]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - kernel/sched/fair.c
sched/cpufreq: Move the cfs_rq_util_change() call to cpufreq_update_util()
[mirror_ubuntu-focal-kernel.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
60e17f5c 99 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
100 *
101 * (default: ~20%)
102 */
60e17f5c
VK
103#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
104
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
251static inline struct task_struct *task_of(struct sched_entity *se)
252{
9148a3a1 253 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
254 return container_of(se, struct task_struct, se);
255}
256
b758149c
PZ
257/* Walk up scheduling entities hierarchy */
258#define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262{
263 return p->se.cfs_rq;
264}
265
266/* runqueue on which this entity is (to be) queued */
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 return se->cfs_rq;
270}
271
272/* runqueue "owned" by this group */
273static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274{
275 return grp->my_q;
276}
277
3c93a0c0
QY
278static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279{
280 if (!path)
281 return;
282
283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 autogroup_path(cfs_rq->tg, path, len);
285 else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 else
288 strlcpy(path, "(null)", len);
289}
290
f6783319 291static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 292{
5d299eab
PZ
293 struct rq *rq = rq_of(cfs_rq);
294 int cpu = cpu_of(rq);
295
296 if (cfs_rq->on_list)
f6783319 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
298
299 cfs_rq->on_list = 1;
300
301 /*
302 * Ensure we either appear before our parent (if already
303 * enqueued) or force our parent to appear after us when it is
304 * enqueued. The fact that we always enqueue bottom-up
305 * reduces this to two cases and a special case for the root
306 * cfs_rq. Furthermore, it also means that we will always reset
307 * tmp_alone_branch either when the branch is connected
308 * to a tree or when we reach the top of the tree
309 */
310 if (cfs_rq->tg->parent &&
311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 312 /*
5d299eab
PZ
313 * If parent is already on the list, we add the child
314 * just before. Thanks to circular linked property of
315 * the list, this means to put the child at the tail
316 * of the list that starts by parent.
67e86250 317 */
5d299eab
PZ
318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 /*
321 * The branch is now connected to its tree so we can
322 * reset tmp_alone_branch to the beginning of the
323 * list.
324 */
325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 326 return true;
5d299eab 327 }
3d4b47b4 328
5d299eab
PZ
329 if (!cfs_rq->tg->parent) {
330 /*
331 * cfs rq without parent should be put
332 * at the tail of the list.
333 */
334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 &rq->leaf_cfs_rq_list);
336 /*
337 * We have reach the top of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
339 */
340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 341 return true;
3d4b47b4 342 }
5d299eab
PZ
343
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the begin of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 /*
352 * update tmp_alone_branch to points to the new begin
353 * of the branch
354 */
355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 356 return false;
3d4b47b4
PZ
357}
358
359static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360{
361 if (cfs_rq->on_list) {
31bc6aea
VG
362 struct rq *rq = rq_of(cfs_rq);
363
364 /*
365 * With cfs_rq being unthrottled/throttled during an enqueue,
366 * it can happen the tmp_alone_branch points the a leaf that
367 * we finally want to del. In this case, tmp_alone_branch moves
368 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 * at the end of the enqueue.
370 */
371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373
3d4b47b4
PZ
374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 cfs_rq->on_list = 0;
376 }
377}
378
5d299eab
PZ
379static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380{
381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382}
383
039ae8bc
VG
384/* Iterate thr' all leaf cfs_rq's on a runqueue */
385#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
387 leaf_cfs_rq_list)
b758149c
PZ
388
389/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 390static inline struct cfs_rq *
b758149c
PZ
391is_same_group(struct sched_entity *se, struct sched_entity *pse)
392{
393 if (se->cfs_rq == pse->cfs_rq)
fed14d45 394 return se->cfs_rq;
b758149c 395
fed14d45 396 return NULL;
b758149c
PZ
397}
398
399static inline struct sched_entity *parent_entity(struct sched_entity *se)
400{
401 return se->parent;
402}
403
464b7527
PZ
404static void
405find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406{
407 int se_depth, pse_depth;
408
409 /*
410 * preemption test can be made between sibling entities who are in the
411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 * both tasks until we find their ancestors who are siblings of common
413 * parent.
414 */
415
416 /* First walk up until both entities are at same depth */
fed14d45
PZ
417 se_depth = (*se)->depth;
418 pse_depth = (*pse)->depth;
464b7527
PZ
419
420 while (se_depth > pse_depth) {
421 se_depth--;
422 *se = parent_entity(*se);
423 }
424
425 while (pse_depth > se_depth) {
426 pse_depth--;
427 *pse = parent_entity(*pse);
428 }
429
430 while (!is_same_group(*se, *pse)) {
431 *se = parent_entity(*se);
432 *pse = parent_entity(*pse);
433 }
434}
435
8f48894f
PZ
436#else /* !CONFIG_FAIR_GROUP_SCHED */
437
438static inline struct task_struct *task_of(struct sched_entity *se)
439{
440 return container_of(se, struct task_struct, se);
441}
bf0f6f24 442
b758149c
PZ
443#define for_each_sched_entity(se) \
444 for (; se; se = NULL)
bf0f6f24 445
b758149c 446static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 447{
b758149c 448 return &task_rq(p)->cfs;
bf0f6f24
IM
449}
450
b758149c
PZ
451static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452{
453 struct task_struct *p = task_of(se);
454 struct rq *rq = task_rq(p);
455
456 return &rq->cfs;
457}
458
459/* runqueue "owned" by this group */
460static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461{
462 return NULL;
463}
464
3c93a0c0
QY
465static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466{
467 if (path)
468 strlcpy(path, "(null)", len);
469}
470
f6783319 471static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 472{
f6783319 473 return true;
3d4b47b4
PZ
474}
475
476static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477{
478}
479
5d299eab
PZ
480static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481{
482}
483
039ae8bc
VG
484#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 486
b758149c
PZ
487static inline struct sched_entity *parent_entity(struct sched_entity *se)
488{
489 return NULL;
490}
491
464b7527
PZ
492static inline void
493find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494{
495}
496
b758149c
PZ
497#endif /* CONFIG_FAIR_GROUP_SCHED */
498
6c16a6dc 499static __always_inline
9dbdb155 500void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
501
502/**************************************************************
503 * Scheduling class tree data structure manipulation methods:
504 */
505
1bf08230 506static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 507{
1bf08230 508 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 509 if (delta > 0)
1bf08230 510 max_vruntime = vruntime;
02e0431a 511
1bf08230 512 return max_vruntime;
02e0431a
PZ
513}
514
0702e3eb 515static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
516{
517 s64 delta = (s64)(vruntime - min_vruntime);
518 if (delta < 0)
519 min_vruntime = vruntime;
520
521 return min_vruntime;
522}
523
54fdc581
FC
524static inline int entity_before(struct sched_entity *a,
525 struct sched_entity *b)
526{
527 return (s64)(a->vruntime - b->vruntime) < 0;
528}
529
1af5f730
PZ
530static void update_min_vruntime(struct cfs_rq *cfs_rq)
531{
b60205c7 532 struct sched_entity *curr = cfs_rq->curr;
bfb06889 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 534
1af5f730
PZ
535 u64 vruntime = cfs_rq->min_vruntime;
536
b60205c7
PZ
537 if (curr) {
538 if (curr->on_rq)
539 vruntime = curr->vruntime;
540 else
541 curr = NULL;
542 }
1af5f730 543
bfb06889
DB
544 if (leftmost) { /* non-empty tree */
545 struct sched_entity *se;
546 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 547
b60205c7 548 if (!curr)
1af5f730
PZ
549 vruntime = se->vruntime;
550 else
551 vruntime = min_vruntime(vruntime, se->vruntime);
552 }
553
1bf08230 554 /* ensure we never gain time by being placed backwards. */
1af5f730 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
556#ifndef CONFIG_64BIT
557 smp_wmb();
558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559#endif
1af5f730
PZ
560}
561
bf0f6f24
IM
562/*
563 * Enqueue an entity into the rb-tree:
564 */
0702e3eb 565static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 566{
bfb06889 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
568 struct rb_node *parent = NULL;
569 struct sched_entity *entry;
bfb06889 570 bool leftmost = true;
bf0f6f24
IM
571
572 /*
573 * Find the right place in the rbtree:
574 */
575 while (*link) {
576 parent = *link;
577 entry = rb_entry(parent, struct sched_entity, run_node);
578 /*
579 * We dont care about collisions. Nodes with
580 * the same key stay together.
581 */
2bd2d6f2 582 if (entity_before(se, entry)) {
bf0f6f24
IM
583 link = &parent->rb_left;
584 } else {
585 link = &parent->rb_right;
bfb06889 586 leftmost = false;
bf0f6f24
IM
587 }
588 }
589
bf0f6f24 590 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
591 rb_insert_color_cached(&se->run_node,
592 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
593}
594
0702e3eb 595static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 596{
bfb06889 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
598}
599
029632fb 600struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 601{
bfb06889 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
603
604 if (!left)
605 return NULL;
606
607 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
608}
609
ac53db59
RR
610static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611{
612 struct rb_node *next = rb_next(&se->run_node);
613
614 if (!next)
615 return NULL;
616
617 return rb_entry(next, struct sched_entity, run_node);
618}
619
620#ifdef CONFIG_SCHED_DEBUG
029632fb 621struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 622{
bfb06889 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 624
70eee74b
BS
625 if (!last)
626 return NULL;
7eee3e67
IM
627
628 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
629}
630
bf0f6f24
IM
631/**************************************************************
632 * Scheduling class statistics methods:
633 */
634
acb4a848 635int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 636 void __user *buffer, size_t *lenp,
b2be5e96
PZ
637 loff_t *ppos)
638{
8d65af78 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 640 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
641
642 if (ret || !write)
643 return ret;
644
645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 sysctl_sched_min_granularity);
647
acb4a848
CE
648#define WRT_SYSCTL(name) \
649 (normalized_sysctl_##name = sysctl_##name / (factor))
650 WRT_SYSCTL(sched_min_granularity);
651 WRT_SYSCTL(sched_latency);
652 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
653#undef WRT_SYSCTL
654
b2be5e96
PZ
655 return 0;
656}
657#endif
647e7cac 658
a7be37ac 659/*
f9c0b095 660 * delta /= w
a7be37ac 661 */
9dbdb155 662static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 663{
f9c0b095 664 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
666
667 return delta;
668}
669
647e7cac
IM
670/*
671 * The idea is to set a period in which each task runs once.
672 *
532b1858 673 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
674 * this period because otherwise the slices get too small.
675 *
676 * p = (nr <= nl) ? l : l*nr/nl
677 */
4d78e7b6
PZ
678static u64 __sched_period(unsigned long nr_running)
679{
8e2b0bf3
BF
680 if (unlikely(nr_running > sched_nr_latency))
681 return nr_running * sysctl_sched_min_granularity;
682 else
683 return sysctl_sched_latency;
4d78e7b6
PZ
684}
685
647e7cac
IM
686/*
687 * We calculate the wall-time slice from the period by taking a part
688 * proportional to the weight.
689 *
f9c0b095 690 * s = p*P[w/rw]
647e7cac 691 */
6d0f0ebd 692static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 693{
0a582440 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 695
0a582440 696 for_each_sched_entity(se) {
6272d68c 697 struct load_weight *load;
3104bf03 698 struct load_weight lw;
6272d68c
LM
699
700 cfs_rq = cfs_rq_of(se);
701 load = &cfs_rq->load;
f9c0b095 702
0a582440 703 if (unlikely(!se->on_rq)) {
3104bf03 704 lw = cfs_rq->load;
0a582440
MG
705
706 update_load_add(&lw, se->load.weight);
707 load = &lw;
708 }
9dbdb155 709 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
710 }
711 return slice;
bf0f6f24
IM
712}
713
647e7cac 714/*
660cc00f 715 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 716 *
f9c0b095 717 * vs = s/w
647e7cac 718 */
f9c0b095 719static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 720{
f9c0b095 721 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
722}
723
c0796298 724#include "pelt.h"
23127296 725#ifdef CONFIG_SMP
283e2ed3 726
772bd008 727static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 728static unsigned long task_h_load(struct task_struct *p);
3b1baa64 729static unsigned long capacity_of(int cpu);
fb13c7ee 730
540247fb
YD
731/* Give new sched_entity start runnable values to heavy its load in infant time */
732void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 733{
540247fb 734 struct sched_avg *sa = &se->avg;
a75cdaa9 735
f207934f
PZ
736 memset(sa, 0, sizeof(*sa));
737
b5a9b340 738 /*
dfcb245e 739 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 740 * they get a chance to stabilize to their real load level.
dfcb245e 741 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
1ea6c46a 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 746
f207934f
PZ
747 se->runnable_weight = se->load.weight;
748
9d89c257 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 750}
7ea241af 751
df217913 752static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 753
2b8c41da
YD
754/*
755 * With new tasks being created, their initial util_avgs are extrapolated
756 * based on the cfs_rq's current util_avg:
757 *
758 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
759 *
760 * However, in many cases, the above util_avg does not give a desired
761 * value. Moreover, the sum of the util_avgs may be divergent, such
762 * as when the series is a harmonic series.
763 *
764 * To solve this problem, we also cap the util_avg of successive tasks to
765 * only 1/2 of the left utilization budget:
766 *
8fe5c5a9 767 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 768 *
8fe5c5a9 769 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 770 *
8fe5c5a9
QP
771 * For example, for a CPU with 1024 of capacity, a simplest series from
772 * the beginning would be like:
2b8c41da
YD
773 *
774 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
775 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
776 *
777 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
778 * if util_avg > util_avg_cap.
779 */
d0fe0b9c 780void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 781{
d0fe0b9c 782 struct sched_entity *se = &p->se;
2b8c41da
YD
783 struct cfs_rq *cfs_rq = cfs_rq_of(se);
784 struct sched_avg *sa = &se->avg;
8ec59c0f 785 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 786 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
787
788 if (cap > 0) {
789 if (cfs_rq->avg.util_avg != 0) {
790 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
791 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
792
793 if (sa->util_avg > cap)
794 sa->util_avg = cap;
795 } else {
796 sa->util_avg = cap;
797 }
2b8c41da 798 }
7dc603c9 799
d0fe0b9c
DE
800 if (p->sched_class != &fair_sched_class) {
801 /*
802 * For !fair tasks do:
803 *
804 update_cfs_rq_load_avg(now, cfs_rq);
805 attach_entity_load_avg(cfs_rq, se, 0);
806 switched_from_fair(rq, p);
807 *
808 * such that the next switched_to_fair() has the
809 * expected state.
810 */
811 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
812 return;
7dc603c9
PZ
813 }
814
df217913 815 attach_entity_cfs_rq(se);
2b8c41da
YD
816}
817
7dc603c9 818#else /* !CONFIG_SMP */
540247fb 819void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
820{
821}
d0fe0b9c 822void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
823{
824}
3d30544f
PZ
825static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
826{
827}
7dc603c9 828#endif /* CONFIG_SMP */
a75cdaa9 829
bf0f6f24 830/*
9dbdb155 831 * Update the current task's runtime statistics.
bf0f6f24 832 */
b7cc0896 833static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 834{
429d43bc 835 struct sched_entity *curr = cfs_rq->curr;
78becc27 836 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 837 u64 delta_exec;
bf0f6f24
IM
838
839 if (unlikely(!curr))
840 return;
841
9dbdb155
PZ
842 delta_exec = now - curr->exec_start;
843 if (unlikely((s64)delta_exec <= 0))
34f28ecd 844 return;
bf0f6f24 845
8ebc91d9 846 curr->exec_start = now;
d842de87 847
9dbdb155
PZ
848 schedstat_set(curr->statistics.exec_max,
849 max(delta_exec, curr->statistics.exec_max));
850
851 curr->sum_exec_runtime += delta_exec;
ae92882e 852 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
853
854 curr->vruntime += calc_delta_fair(delta_exec, curr);
855 update_min_vruntime(cfs_rq);
856
d842de87
SV
857 if (entity_is_task(curr)) {
858 struct task_struct *curtask = task_of(curr);
859
f977bb49 860 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 861 cgroup_account_cputime(curtask, delta_exec);
f06febc9 862 account_group_exec_runtime(curtask, delta_exec);
d842de87 863 }
ec12cb7f
PT
864
865 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
866}
867
6e998916
SG
868static void update_curr_fair(struct rq *rq)
869{
870 update_curr(cfs_rq_of(&rq->curr->se));
871}
872
bf0f6f24 873static inline void
5870db5b 874update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 875{
4fa8d299
JP
876 u64 wait_start, prev_wait_start;
877
878 if (!schedstat_enabled())
879 return;
880
881 wait_start = rq_clock(rq_of(cfs_rq));
882 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
883
884 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
885 likely(wait_start > prev_wait_start))
886 wait_start -= prev_wait_start;
3ea94de1 887
2ed41a55 888 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
889}
890
4fa8d299 891static inline void
3ea94de1
JP
892update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
893{
894 struct task_struct *p;
cb251765
MG
895 u64 delta;
896
4fa8d299
JP
897 if (!schedstat_enabled())
898 return;
899
900 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
901
902 if (entity_is_task(se)) {
903 p = task_of(se);
904 if (task_on_rq_migrating(p)) {
905 /*
906 * Preserve migrating task's wait time so wait_start
907 * time stamp can be adjusted to accumulate wait time
908 * prior to migration.
909 */
2ed41a55 910 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
911 return;
912 }
913 trace_sched_stat_wait(p, delta);
914 }
915
2ed41a55 916 __schedstat_set(se->statistics.wait_max,
4fa8d299 917 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
918 __schedstat_inc(se->statistics.wait_count);
919 __schedstat_add(se->statistics.wait_sum, delta);
920 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 921}
3ea94de1 922
4fa8d299 923static inline void
1a3d027c
JP
924update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
925{
926 struct task_struct *tsk = NULL;
4fa8d299
JP
927 u64 sleep_start, block_start;
928
929 if (!schedstat_enabled())
930 return;
931
932 sleep_start = schedstat_val(se->statistics.sleep_start);
933 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
934
935 if (entity_is_task(se))
936 tsk = task_of(se);
937
4fa8d299
JP
938 if (sleep_start) {
939 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
940
941 if ((s64)delta < 0)
942 delta = 0;
943
4fa8d299 944 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 945 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 946
2ed41a55
PZ
947 __schedstat_set(se->statistics.sleep_start, 0);
948 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
949
950 if (tsk) {
951 account_scheduler_latency(tsk, delta >> 10, 1);
952 trace_sched_stat_sleep(tsk, delta);
953 }
954 }
4fa8d299
JP
955 if (block_start) {
956 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
957
958 if ((s64)delta < 0)
959 delta = 0;
960
4fa8d299 961 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 962 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 963
2ed41a55
PZ
964 __schedstat_set(se->statistics.block_start, 0);
965 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
966
967 if (tsk) {
968 if (tsk->in_iowait) {
2ed41a55
PZ
969 __schedstat_add(se->statistics.iowait_sum, delta);
970 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
971 trace_sched_stat_iowait(tsk, delta);
972 }
973
974 trace_sched_stat_blocked(tsk, delta);
975
976 /*
977 * Blocking time is in units of nanosecs, so shift by
978 * 20 to get a milliseconds-range estimation of the
979 * amount of time that the task spent sleeping:
980 */
981 if (unlikely(prof_on == SLEEP_PROFILING)) {
982 profile_hits(SLEEP_PROFILING,
983 (void *)get_wchan(tsk),
984 delta >> 20);
985 }
986 account_scheduler_latency(tsk, delta >> 10, 0);
987 }
988 }
3ea94de1 989}
3ea94de1 990
bf0f6f24
IM
991/*
992 * Task is being enqueued - update stats:
993 */
cb251765 994static inline void
1a3d027c 995update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 996{
4fa8d299
JP
997 if (!schedstat_enabled())
998 return;
999
bf0f6f24
IM
1000 /*
1001 * Are we enqueueing a waiting task? (for current tasks
1002 * a dequeue/enqueue event is a NOP)
1003 */
429d43bc 1004 if (se != cfs_rq->curr)
5870db5b 1005 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1006
1007 if (flags & ENQUEUE_WAKEUP)
1008 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1009}
1010
bf0f6f24 1011static inline void
cb251765 1012update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1013{
4fa8d299
JP
1014
1015 if (!schedstat_enabled())
1016 return;
1017
bf0f6f24
IM
1018 /*
1019 * Mark the end of the wait period if dequeueing a
1020 * waiting task:
1021 */
429d43bc 1022 if (se != cfs_rq->curr)
9ef0a961 1023 update_stats_wait_end(cfs_rq, se);
cb251765 1024
4fa8d299
JP
1025 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1026 struct task_struct *tsk = task_of(se);
cb251765 1027
4fa8d299 1028 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1029 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1030 rq_clock(rq_of(cfs_rq)));
1031 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1032 __schedstat_set(se->statistics.block_start,
4fa8d299 1033 rq_clock(rq_of(cfs_rq)));
cb251765 1034 }
cb251765
MG
1035}
1036
bf0f6f24
IM
1037/*
1038 * We are picking a new current task - update its stats:
1039 */
1040static inline void
79303e9e 1041update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1042{
1043 /*
1044 * We are starting a new run period:
1045 */
78becc27 1046 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1047}
1048
bf0f6f24
IM
1049/**************************************************
1050 * Scheduling class queueing methods:
1051 */
1052
cbee9f88
PZ
1053#ifdef CONFIG_NUMA_BALANCING
1054/*
598f0ec0
MG
1055 * Approximate time to scan a full NUMA task in ms. The task scan period is
1056 * calculated based on the tasks virtual memory size and
1057 * numa_balancing_scan_size.
cbee9f88 1058 */
598f0ec0
MG
1059unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1060unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1061
1062/* Portion of address space to scan in MB */
1063unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1064
4b96a29b
PZ
1065/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1066unsigned int sysctl_numa_balancing_scan_delay = 1000;
1067
b5dd77c8 1068struct numa_group {
c45a7795 1069 refcount_t refcount;
b5dd77c8
RR
1070
1071 spinlock_t lock; /* nr_tasks, tasks */
1072 int nr_tasks;
1073 pid_t gid;
1074 int active_nodes;
1075
1076 struct rcu_head rcu;
1077 unsigned long total_faults;
1078 unsigned long max_faults_cpu;
1079 /*
1080 * Faults_cpu is used to decide whether memory should move
1081 * towards the CPU. As a consequence, these stats are weighted
1082 * more by CPU use than by memory faults.
1083 */
1084 unsigned long *faults_cpu;
1085 unsigned long faults[0];
1086};
1087
cb361d8c
JH
1088/*
1089 * For functions that can be called in multiple contexts that permit reading
1090 * ->numa_group (see struct task_struct for locking rules).
1091 */
1092static struct numa_group *deref_task_numa_group(struct task_struct *p)
1093{
1094 return rcu_dereference_check(p->numa_group, p == current ||
1095 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1096}
1097
1098static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1099{
1100 return rcu_dereference_protected(p->numa_group, p == current);
1101}
1102
b5dd77c8
RR
1103static inline unsigned long group_faults_priv(struct numa_group *ng);
1104static inline unsigned long group_faults_shared(struct numa_group *ng);
1105
598f0ec0
MG
1106static unsigned int task_nr_scan_windows(struct task_struct *p)
1107{
1108 unsigned long rss = 0;
1109 unsigned long nr_scan_pages;
1110
1111 /*
1112 * Calculations based on RSS as non-present and empty pages are skipped
1113 * by the PTE scanner and NUMA hinting faults should be trapped based
1114 * on resident pages
1115 */
1116 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1117 rss = get_mm_rss(p->mm);
1118 if (!rss)
1119 rss = nr_scan_pages;
1120
1121 rss = round_up(rss, nr_scan_pages);
1122 return rss / nr_scan_pages;
1123}
1124
1125/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1126#define MAX_SCAN_WINDOW 2560
1127
1128static unsigned int task_scan_min(struct task_struct *p)
1129{
316c1608 1130 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1131 unsigned int scan, floor;
1132 unsigned int windows = 1;
1133
64192658
KT
1134 if (scan_size < MAX_SCAN_WINDOW)
1135 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1136 floor = 1000 / windows;
1137
1138 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1139 return max_t(unsigned int, floor, scan);
1140}
1141
b5dd77c8
RR
1142static unsigned int task_scan_start(struct task_struct *p)
1143{
1144 unsigned long smin = task_scan_min(p);
1145 unsigned long period = smin;
cb361d8c 1146 struct numa_group *ng;
b5dd77c8
RR
1147
1148 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1149 rcu_read_lock();
1150 ng = rcu_dereference(p->numa_group);
1151 if (ng) {
b5dd77c8
RR
1152 unsigned long shared = group_faults_shared(ng);
1153 unsigned long private = group_faults_priv(ng);
1154
c45a7795 1155 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1156 period *= shared + 1;
1157 period /= private + shared + 1;
1158 }
cb361d8c 1159 rcu_read_unlock();
b5dd77c8
RR
1160
1161 return max(smin, period);
1162}
1163
598f0ec0
MG
1164static unsigned int task_scan_max(struct task_struct *p)
1165{
b5dd77c8
RR
1166 unsigned long smin = task_scan_min(p);
1167 unsigned long smax;
cb361d8c 1168 struct numa_group *ng;
598f0ec0
MG
1169
1170 /* Watch for min being lower than max due to floor calculations */
1171 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1172
1173 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1174 ng = deref_curr_numa_group(p);
1175 if (ng) {
b5dd77c8
RR
1176 unsigned long shared = group_faults_shared(ng);
1177 unsigned long private = group_faults_priv(ng);
1178 unsigned long period = smax;
1179
c45a7795 1180 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1181 period *= shared + 1;
1182 period /= private + shared + 1;
1183
1184 smax = max(smax, period);
1185 }
1186
598f0ec0
MG
1187 return max(smin, smax);
1188}
1189
0ec8aa00
PZ
1190static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1191{
98fa15f3 1192 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1193 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1194}
1195
1196static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1197{
98fa15f3 1198 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1199 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1200}
1201
be1e4e76
RR
1202/* Shared or private faults. */
1203#define NR_NUMA_HINT_FAULT_TYPES 2
1204
1205/* Memory and CPU locality */
1206#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1207
1208/* Averaged statistics, and temporary buffers. */
1209#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1210
e29cf08b
MG
1211pid_t task_numa_group_id(struct task_struct *p)
1212{
cb361d8c
JH
1213 struct numa_group *ng;
1214 pid_t gid = 0;
1215
1216 rcu_read_lock();
1217 ng = rcu_dereference(p->numa_group);
1218 if (ng)
1219 gid = ng->gid;
1220 rcu_read_unlock();
1221
1222 return gid;
e29cf08b
MG
1223}
1224
44dba3d5 1225/*
97fb7a0a 1226 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1227 * occupy the first half of the array. The second half of the
1228 * array is for current counters, which are averaged into the
1229 * first set by task_numa_placement.
1230 */
1231static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1232{
44dba3d5 1233 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1234}
1235
1236static inline unsigned long task_faults(struct task_struct *p, int nid)
1237{
44dba3d5 1238 if (!p->numa_faults)
ac8e895b
MG
1239 return 0;
1240
44dba3d5
IM
1241 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1242 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1243}
1244
83e1d2cd
MG
1245static inline unsigned long group_faults(struct task_struct *p, int nid)
1246{
cb361d8c
JH
1247 struct numa_group *ng = deref_task_numa_group(p);
1248
1249 if (!ng)
83e1d2cd
MG
1250 return 0;
1251
cb361d8c
JH
1252 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1254}
1255
20e07dea
RR
1256static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1257{
44dba3d5
IM
1258 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1259 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1260}
1261
b5dd77c8
RR
1262static inline unsigned long group_faults_priv(struct numa_group *ng)
1263{
1264 unsigned long faults = 0;
1265 int node;
1266
1267 for_each_online_node(node) {
1268 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1269 }
1270
1271 return faults;
1272}
1273
1274static inline unsigned long group_faults_shared(struct numa_group *ng)
1275{
1276 unsigned long faults = 0;
1277 int node;
1278
1279 for_each_online_node(node) {
1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1281 }
1282
1283 return faults;
1284}
1285
4142c3eb
RR
1286/*
1287 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1288 * considered part of a numa group's pseudo-interleaving set. Migrations
1289 * between these nodes are slowed down, to allow things to settle down.
1290 */
1291#define ACTIVE_NODE_FRACTION 3
1292
1293static bool numa_is_active_node(int nid, struct numa_group *ng)
1294{
1295 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1296}
1297
6c6b1193
RR
1298/* Handle placement on systems where not all nodes are directly connected. */
1299static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1300 int maxdist, bool task)
1301{
1302 unsigned long score = 0;
1303 int node;
1304
1305 /*
1306 * All nodes are directly connected, and the same distance
1307 * from each other. No need for fancy placement algorithms.
1308 */
1309 if (sched_numa_topology_type == NUMA_DIRECT)
1310 return 0;
1311
1312 /*
1313 * This code is called for each node, introducing N^2 complexity,
1314 * which should be ok given the number of nodes rarely exceeds 8.
1315 */
1316 for_each_online_node(node) {
1317 unsigned long faults;
1318 int dist = node_distance(nid, node);
1319
1320 /*
1321 * The furthest away nodes in the system are not interesting
1322 * for placement; nid was already counted.
1323 */
1324 if (dist == sched_max_numa_distance || node == nid)
1325 continue;
1326
1327 /*
1328 * On systems with a backplane NUMA topology, compare groups
1329 * of nodes, and move tasks towards the group with the most
1330 * memory accesses. When comparing two nodes at distance
1331 * "hoplimit", only nodes closer by than "hoplimit" are part
1332 * of each group. Skip other nodes.
1333 */
1334 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1335 dist >= maxdist)
6c6b1193
RR
1336 continue;
1337
1338 /* Add up the faults from nearby nodes. */
1339 if (task)
1340 faults = task_faults(p, node);
1341 else
1342 faults = group_faults(p, node);
1343
1344 /*
1345 * On systems with a glueless mesh NUMA topology, there are
1346 * no fixed "groups of nodes". Instead, nodes that are not
1347 * directly connected bounce traffic through intermediate
1348 * nodes; a numa_group can occupy any set of nodes.
1349 * The further away a node is, the less the faults count.
1350 * This seems to result in good task placement.
1351 */
1352 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1353 faults *= (sched_max_numa_distance - dist);
1354 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1355 }
1356
1357 score += faults;
1358 }
1359
1360 return score;
1361}
1362
83e1d2cd
MG
1363/*
1364 * These return the fraction of accesses done by a particular task, or
1365 * task group, on a particular numa node. The group weight is given a
1366 * larger multiplier, in order to group tasks together that are almost
1367 * evenly spread out between numa nodes.
1368 */
7bd95320
RR
1369static inline unsigned long task_weight(struct task_struct *p, int nid,
1370 int dist)
83e1d2cd 1371{
7bd95320 1372 unsigned long faults, total_faults;
83e1d2cd 1373
44dba3d5 1374 if (!p->numa_faults)
83e1d2cd
MG
1375 return 0;
1376
1377 total_faults = p->total_numa_faults;
1378
1379 if (!total_faults)
1380 return 0;
1381
7bd95320 1382 faults = task_faults(p, nid);
6c6b1193
RR
1383 faults += score_nearby_nodes(p, nid, dist, true);
1384
7bd95320 1385 return 1000 * faults / total_faults;
83e1d2cd
MG
1386}
1387
7bd95320
RR
1388static inline unsigned long group_weight(struct task_struct *p, int nid,
1389 int dist)
83e1d2cd 1390{
cb361d8c 1391 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1392 unsigned long faults, total_faults;
1393
cb361d8c 1394 if (!ng)
7bd95320
RR
1395 return 0;
1396
cb361d8c 1397 total_faults = ng->total_faults;
7bd95320
RR
1398
1399 if (!total_faults)
83e1d2cd
MG
1400 return 0;
1401
7bd95320 1402 faults = group_faults(p, nid);
6c6b1193
RR
1403 faults += score_nearby_nodes(p, nid, dist, false);
1404
7bd95320 1405 return 1000 * faults / total_faults;
83e1d2cd
MG
1406}
1407
10f39042
RR
1408bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1409 int src_nid, int dst_cpu)
1410{
cb361d8c 1411 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1412 int dst_nid = cpu_to_node(dst_cpu);
1413 int last_cpupid, this_cpupid;
1414
1415 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1416 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1417
1418 /*
1419 * Allow first faults or private faults to migrate immediately early in
1420 * the lifetime of a task. The magic number 4 is based on waiting for
1421 * two full passes of the "multi-stage node selection" test that is
1422 * executed below.
1423 */
98fa15f3 1424 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1425 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1426 return true;
10f39042
RR
1427
1428 /*
1429 * Multi-stage node selection is used in conjunction with a periodic
1430 * migration fault to build a temporal task<->page relation. By using
1431 * a two-stage filter we remove short/unlikely relations.
1432 *
1433 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1434 * a task's usage of a particular page (n_p) per total usage of this
1435 * page (n_t) (in a given time-span) to a probability.
1436 *
1437 * Our periodic faults will sample this probability and getting the
1438 * same result twice in a row, given these samples are fully
1439 * independent, is then given by P(n)^2, provided our sample period
1440 * is sufficiently short compared to the usage pattern.
1441 *
1442 * This quadric squishes small probabilities, making it less likely we
1443 * act on an unlikely task<->page relation.
1444 */
10f39042
RR
1445 if (!cpupid_pid_unset(last_cpupid) &&
1446 cpupid_to_nid(last_cpupid) != dst_nid)
1447 return false;
1448
1449 /* Always allow migrate on private faults */
1450 if (cpupid_match_pid(p, last_cpupid))
1451 return true;
1452
1453 /* A shared fault, but p->numa_group has not been set up yet. */
1454 if (!ng)
1455 return true;
1456
1457 /*
4142c3eb
RR
1458 * Destination node is much more heavily used than the source
1459 * node? Allow migration.
10f39042 1460 */
4142c3eb
RR
1461 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1462 ACTIVE_NODE_FRACTION)
10f39042
RR
1463 return true;
1464
1465 /*
4142c3eb
RR
1466 * Distribute memory according to CPU & memory use on each node,
1467 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1468 *
1469 * faults_cpu(dst) 3 faults_cpu(src)
1470 * --------------- * - > ---------------
1471 * faults_mem(dst) 4 faults_mem(src)
10f39042 1472 */
4142c3eb
RR
1473 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1474 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1475}
1476
a3df0679 1477static unsigned long cpu_runnable_load(struct rq *rq);
58d081b5 1478
fb13c7ee 1479/* Cached statistics for all CPUs within a node */
58d081b5
MG
1480struct numa_stats {
1481 unsigned long load;
fb13c7ee
MG
1482
1483 /* Total compute capacity of CPUs on a node */
5ef20ca1 1484 unsigned long compute_capacity;
58d081b5 1485};
e6628d5b 1486
fb13c7ee
MG
1487/*
1488 * XXX borrowed from update_sg_lb_stats
1489 */
1490static void update_numa_stats(struct numa_stats *ns, int nid)
1491{
d90707eb 1492 int cpu;
fb13c7ee
MG
1493
1494 memset(ns, 0, sizeof(*ns));
1495 for_each_cpu(cpu, cpumask_of_node(nid)) {
1496 struct rq *rq = cpu_rq(cpu);
1497
a3df0679 1498 ns->load += cpu_runnable_load(rq);
ced549fa 1499 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1500 }
1501
fb13c7ee
MG
1502}
1503
58d081b5
MG
1504struct task_numa_env {
1505 struct task_struct *p;
e6628d5b 1506
58d081b5
MG
1507 int src_cpu, src_nid;
1508 int dst_cpu, dst_nid;
e6628d5b 1509
58d081b5 1510 struct numa_stats src_stats, dst_stats;
e6628d5b 1511
40ea2b42 1512 int imbalance_pct;
7bd95320 1513 int dist;
fb13c7ee
MG
1514
1515 struct task_struct *best_task;
1516 long best_imp;
58d081b5
MG
1517 int best_cpu;
1518};
1519
fb13c7ee
MG
1520static void task_numa_assign(struct task_numa_env *env,
1521 struct task_struct *p, long imp)
1522{
a4739eca
SD
1523 struct rq *rq = cpu_rq(env->dst_cpu);
1524
1525 /* Bail out if run-queue part of active NUMA balance. */
1526 if (xchg(&rq->numa_migrate_on, 1))
1527 return;
1528
1529 /*
1530 * Clear previous best_cpu/rq numa-migrate flag, since task now
1531 * found a better CPU to move/swap.
1532 */
1533 if (env->best_cpu != -1) {
1534 rq = cpu_rq(env->best_cpu);
1535 WRITE_ONCE(rq->numa_migrate_on, 0);
1536 }
1537
fb13c7ee
MG
1538 if (env->best_task)
1539 put_task_struct(env->best_task);
bac78573
ON
1540 if (p)
1541 get_task_struct(p);
fb13c7ee
MG
1542
1543 env->best_task = p;
1544 env->best_imp = imp;
1545 env->best_cpu = env->dst_cpu;
1546}
1547
28a21745 1548static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1549 struct task_numa_env *env)
1550{
e4991b24
RR
1551 long imb, old_imb;
1552 long orig_src_load, orig_dst_load;
28a21745
RR
1553 long src_capacity, dst_capacity;
1554
1555 /*
1556 * The load is corrected for the CPU capacity available on each node.
1557 *
1558 * src_load dst_load
1559 * ------------ vs ---------
1560 * src_capacity dst_capacity
1561 */
1562 src_capacity = env->src_stats.compute_capacity;
1563 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1564
5f95ba7a 1565 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1566
28a21745 1567 orig_src_load = env->src_stats.load;
e4991b24 1568 orig_dst_load = env->dst_stats.load;
28a21745 1569
5f95ba7a 1570 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1571
1572 /* Would this change make things worse? */
1573 return (imb > old_imb);
e63da036
RR
1574}
1575
6fd98e77
SD
1576/*
1577 * Maximum NUMA importance can be 1998 (2*999);
1578 * SMALLIMP @ 30 would be close to 1998/64.
1579 * Used to deter task migration.
1580 */
1581#define SMALLIMP 30
1582
fb13c7ee
MG
1583/*
1584 * This checks if the overall compute and NUMA accesses of the system would
1585 * be improved if the source tasks was migrated to the target dst_cpu taking
1586 * into account that it might be best if task running on the dst_cpu should
1587 * be exchanged with the source task
1588 */
887c290e 1589static void task_numa_compare(struct task_numa_env *env,
305c1fac 1590 long taskimp, long groupimp, bool maymove)
fb13c7ee 1591{
cb361d8c 1592 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1593 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1594 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1595 struct task_struct *cur;
28a21745 1596 long src_load, dst_load;
7bd95320 1597 int dist = env->dist;
cb361d8c
JH
1598 long moveimp = imp;
1599 long load;
fb13c7ee 1600
a4739eca
SD
1601 if (READ_ONCE(dst_rq->numa_migrate_on))
1602 return;
1603
fb13c7ee 1604 rcu_read_lock();
154abafc 1605 cur = rcu_dereference(dst_rq->curr);
bac78573 1606 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1607 cur = NULL;
1608
7af68335
PZ
1609 /*
1610 * Because we have preemption enabled we can get migrated around and
1611 * end try selecting ourselves (current == env->p) as a swap candidate.
1612 */
1613 if (cur == env->p)
1614 goto unlock;
1615
305c1fac 1616 if (!cur) {
6fd98e77 1617 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1618 goto assign;
1619 else
1620 goto unlock;
1621 }
1622
fb13c7ee
MG
1623 /*
1624 * "imp" is the fault differential for the source task between the
1625 * source and destination node. Calculate the total differential for
1626 * the source task and potential destination task. The more negative
305c1fac 1627 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1628 * be incurred if the tasks were swapped.
1629 */
305c1fac 1630 /* Skip this swap candidate if cannot move to the source cpu */
3bd37062 1631 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
305c1fac 1632 goto unlock;
fb13c7ee 1633
305c1fac
SD
1634 /*
1635 * If dst and source tasks are in the same NUMA group, or not
1636 * in any group then look only at task weights.
1637 */
cb361d8c
JH
1638 cur_ng = rcu_dereference(cur->numa_group);
1639 if (cur_ng == p_ng) {
305c1fac
SD
1640 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1641 task_weight(cur, env->dst_nid, dist);
887c290e 1642 /*
305c1fac
SD
1643 * Add some hysteresis to prevent swapping the
1644 * tasks within a group over tiny differences.
