]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
stop_machine: Introduce stop_two_cpus()
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9
AS
683#ifdef CONFIG_SMP
684static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686/* Give new task start runnable values to heavy its load in infant time */
687void init_task_runnable_average(struct task_struct *p)
688{
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696}
697#else
698void init_task_runnable_average(struct task_struct *p)
699{
700}
701#endif
702
bf0f6f24
IM
703/*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707static inline void
8ebc91d9
IM
708__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
bf0f6f24 710{
bbdba7c0 711 unsigned long delta_exec_weighted;
bf0f6f24 712
41acab88
LDM
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
715
716 curr->sum_exec_runtime += delta_exec;
7a62eabc 717 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 719
e9acbff6 720 curr->vruntime += delta_exec_weighted;
1af5f730 721 update_min_vruntime(cfs_rq);
bf0f6f24
IM
722}
723
b7cc0896 724static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 725{
429d43bc 726 struct sched_entity *curr = cfs_rq->curr;
78becc27 727 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
8ebc91d9 738 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
739 if (!delta_exec)
740 return;
bf0f6f24 741
8ebc91d9
IM
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
d842de87
SV
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
f977bb49 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 749 cpuacct_charge(curtask, delta_exec);
f06febc9 750 account_group_exec_runtime(curtask, delta_exec);
d842de87 751 }
ec12cb7f
PT
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
754}
755
756static inline void
5870db5b 757update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 758{
78becc27 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
760}
761
bf0f6f24
IM
762/*
763 * Task is being enqueued - update stats:
764 */
d2417e5a 765static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 766{
bf0f6f24
IM
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
429d43bc 771 if (se != cfs_rq->curr)
5870db5b 772 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
773}
774
bf0f6f24 775static void
9ef0a961 776update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 777{
41acab88 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
783#ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
78becc27 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
787 }
788#endif
41acab88 789 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
790}
791
792static inline void
19b6a2e3 793update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 794{
bf0f6f24
IM
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
429d43bc 799 if (se != cfs_rq->curr)
9ef0a961 800 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
801}
802
803/*
804 * We are picking a new current task - update its stats:
805 */
806static inline void
79303e9e 807update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
808{
809 /*
810 * We are starting a new run period:
811 */
78becc27 812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
813}
814
bf0f6f24
IM
815/**************************************************
816 * Scheduling class queueing methods:
817 */
818
cbee9f88
PZ
819#ifdef CONFIG_NUMA_BALANCING
820/*
598f0ec0
MG
821 * Approximate time to scan a full NUMA task in ms. The task scan period is
822 * calculated based on the tasks virtual memory size and
823 * numa_balancing_scan_size.
cbee9f88 824 */
598f0ec0
MG
825unsigned int sysctl_numa_balancing_scan_period_min = 1000;
826unsigned int sysctl_numa_balancing_scan_period_max = 60000;
827unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
6e5fb223
PZ
828
829/* Portion of address space to scan in MB */
830unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 831
4b96a29b
PZ
832/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
833unsigned int sysctl_numa_balancing_scan_delay = 1000;
834
598f0ec0
MG
835static unsigned int task_nr_scan_windows(struct task_struct *p)
836{
837 unsigned long rss = 0;
838 unsigned long nr_scan_pages;
839
840 /*
841 * Calculations based on RSS as non-present and empty pages are skipped
842 * by the PTE scanner and NUMA hinting faults should be trapped based
843 * on resident pages
844 */
845 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
846 rss = get_mm_rss(p->mm);
847 if (!rss)
848 rss = nr_scan_pages;
849
850 rss = round_up(rss, nr_scan_pages);
851 return rss / nr_scan_pages;
852}
853
854/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
855#define MAX_SCAN_WINDOW 2560
856
857static unsigned int task_scan_min(struct task_struct *p)
858{
859 unsigned int scan, floor;
860 unsigned int windows = 1;
861
862 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
863 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
864 floor = 1000 / windows;
865
866 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
867 return max_t(unsigned int, floor, scan);
868}
869
870static unsigned int task_scan_max(struct task_struct *p)
871{
872 unsigned int smin = task_scan_min(p);
873 unsigned int smax;
874
875 /* Watch for min being lower than max due to floor calculations */
876 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
877 return max(smin, smax);
878}
879
3a7053b3
MG
880/*
881 * Once a preferred node is selected the scheduler balancer will prefer moving
882 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
883 * scans. This will give the process the chance to accumulate more faults on
884 * the preferred node but still allow the scheduler to move the task again if
885 * the nodes CPUs are overloaded.
886 */
6fe6b2d6 887unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 888
ac8e895b
MG
889static inline int task_faults_idx(int nid, int priv)
890{
891 return 2 * nid + priv;
892}
893
894static inline unsigned long task_faults(struct task_struct *p, int nid)
895{
896 if (!p->numa_faults)
897 return 0;
898
899 return p->numa_faults[task_faults_idx(nid, 0)] +
900 p->numa_faults[task_faults_idx(nid, 1)];
901}
902
e6628d5b 903static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
904static unsigned long source_load(int cpu, int type);
905static unsigned long target_load(int cpu, int type);
906static unsigned long power_of(int cpu);
907static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
908
909struct numa_stats {
910 unsigned long load;
911 s64 eff_load;
912 unsigned long faults;
913};
e6628d5b 914
58d081b5
MG
915struct task_numa_env {
916 struct task_struct *p;
e6628d5b 917
58d081b5
MG
918 int src_cpu, src_nid;
919 int dst_cpu, dst_nid;
e6628d5b 920
58d081b5 921 struct numa_stats src_stats, dst_stats;
e6628d5b 922
58d081b5
MG
923 unsigned long best_load;
924 int best_cpu;
925};
926
927static int task_numa_migrate(struct task_struct *p)
928{
929 int node_cpu = cpumask_first(cpumask_of_node(p->numa_preferred_nid));
930 struct task_numa_env env = {
931 .p = p,
932 .src_cpu = task_cpu(p),
933 .src_nid = cpu_to_node(task_cpu(p)),
934 .dst_cpu = node_cpu,
935 .dst_nid = p->numa_preferred_nid,
936 .best_load = ULONG_MAX,
937 .best_cpu = task_cpu(p),
938 };
939 struct sched_domain *sd;
940 int cpu;
941 struct task_group *tg = task_group(p);
942 unsigned long weight;
943 bool balanced;
944 int imbalance_pct, idx = -1;
e6628d5b 945
58d081b5
MG
946 /*
947 * Find the lowest common scheduling domain covering the nodes of both
948 * the CPU the task is currently running on and the target NUMA node.
949 */
950 rcu_read_lock();
951 for_each_domain(env.src_cpu, sd) {
952 if (cpumask_test_cpu(node_cpu, sched_domain_span(sd))) {
953 /*
954 * busy_idx is used for the load decision as it is the
955 * same index used by the regular load balancer for an
956 * active cpu.
957 */
958 idx = sd->busy_idx;
959 imbalance_pct = sd->imbalance_pct;
960 break;
e6628d5b
MG
961 }
962 }
963 rcu_read_unlock();
964
58d081b5
MG
965 if (WARN_ON_ONCE(idx == -1))
966 return 0;
967
968 /*
969 * XXX the below is mostly nicked from wake_affine(); we should
970 * see about sharing a bit if at all possible; also it might want
971 * some per entity weight love.
972 */
973 weight = p->se.load.weight;
974 env.src_stats.load = source_load(env.src_cpu, idx);
975 env.src_stats.eff_load = 100 + (imbalance_pct - 100) / 2;
976 env.src_stats.eff_load *= power_of(env.src_cpu);
977 env.src_stats.eff_load *= env.src_stats.load + effective_load(tg, env.src_cpu, -weight, -weight);
978
979 for_each_cpu(cpu, cpumask_of_node(env.dst_nid)) {
980 env.dst_cpu = cpu;
981 env.dst_stats.load = target_load(cpu, idx);
982
983 /* If the CPU is idle, use it */
984 if (!env.dst_stats.load) {
985 env.best_cpu = cpu;
986 goto migrate;
987 }
988
989 /* Otherwise check the target CPU load */
990 env.dst_stats.eff_load = 100;
991 env.dst_stats.eff_load *= power_of(cpu);
992 env.dst_stats.eff_load *= env.dst_stats.load + effective_load(tg, cpu, weight, weight);
993
994 /*
995 * Destination is considered balanced if the destination CPU is
996 * less loaded than the source CPU. Unfortunately there is a
997 * risk that a task running on a lightly loaded CPU will not
998 * migrate to its preferred node due to load imbalances.
999 */
1000 balanced = (env.dst_stats.eff_load <= env.src_stats.eff_load);
1001 if (!balanced)
1002 continue;
1003
1004 if (env.dst_stats.eff_load < env.best_load) {
1005 env.best_load = env.dst_stats.eff_load;
1006 env.best_cpu = cpu;
1007 }
1008 }
1009
1010migrate:
1011 return migrate_task_to(p, env.best_cpu);
e6628d5b
MG
1012}
1013
6b9a7460
MG
1014/* Attempt to migrate a task to a CPU on the preferred node. */
1015static void numa_migrate_preferred(struct task_struct *p)
1016{
1017 /* Success if task is already running on preferred CPU */
1018 p->numa_migrate_retry = 0;
06ea5e03
RR
1019 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1020 /*
1021 * If migration is temporarily disabled due to a task migration
1022 * then re-enable it now as the task is running on its
1023 * preferred node and memory should migrate locally
1024 */
1025 if (!p->numa_migrate_seq)
1026 p->numa_migrate_seq++;
6b9a7460 1027 return;
06ea5e03 1028 }
6b9a7460
MG
1029
1030 /* This task has no NUMA fault statistics yet */
1031 if (unlikely(p->numa_preferred_nid == -1))
1032 return;
1033
1034 /* Otherwise, try migrate to a CPU on the preferred node */
1035 if (task_numa_migrate(p) != 0)
1036 p->numa_migrate_retry = jiffies + HZ*5;
1037}
1038
cbee9f88
PZ
1039static void task_numa_placement(struct task_struct *p)
1040{
688b7585
MG
1041 int seq, nid, max_nid = -1;
1042 unsigned long max_faults = 0;
cbee9f88 1043
2832bc19 1044 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1045 if (p->numa_scan_seq == seq)
1046 return;
1047 p->numa_scan_seq = seq;
3a7053b3 1048 p->numa_migrate_seq++;
598f0ec0 1049 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1050
688b7585
MG
1051 /* Find the node with the highest number of faults */
1052 for_each_online_node(nid) {
745d6147 1053 unsigned long faults;
ac8e895b 1054 int priv, i;
745d6147 1055
ac8e895b
MG
1056 for (priv = 0; priv < 2; priv++) {
1057 i = task_faults_idx(nid, priv);
745d6147 1058
ac8e895b
MG
1059 /* Decay existing window, copy faults since last scan */
1060 p->numa_faults[i] >>= 1;
1061 p->numa_faults[i] += p->numa_faults_buffer[i];
1062 p->numa_faults_buffer[i] = 0;
1063 }
1064
1065 /* Find maximum private faults */
1066 faults = p->numa_faults[task_faults_idx(nid, 1)];
688b7585
MG
1067 if (faults > max_faults) {
1068 max_faults = faults;
1069 max_nid = nid;
1070 }
1071 }
1072
6b9a7460 1073 /* Preferred node as the node with the most faults */
3a7053b3 1074 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1075 /* Update the preferred nid and migrate task if possible */
688b7585 1076 p->numa_preferred_nid = max_nid;
6fe6b2d6 1077 p->numa_migrate_seq = 1;
6b9a7460 1078 numa_migrate_preferred(p);
3a7053b3 1079 }
cbee9f88
PZ
1080}
1081
1082/*
1083 * Got a PROT_NONE fault for a page on @node.
1084 */
b795854b 1085void task_numa_fault(int last_nidpid, int node, int pages, bool migrated)
cbee9f88
PZ
1086{
1087 struct task_struct *p = current;
ac8e895b 1088 int priv;
cbee9f88 1089
10e84b97 1090 if (!numabalancing_enabled)
1a687c2e
MG
1091 return;
1092
9ff1d9ff
MG
1093 /* for example, ksmd faulting in a user's mm */
1094 if (!p->mm)
1095 return;
1096
b795854b
MG
1097 /*
1098 * First accesses are treated as private, otherwise consider accesses
1099 * to be private if the accessing pid has not changed
1100 */
1101 if (!nidpid_pid_unset(last_nidpid))
1102 priv = ((p->pid & LAST__PID_MASK) == nidpid_to_pid(last_nidpid));
1103 else
1104 priv = 1;
ac8e895b 1105
f809ca9a
MG
1106 /* Allocate buffer to track faults on a per-node basis */
1107 if (unlikely(!p->numa_faults)) {
ac8e895b 1108 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1109
745d6147
MG
1110 /* numa_faults and numa_faults_buffer share the allocation */
1111 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1112 if (!p->numa_faults)
1113 return;
745d6147
MG
1114
1115 BUG_ON(p->numa_faults_buffer);
ac8e895b 1116 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
f809ca9a 1117 }
cbee9f88 1118
fb003b80 1119 /*
b8593bfd
MG
1120 * If pages are properly placed (did not migrate) then scan slower.
1121 * This is reset periodically in case of phase changes
fb003b80 1122 */
598f0ec0
MG
1123 if (!migrated) {
1124 /* Initialise if necessary */
1125 if (!p->numa_scan_period_max)
1126 p->numa_scan_period_max = task_scan_max(p);
1127
1128 p->numa_scan_period = min(p->numa_scan_period_max,
1129 p->numa_scan_period + 10);
1130 }
fb003b80 1131
cbee9f88 1132 task_numa_placement(p);
f809ca9a 1133
6b9a7460
MG
1134 /* Retry task to preferred node migration if it previously failed */
1135 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1136 numa_migrate_preferred(p);
1137
ac8e895b 1138 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
cbee9f88
PZ
1139}
1140
6e5fb223
PZ
1141static void reset_ptenuma_scan(struct task_struct *p)
1142{
1143 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1144 p->mm->numa_scan_offset = 0;
1145}
1146
cbee9f88
PZ
1147/*
1148 * The expensive part of numa migration is done from task_work context.
1149 * Triggered from task_tick_numa().
1150 */
1151void task_numa_work(struct callback_head *work)
1152{
1153 unsigned long migrate, next_scan, now = jiffies;
1154 struct task_struct *p = current;
1155 struct mm_struct *mm = p->mm;
6e5fb223 1156 struct vm_area_struct *vma;
9f40604c 1157 unsigned long start, end;
598f0ec0 1158 unsigned long nr_pte_updates = 0;
9f40604c 1159 long pages;
cbee9f88
PZ
1160
1161 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1162
1163 work->next = work; /* protect against double add */
1164 /*
1165 * Who cares about NUMA placement when they're dying.
1166 *
1167 * NOTE: make sure not to dereference p->mm before this check,
1168 * exit_task_work() happens _after_ exit_mm() so we could be called
1169 * without p->mm even though we still had it when we enqueued this
1170 * work.
1171 */
1172 if (p->flags & PF_EXITING)
1173 return;
1174
7e8d16b6
MG
1175 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1176 mm->numa_next_scan = now +
1177 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1178 mm->numa_next_reset = now +
1179 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1180 }
1181
b8593bfd
MG
1182 /*
1183 * Reset the scan period if enough time has gone by. Objective is that
1184 * scanning will be reduced if pages are properly placed. As tasks
1185 * can enter different phases this needs to be re-examined. Lacking
1186 * proper tracking of reference behaviour, this blunt hammer is used.
1187 */
1188 migrate = mm->numa_next_reset;
1189 if (time_after(now, migrate)) {
598f0ec0 1190 p->numa_scan_period = task_scan_min(p);
b8593bfd
MG
1191 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1192 xchg(&mm->numa_next_reset, next_scan);
1193 }
1194
cbee9f88
PZ
1195 /*
1196 * Enforce maximal scan/migration frequency..
1197 */
1198 migrate = mm->numa_next_scan;
1199 if (time_before(now, migrate))
1200 return;
1201
598f0ec0
MG
1202 if (p->numa_scan_period == 0) {
1203 p->numa_scan_period_max = task_scan_max(p);
1204 p->numa_scan_period = task_scan_min(p);
1205 }
cbee9f88 1206
fb003b80 1207 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1208 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1209 return;
1210
19a78d11
PZ
1211 /*
1212 * Delay this task enough that another task of this mm will likely win
1213 * the next time around.
1214 */
1215 p->node_stamp += 2 * TICK_NSEC;
1216
9f40604c
MG
1217 start = mm->numa_scan_offset;
1218 pages = sysctl_numa_balancing_scan_size;
1219 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1220 if (!pages)
1221 return;
cbee9f88 1222
6e5fb223 1223 down_read(&mm->mmap_sem);
9f40604c 1224 vma = find_vma(mm, start);
6e5fb223
PZ
1225 if (!vma) {
1226 reset_ptenuma_scan(p);
9f40604c 1227 start = 0;
6e5fb223
PZ
1228 vma = mm->mmap;
1229 }
9f40604c 1230 for (; vma; vma = vma->vm_next) {
fc314724 1231 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1232 continue;
1233
4591ce4f
MG
1234 /*
1235 * Shared library pages mapped by multiple processes are not
1236 * migrated as it is expected they are cache replicated. Avoid
1237 * hinting faults in read-only file-backed mappings or the vdso
1238 * as migrating the pages will be of marginal benefit.
1239 */
1240 if (!vma->vm_mm ||
1241 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1242 continue;
1243
9f40604c
MG
1244 do {
1245 start = max(start, vma->vm_start);
1246 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1247 end = min(end, vma->vm_end);
598f0ec0
MG
1248 nr_pte_updates += change_prot_numa(vma, start, end);
1249
1250 /*
1251 * Scan sysctl_numa_balancing_scan_size but ensure that
1252 * at least one PTE is updated so that unused virtual
1253 * address space is quickly skipped.
1254 */
1255 if (nr_pte_updates)
1256 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1257
9f40604c
MG
1258 start = end;
1259 if (pages <= 0)
1260 goto out;
1261 } while (end != vma->vm_end);
cbee9f88 1262 }
6e5fb223 1263
9f40604c 1264out:
f307cd1a
MG
1265 /*
1266 * If the whole process was scanned without updates then no NUMA
1267 * hinting faults are being recorded and scan rate should be lower.
1268 */
1269 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1270 p->numa_scan_period = min(p->numa_scan_period_max,
1271 p->numa_scan_period << 1);
1272
1273 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1274 mm->numa_next_scan = next_scan;
1275 }
1276
6e5fb223 1277 /*
c69307d5
PZ
1278 * It is possible to reach the end of the VMA list but the last few
1279 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1280 * would find the !migratable VMA on the next scan but not reset the
1281 * scanner to the start so check it now.
6e5fb223
PZ
1282 */
1283 if (vma)
9f40604c 1284 mm->numa_scan_offset = start;
6e5fb223
PZ
1285 else
1286 reset_ptenuma_scan(p);
1287 up_read(&mm->mmap_sem);
cbee9f88
PZ
1288}
1289
1290/*
1291 * Drive the periodic memory faults..
1292 */
1293void task_tick_numa(struct rq *rq, struct task_struct *curr)
1294{
1295 struct callback_head *work = &curr->numa_work;
1296 u64 period, now;
1297
1298 /*
1299 * We don't care about NUMA placement if we don't have memory.
1300 */
1301 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1302 return;
1303
1304 /*
1305 * Using runtime rather than walltime has the dual advantage that
1306 * we (mostly) drive the selection from busy threads and that the
1307 * task needs to have done some actual work before we bother with
1308 * NUMA placement.
1309 */
1310 now = curr->se.sum_exec_runtime;
1311 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1312
1313 if (now - curr->node_stamp > period) {
4b96a29b 1314 if (!curr->node_stamp)
598f0ec0 1315 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1316 curr->node_stamp += period;
cbee9f88
PZ
1317
1318 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1319 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1320 task_work_add(curr, work, true);
1321 }
1322 }
1323}
1324#else
1325static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1326{
1327}
1328#endif /* CONFIG_NUMA_BALANCING */
1329
30cfdcfc
DA
1330static void
1331account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1332{
1333 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1334 if (!parent_entity(se))
029632fb 1335 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1336#ifdef CONFIG_SMP
1337 if (entity_is_task(se))
eb95308e 1338 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1339#endif
30cfdcfc 1340 cfs_rq->nr_running++;
30cfdcfc
DA
1341}
1342
1343static void
1344account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1345{
1346 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1347 if (!parent_entity(se))
029632fb 1348 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1349 if (entity_is_task(se))
b87f1724 1350 list_del_init(&se->group_node);
30cfdcfc 1351 cfs_rq->nr_running--;
30cfdcfc
DA
1352}
1353
3ff6dcac
YZ
1354#ifdef CONFIG_FAIR_GROUP_SCHED
1355# ifdef CONFIG_SMP
cf5f0acf
PZ
1356static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1357{
1358 long tg_weight;
1359
1360 /*
1361 * Use this CPU's actual weight instead of the last load_contribution
1362 * to gain a more accurate current total weight. See
1363 * update_cfs_rq_load_contribution().
1364 */
bf5b986e 1365 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1366 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1367 tg_weight += cfs_rq->load.weight;
1368
1369 return tg_weight;
1370}
1371
6d5ab293 1372static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1373{
cf5f0acf 1374 long tg_weight, load, shares;
3ff6dcac 1375
cf5f0acf 1376 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1377 load = cfs_rq->load.weight;
3ff6dcac 1378
3ff6dcac 1379 shares = (tg->shares * load);
cf5f0acf
PZ
1380 if (tg_weight)
1381 shares /= tg_weight;
3ff6dcac
YZ
1382
1383 if (shares < MIN_SHARES)
1384 shares = MIN_SHARES;
1385 if (shares > tg->shares)
1386 shares = tg->shares;
1387
1388 return shares;
1389}
3ff6dcac 1390# else /* CONFIG_SMP */
6d5ab293 1391static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1392{
1393 return tg->shares;
1394}
3ff6dcac 1395# endif /* CONFIG_SMP */
2069dd75
PZ
1396static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1397 unsigned long weight)
1398{
19e5eebb
PT
1399 if (se->on_rq) {
1400 /* commit outstanding execution time */
1401 if (cfs_rq->curr == se)
1402 update_curr(cfs_rq);
2069dd75 1403 account_entity_dequeue(cfs_rq, se);
19e5eebb 1404 }
2069dd75
PZ
1405
1406 update_load_set(&se->load, weight);
1407
1408 if (se->on_rq)
1409 account_entity_enqueue(cfs_rq, se);
1410}
1411
82958366
PT
1412static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1413
6d5ab293 1414static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1415{
1416 struct task_group *tg;
1417 struct sched_entity *se;
3ff6dcac 1418 long shares;
2069dd75 1419
2069dd75
PZ
1420 tg = cfs_rq->tg;
1421 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1422 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1423 return;
3ff6dcac
YZ
1424#ifndef CONFIG_SMP
1425 if (likely(se->load.weight == tg->shares))
1426 return;
1427#endif
6d5ab293 1428 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1429
1430 reweight_entity(cfs_rq_of(se), se, shares);
1431}
1432#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1433static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1434{
1435}
1436#endif /* CONFIG_FAIR_GROUP_SCHED */
1437
141965c7 1438#ifdef CONFIG_SMP
5b51f2f8
PT
1439/*
1440 * We choose a half-life close to 1 scheduling period.
1441 * Note: The tables below are dependent on this value.
1442 */
1443#define LOAD_AVG_PERIOD 32
1444#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1445#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1446
1447/* Precomputed fixed inverse multiplies for multiplication by y^n */
1448static const u32 runnable_avg_yN_inv[] = {
1449 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1450 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1451 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1452 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1453 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1454 0x85aac367, 0x82cd8698,
1455};
1456
1457/*
1458 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1459 * over-estimates when re-combining.
