]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched: Correctly sort struct predeclarations
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb 24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 27 *
21805085 28 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
bf0f6f24 32 *
d274a4ce
IM
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 */
2b4d5b25 38unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
1983a922
CE
43 *
44 * Options are:
2b4d5b25
IM
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 51 */
2b4d5b25 52enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 56 *
864616ee 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 58 */
ed8885a1
MS
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
61
62/*
2b4d5b25 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 64 */
0bf377bb 65static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
66
67/*
2bba22c5 68 * After fork, child runs first. If set to 0 (default) then
b2be5e96 69 * parent will (try to) run first.
21805085 70 */
2bba22c5 71unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 72
bf0f6f24
IM
73/*
74 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 81 */
ed8885a1
MS
82unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 84
2b4d5b25 85const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 86
05289b90
TG
87int sched_thermal_decay_shift;
88static int __init setup_sched_thermal_decay_shift(char *str)
89{
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97}
98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
afe06efd
TC
100#ifdef CONFIG_SMP
101/*
97fb7a0a 102 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
6d101ba6
OJ
108
109/*
60e17f5c 110 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
111 *
112 * (default: ~20%)
113 */
60e17f5c
VK
114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
afe06efd
TC
116#endif
117
ec12cb7f
PT
118#ifdef CONFIG_CFS_BANDWIDTH
119/*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
2b4d5b25
IM
127 * (default: 5 msec, units: microseconds)
128 */
129unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
130#endif
131
8527632d
PG
132static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133{
134 lw->weight += inc;
135 lw->inv_weight = 0;
136}
137
138static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139{
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142}
143
144static inline void update_load_set(struct load_weight *lw, unsigned long w)
145{
146 lw->weight = w;
147 lw->inv_weight = 0;
148}
149
029632fb
PZ
150/*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
58ac93e4 159static unsigned int get_update_sysctl_factor(void)
029632fb 160{
58ac93e4 161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178}
179
180static void update_sysctl(void)
181{
182 unsigned int factor = get_update_sysctl_factor();
183
184#define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189#undef SET_SYSCTL
190}
191
f38f12d1 192void __init sched_init_granularity(void)
029632fb
PZ
193{
194 update_sysctl();
195}
196
9dbdb155 197#define WMULT_CONST (~0U)
029632fb
PZ
198#define WMULT_SHIFT 32
199
9dbdb155
PZ
200static void __update_inv_weight(struct load_weight *lw)
201{
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215}
029632fb
PZ
216
217/*
9dbdb155
PZ
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
1c3de5e1 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 228 */
9dbdb155 229static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 230{
9dbdb155
PZ
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
029632fb 233
9dbdb155 234 __update_inv_weight(lw);
029632fb 235
9dbdb155
PZ
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb
PZ
241 }
242
2eeb01a2 243 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 244
9dbdb155
PZ
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
029632fb 249
9dbdb155 250 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
251}
252
253
254const struct sched_class fair_sched_class;
a4c2f00f 255
bf0f6f24
IM
256/**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
62160e3f 260#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
261static inline struct task_struct *task_of(struct sched_entity *se)
262{
9148a3a1 263 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
264 return container_of(se, struct task_struct, se);
265}
266
b758149c
PZ
267/* Walk up scheduling entities hierarchy */
268#define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
270
271static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272{
273 return p->se.cfs_rq;
274}
275
276/* runqueue on which this entity is (to be) queued */
277static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278{
279 return se->cfs_rq;
280}
281
282/* runqueue "owned" by this group */
283static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284{
285 return grp->my_q;
286}
287
3c93a0c0
QY
288static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289{
290 if (!path)
291 return;
292
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
299}
300
f6783319 301static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 302{
5d299eab
PZ
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
305
306 if (cfs_rq->on_list)
f6783319 307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
308
309 cfs_rq->on_list = 1;
310
311 /*
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
319 */
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 322 /*
5d299eab
PZ
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
67e86250 327 */
5d299eab
PZ
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 /*
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
334 */
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 336 return true;
5d299eab 337 }
3d4b47b4 338
5d299eab
PZ
339 if (!cfs_rq->tg->parent) {
340 /*
341 * cfs rq without parent should be put
342 * at the tail of the list.
343 */
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
346 /*
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 351 return true;
3d4b47b4 352 }
5d299eab
PZ
353
354 /*
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
359 */
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 /*
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
364 */
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 366 return false;
3d4b47b4
PZ
367}
368
369static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370{
371 if (cfs_rq->on_list) {
31bc6aea
VG
372 struct rq *rq = rq_of(cfs_rq);
373
374 /*
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
380 */
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383
3d4b47b4
PZ
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
386 }
387}
388
5d299eab
PZ
389static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390{
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392}
393
039ae8bc
VG
394/* Iterate thr' all leaf cfs_rq's on a runqueue */
395#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
b758149c
PZ
398
399/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 400static inline struct cfs_rq *
b758149c
PZ
401is_same_group(struct sched_entity *se, struct sched_entity *pse)
402{
403 if (se->cfs_rq == pse->cfs_rq)
fed14d45 404 return se->cfs_rq;
b758149c 405
fed14d45 406 return NULL;
b758149c
PZ
407}
408
409static inline struct sched_entity *parent_entity(struct sched_entity *se)
410{
411 return se->parent;
412}
413
464b7527
PZ
414static void
415find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416{
417 int se_depth, pse_depth;
418
419 /*
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
424 */
425
426 /* First walk up until both entities are at same depth */
fed14d45
PZ
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
464b7527
PZ
429
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
433 }
434
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
438 }
439
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
443 }
444}
445
8f48894f
PZ
446#else /* !CONFIG_FAIR_GROUP_SCHED */
447
448static inline struct task_struct *task_of(struct sched_entity *se)
449{
450 return container_of(se, struct task_struct, se);
451}
bf0f6f24 452
b758149c
PZ
453#define for_each_sched_entity(se) \
454 for (; se; se = NULL)
bf0f6f24 455
b758149c 456static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 457{
b758149c 458 return &task_rq(p)->cfs;
bf0f6f24
IM
459}
460
b758149c
PZ
461static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462{
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
465
466 return &rq->cfs;
467}
468
469/* runqueue "owned" by this group */
470static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471{
472 return NULL;
473}
474
3c93a0c0
QY
475static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476{
477 if (path)
478 strlcpy(path, "(null)", len);
479}
480
f6783319 481static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 482{
f6783319 483 return true;
3d4b47b4
PZ
484}
485
486static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487{
488}
489
5d299eab
PZ
490static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491{
492}
493
039ae8bc
VG
494#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 496
b758149c
PZ
497static inline struct sched_entity *parent_entity(struct sched_entity *se)
498{
499 return NULL;
500}
501
464b7527
PZ
502static inline void
503find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504{
505}
506
b758149c
PZ
507#endif /* CONFIG_FAIR_GROUP_SCHED */
508
6c16a6dc 509static __always_inline
9dbdb155 510void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
511
512/**************************************************************
513 * Scheduling class tree data structure manipulation methods:
514 */
515
1bf08230 516static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 517{
1bf08230 518 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 519 if (delta > 0)
1bf08230 520 max_vruntime = vruntime;
02e0431a 521
1bf08230 522 return max_vruntime;
02e0431a
PZ
523}
524
0702e3eb 525static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
526{
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
530
531 return min_vruntime;
532}
533
54fdc581
FC
534static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
536{
537 return (s64)(a->vruntime - b->vruntime) < 0;
538}
539
1af5f730
PZ
540static void update_min_vruntime(struct cfs_rq *cfs_rq)
541{
b60205c7 542 struct sched_entity *curr = cfs_rq->curr;
bfb06889 543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 544
1af5f730
PZ
545 u64 vruntime = cfs_rq->min_vruntime;
546
b60205c7
PZ
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
552 }
1af5f730 553
bfb06889
DB
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 557
b60205c7 558 if (!curr)
1af5f730
PZ
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
562 }
563
1bf08230 564 /* ensure we never gain time by being placed backwards. */
1af5f730 565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
566#ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569#endif
1af5f730
PZ
570}
571
bf0f6f24
IM
572/*
573 * Enqueue an entity into the rb-tree:
574 */
0702e3eb 575static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 576{
bfb06889 577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
bfb06889 580 bool leftmost = true;
bf0f6f24
IM
581
582 /*
583 * Find the right place in the rbtree:
584 */
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
588 /*
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
591 */
2bd2d6f2 592 if (entity_before(se, entry)) {
bf0f6f24
IM
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
bfb06889 596 leftmost = false;
bf0f6f24
IM
597 }
598 }
599
bf0f6f24 600 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
603}
604
0702e3eb 605static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 606{
bfb06889 607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
608}
609
029632fb 610struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 611{
bfb06889 612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
613
614 if (!left)
615 return NULL;
616
617 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
618}
619
ac53db59
RR
620static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621{
622 struct rb_node *next = rb_next(&se->run_node);
623
624 if (!next)
625 return NULL;
626
627 return rb_entry(next, struct sched_entity, run_node);
628}
629
630#ifdef CONFIG_SCHED_DEBUG
029632fb 631struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 632{
bfb06889 633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 634
70eee74b
BS
635 if (!last)
636 return NULL;
7eee3e67
IM
637
638 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
639}
640
bf0f6f24
IM
641/**************************************************************
642 * Scheduling class statistics methods:
643 */
644
acb4a848 645int sched_proc_update_handler(struct ctl_table *table, int write,
32927393 646 void *buffer, size_t *lenp, loff_t *ppos)
b2be5e96 647{
8d65af78 648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 649 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
650
651 if (ret || !write)
652 return ret;
653
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
656
acb4a848
CE
657#define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
662#undef WRT_SYSCTL
663
b2be5e96
PZ
664 return 0;
665}
666#endif
647e7cac 667
a7be37ac 668/*
f9c0b095 669 * delta /= w
a7be37ac 670 */
9dbdb155 671static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 672{
f9c0b095 673 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
675
676 return delta;
677}
678
647e7cac
IM
679/*
680 * The idea is to set a period in which each task runs once.
681 *
532b1858 682 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
683 * this period because otherwise the slices get too small.
684 *
685 * p = (nr <= nl) ? l : l*nr/nl
686 */
4d78e7b6
PZ
687static u64 __sched_period(unsigned long nr_running)
688{
8e2b0bf3
BF
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
4d78e7b6
PZ
693}
694
647e7cac
IM
695/*
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
698 *
f9c0b095 699 * s = p*P[w/rw]
647e7cac 700 */
6d0f0ebd 701static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 702{
0a582440 703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 704
0a582440 705 for_each_sched_entity(se) {
6272d68c 706 struct load_weight *load;
3104bf03 707 struct load_weight lw;
6272d68c
LM
708
709 cfs_rq = cfs_rq_of(se);
710 load = &cfs_rq->load;
f9c0b095 711
0a582440 712 if (unlikely(!se->on_rq)) {
3104bf03 713 lw = cfs_rq->load;
0a582440
MG
714
715 update_load_add(&lw, se->load.weight);
716 load = &lw;
717 }
9dbdb155 718 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
719 }
720 return slice;
bf0f6f24
IM
721}
722
647e7cac 723/*
660cc00f 724 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 725 *
f9c0b095 726 * vs = s/w
647e7cac 727 */
f9c0b095 728static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 729{
f9c0b095 730 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
731}
732
c0796298 733#include "pelt.h"
23127296 734#ifdef CONFIG_SMP
283e2ed3 735
772bd008 736static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 737static unsigned long task_h_load(struct task_struct *p);
3b1baa64 738static unsigned long capacity_of(int cpu);
fb13c7ee 739
540247fb
YD
740/* Give new sched_entity start runnable values to heavy its load in infant time */
741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 742{
540247fb 743 struct sched_avg *sa = &se->avg;
a75cdaa9 744
f207934f
PZ
745 memset(sa, 0, sizeof(*sa));
746
b5a9b340 747 /*
dfcb245e 748 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 749 * they get a chance to stabilize to their real load level.
dfcb245e 750 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
751 * nothing has been attached to the task group yet.
752 */
753 if (entity_is_task(se))
0dacee1b 754 sa->load_avg = scale_load_down(se->load.weight);
f207934f 755
9d89c257 756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 757}
7ea241af 758
df217913 759static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 760
2b8c41da
YD
761/*
762 * With new tasks being created, their initial util_avgs are extrapolated
763 * based on the cfs_rq's current util_avg:
764 *
765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766 *
767 * However, in many cases, the above util_avg does not give a desired
768 * value. Moreover, the sum of the util_avgs may be divergent, such
769 * as when the series is a harmonic series.
770 *
771 * To solve this problem, we also cap the util_avg of successive tasks to
772 * only 1/2 of the left utilization budget:
773 *
8fe5c5a9 774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 775 *
8fe5c5a9 776 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 777 *
8fe5c5a9
QP
778 * For example, for a CPU with 1024 of capacity, a simplest series from
779 * the beginning would be like:
2b8c41da
YD
780 *
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783 *
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
786 */
d0fe0b9c 787void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 788{
d0fe0b9c 789 struct sched_entity *se = &p->se;
2b8c41da
YD
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
8ec59c0f 792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
2b8c41da 805 }
7dc603c9 806
e21cf434 807 sa->runnable_avg = sa->util_avg;
9f683953 808
d0fe0b9c
DE
809 if (p->sched_class != &fair_sched_class) {
810 /*
811 * For !fair tasks do:
812 *
813 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 814 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
815 switched_from_fair(rq, p);
816 *
817 * such that the next switched_to_fair() has the
818 * expected state.
819 */
820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 return;
7dc603c9
PZ
822 }
823
df217913 824 attach_entity_cfs_rq(se);
2b8c41da
YD
825}
826
7dc603c9 827#else /* !CONFIG_SMP */
540247fb 828void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
829{
830}
d0fe0b9c 831void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
832{
833}
fe749158 834static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
835{
836}
7dc603c9 837#endif /* CONFIG_SMP */
a75cdaa9 838
bf0f6f24 839/*
9dbdb155 840 * Update the current task's runtime statistics.
bf0f6f24 841 */
b7cc0896 842static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 843{
429d43bc 844 struct sched_entity *curr = cfs_rq->curr;
78becc27 845 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 846 u64 delta_exec;
bf0f6f24
IM
847
848 if (unlikely(!curr))
849 return;
850
9dbdb155
PZ
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
34f28ecd 853 return;
bf0f6f24 854
8ebc91d9 855 curr->exec_start = now;
d842de87 856
9dbdb155
PZ
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
859
860 curr->sum_exec_runtime += delta_exec;
ae92882e 861 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
862
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
865
d842de87
SV
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
868
f977bb49 869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 870 cgroup_account_cputime(curtask, delta_exec);
f06febc9 871 account_group_exec_runtime(curtask, delta_exec);
d842de87 872 }
ec12cb7f
PT
873
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
875}
876
6e998916
SG
877static void update_curr_fair(struct rq *rq)
878{
879 update_curr(cfs_rq_of(&rq->curr->se));
880}
881
bf0f6f24 882static inline void
5870db5b 883update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 884{
4fa8d299
JP
885 u64 wait_start, prev_wait_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
892
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
3ea94de1 896
2ed41a55 897 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
898}
899
4fa8d299 900static inline void
3ea94de1
JP
901update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902{
903 struct task_struct *p;
cb251765
MG
904 u64 delta;
905
4fa8d299
JP
906 if (!schedstat_enabled())
907 return;
908
b9c88f75 909 /*
910 * When the sched_schedstat changes from 0 to 1, some sched se
911 * maybe already in the runqueue, the se->statistics.wait_start
912 * will be 0.So it will let the delta wrong. We need to avoid this
913 * scenario.
914 */
915 if (unlikely(!schedstat_val(se->statistics.wait_start)))
916 return;
917
4fa8d299 918 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
919
920 if (entity_is_task(se)) {
921 p = task_of(se);
922 if (task_on_rq_migrating(p)) {
923 /*
924 * Preserve migrating task's wait time so wait_start
925 * time stamp can be adjusted to accumulate wait time
926 * prior to migration.
927 */
2ed41a55 928 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
929 return;
930 }
931 trace_sched_stat_wait(p, delta);
932 }
933
2ed41a55 934 __schedstat_set(se->statistics.wait_max,
4fa8d299 935 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
936 __schedstat_inc(se->statistics.wait_count);
937 __schedstat_add(se->statistics.wait_sum, delta);
938 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 939}
3ea94de1 940
4fa8d299 941static inline void
1a3d027c
JP
942update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
943{
944 struct task_struct *tsk = NULL;
4fa8d299
JP
945 u64 sleep_start, block_start;
946
947 if (!schedstat_enabled())
948 return;
949
950 sleep_start = schedstat_val(se->statistics.sleep_start);
951 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
952
953 if (entity_is_task(se))
954 tsk = task_of(se);
955
4fa8d299
JP
956 if (sleep_start) {
957 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
958
959 if ((s64)delta < 0)
960 delta = 0;
961
4fa8d299 962 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 963 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 964
2ed41a55
PZ
965 __schedstat_set(se->statistics.sleep_start, 0);
966 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
967
968 if (tsk) {
969 account_scheduler_latency(tsk, delta >> 10, 1);
970 trace_sched_stat_sleep(tsk, delta);
971 }
972 }
4fa8d299
JP
973 if (block_start) {
974 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
975
976 if ((s64)delta < 0)
977 delta = 0;
978
4fa8d299 979 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 980 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 981
2ed41a55
PZ
982 __schedstat_set(se->statistics.block_start, 0);
983 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
984
985 if (tsk) {
986 if (tsk->in_iowait) {
2ed41a55
PZ
987 __schedstat_add(se->statistics.iowait_sum, delta);
988 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
989 trace_sched_stat_iowait(tsk, delta);
990 }
991
992 trace_sched_stat_blocked(tsk, delta);
993
994 /*
995 * Blocking time is in units of nanosecs, so shift by
996 * 20 to get a milliseconds-range estimation of the
997 * amount of time that the task spent sleeping:
998 */
999 if (unlikely(prof_on == SLEEP_PROFILING)) {
1000 profile_hits(SLEEP_PROFILING,
1001 (void *)get_wchan(tsk),
1002 delta >> 20);
1003 }
1004 account_scheduler_latency(tsk, delta >> 10, 0);
1005 }
1006 }
3ea94de1 1007}
3ea94de1 1008
bf0f6f24
IM
1009/*
1010 * Task is being enqueued - update stats:
1011 */
cb251765 1012static inline void
1a3d027c 1013update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1014{
4fa8d299
JP
1015 if (!schedstat_enabled())
1016 return;
1017
bf0f6f24
IM
1018 /*
1019 * Are we enqueueing a waiting task? (for current tasks
1020 * a dequeue/enqueue event is a NOP)
1021 */
429d43bc 1022 if (se != cfs_rq->curr)
5870db5b 1023 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1024
1025 if (flags & ENQUEUE_WAKEUP)
1026 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1027}
1028
bf0f6f24 1029static inline void
cb251765 1030update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1031{
4fa8d299
JP
1032
1033 if (!schedstat_enabled())
1034 return;
1035
bf0f6f24
IM
1036 /*
1037 * Mark the end of the wait period if dequeueing a
1038 * waiting task:
1039 */
429d43bc 1040 if (se != cfs_rq->curr)
9ef0a961 1041 update_stats_wait_end(cfs_rq, se);
cb251765 1042
4fa8d299
JP
1043 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1044 struct task_struct *tsk = task_of(se);
cb251765 1045
4fa8d299 1046 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1047 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1048 rq_clock(rq_of(cfs_rq)));
1049 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1050 __schedstat_set(se->statistics.block_start,
4fa8d299 1051 rq_clock(rq_of(cfs_rq)));
cb251765 1052 }
cb251765
MG
1053}
1054
bf0f6f24
IM
1055/*
1056 * We are picking a new current task - update its stats:
1057 */
1058static inline void
79303e9e 1059update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1060{
1061 /*
1062 * We are starting a new run period:
1063 */
78becc27 1064 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1065}
1066
bf0f6f24
IM
1067/**************************************************
1068 * Scheduling class queueing methods:
1069 */
1070
cbee9f88
PZ
1071#ifdef CONFIG_NUMA_BALANCING
1072/*
598f0ec0
MG
1073 * Approximate time to scan a full NUMA task in ms. The task scan period is
1074 * calculated based on the tasks virtual memory size and
1075 * numa_balancing_scan_size.
cbee9f88 1076 */
598f0ec0
MG
1077unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1078unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1079
1080/* Portion of address space to scan in MB */
1081unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1082
4b96a29b
PZ
1083/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1084unsigned int sysctl_numa_balancing_scan_delay = 1000;
1085
b5dd77c8 1086struct numa_group {
c45a7795 1087 refcount_t refcount;
b5dd77c8
RR
1088
1089 spinlock_t lock; /* nr_tasks, tasks */
1090 int nr_tasks;
1091 pid_t gid;
1092 int active_nodes;
1093
1094 struct rcu_head rcu;
1095 unsigned long total_faults;
1096 unsigned long max_faults_cpu;
1097 /*
1098 * Faults_cpu is used to decide whether memory should move
1099 * towards the CPU. As a consequence, these stats are weighted
1100 * more by CPU use than by memory faults.
1101 */
1102 unsigned long *faults_cpu;
04f5c362 1103 unsigned long faults[];
b5dd77c8
RR
1104};
1105
cb361d8c
JH
1106/*
1107 * For functions that can be called in multiple contexts that permit reading
1108 * ->numa_group (see struct task_struct for locking rules).
1109 */
1110static struct numa_group *deref_task_numa_group(struct task_struct *p)
1111{
1112 return rcu_dereference_check(p->numa_group, p == current ||
1113 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1114}
1115
1116static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1117{
1118 return rcu_dereference_protected(p->numa_group, p == current);
1119}
1120
b5dd77c8
RR
1121static inline unsigned long group_faults_priv(struct numa_group *ng);
1122static inline unsigned long group_faults_shared(struct numa_group *ng);
1123
598f0ec0
MG
1124static unsigned int task_nr_scan_windows(struct task_struct *p)
1125{
1126 unsigned long rss = 0;
1127 unsigned long nr_scan_pages;
1128
1129 /*
1130 * Calculations based on RSS as non-present and empty pages are skipped
1131 * by the PTE scanner and NUMA hinting faults should be trapped based
1132 * on resident pages
1133 */
1134 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1135 rss = get_mm_rss(p->mm);
1136 if (!rss)
1137 rss = nr_scan_pages;
1138
1139 rss = round_up(rss, nr_scan_pages);
1140 return rss / nr_scan_pages;
1141}
1142
1143/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1144#define MAX_SCAN_WINDOW 2560
1145
1146static unsigned int task_scan_min(struct task_struct *p)
1147{
316c1608 1148 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1149 unsigned int scan, floor;
1150 unsigned int windows = 1;
1151
64192658
KT
1152 if (scan_size < MAX_SCAN_WINDOW)
1153 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1154 floor = 1000 / windows;
1155
1156 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1157 return max_t(unsigned int, floor, scan);
1158}
1159
b5dd77c8
RR
1160static unsigned int task_scan_start(struct task_struct *p)
1161{
1162 unsigned long smin = task_scan_min(p);
1163 unsigned long period = smin;
cb361d8c 1164 struct numa_group *ng;
b5dd77c8
RR
1165
1166 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1167 rcu_read_lock();
1168 ng = rcu_dereference(p->numa_group);
1169 if (ng) {
b5dd77c8
RR
1170 unsigned long shared = group_faults_shared(ng);
1171 unsigned long private = group_faults_priv(ng);
1172
c45a7795 1173 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1174 period *= shared + 1;
1175 period /= private + shared + 1;
1176 }
cb361d8c 1177 rcu_read_unlock();
b5dd77c8
RR
1178
1179 return max(smin, period);
1180}
1181
598f0ec0
MG
1182static unsigned int task_scan_max(struct task_struct *p)
1183{
b5dd77c8
RR
1184 unsigned long smin = task_scan_min(p);
1185 unsigned long smax;
cb361d8c 1186 struct numa_group *ng;
598f0ec0
MG
1187
1188 /* Watch for min being lower than max due to floor calculations */
1189 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1190
1191 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1192 ng = deref_curr_numa_group(p);
1193 if (ng) {
b5dd77c8
RR
1194 unsigned long shared = group_faults_shared(ng);
1195 unsigned long private = group_faults_priv(ng);
1196 unsigned long period = smax;
1197
c45a7795 1198 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1199 period *= shared + 1;
1200 period /= private + shared + 1;
1201
1202 smax = max(smax, period);
1203 }
1204
598f0ec0
MG
1205 return max(smin, smax);
1206}
1207
0ec8aa00
PZ
1208static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1209{
98fa15f3 1210 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1211 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1212}
1213
1214static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1215{
98fa15f3 1216 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1217 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1218}
1219
be1e4e76
RR
1220/* Shared or private faults. */
1221#define NR_NUMA_HINT_FAULT_TYPES 2
1222
1223/* Memory and CPU locality */
1224#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1225
1226/* Averaged statistics, and temporary buffers. */
1227#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1228
e29cf08b
MG
1229pid_t task_numa_group_id(struct task_struct *p)
1230{
cb361d8c
JH
1231 struct numa_group *ng;
1232 pid_t gid = 0;
1233
1234 rcu_read_lock();
1235 ng = rcu_dereference(p->numa_group);
1236 if (ng)
1237 gid = ng->gid;
1238 rcu_read_unlock();
1239
1240 return gid;
e29cf08b
MG
1241}
1242
44dba3d5 1243/*
97fb7a0a 1244 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1245 * occupy the first half of the array. The second half of the
1246 * array is for current counters, which are averaged into the
1247 * first set by task_numa_placement.
1248 */
1249static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1250{
44dba3d5 1251 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1252}
1253
1254static inline unsigned long task_faults(struct task_struct *p, int nid)
1255{
44dba3d5 1256 if (!p->numa_faults)
ac8e895b
MG
1257 return 0;
1258
44dba3d5
IM
1259 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1260 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1261}
1262
83e1d2cd
MG
1263static inline unsigned long group_faults(struct task_struct *p, int nid)
1264{
cb361d8c
JH
1265 struct numa_group *ng = deref_task_numa_group(p);
1266
1267 if (!ng)
83e1d2cd
MG
1268 return 0;
1269
cb361d8c
JH
1270 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1271 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1272}
1273
20e07dea
RR
1274static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1275{
44dba3d5
IM
1276 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1277 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1278}
1279
b5dd77c8
RR
1280static inline unsigned long group_faults_priv(struct numa_group *ng)
1281{
1282 unsigned long faults = 0;
1283 int node;
1284
1285 for_each_online_node(node) {
1286 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1287 }
1288
1289 return faults;
1290}
1291
1292static inline unsigned long group_faults_shared(struct numa_group *ng)
1293{
1294 unsigned long faults = 0;
1295 int node;
1296
1297 for_each_online_node(node) {
1298 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1299 }
1300
1301 return faults;
1302}
1303
4142c3eb
RR
1304/*
1305 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1306 * considered part of a numa group's pseudo-interleaving set. Migrations
1307 * between these nodes are slowed down, to allow things to settle down.
1308 */
1309#define ACTIVE_NODE_FRACTION 3
1310
1311static bool numa_is_active_node(int nid, struct numa_group *ng)
1312{
1313 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1314}
1315
6c6b1193
RR
1316/* Handle placement on systems where not all nodes are directly connected. */
1317static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1318 int maxdist, bool task)
1319{
1320 unsigned long score = 0;
1321 int node;
1322
1323 /*
1324 * All nodes are directly connected, and the same distance
1325 * from each other. No need for fancy placement algorithms.
1326 */
1327 if (sched_numa_topology_type == NUMA_DIRECT)
1328 return 0;
1329
1330 /*
1331 * This code is called for each node, introducing N^2 complexity,
1332 * which should be ok given the number of nodes rarely exceeds 8.
1333 */
1334 for_each_online_node(node) {
1335 unsigned long faults;
1336 int dist = node_distance(nid, node);
1337
1338 /*
1339 * The furthest away nodes in the system are not interesting
1340 * for placement; nid was already counted.
1341 */
1342 if (dist == sched_max_numa_distance || node == nid)
1343 continue;
1344
1345 /*
1346 * On systems with a backplane NUMA topology, compare groups
1347 * of nodes, and move tasks towards the group with the most
1348 * memory accesses. When comparing two nodes at distance
1349 * "hoplimit", only nodes closer by than "hoplimit" are part
1350 * of each group. Skip other nodes.
1351 */
1352 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1353 dist >= maxdist)
6c6b1193
RR
1354 continue;
1355
1356 /* Add up the faults from nearby nodes. */
1357 if (task)
1358 faults = task_faults(p, node);
1359 else
1360 faults = group_faults(p, node);
1361
1362 /*
1363 * On systems with a glueless mesh NUMA topology, there are
1364 * no fixed "groups of nodes". Instead, nodes that are not
1365 * directly connected bounce traffic through intermediate
1366 * nodes; a numa_group can occupy any set of nodes.
1367 * The further away a node is, the less the faults count.
1368 * This seems to result in good task placement.
1369 */
1370 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1371 faults *= (sched_max_numa_distance - dist);
1372 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1373 }
1374
1375 score += faults;
1376 }
1377
1378 return score;
1379}
1380
83e1d2cd
MG
1381/*
1382 * These return the fraction of accesses done by a particular task, or
1383 * task group, on a particular numa node. The group weight is given a
1384 * larger multiplier, in order to group tasks together that are almost
1385 * evenly spread out between numa nodes.
1386 */
7bd95320
RR
1387static inline unsigned long task_weight(struct task_struct *p, int nid,
1388 int dist)
83e1d2cd 1389{
7bd95320 1390 unsigned long faults, total_faults;
83e1d2cd 1391
44dba3d5 1392 if (!p->numa_faults)
83e1d2cd
MG
1393 return 0;
1394
1395 total_faults = p->total_numa_faults;
1396
1397 if (!total_faults)
1398 return 0;
1399
7bd95320 1400 faults = task_faults(p, nid);
6c6b1193
RR
1401 faults += score_nearby_nodes(p, nid, dist, true);
1402
7bd95320 1403 return 1000 * faults / total_faults;
83e1d2cd
MG
1404}
1405
7bd95320
RR
1406static inline unsigned long group_weight(struct task_struct *p, int nid,
1407 int dist)
83e1d2cd 1408{
cb361d8c 1409 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1410 unsigned long faults, total_faults;
1411
cb361d8c 1412 if (!ng)
7bd95320
RR
1413 return 0;
1414
cb361d8c 1415 total_faults = ng->total_faults;
7bd95320
RR
1416
1417 if (!total_faults)
83e1d2cd
MG
1418 return 0;
1419
7bd95320 1420 faults = group_faults(p, nid);
6c6b1193
RR
1421 faults += score_nearby_nodes(p, nid, dist, false);
1422
7bd95320 1423 return 1000 * faults / total_faults;
83e1d2cd
MG
1424}
1425
10f39042
RR
1426bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1427 int src_nid, int dst_cpu)
1428{
cb361d8c 1429 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1430 int dst_nid = cpu_to_node(dst_cpu);
1431 int last_cpupid, this_cpupid;
1432
1433 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1434 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1435
1436 /*
1437 * Allow first faults or private faults to migrate immediately early in
1438 * the lifetime of a task. The magic number 4 is based on waiting for
1439 * two full passes of the "multi-stage node selection" test that is
1440 * executed below.
1441 */
98fa15f3 1442 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1443 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1444 return true;
10f39042
RR
1445
1446 /*
1447 * Multi-stage node selection is used in conjunction with a periodic
1448 * migration fault to build a temporal task<->page relation. By using
1449 * a two-stage filter we remove short/unlikely relations.
1450 *
1451 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1452 * a task's usage of a particular page (n_p) per total usage of this
1453 * page (n_t) (in a given time-span) to a probability.
1454 *
1455 * Our periodic faults will sample this probability and getting the
1456 * same result twice in a row, given these samples are fully
1457 * independent, is then given by P(n)^2, provided our sample period
1458 * is sufficiently short compared to the usage pattern.
1459 *
1460 * This quadric squishes small probabilities, making it less likely we
1461 * act on an unlikely task<->page relation.
1462 */
10f39042
RR
1463 if (!cpupid_pid_unset(last_cpupid) &&
1464 cpupid_to_nid(last_cpupid) != dst_nid)
1465 return false;
1466
1467 /* Always allow migrate on private faults */
1468 if (cpupid_match_pid(p, last_cpupid))
1469 return true;
1470
1471 /* A shared fault, but p->numa_group has not been set up yet. */
1472 if (!ng)
1473 return true;
1474
1475 /*
4142c3eb
RR
1476 * Destination node is much more heavily used than the source
1477 * node? Allow migration.
10f39042 1478 */
4142c3eb
RR
1479 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1480 ACTIVE_NODE_FRACTION)
10f39042
RR
1481 return true;
1482
1483 /*
4142c3eb
RR
1484 * Distribute memory according to CPU & memory use on each node,
1485 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1486 *
1487 * faults_cpu(dst) 3 faults_cpu(src)
1488 * --------------- * - > ---------------
1489 * faults_mem(dst) 4 faults_mem(src)
10f39042 1490 */
4142c3eb
RR
1491 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1492 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1493}
1494
6499b1b2
VG
1495/*
1496 * 'numa_type' describes the node at the moment of load balancing.
1497 */
1498enum numa_type {
1499 /* The node has spare capacity that can be used to run more tasks. */
1500 node_has_spare = 0,
1501 /*
1502 * The node is fully used and the tasks don't compete for more CPU
1503 * cycles. Nevertheless, some tasks might wait before running.
1504 */
1505 node_fully_busy,
1506 /*
1507 * The node is overloaded and can't provide expected CPU cycles to all
1508 * tasks.
1509 */
1510 node_overloaded
1511};
58d081b5 1512
fb13c7ee 1513/* Cached statistics for all CPUs within a node */
58d081b5
MG
1514struct numa_stats {
1515 unsigned long load;
8e0e0eda 1516 unsigned long runnable;
6499b1b2 1517 unsigned long util;
fb13c7ee 1518 /* Total compute capacity of CPUs on a node */
5ef20ca1 1519 unsigned long compute_capacity;
6499b1b2
VG
1520 unsigned int nr_running;
1521 unsigned int weight;
1522 enum numa_type node_type;
ff7db0bf 1523 int idle_cpu;
58d081b5 1524};
e6628d5b 1525
ff7db0bf
MG
1526static inline bool is_core_idle(int cpu)
1527{
1528#ifdef CONFIG_SCHED_SMT
1529 int sibling;
1530
1531 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1532 if (cpu == sibling)
1533 continue;
1534
1535 if (!idle_cpu(cpu))
1536 return false;
1537 }
1538#endif
1539
1540 return true;
1541}
1542
58d081b5
MG
1543struct task_numa_env {
1544 struct task_struct *p;
e6628d5b 1545
58d081b5
MG
1546 int src_cpu, src_nid;
1547 int dst_cpu, dst_nid;
e6628d5b 1548
58d081b5 1549 struct numa_stats src_stats, dst_stats;
e6628d5b 1550
40ea2b42 1551 int imbalance_pct;
7bd95320 1552 int dist;
fb13c7ee
MG
1553
1554 struct task_struct *best_task;
1555 long best_imp;
58d081b5
MG
1556 int best_cpu;
1557};
1558
6499b1b2 1559static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1560static unsigned long cpu_runnable(struct rq *rq);
6499b1b2 1561static unsigned long cpu_util(int cpu);
7d2b5dd0
MG
1562static inline long adjust_numa_imbalance(int imbalance,
1563 int dst_running, int dst_weight);
6499b1b2
VG
1564
1565static inline enum
1566numa_type numa_classify(unsigned int imbalance_pct,
1567 struct numa_stats *ns)
1568{
1569 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1570 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1571 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1572 return node_overloaded;
1573
1574 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1575 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1576 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1577 return node_has_spare;
1578
1579 return node_fully_busy;
1580}
1581
76c389ab
VS
1582#ifdef CONFIG_SCHED_SMT
1583/* Forward declarations of select_idle_sibling helpers */
1584static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1585static inline int numa_idle_core(int idle_core, int cpu)
1586{
ff7db0bf
MG
1587 if (!static_branch_likely(&sched_smt_present) ||
1588 idle_core >= 0 || !test_idle_cores(cpu, false))
1589 return idle_core;
1590
1591 /*
1592 * Prefer cores instead of packing HT siblings
1593 * and triggering future load balancing.
1594 */
1595 if (is_core_idle(cpu))
1596 idle_core = cpu;
ff7db0bf
MG
1597
1598 return idle_core;
1599}
76c389ab
VS
1600#else
1601static inline int numa_idle_core(int idle_core, int cpu)
1602{
1603 return idle_core;
1604}
1605#endif
ff7db0bf 1606
6499b1b2 1607/*
ff7db0bf
MG
1608 * Gather all necessary information to make NUMA balancing placement
1609 * decisions that are compatible with standard load balancer. This
1610 * borrows code and logic from update_sg_lb_stats but sharing a
1611 * common implementation is impractical.
6499b1b2
VG
1612 */
1613static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1614 struct numa_stats *ns, int nid,
1615 bool find_idle)
6499b1b2 1616{
ff7db0bf 1617 int cpu, idle_core = -1;
6499b1b2
VG
1618
1619 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1620 ns->idle_cpu = -1;
1621
0621df31 1622 rcu_read_lock();
6499b1b2
VG
1623 for_each_cpu(cpu, cpumask_of_node(nid)) {
1624 struct rq *rq = cpu_rq(cpu);
1625
1626 ns->load += cpu_load(rq);
8e0e0eda 1627 ns->runnable += cpu_runnable(rq);
6499b1b2
VG
1628 ns->util += cpu_util(cpu);
1629 ns->nr_running += rq->cfs.h_nr_running;
1630 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1631
1632 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1633 if (READ_ONCE(rq->numa_migrate_on) ||
1634 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1635 continue;
1636
1637 if (ns->idle_cpu == -1)
1638 ns->idle_cpu = cpu;
1639
1640 idle_core = numa_idle_core(idle_core, cpu);
1641 }
6499b1b2 1642 }
0621df31 1643 rcu_read_unlock();
6499b1b2
VG
1644
1645 ns->weight = cpumask_weight(cpumask_of_node(nid));
1646
1647 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1648
1649 if (idle_core >= 0)
1650 ns->idle_cpu = idle_core;
6499b1b2
VG
1651}
1652
fb13c7ee
MG
1653static void task_numa_assign(struct task_numa_env *env,
1654 struct task_struct *p, long imp)
1655{
a4739eca
SD
1656 struct rq *rq = cpu_rq(env->dst_cpu);
1657
5fb52dd9
MG
1658 /* Check if run-queue part of active NUMA balance. */
1659 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1660 int cpu;
1661 int start = env->dst_cpu;
1662
1663 /* Find alternative idle CPU. */
1664 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1665 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1666 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1667 continue;
1668 }
1669
1670 env->dst_cpu = cpu;
1671 rq = cpu_rq(env->dst_cpu);
1672 if (!xchg(&rq->numa_migrate_on, 1))
1673 goto assign;
1674 }
1675
1676 /* Failed to find an alternative idle CPU */
a4739eca 1677 return;
5fb52dd9 1678 }
a4739eca 1679
5fb52dd9 1680assign:
a4739eca
SD
1681 /*
1682 * Clear previous best_cpu/rq numa-migrate flag, since task now
1683 * found a better CPU to move/swap.
1684 */
5fb52dd9 1685 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1686 rq = cpu_rq(env->best_cpu);
1687 WRITE_ONCE(rq->numa_migrate_on, 0);
1688 }
1689
fb13c7ee
MG
1690 if (env->best_task)
1691 put_task_struct(env->best_task);
bac78573
ON
1692 if (p)
1693 get_task_struct(p);
fb13c7ee
MG
1694
1695 env->best_task = p;
1696 env->best_imp = imp;
1697 env->best_cpu = env->dst_cpu;
1698}
1699
28a21745 1700static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1701 struct task_numa_env *env)
1702{
e4991b24
RR
1703 long imb, old_imb;
1704 long orig_src_load, orig_dst_load;
28a21745
RR
1705 long src_capacity, dst_capacity;
1706
1707 /*
1708 * The load is corrected for the CPU capacity available on each node.
1709 *
1710 * src_load dst_load
1711 * ------------ vs ---------
1712 * src_capacity dst_capacity
1713 */
1714 src_capacity = env->src_stats.compute_capacity;
1715 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1716
5f95ba7a 1717 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1718
28a21745 1719 orig_src_load = env->src_stats.load;
e4991b24 1720 orig_dst_load = env->dst_stats.load;
28a21745 1721
5f95ba7a 1722 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1723
1724 /* Would this change make things worse? */
1725 return (imb > old_imb);
e63da036
RR
1726}
1727
6fd98e77
SD
1728/*
1729 * Maximum NUMA importance can be 1998 (2*999);
1730 * SMALLIMP @ 30 would be close to 1998/64.
1731 * Used to deter task migration.
1732 */
1733#define SMALLIMP 30
1734
fb13c7ee
MG
1735/*
1736 * This checks if the overall compute and NUMA accesses of the system would
1737 * be improved if the source tasks was migrated to the target dst_cpu taking
1738 * into account that it might be best if task running on the dst_cpu should
1739 * be exchanged with the source task
1740 */
a0f03b61 1741static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1742 long taskimp, long groupimp, bool maymove)
fb13c7ee 1743{
cb361d8c 1744 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1745 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1746 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1747 struct task_struct *cur;
28a21745 1748 long src_load, dst_load;
7bd95320 1749 int dist = env->dist;
cb361d8c
JH
1750 long moveimp = imp;
1751 long load;
a0f03b61 1752 bool stopsearch = false;
fb13c7ee 1753
a4739eca 1754 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1755 return false;
a4739eca 1756
fb13c7ee 1757 rcu_read_lock();
154abafc 1758 cur = rcu_dereference(dst_rq->curr);
bac78573 1759 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1760 cur = NULL;
1761
7af68335
PZ
1762 /*
1763 * Because we have preemption enabled we can get migrated around and
1764 * end try selecting ourselves (current == env->p) as a swap candidate.
1765 */
a0f03b61
MG
1766 if (cur == env->p) {
1767 stopsearch = true;
7af68335 1768 goto unlock;
a0f03b61 1769 }
7af68335 1770
305c1fac 1771 if (!cur) {
6fd98e77 1772 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1773 goto assign;
1774 else
1775 goto unlock;
1776 }
1777
88cca72c
MG
1778 /* Skip this swap candidate if cannot move to the source cpu. */
1779 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1780 goto unlock;
1781
1782 /*
1783 * Skip this swap candidate if it is not moving to its preferred
1784 * node and the best task is.
1785 */
1786 if (env->best_task &&
1787 env->best_task->numa_preferred_nid == env->src_nid &&
1788 cur->numa_preferred_nid != env->src_nid) {
1789 goto unlock;
1790 }
1791
fb13c7ee
MG
1792 /*
1793 * "imp" is the fault differential for the source task between the
1794 * source and destination node. Calculate the total differential for
1795 * the source task and potential destination task. The more negative
305c1fac 1796 * the value is, the more remote accesses that would be expected to
fb13c7ee 1797 * be incurred if the tasks were swapped.
88cca72c 1798 *
305c1fac
SD
1799 * If dst and source tasks are in the same NUMA group, or not
1800 * in any group then look only at task weights.
