]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/fair.c
Documentation/scheduler/sched-deadline.txt: Add minimal main() appendix
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
ced549fa 1020static unsigned long capacity_of(int cpu);
58d081b5
MG
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
83d7f242
RR
1041 int smt, cpu, cpus = 0;
1042 unsigned long capacity;
fb13c7ee
MG
1043
1044 memset(ns, 0, sizeof(*ns));
1045 for_each_cpu(cpu, cpumask_of_node(nid)) {
1046 struct rq *rq = cpu_rq(cpu);
1047
1048 ns->nr_running += rq->nr_running;
1049 ns->load += weighted_cpuload(cpu);
ced549fa 1050 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1051
1052 cpus++;
fb13c7ee
MG
1053 }
1054
5eca82a9
PZ
1055 /*
1056 * If we raced with hotplug and there are no CPUs left in our mask
1057 * the @ns structure is NULL'ed and task_numa_compare() will
1058 * not find this node attractive.
1059 *
1b6a7495
NP
1060 * We'll either bail at !has_free_capacity, or we'll detect a huge
1061 * imbalance and bail there.
5eca82a9
PZ
1062 */
1063 if (!cpus)
1064 return;
1065
83d7f242
RR
1066 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1067 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1068 capacity = cpus / smt; /* cores */
1069
1070 ns->task_capacity = min_t(unsigned, capacity,
1071 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1072 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1073}
1074
58d081b5
MG
1075struct task_numa_env {
1076 struct task_struct *p;
e6628d5b 1077
58d081b5
MG
1078 int src_cpu, src_nid;
1079 int dst_cpu, dst_nid;
e6628d5b 1080
58d081b5 1081 struct numa_stats src_stats, dst_stats;
e6628d5b 1082
40ea2b42 1083 int imbalance_pct;
fb13c7ee
MG
1084
1085 struct task_struct *best_task;
1086 long best_imp;
58d081b5
MG
1087 int best_cpu;
1088};
1089
fb13c7ee
MG
1090static void task_numa_assign(struct task_numa_env *env,
1091 struct task_struct *p, long imp)
1092{
1093 if (env->best_task)
1094 put_task_struct(env->best_task);
1095 if (p)
1096 get_task_struct(p);
1097
1098 env->best_task = p;
1099 env->best_imp = imp;
1100 env->best_cpu = env->dst_cpu;
1101}
1102
28a21745 1103static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1104 struct task_numa_env *env)
1105{
1106 long imb, old_imb;
28a21745
RR
1107 long orig_src_load, orig_dst_load;
1108 long src_capacity, dst_capacity;
1109
1110 /*
1111 * The load is corrected for the CPU capacity available on each node.
1112 *
1113 * src_load dst_load
1114 * ------------ vs ---------
1115 * src_capacity dst_capacity
1116 */
1117 src_capacity = env->src_stats.compute_capacity;
1118 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1119
1120 /* We care about the slope of the imbalance, not the direction. */
1121 if (dst_load < src_load)
1122 swap(dst_load, src_load);
1123
1124 /* Is the difference below the threshold? */
28a21745
RR
1125 imb = dst_load * src_capacity * 100 -
1126 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1127 if (imb <= 0)
1128 return false;
1129
1130 /*
1131 * The imbalance is above the allowed threshold.
1132 * Compare it with the old imbalance.
1133 */
28a21745
RR
1134 orig_src_load = env->src_stats.load;
1135 orig_dst_load = env->dst_stats.load;
1136
e63da036
RR
1137 if (orig_dst_load < orig_src_load)
1138 swap(orig_dst_load, orig_src_load);
1139
28a21745
RR
1140 old_imb = orig_dst_load * src_capacity * 100 -
1141 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1142
1143 /* Would this change make things worse? */
1662867a 1144 return (imb > old_imb);
e63da036
RR
1145}
1146
fb13c7ee
MG
1147/*
1148 * This checks if the overall compute and NUMA accesses of the system would
1149 * be improved if the source tasks was migrated to the target dst_cpu taking
1150 * into account that it might be best if task running on the dst_cpu should
1151 * be exchanged with the source task
1152 */
887c290e
RR
1153static void task_numa_compare(struct task_numa_env *env,
1154 long taskimp, long groupimp)
fb13c7ee
MG
1155{
1156 struct rq *src_rq = cpu_rq(env->src_cpu);
1157 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1158 struct task_struct *cur;
28a21745 1159 long src_load, dst_load;
fb13c7ee 1160 long load;
1c5d3eb3 1161 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1162 long moveimp = imp;
fb13c7ee
MG
1163
1164 rcu_read_lock();
1165 cur = ACCESS_ONCE(dst_rq->curr);
1166 if (cur->pid == 0) /* idle */
1167 cur = NULL;
1168
1169 /*
1170 * "imp" is the fault differential for the source task between the
1171 * source and destination node. Calculate the total differential for
1172 * the source task and potential destination task. The more negative
1173 * the value is, the more rmeote accesses that would be expected to
1174 * be incurred if the tasks were swapped.
1175 */
1176 if (cur) {
1177 /* Skip this swap candidate if cannot move to the source cpu */
1178 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1179 goto unlock;
1180
887c290e
RR
1181 /*
1182 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1183 * in any group then look only at task weights.
887c290e 1184 */
ca28aa53 1185 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1186 imp = taskimp + task_weight(cur, env->src_nid) -
1187 task_weight(cur, env->dst_nid);
ca28aa53
RR
1188 /*
1189 * Add some hysteresis to prevent swapping the
1190 * tasks within a group over tiny differences.
1191 */
1192 if (cur->numa_group)
1193 imp -= imp/16;
887c290e 1194 } else {
ca28aa53
RR
1195 /*
1196 * Compare the group weights. If a task is all by
1197 * itself (not part of a group), use the task weight
1198 * instead.
1199 */
ca28aa53
RR
1200 if (cur->numa_group)
1201 imp += group_weight(cur, env->src_nid) -
1202 group_weight(cur, env->dst_nid);
1203 else
1204 imp += task_weight(cur, env->src_nid) -
1205 task_weight(cur, env->dst_nid);
887c290e 1206 }
fb13c7ee
MG
1207 }
1208
0132c3e1 1209 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1210 goto unlock;
1211
1212 if (!cur) {
1213 /* Is there capacity at our destination? */
b932c03c 1214 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1215 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1216 goto unlock;
1217
1218 goto balance;
1219 }
1220
1221 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1222 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1223 dst_rq->nr_running == 1)
fb13c7ee
MG
1224 goto assign;
1225
1226 /*
1227 * In the overloaded case, try and keep the load balanced.
1228 */
1229balance:
e720fff6
PZ
1230 load = task_h_load(env->p);
1231 dst_load = env->dst_stats.load + load;
1232 src_load = env->src_stats.load - load;
fb13c7ee 1233
0132c3e1
RR
1234 if (moveimp > imp && moveimp > env->best_imp) {
1235 /*
1236 * If the improvement from just moving env->p direction is
1237 * better than swapping tasks around, check if a move is
1238 * possible. Store a slightly smaller score than moveimp,
1239 * so an actually idle CPU will win.
1240 */
1241 if (!load_too_imbalanced(src_load, dst_load, env)) {
1242 imp = moveimp - 1;
1243 cur = NULL;
1244 goto assign;
1245 }
1246 }
1247
1248 if (imp <= env->best_imp)
1249 goto unlock;
1250
fb13c7ee 1251 if (cur) {
e720fff6
PZ
1252 load = task_h_load(cur);
1253 dst_load -= load;
1254 src_load += load;
fb13c7ee
MG
1255 }
1256
28a21745 1257 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1258 goto unlock;
1259
1260assign:
1261 task_numa_assign(env, cur, imp);
1262unlock:
1263 rcu_read_unlock();
1264}
1265
887c290e
RR
1266static void task_numa_find_cpu(struct task_numa_env *env,
1267 long taskimp, long groupimp)
2c8a50aa
MG
1268{
1269 int cpu;
1270
1271 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1272 /* Skip this CPU if the source task cannot migrate */
1273 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1274 continue;
1275
1276 env->dst_cpu = cpu;
887c290e 1277 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1278 }
1279}
1280
58d081b5
MG
1281static int task_numa_migrate(struct task_struct *p)
1282{
58d081b5
MG
1283 struct task_numa_env env = {
1284 .p = p,
fb13c7ee 1285
58d081b5 1286 .src_cpu = task_cpu(p),
b32e86b4 1287 .src_nid = task_node(p),
fb13c7ee
MG
1288
1289 .imbalance_pct = 112,
1290
1291 .best_task = NULL,
1292 .best_imp = 0,
1293 .best_cpu = -1
58d081b5
MG
1294 };
1295 struct sched_domain *sd;
887c290e 1296 unsigned long taskweight, groupweight;
2c8a50aa 1297 int nid, ret;
887c290e 1298 long taskimp, groupimp;
e6628d5b 1299
58d081b5 1300 /*
fb13c7ee
MG
1301 * Pick the lowest SD_NUMA domain, as that would have the smallest
1302 * imbalance and would be the first to start moving tasks about.
1303 *
1304 * And we want to avoid any moving of tasks about, as that would create
1305 * random movement of tasks -- counter the numa conditions we're trying
1306 * to satisfy here.
58d081b5
MG
1307 */
1308 rcu_read_lock();
fb13c7ee 1309 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1310 if (sd)
1311 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1312 rcu_read_unlock();
1313
46a73e8a
RR
1314 /*
1315 * Cpusets can break the scheduler domain tree into smaller
1316 * balance domains, some of which do not cross NUMA boundaries.
1317 * Tasks that are "trapped" in such domains cannot be migrated
1318 * elsewhere, so there is no point in (re)trying.
1319 */
1320 if (unlikely(!sd)) {
de1b301a 1321 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1322 return -EINVAL;
1323 }
1324
887c290e
RR
1325 taskweight = task_weight(p, env.src_nid);
1326 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1327 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1328 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1329 taskimp = task_weight(p, env.dst_nid) - taskweight;
1330 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1331 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1332
a43455a1
RR
1333 /* Try to find a spot on the preferred nid. */
1334 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1335
1336 /* No space available on the preferred nid. Look elsewhere. */
1337 if (env.best_cpu == -1) {
2c8a50aa
MG
1338 for_each_online_node(nid) {
1339 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1340 continue;
58d081b5 1341
83e1d2cd 1342 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1343 taskimp = task_weight(p, nid) - taskweight;
1344 groupimp = group_weight(p, nid) - groupweight;
1345 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1346 continue;
1347
2c8a50aa
MG
1348 env.dst_nid = nid;
1349 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1350 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1351 }
1352 }
1353
68d1b02a
RR
1354 /*
1355 * If the task is part of a workload that spans multiple NUMA nodes,
1356 * and is migrating into one of the workload's active nodes, remember
1357 * this node as the task's preferred numa node, so the workload can
1358 * settle down.
1359 * A task that migrated to a second choice node will be better off
1360 * trying for a better one later. Do not set the preferred node here.
1361 */
db015dae
RR
1362 if (p->numa_group) {
1363 if (env.best_cpu == -1)
1364 nid = env.src_nid;
1365 else
1366 nid = env.dst_nid;
1367
1368 if (node_isset(nid, p->numa_group->active_nodes))
1369 sched_setnuma(p, env.dst_nid);
1370 }
1371
1372 /* No better CPU than the current one was found. */
1373 if (env.best_cpu == -1)
1374 return -EAGAIN;
0ec8aa00 1375
04bb2f94
RR
1376 /*
1377 * Reset the scan period if the task is being rescheduled on an
1378 * alternative node to recheck if the tasks is now properly placed.
1379 */
1380 p->numa_scan_period = task_scan_min(p);
1381
fb13c7ee 1382 if (env.best_task == NULL) {
286549dc
MG
1383 ret = migrate_task_to(p, env.best_cpu);
1384 if (ret != 0)
1385 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1386 return ret;
1387 }
1388
1389 ret = migrate_swap(p, env.best_task);
286549dc
MG
1390 if (ret != 0)
1391 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1392 put_task_struct(env.best_task);
1393 return ret;
e6628d5b
MG
1394}
1395
6b9a7460
MG
1396/* Attempt to migrate a task to a CPU on the preferred node. */
1397static void numa_migrate_preferred(struct task_struct *p)
1398{
5085e2a3
RR
1399 unsigned long interval = HZ;
1400
2739d3ee 1401 /* This task has no NUMA fault statistics yet */
ff1df896 1402 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1403 return;
1404
2739d3ee 1405 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1406 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1407 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1408
1409 /* Success if task is already running on preferred CPU */
de1b301a 1410 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1411 return;
1412
1413 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1414 task_numa_migrate(p);
6b9a7460
MG
1415}
1416
20e07dea
RR
1417/*
1418 * Find the nodes on which the workload is actively running. We do this by
1419 * tracking the nodes from which NUMA hinting faults are triggered. This can
1420 * be different from the set of nodes where the workload's memory is currently
1421 * located.
1422 *
1423 * The bitmask is used to make smarter decisions on when to do NUMA page
1424 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1425 * are added when they cause over 6/16 of the maximum number of faults, but
1426 * only removed when they drop below 3/16.
1427 */
1428static void update_numa_active_node_mask(struct numa_group *numa_group)
1429{
1430 unsigned long faults, max_faults = 0;
1431 int nid;
1432
1433 for_each_online_node(nid) {
1434 faults = group_faults_cpu(numa_group, nid);
1435 if (faults > max_faults)
1436 max_faults = faults;
1437 }
1438
1439 for_each_online_node(nid) {
1440 faults = group_faults_cpu(numa_group, nid);
1441 if (!node_isset(nid, numa_group->active_nodes)) {
1442 if (faults > max_faults * 6 / 16)
1443 node_set(nid, numa_group->active_nodes);
1444 } else if (faults < max_faults * 3 / 16)
1445 node_clear(nid, numa_group->active_nodes);
1446 }
1447}
1448
04bb2f94
RR
1449/*
1450 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1451 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1452 * period will be for the next scan window. If local/(local+remote) ratio is
1453 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1454 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1455 */
1456#define NUMA_PERIOD_SLOTS 10
a22b4b01 1457#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1458
1459/*
1460 * Increase the scan period (slow down scanning) if the majority of
1461 * our memory is already on our local node, or if the majority of
1462 * the page accesses are shared with other processes.
1463 * Otherwise, decrease the scan period.
1464 */
1465static void update_task_scan_period(struct task_struct *p,
1466 unsigned long shared, unsigned long private)
1467{
1468 unsigned int period_slot;
1469 int ratio;
1470 int diff;
1471
1472 unsigned long remote = p->numa_faults_locality[0];
1473 unsigned long local = p->numa_faults_locality[1];
1474
1475 /*
1476 * If there were no record hinting faults then either the task is
1477 * completely idle or all activity is areas that are not of interest
1478 * to automatic numa balancing. Scan slower
1479 */
1480 if (local + shared == 0) {
1481 p->numa_scan_period = min(p->numa_scan_period_max,
1482 p->numa_scan_period << 1);
1483
1484 p->mm->numa_next_scan = jiffies +
1485 msecs_to_jiffies(p->numa_scan_period);
1486
1487 return;
1488 }
1489
1490 /*
1491 * Prepare to scale scan period relative to the current period.
1492 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1493 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1494 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1495 */
1496 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1497 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1498 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1499 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1500 if (!slot)
1501 slot = 1;
1502 diff = slot * period_slot;
1503 } else {
1504 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1505
1506 /*
1507 * Scale scan rate increases based on sharing. There is an
1508 * inverse relationship between the degree of sharing and
1509 * the adjustment made to the scanning period. Broadly
1510 * speaking the intent is that there is little point
1511 * scanning faster if shared accesses dominate as it may
1512 * simply bounce migrations uselessly
1513 */
04bb2f94
RR
1514 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1515 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1516 }
1517
1518 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1519 task_scan_min(p), task_scan_max(p));
1520 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1521}
1522
7e2703e6
RR
1523/*
1524 * Get the fraction of time the task has been running since the last
1525 * NUMA placement cycle. The scheduler keeps similar statistics, but
1526 * decays those on a 32ms period, which is orders of magnitude off
1527 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1528 * stats only if the task is so new there are no NUMA statistics yet.
1529 */
1530static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1531{
1532 u64 runtime, delta, now;
1533 /* Use the start of this time slice to avoid calculations. */
1534 now = p->se.exec_start;
1535 runtime = p->se.sum_exec_runtime;
1536
1537 if (p->last_task_numa_placement) {
1538 delta = runtime - p->last_sum_exec_runtime;
1539 *period = now - p->last_task_numa_placement;
1540 } else {
1541 delta = p->se.avg.runnable_avg_sum;
1542 *period = p->se.avg.runnable_avg_period;
1543 }
1544
1545 p->last_sum_exec_runtime = runtime;
1546 p->last_task_numa_placement = now;
1547
1548 return delta;
1549}
1550
cbee9f88
PZ
1551static void task_numa_placement(struct task_struct *p)
1552{
83e1d2cd
MG
1553 int seq, nid, max_nid = -1, max_group_nid = -1;
1554 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1555 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1556 unsigned long total_faults;
1557 u64 runtime, period;
7dbd13ed 1558 spinlock_t *group_lock = NULL;
cbee9f88 1559
2832bc19 1560 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1561 if (p->numa_scan_seq == seq)
1562 return;
1563 p->numa_scan_seq = seq;
598f0ec0 1564 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1565
7e2703e6
RR
1566 total_faults = p->numa_faults_locality[0] +
1567 p->numa_faults_locality[1];
1568 runtime = numa_get_avg_runtime(p, &period);
1569
7dbd13ed
MG
1570 /* If the task is part of a group prevent parallel updates to group stats */
1571 if (p->numa_group) {
1572 group_lock = &p->numa_group->lock;
60e69eed 1573 spin_lock_irq(group_lock);
7dbd13ed
MG
1574 }
1575
688b7585
MG
1576 /* Find the node with the highest number of faults */
1577 for_each_online_node(nid) {
83e1d2cd 1578 unsigned long faults = 0, group_faults = 0;
ac8e895b 1579 int priv, i;
745d6147 1580
be1e4e76 1581 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1582 long diff, f_diff, f_weight;
8c8a743c 1583
ac8e895b 1584 i = task_faults_idx(nid, priv);
745d6147 1585
ac8e895b 1586 /* Decay existing window, copy faults since last scan */
35664fd4 1587 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1588 fault_types[priv] += p->numa_faults_buffer_memory[i];
1589 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1590
7e2703e6
RR
1591 /*
1592 * Normalize the faults_from, so all tasks in a group
1593 * count according to CPU use, instead of by the raw
1594 * number of faults. Tasks with little runtime have
1595 * little over-all impact on throughput, and thus their
1596 * faults are less important.
1597 */
1598 f_weight = div64_u64(runtime << 16, period + 1);
1599 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1600 (total_faults + 1);
35664fd4 1601 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1602 p->numa_faults_buffer_cpu[i] = 0;
1603
35664fd4
RR
1604 p->numa_faults_memory[i] += diff;
1605 p->numa_faults_cpu[i] += f_diff;
ff1df896 1606 faults += p->numa_faults_memory[i];
83e1d2cd 1607 p->total_numa_faults += diff;
8c8a743c
PZ
1608 if (p->numa_group) {
1609 /* safe because we can only change our own group */
989348b5 1610 p->numa_group->faults[i] += diff;
50ec8a40 1611 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1612 p->numa_group->total_faults += diff;
1613 group_faults += p->numa_group->faults[i];
8c8a743c 1614 }
ac8e895b
MG
1615 }
1616
688b7585
MG
1617 if (faults > max_faults) {
1618 max_faults = faults;
1619 max_nid = nid;
1620 }
83e1d2cd
MG
1621
1622 if (group_faults > max_group_faults) {
1623 max_group_faults = group_faults;
1624 max_group_nid = nid;
1625 }
1626 }
1627
04bb2f94
RR
1628 update_task_scan_period(p, fault_types[0], fault_types[1]);
1629
7dbd13ed 1630 if (p->numa_group) {
20e07dea 1631 update_numa_active_node_mask(p->numa_group);
60e69eed 1632 spin_unlock_irq(group_lock);
f0b8a4af 1633 max_nid = max_group_nid;
688b7585
MG
1634 }
1635
bb97fc31
RR
1636 if (max_faults) {
1637 /* Set the new preferred node */
1638 if (max_nid != p->numa_preferred_nid)
1639 sched_setnuma(p, max_nid);
1640
1641 if (task_node(p) != p->numa_preferred_nid)
1642 numa_migrate_preferred(p);
3a7053b3 1643 }
cbee9f88
PZ
1644}
1645
8c8a743c
PZ
1646static inline int get_numa_group(struct numa_group *grp)
1647{
1648 return atomic_inc_not_zero(&grp->refcount);
1649}
1650
1651static inline void put_numa_group(struct numa_group *grp)
1652{
1653 if (atomic_dec_and_test(&grp->refcount))
1654 kfree_rcu(grp, rcu);
1655}
1656
3e6a9418
MG
1657static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1658 int *priv)
8c8a743c
PZ
1659{
1660 struct numa_group *grp, *my_grp;
1661 struct task_struct *tsk;
1662 bool join = false;
1663 int cpu = cpupid_to_cpu(cpupid);
1664 int i;
1665
1666 if (unlikely(!p->numa_group)) {
1667 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1668 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1669
1670 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1671 if (!grp)
1672 return;
1673
1674 atomic_set(&grp->refcount, 1);
1675 spin_lock_init(&grp->lock);
1676 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1677 grp->gid = p->pid;
50ec8a40 1678 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1679 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1680 nr_node_ids;
8c8a743c 1681
20e07dea
RR
1682 node_set(task_node(current), grp->active_nodes);
1683
be1e4e76 1684 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1685 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1686
989348b5 1687 grp->total_faults = p->total_numa_faults;
83e1d2cd 1688
8c8a743c
PZ
1689 list_add(&p->numa_entry, &grp->task_list);
1690 grp->nr_tasks++;
1691 rcu_assign_pointer(p->numa_group, grp);
1692 }
1693
1694 rcu_read_lock();
1695 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1696
1697 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1698 goto no_join;
8c8a743c
PZ
1699
1700 grp = rcu_dereference(tsk->numa_group);
1701 if (!grp)
3354781a 1702 goto no_join;
8c8a743c
PZ
1703
1704 my_grp = p->numa_group;
1705 if (grp == my_grp)
3354781a 1706 goto no_join;
8c8a743c
PZ
1707
1708 /*
1709 * Only join the other group if its bigger; if we're the bigger group,
1710 * the other task will join us.
1711 */
1712 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1713 goto no_join;
8c8a743c
PZ
1714
1715 /*
1716 * Tie-break on the grp address.
1717 */
1718 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1719 goto no_join;
8c8a743c 1720
dabe1d99
RR
1721 /* Always join threads in the same process. */
1722 if (tsk->mm == current->mm)
1723 join = true;
1724
1725 /* Simple filter to avoid false positives due to PID collisions */
1726 if (flags & TNF_SHARED)
1727 join = true;
8c8a743c 1728
3e6a9418
MG
1729 /* Update priv based on whether false sharing was detected */
1730 *priv = !join;
1731
dabe1d99 1732 if (join && !get_numa_group(grp))
3354781a 1733 goto no_join;
8c8a743c 1734
8c8a743c
PZ
1735 rcu_read_unlock();
1736
1737 if (!join)
1738 return;
1739
60e69eed
MG
1740 BUG_ON(irqs_disabled());
1741 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1742
be1e4e76 1743 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1744 my_grp->faults[i] -= p->numa_faults_memory[i];
1745 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1746 }
989348b5
MG
1747 my_grp->total_faults -= p->total_numa_faults;
1748 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1749
1750 list_move(&p->numa_entry, &grp->task_list);
1751 my_grp->nr_tasks--;
1752 grp->nr_tasks++;
1753
1754 spin_unlock(&my_grp->lock);
60e69eed 1755 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1756
1757 rcu_assign_pointer(p->numa_group, grp);
1758
1759 put_numa_group(my_grp);
3354781a
PZ
1760 return;
1761
1762no_join:
1763 rcu_read_unlock();
1764 return;
8c8a743c
PZ
1765}
1766
1767void task_numa_free(struct task_struct *p)
1768{
1769 struct numa_group *grp = p->numa_group;
ff1df896 1770 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1771 unsigned long flags;
1772 int i;
8c8a743c
PZ
1773
1774 if (grp) {
e9dd685c 1775 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1776 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1777 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1778 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1779
8c8a743c
PZ
1780 list_del(&p->numa_entry);
1781 grp->nr_tasks--;
e9dd685c 1782 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 1783 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
1784 put_numa_group(grp);
1785 }
1786
ff1df896
RR
1787 p->numa_faults_memory = NULL;
1788 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1789 p->numa_faults_cpu= NULL;
1790 p->numa_faults_buffer_cpu = NULL;
82727018 1791 kfree(numa_faults);
8c8a743c
PZ
1792}
1793
cbee9f88
PZ
1794/*
1795 * Got a PROT_NONE fault for a page on @node.
1796 */
58b46da3 1797void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1798{
1799 struct task_struct *p = current;
6688cc05 1800 bool migrated = flags & TNF_MIGRATED;
58b46da3 1801 int cpu_node = task_node(current);
792568ec 1802 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1803 int priv;
cbee9f88 1804
10e84b97 1805 if (!numabalancing_enabled)
1a687c2e
MG
1806 return;
1807
9ff1d9ff
MG
1808 /* for example, ksmd faulting in a user's mm */
1809 if (!p->mm)
1810 return;
1811
82727018
RR
1812 /* Do not worry about placement if exiting */
1813 if (p->state == TASK_DEAD)
1814 return;
1815
f809ca9a 1816 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1817 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1818 int size = sizeof(*p->numa_faults_memory) *
1819 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1820
be1e4e76 1821 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1822 if (!p->numa_faults_memory)
f809ca9a 1823 return;
745d6147 1824
ff1df896 1825 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1826 /*
1827 * The averaged statistics, shared & private, memory & cpu,
1828 * occupy the first half of the array. The second half of the
1829 * array is for current counters, which are averaged into the
1830 * first set by task_numa_placement.
1831 */
50ec8a40
RR
1832 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1833 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1834 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1835 p->total_numa_faults = 0;
04bb2f94 1836 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1837 }
cbee9f88 1838
8c8a743c
PZ
1839 /*
1840 * First accesses are treated as private, otherwise consider accesses
1841 * to be private if the accessing pid has not changed
1842 */
1843 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1844 priv = 1;
1845 } else {
1846 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1847 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1848 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1849 }
1850
792568ec
RR
1851 /*
1852 * If a workload spans multiple NUMA nodes, a shared fault that
1853 * occurs wholly within the set of nodes that the workload is
1854 * actively using should be counted as local. This allows the
1855 * scan rate to slow down when a workload has settled down.
1856 */
1857 if (!priv && !local && p->numa_group &&
1858 node_isset(cpu_node, p->numa_group->active_nodes) &&
1859 node_isset(mem_node, p->numa_group->active_nodes))
1860 local = 1;
1861
cbee9f88 1862 task_numa_placement(p);
f809ca9a 1863
2739d3ee
RR
1864 /*
1865 * Retry task to preferred node migration periodically, in case it
1866 * case it previously failed, or the scheduler moved us.
