]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
bf0f6f24 IM |
2 | /* |
3 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | |
4 | * | |
5 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | |
6 | * | |
7 | * Interactivity improvements by Mike Galbraith | |
8 | * (C) 2007 Mike Galbraith <efault@gmx.de> | |
9 | * | |
10 | * Various enhancements by Dmitry Adamushko. | |
11 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | |
12 | * | |
13 | * Group scheduling enhancements by Srivatsa Vaddagiri | |
14 | * Copyright IBM Corporation, 2007 | |
15 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | |
16 | * | |
17 | * Scaled math optimizations by Thomas Gleixner | |
18 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | |
21805085 PZ |
19 | * |
20 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | |
90eec103 | 21 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
bf0f6f24 | 22 | */ |
325ea10c | 23 | #include "sched.h" |
029632fb | 24 | |
bf0f6f24 | 25 | /* |
21805085 | 26 | * Targeted preemption latency for CPU-bound tasks: |
bf0f6f24 | 27 | * |
21805085 | 28 | * NOTE: this latency value is not the same as the concept of |
d274a4ce IM |
29 | * 'timeslice length' - timeslices in CFS are of variable length |
30 | * and have no persistent notion like in traditional, time-slice | |
31 | * based scheduling concepts. | |
bf0f6f24 | 32 | * |
d274a4ce IM |
33 | * (to see the precise effective timeslice length of your workload, |
34 | * run vmstat and monitor the context-switches (cs) field) | |
2b4d5b25 IM |
35 | * |
36 | * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | |
bf0f6f24 | 37 | */ |
2b4d5b25 | 38 | unsigned int sysctl_sched_latency = 6000000ULL; |
ed8885a1 | 39 | static unsigned int normalized_sysctl_sched_latency = 6000000ULL; |
2bd8e6d4 | 40 | |
1983a922 CE |
41 | /* |
42 | * The initial- and re-scaling of tunables is configurable | |
1983a922 CE |
43 | * |
44 | * Options are: | |
2b4d5b25 IM |
45 | * |
46 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | |
47 | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | |
48 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | |
49 | * | |
50 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | |
1983a922 | 51 | */ |
2b4d5b25 | 52 | enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; |
1983a922 | 53 | |
2bd8e6d4 | 54 | /* |
b2be5e96 | 55 | * Minimal preemption granularity for CPU-bound tasks: |
2b4d5b25 | 56 | * |
864616ee | 57 | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) |
2bd8e6d4 | 58 | */ |
ed8885a1 MS |
59 | unsigned int sysctl_sched_min_granularity = 750000ULL; |
60 | static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; | |
21805085 PZ |
61 | |
62 | /* | |
2b4d5b25 | 63 | * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity |
b2be5e96 | 64 | */ |
0bf377bb | 65 | static unsigned int sched_nr_latency = 8; |
b2be5e96 PZ |
66 | |
67 | /* | |
2bba22c5 | 68 | * After fork, child runs first. If set to 0 (default) then |
b2be5e96 | 69 | * parent will (try to) run first. |
21805085 | 70 | */ |
2bba22c5 | 71 | unsigned int sysctl_sched_child_runs_first __read_mostly; |
bf0f6f24 | 72 | |
bf0f6f24 IM |
73 | /* |
74 | * SCHED_OTHER wake-up granularity. | |
bf0f6f24 IM |
75 | * |
76 | * This option delays the preemption effects of decoupled workloads | |
77 | * and reduces their over-scheduling. Synchronous workloads will still | |
78 | * have immediate wakeup/sleep latencies. | |
2b4d5b25 IM |
79 | * |
80 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | |
bf0f6f24 | 81 | */ |
ed8885a1 MS |
82 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; |
83 | static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | |
bf0f6f24 | 84 | |
2b4d5b25 | 85 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
da84d961 | 86 | |
05289b90 TG |
87 | int sched_thermal_decay_shift; |
88 | static int __init setup_sched_thermal_decay_shift(char *str) | |
89 | { | |
90 | int _shift = 0; | |
91 | ||
92 | if (kstrtoint(str, 0, &_shift)) | |
93 | pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); | |
94 | ||
95 | sched_thermal_decay_shift = clamp(_shift, 0, 10); | |
96 | return 1; | |
97 | } | |
98 | __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); | |
99 | ||
afe06efd TC |
100 | #ifdef CONFIG_SMP |
101 | /* | |
97fb7a0a | 102 | * For asym packing, by default the lower numbered CPU has higher priority. |
afe06efd TC |
103 | */ |
104 | int __weak arch_asym_cpu_priority(int cpu) | |
105 | { | |
106 | return -cpu; | |
107 | } | |
6d101ba6 OJ |
108 | |
109 | /* | |
60e17f5c | 110 | * The margin used when comparing utilization with CPU capacity. |
6d101ba6 OJ |
111 | * |
112 | * (default: ~20%) | |
113 | */ | |
60e17f5c VK |
114 | #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) |
115 | ||
afe06efd TC |
116 | #endif |
117 | ||
ec12cb7f PT |
118 | #ifdef CONFIG_CFS_BANDWIDTH |
119 | /* | |
120 | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | |
121 | * each time a cfs_rq requests quota. | |
122 | * | |
123 | * Note: in the case that the slice exceeds the runtime remaining (either due | |
124 | * to consumption or the quota being specified to be smaller than the slice) | |
125 | * we will always only issue the remaining available time. | |
126 | * | |
2b4d5b25 IM |
127 | * (default: 5 msec, units: microseconds) |
128 | */ | |
129 | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; | |
ec12cb7f PT |
130 | #endif |
131 | ||
8527632d PG |
132 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
133 | { | |
134 | lw->weight += inc; | |
135 | lw->inv_weight = 0; | |
136 | } | |
137 | ||
138 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | |
139 | { | |
140 | lw->weight -= dec; | |
141 | lw->inv_weight = 0; | |
142 | } | |
143 | ||
144 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | |
145 | { | |
146 | lw->weight = w; | |
147 | lw->inv_weight = 0; | |
148 | } | |
149 | ||
029632fb PZ |
150 | /* |
151 | * Increase the granularity value when there are more CPUs, | |
152 | * because with more CPUs the 'effective latency' as visible | |
153 | * to users decreases. But the relationship is not linear, | |
154 | * so pick a second-best guess by going with the log2 of the | |
155 | * number of CPUs. | |
156 | * | |
157 | * This idea comes from the SD scheduler of Con Kolivas: | |
158 | */ | |
58ac93e4 | 159 | static unsigned int get_update_sysctl_factor(void) |
029632fb | 160 | { |
58ac93e4 | 161 | unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); |
029632fb PZ |
162 | unsigned int factor; |
163 | ||
164 | switch (sysctl_sched_tunable_scaling) { | |
165 | case SCHED_TUNABLESCALING_NONE: | |
166 | factor = 1; | |
167 | break; | |
168 | case SCHED_TUNABLESCALING_LINEAR: | |
169 | factor = cpus; | |
170 | break; | |
171 | case SCHED_TUNABLESCALING_LOG: | |
172 | default: | |
173 | factor = 1 + ilog2(cpus); | |
174 | break; | |
175 | } | |
176 | ||
177 | return factor; | |
178 | } | |
179 | ||
180 | static void update_sysctl(void) | |
181 | { | |
182 | unsigned int factor = get_update_sysctl_factor(); | |
183 | ||
184 | #define SET_SYSCTL(name) \ | |
185 | (sysctl_##name = (factor) * normalized_sysctl_##name) | |
186 | SET_SYSCTL(sched_min_granularity); | |
187 | SET_SYSCTL(sched_latency); | |
188 | SET_SYSCTL(sched_wakeup_granularity); | |
189 | #undef SET_SYSCTL | |
190 | } | |
191 | ||
f38f12d1 | 192 | void __init sched_init_granularity(void) |
029632fb PZ |
193 | { |
194 | update_sysctl(); | |
195 | } | |
196 | ||
9dbdb155 | 197 | #define WMULT_CONST (~0U) |
029632fb PZ |
198 | #define WMULT_SHIFT 32 |
199 | ||
9dbdb155 PZ |
200 | static void __update_inv_weight(struct load_weight *lw) |
201 | { | |
202 | unsigned long w; | |
203 | ||
204 | if (likely(lw->inv_weight)) | |
205 | return; | |
206 | ||
207 | w = scale_load_down(lw->weight); | |
208 | ||
209 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | |
210 | lw->inv_weight = 1; | |
211 | else if (unlikely(!w)) | |
212 | lw->inv_weight = WMULT_CONST; | |
213 | else | |
214 | lw->inv_weight = WMULT_CONST / w; | |
215 | } | |
029632fb PZ |
216 | |
217 | /* | |
9dbdb155 PZ |
218 | * delta_exec * weight / lw.weight |
219 | * OR | |
220 | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT | |
221 | * | |
1c3de5e1 | 222 | * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case |
9dbdb155 PZ |
223 | * we're guaranteed shift stays positive because inv_weight is guaranteed to |
224 | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. | |
225 | * | |
226 | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus | |
227 | * weight/lw.weight <= 1, and therefore our shift will also be positive. | |
029632fb | 228 | */ |
9dbdb155 | 229 | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) |
029632fb | 230 | { |
9dbdb155 PZ |
231 | u64 fact = scale_load_down(weight); |
232 | int shift = WMULT_SHIFT; | |
029632fb | 233 | |
9dbdb155 | 234 | __update_inv_weight(lw); |
029632fb | 235 | |
9dbdb155 PZ |
236 | if (unlikely(fact >> 32)) { |
237 | while (fact >> 32) { | |
238 | fact >>= 1; | |
239 | shift--; | |
240 | } | |
029632fb PZ |
241 | } |
242 | ||
2eeb01a2 | 243 | fact = mul_u32_u32(fact, lw->inv_weight); |
029632fb | 244 | |
9dbdb155 PZ |
245 | while (fact >> 32) { |
246 | fact >>= 1; | |
247 | shift--; | |
248 | } | |
029632fb | 249 | |
9dbdb155 | 250 | return mul_u64_u32_shr(delta_exec, fact, shift); |
029632fb PZ |
251 | } |
252 | ||
253 | ||
254 | const struct sched_class fair_sched_class; | |
a4c2f00f | 255 | |
bf0f6f24 IM |
256 | /************************************************************** |
257 | * CFS operations on generic schedulable entities: | |
258 | */ | |
259 | ||
62160e3f | 260 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8f48894f PZ |
261 | static inline struct task_struct *task_of(struct sched_entity *se) |
262 | { | |
9148a3a1 | 263 | SCHED_WARN_ON(!entity_is_task(se)); |
8f48894f PZ |
264 | return container_of(se, struct task_struct, se); |
265 | } | |
266 | ||
b758149c PZ |
267 | /* Walk up scheduling entities hierarchy */ |
268 | #define for_each_sched_entity(se) \ | |
269 | for (; se; se = se->parent) | |
270 | ||
271 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | |
272 | { | |
273 | return p->se.cfs_rq; | |
274 | } | |
275 | ||
276 | /* runqueue on which this entity is (to be) queued */ | |
277 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | |
278 | { | |
279 | return se->cfs_rq; | |
280 | } | |
281 | ||
282 | /* runqueue "owned" by this group */ | |
283 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
284 | { | |
285 | return grp->my_q; | |
286 | } | |
287 | ||
3c93a0c0 QY |
288 | static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) |
289 | { | |
290 | if (!path) | |
291 | return; | |
292 | ||
293 | if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) | |
294 | autogroup_path(cfs_rq->tg, path, len); | |
295 | else if (cfs_rq && cfs_rq->tg->css.cgroup) | |
296 | cgroup_path(cfs_rq->tg->css.cgroup, path, len); | |
297 | else | |
298 | strlcpy(path, "(null)", len); | |
299 | } | |
300 | ||
f6783319 | 301 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
3d4b47b4 | 302 | { |
5d299eab PZ |
303 | struct rq *rq = rq_of(cfs_rq); |
304 | int cpu = cpu_of(rq); | |
305 | ||
306 | if (cfs_rq->on_list) | |
f6783319 | 307 | return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; |
5d299eab PZ |
308 | |
309 | cfs_rq->on_list = 1; | |
310 | ||
311 | /* | |
312 | * Ensure we either appear before our parent (if already | |
313 | * enqueued) or force our parent to appear after us when it is | |
314 | * enqueued. The fact that we always enqueue bottom-up | |
315 | * reduces this to two cases and a special case for the root | |
316 | * cfs_rq. Furthermore, it also means that we will always reset | |
317 | * tmp_alone_branch either when the branch is connected | |
318 | * to a tree or when we reach the top of the tree | |
319 | */ | |
320 | if (cfs_rq->tg->parent && | |
321 | cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { | |
67e86250 | 322 | /* |
5d299eab PZ |
323 | * If parent is already on the list, we add the child |
324 | * just before. Thanks to circular linked property of | |
325 | * the list, this means to put the child at the tail | |
326 | * of the list that starts by parent. | |
67e86250 | 327 | */ |
5d299eab PZ |
328 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, |
329 | &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); | |
330 | /* | |
331 | * The branch is now connected to its tree so we can | |
332 | * reset tmp_alone_branch to the beginning of the | |
333 | * list. | |
334 | */ | |
335 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
f6783319 | 336 | return true; |
5d299eab | 337 | } |
3d4b47b4 | 338 | |
5d299eab PZ |
339 | if (!cfs_rq->tg->parent) { |
340 | /* | |
341 | * cfs rq without parent should be put | |
342 | * at the tail of the list. | |
343 | */ | |
344 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | |
345 | &rq->leaf_cfs_rq_list); | |
346 | /* | |
347 | * We have reach the top of a tree so we can reset | |
348 | * tmp_alone_branch to the beginning of the list. | |
349 | */ | |
350 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
f6783319 | 351 | return true; |
3d4b47b4 | 352 | } |
5d299eab PZ |
353 | |
354 | /* | |
355 | * The parent has not already been added so we want to | |
356 | * make sure that it will be put after us. | |
357 | * tmp_alone_branch points to the begin of the branch | |
358 | * where we will add parent. | |
359 | */ | |
360 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); | |
361 | /* | |
362 | * update tmp_alone_branch to points to the new begin | |
363 | * of the branch | |
364 | */ | |
365 | rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; | |
f6783319 | 366 | return false; |
3d4b47b4 PZ |
367 | } |
368 | ||
369 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
370 | { | |
371 | if (cfs_rq->on_list) { | |
31bc6aea VG |
372 | struct rq *rq = rq_of(cfs_rq); |
373 | ||
374 | /* | |
375 | * With cfs_rq being unthrottled/throttled during an enqueue, | |
376 | * it can happen the tmp_alone_branch points the a leaf that | |
377 | * we finally want to del. In this case, tmp_alone_branch moves | |
378 | * to the prev element but it will point to rq->leaf_cfs_rq_list | |
379 | * at the end of the enqueue. | |
380 | */ | |
381 | if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) | |
382 | rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; | |
383 | ||
3d4b47b4 PZ |
384 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); |
385 | cfs_rq->on_list = 0; | |
386 | } | |
387 | } | |
388 | ||
5d299eab PZ |
389 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) |
390 | { | |
391 | SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); | |
392 | } | |
393 | ||
039ae8bc VG |
394 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ |
395 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ | |
396 | list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ | |
397 | leaf_cfs_rq_list) | |
b758149c PZ |
398 | |
399 | /* Do the two (enqueued) entities belong to the same group ? */ | |
fed14d45 | 400 | static inline struct cfs_rq * |
b758149c PZ |
401 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
402 | { | |
403 | if (se->cfs_rq == pse->cfs_rq) | |
fed14d45 | 404 | return se->cfs_rq; |
b758149c | 405 | |
fed14d45 | 406 | return NULL; |
b758149c PZ |
407 | } |
408 | ||
409 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | |
410 | { | |
411 | return se->parent; | |
412 | } | |
413 | ||
464b7527 PZ |
414 | static void |
415 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
416 | { | |
417 | int se_depth, pse_depth; | |
418 | ||
419 | /* | |
420 | * preemption test can be made between sibling entities who are in the | |
421 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | |
422 | * both tasks until we find their ancestors who are siblings of common | |
423 | * parent. | |
424 | */ | |
425 | ||
426 | /* First walk up until both entities are at same depth */ | |
fed14d45 PZ |
427 | se_depth = (*se)->depth; |
428 | pse_depth = (*pse)->depth; | |
464b7527 PZ |
429 | |
430 | while (se_depth > pse_depth) { | |
431 | se_depth--; | |
432 | *se = parent_entity(*se); | |
433 | } | |
434 | ||
435 | while (pse_depth > se_depth) { | |
436 | pse_depth--; | |
437 | *pse = parent_entity(*pse); | |
438 | } | |
439 | ||
440 | while (!is_same_group(*se, *pse)) { | |
441 | *se = parent_entity(*se); | |
442 | *pse = parent_entity(*pse); | |
443 | } | |
444 | } | |
445 | ||
8f48894f PZ |
446 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
447 | ||
448 | static inline struct task_struct *task_of(struct sched_entity *se) | |
449 | { | |
450 | return container_of(se, struct task_struct, se); | |
451 | } | |
bf0f6f24 | 452 | |
b758149c PZ |
453 | #define for_each_sched_entity(se) \ |
454 | for (; se; se = NULL) | |
bf0f6f24 | 455 | |
b758149c | 456 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
bf0f6f24 | 457 | { |
b758149c | 458 | return &task_rq(p)->cfs; |
bf0f6f24 IM |
459 | } |
460 | ||
b758149c PZ |
461 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
462 | { | |
463 | struct task_struct *p = task_of(se); | |
464 | struct rq *rq = task_rq(p); | |
465 | ||
466 | return &rq->cfs; | |
467 | } | |
468 | ||
469 | /* runqueue "owned" by this group */ | |
470 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
471 | { | |
472 | return NULL; | |
473 | } | |
474 | ||
3c93a0c0 QY |
475 | static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) |
476 | { | |
477 | if (path) | |
478 | strlcpy(path, "(null)", len); | |
479 | } | |
480 | ||
f6783319 | 481 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
3d4b47b4 | 482 | { |
f6783319 | 483 | return true; |
3d4b47b4 PZ |
484 | } |
485 | ||
486 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
487 | { | |
488 | } | |
489 | ||
5d299eab PZ |
490 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) |
491 | { | |
492 | } | |
493 | ||
039ae8bc VG |
494 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
495 | for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) | |
b758149c | 496 | |
b758149c PZ |
497 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
498 | { | |
499 | return NULL; | |
500 | } | |
501 | ||
464b7527 PZ |
502 | static inline void |
503 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
504 | { | |
505 | } | |
506 | ||
b758149c PZ |
507 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
508 | ||
6c16a6dc | 509 | static __always_inline |
9dbdb155 | 510 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); |
bf0f6f24 IM |
511 | |
512 | /************************************************************** | |
513 | * Scheduling class tree data structure manipulation methods: | |
514 | */ | |
515 | ||
1bf08230 | 516 | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) |
02e0431a | 517 | { |
1bf08230 | 518 | s64 delta = (s64)(vruntime - max_vruntime); |
368059a9 | 519 | if (delta > 0) |
1bf08230 | 520 | max_vruntime = vruntime; |
02e0431a | 521 | |
1bf08230 | 522 | return max_vruntime; |
02e0431a PZ |
523 | } |
524 | ||
0702e3eb | 525 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
b0ffd246 PZ |
526 | { |
527 | s64 delta = (s64)(vruntime - min_vruntime); | |
528 | if (delta < 0) | |
529 | min_vruntime = vruntime; | |
530 | ||
531 | return min_vruntime; | |
532 | } | |
533 | ||
54fdc581 FC |
534 | static inline int entity_before(struct sched_entity *a, |
535 | struct sched_entity *b) | |
536 | { | |
537 | return (s64)(a->vruntime - b->vruntime) < 0; | |
538 | } | |
539 | ||
1af5f730 PZ |
540 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
541 | { | |
b60205c7 | 542 | struct sched_entity *curr = cfs_rq->curr; |
bfb06889 | 543 | struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); |
b60205c7 | 544 | |
1af5f730 PZ |
545 | u64 vruntime = cfs_rq->min_vruntime; |
546 | ||
b60205c7 PZ |
547 | if (curr) { |
548 | if (curr->on_rq) | |
549 | vruntime = curr->vruntime; | |
550 | else | |
551 | curr = NULL; | |
552 | } | |
1af5f730 | 553 | |
bfb06889 DB |
554 | if (leftmost) { /* non-empty tree */ |
555 | struct sched_entity *se; | |
556 | se = rb_entry(leftmost, struct sched_entity, run_node); | |
1af5f730 | 557 | |
b60205c7 | 558 | if (!curr) |
1af5f730 PZ |
559 | vruntime = se->vruntime; |
560 | else | |
561 | vruntime = min_vruntime(vruntime, se->vruntime); | |
562 | } | |
563 | ||
1bf08230 | 564 | /* ensure we never gain time by being placed backwards. */ |
1af5f730 | 565 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); |
3fe1698b PZ |
566 | #ifndef CONFIG_64BIT |
567 | smp_wmb(); | |
568 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | |
569 | #endif | |
1af5f730 PZ |
570 | } |
571 | ||
bf0f6f24 IM |
572 | /* |
573 | * Enqueue an entity into the rb-tree: | |
574 | */ | |
0702e3eb | 575 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 576 | { |
bfb06889 | 577 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; |
bf0f6f24 IM |
578 | struct rb_node *parent = NULL; |
579 | struct sched_entity *entry; | |
bfb06889 | 580 | bool leftmost = true; |
bf0f6f24 IM |
581 | |
582 | /* | |
583 | * Find the right place in the rbtree: | |
584 | */ | |
585 | while (*link) { | |
586 | parent = *link; | |
587 | entry = rb_entry(parent, struct sched_entity, run_node); | |
588 | /* | |
589 | * We dont care about collisions. Nodes with | |
590 | * the same key stay together. | |
591 | */ | |
2bd2d6f2 | 592 | if (entity_before(se, entry)) { |
bf0f6f24 IM |
593 | link = &parent->rb_left; |
594 | } else { | |
595 | link = &parent->rb_right; | |
bfb06889 | 596 | leftmost = false; |
bf0f6f24 IM |
597 | } |
598 | } | |
599 | ||
bf0f6f24 | 600 | rb_link_node(&se->run_node, parent, link); |
bfb06889 DB |
601 | rb_insert_color_cached(&se->run_node, |
602 | &cfs_rq->tasks_timeline, leftmost); | |
bf0f6f24 IM |
603 | } |
604 | ||
0702e3eb | 605 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 606 | { |
bfb06889 | 607 | rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); |
bf0f6f24 IM |
608 | } |
609 | ||
029632fb | 610 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) |
bf0f6f24 | 611 | { |
bfb06889 | 612 | struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); |
f4b6755f PZ |
613 | |
614 | if (!left) | |
615 | return NULL; | |
616 | ||
617 | return rb_entry(left, struct sched_entity, run_node); | |
bf0f6f24 IM |
618 | } |
619 | ||
ac53db59 RR |
620 | static struct sched_entity *__pick_next_entity(struct sched_entity *se) |
621 | { | |
622 | struct rb_node *next = rb_next(&se->run_node); | |
623 | ||
624 | if (!next) | |
625 | return NULL; | |
626 | ||
627 | return rb_entry(next, struct sched_entity, run_node); | |
628 | } | |
629 | ||
630 | #ifdef CONFIG_SCHED_DEBUG | |
029632fb | 631 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
aeb73b04 | 632 | { |
bfb06889 | 633 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); |
aeb73b04 | 634 | |
70eee74b BS |
635 | if (!last) |
636 | return NULL; | |
7eee3e67 IM |
637 | |
638 | return rb_entry(last, struct sched_entity, run_node); | |
aeb73b04 PZ |
639 | } |
640 | ||
bf0f6f24 IM |
641 | /************************************************************** |
642 | * Scheduling class statistics methods: | |
643 | */ | |
644 | ||
acb4a848 | 645 | int sched_proc_update_handler(struct ctl_table *table, int write, |
32927393 | 646 | void *buffer, size_t *lenp, loff_t *ppos) |
b2be5e96 | 647 | { |
8d65af78 | 648 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
58ac93e4 | 649 | unsigned int factor = get_update_sysctl_factor(); |
b2be5e96 PZ |
650 | |
651 | if (ret || !write) | |
652 | return ret; | |
653 | ||
654 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | |
655 | sysctl_sched_min_granularity); | |
656 | ||
acb4a848 CE |
657 | #define WRT_SYSCTL(name) \ |
658 | (normalized_sysctl_##name = sysctl_##name / (factor)) | |
659 | WRT_SYSCTL(sched_min_granularity); | |
660 | WRT_SYSCTL(sched_latency); | |
661 | WRT_SYSCTL(sched_wakeup_granularity); | |
acb4a848 CE |
662 | #undef WRT_SYSCTL |
663 | ||
b2be5e96 PZ |
664 | return 0; |
665 | } | |
666 | #endif | |
647e7cac | 667 | |
a7be37ac | 668 | /* |
f9c0b095 | 669 | * delta /= w |
a7be37ac | 670 | */ |
9dbdb155 | 671 | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) |
a7be37ac | 672 | { |
f9c0b095 | 673 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
9dbdb155 | 674 | delta = __calc_delta(delta, NICE_0_LOAD, &se->load); |
a7be37ac PZ |
675 | |
676 | return delta; | |
677 | } | |
678 | ||
647e7cac IM |
679 | /* |
680 | * The idea is to set a period in which each task runs once. | |
681 | * | |
532b1858 | 682 | * When there are too many tasks (sched_nr_latency) we have to stretch |
647e7cac IM |
683 | * this period because otherwise the slices get too small. |
684 | * | |
685 | * p = (nr <= nl) ? l : l*nr/nl | |
686 | */ | |
4d78e7b6 PZ |
687 | static u64 __sched_period(unsigned long nr_running) |
688 | { | |
8e2b0bf3 BF |
689 | if (unlikely(nr_running > sched_nr_latency)) |
690 | return nr_running * sysctl_sched_min_granularity; | |
691 | else | |
692 | return sysctl_sched_latency; | |
4d78e7b6 PZ |
693 | } |
694 | ||
647e7cac IM |
695 | /* |
696 | * We calculate the wall-time slice from the period by taking a part | |
697 | * proportional to the weight. | |
698 | * | |
f9c0b095 | 699 | * s = p*P[w/rw] |
647e7cac | 700 | */ |
6d0f0ebd | 701 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
21805085 | 702 | { |
0a582440 | 703 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); |
f9c0b095 | 704 | |
0a582440 | 705 | for_each_sched_entity(se) { |
6272d68c | 706 | struct load_weight *load; |
3104bf03 | 707 | struct load_weight lw; |
6272d68c LM |
708 | |
709 | cfs_rq = cfs_rq_of(se); | |
710 | load = &cfs_rq->load; | |
f9c0b095 | 711 | |
0a582440 | 712 | if (unlikely(!se->on_rq)) { |
3104bf03 | 713 | lw = cfs_rq->load; |
0a582440 MG |
714 | |
715 | update_load_add(&lw, se->load.weight); | |
716 | load = &lw; | |
717 | } | |
9dbdb155 | 718 | slice = __calc_delta(slice, se->load.weight, load); |
0a582440 MG |
719 | } |
720 | return slice; | |
bf0f6f24 IM |
721 | } |
722 | ||
647e7cac | 723 | /* |
660cc00f | 724 | * We calculate the vruntime slice of a to-be-inserted task. |
647e7cac | 725 | * |
f9c0b095 | 726 | * vs = s/w |
647e7cac | 727 | */ |
f9c0b095 | 728 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
67e9fb2a | 729 | { |
f9c0b095 | 730 | return calc_delta_fair(sched_slice(cfs_rq, se), se); |
a7be37ac PZ |
731 | } |
732 | ||
c0796298 | 733 | #include "pelt.h" |
23127296 | 734 | #ifdef CONFIG_SMP |
283e2ed3 | 735 | |
772bd008 | 736 | static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); |
fb13c7ee | 737 | static unsigned long task_h_load(struct task_struct *p); |
3b1baa64 | 738 | static unsigned long capacity_of(int cpu); |
fb13c7ee | 739 | |
540247fb YD |
740 | /* Give new sched_entity start runnable values to heavy its load in infant time */ |
741 | void init_entity_runnable_average(struct sched_entity *se) | |
a75cdaa9 | 742 | { |
540247fb | 743 | struct sched_avg *sa = &se->avg; |
a75cdaa9 | 744 | |
f207934f PZ |
745 | memset(sa, 0, sizeof(*sa)); |
746 | ||
b5a9b340 | 747 | /* |
dfcb245e | 748 | * Tasks are initialized with full load to be seen as heavy tasks until |
b5a9b340 | 749 | * they get a chance to stabilize to their real load level. |
dfcb245e | 750 | * Group entities are initialized with zero load to reflect the fact that |
b5a9b340 VG |
751 | * nothing has been attached to the task group yet. |
752 | */ | |
753 | if (entity_is_task(se)) | |
0dacee1b | 754 | sa->load_avg = scale_load_down(se->load.weight); |
f207934f | 755 | |
9d89c257 | 756 | /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ |
a75cdaa9 | 757 | } |
7ea241af | 758 | |
df217913 | 759 | static void attach_entity_cfs_rq(struct sched_entity *se); |
7dc603c9 | 760 | |
2b8c41da YD |
761 | /* |
762 | * With new tasks being created, their initial util_avgs are extrapolated | |
763 | * based on the cfs_rq's current util_avg: | |
764 | * | |
765 | * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight | |
766 | * | |
767 | * However, in many cases, the above util_avg does not give a desired | |
768 | * value. Moreover, the sum of the util_avgs may be divergent, such | |
769 | * as when the series is a harmonic series. | |
770 | * | |
771 | * To solve this problem, we also cap the util_avg of successive tasks to | |
772 | * only 1/2 of the left utilization budget: | |
773 | * | |
8fe5c5a9 | 774 | * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n |
2b8c41da | 775 | * |
8fe5c5a9 | 776 | * where n denotes the nth task and cpu_scale the CPU capacity. |
2b8c41da | 777 | * |
8fe5c5a9 QP |
778 | * For example, for a CPU with 1024 of capacity, a simplest series from |
779 | * the beginning would be like: | |
2b8c41da YD |
780 | * |
781 | * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... | |
782 | * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... | |
783 | * | |
784 | * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) | |
785 | * if util_avg > util_avg_cap. | |
786 | */ | |
d0fe0b9c | 787 | void post_init_entity_util_avg(struct task_struct *p) |
2b8c41da | 788 | { |
d0fe0b9c | 789 | struct sched_entity *se = &p->se; |
2b8c41da YD |
790 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
791 | struct sched_avg *sa = &se->avg; | |
8ec59c0f | 792 | long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); |
8fe5c5a9 | 793 | long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; |
2b8c41da YD |
794 | |
795 | if (cap > 0) { | |
796 | if (cfs_rq->avg.util_avg != 0) { | |
797 | sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; | |
798 | sa->util_avg /= (cfs_rq->avg.load_avg + 1); | |
799 | ||
800 | if (sa->util_avg > cap) | |
801 | sa->util_avg = cap; | |
802 | } else { | |
803 | sa->util_avg = cap; | |
804 | } | |
2b8c41da | 805 | } |
7dc603c9 | 806 | |
e21cf434 | 807 | sa->runnable_avg = sa->util_avg; |
9f683953 | 808 | |
d0fe0b9c DE |
809 | if (p->sched_class != &fair_sched_class) { |
810 | /* | |
811 | * For !fair tasks do: | |
812 | * | |
813 | update_cfs_rq_load_avg(now, cfs_rq); | |
a4f9a0e5 | 814 | attach_entity_load_avg(cfs_rq, se); |
d0fe0b9c DE |
815 | switched_from_fair(rq, p); |
816 | * | |
817 | * such that the next switched_to_fair() has the | |
818 | * expected state. | |
819 | */ | |
820 | se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); | |
821 | return; | |
7dc603c9 PZ |
822 | } |
823 | ||
df217913 | 824 | attach_entity_cfs_rq(se); |
2b8c41da YD |
825 | } |
826 | ||
7dc603c9 | 827 | #else /* !CONFIG_SMP */ |
540247fb | 828 | void init_entity_runnable_average(struct sched_entity *se) |
a75cdaa9 AS |
829 | { |
830 | } | |
d0fe0b9c | 831 | void post_init_entity_util_avg(struct task_struct *p) |
2b8c41da YD |
832 | { |
833 | } | |
fe749158 | 834 | static void update_tg_load_avg(struct cfs_rq *cfs_rq) |
3d30544f PZ |
835 | { |
836 | } | |
7dc603c9 | 837 | #endif /* CONFIG_SMP */ |
a75cdaa9 | 838 | |
bf0f6f24 | 839 | /* |
9dbdb155 | 840 | * Update the current task's runtime statistics. |
bf0f6f24 | 841 | */ |
b7cc0896 | 842 | static void update_curr(struct cfs_rq *cfs_rq) |
bf0f6f24 | 843 | { |
429d43bc | 844 | struct sched_entity *curr = cfs_rq->curr; |
78becc27 | 845 | u64 now = rq_clock_task(rq_of(cfs_rq)); |
9dbdb155 | 846 | u64 delta_exec; |
bf0f6f24 IM |
847 | |
848 | if (unlikely(!curr)) | |
849 | return; | |
850 | ||
9dbdb155 PZ |
851 | delta_exec = now - curr->exec_start; |
852 | if (unlikely((s64)delta_exec <= 0)) | |
34f28ecd | 853 | return; |
bf0f6f24 | 854 | |
8ebc91d9 | 855 | curr->exec_start = now; |
d842de87 | 856 | |
9dbdb155 PZ |
857 | schedstat_set(curr->statistics.exec_max, |
858 | max(delta_exec, curr->statistics.exec_max)); | |
859 | ||
860 | curr->sum_exec_runtime += delta_exec; | |
ae92882e | 861 | schedstat_add(cfs_rq->exec_clock, delta_exec); |
9dbdb155 PZ |
862 | |
863 | curr->vruntime += calc_delta_fair(delta_exec, curr); | |
864 | update_min_vruntime(cfs_rq); | |
865 | ||
d842de87 SV |
866 | if (entity_is_task(curr)) { |
867 | struct task_struct *curtask = task_of(curr); | |
868 | ||
f977bb49 | 869 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); |
d2cc5ed6 | 870 | cgroup_account_cputime(curtask, delta_exec); |
f06febc9 | 871 | account_group_exec_runtime(curtask, delta_exec); |
d842de87 | 872 | } |
ec12cb7f PT |
873 | |
874 | account_cfs_rq_runtime(cfs_rq, delta_exec); | |
bf0f6f24 IM |
875 | } |
876 | ||
6e998916 SG |
877 | static void update_curr_fair(struct rq *rq) |
878 | { | |
879 | update_curr(cfs_rq_of(&rq->curr->se)); | |
880 | } | |
881 | ||
bf0f6f24 | 882 | static inline void |
5870db5b | 883 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 884 | { |
4fa8d299 JP |
885 | u64 wait_start, prev_wait_start; |
886 | ||
887 | if (!schedstat_enabled()) | |
888 | return; | |
889 | ||
890 | wait_start = rq_clock(rq_of(cfs_rq)); | |
891 | prev_wait_start = schedstat_val(se->statistics.wait_start); | |
3ea94de1 JP |
892 | |
893 | if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && | |
4fa8d299 JP |
894 | likely(wait_start > prev_wait_start)) |
895 | wait_start -= prev_wait_start; | |
3ea94de1 | 896 | |
2ed41a55 | 897 | __schedstat_set(se->statistics.wait_start, wait_start); |
bf0f6f24 IM |
898 | } |
899 | ||
4fa8d299 | 900 | static inline void |
3ea94de1 JP |
901 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) |
902 | { | |
903 | struct task_struct *p; | |
cb251765 MG |
904 | u64 delta; |
905 | ||
4fa8d299 JP |
906 | if (!schedstat_enabled()) |
907 | return; | |
908 | ||
b9c88f75 | 909 | /* |
910 | * When the sched_schedstat changes from 0 to 1, some sched se | |
911 | * maybe already in the runqueue, the se->statistics.wait_start | |
912 | * will be 0.So it will let the delta wrong. We need to avoid this | |
913 | * scenario. | |
914 | */ | |
915 | if (unlikely(!schedstat_val(se->statistics.wait_start))) | |
916 | return; | |
917 | ||
4fa8d299 | 918 | delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); |
3ea94de1 JP |
919 | |
920 | if (entity_is_task(se)) { | |
921 | p = task_of(se); | |
922 | if (task_on_rq_migrating(p)) { | |
923 | /* | |
924 | * Preserve migrating task's wait time so wait_start | |
925 | * time stamp can be adjusted to accumulate wait time | |
926 | * prior to migration. | |
927 | */ | |
2ed41a55 | 928 | __schedstat_set(se->statistics.wait_start, delta); |
3ea94de1 JP |
929 | return; |
930 | } | |
931 | trace_sched_stat_wait(p, delta); | |
932 | } | |
933 | ||
2ed41a55 | 934 | __schedstat_set(se->statistics.wait_max, |
4fa8d299 | 935 | max(schedstat_val(se->statistics.wait_max), delta)); |
2ed41a55 PZ |
936 | __schedstat_inc(se->statistics.wait_count); |
937 | __schedstat_add(se->statistics.wait_sum, delta); | |
938 | __schedstat_set(se->statistics.wait_start, 0); | |
3ea94de1 | 939 | } |
3ea94de1 | 940 | |
4fa8d299 | 941 | static inline void |
1a3d027c JP |
942 | update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) |
943 | { | |
944 | struct task_struct *tsk = NULL; | |
4fa8d299 JP |
945 | u64 sleep_start, block_start; |
946 | ||
947 | if (!schedstat_enabled()) | |
948 | return; | |
949 | ||
950 | sleep_start = schedstat_val(se->statistics.sleep_start); | |
951 | block_start = schedstat_val(se->statistics.block_start); | |
1a3d027c JP |
952 | |
953 | if (entity_is_task(se)) | |
954 | tsk = task_of(se); | |
955 | ||
4fa8d299 JP |
956 | if (sleep_start) { |
957 | u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; | |
1a3d027c JP |
958 | |
959 | if ((s64)delta < 0) | |
960 | delta = 0; | |
961 | ||
4fa8d299 | 962 | if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) |
2ed41a55 | 963 | __schedstat_set(se->statistics.sleep_max, delta); |
1a3d027c | 964 | |
2ed41a55 PZ |
965 | __schedstat_set(se->statistics.sleep_start, 0); |
966 | __schedstat_add(se->statistics.sum_sleep_runtime, delta); | |
1a3d027c JP |
967 | |
968 | if (tsk) { | |
969 | account_scheduler_latency(tsk, delta >> 10, 1); | |
970 | trace_sched_stat_sleep(tsk, delta); | |
971 | } | |
972 | } | |
4fa8d299 JP |
973 | if (block_start) { |
974 | u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; | |
1a3d027c JP |
975 | |
976 | if ((s64)delta < 0) | |
977 | delta = 0; | |
978 | ||
4fa8d299 | 979 | if (unlikely(delta > schedstat_val(se->statistics.block_max))) |
2ed41a55 | 980 | __schedstat_set(se->statistics.block_max, delta); |
1a3d027c | 981 | |
2ed41a55 PZ |
982 | __schedstat_set(se->statistics.block_start, 0); |
983 | __schedstat_add(se->statistics.sum_sleep_runtime, delta); | |
1a3d027c JP |
984 | |
985 | if (tsk) { | |
986 | if (tsk->in_iowait) { | |
2ed41a55 PZ |
987 | __schedstat_add(se->statistics.iowait_sum, delta); |
988 | __schedstat_inc(se->statistics.iowait_count); | |
1a3d027c JP |
989 | trace_sched_stat_iowait(tsk, delta); |
990 | } | |
991 | ||
992 | trace_sched_stat_blocked(tsk, delta); | |
993 | ||
994 | /* | |
995 | * Blocking time is in units of nanosecs, so shift by | |
996 | * 20 to get a milliseconds-range estimation of the | |
997 | * amount of time that the task spent sleeping: | |
998 | */ | |
999 | if (unlikely(prof_on == SLEEP_PROFILING)) { | |
1000 | profile_hits(SLEEP_PROFILING, | |
1001 | (void *)get_wchan(tsk), | |
1002 | delta >> 20); | |
1003 | } | |
1004 | account_scheduler_latency(tsk, delta >> 10, 0); | |
1005 | } | |
1006 | } | |
3ea94de1 | 1007 | } |
3ea94de1 | 1008 | |
bf0f6f24 IM |
1009 | /* |
1010 | * Task is being enqueued - update stats: | |
1011 | */ | |
cb251765 | 1012 | static inline void |
1a3d027c | 1013 | update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 1014 | { |
4fa8d299 JP |
1015 | if (!schedstat_enabled()) |
1016 | return; | |
1017 | ||
bf0f6f24 IM |
1018 | /* |
1019 | * Are we enqueueing a waiting task? (for current tasks | |
1020 | * a dequeue/enqueue event is a NOP) | |
1021 | */ | |
429d43bc | 1022 | if (se != cfs_rq->curr) |
5870db5b | 1023 | update_stats_wait_start(cfs_rq, se); |
1a3d027c JP |
1024 | |
1025 | if (flags & ENQUEUE_WAKEUP) | |
1026 | update_stats_enqueue_sleeper(cfs_rq, se); | |
bf0f6f24 IM |
1027 | } |
1028 | ||
bf0f6f24 | 1029 | static inline void |
cb251765 | 1030 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 1031 | { |
4fa8d299 JP |
1032 | |
1033 | if (!schedstat_enabled()) | |
1034 | return; | |
1035 | ||
bf0f6f24 IM |
1036 | /* |
1037 | * Mark the end of the wait period if dequeueing a | |
1038 | * waiting task: | |
1039 | */ | |
429d43bc | 1040 | if (se != cfs_rq->curr) |
9ef0a961 | 1041 | update_stats_wait_end(cfs_rq, se); |
cb251765 | 1042 | |
4fa8d299 JP |
1043 | if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { |
1044 | struct task_struct *tsk = task_of(se); | |
cb251765 | 1045 | |
4fa8d299 | 1046 | if (tsk->state & TASK_INTERRUPTIBLE) |
2ed41a55 | 1047 | __schedstat_set(se->statistics.sleep_start, |
4fa8d299 JP |
1048 | rq_clock(rq_of(cfs_rq))); |
1049 | if (tsk->state & TASK_UNINTERRUPTIBLE) | |
2ed41a55 | 1050 | __schedstat_set(se->statistics.block_start, |
4fa8d299 | 1051 | rq_clock(rq_of(cfs_rq))); |
cb251765 | 1052 | } |
cb251765 MG |
1053 | } |
1054 | ||
bf0f6f24 IM |
1055 | /* |
1056 | * We are picking a new current task - update its stats: | |
1057 | */ | |
1058 | static inline void | |
79303e9e | 1059 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 IM |
1060 | { |
1061 | /* | |
1062 | * We are starting a new run period: | |
1063 | */ | |
78becc27 | 1064 | se->exec_start = rq_clock_task(rq_of(cfs_rq)); |
bf0f6f24 IM |
1065 | } |
1066 | ||
bf0f6f24 IM |
1067 | /************************************************** |
1068 | * Scheduling class queueing methods: | |
1069 | */ | |
1070 | ||
cbee9f88 PZ |
1071 | #ifdef CONFIG_NUMA_BALANCING |
1072 | /* | |
598f0ec0 MG |
1073 | * Approximate time to scan a full NUMA task in ms. The task scan period is |
1074 | * calculated based on the tasks virtual memory size and | |
1075 | * numa_balancing_scan_size. | |
cbee9f88 | 1076 | */ |
598f0ec0 MG |
1077 | unsigned int sysctl_numa_balancing_scan_period_min = 1000; |
1078 | unsigned int sysctl_numa_balancing_scan_period_max = 60000; | |
6e5fb223 PZ |
1079 | |
1080 | /* Portion of address space to scan in MB */ | |
1081 | unsigned int sysctl_numa_balancing_scan_size = 256; | |
cbee9f88 | 1082 | |
4b96a29b PZ |
1083 | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ |
1084 | unsigned int sysctl_numa_balancing_scan_delay = 1000; | |
1085 | ||
b5dd77c8 | 1086 | struct numa_group { |
c45a7795 | 1087 | refcount_t refcount; |
b5dd77c8 RR |
1088 | |
1089 | spinlock_t lock; /* nr_tasks, tasks */ | |
1090 | int nr_tasks; | |
1091 | pid_t gid; | |
1092 | int active_nodes; | |
1093 | ||
1094 | struct rcu_head rcu; | |
1095 | unsigned long total_faults; | |
1096 | unsigned long max_faults_cpu; | |
1097 | /* | |
1098 | * Faults_cpu is used to decide whether memory should move | |
1099 | * towards the CPU. As a consequence, these stats are weighted | |
1100 | * more by CPU use than by memory faults. | |
1101 | */ | |
1102 | unsigned long *faults_cpu; | |
04f5c362 | 1103 | unsigned long faults[]; |
b5dd77c8 RR |
1104 | }; |
1105 | ||
cb361d8c JH |
1106 | /* |
1107 | * For functions that can be called in multiple contexts that permit reading | |
1108 | * ->numa_group (see struct task_struct for locking rules). | |
1109 | */ | |
1110 | static struct numa_group *deref_task_numa_group(struct task_struct *p) | |
1111 | { | |
1112 | return rcu_dereference_check(p->numa_group, p == current || | |
1113 | (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); | |
1114 | } | |
1115 | ||
1116 | static struct numa_group *deref_curr_numa_group(struct task_struct *p) | |
1117 | { | |
1118 | return rcu_dereference_protected(p->numa_group, p == current); | |
1119 | } | |
1120 | ||
b5dd77c8 RR |
1121 | static inline unsigned long group_faults_priv(struct numa_group *ng); |
1122 | static inline unsigned long group_faults_shared(struct numa_group *ng); | |
1123 | ||
598f0ec0 MG |
1124 | static unsigned int task_nr_scan_windows(struct task_struct *p) |
1125 | { | |
1126 | unsigned long rss = 0; | |
1127 | unsigned long nr_scan_pages; | |
1128 | ||
1129 | /* | |
1130 | * Calculations based on RSS as non-present and empty pages are skipped | |
1131 | * by the PTE scanner and NUMA hinting faults should be trapped based | |
1132 | * on resident pages | |
1133 | */ | |
1134 | nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); | |
1135 | rss = get_mm_rss(p->mm); | |
1136 | if (!rss) | |
1137 | rss = nr_scan_pages; | |
1138 | ||
1139 | rss = round_up(rss, nr_scan_pages); | |
1140 | return rss / nr_scan_pages; | |
1141 | } | |
1142 | ||
1143 | /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ | |
1144 | #define MAX_SCAN_WINDOW 2560 | |
1145 | ||
1146 | static unsigned int task_scan_min(struct task_struct *p) | |
1147 | { | |
316c1608 | 1148 | unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); |
598f0ec0 MG |
1149 | unsigned int scan, floor; |
1150 | unsigned int windows = 1; | |
1151 | ||
64192658 KT |
1152 | if (scan_size < MAX_SCAN_WINDOW) |
1153 | windows = MAX_SCAN_WINDOW / scan_size; | |
598f0ec0 MG |
1154 | floor = 1000 / windows; |
1155 | ||
1156 | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); | |
1157 | return max_t(unsigned int, floor, scan); | |
1158 | } | |
1159 | ||
b5dd77c8 RR |
1160 | static unsigned int task_scan_start(struct task_struct *p) |
1161 | { | |
1162 | unsigned long smin = task_scan_min(p); | |
1163 | unsigned long period = smin; | |
cb361d8c | 1164 | struct numa_group *ng; |
b5dd77c8 RR |
1165 | |
1166 | /* Scale the maximum scan period with the amount of shared memory. */ | |
cb361d8c JH |
1167 | rcu_read_lock(); |
1168 | ng = rcu_dereference(p->numa_group); | |
1169 | if (ng) { | |
b5dd77c8 RR |
1170 | unsigned long shared = group_faults_shared(ng); |
1171 | unsigned long private = group_faults_priv(ng); | |
1172 | ||
c45a7795 | 1173 | period *= refcount_read(&ng->refcount); |
b5dd77c8 RR |
1174 | period *= shared + 1; |
1175 | period /= private + shared + 1; | |
1176 | } | |
cb361d8c | 1177 | rcu_read_unlock(); |
b5dd77c8 RR |
1178 | |
1179 | return max(smin, period); | |
1180 | } | |
1181 | ||
598f0ec0 MG |
1182 | static unsigned int task_scan_max(struct task_struct *p) |
1183 | { | |
b5dd77c8 RR |
1184 | unsigned long smin = task_scan_min(p); |
1185 | unsigned long smax; | |
cb361d8c | 1186 | struct numa_group *ng; |
598f0ec0 MG |
1187 | |
1188 | /* Watch for min being lower than max due to floor calculations */ | |
1189 | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); | |
b5dd77c8 RR |
1190 | |
1191 | /* Scale the maximum scan period with the amount of shared memory. */ | |
cb361d8c JH |
1192 | ng = deref_curr_numa_group(p); |
1193 | if (ng) { | |
b5dd77c8 RR |
1194 | unsigned long shared = group_faults_shared(ng); |
1195 | unsigned long private = group_faults_priv(ng); | |
1196 | unsigned long period = smax; | |
1197 | ||
c45a7795 | 1198 | period *= refcount_read(&ng->refcount); |
b5dd77c8 RR |
1199 | period *= shared + 1; |
1200 | period /= private + shared + 1; | |
1201 | ||
1202 | smax = max(smax, period); | |
1203 | } | |
1204 | ||
598f0ec0 MG |
1205 | return max(smin, smax); |
1206 | } | |
1207 | ||
0ec8aa00 PZ |
1208 | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) |
1209 | { | |
98fa15f3 | 1210 | rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); |
0ec8aa00 PZ |
1211 | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); |
1212 | } | |
1213 | ||
1214 | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
1215 | { | |
98fa15f3 | 1216 | rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); |
0ec8aa00 PZ |
1217 | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); |
1218 | } | |
1219 | ||
be1e4e76 RR |
1220 | /* Shared or private faults. */ |
1221 | #define NR_NUMA_HINT_FAULT_TYPES 2 | |
1222 | ||
1223 | /* Memory and CPU locality */ | |
1224 | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) | |
1225 | ||
1226 | /* Averaged statistics, and temporary buffers. */ | |
1227 | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) | |
1228 | ||
e29cf08b MG |
1229 | pid_t task_numa_group_id(struct task_struct *p) |
1230 | { | |
cb361d8c JH |
1231 | struct numa_group *ng; |
1232 | pid_t gid = 0; | |
1233 | ||
1234 | rcu_read_lock(); | |
1235 | ng = rcu_dereference(p->numa_group); | |
1236 | if (ng) | |
1237 | gid = ng->gid; | |
1238 | rcu_read_unlock(); | |
1239 | ||
1240 | return gid; | |
e29cf08b MG |
1241 | } |
1242 | ||
44dba3d5 | 1243 | /* |
97fb7a0a | 1244 | * The averaged statistics, shared & private, memory & CPU, |
44dba3d5 IM |
1245 | * occupy the first half of the array. The second half of the |
1246 | * array is for current counters, which are averaged into the | |
1247 | * first set by task_numa_placement. | |
1248 | */ | |
1249 | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) | |
ac8e895b | 1250 | { |
44dba3d5 | 1251 | return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; |
ac8e895b MG |
1252 | } |
1253 | ||
1254 | static inline unsigned long task_faults(struct task_struct *p, int nid) | |
1255 | { | |
44dba3d5 | 1256 | if (!p->numa_faults) |
ac8e895b MG |
1257 | return 0; |
1258 | ||
44dba3d5 IM |
1259 | return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1260 | p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
ac8e895b MG |
1261 | } |
1262 | ||
83e1d2cd MG |
1263 | static inline unsigned long group_faults(struct task_struct *p, int nid) |
1264 | { | |
cb361d8c JH |
1265 | struct numa_group *ng = deref_task_numa_group(p); |
1266 | ||
1267 | if (!ng) | |
83e1d2cd MG |
1268 | return 0; |
1269 | ||
cb361d8c JH |
1270 | return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1271 | ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
83e1d2cd MG |
1272 | } |
1273 | ||
20e07dea RR |
1274 | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) |
1275 | { | |
44dba3d5 IM |
1276 | return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + |
1277 | group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; | |
20e07dea RR |
1278 | } |
1279 | ||
b5dd77c8 RR |
1280 | static inline unsigned long group_faults_priv(struct numa_group *ng) |
1281 | { | |
1282 | unsigned long faults = 0; | |
1283 | int node; | |
1284 | ||
1285 | for_each_online_node(node) { | |
1286 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
1287 | } | |
1288 | ||
1289 | return faults; | |
1290 | } | |
1291 | ||
1292 | static inline unsigned long group_faults_shared(struct numa_group *ng) | |
1293 | { | |
1294 | unsigned long faults = 0; | |
1295 | int node; | |
1296 | ||
1297 | for_each_online_node(node) { | |
1298 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
1299 | } | |
1300 | ||
1301 | return faults; | |
1302 | } | |
1303 | ||
4142c3eb RR |
1304 | /* |
1305 | * A node triggering more than 1/3 as many NUMA faults as the maximum is | |
1306 | * considered part of a numa group's pseudo-interleaving set. Migrations | |
1307 | * between these nodes are slowed down, to allow things to settle down. | |
1308 | */ | |
1309 | #define ACTIVE_NODE_FRACTION 3 | |
1310 | ||
1311 | static bool numa_is_active_node(int nid, struct numa_group *ng) | |
1312 | { | |
1313 | return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; | |
1314 | } | |
1315 | ||
6c6b1193 RR |
1316 | /* Handle placement on systems where not all nodes are directly connected. */ |
1317 | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, | |
1318 | int maxdist, bool task) | |
1319 | { | |
1320 | unsigned long score = 0; | |
1321 | int node; | |
1322 | ||
1323 | /* | |
1324 | * All nodes are directly connected, and the same distance | |
1325 | * from each other. No need for fancy placement algorithms. | |
1326 | */ | |
1327 | if (sched_numa_topology_type == NUMA_DIRECT) | |
1328 | return 0; | |
1329 | ||
1330 | /* | |
1331 | * This code is called for each node, introducing N^2 complexity, | |
1332 | * which should be ok given the number of nodes rarely exceeds 8. | |
1333 | */ | |
1334 | for_each_online_node(node) { | |
1335 | unsigned long faults; | |
1336 | int dist = node_distance(nid, node); | |
1337 | ||
1338 | /* | |
1339 | * The furthest away nodes in the system are not interesting | |
1340 | * for placement; nid was already counted. | |
1341 | */ | |
1342 | if (dist == sched_max_numa_distance || node == nid) | |
1343 | continue; | |
1344 | ||
1345 | /* | |
1346 | * On systems with a backplane NUMA topology, compare groups | |
1347 | * of nodes, and move tasks towards the group with the most | |
1348 | * memory accesses. When comparing two nodes at distance | |
1349 | * "hoplimit", only nodes closer by than "hoplimit" are part | |
1350 | * of each group. Skip other nodes. | |
1351 | */ | |
1352 | if (sched_numa_topology_type == NUMA_BACKPLANE && | |
0ee7e74d | 1353 | dist >= maxdist) |
6c6b1193 RR |
1354 | continue; |
1355 | ||
1356 | /* Add up the faults from nearby nodes. */ | |
1357 | if (task) | |
1358 | faults = task_faults(p, node); | |
1359 | else | |
1360 | faults = group_faults(p, node); | |
1361 | ||
1362 | /* | |
1363 | * On systems with a glueless mesh NUMA topology, there are | |
1364 | * no fixed "groups of nodes". Instead, nodes that are not | |
1365 | * directly connected bounce traffic through intermediate | |
1366 | * nodes; a numa_group can occupy any set of nodes. | |
1367 | * The further away a node is, the less the faults count. | |
1368 | * This seems to result in good task placement. | |
1369 | */ | |
1370 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
1371 | faults *= (sched_max_numa_distance - dist); | |
1372 | faults /= (sched_max_numa_distance - LOCAL_DISTANCE); | |
1373 | } | |
1374 | ||
1375 | score += faults; | |
1376 | } | |
1377 | ||
1378 | return score; | |
1379 | } | |
1380 | ||
83e1d2cd MG |
1381 | /* |
1382 | * These return the fraction of accesses done by a particular task, or | |
1383 | * task group, on a particular numa node. The group weight is given a | |
1384 | * larger multiplier, in order to group tasks together that are almost | |
1385 | * evenly spread out between numa nodes. | |
1386 | */ | |
7bd95320 RR |
1387 | static inline unsigned long task_weight(struct task_struct *p, int nid, |
1388 | int dist) | |
83e1d2cd | 1389 | { |
7bd95320 | 1390 | unsigned long faults, total_faults; |
83e1d2cd | 1391 | |
44dba3d5 | 1392 | if (!p->numa_faults) |
83e1d2cd MG |
1393 | return 0; |
1394 | ||
1395 | total_faults = p->total_numa_faults; | |
1396 | ||
1397 | if (!total_faults) | |
1398 | return 0; | |
1399 | ||
7bd95320 | 1400 | faults = task_faults(p, nid); |
6c6b1193 RR |
1401 | faults += score_nearby_nodes(p, nid, dist, true); |
1402 | ||
7bd95320 | 1403 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1404 | } |
1405 | ||
7bd95320 RR |
1406 | static inline unsigned long group_weight(struct task_struct *p, int nid, |
1407 | int dist) | |
83e1d2cd | 1408 | { |
cb361d8c | 1409 | struct numa_group *ng = deref_task_numa_group(p); |
7bd95320 RR |
1410 | unsigned long faults, total_faults; |
1411 | ||
cb361d8c | 1412 | if (!ng) |
7bd95320 RR |
1413 | return 0; |
1414 | ||
cb361d8c | 1415 | total_faults = ng->total_faults; |
7bd95320 RR |
1416 | |
1417 | if (!total_faults) | |
83e1d2cd MG |
1418 | return 0; |
1419 | ||
7bd95320 | 1420 | faults = group_faults(p, nid); |
6c6b1193 RR |
1421 | faults += score_nearby_nodes(p, nid, dist, false); |
1422 | ||
7bd95320 | 1423 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1424 | } |
1425 | ||
10f39042 RR |
1426 | bool should_numa_migrate_memory(struct task_struct *p, struct page * page, |
1427 | int src_nid, int dst_cpu) | |
1428 | { | |
cb361d8c | 1429 | struct numa_group *ng = deref_curr_numa_group(p); |
10f39042 RR |
1430 | int dst_nid = cpu_to_node(dst_cpu); |
1431 | int last_cpupid, this_cpupid; | |
1432 | ||
1433 | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); | |
37355bdc MG |
1434 | last_cpupid = page_cpupid_xchg_last(page, this_cpupid); |
1435 | ||
1436 | /* | |
1437 | * Allow first faults or private faults to migrate immediately early in | |
1438 | * the lifetime of a task. The magic number 4 is based on waiting for | |
1439 | * two full passes of the "multi-stage node selection" test that is | |
1440 | * executed below. | |
1441 | */ | |
98fa15f3 | 1442 | if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && |
37355bdc MG |
1443 | (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) |
1444 | return true; | |
10f39042 RR |
1445 | |
1446 | /* | |
1447 | * Multi-stage node selection is used in conjunction with a periodic | |
1448 | * migration fault to build a temporal task<->page relation. By using | |
1449 | * a two-stage filter we remove short/unlikely relations. | |
1450 | * | |
1451 | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate | |
1452 | * a task's usage of a particular page (n_p) per total usage of this | |
1453 | * page (n_t) (in a given time-span) to a probability. | |
1454 | * | |
1455 | * Our periodic faults will sample this probability and getting the | |
1456 | * same result twice in a row, given these samples are fully | |
1457 | * independent, is then given by P(n)^2, provided our sample period | |
1458 | * is sufficiently short compared to the usage pattern. | |
1459 | * | |
1460 | * This quadric squishes small probabilities, making it less likely we | |
1461 | * act on an unlikely task<->page relation. | |
1462 | */ | |
10f39042 RR |
1463 | if (!cpupid_pid_unset(last_cpupid) && |
1464 | cpupid_to_nid(last_cpupid) != dst_nid) | |
1465 | return false; | |
1466 | ||
1467 | /* Always allow migrate on private faults */ | |
1468 | if (cpupid_match_pid(p, last_cpupid)) | |
1469 | return true; | |
1470 | ||
1471 | /* A shared fault, but p->numa_group has not been set up yet. */ | |
1472 | if (!ng) | |
1473 | return true; | |
1474 | ||
1475 | /* | |
4142c3eb RR |
1476 | * Destination node is much more heavily used than the source |
1477 | * node? Allow migration. | |
10f39042 | 1478 | */ |
4142c3eb RR |
1479 | if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * |
1480 | ACTIVE_NODE_FRACTION) | |
10f39042 RR |
1481 | return true; |
1482 | ||
1483 | /* | |
4142c3eb RR |
1484 | * Distribute memory according to CPU & memory use on each node, |
1485 | * with 3/4 hysteresis to avoid unnecessary memory migrations: | |
1486 | * | |
1487 | * faults_cpu(dst) 3 faults_cpu(src) | |
1488 | * --------------- * - > --------------- | |
1489 | * faults_mem(dst) 4 faults_mem(src) | |
10f39042 | 1490 | */ |