1801 */
cb361d8c
JH
1802 cur_ng = rcu_dereference(cur->numa_group);
1803 if (cur_ng == p_ng) {
305c1fac
SD
1804 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1805 task_weight(cur, env->dst_nid, dist);
887c290e 1806 /*
305c1fac
SD
1807 * Add some hysteresis to prevent swapping the
1808 * tasks within a group over tiny differences.
887c290e 1809 */
cb361d8c 1810 if (cur_ng)
305c1fac
SD
1811 imp -= imp / 16;
1812 } else {
1813 /*
1814 * Compare the group weights. If a task is all by itself
1815 * (not part of a group), use the task weight instead.
1816 */
cb361d8c 1817 if (cur_ng && p_ng)
305c1fac
SD
1818 imp += group_weight(cur, env->src_nid, dist) -
1819 group_weight(cur, env->dst_nid, dist);
1820 else
1821 imp += task_weight(cur, env->src_nid, dist) -
1822 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1823 }
1824
88cca72c
MG
1825 /* Discourage picking a task already on its preferred node */
1826 if (cur->numa_preferred_nid == env->dst_nid)
1827 imp -= imp / 16;
1828
1829 /*
1830 * Encourage picking a task that moves to its preferred node.
1831 * This potentially makes imp larger than it's maximum of
1832 * 1998 (see SMALLIMP and task_weight for why) but in this
1833 * case, it does not matter.
1834 */
1835 if (cur->numa_preferred_nid == env->src_nid)
1836 imp += imp / 8;
1837
305c1fac 1838 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1839 imp = moveimp;
305c1fac 1840 cur = NULL;
fb13c7ee 1841 goto assign;
305c1fac 1842 }
fb13c7ee 1843
88cca72c
MG
1844 /*
1845 * Prefer swapping with a task moving to its preferred node over a
1846 * task that is not.
1847 */
1848 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1849 env->best_task->numa_preferred_nid != env->src_nid) {
1850 goto assign;
1851 }
1852
6fd98e77
SD
1853 /*
1854 * If the NUMA importance is less than SMALLIMP,
1855 * task migration might only result in ping pong
1856 * of tasks and also hurt performance due to cache
1857 * misses.
1858 */
1859 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1860 goto unlock;
1861
fb13c7ee
MG
1862 /*
1863 * In the overloaded case, try and keep the load balanced.
1864 */
305c1fac
SD
1865 load = task_h_load(env->p) - task_h_load(cur);
1866 if (!load)
1867 goto assign;
1868
e720fff6
PZ
1869 dst_load = env->dst_stats.load + load;
1870 src_load = env->src_stats.load - load;
fb13c7ee 1871
28a21745 1872 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1873 goto unlock;
1874
305c1fac 1875assign:
ff7db0bf 1876 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1877 if (!cur) {
ff7db0bf
MG
1878 int cpu = env->dst_stats.idle_cpu;
1879
1880 /* Nothing cached so current CPU went idle since the search. */
1881 if (cpu < 0)
1882 cpu = env->dst_cpu;
1883
10e2f1ac 1884 /*
ff7db0bf
MG
1885 * If the CPU is no longer truly idle and the previous best CPU
1886 * is, keep using it.
10e2f1ac 1887 */
ff7db0bf
MG
1888 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1889 idle_cpu(env->best_cpu)) {
1890 cpu = env->best_cpu;
1891 }
1892
ff7db0bf 1893 env->dst_cpu = cpu;
10e2f1ac 1894 }
ba7e5a27 1895
fb13c7ee 1896 task_numa_assign(env, cur, imp);
a0f03b61
MG
1897
1898 /*
1899 * If a move to idle is allowed because there is capacity or load
1900 * balance improves then stop the search. While a better swap
1901 * candidate may exist, a search is not free.
1902 */
1903 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1904 stopsearch = true;
1905
1906 /*
1907 * If a swap candidate must be identified and the current best task
1908 * moves its preferred node then stop the search.
1909 */
1910 if (!maymove && env->best_task &&
1911 env->best_task->numa_preferred_nid == env->src_nid) {
1912 stopsearch = true;
1913 }
fb13c7ee
MG
1914unlock:
1915 rcu_read_unlock();
a0f03b61
MG
1916
1917 return stopsearch;
fb13c7ee
MG
1918}
1919
887c290e
RR
1920static void task_numa_find_cpu(struct task_numa_env *env,
1921 long taskimp, long groupimp)
2c8a50aa 1922{
305c1fac 1923 bool maymove = false;
2c8a50aa
MG
1924 int cpu;
1925
305c1fac 1926 /*
fb86f5b2
MG
1927 * If dst node has spare capacity, then check if there is an
1928 * imbalance that would be overruled by the load balancer.
305c1fac 1929 */
fb86f5b2
MG
1930 if (env->dst_stats.node_type == node_has_spare) {
1931 unsigned int imbalance;
1932 int src_running, dst_running;
1933
1934 /*
1935 * Would movement cause an imbalance? Note that if src has
1936 * more running tasks that the imbalance is ignored as the
1937 * move improves the imbalance from the perspective of the
1938 * CPU load balancer.
1939 * */
1940 src_running = env->src_stats.nr_running - 1;
1941 dst_running = env->dst_stats.nr_running + 1;
1942 imbalance = max(0, dst_running - src_running);
7d2b5dd0
MG
1943 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1944 env->dst_stats.weight);
fb86f5b2
MG
1945
1946 /* Use idle CPU if there is no imbalance */
ff7db0bf 1947 if (!imbalance) {
fb86f5b2 1948 maymove = true;
ff7db0bf
MG
1949 if (env->dst_stats.idle_cpu >= 0) {
1950 env->dst_cpu = env->dst_stats.idle_cpu;
1951 task_numa_assign(env, NULL, 0);
1952 return;
1953 }
1954 }
fb86f5b2
MG
1955 } else {
1956 long src_load, dst_load, load;
1957 /*
1958 * If the improvement from just moving env->p direction is better
1959 * than swapping tasks around, check if a move is possible.
1960 */
1961 load = task_h_load(env->p);
1962 dst_load = env->dst_stats.load + load;
1963 src_load = env->src_stats.load - load;
1964 maymove = !load_too_imbalanced(src_load, dst_load, env);
1965 }
305c1fac 1966
2c8a50aa
MG
1967 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1968 /* Skip this CPU if the source task cannot migrate */
3bd37062 1969 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1970 continue;
1971
1972 env->dst_cpu = cpu;
a0f03b61
MG
1973 if (task_numa_compare(env, taskimp, groupimp, maymove))
1974 break;
2c8a50aa
MG
1975 }
1976}
1977
58d081b5
MG
1978static int task_numa_migrate(struct task_struct *p)
1979{
58d081b5
MG
1980 struct task_numa_env env = {
1981 .p = p,
fb13c7ee 1982
58d081b5 1983 .src_cpu = task_cpu(p),
b32e86b4 1984 .src_nid = task_node(p),
fb13c7ee
MG
1985
1986 .imbalance_pct = 112,
1987
1988 .best_task = NULL,
1989 .best_imp = 0,
4142c3eb 1990 .best_cpu = -1,
58d081b5 1991 };
cb361d8c 1992 unsigned long taskweight, groupweight;
58d081b5 1993 struct sched_domain *sd;
cb361d8c
JH
1994 long taskimp, groupimp;
1995 struct numa_group *ng;
a4739eca 1996 struct rq *best_rq;
7bd95320 1997 int nid, ret, dist;
e6628d5b 1998
58d081b5 1999 /*
fb13c7ee
MG
2000 * Pick the lowest SD_NUMA domain, as that would have the smallest
2001 * imbalance and would be the first to start moving tasks about.
2002 *
2003 * And we want to avoid any moving of tasks about, as that would create
2004 * random movement of tasks -- counter the numa conditions we're trying
2005 * to satisfy here.
58d081b5
MG
2006 */
2007 rcu_read_lock();
fb13c7ee 2008 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
2009 if (sd)
2010 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
2011 rcu_read_unlock();
2012
46a73e8a
RR
2013 /*
2014 * Cpusets can break the scheduler domain tree into smaller
2015 * balance domains, some of which do not cross NUMA boundaries.
2016 * Tasks that are "trapped" in such domains cannot be migrated
2017 * elsewhere, so there is no point in (re)trying.
2018 */
2019 if (unlikely(!sd)) {
8cd45eee 2020 sched_setnuma(p, task_node(p));
46a73e8a
RR
2021 return -EINVAL;
2022 }
2023
2c8a50aa 2024 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2025 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2026 taskweight = task_weight(p, env.src_nid, dist);
2027 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2028 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2029 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2030 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2031 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2032
a43455a1 2033 /* Try to find a spot on the preferred nid. */
2d4056fa 2034 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2035
9de05d48
RR
2036 /*
2037 * Look at other nodes in these cases:
2038 * - there is no space available on the preferred_nid
2039 * - the task is part of a numa_group that is interleaved across
2040 * multiple NUMA nodes; in order to better consolidate the group,
2041 * we need to check other locations.
2042 */
cb361d8c
JH
2043 ng = deref_curr_numa_group(p);
2044 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
2045 for_each_online_node(nid) {
2046 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2047 continue;
58d081b5 2048
7bd95320 2049 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2050 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2051 dist != env.dist) {
2052 taskweight = task_weight(p, env.src_nid, dist);
2053 groupweight = group_weight(p, env.src_nid, dist);
2054 }
7bd95320 2055
83e1d2cd 2056 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2057 taskimp = task_weight(p, nid, dist) - taskweight;
2058 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2059 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2060 continue;
2061
7bd95320 2062 env.dist = dist;
2c8a50aa 2063 env.dst_nid = nid;
ff7db0bf 2064 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2065 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2066 }
2067 }
2068
68d1b02a
RR
2069 /*
2070 * If the task is part of a workload that spans multiple NUMA nodes,
2071 * and is migrating into one of the workload's active nodes, remember
2072 * this node as the task's preferred numa node, so the workload can
2073 * settle down.
2074 * A task that migrated to a second choice node will be better off
2075 * trying for a better one later. Do not set the preferred node here.
2076 */
cb361d8c 2077 if (ng) {
db015dae
RR
2078 if (env.best_cpu == -1)
2079 nid = env.src_nid;
2080 else
8cd45eee 2081 nid = cpu_to_node(env.best_cpu);
db015dae 2082
8cd45eee
SD
2083 if (nid != p->numa_preferred_nid)
2084 sched_setnuma(p, nid);
db015dae
RR
2085 }
2086
2087 /* No better CPU than the current one was found. */
f22aef4a 2088 if (env.best_cpu == -1) {
b2b2042b 2089 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2090 return -EAGAIN;
f22aef4a 2091 }
0ec8aa00 2092
a4739eca 2093 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2094 if (env.best_task == NULL) {
286549dc 2095 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2096 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2097 if (ret != 0)
b2b2042b 2098 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2099 return ret;
2100 }
2101
0ad4e3df 2102 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2103 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2104
286549dc 2105 if (ret != 0)
b2b2042b 2106 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2107 put_task_struct(env.best_task);
2108 return ret;
e6628d5b
MG
2109}
2110
6b9a7460
MG
2111/* Attempt to migrate a task to a CPU on the preferred node. */
2112static void numa_migrate_preferred(struct task_struct *p)
2113{
5085e2a3
RR
2114 unsigned long interval = HZ;
2115
2739d3ee 2116 /* This task has no NUMA fault statistics yet */
98fa15f3 2117 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2118 return;
2119
2739d3ee 2120 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2121 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2122 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2123
2124 /* Success if task is already running on preferred CPU */
de1b301a 2125 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2126 return;
2127
2128 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2129 task_numa_migrate(p);
6b9a7460
MG
2130}
2131
20e07dea 2132/*
4142c3eb 2133 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2134 * tracking the nodes from which NUMA hinting faults are triggered. This can
2135 * be different from the set of nodes where the workload's memory is currently
2136 * located.
20e07dea 2137 */
4142c3eb 2138static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2139{
2140 unsigned long faults, max_faults = 0;
4142c3eb 2141 int nid, active_nodes = 0;
20e07dea
RR
2142
2143 for_each_online_node(nid) {
2144 faults = group_faults_cpu(numa_group, nid);
2145 if (faults > max_faults)
2146 max_faults = faults;
2147 }
2148
2149 for_each_online_node(nid) {
2150 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2151 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2152 active_nodes++;
20e07dea 2153 }
4142c3eb
RR
2154
2155 numa_group->max_faults_cpu = max_faults;
2156 numa_group->active_nodes = active_nodes;
20e07dea
RR
2157}
2158
04bb2f94
RR
2159/*
2160 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2161 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2162 * period will be for the next scan window. If local/(local+remote) ratio is
2163 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2164 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2165 */
2166#define NUMA_PERIOD_SLOTS 10
a22b4b01 2167#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2168
2169/*
2170 * Increase the scan period (slow down scanning) if the majority of
2171 * our memory is already on our local node, or if the majority of
2172 * the page accesses are shared with other processes.
2173 * Otherwise, decrease the scan period.
2174 */
2175static void update_task_scan_period(struct task_struct *p,
2176 unsigned long shared, unsigned long private)
2177{
2178 unsigned int period_slot;
37ec97de 2179 int lr_ratio, ps_ratio;
04bb2f94
RR
2180 int diff;
2181
2182 unsigned long remote = p->numa_faults_locality[0];
2183 unsigned long local = p->numa_faults_locality[1];
2184
2185 /*
2186 * If there were no record hinting faults then either the task is
2187 * completely idle or all activity is areas that are not of interest
074c2381
MG
2188 * to automatic numa balancing. Related to that, if there were failed
2189 * migration then it implies we are migrating too quickly or the local
2190 * node is overloaded. In either case, scan slower
04bb2f94 2191 */
074c2381 2192 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2193 p->numa_scan_period = min(p->numa_scan_period_max,
2194 p->numa_scan_period << 1);
2195
2196 p->mm->numa_next_scan = jiffies +
2197 msecs_to_jiffies(p->numa_scan_period);
2198
2199 return;
2200 }
2201
2202 /*
2203 * Prepare to scale scan period relative to the current period.
2204 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2205 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2206 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2207 */
2208 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2209 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2210 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2211
2212 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2213 /*
2214 * Most memory accesses are local. There is no need to
2215 * do fast NUMA scanning, since memory is already local.
2216 */
2217 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2218 if (!slot)
2219 slot = 1;
2220 diff = slot * period_slot;
2221 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2222 /*
2223 * Most memory accesses are shared with other tasks.
2224 * There is no point in continuing fast NUMA scanning,
2225 * since other tasks may just move the memory elsewhere.
2226 */
2227 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2228 if (!slot)
2229 slot = 1;
2230 diff = slot * period_slot;
2231 } else {
04bb2f94 2232 /*
37ec97de
RR
2233 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2234 * yet they are not on the local NUMA node. Speed up
2235 * NUMA scanning to get the memory moved over.
04bb2f94 2236 */
37ec97de
RR
2237 int ratio = max(lr_ratio, ps_ratio);
2238 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2239 }
2240
2241 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2242 task_scan_min(p), task_scan_max(p));
2243 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2244}
2245
7e2703e6
RR
2246/*
2247 * Get the fraction of time the task has been running since the last
2248 * NUMA placement cycle. The scheduler keeps similar statistics, but
2249 * decays those on a 32ms period, which is orders of magnitude off
2250 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2251 * stats only if the task is so new there are no NUMA statistics yet.
2252 */
2253static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2254{
2255 u64 runtime, delta, now;
2256 /* Use the start of this time slice to avoid calculations. */
2257 now = p->se.exec_start;
2258 runtime = p->se.sum_exec_runtime;
2259
2260 if (p->last_task_numa_placement) {
2261 delta = runtime - p->last_sum_exec_runtime;
2262 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2263
2264 /* Avoid time going backwards, prevent potential divide error: */
2265 if (unlikely((s64)*period < 0))
2266 *period = 0;
7e2703e6 2267 } else {
c7b50216 2268 delta = p->se.avg.load_sum;
9d89c257 2269 *period = LOAD_AVG_MAX;
7e2703e6
RR
2270 }
2271
2272 p->last_sum_exec_runtime = runtime;
2273 p->last_task_numa_placement = now;
2274
2275 return delta;
2276}
2277
54009416
RR
2278/*
2279 * Determine the preferred nid for a task in a numa_group. This needs to
2280 * be done in a way that produces consistent results with group_weight,
2281 * otherwise workloads might not converge.
2282 */
2283static int preferred_group_nid(struct task_struct *p, int nid)
2284{
2285 nodemask_t nodes;
2286 int dist;
2287
2288 /* Direct connections between all NUMA nodes. */
2289 if (sched_numa_topology_type == NUMA_DIRECT)
2290 return nid;
2291
2292 /*
2293 * On a system with glueless mesh NUMA topology, group_weight
2294 * scores nodes according to the number of NUMA hinting faults on
2295 * both the node itself, and on nearby nodes.
2296 */
2297 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2298 unsigned long score, max_score = 0;
2299 int node, max_node = nid;
2300
2301 dist = sched_max_numa_distance;
2302
2303 for_each_online_node(node) {
2304 score = group_weight(p, node, dist);
2305 if (score > max_score) {
2306 max_score = score;
2307 max_node = node;
2308 }
2309 }
2310 return max_node;
2311 }
2312
2313 /*
2314 * Finding the preferred nid in a system with NUMA backplane
2315 * interconnect topology is more involved. The goal is to locate
2316 * tasks from numa_groups near each other in the system, and
2317 * untangle workloads from different sides of the system. This requires
2318 * searching down the hierarchy of node groups, recursively searching
2319 * inside the highest scoring group of nodes. The nodemask tricks
2320 * keep the complexity of the search down.
2321 */
2322 nodes = node_online_map;
2323 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2324 unsigned long max_faults = 0;
81907478 2325 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2326 int a, b;
2327
2328 /* Are there nodes at this distance from each other? */
2329 if (!find_numa_distance(dist))
2330 continue;
2331
2332 for_each_node_mask(a, nodes) {
2333 unsigned long faults = 0;
2334 nodemask_t this_group;
2335 nodes_clear(this_group);
2336
2337 /* Sum group's NUMA faults; includes a==b case. */
2338 for_each_node_mask(b, nodes) {
2339 if (node_distance(a, b) < dist) {
2340 faults += group_faults(p, b);
2341 node_set(b, this_group);
2342 node_clear(b, nodes);
2343 }
2344 }
2345
2346 /* Remember the top group. */
2347 if (faults > max_faults) {
2348 max_faults = faults;
2349 max_group = this_group;
2350 /*
2351 * subtle: at the smallest distance there is
2352 * just one node left in each "group", the
2353 * winner is the preferred nid.
2354 */
2355 nid = a;
2356 }
2357 }
2358 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2359 if (!max_faults)
2360 break;
54009416
RR
2361 nodes = max_group;
2362 }
2363 return nid;
2364}
2365
cbee9f88
PZ
2366static void task_numa_placement(struct task_struct *p)
2367{
98fa15f3 2368 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2369 unsigned long max_faults = 0;
04bb2f94 2370 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2371 unsigned long total_faults;
2372 u64 runtime, period;
7dbd13ed 2373 spinlock_t *group_lock = NULL;
cb361d8c 2374 struct numa_group *ng;
cbee9f88 2375
7e5a2c17
JL
2376 /*
2377 * The p->mm->numa_scan_seq field gets updated without
2378 * exclusive access. Use READ_ONCE() here to ensure
2379 * that the field is read in a single access:
2380 */
316c1608 2381 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2382 if (p->numa_scan_seq == seq)
2383 return;
2384 p->numa_scan_seq = seq;
598f0ec0 2385 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2386
7e2703e6
RR
2387 total_faults = p->numa_faults_locality[0] +
2388 p->numa_faults_locality[1];
2389 runtime = numa_get_avg_runtime(p, &period);
2390
7dbd13ed 2391 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2392 ng = deref_curr_numa_group(p);
2393 if (ng) {
2394 group_lock = &ng->lock;
60e69eed 2395 spin_lock_irq(group_lock);
7dbd13ed
MG
2396 }
2397
688b7585
MG
2398 /* Find the node with the highest number of faults */
2399 for_each_online_node(nid) {
44dba3d5
IM
2400 /* Keep track of the offsets in numa_faults array */
2401 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2402 unsigned long faults = 0, group_faults = 0;
44dba3d5 2403 int priv;
745d6147 2404
be1e4e76 2405 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2406 long diff, f_diff, f_weight;
8c8a743c 2407
44dba3d5
IM
2408 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2409 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2410 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2411 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2412
ac8e895b 2413 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2414 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2415 fault_types[priv] += p->numa_faults[membuf_idx];
2416 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2417
7e2703e6
RR
2418 /*
2419 * Normalize the faults_from, so all tasks in a group
2420 * count according to CPU use, instead of by the raw
2421 * number of faults. Tasks with little runtime have
2422 * little over-all impact on throughput, and thus their
2423 * faults are less important.
2424 */
2425 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2426 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2427 (total_faults + 1);
44dba3d5
IM
2428 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2429 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2430
44dba3d5
IM
2431 p->numa_faults[mem_idx] += diff;
2432 p->numa_faults[cpu_idx] += f_diff;
2433 faults += p->numa_faults[mem_idx];
83e1d2cd 2434 p->total_numa_faults += diff;
cb361d8c 2435 if (ng) {
44dba3d5
IM
2436 /*
2437 * safe because we can only change our own group
2438 *
2439 * mem_idx represents the offset for a given
2440 * nid and priv in a specific region because it
2441 * is at the beginning of the numa_faults array.
2442 */
cb361d8c
JH
2443 ng->faults[mem_idx] += diff;
2444 ng->faults_cpu[mem_idx] += f_diff;
2445 ng->total_faults += diff;
2446 group_faults += ng->faults[mem_idx];
8c8a743c 2447 }
ac8e895b
MG
2448 }
2449
cb361d8c 2450 if (!ng) {
f03bb676
SD
2451 if (faults > max_faults) {
2452 max_faults = faults;
2453 max_nid = nid;
2454 }
2455 } else if (group_faults > max_faults) {
2456 max_faults = group_faults;
688b7585
MG
2457 max_nid = nid;
2458 }
83e1d2cd
MG
2459 }
2460
cb361d8c
JH
2461 if (ng) {
2462 numa_group_count_active_nodes(ng);
60e69eed 2463 spin_unlock_irq(group_lock);
f03bb676 2464 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2465 }
2466
bb97fc31
RR
2467 if (max_faults) {
2468 /* Set the new preferred node */
2469 if (max_nid != p->numa_preferred_nid)
2470 sched_setnuma(p, max_nid);
3a7053b3 2471 }
30619c89
SD
2472
2473 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2474}
2475
8c8a743c
PZ
2476static inline int get_numa_group(struct numa_group *grp)
2477{
c45a7795 2478 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2479}
2480
2481static inline void put_numa_group(struct numa_group *grp)
2482{
c45a7795 2483 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2484 kfree_rcu(grp, rcu);
2485}
2486
3e6a9418
MG
2487static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2488 int *priv)
8c8a743c
PZ
2489{
2490 struct numa_group *grp, *my_grp;
2491 struct task_struct *tsk;
2492 bool join = false;
2493 int cpu = cpupid_to_cpu(cpupid);
2494 int i;
2495
cb361d8c 2496 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2497 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2498 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2499
2500 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2501 if (!grp)
2502 return;
2503
c45a7795 2504 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2505 grp->active_nodes = 1;
2506 grp->max_faults_cpu = 0;
8c8a743c 2507 spin_lock_init(&grp->lock);
e29cf08b 2508 grp->gid = p->pid;
50ec8a40 2509 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2510 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2511 nr_node_ids;
8c8a743c 2512
be1e4e76 2513 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2514 grp->faults[i] = p->numa_faults[i];
8c8a743c 2515
989348b5 2516 grp->total_faults = p->total_numa_faults;
83e1d2cd 2517
8c8a743c
PZ
2518 grp->nr_tasks++;
2519 rcu_assign_pointer(p->numa_group, grp);
2520 }
2521
2522 rcu_read_lock();
316c1608 2523 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2524
2525 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2526 goto no_join;
8c8a743c
PZ
2527
2528 grp = rcu_dereference(tsk->numa_group);
2529 if (!grp)
3354781a 2530 goto no_join;
8c8a743c 2531
cb361d8c 2532 my_grp = deref_curr_numa_group(p);
8c8a743c 2533 if (grp == my_grp)
3354781a 2534 goto no_join;
8c8a743c
PZ
2535
2536 /*
2537 * Only join the other group if its bigger; if we're the bigger group,
2538 * the other task will join us.
2539 */
2540 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2541 goto no_join;
8c8a743c
PZ
2542
2543 /*
2544 * Tie-break on the grp address.
2545 */
2546 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2547 goto no_join;
8c8a743c 2548
dabe1d99
RR
2549 /* Always join threads in the same process. */
2550 if (tsk->mm == current->mm)
2551 join = true;
2552
2553 /* Simple filter to avoid false positives due to PID collisions */
2554 if (flags & TNF_SHARED)
2555 join = true;
8c8a743c 2556
3e6a9418
MG
2557 /* Update priv based on whether false sharing was detected */
2558 *priv = !join;
2559
dabe1d99 2560 if (join && !get_numa_group(grp))
3354781a 2561 goto no_join;
8c8a743c 2562
8c8a743c
PZ
2563 rcu_read_unlock();
2564
2565 if (!join)
2566 return;
2567
60e69eed
MG
2568 BUG_ON(irqs_disabled());
2569 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2570
be1e4e76 2571 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2572 my_grp->faults[i] -= p->numa_faults[i];
2573 grp->faults[i] += p->numa_faults[i];
8c8a743c 2574 }
989348b5
MG
2575 my_grp->total_faults -= p->total_numa_faults;
2576 grp->total_faults += p->total_numa_faults;
8c8a743c 2577
8c8a743c
PZ
2578 my_grp->nr_tasks--;
2579 grp->nr_tasks++;
2580
2581 spin_unlock(&my_grp->lock);
60e69eed 2582 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2583
2584 rcu_assign_pointer(p->numa_group, grp);
2585
2586 put_numa_group(my_grp);
3354781a
PZ
2587 return;
2588
2589no_join:
2590 rcu_read_unlock();
2591 return;
8c8a743c
PZ
2592}
2593
16d51a59
JH
2594/*
2595 * Get rid of NUMA staticstics associated with a task (either current or dead).
2596 * If @final is set, the task is dead and has reached refcount zero, so we can
2597 * safely free all relevant data structures. Otherwise, there might be
2598 * concurrent reads from places like load balancing and procfs, and we should
2599 * reset the data back to default state without freeing ->numa_faults.
2600 */
2601void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2602{
cb361d8c
JH
2603 /* safe: p either is current or is being freed by current */
2604 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2605 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2606 unsigned long flags;
2607 int i;
8c8a743c 2608
16d51a59
JH
2609 if (!numa_faults)
2610 return;
2611
8c8a743c 2612 if (grp) {
e9dd685c 2613 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2614 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2615 grp->faults[i] -= p->numa_faults[i];
989348b5 2616 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2617
8c8a743c 2618 grp->nr_tasks--;
e9dd685c 2619 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2620 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2621 put_numa_group(grp);
2622 }
2623
16d51a59
JH
2624 if (final) {
2625 p->numa_faults = NULL;
2626 kfree(numa_faults);
2627 } else {
2628 p->total_numa_faults = 0;
2629 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2630 numa_faults[i] = 0;
2631 }
8c8a743c
PZ
2632}
2633
cbee9f88
PZ
2634/*
2635 * Got a PROT_NONE fault for a page on @node.
2636 */
58b46da3 2637void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2638{
2639 struct task_struct *p = current;
6688cc05 2640 bool migrated = flags & TNF_MIGRATED;
58b46da3 2641 int cpu_node = task_node(current);
792568ec 2642 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2643 struct numa_group *ng;
ac8e895b 2644 int priv;
cbee9f88 2645
2a595721 2646 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2647 return;
2648
9ff1d9ff
MG
2649 /* for example, ksmd faulting in a user's mm */
2650 if (!p->mm)
2651 return;
2652
f809ca9a 2653 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2654 if (unlikely(!p->numa_faults)) {
2655 int size = sizeof(*p->numa_faults) *
be1e4e76 2656 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2657
44dba3d5
IM
2658 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2659 if (!p->numa_faults)
f809ca9a 2660 return;
745d6147 2661
83e1d2cd 2662 p->total_numa_faults = 0;
04bb2f94 2663 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2664 }
cbee9f88 2665
8c8a743c
PZ
2666 /*
2667 * First accesses are treated as private, otherwise consider accesses
2668 * to be private if the accessing pid has not changed
2669 */
2670 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2671 priv = 1;
2672 } else {
2673 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2674 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2675 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2676 }
2677
792568ec
RR
2678 /*
2679 * If a workload spans multiple NUMA nodes, a shared fault that
2680 * occurs wholly within the set of nodes that the workload is
2681 * actively using should be counted as local. This allows the
2682 * scan rate to slow down when a workload has settled down.
2683 */
cb361d8c 2684 ng = deref_curr_numa_group(p);
4142c3eb
RR
2685 if (!priv && !local && ng && ng->active_nodes > 1 &&
2686 numa_is_active_node(cpu_node, ng) &&
2687 numa_is_active_node(mem_node, ng))
792568ec
RR
2688 local = 1;
2689
2739d3ee 2690 /*
e1ff516a
YW
2691 * Retry to migrate task to preferred node periodically, in case it
2692 * previously failed, or the scheduler moved us.
2739d3ee 2693 */
b6a60cf3
SD
2694 if (time_after(jiffies, p->numa_migrate_retry)) {
2695 task_numa_placement(p);
6b9a7460 2696 numa_migrate_preferred(p);
b6a60cf3 2697 }
6b9a7460 2698
b32e86b4
IM
2699 if (migrated)
2700 p->numa_pages_migrated += pages;
074c2381
MG
2701 if (flags & TNF_MIGRATE_FAIL)
2702 p->numa_faults_locality[2] += pages;
b32e86b4 2703
44dba3d5
IM
2704 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2705 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2706 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2707}
2708
6e5fb223
PZ
2709static void reset_ptenuma_scan(struct task_struct *p)
2710{
7e5a2c17
JL
2711 /*
2712 * We only did a read acquisition of the mmap sem, so
2713 * p->mm->numa_scan_seq is written to without exclusive access
2714 * and the update is not guaranteed to be atomic. That's not
2715 * much of an issue though, since this is just used for
2716 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2717 * expensive, to avoid any form of compiler optimizations:
2718 */
316c1608 2719 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2720 p->mm->numa_scan_offset = 0;
2721}
2722
cbee9f88
PZ
2723/*
2724 * The expensive part of numa migration is done from task_work context.
2725 * Triggered from task_tick_numa().
2726 */
9434f9f5 2727static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2728{
2729 unsigned long migrate, next_scan, now = jiffies;
2730 struct task_struct *p = current;
2731 struct mm_struct *mm = p->mm;
51170840 2732 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2733 struct vm_area_struct *vma;
9f40604c 2734 unsigned long start, end;
598f0ec0 2735 unsigned long nr_pte_updates = 0;
4620f8c1 2736 long pages, virtpages;
cbee9f88 2737
9148a3a1 2738 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2739
b34920d4 2740 work->next = work;
cbee9f88
PZ
2741 /*
2742 * Who cares about NUMA placement when they're dying.
2743 *
2744 * NOTE: make sure not to dereference p->mm before this check,
2745 * exit_task_work() happens _after_ exit_mm() so we could be called
2746 * without p->mm even though we still had it when we enqueued this
2747 * work.
2748 */
2749 if (p->flags & PF_EXITING)
2750 return;
2751
930aa174 2752 if (!mm->numa_next_scan) {
7e8d16b6
MG
2753 mm->numa_next_scan = now +
2754 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2755 }
2756
cbee9f88
PZ
2757 /*
2758 * Enforce maximal scan/migration frequency..
2759 */
2760 migrate = mm->numa_next_scan;
2761 if (time_before(now, migrate))
2762 return;
2763
598f0ec0
MG
2764 if (p->numa_scan_period == 0) {
2765 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2766 p->numa_scan_period = task_scan_start(p);
598f0ec0 2767 }
cbee9f88 2768
fb003b80 2769 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2770 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2771 return;
2772
19a78d11
PZ
2773 /*
2774 * Delay this task enough that another task of this mm will likely win
2775 * the next time around.
2776 */
2777 p->node_stamp += 2 * TICK_NSEC;
2778
9f40604c
MG
2779 start = mm->numa_scan_offset;
2780 pages = sysctl_numa_balancing_scan_size;
2781 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2782 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2783 if (!pages)
2784 return;
cbee9f88 2785
4620f8c1 2786
d8ed45c5 2787 if (!mmap_read_trylock(mm))
8655d549 2788 return;
9f40604c 2789 vma = find_vma(mm, start);
6e5fb223
PZ
2790 if (!vma) {
2791 reset_ptenuma_scan(p);
9f40604c 2792 start = 0;
6e5fb223
PZ
2793 vma = mm->mmap;
2794 }
9f40604c 2795 for (; vma; vma = vma->vm_next) {
6b79c57b 2796 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2797 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2798 continue;
6b79c57b 2799 }
6e5fb223 2800
4591ce4f
MG
2801 /*
2802 * Shared library pages mapped by multiple processes are not
2803 * migrated as it is expected they are cache replicated. Avoid
2804 * hinting faults in read-only file-backed mappings or the vdso
2805 * as migrating the pages will be of marginal benefit.
2806 */
2807 if (!vma->vm_mm ||
2808 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2809 continue;
2810
3c67f474
MG
2811 /*
2812 * Skip inaccessible VMAs to avoid any confusion between
2813 * PROT_NONE and NUMA hinting ptes
2814 */
3122e80e 2815 if (!vma_is_accessible(vma))
3c67f474 2816 continue;
4591ce4f 2817
9f40604c
MG
2818 do {
2819 start = max(start, vma->vm_start);
2820 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2821 end = min(end, vma->vm_end);
4620f8c1 2822 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2823
2824 /*
4620f8c1
RR
2825 * Try to scan sysctl_numa_balancing_size worth of
2826 * hpages that have at least one present PTE that
2827 * is not already pte-numa. If the VMA contains
2828 * areas that are unused or already full of prot_numa
2829 * PTEs, scan up to virtpages, to skip through those
2830 * areas faster.
598f0ec0
MG
2831 */
2832 if (nr_pte_updates)
2833 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2834 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2835
9f40604c 2836 start = end;
4620f8c1 2837 if (pages <= 0 || virtpages <= 0)
9f40604c 2838 goto out;
3cf1962c
RR
2839
2840 cond_resched();
9f40604c 2841 } while (end != vma->vm_end);
cbee9f88 2842 }
6e5fb223 2843
9f40604c 2844out:
6e5fb223 2845 /*
c69307d5
PZ
2846 * It is possible to reach the end of the VMA list but the last few
2847 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2848 * would find the !migratable VMA on the next scan but not reset the
2849 * scanner to the start so check it now.
6e5fb223
PZ
2850 */
2851 if (vma)
9f40604c 2852 mm->numa_scan_offset = start;
6e5fb223
PZ
2853 else
2854 reset_ptenuma_scan(p);
d8ed45c5 2855 mmap_read_unlock(mm);
51170840
RR
2856
2857 /*
2858 * Make sure tasks use at least 32x as much time to run other code
2859 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2860 * Usually update_task_scan_period slows down scanning enough; on an
2861 * overloaded system we need to limit overhead on a per task basis.
2862 */
2863 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2864 u64 diff = p->se.sum_exec_runtime - runtime;
2865 p->node_stamp += 32 * diff;
2866 }
cbee9f88
PZ
2867}
2868
d35927a1
VS
2869void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2870{
2871 int mm_users = 0;
2872 struct mm_struct *mm = p->mm;
2873
2874 if (mm) {
2875 mm_users = atomic_read(&mm->mm_users);
2876 if (mm_users == 1) {
2877 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2878 mm->numa_scan_seq = 0;
2879 }
2880 }
2881 p->node_stamp = 0;
2882 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2883 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2884 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2885 p->numa_work.next = &p->numa_work;
2886 p->numa_faults = NULL;
2887 RCU_INIT_POINTER(p->numa_group, NULL);
2888 p->last_task_numa_placement = 0;
2889 p->last_sum_exec_runtime = 0;
2890
b34920d4
VS
2891 init_task_work(&p->numa_work, task_numa_work);
2892
d35927a1
VS
2893 /* New address space, reset the preferred nid */
2894 if (!(clone_flags & CLONE_VM)) {
2895 p->numa_preferred_nid = NUMA_NO_NODE;
2896 return;
2897 }
2898
2899 /*
2900 * New thread, keep existing numa_preferred_nid which should be copied
2901 * already by arch_dup_task_struct but stagger when scans start.
2902 */
2903 if (mm) {
2904 unsigned int delay;
2905
2906 delay = min_t(unsigned int, task_scan_max(current),
2907 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2908 delay += 2 * TICK_NSEC;
2909 p->node_stamp = delay;
2910 }
2911}
2912
cbee9f88
PZ
2913/*
2914 * Drive the periodic memory faults..
2915 */
b1546edc 2916static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2917{
2918 struct callback_head *work = &curr->numa_work;
2919 u64 period, now;
2920
2921 /*
2922 * We don't care about NUMA placement if we don't have memory.
2923 */
18f855e5 2924 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2925 return;
2926
2927 /*
2928 * Using runtime rather than walltime has the dual advantage that
2929 * we (mostly) drive the selection from busy threads and that the
2930 * task needs to have done some actual work before we bother with
2931 * NUMA placement.
2932 */
2933 now = curr->se.sum_exec_runtime;
2934 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2935
25b3e5a3 2936 if (now > curr->node_stamp + period) {
4b96a29b 2937 if (!curr->node_stamp)
b5dd77c8 2938 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2939 curr->node_stamp += period;
cbee9f88 2940
b34920d4 2941 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 2942 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
2943 }
2944}
3fed382b 2945
3f9672ba
SD
2946static void update_scan_period(struct task_struct *p, int new_cpu)
2947{
2948 int src_nid = cpu_to_node(task_cpu(p));
2949 int dst_nid = cpu_to_node(new_cpu);
2950
05cbdf4f
MG
2951 if (!static_branch_likely(&sched_numa_balancing))
2952 return;
2953
3f9672ba
SD
2954 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2955 return;
2956
05cbdf4f
MG
2957 if (src_nid == dst_nid)
2958 return;
2959
2960 /*
2961 * Allow resets if faults have been trapped before one scan
2962 * has completed. This is most likely due to a new task that
2963 * is pulled cross-node due to wakeups or load balancing.
2964 */
2965 if (p->numa_scan_seq) {
2966 /*
2967 * Avoid scan adjustments if moving to the preferred
2968 * node or if the task was not previously running on
2969 * the preferred node.
2970 */
2971 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2972 (p->numa_preferred_nid != NUMA_NO_NODE &&
2973 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2974 return;
2975 }
2976
2977 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2978}
2979
cbee9f88
PZ
2980#else
2981static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2982{
2983}
0ec8aa00
PZ
2984
2985static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2986{
2987}
2988
2989static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2990{
2991}
3fed382b 2992
3f9672ba
SD
2993static inline void update_scan_period(struct task_struct *p, int new_cpu)
2994{
2995}
2996
cbee9f88
PZ
2997#endif /* CONFIG_NUMA_BALANCING */
2998
30cfdcfc
DA
2999static void
3000account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3001{
3002 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 3003#ifdef CONFIG_SMP
0ec8aa00
PZ
3004 if (entity_is_task(se)) {
3005 struct rq *rq = rq_of(cfs_rq);
3006
3007 account_numa_enqueue(rq, task_of(se));
3008 list_add(&se->group_node, &rq->cfs_tasks);
3009 }
367456c7 3010#endif
30cfdcfc 3011 cfs_rq->nr_running++;
30cfdcfc
DA
3012}
3013
3014static void
3015account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3016{
3017 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3018#ifdef CONFIG_SMP
0ec8aa00
PZ
3019 if (entity_is_task(se)) {
3020 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3021 list_del_init(&se->group_node);
0ec8aa00 3022 }
bfdb198c 3023#endif
30cfdcfc 3024 cfs_rq->nr_running--;
30cfdcfc
DA
3025}
3026
8d5b9025
PZ
3027/*
3028 * Signed add and clamp on underflow.
3029 *
3030 * Explicitly do a load-store to ensure the intermediate value never hits
3031 * memory. This allows lockless observations without ever seeing the negative
3032 * values.
3033 */
3034#define add_positive(_ptr, _val) do { \
3035 typeof(_ptr) ptr = (_ptr); \
3036 typeof(_val) val = (_val); \
3037 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3038 \
3039 res = var + val; \
3040 \
3041 if (val < 0 && res > var) \
3042 res = 0; \
3043 \
3044 WRITE_ONCE(*ptr, res); \
3045} while (0)
3046
3047/*
3048 * Unsigned subtract and clamp on underflow.
3049 *
3050 * Explicitly do a load-store to ensure the intermediate value never hits
3051 * memory. This allows lockless observations without ever seeing the negative
3052 * values.
3053 */
3054#define sub_positive(_ptr, _val) do { \
3055 typeof(_ptr) ptr = (_ptr); \
3056 typeof(*ptr) val = (_val); \
3057 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3058 res = var - val; \
3059 if (res > var) \
3060 res = 0; \
3061 WRITE_ONCE(*ptr, res); \
3062} while (0)
3063
b5c0ce7b
PB
3064/*
3065 * Remove and clamp on negative, from a local variable.
3066 *
3067 * A variant of sub_positive(), which does not use explicit load-store
3068 * and is thus optimized for local variable updates.
3069 */
3070#define lsub_positive(_ptr, _val) do { \
3071 typeof(_ptr) ptr = (_ptr); \
3072 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3073} while (0)
3074
8d5b9025 3075#ifdef CONFIG_SMP
8d5b9025
PZ
3076static inline void
3077enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3078{
3079 cfs_rq->avg.load_avg += se->avg.load_avg;
3080 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3081}
3082
3083static inline void
3084dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3085{
3086 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3087 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3088}
3089#else
3090static inline void
8d5b9025
PZ
3091enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3092static inline void
3093dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3094#endif
3095
9059393e 3096static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3097 unsigned long weight)
9059393e
VG
3098{
3099 if (se->on_rq) {
3100 /* commit outstanding execution time */
3101 if (cfs_rq->curr == se)
3102 update_curr(cfs_rq);
1724b95b 3103 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3104 }
3105 dequeue_load_avg(cfs_rq, se);
3106
3107 update_load_set(&se->load, weight);
3108
3109#ifdef CONFIG_SMP
1ea6c46a 3110 do {
87e867b4 3111 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3112
3113 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3114 } while (0);
9059393e
VG
3115#endif
3116
3117 enqueue_load_avg(cfs_rq, se);
0dacee1b 3118 if (se->on_rq)
1724b95b 3119 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3120
9059393e
VG
3121}
3122
3123void reweight_task(struct task_struct *p, int prio)
3124{
3125 struct sched_entity *se = &p->se;
3126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3127 struct load_weight *load = &se->load;
3128 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3129
0dacee1b 3130 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3131 load->inv_weight = sched_prio_to_wmult[prio];
3132}
3133
3ff6dcac 3134#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3135#ifdef CONFIG_SMP
cef27403
PZ
3136/*
3137 * All this does is approximate the hierarchical proportion which includes that
3138 * global sum we all love to hate.