1867 */
1868 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1869 numa_migrate_preferred(p);
1870
b32e86b4
IM
1871 if (migrated)
1872 p->numa_pages_migrated += pages;
1873
58b46da3
RR
1874 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1875 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1876 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1877}
1878
6e5fb223
PZ
1879static void reset_ptenuma_scan(struct task_struct *p)
1880{
1881 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1882 p->mm->numa_scan_offset = 0;
1883}
1884
cbee9f88
PZ
1885/*
1886 * The expensive part of numa migration is done from task_work context.
1887 * Triggered from task_tick_numa().
1888 */
1889void task_numa_work(struct callback_head *work)
1890{
1891 unsigned long migrate, next_scan, now = jiffies;
1892 struct task_struct *p = current;
1893 struct mm_struct *mm = p->mm;
6e5fb223 1894 struct vm_area_struct *vma;
9f40604c 1895 unsigned long start, end;
598f0ec0 1896 unsigned long nr_pte_updates = 0;
9f40604c 1897 long pages;
cbee9f88
PZ
1898
1899 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1900
1901 work->next = work; /* protect against double add */
1902 /*
1903 * Who cares about NUMA placement when they're dying.
1904 *
1905 * NOTE: make sure not to dereference p->mm before this check,
1906 * exit_task_work() happens _after_ exit_mm() so we could be called
1907 * without p->mm even though we still had it when we enqueued this
1908 * work.
1909 */
1910 if (p->flags & PF_EXITING)
1911 return;
1912
930aa174 1913 if (!mm->numa_next_scan) {
7e8d16b6
MG
1914 mm->numa_next_scan = now +
1915 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1916 }
1917
cbee9f88
PZ
1918 /*
1919 * Enforce maximal scan/migration frequency..
1920 */
1921 migrate = mm->numa_next_scan;
1922 if (time_before(now, migrate))
1923 return;
1924
598f0ec0
MG
1925 if (p->numa_scan_period == 0) {
1926 p->numa_scan_period_max = task_scan_max(p);
1927 p->numa_scan_period = task_scan_min(p);
1928 }
cbee9f88 1929
fb003b80 1930 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1931 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1932 return;
1933
19a78d11
PZ
1934 /*
1935 * Delay this task enough that another task of this mm will likely win
1936 * the next time around.
1937 */
1938 p->node_stamp += 2 * TICK_NSEC;
1939
9f40604c
MG
1940 start = mm->numa_scan_offset;
1941 pages = sysctl_numa_balancing_scan_size;
1942 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1943 if (!pages)
1944 return;
cbee9f88 1945
6e5fb223 1946 down_read(&mm->mmap_sem);
9f40604c 1947 vma = find_vma(mm, start);
6e5fb223
PZ
1948 if (!vma) {
1949 reset_ptenuma_scan(p);
9f40604c 1950 start = 0;
6e5fb223
PZ
1951 vma = mm->mmap;
1952 }
9f40604c 1953 for (; vma; vma = vma->vm_next) {
fc314724 1954 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1955 continue;
1956
4591ce4f
MG
1957 /*
1958 * Shared library pages mapped by multiple processes are not
1959 * migrated as it is expected they are cache replicated. Avoid
1960 * hinting faults in read-only file-backed mappings or the vdso
1961 * as migrating the pages will be of marginal benefit.
1962 */
1963 if (!vma->vm_mm ||
1964 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1965 continue;
1966
3c67f474
MG
1967 /*
1968 * Skip inaccessible VMAs to avoid any confusion between
1969 * PROT_NONE and NUMA hinting ptes
1970 */
1971 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1972 continue;
4591ce4f 1973
9f40604c
MG
1974 do {
1975 start = max(start, vma->vm_start);
1976 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1977 end = min(end, vma->vm_end);
598f0ec0
MG
1978 nr_pte_updates += change_prot_numa(vma, start, end);
1979
1980 /*
1981 * Scan sysctl_numa_balancing_scan_size but ensure that
1982 * at least one PTE is updated so that unused virtual
1983 * address space is quickly skipped.
1984 */
1985 if (nr_pte_updates)
1986 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1987
9f40604c
MG
1988 start = end;
1989 if (pages <= 0)
1990 goto out;
3cf1962c
RR
1991
1992 cond_resched();
9f40604c 1993 } while (end != vma->vm_end);
cbee9f88 1994 }
6e5fb223 1995
9f40604c 1996out:
6e5fb223 1997 /*
c69307d5
PZ
1998 * It is possible to reach the end of the VMA list but the last few
1999 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2000 * would find the !migratable VMA on the next scan but not reset the
2001 * scanner to the start so check it now.
6e5fb223
PZ
2002 */
2003 if (vma)
9f40604c 2004 mm->numa_scan_offset = start;
6e5fb223
PZ
2005 else
2006 reset_ptenuma_scan(p);
2007 up_read(&mm->mmap_sem);
cbee9f88
PZ
2008}
2009
2010/*
2011 * Drive the periodic memory faults..
2012 */
2013void task_tick_numa(struct rq *rq, struct task_struct *curr)
2014{
2015 struct callback_head *work = &curr->numa_work;
2016 u64 period, now;
2017
2018 /*
2019 * We don't care about NUMA placement if we don't have memory.
2020 */
2021 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2022 return;
2023
2024 /*
2025 * Using runtime rather than walltime has the dual advantage that
2026 * we (mostly) drive the selection from busy threads and that the
2027 * task needs to have done some actual work before we bother with
2028 * NUMA placement.
2029 */
2030 now = curr->se.sum_exec_runtime;
2031 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2032
2033 if (now - curr->node_stamp > period) {
4b96a29b 2034 if (!curr->node_stamp)
598f0ec0 2035 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2036 curr->node_stamp += period;
cbee9f88
PZ
2037
2038 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2039 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2040 task_work_add(curr, work, true);
2041 }
2042 }
2043}
2044#else
2045static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2046{
2047}
0ec8aa00
PZ
2048
2049static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2050{
2051}
2052
2053static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2054{
2055}
cbee9f88
PZ
2056#endif /* CONFIG_NUMA_BALANCING */
2057
30cfdcfc
DA
2058static void
2059account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2060{
2061 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2062 if (!parent_entity(se))
029632fb 2063 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2064#ifdef CONFIG_SMP
0ec8aa00
PZ
2065 if (entity_is_task(se)) {
2066 struct rq *rq = rq_of(cfs_rq);
2067
2068 account_numa_enqueue(rq, task_of(se));
2069 list_add(&se->group_node, &rq->cfs_tasks);
2070 }
367456c7 2071#endif
30cfdcfc 2072 cfs_rq->nr_running++;
30cfdcfc
DA
2073}
2074
2075static void
2076account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2077{
2078 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2079 if (!parent_entity(se))
029632fb 2080 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2081 if (entity_is_task(se)) {
2082 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2083 list_del_init(&se->group_node);
0ec8aa00 2084 }
30cfdcfc 2085 cfs_rq->nr_running--;
30cfdcfc
DA
2086}
2087
3ff6dcac
YZ
2088#ifdef CONFIG_FAIR_GROUP_SCHED
2089# ifdef CONFIG_SMP
cf5f0acf
PZ
2090static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2091{
2092 long tg_weight;
2093
2094 /*
2095 * Use this CPU's actual weight instead of the last load_contribution
2096 * to gain a more accurate current total weight. See
2097 * update_cfs_rq_load_contribution().
2098 */
bf5b986e 2099 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2100 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2101 tg_weight += cfs_rq->load.weight;
2102
2103 return tg_weight;
2104}
2105
6d5ab293 2106static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2107{
cf5f0acf 2108 long tg_weight, load, shares;
3ff6dcac 2109
cf5f0acf 2110 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2111 load = cfs_rq->load.weight;
3ff6dcac 2112
3ff6dcac 2113 shares = (tg->shares * load);
cf5f0acf
PZ
2114 if (tg_weight)
2115 shares /= tg_weight;
3ff6dcac
YZ
2116
2117 if (shares < MIN_SHARES)
2118 shares = MIN_SHARES;
2119 if (shares > tg->shares)
2120 shares = tg->shares;
2121
2122 return shares;
2123}
3ff6dcac 2124# else /* CONFIG_SMP */
6d5ab293 2125static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2126{
2127 return tg->shares;
2128}
3ff6dcac 2129# endif /* CONFIG_SMP */
2069dd75
PZ
2130static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2131 unsigned long weight)
2132{
19e5eebb
PT
2133 if (se->on_rq) {
2134 /* commit outstanding execution time */
2135 if (cfs_rq->curr == se)
2136 update_curr(cfs_rq);
2069dd75 2137 account_entity_dequeue(cfs_rq, se);
19e5eebb 2138 }
2069dd75
PZ
2139
2140 update_load_set(&se->load, weight);
2141
2142 if (se->on_rq)
2143 account_entity_enqueue(cfs_rq, se);
2144}
2145
82958366
PT
2146static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2147
6d5ab293 2148static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2149{
2150 struct task_group *tg;
2151 struct sched_entity *se;
3ff6dcac 2152 long shares;
2069dd75 2153
2069dd75
PZ
2154 tg = cfs_rq->tg;
2155 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2156 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2157 return;
3ff6dcac
YZ
2158#ifndef CONFIG_SMP
2159 if (likely(se->load.weight == tg->shares))
2160 return;
2161#endif
6d5ab293 2162 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2163
2164 reweight_entity(cfs_rq_of(se), se, shares);
2165}
2166#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2167static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2168{
2169}
2170#endif /* CONFIG_FAIR_GROUP_SCHED */
2171
141965c7 2172#ifdef CONFIG_SMP
5b51f2f8
PT
2173/*
2174 * We choose a half-life close to 1 scheduling period.
2175 * Note: The tables below are dependent on this value.
2176 */
2177#define LOAD_AVG_PERIOD 32
2178#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2179#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2180
2181/* Precomputed fixed inverse multiplies for multiplication by y^n */
2182static const u32 runnable_avg_yN_inv[] = {
2183 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2184 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2185 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2186 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2187 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2188 0x85aac367, 0x82cd8698,
2189};
2190
2191/*
2192 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2193 * over-estimates when re-combining.
2194 */
2195static const u32 runnable_avg_yN_sum[] = {
2196 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2197 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2198 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2199};
2200
9d85f21c
PT
2201/*
2202 * Approximate:
2203 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2204 */
2205static __always_inline u64 decay_load(u64 val, u64 n)
2206{
5b51f2f8
PT
2207 unsigned int local_n;
2208
2209 if (!n)
2210 return val;
2211 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2212 return 0;
2213
2214 /* after bounds checking we can collapse to 32-bit */
2215 local_n = n;
2216
2217 /*
2218 * As y^PERIOD = 1/2, we can combine
2219 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2220 * With a look-up table which covers k^n (n<PERIOD)
2221 *
2222 * To achieve constant time decay_load.
2223 */
2224 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2225 val >>= local_n / LOAD_AVG_PERIOD;
2226 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2227 }
2228
5b51f2f8
PT
2229 val *= runnable_avg_yN_inv[local_n];
2230 /* We don't use SRR here since we always want to round down. */
2231 return val >> 32;
2232}
2233
2234/*
2235 * For updates fully spanning n periods, the contribution to runnable
2236 * average will be: \Sum 1024*y^n
2237 *
2238 * We can compute this reasonably efficiently by combining:
2239 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2240 */
2241static u32 __compute_runnable_contrib(u64 n)
2242{
2243 u32 contrib = 0;
2244
2245 if (likely(n <= LOAD_AVG_PERIOD))
2246 return runnable_avg_yN_sum[n];
2247 else if (unlikely(n >= LOAD_AVG_MAX_N))
2248 return LOAD_AVG_MAX;
2249
2250 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2251 do {
2252 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2253 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2254
2255 n -= LOAD_AVG_PERIOD;
2256 } while (n > LOAD_AVG_PERIOD);
2257
2258 contrib = decay_load(contrib, n);
2259 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2260}
2261
2262/*
2263 * We can represent the historical contribution to runnable average as the
2264 * coefficients of a geometric series. To do this we sub-divide our runnable
2265 * history into segments of approximately 1ms (1024us); label the segment that
2266 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2267 *
2268 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2269 * p0 p1 p2
2270 * (now) (~1ms ago) (~2ms ago)
2271 *
2272 * Let u_i denote the fraction of p_i that the entity was runnable.
2273 *
2274 * We then designate the fractions u_i as our co-efficients, yielding the
2275 * following representation of historical load:
2276 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2277 *
2278 * We choose y based on the with of a reasonably scheduling period, fixing:
2279 * y^32 = 0.5
2280 *
2281 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2282 * approximately half as much as the contribution to load within the last ms
2283 * (u_0).
2284 *
2285 * When a period "rolls over" and we have new u_0`, multiplying the previous
2286 * sum again by y is sufficient to update:
2287 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2288 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2289 */
2290static __always_inline int __update_entity_runnable_avg(u64 now,
2291 struct sched_avg *sa,
2292 int runnable)
2293{
5b51f2f8
PT
2294 u64 delta, periods;
2295 u32 runnable_contrib;
9d85f21c
PT
2296 int delta_w, decayed = 0;
2297
2298 delta = now - sa->last_runnable_update;
2299 /*
2300 * This should only happen when time goes backwards, which it
2301 * unfortunately does during sched clock init when we swap over to TSC.
2302 */
2303 if ((s64)delta < 0) {
2304 sa->last_runnable_update = now;
2305 return 0;
2306 }
2307
2308 /*
2309 * Use 1024ns as the unit of measurement since it's a reasonable
2310 * approximation of 1us and fast to compute.
2311 */
2312 delta >>= 10;
2313 if (!delta)
2314 return 0;
2315 sa->last_runnable_update = now;
2316
2317 /* delta_w is the amount already accumulated against our next period */
2318 delta_w = sa->runnable_avg_period % 1024;
2319 if (delta + delta_w >= 1024) {
2320 /* period roll-over */
2321 decayed = 1;
2322
2323 /*
2324 * Now that we know we're crossing a period boundary, figure
2325 * out how much from delta we need to complete the current
2326 * period and accrue it.
2327 */
2328 delta_w = 1024 - delta_w;
5b51f2f8
PT
2329 if (runnable)
2330 sa->runnable_avg_sum += delta_w;
2331 sa->runnable_avg_period += delta_w;
2332
2333 delta -= delta_w;
2334
2335 /* Figure out how many additional periods this update spans */
2336 periods = delta / 1024;
2337 delta %= 1024;
2338
2339 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2340 periods + 1);
2341 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2342 periods + 1);
2343
2344 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2345 runnable_contrib = __compute_runnable_contrib(periods);
2346 if (runnable)
2347 sa->runnable_avg_sum += runnable_contrib;
2348 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2349 }
2350
2351 /* Remainder of delta accrued against u_0` */
2352 if (runnable)
2353 sa->runnable_avg_sum += delta;
2354 sa->runnable_avg_period += delta;
2355
2356 return decayed;
2357}
2358
9ee474f5 2359/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2360static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2361{
2362 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2363 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2364
2365 decays -= se->avg.decay_count;
2366 if (!decays)
aff3e498 2367 return 0;
9ee474f5
PT
2368
2369 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2370 se->avg.decay_count = 0;
aff3e498
PT
2371
2372 return decays;
9ee474f5
PT
2373}
2374
c566e8e9
PT
2375#ifdef CONFIG_FAIR_GROUP_SCHED
2376static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2377 int force_update)
2378{
2379 struct task_group *tg = cfs_rq->tg;
bf5b986e 2380 long tg_contrib;
c566e8e9
PT
2381
2382 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2383 tg_contrib -= cfs_rq->tg_load_contrib;
2384
8236d907
JL
2385 if (!tg_contrib)
2386 return;
2387
bf5b986e
AS
2388 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2389 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2390 cfs_rq->tg_load_contrib += tg_contrib;
2391 }
2392}
8165e145 2393
bb17f655
PT
2394/*
2395 * Aggregate cfs_rq runnable averages into an equivalent task_group
2396 * representation for computing load contributions.
2397 */
2398static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2399 struct cfs_rq *cfs_rq)
2400{
2401 struct task_group *tg = cfs_rq->tg;
2402 long contrib;
2403
2404 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2405 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2406 sa->runnable_avg_period + 1);
2407 contrib -= cfs_rq->tg_runnable_contrib;
2408
2409 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2410 atomic_add(contrib, &tg->runnable_avg);
2411 cfs_rq->tg_runnable_contrib += contrib;
2412 }
2413}
2414
8165e145
PT
2415static inline void __update_group_entity_contrib(struct sched_entity *se)
2416{
2417 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2418 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2419 int runnable_avg;
2420
8165e145
PT
2421 u64 contrib;
2422
2423 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2424 se->avg.load_avg_contrib = div_u64(contrib,
2425 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2426
2427 /*
2428 * For group entities we need to compute a correction term in the case
2429 * that they are consuming <1 cpu so that we would contribute the same
2430 * load as a task of equal weight.
2431 *
2432 * Explicitly co-ordinating this measurement would be expensive, but
2433 * fortunately the sum of each cpus contribution forms a usable
2434 * lower-bound on the true value.
2435 *
2436 * Consider the aggregate of 2 contributions. Either they are disjoint
2437 * (and the sum represents true value) or they are disjoint and we are
2438 * understating by the aggregate of their overlap.
2439 *
2440 * Extending this to N cpus, for a given overlap, the maximum amount we
2441 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2442 * cpus that overlap for this interval and w_i is the interval width.
2443 *
2444 * On a small machine; the first term is well-bounded which bounds the
2445 * total error since w_i is a subset of the period. Whereas on a
2446 * larger machine, while this first term can be larger, if w_i is the
2447 * of consequential size guaranteed to see n_i*w_i quickly converge to
2448 * our upper bound of 1-cpu.
2449 */
2450 runnable_avg = atomic_read(&tg->runnable_avg);
2451 if (runnable_avg < NICE_0_LOAD) {
2452 se->avg.load_avg_contrib *= runnable_avg;
2453 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2454 }
8165e145 2455}
f5f9739d
DE
2456
2457static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2458{
2459 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2460 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2461}
6e83125c 2462#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2463static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2464 int force_update) {}
bb17f655
PT
2465static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2466 struct cfs_rq *cfs_rq) {}
8165e145 2467static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2468static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2469#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2470
8165e145
PT
2471static inline void __update_task_entity_contrib(struct sched_entity *se)
2472{
2473 u32 contrib;
2474
2475 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2476 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2477 contrib /= (se->avg.runnable_avg_period + 1);
2478 se->avg.load_avg_contrib = scale_load(contrib);
2479}
2480
2dac754e
PT
2481/* Compute the current contribution to load_avg by se, return any delta */
2482static long __update_entity_load_avg_contrib(struct sched_entity *se)
2483{
2484 long old_contrib = se->avg.load_avg_contrib;
2485
8165e145
PT
2486 if (entity_is_task(se)) {
2487 __update_task_entity_contrib(se);
2488 } else {
bb17f655 2489 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2490 __update_group_entity_contrib(se);
2491 }
2dac754e
PT
2492
2493 return se->avg.load_avg_contrib - old_contrib;
2494}
2495
9ee474f5
PT
2496static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2497 long load_contrib)
2498{
2499 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2500 cfs_rq->blocked_load_avg -= load_contrib;
2501 else
2502 cfs_rq->blocked_load_avg = 0;
2503}
2504
f1b17280
PT
2505static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2506
9d85f21c 2507/* Update a sched_entity's runnable average */
9ee474f5
PT
2508static inline void update_entity_load_avg(struct sched_entity *se,
2509 int update_cfs_rq)
9d85f21c 2510{
2dac754e
PT
2511 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2512 long contrib_delta;
f1b17280 2513 u64 now;
2dac754e 2514
f1b17280
PT
2515 /*
2516 * For a group entity we need to use their owned cfs_rq_clock_task() in
2517 * case they are the parent of a throttled hierarchy.
2518 */
2519 if (entity_is_task(se))
2520 now = cfs_rq_clock_task(cfs_rq);
2521 else
2522 now = cfs_rq_clock_task(group_cfs_rq(se));
2523
2524 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2525 return;
2526
2527 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2528
2529 if (!update_cfs_rq)
2530 return;
2531
2dac754e
PT
2532 if (se->on_rq)
2533 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2534 else
2535 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2536}
2537
2538/*
2539 * Decay the load contributed by all blocked children and account this so that
2540 * their contribution may appropriately discounted when they wake up.
2541 */
aff3e498 2542static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2543{
f1b17280 2544 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2545 u64 decays;
2546
2547 decays = now - cfs_rq->last_decay;
aff3e498 2548 if (!decays && !force_update)
9ee474f5
PT
2549 return;
2550
2509940f
AS
2551 if (atomic_long_read(&cfs_rq->removed_load)) {
2552 unsigned long removed_load;
2553 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2554 subtract_blocked_load_contrib(cfs_rq, removed_load);
2555 }
9ee474f5 2556
aff3e498
PT
2557 if (decays) {
2558 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2559 decays);
2560 atomic64_add(decays, &cfs_rq->decay_counter);
2561 cfs_rq->last_decay = now;
2562 }
c566e8e9
PT
2563
2564 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2565}
18bf2805 2566
2dac754e
PT
2567/* Add the load generated by se into cfs_rq's child load-average */
2568static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2569 struct sched_entity *se,
2570 int wakeup)
2dac754e 2571{
aff3e498
PT
2572 /*
2573 * We track migrations using entity decay_count <= 0, on a wake-up
2574 * migration we use a negative decay count to track the remote decays
2575 * accumulated while sleeping.
a75cdaa9
AS
2576 *
2577 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2578 * are seen by enqueue_entity_load_avg() as a migration with an already
2579 * constructed load_avg_contrib.
aff3e498
PT
2580 */
2581 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2582 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2583 if (se->avg.decay_count) {
2584 /*
2585 * In a wake-up migration we have to approximate the
2586 * time sleeping. This is because we can't synchronize
2587 * clock_task between the two cpus, and it is not
2588 * guaranteed to be read-safe. Instead, we can
2589 * approximate this using our carried decays, which are
2590 * explicitly atomically readable.
2591 */
2592 se->avg.last_runnable_update -= (-se->avg.decay_count)
2593 << 20;
2594 update_entity_load_avg(se, 0);
2595 /* Indicate that we're now synchronized and on-rq */
2596 se->avg.decay_count = 0;
2597 }
9ee474f5
PT
2598 wakeup = 0;
2599 } else {
9390675a 2600 __synchronize_entity_decay(se);
9ee474f5
PT
2601 }
2602
aff3e498
PT
2603 /* migrated tasks did not contribute to our blocked load */
2604 if (wakeup) {
9ee474f5 2605 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2606 update_entity_load_avg(se, 0);
2607 }
9ee474f5 2608
2dac754e 2609 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2610 /* we force update consideration on load-balancer moves */
2611 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2612}
2613
9ee474f5
PT
2614/*
2615 * Remove se's load from this cfs_rq child load-average, if the entity is
2616 * transitioning to a blocked state we track its projected decay using
2617 * blocked_load_avg.
2618 */
2dac754e 2619static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2620 struct sched_entity *se,
2621 int sleep)
2dac754e 2622{
9ee474f5 2623 update_entity_load_avg(se, 1);
aff3e498
PT
2624 /* we force update consideration on load-balancer moves */
2625 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2626
2dac754e 2627 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2628 if (sleep) {
2629 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2630 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2631 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2632}
642dbc39
VG
2633
2634/*
2635 * Update the rq's load with the elapsed running time before entering
2636 * idle. if the last scheduled task is not a CFS task, idle_enter will
2637 * be the only way to update the runnable statistic.
2638 */
2639void idle_enter_fair(struct rq *this_rq)
2640{
2641 update_rq_runnable_avg(this_rq, 1);
2642}
2643
2644/*
2645 * Update the rq's load with the elapsed idle time before a task is
2646 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2647 * be the only way to update the runnable statistic.
2648 */
2649void idle_exit_fair(struct rq *this_rq)
2650{
2651 update_rq_runnable_avg(this_rq, 0);
2652}
2653
6e83125c
PZ
2654static int idle_balance(struct rq *this_rq);
2655
38033c37
PZ
2656#else /* CONFIG_SMP */
2657
9ee474f5
PT
2658static inline void update_entity_load_avg(struct sched_entity *se,
2659 int update_cfs_rq) {}
18bf2805 2660static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2661static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2662 struct sched_entity *se,
2663 int wakeup) {}
2dac754e 2664static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2665 struct sched_entity *se,
2666 int sleep) {}
aff3e498
PT
2667static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2668 int force_update) {}
6e83125c
PZ
2669
2670static inline int idle_balance(struct rq *rq)
2671{
2672 return 0;
2673}
2674
38033c37 2675#endif /* CONFIG_SMP */
9d85f21c 2676
2396af69 2677static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2678{
bf0f6f24 2679#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2680 struct task_struct *tsk = NULL;
2681
2682 if (entity_is_task(se))
2683 tsk = task_of(se);
2684
41acab88 2685 if (se->statistics.sleep_start) {
78becc27 2686 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2687
2688 if ((s64)delta < 0)
2689 delta = 0;
2690
41acab88
LDM
2691 if (unlikely(delta > se->statistics.sleep_max))
2692 se->statistics.sleep_max = delta;
bf0f6f24 2693
8c79a045 2694 se->statistics.sleep_start = 0;
41acab88 2695 se->statistics.sum_sleep_runtime += delta;
9745512c 2696
768d0c27 2697 if (tsk) {
e414314c 2698 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2699 trace_sched_stat_sleep(tsk, delta);
2700 }
bf0f6f24 2701 }
41acab88 2702 if (se->statistics.block_start) {
78becc27 2703 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2704
2705 if ((s64)delta < 0)
2706 delta = 0;
2707
41acab88
LDM
2708 if (unlikely(delta > se->statistics.block_max))
2709 se->statistics.block_max = delta;
bf0f6f24 2710
8c79a045 2711 se->statistics.block_start = 0;
41acab88 2712 se->statistics.sum_sleep_runtime += delta;
30084fbd 2713
e414314c 2714 if (tsk) {
8f0dfc34 2715 if (tsk->in_iowait) {
41acab88
LDM
2716 se->statistics.iowait_sum += delta;
2717 se->statistics.iowait_count++;
768d0c27 2718 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2719 }
2720
b781a602
AV
2721 trace_sched_stat_blocked(tsk, delta);
2722
e414314c
PZ
2723 /*
2724 * Blocking time is in units of nanosecs, so shift by
2725 * 20 to get a milliseconds-range estimation of the
2726 * amount of time that the task spent sleeping:
2727 */
2728 if (unlikely(prof_on == SLEEP_PROFILING)) {
2729 profile_hits(SLEEP_PROFILING,
2730 (void *)get_wchan(tsk),
2731 delta >> 20);
2732 }
2733 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2734 }
bf0f6f24
IM
2735 }
2736#endif
2737}
2738
ddc97297
PZ
2739static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2740{
2741#ifdef CONFIG_SCHED_DEBUG
2742 s64 d = se->vruntime - cfs_rq->min_vruntime;
2743
2744 if (d < 0)
2745 d = -d;
2746
2747 if (d > 3*sysctl_sched_latency)
2748 schedstat_inc(cfs_rq, nr_spread_over);
2749#endif
2750}
2751
aeb73b04
PZ
2752static void
2753place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2754{
1af5f730 2755 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2756
2cb8600e
PZ
2757 /*
2758 * The 'current' period is already promised to the current tasks,
2759 * however the extra weight of the new task will slow them down a
2760 * little, place the new task so that it fits in the slot that
2761 * stays open at the end.