887c290e 1645 */
cb361d8c 1646 if (cur_ng)
305c1fac
SD
1647 imp -= imp / 16;
1648 } else {
1649 /*
1650 * Compare the group weights. If a task is all by itself
1651 * (not part of a group), use the task weight instead.
1652 */
cb361d8c 1653 if (cur_ng && p_ng)
305c1fac
SD
1654 imp += group_weight(cur, env->src_nid, dist) -
1655 group_weight(cur, env->dst_nid, dist);
1656 else
1657 imp += task_weight(cur, env->src_nid, dist) -
1658 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1659 }
1660
305c1fac 1661 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1662 imp = moveimp;
305c1fac 1663 cur = NULL;
fb13c7ee 1664 goto assign;
305c1fac 1665 }
fb13c7ee 1666
6fd98e77
SD
1667 /*
1668 * If the NUMA importance is less than SMALLIMP,
1669 * task migration might only result in ping pong
1670 * of tasks and also hurt performance due to cache
1671 * misses.
1672 */
1673 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1674 goto unlock;
1675
fb13c7ee
MG
1676 /*
1677 * In the overloaded case, try and keep the load balanced.
1678 */
305c1fac
SD
1679 load = task_h_load(env->p) - task_h_load(cur);
1680 if (!load)
1681 goto assign;
1682
e720fff6
PZ
1683 dst_load = env->dst_stats.load + load;
1684 src_load = env->src_stats.load - load;
fb13c7ee 1685
28a21745 1686 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1687 goto unlock;
1688
305c1fac 1689assign:
ba7e5a27
RR
1690 /*
1691 * One idle CPU per node is evaluated for a task numa move.
1692 * Call select_idle_sibling to maybe find a better one.
1693 */
10e2f1ac
PZ
1694 if (!cur) {
1695 /*
97fb7a0a 1696 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1697 * can be used from IRQ context.
1698 */
1699 local_irq_disable();
772bd008
MR
1700 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1701 env->dst_cpu);
10e2f1ac
PZ
1702 local_irq_enable();
1703 }
ba7e5a27 1704
fb13c7ee
MG
1705 task_numa_assign(env, cur, imp);
1706unlock:
1707 rcu_read_unlock();
1708}
1709
887c290e
RR
1710static void task_numa_find_cpu(struct task_numa_env *env,
1711 long taskimp, long groupimp)
2c8a50aa 1712{
305c1fac
SD
1713 long src_load, dst_load, load;
1714 bool maymove = false;
2c8a50aa
MG
1715 int cpu;
1716
305c1fac
SD
1717 load = task_h_load(env->p);
1718 dst_load = env->dst_stats.load + load;
1719 src_load = env->src_stats.load - load;
1720
1721 /*
1722 * If the improvement from just moving env->p direction is better
1723 * than swapping tasks around, check if a move is possible.
1724 */
1725 maymove = !load_too_imbalanced(src_load, dst_load, env);
1726
2c8a50aa
MG
1727 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1728 /* Skip this CPU if the source task cannot migrate */
3bd37062 1729 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1730 continue;
1731
1732 env->dst_cpu = cpu;
305c1fac 1733 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1734 }
1735}
1736
58d081b5
MG
1737static int task_numa_migrate(struct task_struct *p)
1738{
58d081b5
MG
1739 struct task_numa_env env = {
1740 .p = p,
fb13c7ee 1741
58d081b5 1742 .src_cpu = task_cpu(p),
b32e86b4 1743 .src_nid = task_node(p),
fb13c7ee
MG
1744
1745 .imbalance_pct = 112,
1746
1747 .best_task = NULL,
1748 .best_imp = 0,
4142c3eb 1749 .best_cpu = -1,
58d081b5 1750 };
cb361d8c 1751 unsigned long taskweight, groupweight;
58d081b5 1752 struct sched_domain *sd;
cb361d8c
JH
1753 long taskimp, groupimp;
1754 struct numa_group *ng;
a4739eca 1755 struct rq *best_rq;
7bd95320 1756 int nid, ret, dist;
e6628d5b 1757
58d081b5 1758 /*
fb13c7ee
MG
1759 * Pick the lowest SD_NUMA domain, as that would have the smallest
1760 * imbalance and would be the first to start moving tasks about.
1761 *
1762 * And we want to avoid any moving of tasks about, as that would create
1763 * random movement of tasks -- counter the numa conditions we're trying
1764 * to satisfy here.
58d081b5
MG
1765 */
1766 rcu_read_lock();
fb13c7ee 1767 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1768 if (sd)
1769 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1770 rcu_read_unlock();
1771
46a73e8a
RR
1772 /*
1773 * Cpusets can break the scheduler domain tree into smaller
1774 * balance domains, some of which do not cross NUMA boundaries.
1775 * Tasks that are "trapped" in such domains cannot be migrated
1776 * elsewhere, so there is no point in (re)trying.
1777 */
1778 if (unlikely(!sd)) {
8cd45eee 1779 sched_setnuma(p, task_node(p));
46a73e8a
RR
1780 return -EINVAL;
1781 }
1782
2c8a50aa 1783 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1784 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1785 taskweight = task_weight(p, env.src_nid, dist);
1786 groupweight = group_weight(p, env.src_nid, dist);
1787 update_numa_stats(&env.src_stats, env.src_nid);
1788 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1789 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1790 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1791
a43455a1 1792 /* Try to find a spot on the preferred nid. */
2d4056fa 1793 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1794
9de05d48
RR
1795 /*
1796 * Look at other nodes in these cases:
1797 * - there is no space available on the preferred_nid
1798 * - the task is part of a numa_group that is interleaved across
1799 * multiple NUMA nodes; in order to better consolidate the group,
1800 * we need to check other locations.
1801 */
cb361d8c
JH
1802 ng = deref_curr_numa_group(p);
1803 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
1804 for_each_online_node(nid) {
1805 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1806 continue;
58d081b5 1807
7bd95320 1808 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1809 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1810 dist != env.dist) {
1811 taskweight = task_weight(p, env.src_nid, dist);
1812 groupweight = group_weight(p, env.src_nid, dist);
1813 }
7bd95320 1814
83e1d2cd 1815 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1816 taskimp = task_weight(p, nid, dist) - taskweight;
1817 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1818 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1819 continue;
1820
7bd95320 1821 env.dist = dist;
2c8a50aa
MG
1822 env.dst_nid = nid;
1823 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1824 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1825 }
1826 }
1827
68d1b02a
RR
1828 /*
1829 * If the task is part of a workload that spans multiple NUMA nodes,
1830 * and is migrating into one of the workload's active nodes, remember
1831 * this node as the task's preferred numa node, so the workload can
1832 * settle down.
1833 * A task that migrated to a second choice node will be better off
1834 * trying for a better one later. Do not set the preferred node here.
1835 */
cb361d8c 1836 if (ng) {
db015dae
RR
1837 if (env.best_cpu == -1)
1838 nid = env.src_nid;
1839 else
8cd45eee 1840 nid = cpu_to_node(env.best_cpu);
db015dae 1841
8cd45eee
SD
1842 if (nid != p->numa_preferred_nid)
1843 sched_setnuma(p, nid);
db015dae
RR
1844 }
1845
1846 /* No better CPU than the current one was found. */
1847 if (env.best_cpu == -1)
1848 return -EAGAIN;
0ec8aa00 1849
a4739eca 1850 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1851 if (env.best_task == NULL) {
286549dc 1852 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1853 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1854 if (ret != 0)
1855 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1856 return ret;
1857 }
1858
0ad4e3df 1859 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1860 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1861
286549dc
MG
1862 if (ret != 0)
1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1864 put_task_struct(env.best_task);
1865 return ret;
e6628d5b
MG
1866}
1867
6b9a7460
MG
1868/* Attempt to migrate a task to a CPU on the preferred node. */
1869static void numa_migrate_preferred(struct task_struct *p)
1870{
5085e2a3
RR
1871 unsigned long interval = HZ;
1872
2739d3ee 1873 /* This task has no NUMA fault statistics yet */
98fa15f3 1874 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
1875 return;
1876
2739d3ee 1877 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1879 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1880
1881 /* Success if task is already running on preferred CPU */
de1b301a 1882 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1883 return;
1884
1885 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1886 task_numa_migrate(p);
6b9a7460
MG
1887}
1888
20e07dea 1889/*
4142c3eb 1890 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1891 * tracking the nodes from which NUMA hinting faults are triggered. This can
1892 * be different from the set of nodes where the workload's memory is currently
1893 * located.
20e07dea 1894 */
4142c3eb 1895static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1896{
1897 unsigned long faults, max_faults = 0;
4142c3eb 1898 int nid, active_nodes = 0;
20e07dea
RR
1899
1900 for_each_online_node(nid) {
1901 faults = group_faults_cpu(numa_group, nid);
1902 if (faults > max_faults)
1903 max_faults = faults;
1904 }
1905
1906 for_each_online_node(nid) {
1907 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1908 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909 active_nodes++;
20e07dea 1910 }
4142c3eb
RR
1911
1912 numa_group->max_faults_cpu = max_faults;
1913 numa_group->active_nodes = active_nodes;
20e07dea
RR
1914}
1915
04bb2f94
RR
1916/*
1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1919 * period will be for the next scan window. If local/(local+remote) ratio is
1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1922 */
1923#define NUMA_PERIOD_SLOTS 10
a22b4b01 1924#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1925
1926/*
1927 * Increase the scan period (slow down scanning) if the majority of
1928 * our memory is already on our local node, or if the majority of
1929 * the page accesses are shared with other processes.
1930 * Otherwise, decrease the scan period.
1931 */
1932static void update_task_scan_period(struct task_struct *p,
1933 unsigned long shared, unsigned long private)
1934{
1935 unsigned int period_slot;
37ec97de 1936 int lr_ratio, ps_ratio;
04bb2f94
RR
1937 int diff;
1938
1939 unsigned long remote = p->numa_faults_locality[0];
1940 unsigned long local = p->numa_faults_locality[1];
1941
1942 /*
1943 * If there were no record hinting faults then either the task is
1944 * completely idle or all activity is areas that are not of interest
074c2381
MG
1945 * to automatic numa balancing. Related to that, if there were failed
1946 * migration then it implies we are migrating too quickly or the local
1947 * node is overloaded. In either case, scan slower
04bb2f94 1948 */
074c2381 1949 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1950 p->numa_scan_period = min(p->numa_scan_period_max,
1951 p->numa_scan_period << 1);
1952
1953 p->mm->numa_next_scan = jiffies +
1954 msecs_to_jiffies(p->numa_scan_period);
1955
1956 return;
1957 }
1958
1959 /*
1960 * Prepare to scale scan period relative to the current period.
1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 */
1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968
1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 /*
1971 * Most memory accesses are local. There is no need to
1972 * do fast NUMA scanning, since memory is already local.
1973 */
1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975 if (!slot)
1976 slot = 1;
1977 diff = slot * period_slot;
1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 /*
1980 * Most memory accesses are shared with other tasks.
1981 * There is no point in continuing fast NUMA scanning,
1982 * since other tasks may just move the memory elsewhere.
1983 */
1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1985 if (!slot)
1986 slot = 1;
1987 diff = slot * period_slot;
1988 } else {
04bb2f94 1989 /*
37ec97de
RR
1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 * yet they are not on the local NUMA node. Speed up
1992 * NUMA scanning to get the memory moved over.
04bb2f94 1993 */
37ec97de
RR
1994 int ratio = max(lr_ratio, ps_ratio);
1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1996 }
1997
1998 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999 task_scan_min(p), task_scan_max(p));
2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001}
2002
7e2703e6
RR
2003/*
2004 * Get the fraction of time the task has been running since the last
2005 * NUMA placement cycle. The scheduler keeps similar statistics, but
2006 * decays those on a 32ms period, which is orders of magnitude off
2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008 * stats only if the task is so new there are no NUMA statistics yet.
2009 */
2010static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011{
2012 u64 runtime, delta, now;
2013 /* Use the start of this time slice to avoid calculations. */
2014 now = p->se.exec_start;
2015 runtime = p->se.sum_exec_runtime;
2016
2017 if (p->last_task_numa_placement) {
2018 delta = runtime - p->last_sum_exec_runtime;
2019 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2020
2021 /* Avoid time going backwards, prevent potential divide error: */
2022 if (unlikely((s64)*period < 0))
2023 *period = 0;
7e2703e6 2024 } else {
c7b50216 2025 delta = p->se.avg.load_sum;
9d89c257 2026 *period = LOAD_AVG_MAX;
7e2703e6
RR
2027 }
2028
2029 p->last_sum_exec_runtime = runtime;
2030 p->last_task_numa_placement = now;
2031
2032 return delta;
2033}
2034
54009416
RR
2035/*
2036 * Determine the preferred nid for a task in a numa_group. This needs to
2037 * be done in a way that produces consistent results with group_weight,
2038 * otherwise workloads might not converge.
2039 */
2040static int preferred_group_nid(struct task_struct *p, int nid)
2041{
2042 nodemask_t nodes;
2043 int dist;
2044
2045 /* Direct connections between all NUMA nodes. */
2046 if (sched_numa_topology_type == NUMA_DIRECT)
2047 return nid;
2048
2049 /*
2050 * On a system with glueless mesh NUMA topology, group_weight
2051 * scores nodes according to the number of NUMA hinting faults on
2052 * both the node itself, and on nearby nodes.
2053 */
2054 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2055 unsigned long score, max_score = 0;
2056 int node, max_node = nid;
2057
2058 dist = sched_max_numa_distance;
2059
2060 for_each_online_node(node) {
2061 score = group_weight(p, node, dist);
2062 if (score > max_score) {
2063 max_score = score;
2064 max_node = node;
2065 }
2066 }
2067 return max_node;
2068 }
2069
2070 /*
2071 * Finding the preferred nid in a system with NUMA backplane
2072 * interconnect topology is more involved. The goal is to locate
2073 * tasks from numa_groups near each other in the system, and
2074 * untangle workloads from different sides of the system. This requires
2075 * searching down the hierarchy of node groups, recursively searching
2076 * inside the highest scoring group of nodes. The nodemask tricks
2077 * keep the complexity of the search down.
2078 */
2079 nodes = node_online_map;
2080 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2081 unsigned long max_faults = 0;
81907478 2082 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2083 int a, b;
2084
2085 /* Are there nodes at this distance from each other? */
2086 if (!find_numa_distance(dist))
2087 continue;
2088
2089 for_each_node_mask(a, nodes) {
2090 unsigned long faults = 0;
2091 nodemask_t this_group;
2092 nodes_clear(this_group);
2093
2094 /* Sum group's NUMA faults; includes a==b case. */
2095 for_each_node_mask(b, nodes) {
2096 if (node_distance(a, b) < dist) {
2097 faults += group_faults(p, b);
2098 node_set(b, this_group);
2099 node_clear(b, nodes);
2100 }
2101 }
2102
2103 /* Remember the top group. */
2104 if (faults > max_faults) {
2105 max_faults = faults;
2106 max_group = this_group;
2107 /*
2108 * subtle: at the smallest distance there is
2109 * just one node left in each "group", the
2110 * winner is the preferred nid.
2111 */
2112 nid = a;
2113 }
2114 }
2115 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2116 if (!max_faults)
2117 break;
54009416
RR
2118 nodes = max_group;
2119 }
2120 return nid;
2121}
2122
cbee9f88
PZ
2123static void task_numa_placement(struct task_struct *p)
2124{
98fa15f3 2125 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2126 unsigned long max_faults = 0;
04bb2f94 2127 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2128 unsigned long total_faults;
2129 u64 runtime, period;
7dbd13ed 2130 spinlock_t *group_lock = NULL;
cb361d8c 2131 struct numa_group *ng;
cbee9f88 2132
7e5a2c17
JL
2133 /*
2134 * The p->mm->numa_scan_seq field gets updated without
2135 * exclusive access. Use READ_ONCE() here to ensure
2136 * that the field is read in a single access:
2137 */
316c1608 2138 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2139 if (p->numa_scan_seq == seq)
2140 return;
2141 p->numa_scan_seq = seq;
598f0ec0 2142 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2143
7e2703e6
RR
2144 total_faults = p->numa_faults_locality[0] +
2145 p->numa_faults_locality[1];
2146 runtime = numa_get_avg_runtime(p, &period);
2147
7dbd13ed 2148 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2149 ng = deref_curr_numa_group(p);
2150 if (ng) {
2151 group_lock = &ng->lock;
60e69eed 2152 spin_lock_irq(group_lock);
7dbd13ed
MG
2153 }
2154
688b7585
MG
2155 /* Find the node with the highest number of faults */
2156 for_each_online_node(nid) {
44dba3d5
IM
2157 /* Keep track of the offsets in numa_faults array */
2158 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2159 unsigned long faults = 0, group_faults = 0;
44dba3d5 2160 int priv;
745d6147 2161
be1e4e76 2162 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2163 long diff, f_diff, f_weight;
8c8a743c 2164
44dba3d5
IM
2165 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2166 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2167 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2168 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2169
ac8e895b 2170 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2171 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2172 fault_types[priv] += p->numa_faults[membuf_idx];
2173 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2174
7e2703e6
RR
2175 /*
2176 * Normalize the faults_from, so all tasks in a group
2177 * count according to CPU use, instead of by the raw
2178 * number of faults. Tasks with little runtime have
2179 * little over-all impact on throughput, and thus their
2180 * faults are less important.
2181 */
2182 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2183 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2184 (total_faults + 1);
44dba3d5
IM
2185 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2186 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2187
44dba3d5
IM
2188 p->numa_faults[mem_idx] += diff;
2189 p->numa_faults[cpu_idx] += f_diff;
2190 faults += p->numa_faults[mem_idx];
83e1d2cd 2191 p->total_numa_faults += diff;
cb361d8c 2192 if (ng) {
44dba3d5
IM
2193 /*
2194 * safe because we can only change our own group
2195 *
2196 * mem_idx represents the offset for a given
2197 * nid and priv in a specific region because it
2198 * is at the beginning of the numa_faults array.
2199 */
cb361d8c
JH
2200 ng->faults[mem_idx] += diff;
2201 ng->faults_cpu[mem_idx] += f_diff;
2202 ng->total_faults += diff;
2203 group_faults += ng->faults[mem_idx];
8c8a743c 2204 }
ac8e895b
MG
2205 }
2206
cb361d8c 2207 if (!ng) {
f03bb676
SD
2208 if (faults > max_faults) {
2209 max_faults = faults;
2210 max_nid = nid;
2211 }
2212 } else if (group_faults > max_faults) {
2213 max_faults = group_faults;
688b7585
MG
2214 max_nid = nid;
2215 }
83e1d2cd
MG
2216 }
2217
cb361d8c
JH
2218 if (ng) {
2219 numa_group_count_active_nodes(ng);
60e69eed 2220 spin_unlock_irq(group_lock);
f03bb676 2221 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2222 }
2223
bb97fc31
RR
2224 if (max_faults) {
2225 /* Set the new preferred node */
2226 if (max_nid != p->numa_preferred_nid)
2227 sched_setnuma(p, max_nid);
3a7053b3 2228 }
30619c89
SD
2229
2230 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2231}
2232
8c8a743c
PZ
2233static inline int get_numa_group(struct numa_group *grp)
2234{
c45a7795 2235 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2236}
2237
2238static inline void put_numa_group(struct numa_group *grp)
2239{
c45a7795 2240 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2241 kfree_rcu(grp, rcu);
2242}
2243
3e6a9418
MG
2244static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2245 int *priv)
8c8a743c
PZ
2246{
2247 struct numa_group *grp, *my_grp;
2248 struct task_struct *tsk;
2249 bool join = false;
2250 int cpu = cpupid_to_cpu(cpupid);
2251 int i;
2252
cb361d8c 2253 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2254 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2255 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2256
2257 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2258 if (!grp)
2259 return;
2260
c45a7795 2261 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2262 grp->active_nodes = 1;
2263 grp->max_faults_cpu = 0;
8c8a743c 2264 spin_lock_init(&grp->lock);
e29cf08b 2265 grp->gid = p->pid;
50ec8a40 2266 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2267 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2268 nr_node_ids;
8c8a743c 2269
be1e4e76 2270 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2271 grp->faults[i] = p->numa_faults[i];
8c8a743c 2272
989348b5 2273 grp->total_faults = p->total_numa_faults;
83e1d2cd 2274
8c8a743c
PZ
2275 grp->nr_tasks++;
2276 rcu_assign_pointer(p->numa_group, grp);
2277 }
2278
2279 rcu_read_lock();
316c1608 2280 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2281
2282 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2283 goto no_join;
8c8a743c
PZ
2284
2285 grp = rcu_dereference(tsk->numa_group);
2286 if (!grp)
3354781a 2287 goto no_join;
8c8a743c 2288
cb361d8c 2289 my_grp = deref_curr_numa_group(p);
8c8a743c 2290 if (grp == my_grp)
3354781a 2291 goto no_join;
8c8a743c
PZ
2292
2293 /*
2294 * Only join the other group if its bigger; if we're the bigger group,
2295 * the other task will join us.
2296 */
2297 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2298 goto no_join;
8c8a743c
PZ
2299
2300 /*
2301 * Tie-break on the grp address.
2302 */
2303 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2304 goto no_join;
8c8a743c 2305
dabe1d99
RR
2306 /* Always join threads in the same process. */
2307 if (tsk->mm == current->mm)
2308 join = true;
2309
2310 /* Simple filter to avoid false positives due to PID collisions */
2311 if (flags & TNF_SHARED)
2312 join = true;
8c8a743c 2313
3e6a9418
MG
2314 /* Update priv based on whether false sharing was detected */
2315 *priv = !join;
2316
dabe1d99 2317 if (join && !get_numa_group(grp))
3354781a 2318 goto no_join;
8c8a743c 2319
8c8a743c
PZ
2320 rcu_read_unlock();
2321
2322 if (!join)
2323 return;
2324
60e69eed
MG
2325 BUG_ON(irqs_disabled());
2326 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2327
be1e4e76 2328 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2329 my_grp->faults[i] -= p->numa_faults[i];
2330 grp->faults[i] += p->numa_faults[i];
8c8a743c 2331 }
989348b5
MG
2332 my_grp->total_faults -= p->total_numa_faults;
2333 grp->total_faults += p->total_numa_faults;
8c8a743c 2334
8c8a743c
PZ
2335 my_grp->nr_tasks--;
2336 grp->nr_tasks++;
2337
2338 spin_unlock(&my_grp->lock);
60e69eed 2339 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2340
2341 rcu_assign_pointer(p->numa_group, grp);
2342
2343 put_numa_group(my_grp);
3354781a
PZ
2344 return;
2345
2346no_join:
2347 rcu_read_unlock();
2348 return;
8c8a743c
PZ
2349}
2350
16d51a59
JH
2351/*
2352 * Get rid of NUMA staticstics associated with a task (either current or dead).
2353 * If @final is set, the task is dead and has reached refcount zero, so we can
2354 * safely free all relevant data structures. Otherwise, there might be
2355 * concurrent reads from places like load balancing and procfs, and we should
2356 * reset the data back to default state without freeing ->numa_faults.
2357 */
2358void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2359{
cb361d8c
JH
2360 /* safe: p either is current or is being freed by current */
2361 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2362 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2363 unsigned long flags;
2364 int i;
8c8a743c 2365
16d51a59
JH
2366 if (!numa_faults)
2367 return;
2368
8c8a743c 2369 if (grp) {
e9dd685c 2370 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2371 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2372 grp->faults[i] -= p->numa_faults[i];
989348b5 2373 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2374
8c8a743c 2375 grp->nr_tasks--;
e9dd685c 2376 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2377 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2378 put_numa_group(grp);
2379 }
2380
16d51a59
JH
2381 if (final) {
2382 p->numa_faults = NULL;
2383 kfree(numa_faults);
2384 } else {
2385 p->total_numa_faults = 0;
2386 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2387 numa_faults[i] = 0;
2388 }
8c8a743c
PZ
2389}
2390
cbee9f88
PZ
2391/*
2392 * Got a PROT_NONE fault for a page on @node.
2393 */
58b46da3 2394void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2395{
2396 struct task_struct *p = current;
6688cc05 2397 bool migrated = flags & TNF_MIGRATED;
58b46da3 2398 int cpu_node = task_node(current);
792568ec 2399 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2400 struct numa_group *ng;
ac8e895b 2401 int priv;
cbee9f88 2402
2a595721 2403 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2404 return;
2405
9ff1d9ff
MG
2406 /* for example, ksmd faulting in a user's mm */
2407 if (!p->mm)
2408 return;
2409
f809ca9a 2410 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2411 if (unlikely(!p->numa_faults)) {
2412 int size = sizeof(*p->numa_faults) *
be1e4e76 2413 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2414
44dba3d5
IM
2415 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2416 if (!p->numa_faults)
f809ca9a 2417 return;
745d6147 2418
83e1d2cd 2419 p->total_numa_faults = 0;
04bb2f94 2420 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2421 }
cbee9f88 2422
8c8a743c
PZ
2423 /*
2424 * First accesses are treated as private, otherwise consider accesses
2425 * to be private if the accessing pid has not changed
2426 */
2427 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2428 priv = 1;
2429 } else {
2430 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2431 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2432 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2433 }
2434
792568ec
RR
2435 /*
2436 * If a workload spans multiple NUMA nodes, a shared fault that
2437 * occurs wholly within the set of nodes that the workload is
2438 * actively using should be counted as local. This allows the
2439 * scan rate to slow down when a workload has settled down.
2440 */
cb361d8c 2441 ng = deref_curr_numa_group(p);
4142c3eb
RR
2442 if (!priv && !local && ng && ng->active_nodes > 1 &&
2443 numa_is_active_node(cpu_node, ng) &&
2444 numa_is_active_node(mem_node, ng))
792568ec
RR
2445 local = 1;
2446
2739d3ee 2447 /*
e1ff516a
YW
2448 * Retry to migrate task to preferred node periodically, in case it
2449 * previously failed, or the scheduler moved us.
2739d3ee 2450 */
b6a60cf3
SD
2451 if (time_after(jiffies, p->numa_migrate_retry)) {
2452 task_numa_placement(p);
6b9a7460 2453 numa_migrate_preferred(p);
b6a60cf3 2454 }
6b9a7460 2455
b32e86b4
IM
2456 if (migrated)
2457 p->numa_pages_migrated += pages;
074c2381
MG
2458 if (flags & TNF_MIGRATE_FAIL)
2459 p->numa_faults_locality[2] += pages;
b32e86b4 2460
44dba3d5
IM
2461 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2462 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2463 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2464}
2465
6e5fb223
PZ
2466static void reset_ptenuma_scan(struct task_struct *p)
2467{
7e5a2c17
JL
2468 /*
2469 * We only did a read acquisition of the mmap sem, so
2470 * p->mm->numa_scan_seq is written to without exclusive access
2471 * and the update is not guaranteed to be atomic. That's not
2472 * much of an issue though, since this is just used for
2473 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2474 * expensive, to avoid any form of compiler optimizations:
2475 */
316c1608 2476 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2477 p->mm->numa_scan_offset = 0;
2478}
2479
cbee9f88
PZ
2480/*
2481 * The expensive part of numa migration is done from task_work context.
2482 * Triggered from task_tick_numa().
2483 */
9434f9f5 2484static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2485{
2486 unsigned long migrate, next_scan, now = jiffies;
2487 struct task_struct *p = current;
2488 struct mm_struct *mm = p->mm;
51170840 2489 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2490 struct vm_area_struct *vma;
9f40604c 2491 unsigned long start, end;
598f0ec0 2492 unsigned long nr_pte_updates = 0;
4620f8c1 2493 long pages, virtpages;
cbee9f88 2494
9148a3a1 2495 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2496
b34920d4 2497 work->next = work;
cbee9f88
PZ
2498 /*
2499 * Who cares about NUMA placement when they're dying.
2500 *
2501 * NOTE: make sure not to dereference p->mm before this check,
2502 * exit_task_work() happens _after_ exit_mm() so we could be called
2503 * without p->mm even though we still had it when we enqueued this
2504 * work.
2505 */
2506 if (p->flags & PF_EXITING)
2507 return;
2508
930aa174 2509 if (!mm->numa_next_scan) {
7e8d16b6
MG
2510 mm->numa_next_scan = now +
2511 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2512 }
2513
cbee9f88
PZ
2514 /*
2515 * Enforce maximal scan/migration frequency..
2516 */
2517 migrate = mm->numa_next_scan;
2518 if (time_before(now, migrate))
2519 return;
2520
598f0ec0
MG
2521 if (p->numa_scan_period == 0) {
2522 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2523 p->numa_scan_period = task_scan_start(p);
598f0ec0 2524 }
cbee9f88 2525
fb003b80 2526 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2527 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2528 return;
2529
19a78d11
PZ
2530 /*
2531 * Delay this task enough that another task of this mm will likely win
2532 * the next time around.
2533 */
2534 p->node_stamp += 2 * TICK_NSEC;
2535
9f40604c
MG
2536 start = mm->numa_scan_offset;
2537 pages = sysctl_numa_balancing_scan_size;
2538 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2539 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2540 if (!pages)
2541 return;
cbee9f88 2542
4620f8c1 2543
8655d549
VB
2544 if (!down_read_trylock(&mm->mmap_sem))
2545 return;
9f40604c 2546 vma = find_vma(mm, start);
6e5fb223
PZ
2547 if (!vma) {
2548 reset_ptenuma_scan(p);
9f40604c 2549 start = 0;
6e5fb223
PZ
2550 vma = mm->mmap;
2551 }
9f40604c 2552 for (; vma; vma = vma->vm_next) {
6b79c57b 2553 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2554 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2555 continue;
6b79c57b 2556 }
6e5fb223 2557
4591ce4f
MG
2558 /*
2559 * Shared library pages mapped by multiple processes are not
2560 * migrated as it is expected they are cache replicated. Avoid
2561 * hinting faults in read-only file-backed mappings or the vdso
2562 * as migrating the pages will be of marginal benefit.
2563 */
2564 if (!vma->vm_mm ||
2565 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2566 continue;
2567
3c67f474
MG
2568 /*
2569 * Skip inaccessible VMAs to avoid any confusion between
2570 * PROT_NONE and NUMA hinting ptes
2571 */
2572 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2573 continue;
4591ce4f 2574
9f40604c
MG
2575 do {
2576 start = max(start, vma->vm_start);
2577 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2578 end = min(end, vma->vm_end);
4620f8c1 2579 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2580
2581 /*
4620f8c1
RR
2582 * Try to scan sysctl_numa_balancing_size worth of
2583 * hpages that have at least one present PTE that
2584 * is not already pte-numa. If the VMA contains
2585 * areas that are unused or already full of prot_numa
2586 * PTEs, scan up to virtpages, to skip through those
2587 * areas faster.
598f0ec0
MG
2588 */
2589 if (nr_pte_updates)
2590 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2591 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2592
9f40604c 2593 start = end;
4620f8c1 2594 if (pages <= 0 || virtpages <= 0)
9f40604c 2595 goto out;
3cf1962c
RR
2596
2597 cond_resched();
9f40604c 2598 } while (end != vma->vm_end);
cbee9f88 2599 }
6e5fb223 2600
9f40604c 2601out:
6e5fb223 2602 /*
c69307d5
PZ
2603 * It is possible to reach the end of the VMA list but the last few
2604 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2605 * would find the !migratable VMA on the next scan but not reset the
2606 * scanner to the start so check it now.
6e5fb223
PZ
2607 */
2608 if (vma)
9f40604c 2609 mm->numa_scan_offset = start;
6e5fb223
PZ
2610 else
2611 reset_ptenuma_scan(p);
2612 up_read(&mm->mmap_sem);
51170840
RR
2613
2614 /*
2615 * Make sure tasks use at least 32x as much time to run other code
2616 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2617 * Usually update_task_scan_period slows down scanning enough; on an
2618 * overloaded system we need to limit overhead on a per task basis.
2619 */
2620 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2621 u64 diff = p->se.sum_exec_runtime - runtime;
2622 p->node_stamp += 32 * diff;
2623 }
cbee9f88
PZ
2624}
2625
d35927a1
VS
2626void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2627{
2628 int mm_users = 0;
2629 struct mm_struct *mm = p->mm;
2630
2631 if (mm) {
2632 mm_users = atomic_read(&mm->mm_users);
2633 if (mm_users == 1) {
2634 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2635 mm->numa_scan_seq = 0;
2636 }
2637 }
2638 p->node_stamp = 0;
2639 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2640 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2641 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2642 p->numa_work.next = &p->numa_work;
2643 p->numa_faults = NULL;
2644 RCU_INIT_POINTER(p->numa_group, NULL);
2645 p->last_task_numa_placement = 0;
2646 p->last_sum_exec_runtime = 0;
2647
b34920d4
VS
2648 init_task_work(&p->numa_work, task_numa_work);
2649
d35927a1
VS
2650 /* New address space, reset the preferred nid */
2651 if (!(clone_flags & CLONE_VM)) {
2652 p->numa_preferred_nid = NUMA_NO_NODE;
2653 return;
2654 }
2655
2656 /*
2657 * New thread, keep existing numa_preferred_nid which should be copied
2658 * already by arch_dup_task_struct but stagger when scans start.
2659 */
2660 if (mm) {
2661 unsigned int delay;
2662
2663 delay = min_t(unsigned int, task_scan_max(current),
2664 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2665 delay += 2 * TICK_NSEC;
2666 p->node_stamp = delay;
2667 }
2668}
2669
cbee9f88
PZ
2670/*
2671 * Drive the periodic memory faults..
2672 */
b1546edc 2673static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2674{
2675 struct callback_head *work = &curr->numa_work;
2676 u64 period, now;
2677
2678 /*
2679 * We don't care about NUMA placement if we don't have memory.
2680 */
2681 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2682 return;
2683
2684 /*
2685 * Using runtime rather than walltime has the dual advantage that
2686 * we (mostly) drive the selection from busy threads and that the
2687 * task needs to have done some actual work before we bother with
2688 * NUMA placement.
2689 */
2690 now = curr->se.sum_exec_runtime;
2691 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2692
25b3e5a3 2693 if (now > curr->node_stamp + period) {
4b96a29b 2694 if (!curr->node_stamp)
b5dd77c8 2695 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2696 curr->node_stamp += period;
cbee9f88 2697
b34920d4 2698 if (!time_before(jiffies, curr->mm->numa_next_scan))
cbee9f88 2699 task_work_add(curr, work, true);
cbee9f88
PZ
2700 }
2701}
3fed382b 2702
3f9672ba
SD
2703static void update_scan_period(struct task_struct *p, int new_cpu)
2704{
2705 int src_nid = cpu_to_node(task_cpu(p));
2706 int dst_nid = cpu_to_node(new_cpu);
2707
05cbdf4f
MG
2708 if (!static_branch_likely(&sched_numa_balancing))
2709 return;
2710
3f9672ba
SD
2711 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2712 return;
2713
05cbdf4f
MG
2714 if (src_nid == dst_nid)
2715 return;
2716
2717 /*
2718 * Allow resets if faults have been trapped before one scan
2719 * has completed. This is most likely due to a new task that
2720 * is pulled cross-node due to wakeups or load balancing.
2721 */
2722 if (p->numa_scan_seq) {
2723 /*
2724 * Avoid scan adjustments if moving to the preferred
2725 * node or if the task was not previously running on
2726 * the preferred node.
2727 */
2728 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2729 (p->numa_preferred_nid != NUMA_NO_NODE &&
2730 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2731 return;
2732 }
2733
2734 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2735}
2736
cbee9f88
PZ
2737#else
2738static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2739{
2740}
0ec8aa00
PZ
2741
2742static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2743{
2744}
2745
2746static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2747{
2748}
3fed382b 2749
3f9672ba
SD
2750static inline void update_scan_period(struct task_struct *p, int new_cpu)
2751{
2752}
2753
cbee9f88
PZ
2754#endif /* CONFIG_NUMA_BALANCING */
2755
30cfdcfc
DA
2756static void
2757account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2758{
2759 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2760#ifdef CONFIG_SMP
0ec8aa00
PZ
2761 if (entity_is_task(se)) {
2762 struct rq *rq = rq_of(cfs_rq);
2763
2764 account_numa_enqueue(rq, task_of(se));
2765 list_add(&se->group_node, &rq->cfs_tasks);
2766 }
367456c7 2767#endif
30cfdcfc 2768 cfs_rq->nr_running++;
30cfdcfc
DA
2769}
2770
2771static void
2772account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2773{
2774 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 2775#ifdef CONFIG_SMP
0ec8aa00
PZ
2776 if (entity_is_task(se)) {
2777 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2778 list_del_init(&se->group_node);
0ec8aa00 2779 }
bfdb198c 2780#endif
30cfdcfc 2781 cfs_rq->nr_running--;
30cfdcfc
DA
2782}
2783
8d5b9025
PZ
2784/*
2785 * Signed add and clamp on underflow.
2786 *
2787 * Explicitly do a load-store to ensure the intermediate value never hits
2788 * memory. This allows lockless observations without ever seeing the negative
2789 * values.
2790 */
2791#define add_positive(_ptr, _val) do { \
2792 typeof(_ptr) ptr = (_ptr); \
2793 typeof(_val) val = (_val); \
2794 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2795 \
2796 res = var + val; \
2797 \
2798 if (val < 0 && res > var) \
2799 res = 0; \
2800 \
2801 WRITE_ONCE(*ptr, res); \
2802} while (0)
2803
2804/*
2805 * Unsigned subtract and clamp on underflow.
2806 *
2807 * Explicitly do a load-store to ensure the intermediate value never hits
2808 * memory. This allows lockless observations without ever seeing the negative
2809 * values.
2810 */
2811#define sub_positive(_ptr, _val) do { \
2812 typeof(_ptr) ptr = (_ptr); \
2813 typeof(*ptr) val = (_val); \
2814 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2815 res = var - val; \
2816 if (res > var) \
2817 res = 0; \
2818 WRITE_ONCE(*ptr, res); \
2819} while (0)
2820
b5c0ce7b
PB
2821/*
2822 * Remove and clamp on negative, from a local variable.
2823 *
2824 * A variant of sub_positive(), which does not use explicit load-store
2825 * and is thus optimized for local variable updates.
2826 */
2827#define lsub_positive(_ptr, _val) do { \
2828 typeof(_ptr) ptr = (_ptr); \
2829 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2830} while (0)
2831
8d5b9025 2832#ifdef CONFIG_SMP
8d5b9025
PZ
2833static inline void
2834enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2835{
1ea6c46a
PZ
2836 cfs_rq->runnable_weight += se->runnable_weight;
2837
2838 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2839 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2840}
2841
2842static inline void
2843dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2844{
1ea6c46a
PZ
2845 cfs_rq->runnable_weight -= se->runnable_weight;
2846
2847 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2848 sub_positive(&cfs_rq->avg.runnable_load_sum,
2849 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2850}
2851
2852static inline void
2853enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2854{
2855 cfs_rq->avg.load_avg += se->avg.load_avg;
2856 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2857}
2858
2859static inline void
2860dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2861{
2862 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2863 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2864}
2865#else
2866static inline void
2867enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2868static inline void
2869dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2870static inline void
2871enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872static inline void
2873dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874#endif
2875
9059393e 2876static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2877 unsigned long weight, unsigned long runnable)
9059393e
VG
2878{
2879 if (se->on_rq) {
2880 /* commit outstanding execution time */
2881 if (cfs_rq->curr == se)
2882 update_curr(cfs_rq);
2883 account_entity_dequeue(cfs_rq, se);
2884 dequeue_runnable_load_avg(cfs_rq, se);
2885 }
2886 dequeue_load_avg(cfs_rq, se);
2887
1ea6c46a 2888 se->runnable_weight = runnable;
9059393e
VG
2889 update_load_set(&se->load, weight);
2890
2891#ifdef CONFIG_SMP
1ea6c46a
PZ
2892 do {
2893 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2894
2895 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2896 se->avg.runnable_load_avg =
2897 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2898 } while (0);
9059393e
VG
2899#endif
2900
2901 enqueue_load_avg(cfs_rq, se);
2902 if (se->on_rq) {
2903 account_entity_enqueue(cfs_rq, se);
2904 enqueue_runnable_load_avg(cfs_rq, se);
2905 }
2906}
2907
2908void reweight_task(struct task_struct *p, int prio)
2909{
2910 struct sched_entity *se = &p->se;
2911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2912 struct load_weight *load = &se->load;
2913 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2914
1ea6c46a 2915 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2916 load->inv_weight = sched_prio_to_wmult[prio];
2917}
2918
3ff6dcac 2919#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2920#ifdef CONFIG_SMP
cef27403
PZ
2921/*
2922 * All this does is approximate the hierarchical proportion which includes that
2923 * global sum we all love to hate.