3139 *
3140 * That is, the weight of a group entity, is the proportional share of the
3141 * group weight based on the group runqueue weights. That is:
3142 *
3143 * tg->weight * grq->load.weight
3144 * ge->load.weight = ----------------------------- (1)
3145 * \Sum grq->load.weight
3146 *
3147 * Now, because computing that sum is prohibitively expensive to compute (been
3148 * there, done that) we approximate it with this average stuff. The average
3149 * moves slower and therefore the approximation is cheaper and more stable.
3150 *
3151 * So instead of the above, we substitute:
3152 *
3153 * grq->load.weight -> grq->avg.load_avg (2)
3154 *
3155 * which yields the following:
3156 *
3157 * tg->weight * grq->avg.load_avg
3158 * ge->load.weight = ------------------------------ (3)
3159 * tg->load_avg
3160 *
3161 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3162 *
3163 * That is shares_avg, and it is right (given the approximation (2)).
3164 *
3165 * The problem with it is that because the average is slow -- it was designed
3166 * to be exactly that of course -- this leads to transients in boundary
3167 * conditions. In specific, the case where the group was idle and we start the
3168 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3169 * yielding bad latency etc..
3170 *
3171 * Now, in that special case (1) reduces to:
3172 *
3173 * tg->weight * grq->load.weight
17de4ee0 3174 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
3175 * grp->load.weight
3176 *
3177 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3178 *
3179 * So what we do is modify our approximation (3) to approach (4) in the (near)
3180 * UP case, like:
3181 *
3182 * ge->load.weight =
3183 *
3184 * tg->weight * grq->load.weight
3185 * --------------------------------------------------- (5)
3186 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3187 *
17de4ee0
PZ
3188 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3189 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3190 *
3191 *
3192 * tg->weight * grq->load.weight
3193 * ge->load.weight = ----------------------------- (6)
3194 * tg_load_avg'
3195 *
3196 * Where:
3197 *
3198 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3199 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3200 *
3201 * And that is shares_weight and is icky. In the (near) UP case it approaches
3202 * (4) while in the normal case it approaches (3). It consistently
3203 * overestimates the ge->load.weight and therefore:
3204 *
3205 * \Sum ge->load.weight >= tg->weight
3206 *
3207 * hence icky!
3208 */
2c8e4dce 3209static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3210{
7c80cfc9
PZ
3211 long tg_weight, tg_shares, load, shares;
3212 struct task_group *tg = cfs_rq->tg;
3213
3214 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3215
3d4b60d3 3216 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3217
ea1dc6fc 3218 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3219
ea1dc6fc
PZ
3220 /* Ensure tg_weight >= load */
3221 tg_weight -= cfs_rq->tg_load_avg_contrib;
3222 tg_weight += load;
3ff6dcac 3223
7c80cfc9 3224 shares = (tg_shares * load);
cf5f0acf
PZ
3225 if (tg_weight)
3226 shares /= tg_weight;
3ff6dcac 3227
b8fd8423
DE
3228 /*
3229 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3230 * of a group with small tg->shares value. It is a floor value which is
3231 * assigned as a minimum load.weight to the sched_entity representing
3232 * the group on a CPU.
3233 *
3234 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3235 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3236 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3237 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3238 * instead of 0.
3239 */
7c80cfc9 3240 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3241}
387f77cc 3242#endif /* CONFIG_SMP */
ea1dc6fc 3243
82958366
PT
3244static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3245
1ea6c46a
PZ
3246/*
3247 * Recomputes the group entity based on the current state of its group
3248 * runqueue.
3249 */
3250static void update_cfs_group(struct sched_entity *se)
2069dd75 3251{
1ea6c46a 3252 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3253 long shares;
2069dd75 3254
1ea6c46a 3255 if (!gcfs_rq)
89ee048f
VG
3256 return;
3257
1ea6c46a 3258 if (throttled_hierarchy(gcfs_rq))
2069dd75 3259 return;
89ee048f 3260
3ff6dcac 3261#ifndef CONFIG_SMP
0dacee1b 3262 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3263
3264 if (likely(se->load.weight == shares))
3ff6dcac 3265 return;
7c80cfc9 3266#else
2c8e4dce 3267 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3268#endif
2069dd75 3269
0dacee1b 3270 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3271}
89ee048f 3272
2069dd75 3273#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3274static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3275{
3276}
3277#endif /* CONFIG_FAIR_GROUP_SCHED */
3278
ea14b57e 3279static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3280{
43964409
LT
3281 struct rq *rq = rq_of(cfs_rq);
3282
a4f9a0e5 3283 if (&rq->cfs == cfs_rq) {
a030d738
VK
3284 /*
3285 * There are a few boundary cases this might miss but it should
3286 * get called often enough that that should (hopefully) not be
9783be2c 3287 * a real problem.
a030d738
VK
3288 *
3289 * It will not get called when we go idle, because the idle
3290 * thread is a different class (!fair), nor will the utilization
3291 * number include things like RT tasks.
3292 *
3293 * As is, the util number is not freq-invariant (we'd have to
3294 * implement arch_scale_freq_capacity() for that).
3295 *
3296 * See cpu_util().
3297 */
ea14b57e 3298 cpufreq_update_util(rq, flags);
a030d738
VK
3299 }
3300}
3301
141965c7 3302#ifdef CONFIG_SMP
c566e8e9 3303#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3304/**
3305 * update_tg_load_avg - update the tg's load avg
3306 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3307 *
3308 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3309 * However, because tg->load_avg is a global value there are performance
3310 * considerations.
3311 *
3312 * In order to avoid having to look at the other cfs_rq's, we use a
3313 * differential update where we store the last value we propagated. This in
3314 * turn allows skipping updates if the differential is 'small'.
3315 *
815abf5a 3316 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3317 */
fe749158 3318static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3319{
9d89c257 3320 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3321
aa0b7ae0
WL
3322 /*
3323 * No need to update load_avg for root_task_group as it is not used.
3324 */
3325 if (cfs_rq->tg == &root_task_group)
3326 return;
3327
fe749158 3328 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3329 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3330 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3331 }
8165e145 3332}
f5f9739d 3333
ad936d86 3334/*
97fb7a0a 3335 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3336 * caller only guarantees p->pi_lock is held; no other assumptions,
3337 * including the state of rq->lock, should be made.
3338 */
3339void set_task_rq_fair(struct sched_entity *se,
3340 struct cfs_rq *prev, struct cfs_rq *next)
3341{
0ccb977f
PZ
3342 u64 p_last_update_time;
3343 u64 n_last_update_time;
3344
ad936d86
BP
3345 if (!sched_feat(ATTACH_AGE_LOAD))
3346 return;
3347
3348 /*
3349 * We are supposed to update the task to "current" time, then its up to
3350 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3351 * getting what current time is, so simply throw away the out-of-date
3352 * time. This will result in the wakee task is less decayed, but giving
3353 * the wakee more load sounds not bad.
3354 */
0ccb977f
PZ
3355 if (!(se->avg.last_update_time && prev))
3356 return;
ad936d86
BP
3357
3358#ifndef CONFIG_64BIT
0ccb977f 3359 {
ad936d86
BP
3360 u64 p_last_update_time_copy;
3361 u64 n_last_update_time_copy;
3362
3363 do {
3364 p_last_update_time_copy = prev->load_last_update_time_copy;
3365 n_last_update_time_copy = next->load_last_update_time_copy;
3366
3367 smp_rmb();
3368
3369 p_last_update_time = prev->avg.last_update_time;
3370 n_last_update_time = next->avg.last_update_time;
3371
3372 } while (p_last_update_time != p_last_update_time_copy ||
3373 n_last_update_time != n_last_update_time_copy);
0ccb977f 3374 }
ad936d86 3375#else
0ccb977f
PZ
3376 p_last_update_time = prev->avg.last_update_time;
3377 n_last_update_time = next->avg.last_update_time;
ad936d86 3378#endif
23127296 3379 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3380 se->avg.last_update_time = n_last_update_time;
ad936d86 3381}
09a43ace 3382
0e2d2aaa
PZ
3383
3384/*
3385 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3386 * propagate its contribution. The key to this propagation is the invariant
3387 * that for each group:
3388 *
3389 * ge->avg == grq->avg (1)
3390 *
3391 * _IFF_ we look at the pure running and runnable sums. Because they
3392 * represent the very same entity, just at different points in the hierarchy.
3393 *
9f683953
VG
3394 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3395 * and simply copies the running/runnable sum over (but still wrong, because
3396 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3397 *
0dacee1b 3398 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3399 *
3400 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3401 *
3402 * And since, like util, the runnable part should be directly transferable,
3403 * the following would _appear_ to be the straight forward approach:
3404 *
a4c3c049 3405 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3406 *
3407 * And per (1) we have:
3408 *
a4c3c049 3409 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3410 *
3411 * Which gives:
3412 *
3413 * ge->load.weight * grq->avg.load_avg
3414 * ge->avg.load_avg = ----------------------------------- (4)
3415 * grq->load.weight
3416 *
3417 * Except that is wrong!
3418 *
3419 * Because while for entities historical weight is not important and we
3420 * really only care about our future and therefore can consider a pure
3421 * runnable sum, runqueues can NOT do this.
3422 *
3423 * We specifically want runqueues to have a load_avg that includes
3424 * historical weights. Those represent the blocked load, the load we expect
3425 * to (shortly) return to us. This only works by keeping the weights as
3426 * integral part of the sum. We therefore cannot decompose as per (3).
3427 *
a4c3c049
VG
3428 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3429 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3430 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3431 * runnable section of these tasks overlap (or not). If they were to perfectly
3432 * align the rq as a whole would be runnable 2/3 of the time. If however we
3433 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3434 *
a4c3c049 3435 * So we'll have to approximate.. :/
0e2d2aaa 3436 *
a4c3c049 3437 * Given the constraint:
0e2d2aaa 3438 *
a4c3c049 3439 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3440 *
a4c3c049
VG
3441 * We can construct a rule that adds runnable to a rq by assuming minimal
3442 * overlap.
0e2d2aaa 3443 *
a4c3c049 3444 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3445 *
a4c3c049 3446 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3447 *
a4c3c049 3448 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3449 *
0e2d2aaa
PZ
3450 */
3451
09a43ace 3452static inline void
0e2d2aaa 3453update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3454{
09a43ace 3455 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3456 u32 divider;
09a43ace
VG
3457
3458 /* Nothing to update */
3459 if (!delta)
3460 return;
3461
87e867b4
VG
3462 /*
3463 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3464 * See ___update_load_avg() for details.
3465 */
3466 divider = get_pelt_divider(&cfs_rq->avg);
3467
09a43ace
VG
3468 /* Set new sched_entity's utilization */
3469 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3470 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3471
3472 /* Update parent cfs_rq utilization */
3473 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3474 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3475}
3476
9f683953
VG
3477static inline void
3478update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3479{
3480 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3481 u32 divider;
9f683953
VG
3482
3483 /* Nothing to update */
3484 if (!delta)
3485 return;
3486
87e867b4
VG
3487 /*
3488 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3489 * See ___update_load_avg() for details.
3490 */
3491 divider = get_pelt_divider(&cfs_rq->avg);
3492
9f683953
VG
3493 /* Set new sched_entity's runnable */
3494 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3495 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3496
3497 /* Update parent cfs_rq runnable */
3498 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3499 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3500}
3501
09a43ace 3502static inline void
0dacee1b 3503update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3504{
a4c3c049 3505 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3506 unsigned long load_avg;
3507 u64 load_sum = 0;
a4c3c049 3508 s64 delta_sum;
95d68593 3509 u32 divider;
09a43ace 3510
0e2d2aaa
PZ
3511 if (!runnable_sum)
3512 return;
09a43ace 3513
0e2d2aaa 3514 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3515
95d68593
VG
3516 /*
3517 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3518 * See ___update_load_avg() for details.
3519 */
87e867b4 3520 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3521
a4c3c049
VG
3522 if (runnable_sum >= 0) {
3523 /*
3524 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3525 * the CPU is saturated running == runnable.
3526 */
3527 runnable_sum += se->avg.load_sum;
95d68593 3528 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3529 } else {
3530 /*
3531 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3532 * assuming all tasks are equally runnable.
3533 */
3534 if (scale_load_down(gcfs_rq->load.weight)) {
3535 load_sum = div_s64(gcfs_rq->avg.load_sum,
3536 scale_load_down(gcfs_rq->load.weight));
3537 }
3538
3539 /* But make sure to not inflate se's runnable */
3540 runnable_sum = min(se->avg.load_sum, load_sum);
3541 }
3542
3543 /*
3544 * runnable_sum can't be lower than running_sum
23127296
VG
3545 * Rescale running sum to be in the same range as runnable sum
3546 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3547 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3548 */
23127296 3549 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3550 runnable_sum = max(runnable_sum, running_sum);
3551
0e2d2aaa 3552 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3553 load_avg = div_s64(load_sum, divider);
09a43ace 3554
a4c3c049
VG
3555 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3556 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3557
a4c3c049
VG
3558 se->avg.load_sum = runnable_sum;
3559 se->avg.load_avg = load_avg;
3560 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3561 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace
VG
3562}
3563
0e2d2aaa 3564static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3565{
0e2d2aaa
PZ
3566 cfs_rq->propagate = 1;
3567 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3568}
3569
3570/* Update task and its cfs_rq load average */
3571static inline int propagate_entity_load_avg(struct sched_entity *se)
3572{
0e2d2aaa 3573 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3574
3575 if (entity_is_task(se))
3576 return 0;
3577
0e2d2aaa
PZ
3578 gcfs_rq = group_cfs_rq(se);
3579 if (!gcfs_rq->propagate)
09a43ace
VG
3580 return 0;
3581
0e2d2aaa
PZ
3582 gcfs_rq->propagate = 0;
3583
09a43ace
VG
3584 cfs_rq = cfs_rq_of(se);
3585
0e2d2aaa 3586 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3587
0e2d2aaa 3588 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3589 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3590 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3591
ba19f51f 3592 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3593 trace_pelt_se_tp(se);
ba19f51f 3594
09a43ace
VG
3595 return 1;
3596}
3597
bc427898
VG
3598/*
3599 * Check if we need to update the load and the utilization of a blocked
3600 * group_entity:
3601 */
3602static inline bool skip_blocked_update(struct sched_entity *se)
3603{
3604 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3605
3606 /*
3607 * If sched_entity still have not zero load or utilization, we have to
3608 * decay it:
3609 */
3610 if (se->avg.load_avg || se->avg.util_avg)
3611 return false;
3612
3613 /*
3614 * If there is a pending propagation, we have to update the load and
3615 * the utilization of the sched_entity:
3616 */
0e2d2aaa 3617 if (gcfs_rq->propagate)
bc427898
VG
3618 return false;
3619
3620 /*
3621 * Otherwise, the load and the utilization of the sched_entity is
3622 * already zero and there is no pending propagation, so it will be a
3623 * waste of time to try to decay it:
3624 */
3625 return true;
3626}
3627
6e83125c 3628#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3629
fe749158 3630static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3631
3632static inline int propagate_entity_load_avg(struct sched_entity *se)
3633{
3634 return 0;
3635}
3636
0e2d2aaa 3637static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3638
6e83125c 3639#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3640
3d30544f
PZ
3641/**
3642 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3643 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3644 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3645 *
3646 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3647 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3648 * post_init_entity_util_avg().
3649 *
3650 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3651 *
7c3edd2c
PZ
3652 * Returns true if the load decayed or we removed load.
3653 *
3654 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3655 * call update_tg_load_avg() when this function returns true.
3d30544f 3656 */
a2c6c91f 3657static inline int
3a123bbb 3658update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3659{
9f683953 3660 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3661 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3662 int decayed = 0;
2dac754e 3663
2a2f5d4e
PZ
3664 if (cfs_rq->removed.nr) {
3665 unsigned long r;
87e867b4 3666 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3667
3668 raw_spin_lock(&cfs_rq->removed.lock);
3669 swap(cfs_rq->removed.util_avg, removed_util);
3670 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3671 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3672 cfs_rq->removed.nr = 0;
3673 raw_spin_unlock(&cfs_rq->removed.lock);
3674
2a2f5d4e 3675 r = removed_load;
89741892 3676 sub_positive(&sa->load_avg, r);
9a2dd585 3677 sub_positive(&sa->load_sum, r * divider);
2dac754e 3678
2a2f5d4e 3679 r = removed_util;
89741892 3680 sub_positive(&sa->util_avg, r);
9a2dd585 3681 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3682
9f683953
VG
3683 r = removed_runnable;
3684 sub_positive(&sa->runnable_avg, r);
3685 sub_positive(&sa->runnable_sum, r * divider);
3686
3687 /*
3688 * removed_runnable is the unweighted version of removed_load so we
3689 * can use it to estimate removed_load_sum.
3690 */
3691 add_tg_cfs_propagate(cfs_rq,
3692 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3693
3694 decayed = 1;
9d89c257 3695 }
36ee28e4 3696
23127296 3697 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3698
9d89c257
YD
3699#ifndef CONFIG_64BIT
3700 smp_wmb();
3701 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3702#endif
36ee28e4 3703
2a2f5d4e 3704 return decayed;
21e96f88
SM
3705}
3706
3d30544f
PZ
3707/**
3708 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3709 * @cfs_rq: cfs_rq to attach to
3710 * @se: sched_entity to attach
3711 *
3712 * Must call update_cfs_rq_load_avg() before this, since we rely on
3713 * cfs_rq->avg.last_update_time being current.
3714 */
a4f9a0e5 3715static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3716{
95d68593
VG
3717 /*
3718 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3719 * See ___update_load_avg() for details.
3720 */
87e867b4 3721 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3722
3723 /*
3724 * When we attach the @se to the @cfs_rq, we must align the decay
3725 * window because without that, really weird and wonderful things can
3726 * happen.
3727 *
3728 * XXX illustrate
3729 */
a05e8c51 3730 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3731 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3732
3733 /*
3734 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3735 * period_contrib. This isn't strictly correct, but since we're
3736 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3737 * _sum a little.
3738 */
3739 se->avg.util_sum = se->avg.util_avg * divider;
3740
9f683953
VG
3741 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3742
f207934f
PZ
3743 se->avg.load_sum = divider;
3744 if (se_weight(se)) {
3745 se->avg.load_sum =
3746 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3747 }
3748
8d5b9025 3749 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3750 cfs_rq->avg.util_avg += se->avg.util_avg;
3751 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3752 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3753 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3754
3755 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3756
a4f9a0e5 3757 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3758
3759 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3760}
3761
3d30544f
PZ
3762/**
3763 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3764 * @cfs_rq: cfs_rq to detach from
3765 * @se: sched_entity to detach
3766 *
3767 * Must call update_cfs_rq_load_avg() before this, since we rely on
3768 * cfs_rq->avg.last_update_time being current.
3769 */
a05e8c51
BP
3770static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3771{
8d5b9025 3772 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3773 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3774 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
9f683953
VG
3775 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3776 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
0e2d2aaa
PZ
3777
3778 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3779
ea14b57e 3780 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3781
3782 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3783}
3784
b382a531
PZ
3785/*
3786 * Optional action to be done while updating the load average
3787 */
3788#define UPDATE_TG 0x1
3789#define SKIP_AGE_LOAD 0x2
3790#define DO_ATTACH 0x4
3791
3792/* Update task and its cfs_rq load average */
3793static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3794{
23127296 3795 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3796 int decayed;
3797
3798 /*
3799 * Track task load average for carrying it to new CPU after migrated, and
3800 * track group sched_entity load average for task_h_load calc in migration
3801 */
3802 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3803 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3804
3805 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3806 decayed |= propagate_entity_load_avg(se);
3807
3808 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3809
ea14b57e
PZ
3810 /*
3811 * DO_ATTACH means we're here from enqueue_entity().
3812 * !last_update_time means we've passed through
3813 * migrate_task_rq_fair() indicating we migrated.
3814 *
3815 * IOW we're enqueueing a task on a new CPU.
3816 */
a4f9a0e5 3817 attach_entity_load_avg(cfs_rq, se);
fe749158 3818 update_tg_load_avg(cfs_rq);
b382a531 3819
bef69dd8
VG
3820 } else if (decayed) {
3821 cfs_rq_util_change(cfs_rq, 0);
3822
3823 if (flags & UPDATE_TG)
fe749158 3824 update_tg_load_avg(cfs_rq);
bef69dd8 3825 }
b382a531
PZ
3826}
3827
9d89c257 3828#ifndef CONFIG_64BIT
0905f04e
YD
3829static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3830{
9d89c257 3831 u64 last_update_time_copy;
0905f04e 3832 u64 last_update_time;
9ee474f5 3833
9d89c257
YD
3834 do {
3835 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3836 smp_rmb();
3837 last_update_time = cfs_rq->avg.last_update_time;
3838 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3839
3840 return last_update_time;
3841}
9d89c257 3842#else
0905f04e
YD
3843static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3844{
3845 return cfs_rq->avg.last_update_time;
3846}
9d89c257
YD
3847#endif
3848
104cb16d
MR
3849/*
3850 * Synchronize entity load avg of dequeued entity without locking
3851 * the previous rq.
3852 */
71b47eaf 3853static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3854{
3855 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3856 u64 last_update_time;
3857
3858 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3859 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3860}
3861
0905f04e
YD
3862/*
3863 * Task first catches up with cfs_rq, and then subtract
3864 * itself from the cfs_rq (task must be off the queue now).
3865 */
71b47eaf 3866static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3867{
3868 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3869 unsigned long flags;
0905f04e
YD
3870
3871 /*
7dc603c9
PZ
3872 * tasks cannot exit without having gone through wake_up_new_task() ->
3873 * post_init_entity_util_avg() which will have added things to the
3874 * cfs_rq, so we can remove unconditionally.
0905f04e 3875 */
0905f04e 3876
104cb16d 3877 sync_entity_load_avg(se);
2a2f5d4e
PZ
3878
3879 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3880 ++cfs_rq->removed.nr;
3881 cfs_rq->removed.util_avg += se->avg.util_avg;
3882 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3883 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3884 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3885}
642dbc39 3886
9f683953
VG
3887static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3888{
3889 return cfs_rq->avg.runnable_avg;
3890}
3891
7ea241af
YD
3892static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3893{
3894 return cfs_rq->avg.load_avg;
3895}
3896
d91cecc1
CY
3897static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3898
7f65ea42
PB
3899static inline unsigned long task_util(struct task_struct *p)
3900{
3901 return READ_ONCE(p->se.avg.util_avg);
3902}
3903
3904static inline unsigned long _task_util_est(struct task_struct *p)
3905{
3906 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3907
92a801e5 3908 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3909}
3910
3911static inline unsigned long task_util_est(struct task_struct *p)
3912{
3913 return max(task_util(p), _task_util_est(p));
3914}
3915
a7008c07
VS
3916#ifdef CONFIG_UCLAMP_TASK
3917static inline unsigned long uclamp_task_util(struct task_struct *p)
3918{
3919 return clamp(task_util_est(p),
3920 uclamp_eff_value(p, UCLAMP_MIN),
3921 uclamp_eff_value(p, UCLAMP_MAX));
3922}
3923#else
3924static inline unsigned long uclamp_task_util(struct task_struct *p)
3925{
3926 return task_util_est(p);
3927}
3928#endif
3929
7f65ea42
PB
3930static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3931 struct task_struct *p)
3932{
3933 unsigned int enqueued;
3934
3935 if (!sched_feat(UTIL_EST))
3936 return;
3937
3938 /* Update root cfs_rq's estimated utilization */
3939 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3940 enqueued += _task_util_est(p);
7f65ea42 3941 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
3942
3943 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
3944}
3945
8c1f560c
XY
3946static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3947 struct task_struct *p)
3948{
3949 unsigned int enqueued;
3950
3951 if (!sched_feat(UTIL_EST))
3952 return;
3953
3954 /* Update root cfs_rq's estimated utilization */
3955 enqueued = cfs_rq->avg.util_est.enqueued;
3956 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3957 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3958
3959 trace_sched_util_est_cfs_tp(cfs_rq);
3960}
3961
7f65ea42
PB
3962/*
3963 * Check if a (signed) value is within a specified (unsigned) margin,
3964 * based on the observation that:
3965 *
3966 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3967 *
3968 * NOTE: this only works when value + maring < INT_MAX.
3969 */
3970static inline bool within_margin(int value, int margin)
3971{
3972 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3973}
3974
8c1f560c
XY
3975static inline void util_est_update(struct cfs_rq *cfs_rq,
3976 struct task_struct *p,
3977 bool task_sleep)
7f65ea42
PB
3978{
3979 long last_ewma_diff;
3980 struct util_est ue;
3981
3982 if (!sched_feat(UTIL_EST))
3983 return;
3984
7f65ea42
PB
3985 /*
3986 * Skip update of task's estimated utilization when the task has not
3987 * yet completed an activation, e.g. being migrated.
3988 */
3989 if (!task_sleep)
3990 return;
3991
d519329f
PB
3992 /*
3993 * If the PELT values haven't changed since enqueue time,
3994 * skip the util_est update.
3995 */
3996 ue = p->se.avg.util_est;
3997 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3998 return;
3999
b8c96361
PB
4000 /*
4001 * Reset EWMA on utilization increases, the moving average is used only
4002 * to smooth utilization decreases.
4003 */
4004 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
4005 if (sched_feat(UTIL_EST_FASTUP)) {
4006 if (ue.ewma < ue.enqueued) {
4007 ue.ewma = ue.enqueued;
4008 goto done;
4009 }
4010 }
4011
7f65ea42
PB
4012 /*
4013 * Skip update of task's estimated utilization when its EWMA is
4014 * already ~1% close to its last activation value.
4015 */
7f65ea42
PB
4016 last_ewma_diff = ue.enqueued - ue.ewma;
4017 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
4018 return;
4019
10a35e68
VG
4020 /*
4021 * To avoid overestimation of actual task utilization, skip updates if
4022 * we cannot grant there is idle time in this CPU.
4023 */
8c1f560c 4024 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
10a35e68
VG
4025 return;
4026
7f65ea42
PB
4027 /*
4028 * Update Task's estimated utilization
4029 *
4030 * When *p completes an activation we can consolidate another sample
4031 * of the task size. This is done by storing the current PELT value
4032 * as ue.enqueued and by using this value to update the Exponential
4033 * Weighted Moving Average (EWMA):
4034 *
4035 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4036 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4037 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4038 * = w * ( last_ewma_diff ) + ewma(t-1)
4039 * = w * (last_ewma_diff + ewma(t-1) / w)
4040 *
4041 * Where 'w' is the weight of new samples, which is configured to be
4042 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4043 */
4044 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4045 ue.ewma += last_ewma_diff;
4046 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4047done:
7f65ea42 4048 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4049
4050 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4051}
4052
3b1baa64
MR
4053static inline int task_fits_capacity(struct task_struct *p, long capacity)
4054{
a7008c07 4055 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4056}
4057
4058static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4059{
4060 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4061 return;
4062
0ae78eec 4063 if (!p || p->nr_cpus_allowed == 1) {
3b1baa64
MR
4064 rq->misfit_task_load = 0;
4065 return;
4066 }
4067
4068 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4069 rq->misfit_task_load = 0;
4070 return;
4071 }
4072
01cfcde9
VG
4073 /*
4074 * Make sure that misfit_task_load will not be null even if
4075 * task_h_load() returns 0.
4076 */
4077 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4078}
4079
38033c37
PZ
4080#else /* CONFIG_SMP */
4081
d31b1a66
VG
4082#define UPDATE_TG 0x0
4083#define SKIP_AGE_LOAD 0x0
b382a531 4084#define DO_ATTACH 0x0
d31b1a66 4085
88c0616e 4086static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4087{
ea14b57e 4088 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4089}
4090
9d89c257 4091static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4092
a05e8c51 4093static inline void
a4f9a0e5 4094attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4095static inline void
4096detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4097
d91cecc1 4098static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4099{
4100 return 0;
4101}
4102
7f65ea42
PB
4103static inline void
4104util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4105
4106static inline void
8c1f560c
XY
4107util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4108
4109static inline void
4110util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4111 bool task_sleep) {}
3b1baa64 4112static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4113
38033c37 4114#endif /* CONFIG_SMP */
9d85f21c 4115
ddc97297
PZ
4116static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4117{
4118#ifdef CONFIG_SCHED_DEBUG
4119 s64 d = se->vruntime - cfs_rq->min_vruntime;
4120
4121 if (d < 0)
4122 d = -d;
4123
4124 if (d > 3*sysctl_sched_latency)
ae92882e 4125 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4126#endif
4127}
4128
aeb73b04
PZ
4129static void
4130place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4131{
1af5f730 4132 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4133
2cb8600e
PZ
4134 /*
4135 * The 'current' period is already promised to the current tasks,
4136 * however the extra weight of the new task will slow them down a
4137 * little, place the new task so that it fits in the slot that
4138 * stays open at the end.
4139 */
94dfb5e7 4140 if (initial && sched_feat(START_DEBIT))
f9c0b095 4141 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4142
a2e7a7eb 4143 /* sleeps up to a single latency don't count. */
5ca9880c 4144 if (!initial) {
a2e7a7eb 4145 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4146
a2e7a7eb
MG
4147 /*
4148 * Halve their sleep time's effect, to allow
4149 * for a gentler effect of sleepers:
4150 */
4151 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4152 thresh >>= 1;
51e0304c 4153
a2e7a7eb 4154 vruntime -= thresh;
aeb73b04
PZ
4155 }
4156
b5d9d734 4157 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4158 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4159}
4160
d3d9dc33
PT
4161static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4162
cb251765
MG
4163static inline void check_schedstat_required(void)
4164{
4165#ifdef CONFIG_SCHEDSTATS
4166 if (schedstat_enabled())
4167 return;
4168
4169 /* Force schedstat enabled if a dependent tracepoint is active */
4170 if (trace_sched_stat_wait_enabled() ||
4171 trace_sched_stat_sleep_enabled() ||
4172 trace_sched_stat_iowait_enabled() ||
4173 trace_sched_stat_blocked_enabled() ||
4174 trace_sched_stat_runtime_enabled()) {
eda8dca5 4175 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4176 "stat_blocked and stat_runtime require the "
f67abed5 4177 "kernel parameter schedstats=enable or "
cb251765
MG
4178 "kernel.sched_schedstats=1\n");
4179 }
4180#endif
4181}
4182
fe61468b 4183static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4184
4185/*
4186 * MIGRATION
4187 *
4188 * dequeue
4189 * update_curr()
4190 * update_min_vruntime()
4191 * vruntime -= min_vruntime
4192 *
4193 * enqueue
4194 * update_curr()
4195 * update_min_vruntime()
4196 * vruntime += min_vruntime
4197 *
4198 * this way the vruntime transition between RQs is done when both
4199 * min_vruntime are up-to-date.
4200 *
4201 * WAKEUP (remote)
4202 *
59efa0ba 4203 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4204 * vruntime -= min_vruntime
4205 *
4206 * enqueue
4207 * update_curr()
4208 * update_min_vruntime()
4209 * vruntime += min_vruntime
4210 *
4211 * this way we don't have the most up-to-date min_vruntime on the originating
4212 * CPU and an up-to-date min_vruntime on the destination CPU.
4213 */
4214
bf0f6f24 4215static void
88ec22d3 4216enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4217{
2f950354
PZ
4218 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4219 bool curr = cfs_rq->curr == se;
4220
88ec22d3 4221 /*
2f950354
PZ
4222 * If we're the current task, we must renormalise before calling
4223 * update_curr().
88ec22d3 4224 */
2f950354 4225 if (renorm && curr)
88ec22d3
PZ
4226 se->vruntime += cfs_rq->min_vruntime;
4227
2f950354
PZ
4228 update_curr(cfs_rq);
4229
bf0f6f24 4230 /*
2f950354
PZ
4231 * Otherwise, renormalise after, such that we're placed at the current
4232 * moment in time, instead of some random moment in the past. Being
4233 * placed in the past could significantly boost this task to the
4234 * fairness detriment of existing tasks.
bf0f6f24 4235 */
2f950354
PZ
4236 if (renorm && !curr)
4237 se->vruntime += cfs_rq->min_vruntime;
4238
89ee048f
VG
4239 /*
4240 * When enqueuing a sched_entity, we must:
4241 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4242 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4243 * - For group_entity, update its weight to reflect the new share of
4244 * its group cfs_rq
4245 * - Add its new weight to cfs_rq->load.weight
4246 */
b382a531 4247 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4248 se_update_runnable(se);
1ea6c46a 4249 update_cfs_group(se);
17bc14b7 4250 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4251
1a3d027c 4252 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4253 place_entity(cfs_rq, se, 0);
bf0f6f24 4254
cb251765 4255 check_schedstat_required();
4fa8d299
JP
4256 update_stats_enqueue(cfs_rq, se, flags);
4257 check_spread(cfs_rq, se);
2f950354 4258 if (!curr)
83b699ed 4259 __enqueue_entity(cfs_rq, se);
2069dd75 4260 se->on_rq = 1;
3d4b47b4 4261
fe61468b
VG
4262 /*
4263 * When bandwidth control is enabled, cfs might have been removed
4264 * because of a parent been throttled but cfs->nr_running > 1. Try to
4265 * add it unconditionnally.
4266 */
4267 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4268 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4269
4270 if (cfs_rq->nr_running == 1)
d3d9dc33 4271 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4272}
4273
2c13c919 4274static void __clear_buddies_last(struct sched_entity *se)
2002c695 4275{
2c13c919
RR
4276 for_each_sched_entity(se) {
4277 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4278 if (cfs_rq->last != se)
2c13c919 4279 break;
f1044799
PZ
4280
4281 cfs_rq->last = NULL;
2c13c919
RR
4282 }
4283}
2002c695 4284
2c13c919
RR
4285static void __clear_buddies_next(struct sched_entity *se)
4286{
4287 for_each_sched_entity(se) {
4288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4289 if (cfs_rq->next != se)
2c13c919 4290 break;
f1044799
PZ
4291
4292 cfs_rq->next = NULL;
2c13c919 4293 }
2002c695
PZ
4294}
4295
ac53db59
RR
4296static void __clear_buddies_skip(struct sched_entity *se)
4297{
4298 for_each_sched_entity(se) {
4299 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4300 if (cfs_rq->skip != se)
ac53db59 4301 break;
f1044799
PZ
4302
4303 cfs_rq->skip = NULL;
ac53db59
RR
4304 }
4305}
4306
a571bbea
PZ
4307static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4308{
2c13c919
RR
4309 if (cfs_rq->last == se)
4310 __clear_buddies_last(se);
4311
4312 if (cfs_rq->next == se)
4313 __clear_buddies_next(se);
ac53db59
RR
4314
4315 if (cfs_rq->skip == se)
4316 __clear_buddies_skip(se);
a571bbea
PZ
4317}
4318
6c16a6dc 4319static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4320
bf0f6f24 4321static void
371fd7e7 4322dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4323{
a2a2d680
DA
4324 /*
4325 * Update run-time statistics of the 'current'.
4326 */
4327 update_curr(cfs_rq);
89ee048f
VG
4328
4329 /*
4330 * When dequeuing a sched_entity, we must:
4331 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4332 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4333 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4334 * - For group entity, update its weight to reflect the new share
4335 * of its group cfs_rq.
4336 */
88c0616e 4337 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4338 se_update_runnable(se);
a2a2d680 4339
4fa8d299 4340 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4341
2002c695 4342 clear_buddies(cfs_rq, se);
4793241b 4343
83b699ed 4344 if (se != cfs_rq->curr)
30cfdcfc 4345 __dequeue_entity(cfs_rq, se);
17bc14b7 4346 se->on_rq = 0;
30cfdcfc 4347 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4348
4349 /*
b60205c7
PZ
4350 * Normalize after update_curr(); which will also have moved
4351 * min_vruntime if @se is the one holding it back. But before doing
4352 * update_min_vruntime() again, which will discount @se's position and
4353 * can move min_vruntime forward still more.
88ec22d3 4354 */
371fd7e7 4355 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4356 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4357
d8b4986d
PT
4358 /* return excess runtime on last dequeue */
4359 return_cfs_rq_runtime(cfs_rq);
4360
1ea6c46a 4361 update_cfs_group(se);
b60205c7
PZ
4362
4363 /*
4364 * Now advance min_vruntime if @se was the entity holding it back,
4365 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4366 * put back on, and if we advance min_vruntime, we'll be placed back
4367 * further than we started -- ie. we'll be penalized.
4368 */
9845c49c 4369 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4370 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4371}
4372
4373/*
4374 * Preempt the current task with a newly woken task if needed:
4375 */
7c92e54f 4376static void
2e09bf55 4377check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4378{
11697830 4379 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4380 struct sched_entity *se;
4381 s64 delta;
11697830 4382
6d0f0ebd 4383 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4384 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4385 if (delta_exec > ideal_runtime) {
8875125e 4386 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4387 /*
4388 * The current task ran long enough, ensure it doesn't get
4389 * re-elected due to buddy favours.
4390 */
4391 clear_buddies(cfs_rq, curr);
f685ceac
MG
4392 return;
4393 }
4394
4395 /*
4396 * Ensure that a task that missed wakeup preemption by a
4397 * narrow margin doesn't have to wait for a full slice.
4398 * This also mitigates buddy induced latencies under load.
4399 */
f685ceac
MG
4400 if (delta_exec < sysctl_sched_min_granularity)
4401 return;
4402
f4cfb33e
WX
4403 se = __pick_first_entity(cfs_rq);
4404 delta = curr->vruntime - se->vruntime;
f685ceac 4405
f4cfb33e
WX
4406 if (delta < 0)
4407 return;
d7d82944 4408
f4cfb33e 4409 if (delta > ideal_runtime)
8875125e 4410 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4411}
4412
83b699ed 4413static void
8494f412 4414set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4415{
83b699ed
SV
4416 /* 'current' is not kept within the tree. */
4417 if (se->on_rq) {
4418 /*
4419 * Any task has to be enqueued before it get to execute on
4420 * a CPU. So account for the time it spent waiting on the
4421 * runqueue.
4422 */
4fa8d299 4423 update_stats_wait_end(cfs_rq, se);
83b699ed 4424 __dequeue_entity(cfs_rq, se);
88c0616e 4425 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4426 }
4427
79303e9e 4428 update_stats_curr_start(cfs_rq, se);
429d43bc 4429 cfs_rq->curr = se;
4fa8d299 4430
eba1ed4b
IM
4431 /*
4432 * Track our maximum slice length, if the CPU's load is at
4433 * least twice that of our own weight (i.e. dont track it
4434 * when there are only lesser-weight tasks around):
4435 */
f2bedc47
DE
4436 if (schedstat_enabled() &&
4437 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4438 schedstat_set(se->statistics.slice_max,
4439 max((u64)schedstat_val(se->statistics.slice_max),
4440 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4441 }
4fa8d299 4442
4a55b450 4443 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4444}
4445
3f3a4904
PZ
4446static int
4447wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4448
ac53db59
RR
4449/*
4450 * Pick the next process, keeping these things in mind, in this order:
4451 * 1) keep things fair between processes/task groups
4452 * 2) pick the "next" process, since someone really wants that to run
4453 * 3) pick the "last" process, for cache locality
4454 * 4) do not run the "skip" process, if something else is available
4455 */
678d5718
PZ
4456static struct sched_entity *
4457pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4458{
678d5718
PZ
4459 struct sched_entity *left = __pick_first_entity(cfs_rq);
4460 struct sched_entity *se;
4461
4462 /*
4463 * If curr is set we have to see if its left of the leftmost entity
4464 * still in the tree, provided there was anything in the tree at all.
4465 */
4466 if (!left || (curr && entity_before(curr, left)))
4467 left = curr;
4468
4469 se = left; /* ideally we run the leftmost entity */
f4b6755f 4470
ac53db59
RR
4471 /*
4472 * Avoid running the skip buddy, if running something else can
4473 * be done without getting too unfair.
4474 */
4475 if (cfs_rq->skip == se) {
678d5718
PZ
4476 struct sched_entity *second;
4477
4478 if (se == curr) {
4479 second = __pick_first_entity(cfs_rq);
4480 } else {
4481 second = __pick_next_entity(se);
4482 if (!second || (curr && entity_before(curr, second)))
4483 second = curr;
4484 }
4485
ac53db59
RR
4486 if (second && wakeup_preempt_entity(second, left) < 1)
4487 se = second;
4488 }
aa2ac252 4489
9abb8973
PO
4490 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4491 /*
4492 * Someone really wants this to run. If it's not unfair, run it.
4493 */
ac53db59 4494 se = cfs_rq->next;
9abb8973
PO
4495 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4496 /*
4497 * Prefer last buddy, try to return the CPU to a preempted task.
4498 */
4499 se = cfs_rq->last;
4500 }
ac53db59 4501
f685ceac 4502 clear_buddies(cfs_rq, se);
4793241b
PZ
4503
4504 return se;
aa2ac252
PZ
4505}
4506
678d5718 4507static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4508
ab6cde26 4509static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4510{
4511 /*
4512 * If still on the runqueue then deactivate_task()
4513 * was not called and update_curr() has to be done:
4514 */
4515 if (prev->on_rq)
b7cc0896 4516 update_curr(cfs_rq);
bf0f6f24 4517
d3d9dc33
PT
4518 /* throttle cfs_rqs exceeding runtime */
4519 check_cfs_rq_runtime(cfs_rq);
4520
4fa8d299 4521 check_spread(cfs_rq, prev);
cb251765 4522
30cfdcfc 4523 if (prev->on_rq) {
4fa8d299 4524 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4525 /* Put 'current' back into the tree. */
4526 __enqueue_entity(cfs_rq, prev);
9d85f21c 4527 /* in !on_rq case, update occurred at dequeue */
88c0616e 4528 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4529 }
429d43bc 4530 cfs_rq->curr = NULL;
bf0f6f24
IM
4531}
4532
8f4d37ec
PZ
4533static void
4534entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4535{
bf0f6f24 4536 /*
30cfdcfc 4537 * Update run-time statistics of the 'current'.
bf0f6f24 4538 */
30cfdcfc 4539 update_curr(cfs_rq);
bf0f6f24 4540
9d85f21c
PT
4541 /*
4542 * Ensure that runnable average is periodically updated.
4543 */
88c0616e 4544 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4545 update_cfs_group(curr);
9d85f21c 4546
8f4d37ec
PZ
4547#ifdef CONFIG_SCHED_HRTICK
4548 /*
4549 * queued ticks are scheduled to match the slice, so don't bother
4550 * validating it and just reschedule.