2762 */
94dfb5e7 2763 if (initial && sched_feat(START_DEBIT))
f9c0b095 2764 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2765
a2e7a7eb 2766 /* sleeps up to a single latency don't count. */
5ca9880c 2767 if (!initial) {
a2e7a7eb 2768 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2769
a2e7a7eb
MG
2770 /*
2771 * Halve their sleep time's effect, to allow
2772 * for a gentler effect of sleepers:
2773 */
2774 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2775 thresh >>= 1;
51e0304c 2776
a2e7a7eb 2777 vruntime -= thresh;
aeb73b04
PZ
2778 }
2779
b5d9d734 2780 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2781 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2782}
2783
d3d9dc33
PT
2784static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2785
bf0f6f24 2786static void
88ec22d3 2787enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2788{
88ec22d3
PZ
2789 /*
2790 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2791 * through calling update_curr().
88ec22d3 2792 */
371fd7e7 2793 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2794 se->vruntime += cfs_rq->min_vruntime;
2795
bf0f6f24 2796 /*
a2a2d680 2797 * Update run-time statistics of the 'current'.
bf0f6f24 2798 */
b7cc0896 2799 update_curr(cfs_rq);
f269ae04 2800 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2801 account_entity_enqueue(cfs_rq, se);
2802 update_cfs_shares(cfs_rq);
bf0f6f24 2803
88ec22d3 2804 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2805 place_entity(cfs_rq, se, 0);
2396af69 2806 enqueue_sleeper(cfs_rq, se);
e9acbff6 2807 }
bf0f6f24 2808
d2417e5a 2809 update_stats_enqueue(cfs_rq, se);
ddc97297 2810 check_spread(cfs_rq, se);
83b699ed
SV
2811 if (se != cfs_rq->curr)
2812 __enqueue_entity(cfs_rq, se);
2069dd75 2813 se->on_rq = 1;
3d4b47b4 2814
d3d9dc33 2815 if (cfs_rq->nr_running == 1) {
3d4b47b4 2816 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2817 check_enqueue_throttle(cfs_rq);
2818 }
bf0f6f24
IM
2819}
2820
2c13c919 2821static void __clear_buddies_last(struct sched_entity *se)
2002c695 2822{
2c13c919
RR
2823 for_each_sched_entity(se) {
2824 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2825 if (cfs_rq->last != se)
2c13c919 2826 break;
f1044799
PZ
2827
2828 cfs_rq->last = NULL;
2c13c919
RR
2829 }
2830}
2002c695 2831
2c13c919
RR
2832static void __clear_buddies_next(struct sched_entity *se)
2833{
2834 for_each_sched_entity(se) {
2835 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2836 if (cfs_rq->next != se)
2c13c919 2837 break;
f1044799
PZ
2838
2839 cfs_rq->next = NULL;
2c13c919 2840 }
2002c695
PZ
2841}
2842
ac53db59
RR
2843static void __clear_buddies_skip(struct sched_entity *se)
2844{
2845 for_each_sched_entity(se) {
2846 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2847 if (cfs_rq->skip != se)
ac53db59 2848 break;
f1044799
PZ
2849
2850 cfs_rq->skip = NULL;
ac53db59
RR
2851 }
2852}
2853
a571bbea
PZ
2854static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2855{
2c13c919
RR
2856 if (cfs_rq->last == se)
2857 __clear_buddies_last(se);
2858
2859 if (cfs_rq->next == se)
2860 __clear_buddies_next(se);
ac53db59
RR
2861
2862 if (cfs_rq->skip == se)
2863 __clear_buddies_skip(se);
a571bbea
PZ
2864}
2865
6c16a6dc 2866static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2867
bf0f6f24 2868static void
371fd7e7 2869dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2870{
a2a2d680
DA
2871 /*
2872 * Update run-time statistics of the 'current'.
2873 */
2874 update_curr(cfs_rq);
17bc14b7 2875 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2876
19b6a2e3 2877 update_stats_dequeue(cfs_rq, se);
371fd7e7 2878 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2879#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2880 if (entity_is_task(se)) {
2881 struct task_struct *tsk = task_of(se);
2882
2883 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2884 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2885 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2886 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2887 }
db36cc7d 2888#endif
67e9fb2a
PZ
2889 }
2890
2002c695 2891 clear_buddies(cfs_rq, se);
4793241b 2892
83b699ed 2893 if (se != cfs_rq->curr)
30cfdcfc 2894 __dequeue_entity(cfs_rq, se);
17bc14b7 2895 se->on_rq = 0;
30cfdcfc 2896 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2897
2898 /*
2899 * Normalize the entity after updating the min_vruntime because the
2900 * update can refer to the ->curr item and we need to reflect this
2901 * movement in our normalized position.
2902 */
371fd7e7 2903 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2904 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2905
d8b4986d
PT
2906 /* return excess runtime on last dequeue */
2907 return_cfs_rq_runtime(cfs_rq);
2908
1e876231 2909 update_min_vruntime(cfs_rq);
17bc14b7 2910 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2911}
2912
2913/*
2914 * Preempt the current task with a newly woken task if needed:
2915 */
7c92e54f 2916static void
2e09bf55 2917check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2918{
11697830 2919 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2920 struct sched_entity *se;
2921 s64 delta;
11697830 2922
6d0f0ebd 2923 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2924 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2925 if (delta_exec > ideal_runtime) {
8875125e 2926 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
2927 /*
2928 * The current task ran long enough, ensure it doesn't get
2929 * re-elected due to buddy favours.
2930 */
2931 clear_buddies(cfs_rq, curr);
f685ceac
MG
2932 return;
2933 }
2934
2935 /*
2936 * Ensure that a task that missed wakeup preemption by a
2937 * narrow margin doesn't have to wait for a full slice.
2938 * This also mitigates buddy induced latencies under load.
2939 */
f685ceac
MG
2940 if (delta_exec < sysctl_sched_min_granularity)
2941 return;
2942
f4cfb33e
WX
2943 se = __pick_first_entity(cfs_rq);
2944 delta = curr->vruntime - se->vruntime;
f685ceac 2945
f4cfb33e
WX
2946 if (delta < 0)
2947 return;
d7d82944 2948
f4cfb33e 2949 if (delta > ideal_runtime)
8875125e 2950 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
2951}
2952
83b699ed 2953static void
8494f412 2954set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2955{
83b699ed
SV
2956 /* 'current' is not kept within the tree. */
2957 if (se->on_rq) {
2958 /*
2959 * Any task has to be enqueued before it get to execute on
2960 * a CPU. So account for the time it spent waiting on the
2961 * runqueue.
2962 */
2963 update_stats_wait_end(cfs_rq, se);
2964 __dequeue_entity(cfs_rq, se);
2965 }
2966
79303e9e 2967 update_stats_curr_start(cfs_rq, se);
429d43bc 2968 cfs_rq->curr = se;
eba1ed4b
IM
2969#ifdef CONFIG_SCHEDSTATS
2970 /*
2971 * Track our maximum slice length, if the CPU's load is at
2972 * least twice that of our own weight (i.e. dont track it
2973 * when there are only lesser-weight tasks around):
2974 */
495eca49 2975 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2976 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2977 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2978 }
2979#endif
4a55b450 2980 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2981}
2982
3f3a4904
PZ
2983static int
2984wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2985
ac53db59
RR
2986/*
2987 * Pick the next process, keeping these things in mind, in this order:
2988 * 1) keep things fair between processes/task groups
2989 * 2) pick the "next" process, since someone really wants that to run
2990 * 3) pick the "last" process, for cache locality
2991 * 4) do not run the "skip" process, if something else is available
2992 */
678d5718
PZ
2993static struct sched_entity *
2994pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2995{
678d5718
PZ
2996 struct sched_entity *left = __pick_first_entity(cfs_rq);
2997 struct sched_entity *se;
2998
2999 /*
3000 * If curr is set we have to see if its left of the leftmost entity
3001 * still in the tree, provided there was anything in the tree at all.
3002 */
3003 if (!left || (curr && entity_before(curr, left)))
3004 left = curr;
3005
3006 se = left; /* ideally we run the leftmost entity */
f4b6755f 3007
ac53db59
RR
3008 /*
3009 * Avoid running the skip buddy, if running something else can
3010 * be done without getting too unfair.
3011 */
3012 if (cfs_rq->skip == se) {
678d5718
PZ
3013 struct sched_entity *second;
3014
3015 if (se == curr) {
3016 second = __pick_first_entity(cfs_rq);
3017 } else {
3018 second = __pick_next_entity(se);
3019 if (!second || (curr && entity_before(curr, second)))
3020 second = curr;
3021 }
3022
ac53db59
RR
3023 if (second && wakeup_preempt_entity(second, left) < 1)
3024 se = second;
3025 }
aa2ac252 3026
f685ceac
MG
3027 /*
3028 * Prefer last buddy, try to return the CPU to a preempted task.
3029 */
3030 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3031 se = cfs_rq->last;
3032
ac53db59
RR
3033 /*
3034 * Someone really wants this to run. If it's not unfair, run it.
3035 */
3036 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3037 se = cfs_rq->next;
3038
f685ceac 3039 clear_buddies(cfs_rq, se);
4793241b
PZ
3040
3041 return se;
aa2ac252
PZ
3042}
3043
678d5718 3044static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3045
ab6cde26 3046static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3047{
3048 /*
3049 * If still on the runqueue then deactivate_task()
3050 * was not called and update_curr() has to be done:
3051 */
3052 if (prev->on_rq)
b7cc0896 3053 update_curr(cfs_rq);
bf0f6f24 3054
d3d9dc33
PT
3055 /* throttle cfs_rqs exceeding runtime */
3056 check_cfs_rq_runtime(cfs_rq);
3057
ddc97297 3058 check_spread(cfs_rq, prev);
30cfdcfc 3059 if (prev->on_rq) {
5870db5b 3060 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3061 /* Put 'current' back into the tree. */
3062 __enqueue_entity(cfs_rq, prev);
9d85f21c 3063 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3064 update_entity_load_avg(prev, 1);
30cfdcfc 3065 }
429d43bc 3066 cfs_rq->curr = NULL;
bf0f6f24
IM
3067}
3068
8f4d37ec
PZ
3069static void
3070entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3071{
bf0f6f24 3072 /*
30cfdcfc 3073 * Update run-time statistics of the 'current'.
bf0f6f24 3074 */
30cfdcfc 3075 update_curr(cfs_rq);
bf0f6f24 3076
9d85f21c
PT
3077 /*
3078 * Ensure that runnable average is periodically updated.
3079 */
9ee474f5 3080 update_entity_load_avg(curr, 1);
aff3e498 3081 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3082 update_cfs_shares(cfs_rq);
9d85f21c 3083
8f4d37ec
PZ
3084#ifdef CONFIG_SCHED_HRTICK
3085 /*
3086 * queued ticks are scheduled to match the slice, so don't bother
3087 * validating it and just reschedule.
3088 */
983ed7a6 3089 if (queued) {
8875125e 3090 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3091 return;
3092 }
8f4d37ec
PZ
3093 /*
3094 * don't let the period tick interfere with the hrtick preemption
3095 */
3096 if (!sched_feat(DOUBLE_TICK) &&
3097 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3098 return;
3099#endif
3100
2c2efaed 3101 if (cfs_rq->nr_running > 1)
2e09bf55 3102 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3103}
3104
ab84d31e
PT
3105
3106/**************************************************
3107 * CFS bandwidth control machinery
3108 */
3109
3110#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3111
3112#ifdef HAVE_JUMP_LABEL
c5905afb 3113static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3114
3115static inline bool cfs_bandwidth_used(void)
3116{
c5905afb 3117 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3118}
3119
1ee14e6c 3120void cfs_bandwidth_usage_inc(void)
029632fb 3121{
1ee14e6c
BS
3122 static_key_slow_inc(&__cfs_bandwidth_used);
3123}
3124
3125void cfs_bandwidth_usage_dec(void)
3126{
3127 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3128}
3129#else /* HAVE_JUMP_LABEL */
3130static bool cfs_bandwidth_used(void)
3131{
3132 return true;
3133}
3134
1ee14e6c
BS
3135void cfs_bandwidth_usage_inc(void) {}
3136void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3137#endif /* HAVE_JUMP_LABEL */
3138
ab84d31e
PT
3139/*
3140 * default period for cfs group bandwidth.
3141 * default: 0.1s, units: nanoseconds
3142 */
3143static inline u64 default_cfs_period(void)
3144{
3145 return 100000000ULL;
3146}
ec12cb7f
PT
3147
3148static inline u64 sched_cfs_bandwidth_slice(void)
3149{
3150 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3151}
3152
a9cf55b2
PT
3153/*
3154 * Replenish runtime according to assigned quota and update expiration time.
3155 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3156 * additional synchronization around rq->lock.
3157 *
3158 * requires cfs_b->lock
3159 */
029632fb 3160void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3161{
3162 u64 now;
3163
3164 if (cfs_b->quota == RUNTIME_INF)
3165 return;
3166
3167 now = sched_clock_cpu(smp_processor_id());
3168 cfs_b->runtime = cfs_b->quota;
3169 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3170}
3171
029632fb
PZ
3172static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3173{
3174 return &tg->cfs_bandwidth;
3175}
3176
f1b17280
PT
3177/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3178static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3179{
3180 if (unlikely(cfs_rq->throttle_count))
3181 return cfs_rq->throttled_clock_task;
3182
78becc27 3183 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3184}
3185
85dac906
PT
3186/* returns 0 on failure to allocate runtime */
3187static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3188{
3189 struct task_group *tg = cfs_rq->tg;
3190 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3191 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3192
3193 /* note: this is a positive sum as runtime_remaining <= 0 */
3194 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3195
3196 raw_spin_lock(&cfs_b->lock);
3197 if (cfs_b->quota == RUNTIME_INF)
3198 amount = min_amount;
58088ad0 3199 else {
a9cf55b2
PT
3200 /*
3201 * If the bandwidth pool has become inactive, then at least one
3202 * period must have elapsed since the last consumption.
3203 * Refresh the global state and ensure bandwidth timer becomes
3204 * active.
3205 */
3206 if (!cfs_b->timer_active) {
3207 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3208 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3209 }
58088ad0
PT
3210
3211 if (cfs_b->runtime > 0) {
3212 amount = min(cfs_b->runtime, min_amount);
3213 cfs_b->runtime -= amount;
3214 cfs_b->idle = 0;
3215 }
ec12cb7f 3216 }
a9cf55b2 3217 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3218 raw_spin_unlock(&cfs_b->lock);
3219
3220 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3221 /*
3222 * we may have advanced our local expiration to account for allowed
3223 * spread between our sched_clock and the one on which runtime was
3224 * issued.
3225 */
3226 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3227 cfs_rq->runtime_expires = expires;
85dac906
PT
3228
3229 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3230}
3231
a9cf55b2
PT
3232/*
3233 * Note: This depends on the synchronization provided by sched_clock and the
3234 * fact that rq->clock snapshots this value.
3235 */
3236static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3237{
a9cf55b2 3238 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3239
3240 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3241 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3242 return;
3243
a9cf55b2
PT
3244 if (cfs_rq->runtime_remaining < 0)
3245 return;
3246
3247 /*
3248 * If the local deadline has passed we have to consider the
3249 * possibility that our sched_clock is 'fast' and the global deadline
3250 * has not truly expired.
3251 *
3252 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3253 * whether the global deadline has advanced. It is valid to compare
3254 * cfs_b->runtime_expires without any locks since we only care about
3255 * exact equality, so a partial write will still work.
a9cf55b2
PT
3256 */
3257
51f2176d 3258 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3259 /* extend local deadline, drift is bounded above by 2 ticks */
3260 cfs_rq->runtime_expires += TICK_NSEC;
3261 } else {
3262 /* global deadline is ahead, expiration has passed */
3263 cfs_rq->runtime_remaining = 0;
3264 }
3265}
3266
9dbdb155 3267static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3268{
3269 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3270 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3271 expire_cfs_rq_runtime(cfs_rq);
3272
3273 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3274 return;
3275
85dac906
PT
3276 /*
3277 * if we're unable to extend our runtime we resched so that the active
3278 * hierarchy can be throttled
3279 */
3280 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3281 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3282}
3283
6c16a6dc 3284static __always_inline
9dbdb155 3285void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3286{
56f570e5 3287 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3288 return;
3289
3290 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3291}
3292
85dac906
PT
3293static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3294{
56f570e5 3295 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3296}
3297
64660c86
PT
3298/* check whether cfs_rq, or any parent, is throttled */
3299static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3300{
56f570e5 3301 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3302}
3303
3304/*
3305 * Ensure that neither of the group entities corresponding to src_cpu or
3306 * dest_cpu are members of a throttled hierarchy when performing group
3307 * load-balance operations.
3308 */
3309static inline int throttled_lb_pair(struct task_group *tg,
3310 int src_cpu, int dest_cpu)
3311{
3312 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3313
3314 src_cfs_rq = tg->cfs_rq[src_cpu];
3315 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3316
3317 return throttled_hierarchy(src_cfs_rq) ||
3318 throttled_hierarchy(dest_cfs_rq);
3319}
3320
3321/* updated child weight may affect parent so we have to do this bottom up */
3322static int tg_unthrottle_up(struct task_group *tg, void *data)
3323{
3324 struct rq *rq = data;
3325 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3326
3327 cfs_rq->throttle_count--;
3328#ifdef CONFIG_SMP
3329 if (!cfs_rq->throttle_count) {
f1b17280 3330 /* adjust cfs_rq_clock_task() */
78becc27 3331 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3332 cfs_rq->throttled_clock_task;
64660c86
PT
3333 }
3334#endif
3335
3336 return 0;
3337}
3338
3339static int tg_throttle_down(struct task_group *tg, void *data)
3340{
3341 struct rq *rq = data;
3342 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3343
82958366
PT
3344 /* group is entering throttled state, stop time */
3345 if (!cfs_rq->throttle_count)
78becc27 3346 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3347 cfs_rq->throttle_count++;
3348
3349 return 0;
3350}
3351
d3d9dc33 3352static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3353{
3354 struct rq *rq = rq_of(cfs_rq);
3355 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3356 struct sched_entity *se;
3357 long task_delta, dequeue = 1;
3358
3359 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3360
f1b17280 3361 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3362 rcu_read_lock();
3363 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3364 rcu_read_unlock();
85dac906
PT
3365
3366 task_delta = cfs_rq->h_nr_running;
3367 for_each_sched_entity(se) {
3368 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3369 /* throttled entity or throttle-on-deactivate */
3370 if (!se->on_rq)
3371 break;
3372
3373 if (dequeue)
3374 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3375 qcfs_rq->h_nr_running -= task_delta;
3376
3377 if (qcfs_rq->load.weight)
3378 dequeue = 0;
3379 }
3380
3381 if (!se)
72465447 3382 sub_nr_running(rq, task_delta);
85dac906
PT
3383
3384 cfs_rq->throttled = 1;
78becc27 3385 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3386 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3387 /*
3388 * Add to the _head_ of the list, so that an already-started
3389 * distribute_cfs_runtime will not see us
3390 */
3391 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3392 if (!cfs_b->timer_active)
09dc4ab0 3393 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3394 raw_spin_unlock(&cfs_b->lock);
3395}
3396
029632fb 3397void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3398{
3399 struct rq *rq = rq_of(cfs_rq);
3400 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3401 struct sched_entity *se;
3402 int enqueue = 1;
3403 long task_delta;
3404
22b958d8 3405 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3406
3407 cfs_rq->throttled = 0;
1a55af2e
FW
3408
3409 update_rq_clock(rq);
3410
671fd9da 3411 raw_spin_lock(&cfs_b->lock);
78becc27 3412 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3413 list_del_rcu(&cfs_rq->throttled_list);
3414 raw_spin_unlock(&cfs_b->lock);
3415
64660c86
PT
3416 /* update hierarchical throttle state */
3417 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3418
671fd9da
PT
3419 if (!cfs_rq->load.weight)
3420 return;
3421
3422 task_delta = cfs_rq->h_nr_running;
3423 for_each_sched_entity(se) {
3424 if (se->on_rq)
3425 enqueue = 0;
3426
3427 cfs_rq = cfs_rq_of(se);
3428 if (enqueue)
3429 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3430 cfs_rq->h_nr_running += task_delta;
3431
3432 if (cfs_rq_throttled(cfs_rq))
3433 break;
3434 }
3435
3436 if (!se)
72465447 3437 add_nr_running(rq, task_delta);
671fd9da
PT
3438
3439 /* determine whether we need to wake up potentially idle cpu */
3440 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3441 resched_curr(rq);
671fd9da
PT
3442}
3443
3444static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3445 u64 remaining, u64 expires)
3446{
3447 struct cfs_rq *cfs_rq;
c06f04c7
BS
3448 u64 runtime;
3449 u64 starting_runtime = remaining;
671fd9da
PT
3450
3451 rcu_read_lock();
3452 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3453 throttled_list) {
3454 struct rq *rq = rq_of(cfs_rq);
3455
3456 raw_spin_lock(&rq->lock);
3457 if (!cfs_rq_throttled(cfs_rq))
3458 goto next;
3459
3460 runtime = -cfs_rq->runtime_remaining + 1;
3461 if (runtime > remaining)
3462 runtime = remaining;
3463 remaining -= runtime;
3464
3465 cfs_rq->runtime_remaining += runtime;
3466 cfs_rq->runtime_expires = expires;
3467
3468 /* we check whether we're throttled above */
3469 if (cfs_rq->runtime_remaining > 0)
3470 unthrottle_cfs_rq(cfs_rq);
3471
3472next:
3473 raw_spin_unlock(&rq->lock);
3474
3475 if (!remaining)
3476 break;
3477 }
3478 rcu_read_unlock();
3479
c06f04c7 3480 return starting_runtime - remaining;
671fd9da
PT
3481}
3482
58088ad0
PT
3483/*
3484 * Responsible for refilling a task_group's bandwidth and unthrottling its
3485 * cfs_rqs as appropriate. If there has been no activity within the last
3486 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3487 * used to track this state.
3488 */
3489static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3490{
671fd9da 3491 u64 runtime, runtime_expires;
51f2176d 3492 int throttled;
58088ad0 3493
58088ad0
PT
3494 /* no need to continue the timer with no bandwidth constraint */
3495 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3496 goto out_deactivate;
58088ad0 3497
671fd9da 3498 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3499 cfs_b->nr_periods += overrun;
671fd9da 3500
51f2176d
BS
3501 /*
3502 * idle depends on !throttled (for the case of a large deficit), and if
3503 * we're going inactive then everything else can be deferred
3504 */
3505 if (cfs_b->idle && !throttled)
3506 goto out_deactivate;
a9cf55b2 3507
927b54fc
BS
3508 /*
3509 * if we have relooped after returning idle once, we need to update our
3510 * status as actually running, so that other cpus doing
3511 * __start_cfs_bandwidth will stop trying to cancel us.
3512 */
3513 cfs_b->timer_active = 1;
3514
a9cf55b2
PT
3515 __refill_cfs_bandwidth_runtime(cfs_b);
3516
671fd9da
PT
3517 if (!throttled) {
3518 /* mark as potentially idle for the upcoming period */
3519 cfs_b->idle = 1;
51f2176d 3520 return 0;
671fd9da
PT
3521 }
3522
e8da1b18
NR
3523 /* account preceding periods in which throttling occurred */
3524 cfs_b->nr_throttled += overrun;
3525
671fd9da 3526 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3527
3528 /*
c06f04c7
BS
3529 * This check is repeated as we are holding onto the new bandwidth while
3530 * we unthrottle. This can potentially race with an unthrottled group
3531 * trying to acquire new bandwidth from the global pool. This can result
3532 * in us over-using our runtime if it is all used during this loop, but
3533 * only by limited amounts in that extreme case.
671fd9da 3534 */
c06f04c7
BS
3535 while (throttled && cfs_b->runtime > 0) {
3536 runtime = cfs_b->runtime;
671fd9da
PT
3537 raw_spin_unlock(&cfs_b->lock);
3538 /* we can't nest cfs_b->lock while distributing bandwidth */
3539 runtime = distribute_cfs_runtime(cfs_b, runtime,
3540 runtime_expires);
3541 raw_spin_lock(&cfs_b->lock);
3542
3543 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3544
3545 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3546 }
58088ad0 3547
671fd9da
PT
3548 /*
3549 * While we are ensured activity in the period following an
3550 * unthrottle, this also covers the case in which the new bandwidth is
3551 * insufficient to cover the existing bandwidth deficit. (Forcing the
3552 * timer to remain active while there are any throttled entities.)
3553 */
3554 cfs_b->idle = 0;
58088ad0 3555
51f2176d
BS
3556 return 0;
3557
3558out_deactivate:
3559 cfs_b->timer_active = 0;
3560 return 1;
58088ad0 3561}
d3d9dc33 3562
d8b4986d
PT
3563/* a cfs_rq won't donate quota below this amount */
3564static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3565/* minimum remaining period time to redistribute slack quota */
3566static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3567/* how long we wait to gather additional slack before distributing */
3568static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3569
db06e78c
BS
3570/*
3571 * Are we near the end of the current quota period?
3572 *
3573 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3574 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3575 * migrate_hrtimers, base is never cleared, so we are fine.