1460 */
1461static const u32 runnable_avg_yN_sum[] = {
1462 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1463 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1464 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1465};
1466
9d85f21c
PT
1467/*
1468 * Approximate:
1469 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1470 */
1471static __always_inline u64 decay_load(u64 val, u64 n)
1472{
5b51f2f8
PT
1473 unsigned int local_n;
1474
1475 if (!n)
1476 return val;
1477 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1478 return 0;
1479
1480 /* after bounds checking we can collapse to 32-bit */
1481 local_n = n;
1482
1483 /*
1484 * As y^PERIOD = 1/2, we can combine
1485 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1486 * With a look-up table which covers k^n (n<PERIOD)
1487 *
1488 * To achieve constant time decay_load.
1489 */
1490 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1491 val >>= local_n / LOAD_AVG_PERIOD;
1492 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1493 }
1494
5b51f2f8
PT
1495 val *= runnable_avg_yN_inv[local_n];
1496 /* We don't use SRR here since we always want to round down. */
1497 return val >> 32;
1498}
1499
1500/*
1501 * For updates fully spanning n periods, the contribution to runnable
1502 * average will be: \Sum 1024*y^n
1503 *
1504 * We can compute this reasonably efficiently by combining:
1505 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1506 */
1507static u32 __compute_runnable_contrib(u64 n)
1508{
1509 u32 contrib = 0;
1510
1511 if (likely(n <= LOAD_AVG_PERIOD))
1512 return runnable_avg_yN_sum[n];
1513 else if (unlikely(n >= LOAD_AVG_MAX_N))
1514 return LOAD_AVG_MAX;
1515
1516 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1517 do {
1518 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1519 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1520
1521 n -= LOAD_AVG_PERIOD;
1522 } while (n > LOAD_AVG_PERIOD);
1523
1524 contrib = decay_load(contrib, n);
1525 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1526}
1527
1528/*
1529 * We can represent the historical contribution to runnable average as the
1530 * coefficients of a geometric series. To do this we sub-divide our runnable
1531 * history into segments of approximately 1ms (1024us); label the segment that
1532 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1533 *
1534 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1535 * p0 p1 p2
1536 * (now) (~1ms ago) (~2ms ago)
1537 *
1538 * Let u_i denote the fraction of p_i that the entity was runnable.
1539 *
1540 * We then designate the fractions u_i as our co-efficients, yielding the
1541 * following representation of historical load:
1542 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1543 *
1544 * We choose y based on the with of a reasonably scheduling period, fixing:
1545 * y^32 = 0.5
1546 *
1547 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1548 * approximately half as much as the contribution to load within the last ms
1549 * (u_0).
1550 *
1551 * When a period "rolls over" and we have new u_0`, multiplying the previous
1552 * sum again by y is sufficient to update:
1553 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1554 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1555 */
1556static __always_inline int __update_entity_runnable_avg(u64 now,
1557 struct sched_avg *sa,
1558 int runnable)
1559{
5b51f2f8
PT
1560 u64 delta, periods;
1561 u32 runnable_contrib;
9d85f21c
PT
1562 int delta_w, decayed = 0;
1563
1564 delta = now - sa->last_runnable_update;
1565 /*
1566 * This should only happen when time goes backwards, which it
1567 * unfortunately does during sched clock init when we swap over to TSC.
1568 */
1569 if ((s64)delta < 0) {
1570 sa->last_runnable_update = now;
1571 return 0;
1572 }
1573
1574 /*
1575 * Use 1024ns as the unit of measurement since it's a reasonable
1576 * approximation of 1us and fast to compute.
1577 */
1578 delta >>= 10;
1579 if (!delta)
1580 return 0;
1581 sa->last_runnable_update = now;
1582
1583 /* delta_w is the amount already accumulated against our next period */
1584 delta_w = sa->runnable_avg_period % 1024;
1585 if (delta + delta_w >= 1024) {
1586 /* period roll-over */
1587 decayed = 1;
1588
1589 /*
1590 * Now that we know we're crossing a period boundary, figure
1591 * out how much from delta we need to complete the current
1592 * period and accrue it.
1593 */
1594 delta_w = 1024 - delta_w;
5b51f2f8
PT
1595 if (runnable)
1596 sa->runnable_avg_sum += delta_w;
1597 sa->runnable_avg_period += delta_w;
1598
1599 delta -= delta_w;
1600
1601 /* Figure out how many additional periods this update spans */
1602 periods = delta / 1024;
1603 delta %= 1024;
1604
1605 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1606 periods + 1);
1607 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1608 periods + 1);
1609
1610 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1611 runnable_contrib = __compute_runnable_contrib(periods);
1612 if (runnable)
1613 sa->runnable_avg_sum += runnable_contrib;
1614 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1615 }
1616
1617 /* Remainder of delta accrued against u_0` */
1618 if (runnable)
1619 sa->runnable_avg_sum += delta;
1620 sa->runnable_avg_period += delta;
1621
1622 return decayed;
1623}
1624
9ee474f5 1625/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1626static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1627{
1628 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1629 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1630
1631 decays -= se->avg.decay_count;
1632 if (!decays)
aff3e498 1633 return 0;
9ee474f5
PT
1634
1635 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1636 se->avg.decay_count = 0;
aff3e498
PT
1637
1638 return decays;
9ee474f5
PT
1639}
1640
c566e8e9
PT
1641#ifdef CONFIG_FAIR_GROUP_SCHED
1642static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1643 int force_update)
1644{
1645 struct task_group *tg = cfs_rq->tg;
bf5b986e 1646 long tg_contrib;
c566e8e9
PT
1647
1648 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1649 tg_contrib -= cfs_rq->tg_load_contrib;
1650
bf5b986e
AS
1651 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1652 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
1653 cfs_rq->tg_load_contrib += tg_contrib;
1654 }
1655}
8165e145 1656
bb17f655
PT
1657/*
1658 * Aggregate cfs_rq runnable averages into an equivalent task_group
1659 * representation for computing load contributions.
1660 */
1661static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1662 struct cfs_rq *cfs_rq)
1663{
1664 struct task_group *tg = cfs_rq->tg;
1665 long contrib;
1666
1667 /* The fraction of a cpu used by this cfs_rq */
1668 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1669 sa->runnable_avg_period + 1);
1670 contrib -= cfs_rq->tg_runnable_contrib;
1671
1672 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1673 atomic_add(contrib, &tg->runnable_avg);
1674 cfs_rq->tg_runnable_contrib += contrib;
1675 }
1676}
1677
8165e145
PT
1678static inline void __update_group_entity_contrib(struct sched_entity *se)
1679{
1680 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1681 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1682 int runnable_avg;
1683
8165e145
PT
1684 u64 contrib;
1685
1686 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
1687 se->avg.load_avg_contrib = div_u64(contrib,
1688 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
1689
1690 /*
1691 * For group entities we need to compute a correction term in the case
1692 * that they are consuming <1 cpu so that we would contribute the same
1693 * load as a task of equal weight.
1694 *
1695 * Explicitly co-ordinating this measurement would be expensive, but
1696 * fortunately the sum of each cpus contribution forms a usable
1697 * lower-bound on the true value.
1698 *
1699 * Consider the aggregate of 2 contributions. Either they are disjoint
1700 * (and the sum represents true value) or they are disjoint and we are
1701 * understating by the aggregate of their overlap.
1702 *
1703 * Extending this to N cpus, for a given overlap, the maximum amount we
1704 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1705 * cpus that overlap for this interval and w_i is the interval width.
1706 *
1707 * On a small machine; the first term is well-bounded which bounds the
1708 * total error since w_i is a subset of the period. Whereas on a
1709 * larger machine, while this first term can be larger, if w_i is the
1710 * of consequential size guaranteed to see n_i*w_i quickly converge to
1711 * our upper bound of 1-cpu.
1712 */
1713 runnable_avg = atomic_read(&tg->runnable_avg);
1714 if (runnable_avg < NICE_0_LOAD) {
1715 se->avg.load_avg_contrib *= runnable_avg;
1716 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1717 }
8165e145 1718}
c566e8e9
PT
1719#else
1720static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1721 int force_update) {}
bb17f655
PT
1722static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1723 struct cfs_rq *cfs_rq) {}
8165e145 1724static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1725#endif
1726
8165e145
PT
1727static inline void __update_task_entity_contrib(struct sched_entity *se)
1728{
1729 u32 contrib;
1730
1731 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1732 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1733 contrib /= (se->avg.runnable_avg_period + 1);
1734 se->avg.load_avg_contrib = scale_load(contrib);
1735}
1736
2dac754e
PT
1737/* Compute the current contribution to load_avg by se, return any delta */
1738static long __update_entity_load_avg_contrib(struct sched_entity *se)
1739{
1740 long old_contrib = se->avg.load_avg_contrib;
1741
8165e145
PT
1742 if (entity_is_task(se)) {
1743 __update_task_entity_contrib(se);
1744 } else {
bb17f655 1745 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1746 __update_group_entity_contrib(se);
1747 }
2dac754e
PT
1748
1749 return se->avg.load_avg_contrib - old_contrib;
1750}
1751
9ee474f5
PT
1752static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1753 long load_contrib)
1754{
1755 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1756 cfs_rq->blocked_load_avg -= load_contrib;
1757 else
1758 cfs_rq->blocked_load_avg = 0;
1759}
1760
f1b17280
PT
1761static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1762
9d85f21c 1763/* Update a sched_entity's runnable average */
9ee474f5
PT
1764static inline void update_entity_load_avg(struct sched_entity *se,
1765 int update_cfs_rq)
9d85f21c 1766{
2dac754e
PT
1767 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1768 long contrib_delta;
f1b17280 1769 u64 now;
2dac754e 1770
f1b17280
PT
1771 /*
1772 * For a group entity we need to use their owned cfs_rq_clock_task() in
1773 * case they are the parent of a throttled hierarchy.
1774 */
1775 if (entity_is_task(se))
1776 now = cfs_rq_clock_task(cfs_rq);
1777 else
1778 now = cfs_rq_clock_task(group_cfs_rq(se));
1779
1780 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1781 return;
1782
1783 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1784
1785 if (!update_cfs_rq)
1786 return;
1787
2dac754e
PT
1788 if (se->on_rq)
1789 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1790 else
1791 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1792}
1793
1794/*
1795 * Decay the load contributed by all blocked children and account this so that
1796 * their contribution may appropriately discounted when they wake up.
1797 */
aff3e498 1798static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1799{
f1b17280 1800 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1801 u64 decays;
1802
1803 decays = now - cfs_rq->last_decay;
aff3e498 1804 if (!decays && !force_update)
9ee474f5
PT
1805 return;
1806
2509940f
AS
1807 if (atomic_long_read(&cfs_rq->removed_load)) {
1808 unsigned long removed_load;
1809 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
1810 subtract_blocked_load_contrib(cfs_rq, removed_load);
1811 }
9ee474f5 1812
aff3e498
PT
1813 if (decays) {
1814 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1815 decays);
1816 atomic64_add(decays, &cfs_rq->decay_counter);
1817 cfs_rq->last_decay = now;
1818 }
c566e8e9
PT
1819
1820 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1821}
18bf2805
BS
1822
1823static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1824{
78becc27 1825 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1826 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1827}
2dac754e
PT
1828
1829/* Add the load generated by se into cfs_rq's child load-average */
1830static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1831 struct sched_entity *se,
1832 int wakeup)
2dac754e 1833{
aff3e498
PT
1834 /*
1835 * We track migrations using entity decay_count <= 0, on a wake-up
1836 * migration we use a negative decay count to track the remote decays
1837 * accumulated while sleeping.
a75cdaa9
AS
1838 *
1839 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1840 * are seen by enqueue_entity_load_avg() as a migration with an already
1841 * constructed load_avg_contrib.
aff3e498
PT
1842 */
1843 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1844 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1845 if (se->avg.decay_count) {
1846 /*
1847 * In a wake-up migration we have to approximate the
1848 * time sleeping. This is because we can't synchronize
1849 * clock_task between the two cpus, and it is not
1850 * guaranteed to be read-safe. Instead, we can
1851 * approximate this using our carried decays, which are
1852 * explicitly atomically readable.
1853 */
1854 se->avg.last_runnable_update -= (-se->avg.decay_count)
1855 << 20;
1856 update_entity_load_avg(se, 0);
1857 /* Indicate that we're now synchronized and on-rq */
1858 se->avg.decay_count = 0;
1859 }
9ee474f5
PT
1860 wakeup = 0;
1861 } else {
282cf499
AS
1862 /*
1863 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1864 * would have made count negative); we must be careful to avoid
1865 * double-accounting blocked time after synchronizing decays.
1866 */
1867 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1868 << 20;
9ee474f5
PT
1869 }
1870
aff3e498
PT
1871 /* migrated tasks did not contribute to our blocked load */
1872 if (wakeup) {
9ee474f5 1873 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1874 update_entity_load_avg(se, 0);
1875 }
9ee474f5 1876
2dac754e 1877 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1878 /* we force update consideration on load-balancer moves */
1879 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1880}
1881
9ee474f5
PT
1882/*
1883 * Remove se's load from this cfs_rq child load-average, if the entity is
1884 * transitioning to a blocked state we track its projected decay using
1885 * blocked_load_avg.
1886 */
2dac754e 1887static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1888 struct sched_entity *se,
1889 int sleep)
2dac754e 1890{
9ee474f5 1891 update_entity_load_avg(se, 1);
aff3e498
PT
1892 /* we force update consideration on load-balancer moves */
1893 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1894
2dac754e 1895 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1896 if (sleep) {
1897 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1898 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1899 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1900}
642dbc39
VG
1901
1902/*
1903 * Update the rq's load with the elapsed running time before entering
1904 * idle. if the last scheduled task is not a CFS task, idle_enter will
1905 * be the only way to update the runnable statistic.
1906 */
1907void idle_enter_fair(struct rq *this_rq)
1908{
1909 update_rq_runnable_avg(this_rq, 1);
1910}
1911
1912/*
1913 * Update the rq's load with the elapsed idle time before a task is
1914 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1915 * be the only way to update the runnable statistic.
1916 */
1917void idle_exit_fair(struct rq *this_rq)
1918{
1919 update_rq_runnable_avg(this_rq, 0);
1920}
1921
9d85f21c 1922#else
9ee474f5
PT
1923static inline void update_entity_load_avg(struct sched_entity *se,
1924 int update_cfs_rq) {}
18bf2805 1925static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1926static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1927 struct sched_entity *se,
1928 int wakeup) {}
2dac754e 1929static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1930 struct sched_entity *se,
1931 int sleep) {}
aff3e498
PT
1932static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1933 int force_update) {}
9d85f21c
PT
1934#endif
1935
2396af69 1936static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1937{
bf0f6f24 1938#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1939 struct task_struct *tsk = NULL;
1940
1941 if (entity_is_task(se))
1942 tsk = task_of(se);
1943
41acab88 1944 if (se->statistics.sleep_start) {
78becc27 1945 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1946
1947 if ((s64)delta < 0)
1948 delta = 0;
1949
41acab88
LDM
1950 if (unlikely(delta > se->statistics.sleep_max))
1951 se->statistics.sleep_max = delta;
bf0f6f24 1952
8c79a045 1953 se->statistics.sleep_start = 0;
41acab88 1954 se->statistics.sum_sleep_runtime += delta;
9745512c 1955
768d0c27 1956 if (tsk) {
e414314c 1957 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1958 trace_sched_stat_sleep(tsk, delta);
1959 }
bf0f6f24 1960 }
41acab88 1961 if (se->statistics.block_start) {
78becc27 1962 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1963
1964 if ((s64)delta < 0)
1965 delta = 0;
1966
41acab88
LDM
1967 if (unlikely(delta > se->statistics.block_max))
1968 se->statistics.block_max = delta;
bf0f6f24 1969
8c79a045 1970 se->statistics.block_start = 0;
41acab88 1971 se->statistics.sum_sleep_runtime += delta;
30084fbd 1972
e414314c 1973 if (tsk) {
8f0dfc34 1974 if (tsk->in_iowait) {
41acab88
LDM
1975 se->statistics.iowait_sum += delta;
1976 se->statistics.iowait_count++;
768d0c27 1977 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1978 }
1979
b781a602
AV
1980 trace_sched_stat_blocked(tsk, delta);
1981
e414314c
PZ
1982 /*
1983 * Blocking time is in units of nanosecs, so shift by
1984 * 20 to get a milliseconds-range estimation of the
1985 * amount of time that the task spent sleeping:
1986 */
1987 if (unlikely(prof_on == SLEEP_PROFILING)) {
1988 profile_hits(SLEEP_PROFILING,
1989 (void *)get_wchan(tsk),
1990 delta >> 20);
1991 }
1992 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1993 }
bf0f6f24
IM
1994 }
1995#endif
1996}
1997
ddc97297
PZ
1998static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1999{
2000#ifdef CONFIG_SCHED_DEBUG
2001 s64 d = se->vruntime - cfs_rq->min_vruntime;
2002
2003 if (d < 0)
2004 d = -d;
2005
2006 if (d > 3*sysctl_sched_latency)
2007 schedstat_inc(cfs_rq, nr_spread_over);
2008#endif
2009}
2010
aeb73b04
PZ
2011static void
2012place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2013{
1af5f730 2014 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2015
2cb8600e
PZ
2016 /*
2017 * The 'current' period is already promised to the current tasks,
2018 * however the extra weight of the new task will slow them down a
2019 * little, place the new task so that it fits in the slot that
2020 * stays open at the end.
2021 */
94dfb5e7 2022 if (initial && sched_feat(START_DEBIT))
f9c0b095 2023 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2024
a2e7a7eb 2025 /* sleeps up to a single latency don't count. */
5ca9880c 2026 if (!initial) {
a2e7a7eb 2027 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2028
a2e7a7eb
MG
2029 /*
2030 * Halve their sleep time's effect, to allow
2031 * for a gentler effect of sleepers:
2032 */
2033 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2034 thresh >>= 1;
51e0304c 2035
a2e7a7eb 2036 vruntime -= thresh;
aeb73b04
PZ
2037 }
2038
b5d9d734 2039 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2040 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2041}
2042
d3d9dc33
PT
2043static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2044
bf0f6f24 2045static void
88ec22d3 2046enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2047{
88ec22d3
PZ
2048 /*
2049 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2050 * through calling update_curr().
88ec22d3 2051 */
371fd7e7 2052 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2053 se->vruntime += cfs_rq->min_vruntime;
2054
bf0f6f24 2055 /*
a2a2d680 2056 * Update run-time statistics of the 'current'.
bf0f6f24 2057 */
b7cc0896 2058 update_curr(cfs_rq);
f269ae04 2059 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2060 account_entity_enqueue(cfs_rq, se);
2061 update_cfs_shares(cfs_rq);
bf0f6f24 2062
88ec22d3 2063 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2064 place_entity(cfs_rq, se, 0);
2396af69 2065 enqueue_sleeper(cfs_rq, se);
e9acbff6 2066 }
bf0f6f24 2067
d2417e5a 2068 update_stats_enqueue(cfs_rq, se);
ddc97297 2069 check_spread(cfs_rq, se);
83b699ed
SV
2070 if (se != cfs_rq->curr)
2071 __enqueue_entity(cfs_rq, se);
2069dd75 2072 se->on_rq = 1;
3d4b47b4 2073
d3d9dc33 2074 if (cfs_rq->nr_running == 1) {
3d4b47b4 2075 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2076 check_enqueue_throttle(cfs_rq);
2077 }
bf0f6f24
IM
2078}
2079
2c13c919 2080static void __clear_buddies_last(struct sched_entity *se)
2002c695 2081{
2c13c919
RR
2082 for_each_sched_entity(se) {
2083 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2084 if (cfs_rq->last == se)
2085 cfs_rq->last = NULL;
2086 else
2087 break;
2088 }
2089}
2002c695 2090
2c13c919
RR
2091static void __clear_buddies_next(struct sched_entity *se)
2092{
2093 for_each_sched_entity(se) {
2094 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2095 if (cfs_rq->next == se)
2096 cfs_rq->next = NULL;
2097 else
2098 break;
2099 }
2002c695
PZ
2100}
2101
ac53db59
RR
2102static void __clear_buddies_skip(struct sched_entity *se)
2103{
2104 for_each_sched_entity(se) {
2105 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2106 if (cfs_rq->skip == se)
2107 cfs_rq->skip = NULL;
2108 else
2109 break;
2110 }
2111}
2112
a571bbea
PZ
2113static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2114{
2c13c919
RR
2115 if (cfs_rq->last == se)
2116 __clear_buddies_last(se);
2117
2118 if (cfs_rq->next == se)
2119 __clear_buddies_next(se);
ac53db59
RR
2120
2121 if (cfs_rq->skip == se)
2122 __clear_buddies_skip(se);
a571bbea
PZ
2123}
2124
6c16a6dc 2125static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2126
bf0f6f24 2127static void
371fd7e7 2128dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2129{
a2a2d680
DA
2130 /*
2131 * Update run-time statistics of the 'current'.
2132 */
2133 update_curr(cfs_rq);
17bc14b7 2134 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2135
19b6a2e3 2136 update_stats_dequeue(cfs_rq, se);
371fd7e7 2137 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2138#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2139 if (entity_is_task(se)) {
2140 struct task_struct *tsk = task_of(se);
2141
2142 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2143 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2144 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2145 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2146 }
db36cc7d 2147#endif
67e9fb2a
PZ
2148 }
2149
2002c695 2150 clear_buddies(cfs_rq, se);
4793241b 2151
83b699ed 2152 if (se != cfs_rq->curr)
30cfdcfc 2153 __dequeue_entity(cfs_rq, se);
17bc14b7 2154 se->on_rq = 0;
30cfdcfc 2155 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2156
2157 /*
2158 * Normalize the entity after updating the min_vruntime because the
2159 * update can refer to the ->curr item and we need to reflect this
2160 * movement in our normalized position.
2161 */
371fd7e7 2162 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2163 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2164
d8b4986d
PT
2165 /* return excess runtime on last dequeue */
2166 return_cfs_rq_runtime(cfs_rq);
2167
1e876231 2168 update_min_vruntime(cfs_rq);
17bc14b7 2169 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2170}
2171
2172/*
2173 * Preempt the current task with a newly woken task if needed:
2174 */
7c92e54f 2175static void
2e09bf55 2176check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2177{
11697830 2178 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2179 struct sched_entity *se;
2180 s64 delta;
11697830 2181
6d0f0ebd 2182 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2183 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2184 if (delta_exec > ideal_runtime) {
bf0f6f24 2185 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2186 /*
2187 * The current task ran long enough, ensure it doesn't get
2188 * re-elected due to buddy favours.
2189 */
2190 clear_buddies(cfs_rq, curr);
f685ceac
MG
2191 return;
2192 }
2193
2194 /*
2195 * Ensure that a task that missed wakeup preemption by a
2196 * narrow margin doesn't have to wait for a full slice.
2197 * This also mitigates buddy induced latencies under load.
2198 */
f685ceac
MG
2199 if (delta_exec < sysctl_sched_min_granularity)
2200 return;
2201
f4cfb33e
WX
2202 se = __pick_first_entity(cfs_rq);
2203 delta = curr->vruntime - se->vruntime;
f685ceac 2204
f4cfb33e
WX
2205 if (delta < 0)
2206 return;
d7d82944 2207
f4cfb33e
WX
2208 if (delta > ideal_runtime)
2209 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2210}
2211
83b699ed 2212static void
8494f412 2213set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2214{
83b699ed
SV
2215 /* 'current' is not kept within the tree. */
2216 if (se->on_rq) {
2217 /*
2218 * Any task has to be enqueued before it get to execute on
2219 * a CPU. So account for the time it spent waiting on the
2220 * runqueue.