2924 *
2925 * That is, the weight of a group entity, is the proportional share of the
2926 * group weight based on the group runqueue weights. That is:
2927 *
2928 * tg->weight * grq->load.weight
2929 * ge->load.weight = ----------------------------- (1)
2930 * \Sum grq->load.weight
2931 *
2932 * Now, because computing that sum is prohibitively expensive to compute (been
2933 * there, done that) we approximate it with this average stuff. The average
2934 * moves slower and therefore the approximation is cheaper and more stable.
2935 *
2936 * So instead of the above, we substitute:
2937 *
2938 * grq->load.weight -> grq->avg.load_avg (2)
2939 *
2940 * which yields the following:
2941 *
2942 * tg->weight * grq->avg.load_avg
2943 * ge->load.weight = ------------------------------ (3)
2944 * tg->load_avg
2945 *
2946 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2947 *
2948 * That is shares_avg, and it is right (given the approximation (2)).
2949 *
2950 * The problem with it is that because the average is slow -- it was designed
2951 * to be exactly that of course -- this leads to transients in boundary
2952 * conditions. In specific, the case where the group was idle and we start the
2953 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2954 * yielding bad latency etc..
2955 *
2956 * Now, in that special case (1) reduces to:
2957 *
2958 * tg->weight * grq->load.weight
17de4ee0 2959 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2960 * grp->load.weight
2961 *
2962 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2963 *
2964 * So what we do is modify our approximation (3) to approach (4) in the (near)
2965 * UP case, like:
2966 *
2967 * ge->load.weight =
2968 *
2969 * tg->weight * grq->load.weight
2970 * --------------------------------------------------- (5)
2971 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2972 *
17de4ee0
PZ
2973 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2974 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2975 *
2976 *
2977 * tg->weight * grq->load.weight
2978 * ge->load.weight = ----------------------------- (6)
2979 * tg_load_avg'
2980 *
2981 * Where:
2982 *
2983 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2984 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2985 *
2986 * And that is shares_weight and is icky. In the (near) UP case it approaches
2987 * (4) while in the normal case it approaches (3). It consistently
2988 * overestimates the ge->load.weight and therefore:
2989 *
2990 * \Sum ge->load.weight >= tg->weight
2991 *
2992 * hence icky!
2993 */
2c8e4dce 2994static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2995{
7c80cfc9
PZ
2996 long tg_weight, tg_shares, load, shares;
2997 struct task_group *tg = cfs_rq->tg;
2998
2999 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3000
3d4b60d3 3001 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3002
ea1dc6fc 3003 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3004
ea1dc6fc
PZ
3005 /* Ensure tg_weight >= load */
3006 tg_weight -= cfs_rq->tg_load_avg_contrib;
3007 tg_weight += load;
3ff6dcac 3008
7c80cfc9 3009 shares = (tg_shares * load);
cf5f0acf
PZ
3010 if (tg_weight)
3011 shares /= tg_weight;
3ff6dcac 3012
b8fd8423
DE
3013 /*
3014 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3015 * of a group with small tg->shares value. It is a floor value which is
3016 * assigned as a minimum load.weight to the sched_entity representing
3017 * the group on a CPU.
3018 *
3019 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3020 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3021 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3022 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3023 * instead of 0.
3024 */
7c80cfc9 3025 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3026}
2c8e4dce
JB
3027
3028/*
17de4ee0
PZ
3029 * This calculates the effective runnable weight for a group entity based on
3030 * the group entity weight calculated above.
3031 *
3032 * Because of the above approximation (2), our group entity weight is
3033 * an load_avg based ratio (3). This means that it includes blocked load and
3034 * does not represent the runnable weight.
3035 *
3036 * Approximate the group entity's runnable weight per ratio from the group
3037 * runqueue:
3038 *
3039 * grq->avg.runnable_load_avg
3040 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3041 * grq->avg.load_avg
3042 *
3043 * However, analogous to above, since the avg numbers are slow, this leads to
3044 * transients in the from-idle case. Instead we use:
3045 *
3046 * ge->runnable_weight = ge->load.weight *
3047 *
3048 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3049 * ----------------------------------------------------- (8)
3050 * max(grq->avg.load_avg, grq->load.weight)
3051 *
3052 * Where these max() serve both to use the 'instant' values to fix the slow
3053 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
3054 */
3055static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3056{
17de4ee0
PZ
3057 long runnable, load_avg;
3058
3059 load_avg = max(cfs_rq->avg.load_avg,
3060 scale_load_down(cfs_rq->load.weight));
3061
3062 runnable = max(cfs_rq->avg.runnable_load_avg,
3063 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
3064
3065 runnable *= shares;
3066 if (load_avg)
3067 runnable /= load_avg;
17de4ee0 3068
2c8e4dce
JB
3069 return clamp_t(long, runnable, MIN_SHARES, shares);
3070}
387f77cc 3071#endif /* CONFIG_SMP */
ea1dc6fc 3072
82958366
PT
3073static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3074
1ea6c46a
PZ
3075/*
3076 * Recomputes the group entity based on the current state of its group
3077 * runqueue.
3078 */
3079static void update_cfs_group(struct sched_entity *se)
2069dd75 3080{
1ea6c46a
PZ
3081 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3082 long shares, runnable;
2069dd75 3083
1ea6c46a 3084 if (!gcfs_rq)
89ee048f
VG
3085 return;
3086
1ea6c46a 3087 if (throttled_hierarchy(gcfs_rq))
2069dd75 3088 return;
89ee048f 3089
3ff6dcac 3090#ifndef CONFIG_SMP
1ea6c46a 3091 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3092
3093 if (likely(se->load.weight == shares))
3ff6dcac 3094 return;
7c80cfc9 3095#else
2c8e4dce
JB
3096 shares = calc_group_shares(gcfs_rq);
3097 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3098#endif
2069dd75 3099
1ea6c46a 3100 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3101}
89ee048f 3102
2069dd75 3103#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3104static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3105{
3106}
3107#endif /* CONFIG_FAIR_GROUP_SCHED */
3108
ea14b57e 3109static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3110{
43964409
LT
3111 struct rq *rq = rq_of(cfs_rq);
3112
ea14b57e 3113 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3114 /*
3115 * There are a few boundary cases this might miss but it should
3116 * get called often enough that that should (hopefully) not be
9783be2c 3117 * a real problem.
a030d738
VK
3118 *
3119 * It will not get called when we go idle, because the idle
3120 * thread is a different class (!fair), nor will the utilization
3121 * number include things like RT tasks.
3122 *
3123 * As is, the util number is not freq-invariant (we'd have to
3124 * implement arch_scale_freq_capacity() for that).
3125 *
3126 * See cpu_util().
3127 */
ea14b57e 3128 cpufreq_update_util(rq, flags);
a030d738
VK
3129 }
3130}
3131
141965c7 3132#ifdef CONFIG_SMP
c566e8e9 3133#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3134/**
3135 * update_tg_load_avg - update the tg's load avg
3136 * @cfs_rq: the cfs_rq whose avg changed
3137 * @force: update regardless of how small the difference
3138 *
3139 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3140 * However, because tg->load_avg is a global value there are performance
3141 * considerations.
3142 *
3143 * In order to avoid having to look at the other cfs_rq's, we use a
3144 * differential update where we store the last value we propagated. This in
3145 * turn allows skipping updates if the differential is 'small'.
3146 *
815abf5a 3147 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3148 */
9d89c257 3149static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3150{
9d89c257 3151 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3152
aa0b7ae0
WL
3153 /*
3154 * No need to update load_avg for root_task_group as it is not used.
3155 */
3156 if (cfs_rq->tg == &root_task_group)
3157 return;
3158
9d89c257
YD
3159 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3160 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3161 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3162 }
8165e145 3163}
f5f9739d 3164
ad936d86 3165/*
97fb7a0a 3166 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3167 * caller only guarantees p->pi_lock is held; no other assumptions,
3168 * including the state of rq->lock, should be made.
3169 */
3170void set_task_rq_fair(struct sched_entity *se,
3171 struct cfs_rq *prev, struct cfs_rq *next)
3172{
0ccb977f
PZ
3173 u64 p_last_update_time;
3174 u64 n_last_update_time;
3175
ad936d86
BP
3176 if (!sched_feat(ATTACH_AGE_LOAD))
3177 return;
3178
3179 /*
3180 * We are supposed to update the task to "current" time, then its up to
3181 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3182 * getting what current time is, so simply throw away the out-of-date
3183 * time. This will result in the wakee task is less decayed, but giving
3184 * the wakee more load sounds not bad.
3185 */
0ccb977f
PZ
3186 if (!(se->avg.last_update_time && prev))
3187 return;
ad936d86
BP
3188
3189#ifndef CONFIG_64BIT
0ccb977f 3190 {
ad936d86
BP
3191 u64 p_last_update_time_copy;
3192 u64 n_last_update_time_copy;
3193
3194 do {
3195 p_last_update_time_copy = prev->load_last_update_time_copy;
3196 n_last_update_time_copy = next->load_last_update_time_copy;
3197
3198 smp_rmb();
3199
3200 p_last_update_time = prev->avg.last_update_time;
3201 n_last_update_time = next->avg.last_update_time;
3202
3203 } while (p_last_update_time != p_last_update_time_copy ||
3204 n_last_update_time != n_last_update_time_copy);
0ccb977f 3205 }
ad936d86 3206#else
0ccb977f
PZ
3207 p_last_update_time = prev->avg.last_update_time;
3208 n_last_update_time = next->avg.last_update_time;
ad936d86 3209#endif
23127296 3210 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3211 se->avg.last_update_time = n_last_update_time;
ad936d86 3212}
09a43ace 3213
0e2d2aaa
PZ
3214
3215/*
3216 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3217 * propagate its contribution. The key to this propagation is the invariant
3218 * that for each group:
3219 *
3220 * ge->avg == grq->avg (1)
3221 *
3222 * _IFF_ we look at the pure running and runnable sums. Because they
3223 * represent the very same entity, just at different points in the hierarchy.
3224 *
a4c3c049
VG
3225 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3226 * sum over (but still wrong, because the group entity and group rq do not have
3227 * their PELT windows aligned).
0e2d2aaa
PZ
3228 *
3229 * However, update_tg_cfs_runnable() is more complex. So we have:
3230 *
3231 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3232 *
3233 * And since, like util, the runnable part should be directly transferable,
3234 * the following would _appear_ to be the straight forward approach:
3235 *
a4c3c049 3236 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3237 *
3238 * And per (1) we have:
3239 *
a4c3c049 3240 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3241 *
3242 * Which gives:
3243 *
3244 * ge->load.weight * grq->avg.load_avg
3245 * ge->avg.load_avg = ----------------------------------- (4)
3246 * grq->load.weight
3247 *
3248 * Except that is wrong!
3249 *
3250 * Because while for entities historical weight is not important and we
3251 * really only care about our future and therefore can consider a pure
3252 * runnable sum, runqueues can NOT do this.
3253 *
3254 * We specifically want runqueues to have a load_avg that includes
3255 * historical weights. Those represent the blocked load, the load we expect
3256 * to (shortly) return to us. This only works by keeping the weights as
3257 * integral part of the sum. We therefore cannot decompose as per (3).
3258 *
a4c3c049
VG
3259 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3260 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3261 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3262 * runnable section of these tasks overlap (or not). If they were to perfectly
3263 * align the rq as a whole would be runnable 2/3 of the time. If however we
3264 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3265 *
a4c3c049 3266 * So we'll have to approximate.. :/
0e2d2aaa 3267 *
a4c3c049 3268 * Given the constraint:
0e2d2aaa 3269 *
a4c3c049 3270 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3271 *
a4c3c049
VG
3272 * We can construct a rule that adds runnable to a rq by assuming minimal
3273 * overlap.
0e2d2aaa 3274 *
a4c3c049 3275 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3276 *
a4c3c049 3277 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3278 *
a4c3c049 3279 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3280 *
0e2d2aaa
PZ
3281 */
3282
09a43ace 3283static inline void
0e2d2aaa 3284update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3285{
09a43ace
VG
3286 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3287
3288 /* Nothing to update */
3289 if (!delta)
3290 return;
3291
a4c3c049
VG
3292 /*
3293 * The relation between sum and avg is:
3294 *
3295 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3296 *
3297 * however, the PELT windows are not aligned between grq and gse.
3298 */
3299
09a43ace
VG
3300 /* Set new sched_entity's utilization */
3301 se->avg.util_avg = gcfs_rq->avg.util_avg;
3302 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3303
3304 /* Update parent cfs_rq utilization */
3305 add_positive(&cfs_rq->avg.util_avg, delta);
3306 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3307}
3308
09a43ace 3309static inline void
0e2d2aaa 3310update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3311{
a4c3c049
VG
3312 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3313 unsigned long runnable_load_avg, load_avg;
3314 u64 runnable_load_sum, load_sum = 0;
3315 s64 delta_sum;
09a43ace 3316
0e2d2aaa
PZ
3317 if (!runnable_sum)
3318 return;
09a43ace 3319
0e2d2aaa 3320 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3321
a4c3c049
VG
3322 if (runnable_sum >= 0) {
3323 /*
3324 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3325 * the CPU is saturated running == runnable.
3326 */
3327 runnable_sum += se->avg.load_sum;
3328 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3329 } else {
3330 /*
3331 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3332 * assuming all tasks are equally runnable.
3333 */
3334 if (scale_load_down(gcfs_rq->load.weight)) {
3335 load_sum = div_s64(gcfs_rq->avg.load_sum,
3336 scale_load_down(gcfs_rq->load.weight));
3337 }
3338
3339 /* But make sure to not inflate se's runnable */
3340 runnable_sum = min(se->avg.load_sum, load_sum);
3341 }
3342
3343 /*
3344 * runnable_sum can't be lower than running_sum
23127296
VG
3345 * Rescale running sum to be in the same range as runnable sum
3346 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3347 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3348 */
23127296 3349 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3350 runnable_sum = max(runnable_sum, running_sum);
3351
0e2d2aaa
PZ
3352 load_sum = (s64)se_weight(se) * runnable_sum;
3353 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3354
a4c3c049
VG
3355 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3356 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3357
a4c3c049
VG
3358 se->avg.load_sum = runnable_sum;
3359 se->avg.load_avg = load_avg;
3360 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3361 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3362
1ea6c46a
PZ
3363 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3364 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3365 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3366 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3367
a4c3c049
VG
3368 se->avg.runnable_load_sum = runnable_sum;
3369 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3370
09a43ace 3371 if (se->on_rq) {
a4c3c049
VG
3372 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3373 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3374 }
3375}
3376
0e2d2aaa 3377static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3378{
0e2d2aaa
PZ
3379 cfs_rq->propagate = 1;
3380 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3381}
3382
3383/* Update task and its cfs_rq load average */
3384static inline int propagate_entity_load_avg(struct sched_entity *se)
3385{
0e2d2aaa 3386 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3387
3388 if (entity_is_task(se))
3389 return 0;
3390
0e2d2aaa
PZ
3391 gcfs_rq = group_cfs_rq(se);
3392 if (!gcfs_rq->propagate)
09a43ace
VG
3393 return 0;
3394
0e2d2aaa
PZ
3395 gcfs_rq->propagate = 0;
3396
09a43ace
VG
3397 cfs_rq = cfs_rq_of(se);
3398
0e2d2aaa 3399 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3400
0e2d2aaa
PZ
3401 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3402 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace 3403
ba19f51f 3404 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3405 trace_pelt_se_tp(se);
ba19f51f 3406
09a43ace
VG
3407 return 1;
3408}
3409
bc427898
VG
3410/*
3411 * Check if we need to update the load and the utilization of a blocked
3412 * group_entity:
3413 */
3414static inline bool skip_blocked_update(struct sched_entity *se)
3415{
3416 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3417
3418 /*
3419 * If sched_entity still have not zero load or utilization, we have to
3420 * decay it:
3421 */
3422 if (se->avg.load_avg || se->avg.util_avg)
3423 return false;
3424
3425 /*
3426 * If there is a pending propagation, we have to update the load and
3427 * the utilization of the sched_entity:
3428 */
0e2d2aaa 3429 if (gcfs_rq->propagate)
bc427898
VG
3430 return false;
3431
3432 /*
3433 * Otherwise, the load and the utilization of the sched_entity is
3434 * already zero and there is no pending propagation, so it will be a
3435 * waste of time to try to decay it:
3436 */
3437 return true;
3438}
3439
6e83125c 3440#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3441
9d89c257 3442static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3443
3444static inline int propagate_entity_load_avg(struct sched_entity *se)
3445{
3446 return 0;
3447}
3448
0e2d2aaa 3449static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3450
6e83125c 3451#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3452
3d30544f
PZ
3453/**
3454 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3455 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3456 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3457 *
3458 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3459 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3460 * post_init_entity_util_avg().
3461 *
3462 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3463 *
7c3edd2c
PZ
3464 * Returns true if the load decayed or we removed load.
3465 *
3466 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3467 * call update_tg_load_avg() when this function returns true.
3d30544f 3468 */
a2c6c91f 3469static inline int
3a123bbb 3470update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3471{
0e2d2aaa 3472 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3473 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3474 int decayed = 0;
2dac754e 3475
2a2f5d4e
PZ
3476 if (cfs_rq->removed.nr) {
3477 unsigned long r;
9a2dd585 3478 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3479
3480 raw_spin_lock(&cfs_rq->removed.lock);
3481 swap(cfs_rq->removed.util_avg, removed_util);
3482 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3483 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3484 cfs_rq->removed.nr = 0;
3485 raw_spin_unlock(&cfs_rq->removed.lock);
3486
2a2f5d4e 3487 r = removed_load;
89741892 3488 sub_positive(&sa->load_avg, r);
9a2dd585 3489 sub_positive(&sa->load_sum, r * divider);
2dac754e 3490
2a2f5d4e 3491 r = removed_util;
89741892 3492 sub_positive(&sa->util_avg, r);
9a2dd585 3493 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3494
0e2d2aaa 3495 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3496
3497 decayed = 1;
9d89c257 3498 }
36ee28e4 3499
23127296 3500 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3501
9d89c257
YD
3502#ifndef CONFIG_64BIT
3503 smp_wmb();
3504 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3505#endif
36ee28e4 3506
2a2f5d4e 3507 return decayed;
21e96f88
SM
3508}
3509
3d30544f
PZ
3510/**
3511 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3512 * @cfs_rq: cfs_rq to attach to
3513 * @se: sched_entity to attach
882a78a9 3514 * @flags: migration hints
3d30544f
PZ
3515 *
3516 * Must call update_cfs_rq_load_avg() before this, since we rely on
3517 * cfs_rq->avg.last_update_time being current.
3518 */
ea14b57e 3519static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3520{
f207934f
PZ
3521 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3522
3523 /*
3524 * When we attach the @se to the @cfs_rq, we must align the decay
3525 * window because without that, really weird and wonderful things can
3526 * happen.
3527 *
3528 * XXX illustrate
3529 */
a05e8c51 3530 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3531 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3532
3533 /*
3534 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3535 * period_contrib. This isn't strictly correct, but since we're
3536 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3537 * _sum a little.
3538 */
3539 se->avg.util_sum = se->avg.util_avg * divider;
3540
3541 se->avg.load_sum = divider;
3542 if (se_weight(se)) {
3543 se->avg.load_sum =
3544 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3545 }
3546
3547 se->avg.runnable_load_sum = se->avg.load_sum;
3548
8d5b9025 3549 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3550 cfs_rq->avg.util_avg += se->avg.util_avg;
3551 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3552
3553 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3554
ea14b57e 3555 cfs_rq_util_change(cfs_rq, flags);
ba19f51f
QY
3556
3557 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3558}
3559
3d30544f
PZ
3560/**
3561 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3562 * @cfs_rq: cfs_rq to detach from
3563 * @se: sched_entity to detach
3564 *
3565 * Must call update_cfs_rq_load_avg() before this, since we rely on
3566 * cfs_rq->avg.last_update_time being current.
3567 */
a05e8c51
BP
3568static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3569{
8d5b9025 3570 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3571 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3572 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3573
3574 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3575
ea14b57e 3576 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3577
3578 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3579}
3580
b382a531
PZ
3581/*
3582 * Optional action to be done while updating the load average
3583 */
3584#define UPDATE_TG 0x1
3585#define SKIP_AGE_LOAD 0x2
3586#define DO_ATTACH 0x4
3587
3588/* Update task and its cfs_rq load average */
3589static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3590{
23127296 3591 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3592 int decayed;
3593
3594 /*
3595 * Track task load average for carrying it to new CPU after migrated, and
3596 * track group sched_entity load average for task_h_load calc in migration
3597 */
3598 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3599 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3600
3601 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3602 decayed |= propagate_entity_load_avg(se);
3603
3604 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3605
ea14b57e
PZ
3606 /*
3607 * DO_ATTACH means we're here from enqueue_entity().
3608 * !last_update_time means we've passed through
3609 * migrate_task_rq_fair() indicating we migrated.
3610 *
3611 * IOW we're enqueueing a task on a new CPU.
3612 */
3613 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3614 update_tg_load_avg(cfs_rq, 0);
3615
0c513402
VG
3616 } else if (decayed) {
3617 cfs_rq_util_change(cfs_rq, 0);
3618
3619 if (flags & UPDATE_TG)
3620 update_tg_load_avg(cfs_rq, 0);
3621 }
b382a531
PZ
3622}
3623
9d89c257 3624#ifndef CONFIG_64BIT
0905f04e
YD
3625static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3626{
9d89c257 3627 u64 last_update_time_copy;
0905f04e 3628 u64 last_update_time;
9ee474f5 3629
9d89c257
YD
3630 do {
3631 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3632 smp_rmb();
3633 last_update_time = cfs_rq->avg.last_update_time;
3634 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3635
3636 return last_update_time;
3637}
9d89c257 3638#else
0905f04e
YD
3639static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3640{
3641 return cfs_rq->avg.last_update_time;
3642}
9d89c257
YD
3643#endif
3644
104cb16d
MR
3645/*
3646 * Synchronize entity load avg of dequeued entity without locking
3647 * the previous rq.
3648 */
71b47eaf 3649static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3650{
3651 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3652 u64 last_update_time;
3653
3654 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3655 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3656}
3657
0905f04e
YD
3658/*
3659 * Task first catches up with cfs_rq, and then subtract
3660 * itself from the cfs_rq (task must be off the queue now).
3661 */
71b47eaf 3662static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3663{
3664 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3665 unsigned long flags;
0905f04e
YD
3666
3667 /*
7dc603c9
PZ
3668 * tasks cannot exit without having gone through wake_up_new_task() ->
3669 * post_init_entity_util_avg() which will have added things to the
3670 * cfs_rq, so we can remove unconditionally.
0905f04e 3671 */
0905f04e 3672
104cb16d 3673 sync_entity_load_avg(se);
2a2f5d4e
PZ
3674
3675 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3676 ++cfs_rq->removed.nr;
3677 cfs_rq->removed.util_avg += se->avg.util_avg;
3678 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3679 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3680 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3681}
642dbc39 3682
7ea241af
YD
3683static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3684{
1ea6c46a 3685 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3686}
3687
3688static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3689{
3690 return cfs_rq->avg.load_avg;
3691}
3692
7f65ea42
PB
3693static inline unsigned long task_util(struct task_struct *p)
3694{
3695 return READ_ONCE(p->se.avg.util_avg);
3696}
3697
3698static inline unsigned long _task_util_est(struct task_struct *p)
3699{
3700 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3701
92a801e5 3702 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3703}
3704
3705static inline unsigned long task_util_est(struct task_struct *p)
3706{
3707 return max(task_util(p), _task_util_est(p));
3708}
3709
3710static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3711 struct task_struct *p)
3712{
3713 unsigned int enqueued;
3714
3715 if (!sched_feat(UTIL_EST))
3716 return;
3717
3718 /* Update root cfs_rq's estimated utilization */
3719 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3720 enqueued += _task_util_est(p);
7f65ea42
PB
3721 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3722}
3723
3724/*
3725 * Check if a (signed) value is within a specified (unsigned) margin,
3726 * based on the observation that:
3727 *
3728 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3729 *
3730 * NOTE: this only works when value + maring < INT_MAX.
3731 */
3732static inline bool within_margin(int value, int margin)
3733{
3734 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3735}
3736
3737static void
3738util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3739{
3740 long last_ewma_diff;
3741 struct util_est ue;
10a35e68 3742 int cpu;
7f65ea42
PB
3743
3744 if (!sched_feat(UTIL_EST))
3745 return;
3746
3482d98b
VG
3747 /* Update root cfs_rq's estimated utilization */
3748 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3749 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3750 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3751
3752 /*
3753 * Skip update of task's estimated utilization when the task has not
3754 * yet completed an activation, e.g. being migrated.
3755 */
3756 if (!task_sleep)
3757 return;
3758
d519329f
PB
3759 /*
3760 * If the PELT values haven't changed since enqueue time,
3761 * skip the util_est update.
3762 */
3763 ue = p->se.avg.util_est;
3764 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3765 return;
3766
7f65ea42
PB
3767 /*
3768 * Skip update of task's estimated utilization when its EWMA is
3769 * already ~1% close to its last activation value.
3770 */
d519329f 3771 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3772 last_ewma_diff = ue.enqueued - ue.ewma;
3773 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3774 return;
3775
10a35e68
VG
3776 /*
3777 * To avoid overestimation of actual task utilization, skip updates if
3778 * we cannot grant there is idle time in this CPU.
3779 */
3780 cpu = cpu_of(rq_of(cfs_rq));
3781 if (task_util(p) > capacity_orig_of(cpu))
3782 return;
3783
7f65ea42
PB
3784 /*
3785 * Update Task's estimated utilization
3786 *
3787 * When *p completes an activation we can consolidate another sample
3788 * of the task size. This is done by storing the current PELT value
3789 * as ue.enqueued and by using this value to update the Exponential
3790 * Weighted Moving Average (EWMA):
3791 *
3792 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3793 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3794 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3795 * = w * ( last_ewma_diff ) + ewma(t-1)
3796 * = w * (last_ewma_diff + ewma(t-1) / w)
3797 *
3798 * Where 'w' is the weight of new samples, which is configured to be
3799 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3800 */
3801 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3802 ue.ewma += last_ewma_diff;
3803 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3804 WRITE_ONCE(p->se.avg.util_est, ue);
3805}
3806
3b1baa64
MR
3807static inline int task_fits_capacity(struct task_struct *p, long capacity)
3808{
60e17f5c 3809 return fits_capacity(task_util_est(p), capacity);
3b1baa64
MR
3810}
3811
3812static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3813{
3814 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3815 return;
3816
3817 if (!p) {
3818 rq->misfit_task_load = 0;
3819 return;
3820 }
3821
3822 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3823 rq->misfit_task_load = 0;
3824 return;
3825 }
3826
3827 rq->misfit_task_load = task_h_load(p);
3828}
3829
38033c37
PZ
3830#else /* CONFIG_SMP */
3831
d31b1a66
VG
3832#define UPDATE_TG 0x0
3833#define SKIP_AGE_LOAD 0x0
b382a531 3834#define DO_ATTACH 0x0
d31b1a66 3835
88c0616e 3836static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3837{
ea14b57e 3838 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3839}
3840
9d89c257 3841static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3842
a05e8c51 3843static inline void
ea14b57e 3844attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3845static inline void
3846detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3847
46f69fa3 3848static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3849{
3850 return 0;
3851}
3852
7f65ea42
PB
3853static inline void
3854util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3855
3856static inline void
3857util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3858 bool task_sleep) {}
3b1baa64 3859static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3860
38033c37 3861#endif /* CONFIG_SMP */
9d85f21c 3862
ddc97297
PZ
3863static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3864{
3865#ifdef CONFIG_SCHED_DEBUG
3866 s64 d = se->vruntime - cfs_rq->min_vruntime;
3867
3868 if (d < 0)
3869 d = -d;
3870
3871 if (d > 3*sysctl_sched_latency)
ae92882e 3872 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3873#endif
3874}
3875
aeb73b04
PZ
3876static void
3877place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3878{
1af5f730 3879 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3880
2cb8600e
PZ
3881 /*
3882 * The 'current' period is already promised to the current tasks,
3883 * however the extra weight of the new task will slow them down a
3884 * little, place the new task so that it fits in the slot that
3885 * stays open at the end.
3886 */
94dfb5e7 3887 if (initial && sched_feat(START_DEBIT))
f9c0b095 3888 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3889
a2e7a7eb 3890 /* sleeps up to a single latency don't count. */
5ca9880c 3891 if (!initial) {
a2e7a7eb 3892 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3893
a2e7a7eb
MG
3894 /*
3895 * Halve their sleep time's effect, to allow
3896 * for a gentler effect of sleepers:
3897 */
3898 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3899 thresh >>= 1;
51e0304c 3900
a2e7a7eb 3901 vruntime -= thresh;
aeb73b04
PZ
3902 }
3903
b5d9d734 3904 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3905 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3906}
3907
d3d9dc33
PT
3908static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3909
cb251765
MG
3910static inline void check_schedstat_required(void)
3911{
3912#ifdef CONFIG_SCHEDSTATS
3913 if (schedstat_enabled())
3914 return;
3915
3916 /* Force schedstat enabled if a dependent tracepoint is active */
3917 if (trace_sched_stat_wait_enabled() ||
3918 trace_sched_stat_sleep_enabled() ||
3919 trace_sched_stat_iowait_enabled() ||
3920 trace_sched_stat_blocked_enabled() ||
3921 trace_sched_stat_runtime_enabled()) {
eda8dca5 3922 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3923 "stat_blocked and stat_runtime require the "
f67abed5 3924 "kernel parameter schedstats=enable or "
cb251765
MG
3925 "kernel.sched_schedstats=1\n");
3926 }
3927#endif
3928}
3929
b5179ac7
PZ
3930
3931/*
3932 * MIGRATION
3933 *
3934 * dequeue
3935 * update_curr()
3936 * update_min_vruntime()
3937 * vruntime -= min_vruntime
3938 *
3939 * enqueue
3940 * update_curr()
3941 * update_min_vruntime()
3942 * vruntime += min_vruntime
3943 *
3944 * this way the vruntime transition between RQs is done when both
3945 * min_vruntime are up-to-date.
3946 *
3947 * WAKEUP (remote)
3948 *
59efa0ba 3949 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3950 * vruntime -= min_vruntime
3951 *
3952 * enqueue
3953 * update_curr()
3954 * update_min_vruntime()
3955 * vruntime += min_vruntime
3956 *
3957 * this way we don't have the most up-to-date min_vruntime on the originating
3958 * CPU and an up-to-date min_vruntime on the destination CPU.
3959 */
3960
bf0f6f24 3961static void
88ec22d3 3962enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3963{
2f950354
PZ
3964 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3965 bool curr = cfs_rq->curr == se;
3966
88ec22d3 3967 /*
2f950354
PZ
3968 * If we're the current task, we must renormalise before calling
3969 * update_curr().
88ec22d3 3970 */
2f950354 3971 if (renorm && curr)
88ec22d3
PZ
3972 se->vruntime += cfs_rq->min_vruntime;
3973
2f950354
PZ
3974 update_curr(cfs_rq);
3975
bf0f6f24 3976 /*
2f950354
PZ
3977 * Otherwise, renormalise after, such that we're placed at the current
3978 * moment in time, instead of some random moment in the past. Being
3979 * placed in the past could significantly boost this task to the
3980 * fairness detriment of existing tasks.
bf0f6f24 3981 */
2f950354
PZ
3982 if (renorm && !curr)
3983 se->vruntime += cfs_rq->min_vruntime;
3984
89ee048f
VG
3985 /*
3986 * When enqueuing a sched_entity, we must:
3987 * - Update loads to have both entity and cfs_rq synced with now.
3988 * - Add its load to cfs_rq->runnable_avg
3989 * - For group_entity, update its weight to reflect the new share of
3990 * its group cfs_rq
3991 * - Add its new weight to cfs_rq->load.weight
3992 */
b382a531 3993 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3994 update_cfs_group(se);
b5b3e35f 3995 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3996 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3997
1a3d027c 3998 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3999 place_entity(cfs_rq, se, 0);
bf0f6f24 4000
cb251765 4001 check_schedstat_required();
4fa8d299
JP
4002 update_stats_enqueue(cfs_rq, se, flags);
4003 check_spread(cfs_rq, se);
2f950354 4004 if (!curr)
83b699ed 4005 __enqueue_entity(cfs_rq, se);
2069dd75 4006 se->on_rq = 1;
3d4b47b4 4007
d3d9dc33 4008 if (cfs_rq->nr_running == 1) {
3d4b47b4 4009 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
4010 check_enqueue_throttle(cfs_rq);
4011 }
bf0f6f24
IM
4012}
4013
2c13c919 4014static void __clear_buddies_last(struct sched_entity *se)
2002c695 4015{
2c13c919
RR
4016 for_each_sched_entity(se) {
4017 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4018 if (cfs_rq->last != se)
2c13c919 4019 break;
f1044799
PZ
4020
4021 cfs_rq->last = NULL;
2c13c919
RR
4022 }
4023}
2002c695 4024
2c13c919
RR
4025static void __clear_buddies_next(struct sched_entity *se)
4026{
4027 for_each_sched_entity(se) {
4028 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4029 if (cfs_rq->next != se)
2c13c919 4030 break;
f1044799
PZ
4031
4032 cfs_rq->next = NULL;
2c13c919 4033 }
2002c695
PZ
4034}
4035
ac53db59
RR
4036static void __clear_buddies_skip(struct sched_entity *se)
4037{
4038 for_each_sched_entity(se) {
4039 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4040 if (cfs_rq->skip != se)
ac53db59 4041 break;
f1044799
PZ
4042
4043 cfs_rq->skip = NULL;
ac53db59
RR
4044 }
4045}
4046
a571bbea
PZ
4047static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4048{
2c13c919
RR
4049 if (cfs_rq->last == se)
4050 __clear_buddies_last(se);
4051
4052 if (cfs_rq->next == se)
4053 __clear_buddies_next(se);
ac53db59
RR
4054
4055 if (cfs_rq->skip == se)
4056 __clear_buddies_skip(se);
a571bbea
PZ
4057}
4058
6c16a6dc 4059static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4060
bf0f6f24 4061static void
371fd7e7 4062dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4063{
a2a2d680
DA
4064 /*
4065 * Update run-time statistics of the 'current'.
4066 */
4067 update_curr(cfs_rq);
89ee048f
VG
4068
4069 /*
4070 * When dequeuing a sched_entity, we must:
4071 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
4072 * - Subtract its load from the cfs_rq->runnable_avg.
4073 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4074 * - For group entity, update its weight to reflect the new share
4075 * of its group cfs_rq.
4076 */
88c0616e 4077 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4078 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4079
4fa8d299 4080 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4081
2002c695 4082 clear_buddies(cfs_rq, se);
4793241b 4083
83b699ed 4084 if (se != cfs_rq->curr)
30cfdcfc 4085 __dequeue_entity(cfs_rq, se);
17bc14b7 4086 se->on_rq = 0;
30cfdcfc 4087 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4088
4089 /*
b60205c7
PZ
4090 * Normalize after update_curr(); which will also have moved
4091 * min_vruntime if @se is the one holding it back. But before doing
4092 * update_min_vruntime() again, which will discount @se's position and
4093 * can move min_vruntime forward still more.
88ec22d3 4094 */
371fd7e7 4095 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4096 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4097
d8b4986d
PT
4098 /* return excess runtime on last dequeue */
4099 return_cfs_rq_runtime(cfs_rq);
4100
1ea6c46a 4101 update_cfs_group(se);
b60205c7
PZ
4102
4103 /*
4104 * Now advance min_vruntime if @se was the entity holding it back,
4105 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4106 * put back on, and if we advance min_vruntime, we'll be placed back
4107 * further than we started -- ie. we'll be penalized.
4108 */
9845c49c 4109 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4110 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4111}
4112
4113/*
4114 * Preempt the current task with a newly woken task if needed:
4115 */
7c92e54f 4116static void
2e09bf55 4117check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4118{
11697830 4119 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4120 struct sched_entity *se;
4121 s64 delta;
11697830 4122
6d0f0ebd 4123 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4124 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4125 if (delta_exec > ideal_runtime) {
8875125e 4126 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4127 /*
4128 * The current task ran long enough, ensure it doesn't get
4129 * re-elected due to buddy favours.
4130 */
4131 clear_buddies(cfs_rq, curr);
f685ceac
MG
4132 return;
4133 }
4134
4135 /*
4136 * Ensure that a task that missed wakeup preemption by a
4137 * narrow margin doesn't have to wait for a full slice.
4138 * This also mitigates buddy induced latencies under load.
4139 */
f685ceac
MG
4140 if (delta_exec < sysctl_sched_min_granularity)
4141 return;
4142
f4cfb33e
WX
4143 se = __pick_first_entity(cfs_rq);
4144 delta = curr->vruntime - se->vruntime;
f685ceac 4145
f4cfb33e
WX
4146 if (delta < 0)
4147 return;
d7d82944 4148
f4cfb33e 4149 if (delta > ideal_runtime)
8875125e 4150 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4151}
4152
83b699ed 4153static void
8494f412 4154set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4155{
83b699ed
SV
4156 /* 'current' is not kept within the tree. */
4157 if (se->on_rq) {
4158 /*
4159 * Any task has to be enqueued before it get to execute on
4160 * a CPU. So account for the time it spent waiting on the
4161 * runqueue.
4162 */
4fa8d299 4163 update_stats_wait_end(cfs_rq, se);
83b699ed 4164 __dequeue_entity(cfs_rq, se);
88c0616e 4165 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4166 }
4167
79303e9e 4168 update_stats_curr_start(cfs_rq, se);
429d43bc 4169 cfs_rq->curr = se;
4fa8d299 4170
eba1ed4b
IM
4171 /*
4172 * Track our maximum slice length, if the CPU's load is at
4173 * least twice that of our own weight (i.e. dont track it
4174 * when there are only lesser-weight tasks around):
4175 */
f2bedc47
DE
4176 if (schedstat_enabled() &&
4177 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4178 schedstat_set(se->statistics.slice_max,
4179 max((u64)schedstat_val(se->statistics.slice_max),
4180 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4181 }
4fa8d299 4182
4a55b450 4183 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4184}
4185
3f3a4904
PZ
4186static int
4187wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4188
ac53db59
RR
4189/*
4190 * Pick the next process, keeping these things in mind, in this order:
4191 * 1) keep things fair between processes/task groups
4192 * 2) pick the "next" process, since someone really wants that to run
4193 * 3) pick the "last" process, for cache locality
4194 * 4) do not run the "skip" process, if something else is available
4195 */
678d5718
PZ
4196static struct sched_entity *
4197pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4198{
678d5718
PZ
4199 struct sched_entity *left = __pick_first_entity(cfs_rq);
4200 struct sched_entity *se;
4201
4202 /*
4203 * If curr is set we have to see if its left of the leftmost entity
4204 * still in the tree, provided there was anything in the tree at all.
4205 */
4206 if (!left || (curr && entity_before(curr, left)))
4207 left = curr;
4208
4209 se = left; /* ideally we run the leftmost entity */
f4b6755f 4210
ac53db59
RR
4211 /*
4212 * Avoid running the skip buddy, if running something else can
4213 * be done without getting too unfair.
4214 */
4215 if (cfs_rq->skip == se) {
678d5718
PZ
4216 struct sched_entity *second;
4217
4218 if (se == curr) {
4219 second = __pick_first_entity(cfs_rq);
4220 } else {
4221 second = __pick_next_entity(se);
4222 if (!second || (curr && entity_before(curr, second)))
4223 second = curr;
4224 }
4225
ac53db59
RR
4226 if (second && wakeup_preempt_entity(second, left) < 1)
4227 se = second;
4228 }
aa2ac252 4229
f685ceac
MG
4230 /*
4231 * Prefer last buddy, try to return the CPU to a preempted task.