4142c3eb RR |
1491 | return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > |
1492 | group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; | |
10f39042 RR |
1493 | } |
1494 | ||
6499b1b2 VG |
1495 | /* |
1496 | * 'numa_type' describes the node at the moment of load balancing. | |
1497 | */ | |
1498 | enum numa_type { | |
1499 | /* The node has spare capacity that can be used to run more tasks. */ | |
1500 | node_has_spare = 0, | |
1501 | /* | |
1502 | * The node is fully used and the tasks don't compete for more CPU | |
1503 | * cycles. Nevertheless, some tasks might wait before running. | |
1504 | */ | |
1505 | node_fully_busy, | |
1506 | /* | |
1507 | * The node is overloaded and can't provide expected CPU cycles to all | |
1508 | * tasks. | |
1509 | */ | |
1510 | node_overloaded | |
1511 | }; | |
58d081b5 | 1512 | |
fb13c7ee | 1513 | /* Cached statistics for all CPUs within a node */ |
58d081b5 MG |
1514 | struct numa_stats { |
1515 | unsigned long load; | |
8e0e0eda | 1516 | unsigned long runnable; |
6499b1b2 | 1517 | unsigned long util; |
fb13c7ee | 1518 | /* Total compute capacity of CPUs on a node */ |
5ef20ca1 | 1519 | unsigned long compute_capacity; |
6499b1b2 VG |
1520 | unsigned int nr_running; |
1521 | unsigned int weight; | |
1522 | enum numa_type node_type; | |
ff7db0bf | 1523 | int idle_cpu; |
58d081b5 | 1524 | }; |
e6628d5b | 1525 | |
ff7db0bf MG |
1526 | static inline bool is_core_idle(int cpu) |
1527 | { | |
1528 | #ifdef CONFIG_SCHED_SMT | |
1529 | int sibling; | |
1530 | ||
1531 | for_each_cpu(sibling, cpu_smt_mask(cpu)) { | |
1532 | if (cpu == sibling) | |
1533 | continue; | |
1534 | ||
1535 | if (!idle_cpu(cpu)) | |
1536 | return false; | |
1537 | } | |
1538 | #endif | |
1539 | ||
1540 | return true; | |
1541 | } | |
1542 | ||
58d081b5 MG |
1543 | struct task_numa_env { |
1544 | struct task_struct *p; | |
e6628d5b | 1545 | |
58d081b5 MG |
1546 | int src_cpu, src_nid; |
1547 | int dst_cpu, dst_nid; | |
e6628d5b | 1548 | |
58d081b5 | 1549 | struct numa_stats src_stats, dst_stats; |
e6628d5b | 1550 | |
40ea2b42 | 1551 | int imbalance_pct; |
7bd95320 | 1552 | int dist; |
fb13c7ee MG |
1553 | |
1554 | struct task_struct *best_task; | |
1555 | long best_imp; | |
58d081b5 MG |
1556 | int best_cpu; |
1557 | }; | |
1558 | ||
6499b1b2 | 1559 | static unsigned long cpu_load(struct rq *rq); |
8e0e0eda | 1560 | static unsigned long cpu_runnable(struct rq *rq); |
6499b1b2 | 1561 | static unsigned long cpu_util(int cpu); |
7d2b5dd0 MG |
1562 | static inline long adjust_numa_imbalance(int imbalance, |
1563 | int dst_running, int dst_weight); | |
6499b1b2 VG |
1564 | |
1565 | static inline enum | |
1566 | numa_type numa_classify(unsigned int imbalance_pct, | |
1567 | struct numa_stats *ns) | |
1568 | { | |
1569 | if ((ns->nr_running > ns->weight) && | |
8e0e0eda VG |
1570 | (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || |
1571 | ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) | |
6499b1b2 VG |
1572 | return node_overloaded; |
1573 | ||
1574 | if ((ns->nr_running < ns->weight) || | |
8e0e0eda VG |
1575 | (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && |
1576 | ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) | |
6499b1b2 VG |
1577 | return node_has_spare; |
1578 | ||
1579 | return node_fully_busy; | |
1580 | } | |
1581 | ||
76c389ab VS |
1582 | #ifdef CONFIG_SCHED_SMT |
1583 | /* Forward declarations of select_idle_sibling helpers */ | |
1584 | static inline bool test_idle_cores(int cpu, bool def); | |
ff7db0bf MG |
1585 | static inline int numa_idle_core(int idle_core, int cpu) |
1586 | { | |
ff7db0bf MG |
1587 | if (!static_branch_likely(&sched_smt_present) || |
1588 | idle_core >= 0 || !test_idle_cores(cpu, false)) | |
1589 | return idle_core; | |
1590 | ||
1591 | /* | |
1592 | * Prefer cores instead of packing HT siblings | |
1593 | * and triggering future load balancing. | |
1594 | */ | |
1595 | if (is_core_idle(cpu)) | |
1596 | idle_core = cpu; | |
ff7db0bf MG |
1597 | |
1598 | return idle_core; | |
1599 | } | |
76c389ab VS |
1600 | #else |
1601 | static inline int numa_idle_core(int idle_core, int cpu) | |
1602 | { | |
1603 | return idle_core; | |
1604 | } | |
1605 | #endif | |
ff7db0bf | 1606 | |
6499b1b2 | 1607 | /* |
ff7db0bf MG |
1608 | * Gather all necessary information to make NUMA balancing placement |
1609 | * decisions that are compatible with standard load balancer. This | |
1610 | * borrows code and logic from update_sg_lb_stats but sharing a | |
1611 | * common implementation is impractical. | |
6499b1b2 VG |
1612 | */ |
1613 | static void update_numa_stats(struct task_numa_env *env, | |
ff7db0bf MG |
1614 | struct numa_stats *ns, int nid, |
1615 | bool find_idle) | |
6499b1b2 | 1616 | { |
ff7db0bf | 1617 | int cpu, idle_core = -1; |
6499b1b2 VG |
1618 | |
1619 | memset(ns, 0, sizeof(*ns)); | |
ff7db0bf MG |
1620 | ns->idle_cpu = -1; |
1621 | ||
0621df31 | 1622 | rcu_read_lock(); |
6499b1b2 VG |
1623 | for_each_cpu(cpu, cpumask_of_node(nid)) { |
1624 | struct rq *rq = cpu_rq(cpu); | |
1625 | ||
1626 | ns->load += cpu_load(rq); | |
8e0e0eda | 1627 | ns->runnable += cpu_runnable(rq); |
6499b1b2 VG |
1628 | ns->util += cpu_util(cpu); |
1629 | ns->nr_running += rq->cfs.h_nr_running; | |
1630 | ns->compute_capacity += capacity_of(cpu); | |
ff7db0bf MG |
1631 | |
1632 | if (find_idle && !rq->nr_running && idle_cpu(cpu)) { | |
1633 | if (READ_ONCE(rq->numa_migrate_on) || | |
1634 | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) | |
1635 | continue; | |
1636 | ||
1637 | if (ns->idle_cpu == -1) | |
1638 | ns->idle_cpu = cpu; | |
1639 | ||
1640 | idle_core = numa_idle_core(idle_core, cpu); | |
1641 | } | |
6499b1b2 | 1642 | } |
0621df31 | 1643 | rcu_read_unlock(); |
6499b1b2 VG |
1644 | |
1645 | ns->weight = cpumask_weight(cpumask_of_node(nid)); | |
1646 | ||
1647 | ns->node_type = numa_classify(env->imbalance_pct, ns); | |
ff7db0bf MG |
1648 | |
1649 | if (idle_core >= 0) | |
1650 | ns->idle_cpu = idle_core; | |
6499b1b2 VG |
1651 | } |
1652 | ||
fb13c7ee MG |
1653 | static void task_numa_assign(struct task_numa_env *env, |
1654 | struct task_struct *p, long imp) | |
1655 | { | |
a4739eca SD |
1656 | struct rq *rq = cpu_rq(env->dst_cpu); |
1657 | ||
5fb52dd9 MG |
1658 | /* Check if run-queue part of active NUMA balance. */ |
1659 | if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { | |
1660 | int cpu; | |
1661 | int start = env->dst_cpu; | |
1662 | ||
1663 | /* Find alternative idle CPU. */ | |
1664 | for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { | |
1665 | if (cpu == env->best_cpu || !idle_cpu(cpu) || | |
1666 | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { | |
1667 | continue; | |
1668 | } | |
1669 | ||
1670 | env->dst_cpu = cpu; | |
1671 | rq = cpu_rq(env->dst_cpu); | |
1672 | if (!xchg(&rq->numa_migrate_on, 1)) | |
1673 | goto assign; | |
1674 | } | |
1675 | ||
1676 | /* Failed to find an alternative idle CPU */ | |
a4739eca | 1677 | return; |
5fb52dd9 | 1678 | } |
a4739eca | 1679 | |
5fb52dd9 | 1680 | assign: |
a4739eca SD |
1681 | /* |
1682 | * Clear previous best_cpu/rq numa-migrate flag, since task now | |
1683 | * found a better CPU to move/swap. | |
1684 | */ | |
5fb52dd9 | 1685 | if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { |
a4739eca SD |
1686 | rq = cpu_rq(env->best_cpu); |
1687 | WRITE_ONCE(rq->numa_migrate_on, 0); | |
1688 | } | |
1689 | ||
fb13c7ee MG |
1690 | if (env->best_task) |
1691 | put_task_struct(env->best_task); | |
bac78573 ON |
1692 | if (p) |
1693 | get_task_struct(p); | |
fb13c7ee MG |
1694 | |
1695 | env->best_task = p; | |
1696 | env->best_imp = imp; | |
1697 | env->best_cpu = env->dst_cpu; | |
1698 | } | |
1699 | ||
28a21745 | 1700 | static bool load_too_imbalanced(long src_load, long dst_load, |
e63da036 RR |
1701 | struct task_numa_env *env) |
1702 | { | |
e4991b24 RR |
1703 | long imb, old_imb; |
1704 | long orig_src_load, orig_dst_load; | |
28a21745 RR |
1705 | long src_capacity, dst_capacity; |
1706 | ||
1707 | /* | |
1708 | * The load is corrected for the CPU capacity available on each node. | |
1709 | * | |
1710 | * src_load dst_load | |
1711 | * ------------ vs --------- | |
1712 | * src_capacity dst_capacity | |
1713 | */ | |
1714 | src_capacity = env->src_stats.compute_capacity; | |
1715 | dst_capacity = env->dst_stats.compute_capacity; | |
e63da036 | 1716 | |
5f95ba7a | 1717 | imb = abs(dst_load * src_capacity - src_load * dst_capacity); |
e63da036 | 1718 | |
28a21745 | 1719 | orig_src_load = env->src_stats.load; |
e4991b24 | 1720 | orig_dst_load = env->dst_stats.load; |
28a21745 | 1721 | |
5f95ba7a | 1722 | old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); |
e4991b24 RR |
1723 | |
1724 | /* Would this change make things worse? */ | |
1725 | return (imb > old_imb); | |
e63da036 RR |
1726 | } |
1727 | ||
6fd98e77 SD |
1728 | /* |
1729 | * Maximum NUMA importance can be 1998 (2*999); | |
1730 | * SMALLIMP @ 30 would be close to 1998/64. | |
1731 | * Used to deter task migration. | |
1732 | */ | |
1733 | #define SMALLIMP 30 | |
1734 | ||
fb13c7ee MG |
1735 | /* |
1736 | * This checks if the overall compute and NUMA accesses of the system would | |
1737 | * be improved if the source tasks was migrated to the target dst_cpu taking | |
1738 | * into account that it might be best if task running on the dst_cpu should | |
1739 | * be exchanged with the source task | |
1740 | */ | |
a0f03b61 | 1741 | static bool task_numa_compare(struct task_numa_env *env, |
305c1fac | 1742 | long taskimp, long groupimp, bool maymove) |
fb13c7ee | 1743 | { |
cb361d8c | 1744 | struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); |
fb13c7ee | 1745 | struct rq *dst_rq = cpu_rq(env->dst_cpu); |
cb361d8c | 1746 | long imp = p_ng ? groupimp : taskimp; |
fb13c7ee | 1747 | struct task_struct *cur; |
28a21745 | 1748 | long src_load, dst_load; |
7bd95320 | 1749 | int dist = env->dist; |
cb361d8c JH |
1750 | long moveimp = imp; |
1751 | long load; | |
a0f03b61 | 1752 | bool stopsearch = false; |
fb13c7ee | 1753 | |
a4739eca | 1754 | if (READ_ONCE(dst_rq->numa_migrate_on)) |
a0f03b61 | 1755 | return false; |
a4739eca | 1756 | |
fb13c7ee | 1757 | rcu_read_lock(); |
154abafc | 1758 | cur = rcu_dereference(dst_rq->curr); |
bac78573 | 1759 | if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) |
fb13c7ee MG |
1760 | cur = NULL; |
1761 | ||
7af68335 PZ |
1762 | /* |
1763 | * Because we have preemption enabled we can get migrated around and | |
1764 | * end try selecting ourselves (current == env->p) as a swap candidate. | |
1765 | */ | |
a0f03b61 MG |
1766 | if (cur == env->p) { |
1767 | stopsearch = true; | |
7af68335 | 1768 | goto unlock; |
a0f03b61 | 1769 | } |
7af68335 | 1770 | |
305c1fac | 1771 | if (!cur) { |
6fd98e77 | 1772 | if (maymove && moveimp >= env->best_imp) |
305c1fac SD |
1773 | goto assign; |
1774 | else | |
1775 | goto unlock; | |
1776 | } | |
1777 | ||
88cca72c MG |
1778 | /* Skip this swap candidate if cannot move to the source cpu. */ |
1779 | if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) | |
1780 | goto unlock; | |
1781 | ||
1782 | /* | |
1783 | * Skip this swap candidate if it is not moving to its preferred | |
1784 | * node and the best task is. | |
1785 | */ | |
1786 | if (env->best_task && | |
1787 | env->best_task->numa_preferred_nid == env->src_nid && | |
1788 | cur->numa_preferred_nid != env->src_nid) { | |
1789 | goto unlock; | |
1790 | } | |
1791 | ||
fb13c7ee MG |
1792 | /* |
1793 | * "imp" is the fault differential for the source task between the | |
1794 | * source and destination node. Calculate the total differential for | |
1795 | * the source task and potential destination task. The more negative | |
305c1fac | 1796 | * the value is, the more remote accesses that would be expected to |
fb13c7ee | 1797 | * be incurred if the tasks were swapped. |
88cca72c | 1798 | * |
305c1fac SD |
1799 | * If dst and source tasks are in the same NUMA group, or not |
1800 | * in any group then look only at task weights. | |
1801 | */ | |
cb361d8c JH |
1802 | cur_ng = rcu_dereference(cur->numa_group); |
1803 | if (cur_ng == p_ng) { | |
305c1fac SD |
1804 | imp = taskimp + task_weight(cur, env->src_nid, dist) - |
1805 | task_weight(cur, env->dst_nid, dist); | |
887c290e | 1806 | /* |
305c1fac SD |
1807 | * Add some hysteresis to prevent swapping the |
1808 | * tasks within a group over tiny differences. | |
887c290e | 1809 | */ |
cb361d8c | 1810 | if (cur_ng) |
305c1fac SD |
1811 | imp -= imp / 16; |
1812 | } else { | |
1813 | /* | |
1814 | * Compare the group weights. If a task is all by itself | |
1815 | * (not part of a group), use the task weight instead. | |
1816 | */ | |
cb361d8c | 1817 | if (cur_ng && p_ng) |
305c1fac SD |
1818 | imp += group_weight(cur, env->src_nid, dist) - |
1819 | group_weight(cur, env->dst_nid, dist); | |
1820 | else | |
1821 | imp += task_weight(cur, env->src_nid, dist) - | |
1822 | task_weight(cur, env->dst_nid, dist); | |
fb13c7ee MG |
1823 | } |
1824 | ||
88cca72c MG |
1825 | /* Discourage picking a task already on its preferred node */ |
1826 | if (cur->numa_preferred_nid == env->dst_nid) | |
1827 | imp -= imp / 16; | |
1828 | ||
1829 | /* | |
1830 | * Encourage picking a task that moves to its preferred node. | |
1831 | * This potentially makes imp larger than it's maximum of | |
1832 | * 1998 (see SMALLIMP and task_weight for why) but in this | |
1833 | * case, it does not matter. | |
1834 | */ | |
1835 | if (cur->numa_preferred_nid == env->src_nid) | |
1836 | imp += imp / 8; | |
1837 | ||
305c1fac | 1838 | if (maymove && moveimp > imp && moveimp > env->best_imp) { |
6fd98e77 | 1839 | imp = moveimp; |
305c1fac | 1840 | cur = NULL; |
fb13c7ee | 1841 | goto assign; |
305c1fac | 1842 | } |
fb13c7ee | 1843 | |
88cca72c MG |
1844 | /* |
1845 | * Prefer swapping with a task moving to its preferred node over a | |
1846 | * task that is not. | |
1847 | */ | |
1848 | if (env->best_task && cur->numa_preferred_nid == env->src_nid && | |
1849 | env->best_task->numa_preferred_nid != env->src_nid) { | |
1850 | goto assign; | |
1851 | } | |
1852 | ||
6fd98e77 SD |
1853 | /* |
1854 | * If the NUMA importance is less than SMALLIMP, | |
1855 | * task migration might only result in ping pong | |
1856 | * of tasks and also hurt performance due to cache | |
1857 | * misses. | |
1858 | */ | |
1859 | if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) | |
1860 | goto unlock; | |
1861 | ||
fb13c7ee MG |
1862 | /* |
1863 | * In the overloaded case, try and keep the load balanced. | |
1864 | */ | |
305c1fac SD |
1865 | load = task_h_load(env->p) - task_h_load(cur); |
1866 | if (!load) | |
1867 | goto assign; | |
1868 | ||
e720fff6 PZ |
1869 | dst_load = env->dst_stats.load + load; |
1870 | src_load = env->src_stats.load - load; | |
fb13c7ee | 1871 | |
28a21745 | 1872 | if (load_too_imbalanced(src_load, dst_load, env)) |
fb13c7ee MG |
1873 | goto unlock; |
1874 | ||
305c1fac | 1875 | assign: |
ff7db0bf | 1876 | /* Evaluate an idle CPU for a task numa move. */ |
10e2f1ac | 1877 | if (!cur) { |
ff7db0bf MG |
1878 | int cpu = env->dst_stats.idle_cpu; |
1879 | ||
1880 | /* Nothing cached so current CPU went idle since the search. */ | |
1881 | if (cpu < 0) | |
1882 | cpu = env->dst_cpu; | |
1883 | ||
10e2f1ac | 1884 | /* |
ff7db0bf MG |
1885 | * If the CPU is no longer truly idle and the previous best CPU |
1886 | * is, keep using it. | |
10e2f1ac | 1887 | */ |
ff7db0bf MG |
1888 | if (!idle_cpu(cpu) && env->best_cpu >= 0 && |
1889 | idle_cpu(env->best_cpu)) { | |
1890 | cpu = env->best_cpu; | |
1891 | } | |
1892 | ||
ff7db0bf | 1893 | env->dst_cpu = cpu; |
10e2f1ac | 1894 | } |
ba7e5a27 | 1895 | |
fb13c7ee | 1896 | task_numa_assign(env, cur, imp); |
a0f03b61 MG |
1897 | |
1898 | /* | |
1899 | * If a move to idle is allowed because there is capacity or load | |
1900 | * balance improves then stop the search. While a better swap | |
1901 | * candidate may exist, a search is not free. | |
1902 | */ | |
1903 | if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) | |
1904 | stopsearch = true; | |
1905 | ||
1906 | /* | |
1907 | * If a swap candidate must be identified and the current best task | |
1908 | * moves its preferred node then stop the search. | |
1909 | */ | |
1910 | if (!maymove && env->best_task && | |
1911 | env->best_task->numa_preferred_nid == env->src_nid) { | |
1912 | stopsearch = true; | |
1913 | } | |
fb13c7ee MG |
1914 | unlock: |
1915 | rcu_read_unlock(); | |
a0f03b61 MG |
1916 | |
1917 | return stopsearch; | |
fb13c7ee MG |
1918 | } |
1919 | ||
887c290e RR |
1920 | static void task_numa_find_cpu(struct task_numa_env *env, |
1921 | long taskimp, long groupimp) | |
2c8a50aa | 1922 | { |
305c1fac | 1923 | bool maymove = false; |
2c8a50aa MG |
1924 | int cpu; |
1925 | ||
305c1fac | 1926 | /* |
fb86f5b2 MG |
1927 | * If dst node has spare capacity, then check if there is an |
1928 | * imbalance that would be overruled by the load balancer. | |
305c1fac | 1929 | */ |
fb86f5b2 MG |
1930 | if (env->dst_stats.node_type == node_has_spare) { |
1931 | unsigned int imbalance; | |
1932 | int src_running, dst_running; | |
1933 | ||
1934 | /* | |
1935 | * Would movement cause an imbalance? Note that if src has | |
1936 | * more running tasks that the imbalance is ignored as the | |
1937 | * move improves the imbalance from the perspective of the | |
1938 | * CPU load balancer. | |
1939 | * */ | |
1940 | src_running = env->src_stats.nr_running - 1; | |
1941 | dst_running = env->dst_stats.nr_running + 1; | |
1942 | imbalance = max(0, dst_running - src_running); | |
7d2b5dd0 MG |
1943 | imbalance = adjust_numa_imbalance(imbalance, dst_running, |
1944 | env->dst_stats.weight); | |
fb86f5b2 MG |
1945 | |
1946 | /* Use idle CPU if there is no imbalance */ | |
ff7db0bf | 1947 | if (!imbalance) { |
fb86f5b2 | 1948 | maymove = true; |
ff7db0bf MG |
1949 | if (env->dst_stats.idle_cpu >= 0) { |
1950 | env->dst_cpu = env->dst_stats.idle_cpu; | |
1951 | task_numa_assign(env, NULL, 0); | |
1952 | return; | |
1953 | } | |
1954 | } | |
fb86f5b2 MG |
1955 | } else { |
1956 | long src_load, dst_load, load; | |
1957 | /* | |
1958 | * If the improvement from just moving env->p direction is better | |
1959 | * than swapping tasks around, check if a move is possible. | |
1960 | */ | |
1961 | load = task_h_load(env->p); | |
1962 | dst_load = env->dst_stats.load + load; | |
1963 | src_load = env->src_stats.load - load; | |
1964 | maymove = !load_too_imbalanced(src_load, dst_load, env); | |
1965 | } | |
305c1fac | 1966 | |
2c8a50aa MG |
1967 | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { |
1968 | /* Skip this CPU if the source task cannot migrate */ | |
3bd37062 | 1969 | if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) |
2c8a50aa MG |
1970 | continue; |
1971 | ||
1972 | env->dst_cpu = cpu; | |
a0f03b61 MG |
1973 | if (task_numa_compare(env, taskimp, groupimp, maymove)) |
1974 | break; | |
2c8a50aa MG |
1975 | } |
1976 | } | |
1977 | ||
58d081b5 MG |
1978 | static int task_numa_migrate(struct task_struct *p) |
1979 | { | |
58d081b5 MG |
1980 | struct task_numa_env env = { |
1981 | .p = p, | |
fb13c7ee | 1982 | |
58d081b5 | 1983 | .src_cpu = task_cpu(p), |
b32e86b4 | 1984 | .src_nid = task_node(p), |
fb13c7ee MG |
1985 | |
1986 | .imbalance_pct = 112, | |
1987 | ||
1988 | .best_task = NULL, | |
1989 | .best_imp = 0, | |
4142c3eb | 1990 | .best_cpu = -1, |
58d081b5 | 1991 | }; |
cb361d8c | 1992 | unsigned long taskweight, groupweight; |
58d081b5 | 1993 | struct sched_domain *sd; |
cb361d8c JH |
1994 | long taskimp, groupimp; |
1995 | struct numa_group *ng; | |
a4739eca | 1996 | struct rq *best_rq; |
7bd95320 | 1997 | int nid, ret, dist; |
e6628d5b | 1998 | |
58d081b5 | 1999 | /* |
fb13c7ee MG |
2000 | * Pick the lowest SD_NUMA domain, as that would have the smallest |
2001 | * imbalance and would be the first to start moving tasks about. | |
2002 | * | |
2003 | * And we want to avoid any moving of tasks about, as that would create | |
2004 | * random movement of tasks -- counter the numa conditions we're trying | |
2005 | * to satisfy here. | |
58d081b5 MG |
2006 | */ |
2007 | rcu_read_lock(); | |
fb13c7ee | 2008 | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); |
46a73e8a RR |
2009 | if (sd) |
2010 | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; | |
e6628d5b MG |
2011 | rcu_read_unlock(); |
2012 | ||
46a73e8a RR |
2013 | /* |
2014 | * Cpusets can break the scheduler domain tree into smaller | |
2015 | * balance domains, some of which do not cross NUMA boundaries. | |
2016 | * Tasks that are "trapped" in such domains cannot be migrated | |
2017 | * elsewhere, so there is no point in (re)trying. | |
2018 | */ | |
2019 | if (unlikely(!sd)) { | |
8cd45eee | 2020 | sched_setnuma(p, task_node(p)); |
46a73e8a RR |
2021 | return -EINVAL; |
2022 | } | |
2023 | ||
2c8a50aa | 2024 | env.dst_nid = p->numa_preferred_nid; |
7bd95320 RR |
2025 | dist = env.dist = node_distance(env.src_nid, env.dst_nid); |
2026 | taskweight = task_weight(p, env.src_nid, dist); | |
2027 | groupweight = group_weight(p, env.src_nid, dist); | |
ff7db0bf | 2028 | update_numa_stats(&env, &env.src_stats, env.src_nid, false); |
7bd95320 RR |
2029 | taskimp = task_weight(p, env.dst_nid, dist) - taskweight; |
2030 | groupimp = group_weight(p, env.dst_nid, dist) - groupweight; | |
ff7db0bf | 2031 | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); |
58d081b5 | 2032 | |
a43455a1 | 2033 | /* Try to find a spot on the preferred nid. */ |
2d4056fa | 2034 | task_numa_find_cpu(&env, taskimp, groupimp); |
e1dda8a7 | 2035 | |
9de05d48 RR |
2036 | /* |
2037 | * Look at other nodes in these cases: | |
2038 | * - there is no space available on the preferred_nid | |
2039 | * - the task is part of a numa_group that is interleaved across | |
2040 | * multiple NUMA nodes; in order to better consolidate the group, | |
2041 | * we need to check other locations. | |
2042 | */ | |
cb361d8c JH |
2043 | ng = deref_curr_numa_group(p); |
2044 | if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { | |
2c8a50aa MG |
2045 | for_each_online_node(nid) { |
2046 | if (nid == env.src_nid || nid == p->numa_preferred_nid) | |
2047 | continue; | |
58d081b5 | 2048 | |
7bd95320 | 2049 | dist = node_distance(env.src_nid, env.dst_nid); |
6c6b1193 RR |
2050 | if (sched_numa_topology_type == NUMA_BACKPLANE && |
2051 | dist != env.dist) { | |
2052 | taskweight = task_weight(p, env.src_nid, dist); | |
2053 | groupweight = group_weight(p, env.src_nid, dist); | |
2054 | } | |
7bd95320 | 2055 | |
83e1d2cd | 2056 | /* Only consider nodes where both task and groups benefit */ |
7bd95320 RR |
2057 | taskimp = task_weight(p, nid, dist) - taskweight; |
2058 | groupimp = group_weight(p, nid, dist) - groupweight; | |
887c290e | 2059 | if (taskimp < 0 && groupimp < 0) |
fb13c7ee MG |
2060 | continue; |
2061 | ||
7bd95320 | 2062 | env.dist = dist; |
2c8a50aa | 2063 | env.dst_nid = nid; |
ff7db0bf | 2064 | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); |
2d4056fa | 2065 | task_numa_find_cpu(&env, taskimp, groupimp); |
58d081b5 MG |
2066 | } |
2067 | } | |
2068 | ||
68d1b02a RR |
2069 | /* |
2070 | * If the task is part of a workload that spans multiple NUMA nodes, | |
2071 | * and is migrating into one of the workload's active nodes, remember | |
2072 | * this node as the task's preferred numa node, so the workload can | |
2073 | * settle down. | |
2074 | * A task that migrated to a second choice node will be better off | |
2075 | * trying for a better one later. Do not set the preferred node here. | |
2076 | */ | |
cb361d8c | 2077 | if (ng) { |
db015dae RR |
2078 | if (env.best_cpu == -1) |
2079 | nid = env.src_nid; | |
2080 | else | |
8cd45eee | 2081 | nid = cpu_to_node(env.best_cpu); |
db015dae | 2082 | |
8cd45eee SD |
2083 | if (nid != p->numa_preferred_nid) |
2084 | sched_setnuma(p, nid); | |
db015dae RR |
2085 | } |
2086 | ||
2087 | /* No better CPU than the current one was found. */ | |
f22aef4a | 2088 | if (env.best_cpu == -1) { |
b2b2042b | 2089 | trace_sched_stick_numa(p, env.src_cpu, NULL, -1); |
db015dae | 2090 | return -EAGAIN; |
f22aef4a | 2091 | } |
0ec8aa00 | 2092 | |
a4739eca | 2093 | best_rq = cpu_rq(env.best_cpu); |
fb13c7ee | 2094 | if (env.best_task == NULL) { |
286549dc | 2095 | ret = migrate_task_to(p, env.best_cpu); |
a4739eca | 2096 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
286549dc | 2097 | if (ret != 0) |
b2b2042b | 2098 | trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); |
fb13c7ee MG |
2099 | return ret; |
2100 | } | |
2101 | ||
0ad4e3df | 2102 | ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); |
a4739eca | 2103 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
0ad4e3df | 2104 | |
286549dc | 2105 | if (ret != 0) |
b2b2042b | 2106 | trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); |
fb13c7ee MG |
2107 | put_task_struct(env.best_task); |
2108 | return ret; | |
e6628d5b MG |
2109 | } |
2110 | ||
6b9a7460 MG |
2111 | /* Attempt to migrate a task to a CPU on the preferred node. */ |
2112 | static void numa_migrate_preferred(struct task_struct *p) | |
2113 | { | |
5085e2a3 RR |
2114 | unsigned long interval = HZ; |
2115 | ||
2739d3ee | 2116 | /* This task has no NUMA fault statistics yet */ |
98fa15f3 | 2117 | if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) |
6b9a7460 MG |
2118 | return; |
2119 | ||
2739d3ee | 2120 | /* Periodically retry migrating the task to the preferred node */ |
5085e2a3 | 2121 | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); |
789ba280 | 2122 | p->numa_migrate_retry = jiffies + interval; |
2739d3ee RR |
2123 | |
2124 | /* Success if task is already running on preferred CPU */ | |
de1b301a | 2125 | if (task_node(p) == p->numa_preferred_nid) |
6b9a7460 MG |
2126 | return; |
2127 | ||
2128 | /* Otherwise, try migrate to a CPU on the preferred node */ | |
2739d3ee | 2129 | task_numa_migrate(p); |
6b9a7460 MG |
2130 | } |
2131 | ||
20e07dea | 2132 | /* |
4142c3eb | 2133 | * Find out how many nodes on the workload is actively running on. Do this by |
20e07dea RR |
2134 | * tracking the nodes from which NUMA hinting faults are triggered. This can |
2135 | * be different from the set of nodes where the workload's memory is currently | |
2136 | * located. | |
20e07dea | 2137 | */ |
4142c3eb | 2138 | static void numa_group_count_active_nodes(struct numa_group *numa_group) |
20e07dea RR |
2139 | { |
2140 | unsigned long faults, max_faults = 0; | |
4142c3eb | 2141 | int nid, active_nodes = 0; |
20e07dea RR |
2142 | |
2143 | for_each_online_node(nid) { | |
2144 | faults = group_faults_cpu(numa_group, nid); | |
2145 | if (faults > max_faults) | |
2146 | max_faults = faults; | |
2147 | } | |
2148 | ||
2149 | for_each_online_node(nid) { | |
2150 | faults = group_faults_cpu(numa_group, nid); | |
4142c3eb RR |
2151 | if (faults * ACTIVE_NODE_FRACTION > max_faults) |
2152 | active_nodes++; | |
20e07dea | 2153 | } |
4142c3eb RR |
2154 | |
2155 | numa_group->max_faults_cpu = max_faults; | |
2156 | numa_group->active_nodes = active_nodes; | |
20e07dea RR |
2157 | } |
2158 | ||
04bb2f94 RR |
2159 | /* |
2160 | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS | |
2161 | * increments. The more local the fault statistics are, the higher the scan | |
a22b4b01 RR |
2162 | * period will be for the next scan window. If local/(local+remote) ratio is |
2163 | * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) | |
2164 | * the scan period will decrease. Aim for 70% local accesses. | |
04bb2f94 RR |
2165 | */ |
2166 | #define NUMA_PERIOD_SLOTS 10 | |
a22b4b01 | 2167 | #define NUMA_PERIOD_THRESHOLD 7 |
04bb2f94 RR |
2168 | |
2169 | /* | |
2170 | * Increase the scan period (slow down scanning) if the majority of | |
2171 | * our memory is already on our local node, or if the majority of | |
2172 | * the page accesses are shared with other processes. | |
2173 | * Otherwise, decrease the scan period. | |
2174 | */ | |
2175 | static void update_task_scan_period(struct task_struct *p, | |
2176 | unsigned long shared, unsigned long private) | |
2177 | { | |
2178 | unsigned int period_slot; | |
37ec97de | 2179 | int lr_ratio, ps_ratio; |
04bb2f94 RR |
2180 | int diff; |
2181 | ||
2182 | unsigned long remote = p->numa_faults_locality[0]; | |
2183 | unsigned long local = p->numa_faults_locality[1]; | |
2184 | ||
2185 | /* | |
2186 | * If there were no record hinting faults then either the task is | |
2187 | * completely idle or all activity is areas that are not of interest | |
074c2381 MG |
2188 | * to automatic numa balancing. Related to that, if there were failed |
2189 | * migration then it implies we are migrating too quickly or the local | |
2190 | * node is overloaded. In either case, scan slower | |
04bb2f94 | 2191 | */ |
074c2381 | 2192 | if (local + shared == 0 || p->numa_faults_locality[2]) { |
04bb2f94 RR |
2193 | p->numa_scan_period = min(p->numa_scan_period_max, |
2194 | p->numa_scan_period << 1); | |
2195 | ||
2196 | p->mm->numa_next_scan = jiffies + | |
2197 | msecs_to_jiffies(p->numa_scan_period); | |
2198 | ||
2199 | return; | |
2200 | } | |
2201 | ||
2202 | /* | |
2203 | * Prepare to scale scan period relative to the current period. | |
2204 | * == NUMA_PERIOD_THRESHOLD scan period stays the same | |
2205 | * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) | |
2206 | * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) | |
2207 | */ | |
2208 | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); | |
37ec97de RR |
2209 | lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); |
2210 | ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); | |
2211 | ||
2212 | if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { | |
2213 | /* | |
2214 | * Most memory accesses are local. There is no need to | |
2215 | * do fast NUMA scanning, since memory is already local. | |
2216 | */ | |
2217 | int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; | |
2218 | if (!slot) | |
2219 | slot = 1; | |
2220 | diff = slot * period_slot; | |
2221 | } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { | |
2222 | /* | |
2223 | * Most memory accesses are shared with other tasks. | |
2224 | * There is no point in continuing fast NUMA scanning, | |
2225 | * since other tasks may just move the memory elsewhere. | |
2226 | */ | |
2227 | int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; | |
04bb2f94 RR |
2228 | if (!slot) |
2229 | slot = 1; | |
2230 | diff = slot * period_slot; | |
2231 | } else { | |
04bb2f94 | 2232 | /* |
37ec97de RR |
2233 | * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, |
2234 | * yet they are not on the local NUMA node. Speed up | |
2235 | * NUMA scanning to get the memory moved over. | |
04bb2f94 | 2236 | */ |
37ec97de RR |
2237 | int ratio = max(lr_ratio, ps_ratio); |
2238 | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; | |
04bb2f94 RR |
2239 | } |
2240 | ||
2241 | p->numa_scan_period = clamp(p->numa_scan_period + diff, | |
2242 | task_scan_min(p), task_scan_max(p)); | |
2243 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | |
2244 | } | |
2245 | ||
7e2703e6 RR |
2246 | /* |
2247 | * Get the fraction of time the task has been running since the last | |
2248 | * NUMA placement cycle. The scheduler keeps similar statistics, but | |
2249 | * decays those on a 32ms period, which is orders of magnitude off | |
2250 | * from the dozens-of-seconds NUMA balancing period. Use the scheduler | |
2251 | * stats only if the task is so new there are no NUMA statistics yet. | |
2252 | */ | |
2253 | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) | |
2254 | { | |
2255 | u64 runtime, delta, now; | |
2256 | /* Use the start of this time slice to avoid calculations. */ | |
2257 | now = p->se.exec_start; | |
2258 | runtime = p->se.sum_exec_runtime; | |
2259 | ||
2260 | if (p->last_task_numa_placement) { | |
2261 | delta = runtime - p->last_sum_exec_runtime; | |
2262 | *period = now - p->last_task_numa_placement; | |
a860fa7b XX |
2263 | |
2264 | /* Avoid time going backwards, prevent potential divide error: */ | |
2265 | if (unlikely((s64)*period < 0)) | |
2266 | *period = 0; | |
7e2703e6 | 2267 | } else { |
c7b50216 | 2268 | delta = p->se.avg.load_sum; |
9d89c257 | 2269 | *period = LOAD_AVG_MAX; |
7e2703e6 RR |
2270 | } |
2271 | ||
2272 | p->last_sum_exec_runtime = runtime; | |
2273 | p->last_task_numa_placement = now; | |
2274 | ||
2275 | return delta; | |
2276 | } | |
2277 | ||
54009416 RR |
2278 | /* |
2279 | * Determine the preferred nid for a task in a numa_group. This needs to | |
2280 | * be done in a way that produces consistent results with group_weight, | |
2281 | * otherwise workloads might not converge. | |
2282 | */ | |
2283 | static int preferred_group_nid(struct task_struct *p, int nid) | |
2284 | { | |
2285 | nodemask_t nodes; | |
2286 | int dist; | |
2287 | ||
2288 | /* Direct connections between all NUMA nodes. */ | |
2289 | if (sched_numa_topology_type == NUMA_DIRECT) | |
2290 | return nid; | |
2291 | ||
2292 | /* | |
2293 | * On a system with glueless mesh NUMA topology, group_weight | |
2294 | * scores nodes according to the number of NUMA hinting faults on | |
2295 | * both the node itself, and on nearby nodes. | |
2296 | */ | |
2297 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
2298 | unsigned long score, max_score = 0; | |
2299 | int node, max_node = nid; | |
2300 | ||
2301 | dist = sched_max_numa_distance; | |
2302 | ||
2303 | for_each_online_node(node) { | |
2304 | score = group_weight(p, node, dist); | |
2305 | if (score > max_score) { | |
2306 | max_score = score; | |
2307 | max_node = node; | |
2308 | } | |
2309 | } | |
2310 | return max_node; | |
2311 | } | |
2312 | ||
2313 | /* | |
2314 | * Finding the preferred nid in a system with NUMA backplane | |
2315 | * interconnect topology is more involved. The goal is to locate | |
2316 | * tasks from numa_groups near each other in the system, and | |
2317 | * untangle workloads from different sides of the system. This requires | |
2318 | * searching down the hierarchy of node groups, recursively searching | |
2319 | * inside the highest scoring group of nodes. The nodemask tricks | |
2320 | * keep the complexity of the search down. | |
2321 | */ | |
2322 | nodes = node_online_map; | |
2323 | for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { | |
2324 | unsigned long max_faults = 0; | |
81907478 | 2325 | nodemask_t max_group = NODE_MASK_NONE; |
54009416 RR |
2326 | int a, b; |
2327 | ||
2328 | /* Are there nodes at this distance from each other? */ | |
2329 | if (!find_numa_distance(dist)) | |
2330 | continue; | |
2331 | ||
2332 | for_each_node_mask(a, nodes) { | |
2333 | unsigned long faults = 0; | |
2334 | nodemask_t this_group; | |
2335 | nodes_clear(this_group); | |
2336 | ||
2337 | /* Sum group's NUMA faults; includes a==b case. */ | |
2338 | for_each_node_mask(b, nodes) { | |
2339 | if (node_distance(a, b) < dist) { | |
2340 | faults += group_faults(p, b); | |
2341 | node_set(b, this_group); | |
2342 | node_clear(b, nodes); | |
2343 | } | |
2344 | } | |
2345 | ||
2346 | /* Remember the top group. */ | |
2347 | if (faults > max_faults) { | |
2348 | max_faults = faults; | |
2349 | max_group = this_group; | |
2350 | /* | |
2351 | * subtle: at the smallest distance there is | |
2352 | * just one node left in each "group", the | |
2353 | * winner is the preferred nid. | |
2354 | */ | |
2355 | nid = a; | |
2356 | } | |
2357 | } | |
2358 | /* Next round, evaluate the nodes within max_group. */ | |
890a5409 JB |
2359 | if (!max_faults) |
2360 | break; | |
54009416 RR |
2361 | nodes = max_group; |
2362 | } | |
2363 | return nid; | |
2364 | } | |
2365 | ||
cbee9f88 PZ |
2366 | static void task_numa_placement(struct task_struct *p) |
2367 | { | |
98fa15f3 | 2368 | int seq, nid, max_nid = NUMA_NO_NODE; |
f03bb676 | 2369 | unsigned long max_faults = 0; |
04bb2f94 | 2370 | unsigned long fault_types[2] = { 0, 0 }; |
7e2703e6 RR |
2371 | unsigned long total_faults; |
2372 | u64 runtime, period; | |
7dbd13ed | 2373 | spinlock_t *group_lock = NULL; |
cb361d8c | 2374 | struct numa_group *ng; |
cbee9f88 | 2375 | |
7e5a2c17 JL |
2376 | /* |
2377 | * The p->mm->numa_scan_seq field gets updated without | |
2378 | * exclusive access. Use READ_ONCE() here to ensure | |
2379 | * that the field is read in a single access: | |
2380 | */ | |
316c1608 | 2381 | seq = READ_ONCE(p->mm->numa_scan_seq); |
cbee9f88 PZ |
2382 | if (p->numa_scan_seq == seq) |
2383 | return; | |
2384 | p->numa_scan_seq = seq; | |
598f0ec0 | 2385 | p->numa_scan_period_max = task_scan_max(p); |
cbee9f88 | 2386 | |
7e2703e6 RR |
2387 | total_faults = p->numa_faults_locality[0] + |
2388 | p->numa_faults_locality[1]; | |
2389 | runtime = numa_get_avg_runtime(p, &period); | |
2390 | ||
7dbd13ed | 2391 | /* If the task is part of a group prevent parallel updates to group stats */ |
cb361d8c JH |
2392 | ng = deref_curr_numa_group(p); |
2393 | if (ng) { | |
2394 | group_lock = &ng->lock; | |
60e69eed | 2395 | spin_lock_irq(group_lock); |
7dbd13ed MG |
2396 | } |
2397 | ||
688b7585 MG |
2398 | /* Find the node with the highest number of faults */ |
2399 | for_each_online_node(nid) { | |
44dba3d5 IM |
2400 | /* Keep track of the offsets in numa_faults array */ |
2401 | int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; | |
83e1d2cd | 2402 | unsigned long faults = 0, group_faults = 0; |
44dba3d5 | 2403 | int priv; |
745d6147 | 2404 | |
be1e4e76 | 2405 | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { |
7e2703e6 | 2406 | long diff, f_diff, f_weight; |
8c8a743c | 2407 | |
44dba3d5 IM |
2408 | mem_idx = task_faults_idx(NUMA_MEM, nid, priv); |
2409 | membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); | |
2410 | cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); | |
2411 | cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); | |
745d6147 | 2412 | |
ac8e895b | 2413 | /* Decay existing window, copy faults since last scan */ |
44dba3d5 IM |
2414 | diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; |
2415 | fault_types[priv] += p->numa_faults[membuf_idx]; | |
2416 | p->numa_faults[membuf_idx] = 0; | |
fb13c7ee | 2417 | |
7e2703e6 RR |
2418 | /* |
2419 | * Normalize the faults_from, so all tasks in a group | |
2420 | * count according to CPU use, instead of by the raw | |
2421 | * number of faults. Tasks with little runtime have | |
2422 | * little over-all impact on throughput, and thus their | |
2423 | * faults are less important. | |
2424 | */ | |
2425 | f_weight = div64_u64(runtime << 16, period + 1); | |
44dba3d5 | 2426 | f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / |
7e2703e6 | 2427 | (total_faults + 1); |
44dba3d5 IM |
2428 | f_diff = f_weight - p->numa_faults[cpu_idx] / 2; |
2429 | p->numa_faults[cpubuf_idx] = 0; | |
50ec8a40 | 2430 | |
44dba3d5 IM |
2431 | p->numa_faults[mem_idx] += diff; |
2432 | p->numa_faults[cpu_idx] += f_diff; | |
2433 | faults += p->numa_faults[mem_idx]; | |
83e1d2cd | 2434 | p->total_numa_faults += diff; |
cb361d8c | 2435 | if (ng) { |
44dba3d5 IM |
2436 | /* |
2437 | * safe because we can only change our own group | |
2438 | * | |
2439 | * mem_idx represents the offset for a given | |
2440 | * nid and priv in a specific region because it | |
2441 | * is at the beginning of the numa_faults array. | |
2442 | */ | |
cb361d8c JH |
2443 | ng->faults[mem_idx] += diff; |
2444 | ng->faults_cpu[mem_idx] += f_diff; | |
2445 | ng->total_faults += diff; | |
2446 | group_faults += ng->faults[mem_idx]; | |
8c8a743c | 2447 | } |
ac8e895b MG |
2448 | } |
2449 | ||
cb361d8c | 2450 | if (!ng) { |
f03bb676 SD |
2451 | if (faults > max_faults) { |
2452 | max_faults = faults; | |
2453 | max_nid = nid; | |
2454 | } | |
2455 | } else if (group_faults > max_faults) { | |
2456 | max_faults = group_faults; | |
688b7585 MG |
2457 | max_nid = nid; |
2458 | } | |
83e1d2cd MG |
2459 | } |
2460 | ||
cb361d8c JH |
2461 | if (ng) { |
2462 | numa_group_count_active_nodes(ng); | |
60e69eed | 2463 | spin_unlock_irq(group_lock); |
f03bb676 | 2464 | max_nid = preferred_group_nid(p, max_nid); |
688b7585 MG |
2465 | } |
2466 | ||
bb97fc31 RR |
2467 | if (max_faults) { |
2468 | /* Set the new preferred node */ | |
2469 | if (max_nid != p->numa_preferred_nid) | |
2470 | sched_setnuma(p, max_nid); | |
3a7053b3 | 2471 | } |
30619c89 SD |
2472 | |
2473 | update_task_scan_period(p, fault_types[0], fault_types[1]); | |
cbee9f88 PZ |
2474 | } |
2475 | ||
8c8a743c PZ |
2476 | static inline int get_numa_group(struct numa_group *grp) |
2477 | { | |
c45a7795 | 2478 | return refcount_inc_not_zero(&grp->refcount); |
8c8a743c PZ |
2479 | } |
2480 | ||
2481 | static inline void put_numa_group(struct numa_group *grp) | |
2482 | { | |
c45a7795 | 2483 | if (refcount_dec_and_test(&grp->refcount)) |
8c8a743c PZ |
2484 | kfree_rcu(grp, rcu); |
2485 | } | |
2486 | ||
3e6a9418 MG |
2487 | static void task_numa_group(struct task_struct *p, int cpupid, int flags, |
2488 | int *priv) | |
8c8a743c PZ |
2489 | { |
2490 | struct numa_group *grp, *my_grp; | |
2491 | struct task_struct *tsk; | |
2492 | bool join = false; | |
2493 | int cpu = cpupid_to_cpu(cpupid); | |
2494 | int i; | |
2495 | ||
cb361d8c | 2496 | if (unlikely(!deref_curr_numa_group(p))) { |
8c8a743c | 2497 | unsigned int size = sizeof(struct numa_group) + |
50ec8a40 | 2498 | 4*nr_node_ids*sizeof(unsigned long); |
8c8a743c PZ |
2499 | |
2500 | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); | |
2501 | if (!grp) | |
2502 | return; | |
2503 | ||
c45a7795 | 2504 | refcount_set(&grp->refcount, 1); |
4142c3eb RR |
2505 | grp->active_nodes = 1; |
2506 | grp->max_faults_cpu = 0; | |
8c8a743c | 2507 | spin_lock_init(&grp->lock); |
e29cf08b | 2508 | grp->gid = p->pid; |
50ec8a40 | 2509 | /* Second half of the array tracks nids where faults happen */ |
be1e4e76 RR |
2510 | grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * |
2511 | nr_node_ids; | |
8c8a743c | 2512 | |
be1e4e76 | 2513 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 2514 | grp->faults[i] = p->numa_faults[i]; |
8c8a743c | 2515 | |
989348b5 | 2516 | grp->total_faults = p->total_numa_faults; |
83e1d2cd | 2517 | |
8c8a743c PZ |
2518 | grp->nr_tasks++; |
2519 | rcu_assign_pointer(p->numa_group, grp); | |
2520 | } | |
2521 | ||
2522 | rcu_read_lock(); | |
316c1608 | 2523 | tsk = READ_ONCE(cpu_rq(cpu)->curr); |
8c8a743c PZ |
2524 | |
2525 | if (!cpupid_match_pid(tsk, cpupid)) | |
3354781a | 2526 | goto no_join; |
8c8a743c PZ |
2527 | |
2528 | grp = rcu_dereference(tsk->numa_group); | |
2529 | if (!grp) | |
3354781a | 2530 | goto no_join; |
8c8a743c | 2531 | |
cb361d8c | 2532 | my_grp = deref_curr_numa_group(p); |
8c8a743c | 2533 | if (grp == my_grp) |
3354781a | 2534 | goto no_join; |
8c8a743c PZ |
2535 | |
2536 | /* | |
2537 | * Only join the other group if its bigger; if we're the bigger group, | |
2538 | * the other task will join us. | |
2539 | */ | |
2540 | if (my_grp->nr_tasks > grp->nr_tasks) | |
3354781a | 2541 | goto no_join; |
8c8a743c PZ |
2542 | |
2543 | /* | |
2544 | * Tie-break on the grp address. | |
2545 | */ | |
2546 | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) | |
3354781a | 2547 | goto no_join; |
8c8a743c | 2548 | |
dabe1d99 RR |
2549 | /* Always join threads in the same process. */ |
2550 | if (tsk->mm == current->mm) | |
2551 | join = true; | |
2552 | ||
2553 | /* Simple filter to avoid false positives due to PID collisions */ | |
2554 | if (flags & TNF_SHARED) | |
2555 | join = true; | |
8c8a743c | 2556 | |
3e6a9418 MG |
2557 | /* Update priv based on whether false sharing was detected */ |
2558 | *priv = !join; | |
2559 | ||
dabe1d99 | 2560 | if (join && !get_numa_group(grp)) |
3354781a | 2561 | goto no_join; |
8c8a743c | 2562 | |
8c8a743c PZ |
2563 | rcu_read_unlock(); |
2564 | ||
2565 | if (!join) | |
2566 | return; | |
2567 | ||
60e69eed MG |
2568 | BUG_ON(irqs_disabled()); |
2569 | double_lock_irq(&my_grp->lock, &grp->lock); | |
989348b5 | 2570 | |
be1e4e76 | 2571 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { |
44dba3d5 IM |
2572 | my_grp->faults[i] -= p->numa_faults[i]; |
2573 | grp->faults[i] += p->numa_faults[i]; | |
8c8a743c | 2574 | } |
989348b5 MG |
2575 | my_grp->total_faults -= p->total_numa_faults; |
2576 | grp->total_faults += p->total_numa_faults; | |
8c8a743c | 2577 | |
8c8a743c PZ |
2578 | my_grp->nr_tasks--; |
2579 | grp->nr_tasks++; | |
2580 | ||
2581 | spin_unlock(&my_grp->lock); | |
60e69eed | 2582 | spin_unlock_irq(&grp->lock); |
8c8a743c PZ |
2583 | |
2584 | rcu_assign_pointer(p->numa_group, grp); | |
2585 | ||
2586 | put_numa_group(my_grp); | |
3354781a PZ |
2587 | return; |
2588 | ||
2589 | no_join: | |
2590 | rcu_read_unlock(); | |
2591 | return; | |
8c8a743c PZ |
2592 | } |
2593 | ||
16d51a59 JH |
2594 | /* |
2595 | * Get rid of NUMA staticstics associated with a task (either current or dead). | |
2596 | * If @final is set, the task is dead and has reached refcount zero, so we can | |
2597 | * safely free all relevant data structures. Otherwise, there might be | |
2598 | * concurrent reads from places like load balancing and procfs, and we should | |
2599 | * reset the data back to default state without freeing ->numa_faults. | |
2600 | */ | |
2601 | void task_numa_free(struct task_struct *p, bool final) | |
8c8a743c | 2602 | { |
cb361d8c JH |
2603 | /* safe: p either is current or is being freed by current */ |
2604 | struct numa_group *grp = rcu_dereference_raw(p->numa_group); | |
16d51a59 | 2605 | unsigned long *numa_faults = p->numa_faults; |
e9dd685c SR |
2606 | unsigned long flags; |
2607 | int i; | |
8c8a743c | 2608 | |
16d51a59 JH |
2609 | if (!numa_faults) |
2610 | return; | |
2611 | ||
8c8a743c | 2612 | if (grp) { |
e9dd685c | 2613 | spin_lock_irqsave(&grp->lock, flags); |
be1e4e76 | 2614 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 2615 | grp->faults[i] -= p->numa_faults[i]; |
989348b5 | 2616 | grp->total_faults -= p->total_numa_faults; |
83e1d2cd | 2617 | |
8c8a743c | 2618 | grp->nr_tasks--; |
e9dd685c | 2619 | spin_unlock_irqrestore(&grp->lock, flags); |
35b123e2 | 2620 | RCU_INIT_POINTER(p->numa_group, NULL); |
8c8a743c PZ |
2621 | put_numa_group(grp); |
2622 | } | |
2623 | ||
16d51a59 JH |
2624 | if (final) { |
2625 | p->numa_faults = NULL; | |
2626 | kfree(numa_faults); | |
2627 | } else { | |
2628 | p->total_numa_faults = 0; | |
2629 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | |
2630 | numa_faults[i] = 0; | |
2631 | } | |
8c8a743c PZ |
2632 | } |
2633 | ||
cbee9f88 PZ |
2634 | /* |
2635 | * Got a PROT_NONE fault for a page on @node. | |
2636 | */ | |
58b46da3 | 2637 | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) |
cbee9f88 PZ |
2638 | { |
2639 | struct task_struct *p = current; | |
6688cc05 | 2640 | bool migrated = flags & TNF_MIGRATED; |
58b46da3 | 2641 | int cpu_node = task_node(current); |
792568ec | 2642 | int local = !!(flags & TNF_FAULT_LOCAL); |
4142c3eb | 2643 | struct numa_group *ng; |
ac8e895b | 2644 | int priv; |
cbee9f88 | 2645 | |
2a595721 | 2646 | if (!static_branch_likely(&sched_numa_balancing)) |
1a687c2e MG |
2647 | return; |
2648 | ||
9ff1d9ff MG |
2649 | /* for example, ksmd faulting in a user's mm */ |
2650 | if (!p->mm) | |
2651 | return; | |
2652 | ||
f809ca9a | 2653 | /* Allocate buffer to track faults on a per-node basis */ |
44dba3d5 IM |
2654 | if (unlikely(!p->numa_faults)) { |
2655 | int size = sizeof(*p->numa_faults) * | |
be1e4e76 | 2656 | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; |
f809ca9a | 2657 | |
44dba3d5 IM |
2658 | p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); |
2659 | if (!p->numa_faults) | |
f809ca9a | 2660 | return; |
745d6147 | 2661 | |
83e1d2cd | 2662 | p->total_numa_faults = 0; |
04bb2f94 | 2663 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); |
f809ca9a | 2664 | } |
cbee9f88 | 2665 | |
8c8a743c PZ |
2666 | /* |
2667 | * First accesses are treated as private, otherwise consider accesses | |
2668 | * to be private if the accessing pid has not changed | |
2669 | */ | |
2670 | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { | |
2671 | priv = 1; | |
2672 | } else { | |
2673 | priv = cpupid_match_pid(p, last_cpupid); | |
6688cc05 | 2674 | if (!priv && !(flags & TNF_NO_GROUP)) |
3e6a9418 | 2675 | task_numa_group(p, last_cpupid, flags, &priv); |
8c8a743c PZ |
2676 | } |
2677 | ||
792568ec RR |
2678 | /* |
2679 | * If a workload spans multiple NUMA nodes, a shared fault that | |
2680 | * occurs wholly within the set of nodes that the workload is | |
2681 | * actively using should be counted as local. This allows the | |
2682 | * scan rate to slow down when a workload has settled down. | |
2683 | */ | |
cb361d8c | 2684 | ng = deref_curr_numa_group(p); |
4142c3eb RR |
2685 | if (!priv && !local && ng && ng->active_nodes > 1 && |
2686 | numa_is_active_node(cpu_node, ng) && | |
2687 | numa_is_active_node(mem_node, ng)) | |
792568ec RR |
2688 | local = 1; |
2689 | ||
2739d3ee | 2690 | /* |
e1ff516a YW |
2691 | * Retry to migrate task to preferred node periodically, in case it |
2692 | * previously failed, or the scheduler moved us. | |
2739d3ee | 2693 | */ |
b6a60cf3 SD |
2694 | if (time_after(jiffies, p->numa_migrate_retry)) { |
2695 | task_numa_placement(p); | |
6b9a7460 | 2696 | numa_migrate_preferred(p); |
b6a60cf3 | 2697 | } |
6b9a7460 | 2698 | |
b32e86b4 IM |
2699 | if (migrated) |
2700 | p->numa_pages_migrated += pages; | |
074c2381 MG |
2701 | if (flags & TNF_MIGRATE_FAIL) |
2702 | p->numa_faults_locality[2] += pages; | |
b32e86b4 | 2703 | |
44dba3d5 IM |
2704 | p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; |
2705 | p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; | |
792568ec | 2706 | p->numa_faults_locality[local] += pages; |
cbee9f88 PZ |
2707 | } |
2708 | ||
6e5fb223 PZ |
2709 | static void reset_ptenuma_scan(struct task_struct *p) |
2710 | { | |
7e5a2c17 JL |
2711 | /* |
2712 | * We only did a read acquisition of the mmap sem, so | |
2713 | * p->mm->numa_scan_seq is written to without exclusive access | |
2714 | * and the update is not guaranteed to be atomic. That's not | |
2715 | * much of an issue though, since this is just used for | |
2716 | * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not | |
2717 | * expensive, to avoid any form of compiler optimizations: | |
2718 | */ | |
316c1608 | 2719 | WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); |
6e5fb223 PZ |
2720 | p->mm->numa_scan_offset = 0; |
2721 | } | |
2722 | ||
cbee9f88 PZ |
2723 | /* |
2724 | * The expensive part of numa migration is done from task_work context. | |
2725 | * Triggered from task_tick_numa(). | |
2726 | */ | |
9434f9f5 | 2727 | static void task_numa_work(struct callback_head *work) |
cbee9f88 PZ |
2728 | { |
2729 | unsigned long migrate, next_scan, now = jiffies; | |
2730 | struct task_struct *p = current; | |
2731 | struct mm_struct *mm = p->mm; | |
51170840 | 2732 | u64 runtime = p->se.sum_exec_runtime; |
6e5fb223 | 2733 | struct vm_area_struct *vma; |
9f40604c | 2734 | unsigned long start, end; |
598f0ec0 | 2735 | unsigned long nr_pte_updates = 0; |
4620f8c1 | 2736 | long pages, virtpages; |
cbee9f88 | 2737 | |
9148a3a1 | 2738 | SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); |
cbee9f88 | 2739 | |
b34920d4 | 2740 | work->next = work; |
cbee9f88 PZ |
2741 | /* |
2742 | * Who cares about NUMA placement when they're dying. | |
2743 | * | |
2744 | * NOTE: make sure not to dereference p->mm before this check, | |
2745 | * exit_task_work() happens _after_ exit_mm() so we could be called | |
2746 | * without p->mm even though we still had it when we enqueued this | |
2747 | * work. | |
2748 | */ | |
2749 | if (p->flags & PF_EXITING) | |
2750 | return; | |
2751 | ||
930aa174 | 2752 | if (!mm->numa_next_scan) { |
7e8d16b6 MG |
2753 | mm->numa_next_scan = now + |
2754 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
b8593bfd MG |
2755 | } |
2756 | ||
cbee9f88 PZ |
2757 | /* |
2758 | * Enforce maximal scan/migration frequency.. | |
2759 | */ | |
2760 | migrate = mm->numa_next_scan; | |
2761 | if (time_before(now, migrate)) | |
2762 | return; | |
2763 | ||
598f0ec0 MG |
2764 | if (p->numa_scan_period == 0) { |
2765 | p->numa_scan_period_max = task_scan_max(p); | |
b5dd77c8 | 2766 | p->numa_scan_period = task_scan_start(p); |
598f0ec0 | 2767 | } |
cbee9f88 | 2768 | |
fb003b80 | 2769 | next_scan = now + msecs_to_jiffies(p->numa_scan_period); |
cbee9f88 PZ |
2770 | if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) |
2771 | return; | |
2772 | ||
19a78d11 PZ |
2773 | /* |
2774 | * Delay this task enough that another task of this mm will likely win | |
2775 | * the next time around. | |
2776 | */ | |
2777 | p->node_stamp += 2 * TICK_NSEC; | |
2778 | ||
9f40604c MG |
2779 | start = mm->numa_scan_offset; |
2780 | pages = sysctl_numa_balancing_scan_size; | |
2781 | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ | |
4620f8c1 | 2782 | virtpages = pages * 8; /* Scan up to this much virtual space */ |
9f40604c MG |
2783 | if (!pages) |
2784 | return; | |
cbee9f88 | 2785 | |
4620f8c1 | 2786 | |
d8ed45c5 | 2787 | if (!mmap_read_trylock(mm)) |
8655d549 | 2788 | return; |
9f40604c | 2789 | vma = find_vma(mm, start); |
6e5fb223 PZ |
2790 | if (!vma) { |
2791 | reset_ptenuma_scan(p); | |
9f40604c | 2792 | start = 0; |
6e5fb223 PZ |
2793 | vma = mm->mmap; |
2794 | } | |
9f40604c | 2795 | for (; vma; vma = vma->vm_next) { |
6b79c57b | 2796 | if (!vma_migratable(vma) || !vma_policy_mof(vma) || |
8e76d4ee | 2797 | is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { |
6e5fb223 | 2798 | continue; |
6b79c57b | 2799 | } |
6e5fb223 | 2800 | |
4591ce4f MG |
2801 | /* |
2802 | * Shared library pages mapped by multiple processes are not | |
2803 | * migrated as it is expected they are cache replicated. Avoid | |
2804 | * hinting faults in read-only file-backed mappings or the vdso | |
2805 | * as migrating the pages will be of marginal benefit. | |
2806 | */ | |
2807 | if (!vma->vm_mm || | |
2808 | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) | |
2809 | continue; | |
2810 | ||
3c67f474 MG |
2811 | /* |
2812 | * Skip inaccessible VMAs to avoid any confusion between | |
2813 | * PROT_NONE and NUMA hinting ptes | |
2814 | */ | |
3122e80e | 2815 | if (!vma_is_accessible(vma)) |
3c67f474 | 2816 | continue; |
4591ce4f | 2817 | |
9f40604c MG |
2818 | do { |
2819 | start = max(start, vma->vm_start); | |
2820 | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); | |
2821 | end = min(end, vma->vm_end); | |
4620f8c1 | 2822 | nr_pte_updates = change_prot_numa(vma, start, end); |
598f0ec0 MG |
2823 | |
2824 | /* | |
4620f8c1 RR |
2825 | * Try to scan sysctl_numa_balancing_size worth of |
2826 | * hpages that have at least one present PTE that | |
2827 | * is not already pte-numa. If the VMA contains | |
2828 | * areas that are unused or already full of prot_numa | |
2829 | * PTEs, scan up to virtpages, to skip through those | |
2830 | * areas faster. | |
598f0ec0 MG |
2831 | */ |
2832 | if (nr_pte_updates) | |
2833 | pages -= (end - start) >> PAGE_SHIFT; | |
4620f8c1 | 2834 | virtpages -= (end - start) >> PAGE_SHIFT; |
6e5fb223 | 2835 | |
9f40604c | 2836 | start = end; |
4620f8c1 | 2837 | if (pages <= 0 || virtpages <= 0) |
9f40604c | 2838 | goto out; |
3cf1962c RR |
2839 | |
2840 | cond_resched(); | |
9f40604c | 2841 | } while (end != vma->vm_end); |
cbee9f88 | 2842 | } |
6e5fb223 | 2843 | |
9f40604c | 2844 | out: |
6e5fb223 | 2845 | /* |
c69307d5 PZ |
2846 | * It is possible to reach the end of the VMA list but the last few |
2847 | * VMAs are not guaranteed to the vma_migratable. If they are not, we | |
2848 | * would find the !migratable VMA on the next scan but not reset the | |
2849 | * scanner to the start so check it now. | |
6e5fb223 PZ |
2850 | */ |
2851 | if (vma) | |
9f40604c | 2852 | mm->numa_scan_offset = start; |
6e5fb223 PZ |
2853 | else |
2854 | reset_ptenuma_scan(p); | |
d8ed45c5 | 2855 | mmap_read_unlock(mm); |
51170840 RR |
2856 | |
2857 | /* | |
2858 | * Make sure tasks use at least 32x as much time to run other code | |
2859 | * than they used here, to limit NUMA PTE scanning overhead to 3% max. | |
2860 | * Usually update_task_scan_period slows down scanning enough; on an | |
2861 | * overloaded system we need to limit overhead on a per task basis. | |
2862 | */ | |
2863 | if (unlikely(p->se.sum_exec_runtime != runtime)) { | |
2864 | u64 diff = p->se.sum_exec_runtime - runtime; | |
2865 | p->node_stamp += 32 * diff; | |
2866 | } | |
cbee9f88 PZ |
