larger multiplier, in order to group tasks together that are almost
1329 * evenly spread out between numa nodes.
1330 */
7bd95320
RR
1331static inline unsigned long task_weight(struct task_struct *p, int nid,
1332 int dist)
83e1d2cd 1333{
7bd95320 1334 unsigned long faults, total_faults;
83e1d2cd 1335
44dba3d5 1336 if (!p->numa_faults)
83e1d2cd
MG
1337 return 0;
1338
1339 total_faults = p->total_numa_faults;
1340
1341 if (!total_faults)
1342 return 0;
1343
7bd95320 1344 faults = task_faults(p, nid);
6c6b1193
RR
1345 faults += score_nearby_nodes(p, nid, dist, true);
1346
7bd95320 1347 return 1000 * faults / total_faults;
83e1d2cd
MG
1348}
1349
7bd95320
RR
1350static inline unsigned long group_weight(struct task_struct *p, int nid,
1351 int dist)
83e1d2cd 1352{
cb361d8c 1353 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1354 unsigned long faults, total_faults;
1355
cb361d8c 1356 if (!ng)
7bd95320
RR
1357 return 0;
1358
cb361d8c 1359 total_faults = ng->total_faults;
7bd95320
RR
1360
1361 if (!total_faults)
83e1d2cd
MG
1362 return 0;
1363
7bd95320 1364 faults = group_faults(p, nid);
6c6b1193
RR
1365 faults += score_nearby_nodes(p, nid, dist, false);
1366
7bd95320 1367 return 1000 * faults / total_faults;
83e1d2cd
MG
1368}
1369
10f39042
RR
1370bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 int src_nid, int dst_cpu)
1372{
cb361d8c 1373 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1374 int dst_nid = cpu_to_node(dst_cpu);
1375 int last_cpupid, this_cpupid;
1376
1377 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1378 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1379
1380 /*
1381 * Allow first faults or private faults to migrate immediately early in
1382 * the lifetime of a task. The magic number 4 is based on waiting for
1383 * two full passes of the "multi-stage node selection" test that is
1384 * executed below.
1385 */
98fa15f3 1386 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1387 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1388 return true;
10f39042
RR
1389
1390 /*
1391 * Multi-stage node selection is used in conjunction with a periodic
1392 * migration fault to build a temporal task<->page relation. By using
1393 * a two-stage filter we remove short/unlikely relations.
1394 *
1395 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1396 * a task's usage of a particular page (n_p) per total usage of this
1397 * page (n_t) (in a given time-span) to a probability.
1398 *
1399 * Our periodic faults will sample this probability and getting the
1400 * same result twice in a row, given these samples are fully
1401 * independent, is then given by P(n)^2, provided our sample period
1402 * is sufficiently short compared to the usage pattern.
1403 *
1404 * This quadric squishes small probabilities, making it less likely we
1405 * act on an unlikely task<->page relation.
1406 */
10f39042
RR
1407 if (!cpupid_pid_unset(last_cpupid) &&
1408 cpupid_to_nid(last_cpupid) != dst_nid)
1409 return false;
1410
1411 /* Always allow migrate on private faults */
1412 if (cpupid_match_pid(p, last_cpupid))
1413 return true;
1414
1415 /* A shared fault, but p->numa_group has not been set up yet. */
1416 if (!ng)
1417 return true;
1418
1419 /*
4142c3eb
RR
1420 * Destination node is much more heavily used than the source
1421 * node? Allow migration.
10f39042 1422 */
4142c3eb
RR
1423 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1424 ACTIVE_NODE_FRACTION)
10f39042
RR
1425 return true;
1426
1427 /*
4142c3eb
RR
1428 * Distribute memory according to CPU & memory use on each node,
1429 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1430 *
1431 * faults_cpu(dst) 3 faults_cpu(src)
1432 * --------------- * - > ---------------
1433 * faults_mem(dst) 4 faults_mem(src)
10f39042 1434 */
4142c3eb
RR
1435 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1436 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1437}
1438
6499b1b2
VG
1439/*
1440 * 'numa_type' describes the node at the moment of load balancing.
1441 */
1442enum numa_type {
1443 /* The node has spare capacity that can be used to run more tasks. */
1444 node_has_spare = 0,
1445 /*
1446 * The node is fully used and the tasks don't compete for more CPU
1447 * cycles. Nevertheless, some tasks might wait before running.
1448 */
1449 node_fully_busy,
1450 /*
1451 * The node is overloaded and can't provide expected CPU cycles to all
1452 * tasks.
1453 */
1454 node_overloaded
1455};
58d081b5 1456
fb13c7ee 1457/* Cached statistics for all CPUs within a node */
58d081b5
MG
1458struct numa_stats {
1459 unsigned long load;
8e0e0eda 1460 unsigned long runnable;
6499b1b2 1461 unsigned long util;
fb13c7ee 1462 /* Total compute capacity of CPUs on a node */
5ef20ca1 1463 unsigned long compute_capacity;
6499b1b2
VG
1464 unsigned int nr_running;
1465 unsigned int weight;
1466 enum numa_type node_type;
ff7db0bf 1467 int idle_cpu;
58d081b5 1468};
e6628d5b 1469
ff7db0bf
MG
1470static inline bool is_core_idle(int cpu)
1471{
1472#ifdef CONFIG_SCHED_SMT
1473 int sibling;
1474
1475 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1476 if (cpu == sibling)
1477 continue;
1478
1c6829cf 1479 if (!idle_cpu(sibling))
ff7db0bf
MG
1480 return false;
1481 }
1482#endif
1483
1484 return true;
1485}
1486
58d081b5
MG
1487struct task_numa_env {
1488 struct task_struct *p;
e6628d5b 1489
58d081b5
MG
1490 int src_cpu, src_nid;
1491 int dst_cpu, dst_nid;
e6628d5b 1492
58d081b5 1493 struct numa_stats src_stats, dst_stats;
e6628d5b 1494
40ea2b42 1495 int imbalance_pct;
7bd95320 1496 int dist;
fb13c7ee
MG
1497
1498 struct task_struct *best_task;
1499 long best_imp;
58d081b5
MG
1500 int best_cpu;
1501};
1502
6499b1b2 1503static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1504static unsigned long cpu_runnable(struct rq *rq);
7d2b5dd0
MG
1505static inline long adjust_numa_imbalance(int imbalance,
1506 int dst_running, int dst_weight);
6499b1b2
VG
1507
1508static inline enum
1509numa_type numa_classify(unsigned int imbalance_pct,
1510 struct numa_stats *ns)
1511{
1512 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1513 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1514 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1515 return node_overloaded;
1516
1517 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1518 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1519 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1520 return node_has_spare;
1521
1522 return node_fully_busy;
1523}
1524
76c389ab
VS
1525#ifdef CONFIG_SCHED_SMT
1526/* Forward declarations of select_idle_sibling helpers */
1527static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1528static inline int numa_idle_core(int idle_core, int cpu)
1529{
ff7db0bf
MG
1530 if (!static_branch_likely(&sched_smt_present) ||
1531 idle_core >= 0 || !test_idle_cores(cpu, false))
1532 return idle_core;
1533
1534 /*
1535 * Prefer cores instead of packing HT siblings
1536 * and triggering future load balancing.
1537 */
1538 if (is_core_idle(cpu))
1539 idle_core = cpu;
ff7db0bf
MG
1540
1541 return idle_core;
1542}
76c389ab
VS
1543#else
1544static inline int numa_idle_core(int idle_core, int cpu)
1545{
1546 return idle_core;
1547}
1548#endif
ff7db0bf 1549
6499b1b2 1550/*
ff7db0bf
MG
1551 * Gather all necessary information to make NUMA balancing placement
1552 * decisions that are compatible with standard load balancer. This
1553 * borrows code and logic from update_sg_lb_stats but sharing a
1554 * common implementation is impractical.
6499b1b2
VG
1555 */
1556static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1557 struct numa_stats *ns, int nid,
1558 bool find_idle)
6499b1b2 1559{
ff7db0bf 1560 int cpu, idle_core = -1;
6499b1b2
VG
1561
1562 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1563 ns->idle_cpu = -1;
1564
0621df31 1565 rcu_read_lock();
6499b1b2
VG
1566 for_each_cpu(cpu, cpumask_of_node(nid)) {
1567 struct rq *rq = cpu_rq(cpu);
1568
1569 ns->load += cpu_load(rq);
8e0e0eda 1570 ns->runnable += cpu_runnable(rq);
82762d2a 1571 ns->util += cpu_util_cfs(cpu);
6499b1b2
VG
1572 ns->nr_running += rq->cfs.h_nr_running;
1573 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1574
1575 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1576 if (READ_ONCE(rq->numa_migrate_on) ||
1577 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1578 continue;
1579
1580 if (ns->idle_cpu == -1)
1581 ns->idle_cpu = cpu;
1582
1583 idle_core = numa_idle_core(idle_core, cpu);
1584 }
6499b1b2 1585 }
0621df31 1586 rcu_read_unlock();
6499b1b2
VG
1587
1588 ns->weight = cpumask_weight(cpumask_of_node(nid));
1589
1590 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1591
1592 if (idle_core >= 0)
1593 ns->idle_cpu = idle_core;
6499b1b2
VG
1594}
1595
fb13c7ee
MG
1596static void task_numa_assign(struct task_numa_env *env,
1597 struct task_struct *p, long imp)
1598{
a4739eca
SD
1599 struct rq *rq = cpu_rq(env->dst_cpu);
1600
5fb52dd9
MG
1601 /* Check if run-queue part of active NUMA balance. */
1602 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1603 int cpu;
1604 int start = env->dst_cpu;
1605
1606 /* Find alternative idle CPU. */
1607 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1608 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1609 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1610 continue;
1611 }
1612
1613 env->dst_cpu = cpu;
1614 rq = cpu_rq(env->dst_cpu);
1615 if (!xchg(&rq->numa_migrate_on, 1))
1616 goto assign;
1617 }
1618
1619 /* Failed to find an alternative idle CPU */
a4739eca 1620 return;
5fb52dd9 1621 }
a4739eca 1622
5fb52dd9 1623assign:
a4739eca
SD
1624 /*
1625 * Clear previous best_cpu/rq numa-migrate flag, since task now
1626 * found a better CPU to move/swap.
1627 */
5fb52dd9 1628 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1629 rq = cpu_rq(env->best_cpu);
1630 WRITE_ONCE(rq->numa_migrate_on, 0);
1631 }
1632
fb13c7ee
MG
1633 if (env->best_task)
1634 put_task_struct(env->best_task);
bac78573
ON
1635 if (p)
1636 get_task_struct(p);
fb13c7ee
MG
1637
1638 env->best_task = p;
1639 env->best_imp = imp;
1640 env->best_cpu = env->dst_cpu;
1641}
1642
28a21745 1643static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1644 struct task_numa_env *env)
1645{
e4991b24
RR
1646 long imb, old_imb;
1647 long orig_src_load, orig_dst_load;
28a21745
RR
1648 long src_capacity, dst_capacity;
1649
1650 /*
1651 * The load is corrected for the CPU capacity available on each node.
1652 *
1653 * src_load dst_load
1654 * ------------ vs ---------
1655 * src_capacity dst_capacity
1656 */
1657 src_capacity = env->src_stats.compute_capacity;
1658 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1659
5f95ba7a 1660 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1661
28a21745 1662 orig_src_load = env->src_stats.load;
e4991b24 1663 orig_dst_load = env->dst_stats.load;
28a21745 1664
5f95ba7a 1665 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1666
1667 /* Would this change make things worse? */
1668 return (imb > old_imb);
e63da036
RR
1669}
1670
6fd98e77
SD
1671/*
1672 * Maximum NUMA importance can be 1998 (2*999);
1673 * SMALLIMP @ 30 would be close to 1998/64.
1674 * Used to deter task migration.
1675 */
1676#define SMALLIMP 30
1677
fb13c7ee
MG
1678/*
1679 * This checks if the overall compute and NUMA accesses of the system would
1680 * be improved if the source tasks was migrated to the target dst_cpu taking
1681 * into account that it might be best if task running on the dst_cpu should
1682 * be exchanged with the source task
1683 */
a0f03b61 1684static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1685 long taskimp, long groupimp, bool maymove)
fb13c7ee 1686{
cb361d8c 1687 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1688 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1689 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1690 struct task_struct *cur;
28a21745 1691 long src_load, dst_load;
7bd95320 1692 int dist = env->dist;
cb361d8c
JH
1693 long moveimp = imp;
1694 long load;
a0f03b61 1695 bool stopsearch = false;
fb13c7ee 1696
a4739eca 1697 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1698 return false;
a4739eca 1699
fb13c7ee 1700 rcu_read_lock();
154abafc 1701 cur = rcu_dereference(dst_rq->curr);
bac78573 1702 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1703 cur = NULL;
1704
7af68335
PZ
1705 /*
1706 * Because we have preemption enabled we can get migrated around and
1707 * end try selecting ourselves (current == env->p) as a swap candidate.
1708 */
a0f03b61
MG
1709 if (cur == env->p) {
1710 stopsearch = true;
7af68335 1711 goto unlock;
a0f03b61 1712 }
7af68335 1713
305c1fac 1714 if (!cur) {
6fd98e77 1715 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1716 goto assign;
1717 else
1718 goto unlock;
1719 }
1720
88cca72c
MG
1721 /* Skip this swap candidate if cannot move to the source cpu. */
1722 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1723 goto unlock;
1724
1725 /*
1726 * Skip this swap candidate if it is not moving to its preferred
1727 * node and the best task is.
1728 */
1729 if (env->best_task &&
1730 env->best_task->numa_preferred_nid == env->src_nid &&
1731 cur->numa_preferred_nid != env->src_nid) {
1732 goto unlock;
1733 }
1734
fb13c7ee
MG
1735 /*
1736 * "imp" is the fault differential for the source task between the
1737 * source and destination node. Calculate the total differential for
1738 * the source task and potential destination task. The more negative
305c1fac 1739 * the value is, the more remote accesses that would be expected to
fb13c7ee 1740 * be incurred if the tasks were swapped.
88cca72c 1741 *
305c1fac
SD
1742 * If dst and source tasks are in the same NUMA group, or not
1743 * in any group then look only at task weights.
1744 */
cb361d8c
JH
1745 cur_ng = rcu_dereference(cur->numa_group);
1746 if (cur_ng == p_ng) {
305c1fac
SD
1747 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1748 task_weight(cur, env->dst_nid, dist);
887c290e 1749 /*
305c1fac
SD
1750 * Add some hysteresis to prevent swapping the
1751 * tasks within a group over tiny differences.
887c290e 1752 */
cb361d8c 1753 if (cur_ng)
305c1fac
SD
1754 imp -= imp / 16;
1755 } else {
1756 /*
1757 * Compare the group weights. If a task is all by itself
1758 * (not part of a group), use the task weight instead.
1759 */
cb361d8c 1760 if (cur_ng && p_ng)
305c1fac
SD
1761 imp += group_weight(cur, env->src_nid, dist) -
1762 group_weight(cur, env->dst_nid, dist);
1763 else
1764 imp += task_weight(cur, env->src_nid, dist) -
1765 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1766 }
1767
88cca72c
MG
1768 /* Discourage picking a task already on its preferred node */
1769 if (cur->numa_preferred_nid == env->dst_nid)
1770 imp -= imp / 16;
1771
1772 /*
1773 * Encourage picking a task that moves to its preferred node.
1774 * This potentially makes imp larger than it's maximum of
1775 * 1998 (see SMALLIMP and task_weight for why) but in this
1776 * case, it does not matter.
1777 */
1778 if (cur->numa_preferred_nid == env->src_nid)
1779 imp += imp / 8;
1780
305c1fac 1781 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1782 imp = moveimp;
305c1fac 1783 cur = NULL;
fb13c7ee 1784 goto assign;
305c1fac 1785 }
fb13c7ee 1786
88cca72c
MG
1787 /*
1788 * Prefer swapping with a task moving to its preferred node over a
1789 * task that is not.
1790 */
1791 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1792 env->best_task->numa_preferred_nid != env->src_nid) {
1793 goto assign;
1794 }
1795
6fd98e77
SD
1796 /*
1797 * If the NUMA importance is less than SMALLIMP,
1798 * task migration might only result in ping pong
1799 * of tasks and also hurt performance due to cache
1800 * misses.
1801 */
1802 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1803 goto unlock;
1804
fb13c7ee
MG
1805 /*
1806 * In the overloaded case, try and keep the load balanced.
1807 */
305c1fac
SD
1808 load = task_h_load(env->p) - task_h_load(cur);
1809 if (!load)
1810 goto assign;
1811
e720fff6
PZ
1812 dst_load = env->dst_stats.load + load;
1813 src_load = env->src_stats.load - load;
fb13c7ee 1814
28a21745 1815 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1816 goto unlock;
1817
305c1fac 1818assign:
ff7db0bf 1819 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1820 if (!cur) {
ff7db0bf
MG
1821 int cpu = env->dst_stats.idle_cpu;
1822
1823 /* Nothing cached so current CPU went idle since the search. */
1824 if (cpu < 0)
1825 cpu = env->dst_cpu;
1826
10e2f1ac 1827 /*
ff7db0bf
MG
1828 * If the CPU is no longer truly idle and the previous best CPU
1829 * is, keep using it.
10e2f1ac 1830 */
ff7db0bf
MG
1831 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1832 idle_cpu(env->best_cpu)) {
1833 cpu = env->best_cpu;
1834 }
1835
ff7db0bf 1836 env->dst_cpu = cpu;
10e2f1ac 1837 }
ba7e5a27 1838
fb13c7ee 1839 task_numa_assign(env, cur, imp);
a0f03b61
MG
1840
1841 /*
1842 * If a move to idle is allowed because there is capacity or load
1843 * balance improves then stop the search. While a better swap
1844 * candidate may exist, a search is not free.
1845 */
1846 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1847 stopsearch = true;
1848
1849 /*
1850 * If a swap candidate must be identified and the current best task
1851 * moves its preferred node then stop the search.
1852 */
1853 if (!maymove && env->best_task &&
1854 env->best_task->numa_preferred_nid == env->src_nid) {
1855 stopsearch = true;
1856 }
fb13c7ee
MG
1857unlock:
1858 rcu_read_unlock();
a0f03b61
MG
1859
1860 return stopsearch;
fb13c7ee
MG
1861}
1862
887c290e
RR
1863static void task_numa_find_cpu(struct task_numa_env *env,
1864 long taskimp, long groupimp)
2c8a50aa 1865{
305c1fac 1866 bool maymove = false;
2c8a50aa
MG
1867 int cpu;
1868
305c1fac 1869 /*
fb86f5b2
MG
1870 * If dst node has spare capacity, then check if there is an
1871 * imbalance that would be overruled by the load balancer.
305c1fac 1872 */
fb86f5b2
MG
1873 if (env->dst_stats.node_type == node_has_spare) {
1874 unsigned int imbalance;
1875 int src_running, dst_running;
1876
1877 /*
1878 * Would movement cause an imbalance? Note that if src has
1879 * more running tasks that the imbalance is ignored as the
1880 * move improves the imbalance from the perspective of the
1881 * CPU load balancer.
1882 * */
1883 src_running = env->src_stats.nr_running - 1;
1884 dst_running = env->dst_stats.nr_running + 1;
1885 imbalance = max(0, dst_running - src_running);
7d2b5dd0
MG
1886 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1887 env->dst_stats.weight);
fb86f5b2
MG
1888
1889 /* Use idle CPU if there is no imbalance */
ff7db0bf 1890 if (!imbalance) {
fb86f5b2 1891 maymove = true;
ff7db0bf
MG
1892 if (env->dst_stats.idle_cpu >= 0) {
1893 env->dst_cpu = env->dst_stats.idle_cpu;
1894 task_numa_assign(env, NULL, 0);
1895 return;
1896 }
1897 }
fb86f5b2
MG
1898 } else {
1899 long src_load, dst_load, load;
1900 /*
1901 * If the improvement from just moving env->p direction is better
1902 * than swapping tasks around, check if a move is possible.
1903 */
1904 load = task_h_load(env->p);
1905 dst_load = env->dst_stats.load + load;
1906 src_load = env->src_stats.load - load;
1907 maymove = !load_too_imbalanced(src_load, dst_load, env);
1908 }
305c1fac 1909
2c8a50aa
MG
1910 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1911 /* Skip this CPU if the source task cannot migrate */
3bd37062 1912 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1913 continue;
1914
1915 env->dst_cpu = cpu;
a0f03b61
MG
1916 if (task_numa_compare(env, taskimp, groupimp, maymove))
1917 break;
2c8a50aa
MG
1918 }
1919}
1920
58d081b5
MG
1921static int task_numa_migrate(struct task_struct *p)
1922{
58d081b5
MG
1923 struct task_numa_env env = {
1924 .p = p,
fb13c7ee 1925
58d081b5 1926 .src_cpu = task_cpu(p),
b32e86b4 1927 .src_nid = task_node(p),
fb13c7ee
MG
1928
1929 .imbalance_pct = 112,
1930
1931 .best_task = NULL,
1932 .best_imp = 0,
4142c3eb 1933 .best_cpu = -1,
58d081b5 1934 };
cb361d8c 1935 unsigned long taskweight, groupweight;
58d081b5 1936 struct sched_domain *sd;
cb361d8c
JH
1937 long taskimp, groupimp;
1938 struct numa_group *ng;
a4739eca 1939 struct rq *best_rq;
7bd95320 1940 int nid, ret, dist;
e6628d5b 1941
58d081b5 1942 /*
fb13c7ee
MG
1943 * Pick the lowest SD_NUMA domain, as that would have the smallest
1944 * imbalance and would be the first to start moving tasks about.
1945 *
1946 * And we want to avoid any moving of tasks about, as that would create
1947 * random movement of tasks -- counter the numa conditions we're trying
1948 * to satisfy here.
58d081b5
MG
1949 */
1950 rcu_read_lock();
fb13c7ee 1951 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1952 if (sd)
1953 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1954 rcu_read_unlock();
1955
46a73e8a
RR
1956 /*
1957 * Cpusets can break the scheduler domain tree into smaller
1958 * balance domains, some of which do not cross NUMA boundaries.
1959 * Tasks that are "trapped" in such domains cannot be migrated
1960 * elsewhere, so there is no point in (re)trying.
1961 */
1962 if (unlikely(!sd)) {
8cd45eee 1963 sched_setnuma(p, task_node(p));
46a73e8a
RR
1964 return -EINVAL;
1965 }
1966
2c8a50aa 1967 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1968 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1969 taskweight = task_weight(p, env.src_nid, dist);
1970 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 1971 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
1972 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1973 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 1974 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 1975
a43455a1 1976 /* Try to find a spot on the preferred nid. */
2d4056fa 1977 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1978
9de05d48
RR
1979 /*
1980 * Look at other nodes in these cases:
1981 * - there is no space available on the preferred_nid
1982 * - the task is part of a numa_group that is interleaved across
1983 * multiple NUMA nodes; in order to better consolidate the group,
1984 * we need to check other locations.
1985 */
cb361d8c
JH
1986 ng = deref_curr_numa_group(p);
1987 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
1988 for_each_online_node(nid) {
1989 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1990 continue;
58d081b5 1991
7bd95320 1992 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1993 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1994 dist != env.dist) {
1995 taskweight = task_weight(p, env.src_nid, dist);
1996 groupweight = group_weight(p, env.src_nid, dist);
1997 }
7bd95320 1998
83e1d2cd 1999 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2000 taskimp = task_weight(p, nid, dist) - taskweight;
2001 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2002 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2003 continue;
2004
7bd95320 2005 env.dist = dist;
2c8a50aa 2006 env.dst_nid = nid;
ff7db0bf 2007 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2008 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2009 }
2010 }
2011
68d1b02a
RR
2012 /*
2013 * If the task is part of a workload that spans multiple NUMA nodes,
2014 * and is migrating into one of the workload's active nodes, remember
2015 * this node as the task's preferred numa node, so the workload can
2016 * settle down.
2017 * A task that migrated to a second choice node will be better off
2018 * trying for a better one later. Do not set the preferred node here.
2019 */
cb361d8c 2020 if (ng) {
db015dae
RR
2021 if (env.best_cpu == -1)
2022 nid = env.src_nid;
2023 else
8cd45eee 2024 nid = cpu_to_node(env.best_cpu);
db015dae 2025
8cd45eee
SD
2026 if (nid != p->numa_preferred_nid)
2027 sched_setnuma(p, nid);
db015dae
RR
2028 }
2029
2030 /* No better CPU than the current one was found. */
f22aef4a 2031 if (env.best_cpu == -1) {
b2b2042b 2032 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2033 return -EAGAIN;
f22aef4a 2034 }
0ec8aa00 2035
a4739eca 2036 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2037 if (env.best_task == NULL) {
286549dc 2038 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2039 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2040 if (ret != 0)
b2b2042b 2041 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2042 return ret;
2043 }
2044
0ad4e3df 2045 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2046 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2047
286549dc 2048 if (ret != 0)
b2b2042b 2049 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2050 put_task_struct(env.best_task);
2051 return ret;
e6628d5b
MG
2052}
2053
6b9a7460
MG
2054/* Attempt to migrate a task to a CPU on the preferred node. */
2055static void numa_migrate_preferred(struct task_struct *p)
2056{
5085e2a3
RR
2057 unsigned long interval = HZ;
2058
2739d3ee 2059 /* This task has no NUMA fault statistics yet */
98fa15f3 2060 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2061 return;
2062
2739d3ee 2063 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2064 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2065 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2066
2067 /* Success if task is already running on preferred CPU */
de1b301a 2068 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2069 return;
2070
2071 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2072 task_numa_migrate(p);
6b9a7460
MG
2073}
2074
20e07dea 2075/*
7d380f24 2076 * Find out how many nodes the workload is actively running on. Do this by
20e07dea
RR
2077 * tracking the nodes from which NUMA hinting faults are triggered. This can
2078 * be different from the set of nodes where the workload's memory is currently
2079 * located.
20e07dea 2080 */
4142c3eb 2081static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2082{
2083 unsigned long faults, max_faults = 0;
4142c3eb 2084 int nid, active_nodes = 0;
20e07dea
RR
2085
2086 for_each_online_node(nid) {
2087 faults = group_faults_cpu(numa_group, nid);
2088 if (faults > max_faults)
2089 max_faults = faults;
2090 }
2091
2092 for_each_online_node(nid) {
2093 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2094 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2095 active_nodes++;
20e07dea 2096 }
4142c3eb
RR
2097
2098 numa_group->max_faults_cpu = max_faults;
2099 numa_group->active_nodes = active_nodes;
20e07dea
RR
2100}
2101
04bb2f94
RR
2102/*
2103 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2104 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2105 * period will be for the next scan window. If local/(local+remote) ratio is
2106 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2107 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2108 */
2109#define NUMA_PERIOD_SLOTS 10
a22b4b01 2110#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2111
2112/*
2113 * Increase the scan period (slow down scanning) if the majority of
2114 * our memory is already on our local node, or if the majority of
2115 * the page accesses are shared with other processes.
2116 * Otherwise, decrease the scan period.
2117 */
2118static void update_task_scan_period(struct task_struct *p,
2119 unsigned long shared, unsigned long private)
2120{
2121 unsigned int period_slot;
37ec97de 2122 int lr_ratio, ps_ratio;
04bb2f94
RR
2123 int diff;
2124
2125 unsigned long remote = p->numa_faults_locality[0];
2126 unsigned long local = p->numa_faults_locality[1];
2127
2128 /*
2129 * If there were no record hinting faults then either the task is
7d380f24 2130 * completely idle or all activity is in areas that are not of interest
074c2381
MG
2131 * to automatic numa balancing. Related to that, if there were failed
2132 * migration then it implies we are migrating too quickly or the local
2133 * node is overloaded. In either case, scan slower
04bb2f94 2134 */
074c2381 2135 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2136 p->numa_scan_period = min(p->numa_scan_period_max,
2137 p->numa_scan_period << 1);
2138
2139 p->mm->numa_next_scan = jiffies +
2140 msecs_to_jiffies(p->numa_scan_period);
2141
2142 return;
2143 }
2144
2145 /*
2146 * Prepare to scale scan period relative to the current period.
2147 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2148 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2149 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2150 */
2151 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2152 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2153 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2154
2155 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2156 /*
2157 * Most memory accesses are local. There is no need to
2158 * do fast NUMA scanning, since memory is already local.
2159 */
2160 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2161 if (!slot)
2162 slot = 1;
2163 diff = slot * period_slot;
2164 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2165 /*
2166 * Most memory accesses are shared with other tasks.
2167 * There is no point in continuing fast NUMA scanning,
2168 * since other tasks may just move the memory elsewhere.
2169 */
2170 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2171 if (!slot)
2172 slot = 1;
2173 diff = slot * period_slot;
2174 } else {
04bb2f94 2175 /*
37ec97de
RR
2176 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2177 * yet they are not on the local NUMA node. Speed up
2178 * NUMA scanning to get the memory moved over.
04bb2f94 2179 */
37ec97de
RR
2180 int ratio = max(lr_ratio, ps_ratio);
2181 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2182 }
2183
2184 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2185 task_scan_min(p), task_scan_max(p));
2186 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2187}
2188
7e2703e6
RR
2189/*
2190 * Get the fraction of time the task has been running since the last
2191 * NUMA placement cycle. The scheduler keeps similar statistics, but
2192 * decays those on a 32ms period, which is orders of magnitude off
2193 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2194 * stats only if the task is so new there are no NUMA statistics yet.
2195 */
2196static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2197{
2198 u64 runtime, delta, now;
2199 /* Use the start of this time slice to avoid calculations. */
2200 now = p->se.exec_start;
2201 runtime = p->se.sum_exec_runtime;
2202
2203 if (p->last_task_numa_placement) {
2204 delta = runtime - p->last_sum_exec_runtime;
2205 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2206
2207 /* Avoid time going backwards, prevent potential divide error: */
2208 if (unlikely((s64)*period < 0))
2209 *period = 0;
7e2703e6 2210 } else {
c7b50216 2211 delta = p->se.avg.load_sum;
9d89c257 2212 *period = LOAD_AVG_MAX;
7e2703e6
RR
2213 }
2214
2215 p->last_sum_exec_runtime = runtime;
2216 p->last_task_numa_placement = now;
2217
2218 return delta;
2219}
2220
54009416
RR
2221/*
2222 * Determine the preferred nid for a task in a numa_group. This needs to
2223 * be done in a way that produces consistent results with group_weight,
2224 * otherwise workloads might not converge.
2225 */
2226static int preferred_group_nid(struct task_struct *p, int nid)
2227{
2228 nodemask_t nodes;
2229 int dist;
2230
2231 /* Direct connections between all NUMA nodes. */
2232 if (sched_numa_topology_type == NUMA_DIRECT)
2233 return nid;
2234
2235 /*
2236 * On a system with glueless mesh NUMA topology, group_weight
2237 * scores nodes according to the number of NUMA hinting faults on
2238 * both the node itself, and on nearby nodes.
2239 */
2240 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2241 unsigned long score, max_score = 0;
2242 int node, max_node = nid;
2243
2244 dist = sched_max_numa_distance;
2245
2246 for_each_online_node(node) {
2247 score = group_weight(p, node, dist);
2248 if (score > max_score) {
2249 max_score = score;
2250 max_node = node;
2251 }
2252 }
2253 return max_node;
2254 }
2255
2256 /*
2257 * Finding the preferred nid in a system with NUMA backplane
2258 * interconnect topology is more involved. The goal is to locate
2259 * tasks from numa_groups near each other in the system, and
2260 * untangle workloads from different sides of the system. This requires
2261 * searching down the hierarchy of node groups, recursively searching
2262 * inside the highest scoring group of nodes. The nodemask tricks
2263 * keep the complexity of the search down.
2264 */
2265 nodes = node_online_map;
2266 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2267 unsigned long max_faults = 0;
81907478 2268 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2269 int a, b;
2270
2271 /* Are there nodes at this distance from each other? */
2272 if (!find_numa_distance(dist))
2273 continue;
2274
2275 for_each_node_mask(a, nodes) {
2276 unsigned long faults = 0;
2277 nodemask_t this_group;
2278 nodes_clear(this_group);
2279
2280 /* Sum group's NUMA faults; includes a==b case. */
2281 for_each_node_mask(b, nodes) {
2282 if (node_distance(a, b) < dist) {
2283 faults += group_faults(p, b);
2284 node_set(b, this_group);
2285 node_clear(b, nodes);
2286 }
2287 }
2288
2289 /* Remember the top group. */
2290 if (faults > max_faults) {
2291 max_faults = faults;
2292 max_group = this_group;
2293 /*
2294 * subtle: at the smallest distance there is
2295 * just one node left in each "group", the
2296 * winner is the preferred nid.
2297 */
2298 nid = a;
2299 }
2300 }
2301 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2302 if (!max_faults)
2303 break;
54009416
RR
2304 nodes = max_group;
2305 }
2306 return nid;
2307}
2308
cbee9f88
PZ
2309static void task_numa_placement(struct task_struct *p)
2310{
98fa15f3 2311 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2312 unsigned long max_faults = 0;
04bb2f94 2313 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2314 unsigned long total_faults;
2315 u64 runtime, period;
7dbd13ed 2316 spinlock_t *group_lock = NULL;
cb361d8c 2317 struct numa_group *ng;
cbee9f88 2318
7e5a2c17
JL
2319 /*
2320 * The p->mm->numa_scan_seq field gets updated without
2321 * exclusive access. Use READ_ONCE() here to ensure
2322 * that the field is read in a single access:
2323 */
316c1608 2324 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2325 if (p->numa_scan_seq == seq)
2326 return;
2327 p->numa_scan_seq = seq;
598f0ec0 2328 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2329
7e2703e6
RR
2330 total_faults = p->numa_faults_locality[0] +
2331 p->numa_faults_locality[1];
2332 runtime = numa_get_avg_runtime(p, &period);
2333
7dbd13ed 2334 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2335 ng = deref_curr_numa_group(p);
2336 if (ng) {
2337 group_lock = &ng->lock;
60e69eed 2338 spin_lock_irq(group_lock);
7dbd13ed
MG
2339 }
2340
688b7585
MG
2341 /* Find the node with the highest number of faults */
2342 for_each_online_node(nid) {
44dba3d5
IM
2343 /* Keep track of the offsets in numa_faults array */
2344 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2345 unsigned long faults = 0, group_faults = 0;
44dba3d5 2346 int priv;
745d6147 2347
be1e4e76 2348 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2349 long diff, f_diff, f_weight;
8c8a743c 2350
44dba3d5
IM
2351 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2352 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2353 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2354 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2355
ac8e895b 2356 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2357 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2358 fault_types[priv] += p->numa_faults[membuf_idx];
2359 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2360
7e2703e6
RR
2361 /*
2362 * Normalize the faults_from, so all tasks in a group
2363 * count according to CPU use, instead of by the raw
2364 * number of faults. Tasks with little runtime have
2365 * little over-all impact on throughput, and thus their
2366 * faults are less important.
2367 */
2368 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2369 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2370 (total_faults + 1);
44dba3d5
IM
2371 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2372 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2373
44dba3d5
IM
2374 p->numa_faults[mem_idx] += diff;
2375 p->numa_faults[cpu_idx] += f_diff;
2376 faults += p->numa_faults[mem_idx];
83e1d2cd 2377 p->total_numa_faults += diff;
cb361d8c 2378 if (ng) {
44dba3d5
IM
2379 /*
2380 * safe because we can only change our own group
2381 *
2382 * mem_idx represents the offset for a given
2383 * nid and priv in a specific region because it
2384 * is at the beginning of the numa_faults array.
2385 */
cb361d8c 2386 ng->faults[mem_idx] += diff;
5b763a14 2387 ng->faults[cpu_idx] += f_diff;
cb361d8c
JH
2388 ng->total_faults += diff;
2389 group_faults += ng->faults[mem_idx];
8c8a743c 2390 }
ac8e895b
MG
2391 }
2392
cb361d8c 2393 if (!ng) {
f03bb676
SD
2394 if (faults > max_faults) {
2395 max_faults = faults;
2396 max_nid = nid;
2397 }
2398 } else if (group_faults > max_faults) {
2399 max_faults = group_faults;
688b7585
MG
2400 max_nid = nid;
2401 }
83e1d2cd
MG
2402 }
2403
cb361d8c
JH
2404 if (ng) {
2405 numa_group_count_active_nodes(ng);
60e69eed 2406 spin_unlock_irq(group_lock);
f03bb676 2407 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2408 }
2409
bb97fc31
RR
2410 if (max_faults) {
2411 /* Set the new preferred node */
2412 if (max_nid != p->numa_preferred_nid)
2413 sched_setnuma(p, max_nid);
3a7053b3 2414 }
30619c89
SD
2415
2416 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2417}
2418
8c8a743c
PZ
2419static inline int get_numa_group(struct numa_group *grp)
2420{
c45a7795 2421 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2422}
2423
2424static inline void put_numa_group(struct numa_group *grp)
2425{
c45a7795 2426 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2427 kfree_rcu(grp, rcu);
2428}
2429
3e6a9418
MG
2430static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2431 int *priv)
8c8a743c
PZ
2432{
2433 struct numa_group *grp, *my_grp;
2434 struct task_struct *tsk;
2435 bool join = false;
2436 int cpu = cpupid_to_cpu(cpupid);
2437 int i;
2438
cb361d8c 2439 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2440 unsigned int size = sizeof(struct numa_group) +
7a2341fc
BR
2441 NR_NUMA_HINT_FAULT_STATS *
2442 nr_node_ids * sizeof(unsigned long);
8c8a743c
PZ
2443
2444 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2445 if (!grp)
2446 return;
2447
c45a7795 2448 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2449 grp->active_nodes = 1;
2450 grp->max_faults_cpu = 0;
8c8a743c 2451 spin_lock_init(&grp->lock);
e29cf08b 2452 grp->gid = p->pid;
8c8a743c 2453
be1e4e76 2454 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2455 grp->faults[i] = p->numa_faults[i];
8c8a743c 2456
989348b5 2457 grp->total_faults = p->total_numa_faults;
83e1d2cd 2458
8c8a743c
PZ
2459 grp->nr_tasks++;
2460 rcu_assign_pointer(p->numa_group, grp);
2461 }
2462
2463 rcu_read_lock();
316c1608 2464 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2465
2466 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2467 goto no_join;
8c8a743c
PZ
2468
2469 grp = rcu_dereference(tsk->numa_group);
2470 if (!grp)
3354781a 2471 goto no_join;
8c8a743c 2472
cb361d8c 2473 my_grp = deref_curr_numa_group(p);
8c8a743c 2474 if (grp == my_grp)
3354781a 2475 goto no_join;
8c8a743c
PZ
2476
2477 /*
2478 * Only join the other group if its bigger; if we're the bigger group,
2479 * the other task will join us.
2480 */
2481 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2482 goto no_join;
8c8a743c
PZ
2483
2484 /*
2485 * Tie-break on the grp address.
2486 */
2487 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2488 goto no_join;
8c8a743c 2489
dabe1d99
RR
2490 /* Always join threads in the same process. */
2491 if (tsk->mm == current->mm)
2492 join = true;
2493
2494 /* Simple filter to avoid false positives due to PID collisions */
2495 if (flags & TNF_SHARED)
2496 join = true;
8c8a743c 2497
3e6a9418
MG
2498 /* Update priv based on whether false sharing was detected */
2499 *priv = !join;
2500
dabe1d99 2501 if (join && !get_numa_group(grp))
3354781a 2502 goto no_join;
8c8a743c 2503
8c8a743c
PZ
2504 rcu_read_unlock();
2505
2506 if (!join)
2507 return;
2508
60e69eed
MG
2509 BUG_ON(irqs_disabled());
2510 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2511
be1e4e76 2512 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2513 my_grp->faults[i] -= p->numa_faults[i];
2514 grp->faults[i] += p->numa_faults[i];
8c8a743c 2515 }
989348b5
MG
2516 my_grp->total_faults -= p->total_numa_faults;
2517 grp->total_faults += p->total_numa_faults;
8c8a743c 2518
8c8a743c
PZ
2519 my_grp->nr_tasks--;
2520 grp->nr_tasks++;
2521
2522 spin_unlock(&my_grp->lock);
60e69eed 2523 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2524
2525 rcu_assign_pointer(p->numa_group, grp);
2526
2527 put_numa_group(my_grp);
3354781a
PZ
2528 return;
2529
2530no_join:
2531 rcu_read_unlock();
2532 return;
8c8a743c
PZ
2533}
2534
16d51a59 2535/*
3b03706f 2536 * Get rid of NUMA statistics associated with a task (either current or dead).
16d51a59
JH
2537 * If @final is set, the task is dead and has reached refcount zero, so we can
2538 * safely free all relevant data structures. Otherwise, there might be
2539 * concurrent reads from places like load balancing and procfs, and we should
2540 * reset the data back to default state without freeing ->numa_faults.
2541 */
2542void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2543{
cb361d8c
JH
2544 /* safe: p either is current or is being freed by current */
2545 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2546 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2547 unsigned long flags;
2548 int i;
8c8a743c 2549
16d51a59
JH
2550 if (!numa_faults)
2551 return;
2552
8c8a743c 2553 if (grp) {
e9dd685c 2554 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2555 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2556 grp->faults[i] -= p->numa_faults[i];
989348b5 2557 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2558
8c8a743c 2559 grp->nr_tasks--;
e9dd685c 2560 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2561 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2562 put_numa_group(grp);
2563 }
2564
16d51a59
JH
2565 if (final) {
2566 p->numa_faults = NULL;
2567 kfree(numa_faults);
2568 } else {
2569 p->total_numa_faults = 0;
2570 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2571 numa_faults[i] = 0;
2572 }
8c8a743c
PZ
2573}
2574
cbee9f88
PZ
2575/*
2576 * Got a PROT_NONE fault for a page on @node.
2577 */
58b46da3 2578void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2579{
2580 struct task_struct *p = current;
6688cc05 2581 bool migrated = flags & TNF_MIGRATED;
58b46da3 2582 int cpu_node = task_node(current);
792568ec 2583 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2584 struct numa_group *ng;
ac8e895b 2585 int priv;
cbee9f88 2586
2a595721 2587 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2588 return;
2589
9ff1d9ff
MG
2590 /* for example, ksmd faulting in a user's mm */
2591 if (!p->mm)
2592 return;
2593
f809ca9a 2594 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2595 if (unlikely(!p->numa_faults)) {
2596 int size = sizeof(*p->numa_faults) *
be1e4e76 2597 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2598
44dba3d5
IM
2599 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2600 if (!p->numa_faults)
f809ca9a 2601 return;
745d6147 2602
83e1d2cd 2603 p->total_numa_faults = 0;
04bb2f94 2604 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2605 }
cbee9f88 2606
8c8a743c
PZ
2607 /*
2608 * First accesses are treated as private, otherwise consider accesses
2609 * to be private if the accessing pid has not changed
2610 */
2611 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2612 priv = 1;
2613 } else {
2614 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2615 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2616 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2617 }
2618
792568ec
RR
2619 /*
2620 * If a workload spans multiple NUMA nodes, a shared fault that
2621 * occurs wholly within the set of nodes that the workload is
2622 * actively using should be counted as local. This allows the
2623 * scan rate to slow down when a workload has settled down.
