]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/numa: Fix unsafe get_task_struct() in task_numa_assign()
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9
AS
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684}
685#else
686void init_task_runnable_average(struct task_struct *p)
687{
688}
689#endif
690
bf0f6f24 691/*
9dbdb155 692 * Update the current task's runtime statistics.
bf0f6f24 693 */
b7cc0896 694static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 695{
429d43bc 696 struct sched_entity *curr = cfs_rq->curr;
78becc27 697 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 698 u64 delta_exec;
bf0f6f24
IM
699
700 if (unlikely(!curr))
701 return;
702
9dbdb155
PZ
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
34f28ecd 705 return;
bf0f6f24 706
8ebc91d9 707 curr->exec_start = now;
d842de87 708
9dbdb155
PZ
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
711
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
717
d842de87
SV
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
720
f977bb49 721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 722 cpuacct_charge(curtask, delta_exec);
f06febc9 723 account_group_exec_runtime(curtask, delta_exec);
d842de87 724 }
ec12cb7f
PT
725
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
727}
728
729static inline void
5870db5b 730update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 731{
78becc27 732 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
733}
734
bf0f6f24
IM
735/*
736 * Task is being enqueued - update stats:
737 */
d2417e5a 738static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 739{
bf0f6f24
IM
740 /*
741 * Are we enqueueing a waiting task? (for current tasks
742 * a dequeue/enqueue event is a NOP)
743 */
429d43bc 744 if (se != cfs_rq->curr)
5870db5b 745 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
746}
747
bf0f6f24 748static void
9ef0a961 749update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
41acab88 751 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 752 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
753 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
754 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 755 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
756#ifdef CONFIG_SCHEDSTATS
757 if (entity_is_task(se)) {
758 trace_sched_stat_wait(task_of(se),
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
760 }
761#endif
41acab88 762 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
763}
764
765static inline void
19b6a2e3 766update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 767{
bf0f6f24
IM
768 /*
769 * Mark the end of the wait period if dequeueing a
770 * waiting task:
771 */
429d43bc 772 if (se != cfs_rq->curr)
9ef0a961 773 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
774}
775
776/*
777 * We are picking a new current task - update its stats:
778 */
779static inline void
79303e9e 780update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
781{
782 /*
783 * We are starting a new run period:
784 */
78becc27 785 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
786}
787
bf0f6f24
IM
788/**************************************************
789 * Scheduling class queueing methods:
790 */
791
cbee9f88
PZ
792#ifdef CONFIG_NUMA_BALANCING
793/*
598f0ec0
MG
794 * Approximate time to scan a full NUMA task in ms. The task scan period is
795 * calculated based on the tasks virtual memory size and
796 * numa_balancing_scan_size.
cbee9f88 797 */
598f0ec0
MG
798unsigned int sysctl_numa_balancing_scan_period_min = 1000;
799unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
800
801/* Portion of address space to scan in MB */
802unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 803
4b96a29b
PZ
804/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
805unsigned int sysctl_numa_balancing_scan_delay = 1000;
806
598f0ec0
MG
807static unsigned int task_nr_scan_windows(struct task_struct *p)
808{
809 unsigned long rss = 0;
810 unsigned long nr_scan_pages;
811
812 /*
813 * Calculations based on RSS as non-present and empty pages are skipped
814 * by the PTE scanner and NUMA hinting faults should be trapped based
815 * on resident pages
816 */
817 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
818 rss = get_mm_rss(p->mm);
819 if (!rss)
820 rss = nr_scan_pages;
821
822 rss = round_up(rss, nr_scan_pages);
823 return rss / nr_scan_pages;
824}
825
826/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
827#define MAX_SCAN_WINDOW 2560
828
829static unsigned int task_scan_min(struct task_struct *p)
830{
831 unsigned int scan, floor;
832 unsigned int windows = 1;
833
834 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
835 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
836 floor = 1000 / windows;
837
838 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
839 return max_t(unsigned int, floor, scan);
840}
841
842static unsigned int task_scan_max(struct task_struct *p)
843{
844 unsigned int smin = task_scan_min(p);
845 unsigned int smax;
846
847 /* Watch for min being lower than max due to floor calculations */
848 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
849 return max(smin, smax);
850}
851
0ec8aa00
PZ
852static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
853{
854 rq->nr_numa_running += (p->numa_preferred_nid != -1);
855 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
856}
857
858static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
859{
860 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
861 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
862}
863
8c8a743c
PZ
864struct numa_group {
865 atomic_t refcount;
866
867 spinlock_t lock; /* nr_tasks, tasks */
868 int nr_tasks;
e29cf08b 869 pid_t gid;
8c8a743c
PZ
870 struct list_head task_list;
871
872 struct rcu_head rcu;
20e07dea 873 nodemask_t active_nodes;
989348b5 874 unsigned long total_faults;
7e2703e6
RR
875 /*
876 * Faults_cpu is used to decide whether memory should move
877 * towards the CPU. As a consequence, these stats are weighted
878 * more by CPU use than by memory faults.
879 */
50ec8a40 880 unsigned long *faults_cpu;
989348b5 881 unsigned long faults[0];
8c8a743c
PZ
882};
883
be1e4e76
RR
884/* Shared or private faults. */
885#define NR_NUMA_HINT_FAULT_TYPES 2
886
887/* Memory and CPU locality */
888#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
889
890/* Averaged statistics, and temporary buffers. */
891#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
892
e29cf08b
MG
893pid_t task_numa_group_id(struct task_struct *p)
894{
895 return p->numa_group ? p->numa_group->gid : 0;
896}
897
ac8e895b
MG
898static inline int task_faults_idx(int nid, int priv)
899{
be1e4e76 900 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
901}
902
903static inline unsigned long task_faults(struct task_struct *p, int nid)
904{
ff1df896 905 if (!p->numa_faults_memory)
ac8e895b
MG
906 return 0;
907
ff1df896
RR
908 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
909 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
910}
911
83e1d2cd
MG
912static inline unsigned long group_faults(struct task_struct *p, int nid)
913{
914 if (!p->numa_group)
915 return 0;
916
82897b4f
WL
917 return p->numa_group->faults[task_faults_idx(nid, 0)] +
918 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
919}
920
20e07dea
RR
921static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
922{
923 return group->faults_cpu[task_faults_idx(nid, 0)] +
924 group->faults_cpu[task_faults_idx(nid, 1)];
925}
926
83e1d2cd
MG
927/*
928 * These return the fraction of accesses done by a particular task, or
929 * task group, on a particular numa node. The group weight is given a
930 * larger multiplier, in order to group tasks together that are almost
931 * evenly spread out between numa nodes.
932 */
933static inline unsigned long task_weight(struct task_struct *p, int nid)
934{
935 unsigned long total_faults;
936
ff1df896 937 if (!p->numa_faults_memory)
83e1d2cd
MG
938 return 0;
939
940 total_faults = p->total_numa_faults;
941
942 if (!total_faults)
943 return 0;
944
945 return 1000 * task_faults(p, nid) / total_faults;
946}
947
948static inline unsigned long group_weight(struct task_struct *p, int nid)
949{
989348b5 950 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
951 return 0;
952
989348b5 953 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
954}
955
10f39042
RR
956bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
957 int src_nid, int dst_cpu)
958{
959 struct numa_group *ng = p->numa_group;
960 int dst_nid = cpu_to_node(dst_cpu);
961 int last_cpupid, this_cpupid;
962
963 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
964
965 /*
966 * Multi-stage node selection is used in conjunction with a periodic
967 * migration fault to build a temporal task<->page relation. By using
968 * a two-stage filter we remove short/unlikely relations.
969 *
970 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
971 * a task's usage of a particular page (n_p) per total usage of this
972 * page (n_t) (in a given time-span) to a probability.
973 *
974 * Our periodic faults will sample this probability and getting the
975 * same result twice in a row, given these samples are fully
976 * independent, is then given by P(n)^2, provided our sample period
977 * is sufficiently short compared to the usage pattern.
978 *
979 * This quadric squishes small probabilities, making it less likely we
980 * act on an unlikely task<->page relation.
981 */
982 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
983 if (!cpupid_pid_unset(last_cpupid) &&
984 cpupid_to_nid(last_cpupid) != dst_nid)
985 return false;
986
987 /* Always allow migrate on private faults */
988 if (cpupid_match_pid(p, last_cpupid))
989 return true;
990
991 /* A shared fault, but p->numa_group has not been set up yet. */
992 if (!ng)
993 return true;
994
995 /*
996 * Do not migrate if the destination is not a node that
997 * is actively used by this numa group.
998 */
999 if (!node_isset(dst_nid, ng->active_nodes))
1000 return false;
1001
1002 /*
1003 * Source is a node that is not actively used by this
1004 * numa group, while the destination is. Migrate.
1005 */
1006 if (!node_isset(src_nid, ng->active_nodes))
1007 return true;
1008
1009 /*
1010 * Both source and destination are nodes in active
1011 * use by this numa group. Maximize memory bandwidth
1012 * by migrating from more heavily used groups, to less
1013 * heavily used ones, spreading the load around.
1014 * Use a 1/4 hysteresis to avoid spurious page movement.
1015 */
1016 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1017}
1018
e6628d5b 1019static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1020static unsigned long source_load(int cpu, int type);
1021static unsigned long target_load(int cpu, int type);
ced549fa 1022static unsigned long capacity_of(int cpu);
58d081b5
MG
1023static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1024
fb13c7ee 1025/* Cached statistics for all CPUs within a node */
58d081b5 1026struct numa_stats {
fb13c7ee 1027 unsigned long nr_running;
58d081b5 1028 unsigned long load;
fb13c7ee
MG
1029
1030 /* Total compute capacity of CPUs on a node */
5ef20ca1 1031 unsigned long compute_capacity;
fb13c7ee
MG
1032
1033 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1034 unsigned long task_capacity;
1b6a7495 1035 int has_free_capacity;
58d081b5 1036};
e6628d5b 1037
fb13c7ee
MG
1038/*
1039 * XXX borrowed from update_sg_lb_stats
1040 */
1041static void update_numa_stats(struct numa_stats *ns, int nid)
1042{
83d7f242
RR
1043 int smt, cpu, cpus = 0;
1044 unsigned long capacity;
fb13c7ee
MG
1045
1046 memset(ns, 0, sizeof(*ns));
1047 for_each_cpu(cpu, cpumask_of_node(nid)) {
1048 struct rq *rq = cpu_rq(cpu);
1049
1050 ns->nr_running += rq->nr_running;
1051 ns->load += weighted_cpuload(cpu);
ced549fa 1052 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1053
1054 cpus++;
fb13c7ee
MG
1055 }
1056
5eca82a9
PZ
1057 /*
1058 * If we raced with hotplug and there are no CPUs left in our mask
1059 * the @ns structure is NULL'ed and task_numa_compare() will
1060 * not find this node attractive.
1061 *
1b6a7495
NP
1062 * We'll either bail at !has_free_capacity, or we'll detect a huge
1063 * imbalance and bail there.
5eca82a9
PZ
1064 */
1065 if (!cpus)
1066 return;
1067
83d7f242
RR
1068 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1069 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1070 capacity = cpus / smt; /* cores */
1071
1072 ns->task_capacity = min_t(unsigned, capacity,
1073 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1074 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1075}
1076
58d081b5
MG
1077struct task_numa_env {
1078 struct task_struct *p;
e6628d5b 1079
58d081b5
MG
1080 int src_cpu, src_nid;
1081 int dst_cpu, dst_nid;
e6628d5b 1082
58d081b5 1083 struct numa_stats src_stats, dst_stats;
e6628d5b 1084
40ea2b42 1085 int imbalance_pct;
fb13c7ee
MG
1086
1087 struct task_struct *best_task;
1088 long best_imp;
58d081b5
MG
1089 int best_cpu;
1090};
1091
fb13c7ee
MG
1092static void task_numa_assign(struct task_numa_env *env,
1093 struct task_struct *p, long imp)
1094{
1095 if (env->best_task)
1096 put_task_struct(env->best_task);
1097 if (p)
1098 get_task_struct(p);
1099
1100 env->best_task = p;
1101 env->best_imp = imp;
1102 env->best_cpu = env->dst_cpu;
1103}
1104
28a21745 1105static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1106 struct task_numa_env *env)
1107{
1108 long imb, old_imb;
28a21745
RR
1109 long orig_src_load, orig_dst_load;
1110 long src_capacity, dst_capacity;
1111
1112 /*
1113 * The load is corrected for the CPU capacity available on each node.
1114 *
1115 * src_load dst_load
1116 * ------------ vs ---------
1117 * src_capacity dst_capacity
1118 */
1119 src_capacity = env->src_stats.compute_capacity;
1120 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1121
1122 /* We care about the slope of the imbalance, not the direction. */
1123 if (dst_load < src_load)
1124 swap(dst_load, src_load);
1125
1126 /* Is the difference below the threshold? */
28a21745
RR
1127 imb = dst_load * src_capacity * 100 -
1128 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1129 if (imb <= 0)
1130 return false;
1131
1132 /*
1133 * The imbalance is above the allowed threshold.
1134 * Compare it with the old imbalance.
1135 */
28a21745
RR
1136 orig_src_load = env->src_stats.load;
1137 orig_dst_load = env->dst_stats.load;
1138
e63da036
RR
1139 if (orig_dst_load < orig_src_load)
1140 swap(orig_dst_load, orig_src_load);
1141
28a21745
RR
1142 old_imb = orig_dst_load * src_capacity * 100 -
1143 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1144
1145 /* Would this change make things worse? */
1662867a 1146 return (imb > old_imb);
e63da036
RR
1147}
1148
fb13c7ee
MG
1149/*
1150 * This checks if the overall compute and NUMA accesses of the system would
1151 * be improved if the source tasks was migrated to the target dst_cpu taking
1152 * into account that it might be best if task running on the dst_cpu should
1153 * be exchanged with the source task
1154 */
887c290e
RR
1155static void task_numa_compare(struct task_numa_env *env,
1156 long taskimp, long groupimp)
fb13c7ee
MG
1157{
1158 struct rq *src_rq = cpu_rq(env->src_cpu);
1159 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1160 struct task_struct *cur;
28a21745 1161 long src_load, dst_load;
fb13c7ee 1162 long load;
1c5d3eb3 1163 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1164 long moveimp = imp;
fb13c7ee
MG
1165
1166 rcu_read_lock();
1effd9f1
KT
1167
1168 raw_spin_lock_irq(&dst_rq->lock);
1169 cur = dst_rq->curr;
1170 /*
1171 * No need to move the exiting task, and this ensures that ->curr
1172 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1173 * is safe under RCU read lock.
1174 * Note that rcu_read_lock() itself can't protect from the final
1175 * put_task_struct() after the last schedule().
1176 */
1177 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1178 cur = NULL;
1effd9f1 1179 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee
MG
1180
1181 /*
1182 * "imp" is the fault differential for the source task between the
1183 * source and destination node. Calculate the total differential for
1184 * the source task and potential destination task. The more negative
1185 * the value is, the more rmeote accesses that would be expected to
1186 * be incurred if the tasks were swapped.
1187 */
1188 if (cur) {
1189 /* Skip this swap candidate if cannot move to the source cpu */
1190 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1191 goto unlock;
1192
887c290e
RR
1193 /*
1194 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1195 * in any group then look only at task weights.
887c290e 1196 */
ca28aa53 1197 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1198 imp = taskimp + task_weight(cur, env->src_nid) -
1199 task_weight(cur, env->dst_nid);
ca28aa53
RR
1200 /*
1201 * Add some hysteresis to prevent swapping the
1202 * tasks within a group over tiny differences.
1203 */
1204 if (cur->numa_group)
1205 imp -= imp/16;
887c290e 1206 } else {
ca28aa53
RR
1207 /*
1208 * Compare the group weights. If a task is all by
1209 * itself (not part of a group), use the task weight
1210 * instead.
1211 */
ca28aa53
RR
1212 if (cur->numa_group)
1213 imp += group_weight(cur, env->src_nid) -
1214 group_weight(cur, env->dst_nid);
1215 else
1216 imp += task_weight(cur, env->src_nid) -
1217 task_weight(cur, env->dst_nid);
887c290e 1218 }
fb13c7ee
MG
1219 }
1220
0132c3e1 1221 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1222 goto unlock;
1223
1224 if (!cur) {
1225 /* Is there capacity at our destination? */
b932c03c 1226 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1227 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1228 goto unlock;
1229
1230 goto balance;
1231 }
1232
1233 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1234 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1235 dst_rq->nr_running == 1)
fb13c7ee
MG
1236 goto assign;
1237
1238 /*
1239 * In the overloaded case, try and keep the load balanced.
1240 */
1241balance:
e720fff6
PZ
1242 load = task_h_load(env->p);
1243 dst_load = env->dst_stats.load + load;
1244 src_load = env->src_stats.load - load;
fb13c7ee 1245
0132c3e1
RR
1246 if (moveimp > imp && moveimp > env->best_imp) {
1247 /*
1248 * If the improvement from just moving env->p direction is
1249 * better than swapping tasks around, check if a move is
1250 * possible. Store a slightly smaller score than moveimp,
1251 * so an actually idle CPU will win.
1252 */
1253 if (!load_too_imbalanced(src_load, dst_load, env)) {
1254 imp = moveimp - 1;
1255 cur = NULL;
1256 goto assign;
1257 }
1258 }
1259
1260 if (imp <= env->best_imp)
1261 goto unlock;
1262
fb13c7ee 1263 if (cur) {
e720fff6
PZ
1264 load = task_h_load(cur);
1265 dst_load -= load;
1266 src_load += load;
fb13c7ee
MG
1267 }
1268
28a21745 1269 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1270 goto unlock;
1271
ba7e5a27
RR
1272 /*
1273 * One idle CPU per node is evaluated for a task numa move.
1274 * Call select_idle_sibling to maybe find a better one.
1275 */
1276 if (!cur)
1277 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1278
fb13c7ee
MG
1279assign:
1280 task_numa_assign(env, cur, imp);
1281unlock:
1282 rcu_read_unlock();
1283}
1284
887c290e
RR
1285static void task_numa_find_cpu(struct task_numa_env *env,
1286 long taskimp, long groupimp)
2c8a50aa
MG
1287{
1288 int cpu;
1289
1290 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1291 /* Skip this CPU if the source task cannot migrate */
1292 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1293 continue;
1294
1295 env->dst_cpu = cpu;
887c290e 1296 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1297 }
1298}
1299
58d081b5
MG
1300static int task_numa_migrate(struct task_struct *p)
1301{
58d081b5
MG
1302 struct task_numa_env env = {
1303 .p = p,
fb13c7ee 1304
58d081b5 1305 .src_cpu = task_cpu(p),
b32e86b4 1306 .src_nid = task_node(p),
fb13c7ee
MG
1307
1308 .imbalance_pct = 112,
1309
1310 .best_task = NULL,
1311 .best_imp = 0,
1312 .best_cpu = -1
58d081b5
MG
1313 };
1314 struct sched_domain *sd;
887c290e 1315 unsigned long taskweight, groupweight;
2c8a50aa 1316 int nid, ret;
887c290e 1317 long taskimp, groupimp;
e6628d5b 1318
58d081b5 1319 /*
fb13c7ee
MG
1320 * Pick the lowest SD_NUMA domain, as that would have the smallest
1321 * imbalance and would be the first to start moving tasks about.
1322 *
1323 * And we want to avoid any moving of tasks about, as that would create
1324 * random movement of tasks -- counter the numa conditions we're trying
1325 * to satisfy here.
58d081b5
MG
1326 */
1327 rcu_read_lock();
fb13c7ee 1328 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1329 if (sd)
1330 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1331 rcu_read_unlock();
1332
46a73e8a
RR
1333 /*
1334 * Cpusets can break the scheduler domain tree into smaller
1335 * balance domains, some of which do not cross NUMA boundaries.
1336 * Tasks that are "trapped" in such domains cannot be migrated
1337 * elsewhere, so there is no point in (re)trying.
1338 */
1339 if (unlikely(!sd)) {
de1b301a 1340 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1341 return -EINVAL;
1342 }
1343
887c290e
RR
1344 taskweight = task_weight(p, env.src_nid);
1345 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1346 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1347 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1348 taskimp = task_weight(p, env.dst_nid) - taskweight;
1349 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1350 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1351
a43455a1
RR
1352 /* Try to find a spot on the preferred nid. */
1353 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1354
1355 /* No space available on the preferred nid. Look elsewhere. */
1356 if (env.best_cpu == -1) {
2c8a50aa
MG
1357 for_each_online_node(nid) {
1358 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1359 continue;
58d081b5 1360
83e1d2cd 1361 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1362 taskimp = task_weight(p, nid) - taskweight;
1363 groupimp = group_weight(p, nid) - groupweight;
1364 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1365 continue;
1366
2c8a50aa
MG
1367 env.dst_nid = nid;
1368 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1369 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1370 }
1371 }
1372
68d1b02a
RR
1373 /*
1374 * If the task is part of a workload that spans multiple NUMA nodes,
1375 * and is migrating into one of the workload's active nodes, remember
1376 * this node as the task's preferred numa node, so the workload can
1377 * settle down.
1378 * A task that migrated to a second choice node will be better off
1379 * trying for a better one later. Do not set the preferred node here.
1380 */
db015dae
RR
1381 if (p->numa_group) {
1382 if (env.best_cpu == -1)
1383 nid = env.src_nid;
1384 else
1385 nid = env.dst_nid;
1386
1387 if (node_isset(nid, p->numa_group->active_nodes))
1388 sched_setnuma(p, env.dst_nid);
1389 }
1390
1391 /* No better CPU than the current one was found. */
1392 if (env.best_cpu == -1)
1393 return -EAGAIN;
0ec8aa00 1394
04bb2f94
RR
1395 /*
1396 * Reset the scan period if the task is being rescheduled on an
1397 * alternative node to recheck if the tasks is now properly placed.
1398 */
1399 p->numa_scan_period = task_scan_min(p);
1400
fb13c7ee 1401 if (env.best_task == NULL) {
286549dc
MG
1402 ret = migrate_task_to(p, env.best_cpu);
1403 if (ret != 0)
1404 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1405 return ret;
1406 }
1407
1408 ret = migrate_swap(p, env.best_task);
286549dc
MG
1409 if (ret != 0)
1410 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1411 put_task_struct(env.best_task);
1412 return ret;
e6628d5b
MG
1413}
1414
6b9a7460
MG
1415/* Attempt to migrate a task to a CPU on the preferred node. */
1416static void numa_migrate_preferred(struct task_struct *p)
1417{
5085e2a3
RR
1418 unsigned long interval = HZ;
1419
2739d3ee 1420 /* This task has no NUMA fault statistics yet */
ff1df896 1421 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1422 return;
1423
2739d3ee 1424 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1425 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1426 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1427
1428 /* Success if task is already running on preferred CPU */
de1b301a 1429 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1430 return;
1431
1432 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1433 task_numa_migrate(p);
6b9a7460
MG
1434}
1435
20e07dea
RR
1436/*
1437 * Find the nodes on which the workload is actively running. We do this by
1438 * tracking the nodes from which NUMA hinting faults are triggered. This can
1439 * be different from the set of nodes where the workload's memory is currently
1440 * located.
1441 *
1442 * The bitmask is used to make smarter decisions on when to do NUMA page
1443 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1444 * are added when they cause over 6/16 of the maximum number of faults, but
1445 * only removed when they drop below 3/16.
1446 */
1447static void update_numa_active_node_mask(struct numa_group *numa_group)
1448{
1449 unsigned long faults, max_faults = 0;
1450 int nid;
1451
1452 for_each_online_node(nid) {
1453 faults = group_faults_cpu(numa_group, nid);
1454 if (faults > max_faults)
1455 max_faults = faults;
1456 }
1457
1458 for_each_online_node(nid) {
1459 faults = group_faults_cpu(numa_group, nid);
1460 if (!node_isset(nid, numa_group->active_nodes)) {
1461 if (faults > max_faults * 6 / 16)
1462 node_set(nid, numa_group->active_nodes);
1463 } else if (faults < max_faults * 3 / 16)
1464 node_clear(nid, numa_group->active_nodes);
1465 }
1466}
1467
04bb2f94
RR
1468/*
1469 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1470 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1471 * period will be for the next scan window. If local/(local+remote) ratio is
1472 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1473 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1474 */
1475#define NUMA_PERIOD_SLOTS 10
a22b4b01 1476#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1477
1478/*
1479 * Increase the scan period (slow down scanning) if the majority of
1480 * our memory is already on our local node, or if the majority of
1481 * the page accesses are shared with other processes.
1482 * Otherwise, decrease the scan period.
1483 */
1484static void update_task_scan_period(struct task_struct *p,
1485 unsigned long shared, unsigned long private)
1486{
1487 unsigned int period_slot;
1488 int ratio;
1489 int diff;
1490
1491 unsigned long remote = p->numa_faults_locality[0];
1492 unsigned long local = p->numa_faults_locality[1];
1493
1494 /*
1495 * If there were no record hinting faults then either the task is
1496 * completely idle or all activity is areas that are not of interest
1497 * to automatic numa balancing. Scan slower
1498 */
1499 if (local + shared == 0) {
1500 p->numa_scan_period = min(p->numa_scan_period_max,
1501 p->numa_scan_period << 1);
1502
1503 p->mm->numa_next_scan = jiffies +
1504 msecs_to_jiffies(p->numa_scan_period);
1505
1506 return;
1507 }
1508
1509 /*
1510 * Prepare to scale scan period relative to the current period.
1511 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1512 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1513 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1514 */
1515 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1516 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1517 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1518 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1519 if (!slot)
1520 slot = 1;
1521 diff = slot * period_slot;
1522 } else {
1523 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1524
1525 /*
1526 * Scale scan rate increases based on sharing. There is an
1527 * inverse relationship between the degree of sharing and
1528 * the adjustment made to the scanning period. Broadly
1529 * speaking the intent is that there is little point
1530 * scanning faster if shared accesses dominate as it may
1531 * simply bounce migrations uselessly
1532 */
04bb2f94
RR
1533 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1534 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1535 }
1536
1537 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1538 task_scan_min(p), task_scan_max(p));
1539 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1540}
1541
7e2703e6
RR
1542/*
1543 * Get the fraction of time the task has been running since the last
1544 * NUMA placement cycle. The scheduler keeps similar statistics, but
1545 * decays those on a 32ms period, which is orders of magnitude off
1546 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1547 * stats only if the task is so new there are no NUMA statistics yet.
1548 */
1549static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1550{
1551 u64 runtime, delta, now;
1552 /* Use the start of this time slice to avoid calculations. */
1553 now = p->se.exec_start;
1554 runtime = p->se.sum_exec_runtime;
1555
1556 if (p->last_task_numa_placement) {
1557 delta = runtime - p->last_sum_exec_runtime;
1558 *period = now - p->last_task_numa_placement;
1559 } else {
1560 delta = p->se.avg.runnable_avg_sum;
1561 *period = p->se.avg.runnable_avg_period;
1562 }
1563
1564 p->last_sum_exec_runtime = runtime;
1565 p->last_task_numa_placement = now;
1566
1567 return delta;
1568}
1569
cbee9f88
PZ
1570static void task_numa_placement(struct task_struct *p)
1571{
83e1d2cd
MG
1572 int seq, nid, max_nid = -1, max_group_nid = -1;
1573 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1574 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1575 unsigned long total_faults;
1576 u64 runtime, period;
7dbd13ed 1577 spinlock_t *group_lock = NULL;
cbee9f88 1578
2832bc19 1579 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1580 if (p->numa_scan_seq == seq)
1581 return;
1582 p->numa_scan_seq = seq;
598f0ec0 1583 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1584
7e2703e6
RR
1585 total_faults = p->numa_faults_locality[0] +
1586 p->numa_faults_locality[1];
1587 runtime = numa_get_avg_runtime(p, &period);
1588
7dbd13ed
MG
1589 /* If the task is part of a group prevent parallel updates to group stats */
1590 if (p->numa_group) {
1591 group_lock = &p->numa_group->lock;
60e69eed 1592 spin_lock_irq(group_lock);
7dbd13ed
MG
1593 }
1594
688b7585
MG
1595 /* Find the node with the highest number of faults */
1596 for_each_online_node(nid) {
83e1d2cd 1597 unsigned long faults = 0, group_faults = 0;
ac8e895b 1598 int priv, i;
745d6147 1599
be1e4e76 1600 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1601 long diff, f_diff, f_weight;
8c8a743c 1602
ac8e895b 1603 i = task_faults_idx(nid, priv);
745d6147 1604
ac8e895b 1605 /* Decay existing window, copy faults since last scan */
35664fd4 1606 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1607 fault_types[priv] += p->numa_faults_buffer_memory[i];
1608 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1609
7e2703e6
RR
1610 /*
1611 * Normalize the faults_from, so all tasks in a group
1612 * count according to CPU use, instead of by the raw
1613 * number of faults. Tasks with little runtime have
1614 * little over-all impact on throughput, and thus their
1615 * faults are less important.