4232 */
4233 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4234 se = cfs_rq->last;
4235
ac53db59
RR
4236 /*
4237 * Someone really wants this to run. If it's not unfair, run it.
4238 */
4239 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4240 se = cfs_rq->next;
4241
f685ceac 4242 clear_buddies(cfs_rq, se);
4793241b
PZ
4243
4244 return se;
aa2ac252
PZ
4245}
4246
678d5718 4247static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4248
ab6cde26 4249static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4250{
4251 /*
4252 * If still on the runqueue then deactivate_task()
4253 * was not called and update_curr() has to be done:
4254 */
4255 if (prev->on_rq)
b7cc0896 4256 update_curr(cfs_rq);
bf0f6f24 4257
d3d9dc33
PT
4258 /* throttle cfs_rqs exceeding runtime */
4259 check_cfs_rq_runtime(cfs_rq);
4260
4fa8d299 4261 check_spread(cfs_rq, prev);
cb251765 4262
30cfdcfc 4263 if (prev->on_rq) {
4fa8d299 4264 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4265 /* Put 'current' back into the tree. */
4266 __enqueue_entity(cfs_rq, prev);
9d85f21c 4267 /* in !on_rq case, update occurred at dequeue */
88c0616e 4268 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4269 }
429d43bc 4270 cfs_rq->curr = NULL;
bf0f6f24
IM
4271}
4272
8f4d37ec
PZ
4273static void
4274entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4275{
bf0f6f24 4276 /*
30cfdcfc 4277 * Update run-time statistics of the 'current'.
bf0f6f24 4278 */
30cfdcfc 4279 update_curr(cfs_rq);
bf0f6f24 4280
9d85f21c
PT
4281 /*
4282 * Ensure that runnable average is periodically updated.
4283 */
88c0616e 4284 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4285 update_cfs_group(curr);
9d85f21c 4286
8f4d37ec
PZ
4287#ifdef CONFIG_SCHED_HRTICK
4288 /*
4289 * queued ticks are scheduled to match the slice, so don't bother
4290 * validating it and just reschedule.
4291 */
983ed7a6 4292 if (queued) {
8875125e 4293 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4294 return;
4295 }
8f4d37ec
PZ
4296 /*
4297 * don't let the period tick interfere with the hrtick preemption
4298 */
4299 if (!sched_feat(DOUBLE_TICK) &&
4300 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4301 return;
4302#endif
4303
2c2efaed 4304 if (cfs_rq->nr_running > 1)
2e09bf55 4305 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4306}
4307
ab84d31e
PT
4308
4309/**************************************************
4310 * CFS bandwidth control machinery
4311 */
4312
4313#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4314
e9666d10 4315#ifdef CONFIG_JUMP_LABEL
c5905afb 4316static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4317
4318static inline bool cfs_bandwidth_used(void)
4319{
c5905afb 4320 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4321}
4322
1ee14e6c 4323void cfs_bandwidth_usage_inc(void)
029632fb 4324{
ce48c146 4325 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4326}
4327
4328void cfs_bandwidth_usage_dec(void)
4329{
ce48c146 4330 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4331}
e9666d10 4332#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4333static bool cfs_bandwidth_used(void)
4334{
4335 return true;
4336}
4337
1ee14e6c
BS
4338void cfs_bandwidth_usage_inc(void) {}
4339void cfs_bandwidth_usage_dec(void) {}
e9666d10 4340#endif /* CONFIG_JUMP_LABEL */
029632fb 4341
ab84d31e
PT
4342/*
4343 * default period for cfs group bandwidth.
4344 * default: 0.1s, units: nanoseconds
4345 */
4346static inline u64 default_cfs_period(void)
4347{
4348 return 100000000ULL;
4349}
ec12cb7f
PT
4350
4351static inline u64 sched_cfs_bandwidth_slice(void)
4352{
4353 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4354}
4355
a9cf55b2 4356/*
763a9ec0
QC
4357 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4358 * directly instead of rq->clock to avoid adding additional synchronization
4359 * around rq->lock.
a9cf55b2
PT
4360 *
4361 * requires cfs_b->lock
4362 */
029632fb 4363void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4364{
763a9ec0
QC
4365 if (cfs_b->quota != RUNTIME_INF)
4366 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4367}
4368
029632fb
PZ
4369static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4370{
4371 return &tg->cfs_bandwidth;
4372}
4373
85dac906
PT
4374/* returns 0 on failure to allocate runtime */
4375static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4376{
4377 struct task_group *tg = cfs_rq->tg;
4378 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
de53fd7a 4379 u64 amount = 0, min_amount;
ec12cb7f
PT
4380
4381 /* note: this is a positive sum as runtime_remaining <= 0 */
4382 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4383
4384 raw_spin_lock(&cfs_b->lock);
4385 if (cfs_b->quota == RUNTIME_INF)
4386 amount = min_amount;
58088ad0 4387 else {
77a4d1a1 4388 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4389
4390 if (cfs_b->runtime > 0) {
4391 amount = min(cfs_b->runtime, min_amount);
4392 cfs_b->runtime -= amount;
4393 cfs_b->idle = 0;
4394 }
ec12cb7f
PT
4395 }
4396 raw_spin_unlock(&cfs_b->lock);
4397
4398 cfs_rq->runtime_remaining += amount;
85dac906
PT
4399
4400 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4401}
4402
9dbdb155 4403static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4404{
4405 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4406 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4407
4408 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4409 return;
4410
5e2d2cc2
L
4411 if (cfs_rq->throttled)
4412 return;
85dac906
PT
4413 /*
4414 * if we're unable to extend our runtime we resched so that the active
4415 * hierarchy can be throttled
4416 */
4417 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4418 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4419}
4420
6c16a6dc 4421static __always_inline
9dbdb155 4422void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4423{
56f570e5 4424 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4425 return;
4426
4427 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4428}
4429
85dac906
PT
4430static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4431{
56f570e5 4432 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4433}
4434
64660c86
PT
4435/* check whether cfs_rq, or any parent, is throttled */
4436static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4437{
56f570e5 4438 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4439}
4440
4441/*
4442 * Ensure that neither of the group entities corresponding to src_cpu or
4443 * dest_cpu are members of a throttled hierarchy when performing group
4444 * load-balance operations.
4445 */
4446static inline int throttled_lb_pair(struct task_group *tg,
4447 int src_cpu, int dest_cpu)
4448{
4449 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4450
4451 src_cfs_rq = tg->cfs_rq[src_cpu];
4452 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4453
4454 return throttled_hierarchy(src_cfs_rq) ||
4455 throttled_hierarchy(dest_cfs_rq);
4456}
4457
64660c86
PT
4458static int tg_unthrottle_up(struct task_group *tg, void *data)
4459{
4460 struct rq *rq = data;
4461 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4462
4463 cfs_rq->throttle_count--;
64660c86 4464 if (!cfs_rq->throttle_count) {
78becc27 4465 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4466 cfs_rq->throttled_clock_task;
31bc6aea
VG
4467
4468 /* Add cfs_rq with already running entity in the list */
4469 if (cfs_rq->nr_running >= 1)
4470 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4471 }
64660c86
PT
4472
4473 return 0;
4474}
4475
4476static int tg_throttle_down(struct task_group *tg, void *data)
4477{
4478 struct rq *rq = data;
4479 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4480
82958366 4481 /* group is entering throttled state, stop time */
31bc6aea 4482 if (!cfs_rq->throttle_count) {
78becc27 4483 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4484 list_del_leaf_cfs_rq(cfs_rq);
4485 }
64660c86
PT
4486 cfs_rq->throttle_count++;
4487
4488 return 0;
4489}
4490
d3d9dc33 4491static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4492{
4493 struct rq *rq = rq_of(cfs_rq);
4494 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4495 struct sched_entity *se;
43e9f7f2 4496 long task_delta, idle_task_delta, dequeue = 1;
77a4d1a1 4497 bool empty;
85dac906
PT
4498
4499 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4500
f1b17280 4501 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4502 rcu_read_lock();
4503 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4504 rcu_read_unlock();
85dac906
PT
4505
4506 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4507 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4508 for_each_sched_entity(se) {
4509 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4510 /* throttled entity or throttle-on-deactivate */
4511 if (!se->on_rq)
4512 break;
4513
4514 if (dequeue)
4515 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4516 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4517 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4518
4519 if (qcfs_rq->load.weight)
4520 dequeue = 0;
4521 }
4522
4523 if (!se)
72465447 4524 sub_nr_running(rq, task_delta);
85dac906
PT
4525
4526 cfs_rq->throttled = 1;
78becc27 4527 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4528 raw_spin_lock(&cfs_b->lock);
d49db342 4529 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4530
c06f04c7
BS
4531 /*
4532 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4533 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4534 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4535 */
baa9be4f
PA
4536 if (cfs_b->distribute_running)
4537 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4538 else
4539 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4540
4541 /*
4542 * If we're the first throttled task, make sure the bandwidth
4543 * timer is running.
4544 */
4545 if (empty)
4546 start_cfs_bandwidth(cfs_b);
4547
85dac906
PT
4548 raw_spin_unlock(&cfs_b->lock);
4549}
4550
029632fb 4551void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4552{
4553 struct rq *rq = rq_of(cfs_rq);
4554 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4555 struct sched_entity *se;
4556 int enqueue = 1;
43e9f7f2 4557 long task_delta, idle_task_delta;
671fd9da 4558
22b958d8 4559 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4560
4561 cfs_rq->throttled = 0;
1a55af2e
FW
4562
4563 update_rq_clock(rq);
4564
671fd9da 4565 raw_spin_lock(&cfs_b->lock);
78becc27 4566 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4567 list_del_rcu(&cfs_rq->throttled_list);
4568 raw_spin_unlock(&cfs_b->lock);
4569
64660c86
PT
4570 /* update hierarchical throttle state */
4571 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4572
671fd9da
PT
4573 if (!cfs_rq->load.weight)
4574 return;
4575
4576 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4577 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4578 for_each_sched_entity(se) {
4579 if (se->on_rq)
4580 enqueue = 0;
4581
4582 cfs_rq = cfs_rq_of(se);
4583 if (enqueue)
4584 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4585 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4586 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da
PT
4587
4588 if (cfs_rq_throttled(cfs_rq))
4589 break;
4590 }
4591
31bc6aea
VG
4592 assert_list_leaf_cfs_rq(rq);
4593
671fd9da 4594 if (!se)
72465447 4595 add_nr_running(rq, task_delta);
671fd9da 4596
97fb7a0a 4597 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4598 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4599 resched_curr(rq);
671fd9da
PT
4600}
4601
de53fd7a 4602static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
671fd9da
PT
4603{
4604 struct cfs_rq *cfs_rq;
c06f04c7
BS
4605 u64 runtime;
4606 u64 starting_runtime = remaining;
671fd9da
PT
4607
4608 rcu_read_lock();
4609 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4610 throttled_list) {
4611 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4612 struct rq_flags rf;
671fd9da 4613
c0ad4aa4 4614 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4615 if (!cfs_rq_throttled(cfs_rq))
4616 goto next;
4617
5e2d2cc2
L
4618 /* By the above check, this should never be true */
4619 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4620
671fd9da
PT
4621 runtime = -cfs_rq->runtime_remaining + 1;
4622 if (runtime > remaining)
4623 runtime = remaining;
4624 remaining -= runtime;
4625
4626 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4627
4628 /* we check whether we're throttled above */
4629 if (cfs_rq->runtime_remaining > 0)
4630 unthrottle_cfs_rq(cfs_rq);
4631
4632next:
c0ad4aa4 4633 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4634
4635 if (!remaining)
4636 break;
4637 }
4638 rcu_read_unlock();
4639
c06f04c7 4640 return starting_runtime - remaining;
671fd9da
PT
4641}
4642
58088ad0
PT
4643/*
4644 * Responsible for refilling a task_group's bandwidth and unthrottling its
4645 * cfs_rqs as appropriate. If there has been no activity within the last
4646 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4647 * used to track this state.
4648 */
c0ad4aa4 4649static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4650{
de53fd7a 4651 u64 runtime;
51f2176d 4652 int throttled;
58088ad0 4653
58088ad0
PT
4654 /* no need to continue the timer with no bandwidth constraint */
4655 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4656 goto out_deactivate;
58088ad0 4657
671fd9da 4658 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4659 cfs_b->nr_periods += overrun;
671fd9da 4660
51f2176d
BS
4661 /*
4662 * idle depends on !throttled (for the case of a large deficit), and if
4663 * we're going inactive then everything else can be deferred
4664 */
4665 if (cfs_b->idle && !throttled)
4666 goto out_deactivate;
a9cf55b2
PT
4667
4668 __refill_cfs_bandwidth_runtime(cfs_b);
4669
671fd9da
PT
4670 if (!throttled) {
4671 /* mark as potentially idle for the upcoming period */
4672 cfs_b->idle = 1;
51f2176d 4673 return 0;
671fd9da
PT
4674 }
4675
e8da1b18
NR
4676 /* account preceding periods in which throttling occurred */
4677 cfs_b->nr_throttled += overrun;
4678
671fd9da 4679 /*
c06f04c7
BS
4680 * This check is repeated as we are holding onto the new bandwidth while
4681 * we unthrottle. This can potentially race with an unthrottled group
4682 * trying to acquire new bandwidth from the global pool. This can result
4683 * in us over-using our runtime if it is all used during this loop, but
4684 * only by limited amounts in that extreme case.
671fd9da 4685 */
baa9be4f 4686 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4687 runtime = cfs_b->runtime;
baa9be4f 4688 cfs_b->distribute_running = 1;
c0ad4aa4 4689 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 4690 /* we can't nest cfs_b->lock while distributing bandwidth */
de53fd7a 4691 runtime = distribute_cfs_runtime(cfs_b, runtime);
c0ad4aa4 4692 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4693
baa9be4f 4694 cfs_b->distribute_running = 0;
671fd9da 4695 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4696
b5c0ce7b 4697 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4698 }
58088ad0 4699
671fd9da
PT
4700 /*
4701 * While we are ensured activity in the period following an
4702 * unthrottle, this also covers the case in which the new bandwidth is
4703 * insufficient to cover the existing bandwidth deficit. (Forcing the
4704 * timer to remain active while there are any throttled entities.)
4705 */
4706 cfs_b->idle = 0;
58088ad0 4707
51f2176d
BS
4708 return 0;
4709
4710out_deactivate:
51f2176d 4711 return 1;
58088ad0 4712}
d3d9dc33 4713
d8b4986d
PT
4714/* a cfs_rq won't donate quota below this amount */
4715static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4716/* minimum remaining period time to redistribute slack quota */
4717static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4718/* how long we wait to gather additional slack before distributing */
4719static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4720
db06e78c
BS
4721/*
4722 * Are we near the end of the current quota period?
4723 *
4724 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4725 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4726 * migrate_hrtimers, base is never cleared, so we are fine.
4727 */
d8b4986d
PT
4728static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4729{
4730 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4731 u64 remaining;
4732
4733 /* if the call-back is running a quota refresh is already occurring */
4734 if (hrtimer_callback_running(refresh_timer))
4735 return 1;
4736
4737 /* is a quota refresh about to occur? */
4738 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4739 if (remaining < min_expire)
4740 return 1;
4741
4742 return 0;
4743}
4744
4745static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4746{
4747 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4748
4749 /* if there's a quota refresh soon don't bother with slack */
4750 if (runtime_refresh_within(cfs_b, min_left))
4751 return;
4752
66567fcb 4753 /* don't push forwards an existing deferred unthrottle */
4754 if (cfs_b->slack_started)
4755 return;
4756 cfs_b->slack_started = true;
4757
4cfafd30
PZ
4758 hrtimer_start(&cfs_b->slack_timer,
4759 ns_to_ktime(cfs_bandwidth_slack_period),
4760 HRTIMER_MODE_REL);
d8b4986d
PT
4761}
4762
4763/* we know any runtime found here is valid as update_curr() precedes return */
4764static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4765{
4766 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4767 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4768
4769 if (slack_runtime <= 0)
4770 return;
4771
4772 raw_spin_lock(&cfs_b->lock);
de53fd7a 4773 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
4774 cfs_b->runtime += slack_runtime;
4775
4776 /* we are under rq->lock, defer unthrottling using a timer */
4777 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4778 !list_empty(&cfs_b->throttled_cfs_rq))
4779 start_cfs_slack_bandwidth(cfs_b);
4780 }
4781 raw_spin_unlock(&cfs_b->lock);
4782
4783 /* even if it's not valid for return we don't want to try again */
4784 cfs_rq->runtime_remaining -= slack_runtime;
4785}
4786
4787static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4788{
56f570e5
PT
4789 if (!cfs_bandwidth_used())
4790 return;
4791
fccfdc6f 4792 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4793 return;
4794
4795 __return_cfs_rq_runtime(cfs_rq);
4796}
4797
4798/*
4799 * This is done with a timer (instead of inline with bandwidth return) since
4800 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4801 */
4802static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4803{
4804 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 4805 unsigned long flags;
d8b4986d
PT
4806
4807 /* confirm we're still not at a refresh boundary */
c0ad4aa4 4808 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 4809 cfs_b->slack_started = false;
baa9be4f 4810 if (cfs_b->distribute_running) {
c0ad4aa4 4811 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
4812 return;
4813 }
4814
db06e78c 4815 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 4816 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 4817 return;
db06e78c 4818 }
d8b4986d 4819
c06f04c7 4820 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4821 runtime = cfs_b->runtime;
c06f04c7 4822
baa9be4f
PA
4823 if (runtime)
4824 cfs_b->distribute_running = 1;
4825
c0ad4aa4 4826 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4827
4828 if (!runtime)
4829 return;
4830
de53fd7a 4831 runtime = distribute_cfs_runtime(cfs_b, runtime);
d8b4986d 4832
c0ad4aa4 4833 raw_spin_lock_irqsave(&cfs_b->lock, flags);
de53fd7a 4834 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4835 cfs_b->distribute_running = 0;
c0ad4aa4 4836 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4837}
4838
d3d9dc33
PT
4839/*
4840 * When a group wakes up we want to make sure that its quota is not already
4841 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4842 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4843 */
4844static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4845{
56f570e5
PT
4846 if (!cfs_bandwidth_used())
4847 return;
4848
d3d9dc33
PT
4849 /* an active group must be handled by the update_curr()->put() path */
4850 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4851 return;
4852
4853 /* ensure the group is not already throttled */
4854 if (cfs_rq_throttled(cfs_rq))
4855 return;
4856
4857 /* update runtime allocation */
4858 account_cfs_rq_runtime(cfs_rq, 0);
4859 if (cfs_rq->runtime_remaining <= 0)
4860 throttle_cfs_rq(cfs_rq);
4861}
4862
55e16d30
PZ
4863static void sync_throttle(struct task_group *tg, int cpu)
4864{
4865 struct cfs_rq *pcfs_rq, *cfs_rq;
4866
4867 if (!cfs_bandwidth_used())
4868 return;
4869
4870 if (!tg->parent)
4871 return;
4872
4873 cfs_rq = tg->cfs_rq[cpu];
4874 pcfs_rq = tg->parent->cfs_rq[cpu];
4875
4876 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4877 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4878}
4879
d3d9dc33 4880/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4881static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4882{
56f570e5 4883 if (!cfs_bandwidth_used())
678d5718 4884 return false;
56f570e5 4885
d3d9dc33 4886 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4887 return false;
d3d9dc33
PT
4888
4889 /*
4890 * it's possible for a throttled entity to be forced into a running
4891 * state (e.g. set_curr_task), in this case we're finished.
4892 */
4893 if (cfs_rq_throttled(cfs_rq))
678d5718 4894 return true;
d3d9dc33
PT
4895
4896 throttle_cfs_rq(cfs_rq);
678d5718 4897 return true;
d3d9dc33 4898}
029632fb 4899
029632fb
PZ
4900static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4901{
4902 struct cfs_bandwidth *cfs_b =
4903 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4904
029632fb
PZ
4905 do_sched_cfs_slack_timer(cfs_b);
4906
4907 return HRTIMER_NORESTART;
4908}
4909
2e8e1922
PA
4910extern const u64 max_cfs_quota_period;
4911
029632fb
PZ
4912static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4913{
4914 struct cfs_bandwidth *cfs_b =
4915 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 4916 unsigned long flags;
029632fb
PZ
4917 int overrun;
4918 int idle = 0;
2e8e1922 4919 int count = 0;
029632fb 4920
c0ad4aa4 4921 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 4922 for (;;) {
77a4d1a1 4923 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4924 if (!overrun)
4925 break;
4926
2e8e1922
PA
4927 if (++count > 3) {
4928 u64 new, old = ktime_to_ns(cfs_b->period);
4929
4929a4e6
XZ
4930 /*
4931 * Grow period by a factor of 2 to avoid losing precision.
4932 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4933 * to fail.
4934 */
4935 new = old * 2;
4936 if (new < max_cfs_quota_period) {
4937 cfs_b->period = ns_to_ktime(new);
4938 cfs_b->quota *= 2;
4939
4940 pr_warn_ratelimited(
4941 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4942 smp_processor_id(),
4943 div_u64(new, NSEC_PER_USEC),
4944 div_u64(cfs_b->quota, NSEC_PER_USEC));
4945 } else {
4946 pr_warn_ratelimited(
4947 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4948 smp_processor_id(),
4949 div_u64(old, NSEC_PER_USEC),
4950 div_u64(cfs_b->quota, NSEC_PER_USEC));
4951 }
2e8e1922
PA
4952
4953 /* reset count so we don't come right back in here */
4954 count = 0;
4955 }
4956
c0ad4aa4 4957 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 4958 }
4cfafd30
PZ
4959 if (idle)
4960 cfs_b->period_active = 0;
c0ad4aa4 4961 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
4962
4963 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4964}
4965
4966void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4967{
4968 raw_spin_lock_init(&cfs_b->lock);
4969 cfs_b->runtime = 0;
4970 cfs_b->quota = RUNTIME_INF;
4971 cfs_b->period = ns_to_ktime(default_cfs_period());
4972
4973 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4974 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4975 cfs_b->period_timer.function = sched_cfs_period_timer;
4976 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4977 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 4978 cfs_b->distribute_running = 0;
66567fcb 4979 cfs_b->slack_started = false;
029632fb
PZ
4980}
4981
4982static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4983{
4984 cfs_rq->runtime_enabled = 0;
4985 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4986}
4987
77a4d1a1 4988void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4989{
4cfafd30 4990 lockdep_assert_held(&cfs_b->lock);
029632fb 4991
f1d1be8a
XP
4992 if (cfs_b->period_active)
4993 return;
4994
4995 cfs_b->period_active = 1;
763a9ec0 4996 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 4997 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4998}
4999
5000static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5001{
7f1a169b
TH
5002 /* init_cfs_bandwidth() was not called */
5003 if (!cfs_b->throttled_cfs_rq.next)
5004 return;
5005
029632fb
PZ
5006 hrtimer_cancel(&cfs_b->period_timer);
5007 hrtimer_cancel(&cfs_b->slack_timer);
5008}
5009
502ce005 5010/*
97fb7a0a 5011 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5012 *
5013 * The race is harmless, since modifying bandwidth settings of unhooked group
5014 * bits doesn't do much.
5015 */
5016
5017/* cpu online calback */
0e59bdae
KT
5018static void __maybe_unused update_runtime_enabled(struct rq *rq)
5019{
502ce005 5020 struct task_group *tg;
0e59bdae 5021
502ce005
PZ
5022 lockdep_assert_held(&rq->lock);
5023
5024 rcu_read_lock();
5025 list_for_each_entry_rcu(tg, &task_groups, list) {
5026 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5027 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5028
5029 raw_spin_lock(&cfs_b->lock);
5030 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5031 raw_spin_unlock(&cfs_b->lock);
5032 }
502ce005 5033 rcu_read_unlock();
0e59bdae
KT
5034}
5035
502ce005 5036/* cpu offline callback */
38dc3348 5037static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5038{
502ce005
PZ
5039 struct task_group *tg;
5040
5041 lockdep_assert_held(&rq->lock);
5042
5043 rcu_read_lock();
5044 list_for_each_entry_rcu(tg, &task_groups, list) {
5045 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5046
029632fb
PZ
5047 if (!cfs_rq->runtime_enabled)
5048 continue;
5049
5050 /*
5051 * clock_task is not advancing so we just need to make sure
5052 * there's some valid quota amount
5053 */
51f2176d 5054 cfs_rq->runtime_remaining = 1;
0e59bdae 5055 /*
97fb7a0a 5056 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5057 * in take_cpu_down(), so we prevent new cfs throttling here.
5058 */
5059 cfs_rq->runtime_enabled = 0;
5060
029632fb
PZ
5061 if (cfs_rq_throttled(cfs_rq))
5062 unthrottle_cfs_rq(cfs_rq);
5063 }
502ce005 5064 rcu_read_unlock();
029632fb
PZ
5065}
5066
5067#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5068
5069static inline bool cfs_bandwidth_used(void)
5070{
5071 return false;
5072}
5073
9dbdb155 5074static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5075static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5076static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5077static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5078static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5079
5080static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5081{
5082 return 0;
5083}
64660c86
PT
5084
5085static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5086{
5087 return 0;
5088}
5089
5090static inline int throttled_lb_pair(struct task_group *tg,
5091 int src_cpu, int dest_cpu)
5092{
5093 return 0;
5094}
029632fb
PZ
5095
5096void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5097
5098#ifdef CONFIG_FAIR_GROUP_SCHED
5099static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5100#endif
5101
029632fb
PZ
5102static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5103{
5104 return NULL;
5105}
5106static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5107static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5108static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5109
5110#endif /* CONFIG_CFS_BANDWIDTH */
5111
bf0f6f24
IM
5112/**************************************************
5113 * CFS operations on tasks:
5114 */
5115
8f4d37ec
PZ
5116#ifdef CONFIG_SCHED_HRTICK
5117static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5118{
8f4d37ec
PZ
5119 struct sched_entity *se = &p->se;
5120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5121
9148a3a1 5122 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5123
8bf46a39 5124 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5125 u64 slice = sched_slice(cfs_rq, se);
5126 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5127 s64 delta = slice - ran;
5128
5129 if (delta < 0) {
5130 if (rq->curr == p)
8875125e 5131 resched_curr(rq);
8f4d37ec
PZ
5132 return;
5133 }
31656519 5134 hrtick_start(rq, delta);
8f4d37ec
PZ
5135 }
5136}
a4c2f00f
PZ
5137
5138/*
5139 * called from enqueue/dequeue and updates the hrtick when the
5140 * current task is from our class and nr_running is low enough
5141 * to matter.
5142 */
5143static void hrtick_update(struct rq *rq)
5144{
5145 struct task_struct *curr = rq->curr;
5146
b39e66ea 5147 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5148 return;
5149
5150 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5151 hrtick_start_fair(rq, curr);
5152}
55e12e5e 5153#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5154static inline void
5155hrtick_start_fair(struct rq *rq, struct task_struct *p)
5156{
5157}
a4c2f00f
PZ
5158
5159static inline void hrtick_update(struct rq *rq)
5160{
5161}
8f4d37ec
PZ
5162#endif
5163
2802bf3c
MR
5164#ifdef CONFIG_SMP
5165static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5166
5167static inline bool cpu_overutilized(int cpu)
5168{
60e17f5c 5169 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5170}
5171
5172static inline void update_overutilized_status(struct rq *rq)
5173{
f9f240f9 5174 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5175 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5176 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5177 }
2802bf3c
MR
5178}
5179#else
5180static inline void update_overutilized_status(struct rq *rq) { }
5181#endif
5182
bf0f6f24
IM
5183/*
5184 * The enqueue_task method is called before nr_running is
5185 * increased. Here we update the fair scheduling stats and
5186 * then put the task into the rbtree:
5187 */
ea87bb78 5188static void
371fd7e7 5189enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5190{
5191 struct cfs_rq *cfs_rq;
62fb1851 5192 struct sched_entity *se = &p->se;
43e9f7f2 5193 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24 5194
2539fc82
PB
5195 /*
5196 * The code below (indirectly) updates schedutil which looks at
5197 * the cfs_rq utilization to select a frequency.
5198 * Let's add the task's estimated utilization to the cfs_rq's
5199 * estimated utilization, before we update schedutil.
5200 */
5201 util_est_enqueue(&rq->cfs, p);
5202
8c34ab19
RW
5203 /*
5204 * If in_iowait is set, the code below may not trigger any cpufreq
5205 * utilization updates, so do it here explicitly with the IOWAIT flag
5206 * passed.
5207 */
5208 if (p->in_iowait)
674e7541 5209 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5210
bf0f6f24 5211 for_each_sched_entity(se) {
62fb1851 5212 if (se->on_rq)
bf0f6f24
IM
5213 break;
5214 cfs_rq = cfs_rq_of(se);
88ec22d3 5215 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5216
5217 /*
5218 * end evaluation on encountering a throttled cfs_rq
5219 *
5220 * note: in the case of encountering a throttled cfs_rq we will
5221 * post the final h_nr_running increment below.
e210bffd 5222 */
85dac906
PT
5223 if (cfs_rq_throttled(cfs_rq))
5224 break;
953bfcd1 5225 cfs_rq->h_nr_running++;
43e9f7f2 5226 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5227
88ec22d3 5228 flags = ENQUEUE_WAKEUP;
bf0f6f24 5229 }
8f4d37ec 5230
2069dd75 5231 for_each_sched_entity(se) {
0f317143 5232 cfs_rq = cfs_rq_of(se);
953bfcd1 5233 cfs_rq->h_nr_running++;
43e9f7f2 5234 cfs_rq->idle_h_nr_running += idle_h_nr_running;
2069dd75 5235
85dac906
PT
5236 if (cfs_rq_throttled(cfs_rq))
5237 break;
5238
88c0616e 5239 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5240 update_cfs_group(se);
2069dd75
PZ
5241 }
5242
2802bf3c 5243 if (!se) {
72465447 5244 add_nr_running(rq, 1);
2802bf3c
MR
5245 /*
5246 * Since new tasks are assigned an initial util_avg equal to
5247 * half of the spare capacity of their CPU, tiny tasks have the
5248 * ability to cross the overutilized threshold, which will
5249 * result in the load balancer ruining all the task placement
5250 * done by EAS. As a way to mitigate that effect, do not account
5251 * for the first enqueue operation of new tasks during the
5252 * overutilized flag detection.
5253 *
5254 * A better way of solving this problem would be to wait for
5255 * the PELT signals of tasks to converge before taking them
5256 * into account, but that is not straightforward to implement,
5257 * and the following generally works well enough in practice.
5258 */
5259 if (flags & ENQUEUE_WAKEUP)
5260 update_overutilized_status(rq);
5261
5262 }
cd126afe 5263
f6783319
VG
5264 if (cfs_bandwidth_used()) {
5265 /*
5266 * When bandwidth control is enabled; the cfs_rq_throttled()
5267 * breaks in the above iteration can result in incomplete
5268 * leaf list maintenance, resulting in triggering the assertion
5269 * below.
5270 */
5271 for_each_sched_entity(se) {
5272 cfs_rq = cfs_rq_of(se);
5273
5274 if (list_add_leaf_cfs_rq(cfs_rq))
5275 break;
5276 }
5277 }
5278
5d299eab
PZ
5279 assert_list_leaf_cfs_rq(rq);
5280
a4c2f00f 5281 hrtick_update(rq);
bf0f6f24
IM
5282}
5283
2f36825b
VP
5284static void set_next_buddy(struct sched_entity *se);
5285
bf0f6f24
IM
5286/*
5287 * The dequeue_task method is called before nr_running is
5288 * decreased. We remove the task from the rbtree and
5289 * update the fair scheduling stats:
5290 */
371fd7e7 5291static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5292{
5293 struct cfs_rq *cfs_rq;
62fb1851 5294 struct sched_entity *se = &p->se;
2f36825b 5295 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5296 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24
IM
5297
5298 for_each_sched_entity(se) {
5299 cfs_rq = cfs_rq_of(se);
371fd7e7 5300 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5301
5302 /*
5303 * end evaluation on encountering a throttled cfs_rq
5304 *
5305 * note: in the case of encountering a throttled cfs_rq we will
5306 * post the final h_nr_running decrement below.
5307 */
5308 if (cfs_rq_throttled(cfs_rq))
5309 break;
953bfcd1 5310 cfs_rq->h_nr_running--;
43e9f7f2 5311 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5312
bf0f6f24 5313 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5314 if (cfs_rq->load.weight) {
754bd598
KK
5315 /* Avoid re-evaluating load for this entity: */
5316 se = parent_entity(se);
2f36825b
VP
5317 /*
5318 * Bias pick_next to pick a task from this cfs_rq, as
5319 * p is sleeping when it is within its sched_slice.
5320 */
754bd598
KK
5321 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5322 set_next_buddy(se);
bf0f6f24 5323 break;
2f36825b 5324 }
371fd7e7 5325 flags |= DEQUEUE_SLEEP;
bf0f6f24 5326 }
8f4d37ec 5327
2069dd75 5328 for_each_sched_entity(se) {
0f317143 5329 cfs_rq = cfs_rq_of(se);
953bfcd1 5330 cfs_rq->h_nr_running--;
43e9f7f2 5331 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5332
85dac906
PT
5333 if (cfs_rq_throttled(cfs_rq))
5334 break;
5335
88c0616e 5336 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5337 update_cfs_group(se);
2069dd75
PZ
5338 }
5339
cd126afe 5340 if (!se)
72465447 5341 sub_nr_running(rq, 1);
cd126afe 5342
7f65ea42 5343 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5344 hrtick_update(rq);
bf0f6f24
IM
5345}
5346
e7693a36 5347#ifdef CONFIG_SMP
10e2f1ac
PZ
5348
5349/* Working cpumask for: load_balance, load_balance_newidle. */
5350DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5351DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5352
9fd81dd5 5353#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5354
5355static struct {
5356 cpumask_var_t idle_cpus_mask;
5357 atomic_t nr_cpus;
f643ea22 5358 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5359 unsigned long next_balance; /* in jiffy units */
f643ea22 5360 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5361} nohz ____cacheline_aligned;
5362
9fd81dd5 5363#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5364
3c29e651
VK
5365/* CPU only has SCHED_IDLE tasks enqueued */
5366static int sched_idle_cpu(int cpu)
5367{
5368 struct rq *rq = cpu_rq(cpu);
5369
5370 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5371 rq->nr_running);
5372}
5373
a3df0679 5374static unsigned long cpu_runnable_load(struct rq *rq)
7ea241af 5375{
c7132dd6 5376 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5377}
5378
ced549fa 5379static unsigned long capacity_of(int cpu)
029632fb 5380{
ced549fa 5381 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5382}
5383
5384static unsigned long cpu_avg_load_per_task(int cpu)
5385{
5386 struct rq *rq = cpu_rq(cpu);
316c1608 5387 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
a3df0679 5388 unsigned long load_avg = cpu_runnable_load(rq);
029632fb
PZ
5389
5390 if (nr_running)
b92486cb 5391 return load_avg / nr_running;
029632fb
PZ
5392
5393 return 0;
5394}
5395
c58d25f3
PZ
5396static void record_wakee(struct task_struct *p)
5397{
5398 /*
5399 * Only decay a single time; tasks that have less then 1 wakeup per
5400 * jiffy will not have built up many flips.
5401 */
5402 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5403 current->wakee_flips >>= 1;
5404 current->wakee_flip_decay_ts = jiffies;
5405 }
5406
5407 if (current->last_wakee != p) {
5408 current->last_wakee = p;
5409 current->wakee_flips++;
5410 }
5411}
5412
63b0e9ed
MG
5413/*
5414 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5415 *
63b0e9ed 5416 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5417 * at a frequency roughly N times higher than one of its wakees.
5418 *
5419 * In order to determine whether we should let the load spread vs consolidating
5420 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5421 * partner, and a factor of lls_size higher frequency in the other.
5422 *
5423 * With both conditions met, we can be relatively sure that the relationship is
5424 * non-monogamous, with partner count exceeding socket size.
5425 *
5426 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5427 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5428 * socket size.
63b0e9ed 5429 */
62470419
MW
5430static int wake_wide(struct task_struct *p)
5431{
63b0e9ed
MG
5432 unsigned int master = current->wakee_flips;
5433 unsigned int slave = p->wakee_flips;
7d9ffa89 5434 int factor = this_cpu_read(sd_llc_size);
62470419 5435
63b0e9ed
MG
5436 if (master < slave)
5437 swap(master, slave);
5438 if (slave < factor || master < slave * factor)
5439 return 0;
5440 return 1;
62470419
MW
5441}
5442
90001d67 5443/*
d153b153
PZ
5444 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5445 * soonest. For the purpose of speed we only consider the waking and previous
5446 * CPU.
90001d67 5447 *
7332dec0
MG
5448 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5449 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5450 *
5451 * wake_affine_weight() - considers the weight to reflect the average
5452 * scheduling latency of the CPUs. This seems to work
5453 * for the overloaded case.
90001d67 5454 */
3b76c4a3 5455static int
89a55f56 5456wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5457{
7332dec0
MG
5458 /*
5459 * If this_cpu is idle, it implies the wakeup is from interrupt
5460 * context. Only allow the move if cache is shared. Otherwise an
5461 * interrupt intensive workload could force all tasks onto one
5462 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5463 *
5464 * If the prev_cpu is idle and cache affine then avoid a migration.
5465 * There is no guarantee that the cache hot data from an interrupt
5466 * is more important than cache hot data on the prev_cpu and from
5467 * a cpufreq perspective, it's better to have higher utilisation
5468 * on one CPU.
7332dec0 5469 */
943d355d
RJ
5470 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5471 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5472
d153b153 5473 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5474 return this_cpu;
90001d67 5475
3b76c4a3 5476 return nr_cpumask_bits;
90001d67
PZ
5477}
5478
3b76c4a3 5479static int
f2cdd9cc
PZ
5480wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5481 int this_cpu, int prev_cpu, int sync)
90001d67 5482{
90001d67
PZ
5483 s64 this_eff_load, prev_eff_load;
5484 unsigned long task_load;
5485
a3df0679 5486 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
90001d67 5487
90001d67
PZ
5488 if (sync) {
5489 unsigned long current_load = task_h_load(current);
5490
f2cdd9cc 5491 if (current_load > this_eff_load)
3b76c4a3 5492 return this_cpu;
90001d67 5493
f2cdd9cc 5494 this_eff_load -= current_load;
90001d67
PZ
5495 }
5496
90001d67
PZ
5497 task_load = task_h_load(p);
5498
f2cdd9cc
PZ
5499 this_eff_load += task_load;
5500 if (sched_feat(WA_BIAS))
5501 this_eff_load *= 100;
5502 this_eff_load *= capacity_of(prev_cpu);
90001d67 5503
a3df0679 5504 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5505 prev_eff_load -= task_load;
5506 if (sched_feat(WA_BIAS))
5507 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5508 prev_eff_load *= capacity_of(this_cpu);
90001d67 5509
082f764a
MG
5510 /*
5511 * If sync, adjust the weight of prev_eff_load such that if
5512 * prev_eff == this_eff that select_idle_sibling() will consider
5513 * stacking the wakee on top of the waker if no other CPU is
5514 * idle.
5515 */
5516 if (sync)
5517 prev_eff_load += 1;
5518
5519 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5520}
5521
772bd008 5522static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5523 int this_cpu, int prev_cpu, int sync)
098fb9db 5524{
3b76c4a3 5525 int target = nr_cpumask_bits;
098fb9db 5526
89a55f56 5527 if (sched_feat(WA_IDLE))
3b76c4a3 5528 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5529
3b76c4a3
MG
5530 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5531 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5532
ae92882e 5533 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5534 if (target == nr_cpumask_bits)
5535 return prev_cpu;
098fb9db 5536
3b76c4a3
MG
5537 schedstat_inc(sd->ttwu_move_affine);
5538 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5539 return target;
098fb9db
IM
5540}
5541
c469933e 5542static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6a0b19c0 5543
c469933e 5544static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6a0b19c0 5545{
c469933e 5546 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6a0b19c0
MR
5547}
5548
aaee1203
PZ
5549/*
5550 * find_idlest_group finds and returns the least busy CPU group within the
5551 * domain.