2624 */
cb361d8c 2625 ng = deref_curr_numa_group(p);
4142c3eb
RR
2626 if (!priv && !local && ng && ng->active_nodes > 1 &&
2627 numa_is_active_node(cpu_node, ng) &&
2628 numa_is_active_node(mem_node, ng))
792568ec
RR
2629 local = 1;
2630
2739d3ee 2631 /*
e1ff516a
YW
2632 * Retry to migrate task to preferred node periodically, in case it
2633 * previously failed, or the scheduler moved us.
2739d3ee 2634 */
b6a60cf3
SD
2635 if (time_after(jiffies, p->numa_migrate_retry)) {
2636 task_numa_placement(p);
6b9a7460 2637 numa_migrate_preferred(p);
b6a60cf3 2638 }
6b9a7460 2639
b32e86b4
IM
2640 if (migrated)
2641 p->numa_pages_migrated += pages;
074c2381
MG
2642 if (flags & TNF_MIGRATE_FAIL)
2643 p->numa_faults_locality[2] += pages;
b32e86b4 2644
44dba3d5
IM
2645 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2646 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2647 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2648}
2649
6e5fb223
PZ
2650static void reset_ptenuma_scan(struct task_struct *p)
2651{
7e5a2c17
JL
2652 /*
2653 * We only did a read acquisition of the mmap sem, so
2654 * p->mm->numa_scan_seq is written to without exclusive access
2655 * and the update is not guaranteed to be atomic. That's not
2656 * much of an issue though, since this is just used for
2657 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2658 * expensive, to avoid any form of compiler optimizations:
2659 */
316c1608 2660 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2661 p->mm->numa_scan_offset = 0;
2662}
2663
cbee9f88
PZ
2664/*
2665 * The expensive part of numa migration is done from task_work context.
2666 * Triggered from task_tick_numa().
2667 */
9434f9f5 2668static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2669{
2670 unsigned long migrate, next_scan, now = jiffies;
2671 struct task_struct *p = current;
2672 struct mm_struct *mm = p->mm;
51170840 2673 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2674 struct vm_area_struct *vma;
9f40604c 2675 unsigned long start, end;
598f0ec0 2676 unsigned long nr_pte_updates = 0;
4620f8c1 2677 long pages, virtpages;
cbee9f88 2678
9148a3a1 2679 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2680
b34920d4 2681 work->next = work;
cbee9f88
PZ
2682 /*
2683 * Who cares about NUMA placement when they're dying.
2684 *
2685 * NOTE: make sure not to dereference p->mm before this check,
2686 * exit_task_work() happens _after_ exit_mm() so we could be called
2687 * without p->mm even though we still had it when we enqueued this
2688 * work.
2689 */
2690 if (p->flags & PF_EXITING)
2691 return;
2692
930aa174 2693 if (!mm->numa_next_scan) {
7e8d16b6
MG
2694 mm->numa_next_scan = now +
2695 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2696 }
2697
cbee9f88
PZ
2698 /*
2699 * Enforce maximal scan/migration frequency..
2700 */
2701 migrate = mm->numa_next_scan;
2702 if (time_before(now, migrate))
2703 return;
2704
598f0ec0
MG
2705 if (p->numa_scan_period == 0) {
2706 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2707 p->numa_scan_period = task_scan_start(p);
598f0ec0 2708 }
cbee9f88 2709
fb003b80 2710 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2711 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2712 return;
2713
19a78d11
PZ
2714 /*
2715 * Delay this task enough that another task of this mm will likely win
2716 * the next time around.
2717 */
2718 p->node_stamp += 2 * TICK_NSEC;
2719
9f40604c
MG
2720 start = mm->numa_scan_offset;
2721 pages = sysctl_numa_balancing_scan_size;
2722 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2723 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2724 if (!pages)
2725 return;
cbee9f88 2726
4620f8c1 2727
d8ed45c5 2728 if (!mmap_read_trylock(mm))
8655d549 2729 return;
9f40604c 2730 vma = find_vma(mm, start);
6e5fb223
PZ
2731 if (!vma) {
2732 reset_ptenuma_scan(p);
9f40604c 2733 start = 0;
6e5fb223
PZ
2734 vma = mm->mmap;
2735 }
9f40604c 2736 for (; vma; vma = vma->vm_next) {
6b79c57b 2737 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2738 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2739 continue;
6b79c57b 2740 }
6e5fb223 2741
4591ce4f
MG
2742 /*
2743 * Shared library pages mapped by multiple processes are not
2744 * migrated as it is expected they are cache replicated. Avoid
2745 * hinting faults in read-only file-backed mappings or the vdso
2746 * as migrating the pages will be of marginal benefit.
2747 */
2748 if (!vma->vm_mm ||
2749 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2750 continue;
2751
3c67f474
MG
2752 /*
2753 * Skip inaccessible VMAs to avoid any confusion between
2754 * PROT_NONE and NUMA hinting ptes
2755 */
3122e80e 2756 if (!vma_is_accessible(vma))
3c67f474 2757 continue;
4591ce4f 2758
9f40604c
MG
2759 do {
2760 start = max(start, vma->vm_start);
2761 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2762 end = min(end, vma->vm_end);
4620f8c1 2763 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2764
2765 /*
4620f8c1
RR
2766 * Try to scan sysctl_numa_balancing_size worth of
2767 * hpages that have at least one present PTE that
2768 * is not already pte-numa. If the VMA contains
2769 * areas that are unused or already full of prot_numa
2770 * PTEs, scan up to virtpages, to skip through those
2771 * areas faster.
598f0ec0
MG
2772 */
2773 if (nr_pte_updates)
2774 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2775 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2776
9f40604c 2777 start = end;
4620f8c1 2778 if (pages <= 0 || virtpages <= 0)
9f40604c 2779 goto out;
3cf1962c
RR
2780
2781 cond_resched();
9f40604c 2782 } while (end != vma->vm_end);
cbee9f88 2783 }
6e5fb223 2784
9f40604c 2785out:
6e5fb223 2786 /*
c69307d5
PZ
2787 * It is possible to reach the end of the VMA list but the last few
2788 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2789 * would find the !migratable VMA on the next scan but not reset the
2790 * scanner to the start so check it now.
6e5fb223
PZ
2791 */
2792 if (vma)
9f40604c 2793 mm->numa_scan_offset = start;
6e5fb223
PZ
2794 else
2795 reset_ptenuma_scan(p);
d8ed45c5 2796 mmap_read_unlock(mm);
51170840
RR
2797
2798 /*
2799 * Make sure tasks use at least 32x as much time to run other code
2800 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2801 * Usually update_task_scan_period slows down scanning enough; on an
2802 * overloaded system we need to limit overhead on a per task basis.
2803 */
2804 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2805 u64 diff = p->se.sum_exec_runtime - runtime;
2806 p->node_stamp += 32 * diff;
2807 }
cbee9f88
PZ
2808}
2809
d35927a1
VS
2810void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2811{
2812 int mm_users = 0;
2813 struct mm_struct *mm = p->mm;
2814
2815 if (mm) {
2816 mm_users = atomic_read(&mm->mm_users);
2817 if (mm_users == 1) {
2818 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2819 mm->numa_scan_seq = 0;
2820 }
2821 }
2822 p->node_stamp = 0;
2823 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2824 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2825 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2826 p->numa_work.next = &p->numa_work;
2827 p->numa_faults = NULL;
2828 RCU_INIT_POINTER(p->numa_group, NULL);
2829 p->last_task_numa_placement = 0;
2830 p->last_sum_exec_runtime = 0;
2831
b34920d4
VS
2832 init_task_work(&p->numa_work, task_numa_work);
2833
d35927a1
VS
2834 /* New address space, reset the preferred nid */
2835 if (!(clone_flags & CLONE_VM)) {
2836 p->numa_preferred_nid = NUMA_NO_NODE;
2837 return;
2838 }
2839
2840 /*
2841 * New thread, keep existing numa_preferred_nid which should be copied
2842 * already by arch_dup_task_struct but stagger when scans start.
2843 */
2844 if (mm) {
2845 unsigned int delay;
2846
2847 delay = min_t(unsigned int, task_scan_max(current),
2848 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2849 delay += 2 * TICK_NSEC;
2850 p->node_stamp = delay;
2851 }
2852}
2853
cbee9f88
PZ
2854/*
2855 * Drive the periodic memory faults..
2856 */
b1546edc 2857static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2858{
2859 struct callback_head *work = &curr->numa_work;
2860 u64 period, now;
2861
2862 /*
2863 * We don't care about NUMA placement if we don't have memory.
2864 */
18f855e5 2865 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2866 return;
2867
2868 /*
2869 * Using runtime rather than walltime has the dual advantage that
2870 * we (mostly) drive the selection from busy threads and that the
2871 * task needs to have done some actual work before we bother with
2872 * NUMA placement.
2873 */
2874 now = curr->se.sum_exec_runtime;
2875 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2876
25b3e5a3 2877 if (now > curr->node_stamp + period) {
4b96a29b 2878 if (!curr->node_stamp)
b5dd77c8 2879 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2880 curr->node_stamp += period;
cbee9f88 2881
b34920d4 2882 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 2883 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
2884 }
2885}
3fed382b 2886
3f9672ba
SD
2887static void update_scan_period(struct task_struct *p, int new_cpu)
2888{
2889 int src_nid = cpu_to_node(task_cpu(p));
2890 int dst_nid = cpu_to_node(new_cpu);
2891
05cbdf4f
MG
2892 if (!static_branch_likely(&sched_numa_balancing))
2893 return;
2894
3f9672ba
SD
2895 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2896 return;
2897
05cbdf4f
MG
2898 if (src_nid == dst_nid)
2899 return;
2900
2901 /*
2902 * Allow resets if faults have been trapped before one scan
2903 * has completed. This is most likely due to a new task that
2904 * is pulled cross-node due to wakeups or load balancing.
2905 */
2906 if (p->numa_scan_seq) {
2907 /*
2908 * Avoid scan adjustments if moving to the preferred
2909 * node or if the task was not previously running on
2910 * the preferred node.
2911 */
2912 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2913 (p->numa_preferred_nid != NUMA_NO_NODE &&
2914 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2915 return;
2916 }
2917
2918 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2919}
2920
cbee9f88
PZ
2921#else
2922static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2923{
2924}
0ec8aa00
PZ
2925
2926static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2927{
2928}
2929
2930static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2931{
2932}
3fed382b 2933
3f9672ba
SD
2934static inline void update_scan_period(struct task_struct *p, int new_cpu)
2935{
2936}
2937
cbee9f88
PZ
2938#endif /* CONFIG_NUMA_BALANCING */
2939
30cfdcfc
DA
2940static void
2941account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2942{
2943 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2944#ifdef CONFIG_SMP
0ec8aa00
PZ
2945 if (entity_is_task(se)) {
2946 struct rq *rq = rq_of(cfs_rq);
2947
2948 account_numa_enqueue(rq, task_of(se));
2949 list_add(&se->group_node, &rq->cfs_tasks);
2950 }
367456c7 2951#endif
30cfdcfc 2952 cfs_rq->nr_running++;
a480adde
JD
2953 if (se_is_idle(se))
2954 cfs_rq->idle_nr_running++;
30cfdcfc
DA
2955}
2956
2957static void
2958account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2959{
2960 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 2961#ifdef CONFIG_SMP
0ec8aa00
PZ
2962 if (entity_is_task(se)) {
2963 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2964 list_del_init(&se->group_node);
0ec8aa00 2965 }
bfdb198c 2966#endif
30cfdcfc 2967 cfs_rq->nr_running--;
a480adde
JD
2968 if (se_is_idle(se))
2969 cfs_rq->idle_nr_running--;
30cfdcfc
DA
2970}
2971
8d5b9025
PZ
2972/*
2973 * Signed add and clamp on underflow.
2974 *
2975 * Explicitly do a load-store to ensure the intermediate value never hits
2976 * memory. This allows lockless observations without ever seeing the negative
2977 * values.
2978 */
2979#define add_positive(_ptr, _val) do { \
2980 typeof(_ptr) ptr = (_ptr); \
2981 typeof(_val) val = (_val); \
2982 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2983 \
2984 res = var + val; \
2985 \
2986 if (val < 0 && res > var) \
2987 res = 0; \
2988 \
2989 WRITE_ONCE(*ptr, res); \
2990} while (0)
2991
2992/*
2993 * Unsigned subtract and clamp on underflow.
2994 *
2995 * Explicitly do a load-store to ensure the intermediate value never hits
2996 * memory. This allows lockless observations without ever seeing the negative
2997 * values.
2998 */
2999#define sub_positive(_ptr, _val) do { \
3000 typeof(_ptr) ptr = (_ptr); \
3001 typeof(*ptr) val = (_val); \
3002 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3003 res = var - val; \
3004 if (res > var) \
3005 res = 0; \
3006 WRITE_ONCE(*ptr, res); \
3007} while (0)
3008
b5c0ce7b
PB
3009/*
3010 * Remove and clamp on negative, from a local variable.
3011 *
3012 * A variant of sub_positive(), which does not use explicit load-store
3013 * and is thus optimized for local variable updates.
3014 */
3015#define lsub_positive(_ptr, _val) do { \
3016 typeof(_ptr) ptr = (_ptr); \
3017 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3018} while (0)
3019
8d5b9025 3020#ifdef CONFIG_SMP
8d5b9025
PZ
3021static inline void
3022enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3023{
3024 cfs_rq->avg.load_avg += se->avg.load_avg;
3025 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3026}
3027
3028static inline void
3029dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3030{
ceb6ba45 3031 u32 divider = get_pelt_divider(&se->avg);
8d5b9025 3032 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
ceb6ba45 3033 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
8d5b9025
PZ
3034}
3035#else
3036static inline void
8d5b9025
PZ
3037enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3038static inline void
3039dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3040#endif
3041
9059393e 3042static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3043 unsigned long weight)
9059393e
VG
3044{
3045 if (se->on_rq) {
3046 /* commit outstanding execution time */
3047 if (cfs_rq->curr == se)
3048 update_curr(cfs_rq);
1724b95b 3049 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3050 }
3051 dequeue_load_avg(cfs_rq, se);
3052
3053 update_load_set(&se->load, weight);
3054
3055#ifdef CONFIG_SMP
1ea6c46a 3056 do {
87e867b4 3057 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3058
3059 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3060 } while (0);
9059393e
VG
3061#endif
3062
3063 enqueue_load_avg(cfs_rq, se);
0dacee1b 3064 if (se->on_rq)
1724b95b 3065 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3066
9059393e
VG
3067}
3068
3069void reweight_task(struct task_struct *p, int prio)
3070{
3071 struct sched_entity *se = &p->se;
3072 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3073 struct load_weight *load = &se->load;
3074 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3075
0dacee1b 3076 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3077 load->inv_weight = sched_prio_to_wmult[prio];
3078}
3079
3ff6dcac 3080#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3081#ifdef CONFIG_SMP
cef27403
PZ
3082/*
3083 * All this does is approximate the hierarchical proportion which includes that
3084 * global sum we all love to hate.
3085 *
3086 * That is, the weight of a group entity, is the proportional share of the
3087 * group weight based on the group runqueue weights. That is:
3088 *
3089 * tg->weight * grq->load.weight
3090 * ge->load.weight = ----------------------------- (1)
08f7c2f4 3091 * \Sum grq->load.weight
cef27403
PZ
3092 *
3093 * Now, because computing that sum is prohibitively expensive to compute (been
3094 * there, done that) we approximate it with this average stuff. The average
3095 * moves slower and therefore the approximation is cheaper and more stable.
3096 *
3097 * So instead of the above, we substitute:
3098 *
3099 * grq->load.weight -> grq->avg.load_avg (2)
3100 *
3101 * which yields the following:
3102 *
3103 * tg->weight * grq->avg.load_avg
3104 * ge->load.weight = ------------------------------ (3)
08f7c2f4 3105 * tg->load_avg
cef27403
PZ
3106 *
3107 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3108 *
3109 * That is shares_avg, and it is right (given the approximation (2)).
3110 *
3111 * The problem with it is that because the average is slow -- it was designed
3112 * to be exactly that of course -- this leads to transients in boundary
3113 * conditions. In specific, the case where the group was idle and we start the
3114 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3115 * yielding bad latency etc..
3116 *
3117 * Now, in that special case (1) reduces to:
3118 *
3119 * tg->weight * grq->load.weight
17de4ee0 3120 * ge->load.weight = ----------------------------- = tg->weight (4)
08f7c2f4 3121 * grp->load.weight
cef27403
PZ
3122 *
3123 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3124 *
3125 * So what we do is modify our approximation (3) to approach (4) in the (near)
3126 * UP case, like:
3127 *
3128 * ge->load.weight =
3129 *
3130 * tg->weight * grq->load.weight
3131 * --------------------------------------------------- (5)
3132 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3133 *
17de4ee0
PZ
3134 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3135 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3136 *
3137 *
3138 * tg->weight * grq->load.weight
3139 * ge->load.weight = ----------------------------- (6)
08f7c2f4 3140 * tg_load_avg'
17de4ee0
PZ
3141 *
3142 * Where:
3143 *
3144 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3145 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3146 *
3147 * And that is shares_weight and is icky. In the (near) UP case it approaches
3148 * (4) while in the normal case it approaches (3). It consistently
3149 * overestimates the ge->load.weight and therefore:
3150 *
3151 * \Sum ge->load.weight >= tg->weight
3152 *
3153 * hence icky!
3154 */
2c8e4dce 3155static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3156{
7c80cfc9
PZ
3157 long tg_weight, tg_shares, load, shares;
3158 struct task_group *tg = cfs_rq->tg;
3159
3160 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3161
3d4b60d3 3162 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3163
ea1dc6fc 3164 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3165
ea1dc6fc
PZ
3166 /* Ensure tg_weight >= load */
3167 tg_weight -= cfs_rq->tg_load_avg_contrib;
3168 tg_weight += load;
3ff6dcac 3169
7c80cfc9 3170 shares = (tg_shares * load);
cf5f0acf
PZ
3171 if (tg_weight)
3172 shares /= tg_weight;
3ff6dcac 3173
b8fd8423
DE
3174 /*
3175 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3176 * of a group with small tg->shares value. It is a floor value which is
3177 * assigned as a minimum load.weight to the sched_entity representing
3178 * the group on a CPU.
3179 *
3180 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3181 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3182 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3183 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3184 * instead of 0.
3185 */
7c80cfc9 3186 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3187}
387f77cc 3188#endif /* CONFIG_SMP */
ea1dc6fc 3189
82958366
PT
3190static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3191
1ea6c46a
PZ
3192/*
3193 * Recomputes the group entity based on the current state of its group
3194 * runqueue.
3195 */
3196static void update_cfs_group(struct sched_entity *se)
2069dd75 3197{
1ea6c46a 3198 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3199 long shares;
2069dd75 3200
1ea6c46a 3201 if (!gcfs_rq)
89ee048f
VG
3202 return;
3203
1ea6c46a 3204 if (throttled_hierarchy(gcfs_rq))
2069dd75 3205 return;
89ee048f 3206
3ff6dcac 3207#ifndef CONFIG_SMP
0dacee1b 3208 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3209
3210 if (likely(se->load.weight == shares))
3ff6dcac 3211 return;
7c80cfc9 3212#else
2c8e4dce 3213 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3214#endif
2069dd75 3215
0dacee1b 3216 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3217}
89ee048f 3218
2069dd75 3219#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3220static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3221{
3222}
3223#endif /* CONFIG_FAIR_GROUP_SCHED */
3224
ea14b57e 3225static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3226{
43964409
LT
3227 struct rq *rq = rq_of(cfs_rq);
3228
a4f9a0e5 3229 if (&rq->cfs == cfs_rq) {
a030d738
VK
3230 /*
3231 * There are a few boundary cases this might miss but it should
3232 * get called often enough that that should (hopefully) not be
9783be2c 3233 * a real problem.
a030d738
VK
3234 *
3235 * It will not get called when we go idle, because the idle
3236 * thread is a different class (!fair), nor will the utilization
3237 * number include things like RT tasks.
3238 *
3239 * As is, the util number is not freq-invariant (we'd have to
3240 * implement arch_scale_freq_capacity() for that).
3241 *
82762d2a 3242 * See cpu_util_cfs().
a030d738 3243 */
ea14b57e 3244 cpufreq_update_util(rq, flags);
a030d738
VK
3245 }
3246}
3247
141965c7 3248#ifdef CONFIG_SMP
c566e8e9 3249#ifdef CONFIG_FAIR_GROUP_SCHED
fdaba61e
RR
3250/*
3251 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3252 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3253 * bottom-up, we only have to test whether the cfs_rq before us on the list
3254 * is our child.
3255 * If cfs_rq is not on the list, test whether a child needs its to be added to
3256 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3257 */
3258static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3259{
3260 struct cfs_rq *prev_cfs_rq;
3261 struct list_head *prev;
3262
3263 if (cfs_rq->on_list) {
3264 prev = cfs_rq->leaf_cfs_rq_list.prev;
3265 } else {
3266 struct rq *rq = rq_of(cfs_rq);
3267
3268 prev = rq->tmp_alone_branch;
3269 }
3270
3271 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3272
3273 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3274}
a7b359fc
OU
3275
3276static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3277{
3278 if (cfs_rq->load.weight)
3279 return false;
3280
3281 if (cfs_rq->avg.load_sum)
3282 return false;
3283
3284 if (cfs_rq->avg.util_sum)
3285 return false;
3286
3287 if (cfs_rq->avg.runnable_sum)
3288 return false;
3289
fdaba61e
RR
3290 if (child_cfs_rq_on_list(cfs_rq))
3291 return false;
3292
b2c0931a
IM
3293 /*
3294 * _avg must be null when _sum are null because _avg = _sum / divider
3295 * Make sure that rounding and/or propagation of PELT values never
3296 * break this.
3297 */
3298 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3299 cfs_rq->avg.util_avg ||
3300 cfs_rq->avg.runnable_avg);
3301
a7b359fc
OU
3302 return true;
3303}
3304
7c3edd2c
PZ
3305/**
3306 * update_tg_load_avg - update the tg's load avg
3307 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3308 *
3309 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3310 * However, because tg->load_avg is a global value there are performance
3311 * considerations.
3312 *
3313 * In order to avoid having to look at the other cfs_rq's, we use a
3314 * differential update where we store the last value we propagated. This in
3315 * turn allows skipping updates if the differential is 'small'.
3316 *
815abf5a 3317 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3318 */
fe749158 3319static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3320{
9d89c257 3321 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3322
aa0b7ae0
WL
3323 /*
3324 * No need to update load_avg for root_task_group as it is not used.
3325 */
3326 if (cfs_rq->tg == &root_task_group)
3327 return;
3328
fe749158 3329 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3330 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3331 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3332 }
8165e145 3333}
f5f9739d 3334
ad936d86 3335/*
97fb7a0a 3336 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3337 * caller only guarantees p->pi_lock is held; no other assumptions,
3338 * including the state of rq->lock, should be made.
3339 */
3340void set_task_rq_fair(struct sched_entity *se,
3341 struct cfs_rq *prev, struct cfs_rq *next)
3342{
0ccb977f
PZ
3343 u64 p_last_update_time;
3344 u64 n_last_update_time;
3345
ad936d86
BP
3346 if (!sched_feat(ATTACH_AGE_LOAD))
3347 return;
3348
3349 /*
3350 * We are supposed to update the task to "current" time, then its up to
3351 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3352 * getting what current time is, so simply throw away the out-of-date
3353 * time. This will result in the wakee task is less decayed, but giving
3354 * the wakee more load sounds not bad.
3355 */
0ccb977f
PZ
3356 if (!(se->avg.last_update_time && prev))
3357 return;
ad936d86
BP
3358
3359#ifndef CONFIG_64BIT
0ccb977f 3360 {
ad936d86
BP
3361 u64 p_last_update_time_copy;
3362 u64 n_last_update_time_copy;
3363
3364 do {
3365 p_last_update_time_copy = prev->load_last_update_time_copy;
3366 n_last_update_time_copy = next->load_last_update_time_copy;
3367
3368 smp_rmb();
3369
3370 p_last_update_time = prev->avg.last_update_time;
3371 n_last_update_time = next->avg.last_update_time;
3372
3373 } while (p_last_update_time != p_last_update_time_copy ||
3374 n_last_update_time != n_last_update_time_copy);
0ccb977f 3375 }
ad936d86 3376#else
0ccb977f
PZ
3377 p_last_update_time = prev->avg.last_update_time;
3378 n_last_update_time = next->avg.last_update_time;
ad936d86 3379#endif
23127296 3380 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3381 se->avg.last_update_time = n_last_update_time;
ad936d86 3382}
09a43ace 3383
0e2d2aaa
PZ
3384
3385/*
3386 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3387 * propagate its contribution. The key to this propagation is the invariant
3388 * that for each group:
3389 *
3390 * ge->avg == grq->avg (1)
3391 *
3392 * _IFF_ we look at the pure running and runnable sums. Because they
3393 * represent the very same entity, just at different points in the hierarchy.
3394 *
9f683953
VG
3395 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3396 * and simply copies the running/runnable sum over (but still wrong, because
3397 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3398 *
0dacee1b 3399 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3400 *
3401 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3402 *
3403 * And since, like util, the runnable part should be directly transferable,
3404 * the following would _appear_ to be the straight forward approach:
3405 *
a4c3c049 3406 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3407 *
3408 * And per (1) we have:
3409 *
a4c3c049 3410 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3411 *
3412 * Which gives:
3413 *
3414 * ge->load.weight * grq->avg.load_avg
3415 * ge->avg.load_avg = ----------------------------------- (4)
3416 * grq->load.weight
3417 *
3418 * Except that is wrong!
3419 *
3420 * Because while for entities historical weight is not important and we
3421 * really only care about our future and therefore can consider a pure
3422 * runnable sum, runqueues can NOT do this.
3423 *
3424 * We specifically want runqueues to have a load_avg that includes
3425 * historical weights. Those represent the blocked load, the load we expect
3426 * to (shortly) return to us. This only works by keeping the weights as
3427 * integral part of the sum. We therefore cannot decompose as per (3).
3428 *
a4c3c049
VG
3429 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3430 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3431 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3432 * runnable section of these tasks overlap (or not). If they were to perfectly
3433 * align the rq as a whole would be runnable 2/3 of the time. If however we
3434 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3435 *
a4c3c049 3436 * So we'll have to approximate.. :/
0e2d2aaa 3437 *
a4c3c049 3438 * Given the constraint:
0e2d2aaa 3439 *
a4c3c049 3440 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3441 *
a4c3c049
VG
3442 * We can construct a rule that adds runnable to a rq by assuming minimal
3443 * overlap.
0e2d2aaa 3444 *
a4c3c049 3445 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3446 *
a4c3c049 3447 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3448 *
a4c3c049 3449 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3450 *
0e2d2aaa
PZ
3451 */
3452
09a43ace 3453static inline void
0e2d2aaa 3454update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3455{
09a43ace 3456 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3457 u32 divider;
09a43ace
VG
3458
3459 /* Nothing to update */
3460 if (!delta)
3461 return;
3462
87e867b4
VG
3463 /*
3464 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3465 * See ___update_load_avg() for details.
3466 */
3467 divider = get_pelt_divider(&cfs_rq->avg);
3468
09a43ace
VG
3469 /* Set new sched_entity's utilization */
3470 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3471 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3472
3473 /* Update parent cfs_rq utilization */
3474 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3475 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3476}
3477
9f683953
VG
3478static inline void
3479update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3480{
3481 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3482 u32 divider;
9f683953
VG
3483
3484 /* Nothing to update */
3485 if (!delta)
3486 return;
3487
87e867b4
VG
3488 /*
3489 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3490 * See ___update_load_avg() for details.
3491 */
3492 divider = get_pelt_divider(&cfs_rq->avg);
3493
9f683953
VG
3494 /* Set new sched_entity's runnable */
3495 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3496 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3497
3498 /* Update parent cfs_rq runnable */
3499 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3500 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3501}
3502
09a43ace 3503static inline void
0dacee1b 3504update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3505{
7c7ad626 3506 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3507 unsigned long load_avg;
3508 u64 load_sum = 0;
95d68593 3509 u32 divider;
09a43ace 3510
0e2d2aaa
PZ
3511 if (!runnable_sum)
3512 return;
09a43ace 3513
0e2d2aaa 3514 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3515
95d68593
VG
3516 /*
3517 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3518 * See ___update_load_avg() for details.
3519 */
87e867b4 3520 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3521
a4c3c049
VG
3522 if (runnable_sum >= 0) {
3523 /*
3524 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3525 * the CPU is saturated running == runnable.
3526 */
3527 runnable_sum += se->avg.load_sum;
95d68593 3528 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3529 } else {
3530 /*
3531 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3532 * assuming all tasks are equally runnable.
3533 */
3534 if (scale_load_down(gcfs_rq->load.weight)) {
3535 load_sum = div_s64(gcfs_rq->avg.load_sum,
3536 scale_load_down(gcfs_rq->load.weight));
3537 }
3538
3539 /* But make sure to not inflate se's runnable */
3540 runnable_sum = min(se->avg.load_sum, load_sum);
3541 }
3542
3543 /*
3544 * runnable_sum can't be lower than running_sum
23127296
VG
3545 * Rescale running sum to be in the same range as runnable sum
3546 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3547 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3548 */
23127296 3549 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3550 runnable_sum = max(runnable_sum, running_sum);
3551
0e2d2aaa 3552 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3553 load_avg = div_s64(load_sum, divider);
09a43ace 3554
83c5e9d5
DE
3555 se->avg.load_sum = runnable_sum;
3556
7c7ad626 3557 delta = load_avg - se->avg.load_avg;
83c5e9d5
DE
3558 if (!delta)
3559 return;
09a43ace 3560
a4c3c049 3561 se->avg.load_avg = load_avg;
7c7ad626
VG
3562
3563 add_positive(&cfs_rq->avg.load_avg, delta);
3564 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
09a43ace
VG
3565}
3566
0e2d2aaa 3567static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3568{
0e2d2aaa
PZ
3569 cfs_rq->propagate = 1;
3570 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3571}
3572
3573/* Update task and its cfs_rq load average */
3574static inline int propagate_entity_load_avg(struct sched_entity *se)
3575{
0e2d2aaa 3576 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3577
3578 if (entity_is_task(se))
3579 return 0;
3580
0e2d2aaa
PZ
3581 gcfs_rq = group_cfs_rq(se);
3582 if (!gcfs_rq->propagate)
09a43ace
VG
3583 return 0;
3584
0e2d2aaa
PZ
3585 gcfs_rq->propagate = 0;
3586
09a43ace
VG
3587 cfs_rq = cfs_rq_of(se);
3588
0e2d2aaa 3589 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3590
0e2d2aaa 3591 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3592 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3593 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3594
ba19f51f 3595 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3596 trace_pelt_se_tp(se);
ba19f51f 3597
09a43ace
VG
3598 return 1;
3599}
3600
bc427898
VG
3601/*
3602 * Check if we need to update the load and the utilization of a blocked
3603 * group_entity:
3604 */
3605static inline bool skip_blocked_update(struct sched_entity *se)
3606{
3607 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3608
3609 /*
3610 * If sched_entity still have not zero load or utilization, we have to
3611 * decay it:
3612 */
3613 if (se->avg.load_avg || se->avg.util_avg)
3614 return false;
3615
3616 /*
3617 * If there is a pending propagation, we have to update the load and
3618 * the utilization of the sched_entity:
3619 */
0e2d2aaa 3620 if (gcfs_rq->propagate)
bc427898
VG
3621 return false;
3622
3623 /*
3624 * Otherwise, the load and the utilization of the sched_entity is
3625 * already zero and there is no pending propagation, so it will be a
3626 * waste of time to try to decay it:
3627 */
3628 return true;
3629}
3630
6e83125c 3631#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3632
fe749158 3633static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3634
3635static inline int propagate_entity_load_avg(struct sched_entity *se)
3636{
3637 return 0;
3638}
3639
0e2d2aaa 3640static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3641
6e83125c 3642#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3643
3d30544f
PZ
3644/**
3645 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3646 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3647 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3648 *
3649 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3650 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3651 * post_init_entity_util_avg().
3652 *
3653 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3654 *
7c3edd2c
PZ
3655 * Returns true if the load decayed or we removed load.
3656 *
3657 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3658 * call update_tg_load_avg() when this function returns true.
3d30544f 3659 */
a2c6c91f 3660static inline int
3a123bbb 3661update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3662{
9f683953 3663 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3664 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3665 int decayed = 0;
2dac754e 3666
2a2f5d4e
PZ
3667 if (cfs_rq->removed.nr) {
3668 unsigned long r;
87e867b4 3669 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3670
3671 raw_spin_lock(&cfs_rq->removed.lock);
3672 swap(cfs_rq->removed.util_avg, removed_util);
3673 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3674 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3675 cfs_rq->removed.nr = 0;
3676 raw_spin_unlock(&cfs_rq->removed.lock);
3677
2a2f5d4e 3678 r = removed_load;
89741892 3679 sub_positive(&sa->load_avg, r);
1c35b07e 3680 sa->load_sum = sa->load_avg * divider;
2dac754e 3681
2a2f5d4e 3682 r = removed_util;
89741892 3683 sub_positive(&sa->util_avg, r);
1c35b07e 3684 sa->util_sum = sa->util_avg * divider;
2a2f5d4e 3685
9f683953
VG
3686 r = removed_runnable;
3687 sub_positive(&sa->runnable_avg, r);
1c35b07e 3688 sa->runnable_sum = sa->runnable_avg * divider;
9f683953
VG
3689
3690 /*
3691 * removed_runnable is the unweighted version of removed_load so we
3692 * can use it to estimate removed_load_sum.
3693 */
3694 add_tg_cfs_propagate(cfs_rq,
3695 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3696
3697 decayed = 1;
9d89c257 3698 }
36ee28e4 3699
23127296 3700 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3701
9d89c257
YD
3702#ifndef CONFIG_64BIT
3703 smp_wmb();
3704 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3705#endif
36ee28e4 3706
2a2f5d4e 3707 return decayed;
21e96f88
SM
3708}
3709
3d30544f
PZ
3710/**
3711 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3712 * @cfs_rq: cfs_rq to attach to
3713 * @se: sched_entity to attach
3714 *
3715 * Must call update_cfs_rq_load_avg() before this, since we rely on
3716 * cfs_rq->avg.last_update_time being current.
3717 */
a4f9a0e5 3718static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3719{
95d68593
VG
3720 /*
3721 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3722 * See ___update_load_avg() for details.
3723 */
87e867b4 3724 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3725
3726 /*
3727 * When we attach the @se to the @cfs_rq, we must align the decay
3728 * window because without that, really weird and wonderful things can
3729 * happen.
3730 *
3731 * XXX illustrate
3732 */
a05e8c51 3733 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3734 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3735
3736 /*
3737 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3738 * period_contrib. This isn't strictly correct, but since we're
3739 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3740 * _sum a little.
3741 */
3742 se->avg.util_sum = se->avg.util_avg * divider;
3743
9f683953
VG
3744 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3745
f207934f
PZ
3746 se->avg.load_sum = divider;
3747 if (se_weight(se)) {
3748 se->avg.load_sum =
3749 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3750 }
3751
8d5b9025 3752 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3753 cfs_rq->avg.util_avg += se->avg.util_avg;
3754 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3755 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3756 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3757
3758 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3759
a4f9a0e5 3760 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3761
3762 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3763}
3764
3d30544f
PZ
3765/**
3766 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3767 * @cfs_rq: cfs_rq to detach from
3768 * @se: sched_entity to detach
3769 *
3770 * Must call update_cfs_rq_load_avg() before this, since we rely on
3771 * cfs_rq->avg.last_update_time being current.
3772 */
a05e8c51
BP
3773static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3774{
fcf6631f
VG
3775 /*
3776 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3777 * See ___update_load_avg() for details.
3778 */
3779 u32 divider = get_pelt_divider(&cfs_rq->avg);
3780
8d5b9025 3781 dequeue_load_avg(cfs_rq, se);
89741892 3782 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
fcf6631f 3783 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
9f683953 3784 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
fcf6631f 3785 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
0e2d2aaa
PZ
3786
3787 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3788
ea14b57e 3789 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3790
3791 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3792}
3793
b382a531
PZ
3794/*
3795 * Optional action to be done while updating the load average
3796 */
3797#define UPDATE_TG 0x1
3798#define SKIP_AGE_LOAD 0x2
3799#define DO_ATTACH 0x4
3800
3801/* Update task and its cfs_rq load average */
3802static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3803{
23127296 3804 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3805 int decayed;
3806
3807 /*
3808 * Track task load average for carrying it to new CPU after migrated, and
3809 * track group sched_entity load average for task_h_load calc in migration
3810 */
3811 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3812 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3813
3814 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3815 decayed |= propagate_entity_load_avg(se);
3816
3817 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3818
ea14b57e
PZ
3819 /*
3820 * DO_ATTACH means we're here from enqueue_entity().
3821 * !last_update_time means we've passed through
3822 * migrate_task_rq_fair() indicating we migrated.
3823 *
3824 * IOW we're enqueueing a task on a new CPU.
3825 */
a4f9a0e5 3826 attach_entity_load_avg(cfs_rq, se);
fe749158 3827 update_tg_load_avg(cfs_rq);
b382a531 3828
bef69dd8
VG
3829 } else if (decayed) {
3830 cfs_rq_util_change(cfs_rq, 0);
3831
3832 if (flags & UPDATE_TG)
fe749158 3833 update_tg_load_avg(cfs_rq);
bef69dd8 3834 }
b382a531
PZ
3835}
3836
9d89c257 3837#ifndef CONFIG_64BIT
0905f04e
YD
3838static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3839{
9d89c257 3840 u64 last_update_time_copy;
0905f04e 3841 u64 last_update_time;
9ee474f5 3842
9d89c257
YD
3843 do {
3844 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3845 smp_rmb();
3846 last_update_time = cfs_rq->avg.last_update_time;
3847 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3848
3849 return last_update_time;
3850}
9d89c257 3851#else
0905f04e
YD
3852static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3853{
3854 return cfs_rq->avg.last_update_time;
3855}
9d89c257
YD
3856#endif
3857
104cb16d
MR
3858/*
3859 * Synchronize entity load avg of dequeued entity without locking
3860 * the previous rq.
3861 */
71b47eaf 3862static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3863{
3864 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3865 u64 last_update_time;
3866
3867 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3868 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3869}
3870
0905f04e
YD
3871/*
3872 * Task first catches up with cfs_rq, and then subtract
3873 * itself from the cfs_rq (task must be off the queue now).
3874 */
71b47eaf 3875static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3876{
3877 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3878 unsigned long flags;
0905f04e
YD
3879
3880 /*
7dc603c9
PZ
3881 * tasks cannot exit without having gone through wake_up_new_task() ->
3882 * post_init_entity_util_avg() which will have added things to the
3883 * cfs_rq, so we can remove unconditionally.
0905f04e 3884 */
0905f04e 3885
104cb16d 3886 sync_entity_load_avg(se);
2a2f5d4e
PZ
3887
3888 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3889 ++cfs_rq->removed.nr;
3890 cfs_rq->removed.util_avg += se->avg.util_avg;
3891 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3892 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3893 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3894}
642dbc39 3895
9f683953
VG
3896static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3897{
3898 return cfs_rq->avg.runnable_avg;
3899}
3900
7ea241af
YD
3901static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3902{
3903 return cfs_rq->avg.load_avg;
3904}
3905
d91cecc1
CY
3906static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3907
7f65ea42
PB
3908static inline unsigned long task_util(struct task_struct *p)
3909{
3910 return READ_ONCE(p->se.avg.util_avg);
3911}
3912
3913static inline unsigned long _task_util_est(struct task_struct *p)
3914{
3915 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3916
68d7a190 3917 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
7f65ea42
PB
3918}
3919
3920static inline unsigned long task_util_est(struct task_struct *p)
3921{
3922 return max(task_util(p), _task_util_est(p));
3923}
3924
a7008c07
VS
3925#ifdef CONFIG_UCLAMP_TASK
3926static inline unsigned long uclamp_task_util(struct task_struct *p)
3927{
3928 return clamp(task_util_est(p),
3929 uclamp_eff_value(p, UCLAMP_MIN),
3930 uclamp_eff_value(p, UCLAMP_MAX));
3931}
3932#else
3933static inline unsigned long uclamp_task_util(struct task_struct *p)
3934{
3935 return task_util_est(p);
3936}
3937#endif
3938
7f65ea42
PB
3939static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3940 struct task_struct *p)
3941{
3942 unsigned int enqueued;
3943
3944 if (!sched_feat(UTIL_EST))
3945 return;
3946
3947 /* Update root cfs_rq's estimated utilization */
3948 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3949 enqueued += _task_util_est(p);
7f65ea42 3950 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
3951
3952 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
3953}
3954
8c1f560c
XY
3955static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3956 struct task_struct *p)
3957{
3958 unsigned int enqueued;
3959
3960 if (!sched_feat(UTIL_EST))
3961 return;
3962
3963 /* Update root cfs_rq's estimated utilization */
3964 enqueued = cfs_rq->avg.util_est.enqueued;
3965 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3966 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3967
3968 trace_sched_util_est_cfs_tp(cfs_rq);
3969}
3970
b89997aa
VD
3971#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3972
7f65ea42
PB
3973/*
3974 * Check if a (signed) value is within a specified (unsigned) margin,
3975 * based on the observation that:
3976 *
3977 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3978 *
3b03706f 3979 * NOTE: this only works when value + margin < INT_MAX.
7f65ea42
PB
3980 */
3981static inline bool within_margin(int value, int margin)
3982{
3983 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3984}
3985
8c1f560c
XY
3986static inline void util_est_update(struct cfs_rq *cfs_rq,
3987 struct task_struct *p,
3988 bool task_sleep)
7f65ea42 3989{
b89997aa 3990 long last_ewma_diff, last_enqueued_diff;
7f65ea42
PB
3991 struct util_est ue;
3992
3993 if (!sched_feat(UTIL_EST))
3994 return;
3995
7f65ea42
PB
3996 /*
3997 * Skip update of task's estimated utilization when the task has not
3998 * yet completed an activation, e.g. being migrated.