2867 | } |
2868 | ||
d35927a1 VS |
2869 | void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) |
2870 | { | |
2871 | int mm_users = 0; | |
2872 | struct mm_struct *mm = p->mm; | |
2873 | ||
2874 | if (mm) { | |
2875 | mm_users = atomic_read(&mm->mm_users); | |
2876 | if (mm_users == 1) { | |
2877 | mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
2878 | mm->numa_scan_seq = 0; | |
2879 | } | |
2880 | } | |
2881 | p->node_stamp = 0; | |
2882 | p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; | |
2883 | p->numa_scan_period = sysctl_numa_balancing_scan_delay; | |
b34920d4 | 2884 | /* Protect against double add, see task_tick_numa and task_numa_work */ |
d35927a1 VS |
2885 | p->numa_work.next = &p->numa_work; |
2886 | p->numa_faults = NULL; | |
2887 | RCU_INIT_POINTER(p->numa_group, NULL); | |
2888 | p->last_task_numa_placement = 0; | |
2889 | p->last_sum_exec_runtime = 0; | |
2890 | ||
b34920d4 VS |
2891 | init_task_work(&p->numa_work, task_numa_work); |
2892 | ||
d35927a1 VS |
2893 | /* New address space, reset the preferred nid */ |
2894 | if (!(clone_flags & CLONE_VM)) { | |
2895 | p->numa_preferred_nid = NUMA_NO_NODE; | |
2896 | return; | |
2897 | } | |
2898 | ||
2899 | /* | |
2900 | * New thread, keep existing numa_preferred_nid which should be copied | |
2901 | * already by arch_dup_task_struct but stagger when scans start. | |
2902 | */ | |
2903 | if (mm) { | |
2904 | unsigned int delay; | |
2905 | ||
2906 | delay = min_t(unsigned int, task_scan_max(current), | |
2907 | current->numa_scan_period * mm_users * NSEC_PER_MSEC); | |
2908 | delay += 2 * TICK_NSEC; | |
2909 | p->node_stamp = delay; | |
2910 | } | |
2911 | } | |
2912 | ||
cbee9f88 PZ |
2913 | /* |
2914 | * Drive the periodic memory faults.. | |
2915 | */ | |
b1546edc | 2916 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) |
cbee9f88 PZ |
2917 | { |
2918 | struct callback_head *work = &curr->numa_work; | |
2919 | u64 period, now; | |
2920 | ||
2921 | /* | |
2922 | * We don't care about NUMA placement if we don't have memory. | |
2923 | */ | |
18f855e5 | 2924 | if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) |
cbee9f88 PZ |
2925 | return; |
2926 | ||
2927 | /* | |
2928 | * Using runtime rather than walltime has the dual advantage that | |
2929 | * we (mostly) drive the selection from busy threads and that the | |
2930 | * task needs to have done some actual work before we bother with | |
2931 | * NUMA placement. | |
2932 | */ | |
2933 | now = curr->se.sum_exec_runtime; | |
2934 | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; | |
2935 | ||
25b3e5a3 | 2936 | if (now > curr->node_stamp + period) { |
4b96a29b | 2937 | if (!curr->node_stamp) |
b5dd77c8 | 2938 | curr->numa_scan_period = task_scan_start(curr); |
19a78d11 | 2939 | curr->node_stamp += period; |
cbee9f88 | 2940 | |
b34920d4 | 2941 | if (!time_before(jiffies, curr->mm->numa_next_scan)) |
91989c70 | 2942 | task_work_add(curr, work, TWA_RESUME); |
cbee9f88 PZ |
2943 | } |
2944 | } | |
3fed382b | 2945 | |
3f9672ba SD |
2946 | static void update_scan_period(struct task_struct *p, int new_cpu) |
2947 | { | |
2948 | int src_nid = cpu_to_node(task_cpu(p)); | |
2949 | int dst_nid = cpu_to_node(new_cpu); | |
2950 | ||
05cbdf4f MG |
2951 | if (!static_branch_likely(&sched_numa_balancing)) |
2952 | return; | |
2953 | ||
3f9672ba SD |
2954 | if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) |
2955 | return; | |
2956 | ||
05cbdf4f MG |
2957 | if (src_nid == dst_nid) |
2958 | return; | |
2959 | ||
2960 | /* | |
2961 | * Allow resets if faults have been trapped before one scan | |
2962 | * has completed. This is most likely due to a new task that | |
2963 | * is pulled cross-node due to wakeups or load balancing. | |
2964 | */ | |
2965 | if (p->numa_scan_seq) { | |
2966 | /* | |
2967 | * Avoid scan adjustments if moving to the preferred | |
2968 | * node or if the task was not previously running on | |
2969 | * the preferred node. | |
2970 | */ | |
2971 | if (dst_nid == p->numa_preferred_nid || | |
98fa15f3 AK |
2972 | (p->numa_preferred_nid != NUMA_NO_NODE && |
2973 | src_nid != p->numa_preferred_nid)) | |
05cbdf4f MG |
2974 | return; |
2975 | } | |
2976 | ||
2977 | p->numa_scan_period = task_scan_start(p); | |
3f9672ba SD |
2978 | } |
2979 | ||
cbee9f88 PZ |
2980 | #else |
2981 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | |
2982 | { | |
2983 | } | |
0ec8aa00 PZ |
2984 | |
2985 | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) | |
2986 | { | |
2987 | } | |
2988 | ||
2989 | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
2990 | { | |
2991 | } | |
3fed382b | 2992 | |
3f9672ba SD |
2993 | static inline void update_scan_period(struct task_struct *p, int new_cpu) |
2994 | { | |
2995 | } | |
2996 | ||
cbee9f88 PZ |
2997 | #endif /* CONFIG_NUMA_BALANCING */ |
2998 | ||
30cfdcfc DA |
2999 | static void |
3000 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3001 | { | |
3002 | update_load_add(&cfs_rq->load, se->load.weight); | |
367456c7 | 3003 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
3004 | if (entity_is_task(se)) { |
3005 | struct rq *rq = rq_of(cfs_rq); | |
3006 | ||
3007 | account_numa_enqueue(rq, task_of(se)); | |
3008 | list_add(&se->group_node, &rq->cfs_tasks); | |
3009 | } | |
367456c7 | 3010 | #endif |
30cfdcfc | 3011 | cfs_rq->nr_running++; |
30cfdcfc DA |
3012 | } |
3013 | ||
3014 | static void | |
3015 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3016 | { | |
3017 | update_load_sub(&cfs_rq->load, se->load.weight); | |
bfdb198c | 3018 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
3019 | if (entity_is_task(se)) { |
3020 | account_numa_dequeue(rq_of(cfs_rq), task_of(se)); | |
b87f1724 | 3021 | list_del_init(&se->group_node); |
0ec8aa00 | 3022 | } |
bfdb198c | 3023 | #endif |
30cfdcfc | 3024 | cfs_rq->nr_running--; |
30cfdcfc DA |
3025 | } |
3026 | ||
8d5b9025 PZ |
3027 | /* |
3028 | * Signed add and clamp on underflow. | |
3029 | * | |
3030 | * Explicitly do a load-store to ensure the intermediate value never hits | |
3031 | * memory. This allows lockless observations without ever seeing the negative | |
3032 | * values. | |
3033 | */ | |
3034 | #define add_positive(_ptr, _val) do { \ | |
3035 | typeof(_ptr) ptr = (_ptr); \ | |
3036 | typeof(_val) val = (_val); \ | |
3037 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
3038 | \ | |
3039 | res = var + val; \ | |
3040 | \ | |
3041 | if (val < 0 && res > var) \ | |
3042 | res = 0; \ | |
3043 | \ | |
3044 | WRITE_ONCE(*ptr, res); \ | |
3045 | } while (0) | |
3046 | ||
3047 | /* | |
3048 | * Unsigned subtract and clamp on underflow. | |
3049 | * | |
3050 | * Explicitly do a load-store to ensure the intermediate value never hits | |
3051 | * memory. This allows lockless observations without ever seeing the negative | |
3052 | * values. | |
3053 | */ | |
3054 | #define sub_positive(_ptr, _val) do { \ | |
3055 | typeof(_ptr) ptr = (_ptr); \ | |
3056 | typeof(*ptr) val = (_val); \ | |
3057 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
3058 | res = var - val; \ | |
3059 | if (res > var) \ | |
3060 | res = 0; \ | |
3061 | WRITE_ONCE(*ptr, res); \ | |
3062 | } while (0) | |
3063 | ||
b5c0ce7b PB |
3064 | /* |
3065 | * Remove and clamp on negative, from a local variable. | |
3066 | * | |
3067 | * A variant of sub_positive(), which does not use explicit load-store | |
3068 | * and is thus optimized for local variable updates. | |
3069 | */ | |
3070 | #define lsub_positive(_ptr, _val) do { \ | |
3071 | typeof(_ptr) ptr = (_ptr); \ | |
3072 | *ptr -= min_t(typeof(*ptr), *ptr, _val); \ | |
3073 | } while (0) | |
3074 | ||
8d5b9025 | 3075 | #ifdef CONFIG_SMP |
8d5b9025 PZ |
3076 | static inline void |
3077 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3078 | { | |
3079 | cfs_rq->avg.load_avg += se->avg.load_avg; | |
3080 | cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; | |
3081 | } | |
3082 | ||
3083 | static inline void | |
3084 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3085 | { | |
3086 | sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); | |
3087 | sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); | |
3088 | } | |
3089 | #else | |
3090 | static inline void | |
8d5b9025 PZ |
3091 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } |
3092 | static inline void | |
3093 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
3094 | #endif | |
3095 | ||
9059393e | 3096 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, |
0dacee1b | 3097 | unsigned long weight) |
9059393e VG |
3098 | { |
3099 | if (se->on_rq) { | |
3100 | /* commit outstanding execution time */ | |
3101 | if (cfs_rq->curr == se) | |
3102 | update_curr(cfs_rq); | |
1724b95b | 3103 | update_load_sub(&cfs_rq->load, se->load.weight); |
9059393e VG |
3104 | } |
3105 | dequeue_load_avg(cfs_rq, se); | |
3106 | ||
3107 | update_load_set(&se->load, weight); | |
3108 | ||
3109 | #ifdef CONFIG_SMP | |
1ea6c46a | 3110 | do { |
87e867b4 | 3111 | u32 divider = get_pelt_divider(&se->avg); |
1ea6c46a PZ |
3112 | |
3113 | se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); | |
1ea6c46a | 3114 | } while (0); |
9059393e VG |
3115 | #endif |
3116 | ||
3117 | enqueue_load_avg(cfs_rq, se); | |
0dacee1b | 3118 | if (se->on_rq) |
1724b95b | 3119 | update_load_add(&cfs_rq->load, se->load.weight); |
0dacee1b | 3120 | |
9059393e VG |
3121 | } |
3122 | ||
3123 | void reweight_task(struct task_struct *p, int prio) | |
3124 | { | |
3125 | struct sched_entity *se = &p->se; | |
3126 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
3127 | struct load_weight *load = &se->load; | |
3128 | unsigned long weight = scale_load(sched_prio_to_weight[prio]); | |
3129 | ||
0dacee1b | 3130 | reweight_entity(cfs_rq, se, weight); |
9059393e VG |
3131 | load->inv_weight = sched_prio_to_wmult[prio]; |
3132 | } | |
3133 | ||
3ff6dcac | 3134 | #ifdef CONFIG_FAIR_GROUP_SCHED |
387f77cc | 3135 | #ifdef CONFIG_SMP |
cef27403 PZ |
3136 | /* |
3137 | * All this does is approximate the hierarchical proportion which includes that | |
3138 | * global sum we all love to hate. | |
3139 | * | |
3140 | * That is, the weight of a group entity, is the proportional share of the | |
3141 | * group weight based on the group runqueue weights. That is: | |
3142 | * | |
3143 | * tg->weight * grq->load.weight | |
3144 | * ge->load.weight = ----------------------------- (1) | |
3145 | * \Sum grq->load.weight | |
3146 | * | |
3147 | * Now, because computing that sum is prohibitively expensive to compute (been | |
3148 | * there, done that) we approximate it with this average stuff. The average | |
3149 | * moves slower and therefore the approximation is cheaper and more stable. | |
3150 | * | |
3151 | * So instead of the above, we substitute: | |
3152 | * | |
3153 | * grq->load.weight -> grq->avg.load_avg (2) | |
3154 | * | |
3155 | * which yields the following: | |
3156 | * | |
3157 | * tg->weight * grq->avg.load_avg | |
3158 | * ge->load.weight = ------------------------------ (3) | |
3159 | * tg->load_avg | |
3160 | * | |
3161 | * Where: tg->load_avg ~= \Sum grq->avg.load_avg | |
3162 | * | |
3163 | * That is shares_avg, and it is right (given the approximation (2)). | |
3164 | * | |
3165 | * The problem with it is that because the average is slow -- it was designed | |
3166 | * to be exactly that of course -- this leads to transients in boundary | |
3167 | * conditions. In specific, the case where the group was idle and we start the | |
3168 | * one task. It takes time for our CPU's grq->avg.load_avg to build up, | |
3169 | * yielding bad latency etc.. | |
3170 | * | |
3171 | * Now, in that special case (1) reduces to: | |
3172 | * | |
3173 | * tg->weight * grq->load.weight | |
17de4ee0 | 3174 | * ge->load.weight = ----------------------------- = tg->weight (4) |
cef27403 PZ |
3175 | * grp->load.weight |
3176 | * | |
3177 | * That is, the sum collapses because all other CPUs are idle; the UP scenario. | |
3178 | * | |
3179 | * So what we do is modify our approximation (3) to approach (4) in the (near) | |
3180 | * UP case, like: | |
3181 | * | |
3182 | * ge->load.weight = | |
3183 | * | |
3184 | * tg->weight * grq->load.weight | |
3185 | * --------------------------------------------------- (5) | |
3186 | * tg->load_avg - grq->avg.load_avg + grq->load.weight | |
3187 | * | |
17de4ee0 PZ |
3188 | * But because grq->load.weight can drop to 0, resulting in a divide by zero, |
3189 | * we need to use grq->avg.load_avg as its lower bound, which then gives: | |
3190 | * | |
3191 | * | |
3192 | * tg->weight * grq->load.weight | |
3193 | * ge->load.weight = ----------------------------- (6) | |
3194 | * tg_load_avg' | |
3195 | * | |
3196 | * Where: | |
3197 | * | |
3198 | * tg_load_avg' = tg->load_avg - grq->avg.load_avg + | |
3199 | * max(grq->load.weight, grq->avg.load_avg) | |
cef27403 PZ |
3200 | * |
3201 | * And that is shares_weight and is icky. In the (near) UP case it approaches | |
3202 | * (4) while in the normal case it approaches (3). It consistently | |
3203 | * overestimates the ge->load.weight and therefore: | |
3204 | * | |
3205 | * \Sum ge->load.weight >= tg->weight | |
3206 | * | |
3207 | * hence icky! | |
3208 | */ | |
2c8e4dce | 3209 | static long calc_group_shares(struct cfs_rq *cfs_rq) |
cf5f0acf | 3210 | { |
7c80cfc9 PZ |
3211 | long tg_weight, tg_shares, load, shares; |
3212 | struct task_group *tg = cfs_rq->tg; | |
3213 | ||
3214 | tg_shares = READ_ONCE(tg->shares); | |
cf5f0acf | 3215 | |
3d4b60d3 | 3216 | load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); |
cf5f0acf | 3217 | |
ea1dc6fc | 3218 | tg_weight = atomic_long_read(&tg->load_avg); |
3ff6dcac | 3219 | |
ea1dc6fc PZ |
3220 | /* Ensure tg_weight >= load */ |
3221 | tg_weight -= cfs_rq->tg_load_avg_contrib; | |
3222 | tg_weight += load; | |
3ff6dcac | 3223 | |
7c80cfc9 | 3224 | shares = (tg_shares * load); |
cf5f0acf PZ |
3225 | if (tg_weight) |
3226 | shares /= tg_weight; | |
3ff6dcac | 3227 | |
b8fd8423 DE |
3228 | /* |
3229 | * MIN_SHARES has to be unscaled here to support per-CPU partitioning | |
3230 | * of a group with small tg->shares value. It is a floor value which is | |
3231 | * assigned as a minimum load.weight to the sched_entity representing | |
3232 | * the group on a CPU. | |
3233 | * | |
3234 | * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 | |
3235 | * on an 8-core system with 8 tasks each runnable on one CPU shares has | |
3236 | * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In | |
3237 | * case no task is runnable on a CPU MIN_SHARES=2 should be returned | |
3238 | * instead of 0. | |
3239 | */ | |
7c80cfc9 | 3240 | return clamp_t(long, shares, MIN_SHARES, tg_shares); |
3ff6dcac | 3241 | } |
387f77cc | 3242 | #endif /* CONFIG_SMP */ |
ea1dc6fc | 3243 | |
82958366 PT |
3244 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); |
3245 | ||
1ea6c46a PZ |
3246 | /* |
3247 | * Recomputes the group entity based on the current state of its group | |
3248 | * runqueue. | |
3249 | */ | |
3250 | static void update_cfs_group(struct sched_entity *se) | |
2069dd75 | 3251 | { |
1ea6c46a | 3252 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); |
0dacee1b | 3253 | long shares; |
2069dd75 | 3254 | |
1ea6c46a | 3255 | if (!gcfs_rq) |
89ee048f VG |
3256 | return; |
3257 | ||
1ea6c46a | 3258 | if (throttled_hierarchy(gcfs_rq)) |
2069dd75 | 3259 | return; |
89ee048f | 3260 | |
3ff6dcac | 3261 | #ifndef CONFIG_SMP |
0dacee1b | 3262 | shares = READ_ONCE(gcfs_rq->tg->shares); |
7c80cfc9 PZ |
3263 | |
3264 | if (likely(se->load.weight == shares)) | |
3ff6dcac | 3265 | return; |
7c80cfc9 | 3266 | #else |
2c8e4dce | 3267 | shares = calc_group_shares(gcfs_rq); |
3ff6dcac | 3268 | #endif |
2069dd75 | 3269 | |
0dacee1b | 3270 | reweight_entity(cfs_rq_of(se), se, shares); |
2069dd75 | 3271 | } |
89ee048f | 3272 | |
2069dd75 | 3273 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
1ea6c46a | 3274 | static inline void update_cfs_group(struct sched_entity *se) |
2069dd75 PZ |
3275 | { |
3276 | } | |
3277 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
3278 | ||
ea14b57e | 3279 | static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) |
a030d738 | 3280 | { |
43964409 LT |
3281 | struct rq *rq = rq_of(cfs_rq); |
3282 | ||
a4f9a0e5 | 3283 | if (&rq->cfs == cfs_rq) { |
a030d738 VK |
3284 | /* |
3285 | * There are a few boundary cases this might miss but it should | |
3286 | * get called often enough that that should (hopefully) not be | |
9783be2c | 3287 | * a real problem. |
a030d738 VK |
3288 | * |
3289 | * It will not get called when we go idle, because the idle | |
3290 | * thread is a different class (!fair), nor will the utilization | |
3291 | * number include things like RT tasks. | |
3292 | * | |
3293 | * As is, the util number is not freq-invariant (we'd have to | |
3294 | * implement arch_scale_freq_capacity() for that). | |
3295 | * | |
3296 | * See cpu_util(). | |
3297 | */ | |
ea14b57e | 3298 | cpufreq_update_util(rq, flags); |
a030d738 VK |
3299 | } |
3300 | } | |
3301 | ||
141965c7 | 3302 | #ifdef CONFIG_SMP |
c566e8e9 | 3303 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7c3edd2c PZ |
3304 | /** |
3305 | * update_tg_load_avg - update the tg's load avg | |
3306 | * @cfs_rq: the cfs_rq whose avg changed | |
7c3edd2c PZ |
3307 | * |
3308 | * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. | |
3309 | * However, because tg->load_avg is a global value there are performance | |
3310 | * considerations. | |
3311 | * | |
3312 | * In order to avoid having to look at the other cfs_rq's, we use a | |
3313 | * differential update where we store the last value we propagated. This in | |
3314 | * turn allows skipping updates if the differential is 'small'. | |
3315 | * | |
815abf5a | 3316 | * Updating tg's load_avg is necessary before update_cfs_share(). |
bb17f655 | 3317 | */ |
fe749158 | 3318 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) |
bb17f655 | 3319 | { |
9d89c257 | 3320 | long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; |
bb17f655 | 3321 | |
aa0b7ae0 WL |
3322 | /* |
3323 | * No need to update load_avg for root_task_group as it is not used. | |
3324 | */ | |
3325 | if (cfs_rq->tg == &root_task_group) | |
3326 | return; | |
3327 | ||
fe749158 | 3328 | if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { |
9d89c257 YD |
3329 | atomic_long_add(delta, &cfs_rq->tg->load_avg); |
3330 | cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; | |
bb17f655 | 3331 | } |
8165e145 | 3332 | } |
f5f9739d | 3333 | |
ad936d86 | 3334 | /* |
97fb7a0a | 3335 | * Called within set_task_rq() right before setting a task's CPU. The |
ad936d86 BP |
3336 | * caller only guarantees p->pi_lock is held; no other assumptions, |
3337 | * including the state of rq->lock, should be made. | |
3338 | */ | |
3339 | void set_task_rq_fair(struct sched_entity *se, | |
3340 | struct cfs_rq *prev, struct cfs_rq *next) | |
3341 | { | |
0ccb977f PZ |
3342 | u64 p_last_update_time; |
3343 | u64 n_last_update_time; | |
3344 | ||
ad936d86 BP |
3345 | if (!sched_feat(ATTACH_AGE_LOAD)) |
3346 | return; | |
3347 | ||
3348 | /* | |
3349 | * We are supposed to update the task to "current" time, then its up to | |
3350 | * date and ready to go to new CPU/cfs_rq. But we have difficulty in | |
3351 | * getting what current time is, so simply throw away the out-of-date | |
3352 | * time. This will result in the wakee task is less decayed, but giving | |
3353 | * the wakee more load sounds not bad. | |
3354 | */ | |
0ccb977f PZ |
3355 | if (!(se->avg.last_update_time && prev)) |
3356 | return; | |
ad936d86 BP |
3357 | |
3358 | #ifndef CONFIG_64BIT | |
0ccb977f | 3359 | { |
ad936d86 BP |
3360 | u64 p_last_update_time_copy; |
3361 | u64 n_last_update_time_copy; | |
3362 | ||
3363 | do { | |
3364 | p_last_update_time_copy = prev->load_last_update_time_copy; | |
3365 | n_last_update_time_copy = next->load_last_update_time_copy; | |
3366 | ||
3367 | smp_rmb(); | |
3368 | ||
3369 | p_last_update_time = prev->avg.last_update_time; | |
3370 | n_last_update_time = next->avg.last_update_time; | |
3371 | ||
3372 | } while (p_last_update_time != p_last_update_time_copy || | |
3373 | n_last_update_time != n_last_update_time_copy); | |
0ccb977f | 3374 | } |
ad936d86 | 3375 | #else |
0ccb977f PZ |
3376 | p_last_update_time = prev->avg.last_update_time; |
3377 | n_last_update_time = next->avg.last_update_time; | |
ad936d86 | 3378 | #endif |
23127296 | 3379 | __update_load_avg_blocked_se(p_last_update_time, se); |
0ccb977f | 3380 | se->avg.last_update_time = n_last_update_time; |
ad936d86 | 3381 | } |
09a43ace | 3382 | |
0e2d2aaa PZ |
3383 | |
3384 | /* | |
3385 | * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to | |
3386 | * propagate its contribution. The key to this propagation is the invariant | |
3387 | * that for each group: | |
3388 | * | |
3389 | * ge->avg == grq->avg (1) | |
3390 | * | |
3391 | * _IFF_ we look at the pure running and runnable sums. Because they | |
3392 | * represent the very same entity, just at different points in the hierarchy. | |
3393 | * | |
9f683953 VG |
3394 | * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial |
3395 | * and simply copies the running/runnable sum over (but still wrong, because | |
3396 | * the group entity and group rq do not have their PELT windows aligned). | |
0e2d2aaa | 3397 | * |
0dacee1b | 3398 | * However, update_tg_cfs_load() is more complex. So we have: |
0e2d2aaa PZ |
3399 | * |
3400 | * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) | |
3401 | * | |
3402 | * And since, like util, the runnable part should be directly transferable, | |
3403 | * the following would _appear_ to be the straight forward approach: | |
3404 | * | |
a4c3c049 | 3405 | * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) |
0e2d2aaa PZ |
3406 | * |
3407 | * And per (1) we have: | |
3408 | * | |
a4c3c049 | 3409 | * ge->avg.runnable_avg == grq->avg.runnable_avg |
0e2d2aaa PZ |
3410 | * |
3411 | * Which gives: | |
3412 | * | |
3413 | * ge->load.weight * grq->avg.load_avg | |
3414 | * ge->avg.load_avg = ----------------------------------- (4) | |
3415 | * grq->load.weight | |
3416 | * | |
3417 | * Except that is wrong! | |
3418 | * | |
3419 | * Because while for entities historical weight is not important and we | |
3420 | * really only care about our future and therefore can consider a pure | |
3421 | * runnable sum, runqueues can NOT do this. | |
3422 | * | |
3423 | * We specifically want runqueues to have a load_avg that includes | |
3424 | * historical weights. Those represent the blocked load, the load we expect | |
3425 | * to (shortly) return to us. This only works by keeping the weights as | |
3426 | * integral part of the sum. We therefore cannot decompose as per (3). | |
3427 | * | |
a4c3c049 VG |
3428 | * Another reason this doesn't work is that runnable isn't a 0-sum entity. |
3429 | * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the | |
3430 | * rq itself is runnable anywhere between 2/3 and 1 depending on how the | |
3431 | * runnable section of these tasks overlap (or not). If they were to perfectly | |
3432 | * align the rq as a whole would be runnable 2/3 of the time. If however we | |
3433 | * always have at least 1 runnable task, the rq as a whole is always runnable. | |
0e2d2aaa | 3434 | * |
a4c3c049 | 3435 | * So we'll have to approximate.. :/ |
0e2d2aaa | 3436 | * |
a4c3c049 | 3437 | * Given the constraint: |
0e2d2aaa | 3438 | * |
a4c3c049 | 3439 | * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX |
0e2d2aaa | 3440 | * |
a4c3c049 VG |
3441 | * We can construct a rule that adds runnable to a rq by assuming minimal |
3442 | * overlap. | |
0e2d2aaa | 3443 | * |
a4c3c049 | 3444 | * On removal, we'll assume each task is equally runnable; which yields: |
0e2d2aaa | 3445 | * |
a4c3c049 | 3446 | * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight |
0e2d2aaa | 3447 | * |
a4c3c049 | 3448 | * XXX: only do this for the part of runnable > running ? |
0e2d2aaa | 3449 | * |
0e2d2aaa PZ |
3450 | */ |
3451 | ||
09a43ace | 3452 | static inline void |
0e2d2aaa | 3453 | update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
09a43ace | 3454 | { |
09a43ace | 3455 | long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; |
87e867b4 | 3456 | u32 divider; |
09a43ace VG |
3457 | |
3458 | /* Nothing to update */ | |
3459 | if (!delta) | |
3460 | return; | |
3461 | ||
87e867b4 VG |
3462 | /* |
3463 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
3464 | * See ___update_load_avg() for details. | |
3465 | */ | |
3466 | divider = get_pelt_divider(&cfs_rq->avg); | |
3467 | ||
09a43ace VG |
3468 | /* Set new sched_entity's utilization */ |
3469 | se->avg.util_avg = gcfs_rq->avg.util_avg; | |
95d68593 | 3470 | se->avg.util_sum = se->avg.util_avg * divider; |
09a43ace VG |
3471 | |
3472 | /* Update parent cfs_rq utilization */ | |
3473 | add_positive(&cfs_rq->avg.util_avg, delta); | |
95d68593 | 3474 | cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; |
09a43ace VG |
3475 | } |
3476 | ||
9f683953 VG |
3477 | static inline void |
3478 | update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) | |
3479 | { | |
3480 | long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; | |
87e867b4 | 3481 | u32 divider; |
9f683953 VG |
3482 | |
3483 | /* Nothing to update */ | |
3484 | if (!delta) | |
3485 | return; | |
3486 | ||
87e867b4 VG |
3487 | /* |
3488 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
3489 | * See ___update_load_avg() for details. | |
3490 | */ | |
3491 | divider = get_pelt_divider(&cfs_rq->avg); | |
3492 | ||
9f683953 VG |
3493 | /* Set new sched_entity's runnable */ |
3494 | se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; | |
95d68593 | 3495 | se->avg.runnable_sum = se->avg.runnable_avg * divider; |
9f683953 VG |
3496 | |
3497 | /* Update parent cfs_rq runnable */ | |
3498 | add_positive(&cfs_rq->avg.runnable_avg, delta); | |
95d68593 | 3499 | cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; |
9f683953 VG |
3500 | } |
3501 | ||
09a43ace | 3502 | static inline void |
0dacee1b | 3503 | update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
09a43ace | 3504 | { |
a4c3c049 | 3505 | long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; |
0dacee1b VG |
3506 | unsigned long load_avg; |
3507 | u64 load_sum = 0; | |
a4c3c049 | 3508 | s64 delta_sum; |
95d68593 | 3509 | u32 divider; |
09a43ace | 3510 | |
0e2d2aaa PZ |
3511 | if (!runnable_sum) |
3512 | return; | |
09a43ace | 3513 | |
0e2d2aaa | 3514 | gcfs_rq->prop_runnable_sum = 0; |
09a43ace | 3515 | |
95d68593 VG |
3516 | /* |
3517 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
3518 | * See ___update_load_avg() for details. | |
3519 | */ | |
87e867b4 | 3520 | divider = get_pelt_divider(&cfs_rq->avg); |
95d68593 | 3521 | |
a4c3c049 VG |
3522 | if (runnable_sum >= 0) { |
3523 | /* | |
3524 | * Add runnable; clip at LOAD_AVG_MAX. Reflects that until | |
3525 | * the CPU is saturated running == runnable. | |
3526 | */ | |
3527 | runnable_sum += se->avg.load_sum; | |
95d68593 | 3528 | runnable_sum = min_t(long, runnable_sum, divider); |
a4c3c049 VG |
3529 | } else { |
3530 | /* | |
3531 | * Estimate the new unweighted runnable_sum of the gcfs_rq by | |
3532 | * assuming all tasks are equally runnable. | |
3533 | */ | |
3534 | if (scale_load_down(gcfs_rq->load.weight)) { | |
3535 | load_sum = div_s64(gcfs_rq->avg.load_sum, | |
3536 | scale_load_down(gcfs_rq->load.weight)); | |
3537 | } | |
3538 | ||
3539 | /* But make sure to not inflate se's runnable */ | |
3540 | runnable_sum = min(se->avg.load_sum, load_sum); | |
3541 | } | |
3542 | ||
3543 | /* | |
3544 | * runnable_sum can't be lower than running_sum | |
23127296 VG |
3545 | * Rescale running sum to be in the same range as runnable sum |
3546 | * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] | |
3547 | * runnable_sum is in [0 : LOAD_AVG_MAX] | |
a4c3c049 | 3548 | */ |
23127296 | 3549 | running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; |
a4c3c049 VG |
3550 | runnable_sum = max(runnable_sum, running_sum); |
3551 | ||
0e2d2aaa | 3552 | load_sum = (s64)se_weight(se) * runnable_sum; |
95d68593 | 3553 | load_avg = div_s64(load_sum, divider); |
09a43ace | 3554 | |
a4c3c049 VG |
3555 | delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; |
3556 | delta_avg = load_avg - se->avg.load_avg; | |
09a43ace | 3557 | |
a4c3c049 VG |
3558 | se->avg.load_sum = runnable_sum; |
3559 | se->avg.load_avg = load_avg; | |
3560 | add_positive(&cfs_rq->avg.load_avg, delta_avg); | |
3561 | add_positive(&cfs_rq->avg.load_sum, delta_sum); | |
09a43ace VG |
3562 | } |
3563 | ||
0e2d2aaa | 3564 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) |
09a43ace | 3565 | { |
0e2d2aaa PZ |
3566 | cfs_rq->propagate = 1; |
3567 | cfs_rq->prop_runnable_sum += runnable_sum; | |
09a43ace VG |
3568 | } |
3569 | ||
3570 | /* Update task and its cfs_rq load average */ | |
3571 | static inline int propagate_entity_load_avg(struct sched_entity *se) | |
3572 | { | |
0e2d2aaa | 3573 | struct cfs_rq *cfs_rq, *gcfs_rq; |
09a43ace VG |
3574 | |
3575 | if (entity_is_task(se)) | |
3576 | return 0; | |
3577 | ||
0e2d2aaa PZ |
3578 | gcfs_rq = group_cfs_rq(se); |
3579 | if (!gcfs_rq->propagate) | |
09a43ace VG |
3580 | return 0; |
3581 | ||
0e2d2aaa PZ |
3582 | gcfs_rq->propagate = 0; |
3583 | ||
09a43ace VG |
3584 | cfs_rq = cfs_rq_of(se); |
3585 | ||
0e2d2aaa | 3586 | add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); |
09a43ace | 3587 | |
0e2d2aaa | 3588 | update_tg_cfs_util(cfs_rq, se, gcfs_rq); |
9f683953 | 3589 | update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); |
0dacee1b | 3590 | update_tg_cfs_load(cfs_rq, se, gcfs_rq); |
09a43ace | 3591 | |
ba19f51f | 3592 | trace_pelt_cfs_tp(cfs_rq); |
8de6242c | 3593 | trace_pelt_se_tp(se); |
ba19f51f | 3594 | |
09a43ace VG |
3595 | return 1; |
3596 | } | |
3597 | ||
bc427898 VG |
3598 | /* |
3599 | * Check if we need to update the load and the utilization of a blocked | |
3600 | * group_entity: | |
3601 | */ | |
3602 | static inline bool skip_blocked_update(struct sched_entity *se) | |
3603 | { | |
3604 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); | |
3605 | ||
3606 | /* | |
3607 | * If sched_entity still have not zero load or utilization, we have to | |
3608 | * decay it: | |
3609 | */ | |
3610 | if (se->avg.load_avg || se->avg.util_avg) | |
3611 | return false; | |
3612 | ||
3613 | /* | |
3614 | * If there is a pending propagation, we have to update the load and | |
3615 | * the utilization of the sched_entity: | |
3616 | */ | |
0e2d2aaa | 3617 | if (gcfs_rq->propagate) |
bc427898 VG |
3618 | return false; |
3619 | ||
3620 | /* | |
3621 | * Otherwise, the load and the utilization of the sched_entity is | |
3622 | * already zero and there is no pending propagation, so it will be a | |
3623 | * waste of time to try to decay it: | |
3624 | */ | |
3625 | return true; | |
3626 | } | |
3627 | ||
6e83125c | 3628 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
09a43ace | 3629 | |
fe749158 | 3630 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} |
09a43ace VG |
3631 | |
3632 | static inline int propagate_entity_load_avg(struct sched_entity *se) | |
3633 | { | |
3634 | return 0; | |
3635 | } | |
3636 | ||
0e2d2aaa | 3637 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} |
09a43ace | 3638 | |
6e83125c | 3639 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
c566e8e9 | 3640 | |
3d30544f PZ |
3641 | /** |
3642 | * update_cfs_rq_load_avg - update the cfs_rq's load/util averages | |
23127296 | 3643 | * @now: current time, as per cfs_rq_clock_pelt() |
3d30544f | 3644 | * @cfs_rq: cfs_rq to update |
3d30544f PZ |
3645 | * |
3646 | * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) | |
3647 | * avg. The immediate corollary is that all (fair) tasks must be attached, see | |
3648 | * post_init_entity_util_avg(). | |
3649 | * | |
3650 | * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. | |
3651 | * | |
7c3edd2c PZ |
3652 | * Returns true if the load decayed or we removed load. |
3653 | * | |
3654 | * Since both these conditions indicate a changed cfs_rq->avg.load we should | |
3655 | * call update_tg_load_avg() when this function returns true. | |
3d30544f | 3656 | */ |
a2c6c91f | 3657 | static inline int |
3a123bbb | 3658 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) |
2dac754e | 3659 | { |
9f683953 | 3660 | unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; |
9d89c257 | 3661 | struct sched_avg *sa = &cfs_rq->avg; |
2a2f5d4e | 3662 | int decayed = 0; |
2dac754e | 3663 | |
2a2f5d4e PZ |
3664 | if (cfs_rq->removed.nr) { |
3665 | unsigned long r; | |
87e867b4 | 3666 | u32 divider = get_pelt_divider(&cfs_rq->avg); |
2a2f5d4e PZ |
3667 | |
3668 | raw_spin_lock(&cfs_rq->removed.lock); | |
3669 | swap(cfs_rq->removed.util_avg, removed_util); | |
3670 | swap(cfs_rq->removed.load_avg, removed_load); | |
9f683953 | 3671 | swap(cfs_rq->removed.runnable_avg, removed_runnable); |
2a2f5d4e PZ |
3672 | cfs_rq->removed.nr = 0; |
3673 | raw_spin_unlock(&cfs_rq->removed.lock); | |
3674 | ||
2a2f5d4e | 3675 | r = removed_load; |
89741892 | 3676 | sub_positive(&sa->load_avg, r); |
9a2dd585 | 3677 | sub_positive(&sa->load_sum, r * divider); |
2dac754e | 3678 | |
2a2f5d4e | 3679 | r = removed_util; |
89741892 | 3680 | sub_positive(&sa->util_avg, r); |
9a2dd585 | 3681 | sub_positive(&sa->util_sum, r * divider); |
2a2f5d4e | 3682 | |
9f683953 VG |
3683 | r = removed_runnable; |
3684 | sub_positive(&sa->runnable_avg, r); | |
3685 | sub_positive(&sa->runnable_sum, r * divider); | |
3686 | ||
3687 | /* | |
3688 | * removed_runnable is the unweighted version of removed_load so we | |
3689 | * can use it to estimate removed_load_sum. | |
3690 | */ | |
3691 | add_tg_cfs_propagate(cfs_rq, | |
3692 | -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); | |
2a2f5d4e PZ |
3693 | |
3694 | decayed = 1; | |
9d89c257 | 3695 | } |
36ee28e4 | 3696 | |
23127296 | 3697 | decayed |= __update_load_avg_cfs_rq(now, cfs_rq); |
36ee28e4 | 3698 | |
9d89c257 YD |
3699 | #ifndef CONFIG_64BIT |
3700 | smp_wmb(); | |
3701 | cfs_rq->load_last_update_time_copy = sa->last_update_time; | |
3702 | #endif | |
36ee28e4 | 3703 | |
2a2f5d4e | 3704 | return decayed; |
21e96f88 SM |
3705 | } |
3706 | ||
3d30544f PZ |
3707 | /** |
3708 | * attach_entity_load_avg - attach this entity to its cfs_rq load avg | |
3709 | * @cfs_rq: cfs_rq to attach to | |
3710 | * @se: sched_entity to attach | |
3711 | * | |
3712 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
3713 | * cfs_rq->avg.last_update_time being current. | |
3714 | */ | |
a4f9a0e5 | 3715 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
a05e8c51 | 3716 | { |
95d68593 VG |
3717 | /* |
3718 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
3719 | * See ___update_load_avg() for details. | |
3720 | */ | |
87e867b4 | 3721 | u32 divider = get_pelt_divider(&cfs_rq->avg); |
f207934f PZ |
3722 | |
3723 | /* | |
3724 | * When we attach the @se to the @cfs_rq, we must align the decay | |
3725 | * window because without that, really weird and wonderful things can | |
3726 | * happen. | |
3727 | * | |
3728 | * XXX illustrate | |
3729 | */ | |
a05e8c51 | 3730 | se->avg.last_update_time = cfs_rq->avg.last_update_time; |
f207934f PZ |
3731 | se->avg.period_contrib = cfs_rq->avg.period_contrib; |
3732 | ||
3733 | /* | |
3734 | * Hell(o) Nasty stuff.. we need to recompute _sum based on the new | |
3735 | * period_contrib. This isn't strictly correct, but since we're | |
3736 | * entirely outside of the PELT hierarchy, nobody cares if we truncate | |
3737 | * _sum a little. | |
3738 | */ | |
3739 | se->avg.util_sum = se->avg.util_avg * divider; | |
3740 | ||
9f683953 VG |
3741 | se->avg.runnable_sum = se->avg.runnable_avg * divider; |
3742 | ||
f207934f PZ |
3743 | se->avg.load_sum = divider; |
3744 | if (se_weight(se)) { | |
3745 | se->avg.load_sum = | |
3746 | div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); | |
3747 | } | |
3748 | ||
8d5b9025 | 3749 | enqueue_load_avg(cfs_rq, se); |
a05e8c51 BP |
3750 | cfs_rq->avg.util_avg += se->avg.util_avg; |
3751 | cfs_rq->avg.util_sum += se->avg.util_sum; | |
9f683953 VG |
3752 | cfs_rq->avg.runnable_avg += se->avg.runnable_avg; |
3753 | cfs_rq->avg.runnable_sum += se->avg.runnable_sum; | |
0e2d2aaa PZ |
3754 | |
3755 | add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); | |
a2c6c91f | 3756 | |
a4f9a0e5 | 3757 | cfs_rq_util_change(cfs_rq, 0); |
ba19f51f QY |
3758 | |
3759 | trace_pelt_cfs_tp(cfs_rq); | |
a05e8c51 BP |
3760 | } |
3761 | ||
3d30544f PZ |
3762 | /** |
3763 | * detach_entity_load_avg - detach this entity from its cfs_rq load avg | |
3764 | * @cfs_rq: cfs_rq to detach from | |
3765 | * @se: sched_entity to detach | |
3766 | * | |
3767 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
3768 | * cfs_rq->avg.last_update_time being current. | |
3769 | */ | |
a05e8c51 BP |
3770 | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3771 | { | |
8d5b9025 | 3772 | dequeue_load_avg(cfs_rq, se); |
89741892 PZ |
3773 | sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); |
3774 | sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); | |
9f683953 VG |
3775 | sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); |
3776 | sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); | |
0e2d2aaa PZ |
3777 | |
3778 | add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); | |
a2c6c91f | 3779 | |
ea14b57e | 3780 | cfs_rq_util_change(cfs_rq, 0); |
ba19f51f QY |
3781 | |
3782 | trace_pelt_cfs_tp(cfs_rq); | |
a05e8c51 BP |
3783 | } |
3784 | ||
b382a531 PZ |
3785 | /* |
3786 | * Optional action to be done while updating the load average | |
3787 | */ | |
3788 | #define UPDATE_TG 0x1 | |
3789 | #define SKIP_AGE_LOAD 0x2 | |
3790 | #define DO_ATTACH 0x4 | |
3791 | ||
3792 | /* Update task and its cfs_rq load average */ | |
3793 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |
3794 | { | |
23127296 | 3795 | u64 now = cfs_rq_clock_pelt(cfs_rq); |
b382a531 PZ |
3796 | int decayed; |
3797 | ||
3798 | /* | |
3799 | * Track task load average for carrying it to new CPU after migrated, and | |
3800 | * track group sched_entity load average for task_h_load calc in migration | |
3801 | */ | |
3802 | if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) | |
23127296 | 3803 | __update_load_avg_se(now, cfs_rq, se); |
b382a531 PZ |
3804 | |
3805 | decayed = update_cfs_rq_load_avg(now, cfs_rq); | |
3806 | decayed |= propagate_entity_load_avg(se); | |
3807 | ||
3808 | if (!se->avg.last_update_time && (flags & DO_ATTACH)) { | |
3809 | ||
ea14b57e PZ |
3810 | /* |
3811 | * DO_ATTACH means we're here from enqueue_entity(). | |
3812 | * !last_update_time means we've passed through | |
3813 | * migrate_task_rq_fair() indicating we migrated. | |
3814 | * | |
3815 | * IOW we're enqueueing a task on a new CPU. | |
3816 | */ | |
a4f9a0e5 | 3817 | attach_entity_load_avg(cfs_rq, se); |
fe749158 | 3818 | update_tg_load_avg(cfs_rq); |
b382a531 | 3819 | |
bef69dd8 VG |
3820 | } else if (decayed) { |
3821 | cfs_rq_util_change(cfs_rq, 0); | |
3822 | ||
3823 | if (flags & UPDATE_TG) | |
fe749158 | 3824 | update_tg_load_avg(cfs_rq); |
bef69dd8 | 3825 | } |
b382a531 PZ |
3826 | } |
3827 | ||
9d89c257 | 3828 | #ifndef CONFIG_64BIT |
0905f04e YD |
3829 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
3830 | { | |
9d89c257 | 3831 | u64 last_update_time_copy; |
0905f04e | 3832 | u64 last_update_time; |
9ee474f5 | 3833 | |
9d89c257 YD |
3834 | do { |
3835 | last_update_time_copy = cfs_rq->load_last_update_time_copy; | |
3836 | smp_rmb(); | |
3837 | last_update_time = cfs_rq->avg.last_update_time; | |
3838 | } while (last_update_time != last_update_time_copy); | |
0905f04e YD |
3839 | |
3840 | return last_update_time; | |
3841 | } | |
9d89c257 | 3842 | #else |
0905f04e YD |
3843 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
3844 | { | |
3845 | return cfs_rq->avg.last_update_time; | |
3846 | } | |
9d89c257 YD |
3847 | #endif |
3848 | ||
104cb16d MR |
3849 | /* |
3850 | * Synchronize entity load avg of dequeued entity without locking | |
3851 | * the previous rq. | |
3852 | */ | |
71b47eaf | 3853 | static void sync_entity_load_avg(struct sched_entity *se) |
104cb16d MR |
3854 | { |
3855 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
3856 | u64 last_update_time; | |
3857 | ||
3858 | last_update_time = cfs_rq_last_update_time(cfs_rq); | |
23127296 | 3859 | __update_load_avg_blocked_se(last_update_time, se); |
104cb16d MR |
3860 | } |
3861 | ||
0905f04e YD |
3862 | /* |
3863 | * Task first catches up with cfs_rq, and then subtract | |
3864 | * itself from the cfs_rq (task must be off the queue now). | |
3865 | */ | |
71b47eaf | 3866 | static void remove_entity_load_avg(struct sched_entity *se) |
0905f04e YD |
3867 | { |
3868 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
2a2f5d4e | 3869 | unsigned long flags; |
0905f04e YD |
3870 | |
3871 | /* | |
7dc603c9 PZ |
3872 | * tasks cannot exit without having gone through wake_up_new_task() -> |
3873 | * post_init_entity_util_avg() which will have added things to the | |
3874 | * cfs_rq, so we can remove unconditionally. | |
0905f04e | 3875 | */ |
0905f04e | 3876 | |
104cb16d | 3877 | sync_entity_load_avg(se); |
2a2f5d4e PZ |
3878 | |
3879 | raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); | |
3880 | ++cfs_rq->removed.nr; | |
3881 | cfs_rq->removed.util_avg += se->avg.util_avg; | |
3882 | cfs_rq->removed.load_avg += se->avg.load_avg; | |
9f683953 | 3883 | cfs_rq->removed.runnable_avg += se->avg.runnable_avg; |
2a2f5d4e | 3884 | raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); |
2dac754e | 3885 | } |
642dbc39 | 3886 | |
9f683953 VG |
3887 | static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) |
3888 | { | |
3889 | return cfs_rq->avg.runnable_avg; | |
3890 | } | |
3891 | ||
7ea241af YD |
3892 | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) |
3893 | { | |
3894 | return cfs_rq->avg.load_avg; | |
3895 | } | |
3896 | ||
d91cecc1 CY |
3897 | static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); |
3898 | ||
7f65ea42 PB |
3899 | static inline unsigned long task_util(struct task_struct *p) |
3900 | { | |
3901 | return READ_ONCE(p->se.avg.util_avg); | |
3902 | } | |
3903 | ||
3904 | static inline unsigned long _task_util_est(struct task_struct *p) | |
3905 | { | |
3906 | struct util_est ue = READ_ONCE(p->se.avg.util_est); | |
3907 | ||
92a801e5 | 3908 | return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); |
7f65ea42 PB |
3909 | } |
3910 | ||
3911 | static inline unsigned long task_util_est(struct task_struct *p) | |
3912 | { | |
3913 | return max(task_util(p), _task_util_est(p)); | |
3914 | } | |
3915 | ||
a7008c07 VS |
3916 | #ifdef CONFIG_UCLAMP_TASK |
3917 | static inline unsigned long uclamp_task_util(struct task_struct *p) | |
3918 | { | |
3919 | return clamp(task_util_est(p), | |
3920 | uclamp_eff_value(p, UCLAMP_MIN), | |
3921 | uclamp_eff_value(p, UCLAMP_MAX)); | |
3922 | } | |
3923 | #else | |
3924 | static inline unsigned long uclamp_task_util(struct task_struct *p) | |
3925 | { | |
3926 | return task_util_est(p); | |
3927 | } | |
3928 | #endif | |
3929 | ||
7f65ea42 PB |
3930 | static inline void util_est_enqueue(struct cfs_rq *cfs_rq, |
3931 | struct task_struct *p) | |
3932 | { | |
3933 | unsigned int enqueued; | |
3934 | ||
3935 | if (!sched_feat(UTIL_EST)) | |
3936 | return; | |
3937 | ||
3938 | /* Update root cfs_rq's estimated utilization */ | |
3939 | enqueued = cfs_rq->avg.util_est.enqueued; | |
92a801e5 | 3940 | enqueued += _task_util_est(p); |
7f65ea42 | 3941 | WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); |
4581bea8 VD |
3942 | |
3943 | trace_sched_util_est_cfs_tp(cfs_rq); | |
7f65ea42 PB |
3944 | } |
3945 | ||
8c1f560c XY |
3946 | static inline void util_est_dequeue(struct cfs_rq *cfs_rq, |
3947 | struct task_struct *p) | |
3948 | { | |
3949 | unsigned int enqueued; | |
3950 | ||
3951 | if (!sched_feat(UTIL_EST)) | |
3952 | return; | |
3953 | ||
3954 | /* Update root cfs_rq's estimated utilization */ | |
3955 | enqueued = cfs_rq->avg.util_est.enqueued; | |
3956 | enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); | |
3957 | WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); | |
3958 | ||
3959 | trace_sched_util_est_cfs_tp(cfs_rq); | |
3960 | } | |
3961 | ||
7f65ea42 PB |
3962 | /* |
3963 | * Check if a (signed) value is within a specified (unsigned) margin, | |
3964 | * based on the observation that: | |
3965 | * | |
3966 | * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) | |
3967 | * | |
3968 | * NOTE: this only works when value + maring < INT_MAX. | |
3969 | */ | |
3970 | static inline bool within_margin(int value, int margin) | |
3971 | { | |
3972 | return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); | |
3973 | } | |
3974 | ||
8c1f560c XY |
3975 | static inline void util_est_update(struct cfs_rq *cfs_rq, |
3976 | struct task_struct *p, | |
3977 | bool task_sleep) | |
7f65ea42 PB |
3978 | { |
3979 | long last_ewma_diff; | |
3980 | struct util_est ue; | |
3981 | ||
3982 | if (!sched_feat(UTIL_EST)) | |
3983 | return; | |
3984 | ||
7f65ea42 PB |
3985 | /* |
3986 | * Skip update of task's estimated utilization when the task has not | |
3987 | * yet completed an activation, e.g. being migrated. | |
3988 | */ | |
3989 | if (!task_sleep) | |
3990 | return; | |
3991 | ||
d519329f PB |
3992 | /* |
3993 | * If the PELT values haven't changed since enqueue time, | |
3994 | * skip the util_est update. | |
3995 | */ | |
3996 | ue = p->se.avg.util_est; | |
3997 | if (ue.enqueued & UTIL_AVG_UNCHANGED) | |
3998 | return; | |
3999 | ||
b8c96361 PB |
4000 | /* |
4001 | * Reset EWMA on utilization increases, the moving average is used only | |
4002 | * to smooth utilization decreases. | |
4003 | */ | |
4004 | ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); | |
4005 | if (sched_feat(UTIL_EST_FASTUP)) { | |
4006 | if (ue.ewma < ue.enqueued) { | |
4007 | ue.ewma = ue.enqueued; | |
4008 | goto done; | |
4009 | } | |
4010 | } | |
4011 | ||
7f65ea42 PB |
4012 | /* |
4013 | * Skip update of task's estimated utilization when its EWMA is | |
4014 | * already ~1% close to its last activation value. | |
4015 | */ | |
7f65ea42 PB |
4016 | last_ewma_diff = ue.enqueued - ue.ewma; |
4017 | if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) | |
4018 | return; | |
4019 | ||
10a35e68 VG |
4020 | /* |
4021 | * To avoid overestimation of actual task utilization, skip updates if | |
4022 | * we cannot grant there is idle time in this CPU. | |
4023 | */ | |
8c1f560c | 4024 | if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) |
10a35e68 VG |
4025 | return; |
4026 | ||
7f65ea42 PB |
4027 | /* |
4028 | * Update Task's estimated utilization | |
4029 | * | |
4030 | * When *p completes an activation we can consolidate another sample | |
4031 | * of the task size. This is done by storing the current PELT value | |
4032 | * as ue.enqueued and by using this value to update the Exponential | |
4033 | * Weighted Moving Average (EWMA): | |
4034 | * | |
4035 | * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) | |
4036 | * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) | |
4037 | * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) | |
4038 | * = w * ( last_ewma_diff ) + ewma(t-1) | |
4039 | * = w * (last_ewma_diff + ewma(t-1) / w) | |
4040 | * | |
4041 | * Where 'w' is the weight of new samples, which is configured to be | |
4042 | * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) | |
4043 | */ | |
4044 | ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; | |
4045 | ue.ewma += last_ewma_diff; | |
4046 | ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; | |
b8c96361 | 4047 | done: |
7f65ea42 | 4048 | WRITE_ONCE(p->se.avg.util_est, ue); |
4581bea8 VD |
4049 | |
4050 | trace_sched_util_est_se_tp(&p->se); | |
7f65ea42 PB |
4051 | } |
4052 | ||
3b1baa64 MR |
4053 | static inline int task_fits_capacity(struct task_struct *p, long capacity) |
4054 | { | |
a7008c07 | 4055 | return fits_capacity(uclamp_task_util(p), capacity); |
3b1baa64 MR |
4056 | } |
4057 | ||
4058 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) | |
4059 | { | |
4060 | if (!static_branch_unlikely(&sched_asym_cpucapacity)) | |
4061 | return; | |
4062 | ||
0ae78eec | 4063 | if (!p || p->nr_cpus_allowed == 1) { |
3b1baa64 MR |
4064 | rq->misfit_task_load = 0; |
4065 | return; | |
4066 | } | |
4067 | ||
4068 | if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { | |
4069 | rq->misfit_task_load = 0; | |
4070 | return; | |
4071 | } | |
4072 | ||
01cfcde9 VG |
4073 | /* |
4074 | * Make sure that misfit_task_load will not be null even if | |
4075 | * task_h_load() returns 0. | |
4076 | */ | |
4077 | rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); | |
3b1baa64 MR |
4078 | } |
4079 | ||
38033c37 PZ |
4080 | #else /* CONFIG_SMP */ |
4081 | ||
d31b1a66 VG |
4082 | #define UPDATE_TG 0x0 |
4083 | #define SKIP_AGE_LOAD 0x0 | |
b382a531 | 4084 | #define DO_ATTACH 0x0 |
d31b1a66 | 4085 | |
88c0616e | 4086 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) |
536bd00c | 4087 | { |
ea14b57e | 4088 | cfs_rq_util_change(cfs_rq, 0); |
536bd00c RW |
4089 | } |
4090 | ||
9d89c257 | 4091 | static inline void remove_entity_load_avg(struct sched_entity *se) {} |
6e83125c | 4092 | |
a05e8c51 | 4093 | static inline void |
a4f9a0e5 | 4094 | attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} |
a05e8c51 BP |
4095 | static inline void |
4096 | detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | |
4097 | ||
d91cecc1 | 4098 | static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) |
6e83125c PZ |
4099 | { |
4100 | return 0; | |
4101 | } | |
4102 | ||
7f65ea42 PB |
4103 | static inline void |
4104 | util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} | |
4105 | ||
4106 | static inline void | |
8c1f560c XY |
4107 | util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} |
4108 | ||
4109 | static inline void | |
4110 | util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, | |
4111 | bool task_sleep) {} | |
3b1baa64 | 4112 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} |
7f65ea42 | 4113 | |
38033c37 | 4114 | #endif /* CONFIG_SMP */ |
9d85f21c | 4115 | |
ddc97297 PZ |
4116 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) |
4117 | { | |
4118 | #ifdef CONFIG_SCHED_DEBUG | |
4119 | s64 d = se->vruntime - cfs_rq->min_vruntime; | |
4120 | ||
4121 | if (d < 0) | |
4122 | d = -d; | |
4123 | ||
4124 | if (d > 3*sysctl_sched_latency) | |
ae92882e | 4125 | schedstat_inc(cfs_rq->nr_spread_over); |
ddc97297 PZ |
4126 | #endif |
4127 | } | |
4128 | ||
aeb73b04 PZ |
4129 | static void |
4130 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |
4131 | { | |
1af5f730 | 4132 | u64 vruntime = cfs_rq->min_vruntime; |
94dfb5e7 | 4133 | |
2cb8600e PZ |
4134 | /* |
4135 | * The 'current' period is already promised to the current tasks, | |
4136 | * however the extra weight of the new task will slow them down a | |
4137 | * little, place the new task so that it fits in the slot that | |
4138 | * stays open at the end. | |
4139 | */ | |
94dfb5e7 | 4140 | if (initial && sched_feat(START_DEBIT)) |
f9c0b095 | 4141 | vruntime += sched_vslice(cfs_rq, se); |
aeb73b04 | 4142 | |
a2e7a7eb | 4143 | /* sleeps up to a single latency don't count. */ |
5ca9880c | 4144 | if (!initial) { |
a2e7a7eb | 4145 | unsigned long thresh = sysctl_sched_latency; |
a7be37ac | 4146 | |
a2e7a7eb MG |
4147 | /* |
4148 | * Halve their sleep time's effect, to allow | |
4149 | * for a gentler effect of sleepers: | |
4150 | */ | |
4151 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | |
4152 | thresh >>= 1; | |
51e0304c | 4153 | |
a2e7a7eb | 4154 | vruntime -= thresh; |
aeb73b04 PZ |
4155 | } |
4156 | ||
b5d9d734 | 4157 | /* ensure we never gain time by being placed backwards. */ |
16c8f1c7 | 4158 | se->vruntime = max_vruntime(se->vruntime, vruntime); |
aeb73b04 PZ |
4159 | } |
4160 | ||
d3d9dc33 PT |
4161 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); |
4162 | ||
cb251765 MG |
4163 | static inline void check_schedstat_required(void) |
4164 | { | |
4165 | #ifdef CONFIG_SCHEDSTATS | |
4166 | if (schedstat_enabled()) | |
4167 | return; | |
4168 | ||
4169 | /* Force schedstat enabled if a dependent tracepoint is active */ | |
4170 | if (trace_sched_stat_wait_enabled() || | |
4171 | trace_sched_stat_sleep_enabled() || | |
4172 | trace_sched_stat_iowait_enabled() || | |
4173 | trace_sched_stat_blocked_enabled() || | |
4174 | trace_sched_stat_runtime_enabled()) { | |
eda8dca5 | 4175 | printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " |
cb251765 | 4176 | "stat_blocked and stat_runtime require the " |
f67abed5 | 4177 | "kernel parameter schedstats=enable or " |
cb251765 MG |
4178 | "kernel.sched_schedstats=1\n"); |
4179 | } | |
4180 | #endif | |
4181 | } | |
4182 | ||
fe61468b | 4183 | static inline bool cfs_bandwidth_used(void); |
b5179ac7 PZ |
4184 | |
4185 | /* | |
4186 | * MIGRATION | |
4187 | * | |
4188 | * dequeue | |
4189 | * update_curr() | |
4190 | * update_min_vruntime() | |
4191 | * vruntime -= min_vruntime | |
4192 | * | |
4193 | * enqueue | |
4194 | * update_curr() | |
4195 | * update_min_vruntime() | |
4196 | * vruntime += min_vruntime | |
4197 | * | |
4198 | * this way the vruntime transition between RQs is done when both | |
4199 | * min_vruntime are up-to-date. | |
4200 | * | |
4201 | * WAKEUP (remote) | |
4202 | * | |
59efa0ba | 4203 | * ->migrate_task_rq_fair() (p->state == TASK_WAKING) |
b5179ac7 PZ |
4204 | * vruntime -= min_vruntime |
4205 | * | |
4206 | * enqueue | |
4207 | * update_curr() | |
4208 | * update_min_vruntime() | |
4209 | * vruntime += min_vruntime | |
4210 | * | |
4211 | * this way we don't have the most up-to-date min_vruntime on the originating | |
4212 | * CPU and an up-to-date min_vruntime on the destination CPU. | |
4213 | */ | |
4214 | ||
bf0f6f24 | 4215 | static void |
88ec22d3 | 4216 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 4217 | { |
2f950354 PZ |
4218 | bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); |
4219 | bool curr = cfs_rq->curr == se; | |
4220 | ||
88ec22d3 | 4221 | /* |
2f950354 PZ |
4222 | * If we're the current task, we must renormalise before calling |
4223 | * update_curr(). | |
88ec22d3 | 4224 | */ |
2f950354 | 4225 | if (renorm && curr) |
88ec22d3 PZ |
4226 | se->vruntime += cfs_rq->min_vruntime; |
4227 | ||
2f950354 PZ |
4228 | update_curr(cfs_rq); |
4229 | ||
bf0f6f24 | 4230 | /* |
2f950354 PZ |
4231 | * Otherwise, renormalise after, such that we're placed at the current |
4232 | * moment in time, instead of some random moment in the past. Being | |
4233 | * placed in the past could significantly boost this task to the | |
4234 | * fairness detriment of existing tasks. | |
bf0f6f24 | 4235 | */ |
2f950354 PZ |
4236 | if (renorm && !curr) |
4237 | se->vruntime += cfs_rq->min_vruntime; | |
4238 | ||
89ee048f VG |
4239 | /* |
4240 | * When enqueuing a sched_entity, we must: | |
4241 | * - Update loads to have both entity and cfs_rq synced with now. | |
9f683953 | 4242 | * - Add its load to cfs_rq->runnable_avg |
89ee048f VG |
4243 | * - For group_entity, update its weight to reflect the new share of |
4244 | * its group cfs_rq | |
4245 | * - Add its new weight to cfs_rq->load.weight | |
4246 | */ | |
b382a531 | 4247 | update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); |
9f683953 | 4248 | se_update_runnable(se); |
1ea6c46a | 4249 | update_cfs_group(se); |
17bc14b7 | 4250 | account_entity_enqueue(cfs_rq, se); |
bf0f6f24 | 4251 | |
1a3d027c | 4252 | if (flags & ENQUEUE_WAKEUP) |
aeb73b04 | 4253 | place_entity(cfs_rq, se, 0); |
bf0f6f24 | 4254 | |
cb251765 | 4255 | check_schedstat_required(); |
4fa8d299 JP |
4256 | update_stats_enqueue(cfs_rq, se, flags); |
4257 | check_spread(cfs_rq, se); | |
2f950354 | 4258 | if (!curr) |
83b699ed | 4259 | __enqueue_entity(cfs_rq, se); |
2069dd75 | 4260 | se->on_rq = 1; |
3d4b47b4 | 4261 | |
fe61468b VG |
4262 | /* |
4263 | * When bandwidth control is enabled, cfs might have been removed | |
4264 | * because of a parent been throttled but cfs->nr_running > 1. Try to | |
4265 | * add it unconditionnally. | |
4266 | */ | |
4267 | if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) | |
3d4b47b4 | 4268 | list_add_leaf_cfs_rq(cfs_rq); |
fe61468b VG |
4269 | |
4270 | if (cfs_rq->nr_running == 1) | |