1616 */
1617 f_weight = div64_u64(runtime << 16, period + 1);
1618 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1619 (total_faults + 1);
35664fd4 1620 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1621 p->numa_faults_buffer_cpu[i] = 0;
1622
35664fd4
RR
1623 p->numa_faults_memory[i] += diff;
1624 p->numa_faults_cpu[i] += f_diff;
ff1df896 1625 faults += p->numa_faults_memory[i];
83e1d2cd 1626 p->total_numa_faults += diff;
8c8a743c
PZ
1627 if (p->numa_group) {
1628 /* safe because we can only change our own group */
989348b5 1629 p->numa_group->faults[i] += diff;
50ec8a40 1630 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1631 p->numa_group->total_faults += diff;
1632 group_faults += p->numa_group->faults[i];
8c8a743c 1633 }
ac8e895b
MG
1634 }
1635
688b7585
MG
1636 if (faults > max_faults) {
1637 max_faults = faults;
1638 max_nid = nid;
1639 }
83e1d2cd
MG
1640
1641 if (group_faults > max_group_faults) {
1642 max_group_faults = group_faults;
1643 max_group_nid = nid;
1644 }
1645 }
1646
04bb2f94
RR
1647 update_task_scan_period(p, fault_types[0], fault_types[1]);
1648
7dbd13ed 1649 if (p->numa_group) {
20e07dea 1650 update_numa_active_node_mask(p->numa_group);
60e69eed 1651 spin_unlock_irq(group_lock);
f0b8a4af 1652 max_nid = max_group_nid;
688b7585
MG
1653 }
1654
bb97fc31
RR
1655 if (max_faults) {
1656 /* Set the new preferred node */
1657 if (max_nid != p->numa_preferred_nid)
1658 sched_setnuma(p, max_nid);
1659
1660 if (task_node(p) != p->numa_preferred_nid)
1661 numa_migrate_preferred(p);
3a7053b3 1662 }
cbee9f88
PZ
1663}
1664
8c8a743c
PZ
1665static inline int get_numa_group(struct numa_group *grp)
1666{
1667 return atomic_inc_not_zero(&grp->refcount);
1668}
1669
1670static inline void put_numa_group(struct numa_group *grp)
1671{
1672 if (atomic_dec_and_test(&grp->refcount))
1673 kfree_rcu(grp, rcu);
1674}
1675
3e6a9418
MG
1676static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1677 int *priv)
8c8a743c
PZ
1678{
1679 struct numa_group *grp, *my_grp;
1680 struct task_struct *tsk;
1681 bool join = false;
1682 int cpu = cpupid_to_cpu(cpupid);
1683 int i;
1684
1685 if (unlikely(!p->numa_group)) {
1686 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1687 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1688
1689 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1690 if (!grp)
1691 return;
1692
1693 atomic_set(&grp->refcount, 1);
1694 spin_lock_init(&grp->lock);
1695 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1696 grp->gid = p->pid;
50ec8a40 1697 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1698 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1699 nr_node_ids;
8c8a743c 1700
20e07dea
RR
1701 node_set(task_node(current), grp->active_nodes);
1702
be1e4e76 1703 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1704 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1705
989348b5 1706 grp->total_faults = p->total_numa_faults;
83e1d2cd 1707
8c8a743c
PZ
1708 list_add(&p->numa_entry, &grp->task_list);
1709 grp->nr_tasks++;
1710 rcu_assign_pointer(p->numa_group, grp);
1711 }
1712
1713 rcu_read_lock();
1714 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1715
1716 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1717 goto no_join;
8c8a743c
PZ
1718
1719 grp = rcu_dereference(tsk->numa_group);
1720 if (!grp)
3354781a 1721 goto no_join;
8c8a743c
PZ
1722
1723 my_grp = p->numa_group;
1724 if (grp == my_grp)
3354781a 1725 goto no_join;
8c8a743c
PZ
1726
1727 /*
1728 * Only join the other group if its bigger; if we're the bigger group,
1729 * the other task will join us.
1730 */
1731 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1732 goto no_join;
8c8a743c
PZ
1733
1734 /*
1735 * Tie-break on the grp address.
1736 */
1737 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1738 goto no_join;
8c8a743c 1739
dabe1d99
RR
1740 /* Always join threads in the same process. */
1741 if (tsk->mm == current->mm)
1742 join = true;
1743
1744 /* Simple filter to avoid false positives due to PID collisions */
1745 if (flags & TNF_SHARED)
1746 join = true;
8c8a743c 1747
3e6a9418
MG
1748 /* Update priv based on whether false sharing was detected */
1749 *priv = !join;
1750
dabe1d99 1751 if (join && !get_numa_group(grp))
3354781a 1752 goto no_join;
8c8a743c 1753
8c8a743c
PZ
1754 rcu_read_unlock();
1755
1756 if (!join)
1757 return;
1758
60e69eed
MG
1759 BUG_ON(irqs_disabled());
1760 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1761
be1e4e76 1762 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1763 my_grp->faults[i] -= p->numa_faults_memory[i];
1764 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1765 }
989348b5
MG
1766 my_grp->total_faults -= p->total_numa_faults;
1767 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1768
1769 list_move(&p->numa_entry, &grp->task_list);
1770 my_grp->nr_tasks--;
1771 grp->nr_tasks++;
1772
1773 spin_unlock(&my_grp->lock);
60e69eed 1774 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1775
1776 rcu_assign_pointer(p->numa_group, grp);
1777
1778 put_numa_group(my_grp);
3354781a
PZ
1779 return;
1780
1781no_join:
1782 rcu_read_unlock();
1783 return;
8c8a743c
PZ
1784}
1785
1786void task_numa_free(struct task_struct *p)
1787{
1788 struct numa_group *grp = p->numa_group;
ff1df896 1789 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1790 unsigned long flags;
1791 int i;
8c8a743c
PZ
1792
1793 if (grp) {
e9dd685c 1794 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1795 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1796 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1797 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1798
8c8a743c
PZ
1799 list_del(&p->numa_entry);
1800 grp->nr_tasks--;
e9dd685c 1801 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 1802 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
1803 put_numa_group(grp);
1804 }
1805
ff1df896
RR
1806 p->numa_faults_memory = NULL;
1807 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1808 p->numa_faults_cpu= NULL;
1809 p->numa_faults_buffer_cpu = NULL;
82727018 1810 kfree(numa_faults);
8c8a743c
PZ
1811}
1812
cbee9f88
PZ
1813/*
1814 * Got a PROT_NONE fault for a page on @node.
1815 */
58b46da3 1816void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1817{
1818 struct task_struct *p = current;
6688cc05 1819 bool migrated = flags & TNF_MIGRATED;
58b46da3 1820 int cpu_node = task_node(current);
792568ec 1821 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1822 int priv;
cbee9f88 1823
10e84b97 1824 if (!numabalancing_enabled)
1a687c2e
MG
1825 return;
1826
9ff1d9ff
MG
1827 /* for example, ksmd faulting in a user's mm */
1828 if (!p->mm)
1829 return;
1830
f809ca9a 1831 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1832 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1833 int size = sizeof(*p->numa_faults_memory) *
1834 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1835
be1e4e76 1836 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1837 if (!p->numa_faults_memory)
f809ca9a 1838 return;
745d6147 1839
ff1df896 1840 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1841 /*
1842 * The averaged statistics, shared & private, memory & cpu,
1843 * occupy the first half of the array. The second half of the
1844 * array is for current counters, which are averaged into the
1845 * first set by task_numa_placement.
1846 */
50ec8a40
RR
1847 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1848 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1849 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1850 p->total_numa_faults = 0;
04bb2f94 1851 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1852 }
cbee9f88 1853
8c8a743c
PZ
1854 /*
1855 * First accesses are treated as private, otherwise consider accesses
1856 * to be private if the accessing pid has not changed
1857 */
1858 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1859 priv = 1;
1860 } else {
1861 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1862 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1863 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1864 }
1865
792568ec
RR
1866 /*
1867 * If a workload spans multiple NUMA nodes, a shared fault that
1868 * occurs wholly within the set of nodes that the workload is
1869 * actively using should be counted as local. This allows the
1870 * scan rate to slow down when a workload has settled down.
1871 */
1872 if (!priv && !local && p->numa_group &&
1873 node_isset(cpu_node, p->numa_group->active_nodes) &&
1874 node_isset(mem_node, p->numa_group->active_nodes))
1875 local = 1;
1876
cbee9f88 1877 task_numa_placement(p);
f809ca9a 1878
2739d3ee
RR
1879 /*
1880 * Retry task to preferred node migration periodically, in case it
1881 * case it previously failed, or the scheduler moved us.
1882 */
1883 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1884 numa_migrate_preferred(p);
1885
b32e86b4
IM
1886 if (migrated)
1887 p->numa_pages_migrated += pages;
1888
58b46da3
RR
1889 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1890 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1891 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1892}
1893
6e5fb223
PZ
1894static void reset_ptenuma_scan(struct task_struct *p)
1895{
1896 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1897 p->mm->numa_scan_offset = 0;
1898}
1899
cbee9f88
PZ
1900/*
1901 * The expensive part of numa migration is done from task_work context.
1902 * Triggered from task_tick_numa().
1903 */
1904void task_numa_work(struct callback_head *work)
1905{
1906 unsigned long migrate, next_scan, now = jiffies;
1907 struct task_struct *p = current;
1908 struct mm_struct *mm = p->mm;
6e5fb223 1909 struct vm_area_struct *vma;
9f40604c 1910 unsigned long start, end;
598f0ec0 1911 unsigned long nr_pte_updates = 0;
9f40604c 1912 long pages;
cbee9f88
PZ
1913
1914 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1915
1916 work->next = work; /* protect against double add */
1917 /*
1918 * Who cares about NUMA placement when they're dying.
1919 *
1920 * NOTE: make sure not to dereference p->mm before this check,
1921 * exit_task_work() happens _after_ exit_mm() so we could be called
1922 * without p->mm even though we still had it when we enqueued this
1923 * work.
1924 */
1925 if (p->flags & PF_EXITING)
1926 return;
1927
930aa174 1928 if (!mm->numa_next_scan) {
7e8d16b6
MG
1929 mm->numa_next_scan = now +
1930 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1931 }
1932
cbee9f88
PZ
1933 /*
1934 * Enforce maximal scan/migration frequency..
1935 */
1936 migrate = mm->numa_next_scan;
1937 if (time_before(now, migrate))
1938 return;
1939
598f0ec0
MG
1940 if (p->numa_scan_period == 0) {
1941 p->numa_scan_period_max = task_scan_max(p);
1942 p->numa_scan_period = task_scan_min(p);
1943 }
cbee9f88 1944
fb003b80 1945 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1946 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1947 return;
1948
19a78d11
PZ
1949 /*
1950 * Delay this task enough that another task of this mm will likely win
1951 * the next time around.
1952 */
1953 p->node_stamp += 2 * TICK_NSEC;
1954
9f40604c
MG
1955 start = mm->numa_scan_offset;
1956 pages = sysctl_numa_balancing_scan_size;
1957 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1958 if (!pages)
1959 return;
cbee9f88 1960
6e5fb223 1961 down_read(&mm->mmap_sem);
9f40604c 1962 vma = find_vma(mm, start);
6e5fb223
PZ
1963 if (!vma) {
1964 reset_ptenuma_scan(p);
9f40604c 1965 start = 0;
6e5fb223
PZ
1966 vma = mm->mmap;
1967 }
9f40604c 1968 for (; vma; vma = vma->vm_next) {
6b6482bb 1969 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
1970 continue;
1971
4591ce4f
MG
1972 /*
1973 * Shared library pages mapped by multiple processes are not
1974 * migrated as it is expected they are cache replicated. Avoid
1975 * hinting faults in read-only file-backed mappings or the vdso
1976 * as migrating the pages will be of marginal benefit.
1977 */
1978 if (!vma->vm_mm ||
1979 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1980 continue;
1981
3c67f474
MG
1982 /*
1983 * Skip inaccessible VMAs to avoid any confusion between
1984 * PROT_NONE and NUMA hinting ptes
1985 */
1986 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1987 continue;
4591ce4f 1988
9f40604c
MG
1989 do {
1990 start = max(start, vma->vm_start);
1991 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1992 end = min(end, vma->vm_end);
598f0ec0
MG
1993 nr_pte_updates += change_prot_numa(vma, start, end);
1994
1995 /*
1996 * Scan sysctl_numa_balancing_scan_size but ensure that
1997 * at least one PTE is updated so that unused virtual
1998 * address space is quickly skipped.
1999 */
2000 if (nr_pte_updates)
2001 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2002
9f40604c
MG
2003 start = end;
2004 if (pages <= 0)
2005 goto out;
3cf1962c
RR
2006
2007 cond_resched();
9f40604c 2008 } while (end != vma->vm_end);
cbee9f88 2009 }
6e5fb223 2010
9f40604c 2011out:
6e5fb223 2012 /*
c69307d5
PZ
2013 * It is possible to reach the end of the VMA list but the last few
2014 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2015 * would find the !migratable VMA on the next scan but not reset the
2016 * scanner to the start so check it now.
6e5fb223
PZ
2017 */
2018 if (vma)
9f40604c 2019 mm->numa_scan_offset = start;
6e5fb223
PZ
2020 else
2021 reset_ptenuma_scan(p);
2022 up_read(&mm->mmap_sem);
cbee9f88
PZ
2023}
2024
2025/*
2026 * Drive the periodic memory faults..
2027 */
2028void task_tick_numa(struct rq *rq, struct task_struct *curr)
2029{
2030 struct callback_head *work = &curr->numa_work;
2031 u64 period, now;
2032
2033 /*
2034 * We don't care about NUMA placement if we don't have memory.
2035 */
2036 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2037 return;
2038
2039 /*
2040 * Using runtime rather than walltime has the dual advantage that
2041 * we (mostly) drive the selection from busy threads and that the
2042 * task needs to have done some actual work before we bother with
2043 * NUMA placement.
2044 */
2045 now = curr->se.sum_exec_runtime;
2046 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2047
2048 if (now - curr->node_stamp > period) {
4b96a29b 2049 if (!curr->node_stamp)
598f0ec0 2050 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2051 curr->node_stamp += period;
cbee9f88
PZ
2052
2053 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2054 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2055 task_work_add(curr, work, true);
2056 }
2057 }
2058}
2059#else
2060static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2061{
2062}
0ec8aa00
PZ
2063
2064static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2065{
2066}
2067
2068static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2069{
2070}
cbee9f88
PZ
2071#endif /* CONFIG_NUMA_BALANCING */
2072
30cfdcfc
DA
2073static void
2074account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2075{
2076 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2077 if (!parent_entity(se))
029632fb 2078 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2079#ifdef CONFIG_SMP
0ec8aa00
PZ
2080 if (entity_is_task(se)) {
2081 struct rq *rq = rq_of(cfs_rq);
2082
2083 account_numa_enqueue(rq, task_of(se));
2084 list_add(&se->group_node, &rq->cfs_tasks);
2085 }
367456c7 2086#endif
30cfdcfc 2087 cfs_rq->nr_running++;
30cfdcfc
DA
2088}
2089
2090static void
2091account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2092{
2093 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2094 if (!parent_entity(se))
029632fb 2095 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2096 if (entity_is_task(se)) {
2097 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2098 list_del_init(&se->group_node);
0ec8aa00 2099 }
30cfdcfc 2100 cfs_rq->nr_running--;
30cfdcfc
DA
2101}
2102
3ff6dcac
YZ
2103#ifdef CONFIG_FAIR_GROUP_SCHED
2104# ifdef CONFIG_SMP
cf5f0acf
PZ
2105static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2106{
2107 long tg_weight;
2108
2109 /*
2110 * Use this CPU's actual weight instead of the last load_contribution
2111 * to gain a more accurate current total weight. See
2112 * update_cfs_rq_load_contribution().
2113 */
bf5b986e 2114 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2115 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2116 tg_weight += cfs_rq->load.weight;
2117
2118 return tg_weight;
2119}
2120
6d5ab293 2121static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2122{
cf5f0acf 2123 long tg_weight, load, shares;
3ff6dcac 2124
cf5f0acf 2125 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2126 load = cfs_rq->load.weight;
3ff6dcac 2127
3ff6dcac 2128 shares = (tg->shares * load);
cf5f0acf
PZ
2129 if (tg_weight)
2130 shares /= tg_weight;
3ff6dcac
YZ
2131
2132 if (shares < MIN_SHARES)
2133 shares = MIN_SHARES;
2134 if (shares > tg->shares)
2135 shares = tg->shares;
2136
2137 return shares;
2138}
3ff6dcac 2139# else /* CONFIG_SMP */
6d5ab293 2140static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2141{
2142 return tg->shares;
2143}
3ff6dcac 2144# endif /* CONFIG_SMP */
2069dd75
PZ
2145static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2146 unsigned long weight)
2147{
19e5eebb
PT
2148 if (se->on_rq) {
2149 /* commit outstanding execution time */
2150 if (cfs_rq->curr == se)
2151 update_curr(cfs_rq);
2069dd75 2152 account_entity_dequeue(cfs_rq, se);
19e5eebb 2153 }
2069dd75
PZ
2154
2155 update_load_set(&se->load, weight);
2156
2157 if (se->on_rq)
2158 account_entity_enqueue(cfs_rq, se);
2159}
2160
82958366
PT
2161static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2162
6d5ab293 2163static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2164{
2165 struct task_group *tg;
2166 struct sched_entity *se;
3ff6dcac 2167 long shares;
2069dd75 2168
2069dd75
PZ
2169 tg = cfs_rq->tg;
2170 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2171 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2172 return;
3ff6dcac
YZ
2173#ifndef CONFIG_SMP
2174 if (likely(se->load.weight == tg->shares))
2175 return;
2176#endif
6d5ab293 2177 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2178
2179 reweight_entity(cfs_rq_of(se), se, shares);
2180}
2181#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2182static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2183{
2184}
2185#endif /* CONFIG_FAIR_GROUP_SCHED */
2186
141965c7 2187#ifdef CONFIG_SMP
5b51f2f8
PT
2188/*
2189 * We choose a half-life close to 1 scheduling period.
2190 * Note: The tables below are dependent on this value.
2191 */
2192#define LOAD_AVG_PERIOD 32
2193#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2194#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2195
2196/* Precomputed fixed inverse multiplies for multiplication by y^n */
2197static const u32 runnable_avg_yN_inv[] = {
2198 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2199 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2200 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2201 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2202 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2203 0x85aac367, 0x82cd8698,
2204};
2205
2206/*
2207 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2208 * over-estimates when re-combining.
2209 */
2210static const u32 runnable_avg_yN_sum[] = {
2211 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2212 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2213 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2214};
2215
9d85f21c
PT
2216/*
2217 * Approximate:
2218 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2219 */
2220static __always_inline u64 decay_load(u64 val, u64 n)
2221{
5b51f2f8
PT
2222 unsigned int local_n;
2223
2224 if (!n)
2225 return val;
2226 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2227 return 0;
2228
2229 /* after bounds checking we can collapse to 32-bit */
2230 local_n = n;
2231
2232 /*
2233 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2234 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2235 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2236 *
2237 * To achieve constant time decay_load.
2238 */
2239 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2240 val >>= local_n / LOAD_AVG_PERIOD;
2241 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2242 }
2243
5b51f2f8
PT
2244 val *= runnable_avg_yN_inv[local_n];
2245 /* We don't use SRR here since we always want to round down. */
2246 return val >> 32;
2247}
2248
2249/*
2250 * For updates fully spanning n periods, the contribution to runnable
2251 * average will be: \Sum 1024*y^n
2252 *
2253 * We can compute this reasonably efficiently by combining:
2254 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2255 */
2256static u32 __compute_runnable_contrib(u64 n)
2257{
2258 u32 contrib = 0;
2259
2260 if (likely(n <= LOAD_AVG_PERIOD))
2261 return runnable_avg_yN_sum[n];
2262 else if (unlikely(n >= LOAD_AVG_MAX_N))
2263 return LOAD_AVG_MAX;
2264
2265 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2266 do {
2267 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2268 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2269
2270 n -= LOAD_AVG_PERIOD;
2271 } while (n > LOAD_AVG_PERIOD);
2272
2273 contrib = decay_load(contrib, n);
2274 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2275}
2276
2277/*
2278 * We can represent the historical contribution to runnable average as the
2279 * coefficients of a geometric series. To do this we sub-divide our runnable
2280 * history into segments of approximately 1ms (1024us); label the segment that
2281 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2282 *
2283 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2284 * p0 p1 p2
2285 * (now) (~1ms ago) (~2ms ago)
2286 *
2287 * Let u_i denote the fraction of p_i that the entity was runnable.
2288 *
2289 * We then designate the fractions u_i as our co-efficients, yielding the
2290 * following representation of historical load:
2291 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2292 *
2293 * We choose y based on the with of a reasonably scheduling period, fixing:
2294 * y^32 = 0.5
2295 *
2296 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2297 * approximately half as much as the contribution to load within the last ms
2298 * (u_0).
2299 *
2300 * When a period "rolls over" and we have new u_0`, multiplying the previous
2301 * sum again by y is sufficient to update:
2302 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2303 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2304 */
2305static __always_inline int __update_entity_runnable_avg(u64 now,
2306 struct sched_avg *sa,
2307 int runnable)
2308{
5b51f2f8
PT
2309 u64 delta, periods;
2310 u32 runnable_contrib;
9d85f21c
PT
2311 int delta_w, decayed = 0;
2312
2313 delta = now - sa->last_runnable_update;
2314 /*
2315 * This should only happen when time goes backwards, which it
2316 * unfortunately does during sched clock init when we swap over to TSC.
2317 */
2318 if ((s64)delta < 0) {
2319 sa->last_runnable_update = now;
2320 return 0;
2321 }
2322
2323 /*
2324 * Use 1024ns as the unit of measurement since it's a reasonable
2325 * approximation of 1us and fast to compute.
2326 */
2327 delta >>= 10;
2328 if (!delta)
2329 return 0;
2330 sa->last_runnable_update = now;
2331
2332 /* delta_w is the amount already accumulated against our next period */
2333 delta_w = sa->runnable_avg_period % 1024;
2334 if (delta + delta_w >= 1024) {
2335 /* period roll-over */
2336 decayed = 1;
2337
2338 /*
2339 * Now that we know we're crossing a period boundary, figure
2340 * out how much from delta we need to complete the current
2341 * period and accrue it.
2342 */
2343 delta_w = 1024 - delta_w;
5b51f2f8
PT
2344 if (runnable)
2345 sa->runnable_avg_sum += delta_w;
2346 sa->runnable_avg_period += delta_w;
2347
2348 delta -= delta_w;
2349
2350 /* Figure out how many additional periods this update spans */
2351 periods = delta / 1024;
2352 delta %= 1024;
2353
2354 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2355 periods + 1);
2356 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2357 periods + 1);
2358
2359 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2360 runnable_contrib = __compute_runnable_contrib(periods);
2361 if (runnable)
2362 sa->runnable_avg_sum += runnable_contrib;
2363 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2364 }
2365
2366 /* Remainder of delta accrued against u_0` */
2367 if (runnable)
2368 sa->runnable_avg_sum += delta;
2369 sa->runnable_avg_period += delta;
2370
2371 return decayed;
2372}
2373
9ee474f5 2374/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2375static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2376{
2377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2378 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2379
2380 decays -= se->avg.decay_count;
2381 if (!decays)
aff3e498 2382 return 0;
9ee474f5
PT
2383
2384 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2385 se->avg.decay_count = 0;
aff3e498
PT
2386
2387 return decays;
9ee474f5
PT
2388}
2389
c566e8e9
PT
2390#ifdef CONFIG_FAIR_GROUP_SCHED
2391static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2392 int force_update)
2393{
2394 struct task_group *tg = cfs_rq->tg;
bf5b986e 2395 long tg_contrib;
c566e8e9
PT
2396
2397 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2398 tg_contrib -= cfs_rq->tg_load_contrib;
2399
8236d907
JL
2400 if (!tg_contrib)
2401 return;
2402
bf5b986e
AS
2403 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2404 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2405 cfs_rq->tg_load_contrib += tg_contrib;
2406 }
2407}
8165e145 2408
bb17f655
PT
2409/*
2410 * Aggregate cfs_rq runnable averages into an equivalent task_group
2411 * representation for computing load contributions.
2412 */
2413static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2414 struct cfs_rq *cfs_rq)
2415{
2416 struct task_group *tg = cfs_rq->tg;
2417 long contrib;
2418
2419 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2420 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2421 sa->runnable_avg_period + 1);
2422 contrib -= cfs_rq->tg_runnable_contrib;
2423
2424 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2425 atomic_add(contrib, &tg->runnable_avg);
2426 cfs_rq->tg_runnable_contrib += contrib;
2427 }
2428}
2429
8165e145
PT
2430static inline void __update_group_entity_contrib(struct sched_entity *se)
2431{
2432 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2433 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2434 int runnable_avg;
2435
8165e145
PT
2436 u64 contrib;
2437
2438 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2439 se->avg.load_avg_contrib = div_u64(contrib,
2440 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2441
2442 /*
2443 * For group entities we need to compute a correction term in the case
2444 * that they are consuming <1 cpu so that we would contribute the same
2445 * load as a task of equal weight.
2446 *
2447 * Explicitly co-ordinating this measurement would be expensive, but
2448 * fortunately the sum of each cpus contribution forms a usable
2449 * lower-bound on the true value.
2450 *
2451 * Consider the aggregate of 2 contributions. Either they are disjoint
2452 * (and the sum represents true value) or they are disjoint and we are
2453 * understating by the aggregate of their overlap.
2454 *
2455 * Extending this to N cpus, for a given overlap, the maximum amount we
2456 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2457 * cpus that overlap for this interval and w_i is the interval width.
2458 *
2459 * On a small machine; the first term is well-bounded which bounds the
2460 * total error since w_i is a subset of the period. Whereas on a
2461 * larger machine, while this first term can be larger, if w_i is the
2462 * of consequential size guaranteed to see n_i*w_i quickly converge to
2463 * our upper bound of 1-cpu.
2464 */
2465 runnable_avg = atomic_read(&tg->runnable_avg);
2466 if (runnable_avg < NICE_0_LOAD) {
2467 se->avg.load_avg_contrib *= runnable_avg;
2468 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2469 }
8165e145 2470}
f5f9739d
DE
2471
2472static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2473{
2474 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2475 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2476}
6e83125c 2477#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2478static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2479 int force_update) {}
bb17f655
PT
2480static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2481 struct cfs_rq *cfs_rq) {}
8165e145 2482static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2483static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2484#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2485
8165e145
PT
2486static inline void __update_task_entity_contrib(struct sched_entity *se)
2487{
2488 u32 contrib;
2489
2490 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2491 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2492 contrib /= (se->avg.runnable_avg_period + 1);
2493 se->avg.load_avg_contrib = scale_load(contrib);
2494}
2495
2dac754e
PT
2496/* Compute the current contribution to load_avg by se, return any delta */
2497static long __update_entity_load_avg_contrib(struct sched_entity *se)
2498{
2499 long old_contrib = se->avg.load_avg_contrib;
2500
8165e145
PT
2501 if (entity_is_task(se)) {
2502 __update_task_entity_contrib(se);
2503 } else {
bb17f655 2504 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2505 __update_group_entity_contrib(se);
2506 }
2dac754e
PT
2507
2508 return se->avg.load_avg_contrib - old_contrib;
2509}
2510
9ee474f5
PT
2511static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2512 long load_contrib)
2513{
2514 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2515 cfs_rq->blocked_load_avg -= load_contrib;
2516 else
2517 cfs_rq->blocked_load_avg = 0;
2518}
2519
f1b17280
PT
2520static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2521
9d85f21c 2522/* Update a sched_entity's runnable average */
9ee474f5
PT
2523static inline void update_entity_load_avg(struct sched_entity *se,
2524 int update_cfs_rq)
9d85f21c 2525{
2dac754e
PT
2526 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2527 long contrib_delta;
f1b17280 2528 u64 now;
2dac754e 2529
f1b17280
PT
2530 /*
2531 * For a group entity we need to use their owned cfs_rq_clock_task() in
2532 * case they are the parent of a throttled hierarchy.