3999 */
4000 if (!task_sleep)
4001 return;
4002
d519329f
PB
4003 /*
4004 * If the PELT values haven't changed since enqueue time,
4005 * skip the util_est update.
4006 */
4007 ue = p->se.avg.util_est;
4008 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4009 return;
4010
b89997aa
VD
4011 last_enqueued_diff = ue.enqueued;
4012
b8c96361
PB
4013 /*
4014 * Reset EWMA on utilization increases, the moving average is used only
4015 * to smooth utilization decreases.
4016 */
68d7a190 4017 ue.enqueued = task_util(p);
b8c96361
PB
4018 if (sched_feat(UTIL_EST_FASTUP)) {
4019 if (ue.ewma < ue.enqueued) {
4020 ue.ewma = ue.enqueued;
4021 goto done;
4022 }
4023 }
4024
7f65ea42 4025 /*
b89997aa 4026 * Skip update of task's estimated utilization when its members are
7f65ea42
PB
4027 * already ~1% close to its last activation value.
4028 */
7f65ea42 4029 last_ewma_diff = ue.enqueued - ue.ewma;
b89997aa
VD
4030 last_enqueued_diff -= ue.enqueued;
4031 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4032 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4033 goto done;
4034
7f65ea42 4035 return;
b89997aa 4036 }
7f65ea42 4037
10a35e68
VG
4038 /*
4039 * To avoid overestimation of actual task utilization, skip updates if
4040 * we cannot grant there is idle time in this CPU.
4041 */
8c1f560c 4042 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
10a35e68
VG
4043 return;
4044
7f65ea42
PB
4045 /*
4046 * Update Task's estimated utilization
4047 *
4048 * When *p completes an activation we can consolidate another sample
4049 * of the task size. This is done by storing the current PELT value
4050 * as ue.enqueued and by using this value to update the Exponential
4051 * Weighted Moving Average (EWMA):
4052 *
4053 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4054 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4055 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4056 * = w * ( last_ewma_diff ) + ewma(t-1)
4057 * = w * (last_ewma_diff + ewma(t-1) / w)
4058 *
4059 * Where 'w' is the weight of new samples, which is configured to be
4060 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4061 */
4062 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4063 ue.ewma += last_ewma_diff;
4064 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4065done:
68d7a190 4066 ue.enqueued |= UTIL_AVG_UNCHANGED;
7f65ea42 4067 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4068
4069 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4070}
4071
ef8df979
VD
4072static inline int task_fits_capacity(struct task_struct *p,
4073 unsigned long capacity)
3b1baa64 4074{
a7008c07 4075 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4076}
4077
4078static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4079{
4080 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4081 return;
4082
0ae78eec 4083 if (!p || p->nr_cpus_allowed == 1) {
3b1baa64
MR
4084 rq->misfit_task_load = 0;
4085 return;
4086 }
4087
4088 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4089 rq->misfit_task_load = 0;
4090 return;
4091 }
4092
01cfcde9
VG
4093 /*
4094 * Make sure that misfit_task_load will not be null even if
4095 * task_h_load() returns 0.
4096 */
4097 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4098}
4099
38033c37
PZ
4100#else /* CONFIG_SMP */
4101
a7b359fc
OU
4102static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4103{
4104 return true;
4105}
4106
d31b1a66
VG
4107#define UPDATE_TG 0x0
4108#define SKIP_AGE_LOAD 0x0
b382a531 4109#define DO_ATTACH 0x0
d31b1a66 4110
88c0616e 4111static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4112{
ea14b57e 4113 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4114}
4115
9d89c257 4116static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4117
a05e8c51 4118static inline void
a4f9a0e5 4119attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4120static inline void
4121detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4122
d91cecc1 4123static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4124{
4125 return 0;
4126}
4127
7f65ea42
PB
4128static inline void
4129util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4130
4131static inline void
8c1f560c
XY
4132util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4133
4134static inline void
4135util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4136 bool task_sleep) {}
3b1baa64 4137static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4138
38033c37 4139#endif /* CONFIG_SMP */
9d85f21c 4140
ddc97297
PZ
4141static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4142{
4143#ifdef CONFIG_SCHED_DEBUG
4144 s64 d = se->vruntime - cfs_rq->min_vruntime;
4145
4146 if (d < 0)
4147 d = -d;
4148
4149 if (d > 3*sysctl_sched_latency)
ae92882e 4150 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4151#endif
4152}
4153
aeb73b04
PZ
4154static void
4155place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4156{
1af5f730 4157 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4158
2cb8600e
PZ
4159 /*
4160 * The 'current' period is already promised to the current tasks,
4161 * however the extra weight of the new task will slow them down a
4162 * little, place the new task so that it fits in the slot that
4163 * stays open at the end.
4164 */
94dfb5e7 4165 if (initial && sched_feat(START_DEBIT))
f9c0b095 4166 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4167
a2e7a7eb 4168 /* sleeps up to a single latency don't count. */
5ca9880c 4169 if (!initial) {
2cae3948
JD
4170 unsigned long thresh;
4171
4172 if (se_is_idle(se))
4173 thresh = sysctl_sched_min_granularity;
4174 else
4175 thresh = sysctl_sched_latency;
a7be37ac 4176
a2e7a7eb
MG
4177 /*
4178 * Halve their sleep time's effect, to allow
4179 * for a gentler effect of sleepers:
4180 */
4181 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4182 thresh >>= 1;
51e0304c 4183
a2e7a7eb 4184 vruntime -= thresh;
aeb73b04
PZ
4185 }
4186
b5d9d734 4187 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4188 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4189}
4190
d3d9dc33
PT
4191static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4192
fe61468b 4193static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4194
4195/*
4196 * MIGRATION
4197 *
4198 * dequeue
4199 * update_curr()
4200 * update_min_vruntime()
4201 * vruntime -= min_vruntime
4202 *
4203 * enqueue
4204 * update_curr()
4205 * update_min_vruntime()
4206 * vruntime += min_vruntime
4207 *
4208 * this way the vruntime transition between RQs is done when both
4209 * min_vruntime are up-to-date.
4210 *
4211 * WAKEUP (remote)
4212 *
59efa0ba 4213 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4214 * vruntime -= min_vruntime
4215 *
4216 * enqueue
4217 * update_curr()
4218 * update_min_vruntime()
4219 * vruntime += min_vruntime
4220 *
4221 * this way we don't have the most up-to-date min_vruntime on the originating
4222 * CPU and an up-to-date min_vruntime on the destination CPU.
4223 */
4224
bf0f6f24 4225static void
88ec22d3 4226enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4227{
2f950354
PZ
4228 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4229 bool curr = cfs_rq->curr == se;
4230
88ec22d3 4231 /*
2f950354
PZ
4232 * If we're the current task, we must renormalise before calling
4233 * update_curr().
88ec22d3 4234 */
2f950354 4235 if (renorm && curr)
88ec22d3
PZ
4236 se->vruntime += cfs_rq->min_vruntime;
4237
2f950354
PZ
4238 update_curr(cfs_rq);
4239
bf0f6f24 4240 /*
2f950354
PZ
4241 * Otherwise, renormalise after, such that we're placed at the current
4242 * moment in time, instead of some random moment in the past. Being
4243 * placed in the past could significantly boost this task to the
4244 * fairness detriment of existing tasks.
bf0f6f24 4245 */
2f950354
PZ
4246 if (renorm && !curr)
4247 se->vruntime += cfs_rq->min_vruntime;
4248
89ee048f
VG
4249 /*
4250 * When enqueuing a sched_entity, we must:
4251 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4252 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4253 * - For group_entity, update its weight to reflect the new share of
4254 * its group cfs_rq
4255 * - Add its new weight to cfs_rq->load.weight
4256 */
b382a531 4257 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4258 se_update_runnable(se);
1ea6c46a 4259 update_cfs_group(se);
17bc14b7 4260 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4261
1a3d027c 4262 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4263 place_entity(cfs_rq, se, 0);
bf0f6f24 4264
cb251765 4265 check_schedstat_required();
60f2415e 4266 update_stats_enqueue_fair(cfs_rq, se, flags);
4fa8d299 4267 check_spread(cfs_rq, se);
2f950354 4268 if (!curr)
83b699ed 4269 __enqueue_entity(cfs_rq, se);
2069dd75 4270 se->on_rq = 1;
3d4b47b4 4271
fe61468b
VG
4272 /*
4273 * When bandwidth control is enabled, cfs might have been removed
4274 * because of a parent been throttled but cfs->nr_running > 1. Try to
3b03706f 4275 * add it unconditionally.
fe61468b
VG
4276 */
4277 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4278 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4279
4280 if (cfs_rq->nr_running == 1)
d3d9dc33 4281 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4282}
4283
2c13c919 4284static void __clear_buddies_last(struct sched_entity *se)
2002c695 4285{
2c13c919
RR
4286 for_each_sched_entity(se) {
4287 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4288 if (cfs_rq->last != se)
2c13c919 4289 break;
f1044799
PZ
4290
4291 cfs_rq->last = NULL;
2c13c919
RR
4292 }
4293}
2002c695 4294
2c13c919
RR
4295static void __clear_buddies_next(struct sched_entity *se)
4296{
4297 for_each_sched_entity(se) {
4298 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4299 if (cfs_rq->next != se)
2c13c919 4300 break;
f1044799
PZ
4301
4302 cfs_rq->next = NULL;
2c13c919 4303 }
2002c695
PZ
4304}
4305
ac53db59
RR
4306static void __clear_buddies_skip(struct sched_entity *se)
4307{
4308 for_each_sched_entity(se) {
4309 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4310 if (cfs_rq->skip != se)
ac53db59 4311 break;
f1044799
PZ
4312
4313 cfs_rq->skip = NULL;
ac53db59
RR
4314 }
4315}
4316
a571bbea
PZ
4317static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4318{
2c13c919
RR
4319 if (cfs_rq->last == se)
4320 __clear_buddies_last(se);
4321
4322 if (cfs_rq->next == se)
4323 __clear_buddies_next(se);
ac53db59
RR
4324
4325 if (cfs_rq->skip == se)
4326 __clear_buddies_skip(se);
a571bbea
PZ
4327}
4328
6c16a6dc 4329static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4330
bf0f6f24 4331static void
371fd7e7 4332dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4333{
a2a2d680
DA
4334 /*
4335 * Update run-time statistics of the 'current'.
4336 */
4337 update_curr(cfs_rq);
89ee048f
VG
4338
4339 /*
4340 * When dequeuing a sched_entity, we must:
4341 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4342 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4343 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4344 * - For group entity, update its weight to reflect the new share
4345 * of its group cfs_rq.
4346 */
88c0616e 4347 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4348 se_update_runnable(se);
a2a2d680 4349
60f2415e 4350 update_stats_dequeue_fair(cfs_rq, se, flags);
67e9fb2a 4351
2002c695 4352 clear_buddies(cfs_rq, se);
4793241b 4353
83b699ed 4354 if (se != cfs_rq->curr)
30cfdcfc 4355 __dequeue_entity(cfs_rq, se);
17bc14b7 4356 se->on_rq = 0;
30cfdcfc 4357 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4358
4359 /*
b60205c7
PZ
4360 * Normalize after update_curr(); which will also have moved
4361 * min_vruntime if @se is the one holding it back. But before doing
4362 * update_min_vruntime() again, which will discount @se's position and
4363 * can move min_vruntime forward still more.
88ec22d3 4364 */
371fd7e7 4365 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4366 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4367
d8b4986d
PT
4368 /* return excess runtime on last dequeue */
4369 return_cfs_rq_runtime(cfs_rq);
4370
1ea6c46a 4371 update_cfs_group(se);
b60205c7
PZ
4372
4373 /*
4374 * Now advance min_vruntime if @se was the entity holding it back,
4375 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4376 * put back on, and if we advance min_vruntime, we'll be placed back
4377 * further than we started -- ie. we'll be penalized.
4378 */
9845c49c 4379 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4380 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4381}
4382
4383/*
4384 * Preempt the current task with a newly woken task if needed:
4385 */
7c92e54f 4386static void
2e09bf55 4387check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4388{
11697830 4389 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4390 struct sched_entity *se;
4391 s64 delta;
11697830 4392
6d0f0ebd 4393 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4394 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4395 if (delta_exec > ideal_runtime) {
8875125e 4396 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4397 /*
4398 * The current task ran long enough, ensure it doesn't get
4399 * re-elected due to buddy favours.
4400 */
4401 clear_buddies(cfs_rq, curr);
f685ceac
MG
4402 return;
4403 }
4404
4405 /*
4406 * Ensure that a task that missed wakeup preemption by a
4407 * narrow margin doesn't have to wait for a full slice.
4408 * This also mitigates buddy induced latencies under load.
4409 */
f685ceac
MG
4410 if (delta_exec < sysctl_sched_min_granularity)
4411 return;
4412
f4cfb33e
WX
4413 se = __pick_first_entity(cfs_rq);
4414 delta = curr->vruntime - se->vruntime;
f685ceac 4415
f4cfb33e
WX
4416 if (delta < 0)
4417 return;
d7d82944 4418
f4cfb33e 4419 if (delta > ideal_runtime)
8875125e 4420 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4421}
4422
83b699ed 4423static void
8494f412 4424set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4425{
21f56ffe
PZ
4426 clear_buddies(cfs_rq, se);
4427
83b699ed
SV
4428 /* 'current' is not kept within the tree. */
4429 if (se->on_rq) {
4430 /*
4431 * Any task has to be enqueued before it get to execute on
4432 * a CPU. So account for the time it spent waiting on the
4433 * runqueue.
4434 */
60f2415e 4435 update_stats_wait_end_fair(cfs_rq, se);
83b699ed 4436 __dequeue_entity(cfs_rq, se);
88c0616e 4437 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4438 }
4439
79303e9e 4440 update_stats_curr_start(cfs_rq, se);
429d43bc 4441 cfs_rq->curr = se;
4fa8d299 4442
eba1ed4b
IM
4443 /*
4444 * Track our maximum slice length, if the CPU's load is at
4445 * least twice that of our own weight (i.e. dont track it
4446 * when there are only lesser-weight tasks around):
4447 */
f2bedc47
DE
4448 if (schedstat_enabled() &&
4449 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
ceeadb83
YS
4450 struct sched_statistics *stats;
4451
4452 stats = __schedstats_from_se(se);
4453 __schedstat_set(stats->slice_max,
4454 max((u64)stats->slice_max,
a2dcb276 4455 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4456 }
4fa8d299 4457
4a55b450 4458 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4459}
4460
3f3a4904
PZ
4461static int
4462wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4463
ac53db59
RR
4464/*
4465 * Pick the next process, keeping these things in mind, in this order:
4466 * 1) keep things fair between processes/task groups
4467 * 2) pick the "next" process, since someone really wants that to run
4468 * 3) pick the "last" process, for cache locality
4469 * 4) do not run the "skip" process, if something else is available
4470 */
678d5718
PZ
4471static struct sched_entity *
4472pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4473{
678d5718
PZ
4474 struct sched_entity *left = __pick_first_entity(cfs_rq);
4475 struct sched_entity *se;
4476
4477 /*
4478 * If curr is set we have to see if its left of the leftmost entity
4479 * still in the tree, provided there was anything in the tree at all.
4480 */
4481 if (!left || (curr && entity_before(curr, left)))
4482 left = curr;
4483
4484 se = left; /* ideally we run the leftmost entity */
f4b6755f 4485
ac53db59
RR
4486 /*
4487 * Avoid running the skip buddy, if running something else can
4488 * be done without getting too unfair.
4489 */
21f56ffe 4490 if (cfs_rq->skip && cfs_rq->skip == se) {
678d5718
PZ
4491 struct sched_entity *second;
4492
4493 if (se == curr) {
4494 second = __pick_first_entity(cfs_rq);
4495 } else {
4496 second = __pick_next_entity(se);
4497 if (!second || (curr && entity_before(curr, second)))
4498 second = curr;
4499 }
4500
ac53db59
RR
4501 if (second && wakeup_preempt_entity(second, left) < 1)
4502 se = second;
4503 }
aa2ac252 4504
9abb8973
PO
4505 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4506 /*
4507 * Someone really wants this to run. If it's not unfair, run it.
4508 */
ac53db59 4509 se = cfs_rq->next;
9abb8973
PO
4510 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4511 /*
4512 * Prefer last buddy, try to return the CPU to a preempted task.
4513 */
4514 se = cfs_rq->last;
4515 }
ac53db59 4516
4793241b 4517 return se;
aa2ac252
PZ
4518}
4519
678d5718 4520static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4521
ab6cde26 4522static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4523{
4524 /*
4525 * If still on the runqueue then deactivate_task()
4526 * was not called and update_curr() has to be done:
4527 */
4528 if (prev->on_rq)
b7cc0896 4529 update_curr(cfs_rq);
bf0f6f24 4530
d3d9dc33
PT
4531 /* throttle cfs_rqs exceeding runtime */
4532 check_cfs_rq_runtime(cfs_rq);
4533
4fa8d299 4534 check_spread(cfs_rq, prev);
cb251765 4535
30cfdcfc 4536 if (prev->on_rq) {
60f2415e 4537 update_stats_wait_start_fair(cfs_rq, prev);
30cfdcfc
DA
4538 /* Put 'current' back into the tree. */
4539 __enqueue_entity(cfs_rq, prev);
9d85f21c 4540 /* in !on_rq case, update occurred at dequeue */
88c0616e 4541 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4542 }
429d43bc 4543 cfs_rq->curr = NULL;
bf0f6f24
IM
4544}
4545
8f4d37ec
PZ
4546static void
4547entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4548{
bf0f6f24 4549 /*
30cfdcfc 4550 * Update run-time statistics of the 'current'.
bf0f6f24 4551 */
30cfdcfc 4552 update_curr(cfs_rq);
bf0f6f24 4553
9d85f21c
PT
4554 /*
4555 * Ensure that runnable average is periodically updated.
4556 */
88c0616e 4557 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4558 update_cfs_group(curr);
9d85f21c 4559
8f4d37ec
PZ
4560#ifdef CONFIG_SCHED_HRTICK
4561 /*
4562 * queued ticks are scheduled to match the slice, so don't bother
4563 * validating it and just reschedule.
4564 */
983ed7a6 4565 if (queued) {
8875125e 4566 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4567 return;
4568 }
8f4d37ec
PZ
4569 /*
4570 * don't let the period tick interfere with the hrtick preemption
4571 */
4572 if (!sched_feat(DOUBLE_TICK) &&
4573 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4574 return;
4575#endif
4576
2c2efaed 4577 if (cfs_rq->nr_running > 1)
2e09bf55 4578 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4579}
4580
ab84d31e
PT
4581
4582/**************************************************
4583 * CFS bandwidth control machinery
4584 */
4585
4586#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4587
e9666d10 4588#ifdef CONFIG_JUMP_LABEL
c5905afb 4589static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4590
4591static inline bool cfs_bandwidth_used(void)
4592{
c5905afb 4593 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4594}
4595
1ee14e6c 4596void cfs_bandwidth_usage_inc(void)
029632fb 4597{
ce48c146 4598 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4599}
4600
4601void cfs_bandwidth_usage_dec(void)
4602{
ce48c146 4603 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4604}
e9666d10 4605#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4606static bool cfs_bandwidth_used(void)
4607{
4608 return true;
4609}
4610
1ee14e6c
BS
4611void cfs_bandwidth_usage_inc(void) {}
4612void cfs_bandwidth_usage_dec(void) {}
e9666d10 4613#endif /* CONFIG_JUMP_LABEL */
029632fb 4614
ab84d31e
PT
4615/*
4616 * default period for cfs group bandwidth.
4617 * default: 0.1s, units: nanoseconds
4618 */
4619static inline u64 default_cfs_period(void)
4620{
4621 return 100000000ULL;
4622}
ec12cb7f
PT
4623
4624static inline u64 sched_cfs_bandwidth_slice(void)
4625{
4626 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4627}
4628
a9cf55b2 4629/*
763a9ec0
QC
4630 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4631 * directly instead of rq->clock to avoid adding additional synchronization
4632 * around rq->lock.
a9cf55b2
PT
4633 *
4634 * requires cfs_b->lock
4635 */
029632fb 4636void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4637{
bcb1704a
HC
4638 s64 runtime;
4639
f4183717
HC
4640 if (unlikely(cfs_b->quota == RUNTIME_INF))
4641 return;
4642
4643 cfs_b->runtime += cfs_b->quota;
bcb1704a
HC
4644 runtime = cfs_b->runtime_snap - cfs_b->runtime;
4645 if (runtime > 0) {
4646 cfs_b->burst_time += runtime;
4647 cfs_b->nr_burst++;
4648 }
4649
f4183717 4650 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
bcb1704a 4651 cfs_b->runtime_snap = cfs_b->runtime;
a9cf55b2
PT
4652}
4653
029632fb
PZ
4654static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4655{
4656 return &tg->cfs_bandwidth;
4657}
4658
85dac906 4659/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4660static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4661 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4662{
e98fa02c
PT
4663 u64 min_amount, amount = 0;
4664
4665 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4666
4667 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4668 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4669
ec12cb7f
PT
4670 if (cfs_b->quota == RUNTIME_INF)
4671 amount = min_amount;
58088ad0 4672 else {
77a4d1a1 4673 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4674
4675 if (cfs_b->runtime > 0) {
4676 amount = min(cfs_b->runtime, min_amount);
4677 cfs_b->runtime -= amount;
4678 cfs_b->idle = 0;
4679 }
ec12cb7f 4680 }
ec12cb7f
PT
4681
4682 cfs_rq->runtime_remaining += amount;
85dac906
PT
4683
4684 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4685}
4686
e98fa02c
PT
4687/* returns 0 on failure to allocate runtime */
4688static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4689{
4690 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4691 int ret;
4692
4693 raw_spin_lock(&cfs_b->lock);
4694 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4695 raw_spin_unlock(&cfs_b->lock);
4696
4697 return ret;
4698}
4699
9dbdb155 4700static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4701{
4702 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4703 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4704
4705 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4706 return;
4707
5e2d2cc2
L
4708 if (cfs_rq->throttled)
4709 return;
85dac906
PT
4710 /*
4711 * if we're unable to extend our runtime we resched so that the active
4712 * hierarchy can be throttled
4713 */
4714 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4715 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4716}
4717
6c16a6dc 4718static __always_inline
9dbdb155 4719void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4720{
56f570e5 4721 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4722 return;
4723
4724 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4725}
4726
85dac906
PT
4727static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4728{
56f570e5 4729 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4730}
4731
64660c86
PT
4732/* check whether cfs_rq, or any parent, is throttled */
4733static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4734{
56f570e5 4735 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4736}
4737
4738/*
4739 * Ensure that neither of the group entities corresponding to src_cpu or
4740 * dest_cpu are members of a throttled hierarchy when performing group
4741 * load-balance operations.
4742 */
4743static inline int throttled_lb_pair(struct task_group *tg,
4744 int src_cpu, int dest_cpu)
4745{
4746 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4747
4748 src_cfs_rq = tg->cfs_rq[src_cpu];
4749 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4750
4751 return throttled_hierarchy(src_cfs_rq) ||
4752 throttled_hierarchy(dest_cfs_rq);
4753}
4754
64660c86
PT
4755static int tg_unthrottle_up(struct task_group *tg, void *data)
4756{
4757 struct rq *rq = data;
4758 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4759
4760 cfs_rq->throttle_count--;
64660c86 4761 if (!cfs_rq->throttle_count) {
78becc27 4762 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4763 cfs_rq->throttled_clock_task;
31bc6aea 4764
a7b359fc
OU
4765 /* Add cfs_rq with load or one or more already running entities to the list */
4766 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
31bc6aea 4767 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4768 }
64660c86
PT
4769
4770 return 0;
4771}
4772
4773static int tg_throttle_down(struct task_group *tg, void *data)
4774{
4775 struct rq *rq = data;
4776 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4777
82958366 4778 /* group is entering throttled state, stop time */
31bc6aea 4779 if (!cfs_rq->throttle_count) {
78becc27 4780 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4781 list_del_leaf_cfs_rq(cfs_rq);
4782 }
64660c86
PT
4783 cfs_rq->throttle_count++;
4784
4785 return 0;
4786}
4787
e98fa02c 4788static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4789{
4790 struct rq *rq = rq_of(cfs_rq);
4791 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4792 struct sched_entity *se;
43e9f7f2 4793 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4794
4795 raw_spin_lock(&cfs_b->lock);
4796 /* This will start the period timer if necessary */
4797 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4798 /*
4799 * We have raced with bandwidth becoming available, and if we
4800 * actually throttled the timer might not unthrottle us for an
4801 * entire period. We additionally needed to make sure that any
4802 * subsequent check_cfs_rq_runtime calls agree not to throttle
4803 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4804 * for 1ns of runtime rather than just check cfs_b.
4805 */
4806 dequeue = 0;
4807 } else {
4808 list_add_tail_rcu(&cfs_rq->throttled_list,
4809 &cfs_b->throttled_cfs_rq);
4810 }
4811 raw_spin_unlock(&cfs_b->lock);
4812
4813 if (!dequeue)
4814 return false; /* Throttle no longer required. */
85dac906
PT
4815
4816 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4817
f1b17280 4818 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4819 rcu_read_lock();
4820 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4821 rcu_read_unlock();
85dac906
PT
4822
4823 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4824 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4825 for_each_sched_entity(se) {
4826 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4827 /* throttled entity or throttle-on-deactivate */
4828 if (!se->on_rq)
b6d37a76 4829 goto done;
85dac906 4830
b6d37a76 4831 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f 4832
30400039
JD
4833 if (cfs_rq_is_idle(group_cfs_rq(se)))
4834 idle_task_delta = cfs_rq->h_nr_running;
4835
85dac906 4836 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4837 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906 4838
b6d37a76
PW
4839 if (qcfs_rq->load.weight) {
4840 /* Avoid re-evaluating load for this entity: */
4841 se = parent_entity(se);
4842 break;
4843 }
4844 }
4845
4846 for_each_sched_entity(se) {
4847 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4848 /* throttled entity or throttle-on-deactivate */
4849 if (!se->on_rq)
4850 goto done;
4851
4852 update_load_avg(qcfs_rq, se, 0);
4853 se_update_runnable(se);
4854
30400039
JD
4855 if (cfs_rq_is_idle(group_cfs_rq(se)))
4856 idle_task_delta = cfs_rq->h_nr_running;
4857
b6d37a76
PW
4858 qcfs_rq->h_nr_running -= task_delta;
4859 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4860 }
4861
b6d37a76
PW
4862 /* At this point se is NULL and we are at root level*/
4863 sub_nr_running(rq, task_delta);
85dac906 4864
b6d37a76 4865done:
c06f04c7 4866 /*
e98fa02c
PT
4867 * Note: distribution will already see us throttled via the
4868 * throttled-list. rq->lock protects completion.
c06f04c7 4869 */
e98fa02c
PT
4870 cfs_rq->throttled = 1;
4871 cfs_rq->throttled_clock = rq_clock(rq);
4872 return true;
85dac906
PT
4873}
4874
029632fb 4875void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4876{
4877 struct rq *rq = rq_of(cfs_rq);
4878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4879 struct sched_entity *se;
43e9f7f2 4880 long task_delta, idle_task_delta;
671fd9da 4881
22b958d8 4882 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4883
4884 cfs_rq->throttled = 0;
1a55af2e
FW
4885
4886 update_rq_clock(rq);
4887
671fd9da 4888 raw_spin_lock(&cfs_b->lock);
78becc27 4889 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4890 list_del_rcu(&cfs_rq->throttled_list);
4891 raw_spin_unlock(&cfs_b->lock);
4892
64660c86
PT
4893 /* update hierarchical throttle state */
4894 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4895
2630cde2
MK
4896 /* Nothing to run but something to decay (on_list)? Complete the branch */
4897 if (!cfs_rq->load.weight) {
4898 if (cfs_rq->on_list)
4899 goto unthrottle_throttle;
671fd9da 4900 return;
2630cde2 4901 }
671fd9da
PT
4902
4903 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4904 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da 4905 for_each_sched_entity(se) {
30400039
JD
4906 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4907
671fd9da 4908 if (se->on_rq)
39f23ce0 4909 break;
30400039
JD
4910 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4911
4912 if (cfs_rq_is_idle(group_cfs_rq(se)))
4913 idle_task_delta = cfs_rq->h_nr_running;
39f23ce0 4914
30400039
JD
4915 qcfs_rq->h_nr_running += task_delta;
4916 qcfs_rq->idle_h_nr_running += idle_task_delta;
39f23ce0
VG
4917
4918 /* end evaluation on encountering a throttled cfs_rq */
30400039 4919 if (cfs_rq_throttled(qcfs_rq))
39f23ce0
VG
4920 goto unthrottle_throttle;
4921 }
671fd9da 4922
39f23ce0 4923 for_each_sched_entity(se) {
30400039 4924 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
39f23ce0 4925
30400039 4926 update_load_avg(qcfs_rq, se, UPDATE_TG);
39f23ce0 4927 se_update_runnable(se);
6212437f 4928
30400039
JD
4929 if (cfs_rq_is_idle(group_cfs_rq(se)))
4930 idle_task_delta = cfs_rq->h_nr_running;
671fd9da 4931
30400039
JD
4932 qcfs_rq->h_nr_running += task_delta;
4933 qcfs_rq->idle_h_nr_running += idle_task_delta;
39f23ce0
VG
4934
4935 /* end evaluation on encountering a throttled cfs_rq */
30400039 4936 if (cfs_rq_throttled(qcfs_rq))
39f23ce0
VG
4937 goto unthrottle_throttle;
4938
4939 /*
4940 * One parent has been throttled and cfs_rq removed from the
4941 * list. Add it back to not break the leaf list.
4942 */
30400039
JD
4943 if (throttled_hierarchy(qcfs_rq))
4944 list_add_leaf_cfs_rq(qcfs_rq);
671fd9da
PT
4945 }
4946
39f23ce0
VG
4947 /* At this point se is NULL and we are at root level*/
4948 add_nr_running(rq, task_delta);
671fd9da 4949
39f23ce0 4950unthrottle_throttle:
fe61468b
VG
4951 /*
4952 * The cfs_rq_throttled() breaks in the above iteration can result in
4953 * incomplete leaf list maintenance, resulting in triggering the
4954 * assertion below.
4955 */
4956 for_each_sched_entity(se) {
30400039 4957 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
fe61468b 4958
30400039 4959 if (list_add_leaf_cfs_rq(qcfs_rq))
39f23ce0 4960 break;
fe61468b
VG
4961 }
4962
4963 assert_list_leaf_cfs_rq(rq);
4964
97fb7a0a 4965 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4966 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4967 resched_curr(rq);
671fd9da
PT
4968}
4969
26a8b127 4970static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4971{
4972 struct cfs_rq *cfs_rq;
26a8b127 4973 u64 runtime, remaining = 1;
671fd9da
PT
4974
4975 rcu_read_lock();
4976 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4977 throttled_list) {
4978 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4979 struct rq_flags rf;
671fd9da 4980
c0ad4aa4 4981 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4982 if (!cfs_rq_throttled(cfs_rq))
4983 goto next;
4984
5e2d2cc2
L
4985 /* By the above check, this should never be true */
4986 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4987
26a8b127 4988 raw_spin_lock(&cfs_b->lock);
671fd9da 4989 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4990 if (runtime > cfs_b->runtime)
4991 runtime = cfs_b->runtime;
4992 cfs_b->runtime -= runtime;
4993 remaining = cfs_b->runtime;
4994 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4995
4996 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4997
4998 /* we check whether we're throttled above */
4999 if (cfs_rq->runtime_remaining > 0)
5000 unthrottle_cfs_rq(cfs_rq);
5001
5002next:
c0ad4aa4 5003 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
5004
5005 if (!remaining)
5006 break;
5007 }
5008 rcu_read_unlock();
671fd9da
PT
5009}
5010
58088ad0
PT
5011/*
5012 * Responsible for refilling a task_group's bandwidth and unthrottling its
5013 * cfs_rqs as appropriate. If there has been no activity within the last
5014 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5015 * used to track this state.
5016 */
c0ad4aa4 5017static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 5018{
51f2176d 5019 int throttled;
58088ad0 5020
58088ad0
PT
5021 /* no need to continue the timer with no bandwidth constraint */
5022 if (cfs_b->quota == RUNTIME_INF)
51f2176d 5023 goto out_deactivate;
58088ad0 5024
671fd9da 5025 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 5026 cfs_b->nr_periods += overrun;
671fd9da 5027
f4183717
HC
5028 /* Refill extra burst quota even if cfs_b->idle */
5029 __refill_cfs_bandwidth_runtime(cfs_b);
5030
51f2176d
BS
5031 /*
5032 * idle depends on !throttled (for the case of a large deficit), and if
5033 * we're going inactive then everything else can be deferred
5034 */
5035 if (cfs_b->idle && !throttled)
5036 goto out_deactivate;
a9cf55b2 5037
671fd9da
PT
5038 if (!throttled) {
5039 /* mark as potentially idle for the upcoming period */
5040 cfs_b->idle = 1;
51f2176d 5041 return 0;
671fd9da
PT
5042 }
5043
e8da1b18
NR
5044 /* account preceding periods in which throttling occurred */
5045 cfs_b->nr_throttled += overrun;
5046
671fd9da 5047 /*
26a8b127 5048 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 5049 */
ab93a4bc 5050 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 5051 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 5052 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 5053 distribute_cfs_runtime(cfs_b);
c0ad4aa4 5054 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
5055
5056 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5057 }
58088ad0 5058
671fd9da
PT
5059 /*
5060 * While we are ensured activity in the period following an
5061 * unthrottle, this also covers the case in which the new bandwidth is
5062 * insufficient to cover the existing bandwidth deficit. (Forcing the
5063 * timer to remain active while there are any throttled entities.)
5064 */
5065 cfs_b->idle = 0;
58088ad0 5066
51f2176d
BS
5067 return 0;
5068
5069out_deactivate:
51f2176d 5070 return 1;
58088ad0 5071}
d3d9dc33 5072
d8b4986d
PT
5073/* a cfs_rq won't donate quota below this amount */
5074static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5075/* minimum remaining period time to redistribute slack quota */
5076static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5077/* how long we wait to gather additional slack before distributing */
5078static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5079
db06e78c
BS
5080/*
5081 * Are we near the end of the current quota period?
5082 *
5083 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5084 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5085 * migrate_hrtimers, base is never cleared, so we are fine.
5086 */
d8b4986d
PT
5087static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5088{
5089 struct hrtimer *refresh_timer = &cfs_b->period_timer;
72d0ad7c 5090 s64 remaining;
d8b4986d
PT
5091
5092 /* if the call-back is running a quota refresh is already occurring */
5093 if (hrtimer_callback_running(refresh_timer))
5094 return 1;
5095
5096 /* is a quota refresh about to occur? */
5097 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
72d0ad7c 5098 if (remaining < (s64)min_expire)
d8b4986d
PT
5099 return 1;
5100
5101 return 0;
5102}
5103
5104static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5105{
5106 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5107
5108 /* if there's a quota refresh soon don't bother with slack */
5109 if (runtime_refresh_within(cfs_b, min_left))
5110 return;
5111
66567fcb 5112 /* don't push forwards an existing deferred unthrottle */
5113 if (cfs_b->slack_started)
5114 return;
5115 cfs_b->slack_started = true;
5116
4cfafd30
PZ
5117 hrtimer_start(&cfs_b->slack_timer,
5118 ns_to_ktime(cfs_bandwidth_slack_period),
5119 HRTIMER_MODE_REL);
d8b4986d
PT
5120}
5121
5122/* we know any runtime found here is valid as update_curr() precedes return */
5123static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5124{
5125 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5126 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5127
5128 if (slack_runtime <= 0)
5129 return;
5130
5131 raw_spin_lock(&cfs_b->lock);
de53fd7a 5132 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5133 cfs_b->runtime += slack_runtime;
5134
5135 /* we are under rq->lock, defer unthrottling using a timer */
5136 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5137 !list_empty(&cfs_b->throttled_cfs_rq))
5138 start_cfs_slack_bandwidth(cfs_b);
5139 }
5140 raw_spin_unlock(&cfs_b->lock);
5141
5142 /* even if it's not valid for return we don't want to try again */
5143 cfs_rq->runtime_remaining -= slack_runtime;
5144}
5145
5146static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5147{
56f570e5
PT
5148 if (!cfs_bandwidth_used())
5149 return;
5150
fccfdc6f 5151 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5152 return;
5153
5154 __return_cfs_rq_runtime(cfs_rq);
5155}
5156
5157/*
5158 * This is done with a timer (instead of inline with bandwidth return) since
5159 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5160 */
5161static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5162{
5163 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5164 unsigned long flags;
d8b4986d
PT
5165
5166 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5167 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5168 cfs_b->slack_started = false;
baa9be4f 5169
db06e78c 5170 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5171 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5172 return;
db06e78c 5173 }
d8b4986d 5174
c06f04c7 5175 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5176 runtime = cfs_b->runtime;
c06f04c7 5177
c0ad4aa4 5178 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5179
5180 if (!runtime)
5181 return;
5182
26a8b127 5183 distribute_cfs_runtime(cfs_b);
d8b4986d
PT
5184}
5185
d3d9dc33
PT
5186/*
5187 * When a group wakes up we want to make sure that its quota is not already
5188 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
c034f48e 5189 * runtime as update_curr() throttling can not trigger until it's on-rq.
d3d9dc33
PT
5190 */
5191static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5192{
56f570e5
PT
5193 if (!cfs_bandwidth_used())
5194 return;
5195
d3d9dc33
PT
5196 /* an active group must be handled by the update_curr()->put() path */
5197 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5198 return;
5199
5200 /* ensure the group is not already throttled */
5201 if (cfs_rq_throttled(cfs_rq))
5202 return;
5203
5204 /* update runtime allocation */
5205 account_cfs_rq_runtime(cfs_rq, 0);
5206 if (cfs_rq->runtime_remaining <= 0)
5207 throttle_cfs_rq(cfs_rq);
5208}
5209
55e16d30
PZ
5210static void sync_throttle(struct task_group *tg, int cpu)
5211{
5212 struct cfs_rq *pcfs_rq, *cfs_rq;
5213
5214 if (!cfs_bandwidth_used())
5215 return;
5216
5217 if (!tg->parent)
5218 return;
5219
5220 cfs_rq = tg->cfs_rq[cpu];
5221 pcfs_rq = tg->parent->cfs_rq[cpu];
5222
5223 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5224 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5225}
5226
d3d9dc33 5227/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5228static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5229{
56f570e5 5230 if (!cfs_bandwidth_used())
678d5718 5231 return false;
56f570e5 5232
d3d9dc33 5233 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5234 return false;
d3d9dc33
PT
5235
5236 /*
5237 * it's possible for a throttled entity to be forced into a running
5238 * state (e.g. set_curr_task), in this case we're finished.
5239 */
5240 if (cfs_rq_throttled(cfs_rq))
678d5718 5241 return true;
d3d9dc33 5242
e98fa02c 5243 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5244}
029632fb 5245
029632fb
PZ
5246static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5247{
5248 struct cfs_bandwidth *cfs_b =
5249 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5250
029632fb
PZ
5251 do_sched_cfs_slack_timer(cfs_b);
5252
5253 return HRTIMER_NORESTART;
5254}
5255
2e8e1922
PA
5256extern const u64 max_cfs_quota_period;
5257
029632fb
PZ
5258static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5259{
5260 struct cfs_bandwidth *cfs_b =
5261 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5262 unsigned long flags;
029632fb
PZ
5263 int overrun;
5264 int idle = 0;
2e8e1922 5265 int count = 0;
029632fb 5266
c0ad4aa4 5267 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5268 for (;;) {
77a4d1a1 5269 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5270 if (!overrun)
5271 break;
5272
5a6d6a6c
HC
5273 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5274
2e8e1922
PA
5275 if (++count > 3) {
5276 u64 new, old = ktime_to_ns(cfs_b->period);
5277
4929a4e6
XZ
5278 /*
5279 * Grow period by a factor of 2 to avoid losing precision.
5280 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5281 * to fail.
5282 */
5283 new = old * 2;
5284 if (new < max_cfs_quota_period) {
5285 cfs_b->period = ns_to_ktime(new);
5286 cfs_b->quota *= 2;
f4183717 5287 cfs_b->burst *= 2;
4929a4e6
XZ
5288
5289 pr_warn_ratelimited(
5290 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5291 smp_processor_id(),
5292 div_u64(new, NSEC_PER_USEC),
5293 div_u64(cfs_b->quota, NSEC_PER_USEC));
5294 } else {
5295 pr_warn_ratelimited(
5296 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5297 smp_processor_id(),
5298 div_u64(old, NSEC_PER_USEC),
5299 div_u64(cfs_b->quota, NSEC_PER_USEC));
5300 }
2e8e1922
PA
5301
5302 /* reset count so we don't come right back in here */
5303 count = 0;
5304 }
029632fb 5305 }
4cfafd30
PZ
5306 if (idle)
5307 cfs_b->period_active = 0;
c0ad4aa4 5308 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5309
5310 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5311}
5312
5313void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5314{
5315 raw_spin_lock_init(&cfs_b->lock);
5316 cfs_b->runtime = 0;
5317 cfs_b->quota = RUNTIME_INF;
5318 cfs_b->period = ns_to_ktime(default_cfs_period());
f4183717 5319 cfs_b->burst = 0;
029632fb
PZ
5320
5321 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5322 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5323 cfs_b->period_timer.function = sched_cfs_period_timer;
5324 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5325 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5326 cfs_b->slack_started = false;
029632fb
PZ
5327}
5328
5329static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5330{
5331 cfs_rq->runtime_enabled = 0;
5332 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5333}
5334
77a4d1a1 5335void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5336{
4cfafd30 5337 lockdep_assert_held(&cfs_b->lock);
029632fb 5338
f1d1be8a
XP
5339 if (cfs_b->period_active)
5340 return;
5341
5342 cfs_b->period_active = 1;
763a9ec0 5343 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5344 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5345}
5346
5347static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5348{
7f1a169b
TH
5349 /* init_cfs_bandwidth() was not called */
5350 if (!cfs_b->throttled_cfs_rq.next)
5351 return;
5352
029632fb
PZ
5353 hrtimer_cancel(&cfs_b->period_timer);
5354 hrtimer_cancel(&cfs_b->slack_timer);
5355}
5356
502ce005 5357/*
97fb7a0a 5358 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5359 *
5360 * The race is harmless, since modifying bandwidth settings of unhooked group
5361 * bits doesn't do much.