d3d9dc33 | 4271 | check_enqueue_throttle(cfs_rq); |
bf0f6f24 IM |
4272 | } |
4273 | ||
2c13c919 | 4274 | static void __clear_buddies_last(struct sched_entity *se) |
2002c695 | 4275 | { |
2c13c919 RR |
4276 | for_each_sched_entity(se) { |
4277 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 4278 | if (cfs_rq->last != se) |
2c13c919 | 4279 | break; |
f1044799 PZ |
4280 | |
4281 | cfs_rq->last = NULL; | |
2c13c919 RR |
4282 | } |
4283 | } | |
2002c695 | 4284 | |
2c13c919 RR |
4285 | static void __clear_buddies_next(struct sched_entity *se) |
4286 | { | |
4287 | for_each_sched_entity(se) { | |
4288 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 4289 | if (cfs_rq->next != se) |
2c13c919 | 4290 | break; |
f1044799 PZ |
4291 | |
4292 | cfs_rq->next = NULL; | |
2c13c919 | 4293 | } |
2002c695 PZ |
4294 | } |
4295 | ||
ac53db59 RR |
4296 | static void __clear_buddies_skip(struct sched_entity *se) |
4297 | { | |
4298 | for_each_sched_entity(se) { | |
4299 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 4300 | if (cfs_rq->skip != se) |
ac53db59 | 4301 | break; |
f1044799 PZ |
4302 | |
4303 | cfs_rq->skip = NULL; | |
ac53db59 RR |
4304 | } |
4305 | } | |
4306 | ||
a571bbea PZ |
4307 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
4308 | { | |
2c13c919 RR |
4309 | if (cfs_rq->last == se) |
4310 | __clear_buddies_last(se); | |
4311 | ||
4312 | if (cfs_rq->next == se) | |
4313 | __clear_buddies_next(se); | |
ac53db59 RR |
4314 | |
4315 | if (cfs_rq->skip == se) | |
4316 | __clear_buddies_skip(se); | |
a571bbea PZ |
4317 | } |
4318 | ||
6c16a6dc | 4319 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d8b4986d | 4320 | |
bf0f6f24 | 4321 | static void |
371fd7e7 | 4322 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 4323 | { |
a2a2d680 DA |
4324 | /* |
4325 | * Update run-time statistics of the 'current'. | |
4326 | */ | |
4327 | update_curr(cfs_rq); | |
89ee048f VG |
4328 | |
4329 | /* | |
4330 | * When dequeuing a sched_entity, we must: | |
4331 | * - Update loads to have both entity and cfs_rq synced with now. | |
9f683953 | 4332 | * - Subtract its load from the cfs_rq->runnable_avg. |
dfcb245e | 4333 | * - Subtract its previous weight from cfs_rq->load.weight. |
89ee048f VG |
4334 | * - For group entity, update its weight to reflect the new share |
4335 | * of its group cfs_rq. | |
4336 | */ | |
88c0616e | 4337 | update_load_avg(cfs_rq, se, UPDATE_TG); |
9f683953 | 4338 | se_update_runnable(se); |
a2a2d680 | 4339 | |
4fa8d299 | 4340 | update_stats_dequeue(cfs_rq, se, flags); |
67e9fb2a | 4341 | |
2002c695 | 4342 | clear_buddies(cfs_rq, se); |
4793241b | 4343 | |
83b699ed | 4344 | if (se != cfs_rq->curr) |
30cfdcfc | 4345 | __dequeue_entity(cfs_rq, se); |
17bc14b7 | 4346 | se->on_rq = 0; |
30cfdcfc | 4347 | account_entity_dequeue(cfs_rq, se); |
88ec22d3 PZ |
4348 | |
4349 | /* | |
b60205c7 PZ |
4350 | * Normalize after update_curr(); which will also have moved |
4351 | * min_vruntime if @se is the one holding it back. But before doing | |
4352 | * update_min_vruntime() again, which will discount @se's position and | |
4353 | * can move min_vruntime forward still more. | |
88ec22d3 | 4354 | */ |
371fd7e7 | 4355 | if (!(flags & DEQUEUE_SLEEP)) |
88ec22d3 | 4356 | se->vruntime -= cfs_rq->min_vruntime; |
1e876231 | 4357 | |
d8b4986d PT |
4358 | /* return excess runtime on last dequeue */ |
4359 | return_cfs_rq_runtime(cfs_rq); | |
4360 | ||
1ea6c46a | 4361 | update_cfs_group(se); |
b60205c7 PZ |
4362 | |
4363 | /* | |
4364 | * Now advance min_vruntime if @se was the entity holding it back, | |
4365 | * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be | |
4366 | * put back on, and if we advance min_vruntime, we'll be placed back | |
4367 | * further than we started -- ie. we'll be penalized. | |
4368 | */ | |
9845c49c | 4369 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) |
b60205c7 | 4370 | update_min_vruntime(cfs_rq); |
bf0f6f24 IM |
4371 | } |
4372 | ||
4373 | /* | |
4374 | * Preempt the current task with a newly woken task if needed: | |
4375 | */ | |
7c92e54f | 4376 | static void |
2e09bf55 | 4377 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
bf0f6f24 | 4378 | { |
11697830 | 4379 | unsigned long ideal_runtime, delta_exec; |
f4cfb33e WX |
4380 | struct sched_entity *se; |
4381 | s64 delta; | |
11697830 | 4382 | |
6d0f0ebd | 4383 | ideal_runtime = sched_slice(cfs_rq, curr); |
11697830 | 4384 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; |
a9f3e2b5 | 4385 | if (delta_exec > ideal_runtime) { |
8875125e | 4386 | resched_curr(rq_of(cfs_rq)); |
a9f3e2b5 MG |
4387 | /* |
4388 | * The current task ran long enough, ensure it doesn't get | |
4389 | * re-elected due to buddy favours. | |
4390 | */ | |
4391 | clear_buddies(cfs_rq, curr); | |
f685ceac MG |
4392 | return; |
4393 | } | |
4394 | ||
4395 | /* | |
4396 | * Ensure that a task that missed wakeup preemption by a | |
4397 | * narrow margin doesn't have to wait for a full slice. | |
4398 | * This also mitigates buddy induced latencies under load. | |
4399 | */ | |
f685ceac MG |
4400 | if (delta_exec < sysctl_sched_min_granularity) |
4401 | return; | |
4402 | ||
f4cfb33e WX |
4403 | se = __pick_first_entity(cfs_rq); |
4404 | delta = curr->vruntime - se->vruntime; | |
f685ceac | 4405 | |
f4cfb33e WX |
4406 | if (delta < 0) |
4407 | return; | |
d7d82944 | 4408 | |
f4cfb33e | 4409 | if (delta > ideal_runtime) |
8875125e | 4410 | resched_curr(rq_of(cfs_rq)); |
bf0f6f24 IM |
4411 | } |
4412 | ||
83b699ed | 4413 | static void |
8494f412 | 4414 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 4415 | { |
83b699ed SV |
4416 | /* 'current' is not kept within the tree. */ |
4417 | if (se->on_rq) { | |
4418 | /* | |
4419 | * Any task has to be enqueued before it get to execute on | |
4420 | * a CPU. So account for the time it spent waiting on the | |
4421 | * runqueue. | |
4422 | */ | |
4fa8d299 | 4423 | update_stats_wait_end(cfs_rq, se); |
83b699ed | 4424 | __dequeue_entity(cfs_rq, se); |
88c0616e | 4425 | update_load_avg(cfs_rq, se, UPDATE_TG); |
83b699ed SV |
4426 | } |
4427 | ||
79303e9e | 4428 | update_stats_curr_start(cfs_rq, se); |
429d43bc | 4429 | cfs_rq->curr = se; |
4fa8d299 | 4430 | |
eba1ed4b IM |
4431 | /* |
4432 | * Track our maximum slice length, if the CPU's load is at | |
4433 | * least twice that of our own weight (i.e. dont track it | |
4434 | * when there are only lesser-weight tasks around): | |
4435 | */ | |
f2bedc47 DE |
4436 | if (schedstat_enabled() && |
4437 | rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { | |
4fa8d299 JP |
4438 | schedstat_set(se->statistics.slice_max, |
4439 | max((u64)schedstat_val(se->statistics.slice_max), | |
4440 | se->sum_exec_runtime - se->prev_sum_exec_runtime)); | |
eba1ed4b | 4441 | } |
4fa8d299 | 4442 | |
4a55b450 | 4443 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
bf0f6f24 IM |
4444 | } |
4445 | ||
3f3a4904 PZ |
4446 | static int |
4447 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | |
4448 | ||
ac53db59 RR |
4449 | /* |
4450 | * Pick the next process, keeping these things in mind, in this order: | |
4451 | * 1) keep things fair between processes/task groups | |
4452 | * 2) pick the "next" process, since someone really wants that to run | |
4453 | * 3) pick the "last" process, for cache locality | |
4454 | * 4) do not run the "skip" process, if something else is available | |
4455 | */ | |
678d5718 PZ |
4456 | static struct sched_entity * |
4457 | pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) | |
aa2ac252 | 4458 | { |
678d5718 PZ |
4459 | struct sched_entity *left = __pick_first_entity(cfs_rq); |
4460 | struct sched_entity *se; | |
4461 | ||
4462 | /* | |
4463 | * If curr is set we have to see if its left of the leftmost entity | |
4464 | * still in the tree, provided there was anything in the tree at all. | |
4465 | */ | |
4466 | if (!left || (curr && entity_before(curr, left))) | |
4467 | left = curr; | |
4468 | ||
4469 | se = left; /* ideally we run the leftmost entity */ | |
f4b6755f | 4470 | |
ac53db59 RR |
4471 | /* |
4472 | * Avoid running the skip buddy, if running something else can | |
4473 | * be done without getting too unfair. | |
4474 | */ | |
4475 | if (cfs_rq->skip == se) { | |
678d5718 PZ |
4476 | struct sched_entity *second; |
4477 | ||
4478 | if (se == curr) { | |
4479 | second = __pick_first_entity(cfs_rq); | |
4480 | } else { | |
4481 | second = __pick_next_entity(se); | |
4482 | if (!second || (curr && entity_before(curr, second))) | |
4483 | second = curr; | |
4484 | } | |
4485 | ||
ac53db59 RR |
4486 | if (second && wakeup_preempt_entity(second, left) < 1) |
4487 | se = second; | |
4488 | } | |
aa2ac252 | 4489 | |
9abb8973 PO |
4490 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { |
4491 | /* | |
4492 | * Someone really wants this to run. If it's not unfair, run it. | |
4493 | */ | |
ac53db59 | 4494 | se = cfs_rq->next; |
9abb8973 PO |
4495 | } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { |
4496 | /* | |
4497 | * Prefer last buddy, try to return the CPU to a preempted task. | |
4498 | */ | |
4499 | se = cfs_rq->last; | |
4500 | } | |
ac53db59 | 4501 | |
f685ceac | 4502 | clear_buddies(cfs_rq, se); |
4793241b PZ |
4503 | |
4504 | return se; | |
aa2ac252 PZ |
4505 | } |
4506 | ||
678d5718 | 4507 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d3d9dc33 | 4508 | |
ab6cde26 | 4509 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
bf0f6f24 IM |
4510 | { |
4511 | /* | |
4512 | * If still on the runqueue then deactivate_task() | |
4513 | * was not called and update_curr() has to be done: | |
4514 | */ | |
4515 | if (prev->on_rq) | |
b7cc0896 | 4516 | update_curr(cfs_rq); |
bf0f6f24 | 4517 | |
d3d9dc33 PT |
4518 | /* throttle cfs_rqs exceeding runtime */ |
4519 | check_cfs_rq_runtime(cfs_rq); | |
4520 | ||
4fa8d299 | 4521 | check_spread(cfs_rq, prev); |
cb251765 | 4522 | |
30cfdcfc | 4523 | if (prev->on_rq) { |
4fa8d299 | 4524 | update_stats_wait_start(cfs_rq, prev); |
30cfdcfc DA |
4525 | /* Put 'current' back into the tree. */ |
4526 | __enqueue_entity(cfs_rq, prev); | |
9d85f21c | 4527 | /* in !on_rq case, update occurred at dequeue */ |
88c0616e | 4528 | update_load_avg(cfs_rq, prev, 0); |
30cfdcfc | 4529 | } |
429d43bc | 4530 | cfs_rq->curr = NULL; |
bf0f6f24 IM |
4531 | } |
4532 | ||
8f4d37ec PZ |
4533 | static void |
4534 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | |
bf0f6f24 | 4535 | { |
bf0f6f24 | 4536 | /* |
30cfdcfc | 4537 | * Update run-time statistics of the 'current'. |
bf0f6f24 | 4538 | */ |
30cfdcfc | 4539 | update_curr(cfs_rq); |
bf0f6f24 | 4540 | |
9d85f21c PT |
4541 | /* |
4542 | * Ensure that runnable average is periodically updated. | |
4543 | */ | |
88c0616e | 4544 | update_load_avg(cfs_rq, curr, UPDATE_TG); |
1ea6c46a | 4545 | update_cfs_group(curr); |
9d85f21c | 4546 | |
8f4d37ec PZ |
4547 | #ifdef CONFIG_SCHED_HRTICK |
4548 | /* | |
4549 | * queued ticks are scheduled to match the slice, so don't bother | |
4550 | * validating it and just reschedule. | |
4551 | */ | |
983ed7a6 | 4552 | if (queued) { |
8875125e | 4553 | resched_curr(rq_of(cfs_rq)); |
983ed7a6 HH |
4554 | return; |
4555 | } | |
8f4d37ec PZ |
4556 | /* |
4557 | * don't let the period tick interfere with the hrtick preemption | |
4558 | */ | |
4559 | if (!sched_feat(DOUBLE_TICK) && | |
4560 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | |
4561 | return; | |
4562 | #endif | |
4563 | ||
2c2efaed | 4564 | if (cfs_rq->nr_running > 1) |
2e09bf55 | 4565 | check_preempt_tick(cfs_rq, curr); |
bf0f6f24 IM |
4566 | } |
4567 | ||
ab84d31e PT |
4568 | |
4569 | /************************************************** | |
4570 | * CFS bandwidth control machinery | |
4571 | */ | |
4572 | ||
4573 | #ifdef CONFIG_CFS_BANDWIDTH | |
029632fb | 4574 | |
e9666d10 | 4575 | #ifdef CONFIG_JUMP_LABEL |
c5905afb | 4576 | static struct static_key __cfs_bandwidth_used; |
029632fb PZ |
4577 | |
4578 | static inline bool cfs_bandwidth_used(void) | |
4579 | { | |
c5905afb | 4580 | return static_key_false(&__cfs_bandwidth_used); |
029632fb PZ |
4581 | } |
4582 | ||
1ee14e6c | 4583 | void cfs_bandwidth_usage_inc(void) |
029632fb | 4584 | { |
ce48c146 | 4585 | static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); |
1ee14e6c BS |
4586 | } |
4587 | ||
4588 | void cfs_bandwidth_usage_dec(void) | |
4589 | { | |
ce48c146 | 4590 | static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); |
029632fb | 4591 | } |
e9666d10 | 4592 | #else /* CONFIG_JUMP_LABEL */ |
029632fb PZ |
4593 | static bool cfs_bandwidth_used(void) |
4594 | { | |
4595 | return true; | |
4596 | } | |
4597 | ||
1ee14e6c BS |
4598 | void cfs_bandwidth_usage_inc(void) {} |
4599 | void cfs_bandwidth_usage_dec(void) {} | |
e9666d10 | 4600 | #endif /* CONFIG_JUMP_LABEL */ |
029632fb | 4601 | |
ab84d31e PT |
4602 | /* |
4603 | * default period for cfs group bandwidth. | |
4604 | * default: 0.1s, units: nanoseconds | |
4605 | */ | |
4606 | static inline u64 default_cfs_period(void) | |
4607 | { | |
4608 | return 100000000ULL; | |
4609 | } | |
ec12cb7f PT |
4610 | |
4611 | static inline u64 sched_cfs_bandwidth_slice(void) | |
4612 | { | |
4613 | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | |
4614 | } | |
4615 | ||
a9cf55b2 | 4616 | /* |
763a9ec0 QC |
4617 | * Replenish runtime according to assigned quota. We use sched_clock_cpu |
4618 | * directly instead of rq->clock to avoid adding additional synchronization | |
4619 | * around rq->lock. | |
a9cf55b2 PT |
4620 | * |
4621 | * requires cfs_b->lock | |
4622 | */ | |
029632fb | 4623 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) |
a9cf55b2 | 4624 | { |
763a9ec0 QC |
4625 | if (cfs_b->quota != RUNTIME_INF) |
4626 | cfs_b->runtime = cfs_b->quota; | |
a9cf55b2 PT |
4627 | } |
4628 | ||
029632fb PZ |
4629 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
4630 | { | |
4631 | return &tg->cfs_bandwidth; | |
4632 | } | |
4633 | ||
85dac906 | 4634 | /* returns 0 on failure to allocate runtime */ |
e98fa02c PT |
4635 | static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, |
4636 | struct cfs_rq *cfs_rq, u64 target_runtime) | |
ec12cb7f | 4637 | { |
e98fa02c PT |
4638 | u64 min_amount, amount = 0; |
4639 | ||
4640 | lockdep_assert_held(&cfs_b->lock); | |
ec12cb7f PT |
4641 | |
4642 | /* note: this is a positive sum as runtime_remaining <= 0 */ | |
e98fa02c | 4643 | min_amount = target_runtime - cfs_rq->runtime_remaining; |
ec12cb7f | 4644 | |
ec12cb7f PT |
4645 | if (cfs_b->quota == RUNTIME_INF) |
4646 | amount = min_amount; | |
58088ad0 | 4647 | else { |
77a4d1a1 | 4648 | start_cfs_bandwidth(cfs_b); |
58088ad0 PT |
4649 | |
4650 | if (cfs_b->runtime > 0) { | |
4651 | amount = min(cfs_b->runtime, min_amount); | |
4652 | cfs_b->runtime -= amount; | |
4653 | cfs_b->idle = 0; | |
4654 | } | |
ec12cb7f | 4655 | } |
ec12cb7f PT |
4656 | |
4657 | cfs_rq->runtime_remaining += amount; | |
85dac906 PT |
4658 | |
4659 | return cfs_rq->runtime_remaining > 0; | |
ec12cb7f PT |
4660 | } |
4661 | ||
e98fa02c PT |
4662 | /* returns 0 on failure to allocate runtime */ |
4663 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
4664 | { | |
4665 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4666 | int ret; | |
4667 | ||
4668 | raw_spin_lock(&cfs_b->lock); | |
4669 | ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); | |
4670 | raw_spin_unlock(&cfs_b->lock); | |
4671 | ||
4672 | return ret; | |
4673 | } | |
4674 | ||
9dbdb155 | 4675 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
a9cf55b2 PT |
4676 | { |
4677 | /* dock delta_exec before expiring quota (as it could span periods) */ | |
ec12cb7f | 4678 | cfs_rq->runtime_remaining -= delta_exec; |
a9cf55b2 PT |
4679 | |
4680 | if (likely(cfs_rq->runtime_remaining > 0)) | |
ec12cb7f PT |
4681 | return; |
4682 | ||
5e2d2cc2 L |
4683 | if (cfs_rq->throttled) |
4684 | return; | |
85dac906 PT |
4685 | /* |
4686 | * if we're unable to extend our runtime we resched so that the active | |
4687 | * hierarchy can be throttled | |
4688 | */ | |
4689 | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | |
8875125e | 4690 | resched_curr(rq_of(cfs_rq)); |
ec12cb7f PT |
4691 | } |
4692 | ||
6c16a6dc | 4693 | static __always_inline |
9dbdb155 | 4694 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
ec12cb7f | 4695 | { |
56f570e5 | 4696 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) |
ec12cb7f PT |
4697 | return; |
4698 | ||
4699 | __account_cfs_rq_runtime(cfs_rq, delta_exec); | |
4700 | } | |
4701 | ||
85dac906 PT |
4702 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
4703 | { | |
56f570e5 | 4704 | return cfs_bandwidth_used() && cfs_rq->throttled; |
85dac906 PT |
4705 | } |
4706 | ||
64660c86 PT |
4707 | /* check whether cfs_rq, or any parent, is throttled */ |
4708 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
4709 | { | |
56f570e5 | 4710 | return cfs_bandwidth_used() && cfs_rq->throttle_count; |
64660c86 PT |
4711 | } |
4712 | ||
4713 | /* | |
4714 | * Ensure that neither of the group entities corresponding to src_cpu or | |
4715 | * dest_cpu are members of a throttled hierarchy when performing group | |
4716 | * load-balance operations. | |
4717 | */ | |
4718 | static inline int throttled_lb_pair(struct task_group *tg, | |
4719 | int src_cpu, int dest_cpu) | |
4720 | { | |
4721 | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | |
4722 | ||
4723 | src_cfs_rq = tg->cfs_rq[src_cpu]; | |
4724 | dest_cfs_rq = tg->cfs_rq[dest_cpu]; | |
4725 | ||
4726 | return throttled_hierarchy(src_cfs_rq) || | |
4727 | throttled_hierarchy(dest_cfs_rq); | |
4728 | } | |
4729 | ||
64660c86 PT |
4730 | static int tg_unthrottle_up(struct task_group *tg, void *data) |
4731 | { | |
4732 | struct rq *rq = data; | |
4733 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
4734 | ||
4735 | cfs_rq->throttle_count--; | |
64660c86 | 4736 | if (!cfs_rq->throttle_count) { |
78becc27 | 4737 | cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - |
f1b17280 | 4738 | cfs_rq->throttled_clock_task; |
31bc6aea VG |
4739 | |
4740 | /* Add cfs_rq with already running entity in the list */ | |
4741 | if (cfs_rq->nr_running >= 1) | |
4742 | list_add_leaf_cfs_rq(cfs_rq); | |
64660c86 | 4743 | } |
64660c86 PT |
4744 | |
4745 | return 0; | |
4746 | } | |
4747 | ||
4748 | static int tg_throttle_down(struct task_group *tg, void *data) | |
4749 | { | |
4750 | struct rq *rq = data; | |
4751 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
4752 | ||
82958366 | 4753 | /* group is entering throttled state, stop time */ |
31bc6aea | 4754 | if (!cfs_rq->throttle_count) { |
78becc27 | 4755 | cfs_rq->throttled_clock_task = rq_clock_task(rq); |
31bc6aea VG |
4756 | list_del_leaf_cfs_rq(cfs_rq); |
4757 | } | |
64660c86 PT |
4758 | cfs_rq->throttle_count++; |
4759 | ||
4760 | return 0; | |
4761 | } | |
4762 | ||
e98fa02c | 4763 | static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) |
85dac906 PT |
4764 | { |
4765 | struct rq *rq = rq_of(cfs_rq); | |
4766 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4767 | struct sched_entity *se; | |
43e9f7f2 | 4768 | long task_delta, idle_task_delta, dequeue = 1; |
e98fa02c PT |
4769 | |
4770 | raw_spin_lock(&cfs_b->lock); | |
4771 | /* This will start the period timer if necessary */ | |
4772 | if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { | |
4773 | /* | |
4774 | * We have raced with bandwidth becoming available, and if we | |
4775 | * actually throttled the timer might not unthrottle us for an | |
4776 | * entire period. We additionally needed to make sure that any | |
4777 | * subsequent check_cfs_rq_runtime calls agree not to throttle | |
4778 | * us, as we may commit to do cfs put_prev+pick_next, so we ask | |
4779 | * for 1ns of runtime rather than just check cfs_b. | |
4780 | */ | |
4781 | dequeue = 0; | |
4782 | } else { | |
4783 | list_add_tail_rcu(&cfs_rq->throttled_list, | |
4784 | &cfs_b->throttled_cfs_rq); | |
4785 | } | |
4786 | raw_spin_unlock(&cfs_b->lock); | |
4787 | ||
4788 | if (!dequeue) | |
4789 | return false; /* Throttle no longer required. */ | |
85dac906 PT |
4790 | |
4791 | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | |
4792 | ||
f1b17280 | 4793 | /* freeze hierarchy runnable averages while throttled */ |
64660c86 PT |
4794 | rcu_read_lock(); |
4795 | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | |
4796 | rcu_read_unlock(); | |
85dac906 PT |
4797 | |
4798 | task_delta = cfs_rq->h_nr_running; | |
43e9f7f2 | 4799 | idle_task_delta = cfs_rq->idle_h_nr_running; |
85dac906 PT |
4800 | for_each_sched_entity(se) { |
4801 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | |
4802 | /* throttled entity or throttle-on-deactivate */ | |
4803 | if (!se->on_rq) | |
b6d37a76 | 4804 | goto done; |
85dac906 | 4805 | |
b6d37a76 | 4806 | dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); |
6212437f | 4807 | |
85dac906 | 4808 | qcfs_rq->h_nr_running -= task_delta; |
43e9f7f2 | 4809 | qcfs_rq->idle_h_nr_running -= idle_task_delta; |
85dac906 | 4810 | |
b6d37a76 PW |
4811 | if (qcfs_rq->load.weight) { |
4812 | /* Avoid re-evaluating load for this entity: */ | |
4813 | se = parent_entity(se); | |
4814 | break; | |
4815 | } | |
4816 | } | |
4817 | ||
4818 | for_each_sched_entity(se) { | |
4819 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | |
4820 | /* throttled entity or throttle-on-deactivate */ | |
4821 | if (!se->on_rq) | |
4822 | goto done; | |
4823 | ||
4824 | update_load_avg(qcfs_rq, se, 0); | |
4825 | se_update_runnable(se); | |
4826 | ||
4827 | qcfs_rq->h_nr_running -= task_delta; | |
4828 | qcfs_rq->idle_h_nr_running -= idle_task_delta; | |
85dac906 PT |
4829 | } |
4830 | ||
b6d37a76 PW |
4831 | /* At this point se is NULL and we are at root level*/ |
4832 | sub_nr_running(rq, task_delta); | |
85dac906 | 4833 | |
b6d37a76 | 4834 | done: |
c06f04c7 | 4835 | /* |
e98fa02c PT |
4836 | * Note: distribution will already see us throttled via the |
4837 | * throttled-list. rq->lock protects completion. | |
c06f04c7 | 4838 | */ |
e98fa02c PT |
4839 | cfs_rq->throttled = 1; |
4840 | cfs_rq->throttled_clock = rq_clock(rq); | |
4841 | return true; | |
85dac906 PT |
4842 | } |
4843 | ||
029632fb | 4844 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) |
671fd9da PT |
4845 | { |
4846 | struct rq *rq = rq_of(cfs_rq); | |
4847 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4848 | struct sched_entity *se; | |
43e9f7f2 | 4849 | long task_delta, idle_task_delta; |
671fd9da | 4850 | |
22b958d8 | 4851 | se = cfs_rq->tg->se[cpu_of(rq)]; |
671fd9da PT |
4852 | |
4853 | cfs_rq->throttled = 0; | |
1a55af2e FW |
4854 | |
4855 | update_rq_clock(rq); | |
4856 | ||
671fd9da | 4857 | raw_spin_lock(&cfs_b->lock); |
78becc27 | 4858 | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; |
671fd9da PT |
4859 | list_del_rcu(&cfs_rq->throttled_list); |
4860 | raw_spin_unlock(&cfs_b->lock); | |
4861 | ||
64660c86 PT |
4862 | /* update hierarchical throttle state */ |
4863 | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | |
4864 | ||
671fd9da PT |
4865 | if (!cfs_rq->load.weight) |
4866 | return; | |
4867 | ||
4868 | task_delta = cfs_rq->h_nr_running; | |
43e9f7f2 | 4869 | idle_task_delta = cfs_rq->idle_h_nr_running; |
671fd9da PT |
4870 | for_each_sched_entity(se) { |
4871 | if (se->on_rq) | |
39f23ce0 VG |
4872 | break; |
4873 | cfs_rq = cfs_rq_of(se); | |
4874 | enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); | |
4875 | ||
4876 | cfs_rq->h_nr_running += task_delta; | |
4877 | cfs_rq->idle_h_nr_running += idle_task_delta; | |
4878 | ||
4879 | /* end evaluation on encountering a throttled cfs_rq */ | |
4880 | if (cfs_rq_throttled(cfs_rq)) | |
4881 | goto unthrottle_throttle; | |
4882 | } | |
671fd9da | 4883 | |
39f23ce0 | 4884 | for_each_sched_entity(se) { |
671fd9da | 4885 | cfs_rq = cfs_rq_of(se); |
39f23ce0 VG |
4886 | |
4887 | update_load_avg(cfs_rq, se, UPDATE_TG); | |
4888 | se_update_runnable(se); | |
6212437f | 4889 | |
671fd9da | 4890 | cfs_rq->h_nr_running += task_delta; |
43e9f7f2 | 4891 | cfs_rq->idle_h_nr_running += idle_task_delta; |
671fd9da | 4892 | |
39f23ce0 VG |
4893 | |
4894 | /* end evaluation on encountering a throttled cfs_rq */ | |
671fd9da | 4895 | if (cfs_rq_throttled(cfs_rq)) |
39f23ce0 VG |
4896 | goto unthrottle_throttle; |
4897 | ||
4898 | /* | |
4899 | * One parent has been throttled and cfs_rq removed from the | |
4900 | * list. Add it back to not break the leaf list. | |
4901 | */ | |
4902 | if (throttled_hierarchy(cfs_rq)) | |
4903 | list_add_leaf_cfs_rq(cfs_rq); | |
671fd9da PT |
4904 | } |
4905 | ||
39f23ce0 VG |
4906 | /* At this point se is NULL and we are at root level*/ |
4907 | add_nr_running(rq, task_delta); | |
671fd9da | 4908 | |
39f23ce0 | 4909 | unthrottle_throttle: |
fe61468b VG |
4910 | /* |
4911 | * The cfs_rq_throttled() breaks in the above iteration can result in | |
4912 | * incomplete leaf list maintenance, resulting in triggering the | |
4913 | * assertion below. | |
4914 | */ | |
4915 | for_each_sched_entity(se) { | |
4916 | cfs_rq = cfs_rq_of(se); | |
4917 | ||
39f23ce0 VG |
4918 | if (list_add_leaf_cfs_rq(cfs_rq)) |
4919 | break; | |
fe61468b VG |
4920 | } |
4921 | ||
4922 | assert_list_leaf_cfs_rq(rq); | |
4923 | ||
97fb7a0a | 4924 | /* Determine whether we need to wake up potentially idle CPU: */ |
671fd9da | 4925 | if (rq->curr == rq->idle && rq->cfs.nr_running) |
8875125e | 4926 | resched_curr(rq); |
671fd9da PT |
4927 | } |
4928 | ||
26a8b127 | 4929 | static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) |
671fd9da PT |
4930 | { |
4931 | struct cfs_rq *cfs_rq; | |
26a8b127 | 4932 | u64 runtime, remaining = 1; |
671fd9da PT |
4933 | |
4934 | rcu_read_lock(); | |
4935 | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | |
4936 | throttled_list) { | |
4937 | struct rq *rq = rq_of(cfs_rq); | |
8a8c69c3 | 4938 | struct rq_flags rf; |
671fd9da | 4939 | |
c0ad4aa4 | 4940 | rq_lock_irqsave(rq, &rf); |
671fd9da PT |
4941 | if (!cfs_rq_throttled(cfs_rq)) |
4942 | goto next; | |
4943 | ||
5e2d2cc2 L |
4944 | /* By the above check, this should never be true */ |
4945 | SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); | |
4946 | ||
26a8b127 | 4947 | raw_spin_lock(&cfs_b->lock); |
671fd9da | 4948 | runtime = -cfs_rq->runtime_remaining + 1; |
26a8b127 HC |
4949 | if (runtime > cfs_b->runtime) |
4950 | runtime = cfs_b->runtime; | |
4951 | cfs_b->runtime -= runtime; | |
4952 | remaining = cfs_b->runtime; | |
4953 | raw_spin_unlock(&cfs_b->lock); | |
671fd9da PT |
4954 | |
4955 | cfs_rq->runtime_remaining += runtime; | |
671fd9da PT |
4956 | |
4957 | /* we check whether we're throttled above */ | |
4958 | if (cfs_rq->runtime_remaining > 0) | |
4959 | unthrottle_cfs_rq(cfs_rq); | |
4960 | ||
4961 | next: | |
c0ad4aa4 | 4962 | rq_unlock_irqrestore(rq, &rf); |
671fd9da PT |
4963 | |
4964 | if (!remaining) | |
4965 | break; | |
4966 | } | |
4967 | rcu_read_unlock(); | |
671fd9da PT |
4968 | } |
4969 | ||
58088ad0 PT |
4970 | /* |
4971 | * Responsible for refilling a task_group's bandwidth and unthrottling its | |
4972 | * cfs_rqs as appropriate. If there has been no activity within the last | |
4973 | * period the timer is deactivated until scheduling resumes; cfs_b->idle is | |
4974 | * used to track this state. | |
4975 | */ | |
c0ad4aa4 | 4976 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) |
58088ad0 | 4977 | { |
51f2176d | 4978 | int throttled; |
58088ad0 | 4979 | |
58088ad0 PT |
4980 | /* no need to continue the timer with no bandwidth constraint */ |
4981 | if (cfs_b->quota == RUNTIME_INF) | |
51f2176d | 4982 | goto out_deactivate; |
58088ad0 | 4983 | |
671fd9da | 4984 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
e8da1b18 | 4985 | cfs_b->nr_periods += overrun; |
671fd9da | 4986 | |
51f2176d BS |
4987 | /* |
4988 | * idle depends on !throttled (for the case of a large deficit), and if | |
4989 | * we're going inactive then everything else can be deferred | |
4990 | */ | |
4991 | if (cfs_b->idle && !throttled) | |
4992 | goto out_deactivate; | |
a9cf55b2 PT |
4993 | |
4994 | __refill_cfs_bandwidth_runtime(cfs_b); | |
4995 | ||
671fd9da PT |
4996 | if (!throttled) { |
4997 | /* mark as potentially idle for the upcoming period */ | |
4998 | cfs_b->idle = 1; | |
51f2176d | 4999 | return 0; |
671fd9da PT |
5000 | } |
5001 | ||
e8da1b18 NR |
5002 | /* account preceding periods in which throttling occurred */ |
5003 | cfs_b->nr_throttled += overrun; | |
5004 | ||
671fd9da | 5005 | /* |
26a8b127 | 5006 | * This check is repeated as we release cfs_b->lock while we unthrottle. |
671fd9da | 5007 | */ |
ab93a4bc | 5008 | while (throttled && cfs_b->runtime > 0) { |
c0ad4aa4 | 5009 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
671fd9da | 5010 | /* we can't nest cfs_b->lock while distributing bandwidth */ |
26a8b127 | 5011 | distribute_cfs_runtime(cfs_b); |
c0ad4aa4 | 5012 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
671fd9da PT |
5013 | |
5014 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); | |
5015 | } | |
58088ad0 | 5016 | |
671fd9da PT |
5017 | /* |
5018 | * While we are ensured activity in the period following an | |
5019 | * unthrottle, this also covers the case in which the new bandwidth is | |
5020 | * insufficient to cover the existing bandwidth deficit. (Forcing the | |
5021 | * timer to remain active while there are any throttled entities.) | |
5022 | */ | |
5023 | cfs_b->idle = 0; | |
58088ad0 | 5024 | |
51f2176d BS |
5025 | return 0; |
5026 | ||
5027 | out_deactivate: | |
51f2176d | 5028 | return 1; |
58088ad0 | 5029 | } |
d3d9dc33 | 5030 | |
d8b4986d PT |
5031 | /* a cfs_rq won't donate quota below this amount */ |
5032 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | |
5033 | /* minimum remaining period time to redistribute slack quota */ | |
5034 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | |
5035 | /* how long we wait to gather additional slack before distributing */ | |
5036 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | |
5037 | ||
db06e78c BS |
5038 | /* |
5039 | * Are we near the end of the current quota period? | |
5040 | * | |
5041 | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the | |
4961b6e1 | 5042 | * hrtimer base being cleared by hrtimer_start. In the case of |
db06e78c BS |
5043 | * migrate_hrtimers, base is never cleared, so we are fine. |
5044 | */ | |
d8b4986d PT |
5045 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) |
5046 | { | |
5047 | struct hrtimer *refresh_timer = &cfs_b->period_timer; | |
5048 | u64 remaining; | |
5049 | ||
5050 | /* if the call-back is running a quota refresh is already occurring */ | |
5051 | if (hrtimer_callback_running(refresh_timer)) | |
5052 | return 1; | |
5053 | ||
5054 | /* is a quota refresh about to occur? */ | |
5055 | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | |
5056 | if (remaining < min_expire) | |
5057 | return 1; | |
5058 | ||
5059 | return 0; | |
5060 | } | |
5061 | ||
5062 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | |
5063 | { | |
5064 | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | |
5065 | ||
5066 | /* if there's a quota refresh soon don't bother with slack */ | |
5067 | if (runtime_refresh_within(cfs_b, min_left)) | |
5068 | return; | |
5069 | ||
66567fcb | 5070 | /* don't push forwards an existing deferred unthrottle */ |
5071 | if (cfs_b->slack_started) | |
5072 | return; | |
5073 | cfs_b->slack_started = true; | |
5074 | ||
4cfafd30 PZ |
5075 | hrtimer_start(&cfs_b->slack_timer, |
5076 | ns_to_ktime(cfs_bandwidth_slack_period), | |
5077 | HRTIMER_MODE_REL); | |
d8b4986d PT |
5078 | } |
5079 | ||
5080 | /* we know any runtime found here is valid as update_curr() precedes return */ | |
5081 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
5082 | { | |
5083 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
5084 | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | |
5085 | ||
5086 | if (slack_runtime <= 0) | |
5087 | return; | |
5088 | ||
5089 | raw_spin_lock(&cfs_b->lock); | |
de53fd7a | 5090 | if (cfs_b->quota != RUNTIME_INF) { |
d8b4986d PT |
5091 | cfs_b->runtime += slack_runtime; |
5092 | ||
5093 | /* we are under rq->lock, defer unthrottling using a timer */ | |
5094 | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | |
5095 | !list_empty(&cfs_b->throttled_cfs_rq)) | |
5096 | start_cfs_slack_bandwidth(cfs_b); | |
5097 | } | |
5098 | raw_spin_unlock(&cfs_b->lock); | |
5099 | ||
5100 | /* even if it's not valid for return we don't want to try again */ | |
5101 | cfs_rq->runtime_remaining -= slack_runtime; | |
5102 | } | |
5103 | ||
5104 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
5105 | { | |
56f570e5 PT |
5106 | if (!cfs_bandwidth_used()) |
5107 | return; | |
5108 | ||
fccfdc6f | 5109 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) |
d8b4986d PT |
5110 | return; |
5111 | ||
5112 | __return_cfs_rq_runtime(cfs_rq); | |
5113 | } | |
5114 | ||
5115 | /* | |
5116 | * This is done with a timer (instead of inline with bandwidth return) since | |
5117 | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | |
5118 | */ | |
5119 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | |
5120 | { | |
5121 | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | |
c0ad4aa4 | 5122 | unsigned long flags; |
d8b4986d PT |
5123 | |
5124 | /* confirm we're still not at a refresh boundary */ | |
c0ad4aa4 | 5125 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
66567fcb | 5126 | cfs_b->slack_started = false; |
baa9be4f | 5127 | |
db06e78c | 5128 | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { |
c0ad4aa4 | 5129 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
d8b4986d | 5130 | return; |
db06e78c | 5131 | } |
d8b4986d | 5132 | |
c06f04c7 | 5133 | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) |
d8b4986d | 5134 | runtime = cfs_b->runtime; |
c06f04c7 | 5135 | |
c0ad4aa4 | 5136 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
d8b4986d PT |
5137 | |
5138 | if (!runtime) | |
5139 | return; | |
5140 | ||
26a8b127 | 5141 | distribute_cfs_runtime(cfs_b); |
d8b4986d PT |
5142 | } |
5143 | ||
d3d9dc33 PT |
5144 | /* |
5145 | * When a group wakes up we want to make sure that its quota is not already | |
5146 | * expired/exceeded, otherwise it may be allowed to steal additional ticks of | |
5147 | * runtime as update_curr() throttling can not not trigger until it's on-rq. | |
5148 | */ | |
5149 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | |
5150 | { | |
56f570e5 PT |
5151 | if (!cfs_bandwidth_used()) |
5152 | return; | |
5153 | ||
d3d9dc33 PT |
5154 | /* an active group must be handled by the update_curr()->put() path */ |
5155 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | |
5156 | return; | |
5157 | ||
5158 | /* ensure the group is not already throttled */ | |
5159 | if (cfs_rq_throttled(cfs_rq)) | |
5160 | return; | |
5161 | ||
5162 | /* update runtime allocation */ | |
5163 | account_cfs_rq_runtime(cfs_rq, 0); | |
5164 | if (cfs_rq->runtime_remaining <= 0) | |
5165 | throttle_cfs_rq(cfs_rq); | |
5166 | } | |
5167 | ||
55e16d30 PZ |
5168 | static void sync_throttle(struct task_group *tg, int cpu) |
5169 | { | |
5170 | struct cfs_rq *pcfs_rq, *cfs_rq; | |
5171 | ||
5172 | if (!cfs_bandwidth_used()) | |
5173 | return; | |
5174 | ||
5175 | if (!tg->parent) | |
5176 | return; | |
5177 | ||
5178 | cfs_rq = tg->cfs_rq[cpu]; | |
5179 | pcfs_rq = tg->parent->cfs_rq[cpu]; | |
5180 | ||
5181 | cfs_rq->throttle_count = pcfs_rq->throttle_count; | |
b8922125 | 5182 | cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); |
55e16d30 PZ |
5183 | } |
5184 | ||
d3d9dc33 | 5185 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ |
678d5718 | 5186 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
d3d9dc33 | 5187 | { |
56f570e5 | 5188 | if (!cfs_bandwidth_used()) |
678d5718 | 5189 | return false; |
56f570e5 | 5190 | |
d3d9dc33 | 5191 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) |
678d5718 | 5192 | return false; |
d3d9dc33 PT |
5193 | |
5194 | /* | |
5195 | * it's possible for a throttled entity to be forced into a running | |
5196 | * state (e.g. set_curr_task), in this case we're finished. | |
5197 | */ | |
5198 | if (cfs_rq_throttled(cfs_rq)) | |
678d5718 | 5199 | return true; |
d3d9dc33 | 5200 | |
e98fa02c | 5201 | return throttle_cfs_rq(cfs_rq); |
d3d9dc33 | 5202 | } |
029632fb | 5203 | |
029632fb PZ |
5204 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) |
5205 | { | |
5206 | struct cfs_bandwidth *cfs_b = | |
5207 | container_of(timer, struct cfs_bandwidth, slack_timer); | |
77a4d1a1 | 5208 | |
029632fb PZ |
5209 | do_sched_cfs_slack_timer(cfs_b); |
5210 | ||
5211 | return HRTIMER_NORESTART; | |
5212 | } | |
5213 | ||
2e8e1922 PA |
5214 | extern const u64 max_cfs_quota_period; |
5215 | ||
029632fb PZ |
5216 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) |
5217 | { | |
5218 | struct cfs_bandwidth *cfs_b = | |
5219 | container_of(timer, struct cfs_bandwidth, period_timer); | |
c0ad4aa4 | 5220 | unsigned long flags; |
029632fb PZ |
5221 | int overrun; |
5222 | int idle = 0; | |
2e8e1922 | 5223 | int count = 0; |
029632fb | 5224 | |
c0ad4aa4 | 5225 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
029632fb | 5226 | for (;;) { |
77a4d1a1 | 5227 | overrun = hrtimer_forward_now(timer, cfs_b->period); |
029632fb PZ |
5228 | if (!overrun) |
5229 | break; | |
5230 | ||
5a6d6a6c HC |
5231 | idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); |
5232 | ||
2e8e1922 PA |
5233 | if (++count > 3) { |
5234 | u64 new, old = ktime_to_ns(cfs_b->period); | |
5235 | ||
4929a4e6 XZ |
5236 | /* |
5237 | * Grow period by a factor of 2 to avoid losing precision. | |
5238 | * Precision loss in the quota/period ratio can cause __cfs_schedulable | |
5239 | * to fail. | |
5240 | */ | |
5241 | new = old * 2; | |
5242 | if (new < max_cfs_quota_period) { | |
5243 | cfs_b->period = ns_to_ktime(new); | |
5244 | cfs_b->quota *= 2; | |
5245 | ||
5246 | pr_warn_ratelimited( | |
5247 | "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", | |
5248 | smp_processor_id(), | |
5249 | div_u64(new, NSEC_PER_USEC), | |
5250 | div_u64(cfs_b->quota, NSEC_PER_USEC)); | |
5251 | } else { | |
5252 | pr_warn_ratelimited( | |
5253 | "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", | |
5254 | smp_processor_id(), | |
5255 | div_u64(old, NSEC_PER_USEC), | |
5256 | div_u64(cfs_b->quota, NSEC_PER_USEC)); | |
5257 | } | |
2e8e1922 PA |
5258 | |
5259 | /* reset count so we don't come right back in here */ | |
5260 | count = 0; | |
5261 | } | |
029632fb | 5262 | } |
4cfafd30 PZ |
5263 | if (idle) |
5264 | cfs_b->period_active = 0; | |
c0ad4aa4 | 5265 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
029632fb PZ |
5266 | |
5267 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
5268 | } | |
5269 | ||
5270 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | |
5271 | { | |
5272 | raw_spin_lock_init(&cfs_b->lock); | |
5273 | cfs_b->runtime = 0; | |
5274 | cfs_b->quota = RUNTIME_INF; | |
5275 | cfs_b->period = ns_to_ktime(default_cfs_period()); | |
5276 | ||
5277 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | |
4cfafd30 | 5278 | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); |
029632fb PZ |
5279 | cfs_b->period_timer.function = sched_cfs_period_timer; |
5280 | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
5281 | cfs_b->slack_timer.function = sched_cfs_slack_timer; | |
66567fcb | 5282 | cfs_b->slack_started = false; |
029632fb PZ |
5283 | } |
5284 | ||
5285 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
5286 | { | |
5287 | cfs_rq->runtime_enabled = 0; | |
5288 | INIT_LIST_HEAD(&cfs_rq->throttled_list); | |
5289 | } | |
5290 | ||
77a4d1a1 | 5291 | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
029632fb | 5292 | { |
4cfafd30 | 5293 | lockdep_assert_held(&cfs_b->lock); |
029632fb | 5294 | |
f1d1be8a XP |
5295 | if (cfs_b->period_active) |
5296 | return; | |
5297 | ||
5298 | cfs_b->period_active = 1; | |
763a9ec0 | 5299 | hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); |
f1d1be8a | 5300 | hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); |
029632fb PZ |
5301 | } |
5302 | ||
5303 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | |
5304 | { | |
7f1a169b TH |
5305 | /* init_cfs_bandwidth() was not called */ |
5306 | if (!cfs_b->throttled_cfs_rq.next) | |
5307 | return; | |
5308 | ||
029632fb PZ |
5309 | hrtimer_cancel(&cfs_b->period_timer); |
5310 | hrtimer_cancel(&cfs_b->slack_timer); | |
5311 | } | |
5312 | ||
502ce005 | 5313 | /* |
97fb7a0a | 5314 | * Both these CPU hotplug callbacks race against unregister_fair_sched_group() |
502ce005 PZ |
5315 | * |
5316 | * The race is harmless, since modifying bandwidth settings of unhooked group | |
5317 | * bits doesn't do much. | |
5318 | */ | |
5319 | ||
5320 | /* cpu online calback */ | |
0e59bdae KT |
5321 | static void __maybe_unused update_runtime_enabled(struct rq *rq) |
5322 | { | |
502ce005 | 5323 | struct task_group *tg; |
0e59bdae | 5324 | |
502ce005 PZ |
5325 | lockdep_assert_held(&rq->lock); |
5326 | ||
5327 | rcu_read_lock(); | |
5328 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
5329 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | |
5330 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
0e59bdae KT |
5331 | |
5332 | raw_spin_lock(&cfs_b->lock); | |
5333 | cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; | |
5334 | raw_spin_unlock(&cfs_b->lock); | |
5335 | } | |
502ce005 | 5336 | rcu_read_unlock(); |
0e59bdae KT |
5337 | } |
5338 | ||
502ce005 | 5339 | /* cpu offline callback */ |
38dc3348 | 5340 | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) |
029632fb | 5341 | { |
502ce005 PZ |
5342 | struct task_group *tg; |
5343 | ||
5344 | lockdep_assert_held(&rq->lock); | |
5345 | ||
5346 | rcu_read_lock(); | |
5347 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
5348 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
029632fb | 5349 | |
029632fb PZ |
5350 | if (!cfs_rq->runtime_enabled) |
5351 | continue; | |
5352 | ||
5353 | /* | |
5354 | * clock_task is not advancing so we just need to make sure | |
5355 | * there's some valid quota amount | |
5356 | */ | |
51f2176d | 5357 | cfs_rq->runtime_remaining = 1; |
0e59bdae | 5358 | /* |
97fb7a0a | 5359 | * Offline rq is schedulable till CPU is completely disabled |
0e59bdae KT |
5360 | * in take_cpu_down(), so we prevent new cfs throttling here. |
5361 | */ | |
5362 | cfs_rq->runtime_enabled = 0; | |
5363 | ||
029632fb PZ |
5364 | if (cfs_rq_throttled(cfs_rq)) |
5365 | unthrottle_cfs_rq(cfs_rq); | |
5366 | } | |
502ce005 | 5367 | rcu_read_unlock(); |
029632fb PZ |
5368 | } |
5369 | ||
5370 | #else /* CONFIG_CFS_BANDWIDTH */ | |
f6783319 VG |
5371 | |
5372 | static inline bool cfs_bandwidth_used(void) | |
5373 | { | |
5374 | return false; | |
5375 | } | |
5376 | ||
9dbdb155 | 5377 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} |
678d5718 | 5378 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } |
d3d9dc33 | 5379 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} |
55e16d30 | 5380 | static inline void sync_throttle(struct task_group *tg, int cpu) {} |
6c16a6dc | 5381 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
85dac906 PT |
5382 | |
5383 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | |
5384 | { | |
5385 | return 0; | |
5386 | } | |
64660c86 PT |
5387 | |
5388 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
5389 | { | |
5390 | return 0; | |
5391 | } | |
5392 | ||
5393 | static inline int throttled_lb_pair(struct task_group *tg, | |
5394 | int src_cpu, int dest_cpu) | |
5395 | { | |
5396 | return 0; | |
5397 | } | |
029632fb PZ |
5398 | |
5399 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | |
5400 | ||
5401 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
5402 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | |
ab84d31e PT |
5403 | #endif |
5404 | ||
029632fb PZ |
5405 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
5406 | { | |
5407 | return NULL; | |
5408 | } | |
5409 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | |
0e59bdae | 5410 | static inline void update_runtime_enabled(struct rq *rq) {} |
a4c96ae3 | 5411 | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} |
029632fb PZ |
5412 | |
5413 | #endif /* CONFIG_CFS_BANDWIDTH */ | |
5414 | ||
bf0f6f24 IM |
5415 | /************************************************** |
5416 | * CFS operations on tasks: | |
5417 | */ | |
5418 | ||
8f4d37ec PZ |
5419 | #ifdef CONFIG_SCHED_HRTICK |
5420 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
5421 | { | |
8f4d37ec PZ |
5422 | struct sched_entity *se = &p->se; |
5423 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
5424 | ||
9148a3a1 | 5425 | SCHED_WARN_ON(task_rq(p) != rq); |
8f4d37ec | 5426 | |
8bf46a39 | 5427 | if (rq->cfs.h_nr_running > 1) { |
8f4d37ec PZ |
5428 | u64 slice = sched_slice(cfs_rq, se); |
5429 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | |
5430 | s64 delta = slice - ran; | |
5431 | ||
5432 | if (delta < 0) { | |
65bcf072 | 5433 | if (task_current(rq, p)) |
8875125e | 5434 | resched_curr(rq); |
8f4d37ec PZ |
5435 | return; |
5436 | } | |
31656519 | 5437 | hrtick_start(rq, delta); |
8f4d37ec PZ |
5438 | } |
5439 | } | |
a4c2f00f PZ |
5440 | |
5441 | /* | |
5442 | * called from enqueue/dequeue and updates the hrtick when the | |
5443 | * current task is from our class and nr_running is low enough | |
5444 | * to matter. | |
5445 | */ | |
5446 | static void hrtick_update(struct rq *rq) | |
5447 | { | |
5448 | struct task_struct *curr = rq->curr; | |
5449 | ||
b39e66ea | 5450 | if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) |
a4c2f00f PZ |
5451 | return; |
5452 | ||
5453 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | |
5454 | hrtick_start_fair(rq, curr); | |
5455 | } | |
55e12e5e | 5456 | #else /* !CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
5457 | static inline void |
5458 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
5459 | { | |
5460 | } | |
a4c2f00f PZ |
5461 | |
5462 | static inline void hrtick_update(struct rq *rq) | |
5463 | { | |
5464 | } | |
8f4d37ec PZ |
5465 | #endif |
5466 | ||
2802bf3c MR |
5467 | #ifdef CONFIG_SMP |
5468 | static inline unsigned long cpu_util(int cpu); | |
2802bf3c MR |
5469 | |
5470 | static inline bool cpu_overutilized(int cpu) | |
5471 | { | |
60e17f5c | 5472 | return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); |
2802bf3c MR |
5473 | } |
5474 | ||
5475 | static inline void update_overutilized_status(struct rq *rq) | |
5476 | { | |
f9f240f9 | 5477 | if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { |
2802bf3c | 5478 | WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); |
f9f240f9 QY |
5479 | trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); |
5480 | } | |
2802bf3c MR |
5481 | } |
5482 | #else | |
5483 | static inline void update_overutilized_status(struct rq *rq) { } | |
5484 | #endif | |
5485 | ||
323af6de VK |
5486 | /* Runqueue only has SCHED_IDLE tasks enqueued */ |
5487 | static int sched_idle_rq(struct rq *rq) | |
5488 | { | |
5489 | return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && | |
5490 | rq->nr_running); | |
5491 | } | |
5492 | ||
afa70d94 | 5493 | #ifdef CONFIG_SMP |
323af6de VK |
5494 | static int sched_idle_cpu(int cpu) |
5495 | { | |
5496 | return sched_idle_rq(cpu_rq(cpu)); | |
5497 | } | |
afa70d94 | 5498 | #endif |
323af6de | 5499 | |
bf0f6f24 IM |
5500 | /* |
5501 | * The enqueue_task method is called before nr_running is | |
5502 | * increased. Here we update the fair scheduling stats and | |
5503 | * then put the task into the rbtree: | |
5504 | */ | |
ea87bb78 | 5505 | static void |
371fd7e7 | 5506 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
5507 | { |
5508 | struct cfs_rq *cfs_rq; | |
62fb1851 | 5509 | struct sched_entity *se = &p->se; |
43e9f7f2 | 5510 | int idle_h_nr_running = task_has_idle_policy(p); |
8e1ac429 | 5511 | int task_new = !(flags & ENQUEUE_WAKEUP); |
bf0f6f24 | 5512 | |
2539fc82 PB |
5513 | /* |
5514 | * The code below (indirectly) updates schedutil which looks at | |
5515 | * the cfs_rq utilization to select a frequency. | |
5516 | * Let's add the task's estimated utilization to the cfs_rq's | |
5517 | * estimated utilization, before we update schedutil. | |
5518 | */ | |
5519 | util_est_enqueue(&rq->cfs, p); | |
5520 | ||
8c34ab19 RW |
5521 | /* |
5522 | * If in_iowait is set, the code below may not trigger any cpufreq | |
5523 | * utilization updates, so do it here explicitly with the IOWAIT flag | |
5524 | * passed. | |
5525 | */ | |
5526 | if (p->in_iowait) | |
674e7541 | 5527 | cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); |
8c34ab19 | 5528 | |
bf0f6f24 | 5529 | for_each_sched_entity(se) { |
62fb1851 | 5530 | if (se->on_rq) |
bf0f6f24 IM |
5531 | break; |
5532 | cfs_rq = cfs_rq_of(se); | |
88ec22d3 | 5533 | enqueue_entity(cfs_rq, se, flags); |
85dac906 | 5534 | |
953bfcd1 | 5535 | cfs_rq->h_nr_running++; |
43e9f7f2 | 5536 | cfs_rq->idle_h_nr_running += idle_h_nr_running; |
85dac906 | 5537 | |
6d4d2246 VG |
5538 | /* end evaluation on encountering a throttled cfs_rq */ |
5539 | if (cfs_rq_throttled(cfs_rq)) | |
5540 | goto enqueue_throttle; | |
5541 | ||
88ec22d3 | 5542 | flags = ENQUEUE_WAKEUP; |
bf0f6f24 | 5543 | } |
8f4d37ec | 5544 | |
2069dd75 | 5545 | for_each_sched_entity(se) { |
0f317143 | 5546 | cfs_rq = cfs_rq_of(se); |
2069dd75 | 5547 | |
88c0616e | 5548 | update_load_avg(cfs_rq, se, UPDATE_TG); |
9f683953 | 5549 | se_update_runnable(se); |
1ea6c46a | 5550 | update_cfs_group(se); |
6d4d2246 VG |
5551 | |
5552 | cfs_rq->h_nr_running++; | |
5553 | cfs_rq->idle_h_nr_running += idle_h_nr_running; | |
5ab297ba VG |
5554 | |
5555 | /* end evaluation on encountering a throttled cfs_rq */ | |
5556 | if (cfs_rq_throttled(cfs_rq)) | |
5557 | goto enqueue_throttle; | |
b34cb07d PA |
5558 | |
5559 | /* | |
5560 | * One parent has been throttled and cfs_rq removed from the | |
5561 | * list. Add it back to not break the leaf list. | |
5562 | */ | |
5563 | if (throttled_hierarchy(cfs_rq)) | |
5564 | list_add_leaf_cfs_rq(cfs_rq); | |
2069dd75 PZ |
5565 | } |
5566 | ||
7d148be6 VG |
5567 | /* At this point se is NULL and we are at root level*/ |
5568 | add_nr_running(rq, 1); | |
2802bf3c | 5569 | |
7d148be6 VG |
5570 | /* |
5571 | * Since new tasks are assigned an initial util_avg equal to | |
5572 | * half of the spare capacity of their CPU, tiny tasks have the | |
5573 | * ability to cross the overutilized threshold, which will | |
5574 | * result in the load balancer ruining all the task placement | |
5575 | * done by EAS. As a way to mitigate that effect, do not account | |
5576 | * for the first enqueue operation of new tasks during the | |
5577 | * overutilized flag detection. | |
5578 | * | |
5579 | * A better way of solving this problem would be to wait for | |
5580 | * the PELT signals of tasks to converge before taking them | |
5581 | * into account, but that is not straightforward to implement, | |
5582 | * and the following generally works well enough in practice. | |
5583 | */ | |
8e1ac429 | 5584 | if (!task_new) |
7d148be6 | 5585 | update_overutilized_status(rq); |
cd126afe | 5586 | |
7d148be6 | 5587 | enqueue_throttle: |
f6783319 VG |
5588 | if (cfs_bandwidth_used()) { |
5589 | /* | |
5590 | * When bandwidth control is enabled; the cfs_rq_throttled() | |
5591 | * breaks in the above iteration can result in incomplete | |
5592 | * leaf list maintenance, resulting in triggering the assertion | |
5593 | * below. | |
5594 | */ | |
5595 | for_each_sched_entity(se) { | |
5596 | cfs_rq = cfs_rq_of(se); | |
5597 | ||
5598 | if (list_add_leaf_cfs_rq(cfs_rq)) | |
5599 | break; | |
5600 | } | |
5601 | } | |
5602 | ||
5d299eab PZ |
5603 | assert_list_leaf_cfs_rq(rq); |
5604 | ||
a4c2f00f | 5605 | hrtick_update(rq); |
bf0f6f24 IM |
5606 | } |
5607 | ||
2f36825b VP |
5608 | static void set_next_buddy(struct sched_entity *se); |
5609 | ||
bf0f6f24 IM |
5610 | /* |
5611 | * The dequeue_task method is called before nr_running is | |
5612 | * decreased. We remove the task from the rbtree and | |
5613 | * update the fair scheduling stats: | |
5614 | */ | |
371fd7e7 | 5615 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
5616 | { |
5617 | struct cfs_rq *cfs_rq; | |
62fb1851 | 5618 | struct sched_entity *se = &p->se; |
2f36825b | 5619 | int task_sleep = flags & DEQUEUE_SLEEP; |
43e9f7f2 | 5620 | int idle_h_nr_running = task_has_idle_policy(p); |
323af6de | 5621 | bool was_sched_idle = sched_idle_rq(rq); |
bf0f6f24 | 5622 | |
8c1f560c XY |
5623 | util_est_dequeue(&rq->cfs, p); |
5624 | ||
bf0f6f24 IM |
5625 | for_each_sched_entity(se) { |
5626 | cfs_rq = cfs_rq_of(se); | |
371fd7e7 | 5627 | dequeue_entity(cfs_rq, se, flags); |
85dac906 | 5628 | |
953bfcd1 | 5629 | cfs_rq->h_nr_running--; |
43e9f7f2 | 5630 | cfs_rq->idle_h_nr_running -= idle_h_nr_running; |
2069dd75 | 5631 | |
6d4d2246 VG |
5632 | /* end evaluation on encountering a throttled cfs_rq */ |
5633 | if (cfs_rq_throttled(cfs_rq)) | |
5634 | goto dequeue_throttle; | |
5635 | ||
bf0f6f24 | 5636 | /* Don't dequeue parent if it has other entities besides us */ |
2f36825b | 5637 | if (cfs_rq->load.weight) { |
754bd598 KK |
5638 | /* Avoid re-evaluating load for this entity: */ |
5639 | se = parent_entity(se); | |
2f36825b VP |
5640 | /* |
5641 | * Bias pick_next to pick a task from this cfs_rq, as | |
5642 | * p is sleeping when it is within its sched_slice. | |
5643 | */ | |
754bd598 KK |
5644 | if (task_sleep && se && !throttled_hierarchy(cfs_rq)) |
5645 | set_next_buddy(se); | |
bf0f6f24 | 5646 | break; |
2f36825b | 5647 | } |
371fd7e7 | 5648 | flags |= DEQUEUE_SLEEP; |
bf0f6f24 | 5649 | } |
8f4d37ec | 5650 | |
2069dd75 | 5651 | for_each_sched_entity(se) { |
0f317143 | 5652 | cfs_rq = cfs_rq_of(se); |
2069dd75 | 5653 | |
88c0616e | 5654 | update_load_avg(cfs_rq, se, UPDATE_TG); |
9f683953 | 5655 | se_update_runnable(se); |
1ea6c46a | 5656 | update_cfs_group(se); |
6d4d2246 VG |
5657 | |
5658 | cfs_rq->h_nr_running--; | |
5659 | cfs_rq->idle_h_nr_running -= idle_h_nr_running; | |
5ab297ba VG |
5660 | |
5661 | /* end evaluation on encountering a throttled cfs_rq */ | |
5662 | if (cfs_rq_throttled(cfs_rq)) | |
5663 | goto dequeue_throttle; | |
5664 | ||
2069dd75 PZ |
5665 | } |
5666 | ||
423d02e1 PW |
5667 | /* At this point se is NULL and we are at root level*/ |
5668 | sub_nr_running(rq, 1); | |
cd126afe | 5669 | |
323af6de VK |
5670 | /* balance early to pull high priority tasks */ |
5671 | if (unlikely(!was_sched_idle && sched_idle_rq(rq))) | |
5672 | rq->next_balance = jiffies; | |
5673 | ||
423d02e1 | 5674 | dequeue_throttle: |
8c1f560c | 5675 | util_est_update(&rq->cfs, p, task_sleep); |
a4c2f00f | 5676 | hrtick_update(rq); |
bf0f6f24 IM |
5677 | } |
5678 | ||
e7693a36 | 5679 | #ifdef CONFIG_SMP |
10e2f1ac PZ |
5680 | |
5681 | /* Working cpumask for: load_balance, load_balance_newidle. */ | |
5682 | DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); | |
5683 | DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); | |
5684 | ||
9fd81dd5 | 5685 | #ifdef CONFIG_NO_HZ_COMMON |
e022e0d3 PZ |
5686 | |
5687 | static struct { | |
5688 | cpumask_var_t idle_cpus_mask; | |
5689 | atomic_t nr_cpus; | |
f643ea22 | 5690 | int has_blocked; /* Idle CPUS has blocked load */ |
e022e0d3 | 5691 | unsigned long next_balance; /* in jiffy units */ |
f643ea22 | 5692 | unsigned long next_blocked; /* Next update of blocked load in jiffies */ |
e022e0d3 PZ |
5693 | } nohz ____cacheline_aligned; |
5694 | ||
9fd81dd5 | 5695 | #endif /* CONFIG_NO_HZ_COMMON */ |
3289bdb4 | 5696 | |
b0fb1eb4 VG |
5697 | static unsigned long cpu_load(struct rq *rq) |
5698 | { | |
5699 | return cfs_rq_load_avg(&rq->cfs); | |
5700 | } | |
5701 | ||
3318544b VG |
5702 | /* |
5703 | * cpu_load_without - compute CPU load without any contributions from *p | |
5704 | * @cpu: the CPU which load is requested | |
5705 | * @p: the task which load should be discounted | |
5706 | * | |
5707 | * The load of a CPU is defined by the load of tasks currently enqueued on that | |
5708 | * CPU as well as tasks which are currently sleeping after an execution on that | |
5709 | * CPU. | |
5710 | * | |
5711 | * This method returns the load of the specified CPU by discounting the load of | |
5712 | * the specified task, whenever the task is currently contributing to the CPU | |
5713 | * load. | |
5714 | */ | |
5715 | static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) | |
5716 | { | |
5717 | struct cfs_rq *cfs_rq; | |