3576 */
d8b4986d
PT
3577static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3578{
3579 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3580 u64 remaining;
3581
3582 /* if the call-back is running a quota refresh is already occurring */
3583 if (hrtimer_callback_running(refresh_timer))
3584 return 1;
3585
3586 /* is a quota refresh about to occur? */
3587 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3588 if (remaining < min_expire)
3589 return 1;
3590
3591 return 0;
3592}
3593
3594static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3595{
3596 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3597
3598 /* if there's a quota refresh soon don't bother with slack */
3599 if (runtime_refresh_within(cfs_b, min_left))
3600 return;
3601
3602 start_bandwidth_timer(&cfs_b->slack_timer,
3603 ns_to_ktime(cfs_bandwidth_slack_period));
3604}
3605
3606/* we know any runtime found here is valid as update_curr() precedes return */
3607static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3608{
3609 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3610 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3611
3612 if (slack_runtime <= 0)
3613 return;
3614
3615 raw_spin_lock(&cfs_b->lock);
3616 if (cfs_b->quota != RUNTIME_INF &&
3617 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3618 cfs_b->runtime += slack_runtime;
3619
3620 /* we are under rq->lock, defer unthrottling using a timer */
3621 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3622 !list_empty(&cfs_b->throttled_cfs_rq))
3623 start_cfs_slack_bandwidth(cfs_b);
3624 }
3625 raw_spin_unlock(&cfs_b->lock);
3626
3627 /* even if it's not valid for return we don't want to try again */
3628 cfs_rq->runtime_remaining -= slack_runtime;
3629}
3630
3631static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3632{
56f570e5
PT
3633 if (!cfs_bandwidth_used())
3634 return;
3635
fccfdc6f 3636 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3637 return;
3638
3639 __return_cfs_rq_runtime(cfs_rq);
3640}
3641
3642/*
3643 * This is done with a timer (instead of inline with bandwidth return) since
3644 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3645 */
3646static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3647{
3648 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3649 u64 expires;
3650
3651 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3652 raw_spin_lock(&cfs_b->lock);
3653 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3654 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3655 return;
db06e78c 3656 }
d8b4986d 3657
c06f04c7 3658 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3659 runtime = cfs_b->runtime;
c06f04c7 3660
d8b4986d
PT
3661 expires = cfs_b->runtime_expires;
3662 raw_spin_unlock(&cfs_b->lock);
3663
3664 if (!runtime)
3665 return;
3666
3667 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3668
3669 raw_spin_lock(&cfs_b->lock);
3670 if (expires == cfs_b->runtime_expires)
c06f04c7 3671 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3672 raw_spin_unlock(&cfs_b->lock);
3673}
3674
d3d9dc33
PT
3675/*
3676 * When a group wakes up we want to make sure that its quota is not already
3677 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3678 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3679 */
3680static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3681{
56f570e5
PT
3682 if (!cfs_bandwidth_used())
3683 return;
3684
d3d9dc33
PT
3685 /* an active group must be handled by the update_curr()->put() path */
3686 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3687 return;
3688
3689 /* ensure the group is not already throttled */
3690 if (cfs_rq_throttled(cfs_rq))
3691 return;
3692
3693 /* update runtime allocation */
3694 account_cfs_rq_runtime(cfs_rq, 0);
3695 if (cfs_rq->runtime_remaining <= 0)
3696 throttle_cfs_rq(cfs_rq);
3697}
3698
3699/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3700static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3701{
56f570e5 3702 if (!cfs_bandwidth_used())
678d5718 3703 return false;
56f570e5 3704
d3d9dc33 3705 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3706 return false;
d3d9dc33
PT
3707
3708 /*
3709 * it's possible for a throttled entity to be forced into a running
3710 * state (e.g. set_curr_task), in this case we're finished.
3711 */
3712 if (cfs_rq_throttled(cfs_rq))
678d5718 3713 return true;
d3d9dc33
PT
3714
3715 throttle_cfs_rq(cfs_rq);
678d5718 3716 return true;
d3d9dc33 3717}
029632fb 3718
029632fb
PZ
3719static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3720{
3721 struct cfs_bandwidth *cfs_b =
3722 container_of(timer, struct cfs_bandwidth, slack_timer);
3723 do_sched_cfs_slack_timer(cfs_b);
3724
3725 return HRTIMER_NORESTART;
3726}
3727
3728static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3729{
3730 struct cfs_bandwidth *cfs_b =
3731 container_of(timer, struct cfs_bandwidth, period_timer);
3732 ktime_t now;
3733 int overrun;
3734 int idle = 0;
3735
51f2176d 3736 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3737 for (;;) {
3738 now = hrtimer_cb_get_time(timer);
3739 overrun = hrtimer_forward(timer, now, cfs_b->period);
3740
3741 if (!overrun)
3742 break;
3743
3744 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3745 }
51f2176d 3746 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3747
3748 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3749}
3750
3751void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3752{
3753 raw_spin_lock_init(&cfs_b->lock);
3754 cfs_b->runtime = 0;
3755 cfs_b->quota = RUNTIME_INF;
3756 cfs_b->period = ns_to_ktime(default_cfs_period());
3757
3758 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3759 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3760 cfs_b->period_timer.function = sched_cfs_period_timer;
3761 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3762 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3763}
3764
3765static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3766{
3767 cfs_rq->runtime_enabled = 0;
3768 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3769}
3770
3771/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3772void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3773{
3774 /*
3775 * The timer may be active because we're trying to set a new bandwidth
3776 * period or because we're racing with the tear-down path
3777 * (timer_active==0 becomes visible before the hrtimer call-back
3778 * terminates). In either case we ensure that it's re-programmed
3779 */
927b54fc
BS
3780 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3781 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3782 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3783 raw_spin_unlock(&cfs_b->lock);
927b54fc 3784 cpu_relax();
029632fb
PZ
3785 raw_spin_lock(&cfs_b->lock);
3786 /* if someone else restarted the timer then we're done */
09dc4ab0 3787 if (!force && cfs_b->timer_active)
029632fb
PZ
3788 return;
3789 }
3790
3791 cfs_b->timer_active = 1;
3792 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3793}
3794
3795static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3796{
3797 hrtimer_cancel(&cfs_b->period_timer);
3798 hrtimer_cancel(&cfs_b->slack_timer);
3799}
3800
0e59bdae
KT
3801static void __maybe_unused update_runtime_enabled(struct rq *rq)
3802{
3803 struct cfs_rq *cfs_rq;
3804
3805 for_each_leaf_cfs_rq(rq, cfs_rq) {
3806 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3807
3808 raw_spin_lock(&cfs_b->lock);
3809 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3810 raw_spin_unlock(&cfs_b->lock);
3811 }
3812}
3813
38dc3348 3814static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3815{
3816 struct cfs_rq *cfs_rq;
3817
3818 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3819 if (!cfs_rq->runtime_enabled)
3820 continue;
3821
3822 /*
3823 * clock_task is not advancing so we just need to make sure
3824 * there's some valid quota amount
3825 */
51f2176d 3826 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3827 /*
3828 * Offline rq is schedulable till cpu is completely disabled
3829 * in take_cpu_down(), so we prevent new cfs throttling here.
3830 */
3831 cfs_rq->runtime_enabled = 0;
3832
029632fb
PZ
3833 if (cfs_rq_throttled(cfs_rq))
3834 unthrottle_cfs_rq(cfs_rq);
3835 }
3836}
3837
3838#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3839static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3840{
78becc27 3841 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3842}
3843
9dbdb155 3844static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3845static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3846static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3847static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3848
3849static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3850{
3851 return 0;
3852}
64660c86
PT
3853
3854static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3855{
3856 return 0;
3857}
3858
3859static inline int throttled_lb_pair(struct task_group *tg,
3860 int src_cpu, int dest_cpu)
3861{
3862 return 0;
3863}
029632fb
PZ
3864
3865void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3866
3867#ifdef CONFIG_FAIR_GROUP_SCHED
3868static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3869#endif
3870
029632fb
PZ
3871static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3872{
3873 return NULL;
3874}
3875static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3876static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3877static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3878
3879#endif /* CONFIG_CFS_BANDWIDTH */
3880
bf0f6f24
IM
3881/**************************************************
3882 * CFS operations on tasks:
3883 */
3884
8f4d37ec
PZ
3885#ifdef CONFIG_SCHED_HRTICK
3886static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3887{
8f4d37ec
PZ
3888 struct sched_entity *se = &p->se;
3889 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3890
3891 WARN_ON(task_rq(p) != rq);
3892
b39e66ea 3893 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3894 u64 slice = sched_slice(cfs_rq, se);
3895 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3896 s64 delta = slice - ran;
3897
3898 if (delta < 0) {
3899 if (rq->curr == p)
8875125e 3900 resched_curr(rq);
8f4d37ec
PZ
3901 return;
3902 }
31656519 3903 hrtick_start(rq, delta);
8f4d37ec
PZ
3904 }
3905}
a4c2f00f
PZ
3906
3907/*
3908 * called from enqueue/dequeue and updates the hrtick when the
3909 * current task is from our class and nr_running is low enough
3910 * to matter.
3911 */
3912static void hrtick_update(struct rq *rq)
3913{
3914 struct task_struct *curr = rq->curr;
3915
b39e66ea 3916 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3917 return;
3918
3919 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3920 hrtick_start_fair(rq, curr);
3921}
55e12e5e 3922#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3923static inline void
3924hrtick_start_fair(struct rq *rq, struct task_struct *p)
3925{
3926}
a4c2f00f
PZ
3927
3928static inline void hrtick_update(struct rq *rq)
3929{
3930}
8f4d37ec
PZ
3931#endif
3932
bf0f6f24
IM
3933/*
3934 * The enqueue_task method is called before nr_running is
3935 * increased. Here we update the fair scheduling stats and
3936 * then put the task into the rbtree:
3937 */
ea87bb78 3938static void
371fd7e7 3939enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3940{
3941 struct cfs_rq *cfs_rq;
62fb1851 3942 struct sched_entity *se = &p->se;
bf0f6f24
IM
3943
3944 for_each_sched_entity(se) {
62fb1851 3945 if (se->on_rq)
bf0f6f24
IM
3946 break;
3947 cfs_rq = cfs_rq_of(se);
88ec22d3 3948 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3949
3950 /*
3951 * end evaluation on encountering a throttled cfs_rq
3952 *
3953 * note: in the case of encountering a throttled cfs_rq we will
3954 * post the final h_nr_running increment below.
3955 */
3956 if (cfs_rq_throttled(cfs_rq))
3957 break;
953bfcd1 3958 cfs_rq->h_nr_running++;
85dac906 3959
88ec22d3 3960 flags = ENQUEUE_WAKEUP;
bf0f6f24 3961 }
8f4d37ec 3962
2069dd75 3963 for_each_sched_entity(se) {
0f317143 3964 cfs_rq = cfs_rq_of(se);
953bfcd1 3965 cfs_rq->h_nr_running++;
2069dd75 3966
85dac906
PT
3967 if (cfs_rq_throttled(cfs_rq))
3968 break;
3969
17bc14b7 3970 update_cfs_shares(cfs_rq);
9ee474f5 3971 update_entity_load_avg(se, 1);
2069dd75
PZ
3972 }
3973
18bf2805
BS
3974 if (!se) {
3975 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3976 add_nr_running(rq, 1);
18bf2805 3977 }
a4c2f00f 3978 hrtick_update(rq);
bf0f6f24
IM
3979}
3980
2f36825b
VP
3981static void set_next_buddy(struct sched_entity *se);
3982
bf0f6f24
IM
3983/*
3984 * The dequeue_task method is called before nr_running is
3985 * decreased. We remove the task from the rbtree and
3986 * update the fair scheduling stats:
3987 */
371fd7e7 3988static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3989{
3990 struct cfs_rq *cfs_rq;
62fb1851 3991 struct sched_entity *se = &p->se;
2f36825b 3992 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3993
3994 for_each_sched_entity(se) {
3995 cfs_rq = cfs_rq_of(se);
371fd7e7 3996 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3997
3998 /*
3999 * end evaluation on encountering a throttled cfs_rq
4000 *
4001 * note: in the case of encountering a throttled cfs_rq we will
4002 * post the final h_nr_running decrement below.
4003 */
4004 if (cfs_rq_throttled(cfs_rq))
4005 break;
953bfcd1 4006 cfs_rq->h_nr_running--;
2069dd75 4007
bf0f6f24 4008 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4009 if (cfs_rq->load.weight) {
4010 /*
4011 * Bias pick_next to pick a task from this cfs_rq, as
4012 * p is sleeping when it is within its sched_slice.
4013 */
4014 if (task_sleep && parent_entity(se))
4015 set_next_buddy(parent_entity(se));
9598c82d
PT
4016
4017 /* avoid re-evaluating load for this entity */
4018 se = parent_entity(se);
bf0f6f24 4019 break;
2f36825b 4020 }
371fd7e7 4021 flags |= DEQUEUE_SLEEP;
bf0f6f24 4022 }
8f4d37ec 4023
2069dd75 4024 for_each_sched_entity(se) {
0f317143 4025 cfs_rq = cfs_rq_of(se);
953bfcd1 4026 cfs_rq->h_nr_running--;
2069dd75 4027
85dac906
PT
4028 if (cfs_rq_throttled(cfs_rq))
4029 break;
4030
17bc14b7 4031 update_cfs_shares(cfs_rq);
9ee474f5 4032 update_entity_load_avg(se, 1);
2069dd75
PZ
4033 }
4034
18bf2805 4035 if (!se) {
72465447 4036 sub_nr_running(rq, 1);
18bf2805
BS
4037 update_rq_runnable_avg(rq, 1);
4038 }
a4c2f00f 4039 hrtick_update(rq);
bf0f6f24
IM
4040}
4041
e7693a36 4042#ifdef CONFIG_SMP
029632fb
PZ
4043/* Used instead of source_load when we know the type == 0 */
4044static unsigned long weighted_cpuload(const int cpu)
4045{
b92486cb 4046 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4047}
4048
4049/*
4050 * Return a low guess at the load of a migration-source cpu weighted
4051 * according to the scheduling class and "nice" value.
4052 *
4053 * We want to under-estimate the load of migration sources, to
4054 * balance conservatively.
4055 */
4056static unsigned long source_load(int cpu, int type)
4057{
4058 struct rq *rq = cpu_rq(cpu);
4059 unsigned long total = weighted_cpuload(cpu);
4060
4061 if (type == 0 || !sched_feat(LB_BIAS))
4062 return total;
4063
4064 return min(rq->cpu_load[type-1], total);
4065}
4066
4067/*
4068 * Return a high guess at the load of a migration-target cpu weighted
4069 * according to the scheduling class and "nice" value.
4070 */
4071static unsigned long target_load(int cpu, int type)
4072{
4073 struct rq *rq = cpu_rq(cpu);
4074 unsigned long total = weighted_cpuload(cpu);
4075
4076 if (type == 0 || !sched_feat(LB_BIAS))
4077 return total;
4078
4079 return max(rq->cpu_load[type-1], total);
4080}
4081
ced549fa 4082static unsigned long capacity_of(int cpu)
029632fb 4083{
ced549fa 4084 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4085}
4086
4087static unsigned long cpu_avg_load_per_task(int cpu)
4088{
4089 struct rq *rq = cpu_rq(cpu);
4090 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4091 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4092
4093 if (nr_running)
b92486cb 4094 return load_avg / nr_running;
029632fb
PZ
4095
4096 return 0;
4097}
4098
62470419
MW
4099static void record_wakee(struct task_struct *p)
4100{
4101 /*
4102 * Rough decay (wiping) for cost saving, don't worry
4103 * about the boundary, really active task won't care
4104 * about the loss.
4105 */
2538d960 4106 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4107 current->wakee_flips >>= 1;
62470419
MW
4108 current->wakee_flip_decay_ts = jiffies;
4109 }
4110
4111 if (current->last_wakee != p) {
4112 current->last_wakee = p;
4113 current->wakee_flips++;
4114 }
4115}
098fb9db 4116
74f8e4b2 4117static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4118{
4119 struct sched_entity *se = &p->se;
4120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4121 u64 min_vruntime;
4122
4123#ifndef CONFIG_64BIT
4124 u64 min_vruntime_copy;
88ec22d3 4125
3fe1698b
PZ
4126 do {
4127 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4128 smp_rmb();
4129 min_vruntime = cfs_rq->min_vruntime;
4130 } while (min_vruntime != min_vruntime_copy);
4131#else
4132 min_vruntime = cfs_rq->min_vruntime;
4133#endif
88ec22d3 4134
3fe1698b 4135 se->vruntime -= min_vruntime;
62470419 4136 record_wakee(p);
88ec22d3
PZ
4137}
4138
bb3469ac 4139#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4140/*
4141 * effective_load() calculates the load change as seen from the root_task_group
4142 *
4143 * Adding load to a group doesn't make a group heavier, but can cause movement
4144 * of group shares between cpus. Assuming the shares were perfectly aligned one
4145 * can calculate the shift in shares.
cf5f0acf
PZ
4146 *
4147 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4148 * on this @cpu and results in a total addition (subtraction) of @wg to the
4149 * total group weight.
4150 *
4151 * Given a runqueue weight distribution (rw_i) we can compute a shares
4152 * distribution (s_i) using:
4153 *
4154 * s_i = rw_i / \Sum rw_j (1)
4155 *
4156 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4157 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4158 * shares distribution (s_i):
4159 *
4160 * rw_i = { 2, 4, 1, 0 }
4161 * s_i = { 2/7, 4/7, 1/7, 0 }
4162 *
4163 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4164 * task used to run on and the CPU the waker is running on), we need to
4165 * compute the effect of waking a task on either CPU and, in case of a sync
4166 * wakeup, compute the effect of the current task going to sleep.
4167 *
4168 * So for a change of @wl to the local @cpu with an overall group weight change
4169 * of @wl we can compute the new shares distribution (s'_i) using:
4170 *
4171 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4172 *
4173 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4174 * differences in waking a task to CPU 0. The additional task changes the
4175 * weight and shares distributions like:
4176 *
4177 * rw'_i = { 3, 4, 1, 0 }
4178 * s'_i = { 3/8, 4/8, 1/8, 0 }
4179 *
4180 * We can then compute the difference in effective weight by using:
4181 *
4182 * dw_i = S * (s'_i - s_i) (3)
4183 *
4184 * Where 'S' is the group weight as seen by its parent.
4185 *
4186 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4187 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4188 * 4/7) times the weight of the group.
f5bfb7d9 4189 */
2069dd75 4190static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4191{
4be9daaa 4192 struct sched_entity *se = tg->se[cpu];
f1d239f7 4193
9722c2da 4194 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4195 return wl;
4196
4be9daaa 4197 for_each_sched_entity(se) {
cf5f0acf 4198 long w, W;
4be9daaa 4199
977dda7c 4200 tg = se->my_q->tg;
bb3469ac 4201
cf5f0acf
PZ
4202 /*
4203 * W = @wg + \Sum rw_j
4204 */
4205 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4206
cf5f0acf
PZ
4207 /*
4208 * w = rw_i + @wl
4209 */
4210 w = se->my_q->load.weight + wl;
940959e9 4211
cf5f0acf
PZ
4212 /*
4213 * wl = S * s'_i; see (2)
4214 */
4215 if (W > 0 && w < W)
4216 wl = (w * tg->shares) / W;
977dda7c
PT
4217 else
4218 wl = tg->shares;
940959e9 4219
cf5f0acf
PZ
4220 /*
4221 * Per the above, wl is the new se->load.weight value; since
4222 * those are clipped to [MIN_SHARES, ...) do so now. See
4223 * calc_cfs_shares().
4224 */
977dda7c
PT
4225 if (wl < MIN_SHARES)
4226 wl = MIN_SHARES;
cf5f0acf
PZ
4227
4228 /*
4229 * wl = dw_i = S * (s'_i - s_i); see (3)
4230 */
977dda7c 4231 wl -= se->load.weight;
cf5f0acf
PZ
4232
4233 /*
4234 * Recursively apply this logic to all parent groups to compute
4235 * the final effective load change on the root group. Since
4236 * only the @tg group gets extra weight, all parent groups can
4237 * only redistribute existing shares. @wl is the shift in shares
4238 * resulting from this level per the above.
4239 */
4be9daaa 4240 wg = 0;
4be9daaa 4241 }
bb3469ac 4242
4be9daaa 4243 return wl;
bb3469ac
PZ
4244}
4245#else
4be9daaa 4246
58d081b5 4247static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4248{
83378269 4249 return wl;
bb3469ac 4250}
4be9daaa 4251
bb3469ac
PZ
4252#endif
4253
62470419
MW
4254static int wake_wide(struct task_struct *p)
4255{
7d9ffa89 4256 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4257
4258 /*
4259 * Yeah, it's the switching-frequency, could means many wakee or
4260 * rapidly switch, use factor here will just help to automatically
4261 * adjust the loose-degree, so bigger node will lead to more pull.
4262 */
4263 if (p->wakee_flips > factor) {
4264 /*
4265 * wakee is somewhat hot, it needs certain amount of cpu
4266 * resource, so if waker is far more hot, prefer to leave
4267 * it alone.
4268 */
4269 if (current->wakee_flips > (factor * p->wakee_flips))
4270 return 1;
4271 }
4272
4273 return 0;
4274}
4275
c88d5910 4276static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4277{
e37b6a7b 4278 s64 this_load, load;
c88d5910 4279 int idx, this_cpu, prev_cpu;
098fb9db 4280 unsigned long tl_per_task;
c88d5910 4281 struct task_group *tg;
83378269 4282 unsigned long weight;
b3137bc8 4283 int balanced;
098fb9db 4284
62470419
MW
4285 /*
4286 * If we wake multiple tasks be careful to not bounce
4287 * ourselves around too much.
4288 */
4289 if (wake_wide(p))
4290 return 0;
4291
c88d5910
PZ
4292 idx = sd->wake_idx;
4293 this_cpu = smp_processor_id();
4294 prev_cpu = task_cpu(p);
4295 load = source_load(prev_cpu, idx);
4296 this_load = target_load(this_cpu, idx);
098fb9db 4297
b3137bc8
MG
4298 /*
4299 * If sync wakeup then subtract the (maximum possible)
4300 * effect of the currently running task from the load
4301 * of the current CPU:
4302 */
83378269
PZ
4303 if (sync) {
4304 tg = task_group(current);
4305 weight = current->se.load.weight;
4306
c88d5910 4307 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4308 load += effective_load(tg, prev_cpu, 0, -weight);
4309 }
b3137bc8 4310
83378269
PZ
4311 tg = task_group(p);
4312 weight = p->se.load.weight;
b3137bc8 4313
71a29aa7
PZ
4314 /*
4315 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4316 * due to the sync cause above having dropped this_load to 0, we'll
4317 * always have an imbalance, but there's really nothing you can do
4318 * about that, so that's good too.
71a29aa7
PZ
4319 *
4320 * Otherwise check if either cpus are near enough in load to allow this
4321 * task to be woken on this_cpu.
4322 */
e37b6a7b
PT
4323 if (this_load > 0) {
4324 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4325
4326 this_eff_load = 100;
ced549fa 4327 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4328 this_eff_load *= this_load +
4329 effective_load(tg, this_cpu, weight, weight);
4330
4331 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4332 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4333 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4334
4335 balanced = this_eff_load <= prev_eff_load;
4336 } else
4337 balanced = true;
b3137bc8 4338
098fb9db 4339 /*
4ae7d5ce
IM
4340 * If the currently running task will sleep within
4341 * a reasonable amount of time then attract this newly
4342 * woken task:
098fb9db 4343 */
2fb7635c
PZ
4344 if (sync && balanced)
4345 return 1;
098fb9db 4346
41acab88 4347 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4348 tl_per_task = cpu_avg_load_per_task(this_cpu);
4349
c88d5910
PZ
4350 if (balanced ||
4351 (this_load <= load &&
4352 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4353 /*
4354 * This domain has SD_WAKE_AFFINE and
4355 * p is cache cold in this domain, and
4356 * there is no bad imbalance.
4357 */
c88d5910 4358 schedstat_inc(sd, ttwu_move_affine);
41acab88 4359 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4360
4361 return 1;
4362 }
4363 return 0;
4364}
4365
aaee1203
PZ
4366/*
4367 * find_idlest_group finds and returns the least busy CPU group within the
4368 * domain.
4369 */
4370static struct sched_group *
78e7ed53 4371find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4372 int this_cpu, int sd_flag)
e7693a36 4373{
b3bd3de6 4374 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4375 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4376 int load_idx = sd->forkexec_idx;
aaee1203 4377 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4378
c44f2a02
VG
4379 if (sd_flag & SD_BALANCE_WAKE)
4380 load_idx = sd->wake_idx;
4381
aaee1203
PZ
4382 do {
4383 unsigned long load, avg_load;
4384 int local_group;
4385 int i;
e7693a36 4386
aaee1203
PZ
4387 /* Skip over this group if it has no CPUs allowed */
4388 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4389 tsk_cpus_allowed(p)))
aaee1203
PZ
4390 continue;
4391
4392 local_group = cpumask_test_cpu(this_cpu,
4393 sched_group_cpus(group));
4394
4395 /* Tally up the load of all CPUs in the group */
4396 avg_load = 0;
4397
4398 for_each_cpu(i, sched_group_cpus(group)) {
4399 /* Bias balancing toward cpus of our domain */
4400 if (local_group)
4401 load = source_load(i, load_idx);
4402 else
4403 load = target_load(i, load_idx);
4404
4405 avg_load += load;
4406 }
4407
63b2ca30 4408 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4409 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4410
4411 if (local_group) {
4412 this_load = avg_load;
aaee1203
PZ
4413 } else if (avg_load < min_load) {
4414 min_load = avg_load;
4415 idlest = group;
4416 }
4417 } while (group = group->next, group != sd->groups);
4418
4419 if (!idlest || 100*this_load < imbalance*min_load)
4420 return NULL;
4421 return idlest;
4422}
4423
4424/*
4425 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4426 */
4427static int
4428find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4429{
4430 unsigned long load, min_load = ULONG_MAX;
4431 int idlest = -1;
4432 int i;
4433
4434 /* Traverse only the allowed CPUs */
fa17b507 4435 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4436 load = weighted_cpuload(i);
4437
4438 if (load < min_load || (load == min_load && i == this_cpu)) {
4439 min_load = load;
4440 idlest = i;
e7693a36
GH
4441 }
4442 }
4443
aaee1203
PZ
4444 return idlest;
4445}
e7693a36 4446
a50bde51
PZ
4447/*
4448 * Try and locate an idle CPU in the sched_domain.
4449 */
99bd5e2f 4450static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4451{
99bd5e2f 4452 struct sched_domain *sd;
37407ea7 4453 struct sched_group *sg;
e0a79f52 4454 int i = task_cpu(p);
a50bde51 4455
e0a79f52
MG
4456 if (idle_cpu(target))
4457 return target;
99bd5e2f
SS
4458
4459 /*
e0a79f52 4460 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4461 */
e0a79f52
MG
4462 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4463 return i;
a50bde51
PZ
4464
4465 /*
37407ea7 4466 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4467 */
518cd623 4468 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4469 for_each_lower_domain(sd) {
37407ea7
LT
4470 sg = sd->groups;
4471 do {
4472 if (!cpumask_intersects(sched_group_cpus(sg),
4473 tsk_cpus_allowed(p)))
4474 goto next;
4475
4476 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4477 if (i == target || !idle_cpu(i))
37407ea7
LT
4478 goto next;
4479 }
970e1789 4480
37407ea7
LT
4481 target = cpumask_first_and(sched_group_cpus(sg),
4482 tsk_cpus_allowed(p));
4483 goto done;
4484next:
4485 sg = sg->next;
4486 } while (sg != sd->groups);
4487 }
4488done:
a50bde51
PZ
4489 return target;
4490}
4491
aaee1203 4492/*
de91b9cb
MR
4493 * select_task_rq_fair: Select target runqueue for the waking task in domains
4494 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4495 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4496 *
de91b9cb
MR
4497 * Balances load by selecting the idlest cpu in the idlest group, or under
4498 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4499 *
de91b9cb 4500 * Returns the target cpu number.
aaee1203
PZ
4501 *
4502 * preempt must be disabled.