2221 */
2222 update_stats_wait_end(cfs_rq, se);
2223 __dequeue_entity(cfs_rq, se);
2224 }
2225
79303e9e 2226 update_stats_curr_start(cfs_rq, se);
429d43bc 2227 cfs_rq->curr = se;
eba1ed4b
IM
2228#ifdef CONFIG_SCHEDSTATS
2229 /*
2230 * Track our maximum slice length, if the CPU's load is at
2231 * least twice that of our own weight (i.e. dont track it
2232 * when there are only lesser-weight tasks around):
2233 */
495eca49 2234 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2235 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2236 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2237 }
2238#endif
4a55b450 2239 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2240}
2241
3f3a4904
PZ
2242static int
2243wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2244
ac53db59
RR
2245/*
2246 * Pick the next process, keeping these things in mind, in this order:
2247 * 1) keep things fair between processes/task groups
2248 * 2) pick the "next" process, since someone really wants that to run
2249 * 3) pick the "last" process, for cache locality
2250 * 4) do not run the "skip" process, if something else is available
2251 */
f4b6755f 2252static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2253{
ac53db59 2254 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2255 struct sched_entity *left = se;
f4b6755f 2256
ac53db59
RR
2257 /*
2258 * Avoid running the skip buddy, if running something else can
2259 * be done without getting too unfair.
2260 */
2261 if (cfs_rq->skip == se) {
2262 struct sched_entity *second = __pick_next_entity(se);
2263 if (second && wakeup_preempt_entity(second, left) < 1)
2264 se = second;
2265 }
aa2ac252 2266
f685ceac
MG
2267 /*
2268 * Prefer last buddy, try to return the CPU to a preempted task.
2269 */
2270 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2271 se = cfs_rq->last;
2272
ac53db59
RR
2273 /*
2274 * Someone really wants this to run. If it's not unfair, run it.
2275 */
2276 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2277 se = cfs_rq->next;
2278
f685ceac 2279 clear_buddies(cfs_rq, se);
4793241b
PZ
2280
2281 return se;
aa2ac252
PZ
2282}
2283
d3d9dc33
PT
2284static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2285
ab6cde26 2286static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2287{
2288 /*
2289 * If still on the runqueue then deactivate_task()
2290 * was not called and update_curr() has to be done:
2291 */
2292 if (prev->on_rq)
b7cc0896 2293 update_curr(cfs_rq);
bf0f6f24 2294
d3d9dc33
PT
2295 /* throttle cfs_rqs exceeding runtime */
2296 check_cfs_rq_runtime(cfs_rq);
2297
ddc97297 2298 check_spread(cfs_rq, prev);
30cfdcfc 2299 if (prev->on_rq) {
5870db5b 2300 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2301 /* Put 'current' back into the tree. */
2302 __enqueue_entity(cfs_rq, prev);
9d85f21c 2303 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2304 update_entity_load_avg(prev, 1);
30cfdcfc 2305 }
429d43bc 2306 cfs_rq->curr = NULL;
bf0f6f24
IM
2307}
2308
8f4d37ec
PZ
2309static void
2310entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2311{
bf0f6f24 2312 /*
30cfdcfc 2313 * Update run-time statistics of the 'current'.
bf0f6f24 2314 */
30cfdcfc 2315 update_curr(cfs_rq);
bf0f6f24 2316
9d85f21c
PT
2317 /*
2318 * Ensure that runnable average is periodically updated.
2319 */
9ee474f5 2320 update_entity_load_avg(curr, 1);
aff3e498 2321 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2322 update_cfs_shares(cfs_rq);
9d85f21c 2323
8f4d37ec
PZ
2324#ifdef CONFIG_SCHED_HRTICK
2325 /*
2326 * queued ticks are scheduled to match the slice, so don't bother
2327 * validating it and just reschedule.
2328 */
983ed7a6
HH
2329 if (queued) {
2330 resched_task(rq_of(cfs_rq)->curr);
2331 return;
2332 }
8f4d37ec
PZ
2333 /*
2334 * don't let the period tick interfere with the hrtick preemption
2335 */
2336 if (!sched_feat(DOUBLE_TICK) &&
2337 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2338 return;
2339#endif
2340
2c2efaed 2341 if (cfs_rq->nr_running > 1)
2e09bf55 2342 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2343}
2344
ab84d31e
PT
2345
2346/**************************************************
2347 * CFS bandwidth control machinery
2348 */
2349
2350#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2351
2352#ifdef HAVE_JUMP_LABEL
c5905afb 2353static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2354
2355static inline bool cfs_bandwidth_used(void)
2356{
c5905afb 2357 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2358}
2359
2360void account_cfs_bandwidth_used(int enabled, int was_enabled)
2361{
2362 /* only need to count groups transitioning between enabled/!enabled */
2363 if (enabled && !was_enabled)
c5905afb 2364 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2365 else if (!enabled && was_enabled)
c5905afb 2366 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2367}
2368#else /* HAVE_JUMP_LABEL */
2369static bool cfs_bandwidth_used(void)
2370{
2371 return true;
2372}
2373
2374void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2375#endif /* HAVE_JUMP_LABEL */
2376
ab84d31e
PT
2377/*
2378 * default period for cfs group bandwidth.
2379 * default: 0.1s, units: nanoseconds
2380 */
2381static inline u64 default_cfs_period(void)
2382{
2383 return 100000000ULL;
2384}
ec12cb7f
PT
2385
2386static inline u64 sched_cfs_bandwidth_slice(void)
2387{
2388 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2389}
2390
a9cf55b2
PT
2391/*
2392 * Replenish runtime according to assigned quota and update expiration time.
2393 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2394 * additional synchronization around rq->lock.
2395 *
2396 * requires cfs_b->lock
2397 */
029632fb 2398void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2399{
2400 u64 now;
2401
2402 if (cfs_b->quota == RUNTIME_INF)
2403 return;
2404
2405 now = sched_clock_cpu(smp_processor_id());
2406 cfs_b->runtime = cfs_b->quota;
2407 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2408}
2409
029632fb
PZ
2410static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2411{
2412 return &tg->cfs_bandwidth;
2413}
2414
f1b17280
PT
2415/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2416static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2417{
2418 if (unlikely(cfs_rq->throttle_count))
2419 return cfs_rq->throttled_clock_task;
2420
78becc27 2421 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2422}
2423
85dac906
PT
2424/* returns 0 on failure to allocate runtime */
2425static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2426{
2427 struct task_group *tg = cfs_rq->tg;
2428 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2429 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2430
2431 /* note: this is a positive sum as runtime_remaining <= 0 */
2432 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2433
2434 raw_spin_lock(&cfs_b->lock);
2435 if (cfs_b->quota == RUNTIME_INF)
2436 amount = min_amount;
58088ad0 2437 else {
a9cf55b2
PT
2438 /*
2439 * If the bandwidth pool has become inactive, then at least one
2440 * period must have elapsed since the last consumption.
2441 * Refresh the global state and ensure bandwidth timer becomes
2442 * active.
2443 */
2444 if (!cfs_b->timer_active) {
2445 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2446 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2447 }
58088ad0
PT
2448
2449 if (cfs_b->runtime > 0) {
2450 amount = min(cfs_b->runtime, min_amount);
2451 cfs_b->runtime -= amount;
2452 cfs_b->idle = 0;
2453 }
ec12cb7f 2454 }
a9cf55b2 2455 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2456 raw_spin_unlock(&cfs_b->lock);
2457
2458 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2459 /*
2460 * we may have advanced our local expiration to account for allowed
2461 * spread between our sched_clock and the one on which runtime was
2462 * issued.
2463 */
2464 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2465 cfs_rq->runtime_expires = expires;
85dac906
PT
2466
2467 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2468}
2469
a9cf55b2
PT
2470/*
2471 * Note: This depends on the synchronization provided by sched_clock and the
2472 * fact that rq->clock snapshots this value.
2473 */
2474static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2475{
a9cf55b2 2476 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2477
2478 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2479 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2480 return;
2481
a9cf55b2
PT
2482 if (cfs_rq->runtime_remaining < 0)
2483 return;
2484
2485 /*
2486 * If the local deadline has passed we have to consider the
2487 * possibility that our sched_clock is 'fast' and the global deadline
2488 * has not truly expired.
2489 *
2490 * Fortunately we can check determine whether this the case by checking
2491 * whether the global deadline has advanced.
2492 */
2493
2494 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2495 /* extend local deadline, drift is bounded above by 2 ticks */
2496 cfs_rq->runtime_expires += TICK_NSEC;
2497 } else {
2498 /* global deadline is ahead, expiration has passed */
2499 cfs_rq->runtime_remaining = 0;
2500 }
2501}
2502
2503static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2504 unsigned long delta_exec)
2505{
2506 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2507 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2508 expire_cfs_rq_runtime(cfs_rq);
2509
2510 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2511 return;
2512
85dac906
PT
2513 /*
2514 * if we're unable to extend our runtime we resched so that the active
2515 * hierarchy can be throttled
2516 */
2517 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2518 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2519}
2520
6c16a6dc
PZ
2521static __always_inline
2522void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2523{
56f570e5 2524 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2525 return;
2526
2527 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2528}
2529
85dac906
PT
2530static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2531{
56f570e5 2532 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2533}
2534
64660c86
PT
2535/* check whether cfs_rq, or any parent, is throttled */
2536static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2537{
56f570e5 2538 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2539}
2540
2541/*
2542 * Ensure that neither of the group entities corresponding to src_cpu or
2543 * dest_cpu are members of a throttled hierarchy when performing group
2544 * load-balance operations.
2545 */
2546static inline int throttled_lb_pair(struct task_group *tg,
2547 int src_cpu, int dest_cpu)
2548{
2549 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2550
2551 src_cfs_rq = tg->cfs_rq[src_cpu];
2552 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2553
2554 return throttled_hierarchy(src_cfs_rq) ||
2555 throttled_hierarchy(dest_cfs_rq);
2556}
2557
2558/* updated child weight may affect parent so we have to do this bottom up */
2559static int tg_unthrottle_up(struct task_group *tg, void *data)
2560{
2561 struct rq *rq = data;
2562 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2563
2564 cfs_rq->throttle_count--;
2565#ifdef CONFIG_SMP
2566 if (!cfs_rq->throttle_count) {
f1b17280 2567 /* adjust cfs_rq_clock_task() */
78becc27 2568 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2569 cfs_rq->throttled_clock_task;
64660c86
PT
2570 }
2571#endif
2572
2573 return 0;
2574}
2575
2576static int tg_throttle_down(struct task_group *tg, void *data)
2577{
2578 struct rq *rq = data;
2579 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2580
82958366
PT
2581 /* group is entering throttled state, stop time */
2582 if (!cfs_rq->throttle_count)
78becc27 2583 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2584 cfs_rq->throttle_count++;
2585
2586 return 0;
2587}
2588
d3d9dc33 2589static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2590{
2591 struct rq *rq = rq_of(cfs_rq);
2592 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2593 struct sched_entity *se;
2594 long task_delta, dequeue = 1;
2595
2596 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2597
f1b17280 2598 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2599 rcu_read_lock();
2600 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2601 rcu_read_unlock();
85dac906
PT
2602
2603 task_delta = cfs_rq->h_nr_running;
2604 for_each_sched_entity(se) {
2605 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2606 /* throttled entity or throttle-on-deactivate */
2607 if (!se->on_rq)
2608 break;
2609
2610 if (dequeue)
2611 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2612 qcfs_rq->h_nr_running -= task_delta;
2613
2614 if (qcfs_rq->load.weight)
2615 dequeue = 0;
2616 }
2617
2618 if (!se)
2619 rq->nr_running -= task_delta;
2620
2621 cfs_rq->throttled = 1;
78becc27 2622 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2623 raw_spin_lock(&cfs_b->lock);
2624 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2625 raw_spin_unlock(&cfs_b->lock);
2626}
2627
029632fb 2628void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2629{
2630 struct rq *rq = rq_of(cfs_rq);
2631 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2632 struct sched_entity *se;
2633 int enqueue = 1;
2634 long task_delta;
2635
22b958d8 2636 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2637
2638 cfs_rq->throttled = 0;
1a55af2e
FW
2639
2640 update_rq_clock(rq);
2641
671fd9da 2642 raw_spin_lock(&cfs_b->lock);
78becc27 2643 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2644 list_del_rcu(&cfs_rq->throttled_list);
2645 raw_spin_unlock(&cfs_b->lock);
2646
64660c86
PT
2647 /* update hierarchical throttle state */
2648 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2649
671fd9da
PT
2650 if (!cfs_rq->load.weight)
2651 return;
2652
2653 task_delta = cfs_rq->h_nr_running;
2654 for_each_sched_entity(se) {
2655 if (se->on_rq)
2656 enqueue = 0;
2657
2658 cfs_rq = cfs_rq_of(se);
2659 if (enqueue)
2660 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2661 cfs_rq->h_nr_running += task_delta;
2662
2663 if (cfs_rq_throttled(cfs_rq))
2664 break;
2665 }
2666
2667 if (!se)
2668 rq->nr_running += task_delta;
2669
2670 /* determine whether we need to wake up potentially idle cpu */
2671 if (rq->curr == rq->idle && rq->cfs.nr_running)
2672 resched_task(rq->curr);
2673}
2674
2675static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2676 u64 remaining, u64 expires)
2677{
2678 struct cfs_rq *cfs_rq;
2679 u64 runtime = remaining;
2680
2681 rcu_read_lock();
2682 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2683 throttled_list) {
2684 struct rq *rq = rq_of(cfs_rq);
2685
2686 raw_spin_lock(&rq->lock);
2687 if (!cfs_rq_throttled(cfs_rq))
2688 goto next;
2689
2690 runtime = -cfs_rq->runtime_remaining + 1;
2691 if (runtime > remaining)
2692 runtime = remaining;
2693 remaining -= runtime;
2694
2695 cfs_rq->runtime_remaining += runtime;
2696 cfs_rq->runtime_expires = expires;
2697
2698 /* we check whether we're throttled above */
2699 if (cfs_rq->runtime_remaining > 0)
2700 unthrottle_cfs_rq(cfs_rq);
2701
2702next:
2703 raw_spin_unlock(&rq->lock);
2704
2705 if (!remaining)
2706 break;
2707 }
2708 rcu_read_unlock();
2709
2710 return remaining;
2711}
2712
58088ad0
PT
2713/*
2714 * Responsible for refilling a task_group's bandwidth and unthrottling its
2715 * cfs_rqs as appropriate. If there has been no activity within the last
2716 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2717 * used to track this state.
2718 */
2719static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2720{
671fd9da
PT
2721 u64 runtime, runtime_expires;
2722 int idle = 1, throttled;
58088ad0
PT
2723
2724 raw_spin_lock(&cfs_b->lock);
2725 /* no need to continue the timer with no bandwidth constraint */
2726 if (cfs_b->quota == RUNTIME_INF)
2727 goto out_unlock;
2728
671fd9da
PT
2729 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2730 /* idle depends on !throttled (for the case of a large deficit) */
2731 idle = cfs_b->idle && !throttled;
e8da1b18 2732 cfs_b->nr_periods += overrun;
671fd9da 2733
a9cf55b2
PT
2734 /* if we're going inactive then everything else can be deferred */
2735 if (idle)
2736 goto out_unlock;
2737
2738 __refill_cfs_bandwidth_runtime(cfs_b);
2739
671fd9da
PT
2740 if (!throttled) {
2741 /* mark as potentially idle for the upcoming period */
2742 cfs_b->idle = 1;
2743 goto out_unlock;
2744 }
2745
e8da1b18
NR
2746 /* account preceding periods in which throttling occurred */
2747 cfs_b->nr_throttled += overrun;
2748
671fd9da
PT
2749 /*
2750 * There are throttled entities so we must first use the new bandwidth
2751 * to unthrottle them before making it generally available. This
2752 * ensures that all existing debts will be paid before a new cfs_rq is
2753 * allowed to run.
2754 */
2755 runtime = cfs_b->runtime;
2756 runtime_expires = cfs_b->runtime_expires;
2757 cfs_b->runtime = 0;
2758
2759 /*
2760 * This check is repeated as we are holding onto the new bandwidth
2761 * while we unthrottle. This can potentially race with an unthrottled
2762 * group trying to acquire new bandwidth from the global pool.
2763 */
2764 while (throttled && runtime > 0) {
2765 raw_spin_unlock(&cfs_b->lock);
2766 /* we can't nest cfs_b->lock while distributing bandwidth */
2767 runtime = distribute_cfs_runtime(cfs_b, runtime,
2768 runtime_expires);
2769 raw_spin_lock(&cfs_b->lock);
2770
2771 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2772 }
58088ad0 2773
671fd9da
PT
2774 /* return (any) remaining runtime */
2775 cfs_b->runtime = runtime;
2776 /*
2777 * While we are ensured activity in the period following an
2778 * unthrottle, this also covers the case in which the new bandwidth is
2779 * insufficient to cover the existing bandwidth deficit. (Forcing the
2780 * timer to remain active while there are any throttled entities.)
2781 */
2782 cfs_b->idle = 0;
58088ad0
PT
2783out_unlock:
2784 if (idle)
2785 cfs_b->timer_active = 0;
2786 raw_spin_unlock(&cfs_b->lock);
2787
2788 return idle;
2789}
d3d9dc33 2790
d8b4986d
PT
2791/* a cfs_rq won't donate quota below this amount */
2792static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2793/* minimum remaining period time to redistribute slack quota */
2794static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2795/* how long we wait to gather additional slack before distributing */
2796static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2797
2798/* are we near the end of the current quota period? */
2799static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2800{
2801 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2802 u64 remaining;
2803
2804 /* if the call-back is running a quota refresh is already occurring */
2805 if (hrtimer_callback_running(refresh_timer))
2806 return 1;
2807
2808 /* is a quota refresh about to occur? */
2809 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2810 if (remaining < min_expire)
2811 return 1;
2812
2813 return 0;
2814}
2815
2816static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2817{
2818 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2819
2820 /* if there's a quota refresh soon don't bother with slack */
2821 if (runtime_refresh_within(cfs_b, min_left))
2822 return;
2823
2824 start_bandwidth_timer(&cfs_b->slack_timer,
2825 ns_to_ktime(cfs_bandwidth_slack_period));
2826}
2827
2828/* we know any runtime found here is valid as update_curr() precedes return */
2829static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2830{
2831 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2832 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2833
2834 if (slack_runtime <= 0)
2835 return;
2836
2837 raw_spin_lock(&cfs_b->lock);
2838 if (cfs_b->quota != RUNTIME_INF &&
2839 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2840 cfs_b->runtime += slack_runtime;
2841
2842 /* we are under rq->lock, defer unthrottling using a timer */
2843 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2844 !list_empty(&cfs_b->throttled_cfs_rq))
2845 start_cfs_slack_bandwidth(cfs_b);
2846 }
2847 raw_spin_unlock(&cfs_b->lock);
2848
2849 /* even if it's not valid for return we don't want to try again */
2850 cfs_rq->runtime_remaining -= slack_runtime;
2851}
2852
2853static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2854{
56f570e5
PT
2855 if (!cfs_bandwidth_used())
2856 return;
2857
fccfdc6f 2858 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2859 return;
2860
2861 __return_cfs_rq_runtime(cfs_rq);
2862}
2863
2864/*
2865 * This is done with a timer (instead of inline with bandwidth return) since
2866 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2867 */
2868static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2869{
2870 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2871 u64 expires;
2872
2873 /* confirm we're still not at a refresh boundary */
2874 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2875 return;
2876
2877 raw_spin_lock(&cfs_b->lock);
2878 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2879 runtime = cfs_b->runtime;
2880 cfs_b->runtime = 0;
2881 }
2882 expires = cfs_b->runtime_expires;
2883 raw_spin_unlock(&cfs_b->lock);
2884
2885 if (!runtime)
2886 return;
2887
2888 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2889
2890 raw_spin_lock(&cfs_b->lock);
2891 if (expires == cfs_b->runtime_expires)
2892 cfs_b->runtime = runtime;
2893 raw_spin_unlock(&cfs_b->lock);
2894}
2895
d3d9dc33
PT
2896/*
2897 * When a group wakes up we want to make sure that its quota is not already
2898 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2899 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2900 */
2901static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2902{
56f570e5
PT
2903 if (!cfs_bandwidth_used())
2904 return;
2905
d3d9dc33
PT
2906 /* an active group must be handled by the update_curr()->put() path */
2907 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2908 return;
2909
2910 /* ensure the group is not already throttled */
2911 if (cfs_rq_throttled(cfs_rq))
2912 return;
2913
2914 /* update runtime allocation */
2915 account_cfs_rq_runtime(cfs_rq, 0);
2916 if (cfs_rq->runtime_remaining <= 0)
2917 throttle_cfs_rq(cfs_rq);
2918}
2919
2920/* conditionally throttle active cfs_rq's from put_prev_entity() */
2921static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2922{
56f570e5
PT
2923 if (!cfs_bandwidth_used())
2924 return;
2925
d3d9dc33
PT
2926 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2927 return;
2928
2929 /*
2930 * it's possible for a throttled entity to be forced into a running
2931 * state (e.g. set_curr_task), in this case we're finished.
2932 */
2933 if (cfs_rq_throttled(cfs_rq))
2934 return;
2935
2936 throttle_cfs_rq(cfs_rq);
2937}
029632fb 2938
029632fb
PZ
2939static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2940{
2941 struct cfs_bandwidth *cfs_b =
2942 container_of(timer, struct cfs_bandwidth, slack_timer);
2943 do_sched_cfs_slack_timer(cfs_b);
2944
2945 return HRTIMER_NORESTART;
2946}
2947
2948static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2949{
2950 struct cfs_bandwidth *cfs_b =
2951 container_of(timer, struct cfs_bandwidth, period_timer);
2952 ktime_t now;
2953 int overrun;
2954 int idle = 0;
2955
2956 for (;;) {
2957 now = hrtimer_cb_get_time(timer);
2958 overrun = hrtimer_forward(timer, now, cfs_b->period);
2959
2960 if (!overrun)
2961 break;
2962
2963 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2964 }
2965
2966 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2967}
2968
2969void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2970{
2971 raw_spin_lock_init(&cfs_b->lock);
2972 cfs_b->runtime = 0;
2973 cfs_b->quota = RUNTIME_INF;
2974 cfs_b->period = ns_to_ktime(default_cfs_period());
2975
2976 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2977 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2978 cfs_b->period_timer.function = sched_cfs_period_timer;
2979 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2980 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2981}
2982
2983static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2984{
2985 cfs_rq->runtime_enabled = 0;
2986 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2987}
2988
2989/* requires cfs_b->lock, may release to reprogram timer */
2990void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2991{
2992 /*
2993 * The timer may be active because we're trying to set a new bandwidth
2994 * period or because we're racing with the tear-down path
2995 * (timer_active==0 becomes visible before the hrtimer call-back
2996 * terminates). In either case we ensure that it's re-programmed
2997 */
2998 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2999 raw_spin_unlock(&cfs_b->lock);
3000 /* ensure cfs_b->lock is available while we wait */
3001 hrtimer_cancel(&cfs_b->period_timer);
3002
3003 raw_spin_lock(&cfs_b->lock);
3004 /* if someone else restarted the timer then we're done */
3005 if (cfs_b->timer_active)
3006 return;
3007 }
3008
3009 cfs_b->timer_active = 1;
3010 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3011}
3012
3013static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3014{
3015 hrtimer_cancel(&cfs_b->period_timer);
3016 hrtimer_cancel(&cfs_b->slack_timer);
3017}
3018
38dc3348 3019static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3020{
3021 struct cfs_rq *cfs_rq;
3022
3023 for_each_leaf_cfs_rq(rq, cfs_rq) {
3024 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3025
3026 if (!cfs_rq->runtime_enabled)
3027 continue;
3028
3029 /*
3030 * clock_task is not advancing so we just need to make sure
3031 * there's some valid quota amount
3032 */
3033 cfs_rq->runtime_remaining = cfs_b->quota;
3034 if (cfs_rq_throttled(cfs_rq))
3035 unthrottle_cfs_rq(cfs_rq);
3036 }
3037}
3038
3039#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3040static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3041{
78becc27 3042 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3043}
3044
3045static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3046 unsigned long delta_exec) {}
d3d9dc33
PT
3047static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3048static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3049static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3050
3051static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3052{
3053 return 0;
3054}
64660c86
PT
3055
3056static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3057{
3058 return 0;
3059}
3060
3061static inline int throttled_lb_pair(struct task_group *tg,
3062 int src_cpu, int dest_cpu)
3063{
3064 return 0;
3065}
029632fb
PZ
3066
3067void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3068
3069#ifdef CONFIG_FAIR_GROUP_SCHED
3070static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3071#endif
3072
029632fb
PZ
3073static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3074{
3075 return NULL;
3076}
3077static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3078static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3079
3080#endif /* CONFIG_CFS_BANDWIDTH */
3081
bf0f6f24
IM
3082/**************************************************
3083 * CFS operations on tasks:
3084 */
3085
8f4d37ec
PZ
3086#ifdef CONFIG_SCHED_HRTICK
3087static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3088{
8f4d37ec
PZ
3089 struct sched_entity *se = &p->se;
3090 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3091
3092 WARN_ON(task_rq(p) != rq);
3093
b39e66ea 3094 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3095 u64 slice = sched_slice(cfs_rq, se);
3096 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3097 s64 delta = slice - ran;
3098
3099 if (delta < 0) {
3100 if (rq->curr == p)
3101 resched_task(p);
3102 return;
3103 }
3104
3105 /*
3106 * Don't schedule slices shorter than 10000ns, that just
3107 * doesn't make sense. Rely on vruntime for fairness.