2533 */
2534 if (entity_is_task(se))
2535 now = cfs_rq_clock_task(cfs_rq);
2536 else
2537 now = cfs_rq_clock_task(group_cfs_rq(se));
2538
2539 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2540 return;
2541
2542 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2543
2544 if (!update_cfs_rq)
2545 return;
2546
2dac754e
PT
2547 if (se->on_rq)
2548 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2549 else
2550 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2551}
2552
2553/*
2554 * Decay the load contributed by all blocked children and account this so that
2555 * their contribution may appropriately discounted when they wake up.
2556 */
aff3e498 2557static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2558{
f1b17280 2559 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2560 u64 decays;
2561
2562 decays = now - cfs_rq->last_decay;
aff3e498 2563 if (!decays && !force_update)
9ee474f5
PT
2564 return;
2565
2509940f
AS
2566 if (atomic_long_read(&cfs_rq->removed_load)) {
2567 unsigned long removed_load;
2568 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2569 subtract_blocked_load_contrib(cfs_rq, removed_load);
2570 }
9ee474f5 2571
aff3e498
PT
2572 if (decays) {
2573 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2574 decays);
2575 atomic64_add(decays, &cfs_rq->decay_counter);
2576 cfs_rq->last_decay = now;
2577 }
c566e8e9
PT
2578
2579 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2580}
18bf2805 2581
2dac754e
PT
2582/* Add the load generated by se into cfs_rq's child load-average */
2583static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2584 struct sched_entity *se,
2585 int wakeup)
2dac754e 2586{
aff3e498
PT
2587 /*
2588 * We track migrations using entity decay_count <= 0, on a wake-up
2589 * migration we use a negative decay count to track the remote decays
2590 * accumulated while sleeping.
a75cdaa9
AS
2591 *
2592 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2593 * are seen by enqueue_entity_load_avg() as a migration with an already
2594 * constructed load_avg_contrib.
aff3e498
PT
2595 */
2596 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2597 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2598 if (se->avg.decay_count) {
2599 /*
2600 * In a wake-up migration we have to approximate the
2601 * time sleeping. This is because we can't synchronize
2602 * clock_task between the two cpus, and it is not
2603 * guaranteed to be read-safe. Instead, we can
2604 * approximate this using our carried decays, which are
2605 * explicitly atomically readable.
2606 */
2607 se->avg.last_runnable_update -= (-se->avg.decay_count)
2608 << 20;
2609 update_entity_load_avg(se, 0);
2610 /* Indicate that we're now synchronized and on-rq */
2611 se->avg.decay_count = 0;
2612 }
9ee474f5
PT
2613 wakeup = 0;
2614 } else {
9390675a 2615 __synchronize_entity_decay(se);
9ee474f5
PT
2616 }
2617
aff3e498
PT
2618 /* migrated tasks did not contribute to our blocked load */
2619 if (wakeup) {
9ee474f5 2620 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2621 update_entity_load_avg(se, 0);
2622 }
9ee474f5 2623
2dac754e 2624 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2625 /* we force update consideration on load-balancer moves */
2626 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2627}
2628
9ee474f5
PT
2629/*
2630 * Remove se's load from this cfs_rq child load-average, if the entity is
2631 * transitioning to a blocked state we track its projected decay using
2632 * blocked_load_avg.
2633 */
2dac754e 2634static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2635 struct sched_entity *se,
2636 int sleep)
2dac754e 2637{
9ee474f5 2638 update_entity_load_avg(se, 1);
aff3e498
PT
2639 /* we force update consideration on load-balancer moves */
2640 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2641
2dac754e 2642 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2643 if (sleep) {
2644 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2645 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2646 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2647}
642dbc39
VG
2648
2649/*
2650 * Update the rq's load with the elapsed running time before entering
2651 * idle. if the last scheduled task is not a CFS task, idle_enter will
2652 * be the only way to update the runnable statistic.
2653 */
2654void idle_enter_fair(struct rq *this_rq)
2655{
2656 update_rq_runnable_avg(this_rq, 1);
2657}
2658
2659/*
2660 * Update the rq's load with the elapsed idle time before a task is
2661 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2662 * be the only way to update the runnable statistic.
2663 */
2664void idle_exit_fair(struct rq *this_rq)
2665{
2666 update_rq_runnable_avg(this_rq, 0);
2667}
2668
6e83125c
PZ
2669static int idle_balance(struct rq *this_rq);
2670
38033c37
PZ
2671#else /* CONFIG_SMP */
2672
9ee474f5
PT
2673static inline void update_entity_load_avg(struct sched_entity *se,
2674 int update_cfs_rq) {}
18bf2805 2675static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2676static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2677 struct sched_entity *se,
2678 int wakeup) {}
2dac754e 2679static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2680 struct sched_entity *se,
2681 int sleep) {}
aff3e498
PT
2682static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2683 int force_update) {}
6e83125c
PZ
2684
2685static inline int idle_balance(struct rq *rq)
2686{
2687 return 0;
2688}
2689
38033c37 2690#endif /* CONFIG_SMP */
9d85f21c 2691
2396af69 2692static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2693{
bf0f6f24 2694#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2695 struct task_struct *tsk = NULL;
2696
2697 if (entity_is_task(se))
2698 tsk = task_of(se);
2699
41acab88 2700 if (se->statistics.sleep_start) {
78becc27 2701 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2702
2703 if ((s64)delta < 0)
2704 delta = 0;
2705
41acab88
LDM
2706 if (unlikely(delta > se->statistics.sleep_max))
2707 se->statistics.sleep_max = delta;
bf0f6f24 2708
8c79a045 2709 se->statistics.sleep_start = 0;
41acab88 2710 se->statistics.sum_sleep_runtime += delta;
9745512c 2711
768d0c27 2712 if (tsk) {
e414314c 2713 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2714 trace_sched_stat_sleep(tsk, delta);
2715 }
bf0f6f24 2716 }
41acab88 2717 if (se->statistics.block_start) {
78becc27 2718 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2719
2720 if ((s64)delta < 0)
2721 delta = 0;
2722
41acab88
LDM
2723 if (unlikely(delta > se->statistics.block_max))
2724 se->statistics.block_max = delta;
bf0f6f24 2725
8c79a045 2726 se->statistics.block_start = 0;
41acab88 2727 se->statistics.sum_sleep_runtime += delta;
30084fbd 2728
e414314c 2729 if (tsk) {
8f0dfc34 2730 if (tsk->in_iowait) {
41acab88
LDM
2731 se->statistics.iowait_sum += delta;
2732 se->statistics.iowait_count++;
768d0c27 2733 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2734 }
2735
b781a602
AV
2736 trace_sched_stat_blocked(tsk, delta);
2737
e414314c
PZ
2738 /*
2739 * Blocking time is in units of nanosecs, so shift by
2740 * 20 to get a milliseconds-range estimation of the
2741 * amount of time that the task spent sleeping:
2742 */
2743 if (unlikely(prof_on == SLEEP_PROFILING)) {
2744 profile_hits(SLEEP_PROFILING,
2745 (void *)get_wchan(tsk),
2746 delta >> 20);
2747 }
2748 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2749 }
bf0f6f24
IM
2750 }
2751#endif
2752}
2753
ddc97297
PZ
2754static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2755{
2756#ifdef CONFIG_SCHED_DEBUG
2757 s64 d = se->vruntime - cfs_rq->min_vruntime;
2758
2759 if (d < 0)
2760 d = -d;
2761
2762 if (d > 3*sysctl_sched_latency)
2763 schedstat_inc(cfs_rq, nr_spread_over);
2764#endif
2765}
2766
aeb73b04
PZ
2767static void
2768place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2769{
1af5f730 2770 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2771
2cb8600e
PZ
2772 /*
2773 * The 'current' period is already promised to the current tasks,
2774 * however the extra weight of the new task will slow them down a
2775 * little, place the new task so that it fits in the slot that
2776 * stays open at the end.
2777 */
94dfb5e7 2778 if (initial && sched_feat(START_DEBIT))
f9c0b095 2779 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2780
a2e7a7eb 2781 /* sleeps up to a single latency don't count. */
5ca9880c 2782 if (!initial) {
a2e7a7eb 2783 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2784
a2e7a7eb
MG
2785 /*
2786 * Halve their sleep time's effect, to allow
2787 * for a gentler effect of sleepers:
2788 */
2789 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2790 thresh >>= 1;
51e0304c 2791
a2e7a7eb 2792 vruntime -= thresh;
aeb73b04
PZ
2793 }
2794
b5d9d734 2795 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2796 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2797}
2798
d3d9dc33
PT
2799static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2800
bf0f6f24 2801static void
88ec22d3 2802enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2803{
88ec22d3
PZ
2804 /*
2805 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2806 * through calling update_curr().
88ec22d3 2807 */
371fd7e7 2808 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2809 se->vruntime += cfs_rq->min_vruntime;
2810
bf0f6f24 2811 /*
a2a2d680 2812 * Update run-time statistics of the 'current'.
bf0f6f24 2813 */
b7cc0896 2814 update_curr(cfs_rq);
f269ae04 2815 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2816 account_entity_enqueue(cfs_rq, se);
2817 update_cfs_shares(cfs_rq);
bf0f6f24 2818
88ec22d3 2819 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2820 place_entity(cfs_rq, se, 0);
2396af69 2821 enqueue_sleeper(cfs_rq, se);
e9acbff6 2822 }
bf0f6f24 2823
d2417e5a 2824 update_stats_enqueue(cfs_rq, se);
ddc97297 2825 check_spread(cfs_rq, se);
83b699ed
SV
2826 if (se != cfs_rq->curr)
2827 __enqueue_entity(cfs_rq, se);
2069dd75 2828 se->on_rq = 1;
3d4b47b4 2829
d3d9dc33 2830 if (cfs_rq->nr_running == 1) {
3d4b47b4 2831 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2832 check_enqueue_throttle(cfs_rq);
2833 }
bf0f6f24
IM
2834}
2835
2c13c919 2836static void __clear_buddies_last(struct sched_entity *se)
2002c695 2837{
2c13c919
RR
2838 for_each_sched_entity(se) {
2839 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2840 if (cfs_rq->last != se)
2c13c919 2841 break;
f1044799
PZ
2842
2843 cfs_rq->last = NULL;
2c13c919
RR
2844 }
2845}
2002c695 2846
2c13c919
RR
2847static void __clear_buddies_next(struct sched_entity *se)
2848{
2849 for_each_sched_entity(se) {
2850 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2851 if (cfs_rq->next != se)
2c13c919 2852 break;
f1044799
PZ
2853
2854 cfs_rq->next = NULL;
2c13c919 2855 }
2002c695
PZ
2856}
2857
ac53db59
RR
2858static void __clear_buddies_skip(struct sched_entity *se)
2859{
2860 for_each_sched_entity(se) {
2861 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2862 if (cfs_rq->skip != se)
ac53db59 2863 break;
f1044799
PZ
2864
2865 cfs_rq->skip = NULL;
ac53db59
RR
2866 }
2867}
2868
a571bbea
PZ
2869static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2870{
2c13c919
RR
2871 if (cfs_rq->last == se)
2872 __clear_buddies_last(se);
2873
2874 if (cfs_rq->next == se)
2875 __clear_buddies_next(se);
ac53db59
RR
2876
2877 if (cfs_rq->skip == se)
2878 __clear_buddies_skip(se);
a571bbea
PZ
2879}
2880
6c16a6dc 2881static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2882
bf0f6f24 2883static void
371fd7e7 2884dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2885{
a2a2d680
DA
2886 /*
2887 * Update run-time statistics of the 'current'.
2888 */
2889 update_curr(cfs_rq);
17bc14b7 2890 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2891
19b6a2e3 2892 update_stats_dequeue(cfs_rq, se);
371fd7e7 2893 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2894#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2895 if (entity_is_task(se)) {
2896 struct task_struct *tsk = task_of(se);
2897
2898 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2899 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2900 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2901 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2902 }
db36cc7d 2903#endif
67e9fb2a
PZ
2904 }
2905
2002c695 2906 clear_buddies(cfs_rq, se);
4793241b 2907
83b699ed 2908 if (se != cfs_rq->curr)
30cfdcfc 2909 __dequeue_entity(cfs_rq, se);
17bc14b7 2910 se->on_rq = 0;
30cfdcfc 2911 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2912
2913 /*
2914 * Normalize the entity after updating the min_vruntime because the
2915 * update can refer to the ->curr item and we need to reflect this
2916 * movement in our normalized position.
2917 */
371fd7e7 2918 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2919 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2920
d8b4986d
PT
2921 /* return excess runtime on last dequeue */
2922 return_cfs_rq_runtime(cfs_rq);
2923
1e876231 2924 update_min_vruntime(cfs_rq);
17bc14b7 2925 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2926}
2927
2928/*
2929 * Preempt the current task with a newly woken task if needed:
2930 */
7c92e54f 2931static void
2e09bf55 2932check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2933{
11697830 2934 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2935 struct sched_entity *se;
2936 s64 delta;
11697830 2937
6d0f0ebd 2938 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2939 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2940 if (delta_exec > ideal_runtime) {
8875125e 2941 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
2942 /*
2943 * The current task ran long enough, ensure it doesn't get
2944 * re-elected due to buddy favours.
2945 */
2946 clear_buddies(cfs_rq, curr);
f685ceac
MG
2947 return;
2948 }
2949
2950 /*
2951 * Ensure that a task that missed wakeup preemption by a
2952 * narrow margin doesn't have to wait for a full slice.
2953 * This also mitigates buddy induced latencies under load.
2954 */
f685ceac
MG
2955 if (delta_exec < sysctl_sched_min_granularity)
2956 return;
2957
f4cfb33e
WX
2958 se = __pick_first_entity(cfs_rq);
2959 delta = curr->vruntime - se->vruntime;
f685ceac 2960
f4cfb33e
WX
2961 if (delta < 0)
2962 return;
d7d82944 2963
f4cfb33e 2964 if (delta > ideal_runtime)
8875125e 2965 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
2966}
2967
83b699ed 2968static void
8494f412 2969set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2970{
83b699ed
SV
2971 /* 'current' is not kept within the tree. */
2972 if (se->on_rq) {
2973 /*
2974 * Any task has to be enqueued before it get to execute on
2975 * a CPU. So account for the time it spent waiting on the
2976 * runqueue.
2977 */
2978 update_stats_wait_end(cfs_rq, se);
2979 __dequeue_entity(cfs_rq, se);
2980 }
2981
79303e9e 2982 update_stats_curr_start(cfs_rq, se);
429d43bc 2983 cfs_rq->curr = se;
eba1ed4b
IM
2984#ifdef CONFIG_SCHEDSTATS
2985 /*
2986 * Track our maximum slice length, if the CPU's load is at
2987 * least twice that of our own weight (i.e. dont track it
2988 * when there are only lesser-weight tasks around):
2989 */
495eca49 2990 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2991 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2992 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2993 }
2994#endif
4a55b450 2995 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2996}
2997
3f3a4904
PZ
2998static int
2999wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3000
ac53db59
RR
3001/*
3002 * Pick the next process, keeping these things in mind, in this order:
3003 * 1) keep things fair between processes/task groups
3004 * 2) pick the "next" process, since someone really wants that to run
3005 * 3) pick the "last" process, for cache locality
3006 * 4) do not run the "skip" process, if something else is available
3007 */
678d5718
PZ
3008static struct sched_entity *
3009pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3010{
678d5718
PZ
3011 struct sched_entity *left = __pick_first_entity(cfs_rq);
3012 struct sched_entity *se;
3013
3014 /*
3015 * If curr is set we have to see if its left of the leftmost entity
3016 * still in the tree, provided there was anything in the tree at all.
3017 */
3018 if (!left || (curr && entity_before(curr, left)))
3019 left = curr;
3020
3021 se = left; /* ideally we run the leftmost entity */
f4b6755f 3022
ac53db59
RR
3023 /*
3024 * Avoid running the skip buddy, if running something else can
3025 * be done without getting too unfair.
3026 */
3027 if (cfs_rq->skip == se) {
678d5718
PZ
3028 struct sched_entity *second;
3029
3030 if (se == curr) {
3031 second = __pick_first_entity(cfs_rq);
3032 } else {
3033 second = __pick_next_entity(se);
3034 if (!second || (curr && entity_before(curr, second)))
3035 second = curr;
3036 }
3037
ac53db59
RR
3038 if (second && wakeup_preempt_entity(second, left) < 1)
3039 se = second;
3040 }
aa2ac252 3041
f685ceac
MG
3042 /*
3043 * Prefer last buddy, try to return the CPU to a preempted task.
3044 */
3045 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3046 se = cfs_rq->last;
3047
ac53db59
RR
3048 /*
3049 * Someone really wants this to run. If it's not unfair, run it.
3050 */
3051 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3052 se = cfs_rq->next;
3053
f685ceac 3054 clear_buddies(cfs_rq, se);
4793241b
PZ
3055
3056 return se;
aa2ac252
PZ
3057}
3058
678d5718 3059static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3060
ab6cde26 3061static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3062{
3063 /*
3064 * If still on the runqueue then deactivate_task()
3065 * was not called and update_curr() has to be done:
3066 */
3067 if (prev->on_rq)
b7cc0896 3068 update_curr(cfs_rq);
bf0f6f24 3069
d3d9dc33
PT
3070 /* throttle cfs_rqs exceeding runtime */
3071 check_cfs_rq_runtime(cfs_rq);
3072
ddc97297 3073 check_spread(cfs_rq, prev);
30cfdcfc 3074 if (prev->on_rq) {
5870db5b 3075 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3076 /* Put 'current' back into the tree. */
3077 __enqueue_entity(cfs_rq, prev);
9d85f21c 3078 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3079 update_entity_load_avg(prev, 1);
30cfdcfc 3080 }
429d43bc 3081 cfs_rq->curr = NULL;
bf0f6f24
IM
3082}
3083
8f4d37ec
PZ
3084static void
3085entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3086{
bf0f6f24 3087 /*
30cfdcfc 3088 * Update run-time statistics of the 'current'.
bf0f6f24 3089 */
30cfdcfc 3090 update_curr(cfs_rq);
bf0f6f24 3091
9d85f21c
PT
3092 /*
3093 * Ensure that runnable average is periodically updated.
3094 */
9ee474f5 3095 update_entity_load_avg(curr, 1);
aff3e498 3096 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3097 update_cfs_shares(cfs_rq);
9d85f21c 3098
8f4d37ec
PZ
3099#ifdef CONFIG_SCHED_HRTICK
3100 /*
3101 * queued ticks are scheduled to match the slice, so don't bother
3102 * validating it and just reschedule.
3103 */
983ed7a6 3104 if (queued) {
8875125e 3105 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3106 return;
3107 }
8f4d37ec
PZ
3108 /*
3109 * don't let the period tick interfere with the hrtick preemption
3110 */
3111 if (!sched_feat(DOUBLE_TICK) &&
3112 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3113 return;
3114#endif
3115
2c2efaed 3116 if (cfs_rq->nr_running > 1)
2e09bf55 3117 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3118}
3119
ab84d31e
PT
3120
3121/**************************************************
3122 * CFS bandwidth control machinery
3123 */
3124
3125#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3126
3127#ifdef HAVE_JUMP_LABEL
c5905afb 3128static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3129
3130static inline bool cfs_bandwidth_used(void)
3131{
c5905afb 3132 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3133}
3134
1ee14e6c 3135void cfs_bandwidth_usage_inc(void)
029632fb 3136{
1ee14e6c
BS
3137 static_key_slow_inc(&__cfs_bandwidth_used);
3138}
3139
3140void cfs_bandwidth_usage_dec(void)
3141{
3142 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3143}
3144#else /* HAVE_JUMP_LABEL */
3145static bool cfs_bandwidth_used(void)
3146{
3147 return true;
3148}
3149
1ee14e6c
BS
3150void cfs_bandwidth_usage_inc(void) {}
3151void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3152#endif /* HAVE_JUMP_LABEL */
3153
ab84d31e
PT
3154/*
3155 * default period for cfs group bandwidth.
3156 * default: 0.1s, units: nanoseconds
3157 */
3158static inline u64 default_cfs_period(void)
3159{
3160 return 100000000ULL;
3161}
ec12cb7f
PT
3162
3163static inline u64 sched_cfs_bandwidth_slice(void)
3164{
3165 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3166}
3167
a9cf55b2
PT
3168/*
3169 * Replenish runtime according to assigned quota and update expiration time.
3170 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3171 * additional synchronization around rq->lock.
3172 *
3173 * requires cfs_b->lock
3174 */
029632fb 3175void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3176{
3177 u64 now;
3178
3179 if (cfs_b->quota == RUNTIME_INF)
3180 return;
3181
3182 now = sched_clock_cpu(smp_processor_id());
3183 cfs_b->runtime = cfs_b->quota;
3184 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3185}
3186
029632fb
PZ
3187static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3188{
3189 return &tg->cfs_bandwidth;
3190}
3191
f1b17280
PT
3192/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3193static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3194{
3195 if (unlikely(cfs_rq->throttle_count))
3196 return cfs_rq->throttled_clock_task;
3197
78becc27 3198 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3199}
3200
85dac906
PT
3201/* returns 0 on failure to allocate runtime */
3202static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3203{
3204 struct task_group *tg = cfs_rq->tg;
3205 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3206 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3207
3208 /* note: this is a positive sum as runtime_remaining <= 0 */
3209 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3210
3211 raw_spin_lock(&cfs_b->lock);
3212 if (cfs_b->quota == RUNTIME_INF)
3213 amount = min_amount;
58088ad0 3214 else {
a9cf55b2
PT
3215 /*
3216 * If the bandwidth pool has become inactive, then at least one
3217 * period must have elapsed since the last consumption.
3218 * Refresh the global state and ensure bandwidth timer becomes
3219 * active.
3220 */
3221 if (!cfs_b->timer_active) {
3222 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3223 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3224 }
58088ad0
PT
3225
3226 if (cfs_b->runtime > 0) {
3227 amount = min(cfs_b->runtime, min_amount);
3228 cfs_b->runtime -= amount;
3229 cfs_b->idle = 0;
3230 }
ec12cb7f 3231 }
a9cf55b2 3232 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3233 raw_spin_unlock(&cfs_b->lock);
3234
3235 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3236 /*
3237 * we may have advanced our local expiration to account for allowed
3238 * spread between our sched_clock and the one on which runtime was
3239 * issued.
3240 */
3241 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3242 cfs_rq->runtime_expires = expires;
85dac906
PT
3243
3244 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3245}
3246
a9cf55b2
PT
3247/*
3248 * Note: This depends on the synchronization provided by sched_clock and the
3249 * fact that rq->clock snapshots this value.
3250 */
3251static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3252{
a9cf55b2 3253 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3254
3255 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3256 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3257 return;
3258
a9cf55b2
PT
3259 if (cfs_rq->runtime_remaining < 0)
3260 return;
3261
3262 /*
3263 * If the local deadline has passed we have to consider the
3264 * possibility that our sched_clock is 'fast' and the global deadline
3265 * has not truly expired.
3266 *
3267 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3268 * whether the global deadline has advanced. It is valid to compare
3269 * cfs_b->runtime_expires without any locks since we only care about
3270 * exact equality, so a partial write will still work.
a9cf55b2
PT
3271 */
3272
51f2176d 3273 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3274 /* extend local deadline, drift is bounded above by 2 ticks */
3275 cfs_rq->runtime_expires += TICK_NSEC;
3276 } else {
3277 /* global deadline is ahead, expiration has passed */
3278 cfs_rq->runtime_remaining = 0;
3279 }
3280}
3281
9dbdb155 3282static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3283{
3284 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3285 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3286 expire_cfs_rq_runtime(cfs_rq);
3287
3288 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3289 return;
3290
85dac906
PT
3291 /*
3292 * if we're unable to extend our runtime we resched so that the active
3293 * hierarchy can be throttled
3294 */
3295 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3296 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3297}
3298
6c16a6dc 3299static __always_inline
9dbdb155 3300void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3301{
56f570e5 3302 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3303 return;
3304
3305 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3306}
3307
85dac906
PT
3308static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3309{
56f570e5 3310 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3311}
3312
64660c86
PT
3313/* check whether cfs_rq, or any parent, is throttled */
3314static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3315{
56f570e5 3316 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3317}
3318
3319/*
3320 * Ensure that neither of the group entities corresponding to src_cpu or
3321 * dest_cpu are members of a throttled hierarchy when performing group
3322 * load-balance operations.
3323 */
3324static inline int throttled_lb_pair(struct task_group *tg,
3325 int src_cpu, int dest_cpu)
3326{
3327 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3328
3329 src_cfs_rq = tg->cfs_rq[src_cpu];
3330 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3331
3332 return throttled_hierarchy(src_cfs_rq) ||
3333 throttled_hierarchy(dest_cfs_rq);
3334}
3335
3336/* updated child weight may affect parent so we have to do this bottom up */
3337static int tg_unthrottle_up(struct task_group *tg, void *data)
3338{
3339 struct rq *rq = data;
3340 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3341
3342 cfs_rq->throttle_count--;
3343#ifdef CONFIG_SMP
3344 if (!cfs_rq->throttle_count) {
f1b17280 3345 /* adjust cfs_rq_clock_task() */
78becc27 3346 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3347 cfs_rq->throttled_clock_task;
64660c86
PT
3348 }
3349#endif
3350
3351 return 0;
3352}
3353
3354static int tg_throttle_down(struct task_group *tg, void *data)
3355{
3356 struct rq *rq = data;
3357 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3358
82958366
PT
3359 /* group is entering throttled state, stop time */
3360 if (!cfs_rq->throttle_count)
78becc27 3361 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3362 cfs_rq->throttle_count++;
3363
3364 return 0;
3365}
3366
d3d9dc33 3367static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3368{
3369 struct rq *rq = rq_of(cfs_rq);
3370 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3371 struct sched_entity *se;
3372 long task_delta, dequeue = 1;
3373
3374 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3375
f1b17280 3376 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3377 rcu_read_lock();
3378 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3379 rcu_read_unlock();
85dac906
PT
3380
3381 task_delta = cfs_rq->h_nr_running;
3382 for_each_sched_entity(se) {
3383 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3384 /* throttled entity or throttle-on-deactivate */
3385 if (!se->on_rq)
3386 break;
3387
3388 if (dequeue)
3389 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3390 qcfs_rq->h_nr_running -= task_delta;
3391
3392 if (qcfs_rq->load.weight)
3393 dequeue = 0;
3394 }
3395
3396 if (!se)
72465447 3397 sub_nr_running(rq, task_delta);
85dac906
PT
3398
3399 cfs_rq->throttled = 1;
78becc27 3400 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3401 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3402 /*
3403 * Add to the _head_ of the list, so that an already-started
3404 * distribute_cfs_runtime will not see us
3405 */
3406 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3407 if (!cfs_b->timer_active)
09dc4ab0 3408 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3409 raw_spin_unlock(&cfs_b->lock);
3410}
3411
029632fb 3412void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3413{
3414 struct rq *rq = rq_of(cfs_rq);
3415 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3416 struct sched_entity *se;
3417 int enqueue = 1;
3418 long task_delta;
3419
22b958d8 3420 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3421
3422 cfs_rq->throttled = 0;
1a55af2e
FW
3423
3424 update_rq_clock(rq);
3425
671fd9da 3426 raw_spin_lock(&cfs_b->lock);
78becc27 3427 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3428 list_del_rcu(&cfs_rq->throttled_list);
3429 raw_spin_unlock(&cfs_b->lock);
3430
64660c86
PT
3431 /* update hierarchical throttle state */
3432 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3433
671fd9da
PT
3434 if (!cfs_rq->load.weight)
3435 return;
3436
3437 task_delta = cfs_rq->h_nr_running;
3438 for_each_sched_entity(se) {
3439 if (se->on_rq)
3440 enqueue = 0;
3441
3442 cfs_rq = cfs_rq_of(se);
3443 if (enqueue)
3444 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3445 cfs_rq->h_nr_running += task_delta;
3446
3447 if (cfs_rq_throttled(cfs_rq))
3448 break;
3449 }
3450
3451 if (!se)
72465447 3452 add_nr_running(rq, task_delta);
671fd9da
PT
3453
3454 /* determine whether we need to wake up potentially idle cpu */
3455 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3456 resched_curr(rq);
671fd9da
PT
3457}
3458
3459static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3460 u64 remaining, u64 expires)
3461{
3462 struct cfs_rq *cfs_rq;
c06f04c7
BS
3463 u64 runtime;
3464 u64 starting_runtime = remaining;
671fd9da
PT
3465
3466 rcu_read_lock();
3467 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3468 throttled_list) {
3469 struct rq *rq = rq_of(cfs_rq);
3470
3471 raw_spin_lock(&rq->lock);
3472 if (!cfs_rq_throttled(cfs_rq))
3473 goto next;
3474
3475 runtime = -cfs_rq->runtime_remaining + 1;
3476 if (runtime > remaining)
3477 runtime = remaining;
3478 remaining -= runtime;
3479
3480 cfs_rq->runtime_remaining += runtime;
3481 cfs_rq->runtime_expires = expires;
3482
3483 /* we check whether we're throttled above */
3484 if (cfs_rq->runtime_remaining > 0)
3485 unthrottle_cfs_rq(cfs_rq);
3486
3487next:
3488 raw_spin_unlock(&rq->lock);
3489
3490 if (!remaining)
3491 break;
3492 }
3493 rcu_read_unlock();
3494
c06f04c7 3495 return starting_runtime - remaining;
671fd9da
PT
3496}
3497
58088ad0
PT
3498/*
3499 * Responsible for refilling a task_group's bandwidth and unthrottling its
3500 * cfs_rqs as appropriate. If there has been no activity within the last
3501 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3502 * used to track this state.