4503 */
0017d735 4504static int
ac66f547 4505select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4506{
29cd8bae 4507 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4508 int cpu = smp_processor_id();
c88d5910 4509 int new_cpu = cpu;
99bd5e2f 4510 int want_affine = 0;
5158f4e4 4511 int sync = wake_flags & WF_SYNC;
c88d5910 4512
29baa747 4513 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4514 return prev_cpu;
4515
0763a660 4516 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4517 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4518 want_affine = 1;
4519 new_cpu = prev_cpu;
4520 }
aaee1203 4521
dce840a0 4522 rcu_read_lock();
aaee1203 4523 for_each_domain(cpu, tmp) {
e4f42888
PZ
4524 if (!(tmp->flags & SD_LOAD_BALANCE))
4525 continue;
4526
fe3bcfe1 4527 /*
99bd5e2f
SS
4528 * If both cpu and prev_cpu are part of this domain,
4529 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4530 */
99bd5e2f
SS
4531 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4532 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4533 affine_sd = tmp;
29cd8bae 4534 break;
f03542a7 4535 }
29cd8bae 4536
f03542a7 4537 if (tmp->flags & sd_flag)
29cd8bae
PZ
4538 sd = tmp;
4539 }
4540
8bf21433
RR
4541 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4542 prev_cpu = cpu;
dce840a0 4543
8bf21433 4544 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4545 new_cpu = select_idle_sibling(p, prev_cpu);
4546 goto unlock;
8b911acd 4547 }
e7693a36 4548
aaee1203
PZ
4549 while (sd) {
4550 struct sched_group *group;
c88d5910 4551 int weight;
098fb9db 4552
0763a660 4553 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4554 sd = sd->child;
4555 continue;
4556 }
098fb9db 4557
c44f2a02 4558 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4559 if (!group) {
4560 sd = sd->child;
4561 continue;
4562 }
4ae7d5ce 4563
d7c33c49 4564 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4565 if (new_cpu == -1 || new_cpu == cpu) {
4566 /* Now try balancing at a lower domain level of cpu */
4567 sd = sd->child;
4568 continue;
e7693a36 4569 }
aaee1203
PZ
4570
4571 /* Now try balancing at a lower domain level of new_cpu */
4572 cpu = new_cpu;
669c55e9 4573 weight = sd->span_weight;
aaee1203
PZ
4574 sd = NULL;
4575 for_each_domain(cpu, tmp) {
669c55e9 4576 if (weight <= tmp->span_weight)
aaee1203 4577 break;
0763a660 4578 if (tmp->flags & sd_flag)
aaee1203
PZ
4579 sd = tmp;
4580 }
4581 /* while loop will break here if sd == NULL */
e7693a36 4582 }
dce840a0
PZ
4583unlock:
4584 rcu_read_unlock();
e7693a36 4585
c88d5910 4586 return new_cpu;
e7693a36 4587}
0a74bef8
PT
4588
4589/*
4590 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4591 * cfs_rq_of(p) references at time of call are still valid and identify the
4592 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4593 * other assumptions, including the state of rq->lock, should be made.
4594 */
4595static void
4596migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4597{
aff3e498
PT
4598 struct sched_entity *se = &p->se;
4599 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4600
4601 /*
4602 * Load tracking: accumulate removed load so that it can be processed
4603 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4604 * to blocked load iff they have a positive decay-count. It can never
4605 * be negative here since on-rq tasks have decay-count == 0.
4606 */
4607 if (se->avg.decay_count) {
4608 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4609 atomic_long_add(se->avg.load_avg_contrib,
4610 &cfs_rq->removed_load);
aff3e498 4611 }
3944a927
BS
4612
4613 /* We have migrated, no longer consider this task hot */
4614 se->exec_start = 0;
0a74bef8 4615}
e7693a36
GH
4616#endif /* CONFIG_SMP */
4617
e52fb7c0
PZ
4618static unsigned long
4619wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4620{
4621 unsigned long gran = sysctl_sched_wakeup_granularity;
4622
4623 /*
e52fb7c0
PZ
4624 * Since its curr running now, convert the gran from real-time
4625 * to virtual-time in his units.
13814d42
MG
4626 *
4627 * By using 'se' instead of 'curr' we penalize light tasks, so
4628 * they get preempted easier. That is, if 'se' < 'curr' then
4629 * the resulting gran will be larger, therefore penalizing the
4630 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4631 * be smaller, again penalizing the lighter task.
4632 *
4633 * This is especially important for buddies when the leftmost
4634 * task is higher priority than the buddy.
0bbd3336 4635 */
f4ad9bd2 4636 return calc_delta_fair(gran, se);
0bbd3336
PZ
4637}
4638
464b7527
PZ
4639/*
4640 * Should 'se' preempt 'curr'.
4641 *
4642 * |s1
4643 * |s2
4644 * |s3
4645 * g
4646 * |<--->|c
4647 *
4648 * w(c, s1) = -1
4649 * w(c, s2) = 0
4650 * w(c, s3) = 1
4651 *
4652 */
4653static int
4654wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4655{
4656 s64 gran, vdiff = curr->vruntime - se->vruntime;
4657
4658 if (vdiff <= 0)
4659 return -1;
4660
e52fb7c0 4661 gran = wakeup_gran(curr, se);
464b7527
PZ
4662 if (vdiff > gran)
4663 return 1;
4664
4665 return 0;
4666}
4667
02479099
PZ
4668static void set_last_buddy(struct sched_entity *se)
4669{
69c80f3e
VP
4670 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4671 return;
4672
4673 for_each_sched_entity(se)
4674 cfs_rq_of(se)->last = se;
02479099
PZ
4675}
4676
4677static void set_next_buddy(struct sched_entity *se)
4678{
69c80f3e
VP
4679 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4680 return;
4681
4682 for_each_sched_entity(se)
4683 cfs_rq_of(se)->next = se;
02479099
PZ
4684}
4685
ac53db59
RR
4686static void set_skip_buddy(struct sched_entity *se)
4687{
69c80f3e
VP
4688 for_each_sched_entity(se)
4689 cfs_rq_of(se)->skip = se;
ac53db59
RR
4690}
4691
bf0f6f24
IM
4692/*
4693 * Preempt the current task with a newly woken task if needed:
4694 */
5a9b86f6 4695static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4696{
4697 struct task_struct *curr = rq->curr;
8651a86c 4698 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4699 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4700 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4701 int next_buddy_marked = 0;
bf0f6f24 4702
4ae7d5ce
IM
4703 if (unlikely(se == pse))
4704 return;
4705
5238cdd3 4706 /*
163122b7 4707 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4708 * unconditionally check_prempt_curr() after an enqueue (which may have
4709 * lead to a throttle). This both saves work and prevents false
4710 * next-buddy nomination below.
4711 */
4712 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4713 return;
4714
2f36825b 4715 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4716 set_next_buddy(pse);
2f36825b
VP
4717 next_buddy_marked = 1;
4718 }
57fdc26d 4719
aec0a514
BR
4720 /*
4721 * We can come here with TIF_NEED_RESCHED already set from new task
4722 * wake up path.
5238cdd3
PT
4723 *
4724 * Note: this also catches the edge-case of curr being in a throttled
4725 * group (e.g. via set_curr_task), since update_curr() (in the
4726 * enqueue of curr) will have resulted in resched being set. This
4727 * prevents us from potentially nominating it as a false LAST_BUDDY
4728 * below.
aec0a514
BR
4729 */
4730 if (test_tsk_need_resched(curr))
4731 return;
4732
a2f5c9ab
DH
4733 /* Idle tasks are by definition preempted by non-idle tasks. */
4734 if (unlikely(curr->policy == SCHED_IDLE) &&
4735 likely(p->policy != SCHED_IDLE))
4736 goto preempt;
4737
91c234b4 4738 /*
a2f5c9ab
DH
4739 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4740 * is driven by the tick):
91c234b4 4741 */
8ed92e51 4742 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4743 return;
bf0f6f24 4744
464b7527 4745 find_matching_se(&se, &pse);
9bbd7374 4746 update_curr(cfs_rq_of(se));
002f128b 4747 BUG_ON(!pse);
2f36825b
VP
4748 if (wakeup_preempt_entity(se, pse) == 1) {
4749 /*
4750 * Bias pick_next to pick the sched entity that is
4751 * triggering this preemption.
4752 */
4753 if (!next_buddy_marked)
4754 set_next_buddy(pse);
3a7e73a2 4755 goto preempt;
2f36825b 4756 }
464b7527 4757
3a7e73a2 4758 return;
a65ac745 4759
3a7e73a2 4760preempt:
8875125e 4761 resched_curr(rq);
3a7e73a2
PZ
4762 /*
4763 * Only set the backward buddy when the current task is still
4764 * on the rq. This can happen when a wakeup gets interleaved
4765 * with schedule on the ->pre_schedule() or idle_balance()
4766 * point, either of which can * drop the rq lock.
4767 *
4768 * Also, during early boot the idle thread is in the fair class,
4769 * for obvious reasons its a bad idea to schedule back to it.
4770 */
4771 if (unlikely(!se->on_rq || curr == rq->idle))
4772 return;
4773
4774 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4775 set_last_buddy(se);
bf0f6f24
IM
4776}
4777
606dba2e
PZ
4778static struct task_struct *
4779pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4780{
4781 struct cfs_rq *cfs_rq = &rq->cfs;
4782 struct sched_entity *se;
678d5718 4783 struct task_struct *p;
37e117c0 4784 int new_tasks;
678d5718 4785
6e83125c 4786again:
678d5718
PZ
4787#ifdef CONFIG_FAIR_GROUP_SCHED
4788 if (!cfs_rq->nr_running)
38033c37 4789 goto idle;
678d5718 4790
3f1d2a31 4791 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4792 goto simple;
4793
4794 /*
4795 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4796 * likely that a next task is from the same cgroup as the current.
4797 *
4798 * Therefore attempt to avoid putting and setting the entire cgroup
4799 * hierarchy, only change the part that actually changes.
4800 */
4801
4802 do {
4803 struct sched_entity *curr = cfs_rq->curr;
4804
4805 /*
4806 * Since we got here without doing put_prev_entity() we also
4807 * have to consider cfs_rq->curr. If it is still a runnable
4808 * entity, update_curr() will update its vruntime, otherwise
4809 * forget we've ever seen it.
4810 */
4811 if (curr && curr->on_rq)
4812 update_curr(cfs_rq);
4813 else
4814 curr = NULL;
4815
4816 /*
4817 * This call to check_cfs_rq_runtime() will do the throttle and
4818 * dequeue its entity in the parent(s). Therefore the 'simple'
4819 * nr_running test will indeed be correct.
4820 */
4821 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4822 goto simple;
4823
4824 se = pick_next_entity(cfs_rq, curr);
4825 cfs_rq = group_cfs_rq(se);
4826 } while (cfs_rq);
4827
4828 p = task_of(se);
4829
4830 /*
4831 * Since we haven't yet done put_prev_entity and if the selected task
4832 * is a different task than we started out with, try and touch the
4833 * least amount of cfs_rqs.
4834 */
4835 if (prev != p) {
4836 struct sched_entity *pse = &prev->se;
4837
4838 while (!(cfs_rq = is_same_group(se, pse))) {
4839 int se_depth = se->depth;
4840 int pse_depth = pse->depth;
4841
4842 if (se_depth <= pse_depth) {
4843 put_prev_entity(cfs_rq_of(pse), pse);
4844 pse = parent_entity(pse);
4845 }
4846 if (se_depth >= pse_depth) {
4847 set_next_entity(cfs_rq_of(se), se);
4848 se = parent_entity(se);
4849 }
4850 }
4851
4852 put_prev_entity(cfs_rq, pse);
4853 set_next_entity(cfs_rq, se);
4854 }
4855
4856 if (hrtick_enabled(rq))
4857 hrtick_start_fair(rq, p);
4858
4859 return p;
4860simple:
4861 cfs_rq = &rq->cfs;
4862#endif
bf0f6f24 4863
36ace27e 4864 if (!cfs_rq->nr_running)
38033c37 4865 goto idle;
bf0f6f24 4866
3f1d2a31 4867 put_prev_task(rq, prev);
606dba2e 4868
bf0f6f24 4869 do {
678d5718 4870 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4871 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4872 cfs_rq = group_cfs_rq(se);
4873 } while (cfs_rq);
4874
8f4d37ec 4875 p = task_of(se);
678d5718 4876
b39e66ea
MG
4877 if (hrtick_enabled(rq))
4878 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4879
4880 return p;
38033c37
PZ
4881
4882idle:
e4aa358b 4883 new_tasks = idle_balance(rq);
37e117c0
PZ
4884 /*
4885 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4886 * possible for any higher priority task to appear. In that case we
4887 * must re-start the pick_next_entity() loop.
4888 */
e4aa358b 4889 if (new_tasks < 0)
37e117c0
PZ
4890 return RETRY_TASK;
4891
e4aa358b 4892 if (new_tasks > 0)
38033c37 4893 goto again;
38033c37
PZ
4894
4895 return NULL;
bf0f6f24
IM
4896}
4897
4898/*
4899 * Account for a descheduled task:
4900 */
31ee529c 4901static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4902{
4903 struct sched_entity *se = &prev->se;
4904 struct cfs_rq *cfs_rq;
4905
4906 for_each_sched_entity(se) {
4907 cfs_rq = cfs_rq_of(se);
ab6cde26 4908 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4909 }
4910}
4911
ac53db59
RR
4912/*
4913 * sched_yield() is very simple
4914 *
4915 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4916 */
4917static void yield_task_fair(struct rq *rq)
4918{
4919 struct task_struct *curr = rq->curr;
4920 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4921 struct sched_entity *se = &curr->se;
4922
4923 /*
4924 * Are we the only task in the tree?
4925 */
4926 if (unlikely(rq->nr_running == 1))
4927 return;
4928
4929 clear_buddies(cfs_rq, se);
4930
4931 if (curr->policy != SCHED_BATCH) {
4932 update_rq_clock(rq);
4933 /*
4934 * Update run-time statistics of the 'current'.
4935 */
4936 update_curr(cfs_rq);
916671c0
MG
4937 /*
4938 * Tell update_rq_clock() that we've just updated,
4939 * so we don't do microscopic update in schedule()
4940 * and double the fastpath cost.
4941 */
4942 rq->skip_clock_update = 1;
ac53db59
RR
4943 }
4944
4945 set_skip_buddy(se);
4946}
4947
d95f4122
MG
4948static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4949{
4950 struct sched_entity *se = &p->se;
4951
5238cdd3
PT
4952 /* throttled hierarchies are not runnable */
4953 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4954 return false;
4955
4956 /* Tell the scheduler that we'd really like pse to run next. */
4957 set_next_buddy(se);
4958
d95f4122
MG
4959 yield_task_fair(rq);
4960
4961 return true;
4962}
4963
681f3e68 4964#ifdef CONFIG_SMP
bf0f6f24 4965/**************************************************
e9c84cb8
PZ
4966 * Fair scheduling class load-balancing methods.
4967 *
4968 * BASICS
4969 *
4970 * The purpose of load-balancing is to achieve the same basic fairness the
4971 * per-cpu scheduler provides, namely provide a proportional amount of compute
4972 * time to each task. This is expressed in the following equation:
4973 *
4974 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4975 *
4976 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4977 * W_i,0 is defined as:
4978 *
4979 * W_i,0 = \Sum_j w_i,j (2)
4980 *
4981 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4982 * is derived from the nice value as per prio_to_weight[].
4983 *
4984 * The weight average is an exponential decay average of the instantaneous
4985 * weight:
4986 *
4987 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4988 *
ced549fa 4989 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4990 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4991 * can also include other factors [XXX].
4992 *
4993 * To achieve this balance we define a measure of imbalance which follows
4994 * directly from (1):
4995 *
ced549fa 4996 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
4997 *
4998 * We them move tasks around to minimize the imbalance. In the continuous
4999 * function space it is obvious this converges, in the discrete case we get
5000 * a few fun cases generally called infeasible weight scenarios.
5001 *
5002 * [XXX expand on:
5003 * - infeasible weights;
5004 * - local vs global optima in the discrete case. ]
5005 *
5006 *
5007 * SCHED DOMAINS
5008 *
5009 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5010 * for all i,j solution, we create a tree of cpus that follows the hardware
5011 * topology where each level pairs two lower groups (or better). This results
5012 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5013 * tree to only the first of the previous level and we decrease the frequency
5014 * of load-balance at each level inv. proportional to the number of cpus in
5015 * the groups.
5016 *
5017 * This yields:
5018 *
5019 * log_2 n 1 n
5020 * \Sum { --- * --- * 2^i } = O(n) (5)
5021 * i = 0 2^i 2^i
5022 * `- size of each group
5023 * | | `- number of cpus doing load-balance
5024 * | `- freq
5025 * `- sum over all levels
5026 *
5027 * Coupled with a limit on how many tasks we can migrate every balance pass,
5028 * this makes (5) the runtime complexity of the balancer.
5029 *
5030 * An important property here is that each CPU is still (indirectly) connected
5031 * to every other cpu in at most O(log n) steps:
5032 *
5033 * The adjacency matrix of the resulting graph is given by:
5034 *
5035 * log_2 n
5036 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5037 * k = 0
5038 *
5039 * And you'll find that:
5040 *
5041 * A^(log_2 n)_i,j != 0 for all i,j (7)
5042 *
5043 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5044 * The task movement gives a factor of O(m), giving a convergence complexity
5045 * of:
5046 *
5047 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5048 *
5049 *
5050 * WORK CONSERVING
5051 *
5052 * In order to avoid CPUs going idle while there's still work to do, new idle
5053 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5054 * tree itself instead of relying on other CPUs to bring it work.
5055 *
5056 * This adds some complexity to both (5) and (8) but it reduces the total idle
5057 * time.
5058 *
5059 * [XXX more?]
5060 *
5061 *
5062 * CGROUPS
5063 *
5064 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5065 *
5066 * s_k,i
5067 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5068 * S_k
5069 *
5070 * Where
5071 *
5072 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5073 *
5074 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5075 *
5076 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5077 * property.
5078 *
5079 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5080 * rewrite all of this once again.]
5081 */
bf0f6f24 5082
ed387b78
HS
5083static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5084
0ec8aa00
PZ
5085enum fbq_type { regular, remote, all };
5086
ddcdf6e7 5087#define LBF_ALL_PINNED 0x01
367456c7 5088#define LBF_NEED_BREAK 0x02
6263322c
PZ
5089#define LBF_DST_PINNED 0x04
5090#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5091
5092struct lb_env {
5093 struct sched_domain *sd;
5094
ddcdf6e7 5095 struct rq *src_rq;
85c1e7da 5096 int src_cpu;
ddcdf6e7
PZ
5097
5098 int dst_cpu;
5099 struct rq *dst_rq;
5100
88b8dac0
SV
5101 struct cpumask *dst_grpmask;
5102 int new_dst_cpu;
ddcdf6e7 5103 enum cpu_idle_type idle;
bd939f45 5104 long imbalance;
b9403130
MW
5105 /* The set of CPUs under consideration for load-balancing */
5106 struct cpumask *cpus;
5107
ddcdf6e7 5108 unsigned int flags;
367456c7
PZ
5109
5110 unsigned int loop;
5111 unsigned int loop_break;
5112 unsigned int loop_max;
0ec8aa00
PZ
5113
5114 enum fbq_type fbq_type;
163122b7 5115 struct list_head tasks;
ddcdf6e7
PZ
5116};
5117
029632fb
PZ
5118/*
5119 * Is this task likely cache-hot:
5120 */
5d5e2b1b 5121static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5122{
5123 s64 delta;
5124
e5673f28
KT
5125 lockdep_assert_held(&env->src_rq->lock);
5126
029632fb
PZ
5127 if (p->sched_class != &fair_sched_class)
5128 return 0;
5129
5130 if (unlikely(p->policy == SCHED_IDLE))
5131 return 0;
5132
5133 /*
5134 * Buddy candidates are cache hot:
5135 */
5d5e2b1b 5136 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5137 (&p->se == cfs_rq_of(&p->se)->next ||
5138 &p->se == cfs_rq_of(&p->se)->last))
5139 return 1;
5140
5141 if (sysctl_sched_migration_cost == -1)
5142 return 1;
5143 if (sysctl_sched_migration_cost == 0)
5144 return 0;
5145
5d5e2b1b 5146 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5147
5148 return delta < (s64)sysctl_sched_migration_cost;
5149}
5150
3a7053b3
MG
5151#ifdef CONFIG_NUMA_BALANCING
5152/* Returns true if the destination node has incurred more faults */
5153static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5154{
b1ad065e 5155 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5156 int src_nid, dst_nid;
5157
ff1df896 5158 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5159 !(env->sd->flags & SD_NUMA)) {
5160 return false;
5161 }
5162
5163 src_nid = cpu_to_node(env->src_cpu);
5164 dst_nid = cpu_to_node(env->dst_cpu);
5165
83e1d2cd 5166 if (src_nid == dst_nid)
3a7053b3
MG
5167 return false;
5168
b1ad065e
RR
5169 if (numa_group) {
5170 /* Task is already in the group's interleave set. */
5171 if (node_isset(src_nid, numa_group->active_nodes))
5172 return false;
83e1d2cd 5173
b1ad065e
RR
5174 /* Task is moving into the group's interleave set. */
5175 if (node_isset(dst_nid, numa_group->active_nodes))
5176 return true;
83e1d2cd 5177
b1ad065e
RR
5178 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5179 }
5180
5181 /* Encourage migration to the preferred node. */
5182 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5183 return true;
5184
b1ad065e 5185 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5186}
7a0f3083
MG
5187
5188
5189static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5190{
b1ad065e 5191 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5192 int src_nid, dst_nid;
5193
5194 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5195 return false;
5196
ff1df896 5197 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5198 return false;
5199
5200 src_nid = cpu_to_node(env->src_cpu);
5201 dst_nid = cpu_to_node(env->dst_cpu);
5202
83e1d2cd 5203 if (src_nid == dst_nid)
7a0f3083
MG
5204 return false;
5205
b1ad065e
RR
5206 if (numa_group) {
5207 /* Task is moving within/into the group's interleave set. */
5208 if (node_isset(dst_nid, numa_group->active_nodes))
5209 return false;
5210
5211 /* Task is moving out of the group's interleave set. */
5212 if (node_isset(src_nid, numa_group->active_nodes))
5213 return true;
5214
5215 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5216 }
5217
83e1d2cd
MG
5218 /* Migrating away from the preferred node is always bad. */
5219 if (src_nid == p->numa_preferred_nid)
5220 return true;
5221
b1ad065e 5222 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5223}
5224
3a7053b3
MG
5225#else
5226static inline bool migrate_improves_locality(struct task_struct *p,
5227 struct lb_env *env)
5228{
5229 return false;
5230}
7a0f3083
MG
5231
5232static inline bool migrate_degrades_locality(struct task_struct *p,
5233 struct lb_env *env)
5234{
5235 return false;
5236}
3a7053b3
MG
5237#endif
5238
1e3c88bd
PZ
5239/*
5240 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5241 */
5242static
8e45cb54 5243int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5244{
5245 int tsk_cache_hot = 0;
e5673f28
KT
5246
5247 lockdep_assert_held(&env->src_rq->lock);
5248
1e3c88bd
PZ
5249 /*
5250 * We do not migrate tasks that are:
d3198084 5251 * 1) throttled_lb_pair, or
1e3c88bd 5252 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5253 * 3) running (obviously), or
5254 * 4) are cache-hot on their current CPU.
1e3c88bd 5255 */
d3198084
JK
5256 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5257 return 0;
5258
ddcdf6e7 5259 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5260 int cpu;
88b8dac0 5261
41acab88 5262 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5263
6263322c
PZ
5264 env->flags |= LBF_SOME_PINNED;
5265
88b8dac0
SV
5266 /*
5267 * Remember if this task can be migrated to any other cpu in
5268 * our sched_group. We may want to revisit it if we couldn't
5269 * meet load balance goals by pulling other tasks on src_cpu.
5270 *
5271 * Also avoid computing new_dst_cpu if we have already computed
5272 * one in current iteration.
5273 */
6263322c 5274 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5275 return 0;
5276
e02e60c1
JK
5277 /* Prevent to re-select dst_cpu via env's cpus */
5278 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5279 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5280 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5281 env->new_dst_cpu = cpu;
5282 break;
5283 }
88b8dac0 5284 }
e02e60c1 5285
1e3c88bd
PZ
5286 return 0;
5287 }
88b8dac0
SV
5288
5289 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5290 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5291
ddcdf6e7 5292 if (task_running(env->src_rq, p)) {
41acab88 5293 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5294 return 0;
5295 }
5296
5297 /*
5298 * Aggressive migration if:
3a7053b3
MG
5299 * 1) destination numa is preferred
5300 * 2) task is cache cold, or
5301 * 3) too many balance attempts have failed.
1e3c88bd 5302 */
5d5e2b1b 5303 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5304 if (!tsk_cache_hot)
5305 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5306
5307 if (migrate_improves_locality(p, env)) {
5308#ifdef CONFIG_SCHEDSTATS
5309 if (tsk_cache_hot) {
5310 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5311 schedstat_inc(p, se.statistics.nr_forced_migrations);
5312 }
5313#endif
5314 return 1;
5315 }
5316
1e3c88bd 5317 if (!tsk_cache_hot ||
8e45cb54 5318 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5319
1e3c88bd 5320 if (tsk_cache_hot) {
8e45cb54 5321 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5322 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5323 }
4e2dcb73 5324
1e3c88bd
PZ
5325 return 1;
5326 }
5327
4e2dcb73
ZH
5328 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5329 return 0;
1e3c88bd
PZ
5330}
5331
163122b7
KT
5332/*
5333 * detach_task() -- detach the task for the migration specified in env
5334 */
5335static void detach_task(struct task_struct *p, struct lb_env *env)
5336{
5337 lockdep_assert_held(&env->src_rq->lock);
5338
5339 deactivate_task(env->src_rq, p, 0);
5340 p->on_rq = TASK_ON_RQ_MIGRATING;
5341 set_task_cpu(p, env->dst_cpu);
5342}
5343
897c395f 5344/*
e5673f28 5345 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5346 * part of active balancing operations within "domain".
897c395f 5347 *
e5673f28 5348 * Returns a task if successful and NULL otherwise.
897c395f 5349 */
e5673f28 5350static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5351{
5352 struct task_struct *p, *n;
897c395f 5353
e5673f28
KT
5354 lockdep_assert_held(&env->src_rq->lock);
5355
367456c7 5356 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5357 if (!can_migrate_task(p, env))
5358 continue;
897c395f 5359
163122b7 5360 detach_task(p, env);
e5673f28 5361
367456c7 5362 /*
e5673f28 5363 * Right now, this is only the second place where
163122b7 5364 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5365 * so we can safely collect stats here rather than
163122b7 5366 * inside detach_tasks().