3108 */
31656519 3109 if (rq->curr != p)
157124c1 3110 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3111
31656519 3112 hrtick_start(rq, delta);
8f4d37ec
PZ
3113 }
3114}
a4c2f00f
PZ
3115
3116/*
3117 * called from enqueue/dequeue and updates the hrtick when the
3118 * current task is from our class and nr_running is low enough
3119 * to matter.
3120 */
3121static void hrtick_update(struct rq *rq)
3122{
3123 struct task_struct *curr = rq->curr;
3124
b39e66ea 3125 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3126 return;
3127
3128 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3129 hrtick_start_fair(rq, curr);
3130}
55e12e5e 3131#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3132static inline void
3133hrtick_start_fair(struct rq *rq, struct task_struct *p)
3134{
3135}
a4c2f00f
PZ
3136
3137static inline void hrtick_update(struct rq *rq)
3138{
3139}
8f4d37ec
PZ
3140#endif
3141
bf0f6f24
IM
3142/*
3143 * The enqueue_task method is called before nr_running is
3144 * increased. Here we update the fair scheduling stats and
3145 * then put the task into the rbtree:
3146 */
ea87bb78 3147static void
371fd7e7 3148enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3149{
3150 struct cfs_rq *cfs_rq;
62fb1851 3151 struct sched_entity *se = &p->se;
bf0f6f24
IM
3152
3153 for_each_sched_entity(se) {
62fb1851 3154 if (se->on_rq)
bf0f6f24
IM
3155 break;
3156 cfs_rq = cfs_rq_of(se);
88ec22d3 3157 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3158
3159 /*
3160 * end evaluation on encountering a throttled cfs_rq
3161 *
3162 * note: in the case of encountering a throttled cfs_rq we will
3163 * post the final h_nr_running increment below.
3164 */
3165 if (cfs_rq_throttled(cfs_rq))
3166 break;
953bfcd1 3167 cfs_rq->h_nr_running++;
85dac906 3168
88ec22d3 3169 flags = ENQUEUE_WAKEUP;
bf0f6f24 3170 }
8f4d37ec 3171
2069dd75 3172 for_each_sched_entity(se) {
0f317143 3173 cfs_rq = cfs_rq_of(se);
953bfcd1 3174 cfs_rq->h_nr_running++;
2069dd75 3175
85dac906
PT
3176 if (cfs_rq_throttled(cfs_rq))
3177 break;
3178
17bc14b7 3179 update_cfs_shares(cfs_rq);
9ee474f5 3180 update_entity_load_avg(se, 1);
2069dd75
PZ
3181 }
3182
18bf2805
BS
3183 if (!se) {
3184 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3185 inc_nr_running(rq);
18bf2805 3186 }
a4c2f00f 3187 hrtick_update(rq);
bf0f6f24
IM
3188}
3189
2f36825b
VP
3190static void set_next_buddy(struct sched_entity *se);
3191
bf0f6f24
IM
3192/*
3193 * The dequeue_task method is called before nr_running is
3194 * decreased. We remove the task from the rbtree and
3195 * update the fair scheduling stats:
3196 */
371fd7e7 3197static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3198{
3199 struct cfs_rq *cfs_rq;
62fb1851 3200 struct sched_entity *se = &p->se;
2f36825b 3201 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3202
3203 for_each_sched_entity(se) {
3204 cfs_rq = cfs_rq_of(se);
371fd7e7 3205 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3206
3207 /*
3208 * end evaluation on encountering a throttled cfs_rq
3209 *
3210 * note: in the case of encountering a throttled cfs_rq we will
3211 * post the final h_nr_running decrement below.
3212 */
3213 if (cfs_rq_throttled(cfs_rq))
3214 break;
953bfcd1 3215 cfs_rq->h_nr_running--;
2069dd75 3216
bf0f6f24 3217 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3218 if (cfs_rq->load.weight) {
3219 /*
3220 * Bias pick_next to pick a task from this cfs_rq, as
3221 * p is sleeping when it is within its sched_slice.
3222 */
3223 if (task_sleep && parent_entity(se))
3224 set_next_buddy(parent_entity(se));
9598c82d
PT
3225
3226 /* avoid re-evaluating load for this entity */
3227 se = parent_entity(se);
bf0f6f24 3228 break;
2f36825b 3229 }
371fd7e7 3230 flags |= DEQUEUE_SLEEP;
bf0f6f24 3231 }
8f4d37ec 3232
2069dd75 3233 for_each_sched_entity(se) {
0f317143 3234 cfs_rq = cfs_rq_of(se);
953bfcd1 3235 cfs_rq->h_nr_running--;
2069dd75 3236
85dac906
PT
3237 if (cfs_rq_throttled(cfs_rq))
3238 break;
3239
17bc14b7 3240 update_cfs_shares(cfs_rq);
9ee474f5 3241 update_entity_load_avg(se, 1);
2069dd75
PZ
3242 }
3243
18bf2805 3244 if (!se) {
85dac906 3245 dec_nr_running(rq);
18bf2805
BS
3246 update_rq_runnable_avg(rq, 1);
3247 }
a4c2f00f 3248 hrtick_update(rq);
bf0f6f24
IM
3249}
3250
e7693a36 3251#ifdef CONFIG_SMP
029632fb
PZ
3252/* Used instead of source_load when we know the type == 0 */
3253static unsigned long weighted_cpuload(const int cpu)
3254{
b92486cb 3255 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3256}
3257
3258/*
3259 * Return a low guess at the load of a migration-source cpu weighted
3260 * according to the scheduling class and "nice" value.
3261 *
3262 * We want to under-estimate the load of migration sources, to
3263 * balance conservatively.
3264 */
3265static unsigned long source_load(int cpu, int type)
3266{
3267 struct rq *rq = cpu_rq(cpu);
3268 unsigned long total = weighted_cpuload(cpu);
3269
3270 if (type == 0 || !sched_feat(LB_BIAS))
3271 return total;
3272
3273 return min(rq->cpu_load[type-1], total);
3274}
3275
3276/*
3277 * Return a high guess at the load of a migration-target cpu weighted
3278 * according to the scheduling class and "nice" value.
3279 */
3280static unsigned long target_load(int cpu, int type)
3281{
3282 struct rq *rq = cpu_rq(cpu);
3283 unsigned long total = weighted_cpuload(cpu);
3284
3285 if (type == 0 || !sched_feat(LB_BIAS))
3286 return total;
3287
3288 return max(rq->cpu_load[type-1], total);
3289}
3290
3291static unsigned long power_of(int cpu)
3292{
3293 return cpu_rq(cpu)->cpu_power;
3294}
3295
3296static unsigned long cpu_avg_load_per_task(int cpu)
3297{
3298 struct rq *rq = cpu_rq(cpu);
3299 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3300 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3301
3302 if (nr_running)
b92486cb 3303 return load_avg / nr_running;
029632fb
PZ
3304
3305 return 0;
3306}
3307
62470419
MW
3308static void record_wakee(struct task_struct *p)
3309{
3310 /*
3311 * Rough decay (wiping) for cost saving, don't worry
3312 * about the boundary, really active task won't care
3313 * about the loss.
3314 */
3315 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3316 current->wakee_flips = 0;
3317 current->wakee_flip_decay_ts = jiffies;
3318 }
3319
3320 if (current->last_wakee != p) {
3321 current->last_wakee = p;
3322 current->wakee_flips++;
3323 }
3324}
098fb9db 3325
74f8e4b2 3326static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3327{
3328 struct sched_entity *se = &p->se;
3329 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3330 u64 min_vruntime;
3331
3332#ifndef CONFIG_64BIT
3333 u64 min_vruntime_copy;
88ec22d3 3334
3fe1698b
PZ
3335 do {
3336 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3337 smp_rmb();
3338 min_vruntime = cfs_rq->min_vruntime;
3339 } while (min_vruntime != min_vruntime_copy);
3340#else
3341 min_vruntime = cfs_rq->min_vruntime;
3342#endif
88ec22d3 3343
3fe1698b 3344 se->vruntime -= min_vruntime;
62470419 3345 record_wakee(p);
88ec22d3
PZ
3346}
3347
bb3469ac 3348#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3349/*
3350 * effective_load() calculates the load change as seen from the root_task_group
3351 *
3352 * Adding load to a group doesn't make a group heavier, but can cause movement
3353 * of group shares between cpus. Assuming the shares were perfectly aligned one
3354 * can calculate the shift in shares.
cf5f0acf
PZ
3355 *
3356 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3357 * on this @cpu and results in a total addition (subtraction) of @wg to the
3358 * total group weight.
3359 *
3360 * Given a runqueue weight distribution (rw_i) we can compute a shares
3361 * distribution (s_i) using:
3362 *
3363 * s_i = rw_i / \Sum rw_j (1)
3364 *
3365 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3366 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3367 * shares distribution (s_i):
3368 *
3369 * rw_i = { 2, 4, 1, 0 }
3370 * s_i = { 2/7, 4/7, 1/7, 0 }
3371 *
3372 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3373 * task used to run on and the CPU the waker is running on), we need to
3374 * compute the effect of waking a task on either CPU and, in case of a sync
3375 * wakeup, compute the effect of the current task going to sleep.
3376 *
3377 * So for a change of @wl to the local @cpu with an overall group weight change
3378 * of @wl we can compute the new shares distribution (s'_i) using:
3379 *
3380 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3381 *
3382 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3383 * differences in waking a task to CPU 0. The additional task changes the
3384 * weight and shares distributions like:
3385 *
3386 * rw'_i = { 3, 4, 1, 0 }
3387 * s'_i = { 3/8, 4/8, 1/8, 0 }
3388 *
3389 * We can then compute the difference in effective weight by using:
3390 *
3391 * dw_i = S * (s'_i - s_i) (3)
3392 *
3393 * Where 'S' is the group weight as seen by its parent.
3394 *
3395 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3396 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3397 * 4/7) times the weight of the group.
f5bfb7d9 3398 */
2069dd75 3399static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3400{
4be9daaa 3401 struct sched_entity *se = tg->se[cpu];
f1d239f7 3402
58d081b5 3403 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3404 return wl;
3405
4be9daaa 3406 for_each_sched_entity(se) {
cf5f0acf 3407 long w, W;
4be9daaa 3408
977dda7c 3409 tg = se->my_q->tg;
bb3469ac 3410
cf5f0acf
PZ
3411 /*
3412 * W = @wg + \Sum rw_j
3413 */
3414 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3415
cf5f0acf
PZ
3416 /*
3417 * w = rw_i + @wl
3418 */
3419 w = se->my_q->load.weight + wl;
940959e9 3420
cf5f0acf
PZ
3421 /*
3422 * wl = S * s'_i; see (2)
3423 */
3424 if (W > 0 && w < W)
3425 wl = (w * tg->shares) / W;
977dda7c
PT
3426 else
3427 wl = tg->shares;
940959e9 3428
cf5f0acf
PZ
3429 /*
3430 * Per the above, wl is the new se->load.weight value; since
3431 * those are clipped to [MIN_SHARES, ...) do so now. See
3432 * calc_cfs_shares().
3433 */
977dda7c
PT
3434 if (wl < MIN_SHARES)
3435 wl = MIN_SHARES;
cf5f0acf
PZ
3436
3437 /*
3438 * wl = dw_i = S * (s'_i - s_i); see (3)
3439 */
977dda7c 3440 wl -= se->load.weight;
cf5f0acf
PZ
3441
3442 /*
3443 * Recursively apply this logic to all parent groups to compute
3444 * the final effective load change on the root group. Since
3445 * only the @tg group gets extra weight, all parent groups can
3446 * only redistribute existing shares. @wl is the shift in shares
3447 * resulting from this level per the above.
3448 */
4be9daaa 3449 wg = 0;
4be9daaa 3450 }
bb3469ac 3451
4be9daaa 3452 return wl;
bb3469ac
PZ
3453}
3454#else
4be9daaa 3455
58d081b5 3456static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3457{
83378269 3458 return wl;
bb3469ac 3459}
4be9daaa 3460
bb3469ac
PZ
3461#endif
3462
62470419
MW
3463static int wake_wide(struct task_struct *p)
3464{
7d9ffa89 3465 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3466
3467 /*
3468 * Yeah, it's the switching-frequency, could means many wakee or
3469 * rapidly switch, use factor here will just help to automatically
3470 * adjust the loose-degree, so bigger node will lead to more pull.
3471 */
3472 if (p->wakee_flips > factor) {
3473 /*
3474 * wakee is somewhat hot, it needs certain amount of cpu
3475 * resource, so if waker is far more hot, prefer to leave
3476 * it alone.
3477 */
3478 if (current->wakee_flips > (factor * p->wakee_flips))
3479 return 1;
3480 }
3481
3482 return 0;
3483}
3484
c88d5910 3485static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3486{
e37b6a7b 3487 s64 this_load, load;
c88d5910 3488 int idx, this_cpu, prev_cpu;
098fb9db 3489 unsigned long tl_per_task;
c88d5910 3490 struct task_group *tg;
83378269 3491 unsigned long weight;
b3137bc8 3492 int balanced;
098fb9db 3493
62470419
MW
3494 /*
3495 * If we wake multiple tasks be careful to not bounce
3496 * ourselves around too much.
3497 */
3498 if (wake_wide(p))
3499 return 0;
3500
c88d5910
PZ
3501 idx = sd->wake_idx;
3502 this_cpu = smp_processor_id();
3503 prev_cpu = task_cpu(p);
3504 load = source_load(prev_cpu, idx);
3505 this_load = target_load(this_cpu, idx);
098fb9db 3506
b3137bc8
MG
3507 /*
3508 * If sync wakeup then subtract the (maximum possible)
3509 * effect of the currently running task from the load
3510 * of the current CPU:
3511 */
83378269
PZ
3512 if (sync) {
3513 tg = task_group(current);
3514 weight = current->se.load.weight;
3515
c88d5910 3516 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3517 load += effective_load(tg, prev_cpu, 0, -weight);
3518 }
b3137bc8 3519
83378269
PZ
3520 tg = task_group(p);
3521 weight = p->se.load.weight;
b3137bc8 3522
71a29aa7
PZ
3523 /*
3524 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3525 * due to the sync cause above having dropped this_load to 0, we'll
3526 * always have an imbalance, but there's really nothing you can do
3527 * about that, so that's good too.
71a29aa7
PZ
3528 *
3529 * Otherwise check if either cpus are near enough in load to allow this
3530 * task to be woken on this_cpu.
3531 */
e37b6a7b
PT
3532 if (this_load > 0) {
3533 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3534
3535 this_eff_load = 100;
3536 this_eff_load *= power_of(prev_cpu);
3537 this_eff_load *= this_load +
3538 effective_load(tg, this_cpu, weight, weight);
3539
3540 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3541 prev_eff_load *= power_of(this_cpu);
3542 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3543
3544 balanced = this_eff_load <= prev_eff_load;
3545 } else
3546 balanced = true;
b3137bc8 3547
098fb9db 3548 /*
4ae7d5ce
IM
3549 * If the currently running task will sleep within
3550 * a reasonable amount of time then attract this newly
3551 * woken task:
098fb9db 3552 */
2fb7635c
PZ
3553 if (sync && balanced)
3554 return 1;
098fb9db 3555
41acab88 3556 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3557 tl_per_task = cpu_avg_load_per_task(this_cpu);
3558
c88d5910
PZ
3559 if (balanced ||
3560 (this_load <= load &&
3561 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3562 /*
3563 * This domain has SD_WAKE_AFFINE and
3564 * p is cache cold in this domain, and
3565 * there is no bad imbalance.
3566 */
c88d5910 3567 schedstat_inc(sd, ttwu_move_affine);
41acab88 3568 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3569
3570 return 1;
3571 }
3572 return 0;
3573}
3574
aaee1203
PZ
3575/*
3576 * find_idlest_group finds and returns the least busy CPU group within the
3577 * domain.
3578 */
3579static struct sched_group *
78e7ed53 3580find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3581 int this_cpu, int load_idx)
e7693a36 3582{
b3bd3de6 3583 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3584 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3585 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3586
aaee1203
PZ
3587 do {
3588 unsigned long load, avg_load;
3589 int local_group;
3590 int i;
e7693a36 3591
aaee1203
PZ
3592 /* Skip over this group if it has no CPUs allowed */
3593 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3594 tsk_cpus_allowed(p)))
aaee1203
PZ
3595 continue;
3596
3597 local_group = cpumask_test_cpu(this_cpu,
3598 sched_group_cpus(group));
3599
3600 /* Tally up the load of all CPUs in the group */
3601 avg_load = 0;
3602
3603 for_each_cpu(i, sched_group_cpus(group)) {
3604 /* Bias balancing toward cpus of our domain */
3605 if (local_group)
3606 load = source_load(i, load_idx);
3607 else
3608 load = target_load(i, load_idx);
3609
3610 avg_load += load;
3611 }
3612
3613 /* Adjust by relative CPU power of the group */
9c3f75cb 3614 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3615
3616 if (local_group) {
3617 this_load = avg_load;
aaee1203
PZ
3618 } else if (avg_load < min_load) {
3619 min_load = avg_load;
3620 idlest = group;
3621 }
3622 } while (group = group->next, group != sd->groups);
3623
3624 if (!idlest || 100*this_load < imbalance*min_load)
3625 return NULL;
3626 return idlest;
3627}
3628
3629/*
3630 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3631 */
3632static int
3633find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3634{
3635 unsigned long load, min_load = ULONG_MAX;
3636 int idlest = -1;
3637 int i;
3638
3639 /* Traverse only the allowed CPUs */
fa17b507 3640 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3641 load = weighted_cpuload(i);
3642
3643 if (load < min_load || (load == min_load && i == this_cpu)) {
3644 min_load = load;
3645 idlest = i;
e7693a36
GH
3646 }
3647 }
3648
aaee1203
PZ
3649 return idlest;
3650}
e7693a36 3651
a50bde51
PZ
3652/*
3653 * Try and locate an idle CPU in the sched_domain.
3654 */
99bd5e2f 3655static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3656{
99bd5e2f 3657 struct sched_domain *sd;
37407ea7 3658 struct sched_group *sg;
e0a79f52 3659 int i = task_cpu(p);
a50bde51 3660
e0a79f52
MG
3661 if (idle_cpu(target))
3662 return target;
99bd5e2f
SS
3663
3664 /*
e0a79f52 3665 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3666 */
e0a79f52
MG
3667 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3668 return i;
a50bde51
PZ
3669
3670 /*
37407ea7 3671 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3672 */
518cd623 3673 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3674 for_each_lower_domain(sd) {
37407ea7
LT
3675 sg = sd->groups;
3676 do {
3677 if (!cpumask_intersects(sched_group_cpus(sg),
3678 tsk_cpus_allowed(p)))
3679 goto next;
3680
3681 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3682 if (i == target || !idle_cpu(i))
37407ea7
LT
3683 goto next;
3684 }
970e1789 3685
37407ea7
LT
3686 target = cpumask_first_and(sched_group_cpus(sg),
3687 tsk_cpus_allowed(p));
3688 goto done;
3689next:
3690 sg = sg->next;
3691 } while (sg != sd->groups);
3692 }
3693done:
a50bde51
PZ
3694 return target;
3695}
3696
aaee1203
PZ
3697/*
3698 * sched_balance_self: balance the current task (running on cpu) in domains
3699 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3700 * SD_BALANCE_EXEC.
3701 *
3702 * Balance, ie. select the least loaded group.
3703 *
3704 * Returns the target CPU number, or the same CPU if no balancing is needed.
3705 *
3706 * preempt must be disabled.
3707 */
0017d735 3708static int
7608dec2 3709select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3710{
29cd8bae 3711 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3712 int cpu = smp_processor_id();
3713 int prev_cpu = task_cpu(p);
3714 int new_cpu = cpu;
99bd5e2f 3715 int want_affine = 0;
5158f4e4 3716 int sync = wake_flags & WF_SYNC;
c88d5910 3717
29baa747 3718 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3719 return prev_cpu;
3720
0763a660 3721 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3722 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3723 want_affine = 1;
3724 new_cpu = prev_cpu;
3725 }
aaee1203 3726
dce840a0 3727 rcu_read_lock();
aaee1203 3728 for_each_domain(cpu, tmp) {
e4f42888
PZ
3729 if (!(tmp->flags & SD_LOAD_BALANCE))
3730 continue;
3731
fe3bcfe1 3732 /*
99bd5e2f
SS
3733 * If both cpu and prev_cpu are part of this domain,
3734 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3735 */
99bd5e2f
SS
3736 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3737 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3738 affine_sd = tmp;
29cd8bae 3739 break;
f03542a7 3740 }
29cd8bae 3741
f03542a7 3742 if (tmp->flags & sd_flag)
29cd8bae
PZ
3743 sd = tmp;
3744 }
3745
8b911acd 3746 if (affine_sd) {
f03542a7 3747 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3748 prev_cpu = cpu;
3749
3750 new_cpu = select_idle_sibling(p, prev_cpu);
3751 goto unlock;
8b911acd 3752 }
e7693a36 3753
aaee1203 3754 while (sd) {
5158f4e4 3755 int load_idx = sd->forkexec_idx;
aaee1203 3756 struct sched_group *group;
c88d5910 3757 int weight;
098fb9db 3758
0763a660 3759 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3760 sd = sd->child;
3761 continue;
3762 }
098fb9db 3763
5158f4e4
PZ
3764 if (sd_flag & SD_BALANCE_WAKE)
3765 load_idx = sd->wake_idx;
098fb9db 3766
5158f4e4 3767 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3768 if (!group) {
3769 sd = sd->child;
3770 continue;
3771 }
4ae7d5ce 3772
d7c33c49 3773 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3774 if (new_cpu == -1 || new_cpu == cpu) {
3775 /* Now try balancing at a lower domain level of cpu */
3776 sd = sd->child;
3777 continue;
e7693a36 3778 }
aaee1203
PZ
3779
3780 /* Now try balancing at a lower domain level of new_cpu */
3781 cpu = new_cpu;
669c55e9 3782 weight = sd->span_weight;
aaee1203
PZ
3783 sd = NULL;
3784 for_each_domain(cpu, tmp) {
669c55e9 3785 if (weight <= tmp->span_weight)
aaee1203 3786 break;
0763a660 3787 if (tmp->flags & sd_flag)
aaee1203
PZ
3788 sd = tmp;
3789 }
3790 /* while loop will break here if sd == NULL */
e7693a36 3791 }
dce840a0
PZ
3792unlock:
3793 rcu_read_unlock();
e7693a36 3794
c88d5910 3795 return new_cpu;
e7693a36 3796}
0a74bef8
PT
3797
3798/*
3799 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3800 * cfs_rq_of(p) references at time of call are still valid and identify the
3801 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3802 * other assumptions, including the state of rq->lock, should be made.