6fee85cc
BJ
5552 *
5553 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5554 */
5555static struct sched_group *
78e7ed53 5556find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5557 int this_cpu, int sd_flag)
e7693a36 5558{
b3bd3de6 5559 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5560 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5561 unsigned long min_runnable_load = ULONG_MAX;
5562 unsigned long this_runnable_load = ULONG_MAX;
5563 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5564 unsigned long most_spare = 0, this_spare = 0;
6b94780e
VG
5565 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5566 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5567 (sd->imbalance_pct-100) / 100;
e7693a36 5568
aaee1203 5569 do {
6b94780e
VG
5570 unsigned long load, avg_load, runnable_load;
5571 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5572 int local_group;
5573 int i;
e7693a36 5574
aaee1203 5575 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5576 if (!cpumask_intersects(sched_group_span(group),
3bd37062 5577 p->cpus_ptr))
aaee1203
PZ
5578 continue;
5579
5580 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5581 sched_group_span(group));
aaee1203 5582
6a0b19c0
MR
5583 /*
5584 * Tally up the load of all CPUs in the group and find
5585 * the group containing the CPU with most spare capacity.
5586 */
aaee1203 5587 avg_load = 0;
6b94780e 5588 runnable_load = 0;
6a0b19c0 5589 max_spare_cap = 0;
aaee1203 5590
ae4df9d6 5591 for_each_cpu(i, sched_group_span(group)) {
a3df0679 5592 load = cpu_runnable_load(cpu_rq(i));
6b94780e
VG
5593 runnable_load += load;
5594
5595 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0 5596
c469933e 5597 spare_cap = capacity_spare_without(i, p);
6a0b19c0
MR
5598
5599 if (spare_cap > max_spare_cap)
5600 max_spare_cap = spare_cap;
aaee1203
PZ
5601 }
5602
63b2ca30 5603 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5604 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5605 group->sgc->capacity;
5606 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5607 group->sgc->capacity;
aaee1203
PZ
5608
5609 if (local_group) {
6b94780e
VG
5610 this_runnable_load = runnable_load;
5611 this_avg_load = avg_load;
6a0b19c0
MR
5612 this_spare = max_spare_cap;
5613 } else {
6b94780e
VG
5614 if (min_runnable_load > (runnable_load + imbalance)) {
5615 /*
5616 * The runnable load is significantly smaller
97fb7a0a 5617 * so we can pick this new CPU:
6b94780e
VG
5618 */
5619 min_runnable_load = runnable_load;
5620 min_avg_load = avg_load;
5621 idlest = group;
5622 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5623 (100*min_avg_load > imbalance_scale*avg_load)) {
5624 /*
5625 * The runnable loads are close so take the
97fb7a0a 5626 * blocked load into account through avg_load:
6b94780e
VG
5627 */
5628 min_avg_load = avg_load;
6a0b19c0
MR
5629 idlest = group;
5630 }
5631
5632 if (most_spare < max_spare_cap) {
5633 most_spare = max_spare_cap;
5634 most_spare_sg = group;
5635 }
aaee1203
PZ
5636 }
5637 } while (group = group->next, group != sd->groups);
5638
6a0b19c0
MR
5639 /*
5640 * The cross-over point between using spare capacity or least load
5641 * is too conservative for high utilization tasks on partially
5642 * utilized systems if we require spare_capacity > task_util(p),
5643 * so we allow for some task stuffing by using
5644 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5645 *
5646 * Spare capacity can't be used for fork because the utilization has
5647 * not been set yet, we must first select a rq to compute the initial
5648 * utilization.
6a0b19c0 5649 */
f519a3f1
VG
5650 if (sd_flag & SD_BALANCE_FORK)
5651 goto skip_spare;
5652
6a0b19c0 5653 if (this_spare > task_util(p) / 2 &&
6b94780e 5654 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5655 return NULL;
6b94780e
VG
5656
5657 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5658 return most_spare_sg;
5659
f519a3f1 5660skip_spare:
6b94780e
VG
5661 if (!idlest)
5662 return NULL;
5663
2c833627
MG
5664 /*
5665 * When comparing groups across NUMA domains, it's possible for the
5666 * local domain to be very lightly loaded relative to the remote
5667 * domains but "imbalance" skews the comparison making remote CPUs
5668 * look much more favourable. When considering cross-domain, add
5669 * imbalance to the runnable load on the remote node and consider
5670 * staying local.
5671 */
5672 if ((sd->flags & SD_NUMA) &&
5673 min_runnable_load + imbalance >= this_runnable_load)
5674 return NULL;
5675
6b94780e 5676 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5677 return NULL;
6b94780e
VG
5678
5679 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5680 (100*this_avg_load < imbalance_scale*min_avg_load))
5681 return NULL;
5682
aaee1203
PZ
5683 return idlest;
5684}
5685
5686/*
97fb7a0a 5687 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5688 */
5689static int
18bd1b4b 5690find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5691{
5692 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5693 unsigned int min_exit_latency = UINT_MAX;
5694 u64 latest_idle_timestamp = 0;
5695 int least_loaded_cpu = this_cpu;
3c29e651 5696 int shallowest_idle_cpu = -1, si_cpu = -1;
aaee1203
PZ
5697 int i;
5698
eaecf41f
MR
5699 /* Check if we have any choice: */
5700 if (group->group_weight == 1)
ae4df9d6 5701 return cpumask_first(sched_group_span(group));
eaecf41f 5702
aaee1203 5703 /* Traverse only the allowed CPUs */
3bd37062 5704 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
943d355d 5705 if (available_idle_cpu(i)) {
83a0a96a
NP
5706 struct rq *rq = cpu_rq(i);
5707 struct cpuidle_state *idle = idle_get_state(rq);
5708 if (idle && idle->exit_latency < min_exit_latency) {
5709 /*
5710 * We give priority to a CPU whose idle state
5711 * has the smallest exit latency irrespective
5712 * of any idle timestamp.
5713 */
5714 min_exit_latency = idle->exit_latency;
5715 latest_idle_timestamp = rq->idle_stamp;
5716 shallowest_idle_cpu = i;
5717 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5718 rq->idle_stamp > latest_idle_timestamp) {
5719 /*
5720 * If equal or no active idle state, then
5721 * the most recently idled CPU might have
5722 * a warmer cache.
5723 */
5724 latest_idle_timestamp = rq->idle_stamp;
5725 shallowest_idle_cpu = i;
5726 }
3c29e651
VK
5727 } else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5728 if (sched_idle_cpu(i)) {
5729 si_cpu = i;
5730 continue;
5731 }
5732
a3df0679 5733 load = cpu_runnable_load(cpu_rq(i));
18cec7e0 5734 if (load < min_load) {
83a0a96a
NP
5735 min_load = load;
5736 least_loaded_cpu = i;
5737 }
e7693a36
GH
5738 }
5739 }
5740
3c29e651
VK
5741 if (shallowest_idle_cpu != -1)
5742 return shallowest_idle_cpu;
5743 if (si_cpu != -1)
5744 return si_cpu;
5745 return least_loaded_cpu;
aaee1203 5746}
e7693a36 5747
18bd1b4b
BJ
5748static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5749 int cpu, int prev_cpu, int sd_flag)
5750{
93f50f90 5751 int new_cpu = cpu;
18bd1b4b 5752
3bd37062 5753 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5754 return prev_cpu;
5755
c976a862 5756 /*
c469933e
PB
5757 * We need task's util for capacity_spare_without, sync it up to
5758 * prev_cpu's last_update_time.
c976a862
VK
5759 */
5760 if (!(sd_flag & SD_BALANCE_FORK))
5761 sync_entity_load_avg(&p->se);
5762
18bd1b4b
BJ
5763 while (sd) {
5764 struct sched_group *group;
5765 struct sched_domain *tmp;
5766 int weight;
5767
5768 if (!(sd->flags & sd_flag)) {
5769 sd = sd->child;
5770 continue;
5771 }
5772
5773 group = find_idlest_group(sd, p, cpu, sd_flag);
5774 if (!group) {
5775 sd = sd->child;
5776 continue;
5777 }
5778
5779 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5780 if (new_cpu == cpu) {
97fb7a0a 5781 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5782 sd = sd->child;
5783 continue;
5784 }
5785
97fb7a0a 5786 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5787 cpu = new_cpu;
5788 weight = sd->span_weight;
5789 sd = NULL;
5790 for_each_domain(cpu, tmp) {
5791 if (weight <= tmp->span_weight)
5792 break;
5793 if (tmp->flags & sd_flag)
5794 sd = tmp;
5795 }
18bd1b4b
BJ
5796 }
5797
5798 return new_cpu;
5799}
5800
10e2f1ac 5801#ifdef CONFIG_SCHED_SMT
ba2591a5 5802DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5803EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5804
5805static inline void set_idle_cores(int cpu, int val)
5806{
5807 struct sched_domain_shared *sds;
5808
5809 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5810 if (sds)
5811 WRITE_ONCE(sds->has_idle_cores, val);
5812}
5813
5814static inline bool test_idle_cores(int cpu, bool def)
5815{
5816 struct sched_domain_shared *sds;
5817
5818 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5819 if (sds)
5820 return READ_ONCE(sds->has_idle_cores);
5821
5822 return def;
5823}
5824
5825/*
5826 * Scans the local SMT mask to see if the entire core is idle, and records this
5827 * information in sd_llc_shared->has_idle_cores.
5828 *
5829 * Since SMT siblings share all cache levels, inspecting this limited remote
5830 * state should be fairly cheap.
5831 */
1b568f0a 5832void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5833{
5834 int core = cpu_of(rq);
5835 int cpu;
5836
5837 rcu_read_lock();
5838 if (test_idle_cores(core, true))
5839 goto unlock;
5840
5841 for_each_cpu(cpu, cpu_smt_mask(core)) {
5842 if (cpu == core)
5843 continue;
5844
943d355d 5845 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5846 goto unlock;
5847 }
5848
5849 set_idle_cores(core, 1);
5850unlock:
5851 rcu_read_unlock();
5852}
5853
5854/*
5855 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5856 * there are no idle cores left in the system; tracked through
5857 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5858 */
5859static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5860{
5861 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5862 int core, cpu;
10e2f1ac 5863
1b568f0a
PZ
5864 if (!static_branch_likely(&sched_smt_present))
5865 return -1;
5866
10e2f1ac
PZ
5867 if (!test_idle_cores(target, false))
5868 return -1;
5869
3bd37062 5870 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 5871
c743f0a5 5872 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5873 bool idle = true;
5874
5875 for_each_cpu(cpu, cpu_smt_mask(core)) {
c89d92ed 5876 __cpumask_clear_cpu(cpu, cpus);
943d355d 5877 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5878 idle = false;
5879 }
5880
5881 if (idle)
5882 return core;
5883 }
5884
5885 /*
5886 * Failed to find an idle core; stop looking for one.
5887 */
5888 set_idle_cores(target, 0);
5889
5890 return -1;
5891}
5892
5893/*
5894 * Scan the local SMT mask for idle CPUs.
5895 */
1b5500d7 5896static int select_idle_smt(struct task_struct *p, int target)
10e2f1ac 5897{
3c29e651 5898 int cpu, si_cpu = -1;
10e2f1ac 5899
1b568f0a
PZ
5900 if (!static_branch_likely(&sched_smt_present))
5901 return -1;
5902
10e2f1ac 5903 for_each_cpu(cpu, cpu_smt_mask(target)) {
3bd37062 5904 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5905 continue;
943d355d 5906 if (available_idle_cpu(cpu))
10e2f1ac 5907 return cpu;
3c29e651
VK
5908 if (si_cpu == -1 && sched_idle_cpu(cpu))
5909 si_cpu = cpu;
10e2f1ac
PZ
5910 }
5911
3c29e651 5912 return si_cpu;
10e2f1ac
PZ
5913}
5914
5915#else /* CONFIG_SCHED_SMT */
5916
5917static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5918{
5919 return -1;
5920}
5921
1b5500d7 5922static inline int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
5923{
5924 return -1;
5925}
5926
5927#endif /* CONFIG_SCHED_SMT */
5928
5929/*
5930 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5931 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5932 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5933 */
10e2f1ac
PZ
5934static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5935{
9cfb38a7 5936 struct sched_domain *this_sd;
1ad3aaf3 5937 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5938 u64 time, cost;
5939 s64 delta;
8dc2d993 5940 int this = smp_processor_id();
3c29e651 5941 int cpu, nr = INT_MAX, si_cpu = -1;
10e2f1ac 5942
9cfb38a7
WL
5943 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5944 if (!this_sd)
5945 return -1;
5946
10e2f1ac
PZ
5947 /*
5948 * Due to large variance we need a large fuzz factor; hackbench in
5949 * particularly is sensitive here.
5950 */
1ad3aaf3
PZ
5951 avg_idle = this_rq()->avg_idle / 512;
5952 avg_cost = this_sd->avg_scan_cost + 1;
5953
5954 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5955 return -1;
5956
1ad3aaf3
PZ
5957 if (sched_feat(SIS_PROP)) {
5958 u64 span_avg = sd->span_weight * avg_idle;
5959 if (span_avg > 4*avg_cost)
5960 nr = div_u64(span_avg, avg_cost);
5961 else
5962 nr = 4;
5963 }
5964
8dc2d993 5965 time = cpu_clock(this);
10e2f1ac 5966
c743f0a5 5967 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3 5968 if (!--nr)
3c29e651 5969 return si_cpu;
3bd37062 5970 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5971 continue;
943d355d 5972 if (available_idle_cpu(cpu))
10e2f1ac 5973 break;
3c29e651
VK
5974 if (si_cpu == -1 && sched_idle_cpu(cpu))
5975 si_cpu = cpu;
10e2f1ac
PZ
5976 }
5977
8dc2d993 5978 time = cpu_clock(this) - time;
10e2f1ac
PZ
5979 cost = this_sd->avg_scan_cost;
5980 delta = (s64)(time - cost) / 8;
5981 this_sd->avg_scan_cost += delta;
5982
5983 return cpu;
5984}
5985
5986/*
5987 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5988 */
772bd008 5989static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5990{
99bd5e2f 5991 struct sched_domain *sd;
32e839dd 5992 int i, recent_used_cpu;
a50bde51 5993
3c29e651 5994 if (available_idle_cpu(target) || sched_idle_cpu(target))
e0a79f52 5995 return target;
99bd5e2f
SS
5996
5997 /*
97fb7a0a 5998 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 5999 */
3c29e651
VK
6000 if (prev != target && cpus_share_cache(prev, target) &&
6001 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
772bd008 6002 return prev;
a50bde51 6003
97fb7a0a 6004 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6005 recent_used_cpu = p->recent_used_cpu;
6006 if (recent_used_cpu != prev &&
6007 recent_used_cpu != target &&
6008 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6009 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
3bd37062 6010 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6011 /*
6012 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6013 * candidate for the next wake:
32e839dd
MG
6014 */
6015 p->recent_used_cpu = prev;
6016 return recent_used_cpu;
6017 }
6018
518cd623 6019 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6020 if (!sd)
6021 return target;
772bd008 6022
10e2f1ac
PZ
6023 i = select_idle_core(p, sd, target);
6024 if ((unsigned)i < nr_cpumask_bits)
6025 return i;
37407ea7 6026
10e2f1ac
PZ
6027 i = select_idle_cpu(p, sd, target);
6028 if ((unsigned)i < nr_cpumask_bits)
6029 return i;
6030
1b5500d7 6031 i = select_idle_smt(p, target);
10e2f1ac
PZ
6032 if ((unsigned)i < nr_cpumask_bits)
6033 return i;
970e1789 6034
a50bde51
PZ
6035 return target;
6036}
231678b7 6037
f9be3e59
PB
6038/**
6039 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6040 * @cpu: the CPU to get the utilization of
6041 *
6042 * The unit of the return value must be the one of capacity so we can compare
6043 * the utilization with the capacity of the CPU that is available for CFS task
6044 * (ie cpu_capacity).
231678b7
DE
6045 *
6046 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6047 * recent utilization of currently non-runnable tasks on a CPU. It represents
6048 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6049 * capacity_orig is the cpu_capacity available at the highest frequency
6050 * (arch_scale_freq_capacity()).
6051 * The utilization of a CPU converges towards a sum equal to or less than the
6052 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6053 * the running time on this CPU scaled by capacity_curr.
6054 *
f9be3e59
PB
6055 * The estimated utilization of a CPU is defined to be the maximum between its
6056 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6057 * currently RUNNABLE on that CPU.
6058 * This allows to properly represent the expected utilization of a CPU which
6059 * has just got a big task running since a long sleep period. At the same time
6060 * however it preserves the benefits of the "blocked utilization" in
6061 * describing the potential for other tasks waking up on the same CPU.
6062 *
231678b7
DE
6063 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6064 * higher than capacity_orig because of unfortunate rounding in
6065 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6066 * the average stabilizes with the new running time. We need to check that the
6067 * utilization stays within the range of [0..capacity_orig] and cap it if
6068 * necessary. Without utilization capping, a group could be seen as overloaded
6069 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6070 * available capacity. We allow utilization to overshoot capacity_curr (but not
6071 * capacity_orig) as it useful for predicting the capacity required after task
6072 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6073 *
6074 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6075 */
f9be3e59 6076static inline unsigned long cpu_util(int cpu)
8bb5b00c 6077{
f9be3e59
PB
6078 struct cfs_rq *cfs_rq;
6079 unsigned int util;
6080
6081 cfs_rq = &cpu_rq(cpu)->cfs;
6082 util = READ_ONCE(cfs_rq->avg.util_avg);
6083
6084 if (sched_feat(UTIL_EST))
6085 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6086
f9be3e59 6087 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6088}
a50bde51 6089
104cb16d 6090/*
c469933e
PB
6091 * cpu_util_without: compute cpu utilization without any contributions from *p
6092 * @cpu: the CPU which utilization is requested
6093 * @p: the task which utilization should be discounted
6094 *
6095 * The utilization of a CPU is defined by the utilization of tasks currently
6096 * enqueued on that CPU as well as tasks which are currently sleeping after an
6097 * execution on that CPU.
6098 *
6099 * This method returns the utilization of the specified CPU by discounting the
6100 * utilization of the specified task, whenever the task is currently
6101 * contributing to the CPU utilization.
104cb16d 6102 */
c469933e 6103static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6104{
f9be3e59
PB
6105 struct cfs_rq *cfs_rq;
6106 unsigned int util;
104cb16d
MR
6107
6108 /* Task has no contribution or is new */
f9be3e59 6109 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6110 return cpu_util(cpu);
6111
f9be3e59
PB
6112 cfs_rq = &cpu_rq(cpu)->cfs;
6113 util = READ_ONCE(cfs_rq->avg.util_avg);
6114
c469933e 6115 /* Discount task's util from CPU's util */
b5c0ce7b 6116 lsub_positive(&util, task_util(p));
104cb16d 6117
f9be3e59
PB
6118 /*
6119 * Covered cases:
6120 *
6121 * a) if *p is the only task sleeping on this CPU, then:
6122 * cpu_util (== task_util) > util_est (== 0)
6123 * and thus we return:
c469933e 6124 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6125 *
6126 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6127 * IDLE, then:
6128 * cpu_util >= task_util
6129 * cpu_util > util_est (== 0)
6130 * and thus we discount *p's blocked utilization to return:
c469933e 6131 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6132 *
6133 * c) if other tasks are RUNNABLE on that CPU and
6134 * util_est > cpu_util
6135 * then we use util_est since it returns a more restrictive
6136 * estimation of the spare capacity on that CPU, by just
6137 * considering the expected utilization of tasks already
6138 * runnable on that CPU.
6139 *
6140 * Cases a) and b) are covered by the above code, while case c) is
6141 * covered by the following code when estimated utilization is
6142 * enabled.
6143 */
c469933e
PB
6144 if (sched_feat(UTIL_EST)) {
6145 unsigned int estimated =
6146 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6147
6148 /*
6149 * Despite the following checks we still have a small window
6150 * for a possible race, when an execl's select_task_rq_fair()
6151 * races with LB's detach_task():
6152 *
6153 * detach_task()
6154 * p->on_rq = TASK_ON_RQ_MIGRATING;
6155 * ---------------------------------- A
6156 * deactivate_task() \
6157 * dequeue_task() + RaceTime
6158 * util_est_dequeue() /
6159 * ---------------------------------- B
6160 *
6161 * The additional check on "current == p" it's required to
6162 * properly fix the execl regression and it helps in further
6163 * reducing the chances for the above race.
6164 */
b5c0ce7b
PB
6165 if (unlikely(task_on_rq_queued(p) || current == p))
6166 lsub_positive(&estimated, _task_util_est(p));
6167
c469933e
PB
6168 util = max(util, estimated);
6169 }
f9be3e59
PB
6170
6171 /*
6172 * Utilization (estimated) can exceed the CPU capacity, thus let's
6173 * clamp to the maximum CPU capacity to ensure consistency with
6174 * the cpu_util call.
6175 */
6176 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6177}
6178
3273163c
MR
6179/*
6180 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6181 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6182 *
6183 * In that case WAKE_AFFINE doesn't make sense and we'll let
6184 * BALANCE_WAKE sort things out.
6185 */
6186static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6187{
6188 long min_cap, max_cap;
6189
df054e84
MR
6190 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6191 return 0;
6192
3273163c
MR
6193 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6194 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6195
6196 /* Minimum capacity is close to max, no need to abort wake_affine */
6197 if (max_cap - min_cap < max_cap >> 3)
6198 return 0;
6199
104cb16d
MR
6200 /* Bring task utilization in sync with prev_cpu */
6201 sync_entity_load_avg(&p->se);
6202
3b1baa64 6203 return !task_fits_capacity(p, min_cap);
3273163c
MR
6204}
6205
390031e4
QP
6206/*
6207 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6208 * to @dst_cpu.
6209 */
6210static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6211{
6212 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6213 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6214
6215 /*
6216 * If @p migrates from @cpu to another, remove its contribution. Or,
6217 * if @p migrates from another CPU to @cpu, add its contribution. In
6218 * the other cases, @cpu is not impacted by the migration, so the
6219 * util_avg should already be correct.
6220 */
6221 if (task_cpu(p) == cpu && dst_cpu != cpu)
6222 sub_positive(&util, task_util(p));
6223 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6224 util += task_util(p);
6225
6226 if (sched_feat(UTIL_EST)) {
6227 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6228
6229 /*
6230 * During wake-up, the task isn't enqueued yet and doesn't
6231 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6232 * so just add it (if needed) to "simulate" what will be
6233 * cpu_util() after the task has been enqueued.
6234 */
6235 if (dst_cpu == cpu)
6236 util_est += _task_util_est(p);
6237
6238 util = max(util, util_est);
6239 }
6240
6241 return min(util, capacity_orig_of(cpu));
6242}
6243
6244/*
eb92692b 6245 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6246 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6247 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6248 * to compute what would be the energy if we decided to actually migrate that
6249 * task.
6250 */
6251static long
6252compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6253{
eb92692b
QP
6254 struct cpumask *pd_mask = perf_domain_span(pd);
6255 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6256 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6257 int cpu;
6258
eb92692b
QP
6259 /*
6260 * The capacity state of CPUs of the current rd can be driven by CPUs
6261 * of another rd if they belong to the same pd. So, account for the
6262 * utilization of these CPUs too by masking pd with cpu_online_mask
6263 * instead of the rd span.
6264 *
6265 * If an entire pd is outside of the current rd, it will not appear in
6266 * its pd list and will not be accounted by compute_energy().
6267 */
6268 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6269 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6270 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6271
6272 /*
eb92692b
QP
6273 * Busy time computation: utilization clamping is not
6274 * required since the ratio (sum_util / cpu_capacity)
6275 * is already enough to scale the EM reported power
6276 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6277 */
eb92692b
QP
6278 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6279 ENERGY_UTIL, NULL);
af24bde8 6280
390031e4 6281 /*
eb92692b
QP
6282 * Performance domain frequency: utilization clamping
6283 * must be considered since it affects the selection
6284 * of the performance domain frequency.
6285 * NOTE: in case RT tasks are running, by default the
6286 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6287 */
eb92692b
QP
6288 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6289 FREQUENCY_UTIL, tsk);
6290 max_util = max(max_util, cpu_util);
390031e4
QP
6291 }
6292
eb92692b 6293 return em_pd_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6294}
6295
732cd75b
QP
6296/*
6297 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6298 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6299 * spare capacity in each performance domain and uses it as a potential
6300 * candidate to execute the task. Then, it uses the Energy Model to figure
6301 * out which of the CPU candidates is the most energy-efficient.
6302 *
6303 * The rationale for this heuristic is as follows. In a performance domain,
6304 * all the most energy efficient CPU candidates (according to the Energy
6305 * Model) are those for which we'll request a low frequency. When there are
6306 * several CPUs for which the frequency request will be the same, we don't
6307 * have enough data to break the tie between them, because the Energy Model
6308 * only includes active power costs. With this model, if we assume that
6309 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6310 * the maximum spare capacity in a performance domain is guaranteed to be among
6311 * the best candidates of the performance domain.
6312 *
6313 * In practice, it could be preferable from an energy standpoint to pack
6314 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6315 * but that could also hurt our chances to go cluster idle, and we have no
6316 * ways to tell with the current Energy Model if this is actually a good
6317 * idea or not. So, find_energy_efficient_cpu() basically favors
6318 * cluster-packing, and spreading inside a cluster. That should at least be
6319 * a good thing for latency, and this is consistent with the idea that most
6320 * of the energy savings of EAS come from the asymmetry of the system, and
6321 * not so much from breaking the tie between identical CPUs. That's also the
6322 * reason why EAS is enabled in the topology code only for systems where
6323 * SD_ASYM_CPUCAPACITY is set.
6324 *
6325 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6326 * they don't have any useful utilization data yet and it's not possible to
6327 * forecast their impact on energy consumption. Consequently, they will be
6328 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6329 * to be energy-inefficient in some use-cases. The alternative would be to
6330 * bias new tasks towards specific types of CPUs first, or to try to infer
6331 * their util_avg from the parent task, but those heuristics could hurt
6332 * other use-cases too. So, until someone finds a better way to solve this,
6333 * let's keep things simple by re-using the existing slow path.
6334 */
732cd75b
QP
6335static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6336{
eb92692b 6337 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6338 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6339 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6340 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6341 struct sched_domain *sd;
eb92692b 6342 struct perf_domain *pd;
732cd75b
QP
6343
6344 rcu_read_lock();
6345 pd = rcu_dereference(rd->pd);
6346 if (!pd || READ_ONCE(rd->overutilized))
6347 goto fail;
732cd75b
QP
6348
6349 /*
6350 * Energy-aware wake-up happens on the lowest sched_domain starting
6351 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6352 */
6353 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6354 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6355 sd = sd->parent;
6356 if (!sd)
6357 goto fail;
6358
6359 sync_entity_load_avg(&p->se);
6360 if (!task_util_est(p))
6361 goto unlock;
6362
6363 for (; pd; pd = pd->next) {
eb92692b
QP
6364 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6365 unsigned long base_energy_pd;
732cd75b
QP
6366 int max_spare_cap_cpu = -1;
6367
eb92692b
QP
6368 /* Compute the 'base' energy of the pd, without @p */
6369 base_energy_pd = compute_energy(p, -1, pd);
6370 base_energy += base_energy_pd;
6371
732cd75b 6372 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6373 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6374 continue;
6375
6376 /* Skip CPUs that will be overutilized. */
6377 util = cpu_util_next(cpu, p, cpu);
6378 cpu_cap = capacity_of(cpu);
60e17f5c 6379 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6380 continue;
6381
6382 /* Always use prev_cpu as a candidate. */
6383 if (cpu == prev_cpu) {
eb92692b
QP
6384 prev_delta = compute_energy(p, prev_cpu, pd);
6385 prev_delta -= base_energy_pd;
6386 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6387 }
6388
6389 /*
6390 * Find the CPU with the maximum spare capacity in
6391 * the performance domain
6392 */
6393 spare_cap = cpu_cap - util;
6394 if (spare_cap > max_spare_cap) {
6395 max_spare_cap = spare_cap;
6396 max_spare_cap_cpu = cpu;
6397 }
6398 }
6399
6400 /* Evaluate the energy impact of using this CPU. */
4892f51a 6401 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6402 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6403 cur_delta -= base_energy_pd;
6404 if (cur_delta < best_delta) {
6405 best_delta = cur_delta;
732cd75b
QP
6406 best_energy_cpu = max_spare_cap_cpu;
6407 }
6408 }
6409 }
6410unlock:
6411 rcu_read_unlock();
6412
6413 /*
6414 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6415 * least 6% of the energy used by prev_cpu.
6416 */
eb92692b 6417 if (prev_delta == ULONG_MAX)
732cd75b
QP
6418 return best_energy_cpu;
6419
eb92692b 6420 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6421 return best_energy_cpu;
6422
6423 return prev_cpu;
6424
6425fail:
6426 rcu_read_unlock();
6427
6428 return -1;
6429}
6430
aaee1203 6431/*
de91b9cb
MR
6432 * select_task_rq_fair: Select target runqueue for the waking task in domains
6433 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6434 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6435 *
97fb7a0a
IM
6436 * Balances load by selecting the idlest CPU in the idlest group, or under
6437 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6438 *
97fb7a0a 6439 * Returns the target CPU number.
aaee1203
PZ
6440 *
6441 * preempt must be disabled.
6442 */
0017d735 6443static int
ac66f547 6444select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6445{
f1d88b44 6446 struct sched_domain *tmp, *sd = NULL;
c88d5910 6447 int cpu = smp_processor_id();
63b0e9ed 6448 int new_cpu = prev_cpu;
99bd5e2f 6449 int want_affine = 0;
24d0c1d6 6450 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6451
c58d25f3
PZ
6452 if (sd_flag & SD_BALANCE_WAKE) {
6453 record_wakee(p);
732cd75b 6454
f8a696f2 6455 if (sched_energy_enabled()) {
732cd75b
QP
6456 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6457 if (new_cpu >= 0)
6458 return new_cpu;
6459 new_cpu = prev_cpu;
6460 }
6461
6462 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
3bd37062 6463 cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6464 }
aaee1203 6465
dce840a0 6466 rcu_read_lock();
aaee1203 6467 for_each_domain(cpu, tmp) {
e4f42888 6468 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6469 break;
e4f42888 6470
fe3bcfe1 6471 /*
97fb7a0a 6472 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6473 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6474 */
99bd5e2f
SS
6475 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6476 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6477 if (cpu != prev_cpu)
6478 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6479
6480 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6481 break;
f03542a7 6482 }
29cd8bae 6483
f03542a7 6484 if (tmp->flags & sd_flag)
29cd8bae 6485 sd = tmp;
63b0e9ed
MG
6486 else if (!want_affine)
6487 break;
29cd8bae
PZ
6488 }
6489
f1d88b44
VK
6490 if (unlikely(sd)) {
6491 /* Slow path */
18bd1b4b 6492 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6493 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6494 /* Fast path */
6495
6496 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6497
6498 if (want_affine)
6499 current->recent_used_cpu = cpu;
e7693a36 6500 }
dce840a0 6501 rcu_read_unlock();
e7693a36 6502
c88d5910 6503 return new_cpu;
e7693a36 6504}
0a74bef8 6505
144d8487
PZ
6506static void detach_entity_cfs_rq(struct sched_entity *se);
6507
0a74bef8 6508/*
97fb7a0a 6509 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6510 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6511 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6512 */
3f9672ba 6513static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6514{
59efa0ba
PZ
6515 /*
6516 * As blocked tasks retain absolute vruntime the migration needs to
6517 * deal with this by subtracting the old and adding the new
6518 * min_vruntime -- the latter is done by enqueue_entity() when placing
6519 * the task on the new runqueue.
6520 */
6521 if (p->state == TASK_WAKING) {
6522 struct sched_entity *se = &p->se;
6523 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6524 u64 min_vruntime;
6525
6526#ifndef CONFIG_64BIT
6527 u64 min_vruntime_copy;
6528
6529 do {
6530 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6531 smp_rmb();
6532 min_vruntime = cfs_rq->min_vruntime;
6533 } while (min_vruntime != min_vruntime_copy);
6534#else
6535 min_vruntime = cfs_rq->min_vruntime;
6536#endif
6537
6538 se->vruntime -= min_vruntime;
6539 }
6540
144d8487
PZ
6541 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6542 /*
6543 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6544 * rq->lock and can modify state directly.
6545 */
6546 lockdep_assert_held(&task_rq(p)->lock);
6547 detach_entity_cfs_rq(&p->se);
6548
6549 } else {
6550 /*
6551 * We are supposed to update the task to "current" time, then
6552 * its up to date and ready to go to new CPU/cfs_rq. But we
6553 * have difficulty in getting what current time is, so simply
6554 * throw away the out-of-date time. This will result in the
6555 * wakee task is less decayed, but giving the wakee more load
6556 * sounds not bad.
6557 */
6558 remove_entity_load_avg(&p->se);
6559 }
9d89c257
YD
6560
6561 /* Tell new CPU we are migrated */
6562 p->se.avg.last_update_time = 0;
3944a927
BS
6563
6564 /* We have migrated, no longer consider this task hot */
9d89c257 6565 p->se.exec_start = 0;
3f9672ba
SD
6566
6567 update_scan_period(p, new_cpu);
0a74bef8 6568}
12695578
YD
6569
6570static void task_dead_fair(struct task_struct *p)
6571{
6572 remove_entity_load_avg(&p->se);
6573}
6e2df058
PZ
6574
6575static int
6576balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6577{
6578 if (rq->nr_running)
6579 return 1;
6580
6581 return newidle_balance(rq, rf) != 0;
6582}
e7693a36
GH
6583#endif /* CONFIG_SMP */
6584
a555e9d8 6585static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6586{
6587 unsigned long gran = sysctl_sched_wakeup_granularity;
6588
6589 /*
e52fb7c0
PZ
6590 * Since its curr running now, convert the gran from real-time
6591 * to virtual-time in his units.
13814d42
MG
6592 *
6593 * By using 'se' instead of 'curr' we penalize light tasks, so
6594 * they get preempted easier. That is, if 'se' < 'curr' then
6595 * the resulting gran will be larger, therefore penalizing the
6596 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6597 * be smaller, again penalizing the lighter task.
6598 *
6599 * This is especially important for buddies when the leftmost
6600 * task is higher priority than the buddy.
0bbd3336 6601 */
f4ad9bd2 6602 return calc_delta_fair(gran, se);
0bbd3336
PZ
6603}
6604
464b7527
PZ
6605/*
6606 * Should 'se' preempt 'curr'.
6607 *
6608 * |s1
6609 * |s2
6610 * |s3
6611 * g
6612 * |<--->|c
6613 *
6614 * w(c, s1) = -1
6615 * w(c, s2) = 0
6616 * w(c, s3) = 1
6617 *
6618 */
6619static int
6620wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6621{
6622 s64 gran, vdiff = curr->vruntime - se->vruntime;
6623
6624 if (vdiff <= 0)
6625 return -1;
6626
a555e9d8 6627 gran = wakeup_gran(se);
464b7527
PZ
6628 if (vdiff > gran)
6629 return 1;
6630
6631 return 0;
6632}
6633
02479099
PZ
6634static void set_last_buddy(struct sched_entity *se)
6635{
1da1843f 6636 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6637 return;
6638
c5ae366e
DA
6639 for_each_sched_entity(se) {
6640 if (SCHED_WARN_ON(!se->on_rq))
6641 return;
69c80f3e 6642 cfs_rq_of(se)->last = se;
c5ae366e 6643 }
02479099
PZ
6644}
6645
6646static void set_next_buddy(struct sched_entity *se)
6647{
1da1843f 6648 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6649 return;
6650
c5ae366e
DA
6651 for_each_sched_entity(se) {
6652 if (SCHED_WARN_ON(!se->on_rq))
6653 return;
69c80f3e 6654 cfs_rq_of(se)->next = se;
c5ae366e 6655 }
02479099
PZ
6656}
6657
ac53db59
RR
6658static void set_skip_buddy(struct sched_entity *se)
6659{
69c80f3e
VP
6660 for_each_sched_entity(se)
6661 cfs_rq_of(se)->skip = se;
ac53db59
RR
6662}
6663
bf0f6f24
IM
6664/*
6665 * Preempt the current task with a newly woken task if needed:
6666 */
5a9b86f6 6667static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6668{
6669 struct task_struct *curr = rq->curr;
8651a86c 6670 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6671 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6672 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6673 int next_buddy_marked = 0;
bf0f6f24 6674
4ae7d5ce
IM
6675 if (unlikely(se == pse))
6676 return;
6677
5238cdd3 6678 /*
163122b7 6679 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6680 * unconditionally check_prempt_curr() after an enqueue (which may have
6681 * lead to a throttle). This both saves work and prevents false
6682 * next-buddy nomination below.
6683 */
6684 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6685 return;
6686
2f36825b 6687 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6688 set_next_buddy(pse);
2f36825b
VP
6689 next_buddy_marked = 1;
6690 }
57fdc26d 6691
aec0a514
BR
6692 /*
6693 * We can come here with TIF_NEED_RESCHED already set from new task
6694 * wake up path.
5238cdd3
PT
6695 *
6696 * Note: this also catches the edge-case of curr being in a throttled
6697 * group (e.g. via set_curr_task), since update_curr() (in the
6698 * enqueue of curr) will have resulted in resched being set. This
6699 * prevents us from potentially nominating it as a false LAST_BUDDY
6700 * below.
aec0a514
BR
6701 */
6702 if (test_tsk_need_resched(curr))
6703 return;
6704
a2f5c9ab 6705 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6706 if (unlikely(task_has_idle_policy(curr)) &&
6707 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6708 goto preempt;
6709
91c234b4 6710 /*
a2f5c9ab
DH
6711 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6712 * is driven by the tick):
91c234b4 6713 */
8ed92e51 6714 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6715 return;
bf0f6f24 6716
464b7527 6717 find_matching_se(&se, &pse);
9bbd7374 6718 update_curr(cfs_rq_of(se));
002f128b 6719 BUG_ON(!pse);
2f36825b
VP
6720 if (wakeup_preempt_entity(se, pse) == 1) {
6721 /*
6722 * Bias pick_next to pick the sched entity that is
6723 * triggering this preemption.
6724 */
6725 if (!next_buddy_marked)
6726 set_next_buddy(pse);
3a7e73a2 6727 goto preempt;
2f36825b 6728 }
464b7527 6729
3a7e73a2 6730 return;
a65ac745 6731
3a7e73a2 6732preempt:
8875125e 6733 resched_curr(rq);
3a7e73a2
PZ
6734 /*
6735 * Only set the backward buddy when the current task is still
6736 * on the rq. This can happen when a wakeup gets interleaved
6737 * with schedule on the ->pre_schedule() or idle_balance()
6738 * point, either of which can * drop the rq lock.
6739 *
6740 * Also, during early boot the idle thread is in the fair class,
6741 * for obvious reasons its a bad idea to schedule back to it.
6742 */
6743 if (unlikely(!se->on_rq || curr == rq->idle))
6744 return;
6745
6746 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6747 set_last_buddy(se);
bf0f6f24
IM
6748}
6749
606dba2e 6750static struct task_struct *
d8ac8971 6751pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6752{
6753 struct cfs_rq *cfs_rq = &rq->cfs;
6754 struct sched_entity *se;
678d5718 6755 struct task_struct *p;
37e117c0 6756 int new_tasks;
678d5718 6757
6e83125c 6758again:
6e2df058 6759 if (!sched_fair_runnable(rq))
38033c37 6760 goto idle;
678d5718 6761
9674f5ca 6762#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 6763 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
6764 goto simple;
6765
6766 /*
6767 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6768 * likely that a next task is from the same cgroup as the current.
6769 *
6770 * Therefore attempt to avoid putting and setting the entire cgroup
6771 * hierarchy, only change the part that actually changes.
6772 */
6773
6774 do {
6775 struct sched_entity *curr = cfs_rq->curr;
6776
6777 /*
6778 * Since we got here without doing put_prev_entity() we also
6779 * have to consider cfs_rq->curr. If it is still a runnable
6780 * entity, update_curr() will update its vruntime, otherwise
6781 * forget we've ever seen it.
6782 */
54d27365
BS
6783 if (curr) {
6784 if (curr->on_rq)
6785 update_curr(cfs_rq);
6786 else
6787 curr = NULL;
678d5718 6788
54d27365
BS
6789 /*
6790 * This call to check_cfs_rq_runtime() will do the
6791 * throttle and dequeue its entity in the parent(s).
9674f5ca 6792 * Therefore the nr_running test will indeed
54d27365
BS
6793 * be correct.