4551 */
983ed7a6 4552 if (queued) {
8875125e 4553 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4554 return;
4555 }
8f4d37ec
PZ
4556 /*
4557 * don't let the period tick interfere with the hrtick preemption
4558 */
4559 if (!sched_feat(DOUBLE_TICK) &&
4560 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4561 return;
4562#endif
4563
2c2efaed 4564 if (cfs_rq->nr_running > 1)
2e09bf55 4565 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4566}
4567
ab84d31e
PT
4568
4569/**************************************************
4570 * CFS bandwidth control machinery
4571 */
4572
4573#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4574
e9666d10 4575#ifdef CONFIG_JUMP_LABEL
c5905afb 4576static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4577
4578static inline bool cfs_bandwidth_used(void)
4579{
c5905afb 4580 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4581}
4582
1ee14e6c 4583void cfs_bandwidth_usage_inc(void)
029632fb 4584{
ce48c146 4585 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4586}
4587
4588void cfs_bandwidth_usage_dec(void)
4589{
ce48c146 4590 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4591}
e9666d10 4592#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4593static bool cfs_bandwidth_used(void)
4594{
4595 return true;
4596}
4597
1ee14e6c
BS
4598void cfs_bandwidth_usage_inc(void) {}
4599void cfs_bandwidth_usage_dec(void) {}
e9666d10 4600#endif /* CONFIG_JUMP_LABEL */
029632fb 4601
ab84d31e
PT
4602/*
4603 * default period for cfs group bandwidth.
4604 * default: 0.1s, units: nanoseconds
4605 */
4606static inline u64 default_cfs_period(void)
4607{
4608 return 100000000ULL;
4609}
ec12cb7f
PT
4610
4611static inline u64 sched_cfs_bandwidth_slice(void)
4612{
4613 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4614}
4615
a9cf55b2 4616/*
763a9ec0
QC
4617 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4618 * directly instead of rq->clock to avoid adding additional synchronization
4619 * around rq->lock.
a9cf55b2
PT
4620 *
4621 * requires cfs_b->lock
4622 */
029632fb 4623void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4624{
763a9ec0
QC
4625 if (cfs_b->quota != RUNTIME_INF)
4626 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4627}
4628
029632fb
PZ
4629static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4630{
4631 return &tg->cfs_bandwidth;
4632}
4633
85dac906 4634/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4635static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4636 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4637{
e98fa02c
PT
4638 u64 min_amount, amount = 0;
4639
4640 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4641
4642 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4643 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4644
ec12cb7f
PT
4645 if (cfs_b->quota == RUNTIME_INF)
4646 amount = min_amount;
58088ad0 4647 else {
77a4d1a1 4648 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4649
4650 if (cfs_b->runtime > 0) {
4651 amount = min(cfs_b->runtime, min_amount);
4652 cfs_b->runtime -= amount;
4653 cfs_b->idle = 0;
4654 }
ec12cb7f 4655 }
ec12cb7f
PT
4656
4657 cfs_rq->runtime_remaining += amount;
85dac906
PT
4658
4659 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4660}
4661
e98fa02c
PT
4662/* returns 0 on failure to allocate runtime */
4663static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4664{
4665 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4666 int ret;
4667
4668 raw_spin_lock(&cfs_b->lock);
4669 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4670 raw_spin_unlock(&cfs_b->lock);
4671
4672 return ret;
4673}
4674
9dbdb155 4675static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4676{
4677 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4678 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4679
4680 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4681 return;
4682
5e2d2cc2
L
4683 if (cfs_rq->throttled)
4684 return;
85dac906
PT
4685 /*
4686 * if we're unable to extend our runtime we resched so that the active
4687 * hierarchy can be throttled
4688 */
4689 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4690 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4691}
4692
6c16a6dc 4693static __always_inline
9dbdb155 4694void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4695{
56f570e5 4696 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4697 return;
4698
4699 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4700}
4701
85dac906
PT
4702static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4703{
56f570e5 4704 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4705}
4706
64660c86
PT
4707/* check whether cfs_rq, or any parent, is throttled */
4708static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4709{
56f570e5 4710 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4711}
4712
4713/*
4714 * Ensure that neither of the group entities corresponding to src_cpu or
4715 * dest_cpu are members of a throttled hierarchy when performing group
4716 * load-balance operations.
4717 */
4718static inline int throttled_lb_pair(struct task_group *tg,
4719 int src_cpu, int dest_cpu)
4720{
4721 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4722
4723 src_cfs_rq = tg->cfs_rq[src_cpu];
4724 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4725
4726 return throttled_hierarchy(src_cfs_rq) ||
4727 throttled_hierarchy(dest_cfs_rq);
4728}
4729
64660c86
PT
4730static int tg_unthrottle_up(struct task_group *tg, void *data)
4731{
4732 struct rq *rq = data;
4733 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4734
4735 cfs_rq->throttle_count--;
64660c86 4736 if (!cfs_rq->throttle_count) {
78becc27 4737 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4738 cfs_rq->throttled_clock_task;
31bc6aea
VG
4739
4740 /* Add cfs_rq with already running entity in the list */
4741 if (cfs_rq->nr_running >= 1)
4742 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4743 }
64660c86
PT
4744
4745 return 0;
4746}
4747
4748static int tg_throttle_down(struct task_group *tg, void *data)
4749{
4750 struct rq *rq = data;
4751 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4752
82958366 4753 /* group is entering throttled state, stop time */
31bc6aea 4754 if (!cfs_rq->throttle_count) {
78becc27 4755 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4756 list_del_leaf_cfs_rq(cfs_rq);
4757 }
64660c86
PT
4758 cfs_rq->throttle_count++;
4759
4760 return 0;
4761}
4762
e98fa02c 4763static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4764{
4765 struct rq *rq = rq_of(cfs_rq);
4766 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4767 struct sched_entity *se;
43e9f7f2 4768 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4769
4770 raw_spin_lock(&cfs_b->lock);
4771 /* This will start the period timer if necessary */
4772 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4773 /*
4774 * We have raced with bandwidth becoming available, and if we
4775 * actually throttled the timer might not unthrottle us for an
4776 * entire period. We additionally needed to make sure that any
4777 * subsequent check_cfs_rq_runtime calls agree not to throttle
4778 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4779 * for 1ns of runtime rather than just check cfs_b.
4780 */
4781 dequeue = 0;
4782 } else {
4783 list_add_tail_rcu(&cfs_rq->throttled_list,
4784 &cfs_b->throttled_cfs_rq);
4785 }
4786 raw_spin_unlock(&cfs_b->lock);
4787
4788 if (!dequeue)
4789 return false; /* Throttle no longer required. */
85dac906
PT
4790
4791 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4792
f1b17280 4793 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4794 rcu_read_lock();
4795 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4796 rcu_read_unlock();
85dac906
PT
4797
4798 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4799 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4800 for_each_sched_entity(se) {
4801 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4802 /* throttled entity or throttle-on-deactivate */
4803 if (!se->on_rq)
b6d37a76 4804 goto done;
85dac906 4805
b6d37a76 4806 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f 4807
85dac906 4808 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4809 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906 4810
b6d37a76
PW
4811 if (qcfs_rq->load.weight) {
4812 /* Avoid re-evaluating load for this entity: */
4813 se = parent_entity(se);
4814 break;
4815 }
4816 }
4817
4818 for_each_sched_entity(se) {
4819 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4820 /* throttled entity or throttle-on-deactivate */
4821 if (!se->on_rq)
4822 goto done;
4823
4824 update_load_avg(qcfs_rq, se, 0);
4825 se_update_runnable(se);
4826
4827 qcfs_rq->h_nr_running -= task_delta;
4828 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4829 }
4830
b6d37a76
PW
4831 /* At this point se is NULL and we are at root level*/
4832 sub_nr_running(rq, task_delta);
85dac906 4833
b6d37a76 4834done:
c06f04c7 4835 /*
e98fa02c
PT
4836 * Note: distribution will already see us throttled via the
4837 * throttled-list. rq->lock protects completion.
c06f04c7 4838 */
e98fa02c
PT
4839 cfs_rq->throttled = 1;
4840 cfs_rq->throttled_clock = rq_clock(rq);
4841 return true;
85dac906
PT
4842}
4843
029632fb 4844void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4845{
4846 struct rq *rq = rq_of(cfs_rq);
4847 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4848 struct sched_entity *se;
43e9f7f2 4849 long task_delta, idle_task_delta;
671fd9da 4850
22b958d8 4851 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4852
4853 cfs_rq->throttled = 0;
1a55af2e
FW
4854
4855 update_rq_clock(rq);
4856
671fd9da 4857 raw_spin_lock(&cfs_b->lock);
78becc27 4858 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4859 list_del_rcu(&cfs_rq->throttled_list);
4860 raw_spin_unlock(&cfs_b->lock);
4861
64660c86
PT
4862 /* update hierarchical throttle state */
4863 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4864
671fd9da
PT
4865 if (!cfs_rq->load.weight)
4866 return;
4867
4868 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4869 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4870 for_each_sched_entity(se) {
4871 if (se->on_rq)
39f23ce0
VG
4872 break;
4873 cfs_rq = cfs_rq_of(se);
4874 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4875
4876 cfs_rq->h_nr_running += task_delta;
4877 cfs_rq->idle_h_nr_running += idle_task_delta;
4878
4879 /* end evaluation on encountering a throttled cfs_rq */
4880 if (cfs_rq_throttled(cfs_rq))
4881 goto unthrottle_throttle;
4882 }
671fd9da 4883
39f23ce0 4884 for_each_sched_entity(se) {
671fd9da 4885 cfs_rq = cfs_rq_of(se);
39f23ce0
VG
4886
4887 update_load_avg(cfs_rq, se, UPDATE_TG);
4888 se_update_runnable(se);
6212437f 4889
671fd9da 4890 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4891 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da 4892
39f23ce0
VG
4893
4894 /* end evaluation on encountering a throttled cfs_rq */
671fd9da 4895 if (cfs_rq_throttled(cfs_rq))
39f23ce0
VG
4896 goto unthrottle_throttle;
4897
4898 /*
4899 * One parent has been throttled and cfs_rq removed from the
4900 * list. Add it back to not break the leaf list.
4901 */
4902 if (throttled_hierarchy(cfs_rq))
4903 list_add_leaf_cfs_rq(cfs_rq);
671fd9da
PT
4904 }
4905
39f23ce0
VG
4906 /* At this point se is NULL and we are at root level*/
4907 add_nr_running(rq, task_delta);
671fd9da 4908
39f23ce0 4909unthrottle_throttle:
fe61468b
VG
4910 /*
4911 * The cfs_rq_throttled() breaks in the above iteration can result in
4912 * incomplete leaf list maintenance, resulting in triggering the
4913 * assertion below.
4914 */
4915 for_each_sched_entity(se) {
4916 cfs_rq = cfs_rq_of(se);
4917
39f23ce0
VG
4918 if (list_add_leaf_cfs_rq(cfs_rq))
4919 break;
fe61468b
VG
4920 }
4921
4922 assert_list_leaf_cfs_rq(rq);
4923
97fb7a0a 4924 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4925 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4926 resched_curr(rq);
671fd9da
PT
4927}
4928
26a8b127 4929static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4930{
4931 struct cfs_rq *cfs_rq;
26a8b127 4932 u64 runtime, remaining = 1;
671fd9da
PT
4933
4934 rcu_read_lock();
4935 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4936 throttled_list) {
4937 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4938 struct rq_flags rf;
671fd9da 4939
c0ad4aa4 4940 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4941 if (!cfs_rq_throttled(cfs_rq))
4942 goto next;
4943
5e2d2cc2
L
4944 /* By the above check, this should never be true */
4945 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4946
26a8b127 4947 raw_spin_lock(&cfs_b->lock);
671fd9da 4948 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4949 if (runtime > cfs_b->runtime)
4950 runtime = cfs_b->runtime;
4951 cfs_b->runtime -= runtime;
4952 remaining = cfs_b->runtime;
4953 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4954
4955 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4956
4957 /* we check whether we're throttled above */
4958 if (cfs_rq->runtime_remaining > 0)
4959 unthrottle_cfs_rq(cfs_rq);
4960
4961next:
c0ad4aa4 4962 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4963
4964 if (!remaining)
4965 break;
4966 }
4967 rcu_read_unlock();
671fd9da
PT
4968}
4969
58088ad0
PT
4970/*
4971 * Responsible for refilling a task_group's bandwidth and unthrottling its
4972 * cfs_rqs as appropriate. If there has been no activity within the last
4973 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4974 * used to track this state.
4975 */
c0ad4aa4 4976static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4977{
51f2176d 4978 int throttled;
58088ad0 4979
58088ad0
PT
4980 /* no need to continue the timer with no bandwidth constraint */
4981 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4982 goto out_deactivate;
58088ad0 4983
671fd9da 4984 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4985 cfs_b->nr_periods += overrun;
671fd9da 4986
51f2176d
BS
4987 /*
4988 * idle depends on !throttled (for the case of a large deficit), and if
4989 * we're going inactive then everything else can be deferred
4990 */
4991 if (cfs_b->idle && !throttled)
4992 goto out_deactivate;
a9cf55b2
PT
4993
4994 __refill_cfs_bandwidth_runtime(cfs_b);
4995
671fd9da
PT
4996 if (!throttled) {
4997 /* mark as potentially idle for the upcoming period */
4998 cfs_b->idle = 1;
51f2176d 4999 return 0;
671fd9da
PT
5000 }
5001
e8da1b18
NR
5002 /* account preceding periods in which throttling occurred */
5003 cfs_b->nr_throttled += overrun;
5004
671fd9da 5005 /*
26a8b127 5006 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 5007 */
ab93a4bc 5008 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 5009 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 5010 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 5011 distribute_cfs_runtime(cfs_b);
c0ad4aa4 5012 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
5013
5014 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5015 }
58088ad0 5016
671fd9da
PT
5017 /*
5018 * While we are ensured activity in the period following an
5019 * unthrottle, this also covers the case in which the new bandwidth is
5020 * insufficient to cover the existing bandwidth deficit. (Forcing the
5021 * timer to remain active while there are any throttled entities.)
5022 */
5023 cfs_b->idle = 0;
58088ad0 5024
51f2176d
BS
5025 return 0;
5026
5027out_deactivate:
51f2176d 5028 return 1;
58088ad0 5029}
d3d9dc33 5030
d8b4986d
PT
5031/* a cfs_rq won't donate quota below this amount */
5032static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5033/* minimum remaining period time to redistribute slack quota */
5034static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5035/* how long we wait to gather additional slack before distributing */
5036static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5037
db06e78c
BS
5038/*
5039 * Are we near the end of the current quota period?
5040 *
5041 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5042 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5043 * migrate_hrtimers, base is never cleared, so we are fine.
5044 */
d8b4986d
PT
5045static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5046{
5047 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5048 u64 remaining;
5049
5050 /* if the call-back is running a quota refresh is already occurring */
5051 if (hrtimer_callback_running(refresh_timer))
5052 return 1;
5053
5054 /* is a quota refresh about to occur? */
5055 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5056 if (remaining < min_expire)
5057 return 1;
5058
5059 return 0;
5060}
5061
5062static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5063{
5064 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5065
5066 /* if there's a quota refresh soon don't bother with slack */
5067 if (runtime_refresh_within(cfs_b, min_left))
5068 return;
5069
66567fcb 5070 /* don't push forwards an existing deferred unthrottle */
5071 if (cfs_b->slack_started)
5072 return;
5073 cfs_b->slack_started = true;
5074
4cfafd30
PZ
5075 hrtimer_start(&cfs_b->slack_timer,
5076 ns_to_ktime(cfs_bandwidth_slack_period),
5077 HRTIMER_MODE_REL);
d8b4986d
PT
5078}
5079
5080/* we know any runtime found here is valid as update_curr() precedes return */
5081static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5082{
5083 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5084 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5085
5086 if (slack_runtime <= 0)
5087 return;
5088
5089 raw_spin_lock(&cfs_b->lock);
de53fd7a 5090 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5091 cfs_b->runtime += slack_runtime;
5092
5093 /* we are under rq->lock, defer unthrottling using a timer */
5094 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5095 !list_empty(&cfs_b->throttled_cfs_rq))
5096 start_cfs_slack_bandwidth(cfs_b);
5097 }
5098 raw_spin_unlock(&cfs_b->lock);
5099
5100 /* even if it's not valid for return we don't want to try again */
5101 cfs_rq->runtime_remaining -= slack_runtime;
5102}
5103
5104static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5105{
56f570e5
PT
5106 if (!cfs_bandwidth_used())
5107 return;
5108
fccfdc6f 5109 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5110 return;
5111
5112 __return_cfs_rq_runtime(cfs_rq);
5113}
5114
5115/*
5116 * This is done with a timer (instead of inline with bandwidth return) since
5117 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5118 */
5119static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5120{
5121 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5122 unsigned long flags;
d8b4986d
PT
5123
5124 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5125 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5126 cfs_b->slack_started = false;
baa9be4f 5127
db06e78c 5128 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5129 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5130 return;
db06e78c 5131 }
d8b4986d 5132
c06f04c7 5133 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5134 runtime = cfs_b->runtime;
c06f04c7 5135
c0ad4aa4 5136 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5137
5138 if (!runtime)
5139 return;
5140
26a8b127 5141 distribute_cfs_runtime(cfs_b);
d8b4986d
PT
5142}
5143
d3d9dc33
PT
5144/*
5145 * When a group wakes up we want to make sure that its quota is not already
5146 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5147 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5148 */
5149static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5150{
56f570e5
PT
5151 if (!cfs_bandwidth_used())
5152 return;
5153
d3d9dc33
PT
5154 /* an active group must be handled by the update_curr()->put() path */
5155 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5156 return;
5157
5158 /* ensure the group is not already throttled */
5159 if (cfs_rq_throttled(cfs_rq))
5160 return;
5161
5162 /* update runtime allocation */
5163 account_cfs_rq_runtime(cfs_rq, 0);
5164 if (cfs_rq->runtime_remaining <= 0)
5165 throttle_cfs_rq(cfs_rq);
5166}
5167
55e16d30
PZ
5168static void sync_throttle(struct task_group *tg, int cpu)
5169{
5170 struct cfs_rq *pcfs_rq, *cfs_rq;
5171
5172 if (!cfs_bandwidth_used())
5173 return;
5174
5175 if (!tg->parent)
5176 return;
5177
5178 cfs_rq = tg->cfs_rq[cpu];
5179 pcfs_rq = tg->parent->cfs_rq[cpu];
5180
5181 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5182 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5183}
5184
d3d9dc33 5185/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5186static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5187{
56f570e5 5188 if (!cfs_bandwidth_used())
678d5718 5189 return false;
56f570e5 5190
d3d9dc33 5191 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5192 return false;
d3d9dc33
PT
5193
5194 /*
5195 * it's possible for a throttled entity to be forced into a running
5196 * state (e.g. set_curr_task), in this case we're finished.
5197 */
5198 if (cfs_rq_throttled(cfs_rq))
678d5718 5199 return true;
d3d9dc33 5200
e98fa02c 5201 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5202}
029632fb 5203
029632fb
PZ
5204static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5205{
5206 struct cfs_bandwidth *cfs_b =
5207 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5208
029632fb
PZ
5209 do_sched_cfs_slack_timer(cfs_b);
5210
5211 return HRTIMER_NORESTART;
5212}
5213
2e8e1922
PA
5214extern const u64 max_cfs_quota_period;
5215
029632fb
PZ
5216static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5217{
5218 struct cfs_bandwidth *cfs_b =
5219 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5220 unsigned long flags;
029632fb
PZ
5221 int overrun;
5222 int idle = 0;
2e8e1922 5223 int count = 0;
029632fb 5224
c0ad4aa4 5225 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5226 for (;;) {
77a4d1a1 5227 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5228 if (!overrun)
5229 break;
5230
5a6d6a6c
HC
5231 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5232
2e8e1922
PA
5233 if (++count > 3) {
5234 u64 new, old = ktime_to_ns(cfs_b->period);
5235
4929a4e6
XZ
5236 /*
5237 * Grow period by a factor of 2 to avoid losing precision.
5238 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5239 * to fail.
5240 */
5241 new = old * 2;
5242 if (new < max_cfs_quota_period) {
5243 cfs_b->period = ns_to_ktime(new);
5244 cfs_b->quota *= 2;
5245
5246 pr_warn_ratelimited(
5247 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5248 smp_processor_id(),
5249 div_u64(new, NSEC_PER_USEC),
5250 div_u64(cfs_b->quota, NSEC_PER_USEC));
5251 } else {
5252 pr_warn_ratelimited(
5253 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5254 smp_processor_id(),
5255 div_u64(old, NSEC_PER_USEC),
5256 div_u64(cfs_b->quota, NSEC_PER_USEC));
5257 }
2e8e1922
PA
5258
5259 /* reset count so we don't come right back in here */
5260 count = 0;
5261 }
029632fb 5262 }
4cfafd30
PZ
5263 if (idle)
5264 cfs_b->period_active = 0;
c0ad4aa4 5265 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5266
5267 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5268}
5269
5270void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5271{
5272 raw_spin_lock_init(&cfs_b->lock);
5273 cfs_b->runtime = 0;
5274 cfs_b->quota = RUNTIME_INF;
5275 cfs_b->period = ns_to_ktime(default_cfs_period());
5276
5277 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5278 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5279 cfs_b->period_timer.function = sched_cfs_period_timer;
5280 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5281 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5282 cfs_b->slack_started = false;
029632fb
PZ
5283}
5284
5285static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5286{
5287 cfs_rq->runtime_enabled = 0;
5288 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5289}
5290
77a4d1a1 5291void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5292{
4cfafd30 5293 lockdep_assert_held(&cfs_b->lock);
029632fb 5294
f1d1be8a
XP
5295 if (cfs_b->period_active)
5296 return;
5297
5298 cfs_b->period_active = 1;
763a9ec0 5299 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5300 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5301}
5302
5303static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5304{
7f1a169b
TH
5305 /* init_cfs_bandwidth() was not called */
5306 if (!cfs_b->throttled_cfs_rq.next)
5307 return;
5308
029632fb
PZ
5309 hrtimer_cancel(&cfs_b->period_timer);
5310 hrtimer_cancel(&cfs_b->slack_timer);
5311}
5312
502ce005 5313/*
97fb7a0a 5314 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5315 *
5316 * The race is harmless, since modifying bandwidth settings of unhooked group
5317 * bits doesn't do much.
5318 */
5319
5320/* cpu online calback */
0e59bdae
KT
5321static void __maybe_unused update_runtime_enabled(struct rq *rq)
5322{
502ce005 5323 struct task_group *tg;
0e59bdae 5324
502ce005
PZ
5325 lockdep_assert_held(&rq->lock);
5326
5327 rcu_read_lock();
5328 list_for_each_entry_rcu(tg, &task_groups, list) {
5329 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5330 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5331
5332 raw_spin_lock(&cfs_b->lock);
5333 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5334 raw_spin_unlock(&cfs_b->lock);
5335 }
502ce005 5336 rcu_read_unlock();
0e59bdae
KT
5337}
5338
502ce005 5339/* cpu offline callback */
38dc3348 5340static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5341{
502ce005
PZ
5342 struct task_group *tg;
5343
5344 lockdep_assert_held(&rq->lock);
5345
5346 rcu_read_lock();
5347 list_for_each_entry_rcu(tg, &task_groups, list) {
5348 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5349
029632fb
PZ
5350 if (!cfs_rq->runtime_enabled)
5351 continue;
5352
5353 /*
5354 * clock_task is not advancing so we just need to make sure
5355 * there's some valid quota amount
5356 */
51f2176d 5357 cfs_rq->runtime_remaining = 1;
0e59bdae 5358 /*
97fb7a0a 5359 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5360 * in take_cpu_down(), so we prevent new cfs throttling here.
5361 */
5362 cfs_rq->runtime_enabled = 0;
5363
029632fb
PZ
5364 if (cfs_rq_throttled(cfs_rq))
5365 unthrottle_cfs_rq(cfs_rq);
5366 }
502ce005 5367 rcu_read_unlock();
029632fb
PZ
5368}
5369
5370#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5371
5372static inline bool cfs_bandwidth_used(void)
5373{
5374 return false;
5375}
5376
9dbdb155 5377static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5378static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5379static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5380static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5381static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5382
5383static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5384{
5385 return 0;
5386}
64660c86
PT
5387
5388static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5389{
5390 return 0;
5391}
5392
5393static inline int throttled_lb_pair(struct task_group *tg,
5394 int src_cpu, int dest_cpu)
5395{
5396 return 0;
5397}
029632fb
PZ
5398
5399void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5400
5401#ifdef CONFIG_FAIR_GROUP_SCHED
5402static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5403#endif
5404
029632fb
PZ
5405static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5406{
5407 return NULL;
5408}
5409static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5410static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5411static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5412
5413#endif /* CONFIG_CFS_BANDWIDTH */
5414
bf0f6f24
IM
5415/**************************************************
5416 * CFS operations on tasks:
5417 */
5418
8f4d37ec
PZ
5419#ifdef CONFIG_SCHED_HRTICK
5420static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5421{
8f4d37ec
PZ
5422 struct sched_entity *se = &p->se;
5423 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5424
9148a3a1 5425 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5426
8bf46a39 5427 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5428 u64 slice = sched_slice(cfs_rq, se);
5429 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5430 s64 delta = slice - ran;
5431
5432 if (delta < 0) {
65bcf072 5433 if (task_current(rq, p))
8875125e 5434 resched_curr(rq);
8f4d37ec
PZ
5435 return;
5436 }
31656519 5437 hrtick_start(rq, delta);
8f4d37ec
PZ
5438 }
5439}
a4c2f00f
PZ
5440
5441/*
5442 * called from enqueue/dequeue and updates the hrtick when the
5443 * current task is from our class and nr_running is low enough
5444 * to matter.
5445 */
5446static void hrtick_update(struct rq *rq)
5447{
5448 struct task_struct *curr = rq->curr;
5449
b39e66ea 5450 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5451 return;
5452
5453 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5454 hrtick_start_fair(rq, curr);
5455}
55e12e5e 5456#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5457static inline void
5458hrtick_start_fair(struct rq *rq, struct task_struct *p)
5459{
5460}
a4c2f00f
PZ
5461
5462static inline void hrtick_update(struct rq *rq)
5463{
5464}
8f4d37ec
PZ
5465#endif
5466
2802bf3c
MR
5467#ifdef CONFIG_SMP
5468static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5469
5470static inline bool cpu_overutilized(int cpu)
5471{
60e17f5c 5472 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5473}
5474
5475static inline void update_overutilized_status(struct rq *rq)
5476{
f9f240f9 5477 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5478 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5479 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5480 }
2802bf3c
MR
5481}
5482#else
5483static inline void update_overutilized_status(struct rq *rq) { }
5484#endif
5485
323af6de
VK
5486/* Runqueue only has SCHED_IDLE tasks enqueued */
5487static int sched_idle_rq(struct rq *rq)
5488{
5489 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5490 rq->nr_running);
5491}
5492
afa70d94 5493#ifdef CONFIG_SMP
323af6de
VK
5494static int sched_idle_cpu(int cpu)
5495{
5496 return sched_idle_rq(cpu_rq(cpu));
5497}
afa70d94 5498#endif
323af6de 5499
bf0f6f24
IM
5500/*
5501 * The enqueue_task method is called before nr_running is
5502 * increased. Here we update the fair scheduling stats and
5503 * then put the task into the rbtree:
5504 */
ea87bb78 5505static void
371fd7e7 5506enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5507{
5508 struct cfs_rq *cfs_rq;
62fb1851 5509 struct sched_entity *se = &p->se;
43e9f7f2 5510 int idle_h_nr_running = task_has_idle_policy(p);
8e1ac429 5511 int task_new = !(flags & ENQUEUE_WAKEUP);
bf0f6f24 5512
2539fc82
PB
5513 /*
5514 * The code below (indirectly) updates schedutil which looks at
5515 * the cfs_rq utilization to select a frequency.
5516 * Let's add the task's estimated utilization to the cfs_rq's
5517 * estimated utilization, before we update schedutil.
5518 */
5519 util_est_enqueue(&rq->cfs, p);
5520
8c34ab19
RW
5521 /*
5522 * If in_iowait is set, the code below may not trigger any cpufreq
5523 * utilization updates, so do it here explicitly with the IOWAIT flag
5524 * passed.
5525 */
5526 if (p->in_iowait)
674e7541 5527 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5528
bf0f6f24 5529 for_each_sched_entity(se) {
62fb1851 5530 if (se->on_rq)
bf0f6f24
IM
5531 break;
5532 cfs_rq = cfs_rq_of(se);
88ec22d3 5533 enqueue_entity(cfs_rq, se, flags);
85dac906 5534
953bfcd1 5535 cfs_rq->h_nr_running++;
43e9f7f2 5536 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5537
6d4d2246
VG
5538 /* end evaluation on encountering a throttled cfs_rq */
5539 if (cfs_rq_throttled(cfs_rq))
5540 goto enqueue_throttle;
5541
88ec22d3 5542 flags = ENQUEUE_WAKEUP;
bf0f6f24 5543 }
8f4d37ec 5544
2069dd75 5545 for_each_sched_entity(se) {
0f317143 5546 cfs_rq = cfs_rq_of(se);
2069dd75 5547
88c0616e 5548 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5549 se_update_runnable(se);
1ea6c46a 5550 update_cfs_group(se);
6d4d2246
VG
5551
5552 cfs_rq->h_nr_running++;
5553 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba
VG
5554
5555 /* end evaluation on encountering a throttled cfs_rq */
5556 if (cfs_rq_throttled(cfs_rq))
5557 goto enqueue_throttle;
b34cb07d
PA
5558
5559 /*
5560 * One parent has been throttled and cfs_rq removed from the
5561 * list. Add it back to not break the leaf list.
5562 */
5563 if (throttled_hierarchy(cfs_rq))
5564 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5565 }
5566
7d148be6
VG
5567 /* At this point se is NULL and we are at root level*/
5568 add_nr_running(rq, 1);
2802bf3c 5569
7d148be6
VG
5570 /*
5571 * Since new tasks are assigned an initial util_avg equal to
5572 * half of the spare capacity of their CPU, tiny tasks have the
5573 * ability to cross the overutilized threshold, which will
5574 * result in the load balancer ruining all the task placement
5575 * done by EAS. As a way to mitigate that effect, do not account
5576 * for the first enqueue operation of new tasks during the
5577 * overutilized flag detection.
5578 *
5579 * A better way of solving this problem would be to wait for
5580 * the PELT signals of tasks to converge before taking them
5581 * into account, but that is not straightforward to implement,
5582 * and the following generally works well enough in practice.
5583 */
8e1ac429 5584 if (!task_new)
7d148be6 5585 update_overutilized_status(rq);
cd126afe 5586
7d148be6 5587enqueue_throttle:
f6783319
VG
5588 if (cfs_bandwidth_used()) {
5589 /*
5590 * When bandwidth control is enabled; the cfs_rq_throttled()
5591 * breaks in the above iteration can result in incomplete
5592 * leaf list maintenance, resulting in triggering the assertion
5593 * below.
5594 */
5595 for_each_sched_entity(se) {
5596 cfs_rq = cfs_rq_of(se);
5597
5598 if (list_add_leaf_cfs_rq(cfs_rq))
5599 break;
5600 }
5601 }
5602
5d299eab
PZ
5603 assert_list_leaf_cfs_rq(rq);
5604
a4c2f00f 5605 hrtick_update(rq);
bf0f6f24
IM
5606}
5607
2f36825b
VP
5608static void set_next_buddy(struct sched_entity *se);
5609
bf0f6f24
IM
5610/*
5611 * The dequeue_task method is called before nr_running is
5612 * decreased. We remove the task from the rbtree and
5613 * update the fair scheduling stats:
5614 */
371fd7e7 5615static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5616{
5617 struct cfs_rq *cfs_rq;
62fb1851 5618 struct sched_entity *se = &p->se;
2f36825b 5619 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5620 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5621 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24 5622
8c1f560c
XY
5623 util_est_dequeue(&rq->cfs, p);
5624
bf0f6f24
IM
5625 for_each_sched_entity(se) {
5626 cfs_rq = cfs_rq_of(se);
371fd7e7 5627 dequeue_entity(cfs_rq, se, flags);
85dac906 5628
953bfcd1 5629 cfs_rq->h_nr_running--;
43e9f7f2 5630 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5631
6d4d2246
VG
5632 /* end evaluation on encountering a throttled cfs_rq */
5633 if (cfs_rq_throttled(cfs_rq))
5634 goto dequeue_throttle;
5635
bf0f6f24 5636 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5637 if (cfs_rq->load.weight) {
754bd598
KK
5638 /* Avoid re-evaluating load for this entity: */
5639 se = parent_entity(se);
2f36825b
VP
5640 /*
5641 * Bias pick_next to pick a task from this cfs_rq, as
5642 * p is sleeping when it is within its sched_slice.
5643 */
754bd598
KK
5644 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5645 set_next_buddy(se);
bf0f6f24 5646 break;
2f36825b 5647 }
371fd7e7 5648 flags |= DEQUEUE_SLEEP;
bf0f6f24 5649 }
8f4d37ec 5650
2069dd75 5651 for_each_sched_entity(se) {
0f317143 5652 cfs_rq = cfs_rq_of(se);
2069dd75 5653
88c0616e 5654 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5655 se_update_runnable(se);
1ea6c46a 5656 update_cfs_group(se);
6d4d2246
VG
5657
5658 cfs_rq->h_nr_running--;
5659 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba
VG
5660
5661 /* end evaluation on encountering a throttled cfs_rq */
5662 if (cfs_rq_throttled(cfs_rq))
5663 goto dequeue_throttle;
5664
2069dd75
PZ
5665 }
5666
423d02e1
PW
5667 /* At this point se is NULL and we are at root level*/
5668 sub_nr_running(rq, 1);
cd126afe 5669
323af6de
VK
5670 /* balance early to pull high priority tasks */
5671 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5672 rq->next_balance = jiffies;
5673
423d02e1 5674dequeue_throttle:
8c1f560c 5675 util_est_update(&rq->cfs, p, task_sleep);
a4c2f00f 5676 hrtick_update(rq);
bf0f6f24
IM
5677}
5678
e7693a36 5679#ifdef CONFIG_SMP
10e2f1ac
PZ
5680
5681/* Working cpumask for: load_balance, load_balance_newidle. */
5682DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5683DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5684
9fd81dd5 5685#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5686
5687static struct {
5688 cpumask_var_t idle_cpus_mask;
5689 atomic_t nr_cpus;
f643ea22 5690 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5691 unsigned long next_balance; /* in jiffy units */
f643ea22 5692 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5693} nohz ____cacheline_aligned;
5694
9fd81dd5 5695#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5696
b0fb1eb4
VG
5697static unsigned long cpu_load(struct rq *rq)
5698{
5699 return cfs_rq_load_avg(&rq->cfs);
5700}
5701
3318544b
VG
5702/*
5703 * cpu_load_without - compute CPU load without any contributions from *p
5704 * @cpu: the CPU which load is requested
5705 * @p: the task which load should be discounted
5706 *
5707 * The load of a CPU is defined by the load of tasks currently enqueued on that
5708 * CPU as well as tasks which are currently sleeping after an execution on that
5709 * CPU.
5710 *
5711 * This method returns the load of the specified CPU by discounting the load of
5712 * the specified task, whenever the task is currently contributing to the CPU
5713 * load.
5714 */
5715static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5716{
5717 struct cfs_rq *cfs_rq;
5718 unsigned int load;
5719
5720 /* Task has no contribution or is new */
5721 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5722 return cpu_load(rq);
5723
5724 cfs_rq = &rq->cfs;
5725 load = READ_ONCE(cfs_rq->avg.load_avg);
5726
5727 /* Discount task's util from CPU's util */
5728 lsub_positive(&load, task_h_load(p));
5729
5730 return load;
5731}
5732
9f683953
VG
5733static unsigned long cpu_runnable(struct rq *rq)
5734{
5735 return cfs_rq_runnable_avg(&rq->cfs);
5736}
5737
070f5e86
VG
5738static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5739{
5740 struct cfs_rq *cfs_rq;
5741 unsigned int runnable;
5742
5743 /* Task has no contribution or is new */
5744 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5745 return cpu_runnable(rq);
5746
5747 cfs_rq = &rq->cfs;
5748 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5749
5750 /* Discount task's runnable from CPU's runnable */
5751 lsub_positive(&runnable, p->se.avg.runnable_avg);
5752
5753 return runnable;
5754}
5755
ced549fa 5756static unsigned long capacity_of(int cpu)
029632fb 5757{
ced549fa 5758 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5759}
5760
c58d25f3
PZ
5761static void record_wakee(struct task_struct *p)
5762{
5763 /*
5764 * Only decay a single time; tasks that have less then 1 wakeup per
5765 * jiffy will not have built up many flips.
5766 */
5767 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5768 current->wakee_flips >>= 1;
5769 current->wakee_flip_decay_ts = jiffies;
5770 }
5771
5772 if (current->last_wakee != p) {
5773 current->last_wakee = p;
5774 current->wakee_flips++;
5775 }
5776}
5777
63b0e9ed
MG
5778/*
5779 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5780 *
63b0e9ed 5781 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5782 * at a frequency roughly N times higher than one of its wakees.
5783 *
5784 * In order to determine whether we should let the load spread vs consolidating
5785 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5786 * partner, and a factor of lls_size higher frequency in the other.
5787 *
5788 * With both conditions met, we can be relatively sure that the relationship is
5789 * non-monogamous, with partner count exceeding socket size.
5790 *
5791 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5792 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5793 * socket size.
63b0e9ed 5794 */
62470419
MW
5795static int wake_wide(struct task_struct *p)
5796{
63b0e9ed
MG
5797 unsigned int master = current->wakee_flips;
5798 unsigned int slave = p->wakee_flips;
17c891ab 5799 int factor = __this_cpu_read(sd_llc_size);
62470419 5800
63b0e9ed
MG
5801 if (master < slave)
5802 swap(master, slave);
5803 if (slave < factor || master < slave * factor)
5804 return 0;
5805 return 1;
62470419
MW
5806}
5807
90001d67 5808/*
d153b153
PZ
5809 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5810 * soonest. For the purpose of speed we only consider the waking and previous
5811 * CPU.
90001d67 5812 *
7332dec0
MG
5813 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5814 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5815 *
5816 * wake_affine_weight() - considers the weight to reflect the average
5817 * scheduling latency of the CPUs. This seems to work
5818 * for the overloaded case.
90001d67 5819 */
3b76c4a3 5820static int
89a55f56 5821wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5822{
7332dec0
MG
5823 /*
5824 * If this_cpu is idle, it implies the wakeup is from interrupt
5825 * context. Only allow the move if cache is shared. Otherwise an
5826 * interrupt intensive workload could force all tasks onto one
5827 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5828 *
5829 * If the prev_cpu is idle and cache affine then avoid a migration.
5830 * There is no guarantee that the cache hot data from an interrupt
5831 * is more important than cache hot data on the prev_cpu and from
5832 * a cpufreq perspective, it's better to have higher utilisation
5833 * on one CPU.
7332dec0 5834 */
943d355d
RJ
5835 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5836 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5837
d153b153 5838 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5839 return this_cpu;
90001d67 5840
d8fcb81f
JL
5841 if (available_idle_cpu(prev_cpu))
5842 return prev_cpu;
5843
3b76c4a3 5844 return nr_cpumask_bits;
90001d67
PZ
5845}
5846
3b76c4a3 5847static int
f2cdd9cc
PZ
5848wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5849 int this_cpu, int prev_cpu, int sync)
90001d67 5850{
90001d67
PZ
5851 s64 this_eff_load, prev_eff_load;
5852 unsigned long task_load;
5853
11f10e54 5854 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5855
90001d67
PZ
5856 if (sync) {
5857 unsigned long current_load = task_h_load(current);
5858
f2cdd9cc 5859 if (current_load > this_eff_load)
3b76c4a3 5860 return this_cpu;
90001d67 5861
f2cdd9cc 5862 this_eff_load -= current_load;
90001d67
PZ
5863 }
5864
90001d67
PZ
5865 task_load = task_h_load(p);
5866
f2cdd9cc
PZ
5867 this_eff_load += task_load;
5868 if (sched_feat(WA_BIAS))
5869 this_eff_load *= 100;
5870 this_eff_load *= capacity_of(prev_cpu);
90001d67 5871
11f10e54 5872 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5873 prev_eff_load -= task_load;
5874 if (sched_feat(WA_BIAS))
5875 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5876 prev_eff_load *= capacity_of(this_cpu);
90001d67 5877
082f764a
MG
5878 /*
5879 * If sync, adjust the weight of prev_eff_load such that if
5880 * prev_eff == this_eff that select_idle_sibling() will consider
5881 * stacking the wakee on top of the waker if no other CPU is
5882 * idle.
5883 */
5884 if (sync)
5885 prev_eff_load += 1;
5886
5887 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5888}
5889
772bd008 5890static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5891 int this_cpu, int prev_cpu, int sync)
098fb9db 5892{
3b76c4a3 5893 int target = nr_cpumask_bits;
098fb9db 5894
89a55f56 5895 if (sched_feat(WA_IDLE))
3b76c4a3 5896 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5897
3b76c4a3
MG
5898 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5899 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5900
ae92882e 5901 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5902 if (target == nr_cpumask_bits)
5903 return prev_cpu;
098fb9db 5904
3b76c4a3
MG
5905 schedstat_inc(sd->ttwu_move_affine);
5906 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5907 return target;
098fb9db
IM
5908}
5909
aaee1203 5910static struct sched_group *
45da2773 5911find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5912
5913/*
97fb7a0a 5914 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5915 */
5916static int
18bd1b4b 5917find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5918{
5919 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5920 unsigned int min_exit_latency = UINT_MAX;
5921 u64 latest_idle_timestamp = 0;
5922 int least_loaded_cpu = this_cpu;
17346452 5923 int shallowest_idle_cpu = -1;
aaee1203
PZ
5924 int i;
5925
eaecf41f
MR
5926 /* Check if we have any choice: */
5927 if (group->group_weight == 1)
ae4df9d6 5928 return cpumask_first(sched_group_span(group));
eaecf41f 5929
aaee1203 5930 /* Traverse only the allowed CPUs */
3bd37062 5931 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
17346452
VK
5932 if (sched_idle_cpu(i))
5933 return i;
5934
943d355d 5935 if (available_idle_cpu(i)) {
83a0a96a
NP
5936 struct rq *rq = cpu_rq(i);
5937 struct cpuidle_state *idle = idle_get_state(rq);
5938 if (idle && idle->exit_latency < min_exit_latency) {
5939 /*
5940 * We give priority to a CPU whose idle state
5941 * has the smallest exit latency irrespective
5942 * of any idle timestamp.
5943 */
5944 min_exit_latency = idle->exit_latency;
5945 latest_idle_timestamp = rq->idle_stamp;
5946 shallowest_idle_cpu = i;
5947 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5948 rq->idle_stamp > latest_idle_timestamp) {
5949 /*
5950 * If equal or no active idle state, then
5951 * the most recently idled CPU might have
5952 * a warmer cache.