3803 */
3804static void
3805migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3806{
aff3e498
PT
3807 struct sched_entity *se = &p->se;
3808 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3809
3810 /*
3811 * Load tracking: accumulate removed load so that it can be processed
3812 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3813 * to blocked load iff they have a positive decay-count. It can never
3814 * be negative here since on-rq tasks have decay-count == 0.
3815 */
3816 if (se->avg.decay_count) {
3817 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
3818 atomic_long_add(se->avg.load_avg_contrib,
3819 &cfs_rq->removed_load);
aff3e498 3820 }
0a74bef8 3821}
e7693a36
GH
3822#endif /* CONFIG_SMP */
3823
e52fb7c0
PZ
3824static unsigned long
3825wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3826{
3827 unsigned long gran = sysctl_sched_wakeup_granularity;
3828
3829 /*
e52fb7c0
PZ
3830 * Since its curr running now, convert the gran from real-time
3831 * to virtual-time in his units.
13814d42
MG
3832 *
3833 * By using 'se' instead of 'curr' we penalize light tasks, so
3834 * they get preempted easier. That is, if 'se' < 'curr' then
3835 * the resulting gran will be larger, therefore penalizing the
3836 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3837 * be smaller, again penalizing the lighter task.
3838 *
3839 * This is especially important for buddies when the leftmost
3840 * task is higher priority than the buddy.
0bbd3336 3841 */
f4ad9bd2 3842 return calc_delta_fair(gran, se);
0bbd3336
PZ
3843}
3844
464b7527
PZ
3845/*
3846 * Should 'se' preempt 'curr'.
3847 *
3848 * |s1
3849 * |s2
3850 * |s3
3851 * g
3852 * |<--->|c
3853 *
3854 * w(c, s1) = -1
3855 * w(c, s2) = 0
3856 * w(c, s3) = 1
3857 *
3858 */
3859static int
3860wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3861{
3862 s64 gran, vdiff = curr->vruntime - se->vruntime;
3863
3864 if (vdiff <= 0)
3865 return -1;
3866
e52fb7c0 3867 gran = wakeup_gran(curr, se);
464b7527
PZ
3868 if (vdiff > gran)
3869 return 1;
3870
3871 return 0;
3872}
3873
02479099
PZ
3874static void set_last_buddy(struct sched_entity *se)
3875{
69c80f3e
VP
3876 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3877 return;
3878
3879 for_each_sched_entity(se)
3880 cfs_rq_of(se)->last = se;
02479099
PZ
3881}
3882
3883static void set_next_buddy(struct sched_entity *se)
3884{
69c80f3e
VP
3885 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3886 return;
3887
3888 for_each_sched_entity(se)
3889 cfs_rq_of(se)->next = se;
02479099
PZ
3890}
3891
ac53db59
RR
3892static void set_skip_buddy(struct sched_entity *se)
3893{
69c80f3e
VP
3894 for_each_sched_entity(se)
3895 cfs_rq_of(se)->skip = se;
ac53db59
RR
3896}
3897
bf0f6f24
IM
3898/*
3899 * Preempt the current task with a newly woken task if needed:
3900 */
5a9b86f6 3901static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3902{
3903 struct task_struct *curr = rq->curr;
8651a86c 3904 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3905 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3906 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3907 int next_buddy_marked = 0;
bf0f6f24 3908
4ae7d5ce
IM
3909 if (unlikely(se == pse))
3910 return;
3911
5238cdd3 3912 /*
ddcdf6e7 3913 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3914 * unconditionally check_prempt_curr() after an enqueue (which may have
3915 * lead to a throttle). This both saves work and prevents false
3916 * next-buddy nomination below.
3917 */
3918 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3919 return;
3920
2f36825b 3921 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3922 set_next_buddy(pse);
2f36825b
VP
3923 next_buddy_marked = 1;
3924 }
57fdc26d 3925
aec0a514
BR
3926 /*
3927 * We can come here with TIF_NEED_RESCHED already set from new task
3928 * wake up path.
5238cdd3
PT
3929 *
3930 * Note: this also catches the edge-case of curr being in a throttled
3931 * group (e.g. via set_curr_task), since update_curr() (in the
3932 * enqueue of curr) will have resulted in resched being set. This
3933 * prevents us from potentially nominating it as a false LAST_BUDDY
3934 * below.
aec0a514
BR
3935 */
3936 if (test_tsk_need_resched(curr))
3937 return;
3938
a2f5c9ab
DH
3939 /* Idle tasks are by definition preempted by non-idle tasks. */
3940 if (unlikely(curr->policy == SCHED_IDLE) &&
3941 likely(p->policy != SCHED_IDLE))
3942 goto preempt;
3943
91c234b4 3944 /*
a2f5c9ab
DH
3945 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3946 * is driven by the tick):
91c234b4 3947 */
8ed92e51 3948 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3949 return;
bf0f6f24 3950
464b7527 3951 find_matching_se(&se, &pse);
9bbd7374 3952 update_curr(cfs_rq_of(se));
002f128b 3953 BUG_ON(!pse);
2f36825b
VP
3954 if (wakeup_preempt_entity(se, pse) == 1) {
3955 /*
3956 * Bias pick_next to pick the sched entity that is
3957 * triggering this preemption.
3958 */
3959 if (!next_buddy_marked)
3960 set_next_buddy(pse);
3a7e73a2 3961 goto preempt;
2f36825b 3962 }
464b7527 3963
3a7e73a2 3964 return;
a65ac745 3965
3a7e73a2
PZ
3966preempt:
3967 resched_task(curr);
3968 /*
3969 * Only set the backward buddy when the current task is still
3970 * on the rq. This can happen when a wakeup gets interleaved
3971 * with schedule on the ->pre_schedule() or idle_balance()
3972 * point, either of which can * drop the rq lock.
3973 *
3974 * Also, during early boot the idle thread is in the fair class,
3975 * for obvious reasons its a bad idea to schedule back to it.
3976 */
3977 if (unlikely(!se->on_rq || curr == rq->idle))
3978 return;
3979
3980 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3981 set_last_buddy(se);
bf0f6f24
IM
3982}
3983
fb8d4724 3984static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3985{
8f4d37ec 3986 struct task_struct *p;
bf0f6f24
IM
3987 struct cfs_rq *cfs_rq = &rq->cfs;
3988 struct sched_entity *se;
3989
36ace27e 3990 if (!cfs_rq->nr_running)
bf0f6f24
IM
3991 return NULL;
3992
3993 do {
9948f4b2 3994 se = pick_next_entity(cfs_rq);
f4b6755f 3995 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3996 cfs_rq = group_cfs_rq(se);
3997 } while (cfs_rq);
3998
8f4d37ec 3999 p = task_of(se);
b39e66ea
MG
4000 if (hrtick_enabled(rq))
4001 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4002
4003 return p;
bf0f6f24
IM
4004}
4005
4006/*
4007 * Account for a descheduled task:
4008 */
31ee529c 4009static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4010{
4011 struct sched_entity *se = &prev->se;
4012 struct cfs_rq *cfs_rq;
4013
4014 for_each_sched_entity(se) {
4015 cfs_rq = cfs_rq_of(se);
ab6cde26 4016 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4017 }
4018}
4019
ac53db59
RR
4020/*
4021 * sched_yield() is very simple
4022 *
4023 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4024 */
4025static void yield_task_fair(struct rq *rq)
4026{
4027 struct task_struct *curr = rq->curr;
4028 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4029 struct sched_entity *se = &curr->se;
4030
4031 /*
4032 * Are we the only task in the tree?
4033 */
4034 if (unlikely(rq->nr_running == 1))
4035 return;
4036
4037 clear_buddies(cfs_rq, se);
4038
4039 if (curr->policy != SCHED_BATCH) {
4040 update_rq_clock(rq);
4041 /*
4042 * Update run-time statistics of the 'current'.
4043 */
4044 update_curr(cfs_rq);
916671c0
MG
4045 /*
4046 * Tell update_rq_clock() that we've just updated,
4047 * so we don't do microscopic update in schedule()
4048 * and double the fastpath cost.
4049 */
4050 rq->skip_clock_update = 1;
ac53db59
RR
4051 }
4052
4053 set_skip_buddy(se);
4054}
4055
d95f4122
MG
4056static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4057{
4058 struct sched_entity *se = &p->se;
4059
5238cdd3
PT
4060 /* throttled hierarchies are not runnable */
4061 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4062 return false;
4063
4064 /* Tell the scheduler that we'd really like pse to run next. */
4065 set_next_buddy(se);
4066
d95f4122
MG
4067 yield_task_fair(rq);
4068
4069 return true;
4070}
4071
681f3e68 4072#ifdef CONFIG_SMP
bf0f6f24 4073/**************************************************
e9c84cb8
PZ
4074 * Fair scheduling class load-balancing methods.
4075 *
4076 * BASICS
4077 *
4078 * The purpose of load-balancing is to achieve the same basic fairness the
4079 * per-cpu scheduler provides, namely provide a proportional amount of compute
4080 * time to each task. This is expressed in the following equation:
4081 *
4082 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4083 *
4084 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4085 * W_i,0 is defined as:
4086 *
4087 * W_i,0 = \Sum_j w_i,j (2)
4088 *
4089 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4090 * is derived from the nice value as per prio_to_weight[].
4091 *
4092 * The weight average is an exponential decay average of the instantaneous
4093 * weight:
4094 *
4095 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4096 *
4097 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4098 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4099 * can also include other factors [XXX].
4100 *
4101 * To achieve this balance we define a measure of imbalance which follows
4102 * directly from (1):
4103 *
4104 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4105 *
4106 * We them move tasks around to minimize the imbalance. In the continuous
4107 * function space it is obvious this converges, in the discrete case we get
4108 * a few fun cases generally called infeasible weight scenarios.
4109 *
4110 * [XXX expand on:
4111 * - infeasible weights;
4112 * - local vs global optima in the discrete case. ]
4113 *
4114 *
4115 * SCHED DOMAINS
4116 *
4117 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4118 * for all i,j solution, we create a tree of cpus that follows the hardware
4119 * topology where each level pairs two lower groups (or better). This results
4120 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4121 * tree to only the first of the previous level and we decrease the frequency
4122 * of load-balance at each level inv. proportional to the number of cpus in
4123 * the groups.
4124 *
4125 * This yields:
4126 *
4127 * log_2 n 1 n
4128 * \Sum { --- * --- * 2^i } = O(n) (5)
4129 * i = 0 2^i 2^i
4130 * `- size of each group
4131 * | | `- number of cpus doing load-balance
4132 * | `- freq
4133 * `- sum over all levels
4134 *
4135 * Coupled with a limit on how many tasks we can migrate every balance pass,
4136 * this makes (5) the runtime complexity of the balancer.
4137 *
4138 * An important property here is that each CPU is still (indirectly) connected
4139 * to every other cpu in at most O(log n) steps:
4140 *
4141 * The adjacency matrix of the resulting graph is given by:
4142 *
4143 * log_2 n
4144 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4145 * k = 0
4146 *
4147 * And you'll find that:
4148 *
4149 * A^(log_2 n)_i,j != 0 for all i,j (7)
4150 *
4151 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4152 * The task movement gives a factor of O(m), giving a convergence complexity
4153 * of:
4154 *
4155 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4156 *
4157 *
4158 * WORK CONSERVING
4159 *
4160 * In order to avoid CPUs going idle while there's still work to do, new idle
4161 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4162 * tree itself instead of relying on other CPUs to bring it work.
4163 *
4164 * This adds some complexity to both (5) and (8) but it reduces the total idle
4165 * time.
4166 *
4167 * [XXX more?]
4168 *
4169 *
4170 * CGROUPS
4171 *
4172 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4173 *
4174 * s_k,i
4175 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4176 * S_k
4177 *
4178 * Where
4179 *
4180 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4181 *
4182 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4183 *
4184 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4185 * property.
4186 *
4187 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4188 * rewrite all of this once again.]
4189 */
bf0f6f24 4190
ed387b78
HS
4191static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4192
ddcdf6e7 4193#define LBF_ALL_PINNED 0x01
367456c7 4194#define LBF_NEED_BREAK 0x02
6263322c
PZ
4195#define LBF_DST_PINNED 0x04
4196#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4197
4198struct lb_env {
4199 struct sched_domain *sd;
4200
ddcdf6e7 4201 struct rq *src_rq;
85c1e7da 4202 int src_cpu;
ddcdf6e7
PZ
4203
4204 int dst_cpu;
4205 struct rq *dst_rq;
4206
88b8dac0
SV
4207 struct cpumask *dst_grpmask;
4208 int new_dst_cpu;
ddcdf6e7 4209 enum cpu_idle_type idle;
bd939f45 4210 long imbalance;
b9403130
MW
4211 /* The set of CPUs under consideration for load-balancing */
4212 struct cpumask *cpus;
4213
ddcdf6e7 4214 unsigned int flags;
367456c7
PZ
4215
4216 unsigned int loop;
4217 unsigned int loop_break;
4218 unsigned int loop_max;
ddcdf6e7
PZ
4219};
4220
1e3c88bd 4221/*
ddcdf6e7 4222 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4223 * Both runqueues must be locked.
4224 */
ddcdf6e7 4225static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4226{
ddcdf6e7
PZ
4227 deactivate_task(env->src_rq, p, 0);
4228 set_task_cpu(p, env->dst_cpu);
4229 activate_task(env->dst_rq, p, 0);
4230 check_preempt_curr(env->dst_rq, p, 0);
6fe6b2d6
RR
4231#ifdef CONFIG_NUMA_BALANCING
4232 if (p->numa_preferred_nid != -1) {
4233 int src_nid = cpu_to_node(env->src_cpu);
4234 int dst_nid = cpu_to_node(env->dst_cpu);
4235
4236 /*
4237 * If the load balancer has moved the task then limit
4238 * migrations from taking place in the short term in
4239 * case this is a short-lived migration.
4240 */
4241 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4242 p->numa_migrate_seq = 0;
4243 }
4244#endif
1e3c88bd
PZ
4245}
4246
029632fb
PZ
4247/*
4248 * Is this task likely cache-hot:
4249 */
4250static int
4251task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4252{
4253 s64 delta;
4254
4255 if (p->sched_class != &fair_sched_class)
4256 return 0;
4257
4258 if (unlikely(p->policy == SCHED_IDLE))
4259 return 0;
4260
4261 /*
4262 * Buddy candidates are cache hot:
4263 */
4264 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4265 (&p->se == cfs_rq_of(&p->se)->next ||
4266 &p->se == cfs_rq_of(&p->se)->last))
4267 return 1;
4268
4269 if (sysctl_sched_migration_cost == -1)
4270 return 1;
4271 if (sysctl_sched_migration_cost == 0)
4272 return 0;
4273
4274 delta = now - p->se.exec_start;
4275
4276 return delta < (s64)sysctl_sched_migration_cost;
4277}
4278
3a7053b3
MG
4279#ifdef CONFIG_NUMA_BALANCING
4280/* Returns true if the destination node has incurred more faults */
4281static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4282{
4283 int src_nid, dst_nid;
4284
4285 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4286 !(env->sd->flags & SD_NUMA)) {
4287 return false;
4288 }
4289
4290 src_nid = cpu_to_node(env->src_cpu);
4291 dst_nid = cpu_to_node(env->dst_cpu);
4292
4293 if (src_nid == dst_nid ||
4294 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4295 return false;
4296
4297 if (dst_nid == p->numa_preferred_nid ||
ac8e895b 4298 task_faults(p, dst_nid) > task_faults(p, src_nid))
3a7053b3
MG
4299 return true;
4300
4301 return false;
4302}
7a0f3083
MG
4303
4304
4305static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4306{
4307 int src_nid, dst_nid;
4308
4309 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4310 return false;
4311
4312 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4313 return false;
4314
4315 src_nid = cpu_to_node(env->src_cpu);
4316 dst_nid = cpu_to_node(env->dst_cpu);
4317
4318 if (src_nid == dst_nid ||
4319 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4320 return false;
4321
ac8e895b 4322 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
7a0f3083
MG
4323 return true;
4324
4325 return false;
4326}
4327
3a7053b3
MG
4328#else
4329static inline bool migrate_improves_locality(struct task_struct *p,
4330 struct lb_env *env)
4331{
4332 return false;
4333}
7a0f3083
MG
4334
4335static inline bool migrate_degrades_locality(struct task_struct *p,
4336 struct lb_env *env)
4337{
4338 return false;
4339}
3a7053b3
MG
4340#endif
4341
1e3c88bd
PZ
4342/*
4343 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4344 */
4345static
8e45cb54 4346int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4347{
4348 int tsk_cache_hot = 0;
4349 /*
4350 * We do not migrate tasks that are:
d3198084 4351 * 1) throttled_lb_pair, or
1e3c88bd 4352 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4353 * 3) running (obviously), or
4354 * 4) are cache-hot on their current CPU.
1e3c88bd 4355 */
d3198084
JK
4356 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4357 return 0;
4358
ddcdf6e7 4359 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4360 int cpu;
88b8dac0 4361
41acab88 4362 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4363
6263322c
PZ
4364 env->flags |= LBF_SOME_PINNED;
4365
88b8dac0
SV
4366 /*
4367 * Remember if this task can be migrated to any other cpu in
4368 * our sched_group. We may want to revisit it if we couldn't
4369 * meet load balance goals by pulling other tasks on src_cpu.
4370 *
4371 * Also avoid computing new_dst_cpu if we have already computed
4372 * one in current iteration.
4373 */
6263322c 4374 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4375 return 0;
4376
e02e60c1
JK
4377 /* Prevent to re-select dst_cpu via env's cpus */
4378 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4379 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4380 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4381 env->new_dst_cpu = cpu;
4382 break;
4383 }
88b8dac0 4384 }
e02e60c1 4385
1e3c88bd
PZ
4386 return 0;
4387 }
88b8dac0
SV
4388
4389 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4390 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4391
ddcdf6e7 4392 if (task_running(env->src_rq, p)) {
41acab88 4393 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4394 return 0;
4395 }
4396
4397 /*
4398 * Aggressive migration if:
3a7053b3
MG
4399 * 1) destination numa is preferred
4400 * 2) task is cache cold, or
4401 * 3) too many balance attempts have failed.
1e3c88bd 4402 */
78becc27 4403 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4404 if (!tsk_cache_hot)
4405 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4406
4407 if (migrate_improves_locality(p, env)) {
4408#ifdef CONFIG_SCHEDSTATS
4409 if (tsk_cache_hot) {
4410 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4411 schedstat_inc(p, se.statistics.nr_forced_migrations);
4412 }
4413#endif
4414 return 1;
4415 }
4416
1e3c88bd 4417 if (!tsk_cache_hot ||
8e45cb54 4418 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4419
1e3c88bd 4420 if (tsk_cache_hot) {
8e45cb54 4421 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4422 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4423 }
4e2dcb73 4424
1e3c88bd
PZ
4425 return 1;
4426 }
4427
4e2dcb73
ZH
4428 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4429 return 0;
1e3c88bd
PZ
4430}
4431
897c395f
PZ
4432/*
4433 * move_one_task tries to move exactly one task from busiest to this_rq, as
4434 * part of active balancing operations within "domain".
4435 * Returns 1 if successful and 0 otherwise.
4436 *
4437 * Called with both runqueues locked.
4438 */
8e45cb54 4439static int move_one_task(struct lb_env *env)
897c395f
PZ
4440{
4441 struct task_struct *p, *n;
897c395f 4442
367456c7 4443 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4444 if (!can_migrate_task(p, env))
4445 continue;
897c395f 4446
367456c7
PZ
4447 move_task(p, env);
4448 /*
4449 * Right now, this is only the second place move_task()
4450 * is called, so we can safely collect move_task()
4451 * stats here rather than inside move_task().
4452 */
4453 schedstat_inc(env->sd, lb_gained[env->idle]);
4454 return 1;
897c395f 4455 }
897c395f
PZ
4456 return 0;
4457}
4458
367456c7
PZ
4459static unsigned long task_h_load(struct task_struct *p);
4460
eb95308e
PZ
4461static const unsigned int sched_nr_migrate_break = 32;
4462
5d6523eb 4463/*
bd939f45 4464 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4465 * this_rq, as part of a balancing operation within domain "sd".
4466 * Returns 1 if successful and 0 otherwise.
4467 *
4468 * Called with both runqueues locked.
4469 */
4470static int move_tasks(struct lb_env *env)
1e3c88bd 4471{
5d6523eb
PZ
4472 struct list_head *tasks = &env->src_rq->cfs_tasks;
4473 struct task_struct *p;
367456c7
PZ
4474 unsigned long load;
4475 int pulled = 0;
1e3c88bd 4476
bd939f45 4477 if (env->imbalance <= 0)
5d6523eb 4478 return 0;
1e3c88bd 4479
5d6523eb
PZ
4480 while (!list_empty(tasks)) {
4481 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4482
367456c7
PZ
4483 env->loop++;
4484 /* We've more or less seen every task there is, call it quits */
5d6523eb 4485 if (env->loop > env->loop_max)
367456c7 4486 break;
5d6523eb
PZ
4487
4488 /* take a breather every nr_migrate tasks */
367456c7 4489 if (env->loop > env->loop_break) {
eb95308e 4490 env->loop_break += sched_nr_migrate_break;
8e45cb54 4491 env->flags |= LBF_NEED_BREAK;
ee00e66f 4492 break;
a195f004 4493 }
1e3c88bd 4494
d3198084 4495 if (!can_migrate_task(p, env))
367456c7
PZ
4496 goto next;
4497
4498 load = task_h_load(p);
5d6523eb 4499
eb95308e 4500 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4501 goto next;
4502
bd939f45 4503 if ((load / 2) > env->imbalance)
367456c7 4504 goto next;
1e3c88bd 4505
ddcdf6e7 4506 move_task(p, env);
ee00e66f 4507 pulled++;
bd939f45 4508 env->imbalance -= load;
1e3c88bd
PZ
4509
4510#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4511 /*
4512 * NEWIDLE balancing is a source of latency, so preemptible
4513 * kernels will stop after the first task is pulled to minimize
4514 * the critical section.
4515 */
5d6523eb 4516 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4517 break;
1e3c88bd
PZ
4518#endif
4519
ee00e66f
PZ
4520 /*
4521 * We only want to steal up to the prescribed amount of
4522 * weighted load.
4523 */
bd939f45 4524 if (env->imbalance <= 0)
ee00e66f 4525 break;
367456c7
PZ
4526
4527 continue;
4528next:
5d6523eb 4529 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4530 }
5d6523eb 4531
1e3c88bd 4532 /*
ddcdf6e7
PZ
4533 * Right now, this is one of only two places move_task() is called,
4534 * so we can safely collect move_task() stats here rather than
4535 * inside move_task().
1e3c88bd 4536 */
8e45cb54 4537 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4538
5d6523eb 4539 return pulled;
1e3c88bd
PZ
4540}
4541
230059de 4542#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4543/*
4544 * update tg->load_weight by folding this cpu's load_avg
4545 */
48a16753 4546static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4547{
48a16753
PT
4548 struct sched_entity *se = tg->se[cpu];
4549 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4550
48a16753
PT
4551 /* throttled entities do not contribute to load */
4552 if (throttled_hierarchy(cfs_rq))
4553 return;
9e3081ca 4554
aff3e498 4555 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4556
82958366
PT
4557 if (se) {
4558 update_entity_load_avg(se, 1);
4559 /*
4560 * We pivot on our runnable average having decayed to zero for
4561 * list removal. This generally implies that all our children
4562 * have also been removed (modulo rounding error or bandwidth
4563 * control); however, such cases are rare and we can fix these
4564 * at enqueue.