6794 */
9674f5ca
VK
6795 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6796 cfs_rq = &rq->cfs;
6797
6798 if (!cfs_rq->nr_running)
6799 goto idle;
6800
54d27365 6801 goto simple;
9674f5ca 6802 }
54d27365 6803 }
678d5718
PZ
6804
6805 se = pick_next_entity(cfs_rq, curr);
6806 cfs_rq = group_cfs_rq(se);
6807 } while (cfs_rq);
6808
6809 p = task_of(se);
6810
6811 /*
6812 * Since we haven't yet done put_prev_entity and if the selected task
6813 * is a different task than we started out with, try and touch the
6814 * least amount of cfs_rqs.
6815 */
6816 if (prev != p) {
6817 struct sched_entity *pse = &prev->se;
6818
6819 while (!(cfs_rq = is_same_group(se, pse))) {
6820 int se_depth = se->depth;
6821 int pse_depth = pse->depth;
6822
6823 if (se_depth <= pse_depth) {
6824 put_prev_entity(cfs_rq_of(pse), pse);
6825 pse = parent_entity(pse);
6826 }
6827 if (se_depth >= pse_depth) {
6828 set_next_entity(cfs_rq_of(se), se);
6829 se = parent_entity(se);
6830 }
6831 }
6832
6833 put_prev_entity(cfs_rq, pse);
6834 set_next_entity(cfs_rq, se);
6835 }
6836
93824900 6837 goto done;
678d5718 6838simple:
678d5718 6839#endif
67692435
PZ
6840 if (prev)
6841 put_prev_task(rq, prev);
606dba2e 6842
bf0f6f24 6843 do {
678d5718 6844 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6845 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6846 cfs_rq = group_cfs_rq(se);
6847 } while (cfs_rq);
6848
8f4d37ec 6849 p = task_of(se);
678d5718 6850
13a453c2 6851done: __maybe_unused;
93824900
UR
6852#ifdef CONFIG_SMP
6853 /*
6854 * Move the next running task to the front of
6855 * the list, so our cfs_tasks list becomes MRU
6856 * one.
6857 */
6858 list_move(&p->se.group_node, &rq->cfs_tasks);
6859#endif
6860
b39e66ea
MG
6861 if (hrtick_enabled(rq))
6862 hrtick_start_fair(rq, p);
8f4d37ec 6863
3b1baa64
MR
6864 update_misfit_status(p, rq);
6865
8f4d37ec 6866 return p;
38033c37
PZ
6867
6868idle:
67692435
PZ
6869 if (!rf)
6870 return NULL;
6871
5ba553ef 6872 new_tasks = newidle_balance(rq, rf);
46f69fa3 6873
37e117c0 6874 /*
5ba553ef 6875 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
6876 * possible for any higher priority task to appear. In that case we
6877 * must re-start the pick_next_entity() loop.
6878 */
e4aa358b 6879 if (new_tasks < 0)
37e117c0
PZ
6880 return RETRY_TASK;
6881
e4aa358b 6882 if (new_tasks > 0)
38033c37 6883 goto again;
38033c37 6884
23127296
VG
6885 /*
6886 * rq is about to be idle, check if we need to update the
6887 * lost_idle_time of clock_pelt
6888 */
6889 update_idle_rq_clock_pelt(rq);
6890
38033c37 6891 return NULL;
bf0f6f24
IM
6892}
6893
6894/*
6895 * Account for a descheduled task:
6896 */
6e2df058 6897static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6898{
6899 struct sched_entity *se = &prev->se;
6900 struct cfs_rq *cfs_rq;
6901
6902 for_each_sched_entity(se) {
6903 cfs_rq = cfs_rq_of(se);
ab6cde26 6904 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6905 }
6906}
6907
ac53db59
RR
6908/*
6909 * sched_yield() is very simple
6910 *
6911 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6912 */
6913static void yield_task_fair(struct rq *rq)
6914{
6915 struct task_struct *curr = rq->curr;
6916 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6917 struct sched_entity *se = &curr->se;
6918
6919 /*
6920 * Are we the only task in the tree?
6921 */
6922 if (unlikely(rq->nr_running == 1))
6923 return;
6924
6925 clear_buddies(cfs_rq, se);
6926
6927 if (curr->policy != SCHED_BATCH) {
6928 update_rq_clock(rq);
6929 /*
6930 * Update run-time statistics of the 'current'.
6931 */
6932 update_curr(cfs_rq);
916671c0
MG
6933 /*
6934 * Tell update_rq_clock() that we've just updated,
6935 * so we don't do microscopic update in schedule()
6936 * and double the fastpath cost.
6937 */
adcc8da8 6938 rq_clock_skip_update(rq);
ac53db59
RR
6939 }
6940
6941 set_skip_buddy(se);
6942}
6943
d95f4122
MG
6944static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6945{
6946 struct sched_entity *se = &p->se;
6947
5238cdd3
PT
6948 /* throttled hierarchies are not runnable */
6949 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6950 return false;
6951
6952 /* Tell the scheduler that we'd really like pse to run next. */
6953 set_next_buddy(se);
6954
d95f4122
MG
6955 yield_task_fair(rq);
6956
6957 return true;
6958}
6959
681f3e68 6960#ifdef CONFIG_SMP
bf0f6f24 6961/**************************************************
e9c84cb8
PZ
6962 * Fair scheduling class load-balancing methods.
6963 *
6964 * BASICS
6965 *
6966 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 6967 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
6968 * time to each task. This is expressed in the following equation:
6969 *
6970 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6971 *
97fb7a0a 6972 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
6973 * W_i,0 is defined as:
6974 *
6975 * W_i,0 = \Sum_j w_i,j (2)
6976 *
97fb7a0a 6977 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 6978 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6979 *
6980 * The weight average is an exponential decay average of the instantaneous
6981 * weight:
6982 *
6983 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6984 *
97fb7a0a 6985 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
6986 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6987 * can also include other factors [XXX].
6988 *
6989 * To achieve this balance we define a measure of imbalance which follows
6990 * directly from (1):
6991 *
ced549fa 6992 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6993 *
6994 * We them move tasks around to minimize the imbalance. In the continuous
6995 * function space it is obvious this converges, in the discrete case we get
6996 * a few fun cases generally called infeasible weight scenarios.
6997 *
6998 * [XXX expand on:
6999 * - infeasible weights;
7000 * - local vs global optima in the discrete case. ]
7001 *
7002 *
7003 * SCHED DOMAINS
7004 *
7005 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7006 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7007 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7008 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7009 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7010 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7011 * the groups.
7012 *
7013 * This yields:
7014 *
7015 * log_2 n 1 n
7016 * \Sum { --- * --- * 2^i } = O(n) (5)
7017 * i = 0 2^i 2^i
7018 * `- size of each group
97fb7a0a 7019 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7020 * | `- freq
7021 * `- sum over all levels
7022 *
7023 * Coupled with a limit on how many tasks we can migrate every balance pass,
7024 * this makes (5) the runtime complexity of the balancer.
7025 *
7026 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7027 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7028 *
7029 * The adjacency matrix of the resulting graph is given by:
7030 *
97a7142f 7031 * log_2 n
e9c84cb8
PZ
7032 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7033 * k = 0
7034 *
7035 * And you'll find that:
7036 *
7037 * A^(log_2 n)_i,j != 0 for all i,j (7)
7038 *
97fb7a0a 7039 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7040 * The task movement gives a factor of O(m), giving a convergence complexity
7041 * of:
7042 *
7043 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7044 *
7045 *
7046 * WORK CONSERVING
7047 *
7048 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7049 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7050 * tree itself instead of relying on other CPUs to bring it work.
7051 *
7052 * This adds some complexity to both (5) and (8) but it reduces the total idle
7053 * time.
7054 *
7055 * [XXX more?]
7056 *
7057 *
7058 * CGROUPS
7059 *
7060 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7061 *
7062 * s_k,i
7063 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7064 * S_k
7065 *
7066 * Where
7067 *
7068 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7069 *
97fb7a0a 7070 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7071 *
7072 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7073 * property.
7074 *
7075 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7076 * rewrite all of this once again.]
97a7142f 7077 */
bf0f6f24 7078
ed387b78
HS
7079static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7080
0ec8aa00
PZ
7081enum fbq_type { regular, remote, all };
7082
3b1baa64
MR
7083enum group_type {
7084 group_other = 0,
7085 group_misfit_task,
7086 group_imbalanced,
7087 group_overloaded,
7088};
7089
ddcdf6e7 7090#define LBF_ALL_PINNED 0x01
367456c7 7091#define LBF_NEED_BREAK 0x02
6263322c
PZ
7092#define LBF_DST_PINNED 0x04
7093#define LBF_SOME_PINNED 0x08
e022e0d3 7094#define LBF_NOHZ_STATS 0x10
f643ea22 7095#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7096
7097struct lb_env {
7098 struct sched_domain *sd;
7099
ddcdf6e7 7100 struct rq *src_rq;
85c1e7da 7101 int src_cpu;
ddcdf6e7
PZ
7102
7103 int dst_cpu;
7104 struct rq *dst_rq;
7105
88b8dac0
SV
7106 struct cpumask *dst_grpmask;
7107 int new_dst_cpu;
ddcdf6e7 7108 enum cpu_idle_type idle;
bd939f45 7109 long imbalance;
b9403130
MW
7110 /* The set of CPUs under consideration for load-balancing */
7111 struct cpumask *cpus;
7112
ddcdf6e7 7113 unsigned int flags;
367456c7
PZ
7114
7115 unsigned int loop;
7116 unsigned int loop_break;
7117 unsigned int loop_max;
0ec8aa00
PZ
7118
7119 enum fbq_type fbq_type;
cad68e55 7120 enum group_type src_grp_type;
163122b7 7121 struct list_head tasks;
ddcdf6e7
PZ
7122};
7123
029632fb
PZ
7124/*
7125 * Is this task likely cache-hot:
7126 */
5d5e2b1b 7127static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7128{
7129 s64 delta;
7130
e5673f28
KT
7131 lockdep_assert_held(&env->src_rq->lock);
7132
029632fb
PZ
7133 if (p->sched_class != &fair_sched_class)
7134 return 0;
7135
1da1843f 7136 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7137 return 0;
7138
7139 /*
7140 * Buddy candidates are cache hot:
7141 */
5d5e2b1b 7142 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7143 (&p->se == cfs_rq_of(&p->se)->next ||
7144 &p->se == cfs_rq_of(&p->se)->last))
7145 return 1;
7146
7147 if (sysctl_sched_migration_cost == -1)
7148 return 1;
7149 if (sysctl_sched_migration_cost == 0)
7150 return 0;
7151
5d5e2b1b 7152 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7153
7154 return delta < (s64)sysctl_sched_migration_cost;
7155}
7156
3a7053b3 7157#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7158/*
2a1ed24c
SD
7159 * Returns 1, if task migration degrades locality
7160 * Returns 0, if task migration improves locality i.e migration preferred.
7161 * Returns -1, if task migration is not affected by locality.
c1ceac62 7162 */
2a1ed24c 7163static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7164{
b1ad065e 7165 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7166 unsigned long src_weight, dst_weight;
7167 int src_nid, dst_nid, dist;
3a7053b3 7168
2a595721 7169 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7170 return -1;
7171
c3b9bc5b 7172 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7173 return -1;
7a0f3083
MG
7174
7175 src_nid = cpu_to_node(env->src_cpu);
7176 dst_nid = cpu_to_node(env->dst_cpu);
7177
83e1d2cd 7178 if (src_nid == dst_nid)
2a1ed24c 7179 return -1;
7a0f3083 7180
2a1ed24c
SD
7181 /* Migrating away from the preferred node is always bad. */
7182 if (src_nid == p->numa_preferred_nid) {
7183 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7184 return 1;
7185 else
7186 return -1;
7187 }
b1ad065e 7188
c1ceac62
RR
7189 /* Encourage migration to the preferred node. */
7190 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7191 return 0;
b1ad065e 7192
739294fb 7193 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7194 if (env->idle == CPU_IDLE)
739294fb
RR
7195 return -1;
7196
f35678b6 7197 dist = node_distance(src_nid, dst_nid);
c1ceac62 7198 if (numa_group) {
f35678b6
SD
7199 src_weight = group_weight(p, src_nid, dist);
7200 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7201 } else {
f35678b6
SD
7202 src_weight = task_weight(p, src_nid, dist);
7203 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7204 }
7205
f35678b6 7206 return dst_weight < src_weight;
7a0f3083
MG
7207}
7208
3a7053b3 7209#else
2a1ed24c 7210static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7211 struct lb_env *env)
7212{
2a1ed24c 7213 return -1;
7a0f3083 7214}
3a7053b3
MG
7215#endif
7216
1e3c88bd
PZ
7217/*
7218 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7219 */
7220static
8e45cb54 7221int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7222{
2a1ed24c 7223 int tsk_cache_hot;
e5673f28
KT
7224
7225 lockdep_assert_held(&env->src_rq->lock);
7226
1e3c88bd
PZ
7227 /*
7228 * We do not migrate tasks that are:
d3198084 7229 * 1) throttled_lb_pair, or
3bd37062 7230 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7231 * 3) running (obviously), or
7232 * 4) are cache-hot on their current CPU.
1e3c88bd 7233 */
d3198084
JK
7234 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7235 return 0;
7236
3bd37062 7237 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7238 int cpu;
88b8dac0 7239
ae92882e 7240 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7241
6263322c
PZ
7242 env->flags |= LBF_SOME_PINNED;
7243
88b8dac0 7244 /*
97fb7a0a 7245 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7246 * our sched_group. We may want to revisit it if we couldn't
7247 * meet load balance goals by pulling other tasks on src_cpu.
7248 *
65a4433a
JH
7249 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7250 * already computed one in current iteration.
88b8dac0 7251 */
65a4433a 7252 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7253 return 0;
7254
97fb7a0a 7255 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7256 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7257 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7258 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7259 env->new_dst_cpu = cpu;
7260 break;
7261 }
88b8dac0 7262 }
e02e60c1 7263
1e3c88bd
PZ
7264 return 0;
7265 }
88b8dac0
SV
7266
7267 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7268 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7269
ddcdf6e7 7270 if (task_running(env->src_rq, p)) {
ae92882e 7271 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7272 return 0;
7273 }
7274
7275 /*
7276 * Aggressive migration if:
3a7053b3
MG
7277 * 1) destination numa is preferred
7278 * 2) task is cache cold, or
7279 * 3) too many balance attempts have failed.
1e3c88bd 7280 */
2a1ed24c
SD
7281 tsk_cache_hot = migrate_degrades_locality(p, env);
7282 if (tsk_cache_hot == -1)
7283 tsk_cache_hot = task_hot(p, env);
3a7053b3 7284
2a1ed24c 7285 if (tsk_cache_hot <= 0 ||
7a96c231 7286 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7287 if (tsk_cache_hot == 1) {
ae92882e
JP
7288 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7289 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7290 }
1e3c88bd
PZ
7291 return 1;
7292 }
7293
ae92882e 7294 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7295 return 0;
1e3c88bd
PZ
7296}
7297
897c395f 7298/*
163122b7
KT
7299 * detach_task() -- detach the task for the migration specified in env
7300 */
7301static void detach_task(struct task_struct *p, struct lb_env *env)
7302{
7303 lockdep_assert_held(&env->src_rq->lock);
7304
5704ac0a 7305 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7306 set_task_cpu(p, env->dst_cpu);
7307}
7308
897c395f 7309/*
e5673f28 7310 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7311 * part of active balancing operations within "domain".
897c395f 7312 *
e5673f28 7313 * Returns a task if successful and NULL otherwise.
897c395f 7314 */
e5673f28 7315static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7316{
93824900 7317 struct task_struct *p;
897c395f 7318
e5673f28
KT
7319 lockdep_assert_held(&env->src_rq->lock);
7320
93824900
UR
7321 list_for_each_entry_reverse(p,
7322 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7323 if (!can_migrate_task(p, env))
7324 continue;
897c395f 7325
163122b7 7326 detach_task(p, env);
e5673f28 7327
367456c7 7328 /*
e5673f28 7329 * Right now, this is only the second place where
163122b7 7330 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7331 * so we can safely collect stats here rather than
163122b7 7332 * inside detach_tasks().
367456c7 7333 */
ae92882e 7334 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7335 return p;
897c395f 7336 }
e5673f28 7337 return NULL;
897c395f
PZ
7338}
7339
eb95308e
PZ
7340static const unsigned int sched_nr_migrate_break = 32;
7341
5d6523eb 7342/*
a3df0679 7343 * detach_tasks() -- tries to detach up to imbalance runnable load from
163122b7 7344 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7345 *
163122b7 7346 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7347 */
163122b7 7348static int detach_tasks(struct lb_env *env)
1e3c88bd 7349{
5d6523eb
PZ
7350 struct list_head *tasks = &env->src_rq->cfs_tasks;
7351 struct task_struct *p;
367456c7 7352 unsigned long load;
163122b7
KT
7353 int detached = 0;
7354
7355 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7356
bd939f45 7357 if (env->imbalance <= 0)
5d6523eb 7358 return 0;
1e3c88bd 7359
5d6523eb 7360 while (!list_empty(tasks)) {
985d3a4c
YD
7361 /*
7362 * We don't want to steal all, otherwise we may be treated likewise,
7363 * which could at worst lead to a livelock crash.
7364 */
7365 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7366 break;
7367
93824900 7368 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7369
367456c7
PZ
7370 env->loop++;
7371 /* We've more or less seen every task there is, call it quits */
5d6523eb 7372 if (env->loop > env->loop_max)
367456c7 7373 break;
5d6523eb
PZ
7374
7375 /* take a breather every nr_migrate tasks */
367456c7 7376 if (env->loop > env->loop_break) {
eb95308e 7377 env->loop_break += sched_nr_migrate_break;
8e45cb54 7378 env->flags |= LBF_NEED_BREAK;
ee00e66f 7379 break;
a195f004 7380 }
1e3c88bd 7381
d3198084 7382 if (!can_migrate_task(p, env))
367456c7
PZ
7383 goto next;
7384
7385 load = task_h_load(p);
5d6523eb 7386
eb95308e 7387 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7388 goto next;
7389
bd939f45 7390 if ((load / 2) > env->imbalance)
367456c7 7391 goto next;
1e3c88bd 7392
163122b7
KT
7393 detach_task(p, env);
7394 list_add(&p->se.group_node, &env->tasks);
7395
7396 detached++;
bd939f45 7397 env->imbalance -= load;
1e3c88bd 7398
c1a280b6 7399#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7400 /*
7401 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7402 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7403 * the critical section.
7404 */
5d6523eb 7405 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7406 break;
1e3c88bd
PZ
7407#endif
7408
ee00e66f
PZ
7409 /*
7410 * We only want to steal up to the prescribed amount of
a3df0679 7411 * runnable load.
ee00e66f 7412 */
bd939f45 7413 if (env->imbalance <= 0)
ee00e66f 7414 break;
367456c7
PZ
7415
7416 continue;
7417next:
93824900 7418 list_move(&p->se.group_node, tasks);
1e3c88bd 7419 }
5d6523eb 7420
1e3c88bd 7421 /*
163122b7
KT
7422 * Right now, this is one of only two places we collect this stat
7423 * so we can safely collect detach_one_task() stats here rather
7424 * than inside detach_one_task().
1e3c88bd 7425 */
ae92882e 7426 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7427
163122b7
KT
7428 return detached;
7429}
7430
7431/*
7432 * attach_task() -- attach the task detached by detach_task() to its new rq.
7433 */
7434static void attach_task(struct rq *rq, struct task_struct *p)
7435{
7436 lockdep_assert_held(&rq->lock);
7437
7438 BUG_ON(task_rq(p) != rq);
5704ac0a 7439 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7440 check_preempt_curr(rq, p, 0);
7441}
7442
7443/*
7444 * attach_one_task() -- attaches the task returned from detach_one_task() to
7445 * its new rq.
7446 */
7447static void attach_one_task(struct rq *rq, struct task_struct *p)
7448{
8a8c69c3
PZ
7449 struct rq_flags rf;
7450
7451 rq_lock(rq, &rf);
5704ac0a 7452 update_rq_clock(rq);
163122b7 7453 attach_task(rq, p);
8a8c69c3 7454 rq_unlock(rq, &rf);
163122b7
KT
7455}
7456
7457/*
7458 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7459 * new rq.
7460 */
7461static void attach_tasks(struct lb_env *env)
7462{
7463 struct list_head *tasks = &env->tasks;
7464 struct task_struct *p;
8a8c69c3 7465 struct rq_flags rf;
163122b7 7466
8a8c69c3 7467 rq_lock(env->dst_rq, &rf);
5704ac0a 7468 update_rq_clock(env->dst_rq);
163122b7
KT
7469
7470 while (!list_empty(tasks)) {
7471 p = list_first_entry(tasks, struct task_struct, se.group_node);
7472 list_del_init(&p->se.group_node);
1e3c88bd 7473
163122b7
KT
7474 attach_task(env->dst_rq, p);
7475 }
7476
8a8c69c3 7477 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7478}
7479
b0c79224 7480#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7481static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7482{
7483 if (cfs_rq->avg.load_avg)
7484 return true;
7485
7486 if (cfs_rq->avg.util_avg)
7487 return true;
7488
7489 return false;
7490}
7491
91c27493 7492static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7493{
7494 if (READ_ONCE(rq->avg_rt.util_avg))
7495 return true;
7496
3727e0e1
VG
7497 if (READ_ONCE(rq->avg_dl.util_avg))
7498 return true;
7499
11d4afd4 7500#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7501 if (READ_ONCE(rq->avg_irq.util_avg))
7502 return true;
7503#endif
7504
371bf427
VG
7505 return false;
7506}
7507
b0c79224
VS
7508static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7509{
7510 rq->last_blocked_load_update_tick = jiffies;
7511
7512 if (!has_blocked)
7513 rq->has_blocked_load = 0;
7514}
7515#else
7516static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7517static inline bool others_have_blocked(struct rq *rq) { return false; }
7518static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7519#endif
7520
0c513402
VG
7521static bool __update_blocked_others(struct rq *rq, bool *done)
7522{
7523 const struct sched_class *curr_class;
7524 u64 now = rq_clock_pelt(rq);
7525 bool decayed;
7526
7527 /*
7528 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7529 * DL and IRQ signals have been updated before updating CFS.
7530 */
7531 curr_class = rq->curr->sched_class;
7532
7533 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7534 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7535 update_irq_load_avg(rq, 0);
7536
7537 if (others_have_blocked(rq))
7538 *done = false;
7539
7540 return decayed;
7541}
7542
1936c53c
VG
7543#ifdef CONFIG_FAIR_GROUP_SCHED
7544
039ae8bc
VG
7545static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7546{
7547 if (cfs_rq->load.weight)
7548 return false;
7549
7550 if (cfs_rq->avg.load_sum)
7551 return false;
7552
7553 if (cfs_rq->avg.util_sum)
7554 return false;
7555
7556 if (cfs_rq->avg.runnable_load_sum)
7557 return false;
7558
7559 return true;
7560}
7561
0c513402 7562static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7563{
039ae8bc 7564 struct cfs_rq *cfs_rq, *pos;
0c513402
VG
7565 bool decayed = false;
7566 int cpu = cpu_of(rq);
b90f7c9d 7567
9763b67f
PZ
7568 /*
7569 * Iterates the task_group tree in a bottom up fashion, see
7570 * list_add_leaf_cfs_rq() for details.
7571 */
039ae8bc 7572 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7573 struct sched_entity *se;
7574
0c513402 7575 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9d89c257 7576 update_tg_load_avg(cfs_rq, 0);
4e516076 7577
0c513402
VG
7578 if (cfs_rq == &rq->cfs)
7579 decayed = true;
7580 }
7581
bc427898
VG
7582 /* Propagate pending load changes to the parent, if any: */
7583 se = cfs_rq->tg->se[cpu];
7584 if (se && !skip_blocked_update(se))
88c0616e 7585 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7586
039ae8bc
VG
7587 /*
7588 * There can be a lot of idle CPU cgroups. Don't let fully
7589 * decayed cfs_rqs linger on the list.
7590 */
7591 if (cfs_rq_is_decayed(cfs_rq))
7592 list_del_leaf_cfs_rq(cfs_rq);
7593
1936c53c
VG
7594 /* Don't need periodic decay once load/util_avg are null */
7595 if (cfs_rq_has_blocked(cfs_rq))
0c513402 7596 *done = false;
9d89c257 7597 }
12b04875 7598
0c513402 7599 return decayed;
9e3081ca
PZ
7600}
7601
9763b67f 7602/*
68520796 7603 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7604 * This needs to be done in a top-down fashion because the load of a child
7605 * group is a fraction of its parents load.
7606 */
68520796 7607static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7608{
68520796
VD
7609 struct rq *rq = rq_of(cfs_rq);
7610 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7611 unsigned long now = jiffies;
68520796 7612 unsigned long load;
a35b6466 7613
68520796 7614 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7615 return;
7616
0e9f0245 7617 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7618 for_each_sched_entity(se) {
7619 cfs_rq = cfs_rq_of(se);
0e9f0245 7620 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7621 if (cfs_rq->last_h_load_update == now)
7622 break;
7623 }
a35b6466 7624
68520796 7625 if (!se) {
7ea241af 7626 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7627 cfs_rq->last_h_load_update = now;
7628 }
7629
0e9f0245 7630 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7631 load = cfs_rq->h_load;
7ea241af
YD
7632 load = div64_ul(load * se->avg.load_avg,
7633 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7634 cfs_rq = group_cfs_rq(se);
7635 cfs_rq->h_load = load;
7636 cfs_rq->last_h_load_update = now;
7637 }
9763b67f
PZ
7638}
7639
367456c7 7640static unsigned long task_h_load(struct task_struct *p)
230059de 7641{
367456c7 7642 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7643
68520796 7644 update_cfs_rq_h_load(cfs_rq);
9d89c257 7645 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7646 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7647}
7648#else
0c513402 7649static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7650{
6c1d47c0 7651 struct cfs_rq *cfs_rq = &rq->cfs;
0c513402 7652 bool decayed;
b90f7c9d 7653
0c513402
VG
7654 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7655 if (cfs_rq_has_blocked(cfs_rq))
7656 *done = false;
b90f7c9d 7657
0c513402 7658 return decayed;
9e3081ca
PZ
7659}
7660
367456c7 7661static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7662{
9d89c257 7663 return p->se.avg.load_avg;
1e3c88bd 7664}
230059de 7665#endif
1e3c88bd 7666
0c513402
VG
7667static void update_blocked_averages(int cpu)
7668{
7669 bool decayed = false, done = true;
7670 struct rq *rq = cpu_rq(cpu);
7671 struct rq_flags rf;
7672
7673 rq_lock_irqsave(rq, &rf);
7674 update_rq_clock(rq);
7675
7676 decayed |= __update_blocked_others(rq, &done);
7677 decayed |= __update_blocked_fair(rq, &done);
7678
7679 update_blocked_load_status(rq, !done);
7680 if (decayed)
7681 cpufreq_update_util(rq, 0);
7682 rq_unlock_irqrestore(rq, &rf);
7683}
7684
1e3c88bd 7685/********** Helpers for find_busiest_group ************************/
caeb178c 7686
1e3c88bd
PZ
7687/*
7688 * sg_lb_stats - stats of a sched_group required for load_balancing
7689 */
7690struct sg_lb_stats {
7691 unsigned long avg_load; /*Avg load across the CPUs of the group */
7692 unsigned long group_load; /* Total load over the CPUs of the group */
56cf515b 7693 unsigned long load_per_task;
63b2ca30 7694 unsigned long group_capacity;
9e91d61d 7695 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7696 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7697 unsigned int idle_cpus;
7698 unsigned int group_weight;
caeb178c 7699 enum group_type group_type;
ea67821b 7700 int group_no_capacity;
3b1baa64 7701 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7702#ifdef CONFIG_NUMA_BALANCING
7703 unsigned int nr_numa_running;
7704 unsigned int nr_preferred_running;
7705#endif
1e3c88bd
PZ
7706};
7707
56cf515b
JK
7708/*
7709 * sd_lb_stats - Structure to store the statistics of a sched_domain
7710 * during load balancing.
7711 */
7712struct sd_lb_stats {
7713 struct sched_group *busiest; /* Busiest group in this sd */
7714 struct sched_group *local; /* Local group in this sd */
90001d67 7715 unsigned long total_running;
56cf515b 7716 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7717 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7718 unsigned long avg_load; /* Average load across all groups in sd */
7719
56cf515b 7720 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7721 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7722};
7723
147c5fc2
PZ
7724static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7725{
7726 /*
7727 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7728 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7729 * We must however clear busiest_stat::avg_load because
7730 * update_sd_pick_busiest() reads this before assignment.
7731 */
7732 *sds = (struct sd_lb_stats){
7733 .busiest = NULL,
7734 .local = NULL,
90001d67 7735 .total_running = 0UL,
147c5fc2 7736 .total_load = 0UL,
63b2ca30 7737 .total_capacity = 0UL,
147c5fc2
PZ
7738 .busiest_stat = {
7739 .avg_load = 0UL,
caeb178c
RR
7740 .sum_nr_running = 0,
7741 .group_type = group_other,
147c5fc2
PZ
7742 },
7743 };
7744}
7745
287cdaac 7746static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7747{
7748 struct rq *rq = cpu_rq(cpu);
8ec59c0f 7749 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 7750 unsigned long used, free;
523e979d 7751 unsigned long irq;
b654f7de 7752
2e62c474 7753 irq = cpu_util_irq(rq);
cadefd3d 7754
523e979d
VG
7755 if (unlikely(irq >= max))
7756 return 1;
aa483808 7757
523e979d
VG
7758 used = READ_ONCE(rq->avg_rt.util_avg);
7759 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7760
523e979d
VG
7761 if (unlikely(used >= max))
7762 return 1;
1e3c88bd 7763
523e979d 7764 free = max - used;
2e62c474
VG
7765
7766 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7767}
7768
ced549fa 7769static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7770{
287cdaac 7771 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7772 struct sched_group *sdg = sd->groups;
7773
8ec59c0f 7774 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 7775
ced549fa
NP
7776 if (!capacity)
7777 capacity = 1;
1e3c88bd 7778
ced549fa
NP
7779 cpu_rq(cpu)->cpu_capacity = capacity;
7780 sdg->sgc->capacity = capacity;
bf475ce0 7781 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7782 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7783}
7784
63b2ca30 7785void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7786{
7787 struct sched_domain *child = sd->child;
7788 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7789 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7790 unsigned long interval;
7791
7792 interval = msecs_to_jiffies(sd->balance_interval);
7793 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7794 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7795
7796 if (!child) {
ced549fa 7797 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7798 return;
7799 }
7800
dc7ff76e 7801 capacity = 0;
bf475ce0 7802 min_capacity = ULONG_MAX;
e3d6d0cb 7803 max_capacity = 0;
1e3c88bd 7804
74a5ce20
PZ
7805 if (child->flags & SD_OVERLAP) {
7806 /*
7807 * SD_OVERLAP domains cannot assume that child groups
7808 * span the current group.
7809 */
7810
ae4df9d6 7811 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7812 struct sched_group_capacity *sgc;
9abf24d4 7813 struct rq *rq = cpu_rq(cpu);
863bffc8 7814
9abf24d4 7815 /*
63b2ca30 7816 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7817 * gets here before we've attached the domains to the
7818 * runqueues.
7819 *
ced549fa
NP
7820 * Use capacity_of(), which is set irrespective of domains
7821 * in update_cpu_capacity().
9abf24d4 7822 *
dc7ff76e 7823 * This avoids capacity from being 0 and
9abf24d4 7824 * causing divide-by-zero issues on boot.
9abf24d4
SD
7825 */
7826 if (unlikely(!rq->sd)) {
ced549fa 7827 capacity += capacity_of(cpu);
bf475ce0
MR
7828 } else {
7829 sgc = rq->sd->groups->sgc;
7830 capacity += sgc->capacity;
9abf24d4 7831 }
863bffc8 7832
bf475ce0 7833 min_capacity = min(capacity, min_capacity);
e3d6d0cb 7834 max_capacity = max(capacity, max_capacity);
863bffc8 7835 }
74a5ce20
PZ
7836 } else {
7837 /*
7838 * !SD_OVERLAP domains can assume that child groups
7839 * span the current group.
97a7142f 7840 */
74a5ce20
PZ
7841
7842 group = child->groups;
7843 do {
bf475ce0
MR
7844 struct sched_group_capacity *sgc = group->sgc;
7845
7846 capacity += sgc->capacity;
7847 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 7848 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
7849 group = group->next;
7850 } while (group != child->groups);
7851 }
1e3c88bd 7852
63b2ca30 7853 sdg->sgc->capacity = capacity;
bf475ce0 7854 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 7855 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
7856}
7857
9d5efe05 7858/*
ea67821b
VG
7859 * Check whether the capacity of the rq has been noticeably reduced by side
7860 * activity. The imbalance_pct is used for the threshold.
7861 * Return true is the capacity is reduced
9d5efe05
SV
7862 */
7863static inline int
ea67821b 7864check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7865{
ea67821b
VG
7866 return ((rq->cpu_capacity * sd->imbalance_pct) <
7867 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7868}
7869
a0fe2cf0
VS
7870/*
7871 * Check whether a rq has a misfit task and if it looks like we can actually
7872 * help that task: we can migrate the task to a CPU of higher capacity, or
7873 * the task's current CPU is heavily pressured.
7874 */
7875static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7876{
7877 return rq->misfit_task_load &&
7878 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7879 check_cpu_capacity(rq, sd));
7880}
7881
30ce5dab
PZ
7882/*
7883 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 7884 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 7885 *
97fb7a0a
IM
7886 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7887 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7888 * Something like:
7889 *
2b4d5b25
IM
7890 * { 0 1 2 3 } { 4 5 6 7 }
7891 * * * * *
30ce5dab
PZ
7892 *
7893 * If we were to balance group-wise we'd place two tasks in the first group and
7894 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 7895 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
7896 *
7897 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7898 * by noticing the lower domain failed to reach balance and had difficulty
7899 * moving tasks due to affinity constraints.
30ce5dab
PZ
7900 *
7901 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7902 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7903 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7904 * to create an effective group imbalance.
7905 *
7906 * This is a somewhat tricky proposition since the next run might not find the
7907 * group imbalance and decide the groups need to be balanced again. A most
7908 * subtle and fragile situation.
7909 */
7910
6263322c 7911static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7912{
63b2ca30 7913 return group->sgc->imbalance;
30ce5dab
PZ
7914}
7915
b37d9316 7916/*
ea67821b
VG
7917 * group_has_capacity returns true if the group has spare capacity that could
7918 * be used by some tasks.
7919 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7920 * smaller than the number of CPUs or if the utilization is lower than the
7921 * available capacity for CFS tasks.
ea67821b
VG
7922 * For the latter, we use a threshold to stabilize the state, to take into
7923 * account the variance of the tasks' load and to return true if the available
7924 * capacity in meaningful for the load balancer.
7925 * As an example, an available capacity of 1% can appear but it doesn't make
7926 * any benefit for the load balance.
b37d9316 7927 */
ea67821b
VG
7928static inline bool
7929group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7930{
ea67821b
VG
7931 if (sgs->sum_nr_running < sgs->group_weight)
7932 return true;
c61037e9 7933
ea67821b 7934 if ((sgs->group_capacity * 100) >
9e91d61d 7935 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7936 return true;
b37d9316 7937
ea67821b
VG
7938 return false;
7939}
7940
7941/*
7942 * group_is_overloaded returns true if the group has more tasks than it can
7943 * handle.
7944 * group_is_overloaded is not equals to !group_has_capacity because a group
7945 * with the exact right number of tasks, has no more spare capacity but is not
7946 * overloaded so both group_has_capacity and group_is_overloaded return
7947 * false.
7948 */
7949static inline bool
7950group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7951{
7952 if (sgs->sum_nr_running <= sgs->group_weight)
7953 return false;
b37d9316 7954
ea67821b 7955 if ((sgs->group_capacity * 100) <
9e91d61d 7956 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7957 return true;
b37d9316 7958
ea67821b 7959 return false;
b37d9316
PZ
7960}
7961
9e0994c0 7962/*
e3d6d0cb 7963 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
7964 * per-CPU capacity than sched_group ref.
7965 */
7966static inline bool
e3d6d0cb 7967group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 7968{
60e17f5c 7969 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
7970}
7971
e3d6d0cb
MR
7972/*
7973 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7974 * per-CPU capacity_orig than sched_group ref.
7975 */
7976static inline bool
7977group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7978{
60e17f5c 7979 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
7980}
7981
79a89f92
LY
7982static inline enum
7983group_type group_classify(struct sched_group *group,
7984 struct sg_lb_stats *sgs)
caeb178c 7985{
ea67821b 7986 if (sgs->group_no_capacity)
caeb178c
RR
7987 return group_overloaded;
7988
7989 if (sg_imbalanced(group))
7990 return group_imbalanced;
7991
3b1baa64
MR
7992 if (sgs->group_misfit_task_load)
7993 return group_misfit_task;
7994
caeb178c
RR
7995 return group_other;
7996}
7997
63928384 7998static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
7999{
8000#ifdef CONFIG_NO_HZ_COMMON
8001 unsigned int cpu = rq->cpu;
8002
f643ea22
VG
8003 if (!rq->has_blocked_load)
8004 return false;
8005
e022e0d3 8006 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8007 return false;
e022e0d3 8008
63928384 8009 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8010 return true;
e022e0d3
PZ
8011
8012 update_blocked_averages(cpu);
f643ea22
VG
8013
8014 return rq->has_blocked_load;
8015#else
8016 return false;
e022e0d3
PZ
8017#endif
8018}
8019
1e3c88bd
PZ
8020/**
8021 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8022 * @env: The load balancing environment.
1e3c88bd 8023 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8024 * @sgs: variable to hold the statistics for this group.
630246a0 8025 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8026 */
bd939f45 8027static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8028 struct sched_group *group,
8029 struct sg_lb_stats *sgs,
8030 int *sg_status)
1e3c88bd 8031{
a426f99c 8032 int i, nr_running;
1e3c88bd 8033
b72ff13c
PZ
8034 memset(sgs, 0, sizeof(*sgs));
8035
ae4df9d6 8036 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8037 struct rq *rq = cpu_rq(i);
8038
63928384 8039 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8040 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8041
a3df0679 8042 sgs->group_load += cpu_runnable_load(rq);
9e91d61d 8043 sgs->group_util += cpu_util(i);
65fdac08 8044 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 8045
a426f99c
WL
8046 nr_running = rq->nr_running;
8047 if (nr_running > 1)
630246a0 8048 *sg_status |= SG_OVERLOAD;
4486edd1 8049
2802bf3c
MR
8050 if (cpu_overutilized(i))
8051 *sg_status |= SG_OVERUTILIZED;
4486edd1 8052
0ec8aa00
PZ
8053#ifdef CONFIG_NUMA_BALANCING
8054 sgs->nr_numa_running += rq->nr_numa_running;
8055 sgs->nr_preferred_running += rq->nr_preferred_running;
8056#endif
a426f99c
WL
8057 /*
8058 * No need to call idle_cpu() if nr_running is not 0
8059 */
8060 if (!nr_running && idle_cpu(i))
aae6d3dd 8061 sgs->idle_cpus++;
3b1baa64
MR
8062
8063 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8064 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8065 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8066 *sg_status |= SG_OVERLOAD;
757ffdd7 8067 }
1e3c88bd
PZ
8068 }
8069
63b2ca30
NP
8070 /* Adjust by relative CPU capacity of the group */
8071 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 8072 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 8073
dd5feea1 8074 if (sgs->sum_nr_running)
af75d1a9 8075 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
1e3c88bd 8076
aae6d3dd 8077 sgs->group_weight = group->group_weight;
b37d9316 8078
ea67821b 8079 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 8080 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
8081}
8082
532cb4c4
MN
8083/**
8084 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8085 * @env: The load balancing environment.
532cb4c4
MN
8086 * @sds: sched_domain statistics
8087 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8088 * @sgs: sched_group statistics
532cb4c4
MN
8089 *
8090 * Determine if @sg is a busier group than the previously selected
8091 * busiest group.
e69f6186
YB
8092 *
8093 * Return: %true if @sg is a busier group than the previously selected
8094 * busiest group. %false otherwise.