5953 */
5954 latest_idle_timestamp = rq->idle_stamp;
5955 shallowest_idle_cpu = i;
5956 }
17346452 5957 } else if (shallowest_idle_cpu == -1) {
11f10e54 5958 load = cpu_load(cpu_rq(i));
18cec7e0 5959 if (load < min_load) {
83a0a96a
NP
5960 min_load = load;
5961 least_loaded_cpu = i;
5962 }
e7693a36
GH
5963 }
5964 }
5965
17346452 5966 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5967}
e7693a36 5968
18bd1b4b
BJ
5969static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5970 int cpu, int prev_cpu, int sd_flag)
5971{
93f50f90 5972 int new_cpu = cpu;
18bd1b4b 5973
3bd37062 5974 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5975 return prev_cpu;
5976
c976a862 5977 /*
57abff06 5978 * We need task's util for cpu_util_without, sync it up to
c469933e 5979 * prev_cpu's last_update_time.
c976a862
VK
5980 */
5981 if (!(sd_flag & SD_BALANCE_FORK))
5982 sync_entity_load_avg(&p->se);
5983
18bd1b4b
BJ
5984 while (sd) {
5985 struct sched_group *group;
5986 struct sched_domain *tmp;
5987 int weight;
5988
5989 if (!(sd->flags & sd_flag)) {
5990 sd = sd->child;
5991 continue;
5992 }
5993
45da2773 5994 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
5995 if (!group) {
5996 sd = sd->child;
5997 continue;
5998 }
5999
6000 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 6001 if (new_cpu == cpu) {
97fb7a0a 6002 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
6003 sd = sd->child;
6004 continue;
6005 }
6006
97fb7a0a 6007 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
6008 cpu = new_cpu;
6009 weight = sd->span_weight;
6010 sd = NULL;
6011 for_each_domain(cpu, tmp) {
6012 if (weight <= tmp->span_weight)
6013 break;
6014 if (tmp->flags & sd_flag)
6015 sd = tmp;
6016 }
18bd1b4b
BJ
6017 }
6018
6019 return new_cpu;
6020}
6021
10e2f1ac 6022#ifdef CONFIG_SCHED_SMT
ba2591a5 6023DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6024EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6025
6026static inline void set_idle_cores(int cpu, int val)
6027{
6028 struct sched_domain_shared *sds;
6029
6030 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6031 if (sds)
6032 WRITE_ONCE(sds->has_idle_cores, val);
6033}
6034
6035static inline bool test_idle_cores(int cpu, bool def)
6036{
6037 struct sched_domain_shared *sds;
6038
6039 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6040 if (sds)
6041 return READ_ONCE(sds->has_idle_cores);
6042
6043 return def;
6044}
6045
6046/*
6047 * Scans the local SMT mask to see if the entire core is idle, and records this
6048 * information in sd_llc_shared->has_idle_cores.
6049 *
6050 * Since SMT siblings share all cache levels, inspecting this limited remote
6051 * state should be fairly cheap.
6052 */
1b568f0a 6053void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6054{
6055 int core = cpu_of(rq);
6056 int cpu;
6057
6058 rcu_read_lock();
6059 if (test_idle_cores(core, true))
6060 goto unlock;
6061
6062 for_each_cpu(cpu, cpu_smt_mask(core)) {
6063 if (cpu == core)
6064 continue;
6065
943d355d 6066 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6067 goto unlock;
6068 }
6069
6070 set_idle_cores(core, 1);
6071unlock:
6072 rcu_read_unlock();
6073}
6074
6075/*
6076 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6077 * there are no idle cores left in the system; tracked through
6078 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6079 */
6080static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6081{
6082 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6083 int core, cpu;
10e2f1ac 6084
1b568f0a
PZ
6085 if (!static_branch_likely(&sched_smt_present))
6086 return -1;
6087
10e2f1ac
PZ
6088 if (!test_idle_cores(target, false))
6089 return -1;
6090
3bd37062 6091 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 6092
c743f0a5 6093 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6094 bool idle = true;
6095
6096 for_each_cpu(cpu, cpu_smt_mask(core)) {
bec2860a 6097 if (!available_idle_cpu(cpu)) {
10e2f1ac 6098 idle = false;
bec2860a
SD
6099 break;
6100 }
10e2f1ac
PZ
6101 }
6102
6103 if (idle)
6104 return core;
13d5a5e9
MG
6105
6106 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6107 }
6108
6109 /*
6110 * Failed to find an idle core; stop looking for one.
6111 */
6112 set_idle_cores(target, 0);
6113
6114 return -1;
6115}
6116
6117/*
6118 * Scan the local SMT mask for idle CPUs.
6119 */
df3cb4ea 6120static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
10e2f1ac 6121{
17346452 6122 int cpu;
10e2f1ac 6123
1b568f0a
PZ
6124 if (!static_branch_likely(&sched_smt_present))
6125 return -1;
6126
10e2f1ac 6127 for_each_cpu(cpu, cpu_smt_mask(target)) {
df3cb4ea
XP
6128 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6129 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
10e2f1ac 6130 continue;
17346452 6131 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6132 return cpu;
6133 }
6134
17346452 6135 return -1;
10e2f1ac
PZ
6136}
6137
6138#else /* CONFIG_SCHED_SMT */
6139
6140static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6141{
6142 return -1;
6143}
6144
df3cb4ea 6145static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
10e2f1ac
PZ
6146{
6147 return -1;
6148}
6149
6150#endif /* CONFIG_SCHED_SMT */
6151
6152/*
6153 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6154 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6155 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6156 */
10e2f1ac
PZ
6157static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6158{
60588bfa 6159 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9cfb38a7 6160 struct sched_domain *this_sd;
1ad3aaf3 6161 u64 avg_cost, avg_idle;
d76343c6 6162 u64 time;
8dc2d993 6163 int this = smp_processor_id();
17346452 6164 int cpu, nr = INT_MAX;
10e2f1ac 6165
9cfb38a7
WL
6166 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6167 if (!this_sd)
6168 return -1;
6169
10e2f1ac
PZ
6170 /*
6171 * Due to large variance we need a large fuzz factor; hackbench in
6172 * particularly is sensitive here.
6173 */
1ad3aaf3
PZ
6174 avg_idle = this_rq()->avg_idle / 512;
6175 avg_cost = this_sd->avg_scan_cost + 1;
6176
6177 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6178 return -1;
6179
1ad3aaf3
PZ
6180 if (sched_feat(SIS_PROP)) {
6181 u64 span_avg = sd->span_weight * avg_idle;
6182 if (span_avg > 4*avg_cost)
6183 nr = div_u64(span_avg, avg_cost);
6184 else
6185 nr = 4;
6186 }
6187
8dc2d993 6188 time = cpu_clock(this);
10e2f1ac 6189
60588bfa
CJ
6190 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6191
6192 for_each_cpu_wrap(cpu, cpus, target) {
1ad3aaf3 6193 if (!--nr)
17346452
VK
6194 return -1;
6195 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6196 break;
6197 }
6198
8dc2d993 6199 time = cpu_clock(this) - time;
d76343c6 6200 update_avg(&this_sd->avg_scan_cost, time);
10e2f1ac
PZ
6201
6202 return cpu;
6203}
6204
b7a33161
MR
6205/*
6206 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6207 * the task fits. If no CPU is big enough, but there are idle ones, try to
6208 * maximize capacity.
6209 */
6210static int
6211select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6212{
b4c9c9f1 6213 unsigned long task_util, best_cap = 0;
b7a33161
MR
6214 int cpu, best_cpu = -1;
6215 struct cpumask *cpus;
6216
b7a33161
MR
6217 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6218 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6219
b4c9c9f1
VG
6220 task_util = uclamp_task_util(p);
6221
b7a33161
MR
6222 for_each_cpu_wrap(cpu, cpus, target) {
6223 unsigned long cpu_cap = capacity_of(cpu);
6224
6225 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6226 continue;
b4c9c9f1 6227 if (fits_capacity(task_util, cpu_cap))
b7a33161
MR
6228 return cpu;
6229
6230 if (cpu_cap > best_cap) {
6231 best_cap = cpu_cap;
6232 best_cpu = cpu;
6233 }
6234 }
6235
6236 return best_cpu;
6237}
6238
b4c9c9f1
VG
6239static inline bool asym_fits_capacity(int task_util, int cpu)
6240{
6241 if (static_branch_unlikely(&sched_asym_cpucapacity))
6242 return fits_capacity(task_util, capacity_of(cpu));
6243
6244 return true;
6245}
6246
10e2f1ac
PZ
6247/*
6248 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6249 */
772bd008 6250static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6251{
99bd5e2f 6252 struct sched_domain *sd;
b4c9c9f1 6253 unsigned long task_util;
32e839dd 6254 int i, recent_used_cpu;
a50bde51 6255
b7a33161 6256 /*
b4c9c9f1
VG
6257 * On asymmetric system, update task utilization because we will check
6258 * that the task fits with cpu's capacity.
b7a33161
MR
6259 */
6260 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
b4c9c9f1
VG
6261 sync_entity_load_avg(&p->se);
6262 task_util = uclamp_task_util(p);
b7a33161
MR
6263 }
6264
b4c9c9f1
VG
6265 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6266 asym_fits_capacity(task_util, target))
e0a79f52 6267 return target;
99bd5e2f
SS
6268
6269 /*
97fb7a0a 6270 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6271 */
3c29e651 6272 if (prev != target && cpus_share_cache(prev, target) &&
b4c9c9f1
VG
6273 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6274 asym_fits_capacity(task_util, prev))
772bd008 6275 return prev;
a50bde51 6276
52262ee5
MG
6277 /*
6278 * Allow a per-cpu kthread to stack with the wakee if the
6279 * kworker thread and the tasks previous CPUs are the same.
6280 * The assumption is that the wakee queued work for the
6281 * per-cpu kthread that is now complete and the wakeup is
6282 * essentially a sync wakeup. An obvious example of this
6283 * pattern is IO completions.
6284 */
6285 if (is_per_cpu_kthread(current) &&
6286 prev == smp_processor_id() &&
6287 this_rq()->nr_running <= 1) {
6288 return prev;
6289 }
6290
97fb7a0a 6291 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6292 recent_used_cpu = p->recent_used_cpu;
6293 if (recent_used_cpu != prev &&
6294 recent_used_cpu != target &&
6295 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6296 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
b4c9c9f1
VG
6297 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6298 asym_fits_capacity(task_util, recent_used_cpu)) {
32e839dd
MG
6299 /*
6300 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6301 * candidate for the next wake:
32e839dd
MG
6302 */
6303 p->recent_used_cpu = prev;
6304 return recent_used_cpu;
6305 }
6306
b4c9c9f1
VG
6307 /*
6308 * For asymmetric CPU capacity systems, our domain of interest is
6309 * sd_asym_cpucapacity rather than sd_llc.
6310 */
6311 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6312 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6313 /*
6314 * On an asymmetric CPU capacity system where an exclusive
6315 * cpuset defines a symmetric island (i.e. one unique
6316 * capacity_orig value through the cpuset), the key will be set
6317 * but the CPUs within that cpuset will not have a domain with
6318 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6319 * capacity path.
6320 */
6321 if (sd) {
6322 i = select_idle_capacity(p, sd, target);
6323 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6324 }
6325 }
6326
518cd623 6327 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6328 if (!sd)
6329 return target;
772bd008 6330
10e2f1ac
PZ
6331 i = select_idle_core(p, sd, target);
6332 if ((unsigned)i < nr_cpumask_bits)
6333 return i;
37407ea7 6334
10e2f1ac
PZ
6335 i = select_idle_cpu(p, sd, target);
6336 if ((unsigned)i < nr_cpumask_bits)
6337 return i;
6338
df3cb4ea 6339 i = select_idle_smt(p, sd, target);
10e2f1ac
PZ
6340 if ((unsigned)i < nr_cpumask_bits)
6341 return i;
970e1789 6342
a50bde51
PZ
6343 return target;
6344}
231678b7 6345
f9be3e59 6346/**
59a74b15 6347 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
f9be3e59
PB
6348 * @cpu: the CPU to get the utilization of
6349 *
6350 * The unit of the return value must be the one of capacity so we can compare
6351 * the utilization with the capacity of the CPU that is available for CFS task
6352 * (ie cpu_capacity).
231678b7
DE
6353 *
6354 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6355 * recent utilization of currently non-runnable tasks on a CPU. It represents
6356 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6357 * capacity_orig is the cpu_capacity available at the highest frequency
6358 * (arch_scale_freq_capacity()).
6359 * The utilization of a CPU converges towards a sum equal to or less than the
6360 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6361 * the running time on this CPU scaled by capacity_curr.
6362 *
f9be3e59
PB
6363 * The estimated utilization of a CPU is defined to be the maximum between its
6364 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6365 * currently RUNNABLE on that CPU.
6366 * This allows to properly represent the expected utilization of a CPU which
6367 * has just got a big task running since a long sleep period. At the same time
6368 * however it preserves the benefits of the "blocked utilization" in
6369 * describing the potential for other tasks waking up on the same CPU.
6370 *
231678b7
DE
6371 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6372 * higher than capacity_orig because of unfortunate rounding in
6373 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6374 * the average stabilizes with the new running time. We need to check that the
6375 * utilization stays within the range of [0..capacity_orig] and cap it if
6376 * necessary. Without utilization capping, a group could be seen as overloaded
6377 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6378 * available capacity. We allow utilization to overshoot capacity_curr (but not
6379 * capacity_orig) as it useful for predicting the capacity required after task
6380 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6381 *
6382 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6383 */
f9be3e59 6384static inline unsigned long cpu_util(int cpu)
8bb5b00c 6385{
f9be3e59
PB
6386 struct cfs_rq *cfs_rq;
6387 unsigned int util;
6388
6389 cfs_rq = &cpu_rq(cpu)->cfs;
6390 util = READ_ONCE(cfs_rq->avg.util_avg);
6391
6392 if (sched_feat(UTIL_EST))
6393 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6394
f9be3e59 6395 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6396}
a50bde51 6397
104cb16d 6398/*
c469933e
PB
6399 * cpu_util_without: compute cpu utilization without any contributions from *p
6400 * @cpu: the CPU which utilization is requested
6401 * @p: the task which utilization should be discounted
6402 *
6403 * The utilization of a CPU is defined by the utilization of tasks currently
6404 * enqueued on that CPU as well as tasks which are currently sleeping after an
6405 * execution on that CPU.
6406 *
6407 * This method returns the utilization of the specified CPU by discounting the
6408 * utilization of the specified task, whenever the task is currently
6409 * contributing to the CPU utilization.
104cb16d 6410 */
c469933e 6411static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6412{
f9be3e59
PB
6413 struct cfs_rq *cfs_rq;
6414 unsigned int util;
104cb16d
MR
6415
6416 /* Task has no contribution or is new */
f9be3e59 6417 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6418 return cpu_util(cpu);
6419
f9be3e59
PB
6420 cfs_rq = &cpu_rq(cpu)->cfs;
6421 util = READ_ONCE(cfs_rq->avg.util_avg);
6422
c469933e 6423 /* Discount task's util from CPU's util */
b5c0ce7b 6424 lsub_positive(&util, task_util(p));
104cb16d 6425
f9be3e59
PB
6426 /*
6427 * Covered cases:
6428 *
6429 * a) if *p is the only task sleeping on this CPU, then:
6430 * cpu_util (== task_util) > util_est (== 0)
6431 * and thus we return:
c469933e 6432 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6433 *
6434 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6435 * IDLE, then:
6436 * cpu_util >= task_util
6437 * cpu_util > util_est (== 0)
6438 * and thus we discount *p's blocked utilization to return:
c469933e 6439 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6440 *
6441 * c) if other tasks are RUNNABLE on that CPU and
6442 * util_est > cpu_util
6443 * then we use util_est since it returns a more restrictive
6444 * estimation of the spare capacity on that CPU, by just
6445 * considering the expected utilization of tasks already
6446 * runnable on that CPU.
6447 *
6448 * Cases a) and b) are covered by the above code, while case c) is
6449 * covered by the following code when estimated utilization is
6450 * enabled.
6451 */
c469933e
PB
6452 if (sched_feat(UTIL_EST)) {
6453 unsigned int estimated =
6454 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6455
6456 /*
6457 * Despite the following checks we still have a small window
6458 * for a possible race, when an execl's select_task_rq_fair()
6459 * races with LB's detach_task():
6460 *
6461 * detach_task()
6462 * p->on_rq = TASK_ON_RQ_MIGRATING;
6463 * ---------------------------------- A
6464 * deactivate_task() \
6465 * dequeue_task() + RaceTime
6466 * util_est_dequeue() /
6467 * ---------------------------------- B
6468 *
6469 * The additional check on "current == p" it's required to
6470 * properly fix the execl regression and it helps in further
6471 * reducing the chances for the above race.
6472 */
b5c0ce7b
PB
6473 if (unlikely(task_on_rq_queued(p) || current == p))
6474 lsub_positive(&estimated, _task_util_est(p));
6475
c469933e
PB
6476 util = max(util, estimated);
6477 }
f9be3e59
PB
6478
6479 /*
6480 * Utilization (estimated) can exceed the CPU capacity, thus let's
6481 * clamp to the maximum CPU capacity to ensure consistency with
6482 * the cpu_util call.
6483 */
6484 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6485}
6486
390031e4
QP
6487/*
6488 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6489 * to @dst_cpu.
6490 */
6491static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6492{
6493 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6494 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6495
6496 /*
6497 * If @p migrates from @cpu to another, remove its contribution. Or,
6498 * if @p migrates from another CPU to @cpu, add its contribution. In
6499 * the other cases, @cpu is not impacted by the migration, so the
6500 * util_avg should already be correct.
6501 */
6502 if (task_cpu(p) == cpu && dst_cpu != cpu)
6503 sub_positive(&util, task_util(p));
6504 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6505 util += task_util(p);
6506
6507 if (sched_feat(UTIL_EST)) {
6508 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6509
6510 /*
6511 * During wake-up, the task isn't enqueued yet and doesn't
6512 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6513 * so just add it (if needed) to "simulate" what will be
6514 * cpu_util() after the task has been enqueued.
6515 */
6516 if (dst_cpu == cpu)
6517 util_est += _task_util_est(p);
6518
6519 util = max(util, util_est);
6520 }
6521
6522 return min(util, capacity_orig_of(cpu));
6523}
6524
6525/*
eb92692b 6526 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6527 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6528 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6529 * to compute what would be the energy if we decided to actually migrate that
6530 * task.
6531 */
6532static long
6533compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6534{
eb92692b
QP
6535 struct cpumask *pd_mask = perf_domain_span(pd);
6536 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6537 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6538 int cpu;
6539
eb92692b
QP
6540 /*
6541 * The capacity state of CPUs of the current rd can be driven by CPUs
6542 * of another rd if they belong to the same pd. So, account for the
6543 * utilization of these CPUs too by masking pd with cpu_online_mask
6544 * instead of the rd span.
6545 *
6546 * If an entire pd is outside of the current rd, it will not appear in
6547 * its pd list and will not be accounted by compute_energy().
6548 */
6549 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6550 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6551 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6552
6553 /*
eb92692b
QP
6554 * Busy time computation: utilization clamping is not
6555 * required since the ratio (sum_util / cpu_capacity)
6556 * is already enough to scale the EM reported power
6557 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6558 */
a5418be9 6559 sum_util += effective_cpu_util(cpu, util_cfs, cpu_cap,
eb92692b 6560 ENERGY_UTIL, NULL);
af24bde8 6561
390031e4 6562 /*
eb92692b
QP
6563 * Performance domain frequency: utilization clamping
6564 * must be considered since it affects the selection
6565 * of the performance domain frequency.
6566 * NOTE: in case RT tasks are running, by default the
6567 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6568 */
a5418be9 6569 cpu_util = effective_cpu_util(cpu, util_cfs, cpu_cap,
eb92692b
QP
6570 FREQUENCY_UTIL, tsk);
6571 max_util = max(max_util, cpu_util);
390031e4
QP
6572 }
6573
f0b56947 6574 return em_cpu_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6575}
6576
732cd75b
QP
6577/*
6578 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6579 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6580 * spare capacity in each performance domain and uses it as a potential
6581 * candidate to execute the task. Then, it uses the Energy Model to figure
6582 * out which of the CPU candidates is the most energy-efficient.
6583 *
6584 * The rationale for this heuristic is as follows. In a performance domain,
6585 * all the most energy efficient CPU candidates (according to the Energy
6586 * Model) are those for which we'll request a low frequency. When there are
6587 * several CPUs for which the frequency request will be the same, we don't
6588 * have enough data to break the tie between them, because the Energy Model
6589 * only includes active power costs. With this model, if we assume that
6590 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6591 * the maximum spare capacity in a performance domain is guaranteed to be among
6592 * the best candidates of the performance domain.
6593 *
6594 * In practice, it could be preferable from an energy standpoint to pack
6595 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6596 * but that could also hurt our chances to go cluster idle, and we have no
6597 * ways to tell with the current Energy Model if this is actually a good
6598 * idea or not. So, find_energy_efficient_cpu() basically favors
6599 * cluster-packing, and spreading inside a cluster. That should at least be
6600 * a good thing for latency, and this is consistent with the idea that most
6601 * of the energy savings of EAS come from the asymmetry of the system, and
6602 * not so much from breaking the tie between identical CPUs. That's also the
6603 * reason why EAS is enabled in the topology code only for systems where
6604 * SD_ASYM_CPUCAPACITY is set.
6605 *
6606 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6607 * they don't have any useful utilization data yet and it's not possible to
6608 * forecast their impact on energy consumption. Consequently, they will be
6609 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6610 * to be energy-inefficient in some use-cases. The alternative would be to
6611 * bias new tasks towards specific types of CPUs first, or to try to infer
6612 * their util_avg from the parent task, but those heuristics could hurt
6613 * other use-cases too. So, until someone finds a better way to solve this,
6614 * let's keep things simple by re-using the existing slow path.
6615 */
732cd75b
QP
6616static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6617{
eb92692b 6618 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6619 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6620 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6621 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6622 struct sched_domain *sd;
eb92692b 6623 struct perf_domain *pd;
732cd75b
QP
6624
6625 rcu_read_lock();
6626 pd = rcu_dereference(rd->pd);
6627 if (!pd || READ_ONCE(rd->overutilized))
6628 goto fail;
732cd75b
QP
6629
6630 /*
6631 * Energy-aware wake-up happens on the lowest sched_domain starting
6632 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6633 */
6634 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6635 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6636 sd = sd->parent;
6637 if (!sd)
6638 goto fail;
6639
6640 sync_entity_load_avg(&p->se);
6641 if (!task_util_est(p))
6642 goto unlock;
6643
6644 for (; pd; pd = pd->next) {
eb92692b
QP
6645 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6646 unsigned long base_energy_pd;
732cd75b
QP
6647 int max_spare_cap_cpu = -1;
6648
eb92692b
QP
6649 /* Compute the 'base' energy of the pd, without @p */
6650 base_energy_pd = compute_energy(p, -1, pd);
6651 base_energy += base_energy_pd;
6652
732cd75b 6653 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6654 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6655 continue;
6656
732cd75b
QP
6657 util = cpu_util_next(cpu, p, cpu);
6658 cpu_cap = capacity_of(cpu);
da0777d3
LL
6659 spare_cap = cpu_cap;
6660 lsub_positive(&spare_cap, util);
1d42509e
VS
6661
6662 /*
6663 * Skip CPUs that cannot satisfy the capacity request.
6664 * IOW, placing the task there would make the CPU
6665 * overutilized. Take uclamp into account to see how
6666 * much capacity we can get out of the CPU; this is
a5418be9 6667 * aligned with sched_cpu_util().
1d42509e
VS
6668 */
6669 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6670 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6671 continue;
6672
6673 /* Always use prev_cpu as a candidate. */
6674 if (cpu == prev_cpu) {
eb92692b
QP
6675 prev_delta = compute_energy(p, prev_cpu, pd);
6676 prev_delta -= base_energy_pd;
6677 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6678 }
6679
6680 /*
6681 * Find the CPU with the maximum spare capacity in
6682 * the performance domain
6683 */
732cd75b
QP
6684 if (spare_cap > max_spare_cap) {
6685 max_spare_cap = spare_cap;
6686 max_spare_cap_cpu = cpu;
6687 }
6688 }
6689
6690 /* Evaluate the energy impact of using this CPU. */
4892f51a 6691 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6692 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6693 cur_delta -= base_energy_pd;
6694 if (cur_delta < best_delta) {
6695 best_delta = cur_delta;
732cd75b
QP
6696 best_energy_cpu = max_spare_cap_cpu;
6697 }
6698 }
6699 }
6700unlock:
6701 rcu_read_unlock();
6702
6703 /*
6704 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6705 * least 6% of the energy used by prev_cpu.
6706 */
eb92692b 6707 if (prev_delta == ULONG_MAX)
732cd75b
QP
6708 return best_energy_cpu;
6709
eb92692b 6710 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6711 return best_energy_cpu;
6712
6713 return prev_cpu;
6714
6715fail:
6716 rcu_read_unlock();
6717
6718 return -1;
6719}
6720
aaee1203 6721/*
de91b9cb 6722 * select_task_rq_fair: Select target runqueue for the waking task in domains
3aef1551 6723 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
de91b9cb 6724 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6725 *
97fb7a0a
IM
6726 * Balances load by selecting the idlest CPU in the idlest group, or under
6727 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6728 *
97fb7a0a 6729 * Returns the target CPU number.
aaee1203
PZ
6730 *
6731 * preempt must be disabled.
6732 */
0017d735 6733static int
3aef1551 6734select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
aaee1203 6735{
3aef1551 6736 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
f1d88b44 6737 struct sched_domain *tmp, *sd = NULL;
c88d5910 6738 int cpu = smp_processor_id();
63b0e9ed 6739 int new_cpu = prev_cpu;
99bd5e2f 6740 int want_affine = 0;
3aef1551
VS
6741 /* SD_flags and WF_flags share the first nibble */
6742 int sd_flag = wake_flags & 0xF;
c88d5910 6743
dc824eb8 6744 if (wake_flags & WF_TTWU) {
c58d25f3 6745 record_wakee(p);
732cd75b 6746
f8a696f2 6747 if (sched_energy_enabled()) {
732cd75b
QP
6748 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6749 if (new_cpu >= 0)
6750 return new_cpu;
6751 new_cpu = prev_cpu;
6752 }
6753
00061968 6754 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6755 }
aaee1203 6756
dce840a0 6757 rcu_read_lock();
aaee1203 6758 for_each_domain(cpu, tmp) {
fe3bcfe1 6759 /*
97fb7a0a 6760 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6761 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6762 */
99bd5e2f
SS
6763 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6764 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6765 if (cpu != prev_cpu)
6766 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6767
6768 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6769 break;
f03542a7 6770 }
29cd8bae 6771
f03542a7 6772 if (tmp->flags & sd_flag)
29cd8bae 6773 sd = tmp;
63b0e9ed
MG
6774 else if (!want_affine)
6775 break;
29cd8bae
PZ
6776 }
6777
f1d88b44
VK
6778 if (unlikely(sd)) {
6779 /* Slow path */
18bd1b4b 6780 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
dc824eb8 6781 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
f1d88b44 6782 /* Fast path */
f1d88b44
VK
6783 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6784
6785 if (want_affine)
6786 current->recent_used_cpu = cpu;
e7693a36 6787 }
dce840a0 6788 rcu_read_unlock();
e7693a36 6789
c88d5910 6790 return new_cpu;
e7693a36 6791}
0a74bef8 6792
144d8487
PZ
6793static void detach_entity_cfs_rq(struct sched_entity *se);
6794
0a74bef8 6795/*
97fb7a0a 6796 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6797 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6798 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6799 */
3f9672ba 6800static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6801{
59efa0ba
PZ
6802 /*
6803 * As blocked tasks retain absolute vruntime the migration needs to
6804 * deal with this by subtracting the old and adding the new
6805 * min_vruntime -- the latter is done by enqueue_entity() when placing
6806 * the task on the new runqueue.
6807 */
6808 if (p->state == TASK_WAKING) {
6809 struct sched_entity *se = &p->se;
6810 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6811 u64 min_vruntime;
6812
6813#ifndef CONFIG_64BIT
6814 u64 min_vruntime_copy;
6815
6816 do {
6817 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6818 smp_rmb();
6819 min_vruntime = cfs_rq->min_vruntime;
6820 } while (min_vruntime != min_vruntime_copy);
6821#else
6822 min_vruntime = cfs_rq->min_vruntime;
6823#endif
6824
6825 se->vruntime -= min_vruntime;
6826 }
6827
144d8487
PZ
6828 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6829 /*
6830 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6831 * rq->lock and can modify state directly.
6832 */
6833 lockdep_assert_held(&task_rq(p)->lock);
6834 detach_entity_cfs_rq(&p->se);
6835
6836 } else {
6837 /*
6838 * We are supposed to update the task to "current" time, then
6839 * its up to date and ready to go to new CPU/cfs_rq. But we
6840 * have difficulty in getting what current time is, so simply
6841 * throw away the out-of-date time. This will result in the
6842 * wakee task is less decayed, but giving the wakee more load
6843 * sounds not bad.
6844 */
6845 remove_entity_load_avg(&p->se);
6846 }
9d89c257
YD
6847
6848 /* Tell new CPU we are migrated */
6849 p->se.avg.last_update_time = 0;
3944a927
BS
6850
6851 /* We have migrated, no longer consider this task hot */
9d89c257 6852 p->se.exec_start = 0;
3f9672ba
SD
6853
6854 update_scan_period(p, new_cpu);
0a74bef8 6855}
12695578
YD
6856
6857static void task_dead_fair(struct task_struct *p)
6858{
6859 remove_entity_load_avg(&p->se);
6860}
6e2df058
PZ
6861
6862static int
6863balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6864{
6865 if (rq->nr_running)
6866 return 1;
6867
6868 return newidle_balance(rq, rf) != 0;
6869}
e7693a36
GH
6870#endif /* CONFIG_SMP */
6871
a555e9d8 6872static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6873{
6874 unsigned long gran = sysctl_sched_wakeup_granularity;
6875
6876 /*
e52fb7c0
PZ
6877 * Since its curr running now, convert the gran from real-time
6878 * to virtual-time in his units.
13814d42
MG
6879 *
6880 * By using 'se' instead of 'curr' we penalize light tasks, so
6881 * they get preempted easier. That is, if 'se' < 'curr' then
6882 * the resulting gran will be larger, therefore penalizing the
6883 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6884 * be smaller, again penalizing the lighter task.
6885 *
6886 * This is especially important for buddies when the leftmost
6887 * task is higher priority than the buddy.
0bbd3336 6888 */
f4ad9bd2 6889 return calc_delta_fair(gran, se);
0bbd3336
PZ
6890}
6891
464b7527
PZ
6892/*
6893 * Should 'se' preempt 'curr'.
6894 *
6895 * |s1
6896 * |s2
6897 * |s3
6898 * g
6899 * |<--->|c
6900 *
6901 * w(c, s1) = -1
6902 * w(c, s2) = 0
6903 * w(c, s3) = 1
6904 *
6905 */
6906static int
6907wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6908{
6909 s64 gran, vdiff = curr->vruntime - se->vruntime;
6910
6911 if (vdiff <= 0)
6912 return -1;
6913
a555e9d8 6914 gran = wakeup_gran(se);
464b7527
PZ
6915 if (vdiff > gran)
6916 return 1;
6917
6918 return 0;
6919}
6920
02479099
PZ
6921static void set_last_buddy(struct sched_entity *se)
6922{
1da1843f 6923 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6924 return;
6925
c5ae366e
DA
6926 for_each_sched_entity(se) {
6927 if (SCHED_WARN_ON(!se->on_rq))
6928 return;
69c80f3e 6929 cfs_rq_of(se)->last = se;
c5ae366e 6930 }
02479099
PZ
6931}
6932
6933static void set_next_buddy(struct sched_entity *se)
6934{
1da1843f 6935 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6936 return;
6937
c5ae366e
DA
6938 for_each_sched_entity(se) {
6939 if (SCHED_WARN_ON(!se->on_rq))
6940 return;
69c80f3e 6941 cfs_rq_of(se)->next = se;
c5ae366e 6942 }
02479099
PZ
6943}
6944
ac53db59
RR
6945static void set_skip_buddy(struct sched_entity *se)
6946{
69c80f3e
VP
6947 for_each_sched_entity(se)
6948 cfs_rq_of(se)->skip = se;
ac53db59
RR
6949}
6950
bf0f6f24
IM
6951/*
6952 * Preempt the current task with a newly woken task if needed:
6953 */
5a9b86f6 6954static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6955{
6956 struct task_struct *curr = rq->curr;
8651a86c 6957 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6958 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6959 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6960 int next_buddy_marked = 0;
bf0f6f24 6961
4ae7d5ce
IM
6962 if (unlikely(se == pse))
6963 return;
6964
5238cdd3 6965 /*
163122b7 6966 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6967 * unconditionally check_prempt_curr() after an enqueue (which may have
6968 * lead to a throttle). This both saves work and prevents false
6969 * next-buddy nomination below.
6970 */
6971 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6972 return;
6973
2f36825b 6974 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6975 set_next_buddy(pse);
2f36825b
VP
6976 next_buddy_marked = 1;
6977 }
57fdc26d 6978
aec0a514
BR
6979 /*
6980 * We can come here with TIF_NEED_RESCHED already set from new task
6981 * wake up path.
5238cdd3
PT
6982 *
6983 * Note: this also catches the edge-case of curr being in a throttled
6984 * group (e.g. via set_curr_task), since update_curr() (in the
6985 * enqueue of curr) will have resulted in resched being set. This
6986 * prevents us from potentially nominating it as a false LAST_BUDDY
6987 * below.
aec0a514
BR
6988 */
6989 if (test_tsk_need_resched(curr))
6990 return;
6991
a2f5c9ab 6992 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6993 if (unlikely(task_has_idle_policy(curr)) &&
6994 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6995 goto preempt;
6996
91c234b4 6997 /*
a2f5c9ab
DH
6998 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6999 * is driven by the tick):
91c234b4 7000 */
8ed92e51 7001 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 7002 return;
bf0f6f24 7003
464b7527 7004 find_matching_se(&se, &pse);
9bbd7374 7005 update_curr(cfs_rq_of(se));
002f128b 7006 BUG_ON(!pse);
2f36825b
VP
7007 if (wakeup_preempt_entity(se, pse) == 1) {
7008 /*
7009 * Bias pick_next to pick the sched entity that is
7010 * triggering this preemption.
7011 */
7012 if (!next_buddy_marked)
7013 set_next_buddy(pse);
3a7e73a2 7014 goto preempt;
2f36825b 7015 }
464b7527 7016
3a7e73a2 7017 return;
a65ac745 7018
3a7e73a2 7019preempt:
8875125e 7020 resched_curr(rq);
3a7e73a2
PZ
7021 /*
7022 * Only set the backward buddy when the current task is still
7023 * on the rq. This can happen when a wakeup gets interleaved
7024 * with schedule on the ->pre_schedule() or idle_balance()
7025 * point, either of which can * drop the rq lock.
7026 *
7027 * Also, during early boot the idle thread is in the fair class,
7028 * for obvious reasons its a bad idea to schedule back to it.
7029 */
7030 if (unlikely(!se->on_rq || curr == rq->idle))
7031 return;
7032
7033 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7034 set_last_buddy(se);
bf0f6f24
IM
7035}
7036
5d7d6056 7037struct task_struct *
d8ac8971 7038pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
7039{
7040 struct cfs_rq *cfs_rq = &rq->cfs;
7041 struct sched_entity *se;
678d5718 7042 struct task_struct *p;
37e117c0 7043 int new_tasks;
678d5718 7044
6e83125c 7045again:
6e2df058 7046 if (!sched_fair_runnable(rq))
38033c37 7047 goto idle;
678d5718 7048
9674f5ca 7049#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 7050 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
7051 goto simple;
7052
7053 /*
7054 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7055 * likely that a next task is from the same cgroup as the current.
7056 *
7057 * Therefore attempt to avoid putting and setting the entire cgroup
7058 * hierarchy, only change the part that actually changes.
7059 */
7060
7061 do {
7062 struct sched_entity *curr = cfs_rq->curr;
7063
7064 /*
7065 * Since we got here without doing put_prev_entity() we also
7066 * have to consider cfs_rq->curr. If it is still a runnable
7067 * entity, update_curr() will update its vruntime, otherwise
7068 * forget we've ever seen it.
7069 */
54d27365
BS
7070 if (curr) {
7071 if (curr->on_rq)
7072 update_curr(cfs_rq);
7073 else
7074 curr = NULL;
678d5718 7075
54d27365
BS
7076 /*
7077 * This call to check_cfs_rq_runtime() will do the
7078 * throttle and dequeue its entity in the parent(s).
9674f5ca 7079 * Therefore the nr_running test will indeed
54d27365
BS
7080 * be correct.
7081 */
9674f5ca
VK
7082 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7083 cfs_rq = &rq->cfs;
7084
7085 if (!cfs_rq->nr_running)
7086 goto idle;
7087
54d27365 7088 goto simple;
9674f5ca 7089 }
54d27365 7090 }
678d5718
PZ
7091
7092 se = pick_next_entity(cfs_rq, curr);
7093 cfs_rq = group_cfs_rq(se);
7094 } while (cfs_rq);
7095
7096 p = task_of(se);
7097
7098 /*
7099 * Since we haven't yet done put_prev_entity and if the selected task
7100 * is a different task than we started out with, try and touch the
7101 * least amount of cfs_rqs.
7102 */
7103 if (prev != p) {
7104 struct sched_entity *pse = &prev->se;
7105
7106 while (!(cfs_rq = is_same_group(se, pse))) {
7107 int se_depth = se->depth;
7108 int pse_depth = pse->depth;
7109
7110 if (se_depth <= pse_depth) {
7111 put_prev_entity(cfs_rq_of(pse), pse);
7112 pse = parent_entity(pse);
7113 }
7114 if (se_depth >= pse_depth) {
7115 set_next_entity(cfs_rq_of(se), se);
7116 se = parent_entity(se);
7117 }
7118 }
7119
7120 put_prev_entity(cfs_rq, pse);
7121 set_next_entity(cfs_rq, se);
7122 }
7123
93824900 7124 goto done;
678d5718 7125simple:
678d5718 7126#endif
67692435
PZ
7127 if (prev)
7128 put_prev_task(rq, prev);
606dba2e 7129
bf0f6f24 7130 do {
678d5718 7131 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7132 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7133 cfs_rq = group_cfs_rq(se);
7134 } while (cfs_rq);
7135
8f4d37ec 7136 p = task_of(se);
678d5718 7137
13a453c2 7138done: __maybe_unused;
93824900
UR
7139#ifdef CONFIG_SMP
7140 /*
7141 * Move the next running task to the front of
7142 * the list, so our cfs_tasks list becomes MRU
7143 * one.
7144 */
7145 list_move(&p->se.group_node, &rq->cfs_tasks);
7146#endif
7147
b39e66ea
MG
7148 if (hrtick_enabled(rq))
7149 hrtick_start_fair(rq, p);
8f4d37ec 7150
3b1baa64
MR
7151 update_misfit_status(p, rq);
7152
8f4d37ec 7153 return p;
38033c37
PZ
7154
7155idle:
67692435
PZ
7156 if (!rf)
7157 return NULL;
7158
5ba553ef 7159 new_tasks = newidle_balance(rq, rf);
46f69fa3 7160
37e117c0 7161 /*
5ba553ef 7162 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7163 * possible for any higher priority task to appear. In that case we
7164 * must re-start the pick_next_entity() loop.
7165 */
e4aa358b 7166 if (new_tasks < 0)
37e117c0
PZ
7167 return RETRY_TASK;
7168
e4aa358b 7169 if (new_tasks > 0)
38033c37 7170 goto again;
38033c37 7171
23127296
VG
7172 /*
7173 * rq is about to be idle, check if we need to update the
7174 * lost_idle_time of clock_pelt
7175 */
7176 update_idle_rq_clock_pelt(rq);
7177
38033c37 7178 return NULL;
bf0f6f24
IM
7179}
7180
98c2f700
PZ
7181static struct task_struct *__pick_next_task_fair(struct rq *rq)
7182{
7183 return pick_next_task_fair(rq, NULL, NULL);
7184}
7185
bf0f6f24
IM
7186/*
7187 * Account for a descheduled task:
7188 */
6e2df058 7189static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7190{
7191 struct sched_entity *se = &prev->se;
7192 struct cfs_rq *cfs_rq;
7193
7194 for_each_sched_entity(se) {
7195 cfs_rq = cfs_rq_of(se);
ab6cde26 7196 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7197 }
7198}
7199
ac53db59
RR
7200/*
7201 * sched_yield() is very simple
7202 *
7203 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7204 */
7205static void yield_task_fair(struct rq *rq)
7206{
7207 struct task_struct *curr = rq->curr;
7208 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7209 struct sched_entity *se = &curr->se;
7210
7211 /*
7212 * Are we the only task in the tree?
7213 */
7214 if (unlikely(rq->nr_running == 1))
7215 return;
7216
7217 clear_buddies(cfs_rq, se);
7218
7219 if (curr->policy != SCHED_BATCH) {
7220 update_rq_clock(rq);
7221 /*
7222 * Update run-time statistics of the 'current'.
7223 */
7224 update_curr(cfs_rq);
916671c0
MG
7225 /*
7226 * Tell update_rq_clock() that we've just updated,
7227 * so we don't do microscopic update in schedule()
7228 * and double the fastpath cost.
7229 */
adcc8da8 7230 rq_clock_skip_update(rq);
ac53db59
RR
7231 }
7232
7233 set_skip_buddy(se);
7234}
7235
0900acf2 7236static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7237{
7238 struct sched_entity *se = &p->se;
7239
5238cdd3
PT
7240 /* throttled hierarchies are not runnable */
7241 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7242 return false;
7243
7244 /* Tell the scheduler that we'd really like pse to run next. */
7245 set_next_buddy(se);
7246
d95f4122
MG
7247 yield_task_fair(rq);
7248
7249 return true;
7250}
7251
681f3e68 7252#ifdef CONFIG_SMP
bf0f6f24 7253/**************************************************
e9c84cb8
PZ
7254 * Fair scheduling class load-balancing methods.
7255 *
7256 * BASICS
7257 *
7258 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7259 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7260 * time to each task. This is expressed in the following equation:
7261 *
7262 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7263 *
97fb7a0a 7264 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7265 * W_i,0 is defined as:
7266 *
7267 * W_i,0 = \Sum_j w_i,j (2)
7268 *
97fb7a0a 7269 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7270 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7271 *
7272 * The weight average is an exponential decay average of the instantaneous
7273 * weight:
7274 *
7275 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7276 *
97fb7a0a 7277 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7278 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7279 * can also include other factors [XXX].
7280 *
7281 * To achieve this balance we define a measure of imbalance which follows
7282 * directly from (1):
7283 *
ced549fa 7284 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7285 *
7286 * We them move tasks around to minimize the imbalance. In the continuous
7287 * function space it is obvious this converges, in the discrete case we get
7288 * a few fun cases generally called infeasible weight scenarios.
7289 *
7290 * [XXX expand on:
7291 * - infeasible weights;
7292 * - local vs global optima in the discrete case. ]
7293 *
7294 *
7295 * SCHED DOMAINS
7296 *
7297 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7298 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7299 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7300 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7301 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7302 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7303 * the groups.
7304 *
7305 * This yields:
7306 *
7307 * log_2 n 1 n
7308 * \Sum { --- * --- * 2^i } = O(n) (5)
7309 * i = 0 2^i 2^i
7310 * `- size of each group
97fb7a0a 7311 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7312 * | `- freq
7313 * `- sum over all levels
7314 *
7315 * Coupled with a limit on how many tasks we can migrate every balance pass,
7316 * this makes (5) the runtime complexity of the balancer.