4565 *
4566 * TODO: fix up out-of-order children on enqueue.
4567 */
4568 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4569 list_del_leaf_cfs_rq(cfs_rq);
4570 } else {
48a16753 4571 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4572 update_rq_runnable_avg(rq, rq->nr_running);
4573 }
9e3081ca
PZ
4574}
4575
48a16753 4576static void update_blocked_averages(int cpu)
9e3081ca 4577{
9e3081ca 4578 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4579 struct cfs_rq *cfs_rq;
4580 unsigned long flags;
9e3081ca 4581
48a16753
PT
4582 raw_spin_lock_irqsave(&rq->lock, flags);
4583 update_rq_clock(rq);
9763b67f
PZ
4584 /*
4585 * Iterates the task_group tree in a bottom up fashion, see
4586 * list_add_leaf_cfs_rq() for details.
4587 */
64660c86 4588 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4589 /*
4590 * Note: We may want to consider periodically releasing
4591 * rq->lock about these updates so that creating many task
4592 * groups does not result in continually extending hold time.
4593 */
4594 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4595 }
48a16753
PT
4596
4597 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4598}
4599
9763b67f 4600/*
68520796 4601 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
4602 * This needs to be done in a top-down fashion because the load of a child
4603 * group is a fraction of its parents load.
4604 */
68520796 4605static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 4606{
68520796
VD
4607 struct rq *rq = rq_of(cfs_rq);
4608 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 4609 unsigned long now = jiffies;
68520796 4610 unsigned long load;
a35b6466 4611
68520796 4612 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
4613 return;
4614
68520796
VD
4615 cfs_rq->h_load_next = NULL;
4616 for_each_sched_entity(se) {
4617 cfs_rq = cfs_rq_of(se);
4618 cfs_rq->h_load_next = se;
4619 if (cfs_rq->last_h_load_update == now)
4620 break;
4621 }
a35b6466 4622
68520796 4623 if (!se) {
7e3115ef 4624 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
4625 cfs_rq->last_h_load_update = now;
4626 }
4627
4628 while ((se = cfs_rq->h_load_next) != NULL) {
4629 load = cfs_rq->h_load;
4630 load = div64_ul(load * se->avg.load_avg_contrib,
4631 cfs_rq->runnable_load_avg + 1);
4632 cfs_rq = group_cfs_rq(se);
4633 cfs_rq->h_load = load;
4634 cfs_rq->last_h_load_update = now;
4635 }
9763b67f
PZ
4636}
4637
367456c7 4638static unsigned long task_h_load(struct task_struct *p)
230059de 4639{
367456c7 4640 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 4641
68520796 4642 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
4643 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4644 cfs_rq->runnable_load_avg + 1);
230059de
PZ
4645}
4646#else
48a16753 4647static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4648{
4649}
4650
367456c7 4651static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4652{
a003a25b 4653 return p->se.avg.load_avg_contrib;
1e3c88bd 4654}
230059de 4655#endif
1e3c88bd 4656
1e3c88bd 4657/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
4658/*
4659 * sg_lb_stats - stats of a sched_group required for load_balancing
4660 */
4661struct sg_lb_stats {
4662 unsigned long avg_load; /*Avg load across the CPUs of the group */
4663 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 4664 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 4665 unsigned long load_per_task;
3ae11c90 4666 unsigned long group_power;
147c5fc2
PZ
4667 unsigned int sum_nr_running; /* Nr tasks running in the group */
4668 unsigned int group_capacity;
4669 unsigned int idle_cpus;
4670 unsigned int group_weight;
1e3c88bd 4671 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4672 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4673};
4674
56cf515b
JK
4675/*
4676 * sd_lb_stats - Structure to store the statistics of a sched_domain
4677 * during load balancing.
4678 */
4679struct sd_lb_stats {
4680 struct sched_group *busiest; /* Busiest group in this sd */
4681 struct sched_group *local; /* Local group in this sd */
4682 unsigned long total_load; /* Total load of all groups in sd */
4683 unsigned long total_pwr; /* Total power of all groups in sd */
4684 unsigned long avg_load; /* Average load across all groups in sd */
4685
56cf515b 4686 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 4687 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
4688};
4689
147c5fc2
PZ
4690static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4691{
4692 /*
4693 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4694 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4695 * We must however clear busiest_stat::avg_load because
4696 * update_sd_pick_busiest() reads this before assignment.
4697 */
4698 *sds = (struct sd_lb_stats){
4699 .busiest = NULL,
4700 .local = NULL,
4701 .total_load = 0UL,
4702 .total_pwr = 0UL,
4703 .busiest_stat = {
4704 .avg_load = 0UL,
4705 },
4706 };
4707}
4708
1e3c88bd
PZ
4709/**
4710 * get_sd_load_idx - Obtain the load index for a given sched domain.
4711 * @sd: The sched_domain whose load_idx is to be obtained.
4712 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
4713 *
4714 * Return: The load index.
1e3c88bd
PZ
4715 */
4716static inline int get_sd_load_idx(struct sched_domain *sd,
4717 enum cpu_idle_type idle)
4718{
4719 int load_idx;
4720
4721 switch (idle) {
4722 case CPU_NOT_IDLE:
4723 load_idx = sd->busy_idx;
4724 break;
4725
4726 case CPU_NEWLY_IDLE:
4727 load_idx = sd->newidle_idx;
4728 break;
4729 default:
4730 load_idx = sd->idle_idx;
4731 break;
4732 }
4733
4734 return load_idx;
4735}
4736
15f803c9 4737static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4738{
1399fa78 4739 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4740}
4741
4742unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4743{
4744 return default_scale_freq_power(sd, cpu);
4745}
4746
15f803c9 4747static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4748{
669c55e9 4749 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4750 unsigned long smt_gain = sd->smt_gain;
4751
4752 smt_gain /= weight;
4753
4754 return smt_gain;
4755}
4756
4757unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4758{
4759 return default_scale_smt_power(sd, cpu);
4760}
4761
15f803c9 4762static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4763{
4764 struct rq *rq = cpu_rq(cpu);
b654f7de 4765 u64 total, available, age_stamp, avg;
1e3c88bd 4766
b654f7de
PZ
4767 /*
4768 * Since we're reading these variables without serialization make sure
4769 * we read them once before doing sanity checks on them.
4770 */
4771 age_stamp = ACCESS_ONCE(rq->age_stamp);
4772 avg = ACCESS_ONCE(rq->rt_avg);
4773
78becc27 4774 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4775
b654f7de 4776 if (unlikely(total < avg)) {
aa483808
VP
4777 /* Ensures that power won't end up being negative */
4778 available = 0;
4779 } else {
b654f7de 4780 available = total - avg;
aa483808 4781 }
1e3c88bd 4782
1399fa78
NR
4783 if (unlikely((s64)total < SCHED_POWER_SCALE))
4784 total = SCHED_POWER_SCALE;
1e3c88bd 4785
1399fa78 4786 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4787
4788 return div_u64(available, total);
4789}
4790
4791static void update_cpu_power(struct sched_domain *sd, int cpu)
4792{
669c55e9 4793 unsigned long weight = sd->span_weight;
1399fa78 4794 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4795 struct sched_group *sdg = sd->groups;
4796
1e3c88bd
PZ
4797 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4798 if (sched_feat(ARCH_POWER))
4799 power *= arch_scale_smt_power(sd, cpu);
4800 else
4801 power *= default_scale_smt_power(sd, cpu);
4802
1399fa78 4803 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4804 }
4805
9c3f75cb 4806 sdg->sgp->power_orig = power;
9d5efe05
SV
4807
4808 if (sched_feat(ARCH_POWER))
4809 power *= arch_scale_freq_power(sd, cpu);
4810 else
4811 power *= default_scale_freq_power(sd, cpu);
4812
1399fa78 4813 power >>= SCHED_POWER_SHIFT;
9d5efe05 4814
1e3c88bd 4815 power *= scale_rt_power(cpu);
1399fa78 4816 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4817
4818 if (!power)
4819 power = 1;
4820
e51fd5e2 4821 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4822 sdg->sgp->power = power;
1e3c88bd
PZ
4823}
4824
029632fb 4825void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4826{
4827 struct sched_domain *child = sd->child;
4828 struct sched_group *group, *sdg = sd->groups;
863bffc8 4829 unsigned long power, power_orig;
4ec4412e
VG
4830 unsigned long interval;
4831
4832 interval = msecs_to_jiffies(sd->balance_interval);
4833 interval = clamp(interval, 1UL, max_load_balance_interval);
4834 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4835
4836 if (!child) {
4837 update_cpu_power(sd, cpu);
4838 return;
4839 }
4840
863bffc8 4841 power_orig = power = 0;
1e3c88bd 4842
74a5ce20
PZ
4843 if (child->flags & SD_OVERLAP) {
4844 /*
4845 * SD_OVERLAP domains cannot assume that child groups
4846 * span the current group.
4847 */
4848
863bffc8
PZ
4849 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4850 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4851
4852 power_orig += sg->sgp->power_orig;
4853 power += sg->sgp->power;
4854 }
74a5ce20
PZ
4855 } else {
4856 /*
4857 * !SD_OVERLAP domains can assume that child groups
4858 * span the current group.
4859 */
4860
4861 group = child->groups;
4862 do {
863bffc8 4863 power_orig += group->sgp->power_orig;
74a5ce20
PZ
4864 power += group->sgp->power;
4865 group = group->next;
4866 } while (group != child->groups);
4867 }
1e3c88bd 4868
863bffc8
PZ
4869 sdg->sgp->power_orig = power_orig;
4870 sdg->sgp->power = power;
1e3c88bd
PZ
4871}
4872
9d5efe05
SV
4873/*
4874 * Try and fix up capacity for tiny siblings, this is needed when
4875 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4876 * which on its own isn't powerful enough.
4877 *
4878 * See update_sd_pick_busiest() and check_asym_packing().
4879 */
4880static inline int
4881fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4882{
4883 /*
1399fa78 4884 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4885 */
a6c75f2f 4886 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4887 return 0;
4888
4889 /*
4890 * If ~90% of the cpu_power is still there, we're good.
4891 */
9c3f75cb 4892 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4893 return 1;
4894
4895 return 0;
4896}
4897
30ce5dab
PZ
4898/*
4899 * Group imbalance indicates (and tries to solve) the problem where balancing
4900 * groups is inadequate due to tsk_cpus_allowed() constraints.
4901 *
4902 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
4903 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
4904 * Something like:
4905 *
4906 * { 0 1 2 3 } { 4 5 6 7 }
4907 * * * * *
4908 *
4909 * If we were to balance group-wise we'd place two tasks in the first group and
4910 * two tasks in the second group. Clearly this is undesired as it will overload
4911 * cpu 3 and leave one of the cpus in the second group unused.
4912 *
4913 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
4914 * by noticing the lower domain failed to reach balance and had difficulty
4915 * moving tasks due to affinity constraints.
30ce5dab
PZ
4916 *
4917 * When this is so detected; this group becomes a candidate for busiest; see
4918 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 4919 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
4920 * to create an effective group imbalance.
4921 *
4922 * This is a somewhat tricky proposition since the next run might not find the
4923 * group imbalance and decide the groups need to be balanced again. A most
4924 * subtle and fragile situation.
4925 */
4926
6263322c 4927static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 4928{
6263322c 4929 return group->sgp->imbalance;
30ce5dab
PZ
4930}
4931
b37d9316
PZ
4932/*
4933 * Compute the group capacity.
4934 *
c61037e9
PZ
4935 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
4936 * first dividing out the smt factor and computing the actual number of cores
4937 * and limit power unit capacity with that.
b37d9316
PZ
4938 */
4939static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
4940{
c61037e9
PZ
4941 unsigned int capacity, smt, cpus;
4942 unsigned int power, power_orig;
4943
4944 power = group->sgp->power;
4945 power_orig = group->sgp->power_orig;
4946 cpus = group->group_weight;
b37d9316 4947
c61037e9
PZ
4948 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
4949 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
4950 capacity = cpus / smt; /* cores */
b37d9316 4951
c61037e9 4952 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
4953 if (!capacity)
4954 capacity = fix_small_capacity(env->sd, group);
4955
4956 return capacity;
4957}
4958
1e3c88bd
PZ
4959/**
4960 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4961 * @env: The load balancing environment.
1e3c88bd 4962 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4963 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4964 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4965 * @sgs: variable to hold the statistics for this group.
4966 */
bd939f45
PZ
4967static inline void update_sg_lb_stats(struct lb_env *env,
4968 struct sched_group *group, int load_idx,
23f0d209 4969 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 4970{
30ce5dab
PZ
4971 unsigned long nr_running;
4972 unsigned long load;
bd939f45 4973 int i;
1e3c88bd 4974
b72ff13c
PZ
4975 memset(sgs, 0, sizeof(*sgs));
4976
b9403130 4977 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4978 struct rq *rq = cpu_rq(i);
4979
e44bc5c5
PZ
4980 nr_running = rq->nr_running;
4981
1e3c88bd 4982 /* Bias balancing toward cpus of our domain */
6263322c 4983 if (local_group)
04f733b4 4984 load = target_load(i, load_idx);
6263322c 4985 else
1e3c88bd 4986 load = source_load(i, load_idx);
1e3c88bd
PZ
4987
4988 sgs->group_load += load;
e44bc5c5 4989 sgs->sum_nr_running += nr_running;
1e3c88bd 4990 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4991 if (idle_cpu(i))
4992 sgs->idle_cpus++;
1e3c88bd
PZ
4993 }
4994
1e3c88bd 4995 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
4996 sgs->group_power = group->sgp->power;
4997 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 4998
dd5feea1 4999 if (sgs->sum_nr_running)
38d0f770 5000 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5001
aae6d3dd 5002 sgs->group_weight = group->group_weight;
fab47622 5003
b37d9316
PZ
5004 sgs->group_imb = sg_imbalanced(group);
5005 sgs->group_capacity = sg_capacity(env, group);
5006
fab47622
NR
5007 if (sgs->group_capacity > sgs->sum_nr_running)
5008 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5009}
5010
532cb4c4
MN
5011/**
5012 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5013 * @env: The load balancing environment.
532cb4c4
MN
5014 * @sds: sched_domain statistics
5015 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5016 * @sgs: sched_group statistics
532cb4c4
MN
5017 *
5018 * Determine if @sg is a busier group than the previously selected
5019 * busiest group.
e69f6186
YB
5020 *
5021 * Return: %true if @sg is a busier group than the previously selected
5022 * busiest group. %false otherwise.
532cb4c4 5023 */
bd939f45 5024static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5025 struct sd_lb_stats *sds,
5026 struct sched_group *sg,
bd939f45 5027 struct sg_lb_stats *sgs)
532cb4c4 5028{
56cf515b 5029 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5030 return false;
5031
5032 if (sgs->sum_nr_running > sgs->group_capacity)
5033 return true;
5034
5035 if (sgs->group_imb)
5036 return true;
5037
5038 /*
5039 * ASYM_PACKING needs to move all the work to the lowest
5040 * numbered CPUs in the group, therefore mark all groups
5041 * higher than ourself as busy.
5042 */
bd939f45
PZ
5043 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5044 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5045 if (!sds->busiest)
5046 return true;
5047
5048 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5049 return true;
5050 }
5051
5052 return false;
5053}
5054
1e3c88bd 5055/**
461819ac 5056 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5057 * @env: The load balancing environment.
1e3c88bd
PZ
5058 * @balance: Should we balance.
5059 * @sds: variable to hold the statistics for this sched_domain.
5060 */
bd939f45 5061static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 5062 struct sd_lb_stats *sds)
1e3c88bd 5063{
bd939f45
PZ
5064 struct sched_domain *child = env->sd->child;
5065 struct sched_group *sg = env->sd->groups;
56cf515b 5066 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5067 int load_idx, prefer_sibling = 0;
5068
5069 if (child && child->flags & SD_PREFER_SIBLING)
5070 prefer_sibling = 1;
5071
bd939f45 5072 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5073
5074 do {
56cf515b 5075 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5076 int local_group;
5077
bd939f45 5078 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5079 if (local_group) {
5080 sds->local = sg;
5081 sgs = &sds->local_stat;
b72ff13c
PZ
5082
5083 if (env->idle != CPU_NEWLY_IDLE ||
5084 time_after_eq(jiffies, sg->sgp->next_update))
5085 update_group_power(env->sd, env->dst_cpu);
56cf515b 5086 }
1e3c88bd 5087
56cf515b 5088 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5089
b72ff13c
PZ
5090 if (local_group)
5091 goto next_group;
5092
1e3c88bd
PZ
5093 /*
5094 * In case the child domain prefers tasks go to siblings
532cb4c4 5095 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5096 * and move all the excess tasks away. We lower the capacity
5097 * of a group only if the local group has the capacity to fit
5098 * these excess tasks, i.e. nr_running < group_capacity. The
5099 * extra check prevents the case where you always pull from the
5100 * heaviest group when it is already under-utilized (possible
5101 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5102 */
b72ff13c
PZ
5103 if (prefer_sibling && sds->local &&
5104 sds->local_stat.group_has_capacity)
147c5fc2 5105 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5106
b72ff13c 5107 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5108 sds->busiest = sg;
56cf515b 5109 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5110 }
5111
b72ff13c
PZ
5112next_group:
5113 /* Now, start updating sd_lb_stats */
5114 sds->total_load += sgs->group_load;
5115 sds->total_pwr += sgs->group_power;
5116
532cb4c4 5117 sg = sg->next;
bd939f45 5118 } while (sg != env->sd->groups);
532cb4c4
MN
5119}
5120
532cb4c4
MN
5121/**
5122 * check_asym_packing - Check to see if the group is packed into the
5123 * sched doman.
5124 *
5125 * This is primarily intended to used at the sibling level. Some
5126 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5127 * case of POWER7, it can move to lower SMT modes only when higher
5128 * threads are idle. When in lower SMT modes, the threads will
5129 * perform better since they share less core resources. Hence when we
5130 * have idle threads, we want them to be the higher ones.
5131 *
5132 * This packing function is run on idle threads. It checks to see if
5133 * the busiest CPU in this domain (core in the P7 case) has a higher
5134 * CPU number than the packing function is being run on. Here we are
5135 * assuming lower CPU number will be equivalent to lower a SMT thread
5136 * number.
5137 *
e69f6186 5138 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5139 * this CPU. The amount of the imbalance is returned in *imbalance.
5140 *
cd96891d 5141 * @env: The load balancing environment.
532cb4c4 5142 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5143 */
bd939f45 5144static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5145{
5146 int busiest_cpu;
5147
bd939f45 5148 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5149 return 0;
5150
5151 if (!sds->busiest)
5152 return 0;
5153
5154 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5155 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5156 return 0;
5157
bd939f45 5158 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5159 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5160 SCHED_POWER_SCALE);
bd939f45 5161
532cb4c4 5162 return 1;
1e3c88bd
PZ
5163}
5164
5165/**
5166 * fix_small_imbalance - Calculate the minor imbalance that exists
5167 * amongst the groups of a sched_domain, during
5168 * load balancing.
cd96891d 5169 * @env: The load balancing environment.
1e3c88bd 5170 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5171 */
bd939f45
PZ
5172static inline
5173void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5174{
5175 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5176 unsigned int imbn = 2;
dd5feea1 5177 unsigned long scaled_busy_load_per_task;
56cf515b 5178 struct sg_lb_stats *local, *busiest;
1e3c88bd 5179
56cf515b
JK
5180 local = &sds->local_stat;
5181 busiest = &sds->busiest_stat;
1e3c88bd 5182
56cf515b
JK
5183 if (!local->sum_nr_running)
5184 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5185 else if (busiest->load_per_task > local->load_per_task)
5186 imbn = 1;
dd5feea1 5187
56cf515b
JK
5188 scaled_busy_load_per_task =
5189 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5190 busiest->group_power;
56cf515b 5191
3029ede3
VD
5192 if (busiest->avg_load + scaled_busy_load_per_task >=
5193 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5194 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5195 return;
5196 }
5197
5198 /*
5199 * OK, we don't have enough imbalance to justify moving tasks,
5200 * however we may be able to increase total CPU power used by
5201 * moving them.
5202 */
5203
3ae11c90 5204 pwr_now += busiest->group_power *
56cf515b 5205 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5206 pwr_now += local->group_power *
56cf515b 5207 min(local->load_per_task, local->avg_load);
1399fa78 5208 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5209
5210 /* Amount of load we'd subtract */
56cf515b 5211 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5212 busiest->group_power;
56cf515b 5213 if (busiest->avg_load > tmp) {
3ae11c90 5214 pwr_move += busiest->group_power *
56cf515b
JK
5215 min(busiest->load_per_task,
5216 busiest->avg_load - tmp);
5217 }
1e3c88bd
PZ
5218
5219 /* Amount of load we'd add */
3ae11c90 5220 if (busiest->avg_load * busiest->group_power <
56cf515b 5221 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5222 tmp = (busiest->avg_load * busiest->group_power) /
5223 local->group_power;
56cf515b
JK
5224 } else {
5225 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5226 local->group_power;
56cf515b 5227 }
3ae11c90
PZ
5228 pwr_move += local->group_power *
5229 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5230 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5231
5232 /* Move if we gain throughput */
5233 if (pwr_move > pwr_now)
56cf515b 5234 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5235}
5236
5237/**
5238 * calculate_imbalance - Calculate the amount of imbalance present within the
5239 * groups of a given sched_domain during load balance.
bd939f45 5240 * @env: load balance environment
1e3c88bd 5241 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5242 */
bd939f45 5243static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5244{
dd5feea1 5245 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5246 struct sg_lb_stats *local, *busiest;
5247
5248 local = &sds->local_stat;
56cf515b 5249 busiest = &sds->busiest_stat;
dd5feea1 5250
56cf515b 5251 if (busiest->group_imb) {
30ce5dab
PZ
5252 /*
5253 * In the group_imb case we cannot rely on group-wide averages
5254 * to ensure cpu-load equilibrium, look at wider averages. XXX
5255 */
56cf515b
JK
5256 busiest->load_per_task =
5257 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5258 }
5259
1e3c88bd
PZ
5260 /*
5261 * In the presence of smp nice balancing, certain scenarios can have
5262 * max load less than avg load(as we skip the groups at or below
5263 * its cpu_power, while calculating max_load..)
5264 */
b1885550
VD
5265 if (busiest->avg_load <= sds->avg_load ||
5266 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5267 env->imbalance = 0;
5268 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5269 }
5270
56cf515b 5271 if (!busiest->group_imb) {
dd5feea1
SS
5272 /*
5273 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5274 * Except of course for the group_imb case, since then we might
5275 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5276 */
56cf515b
JK
5277 load_above_capacity =
5278 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5279
1399fa78 5280 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5281 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5282 }
5283
5284 /*
5285 * We're trying to get all the cpus to the average_load, so we don't
5286 * want to push ourselves above the average load, nor do we wish to
5287 * reduce the max loaded cpu below the average load. At the same time,
5288 * we also don't want to reduce the group load below the group capacity
5289 * (so that we can implement power-savings policies etc). Thus we look
5290 * for the minimum possible imbalance.
dd5feea1 5291 */
30ce5dab 5292 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5293
5294 /* How much load to actually move to equalise the imbalance */
56cf515b 5295 env->imbalance = min(
3ae11c90
PZ
5296 max_pull * busiest->group_power,
5297 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5298 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5299
5300 /*
5301 * if *imbalance is less than the average load per runnable task
25985edc 5302 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5303 * a think about bumping its value to force at least one task to be
5304 * moved
5305 */
56cf515b 5306 if (env->imbalance < busiest->load_per_task)
bd939f45 5307 return fix_small_imbalance(env, sds);
1e3c88bd 5308}
fab47622 5309
1e3c88bd
PZ
5310/******* find_busiest_group() helpers end here *********************/
5311
5312/**
5313 * find_busiest_group - Returns the busiest group within the sched_domain
5314 * if there is an imbalance. If there isn't an imbalance, and
5315 * the user has opted for power-savings, it returns a group whose
5316 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5317 * such a group exists.