5362 */
5363
3b03706f 5364/* cpu online callback */
0e59bdae
KT
5365static void __maybe_unused update_runtime_enabled(struct rq *rq)
5366{
502ce005 5367 struct task_group *tg;
0e59bdae 5368
5cb9eaa3 5369 lockdep_assert_rq_held(rq);
502ce005
PZ
5370
5371 rcu_read_lock();
5372 list_for_each_entry_rcu(tg, &task_groups, list) {
5373 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5374 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5375
5376 raw_spin_lock(&cfs_b->lock);
5377 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5378 raw_spin_unlock(&cfs_b->lock);
5379 }
502ce005 5380 rcu_read_unlock();
0e59bdae
KT
5381}
5382
502ce005 5383/* cpu offline callback */
38dc3348 5384static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5385{
502ce005
PZ
5386 struct task_group *tg;
5387
5cb9eaa3 5388 lockdep_assert_rq_held(rq);
502ce005
PZ
5389
5390 rcu_read_lock();
5391 list_for_each_entry_rcu(tg, &task_groups, list) {
5392 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5393
029632fb
PZ
5394 if (!cfs_rq->runtime_enabled)
5395 continue;
5396
5397 /*
5398 * clock_task is not advancing so we just need to make sure
5399 * there's some valid quota amount
5400 */
51f2176d 5401 cfs_rq->runtime_remaining = 1;
0e59bdae 5402 /*
97fb7a0a 5403 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5404 * in take_cpu_down(), so we prevent new cfs throttling here.
5405 */
5406 cfs_rq->runtime_enabled = 0;
5407
029632fb
PZ
5408 if (cfs_rq_throttled(cfs_rq))
5409 unthrottle_cfs_rq(cfs_rq);
5410 }
502ce005 5411 rcu_read_unlock();
029632fb
PZ
5412}
5413
5414#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5415
5416static inline bool cfs_bandwidth_used(void)
5417{
5418 return false;
5419}
5420
9dbdb155 5421static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5422static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5423static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5424static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5425static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5426
5427static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5428{
5429 return 0;
5430}
64660c86
PT
5431
5432static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5433{
5434 return 0;
5435}
5436
5437static inline int throttled_lb_pair(struct task_group *tg,
5438 int src_cpu, int dest_cpu)
5439{
5440 return 0;
5441}
029632fb
PZ
5442
5443void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5444
5445#ifdef CONFIG_FAIR_GROUP_SCHED
5446static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5447#endif
5448
029632fb
PZ
5449static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5450{
5451 return NULL;
5452}
5453static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5454static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5455static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5456
5457#endif /* CONFIG_CFS_BANDWIDTH */
5458
bf0f6f24
IM
5459/**************************************************
5460 * CFS operations on tasks:
5461 */
5462
8f4d37ec
PZ
5463#ifdef CONFIG_SCHED_HRTICK
5464static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5465{
8f4d37ec
PZ
5466 struct sched_entity *se = &p->se;
5467 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5468
9148a3a1 5469 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5470
8bf46a39 5471 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5472 u64 slice = sched_slice(cfs_rq, se);
5473 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5474 s64 delta = slice - ran;
5475
5476 if (delta < 0) {
65bcf072 5477 if (task_current(rq, p))
8875125e 5478 resched_curr(rq);
8f4d37ec
PZ
5479 return;
5480 }
31656519 5481 hrtick_start(rq, delta);
8f4d37ec
PZ
5482 }
5483}
a4c2f00f
PZ
5484
5485/*
5486 * called from enqueue/dequeue and updates the hrtick when the
5487 * current task is from our class and nr_running is low enough
5488 * to matter.
5489 */
5490static void hrtick_update(struct rq *rq)
5491{
5492 struct task_struct *curr = rq->curr;
5493
e0ee463c 5494 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5495 return;
5496
5497 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5498 hrtick_start_fair(rq, curr);
5499}
55e12e5e 5500#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5501static inline void
5502hrtick_start_fair(struct rq *rq, struct task_struct *p)
5503{
5504}
a4c2f00f
PZ
5505
5506static inline void hrtick_update(struct rq *rq)
5507{
5508}
8f4d37ec
PZ
5509#endif
5510
2802bf3c 5511#ifdef CONFIG_SMP
2802bf3c
MR
5512static inline bool cpu_overutilized(int cpu)
5513{
82762d2a 5514 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
2802bf3c
MR
5515}
5516
5517static inline void update_overutilized_status(struct rq *rq)
5518{
f9f240f9 5519 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5520 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5521 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5522 }
2802bf3c
MR
5523}
5524#else
5525static inline void update_overutilized_status(struct rq *rq) { }
5526#endif
5527
323af6de
VK
5528/* Runqueue only has SCHED_IDLE tasks enqueued */
5529static int sched_idle_rq(struct rq *rq)
5530{
5531 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5532 rq->nr_running);
5533}
5534
a480adde
JD
5535/*
5536 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5537 * of idle_nr_running, which does not consider idle descendants of normal
5538 * entities.
5539 */
5540static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5541{
5542 return cfs_rq->nr_running &&
5543 cfs_rq->nr_running == cfs_rq->idle_nr_running;
5544}
5545
afa70d94 5546#ifdef CONFIG_SMP
323af6de
VK
5547static int sched_idle_cpu(int cpu)
5548{
5549 return sched_idle_rq(cpu_rq(cpu));
5550}
afa70d94 5551#endif
323af6de 5552
bf0f6f24
IM
5553/*
5554 * The enqueue_task method is called before nr_running is
5555 * increased. Here we update the fair scheduling stats and
5556 * then put the task into the rbtree:
5557 */
ea87bb78 5558static void
371fd7e7 5559enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5560{
5561 struct cfs_rq *cfs_rq;
62fb1851 5562 struct sched_entity *se = &p->se;
43e9f7f2 5563 int idle_h_nr_running = task_has_idle_policy(p);
8e1ac429 5564 int task_new = !(flags & ENQUEUE_WAKEUP);
bf0f6f24 5565
2539fc82
PB
5566 /*
5567 * The code below (indirectly) updates schedutil which looks at
5568 * the cfs_rq utilization to select a frequency.
5569 * Let's add the task's estimated utilization to the cfs_rq's
5570 * estimated utilization, before we update schedutil.
5571 */
5572 util_est_enqueue(&rq->cfs, p);
5573
8c34ab19
RW
5574 /*
5575 * If in_iowait is set, the code below may not trigger any cpufreq
5576 * utilization updates, so do it here explicitly with the IOWAIT flag
5577 * passed.
5578 */
5579 if (p->in_iowait)
674e7541 5580 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5581
bf0f6f24 5582 for_each_sched_entity(se) {
62fb1851 5583 if (se->on_rq)
bf0f6f24
IM
5584 break;
5585 cfs_rq = cfs_rq_of(se);
88ec22d3 5586 enqueue_entity(cfs_rq, se, flags);
85dac906 5587
953bfcd1 5588 cfs_rq->h_nr_running++;
43e9f7f2 5589 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5590
30400039
JD
5591 if (cfs_rq_is_idle(cfs_rq))
5592 idle_h_nr_running = 1;
5593
6d4d2246
VG
5594 /* end evaluation on encountering a throttled cfs_rq */
5595 if (cfs_rq_throttled(cfs_rq))
5596 goto enqueue_throttle;
5597
88ec22d3 5598 flags = ENQUEUE_WAKEUP;
bf0f6f24 5599 }
8f4d37ec 5600
2069dd75 5601 for_each_sched_entity(se) {
0f317143 5602 cfs_rq = cfs_rq_of(se);
2069dd75 5603
88c0616e 5604 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5605 se_update_runnable(se);
1ea6c46a 5606 update_cfs_group(se);
6d4d2246
VG
5607
5608 cfs_rq->h_nr_running++;
5609 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba 5610
30400039
JD
5611 if (cfs_rq_is_idle(cfs_rq))
5612 idle_h_nr_running = 1;
5613
5ab297ba
VG
5614 /* end evaluation on encountering a throttled cfs_rq */
5615 if (cfs_rq_throttled(cfs_rq))
5616 goto enqueue_throttle;
b34cb07d
PA
5617
5618 /*
5619 * One parent has been throttled and cfs_rq removed from the
5620 * list. Add it back to not break the leaf list.
5621 */
5622 if (throttled_hierarchy(cfs_rq))
5623 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5624 }
5625
7d148be6
VG
5626 /* At this point se is NULL and we are at root level*/
5627 add_nr_running(rq, 1);
2802bf3c 5628
7d148be6
VG
5629 /*
5630 * Since new tasks are assigned an initial util_avg equal to
5631 * half of the spare capacity of their CPU, tiny tasks have the
5632 * ability to cross the overutilized threshold, which will
5633 * result in the load balancer ruining all the task placement
5634 * done by EAS. As a way to mitigate that effect, do not account
5635 * for the first enqueue operation of new tasks during the
5636 * overutilized flag detection.
5637 *
5638 * A better way of solving this problem would be to wait for
5639 * the PELT signals of tasks to converge before taking them
5640 * into account, but that is not straightforward to implement,
5641 * and the following generally works well enough in practice.
5642 */
8e1ac429 5643 if (!task_new)
7d148be6 5644 update_overutilized_status(rq);
cd126afe 5645
7d148be6 5646enqueue_throttle:
f6783319
VG
5647 if (cfs_bandwidth_used()) {
5648 /*
5649 * When bandwidth control is enabled; the cfs_rq_throttled()
5650 * breaks in the above iteration can result in incomplete
5651 * leaf list maintenance, resulting in triggering the assertion
5652 * below.
5653 */
5654 for_each_sched_entity(se) {
5655 cfs_rq = cfs_rq_of(se);
5656
5657 if (list_add_leaf_cfs_rq(cfs_rq))
5658 break;
5659 }
5660 }
5661
5d299eab
PZ
5662 assert_list_leaf_cfs_rq(rq);
5663
a4c2f00f 5664 hrtick_update(rq);
bf0f6f24
IM
5665}
5666
2f36825b
VP
5667static void set_next_buddy(struct sched_entity *se);
5668
bf0f6f24
IM
5669/*
5670 * The dequeue_task method is called before nr_running is
5671 * decreased. We remove the task from the rbtree and
5672 * update the fair scheduling stats:
5673 */
371fd7e7 5674static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5675{
5676 struct cfs_rq *cfs_rq;
62fb1851 5677 struct sched_entity *se = &p->se;
2f36825b 5678 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5679 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5680 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24 5681
8c1f560c
XY
5682 util_est_dequeue(&rq->cfs, p);
5683
bf0f6f24
IM
5684 for_each_sched_entity(se) {
5685 cfs_rq = cfs_rq_of(se);
371fd7e7 5686 dequeue_entity(cfs_rq, se, flags);
85dac906 5687
953bfcd1 5688 cfs_rq->h_nr_running--;
43e9f7f2 5689 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5690
30400039
JD
5691 if (cfs_rq_is_idle(cfs_rq))
5692 idle_h_nr_running = 1;
5693
6d4d2246
VG
5694 /* end evaluation on encountering a throttled cfs_rq */
5695 if (cfs_rq_throttled(cfs_rq))
5696 goto dequeue_throttle;
5697
bf0f6f24 5698 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5699 if (cfs_rq->load.weight) {
754bd598
KK
5700 /* Avoid re-evaluating load for this entity: */
5701 se = parent_entity(se);
2f36825b
VP
5702 /*
5703 * Bias pick_next to pick a task from this cfs_rq, as
5704 * p is sleeping when it is within its sched_slice.
5705 */
754bd598
KK
5706 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5707 set_next_buddy(se);
bf0f6f24 5708 break;
2f36825b 5709 }
371fd7e7 5710 flags |= DEQUEUE_SLEEP;
bf0f6f24 5711 }
8f4d37ec 5712
2069dd75 5713 for_each_sched_entity(se) {
0f317143 5714 cfs_rq = cfs_rq_of(se);
2069dd75 5715
88c0616e 5716 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5717 se_update_runnable(se);
1ea6c46a 5718 update_cfs_group(se);
6d4d2246
VG
5719
5720 cfs_rq->h_nr_running--;
5721 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba 5722
30400039
JD
5723 if (cfs_rq_is_idle(cfs_rq))
5724 idle_h_nr_running = 1;
5725
5ab297ba
VG
5726 /* end evaluation on encountering a throttled cfs_rq */
5727 if (cfs_rq_throttled(cfs_rq))
5728 goto dequeue_throttle;
5729
2069dd75
PZ
5730 }
5731
423d02e1
PW
5732 /* At this point se is NULL and we are at root level*/
5733 sub_nr_running(rq, 1);
cd126afe 5734
323af6de
VK
5735 /* balance early to pull high priority tasks */
5736 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5737 rq->next_balance = jiffies;
5738
423d02e1 5739dequeue_throttle:
8c1f560c 5740 util_est_update(&rq->cfs, p, task_sleep);
a4c2f00f 5741 hrtick_update(rq);
bf0f6f24
IM
5742}
5743
e7693a36 5744#ifdef CONFIG_SMP
10e2f1ac
PZ
5745
5746/* Working cpumask for: load_balance, load_balance_newidle. */
5747DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5748DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5749
9fd81dd5 5750#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5751
5752static struct {
5753 cpumask_var_t idle_cpus_mask;
5754 atomic_t nr_cpus;
f643ea22 5755 int has_blocked; /* Idle CPUS has blocked load */
7fd7a9e0 5756 int needs_update; /* Newly idle CPUs need their next_balance collated */
e022e0d3 5757 unsigned long next_balance; /* in jiffy units */
f643ea22 5758 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5759} nohz ____cacheline_aligned;
5760
9fd81dd5 5761#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5762
b0fb1eb4
VG
5763static unsigned long cpu_load(struct rq *rq)
5764{
5765 return cfs_rq_load_avg(&rq->cfs);
5766}
5767
3318544b
VG
5768/*
5769 * cpu_load_without - compute CPU load without any contributions from *p
5770 * @cpu: the CPU which load is requested
5771 * @p: the task which load should be discounted
5772 *
5773 * The load of a CPU is defined by the load of tasks currently enqueued on that
5774 * CPU as well as tasks which are currently sleeping after an execution on that
5775 * CPU.
5776 *
5777 * This method returns the load of the specified CPU by discounting the load of
5778 * the specified task, whenever the task is currently contributing to the CPU
5779 * load.
5780 */
5781static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5782{
5783 struct cfs_rq *cfs_rq;
5784 unsigned int load;
5785
5786 /* Task has no contribution or is new */
5787 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5788 return cpu_load(rq);
5789
5790 cfs_rq = &rq->cfs;
5791 load = READ_ONCE(cfs_rq->avg.load_avg);
5792
5793 /* Discount task's util from CPU's util */
5794 lsub_positive(&load, task_h_load(p));
5795
5796 return load;
5797}
5798
9f683953
VG
5799static unsigned long cpu_runnable(struct rq *rq)
5800{
5801 return cfs_rq_runnable_avg(&rq->cfs);
5802}
5803
070f5e86
VG
5804static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5805{
5806 struct cfs_rq *cfs_rq;
5807 unsigned int runnable;
5808
5809 /* Task has no contribution or is new */
5810 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5811 return cpu_runnable(rq);
5812
5813 cfs_rq = &rq->cfs;
5814 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5815
5816 /* Discount task's runnable from CPU's runnable */
5817 lsub_positive(&runnable, p->se.avg.runnable_avg);
5818
5819 return runnable;
5820}
5821
ced549fa 5822static unsigned long capacity_of(int cpu)
029632fb 5823{
ced549fa 5824 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5825}
5826
c58d25f3
PZ
5827static void record_wakee(struct task_struct *p)
5828{
5829 /*
5830 * Only decay a single time; tasks that have less then 1 wakeup per
5831 * jiffy will not have built up many flips.
5832 */
5833 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5834 current->wakee_flips >>= 1;
5835 current->wakee_flip_decay_ts = jiffies;
5836 }
5837
5838 if (current->last_wakee != p) {
5839 current->last_wakee = p;
5840 current->wakee_flips++;
5841 }
5842}
5843
63b0e9ed
MG
5844/*
5845 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5846 *
63b0e9ed 5847 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5848 * at a frequency roughly N times higher than one of its wakees.
5849 *
5850 * In order to determine whether we should let the load spread vs consolidating
5851 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5852 * partner, and a factor of lls_size higher frequency in the other.
5853 *
5854 * With both conditions met, we can be relatively sure that the relationship is
5855 * non-monogamous, with partner count exceeding socket size.
5856 *
5857 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5858 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5859 * socket size.
63b0e9ed 5860 */
62470419
MW
5861static int wake_wide(struct task_struct *p)
5862{
63b0e9ed
MG
5863 unsigned int master = current->wakee_flips;
5864 unsigned int slave = p->wakee_flips;
17c891ab 5865 int factor = __this_cpu_read(sd_llc_size);
62470419 5866
63b0e9ed
MG
5867 if (master < slave)
5868 swap(master, slave);
5869 if (slave < factor || master < slave * factor)
5870 return 0;
5871 return 1;
62470419
MW
5872}
5873
90001d67 5874/*
d153b153
PZ
5875 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5876 * soonest. For the purpose of speed we only consider the waking and previous
5877 * CPU.
90001d67 5878 *
7332dec0
MG
5879 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5880 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5881 *
5882 * wake_affine_weight() - considers the weight to reflect the average
5883 * scheduling latency of the CPUs. This seems to work
5884 * for the overloaded case.
90001d67 5885 */
3b76c4a3 5886static int
89a55f56 5887wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5888{
7332dec0
MG
5889 /*
5890 * If this_cpu is idle, it implies the wakeup is from interrupt
5891 * context. Only allow the move if cache is shared. Otherwise an
5892 * interrupt intensive workload could force all tasks onto one
5893 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5894 *
5895 * If the prev_cpu is idle and cache affine then avoid a migration.
5896 * There is no guarantee that the cache hot data from an interrupt
5897 * is more important than cache hot data on the prev_cpu and from
5898 * a cpufreq perspective, it's better to have higher utilisation
5899 * on one CPU.
7332dec0 5900 */
943d355d
RJ
5901 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5902 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5903
d153b153 5904 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5905 return this_cpu;
90001d67 5906
d8fcb81f
JL
5907 if (available_idle_cpu(prev_cpu))
5908 return prev_cpu;
5909
3b76c4a3 5910 return nr_cpumask_bits;
90001d67
PZ
5911}
5912
3b76c4a3 5913static int
f2cdd9cc
PZ
5914wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5915 int this_cpu, int prev_cpu, int sync)
90001d67 5916{
90001d67
PZ
5917 s64 this_eff_load, prev_eff_load;
5918 unsigned long task_load;
5919
11f10e54 5920 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5921
90001d67
PZ
5922 if (sync) {
5923 unsigned long current_load = task_h_load(current);
5924
f2cdd9cc 5925 if (current_load > this_eff_load)
3b76c4a3 5926 return this_cpu;
90001d67 5927
f2cdd9cc 5928 this_eff_load -= current_load;
90001d67
PZ
5929 }
5930
90001d67
PZ
5931 task_load = task_h_load(p);
5932
f2cdd9cc
PZ
5933 this_eff_load += task_load;
5934 if (sched_feat(WA_BIAS))
5935 this_eff_load *= 100;
5936 this_eff_load *= capacity_of(prev_cpu);
90001d67 5937
11f10e54 5938 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5939 prev_eff_load -= task_load;
5940 if (sched_feat(WA_BIAS))
5941 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5942 prev_eff_load *= capacity_of(this_cpu);
90001d67 5943
082f764a
MG
5944 /*
5945 * If sync, adjust the weight of prev_eff_load such that if
5946 * prev_eff == this_eff that select_idle_sibling() will consider
5947 * stacking the wakee on top of the waker if no other CPU is
5948 * idle.
5949 */
5950 if (sync)
5951 prev_eff_load += 1;
5952
5953 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5954}
5955
772bd008 5956static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5957 int this_cpu, int prev_cpu, int sync)
098fb9db 5958{
3b76c4a3 5959 int target = nr_cpumask_bits;
098fb9db 5960
89a55f56 5961 if (sched_feat(WA_IDLE))
3b76c4a3 5962 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5963
3b76c4a3
MG
5964 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5965 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5966
ceeadb83 5967 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
3b76c4a3
MG
5968 if (target == nr_cpumask_bits)
5969 return prev_cpu;
098fb9db 5970
3b76c4a3 5971 schedstat_inc(sd->ttwu_move_affine);
ceeadb83 5972 schedstat_inc(p->stats.nr_wakeups_affine);
3b76c4a3 5973 return target;
098fb9db
IM
5974}
5975
aaee1203 5976static struct sched_group *
45da2773 5977find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5978
5979/*
97fb7a0a 5980 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5981 */
5982static int
18bd1b4b 5983find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5984{
5985 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5986 unsigned int min_exit_latency = UINT_MAX;
5987 u64 latest_idle_timestamp = 0;
5988 int least_loaded_cpu = this_cpu;
17346452 5989 int shallowest_idle_cpu = -1;
aaee1203
PZ
5990 int i;
5991
eaecf41f
MR
5992 /* Check if we have any choice: */
5993 if (group->group_weight == 1)
ae4df9d6 5994 return cpumask_first(sched_group_span(group));
eaecf41f 5995
aaee1203 5996 /* Traverse only the allowed CPUs */
3bd37062 5997 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
97886d9d
AL
5998 struct rq *rq = cpu_rq(i);
5999
6000 if (!sched_core_cookie_match(rq, p))
6001 continue;
6002
17346452
VK
6003 if (sched_idle_cpu(i))
6004 return i;
6005
943d355d 6006 if (available_idle_cpu(i)) {
83a0a96a
NP
6007 struct cpuidle_state *idle = idle_get_state(rq);
6008 if (idle && idle->exit_latency < min_exit_latency) {
6009 /*
6010 * We give priority to a CPU whose idle state
6011 * has the smallest exit latency irrespective
6012 * of any idle timestamp.
6013 */
6014 min_exit_latency = idle->exit_latency;
6015 latest_idle_timestamp = rq->idle_stamp;
6016 shallowest_idle_cpu = i;
6017 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6018 rq->idle_stamp > latest_idle_timestamp) {
6019 /*
6020 * If equal or no active idle state, then
6021 * the most recently idled CPU might have
6022 * a warmer cache.
6023 */
6024 latest_idle_timestamp = rq->idle_stamp;
6025 shallowest_idle_cpu = i;
6026 }
17346452 6027 } else if (shallowest_idle_cpu == -1) {
11f10e54 6028 load = cpu_load(cpu_rq(i));
18cec7e0 6029 if (load < min_load) {
83a0a96a
NP
6030 min_load = load;
6031 least_loaded_cpu = i;
6032 }
e7693a36
GH
6033 }
6034 }
6035
17346452 6036 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 6037}
e7693a36 6038
18bd1b4b
BJ
6039static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6040 int cpu, int prev_cpu, int sd_flag)
6041{
93f50f90 6042 int new_cpu = cpu;
18bd1b4b 6043
3bd37062 6044 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
6045 return prev_cpu;
6046
c976a862 6047 /*
57abff06 6048 * We need task's util for cpu_util_without, sync it up to
c469933e 6049 * prev_cpu's last_update_time.
c976a862
VK
6050 */
6051 if (!(sd_flag & SD_BALANCE_FORK))
6052 sync_entity_load_avg(&p->se);
6053
18bd1b4b
BJ
6054 while (sd) {
6055 struct sched_group *group;
6056 struct sched_domain *tmp;
6057 int weight;
6058
6059 if (!(sd->flags & sd_flag)) {
6060 sd = sd->child;
6061 continue;
6062 }
6063
45da2773 6064 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
6065 if (!group) {
6066 sd = sd->child;
6067 continue;
6068 }
6069
6070 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 6071 if (new_cpu == cpu) {
97fb7a0a 6072 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
6073 sd = sd->child;
6074 continue;
6075 }
6076
97fb7a0a 6077 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
6078 cpu = new_cpu;
6079 weight = sd->span_weight;
6080 sd = NULL;
6081 for_each_domain(cpu, tmp) {
6082 if (weight <= tmp->span_weight)
6083 break;
6084 if (tmp->flags & sd_flag)
6085 sd = tmp;
6086 }
18bd1b4b
BJ
6087 }
6088
6089 return new_cpu;
6090}
6091
97886d9d 6092static inline int __select_idle_cpu(int cpu, struct task_struct *p)
9fe1f127 6093{
97886d9d
AL
6094 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6095 sched_cpu_cookie_match(cpu_rq(cpu), p))
9fe1f127
MG
6096 return cpu;
6097
6098 return -1;
6099}
6100
10e2f1ac 6101#ifdef CONFIG_SCHED_SMT
ba2591a5 6102DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6103EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6104
6105static inline void set_idle_cores(int cpu, int val)
6106{
6107 struct sched_domain_shared *sds;
6108
6109 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6110 if (sds)
6111 WRITE_ONCE(sds->has_idle_cores, val);
6112}
6113
6114static inline bool test_idle_cores(int cpu, bool def)
6115{
6116 struct sched_domain_shared *sds;
6117
c722f35b
RR
6118 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6119 if (sds)
6120 return READ_ONCE(sds->has_idle_cores);
10e2f1ac
PZ
6121
6122 return def;
6123}
6124
6125/*
6126 * Scans the local SMT mask to see if the entire core is idle, and records this
6127 * information in sd_llc_shared->has_idle_cores.
6128 *
6129 * Since SMT siblings share all cache levels, inspecting this limited remote
6130 * state should be fairly cheap.
6131 */
1b568f0a 6132void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6133{
6134 int core = cpu_of(rq);
6135 int cpu;
6136
6137 rcu_read_lock();
6138 if (test_idle_cores(core, true))
6139 goto unlock;
6140
6141 for_each_cpu(cpu, cpu_smt_mask(core)) {
6142 if (cpu == core)
6143 continue;
6144
943d355d 6145 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6146 goto unlock;
6147 }
6148
6149 set_idle_cores(core, 1);
6150unlock:
6151 rcu_read_unlock();
6152}
6153
6154/*
6155 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6156 * there are no idle cores left in the system; tracked through
6157 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6158 */
9fe1f127 6159static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
10e2f1ac 6160{
9fe1f127
MG
6161 bool idle = true;
6162 int cpu;
10e2f1ac 6163
1b568f0a 6164 if (!static_branch_likely(&sched_smt_present))
97886d9d 6165 return __select_idle_cpu(core, p);
10e2f1ac 6166
9fe1f127
MG
6167 for_each_cpu(cpu, cpu_smt_mask(core)) {
6168 if (!available_idle_cpu(cpu)) {
6169 idle = false;
6170 if (*idle_cpu == -1) {
6171 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6172 *idle_cpu = cpu;
6173 break;
6174 }
6175 continue;
bec2860a 6176 }
9fe1f127 6177 break;
10e2f1ac 6178 }
9fe1f127
MG
6179 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6180 *idle_cpu = cpu;
10e2f1ac
PZ
6181 }
6182
9fe1f127
MG
6183 if (idle)
6184 return core;
10e2f1ac 6185
9fe1f127 6186 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6187 return -1;
6188}
6189
c722f35b
RR
6190/*
6191 * Scan the local SMT mask for idle CPUs.
6192 */
6193static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6194{
6195 int cpu;
6196
6197 for_each_cpu(cpu, cpu_smt_mask(target)) {
6198 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6199 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6200 continue;
6201 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6202 return cpu;
6203 }
6204
6205 return -1;
6206}
6207
10e2f1ac
PZ
6208#else /* CONFIG_SCHED_SMT */
6209
9fe1f127 6210static inline void set_idle_cores(int cpu, int val)
10e2f1ac 6211{
9fe1f127
MG
6212}
6213
6214static inline bool test_idle_cores(int cpu, bool def)
6215{
6216 return def;
6217}
6218
6219static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6220{
97886d9d 6221 return __select_idle_cpu(core, p);
10e2f1ac
PZ
6222}
6223
c722f35b
RR
6224static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6225{
6226 return -1;
6227}
6228
10e2f1ac
PZ
6229#endif /* CONFIG_SCHED_SMT */
6230
6231/*
6232 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6233 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6234 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6235 */
c722f35b 6236static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
10e2f1ac 6237{
60588bfa 6238 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9fe1f127 6239 int i, cpu, idle_cpu = -1, nr = INT_MAX;
94aafc3e 6240 struct rq *this_rq = this_rq();
9fe1f127 6241 int this = smp_processor_id();
9cfb38a7 6242 struct sched_domain *this_sd;
94aafc3e 6243 u64 time = 0;
10e2f1ac 6244
9cfb38a7
WL
6245 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6246 if (!this_sd)
6247 return -1;
6248
bae4ec13
MG
6249 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6250
c722f35b 6251 if (sched_feat(SIS_PROP) && !has_idle_core) {
e6e0dc2d 6252 u64 avg_cost, avg_idle, span_avg;
94aafc3e 6253 unsigned long now = jiffies;
1ad3aaf3 6254
e6e0dc2d 6255 /*
94aafc3e
PZ
6256 * If we're busy, the assumption that the last idle period
6257 * predicts the future is flawed; age away the remaining
6258 * predicted idle time.
e6e0dc2d 6259 */
94aafc3e
PZ
6260 if (unlikely(this_rq->wake_stamp < now)) {
6261 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6262 this_rq->wake_stamp++;
6263 this_rq->wake_avg_idle >>= 1;
6264 }
6265 }
6266
6267 avg_idle = this_rq->wake_avg_idle;
e6e0dc2d 6268 avg_cost = this_sd->avg_scan_cost + 1;
10e2f1ac 6269
e6e0dc2d 6270 span_avg = sd->span_weight * avg_idle;
1ad3aaf3
PZ
6271 if (span_avg > 4*avg_cost)
6272 nr = div_u64(span_avg, avg_cost);
6273 else
6274 nr = 4;
10e2f1ac 6275
bae4ec13
MG
6276 time = cpu_clock(this);
6277 }
60588bfa 6278
56498cfb 6279 for_each_cpu_wrap(cpu, cpus, target + 1) {
c722f35b 6280 if (has_idle_core) {
9fe1f127
MG
6281 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6282 if ((unsigned int)i < nr_cpumask_bits)
6283 return i;
6284
6285 } else {
6286 if (!--nr)
6287 return -1;
97886d9d 6288 idle_cpu = __select_idle_cpu(cpu, p);
9fe1f127
MG
6289 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6290 break;
6291 }
10e2f1ac
PZ
6292 }
6293
c722f35b 6294 if (has_idle_core)
02dbb724 6295 set_idle_cores(target, false);
9fe1f127 6296
c722f35b 6297 if (sched_feat(SIS_PROP) && !has_idle_core) {
bae4ec13 6298 time = cpu_clock(this) - time;
94aafc3e
PZ
6299
6300 /*
6301 * Account for the scan cost of wakeups against the average
6302 * idle time.
6303 */
6304 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6305
bae4ec13
MG
6306 update_avg(&this_sd->avg_scan_cost, time);
6307 }
10e2f1ac 6308
9fe1f127 6309 return idle_cpu;
10e2f1ac
PZ
6310}
6311
b7a33161
MR
6312/*
6313 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6314 * the task fits. If no CPU is big enough, but there are idle ones, try to
6315 * maximize capacity.
6316 */
6317static int
6318select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6319{
b4c9c9f1 6320 unsigned long task_util, best_cap = 0;
b7a33161
MR
6321 int cpu, best_cpu = -1;
6322 struct cpumask *cpus;
6323
b7a33161
MR
6324 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6325 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6326
b4c9c9f1
VG
6327 task_util = uclamp_task_util(p);
6328
b7a33161
MR
6329 for_each_cpu_wrap(cpu, cpus, target) {
6330 unsigned long cpu_cap = capacity_of(cpu);
6331
6332 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6333 continue;
b4c9c9f1 6334 if (fits_capacity(task_util, cpu_cap))
b7a33161
MR
6335 return cpu;
6336
6337 if (cpu_cap > best_cap) {
6338 best_cap = cpu_cap;
6339 best_cpu = cpu;
6340 }
6341 }
6342
6343 return best_cpu;
6344}
6345
ef8df979 6346static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
b4c9c9f1
VG
6347{
6348 if (static_branch_unlikely(&sched_asym_cpucapacity))
6349 return fits_capacity(task_util, capacity_of(cpu));
6350
6351 return true;
6352}
6353
10e2f1ac
PZ
6354/*
6355 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6356 */
772bd008 6357static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6358{
c722f35b 6359 bool has_idle_core = false;
99bd5e2f 6360 struct sched_domain *sd;
b4c9c9f1 6361 unsigned long task_util;
32e839dd 6362 int i, recent_used_cpu;
a50bde51 6363
b7a33161 6364 /*
b4c9c9f1
VG
6365 * On asymmetric system, update task utilization because we will check
6366 * that the task fits with cpu's capacity.
b7a33161
MR
6367 */
6368 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
b4c9c9f1
VG
6369 sync_entity_load_avg(&p->se);
6370 task_util = uclamp_task_util(p);
b7a33161
MR
6371 }
6372
9099a147
PZ
6373 /*
6374 * per-cpu select_idle_mask usage
6375 */
6376 lockdep_assert_irqs_disabled();
6377
b4c9c9f1
VG
6378 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6379 asym_fits_capacity(task_util, target))
e0a79f52 6380 return target;
99bd5e2f
SS
6381
6382 /*
97fb7a0a 6383 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6384 */
3c29e651 6385 if (prev != target && cpus_share_cache(prev, target) &&
b4c9c9f1
VG
6386 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6387 asym_fits_capacity(task_util, prev))
772bd008 6388 return prev;
a50bde51 6389
52262ee5
MG
6390 /*
6391 * Allow a per-cpu kthread to stack with the wakee if the
6392 * kworker thread and the tasks previous CPUs are the same.
6393 * The assumption is that the wakee queued work for the
6394 * per-cpu kthread that is now complete and the wakeup is
6395 * essentially a sync wakeup. An obvious example of this
6396 * pattern is IO completions.
6397 */
6398 if (is_per_cpu_kthread(current) &&
8b4e74cc 6399 in_task() &&
52262ee5 6400 prev == smp_processor_id() &&
014ba44e
VD
6401 this_rq()->nr_running <= 1 &&
6402 asym_fits_capacity(task_util, prev)) {
52262ee5
MG
6403 return prev;
6404 }
6405
97fb7a0a 6406 /* Check a recently used CPU as a potential idle candidate: */
32e839dd 6407 recent_used_cpu = p->recent_used_cpu;
89aafd67 6408 p->recent_used_cpu = prev;
32e839dd
MG
6409 if (recent_used_cpu != prev &&
6410 recent_used_cpu != target &&
6411 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6412 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
b4c9c9f1
VG
6413 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6414 asym_fits_capacity(task_util, recent_used_cpu)) {
32e839dd
MG
6415 return recent_used_cpu;
6416 }
6417
b4c9c9f1
VG
6418 /*
6419 * For asymmetric CPU capacity systems, our domain of interest is
6420 * sd_asym_cpucapacity rather than sd_llc.
6421 */
6422 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6423 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6424 /*
6425 * On an asymmetric CPU capacity system where an exclusive
6426 * cpuset defines a symmetric island (i.e. one unique
6427 * capacity_orig value through the cpuset), the key will be set
6428 * but the CPUs within that cpuset will not have a domain with
6429 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6430 * capacity path.
6431 */
6432 if (sd) {
6433 i = select_idle_capacity(p, sd, target);
6434 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6435 }
6436 }
6437
518cd623 6438 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6439 if (!sd)
6440 return target;
772bd008 6441
c722f35b
RR
6442 if (sched_smt_active()) {
6443 has_idle_core = test_idle_cores(target, false);
6444
6445 if (!has_idle_core && cpus_share_cache(prev, target)) {
6446 i = select_idle_smt(p, sd, prev);
6447 if ((unsigned int)i < nr_cpumask_bits)
6448 return i;
6449 }
6450 }
6451
6452 i = select_idle_cpu(p, sd, has_idle_core, target);
10e2f1ac
PZ
6453 if ((unsigned)i < nr_cpumask_bits)
6454 return i;
6455
a50bde51
PZ
6456 return target;
6457}
231678b7 6458
104cb16d 6459/*
c469933e
PB
6460 * cpu_util_without: compute cpu utilization without any contributions from *p
6461 * @cpu: the CPU which utilization is requested
6462 * @p: the task which utilization should be discounted
6463 *
6464 * The utilization of a CPU is defined by the utilization of tasks currently
6465 * enqueued on that CPU as well as tasks which are currently sleeping after an
6466 * execution on that CPU.
6467 *
6468 * This method returns the utilization of the specified CPU by discounting the
6469 * utilization of the specified task, whenever the task is currently
6470 * contributing to the CPU utilization.
104cb16d 6471 */
c469933e 6472static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6473{
f9be3e59
PB
6474 struct cfs_rq *cfs_rq;
6475 unsigned int util;
104cb16d
MR
6476
6477 /* Task has no contribution or is new */
f9be3e59 6478 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
82762d2a 6479 return cpu_util_cfs(cpu);
104cb16d 6480
f9be3e59
PB
6481 cfs_rq = &cpu_rq(cpu)->cfs;
6482 util = READ_ONCE(cfs_rq->avg.util_avg);
6483
c469933e 6484 /* Discount task's util from CPU's util */
b5c0ce7b 6485 lsub_positive(&util, task_util(p));
104cb16d 6486
f9be3e59
PB
6487 /*
6488 * Covered cases:
6489 *
6490 * a) if *p is the only task sleeping on this CPU, then:
6491 * cpu_util (== task_util) > util_est (== 0)
6492 * and thus we return:
c469933e 6493 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6494 *
6495 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6496 * IDLE, then:
6497 * cpu_util >= task_util
6498 * cpu_util > util_est (== 0)
6499 * and thus we discount *p's blocked utilization to return:
c469933e 6500 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6501 *
6502 * c) if other tasks are RUNNABLE on that CPU and
6503 * util_est > cpu_util
6504 * then we use util_est since it returns a more restrictive
6505 * estimation of the spare capacity on that CPU, by just
6506 * considering the expected utilization of tasks already
6507 * runnable on that CPU.
6508 *
6509 * Cases a) and b) are covered by the above code, while case c) is
6510 * covered by the following code when estimated utilization is
6511 * enabled.
6512 */
c469933e
PB
6513 if (sched_feat(UTIL_EST)) {
6514 unsigned int estimated =
6515 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6516
6517 /*
6518 * Despite the following checks we still have a small window
6519 * for a possible race, when an execl's select_task_rq_fair()
6520 * races with LB's detach_task():
6521 *
6522 * detach_task()
6523 * p->on_rq = TASK_ON_RQ_MIGRATING;
6524 * ---------------------------------- A
6525 * deactivate_task() \
6526 * dequeue_task() + RaceTime
6527 * util_est_dequeue() /
6528 * ---------------------------------- B
6529 *
6530 * The additional check on "current == p" it's required to
6531 * properly fix the execl regression and it helps in further
6532 * reducing the chances for the above race.
6533 */
b5c0ce7b
PB
6534 if (unlikely(task_on_rq_queued(p) || current == p))
6535 lsub_positive(&estimated, _task_util_est(p));
6536
c469933e
PB
6537 util = max(util, estimated);
6538 }
f9be3e59
PB
6539
6540 /*
6541 * Utilization (estimated) can exceed the CPU capacity, thus let's
6542 * clamp to the maximum CPU capacity to ensure consistency with
82762d2a 6543 * cpu_util.
f9be3e59
PB
6544 */
6545 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6546}
6547
390031e4
QP
6548/*
6549 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6550 * to @dst_cpu.
6551 */
6552static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6553{
6554 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6555 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6556
6557 /*
6558 * If @p migrates from @cpu to another, remove its contribution. Or,
6559 * if @p migrates from another CPU to @cpu, add its contribution. In
6560 * the other cases, @cpu is not impacted by the migration, so the
6561 * util_avg should already be correct.
6562 */
6563 if (task_cpu(p) == cpu && dst_cpu != cpu)
736cc6b3 6564 lsub_positive(&util, task_util(p));
390031e4
QP
6565 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6566 util += task_util(p);
6567
6568 if (sched_feat(UTIL_EST)) {
6569 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6570
6571 /*
6572 * During wake-up, the task isn't enqueued yet and doesn't
6573 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6574 * so just add it (if needed) to "simulate" what will be
82762d2a 6575 * cpu_util after the task has been enqueued.
390031e4
QP
6576 */
6577 if (dst_cpu == cpu)
6578 util_est += _task_util_est(p);
6579
6580 util = max(util, util_est);
6581 }
6582
6583 return min(util, capacity_orig_of(cpu));
6584}
6585
6586/*
eb92692b 6587 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6588 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6589 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6590 * to compute what would be the energy if we decided to actually migrate that
6591 * task.
6592 */
6593static long
6594compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6595{
eb92692b
QP
6596 struct cpumask *pd_mask = perf_domain_span(pd);
6597 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6598 unsigned long max_util = 0, sum_util = 0;
489f1645 6599 unsigned long _cpu_cap = cpu_cap;
390031e4
QP
6600 int cpu;
6601
489f1645
LL
6602 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6603
eb92692b
QP
6604 /*
6605 * The capacity state of CPUs of the current rd can be driven by CPUs
6606 * of another rd if they belong to the same pd. So, account for the
6607 * utilization of these CPUs too by masking pd with cpu_online_mask
6608 * instead of the rd span.
6609 *
6610 * If an entire pd is outside of the current rd, it will not appear in
6611 * its pd list and will not be accounted by compute_energy().
6612 */
6613 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
0372e1cf
VD
6614 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6615 unsigned long cpu_util, util_running = util_freq;
6616 struct task_struct *tsk = NULL;
6617
6618 /*
6619 * When @p is placed on @cpu:
6620 *
6621 * util_running = max(cpu_util, cpu_util_est) +
6622 * max(task_util, _task_util_est)
6623 *
6624 * while cpu_util_next is: max(cpu_util + task_util,
6625 * cpu_util_est + _task_util_est)
6626 */
6627 if (cpu == dst_cpu) {
6628 tsk = p;
6629 util_running =
6630 cpu_util_next(cpu, p, -1) + task_util_est(p);
6631 }
af24bde8
PB
6632
6633 /*
eb92692b
QP
6634 * Busy time computation: utilization clamping is not
6635 * required since the ratio (sum_util / cpu_capacity)
6636 * is already enough to scale the EM reported power
6637 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6638 */
489f1645
LL
6639 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6640 ENERGY_UTIL, NULL);
6641
6642 sum_util += min(cpu_util, _cpu_cap);
af24bde8 6643
390031e4 6644 /*
eb92692b
QP
6645 * Performance domain frequency: utilization clamping
6646 * must be considered since it affects the selection
6647 * of the performance domain frequency.