7317 *
7318 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7319 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7320 *
7321 * The adjacency matrix of the resulting graph is given by:
7322 *
97a7142f 7323 * log_2 n
e9c84cb8
PZ
7324 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7325 * k = 0
7326 *
7327 * And you'll find that:
7328 *
7329 * A^(log_2 n)_i,j != 0 for all i,j (7)
7330 *
97fb7a0a 7331 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7332 * The task movement gives a factor of O(m), giving a convergence complexity
7333 * of:
7334 *
7335 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7336 *
7337 *
7338 * WORK CONSERVING
7339 *
7340 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7341 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7342 * tree itself instead of relying on other CPUs to bring it work.
7343 *
7344 * This adds some complexity to both (5) and (8) but it reduces the total idle
7345 * time.
7346 *
7347 * [XXX more?]
7348 *
7349 *
7350 * CGROUPS
7351 *
7352 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7353 *
7354 * s_k,i
7355 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7356 * S_k
7357 *
7358 * Where
7359 *
7360 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7361 *
97fb7a0a 7362 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7363 *
7364 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7365 * property.
7366 *
7367 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7368 * rewrite all of this once again.]
97a7142f 7369 */
bf0f6f24 7370
ed387b78
HS
7371static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7372
0ec8aa00
PZ
7373enum fbq_type { regular, remote, all };
7374
0b0695f2 7375/*
a9723389
VG
7376 * 'group_type' describes the group of CPUs at the moment of load balancing.
7377 *
0b0695f2 7378 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7379 * first so the group_type can simply be compared when selecting the busiest
7380 * group. See update_sd_pick_busiest().
0b0695f2 7381 */
3b1baa64 7382enum group_type {
a9723389 7383 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7384 group_has_spare = 0,
a9723389
VG
7385 /*
7386 * The group is fully used and the tasks don't compete for more CPU
7387 * cycles. Nevertheless, some tasks might wait before running.
7388 */
0b0695f2 7389 group_fully_busy,
a9723389
VG
7390 /*
7391 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7392 * and must be migrated to a more powerful CPU.
7393 */
3b1baa64 7394 group_misfit_task,
a9723389
VG
7395 /*
7396 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7397 * and the task should be migrated to it instead of running on the
7398 * current CPU.
7399 */
0b0695f2 7400 group_asym_packing,
a9723389
VG
7401 /*
7402 * The tasks' affinity constraints previously prevented the scheduler
7403 * from balancing the load across the system.
7404 */
3b1baa64 7405 group_imbalanced,
a9723389
VG
7406 /*
7407 * The CPU is overloaded and can't provide expected CPU cycles to all
7408 * tasks.
7409 */
0b0695f2
VG
7410 group_overloaded
7411};
7412
7413enum migration_type {
7414 migrate_load = 0,
7415 migrate_util,
7416 migrate_task,
7417 migrate_misfit
3b1baa64
MR
7418};
7419
ddcdf6e7 7420#define LBF_ALL_PINNED 0x01
367456c7 7421#define LBF_NEED_BREAK 0x02
6263322c
PZ
7422#define LBF_DST_PINNED 0x04
7423#define LBF_SOME_PINNED 0x08
e022e0d3 7424#define LBF_NOHZ_STATS 0x10
f643ea22 7425#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7426
7427struct lb_env {
7428 struct sched_domain *sd;
7429
ddcdf6e7 7430 struct rq *src_rq;
85c1e7da 7431 int src_cpu;
ddcdf6e7
PZ
7432
7433 int dst_cpu;
7434 struct rq *dst_rq;
7435
88b8dac0
SV
7436 struct cpumask *dst_grpmask;
7437 int new_dst_cpu;
ddcdf6e7 7438 enum cpu_idle_type idle;
bd939f45 7439 long imbalance;
b9403130
MW
7440 /* The set of CPUs under consideration for load-balancing */
7441 struct cpumask *cpus;
7442
ddcdf6e7 7443 unsigned int flags;
367456c7
PZ
7444
7445 unsigned int loop;
7446 unsigned int loop_break;
7447 unsigned int loop_max;
0ec8aa00
PZ
7448
7449 enum fbq_type fbq_type;
0b0695f2 7450 enum migration_type migration_type;
163122b7 7451 struct list_head tasks;
ddcdf6e7
PZ
7452};
7453
029632fb
PZ
7454/*
7455 * Is this task likely cache-hot:
7456 */
5d5e2b1b 7457static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7458{
7459 s64 delta;
7460
e5673f28
KT
7461 lockdep_assert_held(&env->src_rq->lock);
7462
029632fb
PZ
7463 if (p->sched_class != &fair_sched_class)
7464 return 0;
7465
1da1843f 7466 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7467 return 0;
7468
ec73240b
JD
7469 /* SMT siblings share cache */
7470 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7471 return 0;
7472
029632fb
PZ
7473 /*
7474 * Buddy candidates are cache hot:
7475 */
5d5e2b1b 7476 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7477 (&p->se == cfs_rq_of(&p->se)->next ||
7478 &p->se == cfs_rq_of(&p->se)->last))
7479 return 1;
7480
7481 if (sysctl_sched_migration_cost == -1)
7482 return 1;
7483 if (sysctl_sched_migration_cost == 0)
7484 return 0;
7485
5d5e2b1b 7486 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7487
7488 return delta < (s64)sysctl_sched_migration_cost;
7489}
7490
3a7053b3 7491#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7492/*
2a1ed24c
SD
7493 * Returns 1, if task migration degrades locality
7494 * Returns 0, if task migration improves locality i.e migration preferred.
7495 * Returns -1, if task migration is not affected by locality.
c1ceac62 7496 */
2a1ed24c 7497static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7498{
b1ad065e 7499 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7500 unsigned long src_weight, dst_weight;
7501 int src_nid, dst_nid, dist;
3a7053b3 7502
2a595721 7503 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7504 return -1;
7505
c3b9bc5b 7506 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7507 return -1;
7a0f3083
MG
7508
7509 src_nid = cpu_to_node(env->src_cpu);
7510 dst_nid = cpu_to_node(env->dst_cpu);
7511
83e1d2cd 7512 if (src_nid == dst_nid)
2a1ed24c 7513 return -1;
7a0f3083 7514
2a1ed24c
SD
7515 /* Migrating away from the preferred node is always bad. */
7516 if (src_nid == p->numa_preferred_nid) {
7517 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7518 return 1;
7519 else
7520 return -1;
7521 }
b1ad065e 7522
c1ceac62
RR
7523 /* Encourage migration to the preferred node. */
7524 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7525 return 0;
b1ad065e 7526
739294fb 7527 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7528 if (env->idle == CPU_IDLE)
739294fb
RR
7529 return -1;
7530
f35678b6 7531 dist = node_distance(src_nid, dst_nid);
c1ceac62 7532 if (numa_group) {
f35678b6
SD
7533 src_weight = group_weight(p, src_nid, dist);
7534 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7535 } else {
f35678b6
SD
7536 src_weight = task_weight(p, src_nid, dist);
7537 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7538 }
7539
f35678b6 7540 return dst_weight < src_weight;
7a0f3083
MG
7541}
7542
3a7053b3 7543#else
2a1ed24c 7544static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7545 struct lb_env *env)
7546{
2a1ed24c 7547 return -1;
7a0f3083 7548}
3a7053b3
MG
7549#endif
7550
1e3c88bd
PZ
7551/*
7552 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7553 */
7554static
8e45cb54 7555int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7556{
2a1ed24c 7557 int tsk_cache_hot;
e5673f28
KT
7558
7559 lockdep_assert_held(&env->src_rq->lock);
7560
1e3c88bd
PZ
7561 /*
7562 * We do not migrate tasks that are:
d3198084 7563 * 1) throttled_lb_pair, or
3bd37062 7564 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7565 * 3) running (obviously), or
7566 * 4) are cache-hot on their current CPU.
1e3c88bd 7567 */
d3198084
JK
7568 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7569 return 0;
7570
3bd37062 7571 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7572 int cpu;
88b8dac0 7573
ae92882e 7574 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7575
6263322c
PZ
7576 env->flags |= LBF_SOME_PINNED;
7577
88b8dac0 7578 /*
97fb7a0a 7579 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7580 * our sched_group. We may want to revisit it if we couldn't
7581 * meet load balance goals by pulling other tasks on src_cpu.
7582 *
65a4433a
JH
7583 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7584 * already computed one in current iteration.
88b8dac0 7585 */
65a4433a 7586 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7587 return 0;
7588
97fb7a0a 7589 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7590 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7591 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7592 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7593 env->new_dst_cpu = cpu;
7594 break;
7595 }
88b8dac0 7596 }
e02e60c1 7597
1e3c88bd
PZ
7598 return 0;
7599 }
88b8dac0
SV
7600
7601 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7602 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7603
ddcdf6e7 7604 if (task_running(env->src_rq, p)) {
ae92882e 7605 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7606 return 0;
7607 }
7608
7609 /*
7610 * Aggressive migration if:
3a7053b3
MG
7611 * 1) destination numa is preferred
7612 * 2) task is cache cold, or
7613 * 3) too many balance attempts have failed.
1e3c88bd 7614 */
2a1ed24c
SD
7615 tsk_cache_hot = migrate_degrades_locality(p, env);
7616 if (tsk_cache_hot == -1)
7617 tsk_cache_hot = task_hot(p, env);
3a7053b3 7618
2a1ed24c 7619 if (tsk_cache_hot <= 0 ||
7a96c231 7620 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7621 if (tsk_cache_hot == 1) {
ae92882e
JP
7622 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7623 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7624 }
1e3c88bd
PZ
7625 return 1;
7626 }
7627
ae92882e 7628 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7629 return 0;
1e3c88bd
PZ
7630}
7631
897c395f 7632/*
163122b7
KT
7633 * detach_task() -- detach the task for the migration specified in env
7634 */
7635static void detach_task(struct task_struct *p, struct lb_env *env)
7636{
7637 lockdep_assert_held(&env->src_rq->lock);
7638
5704ac0a 7639 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7640 set_task_cpu(p, env->dst_cpu);
7641}
7642
897c395f 7643/*
e5673f28 7644 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7645 * part of active balancing operations within "domain".
897c395f 7646 *
e5673f28 7647 * Returns a task if successful and NULL otherwise.
897c395f 7648 */
e5673f28 7649static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7650{
93824900 7651 struct task_struct *p;
897c395f 7652
e5673f28
KT
7653 lockdep_assert_held(&env->src_rq->lock);
7654
93824900
UR
7655 list_for_each_entry_reverse(p,
7656 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7657 if (!can_migrate_task(p, env))
7658 continue;
897c395f 7659
163122b7 7660 detach_task(p, env);
e5673f28 7661
367456c7 7662 /*
e5673f28 7663 * Right now, this is only the second place where
163122b7 7664 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7665 * so we can safely collect stats here rather than
163122b7 7666 * inside detach_tasks().
367456c7 7667 */
ae92882e 7668 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7669 return p;
897c395f 7670 }
e5673f28 7671 return NULL;
897c395f
PZ
7672}
7673
eb95308e
PZ
7674static const unsigned int sched_nr_migrate_break = 32;
7675
5d6523eb 7676/*
0b0695f2 7677 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7678 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7679 *
163122b7 7680 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7681 */
163122b7 7682static int detach_tasks(struct lb_env *env)
1e3c88bd 7683{
5d6523eb 7684 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7685 unsigned long util, load;
5d6523eb 7686 struct task_struct *p;
163122b7
KT
7687 int detached = 0;
7688
7689 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7690
bd939f45 7691 if (env->imbalance <= 0)
5d6523eb 7692 return 0;
1e3c88bd 7693
5d6523eb 7694 while (!list_empty(tasks)) {
985d3a4c
YD
7695 /*
7696 * We don't want to steal all, otherwise we may be treated likewise,
7697 * which could at worst lead to a livelock crash.
7698 */
7699 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7700 break;
7701
93824900 7702 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7703
367456c7
PZ
7704 env->loop++;
7705 /* We've more or less seen every task there is, call it quits */
5d6523eb 7706 if (env->loop > env->loop_max)
367456c7 7707 break;
5d6523eb
PZ
7708
7709 /* take a breather every nr_migrate tasks */
367456c7 7710 if (env->loop > env->loop_break) {
eb95308e 7711 env->loop_break += sched_nr_migrate_break;
8e45cb54 7712 env->flags |= LBF_NEED_BREAK;
ee00e66f 7713 break;
a195f004 7714 }
1e3c88bd 7715
d3198084 7716 if (!can_migrate_task(p, env))
367456c7
PZ
7717 goto next;
7718
0b0695f2
VG
7719 switch (env->migration_type) {
7720 case migrate_load:
01cfcde9
VG
7721 /*
7722 * Depending of the number of CPUs and tasks and the
7723 * cgroup hierarchy, task_h_load() can return a null
7724 * value. Make sure that env->imbalance decreases
7725 * otherwise detach_tasks() will stop only after
7726 * detaching up to loop_max tasks.
7727 */
7728 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 7729
0b0695f2
VG
7730 if (sched_feat(LB_MIN) &&
7731 load < 16 && !env->sd->nr_balance_failed)
7732 goto next;
367456c7 7733
6cf82d55
VG
7734 /*
7735 * Make sure that we don't migrate too much load.
7736 * Nevertheless, let relax the constraint if
7737 * scheduler fails to find a good waiting task to
7738 * migrate.
7739 */
5a7f5559
VG
7740
7741 if ((load >> env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
7742 goto next;
7743
7744 env->imbalance -= load;
7745 break;
7746
7747 case migrate_util:
7748 util = task_util_est(p);
7749
7750 if (util > env->imbalance)
7751 goto next;
7752
7753 env->imbalance -= util;
7754 break;
7755
7756 case migrate_task:
7757 env->imbalance--;
7758 break;
7759
7760 case migrate_misfit:
c63be7be
VG
7761 /* This is not a misfit task */
7762 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7763 goto next;
7764
7765 env->imbalance = 0;
7766 break;
7767 }
1e3c88bd 7768
163122b7
KT
7769 detach_task(p, env);
7770 list_add(&p->se.group_node, &env->tasks);
7771
7772 detached++;
1e3c88bd 7773
c1a280b6 7774#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7775 /*
7776 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7777 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7778 * the critical section.
7779 */
5d6523eb 7780 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7781 break;
1e3c88bd
PZ
7782#endif
7783
ee00e66f
PZ
7784 /*
7785 * We only want to steal up to the prescribed amount of
0b0695f2 7786 * load/util/tasks.
ee00e66f 7787 */
bd939f45 7788 if (env->imbalance <= 0)
ee00e66f 7789 break;
367456c7
PZ
7790
7791 continue;
7792next:
93824900 7793 list_move(&p->se.group_node, tasks);
1e3c88bd 7794 }
5d6523eb 7795
1e3c88bd 7796 /*
163122b7
KT
7797 * Right now, this is one of only two places we collect this stat
7798 * so we can safely collect detach_one_task() stats here rather
7799 * than inside detach_one_task().
1e3c88bd 7800 */
ae92882e 7801 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7802
163122b7
KT
7803 return detached;
7804}
7805
7806/*
7807 * attach_task() -- attach the task detached by detach_task() to its new rq.
7808 */
7809static void attach_task(struct rq *rq, struct task_struct *p)
7810{
7811 lockdep_assert_held(&rq->lock);
7812
7813 BUG_ON(task_rq(p) != rq);
5704ac0a 7814 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7815 check_preempt_curr(rq, p, 0);
7816}
7817
7818/*
7819 * attach_one_task() -- attaches the task returned from detach_one_task() to
7820 * its new rq.
7821 */
7822static void attach_one_task(struct rq *rq, struct task_struct *p)
7823{
8a8c69c3
PZ
7824 struct rq_flags rf;
7825
7826 rq_lock(rq, &rf);
5704ac0a 7827 update_rq_clock(rq);
163122b7 7828 attach_task(rq, p);
8a8c69c3 7829 rq_unlock(rq, &rf);
163122b7
KT
7830}
7831
7832/*
7833 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7834 * new rq.
7835 */
7836static void attach_tasks(struct lb_env *env)
7837{
7838 struct list_head *tasks = &env->tasks;
7839 struct task_struct *p;
8a8c69c3 7840 struct rq_flags rf;
163122b7 7841
8a8c69c3 7842 rq_lock(env->dst_rq, &rf);
5704ac0a 7843 update_rq_clock(env->dst_rq);
163122b7
KT
7844
7845 while (!list_empty(tasks)) {
7846 p = list_first_entry(tasks, struct task_struct, se.group_node);
7847 list_del_init(&p->se.group_node);
1e3c88bd 7848
163122b7
KT
7849 attach_task(env->dst_rq, p);
7850 }
7851
8a8c69c3 7852 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7853}
7854
b0c79224 7855#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7856static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7857{
7858 if (cfs_rq->avg.load_avg)
7859 return true;
7860
7861 if (cfs_rq->avg.util_avg)
7862 return true;
7863
7864 return false;
7865}
7866
91c27493 7867static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7868{
7869 if (READ_ONCE(rq->avg_rt.util_avg))
7870 return true;
7871
3727e0e1
VG
7872 if (READ_ONCE(rq->avg_dl.util_avg))
7873 return true;
7874
b4eccf5f
TG
7875 if (thermal_load_avg(rq))
7876 return true;
7877
11d4afd4 7878#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7879 if (READ_ONCE(rq->avg_irq.util_avg))
7880 return true;
7881#endif
7882
371bf427
VG
7883 return false;
7884}
7885
b0c79224
VS
7886static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7887{
7888 rq->last_blocked_load_update_tick = jiffies;
7889
7890 if (!has_blocked)
7891 rq->has_blocked_load = 0;
7892}
7893#else
7894static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7895static inline bool others_have_blocked(struct rq *rq) { return false; }
7896static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7897#endif
7898
bef69dd8
VG
7899static bool __update_blocked_others(struct rq *rq, bool *done)
7900{
7901 const struct sched_class *curr_class;
7902 u64 now = rq_clock_pelt(rq);
b4eccf5f 7903 unsigned long thermal_pressure;
bef69dd8
VG
7904 bool decayed;
7905
7906 /*
7907 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7908 * DL and IRQ signals have been updated before updating CFS.
7909 */
7910 curr_class = rq->curr->sched_class;
7911
b4eccf5f
TG
7912 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7913
bef69dd8
VG
7914 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7915 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 7916 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
7917 update_irq_load_avg(rq, 0);
7918
7919 if (others_have_blocked(rq))
7920 *done = false;
7921
7922 return decayed;
7923}
7924
1936c53c
VG
7925#ifdef CONFIG_FAIR_GROUP_SCHED
7926
039ae8bc
VG
7927static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7928{
7929 if (cfs_rq->load.weight)
7930 return false;
7931
7932 if (cfs_rq->avg.load_sum)
7933 return false;
7934
7935 if (cfs_rq->avg.util_sum)
7936 return false;
7937
9f683953
VG
7938 if (cfs_rq->avg.runnable_sum)
7939 return false;
7940
039ae8bc
VG
7941 return true;
7942}
7943
bef69dd8 7944static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7945{
039ae8bc 7946 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
7947 bool decayed = false;
7948 int cpu = cpu_of(rq);
b90f7c9d 7949
9763b67f
PZ
7950 /*
7951 * Iterates the task_group tree in a bottom up fashion, see
7952 * list_add_leaf_cfs_rq() for details.
7953 */
039ae8bc 7954 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7955 struct sched_entity *se;
7956
bef69dd8 7957 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 7958 update_tg_load_avg(cfs_rq);
4e516076 7959
bef69dd8
VG
7960 if (cfs_rq == &rq->cfs)
7961 decayed = true;
7962 }
7963
bc427898
VG
7964 /* Propagate pending load changes to the parent, if any: */
7965 se = cfs_rq->tg->se[cpu];
7966 if (se && !skip_blocked_update(se))
88c0616e 7967 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7968
039ae8bc
VG
7969 /*
7970 * There can be a lot of idle CPU cgroups. Don't let fully
7971 * decayed cfs_rqs linger on the list.
7972 */
7973 if (cfs_rq_is_decayed(cfs_rq))
7974 list_del_leaf_cfs_rq(cfs_rq);
7975
1936c53c
VG
7976 /* Don't need periodic decay once load/util_avg are null */
7977 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 7978 *done = false;
9d89c257 7979 }
12b04875 7980
bef69dd8 7981 return decayed;
9e3081ca
PZ
7982}
7983
9763b67f 7984/*
68520796 7985 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7986 * This needs to be done in a top-down fashion because the load of a child
7987 * group is a fraction of its parents load.
7988 */
68520796 7989static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7990{
68520796
VD
7991 struct rq *rq = rq_of(cfs_rq);
7992 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7993 unsigned long now = jiffies;
68520796 7994 unsigned long load;
a35b6466 7995
68520796 7996 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7997 return;
7998
0e9f0245 7999 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
8000 for_each_sched_entity(se) {
8001 cfs_rq = cfs_rq_of(se);
0e9f0245 8002 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
8003 if (cfs_rq->last_h_load_update == now)
8004 break;
8005 }
a35b6466 8006
68520796 8007 if (!se) {
7ea241af 8008 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
8009 cfs_rq->last_h_load_update = now;
8010 }
8011
0e9f0245 8012 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 8013 load = cfs_rq->h_load;
7ea241af
YD
8014 load = div64_ul(load * se->avg.load_avg,
8015 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
8016 cfs_rq = group_cfs_rq(se);
8017 cfs_rq->h_load = load;
8018 cfs_rq->last_h_load_update = now;
8019 }
9763b67f
PZ
8020}
8021
367456c7 8022static unsigned long task_h_load(struct task_struct *p)
230059de 8023{
367456c7 8024 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 8025
68520796 8026 update_cfs_rq_h_load(cfs_rq);
9d89c257 8027 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 8028 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
8029}
8030#else
bef69dd8 8031static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8032{
6c1d47c0 8033 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 8034 bool decayed;
b90f7c9d 8035
bef69dd8
VG
8036 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8037 if (cfs_rq_has_blocked(cfs_rq))
8038 *done = false;
b90f7c9d 8039
bef69dd8 8040 return decayed;
9e3081ca
PZ
8041}
8042
367456c7 8043static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 8044{
9d89c257 8045 return p->se.avg.load_avg;
1e3c88bd 8046}
230059de 8047#endif
1e3c88bd 8048
bef69dd8
VG
8049static void update_blocked_averages(int cpu)
8050{
8051 bool decayed = false, done = true;
8052 struct rq *rq = cpu_rq(cpu);
8053 struct rq_flags rf;
8054
8055 rq_lock_irqsave(rq, &rf);
8056 update_rq_clock(rq);
8057
8058 decayed |= __update_blocked_others(rq, &done);
8059 decayed |= __update_blocked_fair(rq, &done);
8060
8061 update_blocked_load_status(rq, !done);
8062 if (decayed)
8063 cpufreq_update_util(rq, 0);
8064 rq_unlock_irqrestore(rq, &rf);
8065}
8066
1e3c88bd 8067/********** Helpers for find_busiest_group ************************/
caeb178c 8068
1e3c88bd
PZ
8069/*
8070 * sg_lb_stats - stats of a sched_group required for load_balancing
8071 */
8072struct sg_lb_stats {
8073 unsigned long avg_load; /*Avg load across the CPUs of the group */
8074 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8075 unsigned long group_capacity;
070f5e86
VG
8076 unsigned long group_util; /* Total utilization over the CPUs of the group */
8077 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8078 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8079 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8080 unsigned int idle_cpus;
8081 unsigned int group_weight;
caeb178c 8082 enum group_type group_type;
490ba971 8083 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8084 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8085#ifdef CONFIG_NUMA_BALANCING
8086 unsigned int nr_numa_running;
8087 unsigned int nr_preferred_running;
8088#endif
1e3c88bd
PZ
8089};
8090
56cf515b
JK
8091/*
8092 * sd_lb_stats - Structure to store the statistics of a sched_domain
8093 * during load balancing.
8094 */
8095struct sd_lb_stats {
8096 struct sched_group *busiest; /* Busiest group in this sd */
8097 struct sched_group *local; /* Local group in this sd */
8098 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8099 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8100 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8101 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8102
56cf515b 8103 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8104 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8105};
8106
147c5fc2
PZ
8107static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8108{
8109 /*
8110 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8111 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8112 * We must however set busiest_stat::group_type and
8113 * busiest_stat::idle_cpus to the worst busiest group because
8114 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8115 */
8116 *sds = (struct sd_lb_stats){
8117 .busiest = NULL,
8118 .local = NULL,
8119 .total_load = 0UL,
63b2ca30 8120 .total_capacity = 0UL,
147c5fc2 8121 .busiest_stat = {
0b0695f2
VG
8122 .idle_cpus = UINT_MAX,
8123 .group_type = group_has_spare,
147c5fc2
PZ
8124 },
8125 };
8126}
8127
1ca2034e 8128static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8129{
8130 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8131 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8132 unsigned long used, free;
523e979d 8133 unsigned long irq;
b654f7de 8134
2e62c474 8135 irq = cpu_util_irq(rq);
cadefd3d 8136
523e979d
VG
8137 if (unlikely(irq >= max))
8138 return 1;
aa483808 8139
467b7d01
TG
8140 /*
8141 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8142 * (running and not running) with weights 0 and 1024 respectively.
8143 * avg_thermal.load_avg tracks thermal pressure and the weighted
8144 * average uses the actual delta max capacity(load).
8145 */
523e979d
VG
8146 used = READ_ONCE(rq->avg_rt.util_avg);
8147 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8148 used += thermal_load_avg(rq);
1e3c88bd 8149
523e979d
VG
8150 if (unlikely(used >= max))
8151 return 1;
1e3c88bd 8152
523e979d 8153 free = max - used;
2e62c474
VG
8154
8155 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8156}
8157
ced549fa 8158static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8159{
1ca2034e 8160 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8161 struct sched_group *sdg = sd->groups;
8162
8ec59c0f 8163 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8164
ced549fa
NP
8165 if (!capacity)
8166 capacity = 1;
1e3c88bd 8167
ced549fa 8168 cpu_rq(cpu)->cpu_capacity = capacity;
51cf18c9
VD
8169 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8170
ced549fa 8171 sdg->sgc->capacity = capacity;
bf475ce0 8172 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8173 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8174}
8175
63b2ca30 8176void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8177{
8178 struct sched_domain *child = sd->child;
8179 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8180 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8181 unsigned long interval;
8182
8183 interval = msecs_to_jiffies(sd->balance_interval);
8184 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8185 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8186
8187 if (!child) {
ced549fa 8188 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8189 return;
8190 }
8191
dc7ff76e 8192 capacity = 0;
bf475ce0 8193 min_capacity = ULONG_MAX;
e3d6d0cb 8194 max_capacity = 0;
1e3c88bd 8195
74a5ce20
PZ
8196 if (child->flags & SD_OVERLAP) {
8197 /*
8198 * SD_OVERLAP domains cannot assume that child groups
8199 * span the current group.
8200 */
8201
ae4df9d6 8202 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8203 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8204
4c58f57f
PL
8205 capacity += cpu_cap;
8206 min_capacity = min(cpu_cap, min_capacity);
8207 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8208 }
74a5ce20
PZ
8209 } else {
8210 /*
8211 * !SD_OVERLAP domains can assume that child groups
8212 * span the current group.
97a7142f 8213 */
74a5ce20
PZ
8214
8215 group = child->groups;
8216 do {
bf475ce0
MR
8217 struct sched_group_capacity *sgc = group->sgc;
8218
8219 capacity += sgc->capacity;
8220 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8221 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8222 group = group->next;
8223 } while (group != child->groups);
8224 }
1e3c88bd 8225
63b2ca30 8226 sdg->sgc->capacity = capacity;
bf475ce0 8227 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8228 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8229}
8230
9d5efe05 8231/*
ea67821b
VG
8232 * Check whether the capacity of the rq has been noticeably reduced by side
8233 * activity. The imbalance_pct is used for the threshold.
8234 * Return true is the capacity is reduced
9d5efe05
SV
8235 */
8236static inline int
ea67821b 8237check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8238{
ea67821b
VG
8239 return ((rq->cpu_capacity * sd->imbalance_pct) <
8240 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8241}
8242
a0fe2cf0
VS
8243/*
8244 * Check whether a rq has a misfit task and if it looks like we can actually
8245 * help that task: we can migrate the task to a CPU of higher capacity, or
8246 * the task's current CPU is heavily pressured.
8247 */
8248static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8249{
8250 return rq->misfit_task_load &&
8251 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8252 check_cpu_capacity(rq, sd));
8253}
8254
30ce5dab
PZ
8255/*
8256 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8257 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8258 *
97fb7a0a
IM
8259 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8260 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8261 * Something like:
8262 *
2b4d5b25
IM
8263 * { 0 1 2 3 } { 4 5 6 7 }
8264 * * * * *
30ce5dab
PZ
8265 *
8266 * If we were to balance group-wise we'd place two tasks in the first group and
8267 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8268 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8269 *
8270 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8271 * by noticing the lower domain failed to reach balance and had difficulty
8272 * moving tasks due to affinity constraints.
30ce5dab
PZ
8273 *
8274 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8275 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8276 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8277 * to create an effective group imbalance.
8278 *
8279 * This is a somewhat tricky proposition since the next run might not find the
8280 * group imbalance and decide the groups need to be balanced again. A most
8281 * subtle and fragile situation.
8282 */
8283
6263322c 8284static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8285{
63b2ca30 8286 return group->sgc->imbalance;
30ce5dab
PZ
8287}
8288
b37d9316 8289/*
ea67821b
VG
8290 * group_has_capacity returns true if the group has spare capacity that could
8291 * be used by some tasks.
8292 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8293 * smaller than the number of CPUs or if the utilization is lower than the
8294 * available capacity for CFS tasks.
ea67821b
VG
8295 * For the latter, we use a threshold to stabilize the state, to take into
8296 * account the variance of the tasks' load and to return true if the available
8297 * capacity in meaningful for the load balancer.
8298 * As an example, an available capacity of 1% can appear but it doesn't make
8299 * any benefit for the load balance.
b37d9316 8300 */
ea67821b 8301static inline bool
57abff06 8302group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8303{
5e23e474 8304 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8305 return true;
c61037e9 8306
070f5e86
VG
8307 if ((sgs->group_capacity * imbalance_pct) <
8308 (sgs->group_runnable * 100))
8309 return false;
8310
ea67821b 8311 if ((sgs->group_capacity * 100) >
57abff06 8312 (sgs->group_util * imbalance_pct))
ea67821b 8313 return true;
b37d9316 8314
ea67821b
VG
8315 return false;
8316}
8317
8318/*
8319 * group_is_overloaded returns true if the group has more tasks than it can
8320 * handle.
8321 * group_is_overloaded is not equals to !group_has_capacity because a group
8322 * with the exact right number of tasks, has no more spare capacity but is not
8323 * overloaded so both group_has_capacity and group_is_overloaded return
8324 * false.
8325 */
8326static inline bool
57abff06 8327group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8328{
5e23e474 8329 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8330 return false;
b37d9316 8331
ea67821b 8332 if ((sgs->group_capacity * 100) <
57abff06 8333 (sgs->group_util * imbalance_pct))
ea67821b 8334 return true;
b37d9316 8335
070f5e86
VG
8336 if ((sgs->group_capacity * imbalance_pct) <
8337 (sgs->group_runnable * 100))
8338 return true;
8339
ea67821b 8340 return false;
b37d9316
PZ
8341}
8342
9e0994c0 8343/*
e3d6d0cb 8344 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8345 * per-CPU capacity than sched_group ref.
8346 */
8347static inline bool
e3d6d0cb 8348group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 8349{
60e17f5c 8350 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
8351}
8352
e3d6d0cb
MR
8353/*
8354 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8355 * per-CPU capacity_orig than sched_group ref.
8356 */
8357static inline bool
8358group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8359{
60e17f5c 8360 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
8361}
8362
79a89f92 8363static inline enum
57abff06 8364group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8365 struct sched_group *group,
79a89f92 8366 struct sg_lb_stats *sgs)
caeb178c 8367{
57abff06 8368 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8369 return group_overloaded;
8370
8371 if (sg_imbalanced(group))
8372 return group_imbalanced;
8373
0b0695f2
VG
8374 if (sgs->group_asym_packing)
8375 return group_asym_packing;
8376
3b1baa64
MR
8377 if (sgs->group_misfit_task_load)
8378 return group_misfit_task;
8379
57abff06 8380 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8381 return group_fully_busy;
8382
8383 return group_has_spare;
caeb178c
RR
8384}
8385
63928384 8386static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8387{
8388#ifdef CONFIG_NO_HZ_COMMON
8389 unsigned int cpu = rq->cpu;
8390
f643ea22
VG
8391 if (!rq->has_blocked_load)
8392 return false;
8393
e022e0d3 8394 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8395 return false;
e022e0d3 8396
63928384 8397 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8398 return true;
e022e0d3
PZ
8399
8400 update_blocked_averages(cpu);
f643ea22
VG
8401
8402 return rq->has_blocked_load;
8403#else
8404 return false;
e022e0d3
PZ
8405#endif
8406}
8407
1e3c88bd
PZ
8408/**
8409 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8410 * @env: The load balancing environment.
1e3c88bd 8411 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8412 * @sgs: variable to hold the statistics for this group.
630246a0 8413 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8414 */
bd939f45 8415static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8416 struct sched_group *group,
8417 struct sg_lb_stats *sgs,
8418 int *sg_status)
1e3c88bd 8419{
0b0695f2 8420 int i, nr_running, local_group;
1e3c88bd 8421
b72ff13c
PZ
8422 memset(sgs, 0, sizeof(*sgs));
8423
0b0695f2
VG
8424 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8425
ae4df9d6 8426 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8427 struct rq *rq = cpu_rq(i);
8428
63928384 8429 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8430 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8431
b0fb1eb4 8432 sgs->group_load += cpu_load(rq);
9e91d61d 8433 sgs->group_util += cpu_util(i);
070f5e86 8434 sgs->group_runnable += cpu_runnable(rq);
a3498347 8435 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8436
a426f99c 8437 nr_running = rq->nr_running;
5e23e474
VG
8438 sgs->sum_nr_running += nr_running;
8439
a426f99c 8440 if (nr_running > 1)
630246a0 8441 *sg_status |= SG_OVERLOAD;
4486edd1 8442
2802bf3c
MR
8443 if (cpu_overutilized(i))
8444 *sg_status |= SG_OVERUTILIZED;
4486edd1 8445
0ec8aa00
PZ
8446#ifdef CONFIG_NUMA_BALANCING
8447 sgs->nr_numa_running += rq->nr_numa_running;
8448 sgs->nr_preferred_running += rq->nr_preferred_running;
8449#endif
a426f99c
WL
8450 /*
8451 * No need to call idle_cpu() if nr_running is not 0
8452 */
0b0695f2 8453 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8454 sgs->idle_cpus++;
0b0695f2
VG
8455 /* Idle cpu can't have misfit task */
8456 continue;
8457 }
8458
8459 if (local_group)
8460 continue;
3b1baa64 8461
0b0695f2 8462 /* Check for a misfit task on the cpu */
3b1baa64 8463 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8464 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8465 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8466 *sg_status |= SG_OVERLOAD;
757ffdd7 8467 }
1e3c88bd
PZ
8468 }
8469
0b0695f2
VG
8470 /* Check if dst CPU is idle and preferred to this group */
8471 if (env->sd->flags & SD_ASYM_PACKING &&
8472 env->idle != CPU_NOT_IDLE &&
8473 sgs->sum_h_nr_running &&
8474 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8475 sgs->group_asym_packing = 1;
8476 }
8477
63b2ca30 8478 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8479
aae6d3dd 8480 sgs->group_weight = group->group_weight;
b37d9316 8481
57abff06 8482 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8483
8484 /* Computing avg_load makes sense only when group is overloaded */
8485 if (sgs->group_type == group_overloaded)
8486 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8487 sgs->group_capacity;
1e3c88bd
PZ
8488}
8489
532cb4c4
MN
8490/**
8491 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8492 * @env: The load balancing environment.
532cb4c4
MN
8493 * @sds: sched_domain statistics
8494 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8495 * @sgs: sched_group statistics
532cb4c4
MN
8496 *
8497 * Determine if @sg is a busier group than the previously selected
8498 * busiest group.
e69f6186
YB
8499 *
8500 * Return: %true if @sg is a busier group than the previously selected
8501 * busiest group. %false otherwise.
532cb4c4 8502 */
bd939f45 8503static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8504 struct sd_lb_stats *sds,
8505 struct sched_group *sg,
bd939f45 8506 struct sg_lb_stats *sgs)
532cb4c4 8507{
caeb178c 8508 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8509
0b0695f2
VG
8510 /* Make sure that there is at least one task to pull */
8511 if (!sgs->sum_h_nr_running)
8512 return false;
8513
cad68e55
MR
8514 /*
8515 * Don't try to pull misfit tasks we can't help.
8516 * We can use max_capacity here as reduction in capacity on some
8517 * CPUs in the group should either be possible to resolve
8518 * internally or be covered by avg_load imbalance (eventually).
8519 */
8520 if (sgs->group_type == group_misfit_task &&
8521 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
0b0695f2 8522 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8523 return false;
8524
caeb178c 8525 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8526 return true;
8527
caeb178c
RR
8528 if (sgs->group_type < busiest->group_type)
8529 return false;
8530
9e0994c0 8531 /*
0b0695f2
VG
8532 * The candidate and the current busiest group are the same type of
8533 * group. Let check which one is the busiest according to the type.
9e0994c0 8534 */
9e0994c0 8535
0b0695f2
VG
8536 switch (sgs->group_type) {
8537 case group_overloaded:
8538 /* Select the overloaded group with highest avg_load. */
8539 if (sgs->avg_load <= busiest->avg_load)
8540 return false;
8541 break;
8542
8543 case group_imbalanced:
8544 /*
8545 * Select the 1st imbalanced group as we don't have any way to
8546 * choose one more than another.
8547 */
9e0994c0
MR
8548 return false;
8549
0b0695f2
VG
8550 case group_asym_packing:
8551 /* Prefer to move from lowest priority CPU's work */
8552 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8553 return false;
8554 break;
532cb4c4 8555
0b0695f2
VG
8556 case group_misfit_task:
8557 /*
8558 * If we have more than one misfit sg go with the biggest
8559 * misfit.
8560 */
8561 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8562 return false;
8563 break;
532cb4c4 8564
0b0695f2
VG
8565 case group_fully_busy:
8566 /*
8567 * Select the fully busy group with highest avg_load. In
8568 * theory, there is no need to pull task from such kind of
8569 * group because tasks have all compute capacity that they need
8570 * but we can still improve the overall throughput by reducing
8571 * contention when accessing shared HW resources.
8572 *
8573 * XXX for now avg_load is not computed and always 0 so we
8574 * select the 1st one.
8575 */
8576 if (sgs->avg_load <= busiest->avg_load)
8577 return false;
8578 break;
8579
8580 case group_has_spare:
8581 /*
5f68eb19
VG
8582 * Select not overloaded group with lowest number of idle cpus
8583 * and highest number of running tasks. We could also compare
8584 * the spare capacity which is more stable but it can end up
8585 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8586 * CPUs which means less opportunity to pull tasks.
8587 */
5f68eb19 8588 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8589 return false;
5f68eb19
VG
8590 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8591 (sgs->sum_nr_running <= busiest->sum_nr_running))
8592 return false;
8593
0b0695f2 8594 break;
532cb4c4
MN
8595 }
8596
0b0695f2
VG
8597 /*
8598 * Candidate sg has no more than one task per CPU and has higher
8599 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8600 * throughput. Maximize throughput, power/energy consequences are not
8601 * considered.
8602 */
8603 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8604 (sgs->group_type <= group_fully_busy) &&
8605 (group_smaller_min_cpu_capacity(sds->local, sg)))
8606 return false;
8607
8608 return true;
532cb4c4
MN
8609}
8610
0ec8aa00
PZ
8611#ifdef CONFIG_NUMA_BALANCING
8612static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8613{
a3498347 8614 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8615 return regular;
a3498347 8616 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8617 return remote;
8618 return all;
8619}
8620
8621static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8622{
8623 if (rq->nr_running > rq->nr_numa_running)
8624 return regular;
8625 if (rq->nr_running > rq->nr_preferred_running)
8626 return remote;
8627 return all;
8628}
8629#else
8630static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8631{
8632 return all;
8633}
8634
8635static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8636{
8637 return regular;
8638}
8639#endif /* CONFIG_NUMA_BALANCING */
8640
57abff06
VG
8641
8642struct sg_lb_stats;
8643
3318544b
VG
8644/*
8645 * task_running_on_cpu - return 1 if @p is running on @cpu.
8646 */
8647
8648static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8649{
8650 /* Task has no contribution or is new */
8651 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8652 return 0;
8653
8654 if (task_on_rq_queued(p))
8655 return 1;
8656
8657 return 0;
8658}
8659
8660/**
8661 * idle_cpu_without - would a given CPU be idle without p ?
8662 * @cpu: the processor on which idleness is tested.
8663 * @p: task which should be ignored.
8664 *
8665 * Return: 1 if the CPU would be idle. 0 otherwise.
8666 */
8667static int idle_cpu_without(int cpu, struct task_struct *p)
8668{
8669 struct rq *rq = cpu_rq(cpu);
8670
8671 if (rq->curr != rq->idle && rq->curr != p)
8672 return 0;
8673
8674 /*
8675 * rq->nr_running can't be used but an updated version without the
8676 * impact of p on cpu must be used instead. The updated nr_running
8677 * be computed and tested before calling idle_cpu_without().
8678 */
8679
8680#ifdef CONFIG_SMP
126c2092 8681 if (rq->ttwu_pending)
3318544b
VG
8682 return 0;
8683#endif
8684
8685 return 1;
8686}
8687
57abff06
VG
8688/*
8689 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8690 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8691 * @group: sched_group whose statistics are to be updated.
8692 * @sgs: variable to hold the statistics for this group.
3318544b 8693 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8694 */
8695static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8696 struct sched_group *group,
8697 struct sg_lb_stats *sgs,
8698 struct task_struct *p)
8699{
8700 int i, nr_running;
8701
8702 memset(sgs, 0, sizeof(*sgs));
8703
8704 for_each_cpu(i, sched_group_span(group)) {
8705 struct rq *rq = cpu_rq(i);
3318544b 8706 unsigned int local;
57abff06 8707
3318544b 8708 sgs->group_load += cpu_load_without(rq, p);
57abff06 8709 sgs->group_util += cpu_util_without(i, p);
070f5e86 8710 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8711 local = task_running_on_cpu(i, p);
8712 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8713
3318544b 8714 nr_running = rq->nr_running - local;
57abff06
VG
8715 sgs->sum_nr_running += nr_running;
8716
8717 /*
3318544b 8718 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8719 */
3318544b 8720 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8721 sgs->idle_cpus++;
8722
57abff06
VG
8723 }
8724
8725 /* Check if task fits in the group */
8726 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8727 !task_fits_capacity(p, group->sgc->max_capacity)) {
8728 sgs->group_misfit_task_load = 1;
8729 }
8730
8731 sgs->group_capacity = group->sgc->capacity;
8732
289de359
VG
8733 sgs->group_weight = group->group_weight;
8734
57abff06
VG
8735 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8736
8737 /*
8738 * Computing avg_load makes sense only when group is fully busy or
8739 * overloaded
8740 */
6c8116c9
TZ
8741 if (sgs->group_type == group_fully_busy ||
8742 sgs->group_type == group_overloaded)
57abff06
VG
8743 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8744 sgs->group_capacity;
8745}
8746
8747static bool update_pick_idlest(struct sched_group *idlest,
8748 struct sg_lb_stats *idlest_sgs,
8749 struct sched_group *group,
8750 struct sg_lb_stats *sgs)
8751{
8752 if (sgs->group_type < idlest_sgs->group_type)
8753 return true;
8754
8755 if (sgs->group_type > idlest_sgs->group_type)
8756 return false;
8757
8758 /*
8759 * The candidate and the current idlest group are the same type of
8760 * group. Let check which one is the idlest according to the type.