5718 | unsigned int load; | |
5719 | ||
5720 | /* Task has no contribution or is new */ | |
5721 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
5722 | return cpu_load(rq); | |
5723 | ||
5724 | cfs_rq = &rq->cfs; | |
5725 | load = READ_ONCE(cfs_rq->avg.load_avg); | |
5726 | ||
5727 | /* Discount task's util from CPU's util */ | |
5728 | lsub_positive(&load, task_h_load(p)); | |
5729 | ||
5730 | return load; | |
5731 | } | |
5732 | ||
9f683953 VG |
5733 | static unsigned long cpu_runnable(struct rq *rq) |
5734 | { | |
5735 | return cfs_rq_runnable_avg(&rq->cfs); | |
5736 | } | |
5737 | ||
070f5e86 VG |
5738 | static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) |
5739 | { | |
5740 | struct cfs_rq *cfs_rq; | |
5741 | unsigned int runnable; | |
5742 | ||
5743 | /* Task has no contribution or is new */ | |
5744 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
5745 | return cpu_runnable(rq); | |
5746 | ||
5747 | cfs_rq = &rq->cfs; | |
5748 | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); | |
5749 | ||
5750 | /* Discount task's runnable from CPU's runnable */ | |
5751 | lsub_positive(&runnable, p->se.avg.runnable_avg); | |
5752 | ||
5753 | return runnable; | |
5754 | } | |
5755 | ||
ced549fa | 5756 | static unsigned long capacity_of(int cpu) |
029632fb | 5757 | { |
ced549fa | 5758 | return cpu_rq(cpu)->cpu_capacity; |
029632fb PZ |
5759 | } |
5760 | ||
c58d25f3 PZ |
5761 | static void record_wakee(struct task_struct *p) |
5762 | { | |
5763 | /* | |
5764 | * Only decay a single time; tasks that have less then 1 wakeup per | |
5765 | * jiffy will not have built up many flips. | |
5766 | */ | |
5767 | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { | |
5768 | current->wakee_flips >>= 1; | |
5769 | current->wakee_flip_decay_ts = jiffies; | |
5770 | } | |
5771 | ||
5772 | if (current->last_wakee != p) { | |
5773 | current->last_wakee = p; | |
5774 | current->wakee_flips++; | |
5775 | } | |
5776 | } | |
5777 | ||
63b0e9ed MG |
5778 | /* |
5779 | * Detect M:N waker/wakee relationships via a switching-frequency heuristic. | |
c58d25f3 | 5780 | * |
63b0e9ed | 5781 | * A waker of many should wake a different task than the one last awakened |
c58d25f3 PZ |
5782 | * at a frequency roughly N times higher than one of its wakees. |
5783 | * | |
5784 | * In order to determine whether we should let the load spread vs consolidating | |
5785 | * to shared cache, we look for a minimum 'flip' frequency of llc_size in one | |
5786 | * partner, and a factor of lls_size higher frequency in the other. | |
5787 | * | |
5788 | * With both conditions met, we can be relatively sure that the relationship is | |
5789 | * non-monogamous, with partner count exceeding socket size. | |
5790 | * | |
5791 | * Waker/wakee being client/server, worker/dispatcher, interrupt source or | |
5792 | * whatever is irrelevant, spread criteria is apparent partner count exceeds | |
5793 | * socket size. | |
63b0e9ed | 5794 | */ |
62470419 MW |
5795 | static int wake_wide(struct task_struct *p) |
5796 | { | |
63b0e9ed MG |
5797 | unsigned int master = current->wakee_flips; |
5798 | unsigned int slave = p->wakee_flips; | |
17c891ab | 5799 | int factor = __this_cpu_read(sd_llc_size); |
62470419 | 5800 | |
63b0e9ed MG |
5801 | if (master < slave) |
5802 | swap(master, slave); | |
5803 | if (slave < factor || master < slave * factor) | |
5804 | return 0; | |
5805 | return 1; | |
62470419 MW |
5806 | } |
5807 | ||
90001d67 | 5808 | /* |
d153b153 PZ |
5809 | * The purpose of wake_affine() is to quickly determine on which CPU we can run |
5810 | * soonest. For the purpose of speed we only consider the waking and previous | |
5811 | * CPU. | |
90001d67 | 5812 | * |
7332dec0 MG |
5813 | * wake_affine_idle() - only considers 'now', it check if the waking CPU is |
5814 | * cache-affine and is (or will be) idle. | |
f2cdd9cc PZ |
5815 | * |
5816 | * wake_affine_weight() - considers the weight to reflect the average | |
5817 | * scheduling latency of the CPUs. This seems to work | |
5818 | * for the overloaded case. | |
90001d67 | 5819 | */ |
3b76c4a3 | 5820 | static int |
89a55f56 | 5821 | wake_affine_idle(int this_cpu, int prev_cpu, int sync) |
90001d67 | 5822 | { |
7332dec0 MG |
5823 | /* |
5824 | * If this_cpu is idle, it implies the wakeup is from interrupt | |
5825 | * context. Only allow the move if cache is shared. Otherwise an | |
5826 | * interrupt intensive workload could force all tasks onto one | |
5827 | * node depending on the IO topology or IRQ affinity settings. | |
806486c3 MG |
5828 | * |
5829 | * If the prev_cpu is idle and cache affine then avoid a migration. | |
5830 | * There is no guarantee that the cache hot data from an interrupt | |
5831 | * is more important than cache hot data on the prev_cpu and from | |
5832 | * a cpufreq perspective, it's better to have higher utilisation | |
5833 | * on one CPU. | |
7332dec0 | 5834 | */ |
943d355d RJ |
5835 | if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) |
5836 | return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; | |
90001d67 | 5837 | |
d153b153 | 5838 | if (sync && cpu_rq(this_cpu)->nr_running == 1) |
3b76c4a3 | 5839 | return this_cpu; |
90001d67 | 5840 | |
d8fcb81f JL |
5841 | if (available_idle_cpu(prev_cpu)) |
5842 | return prev_cpu; | |
5843 | ||
3b76c4a3 | 5844 | return nr_cpumask_bits; |
90001d67 PZ |
5845 | } |
5846 | ||
3b76c4a3 | 5847 | static int |
f2cdd9cc PZ |
5848 | wake_affine_weight(struct sched_domain *sd, struct task_struct *p, |
5849 | int this_cpu, int prev_cpu, int sync) | |
90001d67 | 5850 | { |
90001d67 PZ |
5851 | s64 this_eff_load, prev_eff_load; |
5852 | unsigned long task_load; | |
5853 | ||
11f10e54 | 5854 | this_eff_load = cpu_load(cpu_rq(this_cpu)); |
90001d67 | 5855 | |
90001d67 PZ |
5856 | if (sync) { |
5857 | unsigned long current_load = task_h_load(current); | |
5858 | ||
f2cdd9cc | 5859 | if (current_load > this_eff_load) |
3b76c4a3 | 5860 | return this_cpu; |
90001d67 | 5861 | |
f2cdd9cc | 5862 | this_eff_load -= current_load; |
90001d67 PZ |
5863 | } |
5864 | ||
90001d67 PZ |
5865 | task_load = task_h_load(p); |
5866 | ||
f2cdd9cc PZ |
5867 | this_eff_load += task_load; |
5868 | if (sched_feat(WA_BIAS)) | |
5869 | this_eff_load *= 100; | |
5870 | this_eff_load *= capacity_of(prev_cpu); | |
90001d67 | 5871 | |
11f10e54 | 5872 | prev_eff_load = cpu_load(cpu_rq(prev_cpu)); |
f2cdd9cc PZ |
5873 | prev_eff_load -= task_load; |
5874 | if (sched_feat(WA_BIAS)) | |
5875 | prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; | |
5876 | prev_eff_load *= capacity_of(this_cpu); | |
90001d67 | 5877 | |
082f764a MG |
5878 | /* |
5879 | * If sync, adjust the weight of prev_eff_load such that if | |
5880 | * prev_eff == this_eff that select_idle_sibling() will consider | |
5881 | * stacking the wakee on top of the waker if no other CPU is | |
5882 | * idle. | |
5883 | */ | |
5884 | if (sync) | |
5885 | prev_eff_load += 1; | |
5886 | ||
5887 | return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; | |
90001d67 PZ |
5888 | } |
5889 | ||
772bd008 | 5890 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, |
7ebb66a1 | 5891 | int this_cpu, int prev_cpu, int sync) |
098fb9db | 5892 | { |
3b76c4a3 | 5893 | int target = nr_cpumask_bits; |
098fb9db | 5894 | |
89a55f56 | 5895 | if (sched_feat(WA_IDLE)) |
3b76c4a3 | 5896 | target = wake_affine_idle(this_cpu, prev_cpu, sync); |
90001d67 | 5897 | |
3b76c4a3 MG |
5898 | if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) |
5899 | target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); | |
098fb9db | 5900 | |
ae92882e | 5901 | schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); |
3b76c4a3 MG |
5902 | if (target == nr_cpumask_bits) |
5903 | return prev_cpu; | |
098fb9db | 5904 | |
3b76c4a3 MG |
5905 | schedstat_inc(sd->ttwu_move_affine); |
5906 | schedstat_inc(p->se.statistics.nr_wakeups_affine); | |
5907 | return target; | |
098fb9db IM |
5908 | } |
5909 | ||
aaee1203 | 5910 | static struct sched_group * |
45da2773 | 5911 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); |
aaee1203 PZ |
5912 | |
5913 | /* | |
97fb7a0a | 5914 | * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. |
aaee1203 PZ |
5915 | */ |
5916 | static int | |
18bd1b4b | 5917 | find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) |
aaee1203 PZ |
5918 | { |
5919 | unsigned long load, min_load = ULONG_MAX; | |
83a0a96a NP |
5920 | unsigned int min_exit_latency = UINT_MAX; |
5921 | u64 latest_idle_timestamp = 0; | |
5922 | int least_loaded_cpu = this_cpu; | |
17346452 | 5923 | int shallowest_idle_cpu = -1; |
aaee1203 PZ |
5924 | int i; |
5925 | ||
eaecf41f MR |
5926 | /* Check if we have any choice: */ |
5927 | if (group->group_weight == 1) | |
ae4df9d6 | 5928 | return cpumask_first(sched_group_span(group)); |
eaecf41f | 5929 | |
aaee1203 | 5930 | /* Traverse only the allowed CPUs */ |
3bd37062 | 5931 | for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { |
17346452 VK |
5932 | if (sched_idle_cpu(i)) |
5933 | return i; | |
5934 | ||
943d355d | 5935 | if (available_idle_cpu(i)) { |
83a0a96a NP |
5936 | struct rq *rq = cpu_rq(i); |
5937 | struct cpuidle_state *idle = idle_get_state(rq); | |
5938 | if (idle && idle->exit_latency < min_exit_latency) { | |
5939 | /* | |
5940 | * We give priority to a CPU whose idle state | |
5941 | * has the smallest exit latency irrespective | |
5942 | * of any idle timestamp. | |
5943 | */ | |
5944 | min_exit_latency = idle->exit_latency; | |
5945 | latest_idle_timestamp = rq->idle_stamp; | |
5946 | shallowest_idle_cpu = i; | |
5947 | } else if ((!idle || idle->exit_latency == min_exit_latency) && | |
5948 | rq->idle_stamp > latest_idle_timestamp) { | |
5949 | /* | |
5950 | * If equal or no active idle state, then | |
5951 | * the most recently idled CPU might have | |
5952 | * a warmer cache. | |
5953 | */ | |
5954 | latest_idle_timestamp = rq->idle_stamp; | |
5955 | shallowest_idle_cpu = i; | |
5956 | } | |
17346452 | 5957 | } else if (shallowest_idle_cpu == -1) { |
11f10e54 | 5958 | load = cpu_load(cpu_rq(i)); |
18cec7e0 | 5959 | if (load < min_load) { |
83a0a96a NP |
5960 | min_load = load; |
5961 | least_loaded_cpu = i; | |
5962 | } | |
e7693a36 GH |
5963 | } |
5964 | } | |
5965 | ||
17346452 | 5966 | return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; |
aaee1203 | 5967 | } |
e7693a36 | 5968 | |
18bd1b4b BJ |
5969 | static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, |
5970 | int cpu, int prev_cpu, int sd_flag) | |
5971 | { | |
93f50f90 | 5972 | int new_cpu = cpu; |
18bd1b4b | 5973 | |
3bd37062 | 5974 | if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) |
6fee85cc BJ |
5975 | return prev_cpu; |
5976 | ||
c976a862 | 5977 | /* |
57abff06 | 5978 | * We need task's util for cpu_util_without, sync it up to |
c469933e | 5979 | * prev_cpu's last_update_time. |
c976a862 VK |
5980 | */ |
5981 | if (!(sd_flag & SD_BALANCE_FORK)) | |
5982 | sync_entity_load_avg(&p->se); | |
5983 | ||
18bd1b4b BJ |
5984 | while (sd) { |
5985 | struct sched_group *group; | |
5986 | struct sched_domain *tmp; | |
5987 | int weight; | |
5988 | ||
5989 | if (!(sd->flags & sd_flag)) { | |
5990 | sd = sd->child; | |
5991 | continue; | |
5992 | } | |
5993 | ||
45da2773 | 5994 | group = find_idlest_group(sd, p, cpu); |
18bd1b4b BJ |
5995 | if (!group) { |
5996 | sd = sd->child; | |
5997 | continue; | |
5998 | } | |
5999 | ||
6000 | new_cpu = find_idlest_group_cpu(group, p, cpu); | |
e90381ea | 6001 | if (new_cpu == cpu) { |
97fb7a0a | 6002 | /* Now try balancing at a lower domain level of 'cpu': */ |
18bd1b4b BJ |
6003 | sd = sd->child; |
6004 | continue; | |
6005 | } | |
6006 | ||
97fb7a0a | 6007 | /* Now try balancing at a lower domain level of 'new_cpu': */ |
18bd1b4b BJ |
6008 | cpu = new_cpu; |
6009 | weight = sd->span_weight; | |
6010 | sd = NULL; | |
6011 | for_each_domain(cpu, tmp) { | |
6012 | if (weight <= tmp->span_weight) | |
6013 | break; | |
6014 | if (tmp->flags & sd_flag) | |
6015 | sd = tmp; | |
6016 | } | |
18bd1b4b BJ |
6017 | } |
6018 | ||
6019 | return new_cpu; | |
6020 | } | |
6021 | ||
10e2f1ac | 6022 | #ifdef CONFIG_SCHED_SMT |
ba2591a5 | 6023 | DEFINE_STATIC_KEY_FALSE(sched_smt_present); |
b284909a | 6024 | EXPORT_SYMBOL_GPL(sched_smt_present); |
10e2f1ac PZ |
6025 | |
6026 | static inline void set_idle_cores(int cpu, int val) | |
6027 | { | |
6028 | struct sched_domain_shared *sds; | |
6029 | ||
6030 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
6031 | if (sds) | |
6032 | WRITE_ONCE(sds->has_idle_cores, val); | |
6033 | } | |
6034 | ||
6035 | static inline bool test_idle_cores(int cpu, bool def) | |
6036 | { | |
6037 | struct sched_domain_shared *sds; | |
6038 | ||
6039 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
6040 | if (sds) | |
6041 | return READ_ONCE(sds->has_idle_cores); | |
6042 | ||
6043 | return def; | |
6044 | } | |
6045 | ||
6046 | /* | |
6047 | * Scans the local SMT mask to see if the entire core is idle, and records this | |
6048 | * information in sd_llc_shared->has_idle_cores. | |
6049 | * | |
6050 | * Since SMT siblings share all cache levels, inspecting this limited remote | |
6051 | * state should be fairly cheap. | |
6052 | */ | |
1b568f0a | 6053 | void __update_idle_core(struct rq *rq) |
10e2f1ac PZ |
6054 | { |
6055 | int core = cpu_of(rq); | |
6056 | int cpu; | |
6057 | ||
6058 | rcu_read_lock(); | |
6059 | if (test_idle_cores(core, true)) | |
6060 | goto unlock; | |
6061 | ||
6062 | for_each_cpu(cpu, cpu_smt_mask(core)) { | |
6063 | if (cpu == core) | |
6064 | continue; | |
6065 | ||
943d355d | 6066 | if (!available_idle_cpu(cpu)) |
10e2f1ac PZ |
6067 | goto unlock; |
6068 | } | |
6069 | ||
6070 | set_idle_cores(core, 1); | |
6071 | unlock: | |
6072 | rcu_read_unlock(); | |
6073 | } | |
6074 | ||
6075 | /* | |
6076 | * Scan the entire LLC domain for idle cores; this dynamically switches off if | |
6077 | * there are no idle cores left in the system; tracked through | |
6078 | * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. | |
6079 | */ | |
6080 | static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) | |
6081 | { | |
6082 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); | |
c743f0a5 | 6083 | int core, cpu; |
10e2f1ac | 6084 | |
1b568f0a PZ |
6085 | if (!static_branch_likely(&sched_smt_present)) |
6086 | return -1; | |
6087 | ||
10e2f1ac PZ |
6088 | if (!test_idle_cores(target, false)) |
6089 | return -1; | |
6090 | ||
3bd37062 | 6091 | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); |
10e2f1ac | 6092 | |
c743f0a5 | 6093 | for_each_cpu_wrap(core, cpus, target) { |
10e2f1ac PZ |
6094 | bool idle = true; |
6095 | ||
6096 | for_each_cpu(cpu, cpu_smt_mask(core)) { | |
bec2860a | 6097 | if (!available_idle_cpu(cpu)) { |
10e2f1ac | 6098 | idle = false; |
bec2860a SD |
6099 | break; |
6100 | } | |
10e2f1ac PZ |
6101 | } |
6102 | ||
6103 | if (idle) | |
6104 | return core; | |
13d5a5e9 MG |
6105 | |
6106 | cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); | |
10e2f1ac PZ |
6107 | } |
6108 | ||
6109 | /* | |
6110 | * Failed to find an idle core; stop looking for one. | |
6111 | */ | |
6112 | set_idle_cores(target, 0); | |
6113 | ||
6114 | return -1; | |
6115 | } | |
6116 | ||
6117 | /* | |
6118 | * Scan the local SMT mask for idle CPUs. | |
6119 | */ | |
df3cb4ea | 6120 | static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) |
10e2f1ac | 6121 | { |
17346452 | 6122 | int cpu; |
10e2f1ac | 6123 | |
1b568f0a PZ |
6124 | if (!static_branch_likely(&sched_smt_present)) |
6125 | return -1; | |
6126 | ||
10e2f1ac | 6127 | for_each_cpu(cpu, cpu_smt_mask(target)) { |
df3cb4ea XP |
6128 | if (!cpumask_test_cpu(cpu, p->cpus_ptr) || |
6129 | !cpumask_test_cpu(cpu, sched_domain_span(sd))) | |
10e2f1ac | 6130 | continue; |
17346452 | 6131 | if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) |
10e2f1ac PZ |
6132 | return cpu; |
6133 | } | |
6134 | ||
17346452 | 6135 | return -1; |
10e2f1ac PZ |
6136 | } |
6137 | ||
6138 | #else /* CONFIG_SCHED_SMT */ | |
6139 | ||
6140 | static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) | |
6141 | { | |
6142 | return -1; | |
6143 | } | |
6144 | ||
df3cb4ea | 6145 | static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) |
10e2f1ac PZ |
6146 | { |
6147 | return -1; | |
6148 | } | |
6149 | ||
6150 | #endif /* CONFIG_SCHED_SMT */ | |
6151 | ||
6152 | /* | |
6153 | * Scan the LLC domain for idle CPUs; this is dynamically regulated by | |
6154 | * comparing the average scan cost (tracked in sd->avg_scan_cost) against the | |
6155 | * average idle time for this rq (as found in rq->avg_idle). | |
a50bde51 | 6156 | */ |
10e2f1ac PZ |
6157 | static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) |
6158 | { | |
60588bfa | 6159 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); |
9cfb38a7 | 6160 | struct sched_domain *this_sd; |
1ad3aaf3 | 6161 | u64 avg_cost, avg_idle; |
d76343c6 | 6162 | u64 time; |
8dc2d993 | 6163 | int this = smp_processor_id(); |
17346452 | 6164 | int cpu, nr = INT_MAX; |
10e2f1ac | 6165 | |
9cfb38a7 WL |
6166 | this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); |
6167 | if (!this_sd) | |
6168 | return -1; | |
6169 | ||
10e2f1ac PZ |
6170 | /* |
6171 | * Due to large variance we need a large fuzz factor; hackbench in | |
6172 | * particularly is sensitive here. | |
6173 | */ | |
1ad3aaf3 PZ |
6174 | avg_idle = this_rq()->avg_idle / 512; |
6175 | avg_cost = this_sd->avg_scan_cost + 1; | |
6176 | ||
6177 | if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) | |
10e2f1ac PZ |
6178 | return -1; |
6179 | ||
1ad3aaf3 PZ |
6180 | if (sched_feat(SIS_PROP)) { |
6181 | u64 span_avg = sd->span_weight * avg_idle; | |
6182 | if (span_avg > 4*avg_cost) | |
6183 | nr = div_u64(span_avg, avg_cost); | |
6184 | else | |
6185 | nr = 4; | |
6186 | } | |
6187 | ||
8dc2d993 | 6188 | time = cpu_clock(this); |
10e2f1ac | 6189 | |
60588bfa CJ |
6190 | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); |
6191 | ||
6192 | for_each_cpu_wrap(cpu, cpus, target) { | |
1ad3aaf3 | 6193 | if (!--nr) |
17346452 VK |
6194 | return -1; |
6195 | if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) | |
10e2f1ac PZ |
6196 | break; |
6197 | } | |
6198 | ||
8dc2d993 | 6199 | time = cpu_clock(this) - time; |
d76343c6 | 6200 | update_avg(&this_sd->avg_scan_cost, time); |
10e2f1ac PZ |
6201 | |
6202 | return cpu; | |
6203 | } | |
6204 | ||
b7a33161 MR |
6205 | /* |
6206 | * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which | |
6207 | * the task fits. If no CPU is big enough, but there are idle ones, try to | |
6208 | * maximize capacity. | |
6209 | */ | |
6210 | static int | |
6211 | select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) | |
6212 | { | |
b4c9c9f1 | 6213 | unsigned long task_util, best_cap = 0; |
b7a33161 MR |
6214 | int cpu, best_cpu = -1; |
6215 | struct cpumask *cpus; | |
6216 | ||
b7a33161 MR |
6217 | cpus = this_cpu_cpumask_var_ptr(select_idle_mask); |
6218 | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); | |
6219 | ||
b4c9c9f1 VG |
6220 | task_util = uclamp_task_util(p); |
6221 | ||
b7a33161 MR |
6222 | for_each_cpu_wrap(cpu, cpus, target) { |
6223 | unsigned long cpu_cap = capacity_of(cpu); | |
6224 | ||
6225 | if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) | |
6226 | continue; | |
b4c9c9f1 | 6227 | if (fits_capacity(task_util, cpu_cap)) |
b7a33161 MR |
6228 | return cpu; |
6229 | ||
6230 | if (cpu_cap > best_cap) { | |
6231 | best_cap = cpu_cap; | |
6232 | best_cpu = cpu; | |
6233 | } | |
6234 | } | |
6235 | ||
6236 | return best_cpu; | |
6237 | } | |
6238 | ||
b4c9c9f1 VG |
6239 | static inline bool asym_fits_capacity(int task_util, int cpu) |
6240 | { | |
6241 | if (static_branch_unlikely(&sched_asym_cpucapacity)) | |
6242 | return fits_capacity(task_util, capacity_of(cpu)); | |
6243 | ||
6244 | return true; | |
6245 | } | |
6246 | ||
10e2f1ac PZ |
6247 | /* |
6248 | * Try and locate an idle core/thread in the LLC cache domain. | |
a50bde51 | 6249 | */ |
772bd008 | 6250 | static int select_idle_sibling(struct task_struct *p, int prev, int target) |
a50bde51 | 6251 | { |
99bd5e2f | 6252 | struct sched_domain *sd; |
b4c9c9f1 | 6253 | unsigned long task_util; |
32e839dd | 6254 | int i, recent_used_cpu; |
a50bde51 | 6255 | |
b7a33161 | 6256 | /* |
b4c9c9f1 VG |
6257 | * On asymmetric system, update task utilization because we will check |
6258 | * that the task fits with cpu's capacity. | |
b7a33161 MR |
6259 | */ |
6260 | if (static_branch_unlikely(&sched_asym_cpucapacity)) { | |
b4c9c9f1 VG |
6261 | sync_entity_load_avg(&p->se); |
6262 | task_util = uclamp_task_util(p); | |
b7a33161 MR |
6263 | } |
6264 | ||
b4c9c9f1 VG |
6265 | if ((available_idle_cpu(target) || sched_idle_cpu(target)) && |
6266 | asym_fits_capacity(task_util, target)) | |
e0a79f52 | 6267 | return target; |
99bd5e2f SS |
6268 | |
6269 | /* | |
97fb7a0a | 6270 | * If the previous CPU is cache affine and idle, don't be stupid: |
99bd5e2f | 6271 | */ |
3c29e651 | 6272 | if (prev != target && cpus_share_cache(prev, target) && |
b4c9c9f1 VG |
6273 | (available_idle_cpu(prev) || sched_idle_cpu(prev)) && |
6274 | asym_fits_capacity(task_util, prev)) | |
772bd008 | 6275 | return prev; |
a50bde51 | 6276 | |
52262ee5 MG |
6277 | /* |
6278 | * Allow a per-cpu kthread to stack with the wakee if the | |
6279 | * kworker thread and the tasks previous CPUs are the same. | |
6280 | * The assumption is that the wakee queued work for the | |
6281 | * per-cpu kthread that is now complete and the wakeup is | |
6282 | * essentially a sync wakeup. An obvious example of this | |
6283 | * pattern is IO completions. | |
6284 | */ | |
6285 | if (is_per_cpu_kthread(current) && | |
6286 | prev == smp_processor_id() && | |
6287 | this_rq()->nr_running <= 1) { | |
6288 | return prev; | |
6289 | } | |
6290 | ||
97fb7a0a | 6291 | /* Check a recently used CPU as a potential idle candidate: */ |
32e839dd MG |
6292 | recent_used_cpu = p->recent_used_cpu; |
6293 | if (recent_used_cpu != prev && | |
6294 | recent_used_cpu != target && | |
6295 | cpus_share_cache(recent_used_cpu, target) && | |
3c29e651 | 6296 | (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && |
b4c9c9f1 VG |
6297 | cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && |
6298 | asym_fits_capacity(task_util, recent_used_cpu)) { | |
32e839dd MG |
6299 | /* |
6300 | * Replace recent_used_cpu with prev as it is a potential | |
97fb7a0a | 6301 | * candidate for the next wake: |
32e839dd MG |
6302 | */ |
6303 | p->recent_used_cpu = prev; | |
6304 | return recent_used_cpu; | |
6305 | } | |
6306 | ||
b4c9c9f1 VG |
6307 | /* |
6308 | * For asymmetric CPU capacity systems, our domain of interest is | |
6309 | * sd_asym_cpucapacity rather than sd_llc. | |
6310 | */ | |
6311 | if (static_branch_unlikely(&sched_asym_cpucapacity)) { | |
6312 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); | |
6313 | /* | |
6314 | * On an asymmetric CPU capacity system where an exclusive | |
6315 | * cpuset defines a symmetric island (i.e. one unique | |
6316 | * capacity_orig value through the cpuset), the key will be set | |
6317 | * but the CPUs within that cpuset will not have a domain with | |
6318 | * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric | |
6319 | * capacity path. | |
6320 | */ | |
6321 | if (sd) { | |
6322 | i = select_idle_capacity(p, sd, target); | |
6323 | return ((unsigned)i < nr_cpumask_bits) ? i : target; | |
6324 | } | |
6325 | } | |
6326 | ||
518cd623 | 6327 | sd = rcu_dereference(per_cpu(sd_llc, target)); |
10e2f1ac PZ |
6328 | if (!sd) |
6329 | return target; | |
772bd008 | 6330 | |
10e2f1ac PZ |
6331 | i = select_idle_core(p, sd, target); |
6332 | if ((unsigned)i < nr_cpumask_bits) | |
6333 | return i; | |
37407ea7 | 6334 | |
10e2f1ac PZ |
6335 | i = select_idle_cpu(p, sd, target); |
6336 | if ((unsigned)i < nr_cpumask_bits) | |
6337 | return i; | |
6338 | ||
df3cb4ea | 6339 | i = select_idle_smt(p, sd, target); |
10e2f1ac PZ |
6340 | if ((unsigned)i < nr_cpumask_bits) |
6341 | return i; | |
970e1789 | 6342 | |
a50bde51 PZ |
6343 | return target; |
6344 | } | |
231678b7 | 6345 | |
f9be3e59 | 6346 | /** |
59a74b15 | 6347 | * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. |
f9be3e59 PB |
6348 | * @cpu: the CPU to get the utilization of |
6349 | * | |
6350 | * The unit of the return value must be the one of capacity so we can compare | |
6351 | * the utilization with the capacity of the CPU that is available for CFS task | |
6352 | * (ie cpu_capacity). | |
231678b7 DE |
6353 | * |
6354 | * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the | |
6355 | * recent utilization of currently non-runnable tasks on a CPU. It represents | |
6356 | * the amount of utilization of a CPU in the range [0..capacity_orig] where | |
6357 | * capacity_orig is the cpu_capacity available at the highest frequency | |
6358 | * (arch_scale_freq_capacity()). | |
6359 | * The utilization of a CPU converges towards a sum equal to or less than the | |
6360 | * current capacity (capacity_curr <= capacity_orig) of the CPU because it is | |
6361 | * the running time on this CPU scaled by capacity_curr. | |
6362 | * | |
f9be3e59 PB |
6363 | * The estimated utilization of a CPU is defined to be the maximum between its |
6364 | * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks | |
6365 | * currently RUNNABLE on that CPU. | |
6366 | * This allows to properly represent the expected utilization of a CPU which | |
6367 | * has just got a big task running since a long sleep period. At the same time | |
6368 | * however it preserves the benefits of the "blocked utilization" in | |
6369 | * describing the potential for other tasks waking up on the same CPU. | |
6370 | * | |
231678b7 DE |
6371 | * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even |
6372 | * higher than capacity_orig because of unfortunate rounding in | |
6373 | * cfs.avg.util_avg or just after migrating tasks and new task wakeups until | |
6374 | * the average stabilizes with the new running time. We need to check that the | |
6375 | * utilization stays within the range of [0..capacity_orig] and cap it if | |
6376 | * necessary. Without utilization capping, a group could be seen as overloaded | |
6377 | * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of | |
6378 | * available capacity. We allow utilization to overshoot capacity_curr (but not | |
6379 | * capacity_orig) as it useful for predicting the capacity required after task | |
6380 | * migrations (scheduler-driven DVFS). | |
f9be3e59 PB |
6381 | * |
6382 | * Return: the (estimated) utilization for the specified CPU | |
8bb5b00c | 6383 | */ |
f9be3e59 | 6384 | static inline unsigned long cpu_util(int cpu) |
8bb5b00c | 6385 | { |
f9be3e59 PB |
6386 | struct cfs_rq *cfs_rq; |
6387 | unsigned int util; | |
6388 | ||
6389 | cfs_rq = &cpu_rq(cpu)->cfs; | |
6390 | util = READ_ONCE(cfs_rq->avg.util_avg); | |
6391 | ||
6392 | if (sched_feat(UTIL_EST)) | |
6393 | util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); | |
8bb5b00c | 6394 | |
f9be3e59 | 6395 | return min_t(unsigned long, util, capacity_orig_of(cpu)); |
8bb5b00c | 6396 | } |
a50bde51 | 6397 | |
104cb16d | 6398 | /* |
c469933e PB |
6399 | * cpu_util_without: compute cpu utilization without any contributions from *p |
6400 | * @cpu: the CPU which utilization is requested | |
6401 | * @p: the task which utilization should be discounted | |
6402 | * | |
6403 | * The utilization of a CPU is defined by the utilization of tasks currently | |
6404 | * enqueued on that CPU as well as tasks which are currently sleeping after an | |
6405 | * execution on that CPU. | |
6406 | * | |
6407 | * This method returns the utilization of the specified CPU by discounting the | |
6408 | * utilization of the specified task, whenever the task is currently | |
6409 | * contributing to the CPU utilization. | |
104cb16d | 6410 | */ |
c469933e | 6411 | static unsigned long cpu_util_without(int cpu, struct task_struct *p) |
104cb16d | 6412 | { |
f9be3e59 PB |
6413 | struct cfs_rq *cfs_rq; |
6414 | unsigned int util; | |
104cb16d MR |
6415 | |
6416 | /* Task has no contribution or is new */ | |
f9be3e59 | 6417 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) |
104cb16d MR |
6418 | return cpu_util(cpu); |
6419 | ||
f9be3e59 PB |
6420 | cfs_rq = &cpu_rq(cpu)->cfs; |
6421 | util = READ_ONCE(cfs_rq->avg.util_avg); | |
6422 | ||
c469933e | 6423 | /* Discount task's util from CPU's util */ |
b5c0ce7b | 6424 | lsub_positive(&util, task_util(p)); |
104cb16d | 6425 | |
f9be3e59 PB |
6426 | /* |
6427 | * Covered cases: | |
6428 | * | |
6429 | * a) if *p is the only task sleeping on this CPU, then: | |
6430 | * cpu_util (== task_util) > util_est (== 0) | |
6431 | * and thus we return: | |
c469933e | 6432 | * cpu_util_without = (cpu_util - task_util) = 0 |
f9be3e59 PB |
6433 | * |
6434 | * b) if other tasks are SLEEPING on this CPU, which is now exiting | |
6435 | * IDLE, then: | |
6436 | * cpu_util >= task_util | |
6437 | * cpu_util > util_est (== 0) | |
6438 | * and thus we discount *p's blocked utilization to return: | |
c469933e | 6439 | * cpu_util_without = (cpu_util - task_util) >= 0 |
f9be3e59 PB |
6440 | * |
6441 | * c) if other tasks are RUNNABLE on that CPU and | |
6442 | * util_est > cpu_util | |
6443 | * then we use util_est since it returns a more restrictive | |
6444 | * estimation of the spare capacity on that CPU, by just | |
6445 | * considering the expected utilization of tasks already | |
6446 | * runnable on that CPU. | |
6447 | * | |
6448 | * Cases a) and b) are covered by the above code, while case c) is | |
6449 | * covered by the following code when estimated utilization is | |
6450 | * enabled. | |
6451 | */ | |
c469933e PB |
6452 | if (sched_feat(UTIL_EST)) { |
6453 | unsigned int estimated = | |
6454 | READ_ONCE(cfs_rq->avg.util_est.enqueued); | |
6455 | ||
6456 | /* | |
6457 | * Despite the following checks we still have a small window | |
6458 | * for a possible race, when an execl's select_task_rq_fair() | |
6459 | * races with LB's detach_task(): | |
6460 | * | |
6461 | * detach_task() | |
6462 | * p->on_rq = TASK_ON_RQ_MIGRATING; | |
6463 | * ---------------------------------- A | |
6464 | * deactivate_task() \ | |
6465 | * dequeue_task() + RaceTime | |
6466 | * util_est_dequeue() / | |
6467 | * ---------------------------------- B | |
6468 | * | |
6469 | * The additional check on "current == p" it's required to | |
6470 | * properly fix the execl regression and it helps in further | |
6471 | * reducing the chances for the above race. | |
6472 | */ | |
b5c0ce7b PB |
6473 | if (unlikely(task_on_rq_queued(p) || current == p)) |
6474 | lsub_positive(&estimated, _task_util_est(p)); | |
6475 | ||
c469933e PB |
6476 | util = max(util, estimated); |
6477 | } | |
f9be3e59 PB |
6478 | |
6479 | /* | |
6480 | * Utilization (estimated) can exceed the CPU capacity, thus let's | |
6481 | * clamp to the maximum CPU capacity to ensure consistency with | |
6482 | * the cpu_util call. | |
6483 | */ | |
6484 | return min_t(unsigned long, util, capacity_orig_of(cpu)); | |
104cb16d MR |
6485 | } |
6486 | ||
390031e4 QP |
6487 | /* |
6488 | * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) | |
6489 | * to @dst_cpu. | |
6490 | */ | |
6491 | static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) | |
6492 | { | |
6493 | struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; | |
6494 | unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); | |
6495 | ||
6496 | /* | |
6497 | * If @p migrates from @cpu to another, remove its contribution. Or, | |
6498 | * if @p migrates from another CPU to @cpu, add its contribution. In | |
6499 | * the other cases, @cpu is not impacted by the migration, so the | |
6500 | * util_avg should already be correct. | |
6501 | */ | |
6502 | if (task_cpu(p) == cpu && dst_cpu != cpu) | |
6503 | sub_positive(&util, task_util(p)); | |
6504 | else if (task_cpu(p) != cpu && dst_cpu == cpu) | |
6505 | util += task_util(p); | |
6506 | ||
6507 | if (sched_feat(UTIL_EST)) { | |
6508 | util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); | |
6509 | ||
6510 | /* | |
6511 | * During wake-up, the task isn't enqueued yet and doesn't | |
6512 | * appear in the cfs_rq->avg.util_est.enqueued of any rq, | |
6513 | * so just add it (if needed) to "simulate" what will be | |
6514 | * cpu_util() after the task has been enqueued. | |
6515 | */ | |
6516 | if (dst_cpu == cpu) | |
6517 | util_est += _task_util_est(p); | |
6518 | ||
6519 | util = max(util, util_est); | |
6520 | } | |
6521 | ||
6522 | return min(util, capacity_orig_of(cpu)); | |
6523 | } | |
6524 | ||
6525 | /* | |
eb92692b | 6526 | * compute_energy(): Estimates the energy that @pd would consume if @p was |
390031e4 | 6527 | * migrated to @dst_cpu. compute_energy() predicts what will be the utilization |
eb92692b | 6528 | * landscape of @pd's CPUs after the task migration, and uses the Energy Model |
390031e4 QP |
6529 | * to compute what would be the energy if we decided to actually migrate that |
6530 | * task. | |
6531 | */ | |
6532 | static long | |
6533 | compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) | |
6534 | { | |
eb92692b QP |
6535 | struct cpumask *pd_mask = perf_domain_span(pd); |
6536 | unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); | |
6537 | unsigned long max_util = 0, sum_util = 0; | |
390031e4 QP |
6538 | int cpu; |
6539 | ||
eb92692b QP |
6540 | /* |
6541 | * The capacity state of CPUs of the current rd can be driven by CPUs | |
6542 | * of another rd if they belong to the same pd. So, account for the | |
6543 | * utilization of these CPUs too by masking pd with cpu_online_mask | |
6544 | * instead of the rd span. | |
6545 | * | |
6546 | * If an entire pd is outside of the current rd, it will not appear in | |
6547 | * its pd list and will not be accounted by compute_energy(). | |
6548 | */ | |
6549 | for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { | |
6550 | unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); | |
6551 | struct task_struct *tsk = cpu == dst_cpu ? p : NULL; | |
af24bde8 PB |
6552 | |
6553 | /* | |
eb92692b QP |
6554 | * Busy time computation: utilization clamping is not |
6555 | * required since the ratio (sum_util / cpu_capacity) | |
6556 | * is already enough to scale the EM reported power | |
6557 | * consumption at the (eventually clamped) cpu_capacity. | |
af24bde8 | 6558 | */ |
a5418be9 | 6559 | sum_util += effective_cpu_util(cpu, util_cfs, cpu_cap, |
eb92692b | 6560 | ENERGY_UTIL, NULL); |
af24bde8 | 6561 | |
390031e4 | 6562 | /* |
eb92692b QP |
6563 | * Performance domain frequency: utilization clamping |
6564 | * must be considered since it affects the selection | |
6565 | * of the performance domain frequency. | |
6566 | * NOTE: in case RT tasks are running, by default the | |
6567 | * FREQUENCY_UTIL's utilization can be max OPP. | |
390031e4 | 6568 | */ |
a5418be9 | 6569 | cpu_util = effective_cpu_util(cpu, util_cfs, cpu_cap, |
eb92692b QP |
6570 | FREQUENCY_UTIL, tsk); |
6571 | max_util = max(max_util, cpu_util); | |
390031e4 QP |
6572 | } |
6573 | ||
f0b56947 | 6574 | return em_cpu_energy(pd->em_pd, max_util, sum_util); |
390031e4 QP |
6575 | } |
6576 | ||
732cd75b QP |
6577 | /* |
6578 | * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the | |
6579 | * waking task. find_energy_efficient_cpu() looks for the CPU with maximum | |
6580 | * spare capacity in each performance domain and uses it as a potential | |
6581 | * candidate to execute the task. Then, it uses the Energy Model to figure | |
6582 | * out which of the CPU candidates is the most energy-efficient. | |
6583 | * | |
6584 | * The rationale for this heuristic is as follows. In a performance domain, | |
6585 | * all the most energy efficient CPU candidates (according to the Energy | |
6586 | * Model) are those for which we'll request a low frequency. When there are | |
6587 | * several CPUs for which the frequency request will be the same, we don't | |
6588 | * have enough data to break the tie between them, because the Energy Model | |
6589 | * only includes active power costs. With this model, if we assume that | |
6590 | * frequency requests follow utilization (e.g. using schedutil), the CPU with | |
6591 | * the maximum spare capacity in a performance domain is guaranteed to be among | |
6592 | * the best candidates of the performance domain. | |
6593 | * | |
6594 | * In practice, it could be preferable from an energy standpoint to pack | |
6595 | * small tasks on a CPU in order to let other CPUs go in deeper idle states, | |
6596 | * but that could also hurt our chances to go cluster idle, and we have no | |
6597 | * ways to tell with the current Energy Model if this is actually a good | |
6598 | * idea or not. So, find_energy_efficient_cpu() basically favors | |
6599 | * cluster-packing, and spreading inside a cluster. That should at least be | |
6600 | * a good thing for latency, and this is consistent with the idea that most | |
6601 | * of the energy savings of EAS come from the asymmetry of the system, and | |
6602 | * not so much from breaking the tie between identical CPUs. That's also the | |
6603 | * reason why EAS is enabled in the topology code only for systems where | |
6604 | * SD_ASYM_CPUCAPACITY is set. | |
6605 | * | |
6606 | * NOTE: Forkees are not accepted in the energy-aware wake-up path because | |
6607 | * they don't have any useful utilization data yet and it's not possible to | |
6608 | * forecast their impact on energy consumption. Consequently, they will be | |
6609 | * placed by find_idlest_cpu() on the least loaded CPU, which might turn out | |
6610 | * to be energy-inefficient in some use-cases. The alternative would be to | |
6611 | * bias new tasks towards specific types of CPUs first, or to try to infer | |
6612 | * their util_avg from the parent task, but those heuristics could hurt | |
6613 | * other use-cases too. So, until someone finds a better way to solve this, | |
6614 | * let's keep things simple by re-using the existing slow path. | |
6615 | */ | |
732cd75b QP |
6616 | static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) |
6617 | { | |
eb92692b | 6618 | unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; |
732cd75b | 6619 | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; |
eb92692b | 6620 | unsigned long cpu_cap, util, base_energy = 0; |
732cd75b | 6621 | int cpu, best_energy_cpu = prev_cpu; |
732cd75b | 6622 | struct sched_domain *sd; |
eb92692b | 6623 | struct perf_domain *pd; |
732cd75b QP |
6624 | |
6625 | rcu_read_lock(); | |
6626 | pd = rcu_dereference(rd->pd); | |
6627 | if (!pd || READ_ONCE(rd->overutilized)) | |
6628 | goto fail; | |
732cd75b QP |
6629 | |
6630 | /* | |
6631 | * Energy-aware wake-up happens on the lowest sched_domain starting | |
6632 | * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. | |
6633 | */ | |
6634 | sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); | |
6635 | while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) | |
6636 | sd = sd->parent; | |
6637 | if (!sd) | |
6638 | goto fail; | |
6639 | ||
6640 | sync_entity_load_avg(&p->se); | |
6641 | if (!task_util_est(p)) | |
6642 | goto unlock; | |
6643 | ||
6644 | for (; pd; pd = pd->next) { | |
eb92692b QP |
6645 | unsigned long cur_delta, spare_cap, max_spare_cap = 0; |
6646 | unsigned long base_energy_pd; | |
732cd75b QP |
6647 | int max_spare_cap_cpu = -1; |
6648 | ||
eb92692b QP |
6649 | /* Compute the 'base' energy of the pd, without @p */ |
6650 | base_energy_pd = compute_energy(p, -1, pd); | |
6651 | base_energy += base_energy_pd; | |
6652 | ||
732cd75b | 6653 | for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { |
3bd37062 | 6654 | if (!cpumask_test_cpu(cpu, p->cpus_ptr)) |
732cd75b QP |
6655 | continue; |
6656 | ||
732cd75b QP |
6657 | util = cpu_util_next(cpu, p, cpu); |
6658 | cpu_cap = capacity_of(cpu); | |
da0777d3 LL |
6659 | spare_cap = cpu_cap; |
6660 | lsub_positive(&spare_cap, util); | |
1d42509e VS |
6661 | |
6662 | /* | |
6663 | * Skip CPUs that cannot satisfy the capacity request. | |
6664 | * IOW, placing the task there would make the CPU | |
6665 | * overutilized. Take uclamp into account to see how | |
6666 | * much capacity we can get out of the CPU; this is | |
a5418be9 | 6667 | * aligned with sched_cpu_util(). |
1d42509e VS |
6668 | */ |
6669 | util = uclamp_rq_util_with(cpu_rq(cpu), util, p); | |
60e17f5c | 6670 | if (!fits_capacity(util, cpu_cap)) |
732cd75b QP |
6671 | continue; |
6672 | ||
6673 | /* Always use prev_cpu as a candidate. */ | |
6674 | if (cpu == prev_cpu) { | |
eb92692b QP |
6675 | prev_delta = compute_energy(p, prev_cpu, pd); |
6676 | prev_delta -= base_energy_pd; | |
6677 | best_delta = min(best_delta, prev_delta); | |
732cd75b QP |
6678 | } |
6679 | ||
6680 | /* | |
6681 | * Find the CPU with the maximum spare capacity in | |
6682 | * the performance domain | |
6683 | */ | |
732cd75b QP |
6684 | if (spare_cap > max_spare_cap) { |
6685 | max_spare_cap = spare_cap; | |
6686 | max_spare_cap_cpu = cpu; | |
6687 | } | |
6688 | } | |
6689 | ||
6690 | /* Evaluate the energy impact of using this CPU. */ | |
4892f51a | 6691 | if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { |
eb92692b QP |
6692 | cur_delta = compute_energy(p, max_spare_cap_cpu, pd); |
6693 | cur_delta -= base_energy_pd; | |
6694 | if (cur_delta < best_delta) { | |
6695 | best_delta = cur_delta; | |
732cd75b QP |
6696 | best_energy_cpu = max_spare_cap_cpu; |
6697 | } | |
6698 | } | |
6699 | } | |
6700 | unlock: | |
6701 | rcu_read_unlock(); | |
6702 | ||
6703 | /* | |
6704 | * Pick the best CPU if prev_cpu cannot be used, or if it saves at | |
6705 | * least 6% of the energy used by prev_cpu. | |
6706 | */ | |
eb92692b | 6707 | if (prev_delta == ULONG_MAX) |
732cd75b QP |
6708 | return best_energy_cpu; |
6709 | ||
eb92692b | 6710 | if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) |
732cd75b QP |
6711 | return best_energy_cpu; |
6712 | ||
6713 | return prev_cpu; | |
6714 | ||
6715 | fail: | |
6716 | rcu_read_unlock(); | |
6717 | ||
6718 | return -1; | |
6719 | } | |
6720 | ||
aaee1203 | 6721 | /* |
de91b9cb | 6722 | * select_task_rq_fair: Select target runqueue for the waking task in domains |
3aef1551 | 6723 | * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, |
de91b9cb | 6724 | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. |
aaee1203 | 6725 | * |
97fb7a0a IM |
6726 | * Balances load by selecting the idlest CPU in the idlest group, or under |
6727 | * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. | |
aaee1203 | 6728 | * |
97fb7a0a | 6729 | * Returns the target CPU number. |
aaee1203 PZ |
6730 | * |
6731 | * preempt must be disabled. | |
6732 | */ | |
0017d735 | 6733 | static int |
3aef1551 | 6734 | select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) |
aaee1203 | 6735 | { |
3aef1551 | 6736 | int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); |
f1d88b44 | 6737 | struct sched_domain *tmp, *sd = NULL; |
c88d5910 | 6738 | int cpu = smp_processor_id(); |
63b0e9ed | 6739 | int new_cpu = prev_cpu; |
99bd5e2f | 6740 | int want_affine = 0; |
3aef1551 VS |
6741 | /* SD_flags and WF_flags share the first nibble */ |
6742 | int sd_flag = wake_flags & 0xF; | |
c88d5910 | 6743 | |
dc824eb8 | 6744 | if (wake_flags & WF_TTWU) { |
c58d25f3 | 6745 | record_wakee(p); |
732cd75b | 6746 | |
f8a696f2 | 6747 | if (sched_energy_enabled()) { |
732cd75b QP |
6748 | new_cpu = find_energy_efficient_cpu(p, prev_cpu); |
6749 | if (new_cpu >= 0) | |
6750 | return new_cpu; | |
6751 | new_cpu = prev_cpu; | |
6752 | } | |
6753 | ||
00061968 | 6754 | want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); |
c58d25f3 | 6755 | } |
aaee1203 | 6756 | |
dce840a0 | 6757 | rcu_read_lock(); |
aaee1203 | 6758 | for_each_domain(cpu, tmp) { |
fe3bcfe1 | 6759 | /* |
97fb7a0a | 6760 | * If both 'cpu' and 'prev_cpu' are part of this domain, |
99bd5e2f | 6761 | * cpu is a valid SD_WAKE_AFFINE target. |
fe3bcfe1 | 6762 | */ |
99bd5e2f SS |
6763 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
6764 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | |
f1d88b44 VK |
6765 | if (cpu != prev_cpu) |
6766 | new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); | |
6767 | ||
6768 | sd = NULL; /* Prefer wake_affine over balance flags */ | |
29cd8bae | 6769 | break; |
f03542a7 | 6770 | } |
29cd8bae | 6771 | |
f03542a7 | 6772 | if (tmp->flags & sd_flag) |
29cd8bae | 6773 | sd = tmp; |
63b0e9ed MG |
6774 | else if (!want_affine) |
6775 | break; | |
29cd8bae PZ |
6776 | } |
6777 | ||
f1d88b44 VK |
6778 | if (unlikely(sd)) { |
6779 | /* Slow path */ | |
18bd1b4b | 6780 | new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); |
dc824eb8 | 6781 | } else if (wake_flags & WF_TTWU) { /* XXX always ? */ |
f1d88b44 | 6782 | /* Fast path */ |
f1d88b44 VK |
6783 | new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); |
6784 | ||
6785 | if (want_affine) | |
6786 | current->recent_used_cpu = cpu; | |
e7693a36 | 6787 | } |
dce840a0 | 6788 | rcu_read_unlock(); |
e7693a36 | 6789 | |
c88d5910 | 6790 | return new_cpu; |
e7693a36 | 6791 | } |
0a74bef8 | 6792 | |
144d8487 PZ |
6793 | static void detach_entity_cfs_rq(struct sched_entity *se); |
6794 | ||
0a74bef8 | 6795 | /* |
97fb7a0a | 6796 | * Called immediately before a task is migrated to a new CPU; task_cpu(p) and |
0a74bef8 | 6797 | * cfs_rq_of(p) references at time of call are still valid and identify the |
97fb7a0a | 6798 | * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. |
0a74bef8 | 6799 | */ |
3f9672ba | 6800 | static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) |
0a74bef8 | 6801 | { |
59efa0ba PZ |
6802 | /* |
6803 | * As blocked tasks retain absolute vruntime the migration needs to | |
6804 | * deal with this by subtracting the old and adding the new | |
6805 | * min_vruntime -- the latter is done by enqueue_entity() when placing | |
6806 | * the task on the new runqueue. | |
6807 | */ | |
6808 | if (p->state == TASK_WAKING) { | |
6809 | struct sched_entity *se = &p->se; | |
6810 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
6811 | u64 min_vruntime; | |
6812 | ||
6813 | #ifndef CONFIG_64BIT | |
6814 | u64 min_vruntime_copy; | |
6815 | ||
6816 | do { | |
6817 | min_vruntime_copy = cfs_rq->min_vruntime_copy; | |
6818 | smp_rmb(); | |
6819 | min_vruntime = cfs_rq->min_vruntime; | |
6820 | } while (min_vruntime != min_vruntime_copy); | |
6821 | #else | |
6822 | min_vruntime = cfs_rq->min_vruntime; | |
6823 | #endif | |
6824 | ||
6825 | se->vruntime -= min_vruntime; | |
6826 | } | |
6827 | ||
144d8487 PZ |
6828 | if (p->on_rq == TASK_ON_RQ_MIGRATING) { |
6829 | /* | |
6830 | * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' | |
6831 | * rq->lock and can modify state directly. | |
6832 | */ | |
6833 | lockdep_assert_held(&task_rq(p)->lock); | |
6834 | detach_entity_cfs_rq(&p->se); | |
6835 | ||
6836 | } else { | |
6837 | /* | |
6838 | * We are supposed to update the task to "current" time, then | |
6839 | * its up to date and ready to go to new CPU/cfs_rq. But we | |
6840 | * have difficulty in getting what current time is, so simply | |
6841 | * throw away the out-of-date time. This will result in the | |
6842 | * wakee task is less decayed, but giving the wakee more load | |
6843 | * sounds not bad. | |
6844 | */ | |
6845 | remove_entity_load_avg(&p->se); | |
6846 | } | |
9d89c257 YD |
6847 | |
6848 | /* Tell new CPU we are migrated */ | |
6849 | p->se.avg.last_update_time = 0; | |
3944a927 BS |
6850 | |
6851 | /* We have migrated, no longer consider this task hot */ | |
9d89c257 | 6852 | p->se.exec_start = 0; |
3f9672ba SD |
6853 | |
6854 | update_scan_period(p, new_cpu); | |
0a74bef8 | 6855 | } |
12695578 YD |
6856 | |
6857 | static void task_dead_fair(struct task_struct *p) | |
6858 | { | |
6859 | remove_entity_load_avg(&p->se); | |
6860 | } | |
6e2df058 PZ |
6861 | |
6862 | static int | |
6863 | balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | |
6864 | { | |
6865 | if (rq->nr_running) | |
6866 | return 1; | |
6867 | ||
6868 | return newidle_balance(rq, rf) != 0; | |
6869 | } | |
e7693a36 GH |
6870 | #endif /* CONFIG_SMP */ |
6871 | ||
a555e9d8 | 6872 | static unsigned long wakeup_gran(struct sched_entity *se) |
0bbd3336 PZ |
6873 | { |
6874 | unsigned long gran = sysctl_sched_wakeup_granularity; | |
6875 | ||
6876 | /* | |
e52fb7c0 PZ |
6877 | * Since its curr running now, convert the gran from real-time |
6878 | * to virtual-time in his units. | |
13814d42 MG |
6879 | * |
6880 | * By using 'se' instead of 'curr' we penalize light tasks, so | |
6881 | * they get preempted easier. That is, if 'se' < 'curr' then | |
6882 | * the resulting gran will be larger, therefore penalizing the | |
6883 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | |
6884 | * be smaller, again penalizing the lighter task. | |
6885 | * | |
6886 | * This is especially important for buddies when the leftmost | |
6887 | * task is higher priority than the buddy. | |
0bbd3336 | 6888 | */ |
f4ad9bd2 | 6889 | return calc_delta_fair(gran, se); |
0bbd3336 PZ |
6890 | } |
6891 | ||
464b7527 PZ |
6892 | /* |
6893 | * Should 'se' preempt 'curr'. | |
6894 | * | |
6895 | * |s1 | |
6896 | * |s2 | |
6897 | * |s3 | |
6898 | * g | |
6899 | * |<--->|c | |
6900 | * | |
6901 | * w(c, s1) = -1 | |
6902 | * w(c, s2) = 0 | |
6903 | * w(c, s3) = 1 | |
6904 | * | |
6905 | */ | |
6906 | static int | |
6907 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | |
6908 | { | |
6909 | s64 gran, vdiff = curr->vruntime - se->vruntime; | |
6910 | ||
6911 | if (vdiff <= 0) | |
6912 | return -1; | |
6913 | ||
a555e9d8 | 6914 | gran = wakeup_gran(se); |
464b7527 PZ |
6915 | if (vdiff > gran) |
6916 | return 1; | |
6917 | ||
6918 | return 0; | |
6919 | } | |
6920 | ||
02479099 PZ |
6921 | static void set_last_buddy(struct sched_entity *se) |
6922 | { | |
1da1843f | 6923 | if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) |
69c80f3e VP |
6924 | return; |
6925 | ||
c5ae366e DA |
6926 | for_each_sched_entity(se) { |
6927 | if (SCHED_WARN_ON(!se->on_rq)) | |
6928 | return; | |
69c80f3e | 6929 | cfs_rq_of(se)->last = se; |
c5ae366e | 6930 | } |
02479099 PZ |
6931 | } |
6932 | ||
6933 | static void set_next_buddy(struct sched_entity *se) | |
6934 | { | |
1da1843f | 6935 | if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) |
69c80f3e VP |
6936 | return; |
6937 | ||
c5ae366e DA |
6938 | for_each_sched_entity(se) { |
6939 | if (SCHED_WARN_ON(!se->on_rq)) | |
6940 | return; | |
69c80f3e | 6941 | cfs_rq_of(se)->next = se; |
c5ae366e | 6942 | } |
02479099 PZ |
6943 | } |
6944 | ||
ac53db59 RR |
6945 | static void set_skip_buddy(struct sched_entity *se) |
6946 | { | |
69c80f3e VP |
6947 | for_each_sched_entity(se) |
6948 | cfs_rq_of(se)->skip = se; | |
ac53db59 RR |
6949 | } |
6950 | ||
bf0f6f24 IM |
6951 | /* |
6952 | * Preempt the current task with a newly woken task if needed: | |
6953 | */ | |
5a9b86f6 | 6954 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
bf0f6f24 IM |
6955 | { |
6956 | struct task_struct *curr = rq->curr; | |
8651a86c | 6957 | struct sched_entity *se = &curr->se, *pse = &p->se; |
03e89e45 | 6958 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
f685ceac | 6959 | int scale = cfs_rq->nr_running >= sched_nr_latency; |
2f36825b | 6960 | int next_buddy_marked = 0; |
bf0f6f24 | 6961 | |
4ae7d5ce IM |
6962 | if (unlikely(se == pse)) |
6963 | return; | |
6964 | ||
5238cdd3 | 6965 | /* |
163122b7 | 6966 | * This is possible from callers such as attach_tasks(), in which we |
5238cdd3 PT |
6967 | * unconditionally check_prempt_curr() after an enqueue (which may have |
6968 | * lead to a throttle). This both saves work and prevents false | |
6969 | * next-buddy nomination below. | |
6970 | */ | |
6971 | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | |
6972 | return; | |
6973 | ||
2f36825b | 6974 | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { |
3cb63d52 | 6975 | set_next_buddy(pse); |
2f36825b VP |
6976 | next_buddy_marked = 1; |
6977 | } | |
57fdc26d | 6978 | |
aec0a514 BR |
6979 | /* |
6980 | * We can come here with TIF_NEED_RESCHED already set from new task | |
6981 | * wake up path. | |
5238cdd3 PT |
6982 | * |
6983 | * Note: this also catches the edge-case of curr being in a throttled | |
6984 | * group (e.g. via set_curr_task), since update_curr() (in the | |
6985 | * enqueue of curr) will have resulted in resched being set. This | |
6986 | * prevents us from potentially nominating it as a false LAST_BUDDY | |
6987 | * below. | |
aec0a514 BR |
6988 | */ |
6989 | if (test_tsk_need_resched(curr)) | |
6990 | return; | |
6991 | ||
a2f5c9ab | 6992 | /* Idle tasks are by definition preempted by non-idle tasks. */ |
1da1843f VK |
6993 | if (unlikely(task_has_idle_policy(curr)) && |
6994 | likely(!task_has_idle_policy(p))) | |
a2f5c9ab DH |
6995 | goto preempt; |
6996 | ||
91c234b4 | 6997 | /* |
a2f5c9ab DH |
6998 | * Batch and idle tasks do not preempt non-idle tasks (their preemption |
6999 | * is driven by the tick): | |
91c234b4 | 7000 | */ |
8ed92e51 | 7001 | if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) |
91c234b4 | 7002 | return; |
bf0f6f24 | 7003 | |
464b7527 | 7004 | find_matching_se(&se, &pse); |
9bbd7374 | 7005 | update_curr(cfs_rq_of(se)); |
002f128b | 7006 | BUG_ON(!pse); |
2f36825b VP |
7007 | if (wakeup_preempt_entity(se, pse) == 1) { |
7008 | /* | |
7009 | * Bias pick_next to pick the sched entity that is | |
7010 | * triggering this preemption. | |
7011 | */ | |
7012 | if (!next_buddy_marked) | |
7013 | set_next_buddy(pse); | |
3a7e73a2 | 7014 | goto preempt; |
2f36825b | 7015 | } |
464b7527 | 7016 | |
3a7e73a2 | 7017 | return; |
a65ac745 | 7018 | |
3a7e73a2 | 7019 | preempt: |
8875125e | 7020 | resched_curr(rq); |
3a7e73a2 PZ |
7021 | /* |
7022 | * Only set the backward buddy when the current task is still | |
7023 | * on the rq. This can happen when a wakeup gets interleaved | |
7024 | * with schedule on the ->pre_schedule() or idle_balance() | |
7025 | * point, either of which can * drop the rq lock. | |
7026 | * | |
7027 | * Also, during early boot the idle thread is in the fair class, | |
7028 | * for obvious reasons its a bad idea to schedule back to it. | |
7029 | */ | |
7030 | if (unlikely(!se->on_rq || curr == rq->idle)) | |
7031 | return; | |
7032 | ||
7033 | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | |
7034 | set_last_buddy(se); | |
bf0f6f24 IM |
7035 | } |
7036 | ||
5d7d6056 | 7037 | struct task_struct * |
d8ac8971 | 7038 | pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
bf0f6f24 IM |
7039 | { |
7040 | struct cfs_rq *cfs_rq = &rq->cfs; | |
7041 | struct sched_entity *se; | |
678d5718 | 7042 | struct task_struct *p; |
37e117c0 | 7043 | int new_tasks; |
678d5718 | 7044 | |
6e83125c | 7045 | again: |
6e2df058 | 7046 | if (!sched_fair_runnable(rq)) |
38033c37 | 7047 | goto idle; |
678d5718 | 7048 | |
9674f5ca | 7049 | #ifdef CONFIG_FAIR_GROUP_SCHED |
67692435 | 7050 | if (!prev || prev->sched_class != &fair_sched_class) |
678d5718 PZ |
7051 | goto simple; |
7052 | ||
7053 | /* | |
7054 | * Because of the set_next_buddy() in dequeue_task_fair() it is rather | |
7055 | * likely that a next task is from the same cgroup as the current. | |
7056 | * | |
7057 | * Therefore attempt to avoid putting and setting the entire cgroup | |
7058 | * hierarchy, only change the part that actually changes. | |
7059 | */ | |
7060 | ||
7061 | do { | |
7062 | struct sched_entity *curr = cfs_rq->curr; | |
7063 | ||
7064 | /* | |
7065 | * Since we got here without doing put_prev_entity() we also | |
7066 | * have to consider cfs_rq->curr. If it is still a runnable | |
7067 | * entity, update_curr() will update its vruntime, otherwise | |
7068 | * forget we've ever seen it. | |
7069 | */ | |
54d27365 BS |
7070 | if (curr) { |
7071 | if (curr->on_rq) | |
7072 | update_curr(cfs_rq); | |
7073 | else | |
7074 | curr = NULL; | |
678d5718 | 7075 | |
54d27365 BS |
7076 | /* |
7077 | * This call to check_cfs_rq_runtime() will do the | |
7078 | * throttle and dequeue its entity in the parent(s). | |
9674f5ca | 7079 | * Therefore the nr_running test will indeed |
54d27365 BS |
7080 | * be correct. |
7081 | */ | |
9674f5ca VK |
7082 | if (unlikely(check_cfs_rq_runtime(cfs_rq))) { |
7083 | cfs_rq = &rq->cfs; | |
7084 | ||
7085 | if (!cfs_rq->nr_running) | |
7086 | goto idle; | |
7087 | ||
54d27365 | 7088 | goto simple; |