3503 */
3504static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3505{
671fd9da 3506 u64 runtime, runtime_expires;
51f2176d 3507 int throttled;
58088ad0 3508
58088ad0
PT
3509 /* no need to continue the timer with no bandwidth constraint */
3510 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3511 goto out_deactivate;
58088ad0 3512
671fd9da 3513 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3514 cfs_b->nr_periods += overrun;
671fd9da 3515
51f2176d
BS
3516 /*
3517 * idle depends on !throttled (for the case of a large deficit), and if
3518 * we're going inactive then everything else can be deferred
3519 */
3520 if (cfs_b->idle && !throttled)
3521 goto out_deactivate;
a9cf55b2 3522
927b54fc
BS
3523 /*
3524 * if we have relooped after returning idle once, we need to update our
3525 * status as actually running, so that other cpus doing
3526 * __start_cfs_bandwidth will stop trying to cancel us.
3527 */
3528 cfs_b->timer_active = 1;
3529
a9cf55b2
PT
3530 __refill_cfs_bandwidth_runtime(cfs_b);
3531
671fd9da
PT
3532 if (!throttled) {
3533 /* mark as potentially idle for the upcoming period */
3534 cfs_b->idle = 1;
51f2176d 3535 return 0;
671fd9da
PT
3536 }
3537
e8da1b18
NR
3538 /* account preceding periods in which throttling occurred */
3539 cfs_b->nr_throttled += overrun;
3540
671fd9da 3541 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3542
3543 /*
c06f04c7
BS
3544 * This check is repeated as we are holding onto the new bandwidth while
3545 * we unthrottle. This can potentially race with an unthrottled group
3546 * trying to acquire new bandwidth from the global pool. This can result
3547 * in us over-using our runtime if it is all used during this loop, but
3548 * only by limited amounts in that extreme case.
671fd9da 3549 */
c06f04c7
BS
3550 while (throttled && cfs_b->runtime > 0) {
3551 runtime = cfs_b->runtime;
671fd9da
PT
3552 raw_spin_unlock(&cfs_b->lock);
3553 /* we can't nest cfs_b->lock while distributing bandwidth */
3554 runtime = distribute_cfs_runtime(cfs_b, runtime,
3555 runtime_expires);
3556 raw_spin_lock(&cfs_b->lock);
3557
3558 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3559
3560 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3561 }
58088ad0 3562
671fd9da
PT
3563 /*
3564 * While we are ensured activity in the period following an
3565 * unthrottle, this also covers the case in which the new bandwidth is
3566 * insufficient to cover the existing bandwidth deficit. (Forcing the
3567 * timer to remain active while there are any throttled entities.)
3568 */
3569 cfs_b->idle = 0;
58088ad0 3570
51f2176d
BS
3571 return 0;
3572
3573out_deactivate:
3574 cfs_b->timer_active = 0;
3575 return 1;
58088ad0 3576}
d3d9dc33 3577
d8b4986d
PT
3578/* a cfs_rq won't donate quota below this amount */
3579static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3580/* minimum remaining period time to redistribute slack quota */
3581static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3582/* how long we wait to gather additional slack before distributing */
3583static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3584
db06e78c
BS
3585/*
3586 * Are we near the end of the current quota period?
3587 *
3588 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3589 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3590 * migrate_hrtimers, base is never cleared, so we are fine.
3591 */
d8b4986d
PT
3592static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3593{
3594 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3595 u64 remaining;
3596
3597 /* if the call-back is running a quota refresh is already occurring */
3598 if (hrtimer_callback_running(refresh_timer))
3599 return 1;
3600
3601 /* is a quota refresh about to occur? */
3602 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3603 if (remaining < min_expire)
3604 return 1;
3605
3606 return 0;
3607}
3608
3609static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3610{
3611 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3612
3613 /* if there's a quota refresh soon don't bother with slack */
3614 if (runtime_refresh_within(cfs_b, min_left))
3615 return;
3616
3617 start_bandwidth_timer(&cfs_b->slack_timer,
3618 ns_to_ktime(cfs_bandwidth_slack_period));
3619}
3620
3621/* we know any runtime found here is valid as update_curr() precedes return */
3622static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3623{
3624 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3625 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3626
3627 if (slack_runtime <= 0)
3628 return;
3629
3630 raw_spin_lock(&cfs_b->lock);
3631 if (cfs_b->quota != RUNTIME_INF &&
3632 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3633 cfs_b->runtime += slack_runtime;
3634
3635 /* we are under rq->lock, defer unthrottling using a timer */
3636 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3637 !list_empty(&cfs_b->throttled_cfs_rq))
3638 start_cfs_slack_bandwidth(cfs_b);
3639 }
3640 raw_spin_unlock(&cfs_b->lock);
3641
3642 /* even if it's not valid for return we don't want to try again */
3643 cfs_rq->runtime_remaining -= slack_runtime;
3644}
3645
3646static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3647{
56f570e5
PT
3648 if (!cfs_bandwidth_used())
3649 return;
3650
fccfdc6f 3651 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3652 return;
3653
3654 __return_cfs_rq_runtime(cfs_rq);
3655}
3656
3657/*
3658 * This is done with a timer (instead of inline with bandwidth return) since
3659 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3660 */
3661static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3662{
3663 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3664 u64 expires;
3665
3666 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3667 raw_spin_lock(&cfs_b->lock);
3668 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3669 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3670 return;
db06e78c 3671 }
d8b4986d 3672
c06f04c7 3673 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3674 runtime = cfs_b->runtime;
c06f04c7 3675
d8b4986d
PT
3676 expires = cfs_b->runtime_expires;
3677 raw_spin_unlock(&cfs_b->lock);
3678
3679 if (!runtime)
3680 return;
3681
3682 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3683
3684 raw_spin_lock(&cfs_b->lock);
3685 if (expires == cfs_b->runtime_expires)
c06f04c7 3686 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3687 raw_spin_unlock(&cfs_b->lock);
3688}
3689
d3d9dc33
PT
3690/*
3691 * When a group wakes up we want to make sure that its quota is not already
3692 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3693 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3694 */
3695static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3696{
56f570e5
PT
3697 if (!cfs_bandwidth_used())
3698 return;
3699
d3d9dc33
PT
3700 /* an active group must be handled by the update_curr()->put() path */
3701 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3702 return;
3703
3704 /* ensure the group is not already throttled */
3705 if (cfs_rq_throttled(cfs_rq))
3706 return;
3707
3708 /* update runtime allocation */
3709 account_cfs_rq_runtime(cfs_rq, 0);
3710 if (cfs_rq->runtime_remaining <= 0)
3711 throttle_cfs_rq(cfs_rq);
3712}
3713
3714/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3715static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3716{
56f570e5 3717 if (!cfs_bandwidth_used())
678d5718 3718 return false;
56f570e5 3719
d3d9dc33 3720 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3721 return false;
d3d9dc33
PT
3722
3723 /*
3724 * it's possible for a throttled entity to be forced into a running
3725 * state (e.g. set_curr_task), in this case we're finished.
3726 */
3727 if (cfs_rq_throttled(cfs_rq))
678d5718 3728 return true;
d3d9dc33
PT
3729
3730 throttle_cfs_rq(cfs_rq);
678d5718 3731 return true;
d3d9dc33 3732}
029632fb 3733
029632fb
PZ
3734static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3735{
3736 struct cfs_bandwidth *cfs_b =
3737 container_of(timer, struct cfs_bandwidth, slack_timer);
3738 do_sched_cfs_slack_timer(cfs_b);
3739
3740 return HRTIMER_NORESTART;
3741}
3742
3743static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3744{
3745 struct cfs_bandwidth *cfs_b =
3746 container_of(timer, struct cfs_bandwidth, period_timer);
3747 ktime_t now;
3748 int overrun;
3749 int idle = 0;
3750
51f2176d 3751 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3752 for (;;) {
3753 now = hrtimer_cb_get_time(timer);
3754 overrun = hrtimer_forward(timer, now, cfs_b->period);
3755
3756 if (!overrun)
3757 break;
3758
3759 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3760 }
51f2176d 3761 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3762
3763 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3764}
3765
3766void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3767{
3768 raw_spin_lock_init(&cfs_b->lock);
3769 cfs_b->runtime = 0;
3770 cfs_b->quota = RUNTIME_INF;
3771 cfs_b->period = ns_to_ktime(default_cfs_period());
3772
3773 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3774 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3775 cfs_b->period_timer.function = sched_cfs_period_timer;
3776 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3777 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3778}
3779
3780static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3781{
3782 cfs_rq->runtime_enabled = 0;
3783 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3784}
3785
3786/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3787void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3788{
3789 /*
3790 * The timer may be active because we're trying to set a new bandwidth
3791 * period or because we're racing with the tear-down path
3792 * (timer_active==0 becomes visible before the hrtimer call-back
3793 * terminates). In either case we ensure that it's re-programmed
3794 */
927b54fc
BS
3795 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3796 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3797 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3798 raw_spin_unlock(&cfs_b->lock);
927b54fc 3799 cpu_relax();
029632fb
PZ
3800 raw_spin_lock(&cfs_b->lock);
3801 /* if someone else restarted the timer then we're done */
09dc4ab0 3802 if (!force && cfs_b->timer_active)
029632fb
PZ
3803 return;
3804 }
3805
3806 cfs_b->timer_active = 1;
3807 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3808}
3809
3810static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3811{
3812 hrtimer_cancel(&cfs_b->period_timer);
3813 hrtimer_cancel(&cfs_b->slack_timer);
3814}
3815
0e59bdae
KT
3816static void __maybe_unused update_runtime_enabled(struct rq *rq)
3817{
3818 struct cfs_rq *cfs_rq;
3819
3820 for_each_leaf_cfs_rq(rq, cfs_rq) {
3821 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3822
3823 raw_spin_lock(&cfs_b->lock);
3824 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3825 raw_spin_unlock(&cfs_b->lock);
3826 }
3827}
3828
38dc3348 3829static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3830{
3831 struct cfs_rq *cfs_rq;
3832
3833 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3834 if (!cfs_rq->runtime_enabled)
3835 continue;
3836
3837 /*
3838 * clock_task is not advancing so we just need to make sure
3839 * there's some valid quota amount
3840 */
51f2176d 3841 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3842 /*
3843 * Offline rq is schedulable till cpu is completely disabled
3844 * in take_cpu_down(), so we prevent new cfs throttling here.
3845 */
3846 cfs_rq->runtime_enabled = 0;
3847
029632fb
PZ
3848 if (cfs_rq_throttled(cfs_rq))
3849 unthrottle_cfs_rq(cfs_rq);
3850 }
3851}
3852
3853#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3854static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3855{
78becc27 3856 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3857}
3858
9dbdb155 3859static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3860static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3861static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3862static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3863
3864static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3865{
3866 return 0;
3867}
64660c86
PT
3868
3869static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3870{
3871 return 0;
3872}
3873
3874static inline int throttled_lb_pair(struct task_group *tg,
3875 int src_cpu, int dest_cpu)
3876{
3877 return 0;
3878}
029632fb
PZ
3879
3880void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3881
3882#ifdef CONFIG_FAIR_GROUP_SCHED
3883static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3884#endif
3885
029632fb
PZ
3886static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3887{
3888 return NULL;
3889}
3890static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3891static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3892static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3893
3894#endif /* CONFIG_CFS_BANDWIDTH */
3895
bf0f6f24
IM
3896/**************************************************
3897 * CFS operations on tasks:
3898 */
3899
8f4d37ec
PZ
3900#ifdef CONFIG_SCHED_HRTICK
3901static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3902{
8f4d37ec
PZ
3903 struct sched_entity *se = &p->se;
3904 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3905
3906 WARN_ON(task_rq(p) != rq);
3907
b39e66ea 3908 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3909 u64 slice = sched_slice(cfs_rq, se);
3910 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3911 s64 delta = slice - ran;
3912
3913 if (delta < 0) {
3914 if (rq->curr == p)
8875125e 3915 resched_curr(rq);
8f4d37ec
PZ
3916 return;
3917 }
31656519 3918 hrtick_start(rq, delta);
8f4d37ec
PZ
3919 }
3920}
a4c2f00f
PZ
3921
3922/*
3923 * called from enqueue/dequeue and updates the hrtick when the
3924 * current task is from our class and nr_running is low enough
3925 * to matter.
3926 */
3927static void hrtick_update(struct rq *rq)
3928{
3929 struct task_struct *curr = rq->curr;
3930
b39e66ea 3931 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3932 return;
3933
3934 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3935 hrtick_start_fair(rq, curr);
3936}
55e12e5e 3937#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3938static inline void
3939hrtick_start_fair(struct rq *rq, struct task_struct *p)
3940{
3941}
a4c2f00f
PZ
3942
3943static inline void hrtick_update(struct rq *rq)
3944{
3945}
8f4d37ec
PZ
3946#endif
3947
bf0f6f24
IM
3948/*
3949 * The enqueue_task method is called before nr_running is
3950 * increased. Here we update the fair scheduling stats and
3951 * then put the task into the rbtree:
3952 */
ea87bb78 3953static void
371fd7e7 3954enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3955{
3956 struct cfs_rq *cfs_rq;
62fb1851 3957 struct sched_entity *se = &p->se;
bf0f6f24
IM
3958
3959 for_each_sched_entity(se) {
62fb1851 3960 if (se->on_rq)
bf0f6f24
IM
3961 break;
3962 cfs_rq = cfs_rq_of(se);
88ec22d3 3963 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3964
3965 /*
3966 * end evaluation on encountering a throttled cfs_rq
3967 *
3968 * note: in the case of encountering a throttled cfs_rq we will
3969 * post the final h_nr_running increment below.
3970 */
3971 if (cfs_rq_throttled(cfs_rq))
3972 break;
953bfcd1 3973 cfs_rq->h_nr_running++;
85dac906 3974
88ec22d3 3975 flags = ENQUEUE_WAKEUP;
bf0f6f24 3976 }
8f4d37ec 3977
2069dd75 3978 for_each_sched_entity(se) {
0f317143 3979 cfs_rq = cfs_rq_of(se);
953bfcd1 3980 cfs_rq->h_nr_running++;
2069dd75 3981
85dac906
PT
3982 if (cfs_rq_throttled(cfs_rq))
3983 break;
3984
17bc14b7 3985 update_cfs_shares(cfs_rq);
9ee474f5 3986 update_entity_load_avg(se, 1);
2069dd75
PZ
3987 }
3988
18bf2805
BS
3989 if (!se) {
3990 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3991 add_nr_running(rq, 1);
18bf2805 3992 }
a4c2f00f 3993 hrtick_update(rq);
bf0f6f24
IM
3994}
3995
2f36825b
VP
3996static void set_next_buddy(struct sched_entity *se);
3997
bf0f6f24
IM
3998/*
3999 * The dequeue_task method is called before nr_running is
4000 * decreased. We remove the task from the rbtree and
4001 * update the fair scheduling stats:
4002 */
371fd7e7 4003static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4004{
4005 struct cfs_rq *cfs_rq;
62fb1851 4006 struct sched_entity *se = &p->se;
2f36825b 4007 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4008
4009 for_each_sched_entity(se) {
4010 cfs_rq = cfs_rq_of(se);
371fd7e7 4011 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4012
4013 /*
4014 * end evaluation on encountering a throttled cfs_rq
4015 *
4016 * note: in the case of encountering a throttled cfs_rq we will
4017 * post the final h_nr_running decrement below.
4018 */
4019 if (cfs_rq_throttled(cfs_rq))
4020 break;
953bfcd1 4021 cfs_rq->h_nr_running--;
2069dd75 4022
bf0f6f24 4023 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4024 if (cfs_rq->load.weight) {
4025 /*
4026 * Bias pick_next to pick a task from this cfs_rq, as
4027 * p is sleeping when it is within its sched_slice.
4028 */
4029 if (task_sleep && parent_entity(se))
4030 set_next_buddy(parent_entity(se));
9598c82d
PT
4031
4032 /* avoid re-evaluating load for this entity */
4033 se = parent_entity(se);
bf0f6f24 4034 break;
2f36825b 4035 }
371fd7e7 4036 flags |= DEQUEUE_SLEEP;
bf0f6f24 4037 }
8f4d37ec 4038
2069dd75 4039 for_each_sched_entity(se) {
0f317143 4040 cfs_rq = cfs_rq_of(se);
953bfcd1 4041 cfs_rq->h_nr_running--;
2069dd75 4042
85dac906
PT
4043 if (cfs_rq_throttled(cfs_rq))
4044 break;
4045
17bc14b7 4046 update_cfs_shares(cfs_rq);
9ee474f5 4047 update_entity_load_avg(se, 1);
2069dd75
PZ
4048 }
4049
18bf2805 4050 if (!se) {
72465447 4051 sub_nr_running(rq, 1);
18bf2805
BS
4052 update_rq_runnable_avg(rq, 1);
4053 }
a4c2f00f 4054 hrtick_update(rq);
bf0f6f24
IM
4055}
4056
e7693a36 4057#ifdef CONFIG_SMP
029632fb
PZ
4058/* Used instead of source_load when we know the type == 0 */
4059static unsigned long weighted_cpuload(const int cpu)
4060{
b92486cb 4061 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4062}
4063
4064/*
4065 * Return a low guess at the load of a migration-source cpu weighted
4066 * according to the scheduling class and "nice" value.
4067 *
4068 * We want to under-estimate the load of migration sources, to
4069 * balance conservatively.
4070 */
4071static unsigned long source_load(int cpu, int type)
4072{
4073 struct rq *rq = cpu_rq(cpu);
4074 unsigned long total = weighted_cpuload(cpu);
4075
4076 if (type == 0 || !sched_feat(LB_BIAS))
4077 return total;
4078
4079 return min(rq->cpu_load[type-1], total);
4080}
4081
4082/*
4083 * Return a high guess at the load of a migration-target cpu weighted
4084 * according to the scheduling class and "nice" value.
4085 */
4086static unsigned long target_load(int cpu, int type)
4087{
4088 struct rq *rq = cpu_rq(cpu);
4089 unsigned long total = weighted_cpuload(cpu);
4090
4091 if (type == 0 || !sched_feat(LB_BIAS))
4092 return total;
4093
4094 return max(rq->cpu_load[type-1], total);
4095}
4096
ced549fa 4097static unsigned long capacity_of(int cpu)
029632fb 4098{
ced549fa 4099 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4100}
4101
4102static unsigned long cpu_avg_load_per_task(int cpu)
4103{
4104 struct rq *rq = cpu_rq(cpu);
65fdac08 4105 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4106 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4107
4108 if (nr_running)
b92486cb 4109 return load_avg / nr_running;
029632fb
PZ
4110
4111 return 0;
4112}
4113
62470419
MW
4114static void record_wakee(struct task_struct *p)
4115{
4116 /*
4117 * Rough decay (wiping) for cost saving, don't worry
4118 * about the boundary, really active task won't care
4119 * about the loss.
4120 */
2538d960 4121 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4122 current->wakee_flips >>= 1;
62470419
MW
4123 current->wakee_flip_decay_ts = jiffies;
4124 }
4125
4126 if (current->last_wakee != p) {
4127 current->last_wakee = p;
4128 current->wakee_flips++;
4129 }
4130}
098fb9db 4131
74f8e4b2 4132static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4133{
4134 struct sched_entity *se = &p->se;
4135 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4136 u64 min_vruntime;
4137
4138#ifndef CONFIG_64BIT
4139 u64 min_vruntime_copy;
88ec22d3 4140
3fe1698b
PZ
4141 do {
4142 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4143 smp_rmb();
4144 min_vruntime = cfs_rq->min_vruntime;
4145 } while (min_vruntime != min_vruntime_copy);
4146#else
4147 min_vruntime = cfs_rq->min_vruntime;
4148#endif
88ec22d3 4149
3fe1698b 4150 se->vruntime -= min_vruntime;
62470419 4151 record_wakee(p);
88ec22d3
PZ
4152}
4153
bb3469ac 4154#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4155/*
4156 * effective_load() calculates the load change as seen from the root_task_group
4157 *
4158 * Adding load to a group doesn't make a group heavier, but can cause movement
4159 * of group shares between cpus. Assuming the shares were perfectly aligned one
4160 * can calculate the shift in shares.
cf5f0acf
PZ
4161 *
4162 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4163 * on this @cpu and results in a total addition (subtraction) of @wg to the
4164 * total group weight.
4165 *
4166 * Given a runqueue weight distribution (rw_i) we can compute a shares
4167 * distribution (s_i) using:
4168 *
4169 * s_i = rw_i / \Sum rw_j (1)
4170 *
4171 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4172 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4173 * shares distribution (s_i):
4174 *
4175 * rw_i = { 2, 4, 1, 0 }
4176 * s_i = { 2/7, 4/7, 1/7, 0 }
4177 *
4178 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4179 * task used to run on and the CPU the waker is running on), we need to
4180 * compute the effect of waking a task on either CPU and, in case of a sync
4181 * wakeup, compute the effect of the current task going to sleep.
4182 *
4183 * So for a change of @wl to the local @cpu with an overall group weight change
4184 * of @wl we can compute the new shares distribution (s'_i) using:
4185 *
4186 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4187 *
4188 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4189 * differences in waking a task to CPU 0. The additional task changes the
4190 * weight and shares distributions like:
4191 *
4192 * rw'_i = { 3, 4, 1, 0 }
4193 * s'_i = { 3/8, 4/8, 1/8, 0 }
4194 *
4195 * We can then compute the difference in effective weight by using:
4196 *
4197 * dw_i = S * (s'_i - s_i) (3)
4198 *
4199 * Where 'S' is the group weight as seen by its parent.
4200 *
4201 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4202 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4203 * 4/7) times the weight of the group.
f5bfb7d9 4204 */
2069dd75 4205static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4206{
4be9daaa 4207 struct sched_entity *se = tg->se[cpu];
f1d239f7 4208
9722c2da 4209 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4210 return wl;
4211
4be9daaa 4212 for_each_sched_entity(se) {
cf5f0acf 4213 long w, W;
4be9daaa 4214
977dda7c 4215 tg = se->my_q->tg;
bb3469ac 4216
cf5f0acf
PZ
4217 /*
4218 * W = @wg + \Sum rw_j
4219 */
4220 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4221
cf5f0acf
PZ
4222 /*
4223 * w = rw_i + @wl
4224 */
4225 w = se->my_q->load.weight + wl;
940959e9 4226
cf5f0acf
PZ
4227 /*
4228 * wl = S * s'_i; see (2)
4229 */
4230 if (W > 0 && w < W)
4231 wl = (w * tg->shares) / W;
977dda7c
PT
4232 else
4233 wl = tg->shares;
940959e9 4234
cf5f0acf
PZ
4235 /*
4236 * Per the above, wl is the new se->load.weight value; since
4237 * those are clipped to [MIN_SHARES, ...) do so now. See
4238 * calc_cfs_shares().
4239 */
977dda7c
PT
4240 if (wl < MIN_SHARES)
4241 wl = MIN_SHARES;
cf5f0acf
PZ
4242
4243 /*
4244 * wl = dw_i = S * (s'_i - s_i); see (3)
4245 */
977dda7c 4246 wl -= se->load.weight;
cf5f0acf
PZ
4247
4248 /*
4249 * Recursively apply this logic to all parent groups to compute
4250 * the final effective load change on the root group. Since
4251 * only the @tg group gets extra weight, all parent groups can
4252 * only redistribute existing shares. @wl is the shift in shares
4253 * resulting from this level per the above.
4254 */
4be9daaa 4255 wg = 0;
4be9daaa 4256 }
bb3469ac 4257
4be9daaa 4258 return wl;
bb3469ac
PZ
4259}
4260#else
4be9daaa 4261
58d081b5 4262static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4263{
83378269 4264 return wl;
bb3469ac 4265}
4be9daaa 4266
bb3469ac
PZ
4267#endif
4268
62470419
MW
4269static int wake_wide(struct task_struct *p)
4270{
7d9ffa89 4271 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4272
4273 /*
4274 * Yeah, it's the switching-frequency, could means many wakee or
4275 * rapidly switch, use factor here will just help to automatically
4276 * adjust the loose-degree, so bigger node will lead to more pull.
4277 */
4278 if (p->wakee_flips > factor) {
4279 /*
4280 * wakee is somewhat hot, it needs certain amount of cpu
4281 * resource, so if waker is far more hot, prefer to leave
4282 * it alone.
4283 */
4284 if (current->wakee_flips > (factor * p->wakee_flips))
4285 return 1;
4286 }
4287
4288 return 0;
4289}
4290
c88d5910 4291static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4292{
e37b6a7b 4293 s64 this_load, load;
bd61c98f 4294 s64 this_eff_load, prev_eff_load;
c88d5910 4295 int idx, this_cpu, prev_cpu;
c88d5910 4296 struct task_group *tg;
83378269 4297 unsigned long weight;
b3137bc8 4298 int balanced;
098fb9db 4299
62470419
MW
4300 /*
4301 * If we wake multiple tasks be careful to not bounce
4302 * ourselves around too much.
4303 */
4304 if (wake_wide(p))
4305 return 0;
4306
c88d5910
PZ
4307 idx = sd->wake_idx;
4308 this_cpu = smp_processor_id();
4309 prev_cpu = task_cpu(p);
4310 load = source_load(prev_cpu, idx);
4311 this_load = target_load(this_cpu, idx);
098fb9db 4312
b3137bc8
MG
4313 /*
4314 * If sync wakeup then subtract the (maximum possible)
4315 * effect of the currently running task from the load
4316 * of the current CPU:
4317 */
83378269
PZ
4318 if (sync) {
4319 tg = task_group(current);
4320 weight = current->se.load.weight;
4321
c88d5910 4322 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4323 load += effective_load(tg, prev_cpu, 0, -weight);
4324 }
b3137bc8 4325
83378269
PZ
4326 tg = task_group(p);
4327 weight = p->se.load.weight;
b3137bc8 4328
71a29aa7
PZ
4329 /*
4330 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4331 * due to the sync cause above having dropped this_load to 0, we'll
4332 * always have an imbalance, but there's really nothing you can do
4333 * about that, so that's good too.
71a29aa7
PZ
4334 *
4335 * Otherwise check if either cpus are near enough in load to allow this
4336 * task to be woken on this_cpu.
4337 */
bd61c98f
VG
4338 this_eff_load = 100;
4339 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4340
bd61c98f
VG
4341 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4342 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4343
bd61c98f 4344 if (this_load > 0) {
e51fd5e2
PZ
4345 this_eff_load *= this_load +
4346 effective_load(tg, this_cpu, weight, weight);
4347
e51fd5e2 4348 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4349 }
e51fd5e2 4350
bd61c98f 4351 balanced = this_eff_load <= prev_eff_load;
098fb9db 4352
41acab88 4353 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4354
05bfb65f
VG
4355 if (!balanced)
4356 return 0;
098fb9db 4357
05bfb65f
VG
4358 schedstat_inc(sd, ttwu_move_affine);
4359 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4360
4361 return 1;
098fb9db
IM
4362}
4363
aaee1203
PZ
4364/*
4365 * find_idlest_group finds and returns the least busy CPU group within the
4366 * domain.