6648 * NOTE: in case RT tasks are running, by default the
6649 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6650 */
0372e1cf 6651 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
eb92692b 6652 FREQUENCY_UTIL, tsk);
489f1645 6653 max_util = max(max_util, min(cpu_util, _cpu_cap));
390031e4
QP
6654 }
6655
8f1b971b 6656 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
390031e4
QP
6657}
6658
732cd75b
QP
6659/*
6660 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6661 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6662 * spare capacity in each performance domain and uses it as a potential
6663 * candidate to execute the task. Then, it uses the Energy Model to figure
6664 * out which of the CPU candidates is the most energy-efficient.
6665 *
6666 * The rationale for this heuristic is as follows. In a performance domain,
6667 * all the most energy efficient CPU candidates (according to the Energy
6668 * Model) are those for which we'll request a low frequency. When there are
6669 * several CPUs for which the frequency request will be the same, we don't
6670 * have enough data to break the tie between them, because the Energy Model
6671 * only includes active power costs. With this model, if we assume that
6672 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6673 * the maximum spare capacity in a performance domain is guaranteed to be among
6674 * the best candidates of the performance domain.
6675 *
6676 * In practice, it could be preferable from an energy standpoint to pack
6677 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6678 * but that could also hurt our chances to go cluster idle, and we have no
6679 * ways to tell with the current Energy Model if this is actually a good
6680 * idea or not. So, find_energy_efficient_cpu() basically favors
6681 * cluster-packing, and spreading inside a cluster. That should at least be
6682 * a good thing for latency, and this is consistent with the idea that most
6683 * of the energy savings of EAS come from the asymmetry of the system, and
6684 * not so much from breaking the tie between identical CPUs. That's also the
6685 * reason why EAS is enabled in the topology code only for systems where
6686 * SD_ASYM_CPUCAPACITY is set.
6687 *
6688 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6689 * they don't have any useful utilization data yet and it's not possible to
6690 * forecast their impact on energy consumption. Consequently, they will be
6691 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6692 * to be energy-inefficient in some use-cases. The alternative would be to
6693 * bias new tasks towards specific types of CPUs first, or to try to infer
6694 * their util_avg from the parent task, but those heuristics could hurt
6695 * other use-cases too. So, until someone finds a better way to solve this,
6696 * let's keep things simple by re-using the existing slow path.
6697 */
732cd75b
QP
6698static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6699{
eb92692b 6700 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6701 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
619e090c 6702 int cpu, best_energy_cpu = prev_cpu, target = -1;
eb92692b 6703 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6704 struct sched_domain *sd;
eb92692b 6705 struct perf_domain *pd;
732cd75b
QP
6706
6707 rcu_read_lock();
6708 pd = rcu_dereference(rd->pd);
6709 if (!pd || READ_ONCE(rd->overutilized))
619e090c 6710 goto unlock;
732cd75b
QP
6711
6712 /*
6713 * Energy-aware wake-up happens on the lowest sched_domain starting
6714 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6715 */
6716 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6717 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6718 sd = sd->parent;
6719 if (!sd)
619e090c
PG
6720 goto unlock;
6721
6722 target = prev_cpu;
732cd75b
QP
6723
6724 sync_entity_load_avg(&p->se);
6725 if (!task_util_est(p))
6726 goto unlock;
6727
6728 for (; pd; pd = pd->next) {
eb92692b 6729 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
8d4c97c1 6730 bool compute_prev_delta = false;
eb92692b 6731 unsigned long base_energy_pd;
732cd75b
QP
6732 int max_spare_cap_cpu = -1;
6733
6734 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6735 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6736 continue;
6737
732cd75b
QP
6738 util = cpu_util_next(cpu, p, cpu);
6739 cpu_cap = capacity_of(cpu);
da0777d3
LL
6740 spare_cap = cpu_cap;
6741 lsub_positive(&spare_cap, util);
1d42509e
VS
6742
6743 /*
6744 * Skip CPUs that cannot satisfy the capacity request.
6745 * IOW, placing the task there would make the CPU
6746 * overutilized. Take uclamp into account to see how
6747 * much capacity we can get out of the CPU; this is
a5418be9 6748 * aligned with sched_cpu_util().
1d42509e
VS
6749 */
6750 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6751 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6752 continue;
6753
732cd75b 6754 if (cpu == prev_cpu) {
8d4c97c1
PG
6755 /* Always use prev_cpu as a candidate. */
6756 compute_prev_delta = true;
6757 } else if (spare_cap > max_spare_cap) {
6758 /*
6759 * Find the CPU with the maximum spare capacity
6760 * in the performance domain.
6761 */
732cd75b
QP
6762 max_spare_cap = spare_cap;
6763 max_spare_cap_cpu = cpu;
6764 }
6765 }
6766
8d4c97c1
PG
6767 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6768 continue;
6769
6770 /* Compute the 'base' energy of the pd, without @p */
6771 base_energy_pd = compute_energy(p, -1, pd);
6772 base_energy += base_energy_pd;
6773
6774 /* Evaluate the energy impact of using prev_cpu. */
6775 if (compute_prev_delta) {
6776 prev_delta = compute_energy(p, prev_cpu, pd);
619e090c
PG
6777 if (prev_delta < base_energy_pd)
6778 goto unlock;
8d4c97c1
PG
6779 prev_delta -= base_energy_pd;
6780 best_delta = min(best_delta, prev_delta);
6781 }
6782
6783 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6784 if (max_spare_cap_cpu >= 0) {
eb92692b 6785 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
619e090c
PG
6786 if (cur_delta < base_energy_pd)
6787 goto unlock;
eb92692b
QP
6788 cur_delta -= base_energy_pd;
6789 if (cur_delta < best_delta) {
6790 best_delta = cur_delta;
732cd75b
QP
6791 best_energy_cpu = max_spare_cap_cpu;
6792 }
6793 }
6794 }
732cd75b
QP
6795 rcu_read_unlock();
6796
6797 /*
6798 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6799 * least 6% of the energy used by prev_cpu.
6800 */
619e090c
PG
6801 if ((prev_delta == ULONG_MAX) ||
6802 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6803 target = best_energy_cpu;
732cd75b 6804
619e090c 6805 return target;
732cd75b 6806
619e090c 6807unlock:
732cd75b
QP
6808 rcu_read_unlock();
6809
619e090c 6810 return target;
732cd75b
QP
6811}
6812
aaee1203 6813/*
de91b9cb 6814 * select_task_rq_fair: Select target runqueue for the waking task in domains
3aef1551 6815 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
de91b9cb 6816 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6817 *
97fb7a0a
IM
6818 * Balances load by selecting the idlest CPU in the idlest group, or under
6819 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6820 *
97fb7a0a 6821 * Returns the target CPU number.
aaee1203 6822 */
0017d735 6823static int
3aef1551 6824select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
aaee1203 6825{
3aef1551 6826 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
f1d88b44 6827 struct sched_domain *tmp, *sd = NULL;
c88d5910 6828 int cpu = smp_processor_id();
63b0e9ed 6829 int new_cpu = prev_cpu;
99bd5e2f 6830 int want_affine = 0;
3aef1551
VS
6831 /* SD_flags and WF_flags share the first nibble */
6832 int sd_flag = wake_flags & 0xF;
c88d5910 6833
9099a147
PZ
6834 /*
6835 * required for stable ->cpus_allowed
6836 */
6837 lockdep_assert_held(&p->pi_lock);
dc824eb8 6838 if (wake_flags & WF_TTWU) {
c58d25f3 6839 record_wakee(p);
732cd75b 6840
f8a696f2 6841 if (sched_energy_enabled()) {
732cd75b
QP
6842 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6843 if (new_cpu >= 0)
6844 return new_cpu;
6845 new_cpu = prev_cpu;
6846 }
6847
00061968 6848 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6849 }
aaee1203 6850
dce840a0 6851 rcu_read_lock();
aaee1203 6852 for_each_domain(cpu, tmp) {
fe3bcfe1 6853 /*
97fb7a0a 6854 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6855 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6856 */
99bd5e2f
SS
6857 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6858 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6859 if (cpu != prev_cpu)
6860 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6861
6862 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6863 break;
f03542a7 6864 }
29cd8bae 6865
2917406c
BS
6866 /*
6867 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
6868 * usually do not have SD_BALANCE_WAKE set. That means wakeup
6869 * will usually go to the fast path.
6870 */
f03542a7 6871 if (tmp->flags & sd_flag)
29cd8bae 6872 sd = tmp;
63b0e9ed
MG
6873 else if (!want_affine)
6874 break;
29cd8bae
PZ
6875 }
6876
f1d88b44
VK
6877 if (unlikely(sd)) {
6878 /* Slow path */
18bd1b4b 6879 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
dc824eb8 6880 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
f1d88b44 6881 /* Fast path */
f1d88b44 6882 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
e7693a36 6883 }
dce840a0 6884 rcu_read_unlock();
e7693a36 6885
c88d5910 6886 return new_cpu;
e7693a36 6887}
0a74bef8 6888
144d8487
PZ
6889static void detach_entity_cfs_rq(struct sched_entity *se);
6890
0a74bef8 6891/*
97fb7a0a 6892 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6893 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6894 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6895 */
3f9672ba 6896static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6897{
59efa0ba
PZ
6898 /*
6899 * As blocked tasks retain absolute vruntime the migration needs to
6900 * deal with this by subtracting the old and adding the new
6901 * min_vruntime -- the latter is done by enqueue_entity() when placing
6902 * the task on the new runqueue.
6903 */
2f064a59 6904 if (READ_ONCE(p->__state) == TASK_WAKING) {
59efa0ba
PZ
6905 struct sched_entity *se = &p->se;
6906 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6907 u64 min_vruntime;
6908
6909#ifndef CONFIG_64BIT
6910 u64 min_vruntime_copy;
6911
6912 do {
6913 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6914 smp_rmb();
6915 min_vruntime = cfs_rq->min_vruntime;
6916 } while (min_vruntime != min_vruntime_copy);
6917#else
6918 min_vruntime = cfs_rq->min_vruntime;
6919#endif
6920
6921 se->vruntime -= min_vruntime;
6922 }
6923
144d8487
PZ
6924 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6925 /*
6926 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6927 * rq->lock and can modify state directly.
6928 */
5cb9eaa3 6929 lockdep_assert_rq_held(task_rq(p));
144d8487
PZ
6930 detach_entity_cfs_rq(&p->se);
6931
6932 } else {
6933 /*
6934 * We are supposed to update the task to "current" time, then
6935 * its up to date and ready to go to new CPU/cfs_rq. But we
6936 * have difficulty in getting what current time is, so simply
6937 * throw away the out-of-date time. This will result in the
6938 * wakee task is less decayed, but giving the wakee more load
6939 * sounds not bad.
6940 */
6941 remove_entity_load_avg(&p->se);
6942 }
9d89c257
YD
6943
6944 /* Tell new CPU we are migrated */
6945 p->se.avg.last_update_time = 0;
3944a927
BS
6946
6947 /* We have migrated, no longer consider this task hot */
9d89c257 6948 p->se.exec_start = 0;
3f9672ba
SD
6949
6950 update_scan_period(p, new_cpu);
0a74bef8 6951}
12695578
YD
6952
6953static void task_dead_fair(struct task_struct *p)
6954{
6955 remove_entity_load_avg(&p->se);
6956}
6e2df058
PZ
6957
6958static int
6959balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6960{
6961 if (rq->nr_running)
6962 return 1;
6963
6964 return newidle_balance(rq, rf) != 0;
6965}
e7693a36
GH
6966#endif /* CONFIG_SMP */
6967
a555e9d8 6968static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6969{
6970 unsigned long gran = sysctl_sched_wakeup_granularity;
6971
6972 /*
e52fb7c0
PZ
6973 * Since its curr running now, convert the gran from real-time
6974 * to virtual-time in his units.
13814d42
MG
6975 *
6976 * By using 'se' instead of 'curr' we penalize light tasks, so
6977 * they get preempted easier. That is, if 'se' < 'curr' then
6978 * the resulting gran will be larger, therefore penalizing the
6979 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6980 * be smaller, again penalizing the lighter task.
6981 *
6982 * This is especially important for buddies when the leftmost
6983 * task is higher priority than the buddy.
0bbd3336 6984 */
f4ad9bd2 6985 return calc_delta_fair(gran, se);
0bbd3336
PZ
6986}
6987
464b7527
PZ
6988/*
6989 * Should 'se' preempt 'curr'.
6990 *
6991 * |s1
6992 * |s2
6993 * |s3
6994 * g
6995 * |<--->|c
6996 *
6997 * w(c, s1) = -1
6998 * w(c, s2) = 0
6999 * w(c, s3) = 1
7000 *
7001 */
7002static int
7003wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7004{
7005 s64 gran, vdiff = curr->vruntime - se->vruntime;
7006
7007 if (vdiff <= 0)
7008 return -1;
7009
a555e9d8 7010 gran = wakeup_gran(se);
464b7527
PZ
7011 if (vdiff > gran)
7012 return 1;
7013
7014 return 0;
7015}
7016
02479099
PZ
7017static void set_last_buddy(struct sched_entity *se)
7018{
c5ae366e
DA
7019 for_each_sched_entity(se) {
7020 if (SCHED_WARN_ON(!se->on_rq))
7021 return;
30400039
JD
7022 if (se_is_idle(se))
7023 return;
69c80f3e 7024 cfs_rq_of(se)->last = se;
c5ae366e 7025 }
02479099
PZ
7026}
7027
7028static void set_next_buddy(struct sched_entity *se)
7029{
c5ae366e
DA
7030 for_each_sched_entity(se) {
7031 if (SCHED_WARN_ON(!se->on_rq))
7032 return;
30400039
JD
7033 if (se_is_idle(se))
7034 return;
69c80f3e 7035 cfs_rq_of(se)->next = se;
c5ae366e 7036 }
02479099
PZ
7037}
7038
ac53db59
RR
7039static void set_skip_buddy(struct sched_entity *se)
7040{
69c80f3e
VP
7041 for_each_sched_entity(se)
7042 cfs_rq_of(se)->skip = se;
ac53db59
RR
7043}
7044
bf0f6f24
IM
7045/*
7046 * Preempt the current task with a newly woken task if needed:
7047 */
5a9b86f6 7048static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
7049{
7050 struct task_struct *curr = rq->curr;
8651a86c 7051 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 7052 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 7053 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 7054 int next_buddy_marked = 0;
30400039 7055 int cse_is_idle, pse_is_idle;
bf0f6f24 7056
4ae7d5ce
IM
7057 if (unlikely(se == pse))
7058 return;
7059
5238cdd3 7060 /*
163122b7 7061 * This is possible from callers such as attach_tasks(), in which we
3b03706f 7062 * unconditionally check_preempt_curr() after an enqueue (which may have
5238cdd3
PT
7063 * lead to a throttle). This both saves work and prevents false
7064 * next-buddy nomination below.
7065 */
7066 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7067 return;
7068
2f36825b 7069 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 7070 set_next_buddy(pse);
2f36825b
VP
7071 next_buddy_marked = 1;
7072 }
57fdc26d 7073
aec0a514
BR
7074 /*
7075 * We can come here with TIF_NEED_RESCHED already set from new task
7076 * wake up path.
5238cdd3
PT
7077 *
7078 * Note: this also catches the edge-case of curr being in a throttled
7079 * group (e.g. via set_curr_task), since update_curr() (in the
7080 * enqueue of curr) will have resulted in resched being set. This
7081 * prevents us from potentially nominating it as a false LAST_BUDDY
7082 * below.
aec0a514
BR
7083 */
7084 if (test_tsk_need_resched(curr))
7085 return;
7086
a2f5c9ab 7087 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
7088 if (unlikely(task_has_idle_policy(curr)) &&
7089 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
7090 goto preempt;
7091
91c234b4 7092 /*
a2f5c9ab
DH
7093 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7094 * is driven by the tick):
91c234b4 7095 */
8ed92e51 7096 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 7097 return;
bf0f6f24 7098
464b7527 7099 find_matching_se(&se, &pse);
002f128b 7100 BUG_ON(!pse);
30400039
JD
7101
7102 cse_is_idle = se_is_idle(se);
7103 pse_is_idle = se_is_idle(pse);
7104
7105 /*
7106 * Preempt an idle group in favor of a non-idle group (and don't preempt
7107 * in the inverse case).
7108 */
7109 if (cse_is_idle && !pse_is_idle)
7110 goto preempt;
7111 if (cse_is_idle != pse_is_idle)
7112 return;
7113
7114 update_curr(cfs_rq_of(se));
2f36825b
VP
7115 if (wakeup_preempt_entity(se, pse) == 1) {
7116 /*
7117 * Bias pick_next to pick the sched entity that is
7118 * triggering this preemption.
7119 */
7120 if (!next_buddy_marked)
7121 set_next_buddy(pse);
3a7e73a2 7122 goto preempt;
2f36825b 7123 }
464b7527 7124
3a7e73a2 7125 return;
a65ac745 7126
3a7e73a2 7127preempt:
8875125e 7128 resched_curr(rq);
3a7e73a2
PZ
7129 /*
7130 * Only set the backward buddy when the current task is still
7131 * on the rq. This can happen when a wakeup gets interleaved
7132 * with schedule on the ->pre_schedule() or idle_balance()
7133 * point, either of which can * drop the rq lock.
7134 *
7135 * Also, during early boot the idle thread is in the fair class,
7136 * for obvious reasons its a bad idea to schedule back to it.
7137 */
7138 if (unlikely(!se->on_rq || curr == rq->idle))
7139 return;
7140
7141 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7142 set_last_buddy(se);
bf0f6f24
IM
7143}
7144
21f56ffe
PZ
7145#ifdef CONFIG_SMP
7146static struct task_struct *pick_task_fair(struct rq *rq)
7147{
7148 struct sched_entity *se;
7149 struct cfs_rq *cfs_rq;
7150
7151again:
7152 cfs_rq = &rq->cfs;
7153 if (!cfs_rq->nr_running)
7154 return NULL;
7155
7156 do {
7157 struct sched_entity *curr = cfs_rq->curr;
7158
7159 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7160 if (curr) {
7161 if (curr->on_rq)
7162 update_curr(cfs_rq);
7163 else
7164 curr = NULL;
7165
7166 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7167 goto again;
7168 }
7169
7170 se = pick_next_entity(cfs_rq, curr);
7171 cfs_rq = group_cfs_rq(se);
7172 } while (cfs_rq);
7173
7174 return task_of(se);
7175}
7176#endif
7177
5d7d6056 7178struct task_struct *
d8ac8971 7179pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
7180{
7181 struct cfs_rq *cfs_rq = &rq->cfs;
7182 struct sched_entity *se;
678d5718 7183 struct task_struct *p;
37e117c0 7184 int new_tasks;
678d5718 7185
6e83125c 7186again:
6e2df058 7187 if (!sched_fair_runnable(rq))
38033c37 7188 goto idle;
678d5718 7189
9674f5ca 7190#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 7191 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
7192 goto simple;
7193
7194 /*
7195 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7196 * likely that a next task is from the same cgroup as the current.
7197 *
7198 * Therefore attempt to avoid putting and setting the entire cgroup
7199 * hierarchy, only change the part that actually changes.
7200 */
7201
7202 do {
7203 struct sched_entity *curr = cfs_rq->curr;
7204
7205 /*
7206 * Since we got here without doing put_prev_entity() we also
7207 * have to consider cfs_rq->curr. If it is still a runnable
7208 * entity, update_curr() will update its vruntime, otherwise
7209 * forget we've ever seen it.
7210 */
54d27365
BS
7211 if (curr) {
7212 if (curr->on_rq)
7213 update_curr(cfs_rq);
7214 else
7215 curr = NULL;
678d5718 7216
54d27365
BS
7217 /*
7218 * This call to check_cfs_rq_runtime() will do the
7219 * throttle and dequeue its entity in the parent(s).
9674f5ca 7220 * Therefore the nr_running test will indeed
54d27365
BS
7221 * be correct.
7222 */
9674f5ca
VK
7223 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7224 cfs_rq = &rq->cfs;
7225
7226 if (!cfs_rq->nr_running)
7227 goto idle;
7228
54d27365 7229 goto simple;
9674f5ca 7230 }
54d27365 7231 }
678d5718
PZ
7232
7233 se = pick_next_entity(cfs_rq, curr);
7234 cfs_rq = group_cfs_rq(se);
7235 } while (cfs_rq);
7236
7237 p = task_of(se);
7238
7239 /*
7240 * Since we haven't yet done put_prev_entity and if the selected task
7241 * is a different task than we started out with, try and touch the
7242 * least amount of cfs_rqs.
7243 */
7244 if (prev != p) {
7245 struct sched_entity *pse = &prev->se;
7246
7247 while (!(cfs_rq = is_same_group(se, pse))) {
7248 int se_depth = se->depth;
7249 int pse_depth = pse->depth;
7250
7251 if (se_depth <= pse_depth) {
7252 put_prev_entity(cfs_rq_of(pse), pse);
7253 pse = parent_entity(pse);
7254 }
7255 if (se_depth >= pse_depth) {
7256 set_next_entity(cfs_rq_of(se), se);
7257 se = parent_entity(se);
7258 }
7259 }
7260
7261 put_prev_entity(cfs_rq, pse);
7262 set_next_entity(cfs_rq, se);
7263 }
7264
93824900 7265 goto done;
678d5718 7266simple:
678d5718 7267#endif
67692435
PZ
7268 if (prev)
7269 put_prev_task(rq, prev);
606dba2e 7270
bf0f6f24 7271 do {
678d5718 7272 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7273 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7274 cfs_rq = group_cfs_rq(se);
7275 } while (cfs_rq);
7276
8f4d37ec 7277 p = task_of(se);
678d5718 7278
13a453c2 7279done: __maybe_unused;
93824900
UR
7280#ifdef CONFIG_SMP
7281 /*
7282 * Move the next running task to the front of
7283 * the list, so our cfs_tasks list becomes MRU
7284 * one.
7285 */
7286 list_move(&p->se.group_node, &rq->cfs_tasks);
7287#endif
7288
e0ee463c 7289 if (hrtick_enabled_fair(rq))
b39e66ea 7290 hrtick_start_fair(rq, p);
8f4d37ec 7291
3b1baa64
MR
7292 update_misfit_status(p, rq);
7293
8f4d37ec 7294 return p;
38033c37
PZ
7295
7296idle:
67692435
PZ
7297 if (!rf)
7298 return NULL;
7299
5ba553ef 7300 new_tasks = newidle_balance(rq, rf);
46f69fa3 7301
37e117c0 7302 /*
5ba553ef 7303 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7304 * possible for any higher priority task to appear. In that case we
7305 * must re-start the pick_next_entity() loop.
7306 */
e4aa358b 7307 if (new_tasks < 0)
37e117c0
PZ
7308 return RETRY_TASK;
7309
e4aa358b 7310 if (new_tasks > 0)
38033c37 7311 goto again;
38033c37 7312
23127296
VG
7313 /*
7314 * rq is about to be idle, check if we need to update the
7315 * lost_idle_time of clock_pelt
7316 */
7317 update_idle_rq_clock_pelt(rq);
7318
38033c37 7319 return NULL;
bf0f6f24
IM
7320}
7321
98c2f700
PZ
7322static struct task_struct *__pick_next_task_fair(struct rq *rq)
7323{
7324 return pick_next_task_fair(rq, NULL, NULL);
7325}
7326
bf0f6f24
IM
7327/*
7328 * Account for a descheduled task:
7329 */
6e2df058 7330static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7331{
7332 struct sched_entity *se = &prev->se;
7333 struct cfs_rq *cfs_rq;
7334
7335 for_each_sched_entity(se) {
7336 cfs_rq = cfs_rq_of(se);
ab6cde26 7337 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7338 }
7339}
7340
ac53db59
RR
7341/*
7342 * sched_yield() is very simple
7343 *
7344 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7345 */
7346static void yield_task_fair(struct rq *rq)
7347{
7348 struct task_struct *curr = rq->curr;
7349 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7350 struct sched_entity *se = &curr->se;
7351
7352 /*
7353 * Are we the only task in the tree?
7354 */
7355 if (unlikely(rq->nr_running == 1))
7356 return;
7357
7358 clear_buddies(cfs_rq, se);
7359
7360 if (curr->policy != SCHED_BATCH) {
7361 update_rq_clock(rq);
7362 /*
7363 * Update run-time statistics of the 'current'.
7364 */
7365 update_curr(cfs_rq);
916671c0
MG
7366 /*
7367 * Tell update_rq_clock() that we've just updated,
7368 * so we don't do microscopic update in schedule()
7369 * and double the fastpath cost.
7370 */
adcc8da8 7371 rq_clock_skip_update(rq);
ac53db59
RR
7372 }
7373
7374 set_skip_buddy(se);
7375}
7376
0900acf2 7377static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7378{
7379 struct sched_entity *se = &p->se;
7380
5238cdd3
PT
7381 /* throttled hierarchies are not runnable */
7382 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7383 return false;
7384
7385 /* Tell the scheduler that we'd really like pse to run next. */
7386 set_next_buddy(se);
7387
d95f4122
MG
7388 yield_task_fair(rq);
7389
7390 return true;
7391}
7392
681f3e68 7393#ifdef CONFIG_SMP
bf0f6f24 7394/**************************************************
e9c84cb8
PZ
7395 * Fair scheduling class load-balancing methods.
7396 *
7397 * BASICS
7398 *
7399 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7400 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7401 * time to each task. This is expressed in the following equation:
7402 *
7403 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7404 *
97fb7a0a 7405 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7406 * W_i,0 is defined as:
7407 *
7408 * W_i,0 = \Sum_j w_i,j (2)
7409 *
97fb7a0a 7410 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7411 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7412 *
7413 * The weight average is an exponential decay average of the instantaneous
7414 * weight:
7415 *
7416 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7417 *
97fb7a0a 7418 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7419 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7420 * can also include other factors [XXX].
7421 *
7422 * To achieve this balance we define a measure of imbalance which follows
7423 * directly from (1):
7424 *
ced549fa 7425 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7426 *
7427 * We them move tasks around to minimize the imbalance. In the continuous
7428 * function space it is obvious this converges, in the discrete case we get
7429 * a few fun cases generally called infeasible weight scenarios.
7430 *
7431 * [XXX expand on:
7432 * - infeasible weights;
7433 * - local vs global optima in the discrete case. ]
7434 *
7435 *
7436 * SCHED DOMAINS
7437 *
7438 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7439 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7440 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7441 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7442 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7443 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7444 * the groups.
7445 *
7446 * This yields:
7447 *
7448 * log_2 n 1 n
7449 * \Sum { --- * --- * 2^i } = O(n) (5)
7450 * i = 0 2^i 2^i
7451 * `- size of each group
97fb7a0a 7452 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7453 * | `- freq
7454 * `- sum over all levels
7455 *
7456 * Coupled with a limit on how many tasks we can migrate every balance pass,
7457 * this makes (5) the runtime complexity of the balancer.
7458 *
7459 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7460 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7461 *
7462 * The adjacency matrix of the resulting graph is given by:
7463 *
97a7142f 7464 * log_2 n
e9c84cb8
PZ
7465 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7466 * k = 0
7467 *
7468 * And you'll find that:
7469 *
7470 * A^(log_2 n)_i,j != 0 for all i,j (7)
7471 *
97fb7a0a 7472 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7473 * The task movement gives a factor of O(m), giving a convergence complexity
7474 * of:
7475 *
7476 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7477 *
7478 *
7479 * WORK CONSERVING
7480 *
7481 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7482 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7483 * tree itself instead of relying on other CPUs to bring it work.
7484 *
7485 * This adds some complexity to both (5) and (8) but it reduces the total idle
7486 * time.
7487 *
7488 * [XXX more?]
7489 *
7490 *
7491 * CGROUPS
7492 *
7493 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7494 *
7495 * s_k,i
7496 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7497 * S_k
7498 *
7499 * Where
7500 *
7501 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7502 *
97fb7a0a 7503 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7504 *
7505 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7506 * property.
7507 *
7508 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7509 * rewrite all of this once again.]
97a7142f 7510 */
bf0f6f24 7511
ed387b78
HS
7512static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7513
0ec8aa00
PZ
7514enum fbq_type { regular, remote, all };
7515
0b0695f2 7516/*
a9723389
VG
7517 * 'group_type' describes the group of CPUs at the moment of load balancing.
7518 *
0b0695f2 7519 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7520 * first so the group_type can simply be compared when selecting the busiest
7521 * group. See update_sd_pick_busiest().
0b0695f2 7522 */
3b1baa64 7523enum group_type {
a9723389 7524 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7525 group_has_spare = 0,
a9723389
VG
7526 /*
7527 * The group is fully used and the tasks don't compete for more CPU
7528 * cycles. Nevertheless, some tasks might wait before running.
7529 */
0b0695f2 7530 group_fully_busy,
a9723389
VG
7531 /*
7532 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7533 * and must be migrated to a more powerful CPU.
7534 */
3b1baa64 7535 group_misfit_task,
a9723389
VG
7536 /*
7537 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7538 * and the task should be migrated to it instead of running on the
7539 * current CPU.
7540 */
0b0695f2 7541 group_asym_packing,
a9723389
VG
7542 /*
7543 * The tasks' affinity constraints previously prevented the scheduler
7544 * from balancing the load across the system.
7545 */
3b1baa64 7546 group_imbalanced,
a9723389
VG
7547 /*
7548 * The CPU is overloaded and can't provide expected CPU cycles to all
7549 * tasks.
7550 */
0b0695f2
VG
7551 group_overloaded
7552};
7553
7554enum migration_type {
7555 migrate_load = 0,
7556 migrate_util,
7557 migrate_task,
7558 migrate_misfit
3b1baa64
MR
7559};
7560
ddcdf6e7 7561#define LBF_ALL_PINNED 0x01
367456c7 7562#define LBF_NEED_BREAK 0x02
6263322c
PZ
7563#define LBF_DST_PINNED 0x04
7564#define LBF_SOME_PINNED 0x08
23fb06d9 7565#define LBF_ACTIVE_LB 0x10
ddcdf6e7
PZ
7566
7567struct lb_env {
7568 struct sched_domain *sd;
7569
ddcdf6e7 7570 struct rq *src_rq;
85c1e7da 7571 int src_cpu;
ddcdf6e7
PZ
7572
7573 int dst_cpu;
7574 struct rq *dst_rq;
7575
88b8dac0
SV
7576 struct cpumask *dst_grpmask;
7577 int new_dst_cpu;
ddcdf6e7 7578 enum cpu_idle_type idle;
bd939f45 7579 long imbalance;
b9403130
MW
7580 /* The set of CPUs under consideration for load-balancing */
7581 struct cpumask *cpus;
7582
ddcdf6e7 7583 unsigned int flags;
367456c7
PZ
7584
7585 unsigned int loop;
7586 unsigned int loop_break;
7587 unsigned int loop_max;
0ec8aa00
PZ
7588
7589 enum fbq_type fbq_type;
0b0695f2 7590 enum migration_type migration_type;
163122b7 7591 struct list_head tasks;
ddcdf6e7
PZ
7592};
7593
029632fb
PZ
7594/*
7595 * Is this task likely cache-hot:
7596 */
5d5e2b1b 7597static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7598{
7599 s64 delta;
7600
5cb9eaa3 7601 lockdep_assert_rq_held(env->src_rq);
e5673f28 7602
029632fb
PZ
7603 if (p->sched_class != &fair_sched_class)
7604 return 0;
7605
1da1843f 7606 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7607 return 0;
7608
ec73240b
JD
7609 /* SMT siblings share cache */
7610 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7611 return 0;
7612
029632fb
PZ
7613 /*
7614 * Buddy candidates are cache hot:
7615 */
5d5e2b1b 7616 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7617 (&p->se == cfs_rq_of(&p->se)->next ||
7618 &p->se == cfs_rq_of(&p->se)->last))
7619 return 1;
7620
7621 if (sysctl_sched_migration_cost == -1)
7622 return 1;
97886d9d
AL
7623
7624 /*
7625 * Don't migrate task if the task's cookie does not match
7626 * with the destination CPU's core cookie.
7627 */
7628 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7629 return 1;
7630
029632fb
PZ
7631 if (sysctl_sched_migration_cost == 0)
7632 return 0;
7633
5d5e2b1b 7634 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7635
7636 return delta < (s64)sysctl_sched_migration_cost;
7637}
7638
3a7053b3 7639#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7640/*
2a1ed24c
SD
7641 * Returns 1, if task migration degrades locality
7642 * Returns 0, if task migration improves locality i.e migration preferred.
7643 * Returns -1, if task migration is not affected by locality.
c1ceac62 7644 */
2a1ed24c 7645static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7646{
b1ad065e 7647 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7648 unsigned long src_weight, dst_weight;
7649 int src_nid, dst_nid, dist;
3a7053b3 7650
2a595721 7651 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7652 return -1;
7653
c3b9bc5b 7654 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7655 return -1;
7a0f3083
MG
7656
7657 src_nid = cpu_to_node(env->src_cpu);
7658 dst_nid = cpu_to_node(env->dst_cpu);
7659
83e1d2cd 7660 if (src_nid == dst_nid)
2a1ed24c 7661 return -1;
7a0f3083 7662
2a1ed24c
SD
7663 /* Migrating away from the preferred node is always bad. */
7664 if (src_nid == p->numa_preferred_nid) {
7665 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7666 return 1;
7667 else
7668 return -1;
7669 }
b1ad065e 7670
c1ceac62
RR
7671 /* Encourage migration to the preferred node. */
7672 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7673 return 0;
b1ad065e 7674
739294fb 7675 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7676 if (env->idle == CPU_IDLE)
739294fb
RR
7677 return -1;
7678
f35678b6 7679 dist = node_distance(src_nid, dst_nid);
c1ceac62 7680 if (numa_group) {
f35678b6
SD
7681 src_weight = group_weight(p, src_nid, dist);
7682 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7683 } else {
f35678b6
SD
7684 src_weight = task_weight(p, src_nid, dist);
7685 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7686 }
7687
f35678b6 7688 return dst_weight < src_weight;
7a0f3083
MG
7689}
7690
3a7053b3 7691#else
2a1ed24c 7692static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7693 struct lb_env *env)
7694{
2a1ed24c 7695 return -1;
7a0f3083 7696}
3a7053b3
MG
7697#endif
7698
1e3c88bd
PZ
7699/*
7700 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7701 */
7702static
8e45cb54 7703int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7704{
2a1ed24c 7705 int tsk_cache_hot;
e5673f28 7706
5cb9eaa3 7707 lockdep_assert_rq_held(env->src_rq);
e5673f28 7708
1e3c88bd
PZ
7709 /*
7710 * We do not migrate tasks that are:
d3198084 7711 * 1) throttled_lb_pair, or
3bd37062 7712 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7713 * 3) running (obviously), or
7714 * 4) are cache-hot on their current CPU.
1e3c88bd 7715 */
d3198084
JK
7716 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7717 return 0;
7718
9bcb959d 7719 /* Disregard pcpu kthreads; they are where they need to be. */
3a7956e2 7720 if (kthread_is_per_cpu(p))
9bcb959d
LC
7721 return 0;
7722
3bd37062 7723 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7724 int cpu;
88b8dac0 7725
ceeadb83 7726 schedstat_inc(p->stats.nr_failed_migrations_affine);
88b8dac0 7727
6263322c
PZ
7728 env->flags |= LBF_SOME_PINNED;
7729
88b8dac0 7730 /*
97fb7a0a 7731 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7732 * our sched_group. We may want to revisit it if we couldn't
7733 * meet load balance goals by pulling other tasks on src_cpu.
7734 *
23fb06d9
VS
7735 * Avoid computing new_dst_cpu
7736 * - for NEWLY_IDLE
7737 * - if we have already computed one in current iteration
7738 * - if it's an active balance
88b8dac0 7739 */
23fb06d9
VS
7740 if (env->idle == CPU_NEWLY_IDLE ||
7741 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
88b8dac0
SV
7742 return 0;
7743
97fb7a0a 7744 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7745 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7746 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7747 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7748 env->new_dst_cpu = cpu;
7749 break;
7750 }
88b8dac0 7751 }
e02e60c1 7752
1e3c88bd
PZ
7753 return 0;
7754 }
88b8dac0 7755
3b03706f 7756 /* Record that we found at least one task that could run on dst_cpu */
8e45cb54 7757 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7758
ddcdf6e7 7759 if (task_running(env->src_rq, p)) {
ceeadb83 7760 schedstat_inc(p->stats.nr_failed_migrations_running);
1e3c88bd
PZ
7761 return 0;
7762 }
7763
7764 /*
7765 * Aggressive migration if:
23fb06d9
VS
7766 * 1) active balance
7767 * 2) destination numa is preferred
7768 * 3) task is cache cold, or
7769 * 4) too many balance attempts have failed.
1e3c88bd 7770 */
23fb06d9
VS
7771 if (env->flags & LBF_ACTIVE_LB)
7772 return 1;
7773
2a1ed24c
SD
7774 tsk_cache_hot = migrate_degrades_locality(p, env);
7775 if (tsk_cache_hot == -1)
7776 tsk_cache_hot = task_hot(p, env);
3a7053b3 7777
2a1ed24c 7778 if (tsk_cache_hot <= 0 ||
7a96c231 7779 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7780 if (tsk_cache_hot == 1) {
ae92882e 7781 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
ceeadb83 7782 schedstat_inc(p->stats.nr_forced_migrations);
3a7053b3 7783 }
1e3c88bd
PZ
7784 return 1;
7785 }
7786
ceeadb83 7787 schedstat_inc(p->stats.nr_failed_migrations_hot);
4e2dcb73 7788 return 0;
1e3c88bd
PZ
7789}
7790
897c395f 7791/*
163122b7
KT
7792 * detach_task() -- detach the task for the migration specified in env
7793 */
7794static void detach_task(struct task_struct *p, struct lb_env *env)
7795{
5cb9eaa3 7796 lockdep_assert_rq_held(env->src_rq);
163122b7 7797
5704ac0a 7798 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7799 set_task_cpu(p, env->dst_cpu);
7800}
7801
897c395f 7802/*
e5673f28 7803 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7804 * part of active balancing operations within "domain".
897c395f 7805 *
e5673f28 7806 * Returns a task if successful and NULL otherwise.
897c395f 7807 */
e5673f28 7808static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7809{
93824900 7810 struct task_struct *p;
897c395f 7811
5cb9eaa3 7812 lockdep_assert_rq_held(env->src_rq);
e5673f28 7813
93824900
UR
7814 list_for_each_entry_reverse(p,
7815 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7816 if (!can_migrate_task(p, env))
7817 continue;
897c395f 7818
163122b7 7819 detach_task(p, env);
e5673f28 7820
367456c7 7821 /*
e5673f28 7822 * Right now, this is only the second place where
163122b7 7823 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7824 * so we can safely collect stats here rather than
163122b7 7825 * inside detach_tasks().
367456c7 7826 */
ae92882e 7827 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7828 return p;
897c395f 7829 }
e5673f28 7830 return NULL;
897c395f
PZ
7831}
7832
eb95308e
PZ
7833static const unsigned int sched_nr_migrate_break = 32;
7834
5d6523eb 7835/*
0b0695f2 7836 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7837 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7838 *
163122b7 7839 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7840 */
163122b7 7841static int detach_tasks(struct lb_env *env)
1e3c88bd 7842{
5d6523eb 7843 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7844 unsigned long util, load;
5d6523eb 7845 struct task_struct *p;
163122b7
KT
7846 int detached = 0;
7847
5cb9eaa3 7848 lockdep_assert_rq_held(env->src_rq);
1e3c88bd 7849
acb4decc
AL
7850 /*
7851 * Source run queue has been emptied by another CPU, clear
7852 * LBF_ALL_PINNED flag as we will not test any task.
7853 */
7854 if (env->src_rq->nr_running <= 1) {
7855 env->flags &= ~LBF_ALL_PINNED;
7856 return 0;
7857 }
7858
bd939f45 7859 if (env->imbalance <= 0)
5d6523eb 7860 return 0;
1e3c88bd 7861
5d6523eb 7862 while (!list_empty(tasks)) {
985d3a4c
YD
7863 /*
7864 * We don't want to steal all, otherwise we may be treated likewise,
7865 * which could at worst lead to a livelock crash.
7866 */
7867 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7868 break;
7869
93824900 7870 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7871
367456c7
PZ
7872 env->loop++;
7873 /* We've more or less seen every task there is, call it quits */
5d6523eb 7874 if (env->loop > env->loop_max)
367456c7 7875 break;
5d6523eb
PZ
7876
7877 /* take a breather every nr_migrate tasks */
367456c7 7878 if (env->loop > env->loop_break) {
eb95308e 7879 env->loop_break += sched_nr_migrate_break;
8e45cb54 7880 env->flags |= LBF_NEED_BREAK;
ee00e66f 7881 break;
a195f004 7882 }
1e3c88bd 7883
d3198084 7884 if (!can_migrate_task(p, env))
367456c7
PZ
7885 goto next;
7886
0b0695f2
VG
7887 switch (env->migration_type) {
7888 case migrate_load:
01cfcde9
VG
7889 /*
7890 * Depending of the number of CPUs and tasks and the
7891 * cgroup hierarchy, task_h_load() can return a null
7892 * value. Make sure that env->imbalance decreases
7893 * otherwise detach_tasks() will stop only after
7894 * detaching up to loop_max tasks.
7895 */
7896 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 7897
0b0695f2
VG
7898 if (sched_feat(LB_MIN) &&
7899 load < 16 && !env->sd->nr_balance_failed)
7900 goto next;
367456c7 7901
6cf82d55
VG
7902 /*
7903 * Make sure that we don't migrate too much load.
7904 * Nevertheless, let relax the constraint if
7905 * scheduler fails to find a good waiting task to
7906 * migrate.