367456c7
PZ
5367 */
5368 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5369 return p;
897c395f 5370 }
e5673f28
KT
5371 return NULL;
5372}
5373
eb95308e
PZ
5374static const unsigned int sched_nr_migrate_break = 32;
5375
5d6523eb 5376/*
163122b7
KT
5377 * detach_tasks() -- tries to detach up to imbalance weighted load from
5378 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5379 *
163122b7 5380 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5381 */
163122b7 5382static int detach_tasks(struct lb_env *env)
1e3c88bd 5383{
5d6523eb
PZ
5384 struct list_head *tasks = &env->src_rq->cfs_tasks;
5385 struct task_struct *p;
367456c7 5386 unsigned long load;
163122b7
KT
5387 int detached = 0;
5388
5389 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5390
bd939f45 5391 if (env->imbalance <= 0)
5d6523eb 5392 return 0;
1e3c88bd 5393
5d6523eb
PZ
5394 while (!list_empty(tasks)) {
5395 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5396
367456c7
PZ
5397 env->loop++;
5398 /* We've more or less seen every task there is, call it quits */
5d6523eb 5399 if (env->loop > env->loop_max)
367456c7 5400 break;
5d6523eb
PZ
5401
5402 /* take a breather every nr_migrate tasks */
367456c7 5403 if (env->loop > env->loop_break) {
eb95308e 5404 env->loop_break += sched_nr_migrate_break;
8e45cb54 5405 env->flags |= LBF_NEED_BREAK;
ee00e66f 5406 break;
a195f004 5407 }
1e3c88bd 5408
d3198084 5409 if (!can_migrate_task(p, env))
367456c7
PZ
5410 goto next;
5411
5412 load = task_h_load(p);
5d6523eb 5413
eb95308e 5414 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5415 goto next;
5416
bd939f45 5417 if ((load / 2) > env->imbalance)
367456c7 5418 goto next;
1e3c88bd 5419
163122b7
KT
5420 detach_task(p, env);
5421 list_add(&p->se.group_node, &env->tasks);
5422
5423 detached++;
bd939f45 5424 env->imbalance -= load;
1e3c88bd
PZ
5425
5426#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5427 /*
5428 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5429 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5430 * the critical section.
5431 */
5d6523eb 5432 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5433 break;
1e3c88bd
PZ
5434#endif
5435
ee00e66f
PZ
5436 /*
5437 * We only want to steal up to the prescribed amount of
5438 * weighted load.
5439 */
bd939f45 5440 if (env->imbalance <= 0)
ee00e66f 5441 break;
367456c7
PZ
5442
5443 continue;
5444next:
5d6523eb 5445 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5446 }
5d6523eb 5447
1e3c88bd 5448 /*
163122b7
KT
5449 * Right now, this is one of only two places we collect this stat
5450 * so we can safely collect detach_one_task() stats here rather
5451 * than inside detach_one_task().
1e3c88bd 5452 */
163122b7 5453 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5454
163122b7
KT
5455 return detached;
5456}
5457
5458/*
5459 * attach_task() -- attach the task detached by detach_task() to its new rq.
5460 */
5461static void attach_task(struct rq *rq, struct task_struct *p)
5462{
5463 lockdep_assert_held(&rq->lock);
5464
5465 BUG_ON(task_rq(p) != rq);
5466 p->on_rq = TASK_ON_RQ_QUEUED;
5467 activate_task(rq, p, 0);
5468 check_preempt_curr(rq, p, 0);
5469}
5470
5471/*
5472 * attach_one_task() -- attaches the task returned from detach_one_task() to
5473 * its new rq.
5474 */
5475static void attach_one_task(struct rq *rq, struct task_struct *p)
5476{
5477 raw_spin_lock(&rq->lock);
5478 attach_task(rq, p);
5479 raw_spin_unlock(&rq->lock);
5480}
5481
5482/*
5483 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5484 * new rq.
5485 */
5486static void attach_tasks(struct lb_env *env)
5487{
5488 struct list_head *tasks = &env->tasks;
5489 struct task_struct *p;
5490
5491 raw_spin_lock(&env->dst_rq->lock);
5492
5493 while (!list_empty(tasks)) {
5494 p = list_first_entry(tasks, struct task_struct, se.group_node);
5495 list_del_init(&p->se.group_node);
5496
5497 attach_task(env->dst_rq, p);
5498 }
5499
5500 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5501}
5502
230059de 5503#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5504/*
5505 * update tg->load_weight by folding this cpu's load_avg
5506 */
48a16753 5507static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5508{
48a16753
PT
5509 struct sched_entity *se = tg->se[cpu];
5510 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5511
48a16753
PT
5512 /* throttled entities do not contribute to load */
5513 if (throttled_hierarchy(cfs_rq))
5514 return;
9e3081ca 5515
aff3e498 5516 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5517
82958366
PT
5518 if (se) {
5519 update_entity_load_avg(se, 1);
5520 /*
5521 * We pivot on our runnable average having decayed to zero for
5522 * list removal. This generally implies that all our children
5523 * have also been removed (modulo rounding error or bandwidth
5524 * control); however, such cases are rare and we can fix these
5525 * at enqueue.
5526 *
5527 * TODO: fix up out-of-order children on enqueue.
5528 */
5529 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5530 list_del_leaf_cfs_rq(cfs_rq);
5531 } else {
48a16753 5532 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5533 update_rq_runnable_avg(rq, rq->nr_running);
5534 }
9e3081ca
PZ
5535}
5536
48a16753 5537static void update_blocked_averages(int cpu)
9e3081ca 5538{
9e3081ca 5539 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5540 struct cfs_rq *cfs_rq;
5541 unsigned long flags;
9e3081ca 5542
48a16753
PT
5543 raw_spin_lock_irqsave(&rq->lock, flags);
5544 update_rq_clock(rq);
9763b67f
PZ
5545 /*
5546 * Iterates the task_group tree in a bottom up fashion, see
5547 * list_add_leaf_cfs_rq() for details.
5548 */
64660c86 5549 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5550 /*
5551 * Note: We may want to consider periodically releasing
5552 * rq->lock about these updates so that creating many task
5553 * groups does not result in continually extending hold time.
5554 */
5555 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5556 }
48a16753
PT
5557
5558 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5559}
5560
9763b67f 5561/*
68520796 5562 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5563 * This needs to be done in a top-down fashion because the load of a child
5564 * group is a fraction of its parents load.
5565 */
68520796 5566static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5567{
68520796
VD
5568 struct rq *rq = rq_of(cfs_rq);
5569 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5570 unsigned long now = jiffies;
68520796 5571 unsigned long load;
a35b6466 5572
68520796 5573 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5574 return;
5575
68520796
VD
5576 cfs_rq->h_load_next = NULL;
5577 for_each_sched_entity(se) {
5578 cfs_rq = cfs_rq_of(se);
5579 cfs_rq->h_load_next = se;
5580 if (cfs_rq->last_h_load_update == now)
5581 break;
5582 }
a35b6466 5583
68520796 5584 if (!se) {
7e3115ef 5585 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5586 cfs_rq->last_h_load_update = now;
5587 }
5588
5589 while ((se = cfs_rq->h_load_next) != NULL) {
5590 load = cfs_rq->h_load;
5591 load = div64_ul(load * se->avg.load_avg_contrib,
5592 cfs_rq->runnable_load_avg + 1);
5593 cfs_rq = group_cfs_rq(se);
5594 cfs_rq->h_load = load;
5595 cfs_rq->last_h_load_update = now;
5596 }
9763b67f
PZ
5597}
5598
367456c7 5599static unsigned long task_h_load(struct task_struct *p)
230059de 5600{
367456c7 5601 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5602
68520796 5603 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5604 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5605 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5606}
5607#else
48a16753 5608static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5609{
5610}
5611
367456c7 5612static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5613{
a003a25b 5614 return p->se.avg.load_avg_contrib;
1e3c88bd 5615}
230059de 5616#endif
1e3c88bd 5617
1e3c88bd 5618/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5619
5620enum group_type {
5621 group_other = 0,
5622 group_imbalanced,
5623 group_overloaded,
5624};
5625
1e3c88bd
PZ
5626/*
5627 * sg_lb_stats - stats of a sched_group required for load_balancing
5628 */
5629struct sg_lb_stats {
5630 unsigned long avg_load; /*Avg load across the CPUs of the group */
5631 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5632 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5633 unsigned long load_per_task;
63b2ca30 5634 unsigned long group_capacity;
147c5fc2 5635 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5636 unsigned int group_capacity_factor;
147c5fc2
PZ
5637 unsigned int idle_cpus;
5638 unsigned int group_weight;
caeb178c 5639 enum group_type group_type;
1b6a7495 5640 int group_has_free_capacity;
0ec8aa00
PZ
5641#ifdef CONFIG_NUMA_BALANCING
5642 unsigned int nr_numa_running;
5643 unsigned int nr_preferred_running;
5644#endif
1e3c88bd
PZ
5645};
5646
56cf515b
JK
5647/*
5648 * sd_lb_stats - Structure to store the statistics of a sched_domain
5649 * during load balancing.
5650 */
5651struct sd_lb_stats {
5652 struct sched_group *busiest; /* Busiest group in this sd */
5653 struct sched_group *local; /* Local group in this sd */
5654 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5655 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5656 unsigned long avg_load; /* Average load across all groups in sd */
5657
56cf515b 5658 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5659 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5660};
5661
147c5fc2
PZ
5662static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5663{
5664 /*
5665 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5666 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5667 * We must however clear busiest_stat::avg_load because
5668 * update_sd_pick_busiest() reads this before assignment.
5669 */
5670 *sds = (struct sd_lb_stats){
5671 .busiest = NULL,
5672 .local = NULL,
5673 .total_load = 0UL,
63b2ca30 5674 .total_capacity = 0UL,
147c5fc2
PZ
5675 .busiest_stat = {
5676 .avg_load = 0UL,
caeb178c
RR
5677 .sum_nr_running = 0,
5678 .group_type = group_other,
147c5fc2
PZ
5679 },
5680 };
5681}
5682
1e3c88bd
PZ
5683/**
5684 * get_sd_load_idx - Obtain the load index for a given sched domain.
5685 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5686 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5687 *
5688 * Return: The load index.
1e3c88bd
PZ
5689 */
5690static inline int get_sd_load_idx(struct sched_domain *sd,
5691 enum cpu_idle_type idle)
5692{
5693 int load_idx;
5694
5695 switch (idle) {
5696 case CPU_NOT_IDLE:
5697 load_idx = sd->busy_idx;
5698 break;
5699
5700 case CPU_NEWLY_IDLE:
5701 load_idx = sd->newidle_idx;
5702 break;
5703 default:
5704 load_idx = sd->idle_idx;
5705 break;
5706 }
5707
5708 return load_idx;
5709}
5710
ced549fa 5711static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5712{
ca8ce3d0 5713 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5714}
5715
ca8ce3d0 5716unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5717{
ced549fa 5718 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5719}
5720
ced549fa 5721static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5722{
669c55e9 5723 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5724 unsigned long smt_gain = sd->smt_gain;
5725
5726 smt_gain /= weight;
5727
5728 return smt_gain;
5729}
5730
ca8ce3d0 5731unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5732{
ced549fa 5733 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5734}
5735
ced549fa 5736static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5737{
5738 struct rq *rq = cpu_rq(cpu);
b654f7de 5739 u64 total, available, age_stamp, avg;
cadefd3d 5740 s64 delta;
1e3c88bd 5741
b654f7de
PZ
5742 /*
5743 * Since we're reading these variables without serialization make sure
5744 * we read them once before doing sanity checks on them.
5745 */
5746 age_stamp = ACCESS_ONCE(rq->age_stamp);
5747 avg = ACCESS_ONCE(rq->rt_avg);
5748
cadefd3d
PZ
5749 delta = rq_clock(rq) - age_stamp;
5750 if (unlikely(delta < 0))
5751 delta = 0;
5752
5753 total = sched_avg_period() + delta;
aa483808 5754
b654f7de 5755 if (unlikely(total < avg)) {
ced549fa 5756 /* Ensures that capacity won't end up being negative */
aa483808
VP
5757 available = 0;
5758 } else {
b654f7de 5759 available = total - avg;
aa483808 5760 }
1e3c88bd 5761
ca8ce3d0
NP
5762 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5763 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5764
ca8ce3d0 5765 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5766
5767 return div_u64(available, total);
5768}
5769
ced549fa 5770static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5771{
669c55e9 5772 unsigned long weight = sd->span_weight;
ca8ce3d0 5773 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5774 struct sched_group *sdg = sd->groups;
5775
5d4dfddd
NP
5776 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5777 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5778 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5779 else
ced549fa 5780 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5781
ca8ce3d0 5782 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5783 }
5784
ced549fa 5785 sdg->sgc->capacity_orig = capacity;
9d5efe05 5786
5d4dfddd 5787 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5788 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5789 else
ced549fa 5790 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5791
ca8ce3d0 5792 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5793
ced549fa 5794 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5795 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5796
ced549fa
NP
5797 if (!capacity)
5798 capacity = 1;
1e3c88bd 5799
ced549fa
NP
5800 cpu_rq(cpu)->cpu_capacity = capacity;
5801 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5802}
5803
63b2ca30 5804void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5805{
5806 struct sched_domain *child = sd->child;
5807 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5808 unsigned long capacity, capacity_orig;
4ec4412e
VG
5809 unsigned long interval;
5810
5811 interval = msecs_to_jiffies(sd->balance_interval);
5812 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5813 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5814
5815 if (!child) {
ced549fa 5816 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5817 return;
5818 }
5819
63b2ca30 5820 capacity_orig = capacity = 0;
1e3c88bd 5821
74a5ce20
PZ
5822 if (child->flags & SD_OVERLAP) {
5823 /*
5824 * SD_OVERLAP domains cannot assume that child groups
5825 * span the current group.
5826 */
5827
863bffc8 5828 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5829 struct sched_group_capacity *sgc;
9abf24d4 5830 struct rq *rq = cpu_rq(cpu);
863bffc8 5831
9abf24d4 5832 /*
63b2ca30 5833 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5834 * gets here before we've attached the domains to the
5835 * runqueues.
5836 *
ced549fa
NP
5837 * Use capacity_of(), which is set irrespective of domains
5838 * in update_cpu_capacity().
9abf24d4 5839 *
63b2ca30 5840 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5841 * causing divide-by-zero issues on boot.
5842 *
63b2ca30 5843 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5844 */
5845 if (unlikely(!rq->sd)) {
ced549fa
NP
5846 capacity_orig += capacity_of(cpu);
5847 capacity += capacity_of(cpu);
9abf24d4
SD
5848 continue;
5849 }
863bffc8 5850
63b2ca30
NP
5851 sgc = rq->sd->groups->sgc;
5852 capacity_orig += sgc->capacity_orig;
5853 capacity += sgc->capacity;
863bffc8 5854 }
74a5ce20
PZ
5855 } else {
5856 /*
5857 * !SD_OVERLAP domains can assume that child groups
5858 * span the current group.
5859 */
5860
5861 group = child->groups;
5862 do {
63b2ca30
NP
5863 capacity_orig += group->sgc->capacity_orig;
5864 capacity += group->sgc->capacity;
74a5ce20
PZ
5865 group = group->next;
5866 } while (group != child->groups);
5867 }
1e3c88bd 5868
63b2ca30
NP
5869 sdg->sgc->capacity_orig = capacity_orig;
5870 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5871}
5872
9d5efe05
SV
5873/*
5874 * Try and fix up capacity for tiny siblings, this is needed when
5875 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5876 * which on its own isn't powerful enough.
5877 *
5878 * See update_sd_pick_busiest() and check_asym_packing().
5879 */
5880static inline int
5881fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5882{
5883 /*
ca8ce3d0 5884 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5885 */
5d4dfddd 5886 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5887 return 0;
5888
5889 /*
63b2ca30 5890 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5891 */
63b2ca30 5892 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5893 return 1;
5894
5895 return 0;
5896}
5897
30ce5dab
PZ
5898/*
5899 * Group imbalance indicates (and tries to solve) the problem where balancing
5900 * groups is inadequate due to tsk_cpus_allowed() constraints.
5901 *
5902 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5903 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5904 * Something like:
5905 *
5906 * { 0 1 2 3 } { 4 5 6 7 }
5907 * * * * *
5908 *
5909 * If we were to balance group-wise we'd place two tasks in the first group and
5910 * two tasks in the second group. Clearly this is undesired as it will overload
5911 * cpu 3 and leave one of the cpus in the second group unused.
5912 *
5913 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5914 * by noticing the lower domain failed to reach balance and had difficulty
5915 * moving tasks due to affinity constraints.
30ce5dab
PZ
5916 *
5917 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5918 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5919 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5920 * to create an effective group imbalance.
5921 *
5922 * This is a somewhat tricky proposition since the next run might not find the
5923 * group imbalance and decide the groups need to be balanced again. A most
5924 * subtle and fragile situation.
5925 */
5926
6263322c 5927static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5928{
63b2ca30 5929 return group->sgc->imbalance;
30ce5dab
PZ
5930}
5931
b37d9316 5932/*
0fedc6c8 5933 * Compute the group capacity factor.
b37d9316 5934 *
ced549fa 5935 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5936 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5937 * and limit unit capacity with that.
b37d9316 5938 */
0fedc6c8 5939static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5940{
0fedc6c8 5941 unsigned int capacity_factor, smt, cpus;
63b2ca30 5942 unsigned int capacity, capacity_orig;
c61037e9 5943
63b2ca30
NP
5944 capacity = group->sgc->capacity;
5945 capacity_orig = group->sgc->capacity_orig;
c61037e9 5946 cpus = group->group_weight;
b37d9316 5947
63b2ca30 5948 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5949 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5950 capacity_factor = cpus / smt; /* cores */
b37d9316 5951
63b2ca30 5952 capacity_factor = min_t(unsigned,
ca8ce3d0 5953 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5954 if (!capacity_factor)
5955 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5956
0fedc6c8 5957 return capacity_factor;
b37d9316
PZ
5958}
5959
caeb178c
RR
5960static enum group_type
5961group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5962{
5963 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5964 return group_overloaded;
5965
5966 if (sg_imbalanced(group))
5967 return group_imbalanced;
5968
5969 return group_other;
5970}
5971
1e3c88bd
PZ
5972/**
5973 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5974 * @env: The load balancing environment.
1e3c88bd 5975 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5976 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5977 * @local_group: Does group contain this_cpu.
1e3c88bd 5978 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 5979 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 5980 */
bd939f45
PZ
5981static inline void update_sg_lb_stats(struct lb_env *env,
5982 struct sched_group *group, int load_idx,
4486edd1
TC
5983 int local_group, struct sg_lb_stats *sgs,
5984 bool *overload)
1e3c88bd 5985{
30ce5dab 5986 unsigned long load;
bd939f45 5987 int i;
1e3c88bd 5988
b72ff13c
PZ
5989 memset(sgs, 0, sizeof(*sgs));
5990
b9403130 5991 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5992 struct rq *rq = cpu_rq(i);
5993
1e3c88bd 5994 /* Bias balancing toward cpus of our domain */
6263322c 5995 if (local_group)
04f733b4 5996 load = target_load(i, load_idx);
6263322c 5997 else
1e3c88bd 5998 load = source_load(i, load_idx);
1e3c88bd
PZ
5999
6000 sgs->group_load += load;
380c9077 6001 sgs->sum_nr_running += rq->nr_running;
4486edd1
TC
6002
6003 if (rq->nr_running > 1)
6004 *overload = true;
6005
0ec8aa00
PZ
6006#ifdef CONFIG_NUMA_BALANCING
6007 sgs->nr_numa_running += rq->nr_numa_running;
6008 sgs->nr_preferred_running += rq->nr_preferred_running;
6009#endif
1e3c88bd 6010 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6011 if (idle_cpu(i))
6012 sgs->idle_cpus++;
1e3c88bd
PZ
6013 }
6014
63b2ca30
NP
6015 /* Adjust by relative CPU capacity of the group */
6016 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6017 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6018
dd5feea1 6019 if (sgs->sum_nr_running)
38d0f770 6020 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6021
aae6d3dd 6022 sgs->group_weight = group->group_weight;
0fedc6c8 6023 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6024 sgs->group_type = group_classify(group, sgs);
b37d9316 6025
0fedc6c8 6026 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6027 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6028}
6029
532cb4c4
MN
6030/**
6031 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6032 * @env: The load balancing environment.
532cb4c4
MN
6033 * @sds: sched_domain statistics
6034 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6035 * @sgs: sched_group statistics
532cb4c4
MN
6036 *
6037 * Determine if @sg is a busier group than the previously selected
6038 * busiest group.
e69f6186
YB
6039 *
6040 * Return: %true if @sg is a busier group than the previously selected
6041 * busiest group. %false otherwise.
532cb4c4 6042 */
bd939f45 6043static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6044 struct sd_lb_stats *sds,
6045 struct sched_group *sg,
bd939f45 6046 struct sg_lb_stats *sgs)
532cb4c4 6047{
caeb178c 6048 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6049
caeb178c 6050 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6051 return true;
6052
caeb178c
RR
6053 if (sgs->group_type < busiest->group_type)
6054 return false;
6055
6056 if (sgs->avg_load <= busiest->avg_load)
6057 return false;
6058
6059 /* This is the busiest node in its class. */
6060 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6061 return true;
6062
6063 /*
6064 * ASYM_PACKING needs to move all the work to the lowest
6065 * numbered CPUs in the group, therefore mark all groups
6066 * higher than ourself as busy.
6067 */
caeb178c 6068 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6069 if (!sds->busiest)
6070 return true;
6071
6072 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6073 return true;
6074 }
6075
6076 return false;
6077}
6078
0ec8aa00
PZ
6079#ifdef CONFIG_NUMA_BALANCING
6080static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6081{
6082 if (sgs->sum_nr_running > sgs->nr_numa_running)
6083 return regular;
6084 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6085 return remote;
6086 return all;
6087}
6088
6089static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6090{
6091 if (rq->nr_running > rq->nr_numa_running)
6092 return regular;
6093 if (rq->nr_running > rq->nr_preferred_running)
6094 return remote;
6095 return all;
6096}
6097#else
6098static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6099{
6100 return all;
6101}
6102
6103static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6104{
6105 return regular;
6106}
6107#endif /* CONFIG_NUMA_BALANCING */
6108
1e3c88bd 6109/**
461819ac 6110 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6111 * @env: The load balancing environment.
1e3c88bd
PZ
6112 * @sds: variable to hold the statistics for this sched_domain.
6113 */
0ec8aa00 6114static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6115{
bd939f45
PZ
6116 struct sched_domain *child = env->sd->child;
6117 struct sched_group *sg = env->sd->groups;
56cf515b 6118 struct sg_lb_stats tmp_sgs;
1e3c88bd 6119 int load_idx, prefer_sibling = 0;
4486edd1 6120 bool overload = false;
1e3c88bd
PZ
6121
6122 if (child && child->flags & SD_PREFER_SIBLING)
6123 prefer_sibling = 1;
6124
bd939f45 6125 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6126
6127 do {
56cf515b 6128 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6129 int local_group;
6130
bd939f45 6131 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6132 if (local_group) {
6133 sds->local = sg;
6134 sgs = &sds->local_stat;
b72ff13c
PZ
6135
6136 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6137 time_after_eq(jiffies, sg->sgc->next_update))
6138 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6139 }
1e3c88bd 6140
4486edd1
TC
6141 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6142 &overload);
1e3c88bd 6143
b72ff13c
PZ
6144 if (local_group)
6145 goto next_group;
6146
1e3c88bd
PZ
6147 /*
6148 * In case the child domain prefers tasks go to siblings
0fedc6c8 6149 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6150 * and move all the excess tasks away. We lower the capacity
6151 * of a group only if the local group has the capacity to fit
0fedc6c8 6152 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6153 * extra check prevents the case where you always pull from the
6154 * heaviest group when it is already under-utilized (possible
6155 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6156 */
b72ff13c 6157 if (prefer_sibling && sds->local &&
1b6a7495 6158 sds->local_stat.group_has_free_capacity)
0fedc6c8 6159 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6160
b72ff13c 6161 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6162 sds->busiest = sg;
56cf515b 6163 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6164 }
6165
b72ff13c
PZ
6166next_group:
6167 /* Now, start updating sd_lb_stats */
6168 sds->total_load += sgs->group_load;
63b2ca30 6169 sds->total_capacity += sgs->group_capacity;
b72ff13c 6170
532cb4c4 6171 sg = sg->next;
bd939f45 6172 } while (sg != env->sd->groups);
0ec8aa00
PZ
6173
6174 if (env->sd->flags & SD_NUMA)
6175 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6176
6177 if (!env->sd->parent) {
6178 /* update overload indicator if we are at root domain */
6179 if (env->dst_rq->rd->overload != overload)
6180 env->dst_rq->rd->overload = overload;
6181 }
6182
532cb4c4
MN
6183}
6184
532cb4c4
MN
6185/**
6186 * check_asym_packing - Check to see if the group is packed into the
6187 * sched doman.
6188 *
6189 * This is primarily intended to used at the sibling level. Some
6190 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6191 * case of POWER7, it can move to lower SMT modes only when higher
6192 * threads are idle. When in lower SMT modes, the threads will
6193 * perform better since they share less core resources. Hence when we
6194 * have idle threads, we want them to be the higher ones.
6195 *
6196 * This packing function is run on idle threads. It checks to see if
6197 * the busiest CPU in this domain (core in the P7 case) has a higher
6198 * CPU number than the packing function is being run on. Here we are
6199 * assuming lower CPU number will be equivalent to lower a SMT thread
6200 * number.
6201 *
e69f6186 6202 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6203 * this CPU. The amount of the imbalance is returned in *imbalance.
6204 *
cd96891d 6205 * @env: The load balancing environment.
532cb4c4 6206 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6207 */
bd939f45 6208static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6209{
6210 int busiest_cpu;
6211
bd939f45 6212 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6213 return 0;
6214
6215 if (!sds->busiest)
6216 return 0;
6217
6218 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6219 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6220 return 0;
6221
bd939f45 6222 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6223 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6224 SCHED_CAPACITY_SCALE);
bd939f45 6225
532cb4c4 6226 return 1;
1e3c88bd
PZ
6227}
6228
6229/**
6230 * fix_small_imbalance - Calculate the minor imbalance that exists
6231 * amongst the groups of a sched_domain, during
6232 * load balancing.
cd96891d 6233 * @env: The load balancing environment.
1e3c88bd 6234 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6235 */
bd939f45
PZ
6236static inline
6237void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6238{
63b2ca30 6239 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6240 unsigned int imbn = 2;
dd5feea1 6241 unsigned long scaled_busy_load_per_task;
56cf515b 6242 struct sg_lb_stats *local, *busiest;
1e3c88bd 6243
56cf515b
JK
6244 local = &sds->local_stat;
6245 busiest = &sds->busiest_stat;
1e3c88bd 6246
56cf515b
JK
6247 if (!local->sum_nr_running)
6248 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6249 else if (busiest->load_per_task > local->load_per_task)
6250 imbn = 1;
dd5feea1 6251
56cf515b 6252 scaled_busy_load_per_task =
ca8ce3d0 6253 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6254 busiest->group_capacity;
56cf515b 6255
3029ede3
VD
6256 if (busiest->avg_load + scaled_busy_load_per_task >=
6257 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6258 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6259 return;
6260 }
6261
6262 /*
6263 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6264 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6265 * moving them.