4367 */
4368static struct sched_group *
78e7ed53 4369find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4370 int this_cpu, int sd_flag)
e7693a36 4371{
b3bd3de6 4372 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4373 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4374 int load_idx = sd->forkexec_idx;
aaee1203 4375 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4376
c44f2a02
VG
4377 if (sd_flag & SD_BALANCE_WAKE)
4378 load_idx = sd->wake_idx;
4379
aaee1203
PZ
4380 do {
4381 unsigned long load, avg_load;
4382 int local_group;
4383 int i;
e7693a36 4384
aaee1203
PZ
4385 /* Skip over this group if it has no CPUs allowed */
4386 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4387 tsk_cpus_allowed(p)))
aaee1203
PZ
4388 continue;
4389
4390 local_group = cpumask_test_cpu(this_cpu,
4391 sched_group_cpus(group));
4392
4393 /* Tally up the load of all CPUs in the group */
4394 avg_load = 0;
4395
4396 for_each_cpu(i, sched_group_cpus(group)) {
4397 /* Bias balancing toward cpus of our domain */
4398 if (local_group)
4399 load = source_load(i, load_idx);
4400 else
4401 load = target_load(i, load_idx);
4402
4403 avg_load += load;
4404 }
4405
63b2ca30 4406 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4407 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4408
4409 if (local_group) {
4410 this_load = avg_load;
aaee1203
PZ
4411 } else if (avg_load < min_load) {
4412 min_load = avg_load;
4413 idlest = group;
4414 }
4415 } while (group = group->next, group != sd->groups);
4416
4417 if (!idlest || 100*this_load < imbalance*min_load)
4418 return NULL;
4419 return idlest;
4420}
4421
4422/*
4423 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4424 */
4425static int
4426find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4427{
4428 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4429 unsigned int min_exit_latency = UINT_MAX;
4430 u64 latest_idle_timestamp = 0;
4431 int least_loaded_cpu = this_cpu;
4432 int shallowest_idle_cpu = -1;
aaee1203
PZ
4433 int i;
4434
4435 /* Traverse only the allowed CPUs */
fa17b507 4436 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4437 if (idle_cpu(i)) {
4438 struct rq *rq = cpu_rq(i);
4439 struct cpuidle_state *idle = idle_get_state(rq);
4440 if (idle && idle->exit_latency < min_exit_latency) {
4441 /*
4442 * We give priority to a CPU whose idle state
4443 * has the smallest exit latency irrespective
4444 * of any idle timestamp.
4445 */
4446 min_exit_latency = idle->exit_latency;
4447 latest_idle_timestamp = rq->idle_stamp;
4448 shallowest_idle_cpu = i;
4449 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4450 rq->idle_stamp > latest_idle_timestamp) {
4451 /*
4452 * If equal or no active idle state, then
4453 * the most recently idled CPU might have
4454 * a warmer cache.
4455 */
4456 latest_idle_timestamp = rq->idle_stamp;
4457 shallowest_idle_cpu = i;
4458 }
4459 } else {
4460 load = weighted_cpuload(i);
4461 if (load < min_load || (load == min_load && i == this_cpu)) {
4462 min_load = load;
4463 least_loaded_cpu = i;
4464 }
e7693a36
GH
4465 }
4466 }
4467
83a0a96a 4468 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4469}
e7693a36 4470
a50bde51
PZ
4471/*
4472 * Try and locate an idle CPU in the sched_domain.
4473 */
99bd5e2f 4474static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4475{
99bd5e2f 4476 struct sched_domain *sd;
37407ea7 4477 struct sched_group *sg;
e0a79f52 4478 int i = task_cpu(p);
a50bde51 4479
e0a79f52
MG
4480 if (idle_cpu(target))
4481 return target;
99bd5e2f
SS
4482
4483 /*
e0a79f52 4484 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4485 */
e0a79f52
MG
4486 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4487 return i;
a50bde51
PZ
4488
4489 /*
37407ea7 4490 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4491 */
518cd623 4492 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4493 for_each_lower_domain(sd) {
37407ea7
LT
4494 sg = sd->groups;
4495 do {
4496 if (!cpumask_intersects(sched_group_cpus(sg),
4497 tsk_cpus_allowed(p)))
4498 goto next;
4499
4500 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4501 if (i == target || !idle_cpu(i))
37407ea7
LT
4502 goto next;
4503 }
970e1789 4504
37407ea7
LT
4505 target = cpumask_first_and(sched_group_cpus(sg),
4506 tsk_cpus_allowed(p));
4507 goto done;
4508next:
4509 sg = sg->next;
4510 } while (sg != sd->groups);
4511 }
4512done:
a50bde51
PZ
4513 return target;
4514}
4515
aaee1203 4516/*
de91b9cb
MR
4517 * select_task_rq_fair: Select target runqueue for the waking task in domains
4518 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4519 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4520 *
de91b9cb
MR
4521 * Balances load by selecting the idlest cpu in the idlest group, or under
4522 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4523 *
de91b9cb 4524 * Returns the target cpu number.
aaee1203
PZ
4525 *
4526 * preempt must be disabled.
4527 */
0017d735 4528static int
ac66f547 4529select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4530{
29cd8bae 4531 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4532 int cpu = smp_processor_id();
c88d5910 4533 int new_cpu = cpu;
99bd5e2f 4534 int want_affine = 0;
5158f4e4 4535 int sync = wake_flags & WF_SYNC;
c88d5910 4536
29baa747 4537 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4538 return prev_cpu;
4539
a8edd075
KT
4540 if (sd_flag & SD_BALANCE_WAKE)
4541 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4542
dce840a0 4543 rcu_read_lock();
aaee1203 4544 for_each_domain(cpu, tmp) {
e4f42888
PZ
4545 if (!(tmp->flags & SD_LOAD_BALANCE))
4546 continue;
4547
fe3bcfe1 4548 /*
99bd5e2f
SS
4549 * If both cpu and prev_cpu are part of this domain,
4550 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4551 */
99bd5e2f
SS
4552 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4553 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4554 affine_sd = tmp;
29cd8bae 4555 break;
f03542a7 4556 }
29cd8bae 4557
f03542a7 4558 if (tmp->flags & sd_flag)
29cd8bae
PZ
4559 sd = tmp;
4560 }
4561
8bf21433
RR
4562 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4563 prev_cpu = cpu;
dce840a0 4564
8bf21433 4565 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4566 new_cpu = select_idle_sibling(p, prev_cpu);
4567 goto unlock;
8b911acd 4568 }
e7693a36 4569
aaee1203
PZ
4570 while (sd) {
4571 struct sched_group *group;
c88d5910 4572 int weight;
098fb9db 4573
0763a660 4574 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4575 sd = sd->child;
4576 continue;
4577 }
098fb9db 4578
c44f2a02 4579 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4580 if (!group) {
4581 sd = sd->child;
4582 continue;
4583 }
4ae7d5ce 4584
d7c33c49 4585 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4586 if (new_cpu == -1 || new_cpu == cpu) {
4587 /* Now try balancing at a lower domain level of cpu */
4588 sd = sd->child;
4589 continue;
e7693a36 4590 }
aaee1203
PZ
4591
4592 /* Now try balancing at a lower domain level of new_cpu */
4593 cpu = new_cpu;
669c55e9 4594 weight = sd->span_weight;
aaee1203
PZ
4595 sd = NULL;
4596 for_each_domain(cpu, tmp) {
669c55e9 4597 if (weight <= tmp->span_weight)
aaee1203 4598 break;
0763a660 4599 if (tmp->flags & sd_flag)
aaee1203
PZ
4600 sd = tmp;
4601 }
4602 /* while loop will break here if sd == NULL */
e7693a36 4603 }
dce840a0
PZ
4604unlock:
4605 rcu_read_unlock();
e7693a36 4606
c88d5910 4607 return new_cpu;
e7693a36 4608}
0a74bef8
PT
4609
4610/*
4611 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4612 * cfs_rq_of(p) references at time of call are still valid and identify the
4613 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4614 * other assumptions, including the state of rq->lock, should be made.
4615 */
4616static void
4617migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4618{
aff3e498
PT
4619 struct sched_entity *se = &p->se;
4620 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4621
4622 /*
4623 * Load tracking: accumulate removed load so that it can be processed
4624 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4625 * to blocked load iff they have a positive decay-count. It can never
4626 * be negative here since on-rq tasks have decay-count == 0.
4627 */
4628 if (se->avg.decay_count) {
4629 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4630 atomic_long_add(se->avg.load_avg_contrib,
4631 &cfs_rq->removed_load);
aff3e498 4632 }
3944a927
BS
4633
4634 /* We have migrated, no longer consider this task hot */
4635 se->exec_start = 0;
0a74bef8 4636}
e7693a36
GH
4637#endif /* CONFIG_SMP */
4638
e52fb7c0
PZ
4639static unsigned long
4640wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4641{
4642 unsigned long gran = sysctl_sched_wakeup_granularity;
4643
4644 /*
e52fb7c0
PZ
4645 * Since its curr running now, convert the gran from real-time
4646 * to virtual-time in his units.
13814d42
MG
4647 *
4648 * By using 'se' instead of 'curr' we penalize light tasks, so
4649 * they get preempted easier. That is, if 'se' < 'curr' then
4650 * the resulting gran will be larger, therefore penalizing the
4651 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4652 * be smaller, again penalizing the lighter task.
4653 *
4654 * This is especially important for buddies when the leftmost
4655 * task is higher priority than the buddy.
0bbd3336 4656 */
f4ad9bd2 4657 return calc_delta_fair(gran, se);
0bbd3336
PZ
4658}
4659
464b7527
PZ
4660/*
4661 * Should 'se' preempt 'curr'.
4662 *
4663 * |s1
4664 * |s2
4665 * |s3
4666 * g
4667 * |<--->|c
4668 *
4669 * w(c, s1) = -1
4670 * w(c, s2) = 0
4671 * w(c, s3) = 1
4672 *
4673 */
4674static int
4675wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4676{
4677 s64 gran, vdiff = curr->vruntime - se->vruntime;
4678
4679 if (vdiff <= 0)
4680 return -1;
4681
e52fb7c0 4682 gran = wakeup_gran(curr, se);
464b7527
PZ
4683 if (vdiff > gran)
4684 return 1;
4685
4686 return 0;
4687}
4688
02479099
PZ
4689static void set_last_buddy(struct sched_entity *se)
4690{
69c80f3e
VP
4691 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4692 return;
4693
4694 for_each_sched_entity(se)
4695 cfs_rq_of(se)->last = se;
02479099
PZ
4696}
4697
4698static void set_next_buddy(struct sched_entity *se)
4699{
69c80f3e
VP
4700 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4701 return;
4702
4703 for_each_sched_entity(se)
4704 cfs_rq_of(se)->next = se;
02479099
PZ
4705}
4706
ac53db59
RR
4707static void set_skip_buddy(struct sched_entity *se)
4708{
69c80f3e
VP
4709 for_each_sched_entity(se)
4710 cfs_rq_of(se)->skip = se;
ac53db59
RR
4711}
4712
bf0f6f24
IM
4713/*
4714 * Preempt the current task with a newly woken task if needed:
4715 */
5a9b86f6 4716static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4717{
4718 struct task_struct *curr = rq->curr;
8651a86c 4719 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4720 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4721 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4722 int next_buddy_marked = 0;
bf0f6f24 4723
4ae7d5ce
IM
4724 if (unlikely(se == pse))
4725 return;
4726
5238cdd3 4727 /*
163122b7 4728 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4729 * unconditionally check_prempt_curr() after an enqueue (which may have
4730 * lead to a throttle). This both saves work and prevents false
4731 * next-buddy nomination below.
4732 */
4733 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4734 return;
4735
2f36825b 4736 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4737 set_next_buddy(pse);
2f36825b
VP
4738 next_buddy_marked = 1;
4739 }
57fdc26d 4740
aec0a514
BR
4741 /*
4742 * We can come here with TIF_NEED_RESCHED already set from new task
4743 * wake up path.
5238cdd3
PT
4744 *
4745 * Note: this also catches the edge-case of curr being in a throttled
4746 * group (e.g. via set_curr_task), since update_curr() (in the
4747 * enqueue of curr) will have resulted in resched being set. This
4748 * prevents us from potentially nominating it as a false LAST_BUDDY
4749 * below.
aec0a514
BR
4750 */
4751 if (test_tsk_need_resched(curr))
4752 return;
4753
a2f5c9ab
DH
4754 /* Idle tasks are by definition preempted by non-idle tasks. */
4755 if (unlikely(curr->policy == SCHED_IDLE) &&
4756 likely(p->policy != SCHED_IDLE))
4757 goto preempt;
4758
91c234b4 4759 /*
a2f5c9ab
DH
4760 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4761 * is driven by the tick):
91c234b4 4762 */
8ed92e51 4763 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4764 return;
bf0f6f24 4765
464b7527 4766 find_matching_se(&se, &pse);
9bbd7374 4767 update_curr(cfs_rq_of(se));
002f128b 4768 BUG_ON(!pse);
2f36825b
VP
4769 if (wakeup_preempt_entity(se, pse) == 1) {
4770 /*
4771 * Bias pick_next to pick the sched entity that is
4772 * triggering this preemption.
4773 */
4774 if (!next_buddy_marked)
4775 set_next_buddy(pse);
3a7e73a2 4776 goto preempt;
2f36825b 4777 }
464b7527 4778
3a7e73a2 4779 return;
a65ac745 4780
3a7e73a2 4781preempt:
8875125e 4782 resched_curr(rq);
3a7e73a2
PZ
4783 /*
4784 * Only set the backward buddy when the current task is still
4785 * on the rq. This can happen when a wakeup gets interleaved
4786 * with schedule on the ->pre_schedule() or idle_balance()
4787 * point, either of which can * drop the rq lock.
4788 *
4789 * Also, during early boot the idle thread is in the fair class,
4790 * for obvious reasons its a bad idea to schedule back to it.
4791 */
4792 if (unlikely(!se->on_rq || curr == rq->idle))
4793 return;
4794
4795 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4796 set_last_buddy(se);
bf0f6f24
IM
4797}
4798
606dba2e
PZ
4799static struct task_struct *
4800pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4801{
4802 struct cfs_rq *cfs_rq = &rq->cfs;
4803 struct sched_entity *se;
678d5718 4804 struct task_struct *p;
37e117c0 4805 int new_tasks;
678d5718 4806
6e83125c 4807again:
678d5718
PZ
4808#ifdef CONFIG_FAIR_GROUP_SCHED
4809 if (!cfs_rq->nr_running)
38033c37 4810 goto idle;
678d5718 4811
3f1d2a31 4812 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4813 goto simple;
4814
4815 /*
4816 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4817 * likely that a next task is from the same cgroup as the current.
4818 *
4819 * Therefore attempt to avoid putting and setting the entire cgroup
4820 * hierarchy, only change the part that actually changes.
4821 */
4822
4823 do {
4824 struct sched_entity *curr = cfs_rq->curr;
4825
4826 /*
4827 * Since we got here without doing put_prev_entity() we also
4828 * have to consider cfs_rq->curr. If it is still a runnable
4829 * entity, update_curr() will update its vruntime, otherwise
4830 * forget we've ever seen it.
4831 */
4832 if (curr && curr->on_rq)
4833 update_curr(cfs_rq);
4834 else
4835 curr = NULL;
4836
4837 /*
4838 * This call to check_cfs_rq_runtime() will do the throttle and
4839 * dequeue its entity in the parent(s). Therefore the 'simple'
4840 * nr_running test will indeed be correct.
4841 */
4842 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4843 goto simple;
4844
4845 se = pick_next_entity(cfs_rq, curr);
4846 cfs_rq = group_cfs_rq(se);
4847 } while (cfs_rq);
4848
4849 p = task_of(se);
4850
4851 /*
4852 * Since we haven't yet done put_prev_entity and if the selected task
4853 * is a different task than we started out with, try and touch the
4854 * least amount of cfs_rqs.
4855 */
4856 if (prev != p) {
4857 struct sched_entity *pse = &prev->se;
4858
4859 while (!(cfs_rq = is_same_group(se, pse))) {
4860 int se_depth = se->depth;
4861 int pse_depth = pse->depth;
4862
4863 if (se_depth <= pse_depth) {
4864 put_prev_entity(cfs_rq_of(pse), pse);
4865 pse = parent_entity(pse);
4866 }
4867 if (se_depth >= pse_depth) {
4868 set_next_entity(cfs_rq_of(se), se);
4869 se = parent_entity(se);
4870 }
4871 }
4872
4873 put_prev_entity(cfs_rq, pse);
4874 set_next_entity(cfs_rq, se);
4875 }
4876
4877 if (hrtick_enabled(rq))
4878 hrtick_start_fair(rq, p);
4879
4880 return p;
4881simple:
4882 cfs_rq = &rq->cfs;
4883#endif
bf0f6f24 4884
36ace27e 4885 if (!cfs_rq->nr_running)
38033c37 4886 goto idle;
bf0f6f24 4887
3f1d2a31 4888 put_prev_task(rq, prev);
606dba2e 4889
bf0f6f24 4890 do {
678d5718 4891 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4892 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4893 cfs_rq = group_cfs_rq(se);
4894 } while (cfs_rq);
4895
8f4d37ec 4896 p = task_of(se);
678d5718 4897
b39e66ea
MG
4898 if (hrtick_enabled(rq))
4899 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4900
4901 return p;
38033c37
PZ
4902
4903idle:
e4aa358b 4904 new_tasks = idle_balance(rq);
37e117c0
PZ
4905 /*
4906 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4907 * possible for any higher priority task to appear. In that case we
4908 * must re-start the pick_next_entity() loop.
4909 */
e4aa358b 4910 if (new_tasks < 0)
37e117c0
PZ
4911 return RETRY_TASK;
4912
e4aa358b 4913 if (new_tasks > 0)
38033c37 4914 goto again;
38033c37
PZ
4915
4916 return NULL;
bf0f6f24
IM
4917}
4918
4919/*
4920 * Account for a descheduled task:
4921 */
31ee529c 4922static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4923{
4924 struct sched_entity *se = &prev->se;
4925 struct cfs_rq *cfs_rq;
4926
4927 for_each_sched_entity(se) {
4928 cfs_rq = cfs_rq_of(se);
ab6cde26 4929 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4930 }
4931}
4932
ac53db59
RR
4933/*
4934 * sched_yield() is very simple
4935 *
4936 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4937 */
4938static void yield_task_fair(struct rq *rq)
4939{
4940 struct task_struct *curr = rq->curr;
4941 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4942 struct sched_entity *se = &curr->se;
4943
4944 /*
4945 * Are we the only task in the tree?
4946 */
4947 if (unlikely(rq->nr_running == 1))
4948 return;
4949
4950 clear_buddies(cfs_rq, se);
4951
4952 if (curr->policy != SCHED_BATCH) {
4953 update_rq_clock(rq);
4954 /*
4955 * Update run-time statistics of the 'current'.
4956 */
4957 update_curr(cfs_rq);
916671c0
MG
4958 /*
4959 * Tell update_rq_clock() that we've just updated,
4960 * so we don't do microscopic update in schedule()
4961 * and double the fastpath cost.
4962 */
4963 rq->skip_clock_update = 1;
ac53db59
RR
4964 }
4965
4966 set_skip_buddy(se);
4967}
4968
d95f4122
MG
4969static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4970{
4971 struct sched_entity *se = &p->se;
4972
5238cdd3
PT
4973 /* throttled hierarchies are not runnable */
4974 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4975 return false;
4976
4977 /* Tell the scheduler that we'd really like pse to run next. */
4978 set_next_buddy(se);
4979
d95f4122
MG
4980 yield_task_fair(rq);
4981
4982 return true;
4983}
4984
681f3e68 4985#ifdef CONFIG_SMP
bf0f6f24 4986/**************************************************
e9c84cb8
PZ
4987 * Fair scheduling class load-balancing methods.
4988 *
4989 * BASICS
4990 *
4991 * The purpose of load-balancing is to achieve the same basic fairness the
4992 * per-cpu scheduler provides, namely provide a proportional amount of compute
4993 * time to each task. This is expressed in the following equation:
4994 *
4995 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4996 *
4997 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4998 * W_i,0 is defined as:
4999 *
5000 * W_i,0 = \Sum_j w_i,j (2)
5001 *
5002 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5003 * is derived from the nice value as per prio_to_weight[].
5004 *
5005 * The weight average is an exponential decay average of the instantaneous
5006 * weight:
5007 *
5008 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5009 *
ced549fa 5010 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5011 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5012 * can also include other factors [XXX].
5013 *
5014 * To achieve this balance we define a measure of imbalance which follows
5015 * directly from (1):
5016 *
ced549fa 5017 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5018 *
5019 * We them move tasks around to minimize the imbalance. In the continuous
5020 * function space it is obvious this converges, in the discrete case we get
5021 * a few fun cases generally called infeasible weight scenarios.
5022 *
5023 * [XXX expand on:
5024 * - infeasible weights;
5025 * - local vs global optima in the discrete case. ]
5026 *
5027 *
5028 * SCHED DOMAINS
5029 *
5030 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5031 * for all i,j solution, we create a tree of cpus that follows the hardware
5032 * topology where each level pairs two lower groups (or better). This results
5033 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5034 * tree to only the first of the previous level and we decrease the frequency
5035 * of load-balance at each level inv. proportional to the number of cpus in
5036 * the groups.
5037 *
5038 * This yields:
5039 *
5040 * log_2 n 1 n
5041 * \Sum { --- * --- * 2^i } = O(n) (5)
5042 * i = 0 2^i 2^i
5043 * `- size of each group
5044 * | | `- number of cpus doing load-balance
5045 * | `- freq
5046 * `- sum over all levels
5047 *
5048 * Coupled with a limit on how many tasks we can migrate every balance pass,
5049 * this makes (5) the runtime complexity of the balancer.
5050 *
5051 * An important property here is that each CPU is still (indirectly) connected
5052 * to every other cpu in at most O(log n) steps:
5053 *
5054 * The adjacency matrix of the resulting graph is given by:
5055 *
5056 * log_2 n
5057 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5058 * k = 0
5059 *
5060 * And you'll find that:
5061 *
5062 * A^(log_2 n)_i,j != 0 for all i,j (7)
5063 *
5064 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5065 * The task movement gives a factor of O(m), giving a convergence complexity
5066 * of:
5067 *
5068 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5069 *
5070 *
5071 * WORK CONSERVING
5072 *
5073 * In order to avoid CPUs going idle while there's still work to do, new idle
5074 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5075 * tree itself instead of relying on other CPUs to bring it work.
5076 *
5077 * This adds some complexity to both (5) and (8) but it reduces the total idle
5078 * time.
5079 *
5080 * [XXX more?]
5081 *
5082 *
5083 * CGROUPS
5084 *
5085 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5086 *
5087 * s_k,i
5088 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5089 * S_k
5090 *
5091 * Where
5092 *
5093 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5094 *
5095 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5096 *
5097 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5098 * property.
5099 *
5100 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5101 * rewrite all of this once again.]
5102 */
bf0f6f24 5103
ed387b78
HS
5104static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5105
0ec8aa00
PZ
5106enum fbq_type { regular, remote, all };
5107
ddcdf6e7 5108#define LBF_ALL_PINNED 0x01
367456c7 5109#define LBF_NEED_BREAK 0x02
6263322c
PZ
5110#define LBF_DST_PINNED 0x04
5111#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5112
5113struct lb_env {
5114 struct sched_domain *sd;
5115
ddcdf6e7 5116 struct rq *src_rq;
85c1e7da 5117 int src_cpu;
ddcdf6e7
PZ
5118
5119 int dst_cpu;
5120 struct rq *dst_rq;
5121
88b8dac0
SV
5122 struct cpumask *dst_grpmask;
5123 int new_dst_cpu;
ddcdf6e7 5124 enum cpu_idle_type idle;
bd939f45 5125 long imbalance;
b9403130
MW
5126 /* The set of CPUs under consideration for load-balancing */
5127 struct cpumask *cpus;
5128
ddcdf6e7 5129 unsigned int flags;
367456c7
PZ
5130
5131 unsigned int loop;
5132 unsigned int loop_break;
5133 unsigned int loop_max;
0ec8aa00
PZ
5134
5135 enum fbq_type fbq_type;
163122b7 5136 struct list_head tasks;
ddcdf6e7
PZ
5137};
5138
029632fb
PZ
5139/*
5140 * Is this task likely cache-hot:
5141 */
5d5e2b1b 5142static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5143{
5144 s64 delta;
5145
e5673f28
KT
5146 lockdep_assert_held(&env->src_rq->lock);
5147
029632fb
PZ
5148 if (p->sched_class != &fair_sched_class)
5149 return 0;
5150
5151 if (unlikely(p->policy == SCHED_IDLE))
5152 return 0;
5153
5154 /*
5155 * Buddy candidates are cache hot:
5156 */
5d5e2b1b 5157 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5158 (&p->se == cfs_rq_of(&p->se)->next ||
5159 &p->se == cfs_rq_of(&p->se)->last))
5160 return 1;
5161
5162 if (sysctl_sched_migration_cost == -1)
5163 return 1;
5164 if (sysctl_sched_migration_cost == 0)
5165 return 0;
5166
5d5e2b1b 5167 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5168
5169 return delta < (s64)sysctl_sched_migration_cost;
5170}
5171
3a7053b3
MG
5172#ifdef CONFIG_NUMA_BALANCING
5173/* Returns true if the destination node has incurred more faults */
5174static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5175{
b1ad065e 5176 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5177 int src_nid, dst_nid;
5178
ff1df896 5179 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5180 !(env->sd->flags & SD_NUMA)) {
5181 return false;
5182 }
5183
5184 src_nid = cpu_to_node(env->src_cpu);
5185 dst_nid = cpu_to_node(env->dst_cpu);
5186
83e1d2cd 5187 if (src_nid == dst_nid)
3a7053b3
MG
5188 return false;
5189
b1ad065e
RR
5190 if (numa_group) {
5191 /* Task is already in the group's interleave set. */
5192 if (node_isset(src_nid, numa_group->active_nodes))
5193 return false;
83e1d2cd 5194
b1ad065e
RR
5195 /* Task is moving into the group's interleave set. */
5196 if (node_isset(dst_nid, numa_group->active_nodes))
5197 return true;
83e1d2cd 5198
b1ad065e
RR
5199 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5200 }
5201
5202 /* Encourage migration to the preferred node. */
5203 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5204 return true;
5205
b1ad065e 5206 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5207}
7a0f3083
MG
5208
5209
5210static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5211{
b1ad065e 5212 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5213 int src_nid, dst_nid;
5214
5215 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5216 return false;
5217
ff1df896 5218 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5219 return false;
5220
5221 src_nid = cpu_to_node(env->src_cpu);
5222 dst_nid = cpu_to_node(env->dst_cpu);
5223
83e1d2cd 5224 if (src_nid == dst_nid)
7a0f3083
MG
5225 return false;
5226
b1ad065e
RR
5227 if (numa_group) {
5228 /* Task is moving within/into the group's interleave set. */
5229 if (node_isset(dst_nid, numa_group->active_nodes))
5230 return false;
5231
5232 /* Task is moving out of the group's interleave set. */
5233 if (node_isset(src_nid, numa_group->active_nodes))
5234 return true;
5235
5236 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5237 }
5238
83e1d2cd
MG
5239 /* Migrating away from the preferred node is always bad. */
5240 if (src_nid == p->numa_preferred_nid)
5241 return true;
5242
b1ad065e 5243 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5244}
5245
3a7053b3
MG
5246#else
5247static inline bool migrate_improves_locality(struct task_struct *p,
5248 struct lb_env *env)
5249{
5250 return false;
5251}
7a0f3083
MG
5252
5253static inline bool migrate_degrades_locality(struct task_struct *p,
5254 struct lb_env *env)
5255{
5256 return false;
5257}
3a7053b3
MG
5258#endif
5259
1e3c88bd
PZ
5260/*
5261 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5262 */
5263static
8e45cb54 5264int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5265{
5266 int tsk_cache_hot = 0;
e5673f28
KT
5267
5268 lockdep_assert_held(&env->src_rq->lock);
5269
1e3c88bd
PZ
5270 /*
5271 * We do not migrate tasks that are:
d3198084 5272 * 1) throttled_lb_pair, or
1e3c88bd 5273 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5274 * 3) running (obviously), or
5275 * 4) are cache-hot on their current CPU.
1e3c88bd 5276 */
d3198084
JK
5277 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5278 return 0;
5279
ddcdf6e7 5280 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5281 int cpu;
88b8dac0 5282
41acab88 5283 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5284
6263322c
PZ
5285 env->flags |= LBF_SOME_PINNED;
5286
88b8dac0
SV
5287 /*
5288 * Remember if this task can be migrated to any other cpu in
5289 * our sched_group. We may want to revisit it if we couldn't
5290 * meet load balance goals by pulling other tasks on src_cpu.