7907 */
39a2a6eb 7908 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
7909 goto next;
7910
7911 env->imbalance -= load;
7912 break;
7913
7914 case migrate_util:
7915 util = task_util_est(p);
7916
7917 if (util > env->imbalance)
7918 goto next;
7919
7920 env->imbalance -= util;
7921 break;
7922
7923 case migrate_task:
7924 env->imbalance--;
7925 break;
7926
7927 case migrate_misfit:
c63be7be
VG
7928 /* This is not a misfit task */
7929 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7930 goto next;
7931
7932 env->imbalance = 0;
7933 break;
7934 }
1e3c88bd 7935
163122b7
KT
7936 detach_task(p, env);
7937 list_add(&p->se.group_node, &env->tasks);
7938
7939 detached++;
1e3c88bd 7940
c1a280b6 7941#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7942 /*
7943 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7944 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7945 * the critical section.
7946 */
5d6523eb 7947 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7948 break;
1e3c88bd
PZ
7949#endif
7950
ee00e66f
PZ
7951 /*
7952 * We only want to steal up to the prescribed amount of
0b0695f2 7953 * load/util/tasks.
ee00e66f 7954 */
bd939f45 7955 if (env->imbalance <= 0)
ee00e66f 7956 break;
367456c7
PZ
7957
7958 continue;
7959next:
93824900 7960 list_move(&p->se.group_node, tasks);
1e3c88bd 7961 }
5d6523eb 7962
1e3c88bd 7963 /*
163122b7
KT
7964 * Right now, this is one of only two places we collect this stat
7965 * so we can safely collect detach_one_task() stats here rather
7966 * than inside detach_one_task().
1e3c88bd 7967 */
ae92882e 7968 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7969
163122b7
KT
7970 return detached;
7971}
7972
7973/*
7974 * attach_task() -- attach the task detached by detach_task() to its new rq.
7975 */
7976static void attach_task(struct rq *rq, struct task_struct *p)
7977{
5cb9eaa3 7978 lockdep_assert_rq_held(rq);
163122b7
KT
7979
7980 BUG_ON(task_rq(p) != rq);
5704ac0a 7981 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7982 check_preempt_curr(rq, p, 0);
7983}
7984
7985/*
7986 * attach_one_task() -- attaches the task returned from detach_one_task() to
7987 * its new rq.
7988 */
7989static void attach_one_task(struct rq *rq, struct task_struct *p)
7990{
8a8c69c3
PZ
7991 struct rq_flags rf;
7992
7993 rq_lock(rq, &rf);
5704ac0a 7994 update_rq_clock(rq);
163122b7 7995 attach_task(rq, p);
8a8c69c3 7996 rq_unlock(rq, &rf);
163122b7
KT
7997}
7998
7999/*
8000 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8001 * new rq.
8002 */
8003static void attach_tasks(struct lb_env *env)
8004{
8005 struct list_head *tasks = &env->tasks;
8006 struct task_struct *p;
8a8c69c3 8007 struct rq_flags rf;
163122b7 8008
8a8c69c3 8009 rq_lock(env->dst_rq, &rf);
5704ac0a 8010 update_rq_clock(env->dst_rq);
163122b7
KT
8011
8012 while (!list_empty(tasks)) {
8013 p = list_first_entry(tasks, struct task_struct, se.group_node);
8014 list_del_init(&p->se.group_node);
1e3c88bd 8015
163122b7
KT
8016 attach_task(env->dst_rq, p);
8017 }
8018
8a8c69c3 8019 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
8020}
8021
b0c79224 8022#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
8023static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8024{
8025 if (cfs_rq->avg.load_avg)
8026 return true;
8027
8028 if (cfs_rq->avg.util_avg)
8029 return true;
8030
8031 return false;
8032}
8033
91c27493 8034static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
8035{
8036 if (READ_ONCE(rq->avg_rt.util_avg))
8037 return true;
8038
3727e0e1
VG
8039 if (READ_ONCE(rq->avg_dl.util_avg))
8040 return true;
8041
b4eccf5f
TG
8042 if (thermal_load_avg(rq))
8043 return true;
8044
11d4afd4 8045#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
8046 if (READ_ONCE(rq->avg_irq.util_avg))
8047 return true;
8048#endif
8049
371bf427
VG
8050 return false;
8051}
8052
39b6a429 8053static inline void update_blocked_load_tick(struct rq *rq)
b0c79224 8054{
39b6a429
VG
8055 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8056}
b0c79224 8057
39b6a429
VG
8058static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8059{
b0c79224
VS
8060 if (!has_blocked)
8061 rq->has_blocked_load = 0;
8062}
8063#else
8064static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8065static inline bool others_have_blocked(struct rq *rq) { return false; }
39b6a429 8066static inline void update_blocked_load_tick(struct rq *rq) {}
b0c79224
VS
8067static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8068#endif
8069
bef69dd8
VG
8070static bool __update_blocked_others(struct rq *rq, bool *done)
8071{
8072 const struct sched_class *curr_class;
8073 u64 now = rq_clock_pelt(rq);
b4eccf5f 8074 unsigned long thermal_pressure;
bef69dd8
VG
8075 bool decayed;
8076
8077 /*
8078 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8079 * DL and IRQ signals have been updated before updating CFS.
8080 */
8081 curr_class = rq->curr->sched_class;
8082
b4eccf5f
TG
8083 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8084
bef69dd8
VG
8085 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8086 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 8087 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
8088 update_irq_load_avg(rq, 0);
8089
8090 if (others_have_blocked(rq))
8091 *done = false;
8092
8093 return decayed;
8094}
8095
1936c53c
VG
8096#ifdef CONFIG_FAIR_GROUP_SCHED
8097
bef69dd8 8098static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8099{
039ae8bc 8100 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
8101 bool decayed = false;
8102 int cpu = cpu_of(rq);
b90f7c9d 8103
9763b67f
PZ
8104 /*
8105 * Iterates the task_group tree in a bottom up fashion, see
8106 * list_add_leaf_cfs_rq() for details.
8107 */
039ae8bc 8108 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
8109 struct sched_entity *se;
8110
bef69dd8 8111 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 8112 update_tg_load_avg(cfs_rq);
4e516076 8113
bef69dd8
VG
8114 if (cfs_rq == &rq->cfs)
8115 decayed = true;
8116 }
8117
bc427898
VG
8118 /* Propagate pending load changes to the parent, if any: */
8119 se = cfs_rq->tg->se[cpu];
8120 if (se && !skip_blocked_update(se))
02da26ad 8121 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
a9e7f654 8122
039ae8bc
VG
8123 /*
8124 * There can be a lot of idle CPU cgroups. Don't let fully
8125 * decayed cfs_rqs linger on the list.
8126 */
8127 if (cfs_rq_is_decayed(cfs_rq))
8128 list_del_leaf_cfs_rq(cfs_rq);
8129
1936c53c
VG
8130 /* Don't need periodic decay once load/util_avg are null */
8131 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 8132 *done = false;
9d89c257 8133 }
12b04875 8134
bef69dd8 8135 return decayed;
9e3081ca
PZ
8136}
8137
9763b67f 8138/*
68520796 8139 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
8140 * This needs to be done in a top-down fashion because the load of a child
8141 * group is a fraction of its parents load.
8142 */
68520796 8143static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 8144{
68520796
VD
8145 struct rq *rq = rq_of(cfs_rq);
8146 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 8147 unsigned long now = jiffies;
68520796 8148 unsigned long load;
a35b6466 8149
68520796 8150 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
8151 return;
8152
0e9f0245 8153 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
8154 for_each_sched_entity(se) {
8155 cfs_rq = cfs_rq_of(se);
0e9f0245 8156 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
8157 if (cfs_rq->last_h_load_update == now)
8158 break;
8159 }
a35b6466 8160
68520796 8161 if (!se) {
7ea241af 8162 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
8163 cfs_rq->last_h_load_update = now;
8164 }
8165
0e9f0245 8166 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 8167 load = cfs_rq->h_load;
7ea241af
YD
8168 load = div64_ul(load * se->avg.load_avg,
8169 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
8170 cfs_rq = group_cfs_rq(se);
8171 cfs_rq->h_load = load;
8172 cfs_rq->last_h_load_update = now;
8173 }
9763b67f
PZ
8174}
8175
367456c7 8176static unsigned long task_h_load(struct task_struct *p)
230059de 8177{
367456c7 8178 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 8179
68520796 8180 update_cfs_rq_h_load(cfs_rq);
9d89c257 8181 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 8182 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
8183}
8184#else
bef69dd8 8185static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8186{
6c1d47c0 8187 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 8188 bool decayed;
b90f7c9d 8189
bef69dd8
VG
8190 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8191 if (cfs_rq_has_blocked(cfs_rq))
8192 *done = false;
b90f7c9d 8193
bef69dd8 8194 return decayed;
9e3081ca
PZ
8195}
8196
367456c7 8197static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 8198{
9d89c257 8199 return p->se.avg.load_avg;
1e3c88bd 8200}
230059de 8201#endif
1e3c88bd 8202
bef69dd8
VG
8203static void update_blocked_averages(int cpu)
8204{
8205 bool decayed = false, done = true;
8206 struct rq *rq = cpu_rq(cpu);
8207 struct rq_flags rf;
8208
8209 rq_lock_irqsave(rq, &rf);
39b6a429 8210 update_blocked_load_tick(rq);
bef69dd8
VG
8211 update_rq_clock(rq);
8212
8213 decayed |= __update_blocked_others(rq, &done);
8214 decayed |= __update_blocked_fair(rq, &done);
8215
8216 update_blocked_load_status(rq, !done);
8217 if (decayed)
8218 cpufreq_update_util(rq, 0);
8219 rq_unlock_irqrestore(rq, &rf);
8220}
8221
1e3c88bd 8222/********** Helpers for find_busiest_group ************************/
caeb178c 8223
1e3c88bd
PZ
8224/*
8225 * sg_lb_stats - stats of a sched_group required for load_balancing
8226 */
8227struct sg_lb_stats {
8228 unsigned long avg_load; /*Avg load across the CPUs of the group */
8229 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8230 unsigned long group_capacity;
070f5e86
VG
8231 unsigned long group_util; /* Total utilization over the CPUs of the group */
8232 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8233 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8234 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8235 unsigned int idle_cpus;
8236 unsigned int group_weight;
caeb178c 8237 enum group_type group_type;
490ba971 8238 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8239 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8240#ifdef CONFIG_NUMA_BALANCING
8241 unsigned int nr_numa_running;
8242 unsigned int nr_preferred_running;
8243#endif
1e3c88bd
PZ
8244};
8245
56cf515b
JK
8246/*
8247 * sd_lb_stats - Structure to store the statistics of a sched_domain
8248 * during load balancing.
8249 */
8250struct sd_lb_stats {
8251 struct sched_group *busiest; /* Busiest group in this sd */
8252 struct sched_group *local; /* Local group in this sd */
8253 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8254 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8255 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8256 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8257
56cf515b 8258 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8259 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8260};
8261
147c5fc2
PZ
8262static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8263{
8264 /*
8265 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8266 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8267 * We must however set busiest_stat::group_type and
8268 * busiest_stat::idle_cpus to the worst busiest group because
8269 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8270 */
8271 *sds = (struct sd_lb_stats){
8272 .busiest = NULL,
8273 .local = NULL,
8274 .total_load = 0UL,
63b2ca30 8275 .total_capacity = 0UL,
147c5fc2 8276 .busiest_stat = {
0b0695f2
VG
8277 .idle_cpus = UINT_MAX,
8278 .group_type = group_has_spare,
147c5fc2
PZ
8279 },
8280 };
8281}
8282
1ca2034e 8283static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8284{
8285 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8286 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8287 unsigned long used, free;
523e979d 8288 unsigned long irq;
b654f7de 8289
2e62c474 8290 irq = cpu_util_irq(rq);
cadefd3d 8291
523e979d
VG
8292 if (unlikely(irq >= max))
8293 return 1;
aa483808 8294
467b7d01
TG
8295 /*
8296 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8297 * (running and not running) with weights 0 and 1024 respectively.
8298 * avg_thermal.load_avg tracks thermal pressure and the weighted
8299 * average uses the actual delta max capacity(load).
8300 */
523e979d
VG
8301 used = READ_ONCE(rq->avg_rt.util_avg);
8302 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8303 used += thermal_load_avg(rq);
1e3c88bd 8304
523e979d
VG
8305 if (unlikely(used >= max))
8306 return 1;
1e3c88bd 8307
523e979d 8308 free = max - used;
2e62c474
VG
8309
8310 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8311}
8312
ced549fa 8313static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8314{
1ca2034e 8315 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8316 struct sched_group *sdg = sd->groups;
8317
8ec59c0f 8318 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8319
ced549fa
NP
8320 if (!capacity)
8321 capacity = 1;
1e3c88bd 8322
ced549fa 8323 cpu_rq(cpu)->cpu_capacity = capacity;
51cf18c9
VD
8324 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8325
ced549fa 8326 sdg->sgc->capacity = capacity;
bf475ce0 8327 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8328 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8329}
8330
63b2ca30 8331void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8332{
8333 struct sched_domain *child = sd->child;
8334 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8335 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8336 unsigned long interval;
8337
8338 interval = msecs_to_jiffies(sd->balance_interval);
8339 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8340 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8341
8342 if (!child) {
ced549fa 8343 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8344 return;
8345 }
8346
dc7ff76e 8347 capacity = 0;
bf475ce0 8348 min_capacity = ULONG_MAX;
e3d6d0cb 8349 max_capacity = 0;
1e3c88bd 8350
74a5ce20
PZ
8351 if (child->flags & SD_OVERLAP) {
8352 /*
8353 * SD_OVERLAP domains cannot assume that child groups
8354 * span the current group.
8355 */
8356
ae4df9d6 8357 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8358 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8359
4c58f57f
PL
8360 capacity += cpu_cap;
8361 min_capacity = min(cpu_cap, min_capacity);
8362 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8363 }
74a5ce20
PZ
8364 } else {
8365 /*
8366 * !SD_OVERLAP domains can assume that child groups
8367 * span the current group.
97a7142f 8368 */
74a5ce20
PZ
8369
8370 group = child->groups;
8371 do {
bf475ce0
MR
8372 struct sched_group_capacity *sgc = group->sgc;
8373
8374 capacity += sgc->capacity;
8375 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8376 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8377 group = group->next;
8378 } while (group != child->groups);
8379 }
1e3c88bd 8380
63b2ca30 8381 sdg->sgc->capacity = capacity;
bf475ce0 8382 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8383 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8384}
8385
9d5efe05 8386/*
ea67821b
VG
8387 * Check whether the capacity of the rq has been noticeably reduced by side
8388 * activity. The imbalance_pct is used for the threshold.
8389 * Return true is the capacity is reduced
9d5efe05
SV
8390 */
8391static inline int
ea67821b 8392check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8393{
ea67821b
VG
8394 return ((rq->cpu_capacity * sd->imbalance_pct) <
8395 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8396}
8397
a0fe2cf0
VS
8398/*
8399 * Check whether a rq has a misfit task and if it looks like we can actually
8400 * help that task: we can migrate the task to a CPU of higher capacity, or
8401 * the task's current CPU is heavily pressured.
8402 */
8403static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8404{
8405 return rq->misfit_task_load &&
8406 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8407 check_cpu_capacity(rq, sd));
8408}
8409
30ce5dab
PZ
8410/*
8411 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8412 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8413 *
97fb7a0a
IM
8414 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8415 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8416 * Something like:
8417 *
2b4d5b25
IM
8418 * { 0 1 2 3 } { 4 5 6 7 }
8419 * * * * *
30ce5dab
PZ
8420 *
8421 * If we were to balance group-wise we'd place two tasks in the first group and
8422 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8423 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8424 *
8425 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8426 * by noticing the lower domain failed to reach balance and had difficulty
8427 * moving tasks due to affinity constraints.
30ce5dab
PZ
8428 *
8429 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8430 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8431 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8432 * to create an effective group imbalance.
8433 *
8434 * This is a somewhat tricky proposition since the next run might not find the
8435 * group imbalance and decide the groups need to be balanced again. A most
8436 * subtle and fragile situation.
8437 */
8438
6263322c 8439static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8440{
63b2ca30 8441 return group->sgc->imbalance;
30ce5dab
PZ
8442}
8443
b37d9316 8444/*
ea67821b
VG
8445 * group_has_capacity returns true if the group has spare capacity that could
8446 * be used by some tasks.
8447 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8448 * smaller than the number of CPUs or if the utilization is lower than the
8449 * available capacity for CFS tasks.
ea67821b
VG
8450 * For the latter, we use a threshold to stabilize the state, to take into
8451 * account the variance of the tasks' load and to return true if the available
8452 * capacity in meaningful for the load balancer.
8453 * As an example, an available capacity of 1% can appear but it doesn't make
8454 * any benefit for the load balance.
b37d9316 8455 */
ea67821b 8456static inline bool
57abff06 8457group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8458{
5e23e474 8459 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8460 return true;
c61037e9 8461
070f5e86
VG
8462 if ((sgs->group_capacity * imbalance_pct) <
8463 (sgs->group_runnable * 100))
8464 return false;
8465
ea67821b 8466 if ((sgs->group_capacity * 100) >
57abff06 8467 (sgs->group_util * imbalance_pct))
ea67821b 8468 return true;
b37d9316 8469
ea67821b
VG
8470 return false;
8471}
8472
8473/*
8474 * group_is_overloaded returns true if the group has more tasks than it can
8475 * handle.
8476 * group_is_overloaded is not equals to !group_has_capacity because a group
8477 * with the exact right number of tasks, has no more spare capacity but is not
8478 * overloaded so both group_has_capacity and group_is_overloaded return
8479 * false.
8480 */
8481static inline bool
57abff06 8482group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8483{
5e23e474 8484 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8485 return false;
b37d9316 8486
ea67821b 8487 if ((sgs->group_capacity * 100) <
57abff06 8488 (sgs->group_util * imbalance_pct))
ea67821b 8489 return true;
b37d9316 8490
070f5e86
VG
8491 if ((sgs->group_capacity * imbalance_pct) <
8492 (sgs->group_runnable * 100))
8493 return true;
8494
ea67821b 8495 return false;
b37d9316
PZ
8496}
8497
79a89f92 8498static inline enum
57abff06 8499group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8500 struct sched_group *group,
79a89f92 8501 struct sg_lb_stats *sgs)
caeb178c 8502{
57abff06 8503 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8504 return group_overloaded;
8505
8506 if (sg_imbalanced(group))
8507 return group_imbalanced;
8508
0b0695f2
VG
8509 if (sgs->group_asym_packing)
8510 return group_asym_packing;
8511
3b1baa64
MR
8512 if (sgs->group_misfit_task_load)
8513 return group_misfit_task;
8514
57abff06 8515 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8516 return group_fully_busy;
8517
8518 return group_has_spare;
caeb178c
RR
8519}
8520
4006a72b
RN
8521/**
8522 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8523 * @dst_cpu: Destination CPU of the load balancing
8524 * @sds: Load-balancing data with statistics of the local group
8525 * @sgs: Load-balancing statistics of the candidate busiest group
8526 * @sg: The candidate busiest group
8527 *
8528 * Check the state of the SMT siblings of both @sds::local and @sg and decide
8529 * if @dst_cpu can pull tasks.
8530 *
8531 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8532 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8533 * only if @dst_cpu has higher priority.
8534 *
8535 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8536 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8537 * Bigger imbalances in the number of busy CPUs will be dealt with in
8538 * update_sd_pick_busiest().
8539 *
8540 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8541 * of @dst_cpu are idle and @sg has lower priority.
8542 */
8543static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8544 struct sg_lb_stats *sgs,
8545 struct sched_group *sg)
8546{
8547#ifdef CONFIG_SCHED_SMT
8548 bool local_is_smt, sg_is_smt;
8549 int sg_busy_cpus;
8550
8551 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8552 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8553
8554 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8555
8556 if (!local_is_smt) {
8557 /*
8558 * If we are here, @dst_cpu is idle and does not have SMT
8559 * siblings. Pull tasks if candidate group has two or more
8560 * busy CPUs.
8561 */
8562 if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8563 return true;
8564
8565 /*
8566 * @dst_cpu does not have SMT siblings. @sg may have SMT
8567 * siblings and only one is busy. In such case, @dst_cpu
8568 * can help if it has higher priority and is idle (i.e.,
8569 * it has no running tasks).
8570 */
8571 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8572 }
8573
8574 /* @dst_cpu has SMT siblings. */
8575
8576 if (sg_is_smt) {
8577 int local_busy_cpus = sds->local->group_weight -
8578 sds->local_stat.idle_cpus;
8579 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8580
8581 if (busy_cpus_delta == 1)
8582 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8583
8584 return false;
8585 }
8586
8587 /*
8588 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8589 * up with more than one busy SMT sibling and only pull tasks if there
8590 * are not busy CPUs (i.e., no CPU has running tasks).
8591 */
8592 if (!sds->local_stat.sum_nr_running)
8593 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8594
8595 return false;
8596#else
8597 /* Always return false so that callers deal with non-SMT cases. */
8598 return false;
8599#endif
8600}
8601
aafc917a
RN
8602static inline bool
8603sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
8604 struct sched_group *group)
8605{
4006a72b
RN
8606 /* Only do SMT checks if either local or candidate have SMT siblings */
8607 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8608 (group->flags & SD_SHARE_CPUCAPACITY))
8609 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8610
aafc917a
RN
8611 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8612}
8613
1e3c88bd
PZ
8614/**
8615 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8616 * @env: The load balancing environment.
1e3c88bd 8617 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8618 * @sgs: variable to hold the statistics for this group.
630246a0 8619 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8620 */
bd939f45 8621static inline void update_sg_lb_stats(struct lb_env *env,
c0d14b57 8622 struct sd_lb_stats *sds,
630246a0
QP
8623 struct sched_group *group,
8624 struct sg_lb_stats *sgs,
8625 int *sg_status)
1e3c88bd 8626{
0b0695f2 8627 int i, nr_running, local_group;
1e3c88bd 8628
b72ff13c
PZ
8629 memset(sgs, 0, sizeof(*sgs));
8630
c0d14b57 8631 local_group = group == sds->local;
0b0695f2 8632
ae4df9d6 8633 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8634 struct rq *rq = cpu_rq(i);
8635
b0fb1eb4 8636 sgs->group_load += cpu_load(rq);
82762d2a 8637 sgs->group_util += cpu_util_cfs(i);
070f5e86 8638 sgs->group_runnable += cpu_runnable(rq);
a3498347 8639 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8640
a426f99c 8641 nr_running = rq->nr_running;
5e23e474
VG
8642 sgs->sum_nr_running += nr_running;
8643
a426f99c 8644 if (nr_running > 1)
630246a0 8645 *sg_status |= SG_OVERLOAD;
4486edd1 8646
2802bf3c
MR
8647 if (cpu_overutilized(i))
8648 *sg_status |= SG_OVERUTILIZED;
4486edd1 8649
0ec8aa00
PZ
8650#ifdef CONFIG_NUMA_BALANCING
8651 sgs->nr_numa_running += rq->nr_numa_running;
8652 sgs->nr_preferred_running += rq->nr_preferred_running;
8653#endif
a426f99c
WL
8654 /*
8655 * No need to call idle_cpu() if nr_running is not 0
8656 */
0b0695f2 8657 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8658 sgs->idle_cpus++;
0b0695f2
VG
8659 /* Idle cpu can't have misfit task */
8660 continue;
8661 }
8662
8663 if (local_group)
8664 continue;
3b1baa64 8665
0b0695f2 8666 /* Check for a misfit task on the cpu */
3b1baa64 8667 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8668 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8669 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8670 *sg_status |= SG_OVERLOAD;
757ffdd7 8671 }
1e3c88bd
PZ
8672 }
8673
aafc917a
RN
8674 sgs->group_capacity = group->sgc->capacity;
8675
8676 sgs->group_weight = group->group_weight;
8677
0b0695f2 8678 /* Check if dst CPU is idle and preferred to this group */
60256435 8679 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
aafc917a
RN
8680 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8681 sched_asym(env, sds, sgs, group)) {
0b0695f2
VG
8682 sgs->group_asym_packing = 1;
8683 }
8684
57abff06 8685 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8686
8687 /* Computing avg_load makes sense only when group is overloaded */
8688 if (sgs->group_type == group_overloaded)
8689 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8690 sgs->group_capacity;
1e3c88bd
PZ
8691}
8692
532cb4c4
MN
8693/**
8694 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8695 * @env: The load balancing environment.
532cb4c4
MN
8696 * @sds: sched_domain statistics
8697 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8698 * @sgs: sched_group statistics
532cb4c4
MN
8699 *
8700 * Determine if @sg is a busier group than the previously selected
8701 * busiest group.
e69f6186
YB
8702 *
8703 * Return: %true if @sg is a busier group than the previously selected
8704 * busiest group. %false otherwise.
532cb4c4 8705 */
bd939f45 8706static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8707 struct sd_lb_stats *sds,
8708 struct sched_group *sg,
bd939f45 8709 struct sg_lb_stats *sgs)
532cb4c4 8710{
caeb178c 8711 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8712
0b0695f2
VG
8713 /* Make sure that there is at least one task to pull */
8714 if (!sgs->sum_h_nr_running)
8715 return false;
8716
cad68e55
MR
8717 /*
8718 * Don't try to pull misfit tasks we can't help.
8719 * We can use max_capacity here as reduction in capacity on some
8720 * CPUs in the group should either be possible to resolve
8721 * internally or be covered by avg_load imbalance (eventually).
8722 */
8723 if (sgs->group_type == group_misfit_task &&
4aed8aa4 8724 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
0b0695f2 8725 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8726 return false;
8727
caeb178c 8728 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8729 return true;
8730
caeb178c
RR
8731 if (sgs->group_type < busiest->group_type)
8732 return false;
8733
9e0994c0 8734 /*
0b0695f2
VG
8735 * The candidate and the current busiest group are the same type of
8736 * group. Let check which one is the busiest according to the type.
9e0994c0 8737 */
9e0994c0 8738
0b0695f2
VG
8739 switch (sgs->group_type) {
8740 case group_overloaded:
8741 /* Select the overloaded group with highest avg_load. */
8742 if (sgs->avg_load <= busiest->avg_load)
8743 return false;
8744 break;
8745
8746 case group_imbalanced:
8747 /*
8748 * Select the 1st imbalanced group as we don't have any way to
8749 * choose one more than another.
8750 */
9e0994c0
MR
8751 return false;
8752
0b0695f2
VG
8753 case group_asym_packing:
8754 /* Prefer to move from lowest priority CPU's work */
8755 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8756 return false;
8757 break;
532cb4c4 8758
0b0695f2
VG
8759 case group_misfit_task:
8760 /*
8761 * If we have more than one misfit sg go with the biggest
8762 * misfit.
8763 */
8764 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8765 return false;
8766 break;
532cb4c4 8767
0b0695f2
VG
8768 case group_fully_busy:
8769 /*
8770 * Select the fully busy group with highest avg_load. In
8771 * theory, there is no need to pull task from such kind of
8772 * group because tasks have all compute capacity that they need
8773 * but we can still improve the overall throughput by reducing
8774 * contention when accessing shared HW resources.
8775 *
8776 * XXX for now avg_load is not computed and always 0 so we
8777 * select the 1st one.
8778 */
8779 if (sgs->avg_load <= busiest->avg_load)
8780 return false;
8781 break;
8782
8783 case group_has_spare:
8784 /*
5f68eb19
VG
8785 * Select not overloaded group with lowest number of idle cpus
8786 * and highest number of running tasks. We could also compare
8787 * the spare capacity which is more stable but it can end up
8788 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8789 * CPUs which means less opportunity to pull tasks.
8790 */
5f68eb19 8791 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8792 return false;
5f68eb19
VG
8793 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8794 (sgs->sum_nr_running <= busiest->sum_nr_running))
8795 return false;
8796
0b0695f2 8797 break;
532cb4c4
MN
8798 }
8799
0b0695f2
VG
8800 /*
8801 * Candidate sg has no more than one task per CPU and has higher
8802 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8803 * throughput. Maximize throughput, power/energy consequences are not
8804 * considered.
8805 */
8806 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8807 (sgs->group_type <= group_fully_busy) &&
4aed8aa4 8808 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
0b0695f2
VG
8809 return false;
8810
8811 return true;
532cb4c4
MN
8812}
8813
0ec8aa00
PZ
8814#ifdef CONFIG_NUMA_BALANCING
8815static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8816{
a3498347 8817 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8818 return regular;
a3498347 8819 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8820 return remote;
8821 return all;
8822}
8823
8824static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8825{
8826 if (rq->nr_running > rq->nr_numa_running)
8827 return regular;
8828 if (rq->nr_running > rq->nr_preferred_running)
8829 return remote;
8830 return all;
8831}
8832#else
8833static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8834{
8835 return all;
8836}
8837
8838static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8839{
8840 return regular;
8841}
8842#endif /* CONFIG_NUMA_BALANCING */
8843
57abff06
VG
8844
8845struct sg_lb_stats;
8846
3318544b
VG
8847/*
8848 * task_running_on_cpu - return 1 if @p is running on @cpu.
8849 */
8850
8851static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8852{
8853 /* Task has no contribution or is new */
8854 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8855 return 0;
8856
8857 if (task_on_rq_queued(p))
8858 return 1;
8859
8860 return 0;
8861}
8862
8863/**
8864 * idle_cpu_without - would a given CPU be idle without p ?
8865 * @cpu: the processor on which idleness is tested.
8866 * @p: task which should be ignored.
8867 *
8868 * Return: 1 if the CPU would be idle. 0 otherwise.
8869 */
8870static int idle_cpu_without(int cpu, struct task_struct *p)
8871{
8872 struct rq *rq = cpu_rq(cpu);
8873
8874 if (rq->curr != rq->idle && rq->curr != p)
8875 return 0;
8876
8877 /*
8878 * rq->nr_running can't be used but an updated version without the
8879 * impact of p on cpu must be used instead. The updated nr_running
8880 * be computed and tested before calling idle_cpu_without().
8881 */
8882
8883#ifdef CONFIG_SMP
126c2092 8884 if (rq->ttwu_pending)
3318544b
VG
8885 return 0;
8886#endif
8887
8888 return 1;
8889}
8890
57abff06
VG
8891/*
8892 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8893 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8894 * @group: sched_group whose statistics are to be updated.
8895 * @sgs: variable to hold the statistics for this group.
3318544b 8896 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8897 */
8898static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8899 struct sched_group *group,
8900 struct sg_lb_stats *sgs,
8901 struct task_struct *p)
8902{
8903 int i, nr_running;
8904
8905 memset(sgs, 0, sizeof(*sgs));
8906
8907 for_each_cpu(i, sched_group_span(group)) {
8908 struct rq *rq = cpu_rq(i);
3318544b 8909 unsigned int local;
57abff06 8910
3318544b 8911 sgs->group_load += cpu_load_without(rq, p);
57abff06 8912 sgs->group_util += cpu_util_without(i, p);
070f5e86 8913 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8914 local = task_running_on_cpu(i, p);
8915 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8916
3318544b 8917 nr_running = rq->nr_running - local;
57abff06
VG
8918 sgs->sum_nr_running += nr_running;
8919
8920 /*
3318544b 8921 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8922 */
3318544b 8923 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8924 sgs->idle_cpus++;
8925
57abff06
VG
8926 }
8927
8928 /* Check if task fits in the group */
8929 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8930 !task_fits_capacity(p, group->sgc->max_capacity)) {
8931 sgs->group_misfit_task_load = 1;
8932 }
8933
8934 sgs->group_capacity = group->sgc->capacity;
8935
289de359
VG
8936 sgs->group_weight = group->group_weight;
8937
57abff06
VG
8938 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8939
8940 /*
8941 * Computing avg_load makes sense only when group is fully busy or
8942 * overloaded
8943 */
6c8116c9
TZ
8944 if (sgs->group_type == group_fully_busy ||
8945 sgs->group_type == group_overloaded)
57abff06
VG
8946 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8947 sgs->group_capacity;
8948}
8949
8950static bool update_pick_idlest(struct sched_group *idlest,
8951 struct sg_lb_stats *idlest_sgs,
8952 struct sched_group *group,
8953 struct sg_lb_stats *sgs)
8954{
8955 if (sgs->group_type < idlest_sgs->group_type)
8956 return true;
8957
8958 if (sgs->group_type > idlest_sgs->group_type)
8959 return false;
8960
8961 /*
8962 * The candidate and the current idlest group are the same type of
8963 * group. Let check which one is the idlest according to the type.
8964 */
8965
8966 switch (sgs->group_type) {
8967 case group_overloaded:
8968 case group_fully_busy:
8969 /* Select the group with lowest avg_load. */
8970 if (idlest_sgs->avg_load <= sgs->avg_load)
8971 return false;
8972 break;
8973
8974 case group_imbalanced:
8975 case group_asym_packing:
8976 /* Those types are not used in the slow wakeup path */
8977 return false;
8978
8979 case group_misfit_task:
8980 /* Select group with the highest max capacity */
8981 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8982 return false;
8983 break;
8984
8985 case group_has_spare:
8986 /* Select group with most idle CPUs */
3edecfef 8987 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 8988 return false;
3edecfef
PP
8989
8990 /* Select group with lowest group_util */
8991 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8992 idlest_sgs->group_util <= sgs->group_util)
8993 return false;
8994
57abff06
VG
8995 break;
8996 }
8997
8998 return true;
8999}
9000
23e6082a
MG
9001/*
9002 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9003 * This is an approximation as the number of running tasks may not be
9004 * related to the number of busy CPUs due to sched_setaffinity.
9005 */
9006static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
9007{
9008 return (dst_running < (dst_weight >> 2));
9009}
9010
57abff06
VG
9011/*
9012 * find_idlest_group() finds and returns the least busy CPU group within the
9013 * domain.
9014 *
9015 * Assumes p is allowed on at least one CPU in sd.
9016 */
9017static struct sched_group *
45da2773 9018find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
9019{
9020 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9021 struct sg_lb_stats local_sgs, tmp_sgs;
9022 struct sg_lb_stats *sgs;
9023 unsigned long imbalance;
9024 struct sg_lb_stats idlest_sgs = {
9025 .avg_load = UINT_MAX,
9026 .group_type = group_overloaded,
9027 };
9028
57abff06
VG
9029 do {
9030 int local_group;
9031
9032 /* Skip over this group if it has no CPUs allowed */
9033 if (!cpumask_intersects(sched_group_span(group),
9034 p->cpus_ptr))
9035 continue;
9036
97886d9d
AL
9037 /* Skip over this group if no cookie matched */
9038 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9039 continue;
9040
57abff06
VG
9041 local_group = cpumask_test_cpu(this_cpu,
9042 sched_group_span(group));
9043
9044 if (local_group) {
9045 sgs = &local_sgs;
9046 local = group;
9047 } else {
9048 sgs = &tmp_sgs;
9049 }
9050
9051 update_sg_wakeup_stats(sd, group, sgs, p);
9052
9053 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9054 idlest = group;
9055 idlest_sgs = *sgs;
9056 }
9057
9058 } while (group = group->next, group != sd->groups);
9059
9060
9061 /* There is no idlest group to push tasks to */
9062 if (!idlest)
9063 return NULL;
9064
7ed735c3
VG
9065 /* The local group has been skipped because of CPU affinity */
9066 if (!local)
9067 return idlest;
9068
57abff06
VG
9069 /*
9070 * If the local group is idler than the selected idlest group
9071 * don't try and push the task.
9072 */
9073 if (local_sgs.group_type < idlest_sgs.group_type)
9074 return NULL;
9075
9076 /*
9077 * If the local group is busier than the selected idlest group
9078 * try and push the task.
9079 */
9080 if (local_sgs.group_type > idlest_sgs.group_type)
9081 return idlest;
9082
9083 switch (local_sgs.group_type) {
9084 case group_overloaded:
9085 case group_fully_busy:
5c339005
MG
9086
9087 /* Calculate allowed imbalance based on load */
9088 imbalance = scale_load_down(NICE_0_LOAD) *
9089 (sd->imbalance_pct-100) / 100;
9090
57abff06
VG
9091 /*
9092 * When comparing groups across NUMA domains, it's possible for
9093 * the local domain to be very lightly loaded relative to the
9094 * remote domains but "imbalance" skews the comparison making
9095 * remote CPUs look much more favourable. When considering
9096 * cross-domain, add imbalance to the load on the remote node
9097 * and consider staying local.
9098 */
9099
9100 if ((sd->flags & SD_NUMA) &&
9101 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9102 return NULL;
9103
9104 /*
9105 * If the local group is less loaded than the selected
9106 * idlest group don't try and push any tasks.
9107 */
9108 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9109 return NULL;
9110
9111 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9112 return NULL;
9113 break;
9114
9115 case group_imbalanced:
9116 case group_asym_packing:
9117 /* Those type are not used in the slow wakeup path */
9118 return NULL;
9119
9120 case group_misfit_task:
9121 /* Select group with the highest max capacity */
9122 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9123 return NULL;
9124 break;
9125
9126 case group_has_spare:
9127 if (sd->flags & SD_NUMA) {
9128#ifdef CONFIG_NUMA_BALANCING
9129 int idlest_cpu;
9130 /*
9131 * If there is spare capacity at NUMA, try to select
9132 * the preferred node
9133 */
9134 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9135 return NULL;
9136
9137 idlest_cpu = cpumask_first(sched_group_span(idlest));
9138 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9139 return idlest;
9140#endif
9141 /*
9142 * Otherwise, keep the task on this node to stay close
9143 * its wakeup source and improve locality. If there is
9144 * a real need of migration, periodic load balance will
9145 * take care of it.
9146 */
23e6082a 9147 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
57abff06
VG
9148 return NULL;
9149 }
9150
9151 /*
9152 * Select group with highest number of idle CPUs. We could also
9153 * compare the utilization which is more stable but it can end
9154 * up that the group has less spare capacity but finally more
9155 * idle CPUs which means more opportunity to run task.
9156 */
9157 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9158 return NULL;
9159 break;
9160 }
9161
9162 return idlest;
9163}
9164
1e3c88bd 9165/**
461819ac 9166 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 9167 * @env: The load balancing environment.
1e3c88bd
PZ
9168 * @sds: variable to hold the statistics for this sched_domain.
9169 */
0b0695f2 9170
0ec8aa00 9171static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9172{
bd939f45
PZ
9173 struct sched_domain *child = env->sd->child;
9174 struct sched_group *sg = env->sd->groups;
05b40e05 9175 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 9176 struct sg_lb_stats tmp_sgs;
630246a0 9177 int sg_status = 0;
1e3c88bd 9178
1e3c88bd 9179 do {
56cf515b 9180 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
9181 int local_group;
9182
ae4df9d6 9183 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
9184 if (local_group) {
9185 sds->local = sg;
05b40e05 9186 sgs = local;
b72ff13c
PZ
9187
9188 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
9189 time_after_eq(jiffies, sg->sgc->next_update))
9190 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 9191 }
1e3c88bd 9192
c0d14b57 9193 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
1e3c88bd 9194
b72ff13c
PZ
9195 if (local_group)
9196 goto next_group;
9197
1e3c88bd 9198
b72ff13c 9199 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 9200 sds->busiest = sg;
56cf515b 9201 sds->busiest_stat = *sgs;
1e3c88bd
PZ
9202 }
9203
b72ff13c
PZ
9204next_group:
9205 /* Now, start updating sd_lb_stats */
9206 sds->total_load += sgs->group_load;
63b2ca30 9207 sds->total_capacity += sgs->group_capacity;
b72ff13c 9208
532cb4c4 9209 sg = sg->next;
bd939f45 9210 } while (sg != env->sd->groups);
0ec8aa00 9211
0b0695f2
VG
9212 /* Tag domain that child domain prefers tasks go to siblings first */
9213 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9214
f643ea22 9215
0ec8aa00
PZ
9216 if (env->sd->flags & SD_NUMA)
9217 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
9218
9219 if (!env->sd->parent) {
2802bf3c
MR
9220 struct root_domain *rd = env->dst_rq->rd;
9221
4486edd1 9222 /* update overload indicator if we are at root domain */
2802bf3c
MR
9223 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9224
9225 /* Update over-utilization (tipping point, U >= 0) indicator */
9226 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 9227 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 9228 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
9229 struct root_domain *rd = env->dst_rq->rd;
9230
9231 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9232 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 9233 }
532cb4c4
MN
9234}
9235
abeae76a
MG
9236#define NUMA_IMBALANCE_MIN 2
9237
7d2b5dd0
MG
9238static inline long adjust_numa_imbalance(int imbalance,
9239 int dst_running, int dst_weight)
fb86f5b2 9240{
23e6082a
MG
9241 if (!allow_numa_imbalance(dst_running, dst_weight))
9242 return imbalance;
9243
fb86f5b2
MG
9244 /*
9245 * Allow a small imbalance based on a simple pair of communicating
7d2b5dd0 9246 * tasks that remain local when the destination is lightly loaded.
fb86f5b2 9247 */
23e6082a 9248 if (imbalance <= NUMA_IMBALANCE_MIN)
fb86f5b2
MG
9249 return 0;
9250
9251 return imbalance;
9252}
9253
1e3c88bd
PZ
9254/**
9255 * calculate_imbalance - Calculate the amount of imbalance present within the
9256 * groups of a given sched_domain during load balance.
bd939f45 9257 * @env: load balance environment
1e3c88bd 9258 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 9259 */
bd939f45 9260static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9261{
56cf515b
JK
9262 struct sg_lb_stats *local, *busiest;
9263
9264 local = &sds->local_stat;
56cf515b 9265 busiest = &sds->busiest_stat;
dd5feea1 9266
0b0695f2
VG
9267 if (busiest->group_type == group_misfit_task) {
9268 /* Set imbalance to allow misfit tasks to be balanced. */
9269 env->migration_type = migrate_misfit;
c63be7be 9270 env->imbalance = 1;
0b0695f2
VG
9271 return;
9272 }
9273
9274 if (busiest->group_type == group_asym_packing) {
9275 /*
9276 * In case of asym capacity, we will try to migrate all load to
9277 * the preferred CPU.
9278 */
9279 env->migration_type = migrate_task;
9280 env->imbalance = busiest->sum_h_nr_running;
9281 return;
9282 }
9283
9284 if (busiest->group_type == group_imbalanced) {
9285 /*
9286 * In the group_imb case we cannot rely on group-wide averages
9287 * to ensure CPU-load equilibrium, try to move any task to fix
9288 * the imbalance. The next load balance will take care of
9289 * balancing back the system.
9290 */
9291 env->migration_type = migrate_task;
9292 env->imbalance = 1;
490ba971
VG
9293 return;
9294 }
9295
1e3c88bd 9296 /*
0b0695f2 9297 * Try to use spare capacity of local group without overloading it or
a9723389 9298 * emptying busiest.