8761 */
8762
8763 switch (sgs->group_type) {
8764 case group_overloaded:
8765 case group_fully_busy:
8766 /* Select the group with lowest avg_load. */
8767 if (idlest_sgs->avg_load <= sgs->avg_load)
8768 return false;
8769 break;
8770
8771 case group_imbalanced:
8772 case group_asym_packing:
8773 /* Those types are not used in the slow wakeup path */
8774 return false;
8775
8776 case group_misfit_task:
8777 /* Select group with the highest max capacity */
8778 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8779 return false;
8780 break;
8781
8782 case group_has_spare:
8783 /* Select group with most idle CPUs */
3edecfef 8784 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 8785 return false;
3edecfef
PP
8786
8787 /* Select group with lowest group_util */
8788 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8789 idlest_sgs->group_util <= sgs->group_util)
8790 return false;
8791
57abff06
VG
8792 break;
8793 }
8794
8795 return true;
8796}
8797
23e6082a
MG
8798/*
8799 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8800 * This is an approximation as the number of running tasks may not be
8801 * related to the number of busy CPUs due to sched_setaffinity.
8802 */
8803static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8804{
8805 return (dst_running < (dst_weight >> 2));
8806}
8807
57abff06
VG
8808/*
8809 * find_idlest_group() finds and returns the least busy CPU group within the
8810 * domain.
8811 *
8812 * Assumes p is allowed on at least one CPU in sd.
8813 */
8814static struct sched_group *
45da2773 8815find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
8816{
8817 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8818 struct sg_lb_stats local_sgs, tmp_sgs;
8819 struct sg_lb_stats *sgs;
8820 unsigned long imbalance;
8821 struct sg_lb_stats idlest_sgs = {
8822 .avg_load = UINT_MAX,
8823 .group_type = group_overloaded,
8824 };
8825
57abff06
VG
8826 do {
8827 int local_group;
8828
8829 /* Skip over this group if it has no CPUs allowed */
8830 if (!cpumask_intersects(sched_group_span(group),
8831 p->cpus_ptr))
8832 continue;
8833
8834 local_group = cpumask_test_cpu(this_cpu,
8835 sched_group_span(group));
8836
8837 if (local_group) {
8838 sgs = &local_sgs;
8839 local = group;
8840 } else {
8841 sgs = &tmp_sgs;
8842 }
8843
8844 update_sg_wakeup_stats(sd, group, sgs, p);
8845
8846 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8847 idlest = group;
8848 idlest_sgs = *sgs;
8849 }
8850
8851 } while (group = group->next, group != sd->groups);
8852
8853
8854 /* There is no idlest group to push tasks to */
8855 if (!idlest)
8856 return NULL;
8857
7ed735c3
VG
8858 /* The local group has been skipped because of CPU affinity */
8859 if (!local)
8860 return idlest;
8861
57abff06
VG
8862 /*
8863 * If the local group is idler than the selected idlest group
8864 * don't try and push the task.
8865 */
8866 if (local_sgs.group_type < idlest_sgs.group_type)
8867 return NULL;
8868
8869 /*
8870 * If the local group is busier than the selected idlest group
8871 * try and push the task.
8872 */
8873 if (local_sgs.group_type > idlest_sgs.group_type)
8874 return idlest;
8875
8876 switch (local_sgs.group_type) {
8877 case group_overloaded:
8878 case group_fully_busy:
5c339005
MG
8879
8880 /* Calculate allowed imbalance based on load */
8881 imbalance = scale_load_down(NICE_0_LOAD) *
8882 (sd->imbalance_pct-100) / 100;
8883
57abff06
VG
8884 /*
8885 * When comparing groups across NUMA domains, it's possible for
8886 * the local domain to be very lightly loaded relative to the
8887 * remote domains but "imbalance" skews the comparison making
8888 * remote CPUs look much more favourable. When considering
8889 * cross-domain, add imbalance to the load on the remote node
8890 * and consider staying local.
8891 */
8892
8893 if ((sd->flags & SD_NUMA) &&
8894 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8895 return NULL;
8896
8897 /*
8898 * If the local group is less loaded than the selected
8899 * idlest group don't try and push any tasks.
8900 */
8901 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8902 return NULL;
8903
8904 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8905 return NULL;
8906 break;
8907
8908 case group_imbalanced:
8909 case group_asym_packing:
8910 /* Those type are not used in the slow wakeup path */
8911 return NULL;
8912
8913 case group_misfit_task:
8914 /* Select group with the highest max capacity */
8915 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8916 return NULL;
8917 break;
8918
8919 case group_has_spare:
8920 if (sd->flags & SD_NUMA) {
8921#ifdef CONFIG_NUMA_BALANCING
8922 int idlest_cpu;
8923 /*
8924 * If there is spare capacity at NUMA, try to select
8925 * the preferred node
8926 */
8927 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8928 return NULL;
8929
8930 idlest_cpu = cpumask_first(sched_group_span(idlest));
8931 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8932 return idlest;
8933#endif
8934 /*
8935 * Otherwise, keep the task on this node to stay close
8936 * its wakeup source and improve locality. If there is
8937 * a real need of migration, periodic load balance will
8938 * take care of it.
8939 */
23e6082a 8940 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
57abff06
VG
8941 return NULL;
8942 }
8943
8944 /*
8945 * Select group with highest number of idle CPUs. We could also
8946 * compare the utilization which is more stable but it can end
8947 * up that the group has less spare capacity but finally more
8948 * idle CPUs which means more opportunity to run task.
8949 */
8950 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8951 return NULL;
8952 break;
8953 }
8954
8955 return idlest;
8956}
8957
1e3c88bd 8958/**
461819ac 8959 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8960 * @env: The load balancing environment.
1e3c88bd
PZ
8961 * @sds: variable to hold the statistics for this sched_domain.
8962 */
0b0695f2 8963
0ec8aa00 8964static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8965{
bd939f45
PZ
8966 struct sched_domain *child = env->sd->child;
8967 struct sched_group *sg = env->sd->groups;
05b40e05 8968 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8969 struct sg_lb_stats tmp_sgs;
630246a0 8970 int sg_status = 0;
1e3c88bd 8971
e022e0d3 8972#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8973 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8974 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8975#endif
8976
1e3c88bd 8977 do {
56cf515b 8978 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8979 int local_group;
8980
ae4df9d6 8981 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8982 if (local_group) {
8983 sds->local = sg;
05b40e05 8984 sgs = local;
b72ff13c
PZ
8985
8986 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8987 time_after_eq(jiffies, sg->sgc->next_update))
8988 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8989 }
1e3c88bd 8990
630246a0 8991 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8992
b72ff13c
PZ
8993 if (local_group)
8994 goto next_group;
8995
1e3c88bd 8996
b72ff13c 8997 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8998 sds->busiest = sg;
56cf515b 8999 sds->busiest_stat = *sgs;
1e3c88bd
PZ
9000 }
9001
b72ff13c
PZ
9002next_group:
9003 /* Now, start updating sd_lb_stats */
9004 sds->total_load += sgs->group_load;
63b2ca30 9005 sds->total_capacity += sgs->group_capacity;
b72ff13c 9006
532cb4c4 9007 sg = sg->next;
bd939f45 9008 } while (sg != env->sd->groups);
0ec8aa00 9009
0b0695f2
VG
9010 /* Tag domain that child domain prefers tasks go to siblings first */
9011 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9012
f643ea22
VG
9013#ifdef CONFIG_NO_HZ_COMMON
9014 if ((env->flags & LBF_NOHZ_AGAIN) &&
9015 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
9016
9017 WRITE_ONCE(nohz.next_blocked,
9018 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
9019 }
9020#endif
9021
0ec8aa00
PZ
9022 if (env->sd->flags & SD_NUMA)
9023 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
9024
9025 if (!env->sd->parent) {
2802bf3c
MR
9026 struct root_domain *rd = env->dst_rq->rd;
9027
4486edd1 9028 /* update overload indicator if we are at root domain */
2802bf3c
MR
9029 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9030
9031 /* Update over-utilization (tipping point, U >= 0) indicator */
9032 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 9033 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 9034 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
9035 struct root_domain *rd = env->dst_rq->rd;
9036
9037 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9038 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 9039 }
532cb4c4
MN
9040}
9041
abeae76a
MG
9042#define NUMA_IMBALANCE_MIN 2
9043
7d2b5dd0
MG
9044static inline long adjust_numa_imbalance(int imbalance,
9045 int dst_running, int dst_weight)
fb86f5b2 9046{
23e6082a
MG
9047 if (!allow_numa_imbalance(dst_running, dst_weight))
9048 return imbalance;
9049
fb86f5b2
MG
9050 /*
9051 * Allow a small imbalance based on a simple pair of communicating
7d2b5dd0 9052 * tasks that remain local when the destination is lightly loaded.
fb86f5b2 9053 */
23e6082a 9054 if (imbalance <= NUMA_IMBALANCE_MIN)
fb86f5b2
MG
9055 return 0;
9056
9057 return imbalance;
9058}
9059
1e3c88bd
PZ
9060/**
9061 * calculate_imbalance - Calculate the amount of imbalance present within the
9062 * groups of a given sched_domain during load balance.
bd939f45 9063 * @env: load balance environment
1e3c88bd 9064 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 9065 */
bd939f45 9066static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9067{
56cf515b
JK
9068 struct sg_lb_stats *local, *busiest;
9069
9070 local = &sds->local_stat;
56cf515b 9071 busiest = &sds->busiest_stat;
dd5feea1 9072
0b0695f2
VG
9073 if (busiest->group_type == group_misfit_task) {
9074 /* Set imbalance to allow misfit tasks to be balanced. */
9075 env->migration_type = migrate_misfit;
c63be7be 9076 env->imbalance = 1;
0b0695f2
VG
9077 return;
9078 }
9079
9080 if (busiest->group_type == group_asym_packing) {
9081 /*
9082 * In case of asym capacity, we will try to migrate all load to
9083 * the preferred CPU.
9084 */
9085 env->migration_type = migrate_task;
9086 env->imbalance = busiest->sum_h_nr_running;
9087 return;
9088 }
9089
9090 if (busiest->group_type == group_imbalanced) {
9091 /*
9092 * In the group_imb case we cannot rely on group-wide averages
9093 * to ensure CPU-load equilibrium, try to move any task to fix
9094 * the imbalance. The next load balance will take care of
9095 * balancing back the system.
9096 */
9097 env->migration_type = migrate_task;
9098 env->imbalance = 1;
490ba971
VG
9099 return;
9100 }
9101
1e3c88bd 9102 /*
0b0695f2 9103 * Try to use spare capacity of local group without overloading it or
a9723389 9104 * emptying busiest.
1e3c88bd 9105 */
0b0695f2 9106 if (local->group_type == group_has_spare) {
16b0a7a1
VG
9107 if ((busiest->group_type > group_fully_busy) &&
9108 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
0b0695f2
VG
9109 /*
9110 * If busiest is overloaded, try to fill spare
9111 * capacity. This might end up creating spare capacity
9112 * in busiest or busiest still being overloaded but
9113 * there is no simple way to directly compute the
9114 * amount of load to migrate in order to balance the
9115 * system.
9116 */
9117 env->migration_type = migrate_util;
9118 env->imbalance = max(local->group_capacity, local->group_util) -
9119 local->group_util;
9120
9121 /*
9122 * In some cases, the group's utilization is max or even
9123 * higher than capacity because of migrations but the
9124 * local CPU is (newly) idle. There is at least one
9125 * waiting task in this overloaded busiest group. Let's
9126 * try to pull it.
9127 */
9128 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9129 env->migration_type = migrate_task;
9130 env->imbalance = 1;
9131 }
9132
9133 return;
9134 }
9135
9136 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9137 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9138 /*
9139 * When prefer sibling, evenly spread running tasks on
9140 * groups.
9141 */
9142 env->migration_type = migrate_task;
5e23e474 9143 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9144 env->imbalance = nr_diff >> 1;
b396f523 9145 } else {
0b0695f2 9146
b396f523
MG
9147 /*
9148 * If there is no overload, we just want to even the number of
9149 * idle cpus.
9150 */
9151 env->migration_type = migrate_task;
9152 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9153 busiest->idle_cpus) >> 1);
b396f523
MG
9154 }
9155
9156 /* Consider allowing a small imbalance between NUMA groups */
7d2b5dd0 9157 if (env->sd->flags & SD_NUMA) {
fb86f5b2 9158 env->imbalance = adjust_numa_imbalance(env->imbalance,
7d2b5dd0
MG
9159 busiest->sum_nr_running, busiest->group_weight);
9160 }
b396f523 9161
fcf0553d 9162 return;
1e3c88bd
PZ
9163 }
9164
9a5d9ba6 9165 /*
0b0695f2
VG
9166 * Local is fully busy but has to take more load to relieve the
9167 * busiest group
9a5d9ba6 9168 */
0b0695f2
VG
9169 if (local->group_type < group_overloaded) {
9170 /*
9171 * Local will become overloaded so the avg_load metrics are
9172 * finally needed.
9173 */
9174
9175 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9176 local->group_capacity;
9177
9178 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9179 sds->total_capacity;
111688ca
AL
9180 /*
9181 * If the local group is more loaded than the selected
9182 * busiest group don't try to pull any tasks.
9183 */
9184 if (local->avg_load >= busiest->avg_load) {
9185 env->imbalance = 0;
9186 return;
9187 }
dd5feea1
SS
9188 }
9189
9190 /*
0b0695f2
VG
9191 * Both group are or will become overloaded and we're trying to get all
9192 * the CPUs to the average_load, so we don't want to push ourselves
9193 * above the average load, nor do we wish to reduce the max loaded CPU
9194 * below the average load. At the same time, we also don't want to
9195 * reduce the group load below the group capacity. Thus we look for
9196 * the minimum possible imbalance.
dd5feea1 9197 */
0b0695f2 9198 env->migration_type = migrate_load;
56cf515b 9199 env->imbalance = min(
0b0695f2 9200 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9201 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9202 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9203}
fab47622 9204
1e3c88bd
PZ
9205/******* find_busiest_group() helpers end here *********************/
9206
0b0695f2
VG
9207/*
9208 * Decision matrix according to the local and busiest group type:
9209 *
9210 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9211 * has_spare nr_idle balanced N/A N/A balanced balanced
9212 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9213 * misfit_task force N/A N/A N/A force force
9214 * asym_packing force force N/A N/A force force
9215 * imbalanced force force N/A N/A force force
9216 * overloaded force force N/A N/A force avg_load
9217 *
9218 * N/A : Not Applicable because already filtered while updating
9219 * statistics.
9220 * balanced : The system is balanced for these 2 groups.
9221 * force : Calculate the imbalance as load migration is probably needed.
9222 * avg_load : Only if imbalance is significant enough.
9223 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9224 * different in groups.
9225 */
9226
1e3c88bd
PZ
9227/**
9228 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9229 * if there is an imbalance.
1e3c88bd 9230 *
a3df0679 9231 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9232 * to restore balance.
9233 *
cd96891d 9234 * @env: The load balancing environment.
1e3c88bd 9235 *
e69f6186 9236 * Return: - The busiest group if imbalance exists.
1e3c88bd 9237 */
56cf515b 9238static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9239{
56cf515b 9240 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9241 struct sd_lb_stats sds;
9242
147c5fc2 9243 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9244
9245 /*
b0fb1eb4 9246 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9247 * this level.
9248 */
23f0d209 9249 update_sd_lb_stats(env, &sds);
2802bf3c 9250
f8a696f2 9251 if (sched_energy_enabled()) {
2802bf3c
MR
9252 struct root_domain *rd = env->dst_rq->rd;
9253
9254 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9255 goto out_balanced;
9256 }
9257
56cf515b
JK
9258 local = &sds.local_stat;
9259 busiest = &sds.busiest_stat;
1e3c88bd 9260
cc57aa8f 9261 /* There is no busy sibling group to pull tasks from */
0b0695f2 9262 if (!sds.busiest)
1e3c88bd
PZ
9263 goto out_balanced;
9264
0b0695f2
VG
9265 /* Misfit tasks should be dealt with regardless of the avg load */
9266 if (busiest->group_type == group_misfit_task)
9267 goto force_balance;
9268
9269 /* ASYM feature bypasses nice load balance check */
9270 if (busiest->group_type == group_asym_packing)
9271 goto force_balance;
b0432d8f 9272
866ab43e
PZ
9273 /*
9274 * If the busiest group is imbalanced the below checks don't
30ce5dab 9275 * work because they assume all things are equal, which typically
3bd37062 9276 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9277 */
caeb178c 9278 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9279 goto force_balance;
9280
cc57aa8f 9281 /*
9c58c79a 9282 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9283 * don't try and pull any tasks.
9284 */
0b0695f2 9285 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9286 goto out_balanced;
9287
cc57aa8f 9288 /*
0b0695f2
VG
9289 * When groups are overloaded, use the avg_load to ensure fairness
9290 * between tasks.
cc57aa8f 9291 */
0b0695f2
VG
9292 if (local->group_type == group_overloaded) {
9293 /*
9294 * If the local group is more loaded than the selected
9295 * busiest group don't try to pull any tasks.
9296 */
9297 if (local->avg_load >= busiest->avg_load)
9298 goto out_balanced;
9299
9300 /* XXX broken for overlapping NUMA groups */
9301 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9302 sds.total_capacity;
1e3c88bd 9303
aae6d3dd 9304 /*
0b0695f2
VG
9305 * Don't pull any tasks if this group is already above the
9306 * domain average load.
aae6d3dd 9307 */
0b0695f2 9308 if (local->avg_load >= sds.avg_load)
aae6d3dd 9309 goto out_balanced;
0b0695f2 9310
c186fafe 9311 /*
0b0695f2
VG
9312 * If the busiest group is more loaded, use imbalance_pct to be
9313 * conservative.
c186fafe 9314 */
56cf515b
JK
9315 if (100 * busiest->avg_load <=
9316 env->sd->imbalance_pct * local->avg_load)
c186fafe 9317 goto out_balanced;
aae6d3dd 9318 }
1e3c88bd 9319
0b0695f2
VG
9320 /* Try to move all excess tasks to child's sibling domain */
9321 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9322 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9323 goto force_balance;
9324
2ab4092f
VG
9325 if (busiest->group_type != group_overloaded) {
9326 if (env->idle == CPU_NOT_IDLE)
9327 /*
9328 * If the busiest group is not overloaded (and as a
9329 * result the local one too) but this CPU is already
9330 * busy, let another idle CPU try to pull task.
9331 */
9332 goto out_balanced;
9333
9334 if (busiest->group_weight > 1 &&
9335 local->idle_cpus <= (busiest->idle_cpus + 1))
9336 /*
9337 * If the busiest group is not overloaded
9338 * and there is no imbalance between this and busiest
9339 * group wrt idle CPUs, it is balanced. The imbalance
9340 * becomes significant if the diff is greater than 1
9341 * otherwise we might end up to just move the imbalance
9342 * on another group. Of course this applies only if
9343 * there is more than 1 CPU per group.
9344 */
9345 goto out_balanced;
9346
9347 if (busiest->sum_h_nr_running == 1)
9348 /*
9349 * busiest doesn't have any tasks waiting to run
9350 */
9351 goto out_balanced;
9352 }
0b0695f2 9353
fab47622 9354force_balance:
1e3c88bd 9355 /* Looks like there is an imbalance. Compute it */
bd939f45 9356 calculate_imbalance(env, &sds);
bb3485c8 9357 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9358
9359out_balanced:
bd939f45 9360 env->imbalance = 0;
1e3c88bd
PZ
9361 return NULL;
9362}
9363
9364/*
97fb7a0a 9365 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9366 */
bd939f45 9367static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9368 struct sched_group *group)
1e3c88bd
PZ
9369{
9370 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9371 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9372 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9373 int i;
9374
ae4df9d6 9375 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9376 unsigned long capacity, load, util;
9377 unsigned int nr_running;
0ec8aa00
PZ
9378 enum fbq_type rt;
9379
9380 rq = cpu_rq(i);
9381 rt = fbq_classify_rq(rq);
1e3c88bd 9382
0ec8aa00
PZ
9383 /*
9384 * We classify groups/runqueues into three groups:
9385 * - regular: there are !numa tasks
9386 * - remote: there are numa tasks that run on the 'wrong' node
9387 * - all: there is no distinction
9388 *
9389 * In order to avoid migrating ideally placed numa tasks,
9390 * ignore those when there's better options.
9391 *
9392 * If we ignore the actual busiest queue to migrate another
9393 * task, the next balance pass can still reduce the busiest
9394 * queue by moving tasks around inside the node.
9395 *
9396 * If we cannot move enough load due to this classification
9397 * the next pass will adjust the group classification and
9398 * allow migration of more tasks.
9399 *
9400 * Both cases only affect the total convergence complexity.
9401 */
9402 if (rt > env->fbq_type)
9403 continue;
9404
0b0695f2 9405 nr_running = rq->cfs.h_nr_running;
fc488ffd
VG
9406 if (!nr_running)
9407 continue;
9408
9409 capacity = capacity_of(i);
9d5efe05 9410
4ad3831a
CR
9411 /*
9412 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9413 * eventually lead to active_balancing high->low capacity.
9414 * Higher per-CPU capacity is considered better than balancing
9415 * average load.
9416 */
9417 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9418 capacity_of(env->dst_cpu) < capacity &&
0b0695f2 9419 nr_running == 1)
4ad3831a
CR
9420 continue;
9421
0b0695f2
VG
9422 switch (env->migration_type) {
9423 case migrate_load:
9424 /*
b0fb1eb4
VG
9425 * When comparing with load imbalance, use cpu_load()
9426 * which is not scaled with the CPU capacity.
0b0695f2 9427 */
b0fb1eb4 9428 load = cpu_load(rq);
1e3c88bd 9429
0b0695f2
VG
9430 if (nr_running == 1 && load > env->imbalance &&
9431 !check_cpu_capacity(rq, env->sd))
9432 break;
ea67821b 9433
0b0695f2
VG
9434 /*
9435 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9436 * consider the cpu_load() scaled with the CPU
9437 * capacity, so that the load can be moved away
9438 * from the CPU that is potentially running at a
9439 * lower capacity.
0b0695f2
VG
9440 *
9441 * Thus we're looking for max(load_i / capacity_i),
9442 * crosswise multiplication to rid ourselves of the
9443 * division works out to:
9444 * load_i * capacity_j > load_j * capacity_i;
9445 * where j is our previous maximum.
9446 */
9447 if (load * busiest_capacity > busiest_load * capacity) {
9448 busiest_load = load;
9449 busiest_capacity = capacity;
9450 busiest = rq;
9451 }
9452 break;
9453
9454 case migrate_util:
9455 util = cpu_util(cpu_of(rq));
9456
c32b4308
VG
9457 /*
9458 * Don't try to pull utilization from a CPU with one
9459 * running task. Whatever its utilization, we will fail
9460 * detach the task.
9461 */
9462 if (nr_running <= 1)
9463 continue;
9464
0b0695f2
VG
9465 if (busiest_util < util) {
9466 busiest_util = util;
9467 busiest = rq;
9468 }
9469 break;
9470
9471 case migrate_task:
9472 if (busiest_nr < nr_running) {
9473 busiest_nr = nr_running;
9474 busiest = rq;
9475 }
9476 break;
9477
9478 case migrate_misfit:
9479 /*
9480 * For ASYM_CPUCAPACITY domains with misfit tasks we
9481 * simply seek the "biggest" misfit task.
9482 */
9483 if (rq->misfit_task_load > busiest_load) {
9484 busiest_load = rq->misfit_task_load;
9485 busiest = rq;
9486 }
9487
9488 break;
1e3c88bd 9489
1e3c88bd
PZ
9490 }
9491 }
9492
9493 return busiest;
9494}
9495
9496/*
9497 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9498 * so long as it is large enough.
9499 */
9500#define MAX_PINNED_INTERVAL 512
9501
46a745d9
VG
9502static inline bool
9503asym_active_balance(struct lb_env *env)
1af3ed3d 9504{
46a745d9
VG
9505 /*
9506 * ASYM_PACKING needs to force migrate tasks from busy but
9507 * lower priority CPUs in order to pack all tasks in the
9508 * highest priority CPUs.
9509 */
9510 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9511 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9512}
bd939f45 9513
46a745d9 9514static inline bool
e9b9734b
VG
9515imbalanced_active_balance(struct lb_env *env)
9516{
9517 struct sched_domain *sd = env->sd;
9518
9519 /*
9520 * The imbalanced case includes the case of pinned tasks preventing a fair
9521 * distribution of the load on the system but also the even distribution of the
9522 * threads on a system with spare capacity
9523 */
9524 if ((env->migration_type == migrate_task) &&
9525 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9526 return 1;
9527
9528 return 0;
9529}
9530
9531static int need_active_balance(struct lb_env *env)
46a745d9
VG
9532{
9533 struct sched_domain *sd = env->sd;
532cb4c4 9534
46a745d9
VG
9535 if (asym_active_balance(env))
9536 return 1;
1af3ed3d 9537
e9b9734b
VG
9538 if (imbalanced_active_balance(env))
9539 return 1;
9540
1aaf90a4
VG
9541 /*
9542 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9543 * It's worth migrating the task if the src_cpu's capacity is reduced
9544 * because of other sched_class or IRQs if more capacity stays
9545 * available on dst_cpu.
9546 */
9547 if ((env->idle != CPU_NOT_IDLE) &&
9548 (env->src_rq->cfs.h_nr_running == 1)) {
9549 if ((check_cpu_capacity(env->src_rq, sd)) &&
9550 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9551 return 1;
9552 }
9553
0b0695f2 9554 if (env->migration_type == migrate_misfit)
cad68e55
MR
9555 return 1;
9556
46a745d9
VG
9557 return 0;
9558}
9559
969c7921
TH
9560static int active_load_balance_cpu_stop(void *data);
9561
23f0d209
JK
9562static int should_we_balance(struct lb_env *env)
9563{
9564 struct sched_group *sg = env->sd->groups;
64297f2b 9565 int cpu;
23f0d209 9566
024c9d2f
PZ
9567 /*
9568 * Ensure the balancing environment is consistent; can happen
9569 * when the softirq triggers 'during' hotplug.
9570 */
9571 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9572 return 0;
9573
23f0d209 9574 /*
97fb7a0a 9575 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9576 * to do the newly idle load balance.
9577 */
9578 if (env->idle == CPU_NEWLY_IDLE)
9579 return 1;
9580
97fb7a0a 9581 /* Try to find first idle CPU */
e5c14b1f 9582 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9583 if (!idle_cpu(cpu))
23f0d209
JK
9584 continue;
9585
64297f2b
PW
9586 /* Are we the first idle CPU? */
9587 return cpu == env->dst_cpu;
23f0d209
JK
9588 }
9589
64297f2b
PW
9590 /* Are we the first CPU of this group ? */
9591 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9592}
9593
1e3c88bd
PZ
9594/*
9595 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9596 * tasks if there is an imbalance.
9597 */
9598static int load_balance(int this_cpu, struct rq *this_rq,
9599 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9600 int *continue_balancing)
1e3c88bd 9601{
88b8dac0 9602 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9603 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9604 struct sched_group *group;
1e3c88bd 9605 struct rq *busiest;
8a8c69c3 9606 struct rq_flags rf;
4ba29684 9607 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9608
8e45cb54
PZ
9609 struct lb_env env = {
9610 .sd = sd,
ddcdf6e7
PZ
9611 .dst_cpu = this_cpu,
9612 .dst_rq = this_rq,
ae4df9d6 9613 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9614 .idle = idle,
eb95308e 9615 .loop_break = sched_nr_migrate_break,
b9403130 9616 .cpus = cpus,
0ec8aa00 9617 .fbq_type = all,
163122b7 9618 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9619 };
9620
65a4433a 9621 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9622
ae92882e 9623 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9624
9625redo:
23f0d209
JK
9626 if (!should_we_balance(&env)) {
9627 *continue_balancing = 0;
1e3c88bd 9628 goto out_balanced;
23f0d209 9629 }
1e3c88bd 9630
23f0d209 9631 group = find_busiest_group(&env);
1e3c88bd 9632 if (!group) {
ae92882e 9633 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9634 goto out_balanced;
9635 }
9636
b9403130 9637 busiest = find_busiest_queue(&env, group);
1e3c88bd 9638 if (!busiest) {
ae92882e 9639 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9640 goto out_balanced;
9641 }
9642
78feefc5 9643 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9644
ae92882e 9645 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9646
1aaf90a4
VG
9647 env.src_cpu = busiest->cpu;
9648 env.src_rq = busiest;
9649
1e3c88bd 9650 ld_moved = 0;
8a41dfcd
VG
9651 /* Clear this flag as soon as we find a pullable task */
9652 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9653 if (busiest->nr_running > 1) {
9654 /*
9655 * Attempt to move tasks. If find_busiest_group has found
9656 * an imbalance but busiest->nr_running <= 1, the group is
9657 * still unbalanced. ld_moved simply stays zero, so it is
9658 * correctly treated as an imbalance.
9659 */
c82513e5 9660 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9661
5d6523eb 9662more_balance:
8a8c69c3 9663 rq_lock_irqsave(busiest, &rf);
3bed5e21 9664 update_rq_clock(busiest);
88b8dac0
SV
9665
9666 /*
9667 * cur_ld_moved - load moved in current iteration
9668 * ld_moved - cumulative load moved across iterations
9669 */
163122b7 9670 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9671
9672 /*
163122b7
KT
9673 * We've detached some tasks from busiest_rq. Every
9674 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9675 * unlock busiest->lock, and we are able to be sure
9676 * that nobody can manipulate the tasks in parallel.
9677 * See task_rq_lock() family for the details.
1e3c88bd 9678 */
163122b7 9679
8a8c69c3 9680 rq_unlock(busiest, &rf);
163122b7
KT
9681
9682 if (cur_ld_moved) {
9683 attach_tasks(&env);
9684 ld_moved += cur_ld_moved;
9685 }
9686
8a8c69c3 9687 local_irq_restore(rf.flags);
88b8dac0 9688
f1cd0858
JK
9689 if (env.flags & LBF_NEED_BREAK) {
9690 env.flags &= ~LBF_NEED_BREAK;
9691 goto more_balance;
9692 }
9693
88b8dac0
SV
9694 /*
9695 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9696 * us and move them to an alternate dst_cpu in our sched_group
9697 * where they can run. The upper limit on how many times we
97fb7a0a 9698 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9699 * sched_group.
9700 *
9701 * This changes load balance semantics a bit on who can move
9702 * load to a given_cpu. In addition to the given_cpu itself
9703 * (or a ilb_cpu acting on its behalf where given_cpu is
9704 * nohz-idle), we now have balance_cpu in a position to move
9705 * load to given_cpu. In rare situations, this may cause
9706 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9707 * _independently_ and at _same_ time to move some load to
9708 * given_cpu) causing exceess load to be moved to given_cpu.
9709 * This however should not happen so much in practice and
9710 * moreover subsequent load balance cycles should correct the
9711 * excess load moved.
9712 */
6263322c 9713 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9714
97fb7a0a 9715 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9716 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9717
78feefc5 9718 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9719 env.dst_cpu = env.new_dst_cpu;
6263322c 9720 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9721 env.loop = 0;
9722 env.loop_break = sched_nr_migrate_break;
e02e60c1 9723
88b8dac0
SV
9724 /*
9725 * Go back to "more_balance" rather than "redo" since we
9726 * need to continue with same src_cpu.
9727 */
9728 goto more_balance;
9729 }
1e3c88bd 9730
6263322c
PZ
9731 /*
9732 * We failed to reach balance because of affinity.
9733 */
9734 if (sd_parent) {
63b2ca30 9735 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9736
afdeee05 9737 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9738 *group_imbalance = 1;
6263322c
PZ
9739 }
9740
1e3c88bd 9741 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9742 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9743 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9744 /*
9745 * Attempting to continue load balancing at the current
9746 * sched_domain level only makes sense if there are
9747 * active CPUs remaining as possible busiest CPUs to
9748 * pull load from which are not contained within the
9749 * destination group that is receiving any migrated
9750 * load.
9751 */
9752 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9753 env.loop = 0;
9754 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9755 goto redo;
bbf18b19 9756 }
afdeee05 9757 goto out_all_pinned;
1e3c88bd
PZ
9758 }
9759 }
9760
9761 if (!ld_moved) {
ae92882e 9762 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9763 /*
9764 * Increment the failure counter only on periodic balance.
9765 * We do not want newidle balance, which can be very
9766 * frequent, pollute the failure counter causing
9767 * excessive cache_hot migrations and active balances.
9768 */
9769 if (idle != CPU_NEWLY_IDLE)
9770 sd->nr_balance_failed++;
1e3c88bd 9771
bd939f45 9772 if (need_active_balance(&env)) {
8a8c69c3
PZ
9773 unsigned long flags;
9774
1e3c88bd
PZ
9775 raw_spin_lock_irqsave(&busiest->lock, flags);
9776
97fb7a0a
IM
9777 /*
9778 * Don't kick the active_load_balance_cpu_stop,
9779 * if the curr task on busiest CPU can't be
9780 * moved to this_cpu:
1e3c88bd 9781 */
3bd37062 9782 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9783 raw_spin_unlock_irqrestore(&busiest->lock,
9784 flags);
1e3c88bd
PZ
9785 goto out_one_pinned;
9786 }
9787
8a41dfcd
VG
9788 /* Record that we found at least one task that could run on this_cpu */
9789 env.flags &= ~LBF_ALL_PINNED;
9790
969c7921
TH
9791 /*
9792 * ->active_balance synchronizes accesses to
9793 * ->active_balance_work. Once set, it's cleared
9794 * only after active load balance is finished.
9795 */
1e3c88bd
PZ
9796 if (!busiest->active_balance) {
9797 busiest->active_balance = 1;
9798 busiest->push_cpu = this_cpu;
9799 active_balance = 1;
9800 }
9801 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9802
bd939f45 9803 if (active_balance) {
969c7921
TH
9804 stop_one_cpu_nowait(cpu_of(busiest),
9805 active_load_balance_cpu_stop, busiest,
9806 &busiest->active_balance_work);
bd939f45 9807 }
1e3c88bd 9808
d02c0711 9809 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9810 sd->nr_balance_failed = sd->cache_nice_tries+1;
9811 }
e9b9734b 9812 } else {
1e3c88bd 9813 sd->nr_balance_failed = 0;
e9b9734b 9814 }
1e3c88bd 9815
e9b9734b 9816 if (likely(!active_balance) || need_active_balance(&env)) {
1e3c88bd
PZ
9817 /* We were unbalanced, so reset the balancing interval */
9818 sd->balance_interval = sd->min_interval;
1e3c88bd
PZ
9819 }
9820
1e3c88bd
PZ
9821 goto out;
9822
9823out_balanced:
afdeee05
VG
9824 /*
9825 * We reach balance although we may have faced some affinity
f6cad8df
VG
9826 * constraints. Clear the imbalance flag only if other tasks got
9827 * a chance to move and fix the imbalance.
afdeee05 9828 */
f6cad8df 9829 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9830 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9831
9832 if (*group_imbalance)
9833 *group_imbalance = 0;
9834 }
9835
9836out_all_pinned:
9837 /*
9838 * We reach balance because all tasks are pinned at this level so
9839 * we can't migrate them. Let the imbalance flag set so parent level
9840 * can try to migrate them.
9841 */
ae92882e 9842 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9843
9844 sd->nr_balance_failed = 0;
9845
9846out_one_pinned:
3f130a37
VS
9847 ld_moved = 0;
9848
9849 /*
5ba553ef
PZ
9850 * newidle_balance() disregards balance intervals, so we could
9851 * repeatedly reach this code, which would lead to balance_interval
9852 * skyrocketting in a short amount of time. Skip the balance_interval
9853 * increase logic to avoid that.
3f130a37
VS
9854 */
9855 if (env.idle == CPU_NEWLY_IDLE)
9856 goto out;
9857
1e3c88bd 9858 /* tune up the balancing interval */
47b7aee1
VS
9859 if ((env.flags & LBF_ALL_PINNED &&
9860 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9861 sd->balance_interval < sd->max_interval)
1e3c88bd 9862 sd->balance_interval *= 2;
1e3c88bd 9863out:
1e3c88bd
PZ
9864 return ld_moved;
9865}
9866
52a08ef1
JL
9867static inline unsigned long
9868get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9869{
9870 unsigned long interval = sd->balance_interval;
9871
9872 if (cpu_busy)
9873 interval *= sd->busy_factor;
9874
9875 /* scale ms to jiffies */
9876 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
9877
9878 /*
9879 * Reduce likelihood of busy balancing at higher domains racing with
9880 * balancing at lower domains by preventing their balancing periods
9881 * from being multiples of each other.
9882 */
9883 if (cpu_busy)
9884 interval -= 1;
9885
52a08ef1
JL
9886 interval = clamp(interval, 1UL, max_load_balance_interval);
9887
9888 return interval;
9889}
9890
9891static inline void
31851a98 9892update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9893{
9894 unsigned long interval, next;
9895
31851a98
LY
9896 /* used by idle balance, so cpu_busy = 0 */
9897 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9898 next = sd->last_balance + interval;
9899
9900 if (time_after(*next_balance, next))
9901 *next_balance = next;
9902}
9903
1e3c88bd 9904/*
97fb7a0a 9905 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9906 * running tasks off the busiest CPU onto idle CPUs. It requires at
9907 * least 1 task to be running on each physical CPU where possible, and
9908 * avoids physical / logical imbalances.
1e3c88bd 9909 */
969c7921 9910static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9911{
969c7921
TH
9912 struct rq *busiest_rq = data;
9913 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9914 int target_cpu = busiest_rq->push_cpu;
969c7921 9915 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9916 struct sched_domain *sd;
e5673f28 9917 struct task_struct *p = NULL;
8a8c69c3 9918 struct rq_flags rf;
969c7921 9919
8a8c69c3 9920 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9921 /*
9922 * Between queueing the stop-work and running it is a hole in which
9923 * CPUs can become inactive. We should not move tasks from or to
9924 * inactive CPUs.
9925 */
9926 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9927 goto out_unlock;
969c7921 9928
97fb7a0a 9929 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9930 if (unlikely(busiest_cpu != smp_processor_id() ||
9931 !busiest_rq->active_balance))
9932 goto out_unlock;
1e3c88bd
PZ
9933
9934 /* Is there any task to move? */
9935 if (busiest_rq->nr_running <= 1)
969c7921 9936 goto out_unlock;
1e3c88bd
PZ
9937
9938 /*
9939 * This condition is "impossible", if it occurs
9940 * we need to fix it. Originally reported by
97fb7a0a 9941 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9942 */
9943 BUG_ON(busiest_rq == target_rq);
9944
1e3c88bd 9945 /* Search for an sd spanning us and the target CPU. */
dce840a0 9946 rcu_read_lock();
1e3c88bd 9947 for_each_domain(target_cpu, sd) {
e669ac8a
VS
9948 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9949 break;
1e3c88bd
PZ
9950 }
9951
9952 if (likely(sd)) {
8e45cb54
PZ
9953 struct lb_env env = {
9954 .sd = sd,
ddcdf6e7
PZ
9955 .dst_cpu = target_cpu,
9956 .dst_rq = target_rq,
9957 .src_cpu = busiest_rq->cpu,
9958 .src_rq = busiest_rq,
8e45cb54 9959 .idle = CPU_IDLE,
65a4433a
JH
9960 /*
9961 * can_migrate_task() doesn't need to compute new_dst_cpu
9962 * for active balancing. Since we have CPU_IDLE, but no
9963 * @dst_grpmask we need to make that test go away with lying
9964 * about DST_PINNED.
9965 */
9966 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9967 };
9968
ae92882e 9969 schedstat_inc(sd->alb_count);
3bed5e21 9970 update_rq_clock(busiest_rq);
1e3c88bd 9971
e5673f28 9972 p = detach_one_task(&env);
d02c0711 9973 if (p) {
ae92882e 9974 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9975 /* Active balancing done, reset the failure counter. */
9976 sd->nr_balance_failed = 0;
9977 } else {
ae92882e 9978 schedstat_inc(sd->alb_failed);
d02c0711 9979 }
1e3c88bd 9980 }
dce840a0 9981 rcu_read_unlock();
969c7921
TH
9982out_unlock:
9983 busiest_rq->active_balance = 0;
8a8c69c3 9984 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9985
9986 if (p)
9987 attach_one_task(target_rq, p);
9988
9989 local_irq_enable();
9990
969c7921 9991 return 0;
1e3c88bd
PZ
9992}
9993
af3fe03c
PZ
9994static DEFINE_SPINLOCK(balancing);
9995
9996/*
9997 * Scale the max load_balance interval with the number of CPUs in the system.
9998 * This trades load-balance latency on larger machines for less cross talk.
9999 */
10000void update_max_interval(void)
10001{
10002 max_load_balance_interval = HZ*num_online_cpus()/10;
10003}
10004
10005/*
10006 * It checks each scheduling domain to see if it is due to be balanced,
10007 * and initiates a balancing operation if so.
10008 *
10009 * Balancing parameters are set up in init_sched_domains.
10010 */
10011static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10012{
10013 int continue_balancing = 1;
10014 int cpu = rq->cpu;
323af6de 10015 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10016 unsigned long interval;
10017 struct sched_domain *sd;
10018 /* Earliest time when we have to do rebalance again */
10019 unsigned long next_balance = jiffies + 60*HZ;
10020 int update_next_balance = 0;
10021 int need_serialize, need_decay = 0;
10022 u64 max_cost = 0;
10023
10024 rcu_read_lock();
10025 for_each_domain(cpu, sd) {
10026 /*
10027 * Decay the newidle max times here because this is a regular
10028 * visit to all the domains. Decay ~1% per second.
10029 */
10030 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10031 sd->max_newidle_lb_cost =
10032 (sd->max_newidle_lb_cost * 253) / 256;
10033 sd->next_decay_max_lb_cost = jiffies + HZ;
10034 need_decay = 1;
10035 }
10036 max_cost += sd->max_newidle_lb_cost;
10037
af3fe03c
PZ
10038 /*
10039 * Stop the load balance at this level. There is another
10040 * CPU in our sched group which is doing load balancing more
10041 * actively.
10042 */
10043 if (!continue_balancing) {
10044 if (need_decay)
10045 continue;
10046 break;
10047 }
10048
323af6de 10049 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10050
10051 need_serialize = sd->flags & SD_SERIALIZE;
10052 if (need_serialize) {
10053 if (!spin_trylock(&balancing))
10054 goto out;
10055 }
10056
10057 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10058 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10059 /*
10060 * The LBF_DST_PINNED logic could have changed
10061 * env->dst_cpu, so we can't know our idle
10062 * state even if we migrated tasks. Update it.