6266 */
6267
63b2ca30 6268 capa_now += busiest->group_capacity *
56cf515b 6269 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6270 capa_now += local->group_capacity *
56cf515b 6271 min(local->load_per_task, local->avg_load);
ca8ce3d0 6272 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6273
6274 /* Amount of load we'd subtract */
a2cd4260 6275 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6276 capa_move += busiest->group_capacity *
56cf515b 6277 min(busiest->load_per_task,
a2cd4260 6278 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6279 }
1e3c88bd
PZ
6280
6281 /* Amount of load we'd add */
63b2ca30 6282 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6283 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6284 tmp = (busiest->avg_load * busiest->group_capacity) /
6285 local->group_capacity;
56cf515b 6286 } else {
ca8ce3d0 6287 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6288 local->group_capacity;
56cf515b 6289 }
63b2ca30 6290 capa_move += local->group_capacity *
3ae11c90 6291 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6292 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6293
6294 /* Move if we gain throughput */
63b2ca30 6295 if (capa_move > capa_now)
56cf515b 6296 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6297}
6298
6299/**
6300 * calculate_imbalance - Calculate the amount of imbalance present within the
6301 * groups of a given sched_domain during load balance.
bd939f45 6302 * @env: load balance environment
1e3c88bd 6303 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6304 */
bd939f45 6305static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6306{
dd5feea1 6307 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6308 struct sg_lb_stats *local, *busiest;
6309
6310 local = &sds->local_stat;
56cf515b 6311 busiest = &sds->busiest_stat;
dd5feea1 6312
caeb178c 6313 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6314 /*
6315 * In the group_imb case we cannot rely on group-wide averages
6316 * to ensure cpu-load equilibrium, look at wider averages. XXX
6317 */
56cf515b
JK
6318 busiest->load_per_task =
6319 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6320 }
6321
1e3c88bd
PZ
6322 /*
6323 * In the presence of smp nice balancing, certain scenarios can have
6324 * max load less than avg load(as we skip the groups at or below
ced549fa 6325 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6326 */
b1885550
VD
6327 if (busiest->avg_load <= sds->avg_load ||
6328 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6329 env->imbalance = 0;
6330 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6331 }
6332
9a5d9ba6
PZ
6333 /*
6334 * If there aren't any idle cpus, avoid creating some.
6335 */
6336 if (busiest->group_type == group_overloaded &&
6337 local->group_type == group_overloaded) {
56cf515b 6338 load_above_capacity =
0fedc6c8 6339 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6340
ca8ce3d0 6341 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6342 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6343 }
6344
6345 /*
6346 * We're trying to get all the cpus to the average_load, so we don't
6347 * want to push ourselves above the average load, nor do we wish to
6348 * reduce the max loaded cpu below the average load. At the same time,
6349 * we also don't want to reduce the group load below the group capacity
6350 * (so that we can implement power-savings policies etc). Thus we look
6351 * for the minimum possible imbalance.
dd5feea1 6352 */
30ce5dab 6353 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6354
6355 /* How much load to actually move to equalise the imbalance */
56cf515b 6356 env->imbalance = min(
63b2ca30
NP
6357 max_pull * busiest->group_capacity,
6358 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6359 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6360
6361 /*
6362 * if *imbalance is less than the average load per runnable task
25985edc 6363 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6364 * a think about bumping its value to force at least one task to be
6365 * moved
6366 */
56cf515b 6367 if (env->imbalance < busiest->load_per_task)
bd939f45 6368 return fix_small_imbalance(env, sds);
1e3c88bd 6369}
fab47622 6370
1e3c88bd
PZ
6371/******* find_busiest_group() helpers end here *********************/
6372
6373/**
6374 * find_busiest_group - Returns the busiest group within the sched_domain
6375 * if there is an imbalance. If there isn't an imbalance, and
6376 * the user has opted for power-savings, it returns a group whose
6377 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6378 * such a group exists.
6379 *
6380 * Also calculates the amount of weighted load which should be moved
6381 * to restore balance.
6382 *
cd96891d 6383 * @env: The load balancing environment.
1e3c88bd 6384 *
e69f6186 6385 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6386 * - If no imbalance and user has opted for power-savings balance,
6387 * return the least loaded group whose CPUs can be
6388 * put to idle by rebalancing its tasks onto our group.
6389 */
56cf515b 6390static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6391{
56cf515b 6392 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6393 struct sd_lb_stats sds;
6394
147c5fc2 6395 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6396
6397 /*
6398 * Compute the various statistics relavent for load balancing at
6399 * this level.
6400 */
23f0d209 6401 update_sd_lb_stats(env, &sds);
56cf515b
JK
6402 local = &sds.local_stat;
6403 busiest = &sds.busiest_stat;
1e3c88bd 6404
bd939f45
PZ
6405 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6406 check_asym_packing(env, &sds))
532cb4c4
MN
6407 return sds.busiest;
6408
cc57aa8f 6409 /* There is no busy sibling group to pull tasks from */
56cf515b 6410 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6411 goto out_balanced;
6412
ca8ce3d0
NP
6413 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6414 / sds.total_capacity;
b0432d8f 6415
866ab43e
PZ
6416 /*
6417 * If the busiest group is imbalanced the below checks don't
30ce5dab 6418 * work because they assume all things are equal, which typically
866ab43e
PZ
6419 * isn't true due to cpus_allowed constraints and the like.
6420 */
caeb178c 6421 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6422 goto force_balance;
6423
cc57aa8f 6424 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6425 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6426 !busiest->group_has_free_capacity)
fab47622
NR
6427 goto force_balance;
6428
cc57aa8f
PZ
6429 /*
6430 * If the local group is more busy than the selected busiest group
6431 * don't try and pull any tasks.
6432 */
56cf515b 6433 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6434 goto out_balanced;
6435
cc57aa8f
PZ
6436 /*
6437 * Don't pull any tasks if this group is already above the domain
6438 * average load.
6439 */
56cf515b 6440 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6441 goto out_balanced;
6442
bd939f45 6443 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6444 /*
6445 * This cpu is idle. If the busiest group load doesn't
6446 * have more tasks than the number of available cpu's and
6447 * there is no imbalance between this and busiest group
6448 * wrt to idle cpu's, it is balanced.
6449 */
56cf515b
JK
6450 if ((local->idle_cpus < busiest->idle_cpus) &&
6451 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6452 goto out_balanced;
c186fafe
PZ
6453 } else {
6454 /*
6455 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6456 * imbalance_pct to be conservative.
6457 */
56cf515b
JK
6458 if (100 * busiest->avg_load <=
6459 env->sd->imbalance_pct * local->avg_load)
c186fafe 6460 goto out_balanced;
aae6d3dd 6461 }
1e3c88bd 6462
fab47622 6463force_balance:
1e3c88bd 6464 /* Looks like there is an imbalance. Compute it */
bd939f45 6465 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6466 return sds.busiest;
6467
6468out_balanced:
bd939f45 6469 env->imbalance = 0;
1e3c88bd
PZ
6470 return NULL;
6471}
6472
6473/*
6474 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6475 */
bd939f45 6476static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6477 struct sched_group *group)
1e3c88bd
PZ
6478{
6479 struct rq *busiest = NULL, *rq;
ced549fa 6480 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6481 int i;
6482
6906a408 6483 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6484 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6485 enum fbq_type rt;
6486
6487 rq = cpu_rq(i);
6488 rt = fbq_classify_rq(rq);
1e3c88bd 6489
0ec8aa00
PZ
6490 /*
6491 * We classify groups/runqueues into three groups:
6492 * - regular: there are !numa tasks
6493 * - remote: there are numa tasks that run on the 'wrong' node
6494 * - all: there is no distinction
6495 *
6496 * In order to avoid migrating ideally placed numa tasks,
6497 * ignore those when there's better options.
6498 *
6499 * If we ignore the actual busiest queue to migrate another
6500 * task, the next balance pass can still reduce the busiest
6501 * queue by moving tasks around inside the node.
6502 *
6503 * If we cannot move enough load due to this classification
6504 * the next pass will adjust the group classification and
6505 * allow migration of more tasks.
6506 *
6507 * Both cases only affect the total convergence complexity.
6508 */
6509 if (rt > env->fbq_type)
6510 continue;
6511
ced549fa 6512 capacity = capacity_of(i);
ca8ce3d0 6513 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6514 if (!capacity_factor)
6515 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6516
6e40f5bb 6517 wl = weighted_cpuload(i);
1e3c88bd 6518
6e40f5bb
TG
6519 /*
6520 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6521 * which is not scaled with the cpu capacity.
6e40f5bb 6522 */
0fedc6c8 6523 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6524 continue;
6525
6e40f5bb
TG
6526 /*
6527 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6528 * the weighted_cpuload() scaled with the cpu capacity, so
6529 * that the load can be moved away from the cpu that is
6530 * potentially running at a lower capacity.
95a79b80 6531 *
ced549fa 6532 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6533 * multiplication to rid ourselves of the division works out
ced549fa
NP
6534 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6535 * our previous maximum.
6e40f5bb 6536 */
ced549fa 6537 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6538 busiest_load = wl;
ced549fa 6539 busiest_capacity = capacity;
1e3c88bd
PZ
6540 busiest = rq;
6541 }
6542 }
6543
6544 return busiest;
6545}
6546
6547/*
6548 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6549 * so long as it is large enough.
6550 */
6551#define MAX_PINNED_INTERVAL 512
6552
6553/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6554DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6555
bd939f45 6556static int need_active_balance(struct lb_env *env)
1af3ed3d 6557{
bd939f45
PZ
6558 struct sched_domain *sd = env->sd;
6559
6560 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6561
6562 /*
6563 * ASYM_PACKING needs to force migrate tasks from busy but
6564 * higher numbered CPUs in order to pack all tasks in the
6565 * lowest numbered CPUs.
6566 */
bd939f45 6567 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6568 return 1;
1af3ed3d
PZ
6569 }
6570
6571 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6572}
6573
969c7921
TH
6574static int active_load_balance_cpu_stop(void *data);
6575
23f0d209
JK
6576static int should_we_balance(struct lb_env *env)
6577{
6578 struct sched_group *sg = env->sd->groups;
6579 struct cpumask *sg_cpus, *sg_mask;
6580 int cpu, balance_cpu = -1;
6581
6582 /*
6583 * In the newly idle case, we will allow all the cpu's
6584 * to do the newly idle load balance.
6585 */
6586 if (env->idle == CPU_NEWLY_IDLE)
6587 return 1;
6588
6589 sg_cpus = sched_group_cpus(sg);
6590 sg_mask = sched_group_mask(sg);
6591 /* Try to find first idle cpu */
6592 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6593 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6594 continue;
6595
6596 balance_cpu = cpu;
6597 break;
6598 }
6599
6600 if (balance_cpu == -1)
6601 balance_cpu = group_balance_cpu(sg);
6602
6603 /*
6604 * First idle cpu or the first cpu(busiest) in this sched group
6605 * is eligible for doing load balancing at this and above domains.
6606 */
b0cff9d8 6607 return balance_cpu == env->dst_cpu;
23f0d209
JK
6608}
6609
1e3c88bd
PZ
6610/*
6611 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6612 * tasks if there is an imbalance.
6613 */
6614static int load_balance(int this_cpu, struct rq *this_rq,
6615 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6616 int *continue_balancing)
1e3c88bd 6617{
88b8dac0 6618 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6619 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6620 struct sched_group *group;
1e3c88bd
PZ
6621 struct rq *busiest;
6622 unsigned long flags;
e6252c3e 6623 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6624
8e45cb54
PZ
6625 struct lb_env env = {
6626 .sd = sd,
ddcdf6e7
PZ
6627 .dst_cpu = this_cpu,
6628 .dst_rq = this_rq,
88b8dac0 6629 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6630 .idle = idle,
eb95308e 6631 .loop_break = sched_nr_migrate_break,
b9403130 6632 .cpus = cpus,
0ec8aa00 6633 .fbq_type = all,
163122b7 6634 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6635 };
6636
cfc03118
JK
6637 /*
6638 * For NEWLY_IDLE load_balancing, we don't need to consider
6639 * other cpus in our group
6640 */
e02e60c1 6641 if (idle == CPU_NEWLY_IDLE)
cfc03118 6642 env.dst_grpmask = NULL;
cfc03118 6643
1e3c88bd
PZ
6644 cpumask_copy(cpus, cpu_active_mask);
6645
1e3c88bd
PZ
6646 schedstat_inc(sd, lb_count[idle]);
6647
6648redo:
23f0d209
JK
6649 if (!should_we_balance(&env)) {
6650 *continue_balancing = 0;
1e3c88bd 6651 goto out_balanced;
23f0d209 6652 }
1e3c88bd 6653
23f0d209 6654 group = find_busiest_group(&env);
1e3c88bd
PZ
6655 if (!group) {
6656 schedstat_inc(sd, lb_nobusyg[idle]);
6657 goto out_balanced;
6658 }
6659
b9403130 6660 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6661 if (!busiest) {
6662 schedstat_inc(sd, lb_nobusyq[idle]);
6663 goto out_balanced;
6664 }
6665
78feefc5 6666 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6667
bd939f45 6668 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6669
6670 ld_moved = 0;
6671 if (busiest->nr_running > 1) {
6672 /*
6673 * Attempt to move tasks. If find_busiest_group has found
6674 * an imbalance but busiest->nr_running <= 1, the group is
6675 * still unbalanced. ld_moved simply stays zero, so it is
6676 * correctly treated as an imbalance.
6677 */
8e45cb54 6678 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6679 env.src_cpu = busiest->cpu;
6680 env.src_rq = busiest;
6681 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6682
5d6523eb 6683more_balance:
163122b7 6684 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6685
6686 /*
6687 * cur_ld_moved - load moved in current iteration
6688 * ld_moved - cumulative load moved across iterations
6689 */
163122b7
KT
6690 cur_ld_moved = detach_tasks(&env);
6691
6692 /*
6693 * We've detached some tasks from busiest_rq. Every
6694 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6695 * unlock busiest->lock, and we are able to be sure
6696 * that nobody can manipulate the tasks in parallel.
6697 * See task_rq_lock() family for the details.
6698 */
6699
6700 raw_spin_unlock(&busiest->lock);
6701
6702 if (cur_ld_moved) {
6703 attach_tasks(&env);
6704 ld_moved += cur_ld_moved;
6705 }
6706
1e3c88bd
PZ
6707 local_irq_restore(flags);
6708
6709 /*
6710 * some other cpu did the load balance for us.
6711 */
88b8dac0
SV
6712 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6713 resched_cpu(env.dst_cpu);
6714
f1cd0858
JK
6715 if (env.flags & LBF_NEED_BREAK) {
6716 env.flags &= ~LBF_NEED_BREAK;
6717 goto more_balance;
6718 }
6719
88b8dac0
SV
6720 /*
6721 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6722 * us and move them to an alternate dst_cpu in our sched_group
6723 * where they can run. The upper limit on how many times we
6724 * iterate on same src_cpu is dependent on number of cpus in our
6725 * sched_group.
6726 *
6727 * This changes load balance semantics a bit on who can move
6728 * load to a given_cpu. In addition to the given_cpu itself
6729 * (or a ilb_cpu acting on its behalf where given_cpu is
6730 * nohz-idle), we now have balance_cpu in a position to move
6731 * load to given_cpu. In rare situations, this may cause
6732 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6733 * _independently_ and at _same_ time to move some load to
6734 * given_cpu) causing exceess load to be moved to given_cpu.
6735 * This however should not happen so much in practice and
6736 * moreover subsequent load balance cycles should correct the
6737 * excess load moved.
6738 */
6263322c 6739 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6740
7aff2e3a
VD
6741 /* Prevent to re-select dst_cpu via env's cpus */
6742 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6743
78feefc5 6744 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6745 env.dst_cpu = env.new_dst_cpu;
6263322c 6746 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6747 env.loop = 0;
6748 env.loop_break = sched_nr_migrate_break;
e02e60c1 6749
88b8dac0
SV
6750 /*
6751 * Go back to "more_balance" rather than "redo" since we
6752 * need to continue with same src_cpu.
6753 */
6754 goto more_balance;
6755 }
1e3c88bd 6756
6263322c
PZ
6757 /*
6758 * We failed to reach balance because of affinity.
6759 */
6760 if (sd_parent) {
63b2ca30 6761 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c
PZ
6762
6763 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6764 *group_imbalance = 1;
6765 } else if (*group_imbalance)
6766 *group_imbalance = 0;
6767 }
6768
1e3c88bd 6769 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6770 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6771 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6772 if (!cpumask_empty(cpus)) {
6773 env.loop = 0;
6774 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6775 goto redo;
bbf18b19 6776 }
1e3c88bd
PZ
6777 goto out_balanced;
6778 }
6779 }
6780
6781 if (!ld_moved) {
6782 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6783 /*
6784 * Increment the failure counter only on periodic balance.
6785 * We do not want newidle balance, which can be very
6786 * frequent, pollute the failure counter causing
6787 * excessive cache_hot migrations and active balances.
6788 */
6789 if (idle != CPU_NEWLY_IDLE)
6790 sd->nr_balance_failed++;
1e3c88bd 6791
bd939f45 6792 if (need_active_balance(&env)) {
1e3c88bd
PZ
6793 raw_spin_lock_irqsave(&busiest->lock, flags);
6794
969c7921
TH
6795 /* don't kick the active_load_balance_cpu_stop,
6796 * if the curr task on busiest cpu can't be
6797 * moved to this_cpu
1e3c88bd
PZ
6798 */
6799 if (!cpumask_test_cpu(this_cpu,
fa17b507 6800 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6801 raw_spin_unlock_irqrestore(&busiest->lock,
6802 flags);
8e45cb54 6803 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6804 goto out_one_pinned;
6805 }
6806
969c7921
TH
6807 /*
6808 * ->active_balance synchronizes accesses to
6809 * ->active_balance_work. Once set, it's cleared
6810 * only after active load balance is finished.
6811 */
1e3c88bd
PZ
6812 if (!busiest->active_balance) {
6813 busiest->active_balance = 1;
6814 busiest->push_cpu = this_cpu;
6815 active_balance = 1;
6816 }
6817 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6818
bd939f45 6819 if (active_balance) {
969c7921
TH
6820 stop_one_cpu_nowait(cpu_of(busiest),
6821 active_load_balance_cpu_stop, busiest,
6822 &busiest->active_balance_work);
bd939f45 6823 }
1e3c88bd
PZ
6824
6825 /*
6826 * We've kicked active balancing, reset the failure
6827 * counter.
6828 */
6829 sd->nr_balance_failed = sd->cache_nice_tries+1;
6830 }
6831 } else
6832 sd->nr_balance_failed = 0;
6833
6834 if (likely(!active_balance)) {
6835 /* We were unbalanced, so reset the balancing interval */
6836 sd->balance_interval = sd->min_interval;
6837 } else {
6838 /*
6839 * If we've begun active balancing, start to back off. This
6840 * case may not be covered by the all_pinned logic if there
6841 * is only 1 task on the busy runqueue (because we don't call
163122b7 6842 * detach_tasks).
1e3c88bd
PZ
6843 */
6844 if (sd->balance_interval < sd->max_interval)
6845 sd->balance_interval *= 2;
6846 }
6847
1e3c88bd
PZ
6848 goto out;
6849
6850out_balanced:
6851 schedstat_inc(sd, lb_balanced[idle]);
6852
6853 sd->nr_balance_failed = 0;
6854
6855out_one_pinned:
6856 /* tune up the balancing interval */
8e45cb54 6857 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6858 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6859 (sd->balance_interval < sd->max_interval))
6860 sd->balance_interval *= 2;
6861
46e49b38 6862 ld_moved = 0;
1e3c88bd 6863out:
1e3c88bd
PZ
6864 return ld_moved;
6865}
6866
52a08ef1
JL
6867static inline unsigned long
6868get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6869{
6870 unsigned long interval = sd->balance_interval;
6871
6872 if (cpu_busy)
6873 interval *= sd->busy_factor;
6874
6875 /* scale ms to jiffies */
6876 interval = msecs_to_jiffies(interval);
6877 interval = clamp(interval, 1UL, max_load_balance_interval);
6878
6879 return interval;
6880}
6881
6882static inline void
6883update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6884{
6885 unsigned long interval, next;
6886
6887 interval = get_sd_balance_interval(sd, cpu_busy);
6888 next = sd->last_balance + interval;
6889
6890 if (time_after(*next_balance, next))
6891 *next_balance = next;
6892}
6893
1e3c88bd
PZ
6894/*
6895 * idle_balance is called by schedule() if this_cpu is about to become
6896 * idle. Attempts to pull tasks from other CPUs.
6897 */
6e83125c 6898static int idle_balance(struct rq *this_rq)
1e3c88bd 6899{
52a08ef1
JL
6900 unsigned long next_balance = jiffies + HZ;
6901 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6902 struct sched_domain *sd;
6903 int pulled_task = 0;
9bd721c5 6904 u64 curr_cost = 0;
1e3c88bd 6905
6e83125c 6906 idle_enter_fair(this_rq);
0e5b5337 6907
6e83125c
PZ
6908 /*
6909 * We must set idle_stamp _before_ calling idle_balance(), such that we
6910 * measure the duration of idle_balance() as idle time.
6911 */
6912 this_rq->idle_stamp = rq_clock(this_rq);
6913
4486edd1
TC
6914 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6915 !this_rq->rd->overload) {
52a08ef1
JL
6916 rcu_read_lock();
6917 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6918 if (sd)
6919 update_next_balance(sd, 0, &next_balance);
6920 rcu_read_unlock();
6921
6e83125c 6922 goto out;
52a08ef1 6923 }
1e3c88bd 6924
f492e12e
PZ
6925 /*
6926 * Drop the rq->lock, but keep IRQ/preempt disabled.
6927 */
6928 raw_spin_unlock(&this_rq->lock);
6929
48a16753 6930 update_blocked_averages(this_cpu);
dce840a0 6931 rcu_read_lock();
1e3c88bd 6932 for_each_domain(this_cpu, sd) {
23f0d209 6933 int continue_balancing = 1;
9bd721c5 6934 u64 t0, domain_cost;
1e3c88bd
PZ
6935
6936 if (!(sd->flags & SD_LOAD_BALANCE))
6937 continue;
6938
52a08ef1
JL
6939 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6940 update_next_balance(sd, 0, &next_balance);
9bd721c5 6941 break;
52a08ef1 6942 }
9bd721c5 6943
f492e12e 6944 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6945 t0 = sched_clock_cpu(this_cpu);
6946
f492e12e 6947 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6948 sd, CPU_NEWLY_IDLE,
6949 &continue_balancing);
9bd721c5
JL
6950
6951 domain_cost = sched_clock_cpu(this_cpu) - t0;
6952 if (domain_cost > sd->max_newidle_lb_cost)
6953 sd->max_newidle_lb_cost = domain_cost;
6954
6955 curr_cost += domain_cost;
f492e12e 6956 }
1e3c88bd 6957
52a08ef1 6958 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6959
6960 /*
6961 * Stop searching for tasks to pull if there are
6962 * now runnable tasks on this rq.
6963 */
6964 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6965 break;
1e3c88bd 6966 }
dce840a0 6967 rcu_read_unlock();
f492e12e
PZ
6968
6969 raw_spin_lock(&this_rq->lock);
6970
0e5b5337
JL
6971 if (curr_cost > this_rq->max_idle_balance_cost)
6972 this_rq->max_idle_balance_cost = curr_cost;
6973
e5fc6611 6974 /*
0e5b5337
JL
6975 * While browsing the domains, we released the rq lock, a task could
6976 * have been enqueued in the meantime. Since we're not going idle,
6977 * pretend we pulled a task.
e5fc6611 6978 */
0e5b5337 6979 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6980 pulled_task = 1;
e5fc6611 6981
52a08ef1
JL
6982out:
6983 /* Move the next balance forward */
6984 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6985 this_rq->next_balance = next_balance;
9bd721c5 6986
e4aa358b 6987 /* Is there a task of a high priority class? */
46383648 6988 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6989 pulled_task = -1;
6990
6991 if (pulled_task) {
6992 idle_exit_fair(this_rq);
6e83125c 6993 this_rq->idle_stamp = 0;
e4aa358b 6994 }
6e83125c 6995
3c4017c1 6996 return pulled_task;
1e3c88bd
PZ
6997}
6998
6999/*
969c7921
TH
7000 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7001 * running tasks off the busiest CPU onto idle CPUs. It requires at
7002 * least 1 task to be running on each physical CPU where possible, and
7003 * avoids physical / logical imbalances.
1e3c88bd 7004 */
969c7921 7005static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7006{
969c7921
TH
7007 struct rq *busiest_rq = data;
7008 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7009 int target_cpu = busiest_rq->push_cpu;
969c7921 7010 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7011 struct sched_domain *sd;
e5673f28 7012 struct task_struct *p = NULL;
969c7921
TH
7013
7014 raw_spin_lock_irq(&busiest_rq->lock);
7015
7016 /* make sure the requested cpu hasn't gone down in the meantime */
7017 if (unlikely(busiest_cpu != smp_processor_id() ||
7018 !busiest_rq->active_balance))
7019 goto out_unlock;
1e3c88bd
PZ
7020
7021 /* Is there any task to move? */
7022 if (busiest_rq->nr_running <= 1)
969c7921 7023 goto out_unlock;
1e3c88bd
PZ
7024
7025 /*
7026 * This condition is "impossible", if it occurs
7027 * we need to fix it. Originally reported by
7028 * Bjorn Helgaas on a 128-cpu setup.
7029 */
7030 BUG_ON(busiest_rq == target_rq);
7031
1e3c88bd 7032 /* Search for an sd spanning us and the target CPU. */
dce840a0 7033 rcu_read_lock();
1e3c88bd
PZ
7034 for_each_domain(target_cpu, sd) {
7035 if ((sd->flags & SD_LOAD_BALANCE) &&
7036 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7037 break;
7038 }
7039
7040 if (likely(sd)) {
8e45cb54
PZ
7041 struct lb_env env = {
7042 .sd = sd,
ddcdf6e7
PZ
7043 .dst_cpu = target_cpu,
7044 .dst_rq = target_rq,
7045 .src_cpu = busiest_rq->cpu,
7046 .src_rq = busiest_rq,
8e45cb54
PZ
7047 .idle = CPU_IDLE,
7048 };
7049
1e3c88bd
PZ
7050 schedstat_inc(sd, alb_count);
7051
e5673f28
KT
7052 p = detach_one_task(&env);
7053 if (p)
1e3c88bd
PZ
7054 schedstat_inc(sd, alb_pushed);
7055 else
7056 schedstat_inc(sd, alb_failed);
7057 }
dce840a0 7058 rcu_read_unlock();
969c7921
TH
7059out_unlock:
7060 busiest_rq->active_balance = 0;
e5673f28
KT
7061 raw_spin_unlock(&busiest_rq->lock);
7062
7063 if (p)
7064 attach_one_task(target_rq, p);
7065
7066 local_irq_enable();
7067
969c7921 7068 return 0;
1e3c88bd
PZ
7069}
7070
d987fc7f
MG
7071static inline int on_null_domain(struct rq *rq)
7072{
7073 return unlikely(!rcu_dereference_sched(rq->sd));
7074}
7075
3451d024 7076#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7077/*
7078 * idle load balancing details
83cd4fe2
VP
7079 * - When one of the busy CPUs notice that there may be an idle rebalancing
7080 * needed, they will kick the idle load balancer, which then does idle
7081 * load balancing for all the idle CPUs.
7082 */
1e3c88bd 7083static struct {
83cd4fe2 7084 cpumask_var_t idle_cpus_mask;
0b005cf5 7085 atomic_t nr_cpus;
83cd4fe2
VP
7086 unsigned long next_balance; /* in jiffy units */
7087} nohz ____cacheline_aligned;
1e3c88bd 7088
3dd0337d 7089static inline int find_new_ilb(void)
1e3c88bd 7090{
0b005cf5 7091 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7092
786d6dc7
SS
7093 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7094 return ilb;
7095
7096 return nr_cpu_ids;
1e3c88bd 7097}
1e3c88bd 7098
83cd4fe2
VP
7099/*
7100 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7101 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7102 * CPU (if there is one).