5291 *
5292 * Also avoid computing new_dst_cpu if we have already computed
5293 * one in current iteration.
5294 */
6263322c 5295 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5296 return 0;
5297
e02e60c1
JK
5298 /* Prevent to re-select dst_cpu via env's cpus */
5299 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5300 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5301 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5302 env->new_dst_cpu = cpu;
5303 break;
5304 }
88b8dac0 5305 }
e02e60c1 5306
1e3c88bd
PZ
5307 return 0;
5308 }
88b8dac0
SV
5309
5310 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5311 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5312
ddcdf6e7 5313 if (task_running(env->src_rq, p)) {
41acab88 5314 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5315 return 0;
5316 }
5317
5318 /*
5319 * Aggressive migration if:
3a7053b3
MG
5320 * 1) destination numa is preferred
5321 * 2) task is cache cold, or
5322 * 3) too many balance attempts have failed.
1e3c88bd 5323 */
5d5e2b1b 5324 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5325 if (!tsk_cache_hot)
5326 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5327
7a96c231
KT
5328 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5329 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5330 if (tsk_cache_hot) {
5331 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5332 schedstat_inc(p, se.statistics.nr_forced_migrations);
5333 }
1e3c88bd
PZ
5334 return 1;
5335 }
5336
4e2dcb73
ZH
5337 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5338 return 0;
1e3c88bd
PZ
5339}
5340
897c395f 5341/*
163122b7
KT
5342 * detach_task() -- detach the task for the migration specified in env
5343 */
5344static void detach_task(struct task_struct *p, struct lb_env *env)
5345{
5346 lockdep_assert_held(&env->src_rq->lock);
5347
5348 deactivate_task(env->src_rq, p, 0);
5349 p->on_rq = TASK_ON_RQ_MIGRATING;
5350 set_task_cpu(p, env->dst_cpu);
5351}
5352
897c395f 5353/*
e5673f28 5354 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5355 * part of active balancing operations within "domain".
897c395f 5356 *
e5673f28 5357 * Returns a task if successful and NULL otherwise.
897c395f 5358 */
e5673f28 5359static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5360{
5361 struct task_struct *p, *n;
897c395f 5362
e5673f28
KT
5363 lockdep_assert_held(&env->src_rq->lock);
5364
367456c7 5365 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5366 if (!can_migrate_task(p, env))
5367 continue;
897c395f 5368
163122b7 5369 detach_task(p, env);
e5673f28 5370
367456c7 5371 /*
e5673f28 5372 * Right now, this is only the second place where
163122b7 5373 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5374 * so we can safely collect stats here rather than
163122b7 5375 * inside detach_tasks().
367456c7
PZ
5376 */
5377 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5378 return p;
897c395f 5379 }
e5673f28 5380 return NULL;
897c395f
PZ
5381}
5382
eb95308e
PZ
5383static const unsigned int sched_nr_migrate_break = 32;
5384
5d6523eb 5385/*
163122b7
KT
5386 * detach_tasks() -- tries to detach up to imbalance weighted load from
5387 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5388 *
163122b7 5389 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5390 */
163122b7 5391static int detach_tasks(struct lb_env *env)
1e3c88bd 5392{
5d6523eb
PZ
5393 struct list_head *tasks = &env->src_rq->cfs_tasks;
5394 struct task_struct *p;
367456c7 5395 unsigned long load;
163122b7
KT
5396 int detached = 0;
5397
5398 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5399
bd939f45 5400 if (env->imbalance <= 0)
5d6523eb 5401 return 0;
1e3c88bd 5402
5d6523eb
PZ
5403 while (!list_empty(tasks)) {
5404 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5405
367456c7
PZ
5406 env->loop++;
5407 /* We've more or less seen every task there is, call it quits */
5d6523eb 5408 if (env->loop > env->loop_max)
367456c7 5409 break;
5d6523eb
PZ
5410
5411 /* take a breather every nr_migrate tasks */
367456c7 5412 if (env->loop > env->loop_break) {
eb95308e 5413 env->loop_break += sched_nr_migrate_break;
8e45cb54 5414 env->flags |= LBF_NEED_BREAK;
ee00e66f 5415 break;
a195f004 5416 }
1e3c88bd 5417
d3198084 5418 if (!can_migrate_task(p, env))
367456c7
PZ
5419 goto next;
5420
5421 load = task_h_load(p);
5d6523eb 5422
eb95308e 5423 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5424 goto next;
5425
bd939f45 5426 if ((load / 2) > env->imbalance)
367456c7 5427 goto next;
1e3c88bd 5428
163122b7
KT
5429 detach_task(p, env);
5430 list_add(&p->se.group_node, &env->tasks);
5431
5432 detached++;
bd939f45 5433 env->imbalance -= load;
1e3c88bd
PZ
5434
5435#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5436 /*
5437 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5438 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5439 * the critical section.
5440 */
5d6523eb 5441 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5442 break;
1e3c88bd
PZ
5443#endif
5444
ee00e66f
PZ
5445 /*
5446 * We only want to steal up to the prescribed amount of
5447 * weighted load.
5448 */
bd939f45 5449 if (env->imbalance <= 0)
ee00e66f 5450 break;
367456c7
PZ
5451
5452 continue;
5453next:
5d6523eb 5454 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5455 }
5d6523eb 5456
1e3c88bd 5457 /*
163122b7
KT
5458 * Right now, this is one of only two places we collect this stat
5459 * so we can safely collect detach_one_task() stats here rather
5460 * than inside detach_one_task().
1e3c88bd 5461 */
163122b7 5462 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5463
163122b7
KT
5464 return detached;
5465}
5466
5467/*
5468 * attach_task() -- attach the task detached by detach_task() to its new rq.
5469 */
5470static void attach_task(struct rq *rq, struct task_struct *p)
5471{
5472 lockdep_assert_held(&rq->lock);
5473
5474 BUG_ON(task_rq(p) != rq);
5475 p->on_rq = TASK_ON_RQ_QUEUED;
5476 activate_task(rq, p, 0);
5477 check_preempt_curr(rq, p, 0);
5478}
5479
5480/*
5481 * attach_one_task() -- attaches the task returned from detach_one_task() to
5482 * its new rq.
5483 */
5484static void attach_one_task(struct rq *rq, struct task_struct *p)
5485{
5486 raw_spin_lock(&rq->lock);
5487 attach_task(rq, p);
5488 raw_spin_unlock(&rq->lock);
5489}
5490
5491/*
5492 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5493 * new rq.
5494 */
5495static void attach_tasks(struct lb_env *env)
5496{
5497 struct list_head *tasks = &env->tasks;
5498 struct task_struct *p;
5499
5500 raw_spin_lock(&env->dst_rq->lock);
5501
5502 while (!list_empty(tasks)) {
5503 p = list_first_entry(tasks, struct task_struct, se.group_node);
5504 list_del_init(&p->se.group_node);
1e3c88bd 5505
163122b7
KT
5506 attach_task(env->dst_rq, p);
5507 }
5508
5509 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5510}
5511
230059de 5512#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5513/*
5514 * update tg->load_weight by folding this cpu's load_avg
5515 */
48a16753 5516static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5517{
48a16753
PT
5518 struct sched_entity *se = tg->se[cpu];
5519 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5520
48a16753
PT
5521 /* throttled entities do not contribute to load */
5522 if (throttled_hierarchy(cfs_rq))
5523 return;
9e3081ca 5524
aff3e498 5525 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5526
82958366
PT
5527 if (se) {
5528 update_entity_load_avg(se, 1);
5529 /*
5530 * We pivot on our runnable average having decayed to zero for
5531 * list removal. This generally implies that all our children
5532 * have also been removed (modulo rounding error or bandwidth
5533 * control); however, such cases are rare and we can fix these
5534 * at enqueue.
5535 *
5536 * TODO: fix up out-of-order children on enqueue.
5537 */
5538 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5539 list_del_leaf_cfs_rq(cfs_rq);
5540 } else {
48a16753 5541 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5542 update_rq_runnable_avg(rq, rq->nr_running);
5543 }
9e3081ca
PZ
5544}
5545
48a16753 5546static void update_blocked_averages(int cpu)
9e3081ca 5547{
9e3081ca 5548 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5549 struct cfs_rq *cfs_rq;
5550 unsigned long flags;
9e3081ca 5551
48a16753
PT
5552 raw_spin_lock_irqsave(&rq->lock, flags);
5553 update_rq_clock(rq);
9763b67f
PZ
5554 /*
5555 * Iterates the task_group tree in a bottom up fashion, see
5556 * list_add_leaf_cfs_rq() for details.
5557 */
64660c86 5558 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5559 /*
5560 * Note: We may want to consider periodically releasing
5561 * rq->lock about these updates so that creating many task
5562 * groups does not result in continually extending hold time.
5563 */
5564 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5565 }
48a16753
PT
5566
5567 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5568}
5569
9763b67f 5570/*
68520796 5571 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5572 * This needs to be done in a top-down fashion because the load of a child
5573 * group is a fraction of its parents load.
5574 */
68520796 5575static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5576{
68520796
VD
5577 struct rq *rq = rq_of(cfs_rq);
5578 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5579 unsigned long now = jiffies;
68520796 5580 unsigned long load;
a35b6466 5581
68520796 5582 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5583 return;
5584
68520796
VD
5585 cfs_rq->h_load_next = NULL;
5586 for_each_sched_entity(se) {
5587 cfs_rq = cfs_rq_of(se);
5588 cfs_rq->h_load_next = se;
5589 if (cfs_rq->last_h_load_update == now)
5590 break;
5591 }
a35b6466 5592
68520796 5593 if (!se) {
7e3115ef 5594 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5595 cfs_rq->last_h_load_update = now;
5596 }
5597
5598 while ((se = cfs_rq->h_load_next) != NULL) {
5599 load = cfs_rq->h_load;
5600 load = div64_ul(load * se->avg.load_avg_contrib,
5601 cfs_rq->runnable_load_avg + 1);
5602 cfs_rq = group_cfs_rq(se);
5603 cfs_rq->h_load = load;
5604 cfs_rq->last_h_load_update = now;
5605 }
9763b67f
PZ
5606}
5607
367456c7 5608static unsigned long task_h_load(struct task_struct *p)
230059de 5609{
367456c7 5610 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5611
68520796 5612 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5613 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5614 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5615}
5616#else
48a16753 5617static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5618{
5619}
5620
367456c7 5621static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5622{
a003a25b 5623 return p->se.avg.load_avg_contrib;
1e3c88bd 5624}
230059de 5625#endif
1e3c88bd 5626
1e3c88bd 5627/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5628
5629enum group_type {
5630 group_other = 0,
5631 group_imbalanced,
5632 group_overloaded,
5633};
5634
1e3c88bd
PZ
5635/*
5636 * sg_lb_stats - stats of a sched_group required for load_balancing
5637 */
5638struct sg_lb_stats {
5639 unsigned long avg_load; /*Avg load across the CPUs of the group */
5640 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5641 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5642 unsigned long load_per_task;
63b2ca30 5643 unsigned long group_capacity;
147c5fc2 5644 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5645 unsigned int group_capacity_factor;
147c5fc2
PZ
5646 unsigned int idle_cpus;
5647 unsigned int group_weight;
caeb178c 5648 enum group_type group_type;
1b6a7495 5649 int group_has_free_capacity;
0ec8aa00
PZ
5650#ifdef CONFIG_NUMA_BALANCING
5651 unsigned int nr_numa_running;
5652 unsigned int nr_preferred_running;
5653#endif
1e3c88bd
PZ
5654};
5655
56cf515b
JK
5656/*
5657 * sd_lb_stats - Structure to store the statistics of a sched_domain
5658 * during load balancing.
5659 */
5660struct sd_lb_stats {
5661 struct sched_group *busiest; /* Busiest group in this sd */
5662 struct sched_group *local; /* Local group in this sd */
5663 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5664 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5665 unsigned long avg_load; /* Average load across all groups in sd */
5666
56cf515b 5667 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5668 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5669};
5670
147c5fc2
PZ
5671static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5672{
5673 /*
5674 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5675 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5676 * We must however clear busiest_stat::avg_load because
5677 * update_sd_pick_busiest() reads this before assignment.
5678 */
5679 *sds = (struct sd_lb_stats){
5680 .busiest = NULL,
5681 .local = NULL,
5682 .total_load = 0UL,
63b2ca30 5683 .total_capacity = 0UL,
147c5fc2
PZ
5684 .busiest_stat = {
5685 .avg_load = 0UL,
caeb178c
RR
5686 .sum_nr_running = 0,
5687 .group_type = group_other,
147c5fc2
PZ
5688 },
5689 };
5690}
5691
1e3c88bd
PZ
5692/**
5693 * get_sd_load_idx - Obtain the load index for a given sched domain.
5694 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5695 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5696 *
5697 * Return: The load index.
1e3c88bd
PZ
5698 */
5699static inline int get_sd_load_idx(struct sched_domain *sd,
5700 enum cpu_idle_type idle)
5701{
5702 int load_idx;
5703
5704 switch (idle) {
5705 case CPU_NOT_IDLE:
5706 load_idx = sd->busy_idx;
5707 break;
5708
5709 case CPU_NEWLY_IDLE:
5710 load_idx = sd->newidle_idx;
5711 break;
5712 default:
5713 load_idx = sd->idle_idx;
5714 break;
5715 }
5716
5717 return load_idx;
5718}
5719
ced549fa 5720static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5721{
ca8ce3d0 5722 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5723}
5724
ca8ce3d0 5725unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5726{
ced549fa 5727 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5728}
5729
26bc3c50 5730static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5731{
26bc3c50
VG
5732 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5733 return sd->smt_gain / sd->span_weight;
1e3c88bd 5734
26bc3c50 5735 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5736}
5737
26bc3c50 5738unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5739{
26bc3c50 5740 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5741}
5742
ced549fa 5743static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5744{
5745 struct rq *rq = cpu_rq(cpu);
b654f7de 5746 u64 total, available, age_stamp, avg;
cadefd3d 5747 s64 delta;
1e3c88bd 5748
b654f7de
PZ
5749 /*
5750 * Since we're reading these variables without serialization make sure
5751 * we read them once before doing sanity checks on them.
5752 */
5753 age_stamp = ACCESS_ONCE(rq->age_stamp);
5754 avg = ACCESS_ONCE(rq->rt_avg);
5755
cadefd3d
PZ
5756 delta = rq_clock(rq) - age_stamp;
5757 if (unlikely(delta < 0))
5758 delta = 0;
5759
5760 total = sched_avg_period() + delta;
aa483808 5761
b654f7de 5762 if (unlikely(total < avg)) {
ced549fa 5763 /* Ensures that capacity won't end up being negative */
aa483808
VP
5764 available = 0;
5765 } else {
b654f7de 5766 available = total - avg;
aa483808 5767 }
1e3c88bd 5768
ca8ce3d0
NP
5769 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5770 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5771
ca8ce3d0 5772 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5773
5774 return div_u64(available, total);
5775}
5776
ced549fa 5777static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5778{
ca8ce3d0 5779 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5780 struct sched_group *sdg = sd->groups;
5781
26bc3c50
VG
5782 if (sched_feat(ARCH_CAPACITY))
5783 capacity *= arch_scale_cpu_capacity(sd, cpu);
5784 else
5785 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 5786
26bc3c50 5787 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5788
ced549fa 5789 sdg->sgc->capacity_orig = capacity;
9d5efe05 5790
5d4dfddd 5791 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5792 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5793 else
ced549fa 5794 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5795
ca8ce3d0 5796 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5797
ced549fa 5798 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5799 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5800
ced549fa
NP
5801 if (!capacity)
5802 capacity = 1;
1e3c88bd 5803
ced549fa
NP
5804 cpu_rq(cpu)->cpu_capacity = capacity;
5805 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5806}
5807
63b2ca30 5808void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5809{
5810 struct sched_domain *child = sd->child;
5811 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5812 unsigned long capacity, capacity_orig;
4ec4412e
VG
5813 unsigned long interval;
5814
5815 interval = msecs_to_jiffies(sd->balance_interval);
5816 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5817 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5818
5819 if (!child) {
ced549fa 5820 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5821 return;
5822 }
5823
63b2ca30 5824 capacity_orig = capacity = 0;
1e3c88bd 5825
74a5ce20
PZ
5826 if (child->flags & SD_OVERLAP) {
5827 /*
5828 * SD_OVERLAP domains cannot assume that child groups
5829 * span the current group.
5830 */
5831
863bffc8 5832 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5833 struct sched_group_capacity *sgc;
9abf24d4 5834 struct rq *rq = cpu_rq(cpu);
863bffc8 5835
9abf24d4 5836 /*
63b2ca30 5837 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5838 * gets here before we've attached the domains to the
5839 * runqueues.
5840 *
ced549fa
NP
5841 * Use capacity_of(), which is set irrespective of domains
5842 * in update_cpu_capacity().
9abf24d4 5843 *
63b2ca30 5844 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5845 * causing divide-by-zero issues on boot.
5846 *
63b2ca30 5847 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5848 */
5849 if (unlikely(!rq->sd)) {
ced549fa
NP
5850 capacity_orig += capacity_of(cpu);
5851 capacity += capacity_of(cpu);
9abf24d4
SD
5852 continue;
5853 }
863bffc8 5854
63b2ca30
NP
5855 sgc = rq->sd->groups->sgc;
5856 capacity_orig += sgc->capacity_orig;
5857 capacity += sgc->capacity;
863bffc8 5858 }
74a5ce20
PZ
5859 } else {
5860 /*
5861 * !SD_OVERLAP domains can assume that child groups
5862 * span the current group.
5863 */
5864
5865 group = child->groups;
5866 do {
63b2ca30
NP
5867 capacity_orig += group->sgc->capacity_orig;
5868 capacity += group->sgc->capacity;
74a5ce20
PZ
5869 group = group->next;
5870 } while (group != child->groups);
5871 }
1e3c88bd 5872
63b2ca30
NP
5873 sdg->sgc->capacity_orig = capacity_orig;
5874 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5875}
5876
9d5efe05
SV
5877/*
5878 * Try and fix up capacity for tiny siblings, this is needed when
5879 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5880 * which on its own isn't powerful enough.
5881 *
5882 * See update_sd_pick_busiest() and check_asym_packing().
5883 */
5884static inline int
5885fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5886{
5887 /*
ca8ce3d0 5888 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5889 */
5d4dfddd 5890 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5891 return 0;
5892
5893 /*
63b2ca30 5894 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5895 */
63b2ca30 5896 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5897 return 1;
5898
5899 return 0;
5900}
5901
30ce5dab
PZ
5902/*
5903 * Group imbalance indicates (and tries to solve) the problem where balancing
5904 * groups is inadequate due to tsk_cpus_allowed() constraints.
5905 *
5906 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5907 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5908 * Something like:
5909 *
5910 * { 0 1 2 3 } { 4 5 6 7 }
5911 * * * * *
5912 *
5913 * If we were to balance group-wise we'd place two tasks in the first group and
5914 * two tasks in the second group. Clearly this is undesired as it will overload
5915 * cpu 3 and leave one of the cpus in the second group unused.
5916 *
5917 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5918 * by noticing the lower domain failed to reach balance and had difficulty
5919 * moving tasks due to affinity constraints.
30ce5dab
PZ
5920 *
5921 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5922 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5923 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5924 * to create an effective group imbalance.
5925 *
5926 * This is a somewhat tricky proposition since the next run might not find the
5927 * group imbalance and decide the groups need to be balanced again. A most
5928 * subtle and fragile situation.
5929 */
5930
6263322c 5931static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5932{
63b2ca30 5933 return group->sgc->imbalance;
30ce5dab
PZ
5934}
5935
b37d9316 5936/*
0fedc6c8 5937 * Compute the group capacity factor.
b37d9316 5938 *
ced549fa 5939 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5940 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5941 * and limit unit capacity with that.
b37d9316 5942 */
0fedc6c8 5943static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5944{
0fedc6c8 5945 unsigned int capacity_factor, smt, cpus;
63b2ca30 5946 unsigned int capacity, capacity_orig;
c61037e9 5947
63b2ca30
NP
5948 capacity = group->sgc->capacity;
5949 capacity_orig = group->sgc->capacity_orig;
c61037e9 5950 cpus = group->group_weight;
b37d9316 5951
63b2ca30 5952 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5953 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5954 capacity_factor = cpus / smt; /* cores */
b37d9316 5955
63b2ca30 5956 capacity_factor = min_t(unsigned,
ca8ce3d0 5957 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5958 if (!capacity_factor)
5959 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5960
0fedc6c8 5961 return capacity_factor;
b37d9316
PZ
5962}
5963
caeb178c
RR
5964static enum group_type
5965group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5966{
5967 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5968 return group_overloaded;
5969
5970 if (sg_imbalanced(group))
5971 return group_imbalanced;
5972
5973 return group_other;
5974}
5975
1e3c88bd
PZ
5976/**
5977 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5978 * @env: The load balancing environment.
1e3c88bd 5979 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5980 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5981 * @local_group: Does group contain this_cpu.
1e3c88bd 5982 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 5983 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 5984 */
bd939f45
PZ
5985static inline void update_sg_lb_stats(struct lb_env *env,
5986 struct sched_group *group, int load_idx,
4486edd1
TC
5987 int local_group, struct sg_lb_stats *sgs,
5988 bool *overload)
1e3c88bd 5989{
30ce5dab 5990 unsigned long load;
bd939f45 5991 int i;
1e3c88bd 5992
b72ff13c
PZ
5993 memset(sgs, 0, sizeof(*sgs));
5994
b9403130 5995 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5996 struct rq *rq = cpu_rq(i);
5997
1e3c88bd 5998 /* Bias balancing toward cpus of our domain */
6263322c 5999 if (local_group)
04f733b4 6000 load = target_load(i, load_idx);
6263322c 6001 else
1e3c88bd 6002 load = source_load(i, load_idx);
1e3c88bd
PZ
6003
6004 sgs->group_load += load;
65fdac08 6005 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6006
6007 if (rq->nr_running > 1)
6008 *overload = true;
6009
0ec8aa00
PZ
6010#ifdef CONFIG_NUMA_BALANCING
6011 sgs->nr_numa_running += rq->nr_numa_running;
6012 sgs->nr_preferred_running += rq->nr_preferred_running;
6013#endif
1e3c88bd 6014 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6015 if (idle_cpu(i))
6016 sgs->idle_cpus++;
1e3c88bd
PZ
6017 }
6018
63b2ca30
NP
6019 /* Adjust by relative CPU capacity of the group */
6020 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6021 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6022
dd5feea1 6023 if (sgs->sum_nr_running)
38d0f770 6024 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6025
aae6d3dd 6026 sgs->group_weight = group->group_weight;
0fedc6c8 6027 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6028 sgs->group_type = group_classify(group, sgs);
b37d9316 6029
0fedc6c8 6030 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6031 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6032}
6033
532cb4c4
MN
6034/**
6035 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6036 * @env: The load balancing environment.
532cb4c4
MN
6037 * @sds: sched_domain statistics
6038 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6039 * @sgs: sched_group statistics
532cb4c4
MN
6040 *
6041 * Determine if @sg is a busier group than the previously selected
6042 * busiest group.
e69f6186
YB
6043 *
6044 * Return: %true if @sg is a busier group than the previously selected
6045 * busiest group. %false otherwise.
532cb4c4 6046 */
bd939f45 6047static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6048 struct sd_lb_stats *sds,
6049 struct sched_group *sg,
bd939f45 6050 struct sg_lb_stats *sgs)
532cb4c4 6051{
caeb178c 6052 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6053
caeb178c 6054 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6055 return true;
6056
caeb178c
RR
6057 if (sgs->group_type < busiest->group_type)
6058 return false;
6059
6060 if (sgs->avg_load <= busiest->avg_load)
6061 return false;
6062
6063 /* This is the busiest node in its class. */
6064 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6065 return true;
6066
6067 /*
6068 * ASYM_PACKING needs to move all the work to the lowest
6069 * numbered CPUs in the group, therefore mark all groups
6070 * higher than ourself as busy.
6071 */
caeb178c 6072 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6073 if (!sds->busiest)
6074 return true;
6075
6076 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6077 return true;
6078 }
6079
6080 return false;
6081}
6082
0ec8aa00
PZ
6083#ifdef CONFIG_NUMA_BALANCING
6084static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6085{
6086 if (sgs->sum_nr_running > sgs->nr_numa_running)
6087 return regular;
6088 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6089 return remote;
6090 return all;
6091}
6092
6093static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6094{
6095 if (rq->nr_running > rq->nr_numa_running)
6096 return regular;
6097 if (rq->nr_running > rq->nr_preferred_running)
6098 return remote;
6099 return all;
6100}
6101#else
6102static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6103{
6104 return all;
6105}
6106
6107static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6108{
6109 return regular;
6110}
6111#endif /* CONFIG_NUMA_BALANCING */
6112
1e3c88bd 6113/**
461819ac 6114 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6115 * @env: The load balancing environment.
1e3c88bd
PZ
6116 * @sds: variable to hold the statistics for this sched_domain.
6117 */
0ec8aa00 6118static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6119{
bd939f45
PZ
6120 struct sched_domain *child = env->sd->child;
6121 struct sched_group *sg = env->sd->groups;
56cf515b 6122 struct sg_lb_stats tmp_sgs;
1e3c88bd 6123 int load_idx, prefer_sibling = 0;
4486edd1 6124 bool overload = false;
1e3c88bd
PZ
6125
6126 if (child && child->flags & SD_PREFER_SIBLING)
6127 prefer_sibling = 1;
6128
bd939f45 6129 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6130
6131 do {
56cf515b 6132 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6133 int local_group;
6134
bd939f45 6135 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6136 if (local_group) {
6137 sds->local = sg;
6138 sgs = &sds->local_stat;
b72ff13c
PZ
6139
6140 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6141 time_after_eq(jiffies, sg->sgc->next_update))
6142 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6143 }
1e3c88bd 6144
4486edd1
TC
6145 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6146 &overload);
1e3c88bd 6147
b72ff13c
PZ
6148 if (local_group)
6149 goto next_group;
6150
1e3c88bd
PZ
6151 /*
6152 * In case the child domain prefers tasks go to siblings
0fedc6c8 6153 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6154 * and move all the excess tasks away. We lower the capacity
6155 * of a group only if the local group has the capacity to fit
0fedc6c8 6156 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6157 * extra check prevents the case where you always pull from the
6158 * heaviest group when it is already under-utilized (possible
6159 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6160 */
b72ff13c 6161 if (prefer_sibling && sds->local &&
1b6a7495 6162 sds->local_stat.group_has_free_capacity)
0fedc6c8 6163 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6164
b72ff13c 6165 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6166 sds->busiest = sg;
56cf515b 6167 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6168 }
6169
b72ff13c
PZ
6170next_group:
6171 /* Now, start updating sd_lb_stats */
6172 sds->total_load += sgs->group_load;
63b2ca30 6173 sds->total_capacity += sgs->group_capacity;
b72ff13c 6174
532cb4c4 6175 sg = sg->next;
bd939f45 6176 } while (sg != env->sd->groups);
0ec8aa00
PZ
6177
6178 if (env->sd->flags & SD_NUMA)
6179 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6180
6181 if (!env->sd->parent) {
6182 /* update overload indicator if we are at root domain */
6183 if (env->dst_rq->rd->overload != overload)
6184 env->dst_rq->rd->overload = overload;
6185 }
6186
532cb4c4
MN
6187}
6188
532cb4c4
MN
6189/**
6190 * check_asym_packing - Check to see if the group is packed into the
6191 * sched doman.
6192 *
6193 * This is primarily intended to used at the sibling level. Some
6194 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6195 * case of POWER7, it can move to lower SMT modes only when higher
6196 * threads are idle. When in lower SMT modes, the threads will
6197 * perform better since they share less core resources. Hence when we
6198 * have idle threads, we want them to be the higher ones.
6199 *
6200 * This packing function is run on idle threads. It checks to see if
6201 * the busiest CPU in this domain (core in the P7 case) has a higher
6202 * CPU number than the packing function is being run on. Here we are
6203 * assuming lower CPU number will be equivalent to lower a SMT thread
6204 * number.
6205 *
e69f6186 6206 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6207 * this CPU. The amount of the imbalance is returned in *imbalance.
6208 *
cd96891d 6209 * @env: The load balancing environment.