9674f5ca | 7089 | } |
54d27365 | 7090 | } |
678d5718 PZ |
7091 | |
7092 | se = pick_next_entity(cfs_rq, curr); | |
7093 | cfs_rq = group_cfs_rq(se); | |
7094 | } while (cfs_rq); | |
7095 | ||
7096 | p = task_of(se); | |
7097 | ||
7098 | /* | |
7099 | * Since we haven't yet done put_prev_entity and if the selected task | |
7100 | * is a different task than we started out with, try and touch the | |
7101 | * least amount of cfs_rqs. | |
7102 | */ | |
7103 | if (prev != p) { | |
7104 | struct sched_entity *pse = &prev->se; | |
7105 | ||
7106 | while (!(cfs_rq = is_same_group(se, pse))) { | |
7107 | int se_depth = se->depth; | |
7108 | int pse_depth = pse->depth; | |
7109 | ||
7110 | if (se_depth <= pse_depth) { | |
7111 | put_prev_entity(cfs_rq_of(pse), pse); | |
7112 | pse = parent_entity(pse); | |
7113 | } | |
7114 | if (se_depth >= pse_depth) { | |
7115 | set_next_entity(cfs_rq_of(se), se); | |
7116 | se = parent_entity(se); | |
7117 | } | |
7118 | } | |
7119 | ||
7120 | put_prev_entity(cfs_rq, pse); | |
7121 | set_next_entity(cfs_rq, se); | |
7122 | } | |
7123 | ||
93824900 | 7124 | goto done; |
678d5718 | 7125 | simple: |
678d5718 | 7126 | #endif |
67692435 PZ |
7127 | if (prev) |
7128 | put_prev_task(rq, prev); | |
606dba2e | 7129 | |
bf0f6f24 | 7130 | do { |
678d5718 | 7131 | se = pick_next_entity(cfs_rq, NULL); |
f4b6755f | 7132 | set_next_entity(cfs_rq, se); |
bf0f6f24 IM |
7133 | cfs_rq = group_cfs_rq(se); |
7134 | } while (cfs_rq); | |
7135 | ||
8f4d37ec | 7136 | p = task_of(se); |
678d5718 | 7137 | |
13a453c2 | 7138 | done: __maybe_unused; |
93824900 UR |
7139 | #ifdef CONFIG_SMP |
7140 | /* | |
7141 | * Move the next running task to the front of | |
7142 | * the list, so our cfs_tasks list becomes MRU | |
7143 | * one. | |
7144 | */ | |
7145 | list_move(&p->se.group_node, &rq->cfs_tasks); | |
7146 | #endif | |
7147 | ||
b39e66ea MG |
7148 | if (hrtick_enabled(rq)) |
7149 | hrtick_start_fair(rq, p); | |
8f4d37ec | 7150 | |
3b1baa64 MR |
7151 | update_misfit_status(p, rq); |
7152 | ||
8f4d37ec | 7153 | return p; |
38033c37 PZ |
7154 | |
7155 | idle: | |
67692435 PZ |
7156 | if (!rf) |
7157 | return NULL; | |
7158 | ||
5ba553ef | 7159 | new_tasks = newidle_balance(rq, rf); |
46f69fa3 | 7160 | |
37e117c0 | 7161 | /* |
5ba553ef | 7162 | * Because newidle_balance() releases (and re-acquires) rq->lock, it is |
37e117c0 PZ |
7163 | * possible for any higher priority task to appear. In that case we |
7164 | * must re-start the pick_next_entity() loop. | |
7165 | */ | |
e4aa358b | 7166 | if (new_tasks < 0) |
37e117c0 PZ |
7167 | return RETRY_TASK; |
7168 | ||
e4aa358b | 7169 | if (new_tasks > 0) |
38033c37 | 7170 | goto again; |
38033c37 | 7171 | |
23127296 VG |
7172 | /* |
7173 | * rq is about to be idle, check if we need to update the | |
7174 | * lost_idle_time of clock_pelt | |
7175 | */ | |
7176 | update_idle_rq_clock_pelt(rq); | |
7177 | ||
38033c37 | 7178 | return NULL; |
bf0f6f24 IM |
7179 | } |
7180 | ||
98c2f700 PZ |
7181 | static struct task_struct *__pick_next_task_fair(struct rq *rq) |
7182 | { | |
7183 | return pick_next_task_fair(rq, NULL, NULL); | |
7184 | } | |
7185 | ||
bf0f6f24 IM |
7186 | /* |
7187 | * Account for a descheduled task: | |
7188 | */ | |
6e2df058 | 7189 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) |
bf0f6f24 IM |
7190 | { |
7191 | struct sched_entity *se = &prev->se; | |
7192 | struct cfs_rq *cfs_rq; | |
7193 | ||
7194 | for_each_sched_entity(se) { | |
7195 | cfs_rq = cfs_rq_of(se); | |
ab6cde26 | 7196 | put_prev_entity(cfs_rq, se); |
bf0f6f24 IM |
7197 | } |
7198 | } | |
7199 | ||
ac53db59 RR |
7200 | /* |
7201 | * sched_yield() is very simple | |
7202 | * | |
7203 | * The magic of dealing with the ->skip buddy is in pick_next_entity. | |
7204 | */ | |
7205 | static void yield_task_fair(struct rq *rq) | |
7206 | { | |
7207 | struct task_struct *curr = rq->curr; | |
7208 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | |
7209 | struct sched_entity *se = &curr->se; | |
7210 | ||
7211 | /* | |
7212 | * Are we the only task in the tree? | |
7213 | */ | |
7214 | if (unlikely(rq->nr_running == 1)) | |
7215 | return; | |
7216 | ||
7217 | clear_buddies(cfs_rq, se); | |
7218 | ||
7219 | if (curr->policy != SCHED_BATCH) { | |
7220 | update_rq_clock(rq); | |
7221 | /* | |
7222 | * Update run-time statistics of the 'current'. | |
7223 | */ | |
7224 | update_curr(cfs_rq); | |
916671c0 MG |
7225 | /* |
7226 | * Tell update_rq_clock() that we've just updated, | |
7227 | * so we don't do microscopic update in schedule() | |
7228 | * and double the fastpath cost. | |
7229 | */ | |
adcc8da8 | 7230 | rq_clock_skip_update(rq); |
ac53db59 RR |
7231 | } |
7232 | ||
7233 | set_skip_buddy(se); | |
7234 | } | |
7235 | ||
0900acf2 | 7236 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) |
d95f4122 MG |
7237 | { |
7238 | struct sched_entity *se = &p->se; | |
7239 | ||
5238cdd3 PT |
7240 | /* throttled hierarchies are not runnable */ |
7241 | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | |
d95f4122 MG |
7242 | return false; |
7243 | ||
7244 | /* Tell the scheduler that we'd really like pse to run next. */ | |
7245 | set_next_buddy(se); | |
7246 | ||
d95f4122 MG |
7247 | yield_task_fair(rq); |
7248 | ||
7249 | return true; | |
7250 | } | |
7251 | ||
681f3e68 | 7252 | #ifdef CONFIG_SMP |
bf0f6f24 | 7253 | /************************************************** |
e9c84cb8 PZ |
7254 | * Fair scheduling class load-balancing methods. |
7255 | * | |
7256 | * BASICS | |
7257 | * | |
7258 | * The purpose of load-balancing is to achieve the same basic fairness the | |
97fb7a0a | 7259 | * per-CPU scheduler provides, namely provide a proportional amount of compute |
e9c84cb8 PZ |
7260 | * time to each task. This is expressed in the following equation: |
7261 | * | |
7262 | * W_i,n/P_i == W_j,n/P_j for all i,j (1) | |
7263 | * | |
97fb7a0a | 7264 | * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight |
e9c84cb8 PZ |
7265 | * W_i,0 is defined as: |
7266 | * | |
7267 | * W_i,0 = \Sum_j w_i,j (2) | |
7268 | * | |
97fb7a0a | 7269 | * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight |
1c3de5e1 | 7270 | * is derived from the nice value as per sched_prio_to_weight[]. |
e9c84cb8 PZ |
7271 | * |
7272 | * The weight average is an exponential decay average of the instantaneous | |
7273 | * weight: | |
7274 | * | |
7275 | * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) | |
7276 | * | |
97fb7a0a | 7277 | * C_i is the compute capacity of CPU i, typically it is the |
e9c84cb8 PZ |
7278 | * fraction of 'recent' time available for SCHED_OTHER task execution. But it |
7279 | * can also include other factors [XXX]. | |
7280 | * | |
7281 | * To achieve this balance we define a measure of imbalance which follows | |
7282 | * directly from (1): | |
7283 | * | |
ced549fa | 7284 | * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) |
e9c84cb8 PZ |
7285 | * |
7286 | * We them move tasks around to minimize the imbalance. In the continuous | |
7287 | * function space it is obvious this converges, in the discrete case we get | |
7288 | * a few fun cases generally called infeasible weight scenarios. | |
7289 | * | |
7290 | * [XXX expand on: | |
7291 | * - infeasible weights; | |
7292 | * - local vs global optima in the discrete case. ] | |
7293 | * | |
7294 | * | |
7295 | * SCHED DOMAINS | |
7296 | * | |
7297 | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) | |
97fb7a0a | 7298 | * for all i,j solution, we create a tree of CPUs that follows the hardware |
e9c84cb8 | 7299 | * topology where each level pairs two lower groups (or better). This results |
97fb7a0a | 7300 | * in O(log n) layers. Furthermore we reduce the number of CPUs going up the |
e9c84cb8 | 7301 | * tree to only the first of the previous level and we decrease the frequency |
97fb7a0a | 7302 | * of load-balance at each level inv. proportional to the number of CPUs in |
e9c84cb8 PZ |
7303 | * the groups. |
7304 | * | |
7305 | * This yields: | |
7306 | * | |
7307 | * log_2 n 1 n | |
7308 | * \Sum { --- * --- * 2^i } = O(n) (5) | |
7309 | * i = 0 2^i 2^i | |
7310 | * `- size of each group | |
97fb7a0a | 7311 | * | | `- number of CPUs doing load-balance |
e9c84cb8 PZ |
7312 | * | `- freq |
7313 | * `- sum over all levels | |
7314 | * | |
7315 | * Coupled with a limit on how many tasks we can migrate every balance pass, | |
7316 | * this makes (5) the runtime complexity of the balancer. | |
7317 | * | |
7318 | * An important property here is that each CPU is still (indirectly) connected | |
97fb7a0a | 7319 | * to every other CPU in at most O(log n) steps: |
e9c84cb8 PZ |
7320 | * |
7321 | * The adjacency matrix of the resulting graph is given by: | |
7322 | * | |
97a7142f | 7323 | * log_2 n |
e9c84cb8 PZ |
7324 | * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) |
7325 | * k = 0 | |
7326 | * | |
7327 | * And you'll find that: | |
7328 | * | |
7329 | * A^(log_2 n)_i,j != 0 for all i,j (7) | |
7330 | * | |
97fb7a0a | 7331 | * Showing there's indeed a path between every CPU in at most O(log n) steps. |
e9c84cb8 PZ |
7332 | * The task movement gives a factor of O(m), giving a convergence complexity |
7333 | * of: | |
7334 | * | |
7335 | * O(nm log n), n := nr_cpus, m := nr_tasks (8) | |
7336 | * | |
7337 | * | |
7338 | * WORK CONSERVING | |
7339 | * | |
7340 | * In order to avoid CPUs going idle while there's still work to do, new idle | |
97fb7a0a | 7341 | * balancing is more aggressive and has the newly idle CPU iterate up the domain |
e9c84cb8 PZ |
7342 | * tree itself instead of relying on other CPUs to bring it work. |
7343 | * | |
7344 | * This adds some complexity to both (5) and (8) but it reduces the total idle | |
7345 | * time. | |
7346 | * | |
7347 | * [XXX more?] | |
7348 | * | |
7349 | * | |
7350 | * CGROUPS | |
7351 | * | |
7352 | * Cgroups make a horror show out of (2), instead of a simple sum we get: | |
7353 | * | |
7354 | * s_k,i | |
7355 | * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) | |
7356 | * S_k | |
7357 | * | |
7358 | * Where | |
7359 | * | |
7360 | * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) | |
7361 | * | |
97fb7a0a | 7362 | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. |
e9c84cb8 PZ |
7363 | * |
7364 | * The big problem is S_k, its a global sum needed to compute a local (W_i) | |
7365 | * property. | |
7366 | * | |
7367 | * [XXX write more on how we solve this.. _after_ merging pjt's patches that | |
7368 | * rewrite all of this once again.] | |
97a7142f | 7369 | */ |
bf0f6f24 | 7370 | |
ed387b78 HS |
7371 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; |
7372 | ||
0ec8aa00 PZ |
7373 | enum fbq_type { regular, remote, all }; |
7374 | ||
0b0695f2 | 7375 | /* |
a9723389 VG |
7376 | * 'group_type' describes the group of CPUs at the moment of load balancing. |
7377 | * | |
0b0695f2 | 7378 | * The enum is ordered by pulling priority, with the group with lowest priority |
a9723389 VG |
7379 | * first so the group_type can simply be compared when selecting the busiest |
7380 | * group. See update_sd_pick_busiest(). | |
0b0695f2 | 7381 | */ |
3b1baa64 | 7382 | enum group_type { |
a9723389 | 7383 | /* The group has spare capacity that can be used to run more tasks. */ |
0b0695f2 | 7384 | group_has_spare = 0, |
a9723389 VG |
7385 | /* |
7386 | * The group is fully used and the tasks don't compete for more CPU | |
7387 | * cycles. Nevertheless, some tasks might wait before running. | |
7388 | */ | |
0b0695f2 | 7389 | group_fully_busy, |
a9723389 VG |
7390 | /* |
7391 | * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity | |
7392 | * and must be migrated to a more powerful CPU. | |
7393 | */ | |
3b1baa64 | 7394 | group_misfit_task, |
a9723389 VG |
7395 | /* |
7396 | * SD_ASYM_PACKING only: One local CPU with higher capacity is available, | |
7397 | * and the task should be migrated to it instead of running on the | |
7398 | * current CPU. | |
7399 | */ | |
0b0695f2 | 7400 | group_asym_packing, |
a9723389 VG |
7401 | /* |
7402 | * The tasks' affinity constraints previously prevented the scheduler | |
7403 | * from balancing the load across the system. | |
7404 | */ | |
3b1baa64 | 7405 | group_imbalanced, |
a9723389 VG |
7406 | /* |
7407 | * The CPU is overloaded and can't provide expected CPU cycles to all | |
7408 | * tasks. | |
7409 | */ | |
0b0695f2 VG |
7410 | group_overloaded |
7411 | }; | |
7412 | ||
7413 | enum migration_type { | |
7414 | migrate_load = 0, | |
7415 | migrate_util, | |
7416 | migrate_task, | |
7417 | migrate_misfit | |
3b1baa64 MR |
7418 | }; |
7419 | ||
ddcdf6e7 | 7420 | #define LBF_ALL_PINNED 0x01 |
367456c7 | 7421 | #define LBF_NEED_BREAK 0x02 |
6263322c PZ |
7422 | #define LBF_DST_PINNED 0x04 |
7423 | #define LBF_SOME_PINNED 0x08 | |
e022e0d3 | 7424 | #define LBF_NOHZ_STATS 0x10 |
f643ea22 | 7425 | #define LBF_NOHZ_AGAIN 0x20 |
ddcdf6e7 PZ |
7426 | |
7427 | struct lb_env { | |
7428 | struct sched_domain *sd; | |
7429 | ||
ddcdf6e7 | 7430 | struct rq *src_rq; |
85c1e7da | 7431 | int src_cpu; |
ddcdf6e7 PZ |
7432 | |
7433 | int dst_cpu; | |
7434 | struct rq *dst_rq; | |
7435 | ||
88b8dac0 SV |
7436 | struct cpumask *dst_grpmask; |
7437 | int new_dst_cpu; | |
ddcdf6e7 | 7438 | enum cpu_idle_type idle; |
bd939f45 | 7439 | long imbalance; |
b9403130 MW |
7440 | /* The set of CPUs under consideration for load-balancing */ |
7441 | struct cpumask *cpus; | |
7442 | ||
ddcdf6e7 | 7443 | unsigned int flags; |
367456c7 PZ |
7444 | |
7445 | unsigned int loop; | |
7446 | unsigned int loop_break; | |
7447 | unsigned int loop_max; | |
0ec8aa00 PZ |
7448 | |
7449 | enum fbq_type fbq_type; | |
0b0695f2 | 7450 | enum migration_type migration_type; |
163122b7 | 7451 | struct list_head tasks; |
ddcdf6e7 PZ |
7452 | }; |
7453 | ||
029632fb PZ |
7454 | /* |
7455 | * Is this task likely cache-hot: | |
7456 | */ | |
5d5e2b1b | 7457 | static int task_hot(struct task_struct *p, struct lb_env *env) |
029632fb PZ |
7458 | { |
7459 | s64 delta; | |
7460 | ||
e5673f28 KT |
7461 | lockdep_assert_held(&env->src_rq->lock); |
7462 | ||
029632fb PZ |
7463 | if (p->sched_class != &fair_sched_class) |
7464 | return 0; | |
7465 | ||
1da1843f | 7466 | if (unlikely(task_has_idle_policy(p))) |
029632fb PZ |
7467 | return 0; |
7468 | ||
ec73240b JD |
7469 | /* SMT siblings share cache */ |
7470 | if (env->sd->flags & SD_SHARE_CPUCAPACITY) | |
7471 | return 0; | |
7472 | ||
029632fb PZ |
7473 | /* |
7474 | * Buddy candidates are cache hot: | |
7475 | */ | |
5d5e2b1b | 7476 | if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && |
029632fb PZ |
7477 | (&p->se == cfs_rq_of(&p->se)->next || |
7478 | &p->se == cfs_rq_of(&p->se)->last)) | |
7479 | return 1; | |
7480 | ||
7481 | if (sysctl_sched_migration_cost == -1) | |
7482 | return 1; | |
7483 | if (sysctl_sched_migration_cost == 0) | |
7484 | return 0; | |
7485 | ||
5d5e2b1b | 7486 | delta = rq_clock_task(env->src_rq) - p->se.exec_start; |
029632fb PZ |
7487 | |
7488 | return delta < (s64)sysctl_sched_migration_cost; | |
7489 | } | |
7490 | ||
3a7053b3 | 7491 | #ifdef CONFIG_NUMA_BALANCING |
c1ceac62 | 7492 | /* |
2a1ed24c SD |
7493 | * Returns 1, if task migration degrades locality |
7494 | * Returns 0, if task migration improves locality i.e migration preferred. | |
7495 | * Returns -1, if task migration is not affected by locality. | |
c1ceac62 | 7496 | */ |
2a1ed24c | 7497 | static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) |
3a7053b3 | 7498 | { |
b1ad065e | 7499 | struct numa_group *numa_group = rcu_dereference(p->numa_group); |
f35678b6 SD |
7500 | unsigned long src_weight, dst_weight; |
7501 | int src_nid, dst_nid, dist; | |
3a7053b3 | 7502 | |
2a595721 | 7503 | if (!static_branch_likely(&sched_numa_balancing)) |
2a1ed24c SD |
7504 | return -1; |
7505 | ||
c3b9bc5b | 7506 | if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) |
2a1ed24c | 7507 | return -1; |
7a0f3083 MG |
7508 | |
7509 | src_nid = cpu_to_node(env->src_cpu); | |
7510 | dst_nid = cpu_to_node(env->dst_cpu); | |
7511 | ||
83e1d2cd | 7512 | if (src_nid == dst_nid) |
2a1ed24c | 7513 | return -1; |
7a0f3083 | 7514 | |
2a1ed24c SD |
7515 | /* Migrating away from the preferred node is always bad. */ |
7516 | if (src_nid == p->numa_preferred_nid) { | |
7517 | if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) | |
7518 | return 1; | |
7519 | else | |
7520 | return -1; | |
7521 | } | |
b1ad065e | 7522 | |
c1ceac62 RR |
7523 | /* Encourage migration to the preferred node. */ |
7524 | if (dst_nid == p->numa_preferred_nid) | |
2a1ed24c | 7525 | return 0; |
b1ad065e | 7526 | |
739294fb | 7527 | /* Leaving a core idle is often worse than degrading locality. */ |
f35678b6 | 7528 | if (env->idle == CPU_IDLE) |
739294fb RR |
7529 | return -1; |
7530 | ||
f35678b6 | 7531 | dist = node_distance(src_nid, dst_nid); |
c1ceac62 | 7532 | if (numa_group) { |
f35678b6 SD |
7533 | src_weight = group_weight(p, src_nid, dist); |
7534 | dst_weight = group_weight(p, dst_nid, dist); | |
c1ceac62 | 7535 | } else { |
f35678b6 SD |
7536 | src_weight = task_weight(p, src_nid, dist); |
7537 | dst_weight = task_weight(p, dst_nid, dist); | |
b1ad065e RR |
7538 | } |
7539 | ||
f35678b6 | 7540 | return dst_weight < src_weight; |
7a0f3083 MG |
7541 | } |
7542 | ||
3a7053b3 | 7543 | #else |
2a1ed24c | 7544 | static inline int migrate_degrades_locality(struct task_struct *p, |
3a7053b3 MG |
7545 | struct lb_env *env) |
7546 | { | |
2a1ed24c | 7547 | return -1; |
7a0f3083 | 7548 | } |
3a7053b3 MG |
7549 | #endif |
7550 | ||
1e3c88bd PZ |
7551 | /* |
7552 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
7553 | */ | |
7554 | static | |
8e45cb54 | 7555 | int can_migrate_task(struct task_struct *p, struct lb_env *env) |
1e3c88bd | 7556 | { |
2a1ed24c | 7557 | int tsk_cache_hot; |
e5673f28 KT |
7558 | |
7559 | lockdep_assert_held(&env->src_rq->lock); | |
7560 | ||
1e3c88bd PZ |
7561 | /* |
7562 | * We do not migrate tasks that are: | |
d3198084 | 7563 | * 1) throttled_lb_pair, or |
3bd37062 | 7564 | * 2) cannot be migrated to this CPU due to cpus_ptr, or |
d3198084 JK |
7565 | * 3) running (obviously), or |
7566 | * 4) are cache-hot on their current CPU. | |
1e3c88bd | 7567 | */ |
d3198084 JK |
7568 | if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) |
7569 | return 0; | |
7570 | ||
3bd37062 | 7571 | if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { |
e02e60c1 | 7572 | int cpu; |
88b8dac0 | 7573 | |
ae92882e | 7574 | schedstat_inc(p->se.statistics.nr_failed_migrations_affine); |
88b8dac0 | 7575 | |
6263322c PZ |
7576 | env->flags |= LBF_SOME_PINNED; |
7577 | ||
88b8dac0 | 7578 | /* |
97fb7a0a | 7579 | * Remember if this task can be migrated to any other CPU in |
88b8dac0 SV |
7580 | * our sched_group. We may want to revisit it if we couldn't |
7581 | * meet load balance goals by pulling other tasks on src_cpu. | |
7582 | * | |
65a4433a JH |
7583 | * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have |
7584 | * already computed one in current iteration. | |
88b8dac0 | 7585 | */ |
65a4433a | 7586 | if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) |
88b8dac0 SV |
7587 | return 0; |
7588 | ||
97fb7a0a | 7589 | /* Prevent to re-select dst_cpu via env's CPUs: */ |
e02e60c1 | 7590 | for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { |
3bd37062 | 7591 | if (cpumask_test_cpu(cpu, p->cpus_ptr)) { |
6263322c | 7592 | env->flags |= LBF_DST_PINNED; |
e02e60c1 JK |
7593 | env->new_dst_cpu = cpu; |
7594 | break; | |
7595 | } | |
88b8dac0 | 7596 | } |
e02e60c1 | 7597 | |
1e3c88bd PZ |
7598 | return 0; |
7599 | } | |
88b8dac0 SV |
7600 | |
7601 | /* Record that we found atleast one task that could run on dst_cpu */ | |
8e45cb54 | 7602 | env->flags &= ~LBF_ALL_PINNED; |
1e3c88bd | 7603 | |
ddcdf6e7 | 7604 | if (task_running(env->src_rq, p)) { |
ae92882e | 7605 | schedstat_inc(p->se.statistics.nr_failed_migrations_running); |
1e3c88bd PZ |
7606 | return 0; |
7607 | } | |
7608 | ||
7609 | /* | |
7610 | * Aggressive migration if: | |
3a7053b3 MG |
7611 | * 1) destination numa is preferred |
7612 | * 2) task is cache cold, or | |
7613 | * 3) too many balance attempts have failed. | |
1e3c88bd | 7614 | */ |
2a1ed24c SD |
7615 | tsk_cache_hot = migrate_degrades_locality(p, env); |
7616 | if (tsk_cache_hot == -1) | |
7617 | tsk_cache_hot = task_hot(p, env); | |
3a7053b3 | 7618 | |
2a1ed24c | 7619 | if (tsk_cache_hot <= 0 || |
7a96c231 | 7620 | env->sd->nr_balance_failed > env->sd->cache_nice_tries) { |
2a1ed24c | 7621 | if (tsk_cache_hot == 1) { |
ae92882e JP |
7622 | schedstat_inc(env->sd->lb_hot_gained[env->idle]); |
7623 | schedstat_inc(p->se.statistics.nr_forced_migrations); | |
3a7053b3 | 7624 | } |
1e3c88bd PZ |
7625 | return 1; |
7626 | } | |
7627 | ||
ae92882e | 7628 | schedstat_inc(p->se.statistics.nr_failed_migrations_hot); |
4e2dcb73 | 7629 | return 0; |
1e3c88bd PZ |
7630 | } |
7631 | ||
897c395f | 7632 | /* |
163122b7 KT |
7633 | * detach_task() -- detach the task for the migration specified in env |
7634 | */ | |
7635 | static void detach_task(struct task_struct *p, struct lb_env *env) | |
7636 | { | |
7637 | lockdep_assert_held(&env->src_rq->lock); | |
7638 | ||
5704ac0a | 7639 | deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); |
163122b7 KT |
7640 | set_task_cpu(p, env->dst_cpu); |
7641 | } | |
7642 | ||
897c395f | 7643 | /* |
e5673f28 | 7644 | * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as |
897c395f | 7645 | * part of active balancing operations within "domain". |
897c395f | 7646 | * |
e5673f28 | 7647 | * Returns a task if successful and NULL otherwise. |
897c395f | 7648 | */ |
e5673f28 | 7649 | static struct task_struct *detach_one_task(struct lb_env *env) |
897c395f | 7650 | { |
93824900 | 7651 | struct task_struct *p; |
897c395f | 7652 | |
e5673f28 KT |
7653 | lockdep_assert_held(&env->src_rq->lock); |
7654 | ||
93824900 UR |
7655 | list_for_each_entry_reverse(p, |
7656 | &env->src_rq->cfs_tasks, se.group_node) { | |
367456c7 PZ |
7657 | if (!can_migrate_task(p, env)) |
7658 | continue; | |
897c395f | 7659 | |
163122b7 | 7660 | detach_task(p, env); |
e5673f28 | 7661 | |
367456c7 | 7662 | /* |
e5673f28 | 7663 | * Right now, this is only the second place where |
163122b7 | 7664 | * lb_gained[env->idle] is updated (other is detach_tasks) |
e5673f28 | 7665 | * so we can safely collect stats here rather than |
163122b7 | 7666 | * inside detach_tasks(). |
367456c7 | 7667 | */ |
ae92882e | 7668 | schedstat_inc(env->sd->lb_gained[env->idle]); |
e5673f28 | 7669 | return p; |
897c395f | 7670 | } |
e5673f28 | 7671 | return NULL; |
897c395f PZ |
7672 | } |
7673 | ||
eb95308e PZ |
7674 | static const unsigned int sched_nr_migrate_break = 32; |
7675 | ||
5d6523eb | 7676 | /* |
0b0695f2 | 7677 | * detach_tasks() -- tries to detach up to imbalance load/util/tasks from |
163122b7 | 7678 | * busiest_rq, as part of a balancing operation within domain "sd". |
5d6523eb | 7679 | * |
163122b7 | 7680 | * Returns number of detached tasks if successful and 0 otherwise. |
5d6523eb | 7681 | */ |
163122b7 | 7682 | static int detach_tasks(struct lb_env *env) |
1e3c88bd | 7683 | { |
5d6523eb | 7684 | struct list_head *tasks = &env->src_rq->cfs_tasks; |
0b0695f2 | 7685 | unsigned long util, load; |
5d6523eb | 7686 | struct task_struct *p; |
163122b7 KT |
7687 | int detached = 0; |
7688 | ||
7689 | lockdep_assert_held(&env->src_rq->lock); | |
1e3c88bd | 7690 | |
bd939f45 | 7691 | if (env->imbalance <= 0) |
5d6523eb | 7692 | return 0; |
1e3c88bd | 7693 | |
5d6523eb | 7694 | while (!list_empty(tasks)) { |
985d3a4c YD |
7695 | /* |
7696 | * We don't want to steal all, otherwise we may be treated likewise, | |
7697 | * which could at worst lead to a livelock crash. | |
7698 | */ | |
7699 | if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) | |
7700 | break; | |
7701 | ||
93824900 | 7702 | p = list_last_entry(tasks, struct task_struct, se.group_node); |
1e3c88bd | 7703 | |
367456c7 PZ |
7704 | env->loop++; |
7705 | /* We've more or less seen every task there is, call it quits */ | |
5d6523eb | 7706 | if (env->loop > env->loop_max) |
367456c7 | 7707 | break; |
5d6523eb PZ |
7708 | |
7709 | /* take a breather every nr_migrate tasks */ | |
367456c7 | 7710 | if (env->loop > env->loop_break) { |
eb95308e | 7711 | env->loop_break += sched_nr_migrate_break; |
8e45cb54 | 7712 | env->flags |= LBF_NEED_BREAK; |
ee00e66f | 7713 | break; |
a195f004 | 7714 | } |
1e3c88bd | 7715 | |
d3198084 | 7716 | if (!can_migrate_task(p, env)) |
367456c7 PZ |
7717 | goto next; |
7718 | ||
0b0695f2 VG |
7719 | switch (env->migration_type) { |
7720 | case migrate_load: | |
01cfcde9 VG |
7721 | /* |
7722 | * Depending of the number of CPUs and tasks and the | |
7723 | * cgroup hierarchy, task_h_load() can return a null | |
7724 | * value. Make sure that env->imbalance decreases | |
7725 | * otherwise detach_tasks() will stop only after | |
7726 | * detaching up to loop_max tasks. | |
7727 | */ | |
7728 | load = max_t(unsigned long, task_h_load(p), 1); | |
5d6523eb | 7729 | |
0b0695f2 VG |
7730 | if (sched_feat(LB_MIN) && |
7731 | load < 16 && !env->sd->nr_balance_failed) | |
7732 | goto next; | |
367456c7 | 7733 | |
6cf82d55 VG |
7734 | /* |
7735 | * Make sure that we don't migrate too much load. | |
7736 | * Nevertheless, let relax the constraint if | |
7737 | * scheduler fails to find a good waiting task to | |
7738 | * migrate. | |
7739 | */ | |
5a7f5559 VG |
7740 | |
7741 | if ((load >> env->sd->nr_balance_failed) > env->imbalance) | |
0b0695f2 VG |
7742 | goto next; |
7743 | ||
7744 | env->imbalance -= load; | |
7745 | break; | |
7746 | ||
7747 | case migrate_util: | |
7748 | util = task_util_est(p); | |
7749 | ||
7750 | if (util > env->imbalance) | |
7751 | goto next; | |
7752 | ||
7753 | env->imbalance -= util; | |
7754 | break; | |
7755 | ||
7756 | case migrate_task: | |
7757 | env->imbalance--; | |
7758 | break; | |
7759 | ||
7760 | case migrate_misfit: | |
c63be7be VG |
7761 | /* This is not a misfit task */ |
7762 | if (task_fits_capacity(p, capacity_of(env->src_cpu))) | |
0b0695f2 VG |
7763 | goto next; |
7764 | ||
7765 | env->imbalance = 0; | |
7766 | break; | |
7767 | } | |
1e3c88bd | 7768 | |
163122b7 KT |
7769 | detach_task(p, env); |
7770 | list_add(&p->se.group_node, &env->tasks); | |
7771 | ||
7772 | detached++; | |
1e3c88bd | 7773 | |
c1a280b6 | 7774 | #ifdef CONFIG_PREEMPTION |
ee00e66f PZ |
7775 | /* |
7776 | * NEWIDLE balancing is a source of latency, so preemptible | |
163122b7 | 7777 | * kernels will stop after the first task is detached to minimize |
ee00e66f PZ |
7778 | * the critical section. |
7779 | */ | |
5d6523eb | 7780 | if (env->idle == CPU_NEWLY_IDLE) |
ee00e66f | 7781 | break; |
1e3c88bd PZ |
7782 | #endif |
7783 | ||
ee00e66f PZ |
7784 | /* |
7785 | * We only want to steal up to the prescribed amount of | |
0b0695f2 | 7786 | * load/util/tasks. |
ee00e66f | 7787 | */ |
bd939f45 | 7788 | if (env->imbalance <= 0) |
ee00e66f | 7789 | break; |
367456c7 PZ |
7790 | |
7791 | continue; | |
7792 | next: | |
93824900 | 7793 | list_move(&p->se.group_node, tasks); |
1e3c88bd | 7794 | } |
5d6523eb | 7795 | |
1e3c88bd | 7796 | /* |
163122b7 KT |
7797 | * Right now, this is one of only two places we collect this stat |
7798 | * so we can safely collect detach_one_task() stats here rather | |
7799 | * than inside detach_one_task(). | |
1e3c88bd | 7800 | */ |
ae92882e | 7801 | schedstat_add(env->sd->lb_gained[env->idle], detached); |
1e3c88bd | 7802 | |
163122b7 KT |
7803 | return detached; |
7804 | } | |
7805 | ||
7806 | /* | |
7807 | * attach_task() -- attach the task detached by detach_task() to its new rq. | |
7808 | */ | |
7809 | static void attach_task(struct rq *rq, struct task_struct *p) | |
7810 | { | |
7811 | lockdep_assert_held(&rq->lock); | |
7812 | ||
7813 | BUG_ON(task_rq(p) != rq); | |
5704ac0a | 7814 | activate_task(rq, p, ENQUEUE_NOCLOCK); |
163122b7 KT |
7815 | check_preempt_curr(rq, p, 0); |
7816 | } | |
7817 | ||
7818 | /* | |
7819 | * attach_one_task() -- attaches the task returned from detach_one_task() to | |
7820 | * its new rq. | |
7821 | */ | |
7822 | static void attach_one_task(struct rq *rq, struct task_struct *p) | |
7823 | { | |
8a8c69c3 PZ |
7824 | struct rq_flags rf; |
7825 | ||
7826 | rq_lock(rq, &rf); | |
5704ac0a | 7827 | update_rq_clock(rq); |
163122b7 | 7828 | attach_task(rq, p); |
8a8c69c3 | 7829 | rq_unlock(rq, &rf); |
163122b7 KT |
7830 | } |
7831 | ||
7832 | /* | |
7833 | * attach_tasks() -- attaches all tasks detached by detach_tasks() to their | |
7834 | * new rq. | |
7835 | */ | |
7836 | static void attach_tasks(struct lb_env *env) | |
7837 | { | |
7838 | struct list_head *tasks = &env->tasks; | |
7839 | struct task_struct *p; | |
8a8c69c3 | 7840 | struct rq_flags rf; |
163122b7 | 7841 | |
8a8c69c3 | 7842 | rq_lock(env->dst_rq, &rf); |
5704ac0a | 7843 | update_rq_clock(env->dst_rq); |
163122b7 KT |
7844 | |
7845 | while (!list_empty(tasks)) { | |
7846 | p = list_first_entry(tasks, struct task_struct, se.group_node); | |
7847 | list_del_init(&p->se.group_node); | |
1e3c88bd | 7848 | |
163122b7 KT |
7849 | attach_task(env->dst_rq, p); |
7850 | } | |
7851 | ||
8a8c69c3 | 7852 | rq_unlock(env->dst_rq, &rf); |
1e3c88bd PZ |
7853 | } |
7854 | ||
b0c79224 | 7855 | #ifdef CONFIG_NO_HZ_COMMON |
1936c53c VG |
7856 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) |
7857 | { | |
7858 | if (cfs_rq->avg.load_avg) | |
7859 | return true; | |
7860 | ||
7861 | if (cfs_rq->avg.util_avg) | |
7862 | return true; | |
7863 | ||
7864 | return false; | |
7865 | } | |
7866 | ||
91c27493 | 7867 | static inline bool others_have_blocked(struct rq *rq) |
371bf427 VG |
7868 | { |
7869 | if (READ_ONCE(rq->avg_rt.util_avg)) | |
7870 | return true; | |
7871 | ||
3727e0e1 VG |
7872 | if (READ_ONCE(rq->avg_dl.util_avg)) |
7873 | return true; | |
7874 | ||
b4eccf5f TG |
7875 | if (thermal_load_avg(rq)) |
7876 | return true; | |
7877 | ||
11d4afd4 | 7878 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
91c27493 VG |
7879 | if (READ_ONCE(rq->avg_irq.util_avg)) |
7880 | return true; | |
7881 | #endif | |
7882 | ||
371bf427 VG |
7883 | return false; |
7884 | } | |
7885 | ||
b0c79224 VS |
7886 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) |
7887 | { | |
7888 | rq->last_blocked_load_update_tick = jiffies; | |
7889 | ||
7890 | if (!has_blocked) | |
7891 | rq->has_blocked_load = 0; | |
7892 | } | |
7893 | #else | |
7894 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } | |
7895 | static inline bool others_have_blocked(struct rq *rq) { return false; } | |
7896 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} | |
7897 | #endif | |
7898 | ||
bef69dd8 VG |
7899 | static bool __update_blocked_others(struct rq *rq, bool *done) |
7900 | { | |
7901 | const struct sched_class *curr_class; | |
7902 | u64 now = rq_clock_pelt(rq); | |
b4eccf5f | 7903 | unsigned long thermal_pressure; |
bef69dd8 VG |
7904 | bool decayed; |
7905 | ||
7906 | /* | |
7907 | * update_load_avg() can call cpufreq_update_util(). Make sure that RT, | |
7908 | * DL and IRQ signals have been updated before updating CFS. | |
7909 | */ | |
7910 | curr_class = rq->curr->sched_class; | |
7911 | ||
b4eccf5f TG |
7912 | thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); |
7913 | ||
bef69dd8 VG |
7914 | decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | |
7915 | update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | | |
05289b90 | 7916 | update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | |
bef69dd8 VG |
7917 | update_irq_load_avg(rq, 0); |
7918 | ||
7919 | if (others_have_blocked(rq)) | |
7920 | *done = false; | |
7921 | ||
7922 | return decayed; | |
7923 | } | |
7924 | ||
1936c53c VG |
7925 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7926 | ||
039ae8bc VG |
7927 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) |
7928 | { | |
7929 | if (cfs_rq->load.weight) | |
7930 | return false; | |
7931 | ||
7932 | if (cfs_rq->avg.load_sum) | |
7933 | return false; | |
7934 | ||
7935 | if (cfs_rq->avg.util_sum) | |
7936 | return false; | |
7937 | ||
9f683953 VG |
7938 | if (cfs_rq->avg.runnable_sum) |
7939 | return false; | |
7940 | ||
039ae8bc VG |
7941 | return true; |
7942 | } | |
7943 | ||
bef69dd8 | 7944 | static bool __update_blocked_fair(struct rq *rq, bool *done) |
9e3081ca | 7945 | { |
039ae8bc | 7946 | struct cfs_rq *cfs_rq, *pos; |
bef69dd8 VG |
7947 | bool decayed = false; |
7948 | int cpu = cpu_of(rq); | |
b90f7c9d | 7949 | |
9763b67f PZ |
7950 | /* |
7951 | * Iterates the task_group tree in a bottom up fashion, see | |
7952 | * list_add_leaf_cfs_rq() for details. | |
7953 | */ | |
039ae8bc | 7954 | for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { |
bc427898 VG |
7955 | struct sched_entity *se; |
7956 | ||
bef69dd8 | 7957 | if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { |
fe749158 | 7958 | update_tg_load_avg(cfs_rq); |
4e516076 | 7959 | |
bef69dd8 VG |
7960 | if (cfs_rq == &rq->cfs) |
7961 | decayed = true; | |
7962 | } | |
7963 | ||
bc427898 VG |
7964 | /* Propagate pending load changes to the parent, if any: */ |
7965 | se = cfs_rq->tg->se[cpu]; | |
7966 | if (se && !skip_blocked_update(se)) | |
88c0616e | 7967 | update_load_avg(cfs_rq_of(se), se, 0); |
a9e7f654 | 7968 | |
039ae8bc VG |
7969 | /* |
7970 | * There can be a lot of idle CPU cgroups. Don't let fully | |
7971 | * decayed cfs_rqs linger on the list. | |
7972 | */ | |
7973 | if (cfs_rq_is_decayed(cfs_rq)) | |
7974 | list_del_leaf_cfs_rq(cfs_rq); | |
7975 | ||
1936c53c VG |
7976 | /* Don't need periodic decay once load/util_avg are null */ |
7977 | if (cfs_rq_has_blocked(cfs_rq)) | |
bef69dd8 | 7978 | *done = false; |
9d89c257 | 7979 | } |
12b04875 | 7980 | |
bef69dd8 | 7981 | return decayed; |
9e3081ca PZ |
7982 | } |
7983 | ||
9763b67f | 7984 | /* |
68520796 | 7985 | * Compute the hierarchical load factor for cfs_rq and all its ascendants. |
9763b67f PZ |
7986 | * This needs to be done in a top-down fashion because the load of a child |
7987 | * group is a fraction of its parents load. | |
7988 | */ | |
68520796 | 7989 | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) |
9763b67f | 7990 | { |
68520796 VD |
7991 | struct rq *rq = rq_of(cfs_rq); |
7992 | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | |
a35b6466 | 7993 | unsigned long now = jiffies; |
68520796 | 7994 | unsigned long load; |
a35b6466 | 7995 | |
68520796 | 7996 | if (cfs_rq->last_h_load_update == now) |
a35b6466 PZ |
7997 | return; |
7998 | ||
0e9f0245 | 7999 | WRITE_ONCE(cfs_rq->h_load_next, NULL); |
68520796 VD |
8000 | for_each_sched_entity(se) { |
8001 | cfs_rq = cfs_rq_of(se); | |
0e9f0245 | 8002 | WRITE_ONCE(cfs_rq->h_load_next, se); |
68520796 VD |
8003 | if (cfs_rq->last_h_load_update == now) |
8004 | break; | |
8005 | } | |
a35b6466 | 8006 | |
68520796 | 8007 | if (!se) { |
7ea241af | 8008 | cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); |
68520796 VD |
8009 | cfs_rq->last_h_load_update = now; |
8010 | } | |
8011 | ||
0e9f0245 | 8012 | while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { |
68520796 | 8013 | load = cfs_rq->h_load; |
7ea241af YD |
8014 | load = div64_ul(load * se->avg.load_avg, |
8015 | cfs_rq_load_avg(cfs_rq) + 1); | |
68520796 VD |
8016 | cfs_rq = group_cfs_rq(se); |
8017 | cfs_rq->h_load = load; | |
8018 | cfs_rq->last_h_load_update = now; | |
8019 | } | |
9763b67f PZ |
8020 | } |
8021 | ||
367456c7 | 8022 | static unsigned long task_h_load(struct task_struct *p) |
230059de | 8023 | { |
367456c7 | 8024 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
230059de | 8025 | |
68520796 | 8026 | update_cfs_rq_h_load(cfs_rq); |
9d89c257 | 8027 | return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, |
7ea241af | 8028 | cfs_rq_load_avg(cfs_rq) + 1); |
230059de PZ |
8029 | } |
8030 | #else | |
bef69dd8 | 8031 | static bool __update_blocked_fair(struct rq *rq, bool *done) |
9e3081ca | 8032 | { |
6c1d47c0 | 8033 | struct cfs_rq *cfs_rq = &rq->cfs; |
bef69dd8 | 8034 | bool decayed; |
b90f7c9d | 8035 | |
bef69dd8 VG |
8036 | decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); |
8037 | if (cfs_rq_has_blocked(cfs_rq)) | |
8038 | *done = false; | |
b90f7c9d | 8039 | |
bef69dd8 | 8040 | return decayed; |
9e3081ca PZ |
8041 | } |
8042 | ||
367456c7 | 8043 | static unsigned long task_h_load(struct task_struct *p) |
1e3c88bd | 8044 | { |
9d89c257 | 8045 | return p->se.avg.load_avg; |
1e3c88bd | 8046 | } |
230059de | 8047 | #endif |
1e3c88bd | 8048 | |
bef69dd8 VG |
8049 | static void update_blocked_averages(int cpu) |
8050 | { | |
8051 | bool decayed = false, done = true; | |
8052 | struct rq *rq = cpu_rq(cpu); | |
8053 | struct rq_flags rf; | |
8054 | ||
8055 | rq_lock_irqsave(rq, &rf); | |
8056 | update_rq_clock(rq); | |
8057 | ||
8058 | decayed |= __update_blocked_others(rq, &done); | |
8059 | decayed |= __update_blocked_fair(rq, &done); | |
8060 | ||
8061 | update_blocked_load_status(rq, !done); | |
8062 | if (decayed) | |
8063 | cpufreq_update_util(rq, 0); | |
8064 | rq_unlock_irqrestore(rq, &rf); | |
8065 | } | |
8066 | ||
1e3c88bd | 8067 | /********** Helpers for find_busiest_group ************************/ |
caeb178c | 8068 | |
1e3c88bd PZ |
8069 | /* |
8070 | * sg_lb_stats - stats of a sched_group required for load_balancing | |
8071 | */ | |
8072 | struct sg_lb_stats { | |
8073 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | |
8074 | unsigned long group_load; /* Total load over the CPUs of the group */ | |
63b2ca30 | 8075 | unsigned long group_capacity; |
070f5e86 VG |
8076 | unsigned long group_util; /* Total utilization over the CPUs of the group */ |
8077 | unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ | |
5e23e474 | 8078 | unsigned int sum_nr_running; /* Nr of tasks running in the group */ |
a3498347 | 8079 | unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ |
147c5fc2 PZ |
8080 | unsigned int idle_cpus; |
8081 | unsigned int group_weight; | |
caeb178c | 8082 | enum group_type group_type; |
490ba971 | 8083 | unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ |
3b1baa64 | 8084 | unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ |
0ec8aa00 PZ |
8085 | #ifdef CONFIG_NUMA_BALANCING |
8086 | unsigned int nr_numa_running; | |
8087 | unsigned int nr_preferred_running; | |
8088 | #endif | |
1e3c88bd PZ |
8089 | }; |
8090 | ||
56cf515b JK |
8091 | /* |
8092 | * sd_lb_stats - Structure to store the statistics of a sched_domain | |
8093 | * during load balancing. | |
8094 | */ | |
8095 | struct sd_lb_stats { | |
8096 | struct sched_group *busiest; /* Busiest group in this sd */ | |
8097 | struct sched_group *local; /* Local group in this sd */ | |
8098 | unsigned long total_load; /* Total load of all groups in sd */ | |
63b2ca30 | 8099 | unsigned long total_capacity; /* Total capacity of all groups in sd */ |
56cf515b | 8100 | unsigned long avg_load; /* Average load across all groups in sd */ |
0b0695f2 | 8101 | unsigned int prefer_sibling; /* tasks should go to sibling first */ |
56cf515b | 8102 | |
56cf515b | 8103 | struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ |
147c5fc2 | 8104 | struct sg_lb_stats local_stat; /* Statistics of the local group */ |
56cf515b JK |
8105 | }; |
8106 | ||
147c5fc2 PZ |
8107 | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) |
8108 | { | |
8109 | /* | |
8110 | * Skimp on the clearing to avoid duplicate work. We can avoid clearing | |
8111 | * local_stat because update_sg_lb_stats() does a full clear/assignment. | |
0b0695f2 VG |
8112 | * We must however set busiest_stat::group_type and |
8113 | * busiest_stat::idle_cpus to the worst busiest group because | |
8114 | * update_sd_pick_busiest() reads these before assignment. | |
147c5fc2 PZ |
8115 | */ |
8116 | *sds = (struct sd_lb_stats){ | |
8117 | .busiest = NULL, | |
8118 | .local = NULL, | |
8119 | .total_load = 0UL, | |
63b2ca30 | 8120 | .total_capacity = 0UL, |
147c5fc2 | 8121 | .busiest_stat = { |
0b0695f2 VG |
8122 | .idle_cpus = UINT_MAX, |
8123 | .group_type = group_has_spare, | |
147c5fc2 PZ |
8124 | }, |
8125 | }; | |
8126 | } | |
8127 | ||
1ca2034e | 8128 | static unsigned long scale_rt_capacity(int cpu) |
1e3c88bd PZ |
8129 | { |
8130 | struct rq *rq = cpu_rq(cpu); | |
8ec59c0f | 8131 | unsigned long max = arch_scale_cpu_capacity(cpu); |
523e979d | 8132 | unsigned long used, free; |
523e979d | 8133 | unsigned long irq; |
b654f7de | 8134 | |
2e62c474 | 8135 | irq = cpu_util_irq(rq); |
cadefd3d | 8136 | |
523e979d VG |
8137 | if (unlikely(irq >= max)) |
8138 | return 1; | |
aa483808 | 8139 | |
467b7d01 TG |
8140 | /* |
8141 | * avg_rt.util_avg and avg_dl.util_avg track binary signals | |
8142 | * (running and not running) with weights 0 and 1024 respectively. | |
8143 | * avg_thermal.load_avg tracks thermal pressure and the weighted | |
8144 | * average uses the actual delta max capacity(load). | |
8145 | */ | |
523e979d VG |
8146 | used = READ_ONCE(rq->avg_rt.util_avg); |
8147 | used += READ_ONCE(rq->avg_dl.util_avg); | |
467b7d01 | 8148 | used += thermal_load_avg(rq); |
1e3c88bd | 8149 | |
523e979d VG |
8150 | if (unlikely(used >= max)) |
8151 | return 1; | |
1e3c88bd | 8152 | |
523e979d | 8153 | free = max - used; |
2e62c474 VG |
8154 | |
8155 | return scale_irq_capacity(free, irq, max); | |
1e3c88bd PZ |
8156 | } |
8157 | ||
ced549fa | 8158 | static void update_cpu_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd | 8159 | { |
1ca2034e | 8160 | unsigned long capacity = scale_rt_capacity(cpu); |
1e3c88bd PZ |
8161 | struct sched_group *sdg = sd->groups; |
8162 | ||
8ec59c0f | 8163 | cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); |
1e3c88bd | 8164 | |
ced549fa NP |
8165 | if (!capacity) |
8166 | capacity = 1; | |
1e3c88bd | 8167 | |
ced549fa | 8168 | cpu_rq(cpu)->cpu_capacity = capacity; |
51cf18c9 VD |
8169 | trace_sched_cpu_capacity_tp(cpu_rq(cpu)); |
8170 | ||
ced549fa | 8171 | sdg->sgc->capacity = capacity; |
bf475ce0 | 8172 | sdg->sgc->min_capacity = capacity; |
e3d6d0cb | 8173 | sdg->sgc->max_capacity = capacity; |
1e3c88bd PZ |
8174 | } |
8175 | ||
63b2ca30 | 8176 | void update_group_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd PZ |
8177 | { |
8178 | struct sched_domain *child = sd->child; | |
8179 | struct sched_group *group, *sdg = sd->groups; | |
e3d6d0cb | 8180 | unsigned long capacity, min_capacity, max_capacity; |
4ec4412e VG |
8181 | unsigned long interval; |
8182 | ||
8183 | interval = msecs_to_jiffies(sd->balance_interval); | |
8184 | interval = clamp(interval, 1UL, max_load_balance_interval); | |
63b2ca30 | 8185 | sdg->sgc->next_update = jiffies + interval; |
1e3c88bd PZ |
8186 | |
8187 | if (!child) { | |
ced549fa | 8188 | update_cpu_capacity(sd, cpu); |
1e3c88bd PZ |
8189 | return; |
8190 | } | |
8191 | ||
dc7ff76e | 8192 | capacity = 0; |
bf475ce0 | 8193 | min_capacity = ULONG_MAX; |
e3d6d0cb | 8194 | max_capacity = 0; |
1e3c88bd | 8195 | |
74a5ce20 PZ |
8196 | if (child->flags & SD_OVERLAP) { |
8197 | /* | |
8198 | * SD_OVERLAP domains cannot assume that child groups | |
8199 | * span the current group. | |
8200 | */ | |
8201 | ||
ae4df9d6 | 8202 | for_each_cpu(cpu, sched_group_span(sdg)) { |
4c58f57f | 8203 | unsigned long cpu_cap = capacity_of(cpu); |
863bffc8 | 8204 | |
4c58f57f PL |
8205 | capacity += cpu_cap; |
8206 | min_capacity = min(cpu_cap, min_capacity); | |
8207 | max_capacity = max(cpu_cap, max_capacity); | |
863bffc8 | 8208 | } |
74a5ce20 PZ |
8209 | } else { |
8210 | /* | |
8211 | * !SD_OVERLAP domains can assume that child groups | |
8212 | * span the current group. | |
97a7142f | 8213 | */ |
74a5ce20 PZ |
8214 | |
8215 | group = child->groups; | |
8216 | do { | |
bf475ce0 MR |
8217 | struct sched_group_capacity *sgc = group->sgc; |
8218 | ||
8219 | capacity += sgc->capacity; | |
8220 | min_capacity = min(sgc->min_capacity, min_capacity); | |
e3d6d0cb | 8221 | max_capacity = max(sgc->max_capacity, max_capacity); |
74a5ce20 PZ |
8222 | group = group->next; |
8223 | } while (group != child->groups); | |
8224 | } | |
1e3c88bd | 8225 | |
63b2ca30 | 8226 | sdg->sgc->capacity = capacity; |
bf475ce0 | 8227 | sdg->sgc->min_capacity = min_capacity; |
e3d6d0cb | 8228 | sdg->sgc->max_capacity = max_capacity; |
1e3c88bd PZ |
8229 | } |
8230 | ||
9d5efe05 | 8231 | /* |
ea67821b VG |
8232 | * Check whether the capacity of the rq has been noticeably reduced by side |
8233 | * activity. The imbalance_pct is used for the threshold. | |
8234 | * Return true is the capacity is reduced | |
9d5efe05 SV |
8235 | */ |
8236 | static inline int | |
ea67821b | 8237 | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) |
9d5efe05 | 8238 | { |
ea67821b VG |
8239 | return ((rq->cpu_capacity * sd->imbalance_pct) < |
8240 | (rq->cpu_capacity_orig * 100)); | |
9d5efe05 SV |
8241 | } |
8242 | ||
a0fe2cf0 VS |
8243 | /* |
8244 | * Check whether a rq has a misfit task and if it looks like we can actually | |
8245 | * help that task: we can migrate the task to a CPU of higher capacity, or | |
8246 | * the task's current CPU is heavily pressured. | |
8247 | */ | |
8248 | static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) | |
8249 | { | |
8250 | return rq->misfit_task_load && | |
8251 | (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || | |
8252 | check_cpu_capacity(rq, sd)); | |
8253 | } | |
8254 | ||
30ce5dab PZ |
8255 | /* |
8256 | * Group imbalance indicates (and tries to solve) the problem where balancing | |
3bd37062 | 8257 | * groups is inadequate due to ->cpus_ptr constraints. |
30ce5dab | 8258 | * |
97fb7a0a IM |
8259 | * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a |
8260 | * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. | |
30ce5dab PZ |
8261 | * Something like: |
8262 | * | |
2b4d5b25 IM |
8263 | * { 0 1 2 3 } { 4 5 6 7 } |
8264 | * * * * * | |
30ce5dab PZ |
8265 | * |
8266 | * If we were to balance group-wise we'd place two tasks in the first group and | |
8267 | * two tasks in the second group. Clearly this is undesired as it will overload | |
97fb7a0a | 8268 | * cpu 3 and leave one of the CPUs in the second group unused. |
30ce5dab PZ |
8269 | * |
8270 | * The current solution to this issue is detecting the skew in the first group | |
6263322c PZ |
8271 | * by noticing the lower domain failed to reach balance and had difficulty |
8272 | * moving tasks due to affinity constraints. | |
30ce5dab PZ |
8273 | * |
8274 | * When this is so detected; this group becomes a candidate for busiest; see | |
ed1b7732 | 8275 | * update_sd_pick_busiest(). And calculate_imbalance() and |
6263322c | 8276 | * find_busiest_group() avoid some of the usual balance conditions to allow it |
30ce5dab PZ |
8277 | * to create an effective group imbalance. |
8278 | * | |
8279 | * This is a somewhat tricky proposition since the next run might not find the | |
8280 | * group imbalance and decide the groups need to be balanced again. A most | |
8281 | * subtle and fragile situation. | |
8282 | */ | |
8283 | ||
6263322c | 8284 | static inline int sg_imbalanced(struct sched_group *group) |
30ce5dab | 8285 | { |
63b2ca30 | 8286 | return group->sgc->imbalance; |
30ce5dab PZ |
8287 | } |
8288 | ||
b37d9316 | 8289 | /* |
ea67821b VG |
8290 | * group_has_capacity returns true if the group has spare capacity that could |
8291 | * be used by some tasks. | |
8292 | * We consider that a group has spare capacity if the * number of task is | |
9e91d61d DE |
8293 | * smaller than the number of CPUs or if the utilization is lower than the |
8294 | * available capacity for CFS tasks. | |
ea67821b VG |
8295 | * For the latter, we use a threshold to stabilize the state, to take into |
8296 | * account the variance of the tasks' load and to return true if the available | |
8297 | * capacity in meaningful for the load balancer. | |
8298 | * As an example, an available capacity of 1% can appear but it doesn't make | |
8299 | * any benefit for the load balance. | |
b37d9316 | 8300 | */ |
ea67821b | 8301 | static inline bool |
57abff06 | 8302 | group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) |
b37d9316 | 8303 | { |
5e23e474 | 8304 | if (sgs->sum_nr_running < sgs->group_weight) |
ea67821b | 8305 | return true; |
c61037e9 | 8306 | |
070f5e86 VG |
8307 | if ((sgs->group_capacity * imbalance_pct) < |
8308 | (sgs->group_runnable * 100)) | |
8309 | return false; | |
8310 | ||
ea67821b | 8311 | if ((sgs->group_capacity * 100) > |
57abff06 | 8312 | (sgs->group_util * imbalance_pct)) |
ea67821b | 8313 | return true; |
b37d9316 | 8314 | |
ea67821b VG |
8315 | return false; |
8316 | } | |
8317 | ||
8318 | /* | |
8319 | * group_is_overloaded returns true if the group has more tasks than it can | |
8320 | * handle. | |
8321 | * group_is_overloaded is not equals to !group_has_capacity because a group | |
8322 | * with the exact right number of tasks, has no more spare capacity but is not | |
8323 | * overloaded so both group_has_capacity and group_is_overloaded return | |
8324 | * false. | |
8325 | */ | |
8326 | static inline bool | |
57abff06 | 8327 | group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) |
ea67821b | 8328 | { |
5e23e474 | 8329 | if (sgs->sum_nr_running <= sgs->group_weight) |
ea67821b | 8330 | return false; |
b37d9316 | 8331 | |
ea67821b | 8332 | if ((sgs->group_capacity * 100) < |
57abff06 | 8333 | (sgs->group_util * imbalance_pct)) |
ea67821b | 8334 | return true; |
b37d9316 | 8335 | |
070f5e86 VG |
8336 | if ((sgs->group_capacity * imbalance_pct) < |
8337 | (sgs->group_runnable * 100)) | |
8338 | return true; | |
8339 | ||
ea67821b | 8340 | return false; |
b37d9316 PZ |
8341 | } |
8342 | ||
9e0994c0 | 8343 | /* |
e3d6d0cb | 8344 | * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller |
9e0994c0 MR |
8345 | * per-CPU capacity than sched_group ref. |
8346 | */ | |
8347 | static inline bool | |
e3d6d0cb | 8348 | group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) |
9e0994c0 | 8349 | { |
60e17f5c | 8350 | return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); |
9e0994c0 MR |
8351 | } |
8352 | ||
e3d6d0cb MR |
8353 | /* |
8354 | * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller | |
8355 | * per-CPU capacity_orig than sched_group ref. | |
8356 | */ | |
8357 | static inline bool | |
8358 | group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) | |
8359 | { | |
60e17f5c | 8360 | return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); |
e3d6d0cb MR |
8361 | } |
8362 | ||
79a89f92 | 8363 | static inline enum |
57abff06 | 8364 | group_type group_classify(unsigned int imbalance_pct, |
0b0695f2 | 8365 | struct sched_group *group, |
79a89f92 | 8366 | struct sg_lb_stats *sgs) |
caeb178c | 8367 | { |
57abff06 | 8368 | if (group_is_overloaded(imbalance_pct, sgs)) |
caeb178c RR |
8369 | return group_overloaded; |
8370 | ||
8371 | if (sg_imbalanced(group)) | |
8372 | return group_imbalanced; | |
8373 | ||
0b0695f2 VG |
8374 | if (sgs->group_asym_packing) |
8375 | return group_asym_packing; | |
8376 | ||
3b1baa64 MR |
8377 | if (sgs->group_misfit_task_load) |
8378 | return group_misfit_task; | |
8379 | ||
57abff06 | 8380 | if (!group_has_capacity(imbalance_pct, sgs)) |
0b0695f2 VG |
8381 | return group_fully_busy; |
8382 | ||
8383 | return group_has_spare; | |
caeb178c RR |
8384 | } |
8385 | ||
63928384 | 8386 | static bool update_nohz_stats(struct rq *rq, bool force) |
e022e0d3 PZ |
8387 | { |
8388 | #ifdef CONFIG_NO_HZ_COMMON | |
8389 | unsigned int cpu = rq->cpu; | |
8390 | ||
f643ea22 VG |
8391 | if (!rq->has_blocked_load) |
8392 | return false; | |
8393 | ||
e022e0d3 | 8394 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) |
f643ea22 | 8395 | return false; |
e022e0d3 | 8396 | |
63928384 | 8397 | if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) |
f643ea22 | 8398 | return true; |
e022e0d3 PZ |
8399 | |
8400 | update_blocked_averages(cpu); | |
f643ea22 VG |
8401 | |
8402 | return rq->has_blocked_load; | |
8403 | #else | |
8404 | return false; | |
e022e0d3 PZ |
8405 | #endif |
8406 | } | |
8407 | ||
1e3c88bd PZ |
8408 | /** |
8409 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | |
cd96891d | 8410 | * @env: The load balancing environment. |
1e3c88bd | 8411 | * @group: sched_group whose statistics are to be updated. |
1e3c88bd | 8412 | * @sgs: variable to hold the statistics for this group. |
630246a0 | 8413 | * @sg_status: Holds flag indicating the status of the sched_group |
1e3c88bd | 8414 | */ |
bd939f45 | 8415 | static inline void update_sg_lb_stats(struct lb_env *env, |
630246a0 QP |
8416 | struct sched_group *group, |
8417 | struct sg_lb_stats *sgs, | |
8418 | int *sg_status) | |
1e3c88bd | 8419 | { |
0b0695f2 | 8420 | int i, nr_running, local_group; |
1e3c88bd | 8421 | |
b72ff13c PZ |
8422 | memset(sgs, 0, sizeof(*sgs)); |
8423 | ||
0b0695f2 VG |
8424 | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); |
8425 | ||
ae4df9d6 | 8426 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
1e3c88bd PZ |
8427 | struct rq *rq = cpu_rq(i); |
8428 | ||
63928384 | 8429 | if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) |
f643ea22 | 8430 | env->flags |= LBF_NOHZ_AGAIN; |
e022e0d3 | 8431 | |
b0fb1eb4 | 8432 | sgs->group_load += cpu_load(rq); |
9e91d61d | 8433 | sgs->group_util += cpu_util(i); |
070f5e86 | 8434 | sgs->group_runnable += cpu_runnable(rq); |
a3498347 | 8435 | sgs->sum_h_nr_running += rq->cfs.h_nr_running; |
4486edd1 | 8436 | |
a426f99c | 8437 | nr_running = rq->nr_running; |
5e23e474 VG |
8438 | sgs->sum_nr_running += nr_running; |
8439 | ||
a426f99c | 8440 | if (nr_running > 1) |
630246a0 | 8441 | *sg_status |= SG_OVERLOAD; |
4486edd1 | 8442 | |
2802bf3c MR |
8443 | if (cpu_overutilized(i)) |
8444 | *sg_status |= SG_OVERUTILIZED; | |
4486edd1 | 8445 | |
0ec8aa00 PZ |
8446 | #ifdef CONFIG_NUMA_BALANCING |
8447 | sgs->nr_numa_running += rq->nr_numa_running; | |
8448 | sgs->nr_preferred_running += rq->nr_preferred_running; | |
8449 | #endif | |
a426f99c WL |
8450 | /* |
8451 | * No need to call idle_cpu() if nr_running is not 0 | |
8452 | */ | |
0b0695f2 | 8453 | if (!nr_running && idle_cpu(i)) { |
aae6d3dd | 8454 | sgs->idle_cpus++; |
0b0695f2 VG |
8455 | /* Idle cpu can't have misfit task */ |
8456 | continue; | |
8457 | } | |
8458 | ||
8459 | if (local_group) | |
8460 | continue; | |
3b1baa64 | 8461 | |
0b0695f2 | 8462 | /* Check for a misfit task on the cpu */ |
3b1baa64 | 8463 | if (env->sd->flags & SD_ASYM_CPUCAPACITY && |
757ffdd7 | 8464 | sgs->group_misfit_task_load < rq->misfit_task_load) { |
3b1baa64 | 8465 | sgs->group_misfit_task_load = rq->misfit_task_load; |
630246a0 | 8466 | *sg_status |= SG_OVERLOAD; |
757ffdd7 | 8467 | } |
1e3c88bd PZ |
8468 | } |
8469 | ||
0b0695f2 VG |
8470 | /* Check if dst CPU is idle and preferred to this group */ |
8471 | if (env->sd->flags & SD_ASYM_PACKING && | |
8472 | env->idle != CPU_NOT_IDLE && | |
8473 | sgs->sum_h_nr_running && | |
8474 | sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { | |
8475 | sgs->group_asym_packing = 1; | |
8476 | } | |
8477 | ||
63b2ca30 | 8478 | sgs->group_capacity = group->sgc->capacity; |
1e3c88bd | 8479 | |
aae6d3dd | 8480 | sgs->group_weight = group->group_weight; |
b37d9316 | 8481 | |
57abff06 | 8482 | sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); |
0b0695f2 VG |
8483 | |
8484 | /* Computing avg_load makes sense only when group is overloaded */ | |
8485 | if (sgs->group_type == group_overloaded) | |
8486 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / | |
8487 | sgs->group_capacity; | |
1e3c88bd PZ |
8488 | } |
8489 | ||
532cb4c4 MN |
8490 | /** |
8491 | * update_sd_pick_busiest - return 1 on busiest group | |
cd96891d | 8492 | * @env: The load balancing environment. |
532cb4c4 MN |
8493 | * @sds: sched_domain statistics |
8494 | * @sg: sched_group candidate to be checked for being the busiest | |
b6b12294 | 8495 | * @sgs: sched_group statistics |
532cb4c4 MN |
8496 | * |
8497 | * Determine if @sg is a busier group than the previously selected | |
8498 | * busiest group. | |
e69f6186 YB |
8499 | * |
8500 | * Return: %true if @sg is a busier group than the previously selected | |
8501 | * busiest group. %false otherwise. | |
532cb4c4 | 8502 | */ |
bd939f45 | 8503 | static bool update_sd_pick_busiest(struct lb_env *env, |
532cb4c4 MN |
8504 | struct sd_lb_stats *sds, |
8505 | struct sched_group *sg, | |
bd939f45 | 8506 | struct sg_lb_stats *sgs) |
532cb4c4 | 8507 | { |
caeb178c | 8508 | struct sg_lb_stats *busiest = &sds->busiest_stat; |
532cb4c4 | 8509 | |
0b0695f2 VG |
8510 | /* Make sure that there is at least one task to pull */ |