10063 */
10064 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 10065 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10066 }
10067 sd->last_balance = jiffies;
323af6de 10068 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10069 }
10070 if (need_serialize)
10071 spin_unlock(&balancing);
10072out:
10073 if (time_after(next_balance, sd->last_balance + interval)) {
10074 next_balance = sd->last_balance + interval;
10075 update_next_balance = 1;
10076 }
10077 }
10078 if (need_decay) {
10079 /*
10080 * Ensure the rq-wide value also decays but keep it at a
10081 * reasonable floor to avoid funnies with rq->avg_idle.
10082 */
10083 rq->max_idle_balance_cost =
10084 max((u64)sysctl_sched_migration_cost, max_cost);
10085 }
10086 rcu_read_unlock();
10087
10088 /*
10089 * next_balance will be updated only when there is a need.
10090 * When the cpu is attached to null domain for ex, it will not be
10091 * updated.
10092 */
10093 if (likely(update_next_balance)) {
10094 rq->next_balance = next_balance;
10095
10096#ifdef CONFIG_NO_HZ_COMMON
10097 /*
10098 * If this CPU has been elected to perform the nohz idle
10099 * balance. Other idle CPUs have already rebalanced with
10100 * nohz_idle_balance() and nohz.next_balance has been
10101 * updated accordingly. This CPU is now running the idle load
10102 * balance for itself and we need to update the
10103 * nohz.next_balance accordingly.
10104 */
10105 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10106 nohz.next_balance = rq->next_balance;
10107#endif
10108 }
10109}
10110
d987fc7f
MG
10111static inline int on_null_domain(struct rq *rq)
10112{
10113 return unlikely(!rcu_dereference_sched(rq->sd));
10114}
10115
3451d024 10116#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10117/*
10118 * idle load balancing details
83cd4fe2
VP
10119 * - When one of the busy CPUs notice that there may be an idle rebalancing
10120 * needed, they will kick the idle load balancer, which then does idle
10121 * load balancing for all the idle CPUs.
9b019acb
NP
10122 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10123 * anywhere yet.
83cd4fe2 10124 */
1e3c88bd 10125
3dd0337d 10126static inline int find_new_ilb(void)
1e3c88bd 10127{
9b019acb 10128 int ilb;
1e3c88bd 10129
9b019acb
NP
10130 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10131 housekeeping_cpumask(HK_FLAG_MISC)) {
45da7a2b
PZ
10132
10133 if (ilb == smp_processor_id())
10134 continue;
10135
9b019acb
NP
10136 if (idle_cpu(ilb))
10137 return ilb;
10138 }
786d6dc7
SS
10139
10140 return nr_cpu_ids;
1e3c88bd 10141}
1e3c88bd 10142
83cd4fe2 10143/*
9b019acb
NP
10144 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10145 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10146 */
a4064fb6 10147static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10148{
10149 int ilb_cpu;
10150
3ea2f097
VG
10151 /*
10152 * Increase nohz.next_balance only when if full ilb is triggered but
10153 * not if we only update stats.
10154 */
10155 if (flags & NOHZ_BALANCE_KICK)
10156 nohz.next_balance = jiffies+1;
83cd4fe2 10157
3dd0337d 10158 ilb_cpu = find_new_ilb();
83cd4fe2 10159
0b005cf5
SS
10160 if (ilb_cpu >= nr_cpu_ids)
10161 return;
83cd4fe2 10162
19a1f5ec
PZ
10163 /*
10164 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10165 * the first flag owns it; cleared by nohz_csd_func().
10166 */
a4064fb6 10167 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10168 if (flags & NOHZ_KICK_MASK)
1c792db7 10169 return;
4550487a 10170
1c792db7 10171 /*
90b5363a 10172 * This way we generate an IPI on the target CPU which
1c792db7
SS
10173 * is idle. And the softirq performing nohz idle load balance
10174 * will be run before returning from the IPI.
10175 */
90b5363a 10176 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10177}
10178
10179/*
9f132742
VS
10180 * Current decision point for kicking the idle load balancer in the presence
10181 * of idle CPUs in the system.
4550487a
PZ
10182 */
10183static void nohz_balancer_kick(struct rq *rq)
10184{
10185 unsigned long now = jiffies;
10186 struct sched_domain_shared *sds;
10187 struct sched_domain *sd;
10188 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10189 unsigned int flags = 0;
4550487a
PZ
10190
10191 if (unlikely(rq->idle_balance))
10192 return;
10193
10194 /*
10195 * We may be recently in ticked or tickless idle mode. At the first
10196 * busy tick after returning from idle, we will update the busy stats.
10197 */
00357f5e 10198 nohz_balance_exit_idle(rq);
4550487a
PZ
10199
10200 /*
10201 * None are in tickless mode and hence no need for NOHZ idle load
10202 * balancing.
10203 */
10204 if (likely(!atomic_read(&nohz.nr_cpus)))
10205 return;
10206
f643ea22
VG
10207 if (READ_ONCE(nohz.has_blocked) &&
10208 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10209 flags = NOHZ_STATS_KICK;
10210
4550487a 10211 if (time_before(now, nohz.next_balance))
a4064fb6 10212 goto out;
4550487a 10213
a0fe2cf0 10214 if (rq->nr_running >= 2) {
a4064fb6 10215 flags = NOHZ_KICK_MASK;
4550487a
PZ
10216 goto out;
10217 }
10218
10219 rcu_read_lock();
4550487a
PZ
10220
10221 sd = rcu_dereference(rq->sd);
10222 if (sd) {
e25a7a94
VS
10223 /*
10224 * If there's a CFS task and the current CPU has reduced
10225 * capacity; kick the ILB to see if there's a better CPU to run
10226 * on.
10227 */
10228 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10229 flags = NOHZ_KICK_MASK;
4550487a
PZ
10230 goto unlock;
10231 }
10232 }
10233
011b27bb 10234 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10235 if (sd) {
b9a7b883
VS
10236 /*
10237 * When ASYM_PACKING; see if there's a more preferred CPU
10238 * currently idle; in which case, kick the ILB to move tasks
10239 * around.
10240 */
7edab78d 10241 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10242 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10243 flags = NOHZ_KICK_MASK;
4550487a
PZ
10244 goto unlock;
10245 }
10246 }
10247 }
b9a7b883 10248
a0fe2cf0
VS
10249 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10250 if (sd) {
10251 /*
10252 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10253 * to run the misfit task on.
10254 */
10255 if (check_misfit_status(rq, sd)) {
10256 flags = NOHZ_KICK_MASK;
10257 goto unlock;
10258 }
b9a7b883
VS
10259
10260 /*
10261 * For asymmetric systems, we do not want to nicely balance
10262 * cache use, instead we want to embrace asymmetry and only
10263 * ensure tasks have enough CPU capacity.
10264 *
10265 * Skip the LLC logic because it's not relevant in that case.
10266 */
10267 goto unlock;
a0fe2cf0
VS
10268 }
10269
b9a7b883
VS
10270 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10271 if (sds) {
e25a7a94 10272 /*
b9a7b883
VS
10273 * If there is an imbalance between LLC domains (IOW we could
10274 * increase the overall cache use), we need some less-loaded LLC
10275 * domain to pull some load. Likewise, we may need to spread
10276 * load within the current LLC domain (e.g. packed SMT cores but
10277 * other CPUs are idle). We can't really know from here how busy
10278 * the others are - so just get a nohz balance going if it looks
10279 * like this LLC domain has tasks we could move.
e25a7a94 10280 */
b9a7b883
VS
10281 nr_busy = atomic_read(&sds->nr_busy_cpus);
10282 if (nr_busy > 1) {
10283 flags = NOHZ_KICK_MASK;
10284 goto unlock;
4550487a
PZ
10285 }
10286 }
10287unlock:
10288 rcu_read_unlock();
10289out:
a4064fb6
PZ
10290 if (flags)
10291 kick_ilb(flags);
83cd4fe2
VP
10292}
10293
00357f5e 10294static void set_cpu_sd_state_busy(int cpu)
71325960 10295{
00357f5e 10296 struct sched_domain *sd;
a22e47a4 10297
00357f5e
PZ
10298 rcu_read_lock();
10299 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10300
00357f5e
PZ
10301 if (!sd || !sd->nohz_idle)
10302 goto unlock;
10303 sd->nohz_idle = 0;
10304
10305 atomic_inc(&sd->shared->nr_busy_cpus);
10306unlock:
10307 rcu_read_unlock();
71325960
SS
10308}
10309
00357f5e
PZ
10310void nohz_balance_exit_idle(struct rq *rq)
10311{
10312 SCHED_WARN_ON(rq != this_rq());
10313
10314 if (likely(!rq->nohz_tick_stopped))
10315 return;
10316
10317 rq->nohz_tick_stopped = 0;
10318 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10319 atomic_dec(&nohz.nr_cpus);
10320
10321 set_cpu_sd_state_busy(rq->cpu);
10322}
10323
10324static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10325{
10326 struct sched_domain *sd;
69e1e811 10327
69e1e811 10328 rcu_read_lock();
0e369d75 10329 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10330
10331 if (!sd || sd->nohz_idle)
10332 goto unlock;
10333 sd->nohz_idle = 1;
10334
0e369d75 10335 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10336unlock:
69e1e811
SS
10337 rcu_read_unlock();
10338}
10339
1e3c88bd 10340/*
97fb7a0a 10341 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10342 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10343 */
c1cc017c 10344void nohz_balance_enter_idle(int cpu)
1e3c88bd 10345{
00357f5e
PZ
10346 struct rq *rq = cpu_rq(cpu);
10347
10348 SCHED_WARN_ON(cpu != smp_processor_id());
10349
97fb7a0a 10350 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10351 if (!cpu_active(cpu))
10352 return;
10353
387bc8b5 10354 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10355 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10356 return;
10357
f643ea22
VG
10358 /*
10359 * Can be set safely without rq->lock held
10360 * If a clear happens, it will have evaluated last additions because
10361 * rq->lock is held during the check and the clear
10362 */
10363 rq->has_blocked_load = 1;
10364
10365 /*
10366 * The tick is still stopped but load could have been added in the
10367 * meantime. We set the nohz.has_blocked flag to trig a check of the
10368 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10369 * of nohz.has_blocked can only happen after checking the new load
10370 */
00357f5e 10371 if (rq->nohz_tick_stopped)
f643ea22 10372 goto out;
1e3c88bd 10373
97fb7a0a 10374 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10375 if (on_null_domain(rq))
d987fc7f
MG
10376 return;
10377
00357f5e
PZ
10378 rq->nohz_tick_stopped = 1;
10379
c1cc017c
AS
10380 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10381 atomic_inc(&nohz.nr_cpus);
00357f5e 10382
f643ea22
VG
10383 /*
10384 * Ensures that if nohz_idle_balance() fails to observe our
10385 * @idle_cpus_mask store, it must observe the @has_blocked
10386 * store.
10387 */
10388 smp_mb__after_atomic();
10389
00357f5e 10390 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10391
10392out:
10393 /*
10394 * Each time a cpu enter idle, we assume that it has blocked load and
10395 * enable the periodic update of the load of idle cpus
10396 */
10397 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10398}
1e3c88bd 10399
1e3c88bd 10400/*
31e77c93
VG
10401 * Internal function that runs load balance for all idle cpus. The load balance
10402 * can be a simple update of blocked load or a complete load balance with
10403 * tasks movement depending of flags.
10404 * The function returns false if the loop has stopped before running
10405 * through all idle CPUs.
1e3c88bd 10406 */
31e77c93
VG
10407static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10408 enum cpu_idle_type idle)
83cd4fe2 10409{
c5afb6a8 10410 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10411 unsigned long now = jiffies;
10412 unsigned long next_balance = now + 60*HZ;
f643ea22 10413 bool has_blocked_load = false;
c5afb6a8 10414 int update_next_balance = 0;
b7031a02 10415 int this_cpu = this_rq->cpu;
b7031a02 10416 int balance_cpu;
31e77c93 10417 int ret = false;
b7031a02 10418 struct rq *rq;
83cd4fe2 10419
b7031a02 10420 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10421
f643ea22
VG
10422 /*
10423 * We assume there will be no idle load after this update and clear
10424 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10425 * set the has_blocked flag and trig another update of idle load.
10426 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10427 * setting the flag, we are sure to not clear the state and not
10428 * check the load of an idle cpu.
10429 */
10430 WRITE_ONCE(nohz.has_blocked, 0);
10431
10432 /*
10433 * Ensures that if we miss the CPU, we must see the has_blocked
10434 * store from nohz_balance_enter_idle().
10435 */
10436 smp_mb();
10437
83cd4fe2 10438 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 10439 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
10440 continue;
10441
10442 /*
97fb7a0a
IM
10443 * If this CPU gets work to do, stop the load balancing
10444 * work being done for other CPUs. Next load
83cd4fe2
VP
10445 * balancing owner will pick it up.
10446 */
f643ea22
VG
10447 if (need_resched()) {
10448 has_blocked_load = true;
10449 goto abort;
10450 }
83cd4fe2 10451
5ed4f1d9
VG
10452 rq = cpu_rq(balance_cpu);
10453
63928384 10454 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 10455
ed61bbc6
TC
10456 /*
10457 * If time for next balance is due,
10458 * do the balance.
10459 */
10460 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10461 struct rq_flags rf;
10462
31e77c93 10463 rq_lock_irqsave(rq, &rf);
ed61bbc6 10464 update_rq_clock(rq);
31e77c93 10465 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10466
b7031a02
PZ
10467 if (flags & NOHZ_BALANCE_KICK)
10468 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10469 }
83cd4fe2 10470
c5afb6a8
VG
10471 if (time_after(next_balance, rq->next_balance)) {
10472 next_balance = rq->next_balance;
10473 update_next_balance = 1;
10474 }
83cd4fe2 10475 }
c5afb6a8 10476
3ea2f097
VG
10477 /*
10478 * next_balance will be updated only when there is a need.
10479 * When the CPU is attached to null domain for ex, it will not be
10480 * updated.
10481 */
10482 if (likely(update_next_balance))
10483 nohz.next_balance = next_balance;
10484
31e77c93
VG
10485 /* Newly idle CPU doesn't need an update */
10486 if (idle != CPU_NEWLY_IDLE) {
10487 update_blocked_averages(this_cpu);
10488 has_blocked_load |= this_rq->has_blocked_load;
10489 }
10490
b7031a02
PZ
10491 if (flags & NOHZ_BALANCE_KICK)
10492 rebalance_domains(this_rq, CPU_IDLE);
10493
f643ea22
VG
10494 WRITE_ONCE(nohz.next_blocked,
10495 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10496
31e77c93
VG
10497 /* The full idle balance loop has been done */
10498 ret = true;
10499
f643ea22
VG
10500abort:
10501 /* There is still blocked load, enable periodic update */
10502 if (has_blocked_load)
10503 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 10504
31e77c93
VG
10505 return ret;
10506}
10507
10508/*
10509 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10510 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10511 */
10512static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10513{
19a1f5ec 10514 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10515
19a1f5ec 10516 if (!flags)
31e77c93
VG
10517 return false;
10518
19a1f5ec 10519 this_rq->nohz_idle_balance = 0;
31e77c93 10520
19a1f5ec 10521 if (idle != CPU_IDLE)
31e77c93
VG
10522 return false;
10523
10524 _nohz_idle_balance(this_rq, flags, idle);
10525
b7031a02 10526 return true;
83cd4fe2 10527}
31e77c93
VG
10528
10529static void nohz_newidle_balance(struct rq *this_rq)
10530{
10531 int this_cpu = this_rq->cpu;
10532
10533 /*
10534 * This CPU doesn't want to be disturbed by scheduler
10535 * housekeeping
10536 */
10537 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10538 return;
10539
10540 /* Will wake up very soon. No time for doing anything else*/
10541 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10542 return;
10543
10544 /* Don't need to update blocked load of idle CPUs*/
10545 if (!READ_ONCE(nohz.has_blocked) ||
10546 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10547 return;
10548
10549 raw_spin_unlock(&this_rq->lock);
10550 /*
10551 * This CPU is going to be idle and blocked load of idle CPUs
10552 * need to be updated. Run the ilb locally as it is a good
10553 * candidate for ilb instead of waking up another idle CPU.
10554 * Kick an normal ilb if we failed to do the update.
10555 */
10556 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10557 kick_ilb(NOHZ_STATS_KICK);
10558 raw_spin_lock(&this_rq->lock);
10559}
10560
dd707247
PZ
10561#else /* !CONFIG_NO_HZ_COMMON */
10562static inline void nohz_balancer_kick(struct rq *rq) { }
10563
31e77c93 10564static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10565{
10566 return false;
10567}
31e77c93
VG
10568
10569static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10570#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10571
47ea5412 10572/*
5b78f2dc 10573 * newidle_balance is called by schedule() if this_cpu is about to become
47ea5412 10574 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10575 *
10576 * Returns:
10577 * < 0 - we released the lock and there are !fair tasks present
10578 * 0 - failed, no new tasks
10579 * > 0 - success, new (fair) tasks present
47ea5412 10580 */
d91cecc1 10581static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10582{
10583 unsigned long next_balance = jiffies + HZ;
10584 int this_cpu = this_rq->cpu;
10585 struct sched_domain *sd;
10586 int pulled_task = 0;
10587 u64 curr_cost = 0;
10588
5ba553ef 10589 update_misfit_status(NULL, this_rq);
47ea5412
PZ
10590 /*
10591 * We must set idle_stamp _before_ calling idle_balance(), such that we
10592 * measure the duration of idle_balance() as idle time.
10593 */
10594 this_rq->idle_stamp = rq_clock(this_rq);
10595
10596 /*
10597 * Do not pull tasks towards !active CPUs...
10598 */
10599 if (!cpu_active(this_cpu))
10600 return 0;
10601
10602 /*
10603 * This is OK, because current is on_cpu, which avoids it being picked
10604 * for load-balance and preemption/IRQs are still disabled avoiding
10605 * further scheduler activity on it and we're being very careful to
10606 * re-start the picking loop.
10607 */
10608 rq_unpin_lock(this_rq, rf);
10609
10610 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10611 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10612
47ea5412
PZ
10613 rcu_read_lock();
10614 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10615 if (sd)
10616 update_next_balance(sd, &next_balance);
10617 rcu_read_unlock();
10618
31e77c93
VG
10619 nohz_newidle_balance(this_rq);
10620
47ea5412
PZ
10621 goto out;
10622 }
10623
10624 raw_spin_unlock(&this_rq->lock);
10625
10626 update_blocked_averages(this_cpu);
10627 rcu_read_lock();
10628 for_each_domain(this_cpu, sd) {
10629 int continue_balancing = 1;
10630 u64 t0, domain_cost;
10631
47ea5412
PZ
10632 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10633 update_next_balance(sd, &next_balance);
10634 break;
10635 }
10636
10637 if (sd->flags & SD_BALANCE_NEWIDLE) {
10638 t0 = sched_clock_cpu(this_cpu);
10639
10640 pulled_task = load_balance(this_cpu, this_rq,
10641 sd, CPU_NEWLY_IDLE,
10642 &continue_balancing);
10643
10644 domain_cost = sched_clock_cpu(this_cpu) - t0;
10645 if (domain_cost > sd->max_newidle_lb_cost)
10646 sd->max_newidle_lb_cost = domain_cost;
10647
10648 curr_cost += domain_cost;
10649 }
10650
10651 update_next_balance(sd, &next_balance);
10652
10653 /*
10654 * Stop searching for tasks to pull if there are
10655 * now runnable tasks on this rq.
10656 */
10657 if (pulled_task || this_rq->nr_running > 0)
10658 break;
10659 }
10660 rcu_read_unlock();
10661
10662 raw_spin_lock(&this_rq->lock);
10663
10664 if (curr_cost > this_rq->max_idle_balance_cost)
10665 this_rq->max_idle_balance_cost = curr_cost;
10666
457be908 10667out:
47ea5412
PZ
10668 /*
10669 * While browsing the domains, we released the rq lock, a task could
10670 * have been enqueued in the meantime. Since we're not going idle,
10671 * pretend we pulled a task.
10672 */
10673 if (this_rq->cfs.h_nr_running && !pulled_task)
10674 pulled_task = 1;
10675
47ea5412
PZ
10676 /* Move the next balance forward */
10677 if (time_after(this_rq->next_balance, next_balance))
10678 this_rq->next_balance = next_balance;
10679
10680 /* Is there a task of a high priority class? */
10681 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10682 pulled_task = -1;
10683
10684 if (pulled_task)
10685 this_rq->idle_stamp = 0;
10686
10687 rq_repin_lock(this_rq, rf);
10688
10689 return pulled_task;
10690}
10691
83cd4fe2
VP
10692/*
10693 * run_rebalance_domains is triggered when needed from the scheduler tick.
10694 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10695 */
0766f788 10696static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10697{
208cb16b 10698 struct rq *this_rq = this_rq();
6eb57e0d 10699 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10700 CPU_IDLE : CPU_NOT_IDLE;
10701
1e3c88bd 10702 /*
97fb7a0a
IM
10703 * If this CPU has a pending nohz_balance_kick, then do the
10704 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10705 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10706 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10707 * load balance only within the local sched_domain hierarchy
10708 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10709 */
b7031a02
PZ
10710 if (nohz_idle_balance(this_rq, idle))
10711 return;
10712
10713 /* normal load balance */
10714 update_blocked_averages(this_rq->cpu);
d4573c3e 10715 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10716}
10717
1e3c88bd
PZ
10718/*
10719 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10720 */
7caff66f 10721void trigger_load_balance(struct rq *rq)
1e3c88bd 10722{
e0b257c3
AMB
10723 /*
10724 * Don't need to rebalance while attached to NULL domain or
10725 * runqueue CPU is not active
10726 */
10727 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
c726099e
DL
10728 return;
10729
10730 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10731 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10732
10733 nohz_balancer_kick(rq);
1e3c88bd
PZ
10734}
10735
0bcdcf28
CE
10736static void rq_online_fair(struct rq *rq)
10737{
10738 update_sysctl();
0e59bdae
KT
10739
10740 update_runtime_enabled(rq);
0bcdcf28
CE
10741}
10742
10743static void rq_offline_fair(struct rq *rq)
10744{
10745 update_sysctl();
a4c96ae3
PB
10746
10747 /* Ensure any throttled groups are reachable by pick_next_task */
10748 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10749}
10750
55e12e5e 10751#endif /* CONFIG_SMP */
e1d1484f 10752
bf0f6f24 10753/*
d84b3131
FW
10754 * scheduler tick hitting a task of our scheduling class.
10755 *
10756 * NOTE: This function can be called remotely by the tick offload that
10757 * goes along full dynticks. Therefore no local assumption can be made
10758 * and everything must be accessed through the @rq and @curr passed in
10759 * parameters.
bf0f6f24 10760 */
8f4d37ec 10761static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10762{
10763 struct cfs_rq *cfs_rq;
10764 struct sched_entity *se = &curr->se;
10765
10766 for_each_sched_entity(se) {
10767 cfs_rq = cfs_rq_of(se);
8f4d37ec 10768 entity_tick(cfs_rq, se, queued);
bf0f6f24 10769 }
18bf2805 10770
b52da86e 10771 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10772 task_tick_numa(rq, curr);
3b1baa64
MR
10773
10774 update_misfit_status(curr, rq);
2802bf3c 10775 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10776}
10777
10778/*
cd29fe6f
PZ
10779 * called on fork with the child task as argument from the parent's context
10780 * - child not yet on the tasklist
10781 * - preemption disabled
bf0f6f24 10782 */
cd29fe6f 10783static void task_fork_fair(struct task_struct *p)
bf0f6f24 10784{
4fc420c9
DN
10785 struct cfs_rq *cfs_rq;
10786 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10787 struct rq *rq = this_rq();
8a8c69c3 10788 struct rq_flags rf;
bf0f6f24 10789
8a8c69c3 10790 rq_lock(rq, &rf);
861d034e
PZ
10791 update_rq_clock(rq);
10792
4fc420c9
DN
10793 cfs_rq = task_cfs_rq(current);
10794 curr = cfs_rq->curr;
e210bffd
PZ
10795 if (curr) {
10796 update_curr(cfs_rq);
b5d9d734 10797 se->vruntime = curr->vruntime;
e210bffd 10798 }
aeb73b04 10799 place_entity(cfs_rq, se, 1);
4d78e7b6 10800
cd29fe6f 10801 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10802 /*
edcb60a3
IM
10803 * Upon rescheduling, sched_class::put_prev_task() will place
10804 * 'current' within the tree based on its new key value.
10805 */
4d78e7b6 10806 swap(curr->vruntime, se->vruntime);
8875125e 10807 resched_curr(rq);
4d78e7b6 10808 }
bf0f6f24 10809
88ec22d3 10810 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10811 rq_unlock(rq, &rf);
bf0f6f24
IM
10812}
10813
cb469845
SR
10814/*
10815 * Priority of the task has changed. Check to see if we preempt
10816 * the current task.
10817 */
da7a735e
PZ
10818static void
10819prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10820{
da0c1e65 10821 if (!task_on_rq_queued(p))
da7a735e
PZ
10822 return;
10823
7c2e8bbd
FW
10824 if (rq->cfs.nr_running == 1)
10825 return;
10826
cb469845
SR
10827 /*
10828 * Reschedule if we are currently running on this runqueue and
10829 * our priority decreased, or if we are not currently running on
10830 * this runqueue and our priority is higher than the current's
10831 */
65bcf072 10832 if (task_current(rq, p)) {
cb469845 10833 if (p->prio > oldprio)
8875125e 10834 resched_curr(rq);
cb469845 10835 } else
15afe09b 10836 check_preempt_curr(rq, p, 0);
cb469845
SR
10837}
10838
daa59407 10839static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10840{
10841 struct sched_entity *se = &p->se;
da7a735e
PZ
10842
10843 /*
daa59407
BP
10844 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10845 * the dequeue_entity(.flags=0) will already have normalized the
10846 * vruntime.
10847 */
10848 if (p->on_rq)
10849 return true;
10850
10851 /*
10852 * When !on_rq, vruntime of the task has usually NOT been normalized.
10853 * But there are some cases where it has already been normalized:
da7a735e 10854 *
daa59407
BP
10855 * - A forked child which is waiting for being woken up by
10856 * wake_up_new_task().
10857 * - A task which has been woken up by try_to_wake_up() and
10858 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10859 */
d0cdb3ce
SM
10860 if (!se->sum_exec_runtime ||
10861 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10862 return true;
10863
10864 return false;
10865}
10866
09a43ace
VG
10867#ifdef CONFIG_FAIR_GROUP_SCHED
10868/*
10869 * Propagate the changes of the sched_entity across the tg tree to make it
10870 * visible to the root
10871 */
10872static void propagate_entity_cfs_rq(struct sched_entity *se)
10873{
10874 struct cfs_rq *cfs_rq;
10875
10876 /* Start to propagate at parent */
10877 se = se->parent;
10878
10879 for_each_sched_entity(se) {
10880 cfs_rq = cfs_rq_of(se);
10881
10882 if (cfs_rq_throttled(cfs_rq))
10883 break;
10884
88c0616e 10885 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10886 }
10887}
10888#else
10889static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10890#endif
10891
df217913 10892static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10893{
daa59407
BP
10894 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10895
9d89c257 10896 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10897 update_load_avg(cfs_rq, se, 0);
a05e8c51 10898 detach_entity_load_avg(cfs_rq, se);
fe749158 10899 update_tg_load_avg(cfs_rq);
09a43ace 10900 propagate_entity_cfs_rq(se);
da7a735e
PZ
10901}
10902
df217913 10903static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10904{
daa59407 10905 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10906
10907#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10908 /*
10909 * Since the real-depth could have been changed (only FAIR
10910 * class maintain depth value), reset depth properly.
10911 */
10912 se->depth = se->parent ? se->parent->depth + 1 : 0;
10913#endif
7855a35a 10914
df217913 10915 /* Synchronize entity with its cfs_rq */
88c0616e 10916 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 10917 attach_entity_load_avg(cfs_rq, se);
fe749158 10918 update_tg_load_avg(cfs_rq);
09a43ace 10919 propagate_entity_cfs_rq(se);
df217913
VG
10920}
10921
10922static void detach_task_cfs_rq(struct task_struct *p)
10923{
10924 struct sched_entity *se = &p->se;
10925 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10926
10927 if (!vruntime_normalized(p)) {
10928 /*
10929 * Fix up our vruntime so that the current sleep doesn't
10930 * cause 'unlimited' sleep bonus.
10931 */
10932 place_entity(cfs_rq, se, 0);
10933 se->vruntime -= cfs_rq->min_vruntime;
10934 }
10935
10936 detach_entity_cfs_rq(se);
10937}
10938
10939static void attach_task_cfs_rq(struct task_struct *p)
10940{
10941 struct sched_entity *se = &p->se;
10942 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10943
10944 attach_entity_cfs_rq(se);
daa59407
BP
10945
10946 if (!vruntime_normalized(p))
10947 se->vruntime += cfs_rq->min_vruntime;
10948}
6efdb105 10949
daa59407
BP
10950static void switched_from_fair(struct rq *rq, struct task_struct *p)
10951{
10952 detach_task_cfs_rq(p);
10953}
10954
10955static void switched_to_fair(struct rq *rq, struct task_struct *p)
10956{
10957 attach_task_cfs_rq(p);
7855a35a 10958
daa59407 10959 if (task_on_rq_queued(p)) {
7855a35a 10960 /*
daa59407
BP
10961 * We were most likely switched from sched_rt, so
10962 * kick off the schedule if running, otherwise just see
10963 * if we can still preempt the current task.
7855a35a 10964 */
65bcf072 10965 if (task_current(rq, p))
daa59407
BP
10966 resched_curr(rq);
10967 else
10968 check_preempt_curr(rq, p, 0);
7855a35a 10969 }
cb469845
SR
10970}
10971
83b699ed
SV
10972/* Account for a task changing its policy or group.
10973 *
10974 * This routine is mostly called to set cfs_rq->curr field when a task
10975 * migrates between groups/classes.
10976 */
a0e813f2 10977static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10978{
03b7fad1
PZ
10979 struct sched_entity *se = &p->se;
10980
10981#ifdef CONFIG_SMP
10982 if (task_on_rq_queued(p)) {
10983 /*
10984 * Move the next running task to the front of the list, so our
10985 * cfs_tasks list becomes MRU one.
10986 */
10987 list_move(&se->group_node, &rq->cfs_tasks);
10988 }
10989#endif
83b699ed 10990
ec12cb7f
PT
10991 for_each_sched_entity(se) {
10992 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10993
10994 set_next_entity(cfs_rq, se);
10995 /* ensure bandwidth has been allocated on our new cfs_rq */
10996 account_cfs_rq_runtime(cfs_rq, 0);
10997 }
83b699ed
SV
10998}
10999
029632fb
PZ
11000void init_cfs_rq(struct cfs_rq *cfs_rq)
11001{
bfb06889 11002 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
11003 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11004#ifndef CONFIG_64BIT
11005 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11006#endif
141965c7 11007#ifdef CONFIG_SMP
2a2f5d4e 11008 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 11009#endif
029632fb
PZ
11010}
11011
810b3817 11012#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
11013static void task_set_group_fair(struct task_struct *p)
11014{
11015 struct sched_entity *se = &p->se;
11016
11017 set_task_rq(p, task_cpu(p));
11018 se->depth = se->parent ? se->parent->depth + 1 : 0;
11019}
11020
bc54da21 11021static void task_move_group_fair(struct task_struct *p)
810b3817 11022{
daa59407 11023 detach_task_cfs_rq(p);
b2b5ce02 11024 set_task_rq(p, task_cpu(p));
6efdb105
BP
11025
11026#ifdef CONFIG_SMP
11027 /* Tell se's cfs_rq has been changed -- migrated */
11028 p->se.avg.last_update_time = 0;
11029#endif
daa59407 11030 attach_task_cfs_rq(p);
810b3817 11031}
029632fb 11032
ea86cb4b
VG
11033static void task_change_group_fair(struct task_struct *p, int type)
11034{
11035 switch (type) {
11036 case TASK_SET_GROUP:
11037 task_set_group_fair(p);
11038 break;
11039
11040 case TASK_MOVE_GROUP:
11041 task_move_group_fair(p);
11042 break;
11043 }
11044}
11045
029632fb
PZ
11046void free_fair_sched_group(struct task_group *tg)
11047{
11048 int i;
11049
11050 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11051
11052 for_each_possible_cpu(i) {
11053 if (tg->cfs_rq)
11054 kfree(tg->cfs_rq[i]);
6fe1f348 11055 if (tg->se)
029632fb
PZ
11056 kfree(tg->se[i]);
11057 }
11058
11059 kfree(tg->cfs_rq);
11060 kfree(tg->se);
11061}
11062
11063int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11064{
029632fb 11065 struct sched_entity *se;
b7fa30c9 11066 struct cfs_rq *cfs_rq;
029632fb
PZ
11067 int i;
11068
6396bb22 11069 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
11070 if (!tg->cfs_rq)
11071 goto err;
6396bb22 11072 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
11073 if (!tg->se)
11074 goto err;
11075
11076 tg->shares = NICE_0_LOAD;
11077
11078 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11079
11080 for_each_possible_cpu(i) {
11081 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11082 GFP_KERNEL, cpu_to_node(i));
11083 if (!cfs_rq)
11084 goto err;
11085
11086 se = kzalloc_node(sizeof(struct sched_entity),
11087 GFP_KERNEL, cpu_to_node(i));
11088 if (!se)
11089 goto err_free_rq;
11090
11091 init_cfs_rq(cfs_rq);
11092 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11093 init_entity_runnable_average(se);
029632fb
PZ
11094 }
11095
11096 return 1;
11097
11098err_free_rq:
11099 kfree(cfs_rq);
11100err:
11101 return 0;
11102}
11103
8663e24d
PZ
11104void online_fair_sched_group(struct task_group *tg)
11105{
11106 struct sched_entity *se;
a46d14ec 11107 struct rq_flags rf;
8663e24d
PZ
11108 struct rq *rq;
11109 int i;
11110
11111 for_each_possible_cpu(i) {
11112 rq = cpu_rq(i);
11113 se = tg->se[i];
a46d14ec 11114 rq_lock_irq(rq, &rf);
4126bad6 11115 update_rq_clock(rq);
d0326691 11116 attach_entity_cfs_rq(se);
55e16d30 11117 sync_throttle(tg, i);
a46d14ec 11118 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11119 }
11120}
11121
6fe1f348 11122void unregister_fair_sched_group(struct task_group *tg)
029632fb 11123{
029632fb 11124 unsigned long flags;
6fe1f348
PZ
11125 struct rq *rq;
11126 int cpu;
029632fb 11127
6fe1f348
PZ
11128 for_each_possible_cpu(cpu) {
11129 if (tg->se[cpu])
11130 remove_entity_load_avg(tg->se[cpu]);
029632fb 11131
6fe1f348
PZ
11132 /*
11133 * Only empty task groups can be destroyed; so we can speculatively
11134 * check on_list without danger of it being re-added.
11135 */
11136 if (!tg->cfs_rq[cpu]->on_list)
11137 continue;
11138
11139 rq = cpu_rq(cpu);
11140
11141 raw_spin_lock_irqsave(&rq->lock, flags);
11142 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11143 raw_spin_unlock_irqrestore(&rq->lock, flags);
11144 }
029632fb
PZ
11145}
11146
11147void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11148 struct sched_entity *se, int cpu,
11149 struct sched_entity *parent)
11150{
11151 struct rq *rq = cpu_rq(cpu);
11152
11153 cfs_rq->tg = tg;
11154 cfs_rq->rq = rq;
029632fb
PZ
11155 init_cfs_rq_runtime(cfs_rq);
11156
11157 tg->cfs_rq[cpu] = cfs_rq;
11158 tg->se[cpu] = se;
11159
11160 /* se could be NULL for root_task_group */
11161 if (!se)
11162 return;
11163
fed14d45 11164 if (!parent) {
029632fb 11165 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11166 se->depth = 0;
11167 } else {
029632fb 11168 se->cfs_rq = parent->my_q;
fed14d45
PZ
11169 se->depth = parent->depth + 1;
11170 }
029632fb
PZ
11171
11172 se->my_q = cfs_rq;
0ac9b1c2
PT
11173 /* guarantee group entities always have weight */
11174 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11175 se->parent = parent;
11176}
11177
11178static DEFINE_MUTEX(shares_mutex);
11179
11180int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11181{
11182 int i;
029632fb
PZ
11183
11184 /*
11185 * We can't change the weight of the root cgroup.
11186 */
11187 if (!tg->se[0])
11188 return -EINVAL;
11189
11190 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11191
11192 mutex_lock(&shares_mutex);
11193 if (tg->shares == shares)
11194 goto done;
11195
11196 tg->shares = shares;
11197 for_each_possible_cpu(i) {
11198 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11199 struct sched_entity *se = tg->se[i];
11200 struct rq_flags rf;
029632fb 11201
029632fb 11202 /* Propagate contribution to hierarchy */
8a8c69c3 11203 rq_lock_irqsave(rq, &rf);
71b1da46 11204 update_rq_clock(rq);
89ee048f 11205 for_each_sched_entity(se) {
88c0616e 11206 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11207 update_cfs_group(se);
89ee048f 11208 }
8a8c69c3 11209 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11210 }
11211
11212done:
11213 mutex_unlock(&shares_mutex);
11214 return 0;
11215}
11216#else /* CONFIG_FAIR_GROUP_SCHED */
11217
11218void free_fair_sched_group(struct task_group *tg) { }
11219
11220int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11221{
11222 return 1;
11223}
11224
8663e24d
PZ
11225void online_fair_sched_group(struct task_group *tg) { }
11226
6fe1f348 11227void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11228
11229#endif /* CONFIG_FAIR_GROUP_SCHED */
11230
810b3817 11231
6d686f45 11232static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11233{
11234 struct sched_entity *se = &task->se;
0d721cea
PW
11235 unsigned int rr_interval = 0;
11236
11237 /*
11238 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11239 * idle runqueue:
11240 */
0d721cea 11241 if (rq->cfs.load.weight)
a59f4e07 11242 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11243
11244 return rr_interval;
11245}
11246
bf0f6f24
IM
11247/*
11248 * All the scheduling class methods:
11249 */
43c31ac0
PZ
11250DEFINE_SCHED_CLASS(fair) = {
11251
bf0f6f24
IM
11252 .enqueue_task = enqueue_task_fair,
11253 .dequeue_task = dequeue_task_fair,
11254 .yield_task = yield_task_fair,
d95f4122 11255 .yield_to_task = yield_to_task_fair,
bf0f6f24 11256
2e09bf55 11257 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11258
98c2f700 11259 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11260 .put_prev_task = put_prev_task_fair,
03b7fad1 11261 .set_next_task = set_next_task_fair,
bf0f6f24 11262
681f3e68 11263#ifdef CONFIG_SMP
6e2df058 11264 .balance = balance_fair,
4ce72a2c 11265 .select_task_rq = select_task_rq_fair,
0a74bef8 11266 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11267
0bcdcf28
CE
11268 .rq_online = rq_online_fair,
11269 .rq_offline = rq_offline_fair,
88ec22d3 11270
12695578 11271 .task_dead = task_dead_fair,
c5b28038 11272 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11273#endif
bf0f6f24 11274
bf0f6f24 11275 .task_tick = task_tick_fair,
cd29fe6f 11276 .task_fork = task_fork_fair,
cb469845
SR
11277
11278 .prio_changed = prio_changed_fair,
da7a735e 11279 .switched_from = switched_from_fair,
cb469845 11280 .switched_to = switched_to_fair,
810b3817 11281
0d721cea
PW
11282 .get_rr_interval = get_rr_interval_fair,
11283
6e998916
SG
11284 .update_curr = update_curr_fair,
11285
810b3817 11286#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11287 .task_change_group = task_change_group_fair,
810b3817 11288#endif
982d9cdc
PB
11289
11290#ifdef CONFIG_UCLAMP_TASK
11291 .uclamp_enabled = 1,
11292#endif
bf0f6f24
IM
11293};
11294
11295#ifdef CONFIG_SCHED_DEBUG
029632fb 11296void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11297{
039ae8bc 11298 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11299
5973e5b9 11300 rcu_read_lock();
039ae8bc 11301 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11302 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11303 rcu_read_unlock();
bf0f6f24 11304}
397f2378
SD
11305
11306#ifdef CONFIG_NUMA_BALANCING
11307void show_numa_stats(struct task_struct *p, struct seq_file *m)
11308{
11309 int node;
11310 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11311 struct numa_group *ng;
397f2378 11312
cb361d8c
JH
11313 rcu_read_lock();
11314 ng = rcu_dereference(p->numa_group);
397f2378
SD
11315 for_each_online_node(node) {
11316 if (p->numa_faults) {
11317 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11318 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11319 }
cb361d8c
JH
11320 if (ng) {
11321 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11322 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11323 }
11324 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11325 }
cb361d8c 11326 rcu_read_unlock();
397f2378
SD
11327}
11328#endif /* CONFIG_NUMA_BALANCING */
11329#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11330
11331__init void init_sched_fair_class(void)
11332{
11333#ifdef CONFIG_SMP
11334 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11335
3451d024 11336#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11337 nohz.next_balance = jiffies;
f643ea22 11338 nohz.next_blocked = jiffies;
029632fb 11339 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11340#endif
11341#endif /* SMP */
11342
11343}
3c93a0c0
QY
11344
11345/*
11346 * Helper functions to facilitate extracting info from tracepoints.
11347 */
11348
11349const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11350{
11351#ifdef CONFIG_SMP
11352 return cfs_rq ? &cfs_rq->avg : NULL;
11353#else
11354 return NULL;
11355#endif
11356}
11357EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11358
11359char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11360{
11361 if (!cfs_rq) {
11362 if (str)
11363 strlcpy(str, "(null)", len);
11364 else
11365 return NULL;
11366 }
11367
11368 cfs_rq_tg_path(cfs_rq, str, len);
11369 return str;
11370}
11371EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11372
11373int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11374{
11375 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11376}
11377EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11378
11379const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11380{
11381#ifdef CONFIG_SMP
11382 return rq ? &rq->avg_rt : NULL;
11383#else
11384 return NULL;
11385#endif
11386}
11387EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11388
11389const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11390{
11391#ifdef CONFIG_SMP
11392 return rq ? &rq->avg_dl : NULL;
11393#else
11394 return NULL;
11395#endif
11396}
11397EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11398
11399const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11400{
11401#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11402 return rq ? &rq->avg_irq : NULL;
11403#else
11404 return NULL;
11405#endif
11406}
11407EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11408
11409int sched_trace_rq_cpu(struct rq *rq)
11410{
11411 return rq ? cpu_of(rq) : -1;
11412}
11413EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11414
51cf18c9
VD
11415int sched_trace_rq_cpu_capacity(struct rq *rq)
11416{
11417 return rq ?
11418#ifdef CONFIG_SMP
11419 rq->cpu_capacity
11420#else
11421 SCHED_CAPACITY_SCALE
11422#endif
11423 : -1;
11424}
11425EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11426
3c93a0c0
QY
11427const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11428{
11429#ifdef CONFIG_SMP
11430 return rd ? rd->span : NULL;
11431#else
11432 return NULL;
11433#endif
11434}
11435EXPORT_SYMBOL_GPL(sched_trace_rd_span);
9d246053
PA
11436
11437int sched_trace_rq_nr_running(struct rq *rq)
11438{
11439 return rq ? rq->nr_running : -1;
11440}
11441EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);