5318 *
5319 * Also calculates the amount of weighted load which should be moved
5320 * to restore balance.
5321 *
cd96891d 5322 * @env: The load balancing environment.
1e3c88bd 5323 *
e69f6186 5324 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5325 * - If no imbalance and user has opted for power-savings balance,
5326 * return the least loaded group whose CPUs can be
5327 * put to idle by rebalancing its tasks onto our group.
5328 */
56cf515b 5329static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5330{
56cf515b 5331 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5332 struct sd_lb_stats sds;
5333
147c5fc2 5334 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5335
5336 /*
5337 * Compute the various statistics relavent for load balancing at
5338 * this level.
5339 */
23f0d209 5340 update_sd_lb_stats(env, &sds);
56cf515b
JK
5341 local = &sds.local_stat;
5342 busiest = &sds.busiest_stat;
1e3c88bd 5343
bd939f45
PZ
5344 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5345 check_asym_packing(env, &sds))
532cb4c4
MN
5346 return sds.busiest;
5347
cc57aa8f 5348 /* There is no busy sibling group to pull tasks from */
56cf515b 5349 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5350 goto out_balanced;
5351
1399fa78 5352 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5353
866ab43e
PZ
5354 /*
5355 * If the busiest group is imbalanced the below checks don't
30ce5dab 5356 * work because they assume all things are equal, which typically
866ab43e
PZ
5357 * isn't true due to cpus_allowed constraints and the like.
5358 */
56cf515b 5359 if (busiest->group_imb)
866ab43e
PZ
5360 goto force_balance;
5361
cc57aa8f 5362 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5363 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5364 !busiest->group_has_capacity)
fab47622
NR
5365 goto force_balance;
5366
cc57aa8f
PZ
5367 /*
5368 * If the local group is more busy than the selected busiest group
5369 * don't try and pull any tasks.
5370 */
56cf515b 5371 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5372 goto out_balanced;
5373
cc57aa8f
PZ
5374 /*
5375 * Don't pull any tasks if this group is already above the domain
5376 * average load.
5377 */
56cf515b 5378 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5379 goto out_balanced;
5380
bd939f45 5381 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5382 /*
5383 * This cpu is idle. If the busiest group load doesn't
5384 * have more tasks than the number of available cpu's and
5385 * there is no imbalance between this and busiest group
5386 * wrt to idle cpu's, it is balanced.
5387 */
56cf515b
JK
5388 if ((local->idle_cpus < busiest->idle_cpus) &&
5389 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5390 goto out_balanced;
c186fafe
PZ
5391 } else {
5392 /*
5393 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5394 * imbalance_pct to be conservative.
5395 */
56cf515b
JK
5396 if (100 * busiest->avg_load <=
5397 env->sd->imbalance_pct * local->avg_load)
c186fafe 5398 goto out_balanced;
aae6d3dd 5399 }
1e3c88bd 5400
fab47622 5401force_balance:
1e3c88bd 5402 /* Looks like there is an imbalance. Compute it */
bd939f45 5403 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5404 return sds.busiest;
5405
5406out_balanced:
bd939f45 5407 env->imbalance = 0;
1e3c88bd
PZ
5408 return NULL;
5409}
5410
5411/*
5412 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5413 */
bd939f45 5414static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5415 struct sched_group *group)
1e3c88bd
PZ
5416{
5417 struct rq *busiest = NULL, *rq;
95a79b80 5418 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5419 int i;
5420
6906a408 5421 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5422 unsigned long power = power_of(i);
1399fa78
NR
5423 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5424 SCHED_POWER_SCALE);
1e3c88bd
PZ
5425 unsigned long wl;
5426
9d5efe05 5427 if (!capacity)
bd939f45 5428 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5429
1e3c88bd 5430 rq = cpu_rq(i);
6e40f5bb 5431 wl = weighted_cpuload(i);
1e3c88bd 5432
6e40f5bb
TG
5433 /*
5434 * When comparing with imbalance, use weighted_cpuload()
5435 * which is not scaled with the cpu power.
5436 */
bd939f45 5437 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5438 continue;
5439
6e40f5bb
TG
5440 /*
5441 * For the load comparisons with the other cpu's, consider
5442 * the weighted_cpuload() scaled with the cpu power, so that
5443 * the load can be moved away from the cpu that is potentially
5444 * running at a lower capacity.
95a79b80
JK
5445 *
5446 * Thus we're looking for max(wl_i / power_i), crosswise
5447 * multiplication to rid ourselves of the division works out
5448 * to: wl_i * power_j > wl_j * power_i; where j is our
5449 * previous maximum.
6e40f5bb 5450 */
95a79b80
JK
5451 if (wl * busiest_power > busiest_load * power) {
5452 busiest_load = wl;
5453 busiest_power = power;
1e3c88bd
PZ
5454 busiest = rq;
5455 }
5456 }
5457
5458 return busiest;
5459}
5460
5461/*
5462 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5463 * so long as it is large enough.
5464 */
5465#define MAX_PINNED_INTERVAL 512
5466
5467/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5468DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5469
bd939f45 5470static int need_active_balance(struct lb_env *env)
1af3ed3d 5471{
bd939f45
PZ
5472 struct sched_domain *sd = env->sd;
5473
5474 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5475
5476 /*
5477 * ASYM_PACKING needs to force migrate tasks from busy but
5478 * higher numbered CPUs in order to pack all tasks in the
5479 * lowest numbered CPUs.
5480 */
bd939f45 5481 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5482 return 1;
1af3ed3d
PZ
5483 }
5484
5485 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5486}
5487
969c7921
TH
5488static int active_load_balance_cpu_stop(void *data);
5489
23f0d209
JK
5490static int should_we_balance(struct lb_env *env)
5491{
5492 struct sched_group *sg = env->sd->groups;
5493 struct cpumask *sg_cpus, *sg_mask;
5494 int cpu, balance_cpu = -1;
5495
5496 /*
5497 * In the newly idle case, we will allow all the cpu's
5498 * to do the newly idle load balance.
5499 */
5500 if (env->idle == CPU_NEWLY_IDLE)
5501 return 1;
5502
5503 sg_cpus = sched_group_cpus(sg);
5504 sg_mask = sched_group_mask(sg);
5505 /* Try to find first idle cpu */
5506 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5507 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5508 continue;
5509
5510 balance_cpu = cpu;
5511 break;
5512 }
5513
5514 if (balance_cpu == -1)
5515 balance_cpu = group_balance_cpu(sg);
5516
5517 /*
5518 * First idle cpu or the first cpu(busiest) in this sched group
5519 * is eligible for doing load balancing at this and above domains.
5520 */
b0cff9d8 5521 return balance_cpu == env->dst_cpu;
23f0d209
JK
5522}
5523
1e3c88bd
PZ
5524/*
5525 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5526 * tasks if there is an imbalance.
5527 */
5528static int load_balance(int this_cpu, struct rq *this_rq,
5529 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5530 int *continue_balancing)
1e3c88bd 5531{
88b8dac0 5532 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5533 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5534 struct sched_group *group;
1e3c88bd
PZ
5535 struct rq *busiest;
5536 unsigned long flags;
e6252c3e 5537 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5538
8e45cb54
PZ
5539 struct lb_env env = {
5540 .sd = sd,
ddcdf6e7
PZ
5541 .dst_cpu = this_cpu,
5542 .dst_rq = this_rq,
88b8dac0 5543 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5544 .idle = idle,
eb95308e 5545 .loop_break = sched_nr_migrate_break,
b9403130 5546 .cpus = cpus,
8e45cb54
PZ
5547 };
5548
cfc03118
JK
5549 /*
5550 * For NEWLY_IDLE load_balancing, we don't need to consider
5551 * other cpus in our group
5552 */
e02e60c1 5553 if (idle == CPU_NEWLY_IDLE)
cfc03118 5554 env.dst_grpmask = NULL;
cfc03118 5555
1e3c88bd
PZ
5556 cpumask_copy(cpus, cpu_active_mask);
5557
1e3c88bd
PZ
5558 schedstat_inc(sd, lb_count[idle]);
5559
5560redo:
23f0d209
JK
5561 if (!should_we_balance(&env)) {
5562 *continue_balancing = 0;
1e3c88bd 5563 goto out_balanced;
23f0d209 5564 }
1e3c88bd 5565
23f0d209 5566 group = find_busiest_group(&env);
1e3c88bd
PZ
5567 if (!group) {
5568 schedstat_inc(sd, lb_nobusyg[idle]);
5569 goto out_balanced;
5570 }
5571
b9403130 5572 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5573 if (!busiest) {
5574 schedstat_inc(sd, lb_nobusyq[idle]);
5575 goto out_balanced;
5576 }
5577
78feefc5 5578 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5579
bd939f45 5580 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5581
5582 ld_moved = 0;
5583 if (busiest->nr_running > 1) {
5584 /*
5585 * Attempt to move tasks. If find_busiest_group has found
5586 * an imbalance but busiest->nr_running <= 1, the group is
5587 * still unbalanced. ld_moved simply stays zero, so it is
5588 * correctly treated as an imbalance.
5589 */
8e45cb54 5590 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5591 env.src_cpu = busiest->cpu;
5592 env.src_rq = busiest;
5593 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5594
5d6523eb 5595more_balance:
1e3c88bd 5596 local_irq_save(flags);
78feefc5 5597 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5598
5599 /*
5600 * cur_ld_moved - load moved in current iteration
5601 * ld_moved - cumulative load moved across iterations
5602 */
5603 cur_ld_moved = move_tasks(&env);
5604 ld_moved += cur_ld_moved;
78feefc5 5605 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5606 local_irq_restore(flags);
5607
5608 /*
5609 * some other cpu did the load balance for us.
5610 */
88b8dac0
SV
5611 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5612 resched_cpu(env.dst_cpu);
5613
f1cd0858
JK
5614 if (env.flags & LBF_NEED_BREAK) {
5615 env.flags &= ~LBF_NEED_BREAK;
5616 goto more_balance;
5617 }
5618
88b8dac0
SV
5619 /*
5620 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5621 * us and move them to an alternate dst_cpu in our sched_group
5622 * where they can run. The upper limit on how many times we
5623 * iterate on same src_cpu is dependent on number of cpus in our
5624 * sched_group.
5625 *
5626 * This changes load balance semantics a bit on who can move
5627 * load to a given_cpu. In addition to the given_cpu itself
5628 * (or a ilb_cpu acting on its behalf where given_cpu is
5629 * nohz-idle), we now have balance_cpu in a position to move
5630 * load to given_cpu. In rare situations, this may cause
5631 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5632 * _independently_ and at _same_ time to move some load to
5633 * given_cpu) causing exceess load to be moved to given_cpu.
5634 * This however should not happen so much in practice and
5635 * moreover subsequent load balance cycles should correct the
5636 * excess load moved.
5637 */
6263322c 5638 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 5639
7aff2e3a
VD
5640 /* Prevent to re-select dst_cpu via env's cpus */
5641 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5642
78feefc5 5643 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 5644 env.dst_cpu = env.new_dst_cpu;
6263322c 5645 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
5646 env.loop = 0;
5647 env.loop_break = sched_nr_migrate_break;
e02e60c1 5648
88b8dac0
SV
5649 /*
5650 * Go back to "more_balance" rather than "redo" since we
5651 * need to continue with same src_cpu.
5652 */
5653 goto more_balance;
5654 }
1e3c88bd 5655
6263322c
PZ
5656 /*
5657 * We failed to reach balance because of affinity.
5658 */
5659 if (sd_parent) {
5660 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5661
5662 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5663 *group_imbalance = 1;
5664 } else if (*group_imbalance)
5665 *group_imbalance = 0;
5666 }
5667
1e3c88bd 5668 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5669 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5670 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5671 if (!cpumask_empty(cpus)) {
5672 env.loop = 0;
5673 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5674 goto redo;
bbf18b19 5675 }
1e3c88bd
PZ
5676 goto out_balanced;
5677 }
5678 }
5679
5680 if (!ld_moved) {
5681 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5682 /*
5683 * Increment the failure counter only on periodic balance.
5684 * We do not want newidle balance, which can be very
5685 * frequent, pollute the failure counter causing
5686 * excessive cache_hot migrations and active balances.
5687 */
5688 if (idle != CPU_NEWLY_IDLE)
5689 sd->nr_balance_failed++;
1e3c88bd 5690
bd939f45 5691 if (need_active_balance(&env)) {
1e3c88bd
PZ
5692 raw_spin_lock_irqsave(&busiest->lock, flags);
5693
969c7921
TH
5694 /* don't kick the active_load_balance_cpu_stop,
5695 * if the curr task on busiest cpu can't be
5696 * moved to this_cpu
1e3c88bd
PZ
5697 */
5698 if (!cpumask_test_cpu(this_cpu,
fa17b507 5699 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5700 raw_spin_unlock_irqrestore(&busiest->lock,
5701 flags);
8e45cb54 5702 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5703 goto out_one_pinned;
5704 }
5705
969c7921
TH
5706 /*
5707 * ->active_balance synchronizes accesses to
5708 * ->active_balance_work. Once set, it's cleared
5709 * only after active load balance is finished.
5710 */
1e3c88bd
PZ
5711 if (!busiest->active_balance) {
5712 busiest->active_balance = 1;
5713 busiest->push_cpu = this_cpu;
5714 active_balance = 1;
5715 }
5716 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5717
bd939f45 5718 if (active_balance) {
969c7921
TH
5719 stop_one_cpu_nowait(cpu_of(busiest),
5720 active_load_balance_cpu_stop, busiest,
5721 &busiest->active_balance_work);
bd939f45 5722 }
1e3c88bd
PZ
5723
5724 /*
5725 * We've kicked active balancing, reset the failure
5726 * counter.
5727 */
5728 sd->nr_balance_failed = sd->cache_nice_tries+1;
5729 }
5730 } else
5731 sd->nr_balance_failed = 0;
5732
5733 if (likely(!active_balance)) {
5734 /* We were unbalanced, so reset the balancing interval */
5735 sd->balance_interval = sd->min_interval;
5736 } else {
5737 /*
5738 * If we've begun active balancing, start to back off. This
5739 * case may not be covered by the all_pinned logic if there
5740 * is only 1 task on the busy runqueue (because we don't call
5741 * move_tasks).
5742 */
5743 if (sd->balance_interval < sd->max_interval)
5744 sd->balance_interval *= 2;
5745 }
5746
1e3c88bd
PZ
5747 goto out;
5748
5749out_balanced:
5750 schedstat_inc(sd, lb_balanced[idle]);
5751
5752 sd->nr_balance_failed = 0;
5753
5754out_one_pinned:
5755 /* tune up the balancing interval */
8e45cb54 5756 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5757 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5758 (sd->balance_interval < sd->max_interval))
5759 sd->balance_interval *= 2;
5760
46e49b38 5761 ld_moved = 0;
1e3c88bd 5762out:
1e3c88bd
PZ
5763 return ld_moved;
5764}
5765
1e3c88bd
PZ
5766/*
5767 * idle_balance is called by schedule() if this_cpu is about to become
5768 * idle. Attempts to pull tasks from other CPUs.
5769 */
029632fb 5770void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5771{
5772 struct sched_domain *sd;
5773 int pulled_task = 0;
5774 unsigned long next_balance = jiffies + HZ;
9bd721c5 5775 u64 curr_cost = 0;
1e3c88bd 5776
78becc27 5777 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5778
5779 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5780 return;
5781
f492e12e
PZ
5782 /*
5783 * Drop the rq->lock, but keep IRQ/preempt disabled.
5784 */
5785 raw_spin_unlock(&this_rq->lock);
5786
48a16753 5787 update_blocked_averages(this_cpu);
dce840a0 5788 rcu_read_lock();
1e3c88bd
PZ
5789 for_each_domain(this_cpu, sd) {
5790 unsigned long interval;
23f0d209 5791 int continue_balancing = 1;
9bd721c5 5792 u64 t0, domain_cost;
1e3c88bd
PZ
5793
5794 if (!(sd->flags & SD_LOAD_BALANCE))
5795 continue;
5796
9bd721c5
JL
5797 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5798 break;
5799
f492e12e 5800 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
5801 t0 = sched_clock_cpu(this_cpu);
5802
1e3c88bd 5803 /* If we've pulled tasks over stop searching: */
f492e12e 5804 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
5805 sd, CPU_NEWLY_IDLE,
5806 &continue_balancing);
9bd721c5
JL
5807
5808 domain_cost = sched_clock_cpu(this_cpu) - t0;
5809 if (domain_cost > sd->max_newidle_lb_cost)
5810 sd->max_newidle_lb_cost = domain_cost;
5811
5812 curr_cost += domain_cost;
f492e12e 5813 }
1e3c88bd
PZ
5814
5815 interval = msecs_to_jiffies(sd->balance_interval);
5816 if (time_after(next_balance, sd->last_balance + interval))
5817 next_balance = sd->last_balance + interval;
d5ad140b
NR
5818 if (pulled_task) {
5819 this_rq->idle_stamp = 0;
1e3c88bd 5820 break;
d5ad140b 5821 }
1e3c88bd 5822 }
dce840a0 5823 rcu_read_unlock();
f492e12e
PZ
5824
5825 raw_spin_lock(&this_rq->lock);
5826
1e3c88bd
PZ
5827 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5828 /*
5829 * We are going idle. next_balance may be set based on
5830 * a busy processor. So reset next_balance.
5831 */
5832 this_rq->next_balance = next_balance;
5833 }
9bd721c5
JL
5834
5835 if (curr_cost > this_rq->max_idle_balance_cost)
5836 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
5837}
5838
5839/*
969c7921
TH
5840 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5841 * running tasks off the busiest CPU onto idle CPUs. It requires at
5842 * least 1 task to be running on each physical CPU where possible, and
5843 * avoids physical / logical imbalances.
1e3c88bd 5844 */
969c7921 5845static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5846{
969c7921
TH
5847 struct rq *busiest_rq = data;
5848 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5849 int target_cpu = busiest_rq->push_cpu;
969c7921 5850 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5851 struct sched_domain *sd;
969c7921
TH
5852
5853 raw_spin_lock_irq(&busiest_rq->lock);
5854
5855 /* make sure the requested cpu hasn't gone down in the meantime */
5856 if (unlikely(busiest_cpu != smp_processor_id() ||
5857 !busiest_rq->active_balance))
5858 goto out_unlock;
1e3c88bd
PZ
5859
5860 /* Is there any task to move? */
5861 if (busiest_rq->nr_running <= 1)
969c7921 5862 goto out_unlock;
1e3c88bd
PZ
5863
5864 /*
5865 * This condition is "impossible", if it occurs
5866 * we need to fix it. Originally reported by
5867 * Bjorn Helgaas on a 128-cpu setup.
5868 */
5869 BUG_ON(busiest_rq == target_rq);
5870
5871 /* move a task from busiest_rq to target_rq */
5872 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5873
5874 /* Search for an sd spanning us and the target CPU. */
dce840a0 5875 rcu_read_lock();
1e3c88bd
PZ
5876 for_each_domain(target_cpu, sd) {
5877 if ((sd->flags & SD_LOAD_BALANCE) &&
5878 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5879 break;
5880 }
5881
5882 if (likely(sd)) {
8e45cb54
PZ
5883 struct lb_env env = {
5884 .sd = sd,
ddcdf6e7
PZ
5885 .dst_cpu = target_cpu,
5886 .dst_rq = target_rq,
5887 .src_cpu = busiest_rq->cpu,
5888 .src_rq = busiest_rq,
8e45cb54
PZ
5889 .idle = CPU_IDLE,
5890 };
5891
1e3c88bd
PZ
5892 schedstat_inc(sd, alb_count);
5893
8e45cb54 5894 if (move_one_task(&env))
1e3c88bd
PZ
5895 schedstat_inc(sd, alb_pushed);
5896 else
5897 schedstat_inc(sd, alb_failed);
5898 }
dce840a0 5899 rcu_read_unlock();
1e3c88bd 5900 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5901out_unlock:
5902 busiest_rq->active_balance = 0;
5903 raw_spin_unlock_irq(&busiest_rq->lock);
5904 return 0;
1e3c88bd
PZ
5905}
5906
3451d024 5907#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5908/*
5909 * idle load balancing details
83cd4fe2
VP
5910 * - When one of the busy CPUs notice that there may be an idle rebalancing
5911 * needed, they will kick the idle load balancer, which then does idle
5912 * load balancing for all the idle CPUs.
5913 */
1e3c88bd 5914static struct {
83cd4fe2 5915 cpumask_var_t idle_cpus_mask;
0b005cf5 5916 atomic_t nr_cpus;
83cd4fe2
VP
5917 unsigned long next_balance; /* in jiffy units */
5918} nohz ____cacheline_aligned;
1e3c88bd 5919
8e7fbcbc 5920static inline int find_new_ilb(int call_cpu)
1e3c88bd 5921{
0b005cf5 5922 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5923
786d6dc7
SS
5924 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5925 return ilb;
5926
5927 return nr_cpu_ids;
1e3c88bd 5928}
1e3c88bd 5929
83cd4fe2
VP
5930/*
5931 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5932 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5933 * CPU (if there is one).
5934 */
5935static void nohz_balancer_kick(int cpu)
5936{
5937 int ilb_cpu;
5938
5939 nohz.next_balance++;
5940
0b005cf5 5941 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5942
0b005cf5
SS
5943 if (ilb_cpu >= nr_cpu_ids)
5944 return;
83cd4fe2 5945
cd490c5b 5946 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5947 return;
5948 /*
5949 * Use smp_send_reschedule() instead of resched_cpu().
5950 * This way we generate a sched IPI on the target cpu which
5951 * is idle. And the softirq performing nohz idle load balance
5952 * will be run before returning from the IPI.
5953 */
5954 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5955 return;
5956}
5957
c1cc017c 5958static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5959{
5960 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5961 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5962 atomic_dec(&nohz.nr_cpus);
5963 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5964 }
5965}
5966
69e1e811
SS
5967static inline void set_cpu_sd_state_busy(void)
5968{
5969 struct sched_domain *sd;
69e1e811 5970
69e1e811 5971 rcu_read_lock();
424c93fe 5972 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5973
5974 if (!sd || !sd->nohz_idle)
5975 goto unlock;
5976 sd->nohz_idle = 0;
5977
5978 for (; sd; sd = sd->parent)
69e1e811 5979 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5980unlock:
69e1e811
SS
5981 rcu_read_unlock();
5982}
5983
5984void set_cpu_sd_state_idle(void)
5985{
5986 struct sched_domain *sd;
69e1e811 5987
69e1e811 5988 rcu_read_lock();
424c93fe 5989 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5990
5991 if (!sd || sd->nohz_idle)
5992 goto unlock;
5993 sd->nohz_idle = 1;
5994
5995 for (; sd; sd = sd->parent)
69e1e811 5996 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5997unlock:
69e1e811
SS
5998 rcu_read_unlock();
5999}
6000
1e3c88bd 6001/*
c1cc017c 6002 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6003 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6004 */
c1cc017c 6005void nohz_balance_enter_idle(int cpu)
1e3c88bd 6006{
71325960
SS
6007 /*
6008 * If this cpu is going down, then nothing needs to be done.