1e3c88bd 9299 */
0b0695f2 9300 if (local->group_type == group_has_spare) {
16b0a7a1
VG
9301 if ((busiest->group_type > group_fully_busy) &&
9302 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
0b0695f2
VG
9303 /*
9304 * If busiest is overloaded, try to fill spare
9305 * capacity. This might end up creating spare capacity
9306 * in busiest or busiest still being overloaded but
9307 * there is no simple way to directly compute the
9308 * amount of load to migrate in order to balance the
9309 * system.
9310 */
9311 env->migration_type = migrate_util;
9312 env->imbalance = max(local->group_capacity, local->group_util) -
9313 local->group_util;
9314
9315 /*
9316 * In some cases, the group's utilization is max or even
9317 * higher than capacity because of migrations but the
9318 * local CPU is (newly) idle. There is at least one
9319 * waiting task in this overloaded busiest group. Let's
9320 * try to pull it.
9321 */
9322 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9323 env->migration_type = migrate_task;
9324 env->imbalance = 1;
9325 }
9326
9327 return;
9328 }
9329
9330 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9331 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9332 /*
9333 * When prefer sibling, evenly spread running tasks on
9334 * groups.
9335 */
9336 env->migration_type = migrate_task;
5e23e474 9337 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9338 env->imbalance = nr_diff >> 1;
b396f523 9339 } else {
0b0695f2 9340
b396f523
MG
9341 /*
9342 * If there is no overload, we just want to even the number of
9343 * idle cpus.
9344 */
9345 env->migration_type = migrate_task;
9346 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9347 busiest->idle_cpus) >> 1);
b396f523
MG
9348 }
9349
9350 /* Consider allowing a small imbalance between NUMA groups */
7d2b5dd0 9351 if (env->sd->flags & SD_NUMA) {
fb86f5b2 9352 env->imbalance = adjust_numa_imbalance(env->imbalance,
7d2b5dd0
MG
9353 busiest->sum_nr_running, busiest->group_weight);
9354 }
b396f523 9355
fcf0553d 9356 return;
1e3c88bd
PZ
9357 }
9358
9a5d9ba6 9359 /*
0b0695f2
VG
9360 * Local is fully busy but has to take more load to relieve the
9361 * busiest group
9a5d9ba6 9362 */
0b0695f2
VG
9363 if (local->group_type < group_overloaded) {
9364 /*
9365 * Local will become overloaded so the avg_load metrics are
9366 * finally needed.
9367 */
9368
9369 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9370 local->group_capacity;
9371
9372 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9373 sds->total_capacity;
111688ca
AL
9374 /*
9375 * If the local group is more loaded than the selected
9376 * busiest group don't try to pull any tasks.
9377 */
9378 if (local->avg_load >= busiest->avg_load) {
9379 env->imbalance = 0;
9380 return;
9381 }
dd5feea1
SS
9382 }
9383
9384 /*
0b0695f2
VG
9385 * Both group are or will become overloaded and we're trying to get all
9386 * the CPUs to the average_load, so we don't want to push ourselves
9387 * above the average load, nor do we wish to reduce the max loaded CPU
9388 * below the average load. At the same time, we also don't want to
9389 * reduce the group load below the group capacity. Thus we look for
9390 * the minimum possible imbalance.
dd5feea1 9391 */
0b0695f2 9392 env->migration_type = migrate_load;
56cf515b 9393 env->imbalance = min(
0b0695f2 9394 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9395 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9396 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9397}
fab47622 9398
1e3c88bd
PZ
9399/******* find_busiest_group() helpers end here *********************/
9400
0b0695f2
VG
9401/*
9402 * Decision matrix according to the local and busiest group type:
9403 *
9404 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9405 * has_spare nr_idle balanced N/A N/A balanced balanced
9406 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9407 * misfit_task force N/A N/A N/A force force
9408 * asym_packing force force N/A N/A force force
9409 * imbalanced force force N/A N/A force force
9410 * overloaded force force N/A N/A force avg_load
9411 *
9412 * N/A : Not Applicable because already filtered while updating
9413 * statistics.
9414 * balanced : The system is balanced for these 2 groups.
9415 * force : Calculate the imbalance as load migration is probably needed.
9416 * avg_load : Only if imbalance is significant enough.
9417 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9418 * different in groups.
9419 */
9420
1e3c88bd
PZ
9421/**
9422 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9423 * if there is an imbalance.
1e3c88bd 9424 *
a3df0679 9425 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9426 * to restore balance.
9427 *
cd96891d 9428 * @env: The load balancing environment.
1e3c88bd 9429 *
e69f6186 9430 * Return: - The busiest group if imbalance exists.
1e3c88bd 9431 */
56cf515b 9432static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9433{
56cf515b 9434 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9435 struct sd_lb_stats sds;
9436
147c5fc2 9437 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9438
9439 /*
b0fb1eb4 9440 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9441 * this level.
9442 */
23f0d209 9443 update_sd_lb_stats(env, &sds);
2802bf3c 9444
f8a696f2 9445 if (sched_energy_enabled()) {
2802bf3c
MR
9446 struct root_domain *rd = env->dst_rq->rd;
9447
9448 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9449 goto out_balanced;
9450 }
9451
56cf515b
JK
9452 local = &sds.local_stat;
9453 busiest = &sds.busiest_stat;
1e3c88bd 9454
cc57aa8f 9455 /* There is no busy sibling group to pull tasks from */
0b0695f2 9456 if (!sds.busiest)
1e3c88bd
PZ
9457 goto out_balanced;
9458
0b0695f2
VG
9459 /* Misfit tasks should be dealt with regardless of the avg load */
9460 if (busiest->group_type == group_misfit_task)
9461 goto force_balance;
9462
9463 /* ASYM feature bypasses nice load balance check */
9464 if (busiest->group_type == group_asym_packing)
9465 goto force_balance;
b0432d8f 9466
866ab43e
PZ
9467 /*
9468 * If the busiest group is imbalanced the below checks don't
30ce5dab 9469 * work because they assume all things are equal, which typically
3bd37062 9470 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9471 */
caeb178c 9472 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9473 goto force_balance;
9474
cc57aa8f 9475 /*
9c58c79a 9476 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9477 * don't try and pull any tasks.
9478 */
0b0695f2 9479 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9480 goto out_balanced;
9481
cc57aa8f 9482 /*
0b0695f2
VG
9483 * When groups are overloaded, use the avg_load to ensure fairness
9484 * between tasks.
cc57aa8f 9485 */
0b0695f2
VG
9486 if (local->group_type == group_overloaded) {
9487 /*
9488 * If the local group is more loaded than the selected
9489 * busiest group don't try to pull any tasks.
9490 */
9491 if (local->avg_load >= busiest->avg_load)
9492 goto out_balanced;
9493
9494 /* XXX broken for overlapping NUMA groups */
9495 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9496 sds.total_capacity;
1e3c88bd 9497
aae6d3dd 9498 /*
0b0695f2
VG
9499 * Don't pull any tasks if this group is already above the
9500 * domain average load.
aae6d3dd 9501 */
0b0695f2 9502 if (local->avg_load >= sds.avg_load)
aae6d3dd 9503 goto out_balanced;
0b0695f2 9504
c186fafe 9505 /*
0b0695f2
VG
9506 * If the busiest group is more loaded, use imbalance_pct to be
9507 * conservative.
c186fafe 9508 */
56cf515b
JK
9509 if (100 * busiest->avg_load <=
9510 env->sd->imbalance_pct * local->avg_load)
c186fafe 9511 goto out_balanced;
aae6d3dd 9512 }
1e3c88bd 9513
0b0695f2
VG
9514 /* Try to move all excess tasks to child's sibling domain */
9515 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9516 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9517 goto force_balance;
9518
2ab4092f
VG
9519 if (busiest->group_type != group_overloaded) {
9520 if (env->idle == CPU_NOT_IDLE)
9521 /*
9522 * If the busiest group is not overloaded (and as a
9523 * result the local one too) but this CPU is already
9524 * busy, let another idle CPU try to pull task.
9525 */
9526 goto out_balanced;
9527
9528 if (busiest->group_weight > 1 &&
9529 local->idle_cpus <= (busiest->idle_cpus + 1))
9530 /*
9531 * If the busiest group is not overloaded
9532 * and there is no imbalance between this and busiest
9533 * group wrt idle CPUs, it is balanced. The imbalance
9534 * becomes significant if the diff is greater than 1
9535 * otherwise we might end up to just move the imbalance
9536 * on another group. Of course this applies only if
9537 * there is more than 1 CPU per group.
9538 */
9539 goto out_balanced;
9540
9541 if (busiest->sum_h_nr_running == 1)
9542 /*
9543 * busiest doesn't have any tasks waiting to run
9544 */
9545 goto out_balanced;
9546 }
0b0695f2 9547
fab47622 9548force_balance:
1e3c88bd 9549 /* Looks like there is an imbalance. Compute it */
bd939f45 9550 calculate_imbalance(env, &sds);
bb3485c8 9551 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9552
9553out_balanced:
bd939f45 9554 env->imbalance = 0;
1e3c88bd
PZ
9555 return NULL;
9556}
9557
9558/*
97fb7a0a 9559 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9560 */
bd939f45 9561static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9562 struct sched_group *group)
1e3c88bd
PZ
9563{
9564 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9565 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9566 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9567 int i;
9568
ae4df9d6 9569 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9570 unsigned long capacity, load, util;
9571 unsigned int nr_running;
0ec8aa00
PZ
9572 enum fbq_type rt;
9573
9574 rq = cpu_rq(i);
9575 rt = fbq_classify_rq(rq);
1e3c88bd 9576
0ec8aa00
PZ
9577 /*
9578 * We classify groups/runqueues into three groups:
9579 * - regular: there are !numa tasks
9580 * - remote: there are numa tasks that run on the 'wrong' node
9581 * - all: there is no distinction
9582 *
9583 * In order to avoid migrating ideally placed numa tasks,
9584 * ignore those when there's better options.
9585 *
9586 * If we ignore the actual busiest queue to migrate another
9587 * task, the next balance pass can still reduce the busiest
9588 * queue by moving tasks around inside the node.
9589 *
9590 * If we cannot move enough load due to this classification
9591 * the next pass will adjust the group classification and
9592 * allow migration of more tasks.
9593 *
9594 * Both cases only affect the total convergence complexity.
9595 */
9596 if (rt > env->fbq_type)
9597 continue;
9598
0b0695f2 9599 nr_running = rq->cfs.h_nr_running;
fc488ffd
VG
9600 if (!nr_running)
9601 continue;
9602
9603 capacity = capacity_of(i);
9d5efe05 9604
4ad3831a
CR
9605 /*
9606 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9607 * eventually lead to active_balancing high->low capacity.
9608 * Higher per-CPU capacity is considered better than balancing
9609 * average load.
9610 */
9611 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
4aed8aa4 9612 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
0b0695f2 9613 nr_running == 1)
4ad3831a
CR
9614 continue;
9615
4006a72b
RN
9616 /* Make sure we only pull tasks from a CPU of lower priority */
9617 if ((env->sd->flags & SD_ASYM_PACKING) &&
9618 sched_asym_prefer(i, env->dst_cpu) &&
9619 nr_running == 1)
9620 continue;
9621
0b0695f2
VG
9622 switch (env->migration_type) {
9623 case migrate_load:
9624 /*
b0fb1eb4
VG
9625 * When comparing with load imbalance, use cpu_load()
9626 * which is not scaled with the CPU capacity.
0b0695f2 9627 */
b0fb1eb4 9628 load = cpu_load(rq);
1e3c88bd 9629
0b0695f2
VG
9630 if (nr_running == 1 && load > env->imbalance &&
9631 !check_cpu_capacity(rq, env->sd))
9632 break;
ea67821b 9633
0b0695f2
VG
9634 /*
9635 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9636 * consider the cpu_load() scaled with the CPU
9637 * capacity, so that the load can be moved away
9638 * from the CPU that is potentially running at a
9639 * lower capacity.
0b0695f2
VG
9640 *
9641 * Thus we're looking for max(load_i / capacity_i),
9642 * crosswise multiplication to rid ourselves of the
9643 * division works out to:
9644 * load_i * capacity_j > load_j * capacity_i;
9645 * where j is our previous maximum.
9646 */
9647 if (load * busiest_capacity > busiest_load * capacity) {
9648 busiest_load = load;
9649 busiest_capacity = capacity;
9650 busiest = rq;
9651 }
9652 break;
9653
9654 case migrate_util:
82762d2a 9655 util = cpu_util_cfs(i);
0b0695f2 9656
c32b4308
VG
9657 /*
9658 * Don't try to pull utilization from a CPU with one
9659 * running task. Whatever its utilization, we will fail
9660 * detach the task.
9661 */
9662 if (nr_running <= 1)
9663 continue;
9664
0b0695f2
VG
9665 if (busiest_util < util) {
9666 busiest_util = util;
9667 busiest = rq;
9668 }
9669 break;
9670
9671 case migrate_task:
9672 if (busiest_nr < nr_running) {
9673 busiest_nr = nr_running;
9674 busiest = rq;
9675 }
9676 break;
9677
9678 case migrate_misfit:
9679 /*
9680 * For ASYM_CPUCAPACITY domains with misfit tasks we
9681 * simply seek the "biggest" misfit task.
9682 */
9683 if (rq->misfit_task_load > busiest_load) {
9684 busiest_load = rq->misfit_task_load;
9685 busiest = rq;
9686 }
9687
9688 break;
1e3c88bd 9689
1e3c88bd
PZ
9690 }
9691 }
9692
9693 return busiest;
9694}
9695
9696/*
9697 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9698 * so long as it is large enough.
9699 */
9700#define MAX_PINNED_INTERVAL 512
9701
46a745d9
VG
9702static inline bool
9703asym_active_balance(struct lb_env *env)
1af3ed3d 9704{
46a745d9
VG
9705 /*
9706 * ASYM_PACKING needs to force migrate tasks from busy but
9707 * lower priority CPUs in order to pack all tasks in the
9708 * highest priority CPUs.
9709 */
9710 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9711 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9712}
bd939f45 9713
46a745d9 9714static inline bool
e9b9734b
VG
9715imbalanced_active_balance(struct lb_env *env)
9716{
9717 struct sched_domain *sd = env->sd;
9718
9719 /*
9720 * The imbalanced case includes the case of pinned tasks preventing a fair
9721 * distribution of the load on the system but also the even distribution of the
9722 * threads on a system with spare capacity
9723 */
9724 if ((env->migration_type == migrate_task) &&
9725 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9726 return 1;
9727
9728 return 0;
9729}
9730
9731static int need_active_balance(struct lb_env *env)
46a745d9
VG
9732{
9733 struct sched_domain *sd = env->sd;
532cb4c4 9734
46a745d9
VG
9735 if (asym_active_balance(env))
9736 return 1;
1af3ed3d 9737
e9b9734b
VG
9738 if (imbalanced_active_balance(env))
9739 return 1;
9740
1aaf90a4
VG
9741 /*
9742 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9743 * It's worth migrating the task if the src_cpu's capacity is reduced
9744 * because of other sched_class or IRQs if more capacity stays
9745 * available on dst_cpu.
9746 */
9747 if ((env->idle != CPU_NOT_IDLE) &&
9748 (env->src_rq->cfs.h_nr_running == 1)) {
9749 if ((check_cpu_capacity(env->src_rq, sd)) &&
9750 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9751 return 1;
9752 }
9753
0b0695f2 9754 if (env->migration_type == migrate_misfit)
cad68e55
MR
9755 return 1;
9756
46a745d9
VG
9757 return 0;
9758}
9759
969c7921
TH
9760static int active_load_balance_cpu_stop(void *data);
9761
23f0d209
JK
9762static int should_we_balance(struct lb_env *env)
9763{
9764 struct sched_group *sg = env->sd->groups;
64297f2b 9765 int cpu;
23f0d209 9766
024c9d2f
PZ
9767 /*
9768 * Ensure the balancing environment is consistent; can happen
9769 * when the softirq triggers 'during' hotplug.
9770 */
9771 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9772 return 0;
9773
23f0d209 9774 /*
97fb7a0a 9775 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9776 * to do the newly idle load balance.
9777 */
9778 if (env->idle == CPU_NEWLY_IDLE)
9779 return 1;
9780
97fb7a0a 9781 /* Try to find first idle CPU */
e5c14b1f 9782 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9783 if (!idle_cpu(cpu))
23f0d209
JK
9784 continue;
9785
64297f2b
PW
9786 /* Are we the first idle CPU? */
9787 return cpu == env->dst_cpu;
23f0d209
JK
9788 }
9789
64297f2b
PW
9790 /* Are we the first CPU of this group ? */
9791 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9792}
9793
1e3c88bd
PZ
9794/*
9795 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9796 * tasks if there is an imbalance.
9797 */
9798static int load_balance(int this_cpu, struct rq *this_rq,
9799 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9800 int *continue_balancing)
1e3c88bd 9801{
88b8dac0 9802 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9803 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9804 struct sched_group *group;
1e3c88bd 9805 struct rq *busiest;
8a8c69c3 9806 struct rq_flags rf;
4ba29684 9807 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9808
8e45cb54
PZ
9809 struct lb_env env = {
9810 .sd = sd,
ddcdf6e7
PZ
9811 .dst_cpu = this_cpu,
9812 .dst_rq = this_rq,
ae4df9d6 9813 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9814 .idle = idle,
eb95308e 9815 .loop_break = sched_nr_migrate_break,
b9403130 9816 .cpus = cpus,
0ec8aa00 9817 .fbq_type = all,
163122b7 9818 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9819 };
9820
65a4433a 9821 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9822
ae92882e 9823 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9824
9825redo:
23f0d209
JK
9826 if (!should_we_balance(&env)) {
9827 *continue_balancing = 0;
1e3c88bd 9828 goto out_balanced;
23f0d209 9829 }
1e3c88bd 9830
23f0d209 9831 group = find_busiest_group(&env);
1e3c88bd 9832 if (!group) {
ae92882e 9833 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9834 goto out_balanced;
9835 }
9836
b9403130 9837 busiest = find_busiest_queue(&env, group);
1e3c88bd 9838 if (!busiest) {
ae92882e 9839 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9840 goto out_balanced;
9841 }
9842
78feefc5 9843 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9844
ae92882e 9845 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9846
1aaf90a4
VG
9847 env.src_cpu = busiest->cpu;
9848 env.src_rq = busiest;
9849
1e3c88bd 9850 ld_moved = 0;
8a41dfcd
VG
9851 /* Clear this flag as soon as we find a pullable task */
9852 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9853 if (busiest->nr_running > 1) {
9854 /*
9855 * Attempt to move tasks. If find_busiest_group has found
9856 * an imbalance but busiest->nr_running <= 1, the group is
9857 * still unbalanced. ld_moved simply stays zero, so it is
9858 * correctly treated as an imbalance.
9859 */
c82513e5 9860 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9861
5d6523eb 9862more_balance:
8a8c69c3 9863 rq_lock_irqsave(busiest, &rf);
3bed5e21 9864 update_rq_clock(busiest);
88b8dac0
SV
9865
9866 /*
9867 * cur_ld_moved - load moved in current iteration
9868 * ld_moved - cumulative load moved across iterations
9869 */
163122b7 9870 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9871
9872 /*
163122b7
KT
9873 * We've detached some tasks from busiest_rq. Every
9874 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9875 * unlock busiest->lock, and we are able to be sure
9876 * that nobody can manipulate the tasks in parallel.
9877 * See task_rq_lock() family for the details.
1e3c88bd 9878 */
163122b7 9879
8a8c69c3 9880 rq_unlock(busiest, &rf);
163122b7
KT
9881
9882 if (cur_ld_moved) {
9883 attach_tasks(&env);
9884 ld_moved += cur_ld_moved;
9885 }
9886
8a8c69c3 9887 local_irq_restore(rf.flags);
88b8dac0 9888
f1cd0858
JK
9889 if (env.flags & LBF_NEED_BREAK) {
9890 env.flags &= ~LBF_NEED_BREAK;
9891 goto more_balance;
9892 }
9893
88b8dac0
SV
9894 /*
9895 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9896 * us and move them to an alternate dst_cpu in our sched_group
9897 * where they can run. The upper limit on how many times we
97fb7a0a 9898 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9899 * sched_group.
9900 *
9901 * This changes load balance semantics a bit on who can move
9902 * load to a given_cpu. In addition to the given_cpu itself
9903 * (or a ilb_cpu acting on its behalf where given_cpu is
9904 * nohz-idle), we now have balance_cpu in a position to move
9905 * load to given_cpu. In rare situations, this may cause
9906 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9907 * _independently_ and at _same_ time to move some load to
3b03706f 9908 * given_cpu) causing excess load to be moved to given_cpu.
88b8dac0
SV
9909 * This however should not happen so much in practice and
9910 * moreover subsequent load balance cycles should correct the
9911 * excess load moved.
9912 */
6263322c 9913 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9914
97fb7a0a 9915 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9916 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9917
78feefc5 9918 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9919 env.dst_cpu = env.new_dst_cpu;
6263322c 9920 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9921 env.loop = 0;
9922 env.loop_break = sched_nr_migrate_break;
e02e60c1 9923
88b8dac0
SV
9924 /*
9925 * Go back to "more_balance" rather than "redo" since we
9926 * need to continue with same src_cpu.
9927 */
9928 goto more_balance;
9929 }
1e3c88bd 9930
6263322c
PZ
9931 /*
9932 * We failed to reach balance because of affinity.
9933 */
9934 if (sd_parent) {
63b2ca30 9935 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9936
afdeee05 9937 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9938 *group_imbalance = 1;
6263322c
PZ
9939 }
9940
1e3c88bd 9941 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9942 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9943 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9944 /*
9945 * Attempting to continue load balancing at the current
9946 * sched_domain level only makes sense if there are
9947 * active CPUs remaining as possible busiest CPUs to
9948 * pull load from which are not contained within the
9949 * destination group that is receiving any migrated
9950 * load.
9951 */
9952 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9953 env.loop = 0;
9954 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9955 goto redo;
bbf18b19 9956 }
afdeee05 9957 goto out_all_pinned;
1e3c88bd
PZ
9958 }
9959 }
9960
9961 if (!ld_moved) {
ae92882e 9962 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9963 /*
9964 * Increment the failure counter only on periodic balance.
9965 * We do not want newidle balance, which can be very
9966 * frequent, pollute the failure counter causing
9967 * excessive cache_hot migrations and active balances.
9968 */
9969 if (idle != CPU_NEWLY_IDLE)
9970 sd->nr_balance_failed++;
1e3c88bd 9971
bd939f45 9972 if (need_active_balance(&env)) {
8a8c69c3
PZ
9973 unsigned long flags;
9974
5cb9eaa3 9975 raw_spin_rq_lock_irqsave(busiest, flags);
1e3c88bd 9976
97fb7a0a
IM
9977 /*
9978 * Don't kick the active_load_balance_cpu_stop,
9979 * if the curr task on busiest CPU can't be
9980 * moved to this_cpu:
1e3c88bd 9981 */
3bd37062 9982 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
5cb9eaa3 9983 raw_spin_rq_unlock_irqrestore(busiest, flags);
1e3c88bd
PZ
9984 goto out_one_pinned;
9985 }
9986
8a41dfcd
VG
9987 /* Record that we found at least one task that could run on this_cpu */
9988 env.flags &= ~LBF_ALL_PINNED;
9989
969c7921
TH
9990 /*
9991 * ->active_balance synchronizes accesses to
9992 * ->active_balance_work. Once set, it's cleared
9993 * only after active load balance is finished.
9994 */
1e3c88bd
PZ
9995 if (!busiest->active_balance) {
9996 busiest->active_balance = 1;
9997 busiest->push_cpu = this_cpu;
9998 active_balance = 1;
9999 }
5cb9eaa3 10000 raw_spin_rq_unlock_irqrestore(busiest, flags);
969c7921 10001
bd939f45 10002 if (active_balance) {
969c7921
TH
10003 stop_one_cpu_nowait(cpu_of(busiest),
10004 active_load_balance_cpu_stop, busiest,
10005 &busiest->active_balance_work);
bd939f45 10006 }
1e3c88bd 10007 }
e9b9734b 10008 } else {
1e3c88bd 10009 sd->nr_balance_failed = 0;
e9b9734b 10010 }
1e3c88bd 10011
e9b9734b 10012 if (likely(!active_balance) || need_active_balance(&env)) {
1e3c88bd
PZ
10013 /* We were unbalanced, so reset the balancing interval */
10014 sd->balance_interval = sd->min_interval;
1e3c88bd
PZ
10015 }
10016
1e3c88bd
PZ
10017 goto out;
10018
10019out_balanced:
afdeee05
VG
10020 /*
10021 * We reach balance although we may have faced some affinity
f6cad8df
VG
10022 * constraints. Clear the imbalance flag only if other tasks got
10023 * a chance to move and fix the imbalance.
afdeee05 10024 */
f6cad8df 10025 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
10026 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10027
10028 if (*group_imbalance)
10029 *group_imbalance = 0;
10030 }
10031
10032out_all_pinned:
10033 /*
10034 * We reach balance because all tasks are pinned at this level so
10035 * we can't migrate them. Let the imbalance flag set so parent level
10036 * can try to migrate them.
10037 */
ae92882e 10038 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
10039
10040 sd->nr_balance_failed = 0;
10041
10042out_one_pinned:
3f130a37
VS
10043 ld_moved = 0;
10044
10045 /*
5ba553ef
PZ
10046 * newidle_balance() disregards balance intervals, so we could
10047 * repeatedly reach this code, which would lead to balance_interval
3b03706f 10048 * skyrocketing in a short amount of time. Skip the balance_interval
5ba553ef 10049 * increase logic to avoid that.
3f130a37
VS
10050 */
10051 if (env.idle == CPU_NEWLY_IDLE)
10052 goto out;
10053
1e3c88bd 10054 /* tune up the balancing interval */
47b7aee1
VS
10055 if ((env.flags & LBF_ALL_PINNED &&
10056 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10057 sd->balance_interval < sd->max_interval)
1e3c88bd 10058 sd->balance_interval *= 2;
1e3c88bd 10059out:
1e3c88bd
PZ
10060 return ld_moved;
10061}
10062
52a08ef1
JL
10063static inline unsigned long
10064get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10065{
10066 unsigned long interval = sd->balance_interval;
10067
10068 if (cpu_busy)
10069 interval *= sd->busy_factor;
10070
10071 /* scale ms to jiffies */
10072 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
10073
10074 /*
10075 * Reduce likelihood of busy balancing at higher domains racing with
10076 * balancing at lower domains by preventing their balancing periods
10077 * from being multiples of each other.
10078 */
10079 if (cpu_busy)
10080 interval -= 1;
10081
52a08ef1
JL
10082 interval = clamp(interval, 1UL, max_load_balance_interval);
10083
10084 return interval;
10085}
10086
10087static inline void
31851a98 10088update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
10089{
10090 unsigned long interval, next;
10091
31851a98
LY
10092 /* used by idle balance, so cpu_busy = 0 */
10093 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
10094 next = sd->last_balance + interval;
10095
10096 if (time_after(*next_balance, next))
10097 *next_balance = next;
10098}
10099
1e3c88bd 10100/*
97fb7a0a 10101 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
10102 * running tasks off the busiest CPU onto idle CPUs. It requires at
10103 * least 1 task to be running on each physical CPU where possible, and
10104 * avoids physical / logical imbalances.
1e3c88bd 10105 */
969c7921 10106static int active_load_balance_cpu_stop(void *data)
1e3c88bd 10107{
969c7921
TH
10108 struct rq *busiest_rq = data;
10109 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 10110 int target_cpu = busiest_rq->push_cpu;
969c7921 10111 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 10112 struct sched_domain *sd;
e5673f28 10113 struct task_struct *p = NULL;
8a8c69c3 10114 struct rq_flags rf;
969c7921 10115
8a8c69c3 10116 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
10117 /*
10118 * Between queueing the stop-work and running it is a hole in which
10119 * CPUs can become inactive. We should not move tasks from or to
10120 * inactive CPUs.
10121 */
10122 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10123 goto out_unlock;
969c7921 10124
97fb7a0a 10125 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
10126 if (unlikely(busiest_cpu != smp_processor_id() ||
10127 !busiest_rq->active_balance))
10128 goto out_unlock;
1e3c88bd
PZ
10129
10130 /* Is there any task to move? */
10131 if (busiest_rq->nr_running <= 1)
969c7921 10132 goto out_unlock;
1e3c88bd
PZ
10133
10134 /*
10135 * This condition is "impossible", if it occurs
10136 * we need to fix it. Originally reported by
97fb7a0a 10137 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
10138 */
10139 BUG_ON(busiest_rq == target_rq);
10140
1e3c88bd 10141 /* Search for an sd spanning us and the target CPU. */
dce840a0 10142 rcu_read_lock();
1e3c88bd 10143 for_each_domain(target_cpu, sd) {
e669ac8a
VS
10144 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10145 break;
1e3c88bd
PZ
10146 }
10147
10148 if (likely(sd)) {
8e45cb54
PZ
10149 struct lb_env env = {
10150 .sd = sd,
ddcdf6e7
PZ
10151 .dst_cpu = target_cpu,
10152 .dst_rq = target_rq,
10153 .src_cpu = busiest_rq->cpu,
10154 .src_rq = busiest_rq,
8e45cb54 10155 .idle = CPU_IDLE,
23fb06d9 10156 .flags = LBF_ACTIVE_LB,
8e45cb54
PZ
10157 };
10158
ae92882e 10159 schedstat_inc(sd->alb_count);
3bed5e21 10160 update_rq_clock(busiest_rq);
1e3c88bd 10161
e5673f28 10162 p = detach_one_task(&env);
d02c0711 10163 if (p) {
ae92882e 10164 schedstat_inc(sd->alb_pushed);
d02c0711
SD
10165 /* Active balancing done, reset the failure counter. */
10166 sd->nr_balance_failed = 0;
10167 } else {
ae92882e 10168 schedstat_inc(sd->alb_failed);
d02c0711 10169 }
1e3c88bd 10170 }
dce840a0 10171 rcu_read_unlock();
969c7921
TH
10172out_unlock:
10173 busiest_rq->active_balance = 0;
8a8c69c3 10174 rq_unlock(busiest_rq, &rf);
e5673f28
KT
10175
10176 if (p)
10177 attach_one_task(target_rq, p);
10178
10179 local_irq_enable();
10180
969c7921 10181 return 0;
1e3c88bd
PZ
10182}
10183
af3fe03c
PZ
10184static DEFINE_SPINLOCK(balancing);
10185
10186/*
10187 * Scale the max load_balance interval with the number of CPUs in the system.
10188 * This trades load-balance latency on larger machines for less cross talk.
10189 */
10190void update_max_interval(void)
10191{
10192 max_load_balance_interval = HZ*num_online_cpus()/10;
10193}
10194
e60b56e4
VG
10195static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10196{
10197 if (cost > sd->max_newidle_lb_cost) {
10198 /*
10199 * Track max cost of a domain to make sure to not delay the
10200 * next wakeup on the CPU.
10201 */
10202 sd->max_newidle_lb_cost = cost;
10203 sd->last_decay_max_lb_cost = jiffies;
10204 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10205 /*
10206 * Decay the newidle max times by ~1% per second to ensure that
10207 * it is not outdated and the current max cost is actually
10208 * shorter.
10209 */
10210 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10211 sd->last_decay_max_lb_cost = jiffies;
10212
10213 return true;
10214 }
10215
10216 return false;
10217}
10218
af3fe03c
PZ
10219/*
10220 * It checks each scheduling domain to see if it is due to be balanced,
10221 * and initiates a balancing operation if so.
10222 *
10223 * Balancing parameters are set up in init_sched_domains.
10224 */
10225static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10226{
10227 int continue_balancing = 1;
10228 int cpu = rq->cpu;
323af6de 10229 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10230 unsigned long interval;
10231 struct sched_domain *sd;
10232 /* Earliest time when we have to do rebalance again */
10233 unsigned long next_balance = jiffies + 60*HZ;
10234 int update_next_balance = 0;
10235 int need_serialize, need_decay = 0;
10236 u64 max_cost = 0;
10237
10238 rcu_read_lock();
10239 for_each_domain(cpu, sd) {
10240 /*
10241 * Decay the newidle max times here because this is a regular
e60b56e4 10242 * visit to all the domains.
af3fe03c 10243 */
e60b56e4 10244 need_decay = update_newidle_cost(sd, 0);
af3fe03c
PZ
10245 max_cost += sd->max_newidle_lb_cost;
10246
af3fe03c
PZ
10247 /*
10248 * Stop the load balance at this level. There is another
10249 * CPU in our sched group which is doing load balancing more
10250 * actively.
10251 */
10252 if (!continue_balancing) {
10253 if (need_decay)
10254 continue;
10255 break;
10256 }
10257
323af6de 10258 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10259
10260 need_serialize = sd->flags & SD_SERIALIZE;
10261 if (need_serialize) {
10262 if (!spin_trylock(&balancing))
10263 goto out;
10264 }
10265
10266 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10267 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10268 /*
10269 * The LBF_DST_PINNED logic could have changed
10270 * env->dst_cpu, so we can't know our idle
10271 * state even if we migrated tasks. Update it.
10272 */
10273 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 10274 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10275 }
10276 sd->last_balance = jiffies;
323af6de 10277 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10278 }
10279 if (need_serialize)
10280 spin_unlock(&balancing);
10281out:
10282 if (time_after(next_balance, sd->last_balance + interval)) {
10283 next_balance = sd->last_balance + interval;
10284 update_next_balance = 1;
10285 }
10286 }
10287 if (need_decay) {
10288 /*
10289 * Ensure the rq-wide value also decays but keep it at a
10290 * reasonable floor to avoid funnies with rq->avg_idle.
10291 */
10292 rq->max_idle_balance_cost =
10293 max((u64)sysctl_sched_migration_cost, max_cost);
10294 }
10295 rcu_read_unlock();
10296
10297 /*
10298 * next_balance will be updated only when there is a need.
10299 * When the cpu is attached to null domain for ex, it will not be
10300 * updated.
10301 */
7a82e5f5 10302 if (likely(update_next_balance))
af3fe03c
PZ
10303 rq->next_balance = next_balance;
10304
af3fe03c
PZ
10305}
10306
d987fc7f
MG
10307static inline int on_null_domain(struct rq *rq)
10308{
10309 return unlikely(!rcu_dereference_sched(rq->sd));
10310}
10311
3451d024 10312#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10313/*
10314 * idle load balancing details
83cd4fe2
VP
10315 * - When one of the busy CPUs notice that there may be an idle rebalancing
10316 * needed, they will kick the idle load balancer, which then does idle
10317 * load balancing for all the idle CPUs.
9b019acb
NP
10318 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10319 * anywhere yet.
83cd4fe2 10320 */
1e3c88bd 10321
3dd0337d 10322static inline int find_new_ilb(void)
1e3c88bd 10323{
9b019acb 10324 int ilb;
031e3bd8 10325 const struct cpumask *hk_mask;
1e3c88bd 10326
031e3bd8 10327 hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
1e3c88bd 10328
031e3bd8 10329 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
45da7a2b
PZ
10330
10331 if (ilb == smp_processor_id())
10332 continue;
10333
9b019acb
NP
10334 if (idle_cpu(ilb))
10335 return ilb;
10336 }
786d6dc7
SS
10337
10338 return nr_cpu_ids;
1e3c88bd 10339}
1e3c88bd 10340
83cd4fe2 10341/*
9b019acb
NP
10342 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10343 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10344 */
a4064fb6 10345static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10346{
10347 int ilb_cpu;
10348
3ea2f097
VG
10349 /*
10350 * Increase nohz.next_balance only when if full ilb is triggered but
10351 * not if we only update stats.
10352 */
10353 if (flags & NOHZ_BALANCE_KICK)
10354 nohz.next_balance = jiffies+1;
83cd4fe2 10355
3dd0337d 10356 ilb_cpu = find_new_ilb();
83cd4fe2 10357
0b005cf5
SS
10358 if (ilb_cpu >= nr_cpu_ids)
10359 return;
83cd4fe2 10360
19a1f5ec
PZ
10361 /*
10362 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10363 * the first flag owns it; cleared by nohz_csd_func().
10364 */
a4064fb6 10365 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10366 if (flags & NOHZ_KICK_MASK)
1c792db7 10367 return;
4550487a 10368
1c792db7 10369 /*
90b5363a 10370 * This way we generate an IPI on the target CPU which
1c792db7
SS
10371 * is idle. And the softirq performing nohz idle load balance
10372 * will be run before returning from the IPI.
10373 */
90b5363a 10374 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10375}
10376
10377/*
9f132742
VS
10378 * Current decision point for kicking the idle load balancer in the presence
10379 * of idle CPUs in the system.
4550487a
PZ
10380 */
10381static void nohz_balancer_kick(struct rq *rq)
10382{
10383 unsigned long now = jiffies;
10384 struct sched_domain_shared *sds;
10385 struct sched_domain *sd;
10386 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10387 unsigned int flags = 0;
4550487a
PZ
10388
10389 if (unlikely(rq->idle_balance))
10390 return;
10391
10392 /*
10393 * We may be recently in ticked or tickless idle mode. At the first
10394 * busy tick after returning from idle, we will update the busy stats.
10395 */
00357f5e 10396 nohz_balance_exit_idle(rq);
4550487a
PZ
10397
10398 /*
10399 * None are in tickless mode and hence no need for NOHZ idle load
10400 * balancing.
10401 */
10402 if (likely(!atomic_read(&nohz.nr_cpus)))
10403 return;
10404
f643ea22
VG
10405 if (READ_ONCE(nohz.has_blocked) &&
10406 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10407 flags = NOHZ_STATS_KICK;
10408
4550487a 10409 if (time_before(now, nohz.next_balance))
a4064fb6 10410 goto out;
4550487a 10411
a0fe2cf0 10412 if (rq->nr_running >= 2) {
efd984c4 10413 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
10414 goto out;
10415 }
10416
10417 rcu_read_lock();
4550487a
PZ
10418
10419 sd = rcu_dereference(rq->sd);
10420 if (sd) {
e25a7a94
VS
10421 /*
10422 * If there's a CFS task and the current CPU has reduced
10423 * capacity; kick the ILB to see if there's a better CPU to run
10424 * on.
10425 */
10426 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
efd984c4 10427 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
10428 goto unlock;
10429 }
10430 }
10431
011b27bb 10432 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10433 if (sd) {
b9a7b883
VS
10434 /*
10435 * When ASYM_PACKING; see if there's a more preferred CPU
10436 * currently idle; in which case, kick the ILB to move tasks
10437 * around.
10438 */
7edab78d 10439 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10440 if (sched_asym_prefer(i, cpu)) {
efd984c4 10441 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
10442 goto unlock;
10443 }
10444 }
10445 }
b9a7b883 10446
a0fe2cf0
VS
10447 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10448 if (sd) {
10449 /*
10450 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10451 * to run the misfit task on.
10452 */
10453 if (check_misfit_status(rq, sd)) {
efd984c4 10454 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
a0fe2cf0
VS
10455 goto unlock;
10456 }
b9a7b883
VS
10457
10458 /*
10459 * For asymmetric systems, we do not want to nicely balance
10460 * cache use, instead we want to embrace asymmetry and only
10461 * ensure tasks have enough CPU capacity.
10462 *
10463 * Skip the LLC logic because it's not relevant in that case.
10464 */
10465 goto unlock;
a0fe2cf0
VS
10466 }
10467
b9a7b883
VS
10468 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10469 if (sds) {
e25a7a94 10470 /*
b9a7b883
VS
10471 * If there is an imbalance between LLC domains (IOW we could
10472 * increase the overall cache use), we need some less-loaded LLC
10473 * domain to pull some load. Likewise, we may need to spread
10474 * load within the current LLC domain (e.g. packed SMT cores but
10475 * other CPUs are idle). We can't really know from here how busy
10476 * the others are - so just get a nohz balance going if it looks
10477 * like this LLC domain has tasks we could move.
e25a7a94 10478 */
b9a7b883
VS
10479 nr_busy = atomic_read(&sds->nr_busy_cpus);
10480 if (nr_busy > 1) {
efd984c4 10481 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
b9a7b883 10482 goto unlock;
4550487a
PZ
10483 }
10484 }
10485unlock:
10486 rcu_read_unlock();
10487out:
7fd7a9e0
VS
10488 if (READ_ONCE(nohz.needs_update))
10489 flags |= NOHZ_NEXT_KICK;
10490
a4064fb6
PZ
10491 if (flags)
10492 kick_ilb(flags);
83cd4fe2
VP
10493}
10494
00357f5e 10495static void set_cpu_sd_state_busy(int cpu)
71325960 10496{
00357f5e 10497 struct sched_domain *sd;
a22e47a4 10498
00357f5e
PZ
10499 rcu_read_lock();
10500 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10501
00357f5e
PZ
10502 if (!sd || !sd->nohz_idle)
10503 goto unlock;
10504 sd->nohz_idle = 0;
10505
10506 atomic_inc(&sd->shared->nr_busy_cpus);
10507unlock:
10508 rcu_read_unlock();
71325960
SS
10509}
10510
00357f5e
PZ
10511void nohz_balance_exit_idle(struct rq *rq)
10512{
10513 SCHED_WARN_ON(rq != this_rq());
10514
10515 if (likely(!rq->nohz_tick_stopped))
10516 return;
10517
10518 rq->nohz_tick_stopped = 0;
10519 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10520 atomic_dec(&nohz.nr_cpus);
10521
10522 set_cpu_sd_state_busy(rq->cpu);
10523}
10524
10525static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10526{
10527 struct sched_domain *sd;
69e1e811 10528
69e1e811 10529 rcu_read_lock();
0e369d75 10530 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10531
10532 if (!sd || sd->nohz_idle)
10533 goto unlock;
10534 sd->nohz_idle = 1;
10535
0e369d75 10536 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10537unlock:
69e1e811
SS
10538 rcu_read_unlock();
10539}
10540
1e3c88bd 10541/*
97fb7a0a 10542 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10543 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10544 */
c1cc017c 10545void nohz_balance_enter_idle(int cpu)
1e3c88bd 10546{
00357f5e
PZ
10547 struct rq *rq = cpu_rq(cpu);
10548
10549 SCHED_WARN_ON(cpu != smp_processor_id());
10550
97fb7a0a 10551 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10552 if (!cpu_active(cpu))
10553 return;
10554
387bc8b5 10555 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10556 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10557 return;
10558
f643ea22
VG
10559 /*
10560 * Can be set safely without rq->lock held
10561 * If a clear happens, it will have evaluated last additions because
10562 * rq->lock is held during the check and the clear
10563 */
10564 rq->has_blocked_load = 1;
10565
10566 /*
10567 * The tick is still stopped but load could have been added in the
10568 * meantime. We set the nohz.has_blocked flag to trig a check of the
10569 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10570 * of nohz.has_blocked can only happen after checking the new load
10571 */
00357f5e 10572 if (rq->nohz_tick_stopped)
f643ea22 10573 goto out;
1e3c88bd 10574
97fb7a0a 10575 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10576 if (on_null_domain(rq))
d987fc7f
MG
10577 return;
10578
00357f5e
PZ
10579 rq->nohz_tick_stopped = 1;
10580
c1cc017c
AS
10581 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10582 atomic_inc(&nohz.nr_cpus);
00357f5e 10583
f643ea22
VG
10584 /*
10585 * Ensures that if nohz_idle_balance() fails to observe our
10586 * @idle_cpus_mask store, it must observe the @has_blocked
7fd7a9e0 10587 * and @needs_update stores.
f643ea22
VG
10588 */
10589 smp_mb__after_atomic();
10590
00357f5e 10591 set_cpu_sd_state_idle(cpu);
f643ea22 10592
7fd7a9e0 10593 WRITE_ONCE(nohz.needs_update, 1);
f643ea22
VG
10594out:
10595 /*
10596 * Each time a cpu enter idle, we assume that it has blocked load and
10597 * enable the periodic update of the load of idle cpus
10598 */
10599 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10600}
1e3c88bd 10601
3f5ad914
Y
10602static bool update_nohz_stats(struct rq *rq)
10603{
10604 unsigned int cpu = rq->cpu;
10605
10606 if (!rq->has_blocked_load)
10607 return false;
10608
10609 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10610 return false;
10611
10612 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10613 return true;
10614
10615 update_blocked_averages(cpu);
10616
10617 return rq->has_blocked_load;
10618}
10619
1e3c88bd 10620/*
31e77c93
VG
10621 * Internal function that runs load balance for all idle cpus. The load balance
10622 * can be a simple update of blocked load or a complete load balance with
10623 * tasks movement depending of flags.