8511 | if (!sgs->sum_h_nr_running) | |
8512 | return false; | |
8513 | ||
cad68e55 MR |
8514 | /* |
8515 | * Don't try to pull misfit tasks we can't help. | |
8516 | * We can use max_capacity here as reduction in capacity on some | |
8517 | * CPUs in the group should either be possible to resolve | |
8518 | * internally or be covered by avg_load imbalance (eventually). | |
8519 | */ | |
8520 | if (sgs->group_type == group_misfit_task && | |
8521 | (!group_smaller_max_cpu_capacity(sg, sds->local) || | |
0b0695f2 | 8522 | sds->local_stat.group_type != group_has_spare)) |
cad68e55 MR |
8523 | return false; |
8524 | ||
caeb178c | 8525 | if (sgs->group_type > busiest->group_type) |
532cb4c4 MN |
8526 | return true; |
8527 | ||
caeb178c RR |
8528 | if (sgs->group_type < busiest->group_type) |
8529 | return false; | |
8530 | ||
9e0994c0 | 8531 | /* |
0b0695f2 VG |
8532 | * The candidate and the current busiest group are the same type of |
8533 | * group. Let check which one is the busiest according to the type. | |
9e0994c0 | 8534 | */ |
9e0994c0 | 8535 | |
0b0695f2 VG |
8536 | switch (sgs->group_type) { |
8537 | case group_overloaded: | |
8538 | /* Select the overloaded group with highest avg_load. */ | |
8539 | if (sgs->avg_load <= busiest->avg_load) | |
8540 | return false; | |
8541 | break; | |
8542 | ||
8543 | case group_imbalanced: | |
8544 | /* | |
8545 | * Select the 1st imbalanced group as we don't have any way to | |
8546 | * choose one more than another. | |
8547 | */ | |
9e0994c0 MR |
8548 | return false; |
8549 | ||
0b0695f2 VG |
8550 | case group_asym_packing: |
8551 | /* Prefer to move from lowest priority CPU's work */ | |
8552 | if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) | |
8553 | return false; | |
8554 | break; | |
532cb4c4 | 8555 | |
0b0695f2 VG |
8556 | case group_misfit_task: |
8557 | /* | |
8558 | * If we have more than one misfit sg go with the biggest | |
8559 | * misfit. | |
8560 | */ | |
8561 | if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) | |
8562 | return false; | |
8563 | break; | |
532cb4c4 | 8564 | |
0b0695f2 VG |
8565 | case group_fully_busy: |
8566 | /* | |
8567 | * Select the fully busy group with highest avg_load. In | |
8568 | * theory, there is no need to pull task from such kind of | |
8569 | * group because tasks have all compute capacity that they need | |
8570 | * but we can still improve the overall throughput by reducing | |
8571 | * contention when accessing shared HW resources. | |
8572 | * | |
8573 | * XXX for now avg_load is not computed and always 0 so we | |
8574 | * select the 1st one. | |
8575 | */ | |
8576 | if (sgs->avg_load <= busiest->avg_load) | |
8577 | return false; | |
8578 | break; | |
8579 | ||
8580 | case group_has_spare: | |
8581 | /* | |
5f68eb19 VG |
8582 | * Select not overloaded group with lowest number of idle cpus |
8583 | * and highest number of running tasks. We could also compare | |
8584 | * the spare capacity which is more stable but it can end up | |
8585 | * that the group has less spare capacity but finally more idle | |
0b0695f2 VG |
8586 | * CPUs which means less opportunity to pull tasks. |
8587 | */ | |
5f68eb19 | 8588 | if (sgs->idle_cpus > busiest->idle_cpus) |
0b0695f2 | 8589 | return false; |
5f68eb19 VG |
8590 | else if ((sgs->idle_cpus == busiest->idle_cpus) && |
8591 | (sgs->sum_nr_running <= busiest->sum_nr_running)) | |
8592 | return false; | |
8593 | ||
0b0695f2 | 8594 | break; |
532cb4c4 MN |
8595 | } |
8596 | ||
0b0695f2 VG |
8597 | /* |
8598 | * Candidate sg has no more than one task per CPU and has higher | |
8599 | * per-CPU capacity. Migrating tasks to less capable CPUs may harm | |
8600 | * throughput. Maximize throughput, power/energy consequences are not | |
8601 | * considered. | |
8602 | */ | |
8603 | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && | |
8604 | (sgs->group_type <= group_fully_busy) && | |
8605 | (group_smaller_min_cpu_capacity(sds->local, sg))) | |
8606 | return false; | |
8607 | ||
8608 | return true; | |
532cb4c4 MN |
8609 | } |
8610 | ||
0ec8aa00 PZ |
8611 | #ifdef CONFIG_NUMA_BALANCING |
8612 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
8613 | { | |
a3498347 | 8614 | if (sgs->sum_h_nr_running > sgs->nr_numa_running) |
0ec8aa00 | 8615 | return regular; |
a3498347 | 8616 | if (sgs->sum_h_nr_running > sgs->nr_preferred_running) |
0ec8aa00 PZ |
8617 | return remote; |
8618 | return all; | |
8619 | } | |
8620 | ||
8621 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
8622 | { | |
8623 | if (rq->nr_running > rq->nr_numa_running) | |
8624 | return regular; | |
8625 | if (rq->nr_running > rq->nr_preferred_running) | |
8626 | return remote; | |
8627 | return all; | |
8628 | } | |
8629 | #else | |
8630 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
8631 | { | |
8632 | return all; | |
8633 | } | |
8634 | ||
8635 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
8636 | { | |
8637 | return regular; | |
8638 | } | |
8639 | #endif /* CONFIG_NUMA_BALANCING */ | |
8640 | ||
57abff06 VG |
8641 | |
8642 | struct sg_lb_stats; | |
8643 | ||
3318544b VG |
8644 | /* |
8645 | * task_running_on_cpu - return 1 if @p is running on @cpu. | |
8646 | */ | |
8647 | ||
8648 | static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) | |
8649 | { | |
8650 | /* Task has no contribution or is new */ | |
8651 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
8652 | return 0; | |
8653 | ||
8654 | if (task_on_rq_queued(p)) | |
8655 | return 1; | |
8656 | ||
8657 | return 0; | |
8658 | } | |
8659 | ||
8660 | /** | |
8661 | * idle_cpu_without - would a given CPU be idle without p ? | |
8662 | * @cpu: the processor on which idleness is tested. | |
8663 | * @p: task which should be ignored. | |
8664 | * | |
8665 | * Return: 1 if the CPU would be idle. 0 otherwise. | |
8666 | */ | |
8667 | static int idle_cpu_without(int cpu, struct task_struct *p) | |
8668 | { | |
8669 | struct rq *rq = cpu_rq(cpu); | |
8670 | ||
8671 | if (rq->curr != rq->idle && rq->curr != p) | |
8672 | return 0; | |
8673 | ||
8674 | /* | |
8675 | * rq->nr_running can't be used but an updated version without the | |
8676 | * impact of p on cpu must be used instead. The updated nr_running | |
8677 | * be computed and tested before calling idle_cpu_without(). | |
8678 | */ | |
8679 | ||
8680 | #ifdef CONFIG_SMP | |
126c2092 | 8681 | if (rq->ttwu_pending) |
3318544b VG |
8682 | return 0; |
8683 | #endif | |
8684 | ||
8685 | return 1; | |
8686 | } | |
8687 | ||
57abff06 VG |
8688 | /* |
8689 | * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. | |
3318544b | 8690 | * @sd: The sched_domain level to look for idlest group. |
57abff06 VG |
8691 | * @group: sched_group whose statistics are to be updated. |
8692 | * @sgs: variable to hold the statistics for this group. | |
3318544b | 8693 | * @p: The task for which we look for the idlest group/CPU. |
57abff06 VG |
8694 | */ |
8695 | static inline void update_sg_wakeup_stats(struct sched_domain *sd, | |
8696 | struct sched_group *group, | |
8697 | struct sg_lb_stats *sgs, | |
8698 | struct task_struct *p) | |
8699 | { | |
8700 | int i, nr_running; | |
8701 | ||
8702 | memset(sgs, 0, sizeof(*sgs)); | |
8703 | ||
8704 | for_each_cpu(i, sched_group_span(group)) { | |
8705 | struct rq *rq = cpu_rq(i); | |
3318544b | 8706 | unsigned int local; |
57abff06 | 8707 | |
3318544b | 8708 | sgs->group_load += cpu_load_without(rq, p); |
57abff06 | 8709 | sgs->group_util += cpu_util_without(i, p); |
070f5e86 | 8710 | sgs->group_runnable += cpu_runnable_without(rq, p); |
3318544b VG |
8711 | local = task_running_on_cpu(i, p); |
8712 | sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; | |
57abff06 | 8713 | |
3318544b | 8714 | nr_running = rq->nr_running - local; |
57abff06 VG |
8715 | sgs->sum_nr_running += nr_running; |
8716 | ||
8717 | /* | |
3318544b | 8718 | * No need to call idle_cpu_without() if nr_running is not 0 |
57abff06 | 8719 | */ |
3318544b | 8720 | if (!nr_running && idle_cpu_without(i, p)) |
57abff06 VG |
8721 | sgs->idle_cpus++; |
8722 | ||
57abff06 VG |
8723 | } |
8724 | ||
8725 | /* Check if task fits in the group */ | |
8726 | if (sd->flags & SD_ASYM_CPUCAPACITY && | |
8727 | !task_fits_capacity(p, group->sgc->max_capacity)) { | |
8728 | sgs->group_misfit_task_load = 1; | |
8729 | } | |
8730 | ||
8731 | sgs->group_capacity = group->sgc->capacity; | |
8732 | ||
289de359 VG |
8733 | sgs->group_weight = group->group_weight; |
8734 | ||
57abff06 VG |
8735 | sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); |
8736 | ||
8737 | /* | |
8738 | * Computing avg_load makes sense only when group is fully busy or | |
8739 | * overloaded | |
8740 | */ | |
6c8116c9 TZ |
8741 | if (sgs->group_type == group_fully_busy || |
8742 | sgs->group_type == group_overloaded) | |
57abff06 VG |
8743 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / |
8744 | sgs->group_capacity; | |
8745 | } | |
8746 | ||
8747 | static bool update_pick_idlest(struct sched_group *idlest, | |
8748 | struct sg_lb_stats *idlest_sgs, | |
8749 | struct sched_group *group, | |
8750 | struct sg_lb_stats *sgs) | |
8751 | { | |
8752 | if (sgs->group_type < idlest_sgs->group_type) | |
8753 | return true; | |
8754 | ||
8755 | if (sgs->group_type > idlest_sgs->group_type) | |
8756 | return false; | |
8757 | ||
8758 | /* | |
8759 | * The candidate and the current idlest group are the same type of | |
8760 | * group. Let check which one is the idlest according to the type. | |
8761 | */ | |
8762 | ||
8763 | switch (sgs->group_type) { | |
8764 | case group_overloaded: | |
8765 | case group_fully_busy: | |
8766 | /* Select the group with lowest avg_load. */ | |
8767 | if (idlest_sgs->avg_load <= sgs->avg_load) | |
8768 | return false; | |
8769 | break; | |
8770 | ||
8771 | case group_imbalanced: | |
8772 | case group_asym_packing: | |
8773 | /* Those types are not used in the slow wakeup path */ | |
8774 | return false; | |
8775 | ||
8776 | case group_misfit_task: | |
8777 | /* Select group with the highest max capacity */ | |
8778 | if (idlest->sgc->max_capacity >= group->sgc->max_capacity) | |
8779 | return false; | |
8780 | break; | |
8781 | ||
8782 | case group_has_spare: | |
8783 | /* Select group with most idle CPUs */ | |
3edecfef | 8784 | if (idlest_sgs->idle_cpus > sgs->idle_cpus) |
57abff06 | 8785 | return false; |
3edecfef PP |
8786 | |
8787 | /* Select group with lowest group_util */ | |
8788 | if (idlest_sgs->idle_cpus == sgs->idle_cpus && | |
8789 | idlest_sgs->group_util <= sgs->group_util) | |
8790 | return false; | |
8791 | ||
57abff06 VG |
8792 | break; |
8793 | } | |
8794 | ||
8795 | return true; | |
8796 | } | |
8797 | ||
23e6082a MG |
8798 | /* |
8799 | * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. | |
8800 | * This is an approximation as the number of running tasks may not be | |
8801 | * related to the number of busy CPUs due to sched_setaffinity. | |
8802 | */ | |
8803 | static inline bool allow_numa_imbalance(int dst_running, int dst_weight) | |
8804 | { | |
8805 | return (dst_running < (dst_weight >> 2)); | |
8806 | } | |
8807 | ||
57abff06 VG |
8808 | /* |
8809 | * find_idlest_group() finds and returns the least busy CPU group within the | |
8810 | * domain. | |
8811 | * | |
8812 | * Assumes p is allowed on at least one CPU in sd. | |
8813 | */ | |
8814 | static struct sched_group * | |
45da2773 | 8815 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) |
57abff06 VG |
8816 | { |
8817 | struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; | |
8818 | struct sg_lb_stats local_sgs, tmp_sgs; | |
8819 | struct sg_lb_stats *sgs; | |
8820 | unsigned long imbalance; | |
8821 | struct sg_lb_stats idlest_sgs = { | |
8822 | .avg_load = UINT_MAX, | |
8823 | .group_type = group_overloaded, | |
8824 | }; | |
8825 | ||
57abff06 VG |
8826 | do { |
8827 | int local_group; | |
8828 | ||
8829 | /* Skip over this group if it has no CPUs allowed */ | |
8830 | if (!cpumask_intersects(sched_group_span(group), | |
8831 | p->cpus_ptr)) | |
8832 | continue; | |
8833 | ||
8834 | local_group = cpumask_test_cpu(this_cpu, | |
8835 | sched_group_span(group)); | |
8836 | ||
8837 | if (local_group) { | |
8838 | sgs = &local_sgs; | |
8839 | local = group; | |
8840 | } else { | |
8841 | sgs = &tmp_sgs; | |
8842 | } | |
8843 | ||
8844 | update_sg_wakeup_stats(sd, group, sgs, p); | |
8845 | ||
8846 | if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { | |
8847 | idlest = group; | |
8848 | idlest_sgs = *sgs; | |
8849 | } | |
8850 | ||
8851 | } while (group = group->next, group != sd->groups); | |
8852 | ||
8853 | ||
8854 | /* There is no idlest group to push tasks to */ | |
8855 | if (!idlest) | |
8856 | return NULL; | |
8857 | ||
7ed735c3 VG |
8858 | /* The local group has been skipped because of CPU affinity */ |
8859 | if (!local) | |
8860 | return idlest; | |
8861 | ||
57abff06 VG |
8862 | /* |
8863 | * If the local group is idler than the selected idlest group | |
8864 | * don't try and push the task. | |
8865 | */ | |
8866 | if (local_sgs.group_type < idlest_sgs.group_type) | |
8867 | return NULL; | |
8868 | ||
8869 | /* | |
8870 | * If the local group is busier than the selected idlest group | |
8871 | * try and push the task. | |
8872 | */ | |
8873 | if (local_sgs.group_type > idlest_sgs.group_type) | |
8874 | return idlest; | |
8875 | ||
8876 | switch (local_sgs.group_type) { | |
8877 | case group_overloaded: | |
8878 | case group_fully_busy: | |
5c339005 MG |
8879 | |
8880 | /* Calculate allowed imbalance based on load */ | |
8881 | imbalance = scale_load_down(NICE_0_LOAD) * | |
8882 | (sd->imbalance_pct-100) / 100; | |
8883 | ||
57abff06 VG |
8884 | /* |
8885 | * When comparing groups across NUMA domains, it's possible for | |
8886 | * the local domain to be very lightly loaded relative to the | |
8887 | * remote domains but "imbalance" skews the comparison making | |
8888 | * remote CPUs look much more favourable. When considering | |
8889 | * cross-domain, add imbalance to the load on the remote node | |
8890 | * and consider staying local. | |
8891 | */ | |
8892 | ||
8893 | if ((sd->flags & SD_NUMA) && | |
8894 | ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) | |
8895 | return NULL; | |
8896 | ||
8897 | /* | |
8898 | * If the local group is less loaded than the selected | |
8899 | * idlest group don't try and push any tasks. | |
8900 | */ | |
8901 | if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) | |
8902 | return NULL; | |
8903 | ||
8904 | if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) | |
8905 | return NULL; | |
8906 | break; | |
8907 | ||
8908 | case group_imbalanced: | |
8909 | case group_asym_packing: | |
8910 | /* Those type are not used in the slow wakeup path */ | |
8911 | return NULL; | |
8912 | ||
8913 | case group_misfit_task: | |
8914 | /* Select group with the highest max capacity */ | |
8915 | if (local->sgc->max_capacity >= idlest->sgc->max_capacity) | |
8916 | return NULL; | |
8917 | break; | |
8918 | ||
8919 | case group_has_spare: | |
8920 | if (sd->flags & SD_NUMA) { | |
8921 | #ifdef CONFIG_NUMA_BALANCING | |
8922 | int idlest_cpu; | |
8923 | /* | |
8924 | * If there is spare capacity at NUMA, try to select | |
8925 | * the preferred node | |
8926 | */ | |
8927 | if (cpu_to_node(this_cpu) == p->numa_preferred_nid) | |
8928 | return NULL; | |
8929 | ||
8930 | idlest_cpu = cpumask_first(sched_group_span(idlest)); | |
8931 | if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) | |
8932 | return idlest; | |
8933 | #endif | |
8934 | /* | |
8935 | * Otherwise, keep the task on this node to stay close | |
8936 | * its wakeup source and improve locality. If there is | |
8937 | * a real need of migration, periodic load balance will | |
8938 | * take care of it. | |
8939 | */ | |
23e6082a | 8940 | if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) |
57abff06 VG |
8941 | return NULL; |
8942 | } | |
8943 | ||
8944 | /* | |
8945 | * Select group with highest number of idle CPUs. We could also | |
8946 | * compare the utilization which is more stable but it can end | |
8947 | * up that the group has less spare capacity but finally more | |
8948 | * idle CPUs which means more opportunity to run task. | |
8949 | */ | |
8950 | if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) | |
8951 | return NULL; | |
8952 | break; | |
8953 | } | |
8954 | ||
8955 | return idlest; | |
8956 | } | |
8957 | ||
1e3c88bd | 8958 | /** |
461819ac | 8959 | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. |
cd96891d | 8960 | * @env: The load balancing environment. |
1e3c88bd PZ |
8961 | * @sds: variable to hold the statistics for this sched_domain. |
8962 | */ | |
0b0695f2 | 8963 | |
0ec8aa00 | 8964 | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 8965 | { |
bd939f45 PZ |
8966 | struct sched_domain *child = env->sd->child; |
8967 | struct sched_group *sg = env->sd->groups; | |
05b40e05 | 8968 | struct sg_lb_stats *local = &sds->local_stat; |
56cf515b | 8969 | struct sg_lb_stats tmp_sgs; |
630246a0 | 8970 | int sg_status = 0; |
1e3c88bd | 8971 | |
e022e0d3 | 8972 | #ifdef CONFIG_NO_HZ_COMMON |
f643ea22 | 8973 | if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) |
e022e0d3 | 8974 | env->flags |= LBF_NOHZ_STATS; |
e022e0d3 PZ |
8975 | #endif |
8976 | ||
1e3c88bd | 8977 | do { |
56cf515b | 8978 | struct sg_lb_stats *sgs = &tmp_sgs; |
1e3c88bd PZ |
8979 | int local_group; |
8980 | ||
ae4df9d6 | 8981 | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); |
56cf515b JK |
8982 | if (local_group) { |
8983 | sds->local = sg; | |
05b40e05 | 8984 | sgs = local; |
b72ff13c PZ |
8985 | |
8986 | if (env->idle != CPU_NEWLY_IDLE || | |
63b2ca30 NP |
8987 | time_after_eq(jiffies, sg->sgc->next_update)) |
8988 | update_group_capacity(env->sd, env->dst_cpu); | |
56cf515b | 8989 | } |
1e3c88bd | 8990 | |
630246a0 | 8991 | update_sg_lb_stats(env, sg, sgs, &sg_status); |
1e3c88bd | 8992 | |
b72ff13c PZ |
8993 | if (local_group) |
8994 | goto next_group; | |
8995 | ||
1e3c88bd | 8996 | |
b72ff13c | 8997 | if (update_sd_pick_busiest(env, sds, sg, sgs)) { |
532cb4c4 | 8998 | sds->busiest = sg; |
56cf515b | 8999 | sds->busiest_stat = *sgs; |
1e3c88bd PZ |
9000 | } |
9001 | ||
b72ff13c PZ |
9002 | next_group: |
9003 | /* Now, start updating sd_lb_stats */ | |
9004 | sds->total_load += sgs->group_load; | |
63b2ca30 | 9005 | sds->total_capacity += sgs->group_capacity; |
b72ff13c | 9006 | |
532cb4c4 | 9007 | sg = sg->next; |
bd939f45 | 9008 | } while (sg != env->sd->groups); |
0ec8aa00 | 9009 | |
0b0695f2 VG |
9010 | /* Tag domain that child domain prefers tasks go to siblings first */ |
9011 | sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; | |
9012 | ||
f643ea22 VG |
9013 | #ifdef CONFIG_NO_HZ_COMMON |
9014 | if ((env->flags & LBF_NOHZ_AGAIN) && | |
9015 | cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { | |
9016 | ||
9017 | WRITE_ONCE(nohz.next_blocked, | |
9018 | jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); | |
9019 | } | |
9020 | #endif | |
9021 | ||
0ec8aa00 PZ |
9022 | if (env->sd->flags & SD_NUMA) |
9023 | env->fbq_type = fbq_classify_group(&sds->busiest_stat); | |
4486edd1 TC |
9024 | |
9025 | if (!env->sd->parent) { | |
2802bf3c MR |
9026 | struct root_domain *rd = env->dst_rq->rd; |
9027 | ||
4486edd1 | 9028 | /* update overload indicator if we are at root domain */ |
2802bf3c MR |
9029 | WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); |
9030 | ||
9031 | /* Update over-utilization (tipping point, U >= 0) indicator */ | |
9032 | WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); | |
f9f240f9 | 9033 | trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); |
2802bf3c | 9034 | } else if (sg_status & SG_OVERUTILIZED) { |
f9f240f9 QY |
9035 | struct root_domain *rd = env->dst_rq->rd; |
9036 | ||
9037 | WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); | |
9038 | trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); | |
4486edd1 | 9039 | } |
532cb4c4 MN |
9040 | } |
9041 | ||
abeae76a MG |
9042 | #define NUMA_IMBALANCE_MIN 2 |
9043 | ||
7d2b5dd0 MG |
9044 | static inline long adjust_numa_imbalance(int imbalance, |
9045 | int dst_running, int dst_weight) | |
fb86f5b2 | 9046 | { |
23e6082a MG |
9047 | if (!allow_numa_imbalance(dst_running, dst_weight)) |
9048 | return imbalance; | |
9049 | ||
fb86f5b2 MG |
9050 | /* |
9051 | * Allow a small imbalance based on a simple pair of communicating | |
7d2b5dd0 | 9052 | * tasks that remain local when the destination is lightly loaded. |
fb86f5b2 | 9053 | */ |
23e6082a | 9054 | if (imbalance <= NUMA_IMBALANCE_MIN) |
fb86f5b2 MG |
9055 | return 0; |
9056 | ||
9057 | return imbalance; | |
9058 | } | |
9059 | ||
1e3c88bd PZ |
9060 | /** |
9061 | * calculate_imbalance - Calculate the amount of imbalance present within the | |
9062 | * groups of a given sched_domain during load balance. | |
bd939f45 | 9063 | * @env: load balance environment |
1e3c88bd | 9064 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. |
1e3c88bd | 9065 | */ |
bd939f45 | 9066 | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 9067 | { |
56cf515b JK |
9068 | struct sg_lb_stats *local, *busiest; |
9069 | ||
9070 | local = &sds->local_stat; | |
56cf515b | 9071 | busiest = &sds->busiest_stat; |
dd5feea1 | 9072 | |
0b0695f2 VG |
9073 | if (busiest->group_type == group_misfit_task) { |
9074 | /* Set imbalance to allow misfit tasks to be balanced. */ | |
9075 | env->migration_type = migrate_misfit; | |
c63be7be | 9076 | env->imbalance = 1; |
0b0695f2 VG |
9077 | return; |
9078 | } | |
9079 | ||
9080 | if (busiest->group_type == group_asym_packing) { | |
9081 | /* | |
9082 | * In case of asym capacity, we will try to migrate all load to | |
9083 | * the preferred CPU. | |
9084 | */ | |
9085 | env->migration_type = migrate_task; | |
9086 | env->imbalance = busiest->sum_h_nr_running; | |
9087 | return; | |
9088 | } | |
9089 | ||
9090 | if (busiest->group_type == group_imbalanced) { | |
9091 | /* | |
9092 | * In the group_imb case we cannot rely on group-wide averages | |
9093 | * to ensure CPU-load equilibrium, try to move any task to fix | |
9094 | * the imbalance. The next load balance will take care of | |
9095 | * balancing back the system. | |
9096 | */ | |
9097 | env->migration_type = migrate_task; | |
9098 | env->imbalance = 1; | |
490ba971 VG |
9099 | return; |
9100 | } | |
9101 | ||
1e3c88bd | 9102 | /* |
0b0695f2 | 9103 | * Try to use spare capacity of local group without overloading it or |
a9723389 | 9104 | * emptying busiest. |
1e3c88bd | 9105 | */ |
0b0695f2 | 9106 | if (local->group_type == group_has_spare) { |
16b0a7a1 VG |
9107 | if ((busiest->group_type > group_fully_busy) && |
9108 | !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { | |
0b0695f2 VG |
9109 | /* |
9110 | * If busiest is overloaded, try to fill spare | |
9111 | * capacity. This might end up creating spare capacity | |
9112 | * in busiest or busiest still being overloaded but | |
9113 | * there is no simple way to directly compute the | |
9114 | * amount of load to migrate in order to balance the | |
9115 | * system. | |
9116 | */ | |
9117 | env->migration_type = migrate_util; | |
9118 | env->imbalance = max(local->group_capacity, local->group_util) - | |
9119 | local->group_util; | |
9120 | ||
9121 | /* | |
9122 | * In some cases, the group's utilization is max or even | |
9123 | * higher than capacity because of migrations but the | |
9124 | * local CPU is (newly) idle. There is at least one | |
9125 | * waiting task in this overloaded busiest group. Let's | |
9126 | * try to pull it. | |
9127 | */ | |
9128 | if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { | |
9129 | env->migration_type = migrate_task; | |
9130 | env->imbalance = 1; | |
9131 | } | |
9132 | ||
9133 | return; | |
9134 | } | |
9135 | ||
9136 | if (busiest->group_weight == 1 || sds->prefer_sibling) { | |
5e23e474 | 9137 | unsigned int nr_diff = busiest->sum_nr_running; |
0b0695f2 VG |
9138 | /* |
9139 | * When prefer sibling, evenly spread running tasks on | |
9140 | * groups. | |
9141 | */ | |
9142 | env->migration_type = migrate_task; | |
5e23e474 | 9143 | lsub_positive(&nr_diff, local->sum_nr_running); |
0b0695f2 | 9144 | env->imbalance = nr_diff >> 1; |
b396f523 | 9145 | } else { |
0b0695f2 | 9146 | |
b396f523 MG |
9147 | /* |
9148 | * If there is no overload, we just want to even the number of | |
9149 | * idle cpus. | |
9150 | */ | |
9151 | env->migration_type = migrate_task; | |
9152 | env->imbalance = max_t(long, 0, (local->idle_cpus - | |
0b0695f2 | 9153 | busiest->idle_cpus) >> 1); |
b396f523 MG |
9154 | } |
9155 | ||
9156 | /* Consider allowing a small imbalance between NUMA groups */ | |
7d2b5dd0 | 9157 | if (env->sd->flags & SD_NUMA) { |
fb86f5b2 | 9158 | env->imbalance = adjust_numa_imbalance(env->imbalance, |
7d2b5dd0 MG |
9159 | busiest->sum_nr_running, busiest->group_weight); |
9160 | } | |
b396f523 | 9161 | |
fcf0553d | 9162 | return; |
1e3c88bd PZ |
9163 | } |
9164 | ||
9a5d9ba6 | 9165 | /* |
0b0695f2 VG |
9166 | * Local is fully busy but has to take more load to relieve the |
9167 | * busiest group | |
9a5d9ba6 | 9168 | */ |
0b0695f2 VG |
9169 | if (local->group_type < group_overloaded) { |
9170 | /* | |
9171 | * Local will become overloaded so the avg_load metrics are | |
9172 | * finally needed. | |
9173 | */ | |
9174 | ||
9175 | local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / | |
9176 | local->group_capacity; | |
9177 | ||
9178 | sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / | |
9179 | sds->total_capacity; | |
111688ca AL |
9180 | /* |
9181 | * If the local group is more loaded than the selected | |
9182 | * busiest group don't try to pull any tasks. | |
9183 | */ | |
9184 | if (local->avg_load >= busiest->avg_load) { | |
9185 | env->imbalance = 0; | |
9186 | return; | |
9187 | } | |
dd5feea1 SS |
9188 | } |
9189 | ||
9190 | /* | |
0b0695f2 VG |
9191 | * Both group are or will become overloaded and we're trying to get all |
9192 | * the CPUs to the average_load, so we don't want to push ourselves | |
9193 | * above the average load, nor do we wish to reduce the max loaded CPU | |
9194 | * below the average load. At the same time, we also don't want to | |
9195 | * reduce the group load below the group capacity. Thus we look for | |
9196 | * the minimum possible imbalance. | |
dd5feea1 | 9197 | */ |
0b0695f2 | 9198 | env->migration_type = migrate_load; |
56cf515b | 9199 | env->imbalance = min( |
0b0695f2 | 9200 | (busiest->avg_load - sds->avg_load) * busiest->group_capacity, |
63b2ca30 | 9201 | (sds->avg_load - local->avg_load) * local->group_capacity |
ca8ce3d0 | 9202 | ) / SCHED_CAPACITY_SCALE; |
1e3c88bd | 9203 | } |
fab47622 | 9204 | |
1e3c88bd PZ |
9205 | /******* find_busiest_group() helpers end here *********************/ |
9206 | ||
0b0695f2 VG |
9207 | /* |
9208 | * Decision matrix according to the local and busiest group type: | |
9209 | * | |
9210 | * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded | |
9211 | * has_spare nr_idle balanced N/A N/A balanced balanced | |
9212 | * fully_busy nr_idle nr_idle N/A N/A balanced balanced | |
9213 | * misfit_task force N/A N/A N/A force force | |
9214 | * asym_packing force force N/A N/A force force | |
9215 | * imbalanced force force N/A N/A force force | |
9216 | * overloaded force force N/A N/A force avg_load | |
9217 | * | |
9218 | * N/A : Not Applicable because already filtered while updating | |
9219 | * statistics. | |
9220 | * balanced : The system is balanced for these 2 groups. | |
9221 | * force : Calculate the imbalance as load migration is probably needed. | |
9222 | * avg_load : Only if imbalance is significant enough. | |
9223 | * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite | |
9224 | * different in groups. | |
9225 | */ | |
9226 | ||
1e3c88bd PZ |
9227 | /** |
9228 | * find_busiest_group - Returns the busiest group within the sched_domain | |
0a9b23ce | 9229 | * if there is an imbalance. |
1e3c88bd | 9230 | * |
a3df0679 | 9231 | * Also calculates the amount of runnable load which should be moved |
1e3c88bd PZ |
9232 | * to restore balance. |
9233 | * | |
cd96891d | 9234 | * @env: The load balancing environment. |
1e3c88bd | 9235 | * |
e69f6186 | 9236 | * Return: - The busiest group if imbalance exists. |
1e3c88bd | 9237 | */ |
56cf515b | 9238 | static struct sched_group *find_busiest_group(struct lb_env *env) |
1e3c88bd | 9239 | { |
56cf515b | 9240 | struct sg_lb_stats *local, *busiest; |
1e3c88bd PZ |
9241 | struct sd_lb_stats sds; |
9242 | ||
147c5fc2 | 9243 | init_sd_lb_stats(&sds); |
1e3c88bd PZ |
9244 | |
9245 | /* | |
b0fb1eb4 | 9246 | * Compute the various statistics relevant for load balancing at |
1e3c88bd PZ |
9247 | * this level. |
9248 | */ | |
23f0d209 | 9249 | update_sd_lb_stats(env, &sds); |
2802bf3c | 9250 | |
f8a696f2 | 9251 | if (sched_energy_enabled()) { |
2802bf3c MR |
9252 | struct root_domain *rd = env->dst_rq->rd; |
9253 | ||
9254 | if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) | |
9255 | goto out_balanced; | |
9256 | } | |
9257 | ||
56cf515b JK |
9258 | local = &sds.local_stat; |
9259 | busiest = &sds.busiest_stat; | |
1e3c88bd | 9260 | |
cc57aa8f | 9261 | /* There is no busy sibling group to pull tasks from */ |
0b0695f2 | 9262 | if (!sds.busiest) |
1e3c88bd PZ |
9263 | goto out_balanced; |
9264 | ||
0b0695f2 VG |
9265 | /* Misfit tasks should be dealt with regardless of the avg load */ |
9266 | if (busiest->group_type == group_misfit_task) | |
9267 | goto force_balance; | |
9268 | ||
9269 | /* ASYM feature bypasses nice load balance check */ | |
9270 | if (busiest->group_type == group_asym_packing) | |
9271 | goto force_balance; | |
b0432d8f | 9272 | |
866ab43e PZ |
9273 | /* |
9274 | * If the busiest group is imbalanced the below checks don't | |
30ce5dab | 9275 | * work because they assume all things are equal, which typically |
3bd37062 | 9276 | * isn't true due to cpus_ptr constraints and the like. |
866ab43e | 9277 | */ |
caeb178c | 9278 | if (busiest->group_type == group_imbalanced) |
866ab43e PZ |
9279 | goto force_balance; |
9280 | ||
cc57aa8f | 9281 | /* |
9c58c79a | 9282 | * If the local group is busier than the selected busiest group |
cc57aa8f PZ |
9283 | * don't try and pull any tasks. |
9284 | */ | |
0b0695f2 | 9285 | if (local->group_type > busiest->group_type) |
1e3c88bd PZ |
9286 | goto out_balanced; |
9287 | ||
cc57aa8f | 9288 | /* |
0b0695f2 VG |
9289 | * When groups are overloaded, use the avg_load to ensure fairness |
9290 | * between tasks. | |
cc57aa8f | 9291 | */ |
0b0695f2 VG |
9292 | if (local->group_type == group_overloaded) { |
9293 | /* | |
9294 | * If the local group is more loaded than the selected | |
9295 | * busiest group don't try to pull any tasks. | |
9296 | */ | |
9297 | if (local->avg_load >= busiest->avg_load) | |
9298 | goto out_balanced; | |
9299 | ||
9300 | /* XXX broken for overlapping NUMA groups */ | |
9301 | sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / | |
9302 | sds.total_capacity; | |
1e3c88bd | 9303 | |
aae6d3dd | 9304 | /* |
0b0695f2 VG |
9305 | * Don't pull any tasks if this group is already above the |
9306 | * domain average load. | |
aae6d3dd | 9307 | */ |
0b0695f2 | 9308 | if (local->avg_load >= sds.avg_load) |
aae6d3dd | 9309 | goto out_balanced; |
0b0695f2 | 9310 | |
c186fafe | 9311 | /* |
0b0695f2 VG |
9312 | * If the busiest group is more loaded, use imbalance_pct to be |
9313 | * conservative. | |
c186fafe | 9314 | */ |
56cf515b JK |
9315 | if (100 * busiest->avg_load <= |
9316 | env->sd->imbalance_pct * local->avg_load) | |
c186fafe | 9317 | goto out_balanced; |
aae6d3dd | 9318 | } |
1e3c88bd | 9319 | |
0b0695f2 VG |
9320 | /* Try to move all excess tasks to child's sibling domain */ |
9321 | if (sds.prefer_sibling && local->group_type == group_has_spare && | |
5e23e474 | 9322 | busiest->sum_nr_running > local->sum_nr_running + 1) |
0b0695f2 VG |
9323 | goto force_balance; |
9324 | ||
2ab4092f VG |
9325 | if (busiest->group_type != group_overloaded) { |
9326 | if (env->idle == CPU_NOT_IDLE) | |
9327 | /* | |
9328 | * If the busiest group is not overloaded (and as a | |
9329 | * result the local one too) but this CPU is already | |
9330 | * busy, let another idle CPU try to pull task. | |
9331 | */ | |
9332 | goto out_balanced; | |
9333 | ||
9334 | if (busiest->group_weight > 1 && | |
9335 | local->idle_cpus <= (busiest->idle_cpus + 1)) | |
9336 | /* | |
9337 | * If the busiest group is not overloaded | |
9338 | * and there is no imbalance between this and busiest | |
9339 | * group wrt idle CPUs, it is balanced. The imbalance | |
9340 | * becomes significant if the diff is greater than 1 | |
9341 | * otherwise we might end up to just move the imbalance | |
9342 | * on another group. Of course this applies only if | |
9343 | * there is more than 1 CPU per group. | |
9344 | */ | |
9345 | goto out_balanced; | |
9346 | ||
9347 | if (busiest->sum_h_nr_running == 1) | |
9348 | /* | |
9349 | * busiest doesn't have any tasks waiting to run | |
9350 | */ | |
9351 | goto out_balanced; | |
9352 | } | |
0b0695f2 | 9353 | |
fab47622 | 9354 | force_balance: |
1e3c88bd | 9355 | /* Looks like there is an imbalance. Compute it */ |
bd939f45 | 9356 | calculate_imbalance(env, &sds); |
bb3485c8 | 9357 | return env->imbalance ? sds.busiest : NULL; |
1e3c88bd PZ |
9358 | |
9359 | out_balanced: | |
bd939f45 | 9360 | env->imbalance = 0; |
1e3c88bd PZ |
9361 | return NULL; |
9362 | } | |
9363 | ||
9364 | /* | |
97fb7a0a | 9365 | * find_busiest_queue - find the busiest runqueue among the CPUs in the group. |
1e3c88bd | 9366 | */ |
bd939f45 | 9367 | static struct rq *find_busiest_queue(struct lb_env *env, |
b9403130 | 9368 | struct sched_group *group) |
1e3c88bd PZ |
9369 | { |
9370 | struct rq *busiest = NULL, *rq; | |
0b0695f2 VG |
9371 | unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; |
9372 | unsigned int busiest_nr = 0; | |
1e3c88bd PZ |
9373 | int i; |
9374 | ||
ae4df9d6 | 9375 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
0b0695f2 VG |
9376 | unsigned long capacity, load, util; |
9377 | unsigned int nr_running; | |
0ec8aa00 PZ |
9378 | enum fbq_type rt; |
9379 | ||
9380 | rq = cpu_rq(i); | |
9381 | rt = fbq_classify_rq(rq); | |
1e3c88bd | 9382 | |
0ec8aa00 PZ |
9383 | /* |
9384 | * We classify groups/runqueues into three groups: | |
9385 | * - regular: there are !numa tasks | |
9386 | * - remote: there are numa tasks that run on the 'wrong' node | |
9387 | * - all: there is no distinction | |
9388 | * | |
9389 | * In order to avoid migrating ideally placed numa tasks, | |
9390 | * ignore those when there's better options. | |
9391 | * | |
9392 | * If we ignore the actual busiest queue to migrate another | |
9393 | * task, the next balance pass can still reduce the busiest | |
9394 | * queue by moving tasks around inside the node. | |
9395 | * | |
9396 | * If we cannot move enough load due to this classification | |
9397 | * the next pass will adjust the group classification and | |
9398 | * allow migration of more tasks. | |
9399 | * | |
9400 | * Both cases only affect the total convergence complexity. | |
9401 | */ | |
9402 | if (rt > env->fbq_type) | |
9403 | continue; | |
9404 | ||
0b0695f2 | 9405 | nr_running = rq->cfs.h_nr_running; |
fc488ffd VG |
9406 | if (!nr_running) |
9407 | continue; | |
9408 | ||
9409 | capacity = capacity_of(i); | |
9d5efe05 | 9410 | |
4ad3831a CR |
9411 | /* |
9412 | * For ASYM_CPUCAPACITY domains, don't pick a CPU that could | |
9413 | * eventually lead to active_balancing high->low capacity. | |
9414 | * Higher per-CPU capacity is considered better than balancing | |
9415 | * average load. | |
9416 | */ | |
9417 | if (env->sd->flags & SD_ASYM_CPUCAPACITY && | |
9418 | capacity_of(env->dst_cpu) < capacity && | |
0b0695f2 | 9419 | nr_running == 1) |
4ad3831a CR |
9420 | continue; |
9421 | ||
0b0695f2 VG |
9422 | switch (env->migration_type) { |
9423 | case migrate_load: | |
9424 | /* | |
b0fb1eb4 VG |
9425 | * When comparing with load imbalance, use cpu_load() |
9426 | * which is not scaled with the CPU capacity. | |
0b0695f2 | 9427 | */ |
b0fb1eb4 | 9428 | load = cpu_load(rq); |
1e3c88bd | 9429 | |
0b0695f2 VG |
9430 | if (nr_running == 1 && load > env->imbalance && |
9431 | !check_cpu_capacity(rq, env->sd)) | |
9432 | break; | |
ea67821b | 9433 | |
0b0695f2 VG |
9434 | /* |
9435 | * For the load comparisons with the other CPUs, | |
b0fb1eb4 VG |
9436 | * consider the cpu_load() scaled with the CPU |
9437 | * capacity, so that the load can be moved away | |
9438 | * from the CPU that is potentially running at a | |
9439 | * lower capacity. | |
0b0695f2 VG |
9440 | * |
9441 | * Thus we're looking for max(load_i / capacity_i), | |
9442 | * crosswise multiplication to rid ourselves of the | |
9443 | * division works out to: | |
9444 | * load_i * capacity_j > load_j * capacity_i; | |
9445 | * where j is our previous maximum. | |
9446 | */ | |
9447 | if (load * busiest_capacity > busiest_load * capacity) { | |
9448 | busiest_load = load; | |
9449 | busiest_capacity = capacity; | |
9450 | busiest = rq; | |
9451 | } | |
9452 | break; | |
9453 | ||
9454 | case migrate_util: | |
9455 | util = cpu_util(cpu_of(rq)); | |
9456 | ||
c32b4308 VG |
9457 | /* |
9458 | * Don't try to pull utilization from a CPU with one | |
9459 | * running task. Whatever its utilization, we will fail | |
9460 | * detach the task. | |
9461 | */ | |
9462 | if (nr_running <= 1) | |
9463 | continue; | |
9464 | ||
0b0695f2 VG |
9465 | if (busiest_util < util) { |
9466 | busiest_util = util; | |
9467 | busiest = rq; | |
9468 | } | |
9469 | break; | |
9470 | ||
9471 | case migrate_task: | |
9472 | if (busiest_nr < nr_running) { | |
9473 | busiest_nr = nr_running; | |
9474 | busiest = rq; | |
9475 | } | |
9476 | break; | |
9477 | ||
9478 | case migrate_misfit: | |
9479 | /* | |
9480 | * For ASYM_CPUCAPACITY domains with misfit tasks we | |
9481 | * simply seek the "biggest" misfit task. | |
9482 | */ | |
9483 | if (rq->misfit_task_load > busiest_load) { | |
9484 | busiest_load = rq->misfit_task_load; | |
9485 | busiest = rq; | |
9486 | } | |
9487 | ||
9488 | break; | |
1e3c88bd | 9489 | |
1e3c88bd PZ |
9490 | } |
9491 | } | |
9492 | ||
9493 | return busiest; | |
9494 | } | |
9495 | ||
9496 | /* | |
9497 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
9498 | * so long as it is large enough. | |
9499 | */ | |
9500 | #define MAX_PINNED_INTERVAL 512 | |
9501 | ||
46a745d9 VG |
9502 | static inline bool |
9503 | asym_active_balance(struct lb_env *env) | |
1af3ed3d | 9504 | { |
46a745d9 VG |
9505 | /* |
9506 | * ASYM_PACKING needs to force migrate tasks from busy but | |
9507 | * lower priority CPUs in order to pack all tasks in the | |
9508 | * highest priority CPUs. | |
9509 | */ | |
9510 | return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && | |
9511 | sched_asym_prefer(env->dst_cpu, env->src_cpu); | |
9512 | } | |
bd939f45 | 9513 | |
46a745d9 | 9514 | static inline bool |
e9b9734b VG |
9515 | imbalanced_active_balance(struct lb_env *env) |
9516 | { | |
9517 | struct sched_domain *sd = env->sd; | |
9518 | ||
9519 | /* | |
9520 | * The imbalanced case includes the case of pinned tasks preventing a fair | |
9521 | * distribution of the load on the system but also the even distribution of the | |
9522 | * threads on a system with spare capacity | |
9523 | */ | |
9524 | if ((env->migration_type == migrate_task) && | |
9525 | (sd->nr_balance_failed > sd->cache_nice_tries+2)) | |
9526 | return 1; | |
9527 | ||
9528 | return 0; | |
9529 | } | |
9530 | ||
9531 | static int need_active_balance(struct lb_env *env) | |
46a745d9 VG |
9532 | { |
9533 | struct sched_domain *sd = env->sd; | |
532cb4c4 | 9534 | |
46a745d9 VG |
9535 | if (asym_active_balance(env)) |
9536 | return 1; | |
1af3ed3d | 9537 | |
e9b9734b VG |
9538 | if (imbalanced_active_balance(env)) |
9539 | return 1; | |
9540 | ||
1aaf90a4 VG |
9541 | /* |
9542 | * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. | |
9543 | * It's worth migrating the task if the src_cpu's capacity is reduced | |
9544 | * because of other sched_class or IRQs if more capacity stays | |
9545 | * available on dst_cpu. | |
9546 | */ | |
9547 | if ((env->idle != CPU_NOT_IDLE) && | |
9548 | (env->src_rq->cfs.h_nr_running == 1)) { | |
9549 | if ((check_cpu_capacity(env->src_rq, sd)) && | |
9550 | (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) | |
9551 | return 1; | |
9552 | } | |
9553 | ||
0b0695f2 | 9554 | if (env->migration_type == migrate_misfit) |
cad68e55 MR |
9555 | return 1; |
9556 | ||
46a745d9 VG |
9557 | return 0; |
9558 | } | |
9559 | ||
969c7921 TH |
9560 | static int active_load_balance_cpu_stop(void *data); |
9561 | ||
23f0d209 JK |
9562 | static int should_we_balance(struct lb_env *env) |
9563 | { | |
9564 | struct sched_group *sg = env->sd->groups; | |
64297f2b | 9565 | int cpu; |
23f0d209 | 9566 | |
024c9d2f PZ |
9567 | /* |
9568 | * Ensure the balancing environment is consistent; can happen | |
9569 | * when the softirq triggers 'during' hotplug. | |
9570 | */ | |
9571 | if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) | |
9572 | return 0; | |
9573 | ||
23f0d209 | 9574 | /* |
97fb7a0a | 9575 | * In the newly idle case, we will allow all the CPUs |
23f0d209 JK |
9576 | * to do the newly idle load balance. |
9577 | */ | |
9578 | if (env->idle == CPU_NEWLY_IDLE) | |
9579 | return 1; | |
9580 | ||
97fb7a0a | 9581 | /* Try to find first idle CPU */ |
e5c14b1f | 9582 | for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { |
af218122 | 9583 | if (!idle_cpu(cpu)) |
23f0d209 JK |
9584 | continue; |
9585 | ||
64297f2b PW |
9586 | /* Are we the first idle CPU? */ |
9587 | return cpu == env->dst_cpu; | |
23f0d209 JK |
9588 | } |
9589 | ||
64297f2b PW |
9590 | /* Are we the first CPU of this group ? */ |
9591 | return group_balance_cpu(sg) == env->dst_cpu; | |
23f0d209 JK |
9592 | } |
9593 | ||
1e3c88bd PZ |
9594 | /* |
9595 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
9596 | * tasks if there is an imbalance. | |
9597 | */ | |
9598 | static int load_balance(int this_cpu, struct rq *this_rq, | |
9599 | struct sched_domain *sd, enum cpu_idle_type idle, | |
23f0d209 | 9600 | int *continue_balancing) |
1e3c88bd | 9601 | { |
88b8dac0 | 9602 | int ld_moved, cur_ld_moved, active_balance = 0; |
6263322c | 9603 | struct sched_domain *sd_parent = sd->parent; |
1e3c88bd | 9604 | struct sched_group *group; |
1e3c88bd | 9605 | struct rq *busiest; |
8a8c69c3 | 9606 | struct rq_flags rf; |
4ba29684 | 9607 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); |
1e3c88bd | 9608 | |
8e45cb54 PZ |
9609 | struct lb_env env = { |
9610 | .sd = sd, | |
ddcdf6e7 PZ |
9611 | .dst_cpu = this_cpu, |
9612 | .dst_rq = this_rq, | |
ae4df9d6 | 9613 | .dst_grpmask = sched_group_span(sd->groups), |
8e45cb54 | 9614 | .idle = idle, |
eb95308e | 9615 | .loop_break = sched_nr_migrate_break, |
b9403130 | 9616 | .cpus = cpus, |
0ec8aa00 | 9617 | .fbq_type = all, |
163122b7 | 9618 | .tasks = LIST_HEAD_INIT(env.tasks), |
8e45cb54 PZ |
9619 | }; |
9620 | ||
65a4433a | 9621 | cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); |
1e3c88bd | 9622 | |
ae92882e | 9623 | schedstat_inc(sd->lb_count[idle]); |
1e3c88bd PZ |
9624 | |
9625 | redo: | |
23f0d209 JK |
9626 | if (!should_we_balance(&env)) { |
9627 | *continue_balancing = 0; | |
1e3c88bd | 9628 | goto out_balanced; |
23f0d209 | 9629 | } |
1e3c88bd | 9630 | |
23f0d209 | 9631 | group = find_busiest_group(&env); |
1e3c88bd | 9632 | if (!group) { |
ae92882e | 9633 | schedstat_inc(sd->lb_nobusyg[idle]); |
1e3c88bd PZ |
9634 | goto out_balanced; |
9635 | } | |
9636 | ||
b9403130 | 9637 | busiest = find_busiest_queue(&env, group); |
1e3c88bd | 9638 | if (!busiest) { |
ae92882e | 9639 | schedstat_inc(sd->lb_nobusyq[idle]); |
1e3c88bd PZ |
9640 | goto out_balanced; |
9641 | } | |
9642 | ||
78feefc5 | 9643 | BUG_ON(busiest == env.dst_rq); |
1e3c88bd | 9644 | |
ae92882e | 9645 | schedstat_add(sd->lb_imbalance[idle], env.imbalance); |
1e3c88bd | 9646 | |
1aaf90a4 VG |
9647 | env.src_cpu = busiest->cpu; |
9648 | env.src_rq = busiest; | |
9649 | ||
1e3c88bd | 9650 | ld_moved = 0; |
8a41dfcd VG |
9651 | /* Clear this flag as soon as we find a pullable task */ |
9652 | env.flags |= LBF_ALL_PINNED; | |
1e3c88bd PZ |
9653 | if (busiest->nr_running > 1) { |
9654 | /* | |
9655 | * Attempt to move tasks. If find_busiest_group has found | |
9656 | * an imbalance but busiest->nr_running <= 1, the group is | |
9657 | * still unbalanced. ld_moved simply stays zero, so it is | |
9658 | * correctly treated as an imbalance. | |
9659 | */ | |
c82513e5 | 9660 | env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); |
8e45cb54 | 9661 | |
5d6523eb | 9662 | more_balance: |
8a8c69c3 | 9663 | rq_lock_irqsave(busiest, &rf); |
3bed5e21 | 9664 | update_rq_clock(busiest); |
88b8dac0 SV |
9665 | |
9666 | /* | |
9667 | * cur_ld_moved - load moved in current iteration | |
9668 | * ld_moved - cumulative load moved across iterations | |
9669 | */ | |
163122b7 | 9670 | cur_ld_moved = detach_tasks(&env); |
1e3c88bd PZ |
9671 | |
9672 | /* | |
163122b7 KT |
9673 | * We've detached some tasks from busiest_rq. Every |
9674 | * task is masked "TASK_ON_RQ_MIGRATING", so we can safely | |
9675 | * unlock busiest->lock, and we are able to be sure | |
9676 | * that nobody can manipulate the tasks in parallel. | |
9677 | * See task_rq_lock() family for the details. | |
1e3c88bd | 9678 | */ |
163122b7 | 9679 | |
8a8c69c3 | 9680 | rq_unlock(busiest, &rf); |
163122b7 KT |
9681 | |
9682 | if (cur_ld_moved) { | |
9683 | attach_tasks(&env); | |
9684 | ld_moved += cur_ld_moved; | |
9685 | } | |
9686 | ||
8a8c69c3 | 9687 | local_irq_restore(rf.flags); |
88b8dac0 | 9688 | |
f1cd0858 JK |
9689 | if (env.flags & LBF_NEED_BREAK) { |
9690 | env.flags &= ~LBF_NEED_BREAK; | |
9691 | goto more_balance; | |
9692 | } | |
9693 | ||
88b8dac0 SV |
9694 | /* |
9695 | * Revisit (affine) tasks on src_cpu that couldn't be moved to | |
9696 | * us and move them to an alternate dst_cpu in our sched_group | |
9697 | * where they can run. The upper limit on how many times we | |
97fb7a0a | 9698 | * iterate on same src_cpu is dependent on number of CPUs in our |
88b8dac0 SV |
9699 | * sched_group. |
9700 | * | |
9701 | * This changes load balance semantics a bit on who can move | |
9702 | * load to a given_cpu. In addition to the given_cpu itself | |
9703 | * (or a ilb_cpu acting on its behalf where given_cpu is | |
9704 | * nohz-idle), we now have balance_cpu in a position to move | |
9705 | * load to given_cpu. In rare situations, this may cause | |
9706 | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding | |
9707 | * _independently_ and at _same_ time to move some load to | |
9708 | * given_cpu) causing exceess load to be moved to given_cpu. | |
9709 | * This however should not happen so much in practice and | |
9710 | * moreover subsequent load balance cycles should correct the | |
9711 | * excess load moved. | |
9712 | */ | |
6263322c | 9713 | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { |
88b8dac0 | 9714 | |
97fb7a0a | 9715 | /* Prevent to re-select dst_cpu via env's CPUs */ |
c89d92ed | 9716 | __cpumask_clear_cpu(env.dst_cpu, env.cpus); |
7aff2e3a | 9717 | |
78feefc5 | 9718 | env.dst_rq = cpu_rq(env.new_dst_cpu); |
88b8dac0 | 9719 | env.dst_cpu = env.new_dst_cpu; |
6263322c | 9720 | env.flags &= ~LBF_DST_PINNED; |
88b8dac0 SV |
9721 | env.loop = 0; |
9722 | env.loop_break = sched_nr_migrate_break; | |
e02e60c1 | 9723 | |
88b8dac0 SV |
9724 | /* |
9725 | * Go back to "more_balance" rather than "redo" since we | |
9726 | * need to continue with same src_cpu. | |
9727 | */ | |
9728 | goto more_balance; | |
9729 | } | |
1e3c88bd | 9730 | |
6263322c PZ |
9731 | /* |
9732 | * We failed to reach balance because of affinity. | |
9733 | */ | |
9734 | if (sd_parent) { | |
63b2ca30 | 9735 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
6263322c | 9736 | |
afdeee05 | 9737 | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) |
6263322c | 9738 | *group_imbalance = 1; |
6263322c PZ |
9739 | } |
9740 | ||
1e3c88bd | 9741 | /* All tasks on this runqueue were pinned by CPU affinity */ |
8e45cb54 | 9742 | if (unlikely(env.flags & LBF_ALL_PINNED)) { |
c89d92ed | 9743 | __cpumask_clear_cpu(cpu_of(busiest), cpus); |
65a4433a JH |
9744 | /* |
9745 | * Attempting to continue load balancing at the current | |
9746 | * sched_domain level only makes sense if there are | |
9747 | * active CPUs remaining as possible busiest CPUs to | |
9748 | * pull load from which are not contained within the | |
9749 | * destination group that is receiving any migrated | |
9750 | * load. | |
9751 | */ | |
9752 | if (!cpumask_subset(cpus, env.dst_grpmask)) { | |
bbf18b19 PN |
9753 | env.loop = 0; |
9754 | env.loop_break = sched_nr_migrate_break; | |
1e3c88bd | 9755 | goto redo; |
bbf18b19 | 9756 | } |
afdeee05 | 9757 | goto out_all_pinned; |
1e3c88bd PZ |
9758 | } |
9759 | } | |
9760 | ||
9761 | if (!ld_moved) { | |
ae92882e | 9762 | schedstat_inc(sd->lb_failed[idle]); |
58b26c4c VP |
9763 | /* |
9764 | * Increment the failure counter only on periodic balance. | |
9765 | * We do not want newidle balance, which can be very | |
9766 | * frequent, pollute the failure counter causing | |
9767 | * excessive cache_hot migrations and active balances. | |
9768 | */ | |
9769 | if (idle != CPU_NEWLY_IDLE) | |
9770 | sd->nr_balance_failed++; | |
1e3c88bd | 9771 | |
bd939f45 | 9772 | if (need_active_balance(&env)) { |
8a8c69c3 PZ |
9773 | unsigned long flags; |
9774 | ||
1e3c88bd PZ |
9775 | raw_spin_lock_irqsave(&busiest->lock, flags); |
9776 | ||
97fb7a0a IM |
9777 | /* |
9778 | * Don't kick the active_load_balance_cpu_stop, | |
9779 | * if the curr task on busiest CPU can't be | |
9780 | * moved to this_cpu: | |
1e3c88bd | 9781 | */ |
3bd37062 | 9782 | if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { |
1e3c88bd PZ |
9783 | raw_spin_unlock_irqrestore(&busiest->lock, |
9784 | flags); | |
1e3c88bd PZ |
9785 | goto out_one_pinned; |
9786 | } | |
9787 | ||
8a41dfcd VG |
9788 | /* Record that we found at least one task that could run on this_cpu */ |
9789 | env.flags &= ~LBF_ALL_PINNED; | |
9790 | ||
969c7921 TH |
9791 | /* |
9792 | * ->active_balance synchronizes accesses to | |
9793 | * ->active_balance_work. Once set, it's cleared | |
9794 | * only after active load balance is finished. | |
9795 | */ | |
1e3c88bd PZ |
9796 | if (!busiest->active_balance) { |
9797 | busiest->active_balance = 1; | |
9798 | busiest->push_cpu = this_cpu; | |
9799 | active_balance = 1; | |
9800 | } | |
9801 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | |
969c7921 | 9802 | |
bd939f45 | 9803 | if (active_balance) { |
969c7921 TH |
9804 | stop_one_cpu_nowait(cpu_of(busiest), |
9805 | active_load_balance_cpu_stop, busiest, | |
9806 | &busiest->active_balance_work); | |
bd939f45 | 9807 | } |
1e3c88bd | 9808 | |
d02c0711 | 9809 | /* We've kicked active balancing, force task migration. */ |
1e3c88bd PZ |
9810 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
9811 | } | |
e9b9734b | 9812 | } else { |
1e3c88bd | 9813 | sd->nr_balance_failed = 0; |
e9b9734b | 9814 | } |
1e3c88bd | 9815 | |
e9b9734b | 9816 | if (likely(!active_balance) || need_active_balance(&env)) { |
1e3c88bd PZ |
9817 | /* We were unbalanced, so reset the balancing interval */ |
9818 | sd->balance_interval = sd->min_interval; | |
1e3c88bd PZ |
9819 | } |
9820 | ||
1e3c88bd PZ |
9821 | goto out; |
9822 | ||
9823 | out_balanced: | |
afdeee05 VG |
9824 | /* |
9825 | * We reach balance although we may have faced some affinity | |
f6cad8df VG |
9826 | * constraints. Clear the imbalance flag only if other tasks got |
9827 | * a chance to move and fix the imbalance. | |
afdeee05 | 9828 | */ |
f6cad8df | 9829 | if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { |
afdeee05 VG |
9830 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
9831 | ||
9832 | if (*group_imbalance) | |
9833 | *group_imbalance = 0; | |
9834 | } | |
9835 | ||
9836 | out_all_pinned: | |
9837 | /* | |
9838 | * We reach balance because all tasks are pinned at this level so | |
9839 | * we can't migrate them. Let the imbalance flag set so parent level | |
9840 | * can try to migrate them. | |
9841 | */ | |
ae92882e | 9842 | schedstat_inc(sd->lb_balanced[idle]); |
1e3c88bd PZ |
9843 | |
9844 | sd->nr_balance_failed = 0; | |
9845 | ||
9846 | out_one_pinned: | |
3f130a37 VS |
9847 | ld_moved = 0; |
9848 | ||
9849 | /* | |
5ba553ef PZ |
9850 | * newidle_balance() disregards balance intervals, so we could |
9851 | * repeatedly reach this code, which would lead to balance_interval | |
9852 | * skyrocketting in a short amount of time. Skip the balance_interval | |
9853 | * increase logic to avoid that. | |
3f130a37 VS |
9854 | */ |
9855 | if (env.idle == CPU_NEWLY_IDLE) | |
9856 | goto out; | |
9857 | ||
1e3c88bd | 9858 | /* tune up the balancing interval */ |
47b7aee1 VS |
9859 | if ((env.flags & LBF_ALL_PINNED && |
9860 | sd->balance_interval < MAX_PINNED_INTERVAL) || | |
9861 | sd->balance_interval < sd->max_interval) | |
1e3c88bd | 9862 | sd->balance_interval *= 2; |
1e3c88bd | 9863 | out: |
1e3c88bd PZ |
9864 | return ld_moved; |
9865 | } | |
9866 | ||
52a08ef1 JL |
9867 | static inline unsigned long |
9868 | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) | |
9869 | { | |
9870 | unsigned long interval = sd->balance_interval; | |
9871 | ||
9872 | if (cpu_busy) | |
9873 | interval *= sd->busy_factor; | |
9874 | ||
9875 | /* scale ms to jiffies */ | |
9876 | interval = msecs_to_jiffies(interval); | |
e4d32e4d VG |
9877 | |
9878 | /* | |
9879 | * Reduce likelihood of busy balancing at higher domains racing with | |
9880 | * balancing at lower domains by preventing their balancing periods | |
9881 | * from being multiples of each other. | |
9882 | */ | |
9883 | if (cpu_busy) | |
9884 | interval -= 1; | |
9885 | ||
52a08ef1 JL |
9886 | interval = clamp(interval, 1UL, max_load_balance_interval); |
9887 | ||
9888 | return interval; | |
9889 | } | |
9890 | ||
9891 | static inline void | |
31851a98 | 9892 | update_next_balance(struct sched_domain *sd, unsigned long *next_balance) |
52a08ef1 JL |
9893 | { |
9894 | unsigned long interval, next; | |
9895 | ||
31851a98 LY |
9896 | /* used by idle balance, so cpu_busy = 0 */ |
9897 | interval = get_sd_balance_interval(sd, 0); | |
52a08ef1 JL |
9898 | next = sd->last_balance + interval; |
9899 | ||
9900 | if (time_after(*next_balance, next)) | |
9901 | *next_balance = next; | |
9902 | } | |
9903 | ||
1e3c88bd | 9904 | /* |
97fb7a0a | 9905 | * active_load_balance_cpu_stop is run by the CPU stopper. It pushes |
969c7921 TH |
9906 | * running tasks off the busiest CPU onto idle CPUs. It requires at |
9907 | * least 1 task to be running on each physical CPU where possible, and | |
9908 | * avoids physical / logical imbalances. | |
1e3c88bd | 9909 | */ |
969c7921 | 9910 | static int active_load_balance_cpu_stop(void *data) |
1e3c88bd | 9911 | { |
969c7921 TH |
9912 | struct rq *busiest_rq = data; |
9913 | int busiest_cpu = cpu_of(busiest_rq); | |
1e3c88bd | 9914 | int target_cpu = busiest_rq->push_cpu; |
969c7921 | 9915 | struct rq *target_rq = cpu_rq(target_cpu); |
1e3c88bd | 9916 | struct sched_domain *sd; |
e5673f28 | 9917 | struct task_struct *p = NULL; |
8a8c69c3 | 9918 | struct rq_flags rf; |
969c7921 | 9919 | |
8a8c69c3 | 9920 | rq_lock_irq(busiest_rq, &rf); |
edd8e41d PZ |
9921 | /* |
9922 | * Between queueing the stop-work and running it is a hole in which | |
9923 | * CPUs can become inactive. We should not move tasks from or to | |
9924 | * inactive CPUs. | |
9925 | */ | |
9926 | if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) | |
9927 | goto out_unlock; | |
969c7921 | 9928 | |
97fb7a0a | 9929 | /* Make sure the requested CPU hasn't gone down in the meantime: */ |
969c7921 TH |
9930 | if (unlikely(busiest_cpu != smp_processor_id() || |
9931 | !busiest_rq->active_balance)) | |
9932 | goto out_unlock; | |
1e3c88bd PZ |
9933 | |
9934 | /* Is there any task to move? */ | |
9935 | if (busiest_rq->nr_running <= 1) | |
969c7921 | 9936 | goto out_unlock; |
1e3c88bd PZ |
9937 | |
9938 | /* | |
9939 | * This condition is "impossible", if it occurs | |
9940 | * we need to fix it. Originally reported by | |
97fb7a0a | 9941 | * Bjorn Helgaas on a 128-CPU setup. |
1e3c88bd PZ |
9942 | */ |
9943 | BUG_ON(busiest_rq == target_rq); | |
9944 | ||
1e3c88bd | 9945 | /* Search for an sd spanning us and the target CPU. */ |