532cb4c4 6210 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6211 */
bd939f45 6212static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6213{
6214 int busiest_cpu;
6215
bd939f45 6216 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6217 return 0;
6218
6219 if (!sds->busiest)
6220 return 0;
6221
6222 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6223 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6224 return 0;
6225
bd939f45 6226 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6227 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6228 SCHED_CAPACITY_SCALE);
bd939f45 6229
532cb4c4 6230 return 1;
1e3c88bd
PZ
6231}
6232
6233/**
6234 * fix_small_imbalance - Calculate the minor imbalance that exists
6235 * amongst the groups of a sched_domain, during
6236 * load balancing.
cd96891d 6237 * @env: The load balancing environment.
1e3c88bd 6238 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6239 */
bd939f45
PZ
6240static inline
6241void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6242{
63b2ca30 6243 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6244 unsigned int imbn = 2;
dd5feea1 6245 unsigned long scaled_busy_load_per_task;
56cf515b 6246 struct sg_lb_stats *local, *busiest;
1e3c88bd 6247
56cf515b
JK
6248 local = &sds->local_stat;
6249 busiest = &sds->busiest_stat;
1e3c88bd 6250
56cf515b
JK
6251 if (!local->sum_nr_running)
6252 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6253 else if (busiest->load_per_task > local->load_per_task)
6254 imbn = 1;
dd5feea1 6255
56cf515b 6256 scaled_busy_load_per_task =
ca8ce3d0 6257 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6258 busiest->group_capacity;
56cf515b 6259
3029ede3
VD
6260 if (busiest->avg_load + scaled_busy_load_per_task >=
6261 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6262 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6263 return;
6264 }
6265
6266 /*
6267 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6268 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6269 * moving them.
6270 */
6271
63b2ca30 6272 capa_now += busiest->group_capacity *
56cf515b 6273 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6274 capa_now += local->group_capacity *
56cf515b 6275 min(local->load_per_task, local->avg_load);
ca8ce3d0 6276 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6277
6278 /* Amount of load we'd subtract */
a2cd4260 6279 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6280 capa_move += busiest->group_capacity *
56cf515b 6281 min(busiest->load_per_task,
a2cd4260 6282 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6283 }
1e3c88bd
PZ
6284
6285 /* Amount of load we'd add */
63b2ca30 6286 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6287 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6288 tmp = (busiest->avg_load * busiest->group_capacity) /
6289 local->group_capacity;
56cf515b 6290 } else {
ca8ce3d0 6291 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6292 local->group_capacity;
56cf515b 6293 }
63b2ca30 6294 capa_move += local->group_capacity *
3ae11c90 6295 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6296 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6297
6298 /* Move if we gain throughput */
63b2ca30 6299 if (capa_move > capa_now)
56cf515b 6300 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6301}
6302
6303/**
6304 * calculate_imbalance - Calculate the amount of imbalance present within the
6305 * groups of a given sched_domain during load balance.
bd939f45 6306 * @env: load balance environment
1e3c88bd 6307 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6308 */
bd939f45 6309static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6310{
dd5feea1 6311 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6312 struct sg_lb_stats *local, *busiest;
6313
6314 local = &sds->local_stat;
56cf515b 6315 busiest = &sds->busiest_stat;
dd5feea1 6316
caeb178c 6317 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6318 /*
6319 * In the group_imb case we cannot rely on group-wide averages
6320 * to ensure cpu-load equilibrium, look at wider averages. XXX
6321 */
56cf515b
JK
6322 busiest->load_per_task =
6323 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6324 }
6325
1e3c88bd
PZ
6326 /*
6327 * In the presence of smp nice balancing, certain scenarios can have
6328 * max load less than avg load(as we skip the groups at or below
ced549fa 6329 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6330 */
b1885550
VD
6331 if (busiest->avg_load <= sds->avg_load ||
6332 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6333 env->imbalance = 0;
6334 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6335 }
6336
9a5d9ba6
PZ
6337 /*
6338 * If there aren't any idle cpus, avoid creating some.
6339 */
6340 if (busiest->group_type == group_overloaded &&
6341 local->group_type == group_overloaded) {
56cf515b 6342 load_above_capacity =
0fedc6c8 6343 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6344
ca8ce3d0 6345 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6346 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6347 }
6348
6349 /*
6350 * We're trying to get all the cpus to the average_load, so we don't
6351 * want to push ourselves above the average load, nor do we wish to
6352 * reduce the max loaded cpu below the average load. At the same time,
6353 * we also don't want to reduce the group load below the group capacity
6354 * (so that we can implement power-savings policies etc). Thus we look
6355 * for the minimum possible imbalance.
dd5feea1 6356 */
30ce5dab 6357 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6358
6359 /* How much load to actually move to equalise the imbalance */
56cf515b 6360 env->imbalance = min(
63b2ca30
NP
6361 max_pull * busiest->group_capacity,
6362 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6363 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6364
6365 /*
6366 * if *imbalance is less than the average load per runnable task
25985edc 6367 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6368 * a think about bumping its value to force at least one task to be
6369 * moved
6370 */
56cf515b 6371 if (env->imbalance < busiest->load_per_task)
bd939f45 6372 return fix_small_imbalance(env, sds);
1e3c88bd 6373}
fab47622 6374
1e3c88bd
PZ
6375/******* find_busiest_group() helpers end here *********************/
6376
6377/**
6378 * find_busiest_group - Returns the busiest group within the sched_domain
6379 * if there is an imbalance. If there isn't an imbalance, and
6380 * the user has opted for power-savings, it returns a group whose
6381 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6382 * such a group exists.
6383 *
6384 * Also calculates the amount of weighted load which should be moved
6385 * to restore balance.
6386 *
cd96891d 6387 * @env: The load balancing environment.
1e3c88bd 6388 *
e69f6186 6389 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6390 * - If no imbalance and user has opted for power-savings balance,
6391 * return the least loaded group whose CPUs can be
6392 * put to idle by rebalancing its tasks onto our group.
6393 */
56cf515b 6394static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6395{
56cf515b 6396 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6397 struct sd_lb_stats sds;
6398
147c5fc2 6399 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6400
6401 /*
6402 * Compute the various statistics relavent for load balancing at
6403 * this level.
6404 */
23f0d209 6405 update_sd_lb_stats(env, &sds);
56cf515b
JK
6406 local = &sds.local_stat;
6407 busiest = &sds.busiest_stat;
1e3c88bd 6408
bd939f45
PZ
6409 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6410 check_asym_packing(env, &sds))
532cb4c4
MN
6411 return sds.busiest;
6412
cc57aa8f 6413 /* There is no busy sibling group to pull tasks from */
56cf515b 6414 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6415 goto out_balanced;
6416
ca8ce3d0
NP
6417 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6418 / sds.total_capacity;
b0432d8f 6419
866ab43e
PZ
6420 /*
6421 * If the busiest group is imbalanced the below checks don't
30ce5dab 6422 * work because they assume all things are equal, which typically
866ab43e
PZ
6423 * isn't true due to cpus_allowed constraints and the like.
6424 */
caeb178c 6425 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6426 goto force_balance;
6427
cc57aa8f 6428 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6429 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6430 !busiest->group_has_free_capacity)
fab47622
NR
6431 goto force_balance;
6432
cc57aa8f 6433 /*
9c58c79a 6434 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6435 * don't try and pull any tasks.
6436 */
56cf515b 6437 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6438 goto out_balanced;
6439
cc57aa8f
PZ
6440 /*
6441 * Don't pull any tasks if this group is already above the domain
6442 * average load.
6443 */
56cf515b 6444 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6445 goto out_balanced;
6446
bd939f45 6447 if (env->idle == CPU_IDLE) {
aae6d3dd 6448 /*
43f4d666
VG
6449 * This cpu is idle. If the busiest group is not overloaded
6450 * and there is no imbalance between this and busiest group
6451 * wrt idle cpus, it is balanced. The imbalance becomes
6452 * significant if the diff is greater than 1 otherwise we
6453 * might end up to just move the imbalance on another group
aae6d3dd 6454 */
43f4d666
VG
6455 if ((busiest->group_type != group_overloaded) &&
6456 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6457 goto out_balanced;
c186fafe
PZ
6458 } else {
6459 /*
6460 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6461 * imbalance_pct to be conservative.
6462 */
56cf515b
JK
6463 if (100 * busiest->avg_load <=
6464 env->sd->imbalance_pct * local->avg_load)
c186fafe 6465 goto out_balanced;
aae6d3dd 6466 }
1e3c88bd 6467
fab47622 6468force_balance:
1e3c88bd 6469 /* Looks like there is an imbalance. Compute it */
bd939f45 6470 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6471 return sds.busiest;
6472
6473out_balanced:
bd939f45 6474 env->imbalance = 0;
1e3c88bd
PZ
6475 return NULL;
6476}
6477
6478/*
6479 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6480 */
bd939f45 6481static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6482 struct sched_group *group)
1e3c88bd
PZ
6483{
6484 struct rq *busiest = NULL, *rq;
ced549fa 6485 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6486 int i;
6487
6906a408 6488 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6489 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6490 enum fbq_type rt;
6491
6492 rq = cpu_rq(i);
6493 rt = fbq_classify_rq(rq);
1e3c88bd 6494
0ec8aa00
PZ
6495 /*
6496 * We classify groups/runqueues into three groups:
6497 * - regular: there are !numa tasks
6498 * - remote: there are numa tasks that run on the 'wrong' node
6499 * - all: there is no distinction
6500 *
6501 * In order to avoid migrating ideally placed numa tasks,
6502 * ignore those when there's better options.
6503 *
6504 * If we ignore the actual busiest queue to migrate another
6505 * task, the next balance pass can still reduce the busiest
6506 * queue by moving tasks around inside the node.
6507 *
6508 * If we cannot move enough load due to this classification
6509 * the next pass will adjust the group classification and
6510 * allow migration of more tasks.
6511 *
6512 * Both cases only affect the total convergence complexity.
6513 */
6514 if (rt > env->fbq_type)
6515 continue;
6516
ced549fa 6517 capacity = capacity_of(i);
ca8ce3d0 6518 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6519 if (!capacity_factor)
6520 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6521
6e40f5bb 6522 wl = weighted_cpuload(i);
1e3c88bd 6523
6e40f5bb
TG
6524 /*
6525 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6526 * which is not scaled with the cpu capacity.
6e40f5bb 6527 */
0fedc6c8 6528 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6529 continue;
6530
6e40f5bb
TG
6531 /*
6532 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6533 * the weighted_cpuload() scaled with the cpu capacity, so
6534 * that the load can be moved away from the cpu that is
6535 * potentially running at a lower capacity.
95a79b80 6536 *
ced549fa 6537 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6538 * multiplication to rid ourselves of the division works out
ced549fa
NP
6539 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6540 * our previous maximum.
6e40f5bb 6541 */
ced549fa 6542 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6543 busiest_load = wl;
ced549fa 6544 busiest_capacity = capacity;
1e3c88bd
PZ
6545 busiest = rq;
6546 }
6547 }
6548
6549 return busiest;
6550}
6551
6552/*
6553 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6554 * so long as it is large enough.
6555 */
6556#define MAX_PINNED_INTERVAL 512
6557
6558/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6559DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6560
bd939f45 6561static int need_active_balance(struct lb_env *env)
1af3ed3d 6562{
bd939f45
PZ
6563 struct sched_domain *sd = env->sd;
6564
6565 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6566
6567 /*
6568 * ASYM_PACKING needs to force migrate tasks from busy but
6569 * higher numbered CPUs in order to pack all tasks in the
6570 * lowest numbered CPUs.
6571 */
bd939f45 6572 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6573 return 1;
1af3ed3d
PZ
6574 }
6575
6576 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6577}
6578
969c7921
TH
6579static int active_load_balance_cpu_stop(void *data);
6580
23f0d209
JK
6581static int should_we_balance(struct lb_env *env)
6582{
6583 struct sched_group *sg = env->sd->groups;
6584 struct cpumask *sg_cpus, *sg_mask;
6585 int cpu, balance_cpu = -1;
6586
6587 /*
6588 * In the newly idle case, we will allow all the cpu's
6589 * to do the newly idle load balance.
6590 */
6591 if (env->idle == CPU_NEWLY_IDLE)
6592 return 1;
6593
6594 sg_cpus = sched_group_cpus(sg);
6595 sg_mask = sched_group_mask(sg);
6596 /* Try to find first idle cpu */
6597 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6598 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6599 continue;
6600
6601 balance_cpu = cpu;
6602 break;
6603 }
6604
6605 if (balance_cpu == -1)
6606 balance_cpu = group_balance_cpu(sg);
6607
6608 /*
6609 * First idle cpu or the first cpu(busiest) in this sched group
6610 * is eligible for doing load balancing at this and above domains.
6611 */
b0cff9d8 6612 return balance_cpu == env->dst_cpu;
23f0d209
JK
6613}
6614
1e3c88bd
PZ
6615/*
6616 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6617 * tasks if there is an imbalance.
6618 */
6619static int load_balance(int this_cpu, struct rq *this_rq,
6620 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6621 int *continue_balancing)
1e3c88bd 6622{
88b8dac0 6623 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6624 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6625 struct sched_group *group;
1e3c88bd
PZ
6626 struct rq *busiest;
6627 unsigned long flags;
4ba29684 6628 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6629
8e45cb54
PZ
6630 struct lb_env env = {
6631 .sd = sd,
ddcdf6e7
PZ
6632 .dst_cpu = this_cpu,
6633 .dst_rq = this_rq,
88b8dac0 6634 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6635 .idle = idle,
eb95308e 6636 .loop_break = sched_nr_migrate_break,
b9403130 6637 .cpus = cpus,
0ec8aa00 6638 .fbq_type = all,
163122b7 6639 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6640 };
6641
cfc03118
JK
6642 /*
6643 * For NEWLY_IDLE load_balancing, we don't need to consider
6644 * other cpus in our group
6645 */
e02e60c1 6646 if (idle == CPU_NEWLY_IDLE)
cfc03118 6647 env.dst_grpmask = NULL;
cfc03118 6648
1e3c88bd
PZ
6649 cpumask_copy(cpus, cpu_active_mask);
6650
1e3c88bd
PZ
6651 schedstat_inc(sd, lb_count[idle]);
6652
6653redo:
23f0d209
JK
6654 if (!should_we_balance(&env)) {
6655 *continue_balancing = 0;
1e3c88bd 6656 goto out_balanced;
23f0d209 6657 }
1e3c88bd 6658
23f0d209 6659 group = find_busiest_group(&env);
1e3c88bd
PZ
6660 if (!group) {
6661 schedstat_inc(sd, lb_nobusyg[idle]);
6662 goto out_balanced;
6663 }
6664
b9403130 6665 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6666 if (!busiest) {
6667 schedstat_inc(sd, lb_nobusyq[idle]);
6668 goto out_balanced;
6669 }
6670
78feefc5 6671 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6672
bd939f45 6673 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6674
6675 ld_moved = 0;
6676 if (busiest->nr_running > 1) {
6677 /*
6678 * Attempt to move tasks. If find_busiest_group has found
6679 * an imbalance but busiest->nr_running <= 1, the group is
6680 * still unbalanced. ld_moved simply stays zero, so it is
6681 * correctly treated as an imbalance.
6682 */
8e45cb54 6683 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6684 env.src_cpu = busiest->cpu;
6685 env.src_rq = busiest;
6686 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6687
5d6523eb 6688more_balance:
163122b7 6689 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6690
6691 /*
6692 * cur_ld_moved - load moved in current iteration
6693 * ld_moved - cumulative load moved across iterations
6694 */
163122b7 6695 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6696
6697 /*
163122b7
KT
6698 * We've detached some tasks from busiest_rq. Every
6699 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6700 * unlock busiest->lock, and we are able to be sure
6701 * that nobody can manipulate the tasks in parallel.
6702 * See task_rq_lock() family for the details.
1e3c88bd 6703 */
163122b7
KT
6704
6705 raw_spin_unlock(&busiest->lock);
6706
6707 if (cur_ld_moved) {
6708 attach_tasks(&env);
6709 ld_moved += cur_ld_moved;
6710 }
6711
1e3c88bd 6712 local_irq_restore(flags);
88b8dac0 6713
f1cd0858
JK
6714 if (env.flags & LBF_NEED_BREAK) {
6715 env.flags &= ~LBF_NEED_BREAK;
6716 goto more_balance;
6717 }
6718
88b8dac0
SV
6719 /*
6720 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6721 * us and move them to an alternate dst_cpu in our sched_group
6722 * where they can run. The upper limit on how many times we
6723 * iterate on same src_cpu is dependent on number of cpus in our
6724 * sched_group.
6725 *
6726 * This changes load balance semantics a bit on who can move
6727 * load to a given_cpu. In addition to the given_cpu itself
6728 * (or a ilb_cpu acting on its behalf where given_cpu is
6729 * nohz-idle), we now have balance_cpu in a position to move
6730 * load to given_cpu. In rare situations, this may cause
6731 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6732 * _independently_ and at _same_ time to move some load to
6733 * given_cpu) causing exceess load to be moved to given_cpu.
6734 * This however should not happen so much in practice and
6735 * moreover subsequent load balance cycles should correct the
6736 * excess load moved.
6737 */
6263322c 6738 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6739
7aff2e3a
VD
6740 /* Prevent to re-select dst_cpu via env's cpus */
6741 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6742
78feefc5 6743 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6744 env.dst_cpu = env.new_dst_cpu;
6263322c 6745 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6746 env.loop = 0;
6747 env.loop_break = sched_nr_migrate_break;
e02e60c1 6748
88b8dac0
SV
6749 /*
6750 * Go back to "more_balance" rather than "redo" since we
6751 * need to continue with same src_cpu.
6752 */
6753 goto more_balance;
6754 }
1e3c88bd 6755
6263322c
PZ
6756 /*
6757 * We failed to reach balance because of affinity.
6758 */
6759 if (sd_parent) {
63b2ca30 6760 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6761
afdeee05 6762 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6763 *group_imbalance = 1;
6263322c
PZ
6764 }
6765
1e3c88bd 6766 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6767 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6768 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6769 if (!cpumask_empty(cpus)) {
6770 env.loop = 0;
6771 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6772 goto redo;
bbf18b19 6773 }
afdeee05 6774 goto out_all_pinned;
1e3c88bd
PZ
6775 }
6776 }
6777
6778 if (!ld_moved) {
6779 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6780 /*
6781 * Increment the failure counter only on periodic balance.
6782 * We do not want newidle balance, which can be very
6783 * frequent, pollute the failure counter causing
6784 * excessive cache_hot migrations and active balances.
6785 */
6786 if (idle != CPU_NEWLY_IDLE)
6787 sd->nr_balance_failed++;
1e3c88bd 6788
bd939f45 6789 if (need_active_balance(&env)) {
1e3c88bd
PZ
6790 raw_spin_lock_irqsave(&busiest->lock, flags);
6791
969c7921
TH
6792 /* don't kick the active_load_balance_cpu_stop,
6793 * if the curr task on busiest cpu can't be
6794 * moved to this_cpu
1e3c88bd
PZ
6795 */
6796 if (!cpumask_test_cpu(this_cpu,
fa17b507 6797 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6798 raw_spin_unlock_irqrestore(&busiest->lock,
6799 flags);
8e45cb54 6800 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6801 goto out_one_pinned;
6802 }
6803
969c7921
TH
6804 /*
6805 * ->active_balance synchronizes accesses to
6806 * ->active_balance_work. Once set, it's cleared
6807 * only after active load balance is finished.
6808 */
1e3c88bd
PZ
6809 if (!busiest->active_balance) {
6810 busiest->active_balance = 1;
6811 busiest->push_cpu = this_cpu;
6812 active_balance = 1;
6813 }
6814 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6815
bd939f45 6816 if (active_balance) {
969c7921
TH
6817 stop_one_cpu_nowait(cpu_of(busiest),
6818 active_load_balance_cpu_stop, busiest,
6819 &busiest->active_balance_work);
bd939f45 6820 }
1e3c88bd
PZ
6821
6822 /*
6823 * We've kicked active balancing, reset the failure
6824 * counter.
6825 */
6826 sd->nr_balance_failed = sd->cache_nice_tries+1;
6827 }
6828 } else
6829 sd->nr_balance_failed = 0;
6830
6831 if (likely(!active_balance)) {
6832 /* We were unbalanced, so reset the balancing interval */
6833 sd->balance_interval = sd->min_interval;
6834 } else {
6835 /*
6836 * If we've begun active balancing, start to back off. This
6837 * case may not be covered by the all_pinned logic if there
6838 * is only 1 task on the busy runqueue (because we don't call
163122b7 6839 * detach_tasks).
1e3c88bd
PZ
6840 */
6841 if (sd->balance_interval < sd->max_interval)
6842 sd->balance_interval *= 2;
6843 }
6844
1e3c88bd
PZ
6845 goto out;
6846
6847out_balanced:
afdeee05
VG
6848 /*
6849 * We reach balance although we may have faced some affinity
6850 * constraints. Clear the imbalance flag if it was set.
6851 */
6852 if (sd_parent) {
6853 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6854
6855 if (*group_imbalance)
6856 *group_imbalance = 0;
6857 }
6858
6859out_all_pinned:
6860 /*
6861 * We reach balance because all tasks are pinned at this level so
6862 * we can't migrate them. Let the imbalance flag set so parent level
6863 * can try to migrate them.
6864 */
1e3c88bd
PZ
6865 schedstat_inc(sd, lb_balanced[idle]);
6866
6867 sd->nr_balance_failed = 0;
6868
6869out_one_pinned:
6870 /* tune up the balancing interval */
8e45cb54 6871 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6872 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6873 (sd->balance_interval < sd->max_interval))
6874 sd->balance_interval *= 2;
6875
46e49b38 6876 ld_moved = 0;
1e3c88bd 6877out:
1e3c88bd
PZ
6878 return ld_moved;
6879}
6880
52a08ef1
JL
6881static inline unsigned long
6882get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6883{
6884 unsigned long interval = sd->balance_interval;
6885
6886 if (cpu_busy)
6887 interval *= sd->busy_factor;
6888
6889 /* scale ms to jiffies */
6890 interval = msecs_to_jiffies(interval);
6891 interval = clamp(interval, 1UL, max_load_balance_interval);
6892
6893 return interval;
6894}
6895
6896static inline void
6897update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6898{
6899 unsigned long interval, next;
6900
6901 interval = get_sd_balance_interval(sd, cpu_busy);
6902 next = sd->last_balance + interval;
6903
6904 if (time_after(*next_balance, next))
6905 *next_balance = next;
6906}
6907
1e3c88bd
PZ
6908/*
6909 * idle_balance is called by schedule() if this_cpu is about to become
6910 * idle. Attempts to pull tasks from other CPUs.
6911 */
6e83125c 6912static int idle_balance(struct rq *this_rq)
1e3c88bd 6913{
52a08ef1
JL
6914 unsigned long next_balance = jiffies + HZ;
6915 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6916 struct sched_domain *sd;
6917 int pulled_task = 0;
9bd721c5 6918 u64 curr_cost = 0;
1e3c88bd 6919
6e83125c 6920 idle_enter_fair(this_rq);
0e5b5337 6921
6e83125c
PZ
6922 /*
6923 * We must set idle_stamp _before_ calling idle_balance(), such that we
6924 * measure the duration of idle_balance() as idle time.
6925 */
6926 this_rq->idle_stamp = rq_clock(this_rq);
6927
4486edd1
TC
6928 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6929 !this_rq->rd->overload) {
52a08ef1
JL
6930 rcu_read_lock();
6931 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6932 if (sd)
6933 update_next_balance(sd, 0, &next_balance);
6934 rcu_read_unlock();
6935
6e83125c 6936 goto out;
52a08ef1 6937 }
1e3c88bd 6938
f492e12e
PZ
6939 /*
6940 * Drop the rq->lock, but keep IRQ/preempt disabled.
6941 */
6942 raw_spin_unlock(&this_rq->lock);
6943
48a16753 6944 update_blocked_averages(this_cpu);
dce840a0 6945 rcu_read_lock();
1e3c88bd 6946 for_each_domain(this_cpu, sd) {
23f0d209 6947 int continue_balancing = 1;
9bd721c5 6948 u64 t0, domain_cost;
1e3c88bd
PZ
6949
6950 if (!(sd->flags & SD_LOAD_BALANCE))
6951 continue;
6952
52a08ef1
JL
6953 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6954 update_next_balance(sd, 0, &next_balance);
9bd721c5 6955 break;
52a08ef1 6956 }
9bd721c5 6957
f492e12e 6958 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6959 t0 = sched_clock_cpu(this_cpu);
6960
f492e12e 6961 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6962 sd, CPU_NEWLY_IDLE,
6963 &continue_balancing);
9bd721c5
JL
6964
6965 domain_cost = sched_clock_cpu(this_cpu) - t0;
6966 if (domain_cost > sd->max_newidle_lb_cost)
6967 sd->max_newidle_lb_cost = domain_cost;
6968
6969 curr_cost += domain_cost;
f492e12e 6970 }
1e3c88bd 6971
52a08ef1 6972 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6973
6974 /*
6975 * Stop searching for tasks to pull if there are
6976 * now runnable tasks on this rq.
6977 */
6978 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6979 break;
1e3c88bd 6980 }
dce840a0 6981 rcu_read_unlock();
f492e12e
PZ
6982
6983 raw_spin_lock(&this_rq->lock);
6984
0e5b5337
JL
6985 if (curr_cost > this_rq->max_idle_balance_cost)
6986 this_rq->max_idle_balance_cost = curr_cost;
6987
e5fc6611 6988 /*
0e5b5337
JL
6989 * While browsing the domains, we released the rq lock, a task could
6990 * have been enqueued in the meantime. Since we're not going idle,
6991 * pretend we pulled a task.
e5fc6611 6992 */
0e5b5337 6993 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6994 pulled_task = 1;
e5fc6611 6995
52a08ef1
JL
6996out:
6997 /* Move the next balance forward */
6998 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6999 this_rq->next_balance = next_balance;
9bd721c5 7000
e4aa358b 7001 /* Is there a task of a high priority class? */
46383648 7002 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7003 pulled_task = -1;
7004
7005 if (pulled_task) {
7006 idle_exit_fair(this_rq);
6e83125c 7007 this_rq->idle_stamp = 0;
e4aa358b 7008 }
6e83125c 7009
3c4017c1 7010 return pulled_task;
1e3c88bd
PZ
7011}
7012
7013/*
969c7921
TH
7014 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7015 * running tasks off the busiest CPU onto idle CPUs. It requires at
7016 * least 1 task to be running on each physical CPU where possible, and
7017 * avoids physical / logical imbalances.
1e3c88bd 7018 */
969c7921 7019static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7020{
969c7921
TH
7021 struct rq *busiest_rq = data;
7022 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7023 int target_cpu = busiest_rq->push_cpu;
969c7921 7024 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7025 struct sched_domain *sd;
e5673f28 7026 struct task_struct *p = NULL;
969c7921
TH
7027
7028 raw_spin_lock_irq(&busiest_rq->lock);
7029
7030 /* make sure the requested cpu hasn't gone down in the meantime */
7031 if (unlikely(busiest_cpu != smp_processor_id() ||
7032 !busiest_rq->active_balance))
7033 goto out_unlock;
1e3c88bd
PZ
7034
7035 /* Is there any task to move? */
7036 if (busiest_rq->nr_running <= 1)
969c7921 7037 goto out_unlock;
1e3c88bd
PZ
7038
7039 /*
7040 * This condition is "impossible", if it occurs
7041 * we need to fix it. Originally reported by
7042 * Bjorn Helgaas on a 128-cpu setup.
7043 */
7044 BUG_ON(busiest_rq == target_rq);
7045
1e3c88bd 7046 /* Search for an sd spanning us and the target CPU. */
dce840a0 7047 rcu_read_lock();
1e3c88bd
PZ
7048 for_each_domain(target_cpu, sd) {
7049 if ((sd->flags & SD_LOAD_BALANCE) &&
7050 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7051 break;
7052 }
7053
7054 if (likely(sd)) {
8e45cb54
PZ
7055 struct lb_env env = {
7056 .sd = sd,
ddcdf6e7
PZ
7057 .dst_cpu = target_cpu,
7058 .dst_rq = target_rq,
7059 .src_cpu = busiest_rq->cpu,
7060 .src_rq = busiest_rq,
8e45cb54
PZ
7061 .idle = CPU_IDLE,
7062 };
7063
1e3c88bd
PZ
7064 schedstat_inc(sd, alb_count);
7065
e5673f28
KT
7066 p = detach_one_task(&env);
7067 if (p)
1e3c88bd
PZ
7068 schedstat_inc(sd, alb_pushed);
7069 else
7070 schedstat_inc(sd, alb_failed);
7071 }
dce840a0 7072 rcu_read_unlock();
969c7921
TH
7073out_unlock:
7074 busiest_rq->active_balance = 0;
e5673f28
KT
7075 raw_spin_unlock(&busiest_rq->lock);
7076
7077 if (p)
7078 attach_one_task(target_rq, p);
7079
7080 local_irq_enable();
7081
969c7921 7082 return 0;
1e3c88bd
PZ
7083}
7084
d987fc7f
MG
7085static inline int on_null_domain(struct rq *rq)
7086{
7087 return unlikely(!rcu_dereference_sched(rq->sd));
7088}
7089
3451d024 7090#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7091/*
7092 * idle load balancing details
83cd4fe2
VP
7093 * - When one of the busy CPUs notice that there may be an idle rebalancing
7094 * needed, they will kick the idle load balancer, which then does idle
7095 * load balancing for all the idle CPUs.