6009 */
6010 if (!cpu_active(cpu))
6011 return;
6012
c1cc017c
AS
6013 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6014 return;
1e3c88bd 6015
c1cc017c
AS
6016 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6017 atomic_inc(&nohz.nr_cpus);
6018 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6019}
71325960 6020
0db0628d 6021static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6022 unsigned long action, void *hcpu)
6023{
6024 switch (action & ~CPU_TASKS_FROZEN) {
6025 case CPU_DYING:
c1cc017c 6026 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6027 return NOTIFY_OK;
6028 default:
6029 return NOTIFY_DONE;
6030 }
6031}
1e3c88bd
PZ
6032#endif
6033
6034static DEFINE_SPINLOCK(balancing);
6035
49c022e6
PZ
6036/*
6037 * Scale the max load_balance interval with the number of CPUs in the system.
6038 * This trades load-balance latency on larger machines for less cross talk.
6039 */
029632fb 6040void update_max_interval(void)
49c022e6
PZ
6041{
6042 max_load_balance_interval = HZ*num_online_cpus()/10;
6043}
6044
1e3c88bd
PZ
6045/*
6046 * It checks each scheduling domain to see if it is due to be balanced,
6047 * and initiates a balancing operation if so.
6048 *
b9b0853a 6049 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6050 */
6051static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6052{
23f0d209 6053 int continue_balancing = 1;
1e3c88bd
PZ
6054 struct rq *rq = cpu_rq(cpu);
6055 unsigned long interval;
04f733b4 6056 struct sched_domain *sd;
1e3c88bd
PZ
6057 /* Earliest time when we have to do rebalance again */
6058 unsigned long next_balance = jiffies + 60*HZ;
6059 int update_next_balance = 0;
f48627e6
JL
6060 int need_serialize, need_decay = 0;
6061 u64 max_cost = 0;
1e3c88bd 6062
48a16753 6063 update_blocked_averages(cpu);
2069dd75 6064
dce840a0 6065 rcu_read_lock();
1e3c88bd 6066 for_each_domain(cpu, sd) {
f48627e6
JL
6067 /*
6068 * Decay the newidle max times here because this is a regular
6069 * visit to all the domains. Decay ~1% per second.
6070 */
6071 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6072 sd->max_newidle_lb_cost =
6073 (sd->max_newidle_lb_cost * 253) / 256;
6074 sd->next_decay_max_lb_cost = jiffies + HZ;
6075 need_decay = 1;
6076 }
6077 max_cost += sd->max_newidle_lb_cost;
6078
1e3c88bd
PZ
6079 if (!(sd->flags & SD_LOAD_BALANCE))
6080 continue;
6081
f48627e6
JL
6082 /*
6083 * Stop the load balance at this level. There is another
6084 * CPU in our sched group which is doing load balancing more
6085 * actively.
6086 */
6087 if (!continue_balancing) {
6088 if (need_decay)
6089 continue;
6090 break;
6091 }
6092
1e3c88bd
PZ
6093 interval = sd->balance_interval;
6094 if (idle != CPU_IDLE)
6095 interval *= sd->busy_factor;
6096
6097 /* scale ms to jiffies */
6098 interval = msecs_to_jiffies(interval);
49c022e6 6099 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6100
6101 need_serialize = sd->flags & SD_SERIALIZE;
6102
6103 if (need_serialize) {
6104 if (!spin_trylock(&balancing))
6105 goto out;
6106 }
6107
6108 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6109 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6110 /*
6263322c 6111 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6112 * env->dst_cpu, so we can't know our idle
6113 * state even if we migrated tasks. Update it.
1e3c88bd 6114 */
de5eb2dd 6115 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6116 }
6117 sd->last_balance = jiffies;
6118 }
6119 if (need_serialize)
6120 spin_unlock(&balancing);
6121out:
6122 if (time_after(next_balance, sd->last_balance + interval)) {
6123 next_balance = sd->last_balance + interval;
6124 update_next_balance = 1;
6125 }
f48627e6
JL
6126 }
6127 if (need_decay) {
1e3c88bd 6128 /*
f48627e6
JL
6129 * Ensure the rq-wide value also decays but keep it at a
6130 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6131 */
f48627e6
JL
6132 rq->max_idle_balance_cost =
6133 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6134 }
dce840a0 6135 rcu_read_unlock();
1e3c88bd
PZ
6136
6137 /*
6138 * next_balance will be updated only when there is a need.
6139 * When the cpu is attached to null domain for ex, it will not be
6140 * updated.
6141 */
6142 if (likely(update_next_balance))
6143 rq->next_balance = next_balance;
6144}
6145
3451d024 6146#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6147/*
3451d024 6148 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6149 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6150 */
83cd4fe2
VP
6151static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6152{
6153 struct rq *this_rq = cpu_rq(this_cpu);
6154 struct rq *rq;
6155 int balance_cpu;
6156
1c792db7
SS
6157 if (idle != CPU_IDLE ||
6158 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6159 goto end;
83cd4fe2
VP
6160
6161 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6162 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6163 continue;
6164
6165 /*
6166 * If this cpu gets work to do, stop the load balancing
6167 * work being done for other cpus. Next load
6168 * balancing owner will pick it up.
6169 */
1c792db7 6170 if (need_resched())
83cd4fe2 6171 break;
83cd4fe2 6172
5ed4f1d9
VG
6173 rq = cpu_rq(balance_cpu);
6174
6175 raw_spin_lock_irq(&rq->lock);
6176 update_rq_clock(rq);
6177 update_idle_cpu_load(rq);
6178 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6179
6180 rebalance_domains(balance_cpu, CPU_IDLE);
6181
83cd4fe2
VP
6182 if (time_after(this_rq->next_balance, rq->next_balance))
6183 this_rq->next_balance = rq->next_balance;
6184 }
6185 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6186end:
6187 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6188}
6189
6190/*
0b005cf5
SS
6191 * Current heuristic for kicking the idle load balancer in the presence
6192 * of an idle cpu is the system.
6193 * - This rq has more than one task.
6194 * - At any scheduler domain level, this cpu's scheduler group has multiple
6195 * busy cpu's exceeding the group's power.
6196 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6197 * domain span are idle.
83cd4fe2
VP
6198 */
6199static inline int nohz_kick_needed(struct rq *rq, int cpu)
6200{
6201 unsigned long now = jiffies;
0b005cf5 6202 struct sched_domain *sd;
83cd4fe2 6203
1c792db7 6204 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6205 return 0;
6206
1c792db7
SS
6207 /*
6208 * We may be recently in ticked or tickless idle mode. At the first
6209 * busy tick after returning from idle, we will update the busy stats.
6210 */
69e1e811 6211 set_cpu_sd_state_busy();
c1cc017c 6212 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6213
6214 /*
6215 * None are in tickless mode and hence no need for NOHZ idle load
6216 * balancing.
6217 */
6218 if (likely(!atomic_read(&nohz.nr_cpus)))
6219 return 0;
1c792db7
SS
6220
6221 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6222 return 0;
6223
0b005cf5
SS
6224 if (rq->nr_running >= 2)
6225 goto need_kick;
83cd4fe2 6226
067491b7 6227 rcu_read_lock();
0b005cf5
SS
6228 for_each_domain(cpu, sd) {
6229 struct sched_group *sg = sd->groups;
6230 struct sched_group_power *sgp = sg->sgp;
6231 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6232
0b005cf5 6233 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6234 goto need_kick_unlock;
0b005cf5
SS
6235
6236 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6237 && (cpumask_first_and(nohz.idle_cpus_mask,
6238 sched_domain_span(sd)) < cpu))
067491b7 6239 goto need_kick_unlock;
0b005cf5
SS
6240
6241 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6242 break;
83cd4fe2 6243 }
067491b7 6244 rcu_read_unlock();
83cd4fe2 6245 return 0;
067491b7
PZ
6246
6247need_kick_unlock:
6248 rcu_read_unlock();
0b005cf5
SS
6249need_kick:
6250 return 1;
83cd4fe2
VP
6251}
6252#else
6253static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6254#endif
6255
6256/*
6257 * run_rebalance_domains is triggered when needed from the scheduler tick.
6258 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6259 */
1e3c88bd
PZ
6260static void run_rebalance_domains(struct softirq_action *h)
6261{
6262 int this_cpu = smp_processor_id();
6263 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6264 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6265 CPU_IDLE : CPU_NOT_IDLE;
6266
6267 rebalance_domains(this_cpu, idle);
6268
1e3c88bd 6269 /*
83cd4fe2 6270 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6271 * balancing on behalf of the other idle cpus whose ticks are
6272 * stopped.
6273 */
83cd4fe2 6274 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6275}
6276
6277static inline int on_null_domain(int cpu)
6278{
90a6501f 6279 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6280}
6281
6282/*
6283 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6284 */
029632fb 6285void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6286{
1e3c88bd
PZ
6287 /* Don't need to rebalance while attached to NULL domain */
6288 if (time_after_eq(jiffies, rq->next_balance) &&
6289 likely(!on_null_domain(cpu)))
6290 raise_softirq(SCHED_SOFTIRQ);
3451d024 6291#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6292 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6293 nohz_balancer_kick(cpu);
6294#endif
1e3c88bd
PZ
6295}
6296
0bcdcf28
CE
6297static void rq_online_fair(struct rq *rq)
6298{
6299 update_sysctl();
6300}
6301
6302static void rq_offline_fair(struct rq *rq)
6303{
6304 update_sysctl();
a4c96ae3
PB
6305
6306 /* Ensure any throttled groups are reachable by pick_next_task */
6307 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6308}
6309
55e12e5e 6310#endif /* CONFIG_SMP */
e1d1484f 6311
bf0f6f24
IM
6312/*
6313 * scheduler tick hitting a task of our scheduling class:
6314 */
8f4d37ec 6315static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6316{
6317 struct cfs_rq *cfs_rq;
6318 struct sched_entity *se = &curr->se;
6319
6320 for_each_sched_entity(se) {
6321 cfs_rq = cfs_rq_of(se);
8f4d37ec 6322 entity_tick(cfs_rq, se, queued);
bf0f6f24 6323 }
18bf2805 6324
10e84b97 6325 if (numabalancing_enabled)
cbee9f88 6326 task_tick_numa(rq, curr);
3d59eebc 6327
18bf2805 6328 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6329}
6330
6331/*
cd29fe6f
PZ
6332 * called on fork with the child task as argument from the parent's context
6333 * - child not yet on the tasklist
6334 * - preemption disabled
bf0f6f24 6335 */
cd29fe6f 6336static void task_fork_fair(struct task_struct *p)
bf0f6f24 6337{
4fc420c9
DN
6338 struct cfs_rq *cfs_rq;
6339 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6340 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6341 struct rq *rq = this_rq();
6342 unsigned long flags;
6343
05fa785c 6344 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6345
861d034e
PZ
6346 update_rq_clock(rq);
6347
4fc420c9
DN
6348 cfs_rq = task_cfs_rq(current);
6349 curr = cfs_rq->curr;
6350
6c9a27f5
DN
6351 /*
6352 * Not only the cpu but also the task_group of the parent might have
6353 * been changed after parent->se.parent,cfs_rq were copied to
6354 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6355 * of child point to valid ones.
6356 */
6357 rcu_read_lock();
6358 __set_task_cpu(p, this_cpu);
6359 rcu_read_unlock();
bf0f6f24 6360
7109c442 6361 update_curr(cfs_rq);
cd29fe6f 6362
b5d9d734
MG
6363 if (curr)
6364 se->vruntime = curr->vruntime;
aeb73b04 6365 place_entity(cfs_rq, se, 1);
4d78e7b6 6366
cd29fe6f 6367 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6368 /*
edcb60a3
IM
6369 * Upon rescheduling, sched_class::put_prev_task() will place
6370 * 'current' within the tree based on its new key value.
6371 */
4d78e7b6 6372 swap(curr->vruntime, se->vruntime);
aec0a514 6373 resched_task(rq->curr);
4d78e7b6 6374 }
bf0f6f24 6375
88ec22d3
PZ
6376 se->vruntime -= cfs_rq->min_vruntime;
6377
05fa785c 6378 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6379}
6380
cb469845
SR
6381/*
6382 * Priority of the task has changed. Check to see if we preempt
6383 * the current task.
6384 */
da7a735e
PZ
6385static void
6386prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6387{
da7a735e
PZ
6388 if (!p->se.on_rq)
6389 return;
6390
cb469845
SR
6391 /*
6392 * Reschedule if we are currently running on this runqueue and
6393 * our priority decreased, or if we are not currently running on
6394 * this runqueue and our priority is higher than the current's
6395 */
da7a735e 6396 if (rq->curr == p) {
cb469845
SR
6397 if (p->prio > oldprio)
6398 resched_task(rq->curr);
6399 } else
15afe09b 6400 check_preempt_curr(rq, p, 0);
cb469845
SR
6401}
6402
da7a735e
PZ
6403static void switched_from_fair(struct rq *rq, struct task_struct *p)
6404{
6405 struct sched_entity *se = &p->se;
6406 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6407
6408 /*
6409 * Ensure the task's vruntime is normalized, so that when its
6410 * switched back to the fair class the enqueue_entity(.flags=0) will
6411 * do the right thing.
6412 *
6413 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6414 * have normalized the vruntime, if it was !on_rq, then only when
6415 * the task is sleeping will it still have non-normalized vruntime.
6416 */
6417 if (!se->on_rq && p->state != TASK_RUNNING) {
6418 /*
6419 * Fix up our vruntime so that the current sleep doesn't
6420 * cause 'unlimited' sleep bonus.
6421 */
6422 place_entity(cfs_rq, se, 0);
6423 se->vruntime -= cfs_rq->min_vruntime;
6424 }
9ee474f5 6425
141965c7 6426#ifdef CONFIG_SMP
9ee474f5
PT
6427 /*
6428 * Remove our load from contribution when we leave sched_fair
6429 * and ensure we don't carry in an old decay_count if we
6430 * switch back.
6431 */
87e3c8ae
KT
6432 if (se->avg.decay_count) {
6433 __synchronize_entity_decay(se);
6434 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6435 }
6436#endif
da7a735e
PZ
6437}
6438
cb469845
SR
6439/*
6440 * We switched to the sched_fair class.
6441 */
da7a735e 6442static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6443{
da7a735e
PZ
6444 if (!p->se.on_rq)
6445 return;
6446
cb469845
SR
6447 /*
6448 * We were most likely switched from sched_rt, so
6449 * kick off the schedule if running, otherwise just see
6450 * if we can still preempt the current task.
6451 */
da7a735e 6452 if (rq->curr == p)
cb469845
SR
6453 resched_task(rq->curr);
6454 else
15afe09b 6455 check_preempt_curr(rq, p, 0);
cb469845
SR
6456}
6457
83b699ed
SV
6458/* Account for a task changing its policy or group.
6459 *
6460 * This routine is mostly called to set cfs_rq->curr field when a task
6461 * migrates between groups/classes.
6462 */
6463static void set_curr_task_fair(struct rq *rq)
6464{
6465 struct sched_entity *se = &rq->curr->se;
6466
ec12cb7f
PT
6467 for_each_sched_entity(se) {
6468 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6469
6470 set_next_entity(cfs_rq, se);
6471 /* ensure bandwidth has been allocated on our new cfs_rq */
6472 account_cfs_rq_runtime(cfs_rq, 0);
6473 }
83b699ed
SV
6474}
6475
029632fb
PZ
6476void init_cfs_rq(struct cfs_rq *cfs_rq)
6477{
6478 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6479 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6480#ifndef CONFIG_64BIT
6481 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6482#endif
141965c7 6483#ifdef CONFIG_SMP
9ee474f5 6484 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6485 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6486#endif
029632fb
PZ
6487}
6488
810b3817 6489#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6490static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6491{
aff3e498 6492 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6493 /*
6494 * If the task was not on the rq at the time of this cgroup movement
6495 * it must have been asleep, sleeping tasks keep their ->vruntime
6496 * absolute on their old rq until wakeup (needed for the fair sleeper
6497 * bonus in place_entity()).
6498 *
6499 * If it was on the rq, we've just 'preempted' it, which does convert
6500 * ->vruntime to a relative base.
6501 *
6502 * Make sure both cases convert their relative position when migrating
6503 * to another cgroup's rq. This does somewhat interfere with the
6504 * fair sleeper stuff for the first placement, but who cares.
6505 */
7ceff013
DN
6506 /*
6507 * When !on_rq, vruntime of the task has usually NOT been normalized.
6508 * But there are some cases where it has already been normalized:
6509 *
6510 * - Moving a forked child which is waiting for being woken up by
6511 * wake_up_new_task().
62af3783
DN
6512 * - Moving a task which has been woken up by try_to_wake_up() and
6513 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6514 *
6515 * To prevent boost or penalty in the new cfs_rq caused by delta
6516 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6517 */
62af3783 6518 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6519 on_rq = 1;
6520
b2b5ce02
PZ
6521 if (!on_rq)
6522 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6523 set_task_rq(p, task_cpu(p));
aff3e498
PT
6524 if (!on_rq) {
6525 cfs_rq = cfs_rq_of(&p->se);
6526 p->se.vruntime += cfs_rq->min_vruntime;
6527#ifdef CONFIG_SMP
6528 /*
6529 * migrate_task_rq_fair() will have removed our previous
6530 * contribution, but we must synchronize for ongoing future
6531 * decay.
6532 */
6533 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6534 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6535#endif
6536 }
810b3817 6537}
029632fb
PZ
6538
6539void free_fair_sched_group(struct task_group *tg)
6540{
6541 int i;
6542
6543 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6544
6545 for_each_possible_cpu(i) {
6546 if (tg->cfs_rq)
6547 kfree(tg->cfs_rq[i]);
6548 if (tg->se)
6549 kfree(tg->se[i]);
6550 }
6551
6552 kfree(tg->cfs_rq);
6553 kfree(tg->se);
6554}
6555
6556int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6557{
6558 struct cfs_rq *cfs_rq;
6559 struct sched_entity *se;
6560 int i;
6561
6562 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6563 if (!tg->cfs_rq)
6564 goto err;
6565 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6566 if (!tg->se)
6567 goto err;
6568
6569 tg->shares = NICE_0_LOAD;
6570
6571 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6572
6573 for_each_possible_cpu(i) {
6574 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6575 GFP_KERNEL, cpu_to_node(i));
6576 if (!cfs_rq)
6577 goto err;
6578
6579 se = kzalloc_node(sizeof(struct sched_entity),
6580 GFP_KERNEL, cpu_to_node(i));
6581 if (!se)
6582 goto err_free_rq;
6583
6584 init_cfs_rq(cfs_rq);
6585 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6586 }
6587
6588 return 1;
6589
6590err_free_rq:
6591 kfree(cfs_rq);
6592err:
6593 return 0;
6594}
6595
6596void unregister_fair_sched_group(struct task_group *tg, int cpu)
6597{
6598 struct rq *rq = cpu_rq(cpu);
6599 unsigned long flags;
6600
6601 /*
6602 * Only empty task groups can be destroyed; so we can speculatively
6603 * check on_list without danger of it being re-added.
6604 */
6605 if (!tg->cfs_rq[cpu]->on_list)
6606 return;
6607
6608 raw_spin_lock_irqsave(&rq->lock, flags);
6609 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6610 raw_spin_unlock_irqrestore(&rq->lock, flags);
6611}
6612
6613void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6614 struct sched_entity *se, int cpu,
6615 struct sched_entity *parent)
6616{
6617 struct rq *rq = cpu_rq(cpu);
6618
6619 cfs_rq->tg = tg;
6620 cfs_rq->rq = rq;
029632fb
PZ
6621 init_cfs_rq_runtime(cfs_rq);
6622
6623 tg->cfs_rq[cpu] = cfs_rq;
6624 tg->se[cpu] = se;
6625
6626 /* se could be NULL for root_task_group */
6627 if (!se)
6628 return;
6629
6630 if (!parent)
6631 se->cfs_rq = &rq->cfs;
6632 else
6633 se->cfs_rq = parent->my_q;
6634
6635 se->my_q = cfs_rq;
6636 update_load_set(&se->load, 0);
6637 se->parent = parent;
6638}
6639
6640static DEFINE_MUTEX(shares_mutex);
6641
6642int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6643{
6644 int i;
6645 unsigned long flags;
6646
6647 /*
6648 * We can't change the weight of the root cgroup.
6649 */
6650 if (!tg->se[0])
6651 return -EINVAL;
6652
6653 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6654
6655 mutex_lock(&shares_mutex);
6656 if (tg->shares == shares)
6657 goto done;
6658
6659 tg->shares = shares;
6660 for_each_possible_cpu(i) {
6661 struct rq *rq = cpu_rq(i);
6662 struct sched_entity *se;
6663
6664 se = tg->se[i];
6665 /* Propagate contribution to hierarchy */
6666 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6667
6668 /* Possible calls to update_curr() need rq clock */
6669 update_rq_clock(rq);
17bc14b7 6670 for_each_sched_entity(se)
029632fb
PZ
6671 update_cfs_shares(group_cfs_rq(se));
6672 raw_spin_unlock_irqrestore(&rq->lock, flags);
6673 }
6674
6675done:
6676 mutex_unlock(&shares_mutex);
6677 return 0;
6678}
6679#else /* CONFIG_FAIR_GROUP_SCHED */
6680
6681void free_fair_sched_group(struct task_group *tg) { }
6682
6683int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6684{
6685 return 1;
6686}
6687
6688void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6689
6690#endif /* CONFIG_FAIR_GROUP_SCHED */
6691
810b3817 6692
6d686f45 6693static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6694{
6695 struct sched_entity *se = &task->se;
0d721cea
PW
6696 unsigned int rr_interval = 0;
6697
6698 /*
6699 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6700 * idle runqueue:
6701 */
0d721cea 6702 if (rq->cfs.load.weight)
a59f4e07 6703 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6704
6705 return rr_interval;
6706}
6707
bf0f6f24
IM
6708/*
6709 * All the scheduling class methods:
6710 */
029632fb 6711const struct sched_class fair_sched_class = {
5522d5d5 6712 .next = &idle_sched_class,
bf0f6f24
IM
6713 .enqueue_task = enqueue_task_fair,
6714 .dequeue_task = dequeue_task_fair,
6715 .yield_task = yield_task_fair,
d95f4122 6716 .yield_to_task = yield_to_task_fair,
bf0f6f24 6717
2e09bf55 6718 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6719
6720 .pick_next_task = pick_next_task_fair,
6721 .put_prev_task = put_prev_task_fair,
6722
681f3e68 6723#ifdef CONFIG_SMP
4ce72a2c 6724 .select_task_rq = select_task_rq_fair,
0a74bef8 6725 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6726
0bcdcf28
CE
6727 .rq_online = rq_online_fair,
6728 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6729
6730 .task_waking = task_waking_fair,
681f3e68 6731#endif
bf0f6f24 6732
83b699ed 6733 .set_curr_task = set_curr_task_fair,
bf0f6f24 6734 .task_tick = task_tick_fair,
cd29fe6f 6735 .task_fork = task_fork_fair,
cb469845
SR
6736
6737 .prio_changed = prio_changed_fair,
da7a735e 6738 .switched_from = switched_from_fair,
cb469845 6739 .switched_to = switched_to_fair,
810b3817 6740
0d721cea
PW
6741 .get_rr_interval = get_rr_interval_fair,
6742
810b3817 6743#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6744 .task_move_group = task_move_group_fair,
810b3817 6745#endif
bf0f6f24
IM
6746};
6747
6748#ifdef CONFIG_SCHED_DEBUG
029632fb 6749void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6750{
bf0f6f24
IM
6751 struct cfs_rq *cfs_rq;
6752
5973e5b9 6753 rcu_read_lock();
c3b64f1e 6754 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6755 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6756 rcu_read_unlock();
bf0f6f24
IM
6757}
6758#endif
029632fb
PZ
6759
6760__init void init_sched_fair_class(void)
6761{
6762#ifdef CONFIG_SMP
6763 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6764
3451d024 6765#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6766 nohz.next_balance = jiffies;
029632fb 6767 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6768 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6769#endif
6770#endif /* SMP */
6771
6772}