dce840a0 | 9946 | rcu_read_lock(); |
1e3c88bd | 9947 | for_each_domain(target_cpu, sd) { |
e669ac8a VS |
9948 | if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) |
9949 | break; | |
1e3c88bd PZ |
9950 | } |
9951 | ||
9952 | if (likely(sd)) { | |
8e45cb54 PZ |
9953 | struct lb_env env = { |
9954 | .sd = sd, | |
ddcdf6e7 PZ |
9955 | .dst_cpu = target_cpu, |
9956 | .dst_rq = target_rq, | |
9957 | .src_cpu = busiest_rq->cpu, | |
9958 | .src_rq = busiest_rq, | |
8e45cb54 | 9959 | .idle = CPU_IDLE, |
65a4433a JH |
9960 | /* |
9961 | * can_migrate_task() doesn't need to compute new_dst_cpu | |
9962 | * for active balancing. Since we have CPU_IDLE, but no | |
9963 | * @dst_grpmask we need to make that test go away with lying | |
9964 | * about DST_PINNED. | |
9965 | */ | |
9966 | .flags = LBF_DST_PINNED, | |
8e45cb54 PZ |
9967 | }; |
9968 | ||
ae92882e | 9969 | schedstat_inc(sd->alb_count); |
3bed5e21 | 9970 | update_rq_clock(busiest_rq); |
1e3c88bd | 9971 | |
e5673f28 | 9972 | p = detach_one_task(&env); |
d02c0711 | 9973 | if (p) { |
ae92882e | 9974 | schedstat_inc(sd->alb_pushed); |
d02c0711 SD |
9975 | /* Active balancing done, reset the failure counter. */ |
9976 | sd->nr_balance_failed = 0; | |
9977 | } else { | |
ae92882e | 9978 | schedstat_inc(sd->alb_failed); |
d02c0711 | 9979 | } |
1e3c88bd | 9980 | } |
dce840a0 | 9981 | rcu_read_unlock(); |
969c7921 TH |
9982 | out_unlock: |
9983 | busiest_rq->active_balance = 0; | |
8a8c69c3 | 9984 | rq_unlock(busiest_rq, &rf); |
e5673f28 KT |
9985 | |
9986 | if (p) | |
9987 | attach_one_task(target_rq, p); | |
9988 | ||
9989 | local_irq_enable(); | |
9990 | ||
969c7921 | 9991 | return 0; |
1e3c88bd PZ |
9992 | } |
9993 | ||
af3fe03c PZ |
9994 | static DEFINE_SPINLOCK(balancing); |
9995 | ||
9996 | /* | |
9997 | * Scale the max load_balance interval with the number of CPUs in the system. | |
9998 | * This trades load-balance latency on larger machines for less cross talk. | |
9999 | */ | |
10000 | void update_max_interval(void) | |
10001 | { | |
10002 | max_load_balance_interval = HZ*num_online_cpus()/10; | |
10003 | } | |
10004 | ||
10005 | /* | |
10006 | * It checks each scheduling domain to see if it is due to be balanced, | |
10007 | * and initiates a balancing operation if so. | |
10008 | * | |
10009 | * Balancing parameters are set up in init_sched_domains. | |
10010 | */ | |
10011 | static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) | |
10012 | { | |
10013 | int continue_balancing = 1; | |
10014 | int cpu = rq->cpu; | |
323af6de | 10015 | int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); |
af3fe03c PZ |
10016 | unsigned long interval; |
10017 | struct sched_domain *sd; | |
10018 | /* Earliest time when we have to do rebalance again */ | |
10019 | unsigned long next_balance = jiffies + 60*HZ; | |
10020 | int update_next_balance = 0; | |
10021 | int need_serialize, need_decay = 0; | |
10022 | u64 max_cost = 0; | |
10023 | ||
10024 | rcu_read_lock(); | |
10025 | for_each_domain(cpu, sd) { | |
10026 | /* | |
10027 | * Decay the newidle max times here because this is a regular | |
10028 | * visit to all the domains. Decay ~1% per second. | |
10029 | */ | |
10030 | if (time_after(jiffies, sd->next_decay_max_lb_cost)) { | |
10031 | sd->max_newidle_lb_cost = | |
10032 | (sd->max_newidle_lb_cost * 253) / 256; | |
10033 | sd->next_decay_max_lb_cost = jiffies + HZ; | |
10034 | need_decay = 1; | |
10035 | } | |
10036 | max_cost += sd->max_newidle_lb_cost; | |
10037 | ||
af3fe03c PZ |
10038 | /* |
10039 | * Stop the load balance at this level. There is another | |
10040 | * CPU in our sched group which is doing load balancing more | |
10041 | * actively. | |
10042 | */ | |
10043 | if (!continue_balancing) { | |
10044 | if (need_decay) | |
10045 | continue; | |
10046 | break; | |
10047 | } | |
10048 | ||
323af6de | 10049 | interval = get_sd_balance_interval(sd, busy); |
af3fe03c PZ |
10050 | |
10051 | need_serialize = sd->flags & SD_SERIALIZE; | |
10052 | if (need_serialize) { | |
10053 | if (!spin_trylock(&balancing)) | |
10054 | goto out; | |
10055 | } | |
10056 | ||
10057 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | |
10058 | if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { | |
10059 | /* | |
10060 | * The LBF_DST_PINNED logic could have changed | |
10061 | * env->dst_cpu, so we can't know our idle | |
10062 | * state even if we migrated tasks. Update it. | |
10063 | */ | |
10064 | idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; | |
323af6de | 10065 | busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); |
af3fe03c PZ |
10066 | } |
10067 | sd->last_balance = jiffies; | |
323af6de | 10068 | interval = get_sd_balance_interval(sd, busy); |
af3fe03c PZ |
10069 | } |
10070 | if (need_serialize) | |
10071 | spin_unlock(&balancing); | |
10072 | out: | |
10073 | if (time_after(next_balance, sd->last_balance + interval)) { | |
10074 | next_balance = sd->last_balance + interval; | |
10075 | update_next_balance = 1; | |
10076 | } | |
10077 | } | |
10078 | if (need_decay) { | |
10079 | /* | |
10080 | * Ensure the rq-wide value also decays but keep it at a | |
10081 | * reasonable floor to avoid funnies with rq->avg_idle. | |
10082 | */ | |
10083 | rq->max_idle_balance_cost = | |
10084 | max((u64)sysctl_sched_migration_cost, max_cost); | |
10085 | } | |
10086 | rcu_read_unlock(); | |
10087 | ||
10088 | /* | |
10089 | * next_balance will be updated only when there is a need. | |
10090 | * When the cpu is attached to null domain for ex, it will not be | |
10091 | * updated. | |
10092 | */ | |
10093 | if (likely(update_next_balance)) { | |
10094 | rq->next_balance = next_balance; | |
10095 | ||
10096 | #ifdef CONFIG_NO_HZ_COMMON | |
10097 | /* | |
10098 | * If this CPU has been elected to perform the nohz idle | |
10099 | * balance. Other idle CPUs have already rebalanced with | |
10100 | * nohz_idle_balance() and nohz.next_balance has been | |
10101 | * updated accordingly. This CPU is now running the idle load | |
10102 | * balance for itself and we need to update the | |
10103 | * nohz.next_balance accordingly. | |
10104 | */ | |
10105 | if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) | |
10106 | nohz.next_balance = rq->next_balance; | |
10107 | #endif | |
10108 | } | |
10109 | } | |
10110 | ||
d987fc7f MG |
10111 | static inline int on_null_domain(struct rq *rq) |
10112 | { | |
10113 | return unlikely(!rcu_dereference_sched(rq->sd)); | |
10114 | } | |
10115 | ||
3451d024 | 10116 | #ifdef CONFIG_NO_HZ_COMMON |
83cd4fe2 VP |
10117 | /* |
10118 | * idle load balancing details | |
83cd4fe2 VP |
10119 | * - When one of the busy CPUs notice that there may be an idle rebalancing |
10120 | * needed, they will kick the idle load balancer, which then does idle | |
10121 | * load balancing for all the idle CPUs. | |
9b019acb NP |
10122 | * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set |
10123 | * anywhere yet. | |
83cd4fe2 | 10124 | */ |
1e3c88bd | 10125 | |
3dd0337d | 10126 | static inline int find_new_ilb(void) |
1e3c88bd | 10127 | { |
9b019acb | 10128 | int ilb; |
1e3c88bd | 10129 | |
9b019acb NP |
10130 | for_each_cpu_and(ilb, nohz.idle_cpus_mask, |
10131 | housekeeping_cpumask(HK_FLAG_MISC)) { | |
45da7a2b PZ |
10132 | |
10133 | if (ilb == smp_processor_id()) | |
10134 | continue; | |
10135 | ||
9b019acb NP |
10136 | if (idle_cpu(ilb)) |
10137 | return ilb; | |
10138 | } | |
786d6dc7 SS |
10139 | |
10140 | return nr_cpu_ids; | |
1e3c88bd | 10141 | } |
1e3c88bd | 10142 | |
83cd4fe2 | 10143 | /* |
9b019acb NP |
10144 | * Kick a CPU to do the nohz balancing, if it is time for it. We pick any |
10145 | * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). | |
83cd4fe2 | 10146 | */ |
a4064fb6 | 10147 | static void kick_ilb(unsigned int flags) |
83cd4fe2 VP |
10148 | { |
10149 | int ilb_cpu; | |
10150 | ||
3ea2f097 VG |
10151 | /* |
10152 | * Increase nohz.next_balance only when if full ilb is triggered but | |
10153 | * not if we only update stats. | |
10154 | */ | |
10155 | if (flags & NOHZ_BALANCE_KICK) | |
10156 | nohz.next_balance = jiffies+1; | |
83cd4fe2 | 10157 | |
3dd0337d | 10158 | ilb_cpu = find_new_ilb(); |
83cd4fe2 | 10159 | |
0b005cf5 SS |
10160 | if (ilb_cpu >= nr_cpu_ids) |
10161 | return; | |
83cd4fe2 | 10162 | |
19a1f5ec PZ |
10163 | /* |
10164 | * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets | |
10165 | * the first flag owns it; cleared by nohz_csd_func(). | |
10166 | */ | |
a4064fb6 | 10167 | flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); |
b7031a02 | 10168 | if (flags & NOHZ_KICK_MASK) |
1c792db7 | 10169 | return; |
4550487a | 10170 | |
1c792db7 | 10171 | /* |
90b5363a | 10172 | * This way we generate an IPI on the target CPU which |
1c792db7 SS |
10173 | * is idle. And the softirq performing nohz idle load balance |
10174 | * will be run before returning from the IPI. | |
10175 | */ | |
90b5363a | 10176 | smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); |
4550487a PZ |
10177 | } |
10178 | ||
10179 | /* | |
9f132742 VS |
10180 | * Current decision point for kicking the idle load balancer in the presence |
10181 | * of idle CPUs in the system. | |
4550487a PZ |
10182 | */ |
10183 | static void nohz_balancer_kick(struct rq *rq) | |
10184 | { | |
10185 | unsigned long now = jiffies; | |
10186 | struct sched_domain_shared *sds; | |
10187 | struct sched_domain *sd; | |
10188 | int nr_busy, i, cpu = rq->cpu; | |
a4064fb6 | 10189 | unsigned int flags = 0; |
4550487a PZ |
10190 | |
10191 | if (unlikely(rq->idle_balance)) | |
10192 | return; | |
10193 | ||
10194 | /* | |
10195 | * We may be recently in ticked or tickless idle mode. At the first | |
10196 | * busy tick after returning from idle, we will update the busy stats. | |
10197 | */ | |
00357f5e | 10198 | nohz_balance_exit_idle(rq); |
4550487a PZ |
10199 | |
10200 | /* | |
10201 | * None are in tickless mode and hence no need for NOHZ idle load | |
10202 | * balancing. | |
10203 | */ | |
10204 | if (likely(!atomic_read(&nohz.nr_cpus))) | |
10205 | return; | |
10206 | ||
f643ea22 VG |
10207 | if (READ_ONCE(nohz.has_blocked) && |
10208 | time_after(now, READ_ONCE(nohz.next_blocked))) | |
a4064fb6 PZ |
10209 | flags = NOHZ_STATS_KICK; |
10210 | ||
4550487a | 10211 | if (time_before(now, nohz.next_balance)) |
a4064fb6 | 10212 | goto out; |
4550487a | 10213 | |
a0fe2cf0 | 10214 | if (rq->nr_running >= 2) { |
a4064fb6 | 10215 | flags = NOHZ_KICK_MASK; |
4550487a PZ |
10216 | goto out; |
10217 | } | |
10218 | ||
10219 | rcu_read_lock(); | |
4550487a PZ |
10220 | |
10221 | sd = rcu_dereference(rq->sd); | |
10222 | if (sd) { | |
e25a7a94 VS |
10223 | /* |
10224 | * If there's a CFS task and the current CPU has reduced | |
10225 | * capacity; kick the ILB to see if there's a better CPU to run | |
10226 | * on. | |
10227 | */ | |
10228 | if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { | |
a4064fb6 | 10229 | flags = NOHZ_KICK_MASK; |
4550487a PZ |
10230 | goto unlock; |
10231 | } | |
10232 | } | |
10233 | ||
011b27bb | 10234 | sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); |
4550487a | 10235 | if (sd) { |
b9a7b883 VS |
10236 | /* |
10237 | * When ASYM_PACKING; see if there's a more preferred CPU | |
10238 | * currently idle; in which case, kick the ILB to move tasks | |
10239 | * around. | |
10240 | */ | |
7edab78d | 10241 | for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { |
4550487a | 10242 | if (sched_asym_prefer(i, cpu)) { |
a4064fb6 | 10243 | flags = NOHZ_KICK_MASK; |
4550487a PZ |
10244 | goto unlock; |
10245 | } | |
10246 | } | |
10247 | } | |
b9a7b883 | 10248 | |
a0fe2cf0 VS |
10249 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); |
10250 | if (sd) { | |
10251 | /* | |
10252 | * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU | |
10253 | * to run the misfit task on. | |
10254 | */ | |
10255 | if (check_misfit_status(rq, sd)) { | |
10256 | flags = NOHZ_KICK_MASK; | |
10257 | goto unlock; | |
10258 | } | |
b9a7b883 VS |
10259 | |
10260 | /* | |
10261 | * For asymmetric systems, we do not want to nicely balance | |
10262 | * cache use, instead we want to embrace asymmetry and only | |
10263 | * ensure tasks have enough CPU capacity. | |
10264 | * | |
10265 | * Skip the LLC logic because it's not relevant in that case. | |
10266 | */ | |
10267 | goto unlock; | |
a0fe2cf0 VS |
10268 | } |
10269 | ||
b9a7b883 VS |
10270 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); |
10271 | if (sds) { | |
e25a7a94 | 10272 | /* |
b9a7b883 VS |
10273 | * If there is an imbalance between LLC domains (IOW we could |
10274 | * increase the overall cache use), we need some less-loaded LLC | |
10275 | * domain to pull some load. Likewise, we may need to spread | |
10276 | * load within the current LLC domain (e.g. packed SMT cores but | |
10277 | * other CPUs are idle). We can't really know from here how busy | |
10278 | * the others are - so just get a nohz balance going if it looks | |
10279 | * like this LLC domain has tasks we could move. | |
e25a7a94 | 10280 | */ |
b9a7b883 VS |
10281 | nr_busy = atomic_read(&sds->nr_busy_cpus); |
10282 | if (nr_busy > 1) { | |
10283 | flags = NOHZ_KICK_MASK; | |
10284 | goto unlock; | |
4550487a PZ |
10285 | } |
10286 | } | |
10287 | unlock: | |
10288 | rcu_read_unlock(); | |
10289 | out: | |
a4064fb6 PZ |
10290 | if (flags) |
10291 | kick_ilb(flags); | |
83cd4fe2 VP |
10292 | } |
10293 | ||
00357f5e | 10294 | static void set_cpu_sd_state_busy(int cpu) |
71325960 | 10295 | { |
00357f5e | 10296 | struct sched_domain *sd; |
a22e47a4 | 10297 | |
00357f5e PZ |
10298 | rcu_read_lock(); |
10299 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); | |
a22e47a4 | 10300 | |
00357f5e PZ |
10301 | if (!sd || !sd->nohz_idle) |
10302 | goto unlock; | |
10303 | sd->nohz_idle = 0; | |
10304 | ||
10305 | atomic_inc(&sd->shared->nr_busy_cpus); | |
10306 | unlock: | |
10307 | rcu_read_unlock(); | |
71325960 SS |
10308 | } |
10309 | ||
00357f5e PZ |
10310 | void nohz_balance_exit_idle(struct rq *rq) |
10311 | { | |
10312 | SCHED_WARN_ON(rq != this_rq()); | |
10313 | ||
10314 | if (likely(!rq->nohz_tick_stopped)) | |
10315 | return; | |
10316 | ||
10317 | rq->nohz_tick_stopped = 0; | |
10318 | cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); | |
10319 | atomic_dec(&nohz.nr_cpus); | |
10320 | ||
10321 | set_cpu_sd_state_busy(rq->cpu); | |
10322 | } | |
10323 | ||
10324 | static void set_cpu_sd_state_idle(int cpu) | |
69e1e811 SS |
10325 | { |
10326 | struct sched_domain *sd; | |
69e1e811 | 10327 | |
69e1e811 | 10328 | rcu_read_lock(); |
0e369d75 | 10329 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); |
25f55d9d VG |
10330 | |
10331 | if (!sd || sd->nohz_idle) | |
10332 | goto unlock; | |
10333 | sd->nohz_idle = 1; | |
10334 | ||
0e369d75 | 10335 | atomic_dec(&sd->shared->nr_busy_cpus); |
25f55d9d | 10336 | unlock: |
69e1e811 SS |
10337 | rcu_read_unlock(); |
10338 | } | |
10339 | ||
1e3c88bd | 10340 | /* |
97fb7a0a | 10341 | * This routine will record that the CPU is going idle with tick stopped. |
0b005cf5 | 10342 | * This info will be used in performing idle load balancing in the future. |
1e3c88bd | 10343 | */ |
c1cc017c | 10344 | void nohz_balance_enter_idle(int cpu) |
1e3c88bd | 10345 | { |
00357f5e PZ |
10346 | struct rq *rq = cpu_rq(cpu); |
10347 | ||
10348 | SCHED_WARN_ON(cpu != smp_processor_id()); | |
10349 | ||
97fb7a0a | 10350 | /* If this CPU is going down, then nothing needs to be done: */ |
71325960 SS |
10351 | if (!cpu_active(cpu)) |
10352 | return; | |
10353 | ||
387bc8b5 | 10354 | /* Spare idle load balancing on CPUs that don't want to be disturbed: */ |
de201559 | 10355 | if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) |
387bc8b5 FW |
10356 | return; |
10357 | ||
f643ea22 VG |
10358 | /* |
10359 | * Can be set safely without rq->lock held | |
10360 | * If a clear happens, it will have evaluated last additions because | |
10361 | * rq->lock is held during the check and the clear | |
10362 | */ | |
10363 | rq->has_blocked_load = 1; | |
10364 | ||
10365 | /* | |
10366 | * The tick is still stopped but load could have been added in the | |
10367 | * meantime. We set the nohz.has_blocked flag to trig a check of the | |
10368 | * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear | |
10369 | * of nohz.has_blocked can only happen after checking the new load | |
10370 | */ | |
00357f5e | 10371 | if (rq->nohz_tick_stopped) |
f643ea22 | 10372 | goto out; |
1e3c88bd | 10373 | |
97fb7a0a | 10374 | /* If we're a completely isolated CPU, we don't play: */ |
00357f5e | 10375 | if (on_null_domain(rq)) |
d987fc7f MG |
10376 | return; |
10377 | ||
00357f5e PZ |
10378 | rq->nohz_tick_stopped = 1; |
10379 | ||
c1cc017c AS |
10380 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); |
10381 | atomic_inc(&nohz.nr_cpus); | |
00357f5e | 10382 | |
f643ea22 VG |
10383 | /* |
10384 | * Ensures that if nohz_idle_balance() fails to observe our | |
10385 | * @idle_cpus_mask store, it must observe the @has_blocked | |
10386 | * store. | |
10387 | */ | |
10388 | smp_mb__after_atomic(); | |
10389 | ||
00357f5e | 10390 | set_cpu_sd_state_idle(cpu); |
f643ea22 VG |
10391 | |
10392 | out: | |
10393 | /* | |
10394 | * Each time a cpu enter idle, we assume that it has blocked load and | |
10395 | * enable the periodic update of the load of idle cpus | |
10396 | */ | |
10397 | WRITE_ONCE(nohz.has_blocked, 1); | |
1e3c88bd | 10398 | } |
1e3c88bd | 10399 | |
1e3c88bd | 10400 | /* |
31e77c93 VG |
10401 | * Internal function that runs load balance for all idle cpus. The load balance |
10402 | * can be a simple update of blocked load or a complete load balance with | |
10403 | * tasks movement depending of flags. | |
10404 | * The function returns false if the loop has stopped before running | |
10405 | * through all idle CPUs. | |
1e3c88bd | 10406 | */ |
31e77c93 VG |
10407 | static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, |
10408 | enum cpu_idle_type idle) | |
83cd4fe2 | 10409 | { |
c5afb6a8 | 10410 | /* Earliest time when we have to do rebalance again */ |
a4064fb6 PZ |
10411 | unsigned long now = jiffies; |
10412 | unsigned long next_balance = now + 60*HZ; | |
f643ea22 | 10413 | bool has_blocked_load = false; |
c5afb6a8 | 10414 | int update_next_balance = 0; |
b7031a02 | 10415 | int this_cpu = this_rq->cpu; |
b7031a02 | 10416 | int balance_cpu; |
31e77c93 | 10417 | int ret = false; |
b7031a02 | 10418 | struct rq *rq; |
83cd4fe2 | 10419 | |
b7031a02 | 10420 | SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); |
83cd4fe2 | 10421 | |
f643ea22 VG |
10422 | /* |
10423 | * We assume there will be no idle load after this update and clear | |
10424 | * the has_blocked flag. If a cpu enters idle in the mean time, it will | |
10425 | * set the has_blocked flag and trig another update of idle load. | |
10426 | * Because a cpu that becomes idle, is added to idle_cpus_mask before | |
10427 | * setting the flag, we are sure to not clear the state and not | |
10428 | * check the load of an idle cpu. | |
10429 | */ | |
10430 | WRITE_ONCE(nohz.has_blocked, 0); | |
10431 | ||
10432 | /* | |
10433 | * Ensures that if we miss the CPU, we must see the has_blocked | |
10434 | * store from nohz_balance_enter_idle(). | |
10435 | */ | |
10436 | smp_mb(); | |
10437 | ||
83cd4fe2 | 10438 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { |
8a6d42d1 | 10439 | if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) |
83cd4fe2 VP |
10440 | continue; |
10441 | ||
10442 | /* | |
97fb7a0a IM |
10443 | * If this CPU gets work to do, stop the load balancing |
10444 | * work being done for other CPUs. Next load | |
83cd4fe2 VP |
10445 | * balancing owner will pick it up. |
10446 | */ | |
f643ea22 VG |
10447 | if (need_resched()) { |
10448 | has_blocked_load = true; | |
10449 | goto abort; | |
10450 | } | |
83cd4fe2 | 10451 | |
5ed4f1d9 VG |
10452 | rq = cpu_rq(balance_cpu); |
10453 | ||
63928384 | 10454 | has_blocked_load |= update_nohz_stats(rq, true); |
f643ea22 | 10455 | |
ed61bbc6 TC |
10456 | /* |
10457 | * If time for next balance is due, | |
10458 | * do the balance. | |
10459 | */ | |
10460 | if (time_after_eq(jiffies, rq->next_balance)) { | |
8a8c69c3 PZ |
10461 | struct rq_flags rf; |
10462 | ||
31e77c93 | 10463 | rq_lock_irqsave(rq, &rf); |
ed61bbc6 | 10464 | update_rq_clock(rq); |
31e77c93 | 10465 | rq_unlock_irqrestore(rq, &rf); |
8a8c69c3 | 10466 | |
b7031a02 PZ |
10467 | if (flags & NOHZ_BALANCE_KICK) |
10468 | rebalance_domains(rq, CPU_IDLE); | |
ed61bbc6 | 10469 | } |
83cd4fe2 | 10470 | |
c5afb6a8 VG |
10471 | if (time_after(next_balance, rq->next_balance)) { |
10472 | next_balance = rq->next_balance; | |
10473 | update_next_balance = 1; | |
10474 | } | |
83cd4fe2 | 10475 | } |
c5afb6a8 | 10476 | |
3ea2f097 VG |
10477 | /* |
10478 | * next_balance will be updated only when there is a need. | |
10479 | * When the CPU is attached to null domain for ex, it will not be | |
10480 | * updated. | |
10481 | */ | |
10482 | if (likely(update_next_balance)) | |
10483 | nohz.next_balance = next_balance; | |
10484 | ||
31e77c93 VG |
10485 | /* Newly idle CPU doesn't need an update */ |
10486 | if (idle != CPU_NEWLY_IDLE) { | |
10487 | update_blocked_averages(this_cpu); | |
10488 | has_blocked_load |= this_rq->has_blocked_load; | |
10489 | } | |
10490 | ||
b7031a02 PZ |
10491 | if (flags & NOHZ_BALANCE_KICK) |
10492 | rebalance_domains(this_rq, CPU_IDLE); | |
10493 | ||
f643ea22 VG |
10494 | WRITE_ONCE(nohz.next_blocked, |
10495 | now + msecs_to_jiffies(LOAD_AVG_PERIOD)); | |
10496 | ||
31e77c93 VG |
10497 | /* The full idle balance loop has been done */ |
10498 | ret = true; | |
10499 | ||
f643ea22 VG |
10500 | abort: |
10501 | /* There is still blocked load, enable periodic update */ | |
10502 | if (has_blocked_load) | |
10503 | WRITE_ONCE(nohz.has_blocked, 1); | |
a4064fb6 | 10504 | |
31e77c93 VG |
10505 | return ret; |
10506 | } | |
10507 | ||
10508 | /* | |
10509 | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the | |
10510 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | |
10511 | */ | |
10512 | static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | |
10513 | { | |
19a1f5ec | 10514 | unsigned int flags = this_rq->nohz_idle_balance; |
31e77c93 | 10515 | |
19a1f5ec | 10516 | if (!flags) |
31e77c93 VG |
10517 | return false; |
10518 | ||
19a1f5ec | 10519 | this_rq->nohz_idle_balance = 0; |
31e77c93 | 10520 | |
19a1f5ec | 10521 | if (idle != CPU_IDLE) |
31e77c93 VG |
10522 | return false; |
10523 | ||
10524 | _nohz_idle_balance(this_rq, flags, idle); | |
10525 | ||
b7031a02 | 10526 | return true; |
83cd4fe2 | 10527 | } |
31e77c93 VG |
10528 | |
10529 | static void nohz_newidle_balance(struct rq *this_rq) | |
10530 | { | |
10531 | int this_cpu = this_rq->cpu; | |
10532 | ||
10533 | /* | |
10534 | * This CPU doesn't want to be disturbed by scheduler | |
10535 | * housekeeping | |
10536 | */ | |
10537 | if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) | |
10538 | return; | |
10539 | ||
10540 | /* Will wake up very soon. No time for doing anything else*/ | |
10541 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | |
10542 | return; | |
10543 | ||
10544 | /* Don't need to update blocked load of idle CPUs*/ | |
10545 | if (!READ_ONCE(nohz.has_blocked) || | |
10546 | time_before(jiffies, READ_ONCE(nohz.next_blocked))) | |
10547 | return; | |
10548 | ||
10549 | raw_spin_unlock(&this_rq->lock); | |
10550 | /* | |
10551 | * This CPU is going to be idle and blocked load of idle CPUs | |
10552 | * need to be updated. Run the ilb locally as it is a good | |
10553 | * candidate for ilb instead of waking up another idle CPU. | |
10554 | * Kick an normal ilb if we failed to do the update. | |
10555 | */ | |
10556 | if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) | |
10557 | kick_ilb(NOHZ_STATS_KICK); | |
10558 | raw_spin_lock(&this_rq->lock); | |
10559 | } | |
10560 | ||
dd707247 PZ |
10561 | #else /* !CONFIG_NO_HZ_COMMON */ |
10562 | static inline void nohz_balancer_kick(struct rq *rq) { } | |
10563 | ||
31e77c93 | 10564 | static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) |
b7031a02 PZ |
10565 | { |
10566 | return false; | |
10567 | } | |
31e77c93 VG |
10568 | |
10569 | static inline void nohz_newidle_balance(struct rq *this_rq) { } | |
dd707247 | 10570 | #endif /* CONFIG_NO_HZ_COMMON */ |
83cd4fe2 | 10571 | |
47ea5412 | 10572 | /* |
5b78f2dc | 10573 | * newidle_balance is called by schedule() if this_cpu is about to become |
47ea5412 | 10574 | * idle. Attempts to pull tasks from other CPUs. |
7277a34c PZ |
10575 | * |
10576 | * Returns: | |
10577 | * < 0 - we released the lock and there are !fair tasks present | |
10578 | * 0 - failed, no new tasks | |
10579 | * > 0 - success, new (fair) tasks present | |
47ea5412 | 10580 | */ |
d91cecc1 | 10581 | static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) |
47ea5412 PZ |
10582 | { |
10583 | unsigned long next_balance = jiffies + HZ; | |
10584 | int this_cpu = this_rq->cpu; | |
10585 | struct sched_domain *sd; | |
10586 | int pulled_task = 0; | |
10587 | u64 curr_cost = 0; | |
10588 | ||
5ba553ef | 10589 | update_misfit_status(NULL, this_rq); |
47ea5412 PZ |
10590 | /* |
10591 | * We must set idle_stamp _before_ calling idle_balance(), such that we | |
10592 | * measure the duration of idle_balance() as idle time. | |
10593 | */ | |
10594 | this_rq->idle_stamp = rq_clock(this_rq); | |
10595 | ||
10596 | /* | |
10597 | * Do not pull tasks towards !active CPUs... | |
10598 | */ | |
10599 | if (!cpu_active(this_cpu)) | |
10600 | return 0; | |
10601 | ||
10602 | /* | |
10603 | * This is OK, because current is on_cpu, which avoids it being picked | |
10604 | * for load-balance and preemption/IRQs are still disabled avoiding | |
10605 | * further scheduler activity on it and we're being very careful to | |
10606 | * re-start the picking loop. | |
10607 | */ | |
10608 | rq_unpin_lock(this_rq, rf); | |
10609 | ||
10610 | if (this_rq->avg_idle < sysctl_sched_migration_cost || | |
e90c8fe1 | 10611 | !READ_ONCE(this_rq->rd->overload)) { |
31e77c93 | 10612 | |
47ea5412 PZ |
10613 | rcu_read_lock(); |
10614 | sd = rcu_dereference_check_sched_domain(this_rq->sd); | |
10615 | if (sd) | |
10616 | update_next_balance(sd, &next_balance); | |
10617 | rcu_read_unlock(); | |
10618 | ||
31e77c93 VG |
10619 | nohz_newidle_balance(this_rq); |
10620 | ||
47ea5412 PZ |
10621 | goto out; |
10622 | } | |
10623 | ||
10624 | raw_spin_unlock(&this_rq->lock); | |
10625 | ||
10626 | update_blocked_averages(this_cpu); | |
10627 | rcu_read_lock(); | |
10628 | for_each_domain(this_cpu, sd) { | |
10629 | int continue_balancing = 1; | |
10630 | u64 t0, domain_cost; | |
10631 | ||
47ea5412 PZ |
10632 | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { |
10633 | update_next_balance(sd, &next_balance); | |
10634 | break; | |
10635 | } | |
10636 | ||
10637 | if (sd->flags & SD_BALANCE_NEWIDLE) { | |
10638 | t0 = sched_clock_cpu(this_cpu); | |
10639 | ||
10640 | pulled_task = load_balance(this_cpu, this_rq, | |
10641 | sd, CPU_NEWLY_IDLE, | |
10642 | &continue_balancing); | |
10643 | ||
10644 | domain_cost = sched_clock_cpu(this_cpu) - t0; | |
10645 | if (domain_cost > sd->max_newidle_lb_cost) | |
10646 | sd->max_newidle_lb_cost = domain_cost; | |
10647 | ||
10648 | curr_cost += domain_cost; | |
10649 | } | |
10650 | ||
10651 | update_next_balance(sd, &next_balance); | |
10652 | ||
10653 | /* | |
10654 | * Stop searching for tasks to pull if there are | |
10655 | * now runnable tasks on this rq. | |
10656 | */ | |
10657 | if (pulled_task || this_rq->nr_running > 0) | |
10658 | break; | |
10659 | } | |
10660 | rcu_read_unlock(); | |
10661 | ||
10662 | raw_spin_lock(&this_rq->lock); | |
10663 | ||
10664 | if (curr_cost > this_rq->max_idle_balance_cost) | |
10665 | this_rq->max_idle_balance_cost = curr_cost; | |
10666 | ||
457be908 | 10667 | out: |
47ea5412 PZ |
10668 | /* |
10669 | * While browsing the domains, we released the rq lock, a task could | |
10670 | * have been enqueued in the meantime. Since we're not going idle, | |
10671 | * pretend we pulled a task. | |
10672 | */ | |
10673 | if (this_rq->cfs.h_nr_running && !pulled_task) | |
10674 | pulled_task = 1; | |
10675 | ||
47ea5412 PZ |
10676 | /* Move the next balance forward */ |
10677 | if (time_after(this_rq->next_balance, next_balance)) | |
10678 | this_rq->next_balance = next_balance; | |
10679 | ||
10680 | /* Is there a task of a high priority class? */ | |
10681 | if (this_rq->nr_running != this_rq->cfs.h_nr_running) | |
10682 | pulled_task = -1; | |
10683 | ||
10684 | if (pulled_task) | |
10685 | this_rq->idle_stamp = 0; | |
10686 | ||
10687 | rq_repin_lock(this_rq, rf); | |
10688 | ||
10689 | return pulled_task; | |
10690 | } | |
10691 | ||
83cd4fe2 VP |
10692 | /* |
10693 | * run_rebalance_domains is triggered when needed from the scheduler tick. | |
10694 | * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | |
10695 | */ | |
0766f788 | 10696 | static __latent_entropy void run_rebalance_domains(struct softirq_action *h) |
1e3c88bd | 10697 | { |
208cb16b | 10698 | struct rq *this_rq = this_rq(); |
6eb57e0d | 10699 | enum cpu_idle_type idle = this_rq->idle_balance ? |
1e3c88bd PZ |
10700 | CPU_IDLE : CPU_NOT_IDLE; |
10701 | ||
1e3c88bd | 10702 | /* |
97fb7a0a IM |
10703 | * If this CPU has a pending nohz_balance_kick, then do the |
10704 | * balancing on behalf of the other idle CPUs whose ticks are | |
d4573c3e | 10705 | * stopped. Do nohz_idle_balance *before* rebalance_domains to |
97fb7a0a | 10706 | * give the idle CPUs a chance to load balance. Else we may |
d4573c3e PM |
10707 | * load balance only within the local sched_domain hierarchy |
10708 | * and abort nohz_idle_balance altogether if we pull some load. | |
1e3c88bd | 10709 | */ |
b7031a02 PZ |
10710 | if (nohz_idle_balance(this_rq, idle)) |
10711 | return; | |
10712 | ||
10713 | /* normal load balance */ | |
10714 | update_blocked_averages(this_rq->cpu); | |
d4573c3e | 10715 | rebalance_domains(this_rq, idle); |
1e3c88bd PZ |
10716 | } |
10717 | ||
1e3c88bd PZ |
10718 | /* |
10719 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
1e3c88bd | 10720 | */ |
7caff66f | 10721 | void trigger_load_balance(struct rq *rq) |
1e3c88bd | 10722 | { |
e0b257c3 AMB |
10723 | /* |
10724 | * Don't need to rebalance while attached to NULL domain or | |
10725 | * runqueue CPU is not active | |
10726 | */ | |
10727 | if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) | |
c726099e DL |
10728 | return; |
10729 | ||
10730 | if (time_after_eq(jiffies, rq->next_balance)) | |
1e3c88bd | 10731 | raise_softirq(SCHED_SOFTIRQ); |
4550487a PZ |
10732 | |
10733 | nohz_balancer_kick(rq); | |
1e3c88bd PZ |
10734 | } |
10735 | ||
0bcdcf28 CE |
10736 | static void rq_online_fair(struct rq *rq) |
10737 | { | |
10738 | update_sysctl(); | |
0e59bdae KT |
10739 | |
10740 | update_runtime_enabled(rq); | |
0bcdcf28 CE |
10741 | } |
10742 | ||
10743 | static void rq_offline_fair(struct rq *rq) | |
10744 | { | |
10745 | update_sysctl(); | |
a4c96ae3 PB |
10746 | |
10747 | /* Ensure any throttled groups are reachable by pick_next_task */ | |
10748 | unthrottle_offline_cfs_rqs(rq); | |
0bcdcf28 CE |
10749 | } |
10750 | ||
55e12e5e | 10751 | #endif /* CONFIG_SMP */ |
e1d1484f | 10752 | |
bf0f6f24 | 10753 | /* |
d84b3131 FW |
10754 | * scheduler tick hitting a task of our scheduling class. |
10755 | * | |
10756 | * NOTE: This function can be called remotely by the tick offload that | |
10757 | * goes along full dynticks. Therefore no local assumption can be made | |
10758 | * and everything must be accessed through the @rq and @curr passed in | |
10759 | * parameters. | |
bf0f6f24 | 10760 | */ |
8f4d37ec | 10761 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
bf0f6f24 IM |
10762 | { |
10763 | struct cfs_rq *cfs_rq; | |
10764 | struct sched_entity *se = &curr->se; | |
10765 | ||
10766 | for_each_sched_entity(se) { | |
10767 | cfs_rq = cfs_rq_of(se); | |
8f4d37ec | 10768 | entity_tick(cfs_rq, se, queued); |
bf0f6f24 | 10769 | } |
18bf2805 | 10770 | |
b52da86e | 10771 | if (static_branch_unlikely(&sched_numa_balancing)) |
cbee9f88 | 10772 | task_tick_numa(rq, curr); |
3b1baa64 MR |
10773 | |
10774 | update_misfit_status(curr, rq); | |
2802bf3c | 10775 | update_overutilized_status(task_rq(curr)); |
bf0f6f24 IM |
10776 | } |
10777 | ||
10778 | /* | |
cd29fe6f PZ |
10779 | * called on fork with the child task as argument from the parent's context |
10780 | * - child not yet on the tasklist | |
10781 | * - preemption disabled | |
bf0f6f24 | 10782 | */ |
cd29fe6f | 10783 | static void task_fork_fair(struct task_struct *p) |
bf0f6f24 | 10784 | { |
4fc420c9 DN |
10785 | struct cfs_rq *cfs_rq; |
10786 | struct sched_entity *se = &p->se, *curr; | |
cd29fe6f | 10787 | struct rq *rq = this_rq(); |
8a8c69c3 | 10788 | struct rq_flags rf; |
bf0f6f24 | 10789 | |
8a8c69c3 | 10790 | rq_lock(rq, &rf); |
861d034e PZ |
10791 | update_rq_clock(rq); |
10792 | ||
4fc420c9 DN |
10793 | cfs_rq = task_cfs_rq(current); |
10794 | curr = cfs_rq->curr; | |
e210bffd PZ |
10795 | if (curr) { |
10796 | update_curr(cfs_rq); | |
b5d9d734 | 10797 | se->vruntime = curr->vruntime; |
e210bffd | 10798 | } |
aeb73b04 | 10799 | place_entity(cfs_rq, se, 1); |
4d78e7b6 | 10800 | |
cd29fe6f | 10801 | if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { |
87fefa38 | 10802 | /* |
edcb60a3 IM |
10803 | * Upon rescheduling, sched_class::put_prev_task() will place |
10804 | * 'current' within the tree based on its new key value. | |
10805 | */ | |
4d78e7b6 | 10806 | swap(curr->vruntime, se->vruntime); |
8875125e | 10807 | resched_curr(rq); |
4d78e7b6 | 10808 | } |
bf0f6f24 | 10809 | |
88ec22d3 | 10810 | se->vruntime -= cfs_rq->min_vruntime; |
8a8c69c3 | 10811 | rq_unlock(rq, &rf); |
bf0f6f24 IM |
10812 | } |
10813 | ||
cb469845 SR |
10814 | /* |
10815 | * Priority of the task has changed. Check to see if we preempt | |
10816 | * the current task. | |
10817 | */ | |
da7a735e PZ |
10818 | static void |
10819 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | |
cb469845 | 10820 | { |
da0c1e65 | 10821 | if (!task_on_rq_queued(p)) |
da7a735e PZ |
10822 | return; |
10823 | ||
7c2e8bbd FW |
10824 | if (rq->cfs.nr_running == 1) |
10825 | return; | |
10826 | ||
cb469845 SR |
10827 | /* |
10828 | * Reschedule if we are currently running on this runqueue and | |
10829 | * our priority decreased, or if we are not currently running on | |
10830 | * this runqueue and our priority is higher than the current's | |
10831 | */ | |
65bcf072 | 10832 | if (task_current(rq, p)) { |
cb469845 | 10833 | if (p->prio > oldprio) |
8875125e | 10834 | resched_curr(rq); |
cb469845 | 10835 | } else |
15afe09b | 10836 | check_preempt_curr(rq, p, 0); |
cb469845 SR |
10837 | } |
10838 | ||
daa59407 | 10839 | static inline bool vruntime_normalized(struct task_struct *p) |
da7a735e PZ |
10840 | { |
10841 | struct sched_entity *se = &p->se; | |
da7a735e PZ |
10842 | |
10843 | /* | |
daa59407 BP |
10844 | * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, |
10845 | * the dequeue_entity(.flags=0) will already have normalized the | |
10846 | * vruntime. | |
10847 | */ | |
10848 | if (p->on_rq) | |
10849 | return true; | |
10850 | ||
10851 | /* | |
10852 | * When !on_rq, vruntime of the task has usually NOT been normalized. | |
10853 | * But there are some cases where it has already been normalized: | |
da7a735e | 10854 | * |
daa59407 BP |
10855 | * - A forked child which is waiting for being woken up by |
10856 | * wake_up_new_task(). | |
10857 | * - A task which has been woken up by try_to_wake_up() and | |
10858 | * waiting for actually being woken up by sched_ttwu_pending(). | |
da7a735e | 10859 | */ |
d0cdb3ce SM |
10860 | if (!se->sum_exec_runtime || |
10861 | (p->state == TASK_WAKING && p->sched_remote_wakeup)) | |
daa59407 BP |
10862 | return true; |
10863 | ||
10864 | return false; | |
10865 | } | |
10866 | ||
09a43ace VG |
10867 | #ifdef CONFIG_FAIR_GROUP_SCHED |
10868 | /* | |
10869 | * Propagate the changes of the sched_entity across the tg tree to make it | |
10870 | * visible to the root | |
10871 | */ | |
10872 | static void propagate_entity_cfs_rq(struct sched_entity *se) | |
10873 | { | |
10874 | struct cfs_rq *cfs_rq; | |
10875 | ||
10876 | /* Start to propagate at parent */ | |
10877 | se = se->parent; | |
10878 | ||
10879 | for_each_sched_entity(se) { | |
10880 | cfs_rq = cfs_rq_of(se); | |
10881 | ||
10882 | if (cfs_rq_throttled(cfs_rq)) | |
10883 | break; | |
10884 | ||
88c0616e | 10885 | update_load_avg(cfs_rq, se, UPDATE_TG); |
09a43ace VG |
10886 | } |
10887 | } | |
10888 | #else | |
10889 | static void propagate_entity_cfs_rq(struct sched_entity *se) { } | |
10890 | #endif | |
10891 | ||
df217913 | 10892 | static void detach_entity_cfs_rq(struct sched_entity *se) |
daa59407 | 10893 | { |
daa59407 BP |
10894 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
10895 | ||
9d89c257 | 10896 | /* Catch up with the cfs_rq and remove our load when we leave */ |
88c0616e | 10897 | update_load_avg(cfs_rq, se, 0); |
a05e8c51 | 10898 | detach_entity_load_avg(cfs_rq, se); |
fe749158 | 10899 | update_tg_load_avg(cfs_rq); |
09a43ace | 10900 | propagate_entity_cfs_rq(se); |
da7a735e PZ |
10901 | } |
10902 | ||
df217913 | 10903 | static void attach_entity_cfs_rq(struct sched_entity *se) |
cb469845 | 10904 | { |
daa59407 | 10905 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
7855a35a BP |
10906 | |
10907 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
eb7a59b2 M |
10908 | /* |
10909 | * Since the real-depth could have been changed (only FAIR | |
10910 | * class maintain depth value), reset depth properly. | |
10911 | */ | |
10912 | se->depth = se->parent ? se->parent->depth + 1 : 0; | |
10913 | #endif | |
7855a35a | 10914 | |
df217913 | 10915 | /* Synchronize entity with its cfs_rq */ |
88c0616e | 10916 | update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); |
a4f9a0e5 | 10917 | attach_entity_load_avg(cfs_rq, se); |
fe749158 | 10918 | update_tg_load_avg(cfs_rq); |
09a43ace | 10919 | propagate_entity_cfs_rq(se); |
df217913 VG |
10920 | } |
10921 | ||
10922 | static void detach_task_cfs_rq(struct task_struct *p) | |
10923 | { | |
10924 | struct sched_entity *se = &p->se; | |
10925 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
10926 | ||
10927 | if (!vruntime_normalized(p)) { | |
10928 | /* | |
10929 | * Fix up our vruntime so that the current sleep doesn't | |
10930 | * cause 'unlimited' sleep bonus. | |
10931 | */ | |
10932 | place_entity(cfs_rq, se, 0); | |
10933 | se->vruntime -= cfs_rq->min_vruntime; | |
10934 | } | |
10935 | ||
10936 | detach_entity_cfs_rq(se); | |
10937 | } | |
10938 | ||
10939 | static void attach_task_cfs_rq(struct task_struct *p) | |
10940 | { | |
10941 | struct sched_entity *se = &p->se; | |
10942 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
10943 | ||
10944 | attach_entity_cfs_rq(se); | |
daa59407 BP |
10945 | |
10946 | if (!vruntime_normalized(p)) | |
10947 | se->vruntime += cfs_rq->min_vruntime; | |
10948 | } | |
6efdb105 | 10949 | |
daa59407 BP |
10950 | static void switched_from_fair(struct rq *rq, struct task_struct *p) |
10951 | { | |
10952 | detach_task_cfs_rq(p); | |
10953 | } | |
10954 | ||
10955 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | |
10956 | { | |
10957 | attach_task_cfs_rq(p); | |
7855a35a | 10958 | |
daa59407 | 10959 | if (task_on_rq_queued(p)) { |
7855a35a | 10960 | /* |
daa59407 BP |
10961 | * We were most likely switched from sched_rt, so |
10962 | * kick off the schedule if running, otherwise just see | |
10963 | * if we can still preempt the current task. | |
7855a35a | 10964 | */ |
65bcf072 | 10965 | if (task_current(rq, p)) |
daa59407 BP |
10966 | resched_curr(rq); |
10967 | else | |
10968 | check_preempt_curr(rq, p, 0); | |
7855a35a | 10969 | } |
cb469845 SR |
10970 | } |
10971 | ||
83b699ed SV |
10972 | /* Account for a task changing its policy or group. |
10973 | * | |
10974 | * This routine is mostly called to set cfs_rq->curr field when a task | |
10975 | * migrates between groups/classes. | |
10976 | */ | |
a0e813f2 | 10977 | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) |
83b699ed | 10978 | { |
03b7fad1 PZ |
10979 | struct sched_entity *se = &p->se; |
10980 | ||
10981 | #ifdef CONFIG_SMP | |
10982 | if (task_on_rq_queued(p)) { | |
10983 | /* | |
10984 | * Move the next running task to the front of the list, so our | |
10985 | * cfs_tasks list becomes MRU one. | |
10986 | */ | |
10987 | list_move(&se->group_node, &rq->cfs_tasks); | |
10988 | } | |
10989 | #endif | |
83b699ed | 10990 | |
ec12cb7f PT |
10991 | for_each_sched_entity(se) { |
10992 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
10993 | ||
10994 | set_next_entity(cfs_rq, se); | |
10995 | /* ensure bandwidth has been allocated on our new cfs_rq */ | |
10996 | account_cfs_rq_runtime(cfs_rq, 0); | |
10997 | } | |
83b699ed SV |
10998 | } |
10999 | ||
029632fb PZ |
11000 | void init_cfs_rq(struct cfs_rq *cfs_rq) |
11001 | { | |
bfb06889 | 11002 | cfs_rq->tasks_timeline = RB_ROOT_CACHED; |
029632fb PZ |
11003 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
11004 | #ifndef CONFIG_64BIT | |
11005 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | |
11006 | #endif | |
141965c7 | 11007 | #ifdef CONFIG_SMP |
2a2f5d4e | 11008 | raw_spin_lock_init(&cfs_rq->removed.lock); |
9ee474f5 | 11009 | #endif |
029632fb PZ |
11010 | } |
11011 | ||
810b3817 | 11012 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ea86cb4b VG |
11013 | static void task_set_group_fair(struct task_struct *p) |
11014 | { | |
11015 | struct sched_entity *se = &p->se; | |
11016 | ||
11017 | set_task_rq(p, task_cpu(p)); | |
11018 | se->depth = se->parent ? se->parent->depth + 1 : 0; | |
11019 | } | |
11020 | ||
bc54da21 | 11021 | static void task_move_group_fair(struct task_struct *p) |
810b3817 | 11022 | { |
daa59407 | 11023 | detach_task_cfs_rq(p); |
b2b5ce02 | 11024 | set_task_rq(p, task_cpu(p)); |
6efdb105 BP |
11025 | |
11026 | #ifdef CONFIG_SMP | |
11027 | /* Tell se's cfs_rq has been changed -- migrated */ | |
11028 | p->se.avg.last_update_time = 0; | |
11029 | #endif | |
daa59407 | 11030 | attach_task_cfs_rq(p); |
810b3817 | 11031 | } |
029632fb | 11032 | |
ea86cb4b VG |
11033 | static void task_change_group_fair(struct task_struct *p, int type) |
11034 | { | |
11035 | switch (type) { | |
11036 | case TASK_SET_GROUP: | |
11037 | task_set_group_fair(p); | |
11038 | break; | |
11039 | ||
11040 | case TASK_MOVE_GROUP: | |
11041 | task_move_group_fair(p); | |
11042 | break; | |
11043 | } | |
11044 | } | |
11045 | ||
029632fb PZ |
11046 | void free_fair_sched_group(struct task_group *tg) |
11047 | { | |
11048 | int i; | |
11049 | ||
11050 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | |
11051 | ||
11052 | for_each_possible_cpu(i) { | |
11053 | if (tg->cfs_rq) | |
11054 | kfree(tg->cfs_rq[i]); | |
6fe1f348 | 11055 | if (tg->se) |
029632fb PZ |
11056 | kfree(tg->se[i]); |
11057 | } | |
11058 | ||
11059 | kfree(tg->cfs_rq); | |
11060 | kfree(tg->se); | |
11061 | } | |
11062 | ||
11063 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
11064 | { | |
029632fb | 11065 | struct sched_entity *se; |
b7fa30c9 | 11066 | struct cfs_rq *cfs_rq; |
029632fb PZ |
11067 | int i; |
11068 | ||
6396bb22 | 11069 | tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); |
029632fb PZ |
11070 | if (!tg->cfs_rq) |
11071 | goto err; | |
6396bb22 | 11072 | tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); |
029632fb PZ |
11073 | if (!tg->se) |
11074 | goto err; | |
11075 | ||
11076 | tg->shares = NICE_0_LOAD; | |
11077 | ||
11078 | init_cfs_bandwidth(tg_cfs_bandwidth(tg)); | |
11079 | ||
11080 | for_each_possible_cpu(i) { | |
11081 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | |
11082 | GFP_KERNEL, cpu_to_node(i)); | |
11083 | if (!cfs_rq) | |
11084 | goto err; | |
11085 | ||
11086 | se = kzalloc_node(sizeof(struct sched_entity), | |
11087 | GFP_KERNEL, cpu_to_node(i)); | |
11088 | if (!se) | |
11089 | goto err_free_rq; | |
11090 | ||
11091 | init_cfs_rq(cfs_rq); | |
11092 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | |
540247fb | 11093 | init_entity_runnable_average(se); |
029632fb PZ |
11094 | } |
11095 | ||
11096 | return 1; | |
11097 | ||
11098 | err_free_rq: | |
11099 | kfree(cfs_rq); | |
11100 | err: | |
11101 | return 0; | |
11102 | } | |
11103 | ||
8663e24d PZ |
11104 | void online_fair_sched_group(struct task_group *tg) |
11105 | { | |
11106 | struct sched_entity *se; | |
a46d14ec | 11107 | struct rq_flags rf; |
8663e24d PZ |
11108 | struct rq *rq; |
11109 | int i; | |
11110 | ||
11111 | for_each_possible_cpu(i) { | |
11112 | rq = cpu_rq(i); | |
11113 | se = tg->se[i]; | |
a46d14ec | 11114 | rq_lock_irq(rq, &rf); |
4126bad6 | 11115 | update_rq_clock(rq); |
d0326691 | 11116 | attach_entity_cfs_rq(se); |
55e16d30 | 11117 | sync_throttle(tg, i); |
a46d14ec | 11118 | rq_unlock_irq(rq, &rf); |
8663e24d PZ |
11119 | } |
11120 | } | |
11121 | ||
6fe1f348 | 11122 | void unregister_fair_sched_group(struct task_group *tg) |
029632fb | 11123 | { |
029632fb | 11124 | unsigned long flags; |
6fe1f348 PZ |
11125 | struct rq *rq; |
11126 | int cpu; | |
029632fb | 11127 | |
6fe1f348 PZ |
11128 | for_each_possible_cpu(cpu) { |
11129 | if (tg->se[cpu]) | |
11130 | remove_entity_load_avg(tg->se[cpu]); | |
029632fb | 11131 | |
6fe1f348 PZ |
11132 | /* |
11133 | * Only empty task groups can be destroyed; so we can speculatively | |
11134 | * check on_list without danger of it being re-added. | |
11135 | */ | |
11136 | if (!tg->cfs_rq[cpu]->on_list) | |
11137 | continue; | |
11138 | ||
11139 | rq = cpu_rq(cpu); | |
11140 | ||
11141 | raw_spin_lock_irqsave(&rq->lock, flags); | |
11142 | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); | |
11143 | raw_spin_unlock_irqrestore(&rq->lock, flags); | |
11144 | } | |
029632fb PZ |
11145 | } |
11146 | ||
11147 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | |
11148 | struct sched_entity *se, int cpu, | |
11149 | struct sched_entity *parent) | |
11150 | { | |
11151 | struct rq *rq = cpu_rq(cpu); | |
11152 | ||
11153 | cfs_rq->tg = tg; | |
11154 | cfs_rq->rq = rq; | |
029632fb PZ |
11155 | init_cfs_rq_runtime(cfs_rq); |
11156 | ||
11157 | tg->cfs_rq[cpu] = cfs_rq; | |
11158 | tg->se[cpu] = se; | |
11159 | ||
11160 | /* se could be NULL for root_task_group */ | |
11161 | if (!se) | |
11162 | return; | |
11163 | ||
fed14d45 | 11164 | if (!parent) { |
029632fb | 11165 | se->cfs_rq = &rq->cfs; |
fed14d45 PZ |
11166 | se->depth = 0; |
11167 | } else { | |
029632fb | 11168 | se->cfs_rq = parent->my_q; |
fed14d45 PZ |
11169 | se->depth = parent->depth + 1; |
11170 | } | |
029632fb PZ |
11171 | |
11172 | se->my_q = cfs_rq; | |
0ac9b1c2 PT |
11173 | /* guarantee group entities always have weight */ |
11174 | update_load_set(&se->load, NICE_0_LOAD); | |
029632fb PZ |
11175 | se->parent = parent; |
11176 | } | |
11177 | ||
11178 | static DEFINE_MUTEX(shares_mutex); | |
11179 | ||
11180 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | |
11181 | { | |
11182 | int i; | |
029632fb PZ |
11183 | |
11184 | /* | |
11185 | * We can't change the weight of the root cgroup. | |
11186 | */ | |
11187 | if (!tg->se[0]) | |
11188 | return -EINVAL; | |
11189 | ||
11190 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | |
11191 | ||
11192 | mutex_lock(&shares_mutex); | |
11193 | if (tg->shares == shares) | |
11194 | goto done; | |
11195 | ||
11196 | tg->shares = shares; | |
11197 | for_each_possible_cpu(i) { | |
11198 | struct rq *rq = cpu_rq(i); | |
8a8c69c3 PZ |
11199 | struct sched_entity *se = tg->se[i]; |
11200 | struct rq_flags rf; | |
029632fb | 11201 | |
029632fb | 11202 | /* Propagate contribution to hierarchy */ |
8a8c69c3 | 11203 | rq_lock_irqsave(rq, &rf); |
71b1da46 | 11204 | update_rq_clock(rq); |
89ee048f | 11205 | for_each_sched_entity(se) { |
88c0616e | 11206 | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); |
1ea6c46a | 11207 | update_cfs_group(se); |
89ee048f | 11208 | } |
8a8c69c3 | 11209 | rq_unlock_irqrestore(rq, &rf); |
029632fb PZ |
11210 | } |
11211 | ||
11212 | done: | |
11213 | mutex_unlock(&shares_mutex); | |
11214 | return 0; | |
11215 | } | |
11216 | #else /* CONFIG_FAIR_GROUP_SCHED */ | |
11217 | ||
11218 | void free_fair_sched_group(struct task_group *tg) { } | |
11219 | ||
11220 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
11221 | { | |
11222 | return 1; | |
11223 | } | |
11224 | ||
8663e24d PZ |
11225 | void online_fair_sched_group(struct task_group *tg) { } |
11226 | ||
6fe1f348 | 11227 | void unregister_fair_sched_group(struct task_group *tg) { } |
029632fb PZ |
11228 | |
11229 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
11230 | ||
810b3817 | 11231 | |
6d686f45 | 11232 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
0d721cea PW |
11233 | { |
11234 | struct sched_entity *se = &task->se; | |
0d721cea PW |
11235 | unsigned int rr_interval = 0; |
11236 | ||
11237 | /* | |
11238 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | |
11239 | * idle runqueue: | |
11240 | */ | |
0d721cea | 11241 | if (rq->cfs.load.weight) |
a59f4e07 | 11242 | rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); |
0d721cea PW |
11243 | |
11244 | return rr_interval; | |
11245 | } | |
11246 | ||
bf0f6f24 IM |
11247 | /* |
11248 | * All the scheduling class methods: | |
11249 | */ | |
43c31ac0 PZ |
11250 | DEFINE_SCHED_CLASS(fair) = { |
11251 | ||
bf0f6f24 IM |
11252 | .enqueue_task = enqueue_task_fair, |
11253 | .dequeue_task = dequeue_task_fair, | |
11254 | .yield_task = yield_task_fair, | |
d95f4122 | 11255 | .yield_to_task = yield_to_task_fair, |
bf0f6f24 | 11256 | |
2e09bf55 | 11257 | .check_preempt_curr = check_preempt_wakeup, |
bf0f6f24 | 11258 | |
98c2f700 | 11259 | .pick_next_task = __pick_next_task_fair, |
bf0f6f24 | 11260 | .put_prev_task = put_prev_task_fair, |
03b7fad1 | 11261 | .set_next_task = set_next_task_fair, |
bf0f6f24 | 11262 | |
681f3e68 | 11263 | #ifdef CONFIG_SMP |
6e2df058 | 11264 | .balance = balance_fair, |
4ce72a2c | 11265 | .select_task_rq = select_task_rq_fair, |
0a74bef8 | 11266 | .migrate_task_rq = migrate_task_rq_fair, |
141965c7 | 11267 | |
0bcdcf28 CE |
11268 | .rq_online = rq_online_fair, |
11269 | .rq_offline = rq_offline_fair, | |
88ec22d3 | 11270 | |
12695578 | 11271 | .task_dead = task_dead_fair, |
c5b28038 | 11272 | .set_cpus_allowed = set_cpus_allowed_common, |
681f3e68 | 11273 | #endif |
bf0f6f24 | 11274 | |
bf0f6f24 | 11275 | .task_tick = task_tick_fair, |
cd29fe6f | 11276 | .task_fork = task_fork_fair, |
cb469845 SR |
11277 | |
11278 | .prio_changed = prio_changed_fair, | |
da7a735e | 11279 | .switched_from = switched_from_fair, |
cb469845 | 11280 | .switched_to = switched_to_fair, |
810b3817 | 11281 | |
0d721cea PW |
11282 | .get_rr_interval = get_rr_interval_fair, |
11283 | ||
6e998916 SG |
11284 | .update_curr = update_curr_fair, |
11285 | ||
810b3817 | 11286 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ea86cb4b | 11287 | .task_change_group = task_change_group_fair, |
810b3817 | 11288 | #endif |
982d9cdc PB |
11289 | |
11290 | #ifdef CONFIG_UCLAMP_TASK | |
11291 | .uclamp_enabled = 1, | |
11292 | #endif | |
bf0f6f24 IM |
11293 | }; |
11294 | ||
11295 | #ifdef CONFIG_SCHED_DEBUG | |
029632fb | 11296 | void print_cfs_stats(struct seq_file *m, int cpu) |
bf0f6f24 | 11297 | { |
039ae8bc | 11298 | struct cfs_rq *cfs_rq, *pos; |
bf0f6f24 | 11299 | |
5973e5b9 | 11300 | rcu_read_lock(); |
039ae8bc | 11301 | for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) |
5cef9eca | 11302 | print_cfs_rq(m, cpu, cfs_rq); |
5973e5b9 | 11303 | rcu_read_unlock(); |
bf0f6f24 | 11304 | } |
397f2378 SD |
11305 | |
11306 | #ifdef CONFIG_NUMA_BALANCING | |
11307 | void show_numa_stats(struct task_struct *p, struct seq_file *m) | |
11308 | { | |
11309 | int node; | |
11310 | unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; | |
cb361d8c | 11311 | struct numa_group *ng; |
397f2378 | 11312 | |
cb361d8c JH |
11313 | rcu_read_lock(); |
11314 | ng = rcu_dereference(p->numa_group); | |
397f2378 SD |
11315 | for_each_online_node(node) { |
11316 | if (p->numa_faults) { | |
11317 | tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
11318 | tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
11319 | } | |
cb361d8c JH |
11320 | if (ng) { |
11321 | gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], | |
11322 | gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
397f2378 SD |
11323 | } |
11324 | print_numa_stats(m, node, tsf, tpf, gsf, gpf); | |
11325 | } | |
cb361d8c | 11326 | rcu_read_unlock(); |
397f2378 SD |
11327 | } |
11328 | #endif /* CONFIG_NUMA_BALANCING */ | |
11329 | #endif /* CONFIG_SCHED_DEBUG */ | |
029632fb PZ |
11330 | |
11331 | __init void init_sched_fair_class(void) | |
11332 | { | |
11333 | #ifdef CONFIG_SMP | |
11334 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | |
11335 | ||
3451d024 | 11336 | #ifdef CONFIG_NO_HZ_COMMON |
554cecaf | 11337 | nohz.next_balance = jiffies; |
f643ea22 | 11338 | nohz.next_blocked = jiffies; |
029632fb | 11339 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); |
029632fb PZ |
11340 | #endif |
11341 | #endif /* SMP */ | |
11342 | ||
11343 | } | |
3c93a0c0 QY |
11344 | |
11345 | /* | |
11346 | * Helper functions to facilitate extracting info from tracepoints. | |
11347 | */ | |
11348 | ||
11349 | const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) | |
11350 | { | |
11351 | #ifdef CONFIG_SMP | |
11352 | return cfs_rq ? &cfs_rq->avg : NULL; | |
11353 | #else | |
11354 | return NULL; | |
11355 | #endif | |
11356 | } | |
11357 | EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); | |
11358 | ||
11359 | char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) | |
11360 | { | |
11361 | if (!cfs_rq) { | |
11362 | if (str) | |
11363 | strlcpy(str, "(null)", len); | |
11364 | else | |
11365 | return NULL; | |
11366 | } | |
11367 | ||
11368 | cfs_rq_tg_path(cfs_rq, str, len); | |
11369 | return str; | |
11370 | } | |
11371 | EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); | |
11372 | ||
11373 | int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) | |
11374 | { | |
11375 | return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; | |
11376 | } | |
11377 | EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); | |
11378 | ||
11379 | const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) | |
11380 | { | |
11381 | #ifdef CONFIG_SMP | |
11382 | return rq ? &rq->avg_rt : NULL; | |
11383 | #else | |
11384 | return NULL; | |
11385 | #endif | |
11386 | } | |
11387 | EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); | |
11388 | ||
11389 | const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) | |
11390 | { | |
11391 | #ifdef CONFIG_SMP | |
11392 | return rq ? &rq->avg_dl : NULL; | |
11393 | #else | |
11394 | return NULL; | |
11395 | #endif | |
11396 | } | |
11397 | EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); | |
11398 | ||
11399 | const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) | |
11400 | { | |
11401 | #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) | |
11402 | return rq ? &rq->avg_irq : NULL; | |
11403 | #else | |
11404 | return NULL; | |
11405 | #endif | |
11406 | } | |
11407 | EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); | |
11408 | ||
11409 | int sched_trace_rq_cpu(struct rq *rq) | |
11410 | { | |
11411 | return rq ? cpu_of(rq) : -1; | |
11412 | } | |
11413 | EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); | |
11414 | ||
51cf18c9 VD |
11415 | int sched_trace_rq_cpu_capacity(struct rq *rq) |
11416 | { | |
11417 | return rq ? | |
11418 | #ifdef CONFIG_SMP | |
11419 | rq->cpu_capacity | |
11420 | #else | |
11421 | SCHED_CAPACITY_SCALE | |
11422 | #endif | |
11423 | : -1; | |
11424 | } | |
11425 | EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); | |
11426 | ||
3c93a0c0 QY |
11427 | const struct cpumask *sched_trace_rd_span(struct root_domain *rd) |
11428 | { | |
11429 | #ifdef CONFIG_SMP | |
11430 | return rd ? rd->span : NULL; | |
11431 | #else | |
11432 | return NULL; | |
11433 | #endif | |
11434 | } | |
11435 | EXPORT_SYMBOL_GPL(sched_trace_rd_span); | |
9d246053 PA |
11436 | |
11437 | int sched_trace_rq_nr_running(struct rq *rq) | |
11438 | { | |
11439 | return rq ? rq->nr_running : -1; | |
11440 | } | |
11441 | EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); |