1e3c88bd 10624 */
ab2dde5e 10625static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
31e77c93 10626 enum cpu_idle_type idle)
83cd4fe2 10627{
c5afb6a8 10628 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10629 unsigned long now = jiffies;
10630 unsigned long next_balance = now + 60*HZ;
f643ea22 10631 bool has_blocked_load = false;
c5afb6a8 10632 int update_next_balance = 0;
b7031a02 10633 int this_cpu = this_rq->cpu;
b7031a02
PZ
10634 int balance_cpu;
10635 struct rq *rq;
83cd4fe2 10636
b7031a02 10637 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10638
f643ea22
VG
10639 /*
10640 * We assume there will be no idle load after this update and clear
10641 * the has_blocked flag. If a cpu enters idle in the mean time, it will
7fd7a9e0 10642 * set the has_blocked flag and trigger another update of idle load.
f643ea22
VG
10643 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10644 * setting the flag, we are sure to not clear the state and not
10645 * check the load of an idle cpu.
7fd7a9e0
VS
10646 *
10647 * Same applies to idle_cpus_mask vs needs_update.
f643ea22 10648 */
efd984c4
VS
10649 if (flags & NOHZ_STATS_KICK)
10650 WRITE_ONCE(nohz.has_blocked, 0);
7fd7a9e0
VS
10651 if (flags & NOHZ_NEXT_KICK)
10652 WRITE_ONCE(nohz.needs_update, 0);
f643ea22
VG
10653
10654 /*
10655 * Ensures that if we miss the CPU, we must see the has_blocked
10656 * store from nohz_balance_enter_idle().
10657 */
10658 smp_mb();
10659
7a82e5f5
VG
10660 /*
10661 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10662 * chance for other idle cpu to pull load.
10663 */
10664 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10665 if (!idle_cpu(balance_cpu))
83cd4fe2
VP
10666 continue;
10667
10668 /*
97fb7a0a
IM
10669 * If this CPU gets work to do, stop the load balancing
10670 * work being done for other CPUs. Next load
83cd4fe2
VP
10671 * balancing owner will pick it up.
10672 */
f643ea22 10673 if (need_resched()) {
efd984c4
VS
10674 if (flags & NOHZ_STATS_KICK)
10675 has_blocked_load = true;
7fd7a9e0
VS
10676 if (flags & NOHZ_NEXT_KICK)
10677 WRITE_ONCE(nohz.needs_update, 1);
f643ea22
VG
10678 goto abort;
10679 }
83cd4fe2 10680
5ed4f1d9
VG
10681 rq = cpu_rq(balance_cpu);
10682
efd984c4
VS
10683 if (flags & NOHZ_STATS_KICK)
10684 has_blocked_load |= update_nohz_stats(rq);
f643ea22 10685
ed61bbc6
TC
10686 /*
10687 * If time for next balance is due,
10688 * do the balance.
10689 */
10690 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10691 struct rq_flags rf;
10692
31e77c93 10693 rq_lock_irqsave(rq, &rf);
ed61bbc6 10694 update_rq_clock(rq);
31e77c93 10695 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10696
b7031a02
PZ
10697 if (flags & NOHZ_BALANCE_KICK)
10698 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10699 }
83cd4fe2 10700
c5afb6a8
VG
10701 if (time_after(next_balance, rq->next_balance)) {
10702 next_balance = rq->next_balance;
10703 update_next_balance = 1;
10704 }
83cd4fe2 10705 }
c5afb6a8 10706
3ea2f097
VG
10707 /*
10708 * next_balance will be updated only when there is a need.
10709 * When the CPU is attached to null domain for ex, it will not be
10710 * updated.
10711 */
10712 if (likely(update_next_balance))
10713 nohz.next_balance = next_balance;
10714
efd984c4
VS
10715 if (flags & NOHZ_STATS_KICK)
10716 WRITE_ONCE(nohz.next_blocked,
10717 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
f643ea22
VG
10718
10719abort:
10720 /* There is still blocked load, enable periodic update */
10721 if (has_blocked_load)
10722 WRITE_ONCE(nohz.has_blocked, 1);
31e77c93
VG
10723}
10724
10725/*
10726 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10727 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10728 */
10729static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10730{
19a1f5ec 10731 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10732
19a1f5ec 10733 if (!flags)
31e77c93
VG
10734 return false;
10735
19a1f5ec 10736 this_rq->nohz_idle_balance = 0;
31e77c93 10737
19a1f5ec 10738 if (idle != CPU_IDLE)
31e77c93
VG
10739 return false;
10740
10741 _nohz_idle_balance(this_rq, flags, idle);
10742
b7031a02 10743 return true;
83cd4fe2 10744}
31e77c93 10745
c6f88654
VG
10746/*
10747 * Check if we need to run the ILB for updating blocked load before entering
10748 * idle state.
10749 */
10750void nohz_run_idle_balance(int cpu)
10751{
10752 unsigned int flags;
10753
10754 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10755
10756 /*
10757 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10758 * (ie NOHZ_STATS_KICK set) and will do the same.
10759 */
10760 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10761 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10762}
10763
31e77c93
VG
10764static void nohz_newidle_balance(struct rq *this_rq)
10765{
10766 int this_cpu = this_rq->cpu;
10767
10768 /*
10769 * This CPU doesn't want to be disturbed by scheduler
10770 * housekeeping
10771 */
10772 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10773 return;
10774
10775 /* Will wake up very soon. No time for doing anything else*/
10776 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10777 return;
10778
10779 /* Don't need to update blocked load of idle CPUs*/
10780 if (!READ_ONCE(nohz.has_blocked) ||
10781 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10782 return;
10783
31e77c93 10784 /*
c6f88654
VG
10785 * Set the need to trigger ILB in order to update blocked load
10786 * before entering idle state.
31e77c93 10787 */
c6f88654 10788 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
31e77c93
VG
10789}
10790
dd707247
PZ
10791#else /* !CONFIG_NO_HZ_COMMON */
10792static inline void nohz_balancer_kick(struct rq *rq) { }
10793
31e77c93 10794static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10795{
10796 return false;
10797}
31e77c93
VG
10798
10799static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10800#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10801
47ea5412 10802/*
5b78f2dc 10803 * newidle_balance is called by schedule() if this_cpu is about to become
47ea5412 10804 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10805 *
10806 * Returns:
10807 * < 0 - we released the lock and there are !fair tasks present
10808 * 0 - failed, no new tasks
10809 * > 0 - success, new (fair) tasks present
47ea5412 10810 */
d91cecc1 10811static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10812{
10813 unsigned long next_balance = jiffies + HZ;
10814 int this_cpu = this_rq->cpu;
9e9af819 10815 u64 t0, t1, curr_cost = 0;
47ea5412
PZ
10816 struct sched_domain *sd;
10817 int pulled_task = 0;
47ea5412 10818
5ba553ef 10819 update_misfit_status(NULL, this_rq);
e5e678e4
RR
10820
10821 /*
10822 * There is a task waiting to run. No need to search for one.
10823 * Return 0; the task will be enqueued when switching to idle.
10824 */
10825 if (this_rq->ttwu_pending)
10826 return 0;
10827
47ea5412
PZ
10828 /*
10829 * We must set idle_stamp _before_ calling idle_balance(), such that we
10830 * measure the duration of idle_balance() as idle time.
10831 */
10832 this_rq->idle_stamp = rq_clock(this_rq);
10833
10834 /*
10835 * Do not pull tasks towards !active CPUs...
10836 */
10837 if (!cpu_active(this_cpu))
10838 return 0;
10839
10840 /*
10841 * This is OK, because current is on_cpu, which avoids it being picked
10842 * for load-balance and preemption/IRQs are still disabled avoiding
10843 * further scheduler activity on it and we're being very careful to
10844 * re-start the picking loop.
10845 */
10846 rq_unpin_lock(this_rq, rf);
10847
9d783c8d
VG
10848 rcu_read_lock();
10849 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10850
c5b0a7ee 10851 if (!READ_ONCE(this_rq->rd->overload) ||
9d783c8d 10852 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
31e77c93 10853
47ea5412
PZ
10854 if (sd)
10855 update_next_balance(sd, &next_balance);
10856 rcu_read_unlock();
10857
10858 goto out;
10859 }
9d783c8d 10860 rcu_read_unlock();
47ea5412 10861
5cb9eaa3 10862 raw_spin_rq_unlock(this_rq);
47ea5412 10863
9e9af819 10864 t0 = sched_clock_cpu(this_cpu);
47ea5412 10865 update_blocked_averages(this_cpu);
9e9af819 10866
47ea5412
PZ
10867 rcu_read_lock();
10868 for_each_domain(this_cpu, sd) {
10869 int continue_balancing = 1;
9e9af819 10870 u64 domain_cost;
47ea5412 10871
8ea9183d
VG
10872 update_next_balance(sd, &next_balance);
10873
10874 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
47ea5412 10875 break;
47ea5412
PZ
10876
10877 if (sd->flags & SD_BALANCE_NEWIDLE) {
47ea5412
PZ
10878
10879 pulled_task = load_balance(this_cpu, this_rq,
10880 sd, CPU_NEWLY_IDLE,
10881 &continue_balancing);
10882
9e9af819
VG
10883 t1 = sched_clock_cpu(this_cpu);
10884 domain_cost = t1 - t0;
e60b56e4 10885 update_newidle_cost(sd, domain_cost);
47ea5412
PZ
10886
10887 curr_cost += domain_cost;
9e9af819 10888 t0 = t1;
47ea5412
PZ
10889 }
10890
47ea5412
PZ
10891 /*
10892 * Stop searching for tasks to pull if there are
10893 * now runnable tasks on this rq.
10894 */
e5e678e4
RR
10895 if (pulled_task || this_rq->nr_running > 0 ||
10896 this_rq->ttwu_pending)
47ea5412
PZ
10897 break;
10898 }
10899 rcu_read_unlock();
10900
5cb9eaa3 10901 raw_spin_rq_lock(this_rq);
47ea5412
PZ
10902
10903 if (curr_cost > this_rq->max_idle_balance_cost)
10904 this_rq->max_idle_balance_cost = curr_cost;
10905
10906 /*
10907 * While browsing the domains, we released the rq lock, a task could
10908 * have been enqueued in the meantime. Since we're not going idle,
10909 * pretend we pulled a task.
10910 */
10911 if (this_rq->cfs.h_nr_running && !pulled_task)
10912 pulled_task = 1;
10913
47ea5412
PZ
10914 /* Is there a task of a high priority class? */
10915 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10916 pulled_task = -1;
10917
6553fc18
VG
10918out:
10919 /* Move the next balance forward */
10920 if (time_after(this_rq->next_balance, next_balance))
10921 this_rq->next_balance = next_balance;
10922
47ea5412
PZ
10923 if (pulled_task)
10924 this_rq->idle_stamp = 0;
0826530d
VG
10925 else
10926 nohz_newidle_balance(this_rq);
47ea5412
PZ
10927
10928 rq_repin_lock(this_rq, rf);
10929
10930 return pulled_task;
10931}
10932
83cd4fe2
VP
10933/*
10934 * run_rebalance_domains is triggered when needed from the scheduler tick.
10935 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10936 */
0766f788 10937static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10938{
208cb16b 10939 struct rq *this_rq = this_rq();
6eb57e0d 10940 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10941 CPU_IDLE : CPU_NOT_IDLE;
10942
1e3c88bd 10943 /*
97fb7a0a
IM
10944 * If this CPU has a pending nohz_balance_kick, then do the
10945 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10946 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10947 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10948 * load balance only within the local sched_domain hierarchy
10949 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10950 */
b7031a02
PZ
10951 if (nohz_idle_balance(this_rq, idle))
10952 return;
10953
10954 /* normal load balance */
10955 update_blocked_averages(this_rq->cpu);
d4573c3e 10956 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10957}
10958
1e3c88bd
PZ
10959/*
10960 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10961 */
7caff66f 10962void trigger_load_balance(struct rq *rq)
1e3c88bd 10963{
e0b257c3
AMB
10964 /*
10965 * Don't need to rebalance while attached to NULL domain or
10966 * runqueue CPU is not active
10967 */
10968 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
c726099e
DL
10969 return;
10970
10971 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10972 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10973
10974 nohz_balancer_kick(rq);
1e3c88bd
PZ
10975}
10976
0bcdcf28
CE
10977static void rq_online_fair(struct rq *rq)
10978{
10979 update_sysctl();
0e59bdae
KT
10980
10981 update_runtime_enabled(rq);
0bcdcf28
CE
10982}
10983
10984static void rq_offline_fair(struct rq *rq)
10985{
10986 update_sysctl();
a4c96ae3
PB
10987
10988 /* Ensure any throttled groups are reachable by pick_next_task */
10989 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10990}
10991
55e12e5e 10992#endif /* CONFIG_SMP */
e1d1484f 10993
8039e96f
VP
10994#ifdef CONFIG_SCHED_CORE
10995static inline bool
10996__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10997{
10998 u64 slice = sched_slice(cfs_rq_of(se), se);
10999 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11000
11001 return (rtime * min_nr_tasks > slice);
11002}
11003
11004#define MIN_NR_TASKS_DURING_FORCEIDLE 2
11005static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11006{
11007 if (!sched_core_enabled(rq))
11008 return;
11009
11010 /*
11011 * If runqueue has only one task which used up its slice and
11012 * if the sibling is forced idle, then trigger schedule to
11013 * give forced idle task a chance.
11014 *
11015 * sched_slice() considers only this active rq and it gets the
11016 * whole slice. But during force idle, we have siblings acting
11017 * like a single runqueue and hence we need to consider runnable
cc00c198 11018 * tasks on this CPU and the forced idle CPU. Ideally, we should
8039e96f 11019 * go through the forced idle rq, but that would be a perf hit.
cc00c198 11020 * We can assume that the forced idle CPU has at least
8039e96f 11021 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
cc00c198 11022 * if we need to give up the CPU.
8039e96f 11023 */
4feee7d1 11024 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
8039e96f
VP
11025 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11026 resched_curr(rq);
11027}
c6047c2e
JFG
11028
11029/*
11030 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11031 */
11032static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11033{
11034 for_each_sched_entity(se) {
11035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11036
11037 if (forceidle) {
11038 if (cfs_rq->forceidle_seq == fi_seq)
11039 break;
11040 cfs_rq->forceidle_seq = fi_seq;
11041 }
11042
11043 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11044 }
11045}
11046
11047void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11048{
11049 struct sched_entity *se = &p->se;
11050
11051 if (p->sched_class != &fair_sched_class)
11052 return;
11053
11054 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11055}
11056
11057bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11058{
11059 struct rq *rq = task_rq(a);
11060 struct sched_entity *sea = &a->se;
11061 struct sched_entity *seb = &b->se;
11062 struct cfs_rq *cfs_rqa;
11063 struct cfs_rq *cfs_rqb;
11064 s64 delta;
11065
11066 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11067
11068#ifdef CONFIG_FAIR_GROUP_SCHED
11069 /*
11070 * Find an se in the hierarchy for tasks a and b, such that the se's
11071 * are immediate siblings.
11072 */
11073 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11074 int sea_depth = sea->depth;
11075 int seb_depth = seb->depth;
11076
11077 if (sea_depth >= seb_depth)
11078 sea = parent_entity(sea);
11079 if (sea_depth <= seb_depth)
11080 seb = parent_entity(seb);
11081 }
11082
11083 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11084 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11085
11086 cfs_rqa = sea->cfs_rq;
11087 cfs_rqb = seb->cfs_rq;
11088#else
11089 cfs_rqa = &task_rq(a)->cfs;
11090 cfs_rqb = &task_rq(b)->cfs;
11091#endif
11092
11093 /*
11094 * Find delta after normalizing se's vruntime with its cfs_rq's
11095 * min_vruntime_fi, which would have been updated in prior calls
11096 * to se_fi_update().
11097 */
11098 delta = (s64)(sea->vruntime - seb->vruntime) +
11099 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11100
11101 return delta > 0;
11102}
8039e96f
VP
11103#else
11104static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11105#endif
11106
bf0f6f24 11107/*
d84b3131
FW
11108 * scheduler tick hitting a task of our scheduling class.
11109 *
11110 * NOTE: This function can be called remotely by the tick offload that
11111 * goes along full dynticks. Therefore no local assumption can be made
11112 * and everything must be accessed through the @rq and @curr passed in
11113 * parameters.
bf0f6f24 11114 */
8f4d37ec 11115static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
11116{
11117 struct cfs_rq *cfs_rq;
11118 struct sched_entity *se = &curr->se;
11119
11120 for_each_sched_entity(se) {
11121 cfs_rq = cfs_rq_of(se);
8f4d37ec 11122 entity_tick(cfs_rq, se, queued);
bf0f6f24 11123 }
18bf2805 11124
b52da86e 11125 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 11126 task_tick_numa(rq, curr);
3b1baa64
MR
11127
11128 update_misfit_status(curr, rq);
2802bf3c 11129 update_overutilized_status(task_rq(curr));
8039e96f
VP
11130
11131 task_tick_core(rq, curr);
bf0f6f24
IM
11132}
11133
11134/*
cd29fe6f
PZ
11135 * called on fork with the child task as argument from the parent's context
11136 * - child not yet on the tasklist
11137 * - preemption disabled
bf0f6f24 11138 */
cd29fe6f 11139static void task_fork_fair(struct task_struct *p)
bf0f6f24 11140{
4fc420c9
DN
11141 struct cfs_rq *cfs_rq;
11142 struct sched_entity *se = &p->se, *curr;
cd29fe6f 11143 struct rq *rq = this_rq();
8a8c69c3 11144 struct rq_flags rf;
bf0f6f24 11145
8a8c69c3 11146 rq_lock(rq, &rf);
861d034e
PZ
11147 update_rq_clock(rq);
11148
4fc420c9
DN
11149 cfs_rq = task_cfs_rq(current);
11150 curr = cfs_rq->curr;
e210bffd
PZ
11151 if (curr) {
11152 update_curr(cfs_rq);
b5d9d734 11153 se->vruntime = curr->vruntime;
e210bffd 11154 }
aeb73b04 11155 place_entity(cfs_rq, se, 1);
4d78e7b6 11156
cd29fe6f 11157 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 11158 /*
edcb60a3
IM
11159 * Upon rescheduling, sched_class::put_prev_task() will place
11160 * 'current' within the tree based on its new key value.
11161 */
4d78e7b6 11162 swap(curr->vruntime, se->vruntime);
8875125e 11163 resched_curr(rq);
4d78e7b6 11164 }
bf0f6f24 11165
88ec22d3 11166 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 11167 rq_unlock(rq, &rf);
bf0f6f24
IM
11168}
11169
cb469845
SR
11170/*
11171 * Priority of the task has changed. Check to see if we preempt
11172 * the current task.
11173 */
da7a735e
PZ
11174static void
11175prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 11176{
da0c1e65 11177 if (!task_on_rq_queued(p))
da7a735e
PZ
11178 return;
11179
7c2e8bbd
FW
11180 if (rq->cfs.nr_running == 1)
11181 return;
11182
cb469845
SR
11183 /*
11184 * Reschedule if we are currently running on this runqueue and
11185 * our priority decreased, or if we are not currently running on
11186 * this runqueue and our priority is higher than the current's
11187 */
65bcf072 11188 if (task_current(rq, p)) {
cb469845 11189 if (p->prio > oldprio)
8875125e 11190 resched_curr(rq);
cb469845 11191 } else
15afe09b 11192 check_preempt_curr(rq, p, 0);
cb469845
SR
11193}
11194
daa59407 11195static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
11196{
11197 struct sched_entity *se = &p->se;
da7a735e
PZ
11198
11199 /*
daa59407
BP
11200 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11201 * the dequeue_entity(.flags=0) will already have normalized the
11202 * vruntime.
11203 */
11204 if (p->on_rq)
11205 return true;
11206
11207 /*
11208 * When !on_rq, vruntime of the task has usually NOT been normalized.
11209 * But there are some cases where it has already been normalized:
da7a735e 11210 *
daa59407
BP
11211 * - A forked child which is waiting for being woken up by
11212 * wake_up_new_task().
11213 * - A task which has been woken up by try_to_wake_up() and
11214 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 11215 */
d0cdb3ce 11216 if (!se->sum_exec_runtime ||
2f064a59 11217 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
11218 return true;
11219
11220 return false;
11221}
11222
09a43ace
VG
11223#ifdef CONFIG_FAIR_GROUP_SCHED
11224/*
11225 * Propagate the changes of the sched_entity across the tg tree to make it
11226 * visible to the root
11227 */
11228static void propagate_entity_cfs_rq(struct sched_entity *se)
11229{
11230 struct cfs_rq *cfs_rq;
11231
0258bdfa
OU
11232 list_add_leaf_cfs_rq(cfs_rq_of(se));
11233
09a43ace
VG
11234 /* Start to propagate at parent */
11235 se = se->parent;
11236
11237 for_each_sched_entity(se) {
11238 cfs_rq = cfs_rq_of(se);
11239
0258bdfa
OU
11240 if (!cfs_rq_throttled(cfs_rq)){
11241 update_load_avg(cfs_rq, se, UPDATE_TG);
11242 list_add_leaf_cfs_rq(cfs_rq);
11243 continue;
11244 }
09a43ace 11245
0258bdfa
OU
11246 if (list_add_leaf_cfs_rq(cfs_rq))
11247 break;
09a43ace
VG
11248 }
11249}
11250#else
11251static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11252#endif
11253
df217913 11254static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 11255{
daa59407
BP
11256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11257
9d89c257 11258 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 11259 update_load_avg(cfs_rq, se, 0);
a05e8c51 11260 detach_entity_load_avg(cfs_rq, se);
fe749158 11261 update_tg_load_avg(cfs_rq);
09a43ace 11262 propagate_entity_cfs_rq(se);
da7a735e
PZ
11263}
11264
df217913 11265static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 11266{
daa59407 11267 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
11268
11269#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
11270 /*
11271 * Since the real-depth could have been changed (only FAIR
11272 * class maintain depth value), reset depth properly.
11273 */
11274 se->depth = se->parent ? se->parent->depth + 1 : 0;
11275#endif
7855a35a 11276
df217913 11277 /* Synchronize entity with its cfs_rq */
88c0616e 11278 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 11279 attach_entity_load_avg(cfs_rq, se);
fe749158 11280 update_tg_load_avg(cfs_rq);
09a43ace 11281 propagate_entity_cfs_rq(se);
df217913
VG
11282}
11283
11284static void detach_task_cfs_rq(struct task_struct *p)
11285{
11286 struct sched_entity *se = &p->se;
11287 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11288
11289 if (!vruntime_normalized(p)) {
11290 /*
11291 * Fix up our vruntime so that the current sleep doesn't
11292 * cause 'unlimited' sleep bonus.
11293 */
11294 place_entity(cfs_rq, se, 0);
11295 se->vruntime -= cfs_rq->min_vruntime;
11296 }
11297
11298 detach_entity_cfs_rq(se);
11299}
11300
11301static void attach_task_cfs_rq(struct task_struct *p)
11302{
11303 struct sched_entity *se = &p->se;
11304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11305
11306 attach_entity_cfs_rq(se);
daa59407
BP
11307
11308 if (!vruntime_normalized(p))
11309 se->vruntime += cfs_rq->min_vruntime;
11310}
6efdb105 11311
daa59407
BP
11312static void switched_from_fair(struct rq *rq, struct task_struct *p)
11313{
11314 detach_task_cfs_rq(p);
11315}
11316
11317static void switched_to_fair(struct rq *rq, struct task_struct *p)
11318{
11319 attach_task_cfs_rq(p);
7855a35a 11320
daa59407 11321 if (task_on_rq_queued(p)) {
7855a35a 11322 /*
daa59407
BP
11323 * We were most likely switched from sched_rt, so
11324 * kick off the schedule if running, otherwise just see
11325 * if we can still preempt the current task.
7855a35a 11326 */
65bcf072 11327 if (task_current(rq, p))
daa59407
BP
11328 resched_curr(rq);
11329 else
11330 check_preempt_curr(rq, p, 0);
7855a35a 11331 }
cb469845
SR
11332}
11333
83b699ed
SV
11334/* Account for a task changing its policy or group.
11335 *
11336 * This routine is mostly called to set cfs_rq->curr field when a task
11337 * migrates between groups/classes.
11338 */
a0e813f2 11339static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 11340{
03b7fad1
PZ
11341 struct sched_entity *se = &p->se;
11342
11343#ifdef CONFIG_SMP
11344 if (task_on_rq_queued(p)) {
11345 /*
11346 * Move the next running task to the front of the list, so our
11347 * cfs_tasks list becomes MRU one.
11348 */
11349 list_move(&se->group_node, &rq->cfs_tasks);
11350 }
11351#endif
83b699ed 11352
ec12cb7f
PT
11353 for_each_sched_entity(se) {
11354 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11355
11356 set_next_entity(cfs_rq, se);
11357 /* ensure bandwidth has been allocated on our new cfs_rq */
11358 account_cfs_rq_runtime(cfs_rq, 0);
11359 }
83b699ed
SV
11360}
11361
029632fb
PZ
11362void init_cfs_rq(struct cfs_rq *cfs_rq)
11363{
bfb06889 11364 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
11365 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11366#ifndef CONFIG_64BIT
11367 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11368#endif
141965c7 11369#ifdef CONFIG_SMP
2a2f5d4e 11370 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 11371#endif
029632fb
PZ
11372}
11373
810b3817 11374#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
11375static void task_set_group_fair(struct task_struct *p)
11376{
11377 struct sched_entity *se = &p->se;
11378
11379 set_task_rq(p, task_cpu(p));
11380 se->depth = se->parent ? se->parent->depth + 1 : 0;
11381}
11382
bc54da21 11383static void task_move_group_fair(struct task_struct *p)
810b3817 11384{
daa59407 11385 detach_task_cfs_rq(p);
b2b5ce02 11386 set_task_rq(p, task_cpu(p));
6efdb105
BP
11387
11388#ifdef CONFIG_SMP
11389 /* Tell se's cfs_rq has been changed -- migrated */
11390 p->se.avg.last_update_time = 0;
11391#endif
daa59407 11392 attach_task_cfs_rq(p);
810b3817 11393}
029632fb 11394
ea86cb4b
VG
11395static void task_change_group_fair(struct task_struct *p, int type)
11396{
11397 switch (type) {
11398 case TASK_SET_GROUP:
11399 task_set_group_fair(p);
11400 break;
11401
11402 case TASK_MOVE_GROUP:
11403 task_move_group_fair(p);
11404 break;
11405 }
11406}
11407
029632fb
PZ
11408void free_fair_sched_group(struct task_group *tg)
11409{
11410 int i;
11411
029632fb
PZ
11412 for_each_possible_cpu(i) {
11413 if (tg->cfs_rq)
11414 kfree(tg->cfs_rq[i]);
6fe1f348 11415 if (tg->se)
029632fb
PZ
11416 kfree(tg->se[i]);
11417 }
11418
11419 kfree(tg->cfs_rq);
11420 kfree(tg->se);
11421}
11422
11423int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11424{
029632fb 11425 struct sched_entity *se;
b7fa30c9 11426 struct cfs_rq *cfs_rq;
029632fb
PZ
11427 int i;
11428
6396bb22 11429 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
11430 if (!tg->cfs_rq)
11431 goto err;
6396bb22 11432 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
11433 if (!tg->se)
11434 goto err;
11435
11436 tg->shares = NICE_0_LOAD;
11437
11438 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11439
11440 for_each_possible_cpu(i) {
11441 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11442 GFP_KERNEL, cpu_to_node(i));
11443 if (!cfs_rq)
11444 goto err;
11445
ceeadb83 11446 se = kzalloc_node(sizeof(struct sched_entity_stats),
029632fb
PZ
11447 GFP_KERNEL, cpu_to_node(i));
11448 if (!se)
11449 goto err_free_rq;
11450
11451 init_cfs_rq(cfs_rq);
11452 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11453 init_entity_runnable_average(se);
029632fb
PZ
11454 }
11455
11456 return 1;
11457
11458err_free_rq:
11459 kfree(cfs_rq);
11460err:
11461 return 0;
11462}
11463
8663e24d
PZ
11464void online_fair_sched_group(struct task_group *tg)
11465{
11466 struct sched_entity *se;
a46d14ec 11467 struct rq_flags rf;
8663e24d
PZ
11468 struct rq *rq;
11469 int i;
11470
11471 for_each_possible_cpu(i) {
11472 rq = cpu_rq(i);
11473 se = tg->se[i];
a46d14ec 11474 rq_lock_irq(rq, &rf);
4126bad6 11475 update_rq_clock(rq);
d0326691 11476 attach_entity_cfs_rq(se);
55e16d30 11477 sync_throttle(tg, i);
a46d14ec 11478 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11479 }
11480}
11481
6fe1f348 11482void unregister_fair_sched_group(struct task_group *tg)
029632fb 11483{
029632fb 11484 unsigned long flags;
6fe1f348
PZ
11485 struct rq *rq;
11486 int cpu;
029632fb 11487
b027789e
MK
11488 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11489
6fe1f348
PZ
11490 for_each_possible_cpu(cpu) {
11491 if (tg->se[cpu])
11492 remove_entity_load_avg(tg->se[cpu]);
029632fb 11493
6fe1f348
PZ
11494 /*
11495 * Only empty task groups can be destroyed; so we can speculatively
11496 * check on_list without danger of it being re-added.
11497 */
11498 if (!tg->cfs_rq[cpu]->on_list)
11499 continue;
11500
11501 rq = cpu_rq(cpu);
11502
5cb9eaa3 11503 raw_spin_rq_lock_irqsave(rq, flags);
6fe1f348 11504 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5cb9eaa3 11505 raw_spin_rq_unlock_irqrestore(rq, flags);
6fe1f348 11506 }
029632fb
PZ
11507}
11508
11509void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11510 struct sched_entity *se, int cpu,
11511 struct sched_entity *parent)
11512{
11513 struct rq *rq = cpu_rq(cpu);
11514
11515 cfs_rq->tg = tg;
11516 cfs_rq->rq = rq;
029632fb
PZ
11517 init_cfs_rq_runtime(cfs_rq);
11518
11519 tg->cfs_rq[cpu] = cfs_rq;
11520 tg->se[cpu] = se;
11521
11522 /* se could be NULL for root_task_group */
11523 if (!se)
11524 return;
11525
fed14d45 11526 if (!parent) {
029632fb 11527 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11528 se->depth = 0;
11529 } else {
029632fb 11530 se->cfs_rq = parent->my_q;
fed14d45
PZ
11531 se->depth = parent->depth + 1;
11532 }
029632fb
PZ
11533
11534 se->my_q = cfs_rq;
0ac9b1c2
PT
11535 /* guarantee group entities always have weight */
11536 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11537 se->parent = parent;
11538}
11539
11540static DEFINE_MUTEX(shares_mutex);
11541
30400039 11542static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
029632fb
PZ
11543{
11544 int i;
029632fb 11545
30400039
JD
11546 lockdep_assert_held(&shares_mutex);
11547
029632fb
PZ
11548 /*
11549 * We can't change the weight of the root cgroup.
11550 */
11551 if (!tg->se[0])
11552 return -EINVAL;
11553
11554 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11555
029632fb 11556 if (tg->shares == shares)
30400039 11557 return 0;
029632fb
PZ
11558
11559 tg->shares = shares;
11560 for_each_possible_cpu(i) {
11561 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11562 struct sched_entity *se = tg->se[i];
11563 struct rq_flags rf;
029632fb 11564
029632fb 11565 /* Propagate contribution to hierarchy */
8a8c69c3 11566 rq_lock_irqsave(rq, &rf);
71b1da46 11567 update_rq_clock(rq);
89ee048f 11568 for_each_sched_entity(se) {
88c0616e 11569 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11570 update_cfs_group(se);
89ee048f 11571 }
8a8c69c3 11572 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11573 }
11574
30400039
JD
11575 return 0;
11576}
11577
11578int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11579{
11580 int ret;
11581
11582 mutex_lock(&shares_mutex);
11583 if (tg_is_idle(tg))
11584 ret = -EINVAL;
11585 else
11586 ret = __sched_group_set_shares(tg, shares);
11587 mutex_unlock(&shares_mutex);
11588
11589 return ret;
11590}
11591
11592int sched_group_set_idle(struct task_group *tg, long idle)
11593{
11594 int i;
11595
11596 if (tg == &root_task_group)
11597 return -EINVAL;
11598
11599 if (idle < 0 || idle > 1)
11600 return -EINVAL;
11601
11602 mutex_lock(&shares_mutex);
11603
11604 if (tg->idle == idle) {
11605 mutex_unlock(&shares_mutex);
11606 return 0;
11607 }
11608
11609 tg->idle = idle;
11610
11611 for_each_possible_cpu(i) {
11612 struct rq *rq = cpu_rq(i);
11613 struct sched_entity *se = tg->se[i];
a480adde 11614 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
30400039
JD
11615 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11616 long idle_task_delta;
11617 struct rq_flags rf;
11618
11619 rq_lock_irqsave(rq, &rf);
11620
11621 grp_cfs_rq->idle = idle;
11622 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11623 goto next_cpu;
11624
a480adde
JD
11625 if (se->on_rq) {
11626 parent_cfs_rq = cfs_rq_of(se);
11627 if (cfs_rq_is_idle(grp_cfs_rq))
11628 parent_cfs_rq->idle_nr_running++;
11629 else
11630 parent_cfs_rq->idle_nr_running--;
11631 }
11632
30400039
JD
11633 idle_task_delta = grp_cfs_rq->h_nr_running -
11634 grp_cfs_rq->idle_h_nr_running;
11635 if (!cfs_rq_is_idle(grp_cfs_rq))
11636 idle_task_delta *= -1;
11637
11638 for_each_sched_entity(se) {
11639 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11640
11641 if (!se->on_rq)
11642 break;
11643
11644 cfs_rq->idle_h_nr_running += idle_task_delta;
11645
11646 /* Already accounted at parent level and above. */
11647 if (cfs_rq_is_idle(cfs_rq))
11648 break;
11649 }
11650
11651next_cpu:
11652 rq_unlock_irqrestore(rq, &rf);
11653 }
11654
11655 /* Idle groups have minimum weight. */
11656 if (tg_is_idle(tg))
11657 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11658 else
11659 __sched_group_set_shares(tg, NICE_0_LOAD);
11660
029632fb
PZ
11661 mutex_unlock(&shares_mutex);
11662 return 0;
11663}
30400039 11664
029632fb
PZ
11665#else /* CONFIG_FAIR_GROUP_SCHED */
11666
11667void free_fair_sched_group(struct task_group *tg) { }
11668
11669int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11670{
11671 return 1;
11672}
11673
8663e24d
PZ
11674void online_fair_sched_group(struct task_group *tg) { }
11675
6fe1f348 11676void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11677
11678#endif /* CONFIG_FAIR_GROUP_SCHED */
11679
810b3817 11680
6d686f45 11681static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11682{
11683 struct sched_entity *se = &task->se;
0d721cea
PW
11684 unsigned int rr_interval = 0;
11685
11686 /*
11687 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11688 * idle runqueue:
11689 */
0d721cea 11690 if (rq->cfs.load.weight)
a59f4e07 11691 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11692
11693 return rr_interval;
11694}
11695
bf0f6f24
IM
11696/*
11697 * All the scheduling class methods:
11698 */
43c31ac0
PZ
11699DEFINE_SCHED_CLASS(fair) = {
11700
bf0f6f24
IM
11701 .enqueue_task = enqueue_task_fair,
11702 .dequeue_task = dequeue_task_fair,
11703 .yield_task = yield_task_fair,
d95f4122 11704 .yield_to_task = yield_to_task_fair,
bf0f6f24 11705
2e09bf55 11706 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11707
98c2f700 11708 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11709 .put_prev_task = put_prev_task_fair,
03b7fad1 11710 .set_next_task = set_next_task_fair,
bf0f6f24 11711
681f3e68 11712#ifdef CONFIG_SMP
6e2df058 11713 .balance = balance_fair,
21f56ffe 11714 .pick_task = pick_task_fair,
4ce72a2c 11715 .select_task_rq = select_task_rq_fair,
0a74bef8 11716 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11717
0bcdcf28
CE
11718 .rq_online = rq_online_fair,
11719 .rq_offline = rq_offline_fair,
88ec22d3 11720
12695578 11721 .task_dead = task_dead_fair,
c5b28038 11722 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11723#endif
bf0f6f24 11724
bf0f6f24 11725 .task_tick = task_tick_fair,
cd29fe6f 11726 .task_fork = task_fork_fair,
cb469845
SR
11727
11728 .prio_changed = prio_changed_fair,
da7a735e 11729 .switched_from = switched_from_fair,
cb469845 11730 .switched_to = switched_to_fair,
810b3817 11731
0d721cea
PW
11732 .get_rr_interval = get_rr_interval_fair,
11733
6e998916
SG
11734 .update_curr = update_curr_fair,
11735
810b3817 11736#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11737 .task_change_group = task_change_group_fair,
810b3817 11738#endif
982d9cdc
PB
11739
11740#ifdef CONFIG_UCLAMP_TASK
11741 .uclamp_enabled = 1,
11742#endif
bf0f6f24
IM
11743};
11744
11745#ifdef CONFIG_SCHED_DEBUG
029632fb 11746void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11747{
039ae8bc 11748 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11749
5973e5b9 11750 rcu_read_lock();
039ae8bc 11751 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11752 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11753 rcu_read_unlock();
bf0f6f24 11754}
397f2378
SD
11755
11756#ifdef CONFIG_NUMA_BALANCING
11757void show_numa_stats(struct task_struct *p, struct seq_file *m)
11758{
11759 int node;
11760 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11761 struct numa_group *ng;
397f2378 11762
cb361d8c
JH
11763 rcu_read_lock();
11764 ng = rcu_dereference(p->numa_group);
397f2378
SD
11765 for_each_online_node(node) {
11766 if (p->numa_faults) {
11767 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11768 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11769 }
cb361d8c
JH
11770 if (ng) {
11771 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11772 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11773 }
11774 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11775 }
cb361d8c 11776 rcu_read_unlock();
397f2378
SD
11777}
11778#endif /* CONFIG_NUMA_BALANCING */
11779#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11780
11781__init void init_sched_fair_class(void)
11782{
11783#ifdef CONFIG_SMP
11784 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11785
3451d024 11786#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11787 nohz.next_balance = jiffies;
f643ea22 11788 nohz.next_blocked = jiffies;
029632fb 11789 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11790#endif
11791#endif /* SMP */
11792
11793}
3c93a0c0
QY
11794
11795/*
11796 * Helper functions to facilitate extracting info from tracepoints.
11797 */
11798
11799const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11800{
11801#ifdef CONFIG_SMP
11802 return cfs_rq ? &cfs_rq->avg : NULL;
11803#else
11804 return NULL;
11805#endif
11806}
11807EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11808
11809char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11810{
11811 if (!cfs_rq) {
11812 if (str)
11813 strlcpy(str, "(null)", len);
11814 else
11815 return NULL;
11816 }
11817
11818 cfs_rq_tg_path(cfs_rq, str, len);
11819 return str;
11820}
11821EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11822
11823int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11824{
11825 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11826}
11827EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11828
11829const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11830{
11831#ifdef CONFIG_SMP
11832 return rq ? &rq->avg_rt : NULL;
11833#else
11834 return NULL;
11835#endif
11836}
11837EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11838
11839const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11840{
11841#ifdef CONFIG_SMP
11842 return rq ? &rq->avg_dl : NULL;
11843#else
11844 return NULL;
11845#endif
11846}
11847EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11848
11849const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11850{
11851#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11852 return rq ? &rq->avg_irq : NULL;
11853#else
11854 return NULL;
11855#endif
11856}
11857EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11858
11859int sched_trace_rq_cpu(struct rq *rq)
11860{
11861 return rq ? cpu_of(rq) : -1;
11862}
11863EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11864
51cf18c9
VD
11865int sched_trace_rq_cpu_capacity(struct rq *rq)
11866{
11867 return rq ?
11868#ifdef CONFIG_SMP
11869 rq->cpu_capacity
11870#else
11871 SCHED_CAPACITY_SCALE
11872#endif
11873 : -1;
11874}
11875EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11876
3c93a0c0
QY
11877const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11878{
11879#ifdef CONFIG_SMP
11880 return rd ? rd->span : NULL;
11881#else
11882 return NULL;
11883#endif
11884}
11885EXPORT_SYMBOL_GPL(sched_trace_rd_span);
9d246053
PA
11886
11887int sched_trace_rq_nr_running(struct rq *rq)
11888{
11889 return rq ? rq->nr_running : -1;
11890}
11891EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);