7103 */
0aeeeeba 7104static void nohz_balancer_kick(void)
83cd4fe2
VP
7105{
7106 int ilb_cpu;
7107
7108 nohz.next_balance++;
7109
3dd0337d 7110 ilb_cpu = find_new_ilb();
83cd4fe2 7111
0b005cf5
SS
7112 if (ilb_cpu >= nr_cpu_ids)
7113 return;
83cd4fe2 7114
cd490c5b 7115 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7116 return;
7117 /*
7118 * Use smp_send_reschedule() instead of resched_cpu().
7119 * This way we generate a sched IPI on the target cpu which
7120 * is idle. And the softirq performing nohz idle load balance
7121 * will be run before returning from the IPI.
7122 */
7123 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7124 return;
7125}
7126
c1cc017c 7127static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7128{
7129 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7130 /*
7131 * Completely isolated CPUs don't ever set, so we must test.
7132 */
7133 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7134 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7135 atomic_dec(&nohz.nr_cpus);
7136 }
71325960
SS
7137 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7138 }
7139}
7140
69e1e811
SS
7141static inline void set_cpu_sd_state_busy(void)
7142{
7143 struct sched_domain *sd;
37dc6b50 7144 int cpu = smp_processor_id();
69e1e811 7145
69e1e811 7146 rcu_read_lock();
37dc6b50 7147 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7148
7149 if (!sd || !sd->nohz_idle)
7150 goto unlock;
7151 sd->nohz_idle = 0;
7152
63b2ca30 7153 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7154unlock:
69e1e811
SS
7155 rcu_read_unlock();
7156}
7157
7158void set_cpu_sd_state_idle(void)
7159{
7160 struct sched_domain *sd;
37dc6b50 7161 int cpu = smp_processor_id();
69e1e811 7162
69e1e811 7163 rcu_read_lock();
37dc6b50 7164 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7165
7166 if (!sd || sd->nohz_idle)
7167 goto unlock;
7168 sd->nohz_idle = 1;
7169
63b2ca30 7170 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7171unlock:
69e1e811
SS
7172 rcu_read_unlock();
7173}
7174
1e3c88bd 7175/*
c1cc017c 7176 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7177 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7178 */
c1cc017c 7179void nohz_balance_enter_idle(int cpu)
1e3c88bd 7180{
71325960
SS
7181 /*
7182 * If this cpu is going down, then nothing needs to be done.
7183 */
7184 if (!cpu_active(cpu))
7185 return;
7186
c1cc017c
AS
7187 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7188 return;
1e3c88bd 7189
d987fc7f
MG
7190 /*
7191 * If we're a completely isolated CPU, we don't play.
7192 */
7193 if (on_null_domain(cpu_rq(cpu)))
7194 return;
7195
c1cc017c
AS
7196 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7197 atomic_inc(&nohz.nr_cpus);
7198 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7199}
71325960 7200
0db0628d 7201static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7202 unsigned long action, void *hcpu)
7203{
7204 switch (action & ~CPU_TASKS_FROZEN) {
7205 case CPU_DYING:
c1cc017c 7206 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7207 return NOTIFY_OK;
7208 default:
7209 return NOTIFY_DONE;
7210 }
7211}
1e3c88bd
PZ
7212#endif
7213
7214static DEFINE_SPINLOCK(balancing);
7215
49c022e6
PZ
7216/*
7217 * Scale the max load_balance interval with the number of CPUs in the system.
7218 * This trades load-balance latency on larger machines for less cross talk.
7219 */
029632fb 7220void update_max_interval(void)
49c022e6
PZ
7221{
7222 max_load_balance_interval = HZ*num_online_cpus()/10;
7223}
7224
1e3c88bd
PZ
7225/*
7226 * It checks each scheduling domain to see if it is due to be balanced,
7227 * and initiates a balancing operation if so.
7228 *
b9b0853a 7229 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7230 */
f7ed0a89 7231static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7232{
23f0d209 7233 int continue_balancing = 1;
f7ed0a89 7234 int cpu = rq->cpu;
1e3c88bd 7235 unsigned long interval;
04f733b4 7236 struct sched_domain *sd;
1e3c88bd
PZ
7237 /* Earliest time when we have to do rebalance again */
7238 unsigned long next_balance = jiffies + 60*HZ;
7239 int update_next_balance = 0;
f48627e6
JL
7240 int need_serialize, need_decay = 0;
7241 u64 max_cost = 0;
1e3c88bd 7242
48a16753 7243 update_blocked_averages(cpu);
2069dd75 7244
dce840a0 7245 rcu_read_lock();
1e3c88bd 7246 for_each_domain(cpu, sd) {
f48627e6
JL
7247 /*
7248 * Decay the newidle max times here because this is a regular
7249 * visit to all the domains. Decay ~1% per second.
7250 */
7251 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7252 sd->max_newidle_lb_cost =
7253 (sd->max_newidle_lb_cost * 253) / 256;
7254 sd->next_decay_max_lb_cost = jiffies + HZ;
7255 need_decay = 1;
7256 }
7257 max_cost += sd->max_newidle_lb_cost;
7258
1e3c88bd
PZ
7259 if (!(sd->flags & SD_LOAD_BALANCE))
7260 continue;
7261
f48627e6
JL
7262 /*
7263 * Stop the load balance at this level. There is another
7264 * CPU in our sched group which is doing load balancing more
7265 * actively.
7266 */
7267 if (!continue_balancing) {
7268 if (need_decay)
7269 continue;
7270 break;
7271 }
7272
52a08ef1 7273 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7274
7275 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7276 if (need_serialize) {
7277 if (!spin_trylock(&balancing))
7278 goto out;
7279 }
7280
7281 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7282 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7283 /*
6263322c 7284 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7285 * env->dst_cpu, so we can't know our idle
7286 * state even if we migrated tasks. Update it.
1e3c88bd 7287 */
de5eb2dd 7288 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7289 }
7290 sd->last_balance = jiffies;
52a08ef1 7291 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7292 }
7293 if (need_serialize)
7294 spin_unlock(&balancing);
7295out:
7296 if (time_after(next_balance, sd->last_balance + interval)) {
7297 next_balance = sd->last_balance + interval;
7298 update_next_balance = 1;
7299 }
f48627e6
JL
7300 }
7301 if (need_decay) {
1e3c88bd 7302 /*
f48627e6
JL
7303 * Ensure the rq-wide value also decays but keep it at a
7304 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7305 */
f48627e6
JL
7306 rq->max_idle_balance_cost =
7307 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7308 }
dce840a0 7309 rcu_read_unlock();
1e3c88bd
PZ
7310
7311 /*
7312 * next_balance will be updated only when there is a need.
7313 * When the cpu is attached to null domain for ex, it will not be
7314 * updated.
7315 */
7316 if (likely(update_next_balance))
7317 rq->next_balance = next_balance;
7318}
7319
3451d024 7320#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7321/*
3451d024 7322 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7323 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7324 */
208cb16b 7325static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7326{
208cb16b 7327 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7328 struct rq *rq;
7329 int balance_cpu;
7330
1c792db7
SS
7331 if (idle != CPU_IDLE ||
7332 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7333 goto end;
83cd4fe2
VP
7334
7335 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7336 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7337 continue;
7338
7339 /*
7340 * If this cpu gets work to do, stop the load balancing
7341 * work being done for other cpus. Next load
7342 * balancing owner will pick it up.
7343 */
1c792db7 7344 if (need_resched())
83cd4fe2 7345 break;
83cd4fe2 7346
5ed4f1d9
VG
7347 rq = cpu_rq(balance_cpu);
7348
ed61bbc6
TC
7349 /*
7350 * If time for next balance is due,
7351 * do the balance.
7352 */
7353 if (time_after_eq(jiffies, rq->next_balance)) {
7354 raw_spin_lock_irq(&rq->lock);
7355 update_rq_clock(rq);
7356 update_idle_cpu_load(rq);
7357 raw_spin_unlock_irq(&rq->lock);
7358 rebalance_domains(rq, CPU_IDLE);
7359 }
83cd4fe2 7360
83cd4fe2
VP
7361 if (time_after(this_rq->next_balance, rq->next_balance))
7362 this_rq->next_balance = rq->next_balance;
7363 }
7364 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7365end:
7366 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7367}
7368
7369/*
0b005cf5
SS
7370 * Current heuristic for kicking the idle load balancer in the presence
7371 * of an idle cpu is the system.
7372 * - This rq has more than one task.
7373 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7374 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7375 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7376 * domain span are idle.
83cd4fe2 7377 */
4a725627 7378static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7379{
7380 unsigned long now = jiffies;
0b005cf5 7381 struct sched_domain *sd;
63b2ca30 7382 struct sched_group_capacity *sgc;
4a725627 7383 int nr_busy, cpu = rq->cpu;
83cd4fe2 7384
4a725627 7385 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7386 return 0;
7387
1c792db7
SS
7388 /*
7389 * We may be recently in ticked or tickless idle mode. At the first
7390 * busy tick after returning from idle, we will update the busy stats.
7391 */
69e1e811 7392 set_cpu_sd_state_busy();
c1cc017c 7393 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7394
7395 /*
7396 * None are in tickless mode and hence no need for NOHZ idle load
7397 * balancing.
7398 */
7399 if (likely(!atomic_read(&nohz.nr_cpus)))
7400 return 0;
1c792db7
SS
7401
7402 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7403 return 0;
7404
0b005cf5
SS
7405 if (rq->nr_running >= 2)
7406 goto need_kick;
83cd4fe2 7407
067491b7 7408 rcu_read_lock();
37dc6b50 7409 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7410
37dc6b50 7411 if (sd) {
63b2ca30
NP
7412 sgc = sd->groups->sgc;
7413 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7414
37dc6b50 7415 if (nr_busy > 1)
067491b7 7416 goto need_kick_unlock;
83cd4fe2 7417 }
37dc6b50
PM
7418
7419 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7420
7421 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7422 sched_domain_span(sd)) < cpu))
7423 goto need_kick_unlock;
7424
067491b7 7425 rcu_read_unlock();
83cd4fe2 7426 return 0;
067491b7
PZ
7427
7428need_kick_unlock:
7429 rcu_read_unlock();
0b005cf5
SS
7430need_kick:
7431 return 1;
83cd4fe2
VP
7432}
7433#else
208cb16b 7434static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7435#endif
7436
7437/*
7438 * run_rebalance_domains is triggered when needed from the scheduler tick.
7439 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7440 */
1e3c88bd
PZ
7441static void run_rebalance_domains(struct softirq_action *h)
7442{
208cb16b 7443 struct rq *this_rq = this_rq();
6eb57e0d 7444 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7445 CPU_IDLE : CPU_NOT_IDLE;
7446
f7ed0a89 7447 rebalance_domains(this_rq, idle);
1e3c88bd 7448
1e3c88bd 7449 /*
83cd4fe2 7450 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7451 * balancing on behalf of the other idle cpus whose ticks are
7452 * stopped.
7453 */
208cb16b 7454 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7455}
7456
1e3c88bd
PZ
7457/*
7458 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7459 */
7caff66f 7460void trigger_load_balance(struct rq *rq)
1e3c88bd 7461{
1e3c88bd 7462 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7463 if (unlikely(on_null_domain(rq)))
7464 return;
7465
7466 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7467 raise_softirq(SCHED_SOFTIRQ);
3451d024 7468#ifdef CONFIG_NO_HZ_COMMON
c726099e 7469 if (nohz_kick_needed(rq))
0aeeeeba 7470 nohz_balancer_kick();
83cd4fe2 7471#endif
1e3c88bd
PZ
7472}
7473
0bcdcf28
CE
7474static void rq_online_fair(struct rq *rq)
7475{
7476 update_sysctl();
0e59bdae
KT
7477
7478 update_runtime_enabled(rq);
0bcdcf28
CE
7479}
7480
7481static void rq_offline_fair(struct rq *rq)
7482{
7483 update_sysctl();
a4c96ae3
PB
7484
7485 /* Ensure any throttled groups are reachable by pick_next_task */
7486 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7487}
7488
55e12e5e 7489#endif /* CONFIG_SMP */
e1d1484f 7490
bf0f6f24
IM
7491/*
7492 * scheduler tick hitting a task of our scheduling class:
7493 */
8f4d37ec 7494static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7495{
7496 struct cfs_rq *cfs_rq;
7497 struct sched_entity *se = &curr->se;
7498
7499 for_each_sched_entity(se) {
7500 cfs_rq = cfs_rq_of(se);
8f4d37ec 7501 entity_tick(cfs_rq, se, queued);
bf0f6f24 7502 }
18bf2805 7503
10e84b97 7504 if (numabalancing_enabled)
cbee9f88 7505 task_tick_numa(rq, curr);
3d59eebc 7506
18bf2805 7507 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7508}
7509
7510/*
cd29fe6f
PZ
7511 * called on fork with the child task as argument from the parent's context
7512 * - child not yet on the tasklist
7513 * - preemption disabled
bf0f6f24 7514 */
cd29fe6f 7515static void task_fork_fair(struct task_struct *p)
bf0f6f24 7516{
4fc420c9
DN
7517 struct cfs_rq *cfs_rq;
7518 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7519 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7520 struct rq *rq = this_rq();
7521 unsigned long flags;
7522
05fa785c 7523 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7524
861d034e
PZ
7525 update_rq_clock(rq);
7526
4fc420c9
DN
7527 cfs_rq = task_cfs_rq(current);
7528 curr = cfs_rq->curr;
7529
6c9a27f5
DN
7530 /*
7531 * Not only the cpu but also the task_group of the parent might have
7532 * been changed after parent->se.parent,cfs_rq were copied to
7533 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7534 * of child point to valid ones.
7535 */
7536 rcu_read_lock();
7537 __set_task_cpu(p, this_cpu);
7538 rcu_read_unlock();
bf0f6f24 7539
7109c442 7540 update_curr(cfs_rq);
cd29fe6f 7541
b5d9d734
MG
7542 if (curr)
7543 se->vruntime = curr->vruntime;
aeb73b04 7544 place_entity(cfs_rq, se, 1);
4d78e7b6 7545
cd29fe6f 7546 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7547 /*
edcb60a3
IM
7548 * Upon rescheduling, sched_class::put_prev_task() will place
7549 * 'current' within the tree based on its new key value.
7550 */
4d78e7b6 7551 swap(curr->vruntime, se->vruntime);
8875125e 7552 resched_curr(rq);
4d78e7b6 7553 }
bf0f6f24 7554
88ec22d3
PZ
7555 se->vruntime -= cfs_rq->min_vruntime;
7556
05fa785c 7557 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7558}
7559
cb469845
SR
7560/*
7561 * Priority of the task has changed. Check to see if we preempt
7562 * the current task.
7563 */
da7a735e
PZ
7564static void
7565prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7566{
da0c1e65 7567 if (!task_on_rq_queued(p))
da7a735e
PZ
7568 return;
7569
cb469845
SR
7570 /*
7571 * Reschedule if we are currently running on this runqueue and
7572 * our priority decreased, or if we are not currently running on
7573 * this runqueue and our priority is higher than the current's
7574 */
da7a735e 7575 if (rq->curr == p) {
cb469845 7576 if (p->prio > oldprio)
8875125e 7577 resched_curr(rq);
cb469845 7578 } else
15afe09b 7579 check_preempt_curr(rq, p, 0);
cb469845
SR
7580}
7581
da7a735e
PZ
7582static void switched_from_fair(struct rq *rq, struct task_struct *p)
7583{
7584 struct sched_entity *se = &p->se;
7585 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7586
7587 /*
791c9e02 7588 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7589 * switched back to the fair class the enqueue_entity(.flags=0) will
7590 * do the right thing.
7591 *
da0c1e65
KT
7592 * If it's queued, then the dequeue_entity(.flags=0) will already
7593 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7594 * the task is sleeping will it still have non-normalized vruntime.
7595 */
da0c1e65 7596 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7597 /*
7598 * Fix up our vruntime so that the current sleep doesn't
7599 * cause 'unlimited' sleep bonus.
7600 */
7601 place_entity(cfs_rq, se, 0);
7602 se->vruntime -= cfs_rq->min_vruntime;
7603 }
9ee474f5 7604
141965c7 7605#ifdef CONFIG_SMP
9ee474f5
PT
7606 /*
7607 * Remove our load from contribution when we leave sched_fair
7608 * and ensure we don't carry in an old decay_count if we
7609 * switch back.
7610 */
87e3c8ae
KT
7611 if (se->avg.decay_count) {
7612 __synchronize_entity_decay(se);
7613 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7614 }
7615#endif
da7a735e
PZ
7616}
7617
cb469845
SR
7618/*
7619 * We switched to the sched_fair class.
7620 */
da7a735e 7621static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7622{
eb7a59b2 7623#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7624 struct sched_entity *se = &p->se;
eb7a59b2
M
7625 /*
7626 * Since the real-depth could have been changed (only FAIR
7627 * class maintain depth value), reset depth properly.
7628 */
7629 se->depth = se->parent ? se->parent->depth + 1 : 0;
7630#endif
da0c1e65 7631 if (!task_on_rq_queued(p))
da7a735e
PZ
7632 return;
7633
cb469845
SR
7634 /*
7635 * We were most likely switched from sched_rt, so
7636 * kick off the schedule if running, otherwise just see
7637 * if we can still preempt the current task.
7638 */
da7a735e 7639 if (rq->curr == p)
8875125e 7640 resched_curr(rq);
cb469845 7641 else
15afe09b 7642 check_preempt_curr(rq, p, 0);
cb469845
SR
7643}
7644
83b699ed
SV
7645/* Account for a task changing its policy or group.
7646 *
7647 * This routine is mostly called to set cfs_rq->curr field when a task
7648 * migrates between groups/classes.
7649 */
7650static void set_curr_task_fair(struct rq *rq)
7651{
7652 struct sched_entity *se = &rq->curr->se;
7653
ec12cb7f
PT
7654 for_each_sched_entity(se) {
7655 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7656
7657 set_next_entity(cfs_rq, se);
7658 /* ensure bandwidth has been allocated on our new cfs_rq */
7659 account_cfs_rq_runtime(cfs_rq, 0);
7660 }
83b699ed
SV
7661}
7662
029632fb
PZ
7663void init_cfs_rq(struct cfs_rq *cfs_rq)
7664{
7665 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7666 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7667#ifndef CONFIG_64BIT
7668 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7669#endif
141965c7 7670#ifdef CONFIG_SMP
9ee474f5 7671 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7672 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7673#endif
029632fb
PZ
7674}
7675
810b3817 7676#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7677static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7678{
fed14d45 7679 struct sched_entity *se = &p->se;
aff3e498 7680 struct cfs_rq *cfs_rq;
fed14d45 7681
b2b5ce02
PZ
7682 /*
7683 * If the task was not on the rq at the time of this cgroup movement
7684 * it must have been asleep, sleeping tasks keep their ->vruntime
7685 * absolute on their old rq until wakeup (needed for the fair sleeper
7686 * bonus in place_entity()).
7687 *
7688 * If it was on the rq, we've just 'preempted' it, which does convert
7689 * ->vruntime to a relative base.
7690 *
7691 * Make sure both cases convert their relative position when migrating
7692 * to another cgroup's rq. This does somewhat interfere with the
7693 * fair sleeper stuff for the first placement, but who cares.
7694 */
7ceff013 7695 /*
da0c1e65 7696 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7697 * But there are some cases where it has already been normalized:
7698 *
7699 * - Moving a forked child which is waiting for being woken up by
7700 * wake_up_new_task().
62af3783
DN
7701 * - Moving a task which has been woken up by try_to_wake_up() and
7702 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7703 *
7704 * To prevent boost or penalty in the new cfs_rq caused by delta
7705 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7706 */
da0c1e65
KT
7707 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7708 queued = 1;
7ceff013 7709
da0c1e65 7710 if (!queued)
fed14d45 7711 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7712 set_task_rq(p, task_cpu(p));
fed14d45 7713 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7714 if (!queued) {
fed14d45
PZ
7715 cfs_rq = cfs_rq_of(se);
7716 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7717#ifdef CONFIG_SMP
7718 /*
7719 * migrate_task_rq_fair() will have removed our previous
7720 * contribution, but we must synchronize for ongoing future
7721 * decay.
7722 */
fed14d45
PZ
7723 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7724 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7725#endif
7726 }
810b3817 7727}
029632fb
PZ
7728
7729void free_fair_sched_group(struct task_group *tg)
7730{
7731 int i;
7732
7733 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7734
7735 for_each_possible_cpu(i) {
7736 if (tg->cfs_rq)
7737 kfree(tg->cfs_rq[i]);
7738 if (tg->se)
7739 kfree(tg->se[i]);
7740 }
7741
7742 kfree(tg->cfs_rq);
7743 kfree(tg->se);
7744}
7745
7746int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7747{
7748 struct cfs_rq *cfs_rq;
7749 struct sched_entity *se;
7750 int i;
7751
7752 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7753 if (!tg->cfs_rq)
7754 goto err;
7755 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7756 if (!tg->se)
7757 goto err;
7758
7759 tg->shares = NICE_0_LOAD;
7760
7761 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7762
7763 for_each_possible_cpu(i) {
7764 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7765 GFP_KERNEL, cpu_to_node(i));
7766 if (!cfs_rq)
7767 goto err;
7768
7769 se = kzalloc_node(sizeof(struct sched_entity),
7770 GFP_KERNEL, cpu_to_node(i));
7771 if (!se)
7772 goto err_free_rq;
7773
7774 init_cfs_rq(cfs_rq);
7775 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7776 }
7777
7778 return 1;
7779
7780err_free_rq:
7781 kfree(cfs_rq);
7782err:
7783 return 0;
7784}
7785
7786void unregister_fair_sched_group(struct task_group *tg, int cpu)
7787{
7788 struct rq *rq = cpu_rq(cpu);
7789 unsigned long flags;
7790
7791 /*
7792 * Only empty task groups can be destroyed; so we can speculatively
7793 * check on_list without danger of it being re-added.
7794 */
7795 if (!tg->cfs_rq[cpu]->on_list)
7796 return;
7797
7798 raw_spin_lock_irqsave(&rq->lock, flags);
7799 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7800 raw_spin_unlock_irqrestore(&rq->lock, flags);
7801}
7802
7803void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7804 struct sched_entity *se, int cpu,
7805 struct sched_entity *parent)
7806{
7807 struct rq *rq = cpu_rq(cpu);
7808
7809 cfs_rq->tg = tg;
7810 cfs_rq->rq = rq;
029632fb
PZ
7811 init_cfs_rq_runtime(cfs_rq);
7812
7813 tg->cfs_rq[cpu] = cfs_rq;
7814 tg->se[cpu] = se;
7815
7816 /* se could be NULL for root_task_group */
7817 if (!se)
7818 return;
7819
fed14d45 7820 if (!parent) {
029632fb 7821 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7822 se->depth = 0;
7823 } else {
029632fb 7824 se->cfs_rq = parent->my_q;
fed14d45
PZ
7825 se->depth = parent->depth + 1;
7826 }
029632fb
PZ
7827
7828 se->my_q = cfs_rq;
0ac9b1c2
PT
7829 /* guarantee group entities always have weight */
7830 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7831 se->parent = parent;
7832}
7833
7834static DEFINE_MUTEX(shares_mutex);
7835
7836int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7837{
7838 int i;
7839 unsigned long flags;
7840
7841 /*
7842 * We can't change the weight of the root cgroup.
7843 */
7844 if (!tg->se[0])
7845 return -EINVAL;
7846
7847 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7848
7849 mutex_lock(&shares_mutex);
7850 if (tg->shares == shares)
7851 goto done;
7852
7853 tg->shares = shares;
7854 for_each_possible_cpu(i) {
7855 struct rq *rq = cpu_rq(i);
7856 struct sched_entity *se;
7857
7858 se = tg->se[i];
7859 /* Propagate contribution to hierarchy */
7860 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7861
7862 /* Possible calls to update_curr() need rq clock */
7863 update_rq_clock(rq);
17bc14b7 7864 for_each_sched_entity(se)
029632fb
PZ
7865 update_cfs_shares(group_cfs_rq(se));
7866 raw_spin_unlock_irqrestore(&rq->lock, flags);
7867 }
7868
7869done:
7870 mutex_unlock(&shares_mutex);
7871 return 0;
7872}
7873#else /* CONFIG_FAIR_GROUP_SCHED */
7874
7875void free_fair_sched_group(struct task_group *tg) { }
7876
7877int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7878{
7879 return 1;
7880}
7881
7882void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7883
7884#endif /* CONFIG_FAIR_GROUP_SCHED */
7885
810b3817 7886
6d686f45 7887static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7888{
7889 struct sched_entity *se = &task->se;
0d721cea
PW
7890 unsigned int rr_interval = 0;
7891
7892 /*
7893 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7894 * idle runqueue:
7895 */
0d721cea 7896 if (rq->cfs.load.weight)
a59f4e07 7897 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7898
7899 return rr_interval;
7900}
7901
bf0f6f24
IM
7902/*
7903 * All the scheduling class methods:
7904 */
029632fb 7905const struct sched_class fair_sched_class = {
5522d5d5 7906 .next = &idle_sched_class,
bf0f6f24
IM
7907 .enqueue_task = enqueue_task_fair,
7908 .dequeue_task = dequeue_task_fair,
7909 .yield_task = yield_task_fair,
d95f4122 7910 .yield_to_task = yield_to_task_fair,
bf0f6f24 7911
2e09bf55 7912 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7913
7914 .pick_next_task = pick_next_task_fair,
7915 .put_prev_task = put_prev_task_fair,
7916
681f3e68 7917#ifdef CONFIG_SMP
4ce72a2c 7918 .select_task_rq = select_task_rq_fair,
0a74bef8 7919 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7920
0bcdcf28
CE
7921 .rq_online = rq_online_fair,
7922 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7923
7924 .task_waking = task_waking_fair,
681f3e68 7925#endif
bf0f6f24 7926
83b699ed 7927 .set_curr_task = set_curr_task_fair,
bf0f6f24 7928 .task_tick = task_tick_fair,
cd29fe6f 7929 .task_fork = task_fork_fair,
cb469845
SR
7930
7931 .prio_changed = prio_changed_fair,
da7a735e 7932 .switched_from = switched_from_fair,
cb469845 7933 .switched_to = switched_to_fair,
810b3817 7934
0d721cea
PW
7935 .get_rr_interval = get_rr_interval_fair,
7936
810b3817 7937#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7938 .task_move_group = task_move_group_fair,
810b3817 7939#endif
bf0f6f24
IM
7940};
7941
7942#ifdef CONFIG_SCHED_DEBUG
029632fb 7943void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7944{
bf0f6f24
IM
7945 struct cfs_rq *cfs_rq;
7946
5973e5b9 7947 rcu_read_lock();
c3b64f1e 7948 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7949 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7950 rcu_read_unlock();
bf0f6f24
IM
7951}
7952#endif
029632fb
PZ
7953
7954__init void init_sched_fair_class(void)
7955{
7956#ifdef CONFIG_SMP
7957 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7958
3451d024 7959#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7960 nohz.next_balance = jiffies;
029632fb 7961 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7962 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7963#endif
7964#endif /* SMP */
7965
7966}