7096 */
1e3c88bd 7097static struct {
83cd4fe2 7098 cpumask_var_t idle_cpus_mask;
0b005cf5 7099 atomic_t nr_cpus;
83cd4fe2
VP
7100 unsigned long next_balance; /* in jiffy units */
7101} nohz ____cacheline_aligned;
1e3c88bd 7102
3dd0337d 7103static inline int find_new_ilb(void)
1e3c88bd 7104{
0b005cf5 7105 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7106
786d6dc7
SS
7107 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7108 return ilb;
7109
7110 return nr_cpu_ids;
1e3c88bd 7111}
1e3c88bd 7112
83cd4fe2
VP
7113/*
7114 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7115 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7116 * CPU (if there is one).
7117 */
0aeeeeba 7118static void nohz_balancer_kick(void)
83cd4fe2
VP
7119{
7120 int ilb_cpu;
7121
7122 nohz.next_balance++;
7123
3dd0337d 7124 ilb_cpu = find_new_ilb();
83cd4fe2 7125
0b005cf5
SS
7126 if (ilb_cpu >= nr_cpu_ids)
7127 return;
83cd4fe2 7128
cd490c5b 7129 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7130 return;
7131 /*
7132 * Use smp_send_reschedule() instead of resched_cpu().
7133 * This way we generate a sched IPI on the target cpu which
7134 * is idle. And the softirq performing nohz idle load balance
7135 * will be run before returning from the IPI.
7136 */
7137 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7138 return;
7139}
7140
c1cc017c 7141static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7142{
7143 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7144 /*
7145 * Completely isolated CPUs don't ever set, so we must test.
7146 */
7147 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7148 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7149 atomic_dec(&nohz.nr_cpus);
7150 }
71325960
SS
7151 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7152 }
7153}
7154
69e1e811
SS
7155static inline void set_cpu_sd_state_busy(void)
7156{
7157 struct sched_domain *sd;
37dc6b50 7158 int cpu = smp_processor_id();
69e1e811 7159
69e1e811 7160 rcu_read_lock();
37dc6b50 7161 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7162
7163 if (!sd || !sd->nohz_idle)
7164 goto unlock;
7165 sd->nohz_idle = 0;
7166
63b2ca30 7167 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7168unlock:
69e1e811
SS
7169 rcu_read_unlock();
7170}
7171
7172void set_cpu_sd_state_idle(void)
7173{
7174 struct sched_domain *sd;
37dc6b50 7175 int cpu = smp_processor_id();
69e1e811 7176
69e1e811 7177 rcu_read_lock();
37dc6b50 7178 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7179
7180 if (!sd || sd->nohz_idle)
7181 goto unlock;
7182 sd->nohz_idle = 1;
7183
63b2ca30 7184 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7185unlock:
69e1e811
SS
7186 rcu_read_unlock();
7187}
7188
1e3c88bd 7189/*
c1cc017c 7190 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7191 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7192 */
c1cc017c 7193void nohz_balance_enter_idle(int cpu)
1e3c88bd 7194{
71325960
SS
7195 /*
7196 * If this cpu is going down, then nothing needs to be done.
7197 */
7198 if (!cpu_active(cpu))
7199 return;
7200
c1cc017c
AS
7201 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7202 return;
1e3c88bd 7203
d987fc7f
MG
7204 /*
7205 * If we're a completely isolated CPU, we don't play.
7206 */
7207 if (on_null_domain(cpu_rq(cpu)))
7208 return;
7209
c1cc017c
AS
7210 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7211 atomic_inc(&nohz.nr_cpus);
7212 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7213}
71325960 7214
0db0628d 7215static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7216 unsigned long action, void *hcpu)
7217{
7218 switch (action & ~CPU_TASKS_FROZEN) {
7219 case CPU_DYING:
c1cc017c 7220 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7221 return NOTIFY_OK;
7222 default:
7223 return NOTIFY_DONE;
7224 }
7225}
1e3c88bd
PZ
7226#endif
7227
7228static DEFINE_SPINLOCK(balancing);
7229
49c022e6
PZ
7230/*
7231 * Scale the max load_balance interval with the number of CPUs in the system.
7232 * This trades load-balance latency on larger machines for less cross talk.
7233 */
029632fb 7234void update_max_interval(void)
49c022e6
PZ
7235{
7236 max_load_balance_interval = HZ*num_online_cpus()/10;
7237}
7238
1e3c88bd
PZ
7239/*
7240 * It checks each scheduling domain to see if it is due to be balanced,
7241 * and initiates a balancing operation if so.
7242 *
b9b0853a 7243 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7244 */
f7ed0a89 7245static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7246{
23f0d209 7247 int continue_balancing = 1;
f7ed0a89 7248 int cpu = rq->cpu;
1e3c88bd 7249 unsigned long interval;
04f733b4 7250 struct sched_domain *sd;
1e3c88bd
PZ
7251 /* Earliest time when we have to do rebalance again */
7252 unsigned long next_balance = jiffies + 60*HZ;
7253 int update_next_balance = 0;
f48627e6
JL
7254 int need_serialize, need_decay = 0;
7255 u64 max_cost = 0;
1e3c88bd 7256
48a16753 7257 update_blocked_averages(cpu);
2069dd75 7258
dce840a0 7259 rcu_read_lock();
1e3c88bd 7260 for_each_domain(cpu, sd) {
f48627e6
JL
7261 /*
7262 * Decay the newidle max times here because this is a regular
7263 * visit to all the domains. Decay ~1% per second.
7264 */
7265 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7266 sd->max_newidle_lb_cost =
7267 (sd->max_newidle_lb_cost * 253) / 256;
7268 sd->next_decay_max_lb_cost = jiffies + HZ;
7269 need_decay = 1;
7270 }
7271 max_cost += sd->max_newidle_lb_cost;
7272
1e3c88bd
PZ
7273 if (!(sd->flags & SD_LOAD_BALANCE))
7274 continue;
7275
f48627e6
JL
7276 /*
7277 * Stop the load balance at this level. There is another
7278 * CPU in our sched group which is doing load balancing more
7279 * actively.
7280 */
7281 if (!continue_balancing) {
7282 if (need_decay)
7283 continue;
7284 break;
7285 }
7286
52a08ef1 7287 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7288
7289 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7290 if (need_serialize) {
7291 if (!spin_trylock(&balancing))
7292 goto out;
7293 }
7294
7295 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7296 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7297 /*
6263322c 7298 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7299 * env->dst_cpu, so we can't know our idle
7300 * state even if we migrated tasks. Update it.
1e3c88bd 7301 */
de5eb2dd 7302 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7303 }
7304 sd->last_balance = jiffies;
52a08ef1 7305 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7306 }
7307 if (need_serialize)
7308 spin_unlock(&balancing);
7309out:
7310 if (time_after(next_balance, sd->last_balance + interval)) {
7311 next_balance = sd->last_balance + interval;
7312 update_next_balance = 1;
7313 }
f48627e6
JL
7314 }
7315 if (need_decay) {
1e3c88bd 7316 /*
f48627e6
JL
7317 * Ensure the rq-wide value also decays but keep it at a
7318 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7319 */
f48627e6
JL
7320 rq->max_idle_balance_cost =
7321 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7322 }
dce840a0 7323 rcu_read_unlock();
1e3c88bd
PZ
7324
7325 /*
7326 * next_balance will be updated only when there is a need.
7327 * When the cpu is attached to null domain for ex, it will not be
7328 * updated.
7329 */
7330 if (likely(update_next_balance))
7331 rq->next_balance = next_balance;
7332}
7333
3451d024 7334#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7335/*
3451d024 7336 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7337 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7338 */
208cb16b 7339static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7340{
208cb16b 7341 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7342 struct rq *rq;
7343 int balance_cpu;
7344
1c792db7
SS
7345 if (idle != CPU_IDLE ||
7346 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7347 goto end;
83cd4fe2
VP
7348
7349 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7350 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7351 continue;
7352
7353 /*
7354 * If this cpu gets work to do, stop the load balancing
7355 * work being done for other cpus. Next load
7356 * balancing owner will pick it up.
7357 */
1c792db7 7358 if (need_resched())
83cd4fe2 7359 break;
83cd4fe2 7360
5ed4f1d9
VG
7361 rq = cpu_rq(balance_cpu);
7362
ed61bbc6
TC
7363 /*
7364 * If time for next balance is due,
7365 * do the balance.
7366 */
7367 if (time_after_eq(jiffies, rq->next_balance)) {
7368 raw_spin_lock_irq(&rq->lock);
7369 update_rq_clock(rq);
7370 update_idle_cpu_load(rq);
7371 raw_spin_unlock_irq(&rq->lock);
7372 rebalance_domains(rq, CPU_IDLE);
7373 }
83cd4fe2 7374
83cd4fe2
VP
7375 if (time_after(this_rq->next_balance, rq->next_balance))
7376 this_rq->next_balance = rq->next_balance;
7377 }
7378 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7379end:
7380 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7381}
7382
7383/*
0b005cf5
SS
7384 * Current heuristic for kicking the idle load balancer in the presence
7385 * of an idle cpu is the system.
7386 * - This rq has more than one task.
7387 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7388 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7389 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7390 * domain span are idle.
83cd4fe2 7391 */
4a725627 7392static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7393{
7394 unsigned long now = jiffies;
0b005cf5 7395 struct sched_domain *sd;
63b2ca30 7396 struct sched_group_capacity *sgc;
4a725627 7397 int nr_busy, cpu = rq->cpu;
83cd4fe2 7398
4a725627 7399 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7400 return 0;
7401
1c792db7
SS
7402 /*
7403 * We may be recently in ticked or tickless idle mode. At the first
7404 * busy tick after returning from idle, we will update the busy stats.
7405 */
69e1e811 7406 set_cpu_sd_state_busy();
c1cc017c 7407 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7408
7409 /*
7410 * None are in tickless mode and hence no need for NOHZ idle load
7411 * balancing.
7412 */
7413 if (likely(!atomic_read(&nohz.nr_cpus)))
7414 return 0;
1c792db7
SS
7415
7416 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7417 return 0;
7418
0b005cf5
SS
7419 if (rq->nr_running >= 2)
7420 goto need_kick;
83cd4fe2 7421
067491b7 7422 rcu_read_lock();
37dc6b50 7423 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7424
37dc6b50 7425 if (sd) {
63b2ca30
NP
7426 sgc = sd->groups->sgc;
7427 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7428
37dc6b50 7429 if (nr_busy > 1)
067491b7 7430 goto need_kick_unlock;
83cd4fe2 7431 }
37dc6b50
PM
7432
7433 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7434
7435 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7436 sched_domain_span(sd)) < cpu))
7437 goto need_kick_unlock;
7438
067491b7 7439 rcu_read_unlock();
83cd4fe2 7440 return 0;
067491b7
PZ
7441
7442need_kick_unlock:
7443 rcu_read_unlock();
0b005cf5
SS
7444need_kick:
7445 return 1;
83cd4fe2
VP
7446}
7447#else
208cb16b 7448static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7449#endif
7450
7451/*
7452 * run_rebalance_domains is triggered when needed from the scheduler tick.
7453 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7454 */
1e3c88bd
PZ
7455static void run_rebalance_domains(struct softirq_action *h)
7456{
208cb16b 7457 struct rq *this_rq = this_rq();
6eb57e0d 7458 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7459 CPU_IDLE : CPU_NOT_IDLE;
7460
f7ed0a89 7461 rebalance_domains(this_rq, idle);
1e3c88bd 7462
1e3c88bd 7463 /*
83cd4fe2 7464 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7465 * balancing on behalf of the other idle cpus whose ticks are
7466 * stopped.
7467 */
208cb16b 7468 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7469}
7470
1e3c88bd
PZ
7471/*
7472 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7473 */
7caff66f 7474void trigger_load_balance(struct rq *rq)
1e3c88bd 7475{
1e3c88bd 7476 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7477 if (unlikely(on_null_domain(rq)))
7478 return;
7479
7480 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7481 raise_softirq(SCHED_SOFTIRQ);
3451d024 7482#ifdef CONFIG_NO_HZ_COMMON
c726099e 7483 if (nohz_kick_needed(rq))
0aeeeeba 7484 nohz_balancer_kick();
83cd4fe2 7485#endif
1e3c88bd
PZ
7486}
7487
0bcdcf28
CE
7488static void rq_online_fair(struct rq *rq)
7489{
7490 update_sysctl();
0e59bdae
KT
7491
7492 update_runtime_enabled(rq);
0bcdcf28
CE
7493}
7494
7495static void rq_offline_fair(struct rq *rq)
7496{
7497 update_sysctl();
a4c96ae3
PB
7498
7499 /* Ensure any throttled groups are reachable by pick_next_task */
7500 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7501}
7502
55e12e5e 7503#endif /* CONFIG_SMP */
e1d1484f 7504
bf0f6f24
IM
7505/*
7506 * scheduler tick hitting a task of our scheduling class:
7507 */
8f4d37ec 7508static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7509{
7510 struct cfs_rq *cfs_rq;
7511 struct sched_entity *se = &curr->se;
7512
7513 for_each_sched_entity(se) {
7514 cfs_rq = cfs_rq_of(se);
8f4d37ec 7515 entity_tick(cfs_rq, se, queued);
bf0f6f24 7516 }
18bf2805 7517
10e84b97 7518 if (numabalancing_enabled)
cbee9f88 7519 task_tick_numa(rq, curr);
3d59eebc 7520
18bf2805 7521 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7522}
7523
7524/*
cd29fe6f
PZ
7525 * called on fork with the child task as argument from the parent's context
7526 * - child not yet on the tasklist
7527 * - preemption disabled
bf0f6f24 7528 */
cd29fe6f 7529static void task_fork_fair(struct task_struct *p)
bf0f6f24 7530{
4fc420c9
DN
7531 struct cfs_rq *cfs_rq;
7532 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7533 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7534 struct rq *rq = this_rq();
7535 unsigned long flags;
7536
05fa785c 7537 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7538
861d034e
PZ
7539 update_rq_clock(rq);
7540
4fc420c9
DN
7541 cfs_rq = task_cfs_rq(current);
7542 curr = cfs_rq->curr;
7543
6c9a27f5
DN
7544 /*
7545 * Not only the cpu but also the task_group of the parent might have
7546 * been changed after parent->se.parent,cfs_rq were copied to
7547 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7548 * of child point to valid ones.
7549 */
7550 rcu_read_lock();
7551 __set_task_cpu(p, this_cpu);
7552 rcu_read_unlock();
bf0f6f24 7553
7109c442 7554 update_curr(cfs_rq);
cd29fe6f 7555
b5d9d734
MG
7556 if (curr)
7557 se->vruntime = curr->vruntime;
aeb73b04 7558 place_entity(cfs_rq, se, 1);
4d78e7b6 7559
cd29fe6f 7560 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7561 /*
edcb60a3
IM
7562 * Upon rescheduling, sched_class::put_prev_task() will place
7563 * 'current' within the tree based on its new key value.
7564 */
4d78e7b6 7565 swap(curr->vruntime, se->vruntime);
8875125e 7566 resched_curr(rq);
4d78e7b6 7567 }
bf0f6f24 7568
88ec22d3
PZ
7569 se->vruntime -= cfs_rq->min_vruntime;
7570
05fa785c 7571 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7572}
7573
cb469845
SR
7574/*
7575 * Priority of the task has changed. Check to see if we preempt
7576 * the current task.
7577 */
da7a735e
PZ
7578static void
7579prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7580{
da0c1e65 7581 if (!task_on_rq_queued(p))
da7a735e
PZ
7582 return;
7583
cb469845
SR
7584 /*
7585 * Reschedule if we are currently running on this runqueue and
7586 * our priority decreased, or if we are not currently running on
7587 * this runqueue and our priority is higher than the current's
7588 */
da7a735e 7589 if (rq->curr == p) {
cb469845 7590 if (p->prio > oldprio)
8875125e 7591 resched_curr(rq);
cb469845 7592 } else
15afe09b 7593 check_preempt_curr(rq, p, 0);
cb469845
SR
7594}
7595
da7a735e
PZ
7596static void switched_from_fair(struct rq *rq, struct task_struct *p)
7597{
7598 struct sched_entity *se = &p->se;
7599 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7600
7601 /*
791c9e02 7602 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7603 * switched back to the fair class the enqueue_entity(.flags=0) will
7604 * do the right thing.
7605 *
da0c1e65
KT
7606 * If it's queued, then the dequeue_entity(.flags=0) will already
7607 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7608 * the task is sleeping will it still have non-normalized vruntime.
7609 */
da0c1e65 7610 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7611 /*
7612 * Fix up our vruntime so that the current sleep doesn't
7613 * cause 'unlimited' sleep bonus.
7614 */
7615 place_entity(cfs_rq, se, 0);
7616 se->vruntime -= cfs_rq->min_vruntime;
7617 }
9ee474f5 7618
141965c7 7619#ifdef CONFIG_SMP
9ee474f5
PT
7620 /*
7621 * Remove our load from contribution when we leave sched_fair
7622 * and ensure we don't carry in an old decay_count if we
7623 * switch back.
7624 */
87e3c8ae
KT
7625 if (se->avg.decay_count) {
7626 __synchronize_entity_decay(se);
7627 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7628 }
7629#endif
da7a735e
PZ
7630}
7631
cb469845
SR
7632/*
7633 * We switched to the sched_fair class.
7634 */
da7a735e 7635static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7636{
eb7a59b2 7637#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7638 struct sched_entity *se = &p->se;
eb7a59b2
M
7639 /*
7640 * Since the real-depth could have been changed (only FAIR
7641 * class maintain depth value), reset depth properly.
7642 */
7643 se->depth = se->parent ? se->parent->depth + 1 : 0;
7644#endif
da0c1e65 7645 if (!task_on_rq_queued(p))
da7a735e
PZ
7646 return;
7647
cb469845
SR
7648 /*
7649 * We were most likely switched from sched_rt, so
7650 * kick off the schedule if running, otherwise just see
7651 * if we can still preempt the current task.
7652 */
da7a735e 7653 if (rq->curr == p)
8875125e 7654 resched_curr(rq);
cb469845 7655 else
15afe09b 7656 check_preempt_curr(rq, p, 0);
cb469845
SR
7657}
7658
83b699ed
SV
7659/* Account for a task changing its policy or group.
7660 *
7661 * This routine is mostly called to set cfs_rq->curr field when a task
7662 * migrates between groups/classes.
7663 */
7664static void set_curr_task_fair(struct rq *rq)
7665{
7666 struct sched_entity *se = &rq->curr->se;
7667
ec12cb7f
PT
7668 for_each_sched_entity(se) {
7669 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7670
7671 set_next_entity(cfs_rq, se);
7672 /* ensure bandwidth has been allocated on our new cfs_rq */
7673 account_cfs_rq_runtime(cfs_rq, 0);
7674 }
83b699ed
SV
7675}
7676
029632fb
PZ
7677void init_cfs_rq(struct cfs_rq *cfs_rq)
7678{
7679 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7680 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7681#ifndef CONFIG_64BIT
7682 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7683#endif
141965c7 7684#ifdef CONFIG_SMP
9ee474f5 7685 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7686 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7687#endif
029632fb
PZ
7688}
7689
810b3817 7690#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7691static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7692{
fed14d45 7693 struct sched_entity *se = &p->se;
aff3e498 7694 struct cfs_rq *cfs_rq;
fed14d45 7695
b2b5ce02
PZ
7696 /*
7697 * If the task was not on the rq at the time of this cgroup movement
7698 * it must have been asleep, sleeping tasks keep their ->vruntime
7699 * absolute on their old rq until wakeup (needed for the fair sleeper
7700 * bonus in place_entity()).
7701 *
7702 * If it was on the rq, we've just 'preempted' it, which does convert
7703 * ->vruntime to a relative base.
7704 *
7705 * Make sure both cases convert their relative position when migrating
7706 * to another cgroup's rq. This does somewhat interfere with the
7707 * fair sleeper stuff for the first placement, but who cares.
7708 */
7ceff013 7709 /*
da0c1e65 7710 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7711 * But there are some cases where it has already been normalized:
7712 *
7713 * - Moving a forked child which is waiting for being woken up by
7714 * wake_up_new_task().
62af3783
DN
7715 * - Moving a task which has been woken up by try_to_wake_up() and
7716 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7717 *
7718 * To prevent boost or penalty in the new cfs_rq caused by delta
7719 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7720 */
da0c1e65
KT
7721 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7722 queued = 1;
7ceff013 7723
da0c1e65 7724 if (!queued)
fed14d45 7725 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7726 set_task_rq(p, task_cpu(p));
fed14d45 7727 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7728 if (!queued) {
fed14d45
PZ
7729 cfs_rq = cfs_rq_of(se);
7730 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7731#ifdef CONFIG_SMP
7732 /*
7733 * migrate_task_rq_fair() will have removed our previous
7734 * contribution, but we must synchronize for ongoing future
7735 * decay.
7736 */
fed14d45
PZ
7737 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7738 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7739#endif
7740 }
810b3817 7741}
029632fb
PZ
7742
7743void free_fair_sched_group(struct task_group *tg)
7744{
7745 int i;
7746
7747 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7748
7749 for_each_possible_cpu(i) {
7750 if (tg->cfs_rq)
7751 kfree(tg->cfs_rq[i]);
7752 if (tg->se)
7753 kfree(tg->se[i]);
7754 }
7755
7756 kfree(tg->cfs_rq);
7757 kfree(tg->se);
7758}
7759
7760int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7761{
7762 struct cfs_rq *cfs_rq;
7763 struct sched_entity *se;
7764 int i;
7765
7766 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7767 if (!tg->cfs_rq)
7768 goto err;
7769 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7770 if (!tg->se)
7771 goto err;
7772
7773 tg->shares = NICE_0_LOAD;
7774
7775 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7776
7777 for_each_possible_cpu(i) {
7778 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7779 GFP_KERNEL, cpu_to_node(i));
7780 if (!cfs_rq)
7781 goto err;
7782
7783 se = kzalloc_node(sizeof(struct sched_entity),
7784 GFP_KERNEL, cpu_to_node(i));
7785 if (!se)
7786 goto err_free_rq;
7787
7788 init_cfs_rq(cfs_rq);
7789 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7790 }
7791
7792 return 1;
7793
7794err_free_rq:
7795 kfree(cfs_rq);
7796err:
7797 return 0;
7798}
7799
7800void unregister_fair_sched_group(struct task_group *tg, int cpu)
7801{
7802 struct rq *rq = cpu_rq(cpu);
7803 unsigned long flags;
7804
7805 /*
7806 * Only empty task groups can be destroyed; so we can speculatively
7807 * check on_list without danger of it being re-added.
7808 */
7809 if (!tg->cfs_rq[cpu]->on_list)
7810 return;
7811
7812 raw_spin_lock_irqsave(&rq->lock, flags);
7813 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7814 raw_spin_unlock_irqrestore(&rq->lock, flags);
7815}
7816
7817void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7818 struct sched_entity *se, int cpu,
7819 struct sched_entity *parent)
7820{
7821 struct rq *rq = cpu_rq(cpu);
7822
7823 cfs_rq->tg = tg;
7824 cfs_rq->rq = rq;
029632fb
PZ
7825 init_cfs_rq_runtime(cfs_rq);
7826
7827 tg->cfs_rq[cpu] = cfs_rq;
7828 tg->se[cpu] = se;
7829
7830 /* se could be NULL for root_task_group */
7831 if (!se)
7832 return;
7833
fed14d45 7834 if (!parent) {
029632fb 7835 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7836 se->depth = 0;
7837 } else {
029632fb 7838 se->cfs_rq = parent->my_q;
fed14d45
PZ
7839 se->depth = parent->depth + 1;
7840 }
029632fb
PZ
7841
7842 se->my_q = cfs_rq;
0ac9b1c2
PT
7843 /* guarantee group entities always have weight */
7844 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7845 se->parent = parent;
7846}
7847
7848static DEFINE_MUTEX(shares_mutex);
7849
7850int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7851{
7852 int i;
7853 unsigned long flags;
7854
7855 /*
7856 * We can't change the weight of the root cgroup.
7857 */
7858 if (!tg->se[0])
7859 return -EINVAL;
7860
7861 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7862
7863 mutex_lock(&shares_mutex);
7864 if (tg->shares == shares)
7865 goto done;
7866
7867 tg->shares = shares;
7868 for_each_possible_cpu(i) {
7869 struct rq *rq = cpu_rq(i);
7870 struct sched_entity *se;
7871
7872 se = tg->se[i];
7873 /* Propagate contribution to hierarchy */
7874 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7875
7876 /* Possible calls to update_curr() need rq clock */
7877 update_rq_clock(rq);
17bc14b7 7878 for_each_sched_entity(se)
029632fb
PZ
7879 update_cfs_shares(group_cfs_rq(se));
7880 raw_spin_unlock_irqrestore(&rq->lock, flags);
7881 }
7882
7883done:
7884 mutex_unlock(&shares_mutex);
7885 return 0;
7886}
7887#else /* CONFIG_FAIR_GROUP_SCHED */
7888
7889void free_fair_sched_group(struct task_group *tg) { }
7890
7891int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7892{
7893 return 1;
7894}
7895
7896void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7897
7898#endif /* CONFIG_FAIR_GROUP_SCHED */
7899
810b3817 7900
6d686f45 7901static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7902{
7903 struct sched_entity *se = &task->se;
0d721cea
PW
7904 unsigned int rr_interval = 0;
7905
7906 /*
7907 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7908 * idle runqueue:
7909 */
0d721cea 7910 if (rq->cfs.load.weight)
a59f4e07 7911 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7912
7913 return rr_interval;
7914}
7915
bf0f6f24
IM
7916/*
7917 * All the scheduling class methods:
7918 */
029632fb 7919const struct sched_class fair_sched_class = {
5522d5d5 7920 .next = &idle_sched_class,
bf0f6f24
IM
7921 .enqueue_task = enqueue_task_fair,
7922 .dequeue_task = dequeue_task_fair,
7923 .yield_task = yield_task_fair,
d95f4122 7924 .yield_to_task = yield_to_task_fair,
bf0f6f24 7925
2e09bf55 7926 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7927
7928 .pick_next_task = pick_next_task_fair,
7929 .put_prev_task = put_prev_task_fair,
7930
681f3e68 7931#ifdef CONFIG_SMP
4ce72a2c 7932 .select_task_rq = select_task_rq_fair,
0a74bef8 7933 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7934
0bcdcf28
CE
7935 .rq_online = rq_online_fair,
7936 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7937
7938 .task_waking = task_waking_fair,
681f3e68 7939#endif
bf0f6f24 7940
83b699ed 7941 .set_curr_task = set_curr_task_fair,
bf0f6f24 7942 .task_tick = task_tick_fair,
cd29fe6f 7943 .task_fork = task_fork_fair,
cb469845
SR
7944
7945 .prio_changed = prio_changed_fair,
da7a735e 7946 .switched_from = switched_from_fair,
cb469845 7947 .switched_to = switched_to_fair,
810b3817 7948
0d721cea
PW
7949 .get_rr_interval = get_rr_interval_fair,
7950
810b3817 7951#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7952 .task_move_group = task_move_group_fair,
810b3817 7953#endif
bf0f6f24
IM
7954};
7955
7956#ifdef CONFIG_SCHED_DEBUG
029632fb 7957void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7958{
bf0f6f24
IM
7959 struct cfs_rq *cfs_rq;
7960
5973e5b9 7961 rcu_read_lock();
c3b64f1e 7962 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7963 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7964 rcu_read_unlock();
bf0f6f24
IM
7965}
7966#endif
029632fb
PZ
7967
7968__init void init_sched_fair_class(void)
7969{
7970#ifdef CONFIG_SMP
7971 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7972
3451d024 7973#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7974 nohz.next_balance = jiffies;
029632fb 7975 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7976 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7977#endif
7978#endif /* SMP */
7979
7980}