532cb4c4 8095 */
bd939f45 8096static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8097 struct sd_lb_stats *sds,
8098 struct sched_group *sg,
bd939f45 8099 struct sg_lb_stats *sgs)
532cb4c4 8100{
caeb178c 8101 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8102
cad68e55
MR
8103 /*
8104 * Don't try to pull misfit tasks we can't help.
8105 * We can use max_capacity here as reduction in capacity on some
8106 * CPUs in the group should either be possible to resolve
8107 * internally or be covered by avg_load imbalance (eventually).
8108 */
8109 if (sgs->group_type == group_misfit_task &&
8110 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8111 !group_has_capacity(env, &sds->local_stat)))
8112 return false;
8113
caeb178c 8114 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8115 return true;
8116
caeb178c
RR
8117 if (sgs->group_type < busiest->group_type)
8118 return false;
8119
8120 if (sgs->avg_load <= busiest->avg_load)
8121 return false;
8122
9e0994c0
MR
8123 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8124 goto asym_packing;
8125
8126 /*
8127 * Candidate sg has no more than one task per CPU and
8128 * has higher per-CPU capacity. Migrating tasks to less
8129 * capable CPUs may harm throughput. Maximize throughput,
8130 * power/energy consequences are not considered.
8131 */
8132 if (sgs->sum_nr_running <= sgs->group_weight &&
e3d6d0cb 8133 group_smaller_min_cpu_capacity(sds->local, sg))
9e0994c0
MR
8134 return false;
8135
cad68e55
MR
8136 /*
8137 * If we have more than one misfit sg go with the biggest misfit.
8138 */
8139 if (sgs->group_type == group_misfit_task &&
8140 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9e0994c0
MR
8141 return false;
8142
8143asym_packing:
caeb178c
RR
8144 /* This is the busiest node in its class. */
8145 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8146 return true;
8147
97fb7a0a 8148 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
8149 if (env->idle == CPU_NOT_IDLE)
8150 return true;
532cb4c4 8151 /*
afe06efd
TC
8152 * ASYM_PACKING needs to move all the work to the highest
8153 * prority CPUs in the group, therefore mark all groups
8154 * of lower priority than ourself as busy.
532cb4c4 8155 */
afe06efd
TC
8156 if (sgs->sum_nr_running &&
8157 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
8158 if (!sds->busiest)
8159 return true;
8160
97fb7a0a 8161 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
8162 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8163 sg->asym_prefer_cpu))
532cb4c4
MN
8164 return true;
8165 }
8166
8167 return false;
8168}
8169
0ec8aa00
PZ
8170#ifdef CONFIG_NUMA_BALANCING
8171static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8172{
8173 if (sgs->sum_nr_running > sgs->nr_numa_running)
8174 return regular;
8175 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8176 return remote;
8177 return all;
8178}
8179
8180static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8181{
8182 if (rq->nr_running > rq->nr_numa_running)
8183 return regular;
8184 if (rq->nr_running > rq->nr_preferred_running)
8185 return remote;
8186 return all;
8187}
8188#else
8189static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8190{
8191 return all;
8192}
8193
8194static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8195{
8196 return regular;
8197}
8198#endif /* CONFIG_NUMA_BALANCING */
8199
1e3c88bd 8200/**
461819ac 8201 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8202 * @env: The load balancing environment.
1e3c88bd
PZ
8203 * @sds: variable to hold the statistics for this sched_domain.
8204 */
0ec8aa00 8205static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8206{
bd939f45
PZ
8207 struct sched_domain *child = env->sd->child;
8208 struct sched_group *sg = env->sd->groups;
05b40e05 8209 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8210 struct sg_lb_stats tmp_sgs;
dbbad719 8211 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
630246a0 8212 int sg_status = 0;
1e3c88bd 8213
e022e0d3 8214#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8215 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8216 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8217#endif
8218
1e3c88bd 8219 do {
56cf515b 8220 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8221 int local_group;
8222
ae4df9d6 8223 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8224 if (local_group) {
8225 sds->local = sg;
05b40e05 8226 sgs = local;
b72ff13c
PZ
8227
8228 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8229 time_after_eq(jiffies, sg->sgc->next_update))
8230 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8231 }
1e3c88bd 8232
630246a0 8233 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8234
b72ff13c
PZ
8235 if (local_group)
8236 goto next_group;
8237
1e3c88bd
PZ
8238 /*
8239 * In case the child domain prefers tasks go to siblings
ea67821b 8240 * first, lower the sg capacity so that we'll try
75dd321d
NR
8241 * and move all the excess tasks away. We lower the capacity
8242 * of a group only if the local group has the capacity to fit
ea67821b
VG
8243 * these excess tasks. The extra check prevents the case where
8244 * you always pull from the heaviest group when it is already
8245 * under-utilized (possible with a large weight task outweighs
8246 * the tasks on the system).
1e3c88bd 8247 */
b72ff13c 8248 if (prefer_sibling && sds->local &&
05b40e05
SD
8249 group_has_capacity(env, local) &&
8250 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8251 sgs->group_no_capacity = 1;
79a89f92 8252 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8253 }
1e3c88bd 8254
b72ff13c 8255 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8256 sds->busiest = sg;
56cf515b 8257 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8258 }
8259
b72ff13c
PZ
8260next_group:
8261 /* Now, start updating sd_lb_stats */
90001d67 8262 sds->total_running += sgs->sum_nr_running;
b72ff13c 8263 sds->total_load += sgs->group_load;
63b2ca30 8264 sds->total_capacity += sgs->group_capacity;
b72ff13c 8265
532cb4c4 8266 sg = sg->next;
bd939f45 8267 } while (sg != env->sd->groups);
0ec8aa00 8268
f643ea22
VG
8269#ifdef CONFIG_NO_HZ_COMMON
8270 if ((env->flags & LBF_NOHZ_AGAIN) &&
8271 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8272
8273 WRITE_ONCE(nohz.next_blocked,
8274 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8275 }
8276#endif
8277
0ec8aa00
PZ
8278 if (env->sd->flags & SD_NUMA)
8279 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8280
8281 if (!env->sd->parent) {
2802bf3c
MR
8282 struct root_domain *rd = env->dst_rq->rd;
8283
4486edd1 8284 /* update overload indicator if we are at root domain */
2802bf3c
MR
8285 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8286
8287 /* Update over-utilization (tipping point, U >= 0) indicator */
8288 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8289 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8290 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8291 struct root_domain *rd = env->dst_rq->rd;
8292
8293 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8294 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8295 }
532cb4c4
MN
8296}
8297
532cb4c4
MN
8298/**
8299 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8300 * sched domain.
532cb4c4
MN
8301 *
8302 * This is primarily intended to used at the sibling level. Some
8303 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8304 * case of POWER7, it can move to lower SMT modes only when higher
8305 * threads are idle. When in lower SMT modes, the threads will
8306 * perform better since they share less core resources. Hence when we
8307 * have idle threads, we want them to be the higher ones.
8308 *
8309 * This packing function is run on idle threads. It checks to see if
8310 * the busiest CPU in this domain (core in the P7 case) has a higher
8311 * CPU number than the packing function is being run on. Here we are
8312 * assuming lower CPU number will be equivalent to lower a SMT thread
8313 * number.
8314 *
e69f6186 8315 * Return: 1 when packing is required and a task should be moved to
46123355 8316 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8317 *
cd96891d 8318 * @env: The load balancing environment.
532cb4c4 8319 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8320 */
bd939f45 8321static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8322{
8323 int busiest_cpu;
8324
bd939f45 8325 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8326 return 0;
8327
1f621e02
SD
8328 if (env->idle == CPU_NOT_IDLE)
8329 return 0;
8330
532cb4c4
MN
8331 if (!sds->busiest)
8332 return 0;
8333
afe06efd
TC
8334 busiest_cpu = sds->busiest->asym_prefer_cpu;
8335 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8336 return 0;
8337
4ad4e481 8338 env->imbalance = sds->busiest_stat.group_load;
bd939f45 8339
532cb4c4 8340 return 1;
1e3c88bd
PZ
8341}
8342
8343/**
8344 * fix_small_imbalance - Calculate the minor imbalance that exists
8345 * amongst the groups of a sched_domain, during
8346 * load balancing.
cd96891d 8347 * @env: The load balancing environment.
1e3c88bd 8348 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8349 */
bd939f45
PZ
8350static inline
8351void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8352{
63b2ca30 8353 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8354 unsigned int imbn = 2;
dd5feea1 8355 unsigned long scaled_busy_load_per_task;
56cf515b 8356 struct sg_lb_stats *local, *busiest;
1e3c88bd 8357
56cf515b
JK
8358 local = &sds->local_stat;
8359 busiest = &sds->busiest_stat;
1e3c88bd 8360
56cf515b
JK
8361 if (!local->sum_nr_running)
8362 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8363 else if (busiest->load_per_task > local->load_per_task)
8364 imbn = 1;
dd5feea1 8365
56cf515b 8366 scaled_busy_load_per_task =
ca8ce3d0 8367 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8368 busiest->group_capacity;
56cf515b 8369
3029ede3
VD
8370 if (busiest->avg_load + scaled_busy_load_per_task >=
8371 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8372 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8373 return;
8374 }
8375
8376 /*
8377 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8378 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8379 * moving them.
8380 */
8381
63b2ca30 8382 capa_now += busiest->group_capacity *
56cf515b 8383 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8384 capa_now += local->group_capacity *
56cf515b 8385 min(local->load_per_task, local->avg_load);
ca8ce3d0 8386 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8387
8388 /* Amount of load we'd subtract */
a2cd4260 8389 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8390 capa_move += busiest->group_capacity *
56cf515b 8391 min(busiest->load_per_task,
a2cd4260 8392 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8393 }
1e3c88bd
PZ
8394
8395 /* Amount of load we'd add */
63b2ca30 8396 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8397 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8398 tmp = (busiest->avg_load * busiest->group_capacity) /
8399 local->group_capacity;
56cf515b 8400 } else {
ca8ce3d0 8401 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8402 local->group_capacity;
56cf515b 8403 }
63b2ca30 8404 capa_move += local->group_capacity *
3ae11c90 8405 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8406 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8407
8408 /* Move if we gain throughput */
63b2ca30 8409 if (capa_move > capa_now)
56cf515b 8410 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8411}
8412
8413/**
8414 * calculate_imbalance - Calculate the amount of imbalance present within the
8415 * groups of a given sched_domain during load balance.
bd939f45 8416 * @env: load balance environment
1e3c88bd 8417 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8418 */
bd939f45 8419static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8420{
dd5feea1 8421 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8422 struct sg_lb_stats *local, *busiest;
8423
8424 local = &sds->local_stat;
56cf515b 8425 busiest = &sds->busiest_stat;
dd5feea1 8426
caeb178c 8427 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8428 /*
8429 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8430 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8431 */
56cf515b
JK
8432 busiest->load_per_task =
8433 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8434 }
8435
1e3c88bd 8436 /*
885e542c
DE
8437 * Avg load of busiest sg can be less and avg load of local sg can
8438 * be greater than avg load across all sgs of sd because avg load
8439 * factors in sg capacity and sgs with smaller group_type are
8440 * skipped when updating the busiest sg:
1e3c88bd 8441 */
cad68e55
MR
8442 if (busiest->group_type != group_misfit_task &&
8443 (busiest->avg_load <= sds->avg_load ||
8444 local->avg_load >= sds->avg_load)) {
bd939f45
PZ
8445 env->imbalance = 0;
8446 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8447 }
8448
9a5d9ba6 8449 /*
97fb7a0a 8450 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8451 */
8452 if (busiest->group_type == group_overloaded &&
8453 local->group_type == group_overloaded) {
1be0eb2a 8454 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8455 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8456 load_above_capacity -= busiest->group_capacity;
26656215 8457 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8458 load_above_capacity /= busiest->group_capacity;
8459 } else
ea67821b 8460 load_above_capacity = ~0UL;
dd5feea1
SS
8461 }
8462
8463 /*
97fb7a0a 8464 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8465 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8466 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8467 * we also don't want to reduce the group load below the group
8468 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8469 */
30ce5dab 8470 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8471
8472 /* How much load to actually move to equalise the imbalance */
56cf515b 8473 env->imbalance = min(
63b2ca30
NP
8474 max_pull * busiest->group_capacity,
8475 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8476 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8477
cad68e55
MR
8478 /* Boost imbalance to allow misfit task to be balanced. */
8479 if (busiest->group_type == group_misfit_task) {
8480 env->imbalance = max_t(long, env->imbalance,
8481 busiest->group_misfit_task_load);
8482 }
8483
1e3c88bd
PZ
8484 /*
8485 * if *imbalance is less than the average load per runnable task
25985edc 8486 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8487 * a think about bumping its value to force at least one task to be
8488 * moved
8489 */
56cf515b 8490 if (env->imbalance < busiest->load_per_task)
bd939f45 8491 return fix_small_imbalance(env, sds);
1e3c88bd 8492}
fab47622 8493
1e3c88bd
PZ
8494/******* find_busiest_group() helpers end here *********************/
8495
8496/**
8497 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8498 * if there is an imbalance.
1e3c88bd 8499 *
a3df0679 8500 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
8501 * to restore balance.
8502 *
cd96891d 8503 * @env: The load balancing environment.
1e3c88bd 8504 *
e69f6186 8505 * Return: - The busiest group if imbalance exists.
1e3c88bd 8506 */
56cf515b 8507static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8508{
56cf515b 8509 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8510 struct sd_lb_stats sds;
8511
147c5fc2 8512 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8513
8514 /*
8515 * Compute the various statistics relavent for load balancing at
8516 * this level.
8517 */
23f0d209 8518 update_sd_lb_stats(env, &sds);
2802bf3c 8519
f8a696f2 8520 if (sched_energy_enabled()) {
2802bf3c
MR
8521 struct root_domain *rd = env->dst_rq->rd;
8522
8523 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8524 goto out_balanced;
8525 }
8526
56cf515b
JK
8527 local = &sds.local_stat;
8528 busiest = &sds.busiest_stat;
1e3c88bd 8529
ea67821b 8530 /* ASYM feature bypasses nice load balance check */
1f621e02 8531 if (check_asym_packing(env, &sds))
532cb4c4
MN
8532 return sds.busiest;
8533
cc57aa8f 8534 /* There is no busy sibling group to pull tasks from */
56cf515b 8535 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8536 goto out_balanced;
8537
90001d67 8538 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8539 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8540 / sds.total_capacity;
b0432d8f 8541
866ab43e
PZ
8542 /*
8543 * If the busiest group is imbalanced the below checks don't
30ce5dab 8544 * work because they assume all things are equal, which typically
3bd37062 8545 * isn't true due to cpus_ptr constraints and the like.
866ab43e 8546 */
caeb178c 8547 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8548 goto force_balance;
8549
583ffd99
BJ
8550 /*
8551 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8552 * capacities from resulting in underutilization due to avg_load.
8553 */
8554 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8555 busiest->group_no_capacity)
fab47622
NR
8556 goto force_balance;
8557
cad68e55
MR
8558 /* Misfit tasks should be dealt with regardless of the avg load */
8559 if (busiest->group_type == group_misfit_task)
8560 goto force_balance;
8561
cc57aa8f 8562 /*
9c58c79a 8563 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8564 * don't try and pull any tasks.
8565 */
56cf515b 8566 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8567 goto out_balanced;
8568
cc57aa8f
PZ
8569 /*
8570 * Don't pull any tasks if this group is already above the domain
8571 * average load.
8572 */
56cf515b 8573 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8574 goto out_balanced;
8575
bd939f45 8576 if (env->idle == CPU_IDLE) {
aae6d3dd 8577 /*
97fb7a0a 8578 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8579 * and there is no imbalance between this and busiest group
97fb7a0a 8580 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8581 * significant if the diff is greater than 1 otherwise we
8582 * might end up to just move the imbalance on another group
aae6d3dd 8583 */
43f4d666
VG
8584 if ((busiest->group_type != group_overloaded) &&
8585 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8586 goto out_balanced;
c186fafe
PZ
8587 } else {
8588 /*
8589 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8590 * imbalance_pct to be conservative.
8591 */
56cf515b
JK
8592 if (100 * busiest->avg_load <=
8593 env->sd->imbalance_pct * local->avg_load)
c186fafe 8594 goto out_balanced;
aae6d3dd 8595 }
1e3c88bd 8596
fab47622 8597force_balance:
1e3c88bd 8598 /* Looks like there is an imbalance. Compute it */
cad68e55 8599 env->src_grp_type = busiest->group_type;
bd939f45 8600 calculate_imbalance(env, &sds);
bb3485c8 8601 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8602
8603out_balanced:
bd939f45 8604 env->imbalance = 0;
1e3c88bd
PZ
8605 return NULL;
8606}
8607
8608/*
97fb7a0a 8609 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8610 */
bd939f45 8611static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8612 struct sched_group *group)
1e3c88bd
PZ
8613{
8614 struct rq *busiest = NULL, *rq;
ced549fa 8615 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8616 int i;
8617
ae4df9d6 8618 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
a3df0679 8619 unsigned long capacity, load;
0ec8aa00
PZ
8620 enum fbq_type rt;
8621
8622 rq = cpu_rq(i);
8623 rt = fbq_classify_rq(rq);
1e3c88bd 8624
0ec8aa00
PZ
8625 /*
8626 * We classify groups/runqueues into three groups:
8627 * - regular: there are !numa tasks
8628 * - remote: there are numa tasks that run on the 'wrong' node
8629 * - all: there is no distinction
8630 *
8631 * In order to avoid migrating ideally placed numa tasks,
8632 * ignore those when there's better options.
8633 *
8634 * If we ignore the actual busiest queue to migrate another
8635 * task, the next balance pass can still reduce the busiest
8636 * queue by moving tasks around inside the node.
8637 *
8638 * If we cannot move enough load due to this classification
8639 * the next pass will adjust the group classification and
8640 * allow migration of more tasks.
8641 *
8642 * Both cases only affect the total convergence complexity.
8643 */
8644 if (rt > env->fbq_type)
8645 continue;
8646
cad68e55
MR
8647 /*
8648 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8649 * seek the "biggest" misfit task.
8650 */
8651 if (env->src_grp_type == group_misfit_task) {
8652 if (rq->misfit_task_load > busiest_load) {
8653 busiest_load = rq->misfit_task_load;
8654 busiest = rq;
8655 }
8656
8657 continue;
8658 }
8659
ced549fa 8660 capacity = capacity_of(i);
9d5efe05 8661
4ad3831a
CR
8662 /*
8663 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8664 * eventually lead to active_balancing high->low capacity.
8665 * Higher per-CPU capacity is considered better than balancing
8666 * average load.
8667 */
8668 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8669 capacity_of(env->dst_cpu) < capacity &&
8670 rq->nr_running == 1)
8671 continue;
8672
a3df0679 8673 load = cpu_runnable_load(rq);
1e3c88bd 8674
6e40f5bb 8675 /*
a3df0679 8676 * When comparing with imbalance, use cpu_runnable_load()
97fb7a0a 8677 * which is not scaled with the CPU capacity.
6e40f5bb 8678 */
ea67821b 8679
a3df0679 8680 if (rq->nr_running == 1 && load > env->imbalance &&
ea67821b 8681 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8682 continue;
8683
6e40f5bb 8684 /*
97fb7a0a 8685 * For the load comparisons with the other CPU's, consider
a3df0679 8686 * the cpu_runnable_load() scaled with the CPU capacity, so
97fb7a0a 8687 * that the load can be moved away from the CPU that is
ced549fa 8688 * potentially running at a lower capacity.
95a79b80 8689 *
a3df0679 8690 * Thus we're looking for max(load_i / capacity_i), crosswise
95a79b80 8691 * multiplication to rid ourselves of the division works out
a3df0679 8692 * to: load_i * capacity_j > load_j * capacity_i; where j is
ced549fa 8693 * our previous maximum.
6e40f5bb 8694 */
a3df0679
DE
8695 if (load * busiest_capacity > busiest_load * capacity) {
8696 busiest_load = load;
ced549fa 8697 busiest_capacity = capacity;
1e3c88bd
PZ
8698 busiest = rq;
8699 }
8700 }
8701
8702 return busiest;
8703}
8704
8705/*
8706 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8707 * so long as it is large enough.
8708 */
8709#define MAX_PINNED_INTERVAL 512
8710
46a745d9
VG
8711static inline bool
8712asym_active_balance(struct lb_env *env)
1af3ed3d 8713{
46a745d9
VG
8714 /*
8715 * ASYM_PACKING needs to force migrate tasks from busy but
8716 * lower priority CPUs in order to pack all tasks in the
8717 * highest priority CPUs.
8718 */
8719 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8720 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8721}
bd939f45 8722
46a745d9
VG
8723static inline bool
8724voluntary_active_balance(struct lb_env *env)
8725{
8726 struct sched_domain *sd = env->sd;
532cb4c4 8727
46a745d9
VG
8728 if (asym_active_balance(env))
8729 return 1;
1af3ed3d 8730
1aaf90a4
VG
8731 /*
8732 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8733 * It's worth migrating the task if the src_cpu's capacity is reduced
8734 * because of other sched_class or IRQs if more capacity stays
8735 * available on dst_cpu.
8736 */
8737 if ((env->idle != CPU_NOT_IDLE) &&
8738 (env->src_rq->cfs.h_nr_running == 1)) {
8739 if ((check_cpu_capacity(env->src_rq, sd)) &&
8740 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8741 return 1;
8742 }
8743
cad68e55
MR
8744 if (env->src_grp_type == group_misfit_task)
8745 return 1;
8746
46a745d9
VG
8747 return 0;
8748}
8749
8750static int need_active_balance(struct lb_env *env)
8751{
8752 struct sched_domain *sd = env->sd;
8753
8754 if (voluntary_active_balance(env))
8755 return 1;
8756
1af3ed3d
PZ
8757 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8758}
8759
969c7921
TH
8760static int active_load_balance_cpu_stop(void *data);
8761
23f0d209
JK
8762static int should_we_balance(struct lb_env *env)
8763{
8764 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8765 int cpu, balance_cpu = -1;
8766
024c9d2f
PZ
8767 /*
8768 * Ensure the balancing environment is consistent; can happen
8769 * when the softirq triggers 'during' hotplug.
8770 */
8771 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8772 return 0;
8773
23f0d209 8774 /*
97fb7a0a 8775 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8776 * to do the newly idle load balance.
8777 */
8778 if (env->idle == CPU_NEWLY_IDLE)
8779 return 1;
8780
97fb7a0a 8781 /* Try to find first idle CPU */
e5c14b1f 8782 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8783 if (!idle_cpu(cpu))
23f0d209
JK
8784 continue;
8785
8786 balance_cpu = cpu;
8787 break;
8788 }
8789
8790 if (balance_cpu == -1)
8791 balance_cpu = group_balance_cpu(sg);
8792
8793 /*
97fb7a0a 8794 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8795 * is eligible for doing load balancing at this and above domains.
8796 */
b0cff9d8 8797 return balance_cpu == env->dst_cpu;
23f0d209
JK
8798}
8799
1e3c88bd
PZ
8800/*
8801 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8802 * tasks if there is an imbalance.
8803 */
8804static int load_balance(int this_cpu, struct rq *this_rq,
8805 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8806 int *continue_balancing)
1e3c88bd 8807{
88b8dac0 8808 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8809 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8810 struct sched_group *group;
1e3c88bd 8811 struct rq *busiest;
8a8c69c3 8812 struct rq_flags rf;
4ba29684 8813 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8814
8e45cb54
PZ
8815 struct lb_env env = {
8816 .sd = sd,
ddcdf6e7
PZ
8817 .dst_cpu = this_cpu,
8818 .dst_rq = this_rq,
ae4df9d6 8819 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8820 .idle = idle,
eb95308e 8821 .loop_break = sched_nr_migrate_break,
b9403130 8822 .cpus = cpus,
0ec8aa00 8823 .fbq_type = all,
163122b7 8824 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8825 };
8826
65a4433a 8827 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8828
ae92882e 8829 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8830
8831redo:
23f0d209
JK
8832 if (!should_we_balance(&env)) {
8833 *continue_balancing = 0;
1e3c88bd 8834 goto out_balanced;
23f0d209 8835 }
1e3c88bd 8836
23f0d209 8837 group = find_busiest_group(&env);
1e3c88bd 8838 if (!group) {
ae92882e 8839 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8840 goto out_balanced;
8841 }
8842
b9403130 8843 busiest = find_busiest_queue(&env, group);
1e3c88bd 8844 if (!busiest) {
ae92882e 8845 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8846 goto out_balanced;
8847 }
8848
78feefc5 8849 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8850
ae92882e 8851 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8852
1aaf90a4
VG
8853 env.src_cpu = busiest->cpu;
8854 env.src_rq = busiest;
8855
1e3c88bd
PZ
8856 ld_moved = 0;
8857 if (busiest->nr_running > 1) {
8858 /*
8859 * Attempt to move tasks. If find_busiest_group has found
8860 * an imbalance but busiest->nr_running <= 1, the group is
8861 * still unbalanced. ld_moved simply stays zero, so it is
8862 * correctly treated as an imbalance.
8863 */
8e45cb54 8864 env.flags |= LBF_ALL_PINNED;
c82513e5 8865 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8866
5d6523eb 8867more_balance:
8a8c69c3 8868 rq_lock_irqsave(busiest, &rf);
3bed5e21 8869 update_rq_clock(busiest);
88b8dac0
SV
8870
8871 /*
8872 * cur_ld_moved - load moved in current iteration
8873 * ld_moved - cumulative load moved across iterations
8874 */
163122b7 8875 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8876
8877 /*
163122b7
KT
8878 * We've detached some tasks from busiest_rq. Every
8879 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8880 * unlock busiest->lock, and we are able to be sure
8881 * that nobody can manipulate the tasks in parallel.
8882 * See task_rq_lock() family for the details.
1e3c88bd 8883 */
163122b7 8884
8a8c69c3 8885 rq_unlock(busiest, &rf);
163122b7
KT
8886
8887 if (cur_ld_moved) {
8888 attach_tasks(&env);
8889 ld_moved += cur_ld_moved;
8890 }
8891
8a8c69c3 8892 local_irq_restore(rf.flags);
88b8dac0 8893
f1cd0858
JK
8894 if (env.flags & LBF_NEED_BREAK) {
8895 env.flags &= ~LBF_NEED_BREAK;
8896 goto more_balance;
8897 }
8898
88b8dac0
SV
8899 /*
8900 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8901 * us and move them to an alternate dst_cpu in our sched_group
8902 * where they can run. The upper limit on how many times we
97fb7a0a 8903 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
8904 * sched_group.
8905 *
8906 * This changes load balance semantics a bit on who can move
8907 * load to a given_cpu. In addition to the given_cpu itself
8908 * (or a ilb_cpu acting on its behalf where given_cpu is
8909 * nohz-idle), we now have balance_cpu in a position to move
8910 * load to given_cpu. In rare situations, this may cause
8911 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8912 * _independently_ and at _same_ time to move some load to
8913 * given_cpu) causing exceess load to be moved to given_cpu.
8914 * This however should not happen so much in practice and
8915 * moreover subsequent load balance cycles should correct the
8916 * excess load moved.
8917 */
6263322c 8918 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8919
97fb7a0a 8920 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 8921 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 8922
78feefc5 8923 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8924 env.dst_cpu = env.new_dst_cpu;
6263322c 8925 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8926 env.loop = 0;
8927 env.loop_break = sched_nr_migrate_break;
e02e60c1 8928
88b8dac0
SV
8929 /*
8930 * Go back to "more_balance" rather than "redo" since we
8931 * need to continue with same src_cpu.
8932 */
8933 goto more_balance;
8934 }
1e3c88bd 8935
6263322c
PZ
8936 /*
8937 * We failed to reach balance because of affinity.
8938 */
8939 if (sd_parent) {
63b2ca30 8940 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8941
afdeee05 8942 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8943 *group_imbalance = 1;
6263322c
PZ
8944 }
8945
1e3c88bd 8946 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8947 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 8948 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8949 /*
8950 * Attempting to continue load balancing at the current
8951 * sched_domain level only makes sense if there are
8952 * active CPUs remaining as possible busiest CPUs to
8953 * pull load from which are not contained within the
8954 * destination group that is receiving any migrated
8955 * load.
8956 */
8957 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8958 env.loop = 0;
8959 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8960 goto redo;
bbf18b19 8961 }
afdeee05 8962 goto out_all_pinned;
1e3c88bd
PZ
8963 }
8964 }
8965
8966 if (!ld_moved) {
ae92882e 8967 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8968 /*
8969 * Increment the failure counter only on periodic balance.
8970 * We do not want newidle balance, which can be very
8971 * frequent, pollute the failure counter causing
8972 * excessive cache_hot migrations and active balances.
8973 */
8974 if (idle != CPU_NEWLY_IDLE)
8975 sd->nr_balance_failed++;
1e3c88bd 8976
bd939f45 8977 if (need_active_balance(&env)) {
8a8c69c3
PZ
8978 unsigned long flags;
8979
1e3c88bd
PZ
8980 raw_spin_lock_irqsave(&busiest->lock, flags);
8981
97fb7a0a
IM
8982 /*
8983 * Don't kick the active_load_balance_cpu_stop,
8984 * if the curr task on busiest CPU can't be
8985 * moved to this_cpu:
1e3c88bd 8986 */
3bd37062 8987 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
8988 raw_spin_unlock_irqrestore(&busiest->lock,
8989 flags);
8e45cb54 8990 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8991 goto out_one_pinned;
8992 }
8993
969c7921
TH
8994 /*
8995 * ->active_balance synchronizes accesses to
8996 * ->active_balance_work. Once set, it's cleared
8997 * only after active load balance is finished.
8998 */
1e3c88bd
PZ
8999 if (!busiest->active_balance) {
9000 busiest->active_balance = 1;
9001 busiest->push_cpu = this_cpu;
9002 active_balance = 1;
9003 }
9004 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9005
bd939f45 9006 if (active_balance) {
969c7921
TH
9007 stop_one_cpu_nowait(cpu_of(busiest),
9008 active_load_balance_cpu_stop, busiest,
9009 &busiest->active_balance_work);
bd939f45 9010 }
1e3c88bd 9011
d02c0711 9012 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9013 sd->nr_balance_failed = sd->cache_nice_tries+1;
9014 }
9015 } else
9016 sd->nr_balance_failed = 0;
9017
46a745d9 9018 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9019 /* We were unbalanced, so reset the balancing interval */
9020 sd->balance_interval = sd->min_interval;
9021 } else {
9022 /*
9023 * If we've begun active balancing, start to back off. This
9024 * case may not be covered by the all_pinned logic if there
9025 * is only 1 task on the busy runqueue (because we don't call
163122b7 9026 * detach_tasks).
1e3c88bd
PZ
9027 */
9028 if (sd->balance_interval < sd->max_interval)
9029 sd->balance_interval *= 2;
9030 }
9031
1e3c88bd
PZ
9032 goto out;
9033
9034out_balanced:
afdeee05
VG
9035 /*
9036 * We reach balance although we may have faced some affinity
f6cad8df
VG
9037 * constraints. Clear the imbalance flag only if other tasks got
9038 * a chance to move and fix the imbalance.
afdeee05 9039 */
f6cad8df 9040 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9041 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9042
9043 if (*group_imbalance)
9044 *group_imbalance = 0;
9045 }
9046
9047out_all_pinned:
9048 /*
9049 * We reach balance because all tasks are pinned at this level so
9050 * we can't migrate them. Let the imbalance flag set so parent level
9051 * can try to migrate them.
9052 */
ae92882e 9053 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9054
9055 sd->nr_balance_failed = 0;
9056
9057out_one_pinned:
3f130a37
VS
9058 ld_moved = 0;
9059
9060 /*
5ba553ef
PZ
9061 * newidle_balance() disregards balance intervals, so we could
9062 * repeatedly reach this code, which would lead to balance_interval
9063 * skyrocketting in a short amount of time. Skip the balance_interval
9064 * increase logic to avoid that.
3f130a37
VS
9065 */
9066 if (env.idle == CPU_NEWLY_IDLE)
9067 goto out;
9068
1e3c88bd 9069 /* tune up the balancing interval */
47b7aee1
VS
9070 if ((env.flags & LBF_ALL_PINNED &&
9071 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9072 sd->balance_interval < sd->max_interval)
1e3c88bd 9073 sd->balance_interval *= 2;
1e3c88bd 9074out:
1e3c88bd
PZ
9075 return ld_moved;
9076}
9077
52a08ef1
JL
9078static inline unsigned long
9079get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9080{
9081 unsigned long interval = sd->balance_interval;
9082
9083 if (cpu_busy)
9084 interval *= sd->busy_factor;
9085
9086 /* scale ms to jiffies */
9087 interval = msecs_to_jiffies(interval);
9088 interval = clamp(interval, 1UL, max_load_balance_interval);
9089
9090 return interval;
9091}
9092
9093static inline void
31851a98 9094update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9095{
9096 unsigned long interval, next;
9097
31851a98
LY
9098 /* used by idle balance, so cpu_busy = 0 */
9099 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9100 next = sd->last_balance + interval;
9101
9102 if (time_after(*next_balance, next))
9103 *next_balance = next;
9104}
9105
1e3c88bd 9106/*
97fb7a0a 9107 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9108 * running tasks off the busiest CPU onto idle CPUs. It requires at
9109 * least 1 task to be running on each physical CPU where possible, and
9110 * avoids physical / logical imbalances.
1e3c88bd 9111 */
969c7921 9112static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9113{
969c7921
TH
9114 struct rq *busiest_rq = data;
9115 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9116 int target_cpu = busiest_rq->push_cpu;
969c7921 9117 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9118 struct sched_domain *sd;
e5673f28 9119 struct task_struct *p = NULL;
8a8c69c3 9120 struct rq_flags rf;
969c7921 9121
8a8c69c3 9122 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9123 /*
9124 * Between queueing the stop-work and running it is a hole in which
9125 * CPUs can become inactive. We should not move tasks from or to
9126 * inactive CPUs.
9127 */
9128 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9129 goto out_unlock;
969c7921 9130
97fb7a0a 9131 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9132 if (unlikely(busiest_cpu != smp_processor_id() ||
9133 !busiest_rq->active_balance))
9134 goto out_unlock;
1e3c88bd
PZ
9135
9136 /* Is there any task to move? */
9137 if (busiest_rq->nr_running <= 1)
969c7921 9138 goto out_unlock;
1e3c88bd
PZ
9139
9140 /*
9141 * This condition is "impossible", if it occurs
9142 * we need to fix it. Originally reported by
97fb7a0a 9143 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9144 */
9145 BUG_ON(busiest_rq == target_rq);
9146
1e3c88bd 9147 /* Search for an sd spanning us and the target CPU. */
dce840a0 9148 rcu_read_lock();
1e3c88bd
PZ
9149 for_each_domain(target_cpu, sd) {
9150 if ((sd->flags & SD_LOAD_BALANCE) &&
9151 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9152 break;
9153 }
9154
9155 if (likely(sd)) {
8e45cb54
PZ
9156 struct lb_env env = {
9157 .sd = sd,
ddcdf6e7
PZ
9158 .dst_cpu = target_cpu,
9159 .dst_rq = target_rq,
9160 .src_cpu = busiest_rq->cpu,
9161 .src_rq = busiest_rq,
8e45cb54 9162 .idle = CPU_IDLE,
65a4433a
JH
9163 /*
9164 * can_migrate_task() doesn't need to compute new_dst_cpu
9165 * for active balancing. Since we have CPU_IDLE, but no
9166 * @dst_grpmask we need to make that test go away with lying
9167 * about DST_PINNED.
9168 */
9169 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9170 };
9171
ae92882e 9172 schedstat_inc(sd->alb_count);
3bed5e21 9173 update_rq_clock(busiest_rq);
1e3c88bd 9174
e5673f28 9175 p = detach_one_task(&env);
d02c0711 9176 if (p) {
ae92882e 9177 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9178 /* Active balancing done, reset the failure counter. */
9179 sd->nr_balance_failed = 0;
9180 } else {
ae92882e 9181 schedstat_inc(sd->alb_failed);
d02c0711 9182 }
1e3c88bd 9183 }
dce840a0 9184 rcu_read_unlock();
969c7921
TH
9185out_unlock:
9186 busiest_rq->active_balance = 0;
8a8c69c3 9187 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9188
9189 if (p)
9190 attach_one_task(target_rq, p);
9191
9192 local_irq_enable();
9193
969c7921 9194 return 0;
1e3c88bd
PZ
9195}
9196
af3fe03c
PZ
9197static DEFINE_SPINLOCK(balancing);
9198
9199/*
9200 * Scale the max load_balance interval with the number of CPUs in the system.
9201 * This trades load-balance latency on larger machines for less cross talk.
9202 */
9203void update_max_interval(void)
9204{
9205 max_load_balance_interval = HZ*num_online_cpus()/10;
9206}
9207
9208/*
9209 * It checks each scheduling domain to see if it is due to be balanced,
9210 * and initiates a balancing operation if so.
9211 *
9212 * Balancing parameters are set up in init_sched_domains.
9213 */
9214static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9215{
9216 int continue_balancing = 1;
9217 int cpu = rq->cpu;
9218 unsigned long interval;
9219 struct sched_domain *sd;
9220 /* Earliest time when we have to do rebalance again */
9221 unsigned long next_balance = jiffies + 60*HZ;
9222 int update_next_balance = 0;
9223 int need_serialize, need_decay = 0;
9224 u64 max_cost = 0;
9225
9226 rcu_read_lock();
9227 for_each_domain(cpu, sd) {
9228 /*
9229 * Decay the newidle max times here because this is a regular
9230 * visit to all the domains. Decay ~1% per second.
9231 */
9232 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9233 sd->max_newidle_lb_cost =
9234 (sd->max_newidle_lb_cost * 253) / 256;
9235 sd->next_decay_max_lb_cost = jiffies + HZ;
9236 need_decay = 1;
9237 }
9238 max_cost += sd->max_newidle_lb_cost;
9239
9240 if (!(sd->flags & SD_LOAD_BALANCE))
9241 continue;
9242
9243 /*
9244 * Stop the load balance at this level. There is another
9245 * CPU in our sched group which is doing load balancing more
9246 * actively.
9247 */
9248 if (!continue_balancing) {
9249 if (need_decay)
9250 continue;
9251 break;
9252 }
9253
9254 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9255
9256 need_serialize = sd->flags & SD_SERIALIZE;
9257 if (need_serialize) {
9258 if (!spin_trylock(&balancing))
9259 goto out;
9260 }
9261
9262 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9263 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9264 /*
9265 * The LBF_DST_PINNED logic could have changed
9266 * env->dst_cpu, so we can't know our idle
9267 * state even if we migrated tasks. Update it.
9268 */
9269 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9270 }
9271 sd->last_balance = jiffies;
9272 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9273 }
9274 if (need_serialize)
9275 spin_unlock(&balancing);
9276out:
9277 if (time_after(next_balance, sd->last_balance + interval)) {
9278 next_balance = sd->last_balance + interval;
9279 update_next_balance = 1;
9280 }
9281 }
9282 if (need_decay) {
9283 /*
9284 * Ensure the rq-wide value also decays but keep it at a
9285 * reasonable floor to avoid funnies with rq->avg_idle.
9286 */
9287 rq->max_idle_balance_cost =
9288 max((u64)sysctl_sched_migration_cost, max_cost);
9289 }
9290 rcu_read_unlock();
9291
9292 /*
9293 * next_balance will be updated only when there is a need.
9294 * When the cpu is attached to null domain for ex, it will not be
9295 * updated.
9296 */
9297 if (likely(update_next_balance)) {
9298 rq->next_balance = next_balance;
9299
9300#ifdef CONFIG_NO_HZ_COMMON
9301 /*
9302 * If this CPU has been elected to perform the nohz idle
9303 * balance. Other idle CPUs have already rebalanced with
9304 * nohz_idle_balance() and nohz.next_balance has been
9305 * updated accordingly. This CPU is now running the idle load
9306 * balance for itself and we need to update the
9307 * nohz.next_balance accordingly.
9308 */
9309 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9310 nohz.next_balance = rq->next_balance;
9311#endif
9312 }
9313}
9314
d987fc7f
MG
9315static inline int on_null_domain(struct rq *rq)
9316{
9317 return unlikely(!rcu_dereference_sched(rq->sd));
9318}
9319
3451d024 9320#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9321/*
9322 * idle load balancing details
83cd4fe2
VP
9323 * - When one of the busy CPUs notice that there may be an idle rebalancing
9324 * needed, they will kick the idle load balancer, which then does idle
9325 * load balancing for all the idle CPUs.
9b019acb
NP
9326 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9327 * anywhere yet.
83cd4fe2 9328 */
1e3c88bd 9329
3dd0337d 9330static inline int find_new_ilb(void)
1e3c88bd 9331{
9b019acb 9332 int ilb;
1e3c88bd 9333
9b019acb
NP
9334 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9335 housekeeping_cpumask(HK_FLAG_MISC)) {
9336 if (idle_cpu(ilb))
9337 return ilb;
9338 }
786d6dc7
SS
9339
9340 return nr_cpu_ids;
1e3c88bd 9341}
1e3c88bd 9342
83cd4fe2 9343/*
9b019acb
NP
9344 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9345 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 9346 */
a4064fb6 9347static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9348{
9349 int ilb_cpu;
9350
9351 nohz.next_balance++;
9352
3dd0337d 9353 ilb_cpu = find_new_ilb();
83cd4fe2 9354
0b005cf5
SS
9355 if (ilb_cpu >= nr_cpu_ids)
9356 return;
83cd4fe2 9357
a4064fb6 9358 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9359 if (flags & NOHZ_KICK_MASK)
1c792db7 9360 return;
4550487a 9361
1c792db7
SS
9362 /*
9363 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9364 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9365 * is idle. And the softirq performing nohz idle load balance
9366 * will be run before returning from the IPI.
9367 */
9368 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9369}
9370
9371/*
9f132742
VS
9372 * Current decision point for kicking the idle load balancer in the presence
9373 * of idle CPUs in the system.
4550487a
PZ
9374 */
9375static void nohz_balancer_kick(struct rq *rq)
9376{
9377 unsigned long now = jiffies;
9378 struct sched_domain_shared *sds;
9379 struct sched_domain *sd;
9380 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9381 unsigned int flags = 0;
4550487a
PZ
9382
9383 if (unlikely(rq->idle_balance))
9384 return;
9385
9386 /*
9387 * We may be recently in ticked or tickless idle mode. At the first
9388 * busy tick after returning from idle, we will update the busy stats.
9389 */
00357f5e 9390 nohz_balance_exit_idle(rq);
4550487a
PZ
9391
9392 /*
9393 * None are in tickless mode and hence no need for NOHZ idle load
9394 * balancing.
9395 */
9396 if (likely(!atomic_read(&nohz.nr_cpus)))
9397 return;
9398
f643ea22
VG
9399 if (READ_ONCE(nohz.has_blocked) &&
9400 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9401 flags = NOHZ_STATS_KICK;
9402
4550487a 9403 if (time_before(now, nohz.next_balance))
a4064fb6 9404 goto out;
4550487a 9405
a0fe2cf0 9406 if (rq->nr_running >= 2) {
a4064fb6 9407 flags = NOHZ_KICK_MASK;
4550487a
PZ
9408 goto out;
9409 }
9410
9411 rcu_read_lock();
4550487a
PZ
9412
9413 sd = rcu_dereference(rq->sd);
9414 if (sd) {
e25a7a94
VS
9415 /*
9416 * If there's a CFS task and the current CPU has reduced
9417 * capacity; kick the ILB to see if there's a better CPU to run
9418 * on.
9419 */
9420 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 9421 flags = NOHZ_KICK_MASK;
4550487a
PZ
9422 goto unlock;
9423 }
9424 }
9425
011b27bb 9426 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 9427 if (sd) {
b9a7b883
VS
9428 /*
9429 * When ASYM_PACKING; see if there's a more preferred CPU
9430 * currently idle; in which case, kick the ILB to move tasks
9431 * around.
9432 */
7edab78d 9433 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 9434 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9435 flags = NOHZ_KICK_MASK;
4550487a
PZ
9436 goto unlock;
9437 }
9438 }
9439 }
b9a7b883 9440
a0fe2cf0
VS
9441 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9442 if (sd) {
9443 /*
9444 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9445 * to run the misfit task on.
9446 */
9447 if (check_misfit_status(rq, sd)) {
9448 flags = NOHZ_KICK_MASK;
9449 goto unlock;
9450 }
b9a7b883
VS
9451
9452 /*
9453 * For asymmetric systems, we do not want to nicely balance
9454 * cache use, instead we want to embrace asymmetry and only
9455 * ensure tasks have enough CPU capacity.
9456 *
9457 * Skip the LLC logic because it's not relevant in that case.
9458 */
9459 goto unlock;
a0fe2cf0
VS
9460 }
9461
b9a7b883
VS
9462 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9463 if (sds) {
e25a7a94 9464 /*
b9a7b883
VS
9465 * If there is an imbalance between LLC domains (IOW we could
9466 * increase the overall cache use), we need some less-loaded LLC
9467 * domain to pull some load. Likewise, we may need to spread
9468 * load within the current LLC domain (e.g. packed SMT cores but
9469 * other CPUs are idle). We can't really know from here how busy
9470 * the others are - so just get a nohz balance going if it looks
9471 * like this LLC domain has tasks we could move.
e25a7a94 9472 */
b9a7b883
VS
9473 nr_busy = atomic_read(&sds->nr_busy_cpus);
9474 if (nr_busy > 1) {
9475 flags = NOHZ_KICK_MASK;
9476 goto unlock;
4550487a
PZ
9477 }
9478 }
9479unlock:
9480 rcu_read_unlock();
9481out:
a4064fb6
PZ
9482 if (flags)
9483 kick_ilb(flags);
83cd4fe2
VP
9484}
9485
00357f5e 9486static void set_cpu_sd_state_busy(int cpu)
71325960 9487{
00357f5e 9488 struct sched_domain *sd;
a22e47a4 9489
00357f5e
PZ
9490 rcu_read_lock();
9491 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9492
00357f5e
PZ
9493 if (!sd || !sd->nohz_idle)
9494 goto unlock;
9495 sd->nohz_idle = 0;
9496
9497 atomic_inc(&sd->shared->nr_busy_cpus);
9498unlock:
9499 rcu_read_unlock();
71325960
SS
9500}
9501
00357f5e
PZ
9502void nohz_balance_exit_idle(struct rq *rq)
9503{
9504 SCHED_WARN_ON(rq != this_rq());
9505
9506 if (likely(!rq->nohz_tick_stopped))
9507 return;
9508
9509 rq->nohz_tick_stopped = 0;
9510 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9511 atomic_dec(&nohz.nr_cpus);
9512
9513 set_cpu_sd_state_busy(rq->cpu);
9514}
9515
9516static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9517{
9518 struct sched_domain *sd;
69e1e811 9519
69e1e811 9520 rcu_read_lock();
0e369d75 9521 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9522
9523 if (!sd || sd->nohz_idle)
9524 goto unlock;
9525 sd->nohz_idle = 1;
9526
0e369d75 9527 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9528unlock:
69e1e811
SS
9529 rcu_read_unlock();
9530}
9531
1e3c88bd 9532/*
97fb7a0a 9533 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9534 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9535 */
c1cc017c 9536void nohz_balance_enter_idle(int cpu)
1e3c88bd 9537{
00357f5e
PZ
9538 struct rq *rq = cpu_rq(cpu);
9539
9540 SCHED_WARN_ON(cpu != smp_processor_id());
9541
97fb7a0a 9542 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9543 if (!cpu_active(cpu))
9544 return;
9545
387bc8b5 9546 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9547 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9548 return;
9549
f643ea22
VG
9550 /*
9551 * Can be set safely without rq->lock held
9552 * If a clear happens, it will have evaluated last additions because
9553 * rq->lock is held during the check and the clear
9554 */
9555 rq->has_blocked_load = 1;
9556
9557 /*
9558 * The tick is still stopped but load could have been added in the
9559 * meantime. We set the nohz.has_blocked flag to trig a check of the
9560 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9561 * of nohz.has_blocked can only happen after checking the new load
9562 */
00357f5e 9563 if (rq->nohz_tick_stopped)
f643ea22 9564 goto out;
1e3c88bd 9565
97fb7a0a 9566 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9567 if (on_null_domain(rq))
d987fc7f
MG
9568 return;
9569
00357f5e
PZ
9570 rq->nohz_tick_stopped = 1;
9571
c1cc017c
AS
9572 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9573 atomic_inc(&nohz.nr_cpus);
00357f5e 9574
f643ea22
VG
9575 /*
9576 * Ensures that if nohz_idle_balance() fails to observe our
9577 * @idle_cpus_mask store, it must observe the @has_blocked
9578 * store.
9579 */
9580 smp_mb__after_atomic();
9581
00357f5e 9582 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9583
9584out:
9585 /*
9586 * Each time a cpu enter idle, we assume that it has blocked load and
9587 * enable the periodic update of the load of idle cpus
9588 */
9589 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9590}
1e3c88bd 9591
1e3c88bd 9592/*
31e77c93
VG
9593 * Internal function that runs load balance for all idle cpus. The load balance
9594 * can be a simple update of blocked load or a complete load balance with
9595 * tasks movement depending of flags.
9596 * The function returns false if the loop has stopped before running
9597 * through all idle CPUs.
1e3c88bd 9598 */
31e77c93
VG
9599static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9600 enum cpu_idle_type idle)
83cd4fe2 9601{
c5afb6a8 9602 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9603 unsigned long now = jiffies;
9604 unsigned long next_balance = now + 60*HZ;
f643ea22 9605 bool has_blocked_load = false;
c5afb6a8 9606 int update_next_balance = 0;
b7031a02 9607 int this_cpu = this_rq->cpu;
b7031a02 9608 int balance_cpu;
31e77c93 9609 int ret = false;
b7031a02 9610 struct rq *rq;
83cd4fe2 9611
b7031a02 9612 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9613
f643ea22
VG
9614 /*
9615 * We assume there will be no idle load after this update and clear
9616 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9617 * set the has_blocked flag and trig another update of idle load.
9618 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9619 * setting the flag, we are sure to not clear the state and not
9620 * check the load of an idle cpu.
9621 */
9622 WRITE_ONCE(nohz.has_blocked, 0);
9623
9624 /*
9625 * Ensures that if we miss the CPU, we must see the has_blocked
9626 * store from nohz_balance_enter_idle().
9627 */
9628 smp_mb();
9629
83cd4fe2 9630 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9631 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9632 continue;
9633
9634 /*
97fb7a0a
IM
9635 * If this CPU gets work to do, stop the load balancing
9636 * work being done for other CPUs. Next load
83cd4fe2
VP
9637 * balancing owner will pick it up.
9638 */
f643ea22
VG
9639 if (need_resched()) {
9640 has_blocked_load = true;
9641 goto abort;
9642 }
83cd4fe2 9643
5ed4f1d9
VG
9644 rq = cpu_rq(balance_cpu);
9645
63928384 9646 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9647
ed61bbc6
TC
9648 /*
9649 * If time for next balance is due,
9650 * do the balance.
9651 */
9652 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9653 struct rq_flags rf;
9654
31e77c93 9655 rq_lock_irqsave(rq, &rf);
ed61bbc6 9656 update_rq_clock(rq);
31e77c93 9657 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9658
b7031a02
PZ
9659 if (flags & NOHZ_BALANCE_KICK)
9660 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9661 }
83cd4fe2 9662
c5afb6a8
VG
9663 if (time_after(next_balance, rq->next_balance)) {
9664 next_balance = rq->next_balance;
9665 update_next_balance = 1;
9666 }
83cd4fe2 9667 }
c5afb6a8 9668
31e77c93
VG
9669 /* Newly idle CPU doesn't need an update */
9670 if (idle != CPU_NEWLY_IDLE) {
9671 update_blocked_averages(this_cpu);
9672 has_blocked_load |= this_rq->has_blocked_load;
9673 }
9674
b7031a02
PZ
9675 if (flags & NOHZ_BALANCE_KICK)
9676 rebalance_domains(this_rq, CPU_IDLE);
9677
f643ea22
VG
9678 WRITE_ONCE(nohz.next_blocked,
9679 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9680
31e77c93
VG
9681 /* The full idle balance loop has been done */
9682 ret = true;
9683
f643ea22
VG
9684abort:
9685 /* There is still blocked load, enable periodic update */
9686 if (has_blocked_load)
9687 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9688
c5afb6a8
VG
9689 /*
9690 * next_balance will be updated only when there is a need.
9691 * When the CPU is attached to null domain for ex, it will not be
9692 * updated.
9693 */
9694 if (likely(update_next_balance))
9695 nohz.next_balance = next_balance;
b7031a02 9696
31e77c93
VG
9697 return ret;
9698}
9699
9700/*
9701 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9702 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9703 */
9704static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9705{
9706 int this_cpu = this_rq->cpu;
9707 unsigned int flags;
9708
9709 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9710 return false;
9711
9712 if (idle != CPU_IDLE) {
9713 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9714 return false;
9715 }
9716
80eb8657 9717 /* could be _relaxed() */
31e77c93
VG
9718 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9719 if (!(flags & NOHZ_KICK_MASK))
9720 return false;
9721
9722 _nohz_idle_balance(this_rq, flags, idle);
9723
b7031a02 9724 return true;
83cd4fe2 9725}
31e77c93
VG
9726
9727static void nohz_newidle_balance(struct rq *this_rq)
9728{
9729 int this_cpu = this_rq->cpu;
9730
9731 /*
9732 * This CPU doesn't want to be disturbed by scheduler
9733 * housekeeping
9734 */
9735 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9736 return;
9737
9738 /* Will wake up very soon. No time for doing anything else*/
9739 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9740 return;
9741
9742 /* Don't need to update blocked load of idle CPUs*/
9743 if (!READ_ONCE(nohz.has_blocked) ||
9744 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9745 return;
9746
9747 raw_spin_unlock(&this_rq->lock);
9748 /*
9749 * This CPU is going to be idle and blocked load of idle CPUs
9750 * need to be updated. Run the ilb locally as it is a good
9751 * candidate for ilb instead of waking up another idle CPU.
9752 * Kick an normal ilb if we failed to do the update.
9753 */
9754 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9755 kick_ilb(NOHZ_STATS_KICK);
9756 raw_spin_lock(&this_rq->lock);
9757}
9758
dd707247
PZ
9759#else /* !CONFIG_NO_HZ_COMMON */
9760static inline void nohz_balancer_kick(struct rq *rq) { }
9761
31e77c93 9762static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9763{
9764 return false;
9765}
31e77c93
VG
9766
9767static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9768#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9769
47ea5412
PZ
9770/*
9771 * idle_balance is called by schedule() if this_cpu is about to become
9772 * idle. Attempts to pull tasks from other CPUs.
9773 */
5ba553ef 9774int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
9775{
9776 unsigned long next_balance = jiffies + HZ;
9777 int this_cpu = this_rq->cpu;
9778 struct sched_domain *sd;
9779 int pulled_task = 0;
9780 u64 curr_cost = 0;
9781
5ba553ef 9782 update_misfit_status(NULL, this_rq);
47ea5412
PZ
9783 /*
9784 * We must set idle_stamp _before_ calling idle_balance(), such that we
9785 * measure the duration of idle_balance() as idle time.
9786 */
9787 this_rq->idle_stamp = rq_clock(this_rq);
9788
9789 /*
9790 * Do not pull tasks towards !active CPUs...
9791 */
9792 if (!cpu_active(this_cpu))
9793 return 0;
9794
9795 /*
9796 * This is OK, because current is on_cpu, which avoids it being picked
9797 * for load-balance and preemption/IRQs are still disabled avoiding
9798 * further scheduler activity on it and we're being very careful to
9799 * re-start the picking loop.
9800 */
9801 rq_unpin_lock(this_rq, rf);
9802
9803 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9804 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9805
47ea5412
PZ
9806 rcu_read_lock();
9807 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9808 if (sd)
9809 update_next_balance(sd, &next_balance);
9810 rcu_read_unlock();
9811
31e77c93
VG
9812 nohz_newidle_balance(this_rq);
9813
47ea5412
PZ
9814 goto out;
9815 }
9816
9817 raw_spin_unlock(&this_rq->lock);
9818
9819 update_blocked_averages(this_cpu);
9820 rcu_read_lock();
9821 for_each_domain(this_cpu, sd) {
9822 int continue_balancing = 1;
9823 u64 t0, domain_cost;
9824
9825 if (!(sd->flags & SD_LOAD_BALANCE))
9826 continue;
9827
9828 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9829 update_next_balance(sd, &next_balance);
9830 break;
9831 }
9832
9833 if (sd->flags & SD_BALANCE_NEWIDLE) {
9834 t0 = sched_clock_cpu(this_cpu);
9835
9836 pulled_task = load_balance(this_cpu, this_rq,
9837 sd, CPU_NEWLY_IDLE,
9838 &continue_balancing);
9839
9840 domain_cost = sched_clock_cpu(this_cpu) - t0;
9841 if (domain_cost > sd->max_newidle_lb_cost)
9842 sd->max_newidle_lb_cost = domain_cost;
9843
9844 curr_cost += domain_cost;
9845 }
9846
9847 update_next_balance(sd, &next_balance);
9848
9849 /*
9850 * Stop searching for tasks to pull if there are
9851 * now runnable tasks on this rq.
9852 */
9853 if (pulled_task || this_rq->nr_running > 0)
9854 break;
9855 }
9856 rcu_read_unlock();
9857
9858 raw_spin_lock(&this_rq->lock);
9859
9860 if (curr_cost > this_rq->max_idle_balance_cost)
9861 this_rq->max_idle_balance_cost = curr_cost;
9862
457be908 9863out:
47ea5412
PZ
9864 /*
9865 * While browsing the domains, we released the rq lock, a task could
9866 * have been enqueued in the meantime. Since we're not going idle,
9867 * pretend we pulled a task.
9868 */
9869 if (this_rq->cfs.h_nr_running && !pulled_task)
9870 pulled_task = 1;
9871
47ea5412
PZ
9872 /* Move the next balance forward */
9873 if (time_after(this_rq->next_balance, next_balance))
9874 this_rq->next_balance = next_balance;
9875
9876 /* Is there a task of a high priority class? */
9877 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9878 pulled_task = -1;
9879
9880 if (pulled_task)
9881 this_rq->idle_stamp = 0;
9882
9883 rq_repin_lock(this_rq, rf);
9884
9885 return pulled_task;
9886}
9887
83cd4fe2
VP
9888/*
9889 * run_rebalance_domains is triggered when needed from the scheduler tick.
9890 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9891 */
0766f788 9892static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9893{
208cb16b 9894 struct rq *this_rq = this_rq();
6eb57e0d 9895 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9896 CPU_IDLE : CPU_NOT_IDLE;
9897
1e3c88bd 9898 /*
97fb7a0a
IM
9899 * If this CPU has a pending nohz_balance_kick, then do the
9900 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 9901 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 9902 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
9903 * load balance only within the local sched_domain hierarchy
9904 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9905 */
b7031a02
PZ
9906 if (nohz_idle_balance(this_rq, idle))
9907 return;
9908
9909 /* normal load balance */
9910 update_blocked_averages(this_rq->cpu);
d4573c3e 9911 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9912}
9913
1e3c88bd
PZ
9914/*
9915 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9916 */
7caff66f 9917void trigger_load_balance(struct rq *rq)
1e3c88bd 9918{
1e3c88bd 9919 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9920 if (unlikely(on_null_domain(rq)))
9921 return;
9922
9923 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9924 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
9925
9926 nohz_balancer_kick(rq);
1e3c88bd
PZ
9927}
9928
0bcdcf28
CE
9929static void rq_online_fair(struct rq *rq)
9930{
9931 update_sysctl();
0e59bdae
KT
9932
9933 update_runtime_enabled(rq);
0bcdcf28
CE
9934}
9935
9936static void rq_offline_fair(struct rq *rq)
9937{
9938 update_sysctl();
a4c96ae3
PB
9939
9940 /* Ensure any throttled groups are reachable by pick_next_task */
9941 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9942}
9943
55e12e5e 9944#endif /* CONFIG_SMP */
e1d1484f 9945
bf0f6f24 9946/*
d84b3131
FW
9947 * scheduler tick hitting a task of our scheduling class.
9948 *
9949 * NOTE: This function can be called remotely by the tick offload that
9950 * goes along full dynticks. Therefore no local assumption can be made
9951 * and everything must be accessed through the @rq and @curr passed in
9952 * parameters.
bf0f6f24 9953 */
8f4d37ec 9954static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9955{
9956 struct cfs_rq *cfs_rq;
9957 struct sched_entity *se = &curr->se;
9958
9959 for_each_sched_entity(se) {
9960 cfs_rq = cfs_rq_of(se);
8f4d37ec 9961 entity_tick(cfs_rq, se, queued);
bf0f6f24 9962 }
18bf2805 9963
b52da86e 9964 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9965 task_tick_numa(rq, curr);
3b1baa64
MR
9966
9967 update_misfit_status(curr, rq);
2802bf3c 9968 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
9969}
9970
9971/*
cd29fe6f
PZ
9972 * called on fork with the child task as argument from the parent's context
9973 * - child not yet on the tasklist
9974 * - preemption disabled
bf0f6f24 9975 */
cd29fe6f 9976static void task_fork_fair(struct task_struct *p)
bf0f6f24 9977{
4fc420c9
DN
9978 struct cfs_rq *cfs_rq;
9979 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9980 struct rq *rq = this_rq();
8a8c69c3 9981 struct rq_flags rf;
bf0f6f24 9982
8a8c69c3 9983 rq_lock(rq, &rf);
861d034e
PZ
9984 update_rq_clock(rq);
9985
4fc420c9
DN
9986 cfs_rq = task_cfs_rq(current);
9987 curr = cfs_rq->curr;
e210bffd
PZ
9988 if (curr) {
9989 update_curr(cfs_rq);
b5d9d734 9990 se->vruntime = curr->vruntime;
e210bffd 9991 }
aeb73b04 9992 place_entity(cfs_rq, se, 1);
4d78e7b6 9993
cd29fe6f 9994 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9995 /*
edcb60a3
IM
9996 * Upon rescheduling, sched_class::put_prev_task() will place
9997 * 'current' within the tree based on its new key value.
9998 */
4d78e7b6 9999 swap(curr->vruntime, se->vruntime);
8875125e 10000 resched_curr(rq);
4d78e7b6 10001 }
bf0f6f24 10002
88ec22d3 10003 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10004 rq_unlock(rq, &rf);
bf0f6f24
IM
10005}
10006
cb469845
SR
10007/*
10008 * Priority of the task has changed. Check to see if we preempt
10009 * the current task.
10010 */
da7a735e
PZ
10011static void
10012prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10013{
da0c1e65 10014 if (!task_on_rq_queued(p))
da7a735e
PZ
10015 return;
10016
cb469845
SR
10017 /*
10018 * Reschedule if we are currently running on this runqueue and
10019 * our priority decreased, or if we are not currently running on
10020 * this runqueue and our priority is higher than the current's
10021 */
da7a735e 10022 if (rq->curr == p) {
cb469845 10023 if (p->prio > oldprio)
8875125e 10024 resched_curr(rq);
cb469845 10025 } else
15afe09b 10026 check_preempt_curr(rq, p, 0);
cb469845
SR
10027}
10028
daa59407 10029static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10030{
10031 struct sched_entity *se = &p->se;
da7a735e
PZ
10032
10033 /*
daa59407
BP
10034 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10035 * the dequeue_entity(.flags=0) will already have normalized the
10036 * vruntime.
10037 */
10038 if (p->on_rq)
10039 return true;
10040
10041 /*
10042 * When !on_rq, vruntime of the task has usually NOT been normalized.
10043 * But there are some cases where it has already been normalized:
da7a735e 10044 *
daa59407
BP
10045 * - A forked child which is waiting for being woken up by
10046 * wake_up_new_task().
10047 * - A task which has been woken up by try_to_wake_up() and
10048 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10049 */
d0cdb3ce
SM
10050 if (!se->sum_exec_runtime ||
10051 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10052 return true;
10053
10054 return false;
10055}
10056
09a43ace
VG
10057#ifdef CONFIG_FAIR_GROUP_SCHED
10058/*
10059 * Propagate the changes of the sched_entity across the tg tree to make it
10060 * visible to the root
10061 */
10062static void propagate_entity_cfs_rq(struct sched_entity *se)
10063{
10064 struct cfs_rq *cfs_rq;
10065
10066 /* Start to propagate at parent */
10067 se = se->parent;
10068
10069 for_each_sched_entity(se) {
10070 cfs_rq = cfs_rq_of(se);
10071
10072 if (cfs_rq_throttled(cfs_rq))
10073 break;
10074
88c0616e 10075 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10076 }
10077}
10078#else
10079static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10080#endif
10081
df217913 10082static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10083{
daa59407
BP
10084 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10085
9d89c257 10086 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10087 update_load_avg(cfs_rq, se, 0);
a05e8c51 10088 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10089 update_tg_load_avg(cfs_rq, false);
09a43ace 10090 propagate_entity_cfs_rq(se);
da7a735e
PZ
10091}
10092
df217913 10093static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10094{
daa59407 10095 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10096
10097#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10098 /*
10099 * Since the real-depth could have been changed (only FAIR
10100 * class maintain depth value), reset depth properly.
10101 */
10102 se->depth = se->parent ? se->parent->depth + 1 : 0;
10103#endif
7855a35a 10104
df217913 10105 /* Synchronize entity with its cfs_rq */
88c0616e 10106 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10107 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10108 update_tg_load_avg(cfs_rq, false);
09a43ace 10109 propagate_entity_cfs_rq(se);
df217913
VG
10110}
10111
10112static void detach_task_cfs_rq(struct task_struct *p)
10113{
10114 struct sched_entity *se = &p->se;
10115 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10116
10117 if (!vruntime_normalized(p)) {
10118 /*
10119 * Fix up our vruntime so that the current sleep doesn't
10120 * cause 'unlimited' sleep bonus.
10121 */
10122 place_entity(cfs_rq, se, 0);
10123 se->vruntime -= cfs_rq->min_vruntime;
10124 }
10125
10126 detach_entity_cfs_rq(se);
10127}
10128
10129static void attach_task_cfs_rq(struct task_struct *p)
10130{
10131 struct sched_entity *se = &p->se;
10132 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10133
10134 attach_entity_cfs_rq(se);
daa59407
BP
10135
10136 if (!vruntime_normalized(p))
10137 se->vruntime += cfs_rq->min_vruntime;
10138}
6efdb105 10139
daa59407
BP
10140static void switched_from_fair(struct rq *rq, struct task_struct *p)
10141{
10142 detach_task_cfs_rq(p);
10143}
10144
10145static void switched_to_fair(struct rq *rq, struct task_struct *p)
10146{
10147 attach_task_cfs_rq(p);
7855a35a 10148
daa59407 10149 if (task_on_rq_queued(p)) {
7855a35a 10150 /*
daa59407
BP
10151 * We were most likely switched from sched_rt, so
10152 * kick off the schedule if running, otherwise just see
10153 * if we can still preempt the current task.
7855a35a 10154 */
daa59407
BP
10155 if (rq->curr == p)
10156 resched_curr(rq);
10157 else
10158 check_preempt_curr(rq, p, 0);
7855a35a 10159 }
cb469845
SR
10160}
10161
83b699ed
SV
10162/* Account for a task changing its policy or group.
10163 *
10164 * This routine is mostly called to set cfs_rq->curr field when a task
10165 * migrates between groups/classes.
10166 */
74b2f168 10167static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10168{
03b7fad1
PZ
10169 struct sched_entity *se = &p->se;
10170
10171#ifdef CONFIG_SMP
10172 if (task_on_rq_queued(p)) {
10173 /*
10174 * Move the next running task to the front of the list, so our
10175 * cfs_tasks list becomes MRU one.
10176 */
10177 list_move(&se->group_node, &rq->cfs_tasks);
10178 }
10179#endif
83b699ed 10180
ec12cb7f
PT
10181 for_each_sched_entity(se) {
10182 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10183
10184 set_next_entity(cfs_rq, se);
10185 /* ensure bandwidth has been allocated on our new cfs_rq */
10186 account_cfs_rq_runtime(cfs_rq, 0);
10187 }
83b699ed
SV
10188}
10189
029632fb
PZ
10190void init_cfs_rq(struct cfs_rq *cfs_rq)
10191{
bfb06889 10192 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10193 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10194#ifndef CONFIG_64BIT
10195 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10196#endif
141965c7 10197#ifdef CONFIG_SMP
2a2f5d4e 10198 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10199#endif
029632fb
PZ
10200}
10201
810b3817 10202#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10203static void task_set_group_fair(struct task_struct *p)
10204{
10205 struct sched_entity *se = &p->se;
10206
10207 set_task_rq(p, task_cpu(p));
10208 se->depth = se->parent ? se->parent->depth + 1 : 0;
10209}
10210
bc54da21 10211static void task_move_group_fair(struct task_struct *p)
810b3817 10212{
daa59407 10213 detach_task_cfs_rq(p);
b2b5ce02 10214 set_task_rq(p, task_cpu(p));
6efdb105
BP
10215
10216#ifdef CONFIG_SMP
10217 /* Tell se's cfs_rq has been changed -- migrated */
10218 p->se.avg.last_update_time = 0;
10219#endif
daa59407 10220 attach_task_cfs_rq(p);
810b3817 10221}
029632fb 10222
ea86cb4b
VG
10223static void task_change_group_fair(struct task_struct *p, int type)
10224{
10225 switch (type) {
10226 case TASK_SET_GROUP:
10227 task_set_group_fair(p);
10228 break;
10229
10230 case TASK_MOVE_GROUP:
10231 task_move_group_fair(p);
10232 break;
10233 }
10234}
10235
029632fb
PZ
10236void free_fair_sched_group(struct task_group *tg)
10237{
10238 int i;
10239
10240 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10241
10242 for_each_possible_cpu(i) {
10243 if (tg->cfs_rq)
10244 kfree(tg->cfs_rq[i]);
6fe1f348 10245 if (tg->se)
029632fb
PZ
10246 kfree(tg->se[i]);
10247 }
10248
10249 kfree(tg->cfs_rq);
10250 kfree(tg->se);
10251}
10252
10253int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10254{
029632fb 10255 struct sched_entity *se;
b7fa30c9 10256 struct cfs_rq *cfs_rq;
029632fb
PZ
10257 int i;
10258
6396bb22 10259 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10260 if (!tg->cfs_rq)
10261 goto err;
6396bb22 10262 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10263 if (!tg->se)
10264 goto err;
10265
10266 tg->shares = NICE_0_LOAD;
10267
10268 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10269
10270 for_each_possible_cpu(i) {
10271 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10272 GFP_KERNEL, cpu_to_node(i));
10273 if (!cfs_rq)
10274 goto err;
10275
10276 se = kzalloc_node(sizeof(struct sched_entity),
10277 GFP_KERNEL, cpu_to_node(i));
10278 if (!se)
10279 goto err_free_rq;
10280
10281 init_cfs_rq(cfs_rq);
10282 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10283 init_entity_runnable_average(se);
029632fb
PZ
10284 }
10285
10286 return 1;
10287
10288err_free_rq:
10289 kfree(cfs_rq);
10290err:
10291 return 0;
10292}
10293
8663e24d
PZ
10294void online_fair_sched_group(struct task_group *tg)
10295{
10296 struct sched_entity *se;
a46d14ec 10297 struct rq_flags rf;
8663e24d
PZ
10298 struct rq *rq;
10299 int i;
10300
10301 for_each_possible_cpu(i) {
10302 rq = cpu_rq(i);
10303 se = tg->se[i];
a46d14ec 10304 rq_lock_irq(rq, &rf);
4126bad6 10305 update_rq_clock(rq);
d0326691 10306 attach_entity_cfs_rq(se);
55e16d30 10307 sync_throttle(tg, i);
a46d14ec 10308 rq_unlock_irq(rq, &rf);
8663e24d
PZ
10309 }
10310}
10311
6fe1f348 10312void unregister_fair_sched_group(struct task_group *tg)
029632fb 10313{
029632fb 10314 unsigned long flags;
6fe1f348
PZ
10315 struct rq *rq;
10316 int cpu;
029632fb 10317
6fe1f348
PZ
10318 for_each_possible_cpu(cpu) {
10319 if (tg->se[cpu])
10320 remove_entity_load_avg(tg->se[cpu]);
029632fb 10321
6fe1f348
PZ
10322 /*
10323 * Only empty task groups can be destroyed; so we can speculatively
10324 * check on_list without danger of it being re-added.
10325 */
10326 if (!tg->cfs_rq[cpu]->on_list)
10327 continue;
10328
10329 rq = cpu_rq(cpu);
10330
10331 raw_spin_lock_irqsave(&rq->lock, flags);
10332 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10333 raw_spin_unlock_irqrestore(&rq->lock, flags);
10334 }
029632fb
PZ
10335}
10336
10337void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10338 struct sched_entity *se, int cpu,
10339 struct sched_entity *parent)
10340{
10341 struct rq *rq = cpu_rq(cpu);
10342
10343 cfs_rq->tg = tg;
10344 cfs_rq->rq = rq;
029632fb
PZ
10345 init_cfs_rq_runtime(cfs_rq);
10346
10347 tg->cfs_rq[cpu] = cfs_rq;
10348 tg->se[cpu] = se;
10349
10350 /* se could be NULL for root_task_group */
10351 if (!se)
10352 return;
10353
fed14d45 10354 if (!parent) {
029632fb 10355 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10356 se->depth = 0;
10357 } else {
029632fb 10358 se->cfs_rq = parent->my_q;
fed14d45
PZ
10359 se->depth = parent->depth + 1;
10360 }
029632fb
PZ
10361
10362 se->my_q = cfs_rq;
0ac9b1c2
PT
10363 /* guarantee group entities always have weight */
10364 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10365 se->parent = parent;
10366}
10367
10368static DEFINE_MUTEX(shares_mutex);
10369
10370int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10371{
10372 int i;
029632fb
PZ
10373
10374 /*
10375 * We can't change the weight of the root cgroup.
10376 */
10377 if (!tg->se[0])
10378 return -EINVAL;
10379
10380 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10381
10382 mutex_lock(&shares_mutex);
10383 if (tg->shares == shares)
10384 goto done;
10385
10386 tg->shares = shares;
10387 for_each_possible_cpu(i) {
10388 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10389 struct sched_entity *se = tg->se[i];
10390 struct rq_flags rf;
029632fb 10391
029632fb 10392 /* Propagate contribution to hierarchy */
8a8c69c3 10393 rq_lock_irqsave(rq, &rf);
71b1da46 10394 update_rq_clock(rq);
89ee048f 10395 for_each_sched_entity(se) {
88c0616e 10396 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10397 update_cfs_group(se);
89ee048f 10398 }
8a8c69c3 10399 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10400 }
10401
10402done:
10403 mutex_unlock(&shares_mutex);
10404 return 0;
10405}
10406#else /* CONFIG_FAIR_GROUP_SCHED */
10407
10408void free_fair_sched_group(struct task_group *tg) { }
10409
10410int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10411{
10412 return 1;
10413}
10414
8663e24d
PZ
10415void online_fair_sched_group(struct task_group *tg) { }
10416
6fe1f348 10417void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10418
10419#endif /* CONFIG_FAIR_GROUP_SCHED */
10420
810b3817 10421
6d686f45 10422static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10423{
10424 struct sched_entity *se = &task->se;
0d721cea
PW
10425 unsigned int rr_interval = 0;
10426
10427 /*
10428 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10429 * idle runqueue:
10430 */
0d721cea 10431 if (rq->cfs.load.weight)
a59f4e07 10432 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10433
10434 return rr_interval;
10435}
10436
bf0f6f24
IM
10437/*
10438 * All the scheduling class methods:
10439 */
029632fb 10440const struct sched_class fair_sched_class = {
5522d5d5 10441 .next = &idle_sched_class,
bf0f6f24
IM
10442 .enqueue_task = enqueue_task_fair,
10443 .dequeue_task = dequeue_task_fair,
10444 .yield_task = yield_task_fair,
d95f4122 10445 .yield_to_task = yield_to_task_fair,
bf0f6f24 10446
2e09bf55 10447 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10448
10449 .pick_next_task = pick_next_task_fair,
10450 .put_prev_task = put_prev_task_fair,
03b7fad1 10451 .set_next_task = set_next_task_fair,
bf0f6f24 10452
681f3e68 10453#ifdef CONFIG_SMP
6e2df058 10454 .balance = balance_fair,
4ce72a2c 10455 .select_task_rq = select_task_rq_fair,
0a74bef8 10456 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10457
0bcdcf28
CE
10458 .rq_online = rq_online_fair,
10459 .rq_offline = rq_offline_fair,
88ec22d3 10460
12695578 10461 .task_dead = task_dead_fair,
c5b28038 10462 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10463#endif
bf0f6f24 10464
bf0f6f24 10465 .task_tick = task_tick_fair,
cd29fe6f 10466 .task_fork = task_fork_fair,
cb469845
SR
10467
10468 .prio_changed = prio_changed_fair,
da7a735e 10469 .switched_from = switched_from_fair,
cb469845 10470 .switched_to = switched_to_fair,
810b3817 10471
0d721cea
PW
10472 .get_rr_interval = get_rr_interval_fair,
10473
6e998916
SG
10474 .update_curr = update_curr_fair,
10475
810b3817 10476#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10477 .task_change_group = task_change_group_fair,
810b3817 10478#endif
982d9cdc
PB
10479
10480#ifdef CONFIG_UCLAMP_TASK
10481 .uclamp_enabled = 1,
10482#endif
bf0f6f24
IM
10483};
10484
10485#ifdef CONFIG_SCHED_DEBUG
029632fb 10486void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10487{
039ae8bc 10488 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10489
5973e5b9 10490 rcu_read_lock();
039ae8bc 10491 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10492 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10493 rcu_read_unlock();
bf0f6f24 10494}
397f2378
SD
10495
10496#ifdef CONFIG_NUMA_BALANCING
10497void show_numa_stats(struct task_struct *p, struct seq_file *m)
10498{
10499 int node;
10500 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 10501 struct numa_group *ng;
397f2378 10502
cb361d8c
JH
10503 rcu_read_lock();
10504 ng = rcu_dereference(p->numa_group);
397f2378
SD
10505 for_each_online_node(node) {
10506 if (p->numa_faults) {
10507 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10508 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10509 }
cb361d8c
JH
10510 if (ng) {
10511 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10512 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
10513 }
10514 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10515 }
cb361d8c 10516 rcu_read_unlock();
397f2378
SD
10517}
10518#endif /* CONFIG_NUMA_BALANCING */
10519#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10520
10521__init void init_sched_fair_class(void)
10522{
10523#ifdef CONFIG_SMP
10524 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10525
3451d024 10526#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10527 nohz.next_balance = jiffies;
f643ea22 10528 nohz.next_blocked = jiffies;
029632fb 10529 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10530#endif
10531#endif /* SMP */
10532
10533}
3c93a0c0
QY
10534
10535/*
10536 * Helper functions to facilitate extracting info from tracepoints.
10537 */
10538
10539const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10540{
10541#ifdef CONFIG_SMP
10542 return cfs_rq ? &cfs_rq->avg : NULL;
10543#else
10544 return NULL;
10545#endif
10546}
10547EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10548
10549char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10550{
10551 if (!cfs_rq) {
10552 if (str)
10553 strlcpy(str, "(null)", len);
10554 else
10555 return NULL;
10556 }
10557
10558 cfs_rq_tg_path(cfs_rq, str, len);
10559 return str;
10560}
10561EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10562
10563int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10564{
10565 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10566}
10567EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10568
10569const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10570{
10571#ifdef CONFIG_SMP
10572 return rq ? &rq->avg_rt : NULL;
10573#else
10574 return NULL;
10575#endif
10576}
10577EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10578
10579const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10580{
10581#ifdef CONFIG_SMP
10582 return rq ? &rq->avg_dl : NULL;
10583#else
10584 return NULL;
10585#endif
10586}
10587EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10588
10589const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10590{
10591#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10592 return rq ? &rq->avg_irq : NULL;
10593#else
10594 return NULL;
10595#endif
10596}
10597EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10598
10599int sched_trace_rq_cpu(struct rq *rq)
10600{
10601 return rq ? cpu_of(rq) : -1;
10602}
10603EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10604
10605const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10606{
10607#ifdef CONFIG_SMP
10608 return rd ? rd->span : NULL;
10609#else
10610 return NULL;
10611#endif
10612}
10613EXPORT_SYMBOL_GPL(sched_trace_rd_span);